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Abstract We give an alternative proof of Faltings’s theorem (Mordell’s con-
jecture): a curve of genus at least two over a number field has finitely many
rational points. Our argument utilizes the set-up of Faltings’s original proof,
but is in spirit closer to the methods of Chabauty and Kim: we replace the
use of abelian varieties by a more detailed analysis of the variation of p-adic
Galois representations in a family of algebraic varieties. The key inputs into
this analysis are the comparison theorems of p-adic Hodge theory, and explicit
topological computations of monodromy. By the same methods we show that,
in sufficiently large dimension and degree, the set of hypersurfaces in projec-
tive space, with good reduction away from a fixed set of primes, is contained
in a proper Zariski-closed subset of the moduli space of all hypersurfaces.
This uses in an essential way the Ax–Schanuel property for period mappings,
recently established by Bakker and Tsimerman.
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1 Introduction

1.1 Outline of main results

Let K be a number field. This paper has two main goals.
Firstly, we will give a new proof of the finiteness of K -rational points on

a smooth projective K -curve of genus � 2. The proof is closely related to
Faltings’s proof [14], but is based on a closer study of the variation of p-adic
Galois representations in a family; it makes no usage of techniques specific to
abelian varieties.

Secondly, we give an application of the same methods to a higher-
dimensional situation. Consider the family of degree-d hypersurfaces in Pn

and let Fn,d be the complement of the discriminant divisor in this family;
we regard Fn,d as a smooth Z-scheme. For S a finite set of primes, points
of Fn,d(Z[S−1]) correspond to proper smooth hypersurfaces of degree d in
Pn

Z[S−1]. It is very reasonable to suppose that Fn,d(Z[S−1]) is finite modulo

the action of GLn+1(Z[S−1]) for d � 3 and all n. We shall show at least
that, if n � n0 and d � d0(n), then Fn,d(Z[S−1]) is contained in a proper
Zariski closed subset of Fn,d (i.e., there exists a proper Q-subvariety of the
generic fiber (Fn,d)Q whose rational points contain Fn,d(Z[S−1)). To prove
this higher-dimensional result, we use a very recent theorem of Bakker and
Tsimerman, the Ax–Schanuel theorem for period mappings.

We can obtain a still stronger theorem along a subvariety of Fn,d if one
has control over monodromy. Namely, if F∗

n,d ⊂ (Fn,d)Q is the Zariski clo-
sure of integral points, our result actually implies that the Zariski closure of
monodromy for the universal family of hypersurfaces must drop over each
component of F∗

n,d . It is possible that this imposes a stronger codimension
condition on F∗

n,d than simply “proper” but we do not know for sure.
Note that, without the result of Bakker and Tsimerman, one can still prove

that Fn,d(Z[S−1]) lies in a properQp-analytic subvariety of Fn,d(Qp), but one
cannot prove the second statement about F∗

n,d .
A simple toy case to illustrate the methods is given by the S-unit equation,

which we analyze in Sect. 4.
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1.2 Outline of the proof

Consider a smooth projective family X → Y over K , where Y is itself a
smooth K -variety; we suppose this extends to a family π :X → Y over the
ring O of S-integers of K , for some finite set S of places of K (containing all
the archimedean places).

For y ∈ Y (K ) call Xy the fiber over y. We want to boundY(O), making use
of the fact that, if y ∈ Y (K ) extends to Y(O), then Xy admits a smooth proper
model over O. That one can thus reduce Mordell’s conjecture to finiteness
results for varieties with good reduction was observed by Parshin [30] and
then used by Faltings in his proof of the Mordell conjecture [14].

Choosing a rational prime p that is unramified in K and not below any
prime of S, write ρy for the Galois representation of GK = Gal(K/K ) on
the p-adic geometric étale cohomology of Xy , i.e. H∗

et(Xy ×K K̄ ,Qp). As
observed by Faltings, one deduces from Hermite–Minkowski finiteness that,
as y varies through Y(O), there are only finitely many possibilities for the
semisimplification of the GK -representation ρy (denoted by ρssy ).

We seek to use the fact that, for v a place of K above p, one can understand
the restriction ρy,v of ρy to GKv via p-adic Hodge theory. In the Mordell case,
when Y is a projective curve, our argument proceeds by showing that both of
the following statements hold for suitable choice of X and v:

(*) The representation ρy is semisimple for all but finitely many y ∈
Y (K ), and the map

y ∈ Y (K ) −→ isomorphism class of ρy,v (1.1)

has finite fibers.

Faltings provesmuch stronger statements when X is an abelian scheme over
Y , using a remarkable argument with heights: every ρy is semisimple and ρy
determines Xy up to isogeny. Our approach gives less, but it gives results in
other cases too, such as the hypersurface family discussed above. However, in
that setting, the issue of semisimplicity proves harder to control, and what we
prove instead is the following hybrid of the two statements in (*): the map

y ∈ Y (K ) −→ restriction of ρssy toGKv (1.2)

considered as a mapping from Y (K ) to isomorphism classes of GKv -
representations, has fibers that are not Zariski dense. (It is crucial, in the above
equation, that we semisimplify ρy as a global Galois representation and then
restrict to GKv .)

For the remainder of the current Sect. 1.2, we will explain (1.1) in more
detail.
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Our analysis uses p-adic Hodge theory. However we make no use of p-adic
Hodge theory in families: we need only the statements over a local field. Under
the correspondence of p-adic Hodge theory, the restricted representation ρy,v
corresponds to a filtered φ-module, namely the de Rham cohomology of Xy
over Kv equipped with its Hodge filtration and a semilinear Frobenius map.
The variation of this filtration is described by a period mapping; in this setting,
this is a Kv-analytic mapping

residue disk in Y (Kv) −→ Kv-points of a flag variety. (1.3)

Therefore, the variation of the p-adic representation ρy,v with y is controlled
by (1.3). The basic, and very naive, “hope” of the proof is that injectivity of
the period map (1.3) should force (1.1) to be injective.

However, (1.1) does not follow directly from injectivity of the period map,
that is to say, from Torelli-type theorems.

Different filtrations on the underlyingφ-module can give filteredφ-modules
which are abstractly isomorphic, the isomorphism being given by a linear
endomorphism commuting with φ. Hence, one needs to know not only that
the period mapping (1.3) is injective, but that its image has finite intersection
with an orbit on the period domain of the centralizer Z(φ) of φ. In other words,
we must analyze a question of “exceptional intersections” between the image
of a period map and an algebraic subvariety.

To illustrate how this is done, let us restrict to the case when Y is a curve.
Assuming that we have shown that the Z(φ)-orbit on the ambient flag variety is
a proper subvariety, it will then be sufficient to show that the image of (1.3) is
in fact Zariski dense. Then the intersection points between the image of (1.3)
and a Z(φ)-orbit amount to zeroes of a nonvanishing Kv-analytic function in
a residue disc, and are therefore finite.

To check Zariski density, the crucial point is that one can verify the same
statement for the complex period map:

universal cover of Y (C) −→ C-points of a flag variety. (1.4)

To pass between the p-adic and complex period maps, we use the fact that
(in suitable coordinates), they satisfy the same differential equation coming
from the Gauss Manin connection, and so have the same power series. This is
a simple but crucial argument, given in Lemma 3.2. But—over the complex
numbers—Zariski density can be verified by topological methods: (1.4) is
now equivariant for an action of π1(Y ), acting on the right according to the
monodromy representation. It is enough to verify that the image ofπ1 under the
monodromy representation is sufficiently large. In the Mordell case, we show
that the monodromy action of π1(Y ) extends to a certain mapping class group,
and we deduce large monodromy from the same assertion for the mapping
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class group (where we can use Dehn twists). This monodromy argument is
related to computations of Looijenga [27], Grunewald et al. [18], and Salter
and Tshishiku [37].

If Y were not a curve, the argument above says only that the intersection
of the image of (1.3) and a Z(φ)-orbit is a proper Kv-analytic subvariety of
Y (Kv). One wants to get a proper Zariski-closed subvariety (for example,
this permits one, in principle at least, to make an inductive argument on the
dimension, although we do not try to do so here.) We obtain this only by
appealing to a remarkable recent result of Bakker and Tsimerman, the Ax–
Schanuel theorem for period mappings: this is a very powerful and general
statement about the transcendence of period mappings.

To summarize, we have outlined the strategy of the proof of (1.1). However,
we have omitted one crucial ingredient needed in this proof, and also a crucial
ingredient needed to get from (1.1) to Mordell:

(a) Showing that the centralizer Z(φ) of φ is not too large, and
(b) Controlling in some a priori way the extent to which ρy can fail to be

semisimple.

We now discuss these issues in turn.

1.3 Problem (a): controlling the centralizer of φ

As we have explained, we need a method to ensure the centralizer of the
crystalline Frobenius φ acting on the cohomology of a fiber Xy is not too
large. For example, if Kv = Qp so that φ is simply a Qp-linear map, we must
certainly rule out the possibility that φ is a scalar!

This issue, that φ might have too large a centralizer and thus the map

y ∈ Y (Kv) −→ isomorphism class of ρy,v (1.5)

might fail to have finite fibers, already occurs in the simplest possible example.
When analyzing the S-unit equation, it is natural to takeY = P1−{0, 1,∞} and
X → Y to be the Legendre family, so that Xt is the curve y2 = x(x−1)(x−t).
Unfortunately (1.5) fails: for t ∈ Zp, if we write ρt for the representation of
the Galois group GQp on the (rational) Tate module of Xt , then ρt belongs to
only finitely many isomorphism classes so long as the reduction t̄ ∈ Fp is not
equal to 0 or 1.

Again we proceed in two different ways:

(i) In general, Frobenius is a semilinear operator on a vector space over an
unramified extension Lw of Qp; semilinearity alone gives rise to a non-
trivial bound (Lemma 2.1) on the size of its centralizer, which, in effect,
becomes stronger as [Lw:Qp] gets larger.
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898 B. Lawrence, A. Venkatesh

In the application to Mordell, it turns out that we can always put ourselves
in a situation where [Lw:Qp] is rather large. This forces the Frobenius
centralizer to be small. We explain this at more length below.

(ii) In the case of hypersurfaces, we do not have a way to enlarge the base field
as in (i). Our procedure is less satisfactory than in case (i), in that it gives
much weaker results:
We are of course able to choose the prime p, and we choose it (via Cheb-
otarev) so that the crystalline Frobenius at p has centralizer that is as small
as possible. To do this, we fix an auxiliary prime �, and first use the fact
(from counting points over extensions of Fp) that crystalline Frobenius at
p has the same eigenvalues as Frobenius on p acting on �-adic cohomol-
ogy; thus it is enough to choose p such that the latter operator has small
centralizer. One can do this via Chebotarev, given a lower bound on the
image of the global Galois representation, and for this we again use some
p-adic Hodge theory (cf. [39]). Another approach, by point-counting, is
outlined in Lemma 12.1.

Let us explain point (i) above by example. In our analysis of the S-unit
equation in Sect. 4, we replace the Legendre family instead by the family with
fiber

Xt =
∐

z2k=t

{y2 = x(x − 1)(x − z)},

for a suitable large integer k. In our situation, the corresponding map t �→ [ρt ]
will now only have finite fibers, at least on residue disks where t̄ is not a
square—an example of the importance of enlarging Kv .

Said differently, we have replaced the Legendre family X
�→ P1−{0, 1,∞}

with a family with the following composite structure:

X ′ �′→ P1 − {0, μ2k ,∞} → P1 − {0, 1,∞}

where the second map is given by u �→ u2
k
, and �′ is simply the restric-

tion of the Legendre family over P1 − {0, μ2k ,∞}. The composite defines a
family over P1 − {0, 1,∞} with geometrically disconnected fibres, and this
disconnectedness is, as we have just explained, to our advantage.

It turns out that the families introduced by Parshin (see [30, Proposition 9]),
in his reduction of Mordell’s conjecture to Shafarevich’s conjecture, automat-
ically have a similar structure. That is to say, if Y is a smooth projective curve,
Parshin’s families factorize as

X → Y ′ → Y,
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where Y ′ → Y is finite étale and X → Y ′ is a relative curve.
There is in fact a lot of flexibility in this construction; in Parshin’s original

construction the covering Y ′ → Y is obtained by pulling back multiplica-
tion by 2 on the Jacobian, and as such each geometric fiber is a torsor under
H1(YK̄ , μ2). Wewant to ensure that the Galois action on each fiber of Y ′ → Y
has large image—with reference to the discussion above, this is what allows us
to ensure that the auxiliary field Lw is of large degree. We use a variant where
each fiber admits aGK -equivariant map to H1(YK̄ ,Z/qZ) (for a suitable aux-
iliary prime q). The Weil pairing alone implies that the Galois action on this
is nontrivial, and this (although very weak) is enough to run our argument.

1.4 Problem (b): how to handle the failure of semisimplicity

Let y ∈ Y (K ). The local Galois representation ρy|GKv
can certainly be very

far from semisimple, and thus we cannot hope to use p-adic Hodge theory
alone to constrain semisimplicity.

However, the Hodge weights of a global representation are highly con-
strained by purity (Lemma 2.9). This means, for example, that any global
subrepresentation W of ρy corresponds, under p-adic Hodge theory, to a
Frobenius-stable subspaceWdR ⊂ H∗

dR(Xy ⊗K Kv)whose Hodge filtration is
numerically constrained. Now (assuming we have arranged that the Frobenius
has small centralizer) there are not too many choices for a Frobenius-stable
subspace; on the other hand, the Hodge filtration varies as y varies p-adically.
Thus one can at least hope to show that such a “bad” WdR exists only for
finitely many y ∈ Y (Kv). In this way we can hope to show that ρy is simple
for all but finitely many y.

The purity argument is also reminiscent of an argument at the torsion level
in Faltings’s proof (the use of Raynaud’s results on [14, p. 364]).

We use this argument both for Mordell’s conjecture and for hypersurfaces
(although for hypersurfaces we prove a much weaker result, just bounding
from above the failure of semisimplicity). The linear algebra involved is fairly
straightforward for curves (see Claim 1 and its proof in Sect. 6) but becomes
very unwieldy in the higher-dimensional case. To handle it in a reasonably
compactwayweuse some combinatorics related to reductive groups (Sect. 11).
However this argument is not very efficient and presumably gives results that
are far from optimal.

1.5 Effectivity; comparison with Chabauty–Kim and Faltings

It is of interest to compare ourmethodwith that ofChabauty, and the nonabelian
generalizations thereof due to Kim [23].
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Let Y be a projective smooth curve over K with Jacobian J . Fix a finite
place v. The classical method of Chabauty proceeds by considering Y (K ) as
the intersection of global points J (K ) on the Jacobian and local points Y (Kv)
on the curve, inside J (Kv). If the rank of J (K ) is less than the Kv-dimension
of J (i.e. the genus of the curve) it is easy to see this intersection is finite.

We can reinterpret this cohomologically. Let Tp be the p-adic Tate module
of J , where p is a prime below v. There is a Kummer map J (K ) ⊗ Qp →
H1(GK , Tp) and we obtain a mapping

Y (K ) −→ H1(GK , Tp) = Ext1(trivial, Tp),

which, explicitly speaking, sends y ∈ Y (K ) to the extension between the
trivial representation and Tp realized by cohomology of the punctured curve
H1
et(Y − {y, y0}) for a suitable basepoint y0. By this discussion, and its local

analogue, we get a diagram

Y (K )

��

�� J (K )

��

S �� space of global Galois representations

��
Y (Kv) �� J (Kv)

Sv �� space of local Galois representations.

(1.6)

(Here the global and local Galois representations are extensions of Tp by the
trivial representation.) Kim generalizes this picture, replacing Tp by deeper
quotients ofπ1(Y ). The idea of p-adic periodmappings also plays a key role in
his work, see [23, p. 360], [24, p. 93], [25, Proposition 1.4]. The key difficulty
to be overcome is to obtain control over the size of the space of global Galois
representations (e.g. the rank of J (K )).

Our picture is very much the same: we have a map y → ρy from Y (K ) to
global Galois representations. In the story just described ρy arises from the
cohomology of an open variety—the curve Y punctured at y and an auxiliary
point. In the situation of our paper, ρy will arise from the cohomology of a
smooth projective variety—a covering of Y branched only at y.

What does this gain? Our global Galois representations are now pure and
(presumably) semisimple. Therefore our space of globalGalois representations
should be extremely small. On the other hand, what we lose is that the map Sv
is now no longer obviously injective.

Kim has remarked to one of us (A.V.) that it would be of interest to consider
combining these methods in some way, in particular that one might replace the
role of the pro-unipotent completion of π1(Y ) in Kim’s analysis by a relative
completion.
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We expect that our method of proof can be made algorithmic in the same
sense as the method of Chabauty. For example, given a curve C as above, one
would be able to “compute” a finite subset S ⊂ C(Kv) which contains C(K );
“compute” means that there is an algorithm that will compute all the elements
of S to a specified p-adic precision in a finite time. However, the resulting
method is completely impractical, as we now explain.

Firstly, our argument relies on Faltings’s finiteness lemma for Galois repre-
sentations (Lemma 2.3) to give a finite list of possibilities for ρssy . We expect
that Faltings’s proof can easily be made algorithmic; but there may be very,
very many such representations.

Secondly, we would need to explicitly compute the comparisons furnished
by p-adic Hodge theory. For a given local Galois representation ρssy , we need
to calculate to some finite precision the filtered φ-module associated to it by
the crystalline comparison isomorphism of p-adic Hodge theory. We expect
that this should be possible, but we are not aware of any known algorithm to
achieve this.

To conclude let us compare our method to Faltings’s original proof. That
proof gives much more than ours does: it gives the full Shafarevich and Tate
conjectures for abelian varieties, as well as semisimplicity of the associated
Galois representation. Our proof gives none of these; it gives nothing about
the Tate conjecture, and (at least without further effort) it does not give the
Shafarevich conjecture but only its restriction to a one-dimensional subfamily
of moduli of abelian varieties. Moreover, our proof is also in some sense more
elaborate, since it requires the use of tricks and delicate computations to avoid
the various complications that we have described. Its only real advantage in
the Mordell case seems to be that it is in principle algorithmic in the sense
described above. In our view, the real gain of the method is the ability to apply
it to families of higher-dimensional varieties. Our results about hypersurfaces
are quite modest, but we regard them as a proof of concept for this idea.

1.6 Structure of the paper

Section 2 contains notation and preliminaries.
We suggest the reader start with Sects. 3 and 4 to get a sense of the argument.
Section 3 sets up the general formalism and the structure of the argument.

We relateGalois representations to a p-adic periodmap using crystalline coho-
mology, and we connect the p-adic period map to a complex period map and
monodromy. The section ends with Proposition 3.4, a preliminary form of our
main result.

Section 4 gives a first application: a proof of the S-unit theorem, using a
variant of the Legendre family. This is much simpler than the proof of Mordell
and can be considered a “warm-up.”
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Sections 5–8 give the proof of the Mordell conjecture. Sect. 5 describes the
strategy of the proof: we apply a certain refined version of Proposition 3.4,
formulated as Proposition 5.3, to a specific family of varieties that we call the
Kodaira–Parshin family. Section 6 is the proof of Proposition 5.3. In particular
this is where we take advantage of “geometrically disconnected fibers”; the
argument also deals with a technical issue relating to semisimplification. In
Sect. 7 we introduce the Kodaira–Parshin family and Sect. 8 is purely topo-
logical: it computes the monodromy of the Kodaira–Parshin family.

Sections 9–12 study families of varieties of higher dimension. Section 9
introduces a recent transcendence result of Bakker and Tsimerman which is
needed to study families over a higher-dimensional base. Section 10 proves
the main result, Proposition 10.1, which shows that fibers of good reduction
lie in a Zariski-closed subset of the base. The argument however invokes a
“general position” result in linear algebra, Proposition 10.6, whose proof takes
up Sect. 11. In Sect. 12 we suggest an alternative argument, not used in the
rest of the paper, to bound the size of the Frobenius centralizer.

2 Notation and preparatory results

We gather here some notation and some miscellaneous lemmas that we will
use in the text.We suggest that the reader refer to this section only as necessary
when reading the main text.

The following notation will be fixed throughout the paper.
• K a number field
• K a fixed algebraic closure of K
• GK = Gal(K/K ) the absolute Galois group
• S a finite set of finite places of K containing all the archimedean places
• OS the ring of S-integers
• O = OS when S is understood
• p a (rational) prime number such that no place of S lies above p
• Kw the completion of K at a prime w of O
• Kw a fixed algebraic closure of Kw
• Fw the residue field at w
• qw the cardinality of Fw
• Fw the residue field of Kw, which is an algebraic closure of Fw
• O(w) the localization of O at w
By aGK -set wemean a (discretely topologized) set with a continuous action

of GK .
For a variety X over a field E of characteristic zero,we denote by H∗

dR(X/E)
the de Rham cohomology of X → Spec(E). If E ′ ⊃ E is a field extension,
we denote by H∗

dR(X/E
′) the de Rham cohomology of the base-change XE ′ ,

which is identified with HdR(X/E)⊗E E ′.
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For any scheme S, a family over S is an (arbitrary) S-scheme π :Y → S. A
curve over S is a family over S for which π is smooth and proper of relative
dimension 1 and each geometric fiber is connected. (Note that we will also
make use of “open” curves, for example in Sect. 4, but we will avoid using the
word “curve” in that context.)

Let E/Qp be a finite unramified extension of Qp, and σ the unique auto-
morphism of E inducing the pth power map on the residue field. By φ-module
(over E) we will mean a pair (V, φ), with V a finite-dimensional E-vector
space and φ: V → V a map semilinear over σ . A filtered φ-module will be a
triple (V, φ, FiV ) such that (V, φ) is a φ-module and (FiV )i is a descending
filtration on V . We demand that each FiV be an E-linear subspace of V but
require no compatibility with φ. Note that the filtered φ-modules arising from
Galois representations via p-adic Hodge theory satisfy a further condition,
admissibility, but we will make no use of it in this paper (see [17, Exposé III,
§4.4] and [17, Exposé III, §5.3.3]).

2.1 Linear algebra

Lemma 2.1 Suppose that σ : E → E is a field automorphism of finite order e,
with fixed field F. Let V be an E-vector space of dimension d, and φ: V → V
a σ -semilinear automorphism. Define the centralizer Z(φ) of φ in the ring of
E-linear endomorphisms of V via

Z(φ) = { f : V → V an E-linear map, f φ = φ f };

it is an F-vector space. Then

dimF Z(φ) = dimE Z(φe),

where φe: V → V is now E-linear. In particular, dimF Z(φ) � (dimE V )2.

Proof Let F̄ be an algebraic closure of F , and let� be the set of F-embeddings
E ↪→ F̄ . Then V̄ = V ⊗F F̄ is a E ⊗F F̄ � F̄�-module, and splitting by
idempotents of E ⊗F F̄ we get a decomposition

V̄ =
⊕

τ∈�
V̄ τ ,

where V̄ τ consists of v̄ ∈ V̄ such that ev̄ = τ(e)v̄ for all e ∈ E . (Here the
multiplication ev̄ is for the E-module structure, and τ(e)v̄ for the F̄-module
structure, on V̄ .) Moreover, φ extends to an F̄-linear endomorphism φ of V̄ ;
this endomorphism carries V̄ τ to V̄ τσ

−1
.

123



904 B. Lawrence, A. Venkatesh

Fix τ0 ∈ �; then projection to the τ0 factor induces an isomorphism

Z(φ) � centralizer of φ
e
on V̄ τ0 .

Now (V̄ τ0, φ
e
) is obtained by base extension τ0: E → F̄ from the E-linear

map φe: V → V ; in particular, the dimension of the centralizer on the right is
the same as Z(φe), whence the result. �

2.2 Semisimplicity

Lemma 2.2 Let H � G be a finite-index inclusion of groups, and let ρ: H →
GLn(F) be a semisimple representation of the group H over the characteristic-
zero field F. Then the induction ρG = IndGHρ is also semisimple.

Proof This follows readily from the fact that a representation ρ of G is
semisimple if and only if its restriction to a finite-index normal subgroup
G1 � G is semisimple: take G1 to be the intersection of conjugates of H .

For “if” one can promote a splitting from G1 to G by averaging; for
“only if” we take an irreducible G-representation V , an irreducible G1-
subrepresentation W ⊂ V , and note that G-translates of W must span V ,
exhibiting V |G1 as a quotient of a semisimple module. �

2.3 Global Galois representations

Lemma 2.3 (Faltings) Fix integersw, d � 0, and fix K and S as above. There
are, up to conjugation, only finitely many semisimple Galois representations
ρ:GK → GLd(Qp) such that

(a) ρ is unramified outside S, and
(b) ρ is pure of weight w, i.e. for every prime ℘ /∈ S the characteristic poly-

nomial of Frobenius at ℘ has all roots algebraic, with complex absolute
value qw/2℘ .

(c) For℘ as above the characteristic polynomial of Frobenius at℘ has integer
coefficients.

Proof This is a consequence of Hermite–Minkowski finiteness; see the proof
of [14, Satz 5], or [47, V, Proposition 2.7]. �

Wewant to explain how to adapt this proof to a reductive target group. First
we recall the notion of “semisimple” with general reductive target, and some
allied notions.

Let K be a field of characteristic zero. First of all, recall that if G is a
reductive algebraic group over K and ρ:� → G(K ) is a representation of the
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group �, there are natural notions of “irreducible” and “semisimple” adapted
to G, as described by Serre [43, 3.2]:

the representation ρ isG-ir, or irreducible relative toG, if the image ρ(�)
is not contained in a proper parabolic subgroup P � G defined over K .

For example, if G is an orthogonal or symplectic group, this assertion
amounts to saying that there is no isotropic �-invariant subspace. Next

the representation ρ is G-c.r., or completely reducible relative to G, if
for any parabolic subgroup P � G defined over K containing the image
ρ(�), there exists a Levi factor L � P , defined over K , which also
contains this image.

We will also refer to G-c.r. as “semisimple” when the target group is clear.
Let ρ:� → G(K ) be an arbitrary representation. Let P be a K -parabolic sub-
group that contains the image of ρ andwhich isminimal for this property. Then
the projection of ρ to a Levi factor M ⊂ P is independent, up to G-conjugacy,
of the choice of M ; see [43, Proposition 3.3]. This resulting representation is
called the semisimplification of ρ, relative to the ambient group G, and will
be denoted by ρss. The Zariski closure of this semisimplification is a reductive
group, at least for K in characteristic zero: see [43, Proposition 4.2].1

Later on we will use the following observation.

Lemma 2.4 For any γ ∈ �, ρss(γ ) and ρ(γ ) have the same semisimple part
up to conjugacy.

Proof Indeed, let P be as above, and factorize P = MU into a Levi factor M
andU the unipotent radical of P .Wemust prove that for p = mu ∈ P(K ),with
m ∈ M(K ) and u ∈ U (K ), the semisimple parts of p and m are conjugate
within P . To prove this take a commuting factorization p = pss pu , and
similarly for m. By functoriality, mss is the image of pss . We are reduced to
the case of m and p semisimple:

a semisimple element p = mu in P(K ) is P(K )-conjugate tom, (2.1)

and clearly it is enough to be able to conjugate p into M .
The element p is contained in some maximal torus T [6, 10.6,11.10] which

is contained in aLevi subgroup of P . However all Levi subgroups are conjugate
under U (K ) [6, Proposition 20.5] we may therefore conjugate p into M as
desired. �

In passing we also record:

1 In §4 of [43] the assumption is stated that K is algebraically closed, but this is not used in the
proof of Proposition 4.2. Alternately [2, Theorem 5.8] can be used to pass from K to K̄ .
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Lemma 2.5 Suppose P = MU is a parabolic subgroup of the reductive K -
group G.

Let S � P be a K-torus, then S is conjugate under U (K ) to its projection
to M.

In particular,χ :Gm → P be a character; thenχ is conjugate, under P(K ),
to its projection to M.

Proof We may assume that S is a maximal torus, and then the claim follows
from the argument above. �

Faltings’ finiteness theorem continues to apply in this context:

Lemma 2.6 Let G ⊂ GLn be a reductive group, K a number field, S a finite
set of places. Consider all representations

ρ:GK −→ G(Qp)

which, when considered as representations into GLn(Qp), satisfy conditions
(a), (b), (c) of Lemma 2.3 (i.e. S-unramified, pure of weight w, integral).

Then there are only finitely many possibilities for the G(Qp)-conjugacy
class of ρss.

Indeed, there are only finitely many possibilities up to G(Qp)-conjugacy
for pairs (Q, ρ:GQ → LQ(Qp)) where Q is a Qp-parabolic subgroup with
Levi quotient LQ, the image of ρ is irreducible in LQ, and ρ again satisfies
the conditions of Lemma 2.3.

Proof Note first that for such ρ, the G-semisimplification ρss is also semisim-
ple considered as a representation with target GLn (since its Zariski closure is
reductive, as noted above).

By Lemma 2.3 is enough to check that, for any fixed such ρ0, there are only
finitely many G(Qp)-orbits on the set of GLn(Qp)-conjugates of ρss0 with
image in G. Let L be the Zariski closure of the image of ρss0 . It is a reductive
Qp-subgroup of G. Then for g ∈ GLn(Qp) the image of Ad(g)ρ0 belongs to
G if, and only if, Ad(g)L ⊂ G. In other words, it is enough to verify that the
set

{g ∈ GLn(Qp):Ad(g)L ⊂ G}
consists of finitelymany double cosets under (G(Qp),L(Qp)), or equivalently
finitely many G(Qp)-orbits.

We may replace L by its connected component, and then it is enough to
verify this assertion at the level of Lie algebras, i.e. to prove the same assertion
for the set

{g ∈ GLn(Qp):Ad(g)l ⊂ g}
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According to Richardson’s theorem [35, Theorem 7.1] this forms finitelymany
G orbits over the algebraic closure Qp. The result then follows from finiteness
of the Galois cohomology H1(Qp,S) for any linear algebraic group S [42, III
§4, Theorem 4].

To see the validity of the refinement, note that there are finitely many con-
jugacy classes of parabolic subgroups P defined over Qp, and for each such
P there are—by what we just proved, applied to a Levi factor—only finitely
many P(Qp)-conjugacy classes of (pure of weight w, unramified outside S)
irreducible representations GK → LP(Qp). �

2.4 Friendly places

For our later applications it is convenient to have available a class of “friendly”
places of a number field K at which the local behavior of homomorphisms
GK → Q∗

p is particularly simple. (Actually, in our applications, it would be
enough to do this for K = Q, for which everything is quite straightforward,
and to always use Lemma 2.10 with K = Q. However, it makes our arguments
a little easier to write to have friendly places available for a general number
field K ).

First we recall some structural theory [41, II.3.3]. Let C ⊂ GQ = Gal(Q/Q)
be the conjugacy class of complex conjugation, and let H+ = 〈C〉, the normal
subgroup generated by C; there is a unique nontrivial homomorphism H+ →
{±1} and we let H be its kernel. A subfield K ⊂ Q is totally real if and only
if it is fixed by H+. It is CM if and only if it is fixed by H but not H+.

For an arbitrary number field K ⊂ Q let E and E+ be, respectively, the
subfields of K defined by fixed fields of GK · H and GK · H+, respectively
(where GK is the Galois group of Q over K ). Then E+ is the largest totally
real subfield of K , and either E+ = E is totally real, or E is CM and is the
largest CM subfield of K .

Definition 2.7 (Friendly places) Let K be a number field.

• If K has a CM subfield, then let E be its maximal CM subfield and E+ the
maximal totally real subfield of E . In this case, we say that a place v of K
is friendly if it is unramified over Q, and it lies above a place of E+ that is
inert in E .

• If K has no CM subfield, any place v of K which is unramified over Q will
be understood to be friendly.

Clearly, infinitely many friendly places exist; however, if K has a CM sub-
field, they have Dirichlet density 0.

Consider, now, a continuous character η:Gal(K/K ) −→ Q∗
p, ramified at

only finitely many places; by class field theory it corresponds to a homomor-
phism A∗

K /K
∗ → Q∗

p. In particular, its restriction to places above p gives rise
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to a homomorphism ηp: (K ⊗ Qp)
∗ −→ Q∗

p. As usual, we say this is locally
algebraic if it agrees, in a neighbourhood of the identity, with the Qp-points
of an algebraic homomorphism Res(K⊗Qp)/QpGm −→ Gm of Qp-algebraic
groups, cf. [41, Chapter III]. This condition is implied by being Hodge–Tate
at primes above p, by a theorem of Tate [41, Chapter III, Appendix]. More-
over, since η is finitely ramified, it follows that ηp is trivial on a finite-index
subgroup of the units O∗

K , embedded into (K ⊗ Qp)
∗.

For such η, we say that η is pure of weight w when it satisfies the condition
explained in Lemma 2.3.

Lemma 2.8 Let v be any friendly place of K , lying above the prime p of Q.
For any continuous character η:Gal(K̄/K ) −→ Q∗

p, ramified at only finitely
many places, pure of weight w, and locally algebraic at each prime above p,
one has

η2|K ∗
v
= χ · Normw

Kv/Qp
,

where χ has finite order. In particular, w is even and the Hodge–Tate weight
of η at the place v equals w/2.

In other words, the restriction of globally pure characters to friendly places
is of a standard form. Note that if the coefficients are enlarged from Q∗

p to
Q∗

p2
, the statement above is no longer true; an example is given by the idele

class character associated to a CM elliptic curve.
The proof of this result is routine. The key point is due to Artin andWeil: an

algebraic Hecke character factors through the norm map to the maximal CM
subfield.

Proof Being locally algebraic, η gives rise to an algebraic character of
ResK/QGm , which is trivial on a finite-index subgroup of O∗. Said differ-
ently, we obtain a Qp-rational character S −→ Gm of the Serre torus S; we
will denote this also by η. (Note that η is forced to be Qp-rational since it
carries S(Qp) into Q∗

p). Here S is the quotient of ResK/QGm by the Zariski
closure of (a sufficiently deep finite-index subgroup of) the units. Because of
the purity assertion, if λ ∈ K ∗ is a unit at all ramified primes for η, then η(λ)
is an algebraic number all of whose conjugates have absolute value
NK/Q(λ)

w/2.
The structure of this torus was in effect computed byWeil [45], and in detail

by Serre: If K admits no CM subfield, then the norm map S → Gm is in fact
an isogeny. So η is (up to finite order) the norm raised to the power w/2. The
result follows.

Thus we suppose that K has a CM subfield; now let E be the largest CM
subfield of K , and let E+ be the totally real subfield of E . Then the norm map
S → SE is an isogeny; in other words, a suitable power ηk factors through the
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norm from K to E . Therefore it is enough to prove the Lemma for K = E ,
replacing v by the place of E below it. In particular, by definition, v lies above
an inert prime of E/E+.

Now there is a norm map SE → Gm . Write x �→ x̄ for the complex
conjugation on E . The map x �→ x/x̄ , from E∗ to E∗, is trivial on a finite-
index subgroup of the units, and its image consists entirely of elements whose
norm (to E+) equals 1. Indeed for any Q-algebra R the rule x �→ x/x̄ defines
a map (E ⊗ R)∗ → (E ⊗ R)∗, corresponding to a unique map of Q-algebraic
groups

θ :SE → (ResE/QGm)
1

where the superscript 1 denotes the kernel of the norm to E+. Together with
the norm map this gives an isogeny SE −→ Gm × (ResE/QGm)

1. Raising
the character η to a suitable power we can suppose that it factors through the
right-hand side; twisting it by a power of the cyclotomic character, we can
arrange that it is trivial on the Gm factor.

In other words, we are reduced to checking the case where η factors through
θ . Now the weights of x �→ η(x) and x �→ η(x̄) coincide, but their product is
trivial; so the weight of η is zero. Also η is trivial on E∗

v : consider

E∗
v ⊂ (E ⊗ Qp)

∗ → S(Qp)
θ→ (E ⊗ Qp)

1 =
⎛

⎝
∏

w|p
E∗
w

⎞

⎠
1

.

The image of E∗
v is contained inside {y ∈ E∗

v : y ȳ = 1}; this is contained
in a Qp-anisotropic subtorus of (ResE/QGm)

1. Therefore, any Qp-rational
character of (ResE/QGm)

1 is trivial upon pullback to E∗
v . This is exactly what

we wanted to prove (since, as we just saw, once η factors through θ its weight
is zero). �

2.5 Reducibility of global Galois representations

We now give some lemmas which limit the reducibility of a global pure Galois
representation. The mechanism is as follows: purity passes to subrepresenta-
tions, and then leads to restrictions on the sub-Hodge structure.

For a decreasing filtration F•V on a vector space V (with F0V = V ) we
define the weight of the filtration to be

weightF (V ) =
∑

p�0 p dim gr p(V )

dim V
, (2.2)
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newpage where gr p(V ) = F p(V )/F p+1(V ) is the associated graded.2 For
the other p-adic Hodge theory terms that appear in the following result, see
[7, §6] or [17, Expose III].

Lemma 2.9 Let K be a number field and v a friendly place. Let V be a Galois
representation of GK on a Qp-vector space which is crystalline at all primes
above p, and pure of weight w.

Let VdR = (V ⊗Qp Bcris)
GKv be the filtered3 Kv-vector space that is asso-

ciated to ρ|Kv by the p-adic Hodge theory functor Dcris of [17, Expose III].
Then the weight of the Hodge filtration on VdR equals w/2.

Proof Apply Lemma 2.8 to det(V ). �
Lemma 2.10 Let K be a number field, and L ⊃ K a finite extension. Let
ρ:GL → GLn(Qp) be a representation of GL that is crystalline at all primes
above p, and pure of weightw; let au(ρ) be the weight of the associatedHodge
filtration at each such prime u. Then, for any friendly prime v of K above p,

∑

u|v
[Lu : Kv]au(ρ) = [L: K ]w

2
.

Proof Weapply Lemma 2.9 to IndGK
GL
ρ and to the place v. Applying the functor

of p-adic Hodge theory to its restriction to Kv , we obtain

(IndKL ρ ⊗Qp BdR)
GKv �

⊕

u|v
(ρ ⊗Qp BdR)

GLu

(considered now as a filtered Kv-vector space), and its weight is therefore∑
u|v[Lu : Kv]au(ρ)

[L: K ] . �

2.6 The affine group Aff(q)

Let q � 3 be a prime number and let Sym(Fq) be the symmetric group on
the q elements of Fq . Let Aff(q) ⊆ Sym(Fq) be the subgroup consisting of
permutations of Fq of the form x �→ ax + b where a ∈ F∗

q and b ∈ Fq . Thus4

Aff(q) ∼= (Fq)
+

� (Fq)
∗; this group has important applications in the theory

of qualifying examinations.We shall make extensive use of it as a Galois group
for certain auxiliary coverings of curves.

2 Here and in Sect. 10, the symbol p is used abusively to refer to the indexing on a Hodge
filtration. We hope this will not cause confusion.
3 Here, and in other contexts, wewill write VdR even thoughwe are using the crystalline functor,
because in our applications it will be helpful to think of it in terms of de Rham cohomology.
4 We use F+

q to denote the additive group Fq .
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Lemma 2.11 For any s � 1 consider the map f :Aff(q)2s −→ F+
q given by

f : g = (g1, g
′
1, . . . , gs, g

′
s) �→ [g1, g′1] · [g2, g′2] · · · · · [gs, g′s]

(here [x, y] is the commutator xyx−1y−1). The image of the map

{g ∈ Aff(q)2s : f (g) �= 0, g generates Aff(q)} →
[
F∗
q

]2s
(2.3)

(sending each gi to its image in the abelian quotient F∗
q) consists precisely of

those (2s)-tuples in F∗
q whose entries generate F∗

q . The fiber above any point
in the image has the same size.

Proof Note that, for such a fiber to be nonempty, the element y =
(y1, y′1, . . . , ys, y′s) of the target must have the property that the yi and y′i
generate F∗

q . In this case, any preimage g ∈ Aff(q)2s with the property that
f (g) �= 0 necessarily generates Aff(q). The fiber of Aff(q)2s above y is (in
obvious coordinates) an affine space over Fq , and the map f is a nontrivial
affine-linear map; each fiber thus has size q2s−1(q − 1). �

2.7 Symplectic groups

Let K be a field of characteristic zero. As usual if V is a symplectic space
over a field K , with nondegenerate alternating bilinear form 〈−,−〉, we write
Sp(V ) for the algebraic group of automorphisms of V preserving the bilinear
form.

The following statement is an algebraic version of Goursat’s lemma (cf. [34,
Lemma 5.2.1]). One uses the fact that the Lie algebra spV of Sp(V ) is simple,
and that all the automorphisms of spV are inner.

Lemma 2.12 Suppose G is an algebraic subgroup of Sp(V )N , satisfying the
following conditions.

• For 1 � i � N, the projection πi :G → Sp(V ) onto the i th factor is
surjective.

• For 1 � i, j � N, there exists g ∈ G such that πi (g) and π j (g) are
unipotent with fixed spaces of different dimensions.

Then G is all of Sp(V )N .

Any unipotent element of Sp(V ) whose fixed space has codimension 1 is
of the form

T r
v : x �→ x + r〈v, x〉v (2.4)
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for some v ∈ V, r ∈ K . We call T r
v a transvection with center v, and write

Tv for T 1
v .

Lemma 2.13 Let V be a symplectic space over Q. Suppose v1, v2 ∈ V are
linearly independent and satisfy

〈v1, v2〉 �= 0.

The Zariski closure of the subgroup generated by Tv1, Tv2 also contains Tv for
every v ∈ Span(v1, v2).

Proof The subgroup in question preserves the splitting V = 〈v1, v2〉 ⊕
〈v1, v2〉⊥, and so we reduce to the case that V is 2-dimensional. The statement
then amounts to the fact that SL(2) is generated, as an algebraic group, by
upper and lower triangular matrices. �
Lemma 2.14 Let V be a symplectic space over Q. Let S be a set of vectors
v ∈ V . Make a graph whose set of vertices are S, having an edge between v1
and v2 if and only if 〈v1, v2〉 �= 0. If this graph is connected, then the Zariski
closure of the group generated by the transvections Tv , for v ∈ S, contains Tw
for any w in the span of S.

Proof We can assume S is finite, and then use induction on |S|, using
Lemma 2.13 for the inductive step.

In detail: suppose S = S0∪{v}, with the graph on S0 connected.By inductive
hypothesis we obtain all transvections centered at vectors inW := span(S0). It
is enough to verify that the Zariski closure in question contains the transvection
Tx for each vector x of the form w + v (w ∈ W ); this is so when 〈w, v〉 �= 0
by the prior Lemma. The condition 〈w, v〉 �= 0 defines a Zariski-dense subset
of W and so we also get the remaining transvections Tx when 〈w, v〉 = 0 in
the Zariski closure of them. �

3 Fibers with good reduction in a family

In this section we give a general criterion (Proposition 3.4) which controls, in a
given family of smooth proper varieties, the collection of fibers that have good
reduction outside afixed set of primes. TheProposition simply translates (using
p-adic Hodge theory) the finiteness statement of Lemma 2.3 into a restriction
on the image of the period map.

3.1 Basic notation

We use notation K ,O,O(w), S,GK ,Fw as in Sect. 2.
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Let Y be a smooth K -variety, and π : X → Y a proper smooth morphism.
Suppose that this admits a good model over O, i.e. it extends to a proper

smooth morphism π :X → Y of smooth O-schemes. Suppose, moreover,
that all the cohomology sheaves Rqπ∗�p

X /Y are sheaves of locally free OY -
modules, and that the same is true of the relative de Rham cohomologyH q =
Rqπ∗�•

X /Y . There is no harm in these assumptions, because the sheaves in
question are coherent OY -modules which are free over the generic point of
O [10, Theorem 5.5]; so the assumptions can always be achieved by possibly
enlarging the set S of primes.

The generic fiber ofH q is equipped with the Gauss–Manin connection (by
[22, Theorem 1]) and, again by enlarging S if necessary, we may suppose that
this extends to a morphism

H q → H q ⊗�1
Y/O. (3.1)

For any y ∈ Y (K ), we shall denote by Xy = π−1(y) the fiber of π above y;
it is a smooth proper variety over K . Our goal in this section is to boundY(O).
We will do this by studying the p-adic properties of the Galois representation
attached to Xy , for y ∈ Y(O) ↪→ Y (K ). Fixing a degree q � 0, we denote by
ρy the representation of the Galois group GK on the étale cohomology group
of (Xy)K̄ :

ρy :GK → Aut Hq
et(Xy ×K K̄ ,Qp). (3.2)

Fix an archimedean place ι: K ↪→ C, and fix a finite place v: K ↪→ Kv
satisfying:

• if p is the rational prime below v, then p > 2, and
• Kv is unramified over Qp, and
• no prime above p lies in S.

Fix y0 ∈ Y(O). In what follows, we will analyze the set

U := {y ∈ Y(O): y ≡ y0 modulo v.} (3.3)

and give criteria for the finiteness of U in terms of the associated period map.
Clearly if U is finite for each choice of y0, then Y(O) is finite too.

Finally, we put

X0 = π−1(y0)

to be the fiber above y0.
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3.2 The cohomology at the basepoint y0

For any K -variety Z , we shall denote by ZC its base change to C via ι, and by
ZKv its base change to Kv via v.
Let

V = Hq
dR(X0/K ). (3.4)

Let d = dimK V . We will also denote by Vv and VC the Kv- and C-vector
spaces obtained by ⊗K Kv or ⊗(K ,ι)C. Then VC is naturally identified with
the de Rham cohomology of the variety X0,C, which is also (by the compari-
son theorem) identified with the singular cohomology of X0,C with complex
coefficients:

VC � Hq
sing(X0,C,C).

In particular, monodromy defines a representation μ:π1(YC(C), y0) −→
GL(VC), whose Zariski closure we denote by �:

� = Zariski closure of image(μ), (3.5)

an algebraic subgroup of GL(VC). Note that both VC and � depend on the
choice of archimedean place ι, although this dependence is suppressed in our
notation.

3.3 The Gauss–Manin connection

The connection (3.1) allows us to identify the cohomology of nearby fibers.
This is true both for the Kv and C topologies. However, as we now discuss,
both identifications can be described as the evaluation of a single power series
with K coefficients, which is convergent both for the Kv and C topology.

Specifically, if we fix a local basis {v1, . . . , vr } for H q in a neighborhood
of some point of the scheme Y , and write ∇vi = ∑ j Ai jv j , where Ai j are

sections of �1
Y , then a local section

∑
fivi is flat exactly when it solves the

equation

d( fi ) = −
∑

j

A ji f j . (3.6)

In particular, if y0 ∈ Y(O) and the place v is as before, let y0 ∈ Y(Fv)
be the reduction, and choose a system of parameters p, z1, . . . , zm ∈ OY,y0
for the local ring of Y at y0; we may do this so that (z1, . . . , zm) generate the
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kernel of the morphism OY,y0 → O(v) corresponding to y0. The completed
local ring ÔY,y0 at y0 is therefore identified with Ov[[z1, . . . , zm]], and the
image of OY,y0 in it is contained in O(v)[[z1, . . . , zm]].

Fix a basis {v̄1, . . . , v̄r } for H q at y0, which we assume to be compati-
ble with the Hodge filtration, i.e. each step of the Hodge filtration FiH q at
y0 is spanned by a subset of {v̄i }. Then by lifting we obtain a similar basis
{v1, . . . , vr } forH q over the local ringOY,y0 of Y at y0. With respect to such
a basis vi , the coefficients Ai j of (3.6) are of the form Ai j =∑m

k=1 ai j,kdzk ,
where ai j,k ∈ OY,y0 . In particular, the coefficients of ai j,k , considered as
formal power series in the zi , lie in O(v).

We may write down a formal solution to (3.6), where the fi are given by
formal power series in K [[z1, . . . , zm]]. By direct computation we see that
these are v-adically absolutely convergent for |zi |v < |p|1/(p−1)

v (where p
is the residue characteristic of Ov) and ι-adically absolutely convergent for
sufficiently small |zi |C.

By assumption, we have p > 2, and v is unramified above p. Thus we
obtain an identification

GM: Hq
dR(Xy0/Kv)

∼→ Hq
dR(Xy/Kv) (3.7)

whenever y ∈ Y(Ov) satisfies y ≡ y0 modulo v, and

GM: Hq
dR(Xy0,C/C)

∼→ Hq
dR(Xy,C/C), (3.8)

when y ∈ YC(C) is sufficiently close to y0. In the coordinates of the basis vi
fixed above, GM is given by an r × r matrix with entries

Ai j (z1, . . . , zm) ∈ O(v)[[z1, . . . , zm]],

convergent in the regions noted above.
The fiber over the O-point y0 of Y gives a smooth proper O-model X0 for

X0. For y ∈ Y (Ov) with y ≡ y0 modulo v, we have a commutative diagram

Vv = Hq
dR(Xy0/Kv)

GM

��

∼
�����

����
����

���

Hq
cris(X0)⊗Ov Kv.

Hq
dR(Xy/Kv)

∼
����������������

(3.9)
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916 B. Lawrence, A. Venkatesh

where GM denotes the map induced by the Gauss–Manin connection, Hq
cris is

the crystalline cohomology of X0 (as a reference for crystalline cohomology,
see [4,5]), the diagonal arrows are the canonical identification [5, Corollary
7.4] of crystalline cohomology with the de Rham cohomology of a lift, and the
commutativity of the diagram can be deduced from the results of [4, Chapter
V] (see Proposition 3.6.4 and prior discussion).

This crystalline cohomology Vv = Hq
dR(X0/K ) is equipped with a Frobe-

nius operator

φv: Vv −→ Vv,

which is semilinear with respect to the Frobenius on the unramified exten-
sion Kv/Qp. By the isomorphisms of (3.9), this φv acts on Hq

dR(Xy/Kv) and
Hq
dR(Xy0/Kv) as well, in a manner compatible with the map GM.

3.4 The period mappings in a neighbourhood of y

Now V = Hq
dR(X0/K ) is equipped with a Hodge filtration:

V = F0V ⊃ F1V ⊃ · · · (3.10)

Let H be the K -variety parameterizing flags in V with the same dimensional
data as (3.10), and let h0 ∈ H(K ) be the point corresponding to the Hodge
filtration on V .

Base changing by means of v and ι, we get a Kv-varietyHv and a C-variety
HC. We denote by hι0 ∈ HC(C) the image of h0.

Let �C be a contractible analytic neighbourhood of y0 ∈ Y an
C . The Gauss–

Manin connection defines an isomorphism HdR(Xt/C) � HdR(X0/C) for
each t ∈ �C. In particular, the Hodge structure on the cohomology of Xt
defines a point of HC(C); this gives rise to the complex period map

�C:�C −→ HC(C).

Indeed, �C extends to a map from the universal cover of Y an
C to HC(C) and

this map is equivariant for the monodromy action of π1(Y an
C , y0) on HC(C).

We conclude that the image of the period map can be bounded below by
monodromy.

Lemma 3.1 Suppose given a family X → Y , and take notation as above; in
particular, � is the Zariski closure of monodromy, and hι0 = �C(y0). Then we
have the containment

� · hι0 ⊂ the Zariski closure of �C(�C) insideHC. (3.11)
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Proof The preimage �−1
C Z of any algebraic subvariety Z ⊂ HC, with Z ⊃

�C(�C), is a complex-analytic subvariety of Ỹ an
C containing� and thus all of

Ỹ an
C ; therefore

π1(YC, y0) · hι0 ⊂ Z

and then Z contains the Zariski closure of the right hand side, which is � · hι0.�
We need a v-adic analogue. Again, if y ∈ Y(Ov) satisfies y ≡ y0 modulo v,

the Gauss–Manin connection (3.9) allows one to identify the Hodge filtration
on Hq

dR(Xy/Kv) with a filtration on Vv , and thus with a point ofH(Kv). This
gives rise to a Kv-analytic function

�v:�v −→ H(Kv), where �v = {y ∈ Y(Ov): y ≡ y0 modulo v}.
The following simple Lemma plays a crucial role. It allows us to analyze

the Zariski closure of the p-adic period map in terms of the Zariski closure of
the complex period map; for the latter we can use monodromy.

Lemma 3.2 Suppose given power series B0, . . . , BN ∈ K [[z1, . . . , zm]] such
that all Bi are absolutely convergent, with no common zero, both in the v-adic
and complex disks

Uv = {z: |zi |v < ε} and UC = {z: |zi |C < ε}.
Write

Bv:Uv → PN
Kv

BC:UC → PN
C

for the corresponding maps.
Then there exists a K -subscheme Z ⊂ PN whose base extension to Kv

(respectively C) gives the Zariski closure of BC(UC) ⊂ PN
C (respectively

Bv(Uv) ⊂ PN
Kv
). In particular, these Zariski closures have the samedimension.

Proof We take I the ideal of Z to be that generated by all homogeneous
polynomials Q ∈ K [x0, . . . , xN ] such that Q(B0, . . . , BN ) is identically zero.

To verify the claim (for Kv; the proof for C is identical) we just need to
verify that if a homogeneous polynomial Qv ∈ Kv[x0, . . . , xN ] vanishes on
Bv(Uv) then Qv lies in the Kv-span of I . But if Qv vanishes on Bv(Uv)
then Qv(B0, . . . , BN ) ≡ 0 in Kv[[z1, . . . , zm]]. The identical vanishing of
Qv(B0, . . . , BN ) is an infinite system of linear equations on the coefficients
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of Qv , with coefficients in K . Any Kv-solution of such a linear system is, of
course, a Kv-linear combination of K -solutions. �

By embedding H into a projective space PN , and applying the prior two
Lemmas, we deduce:

Lemma 3.3 The dimension of the Zariski closure (in the Kv-varietyHKv ) of
�v(�v) is at least the (complex) dimension of � · hι0.

In particular, ifHbad
v ⊂ Hv is a Zariski-closed subset of dimension less than

dimC(� · hι0), then �−1
v (Hbad

v ) is contained in a proper Kv-analytic subset
of �v , by which we mean a subset cut out by v-adic power series converging
absolutely on �v .

One can do better than this using the results of Bakker and Tsimerman,
replacing “proper Kv-analytic” by “Zariski-closed.” See Sect. 9. We do not
need this improvement for the applications to Mordell.

3.5 Hodge structures

We use p-adic Hodge theory to relate Galois representations to crystalline
cohomology. A good reference is [7,17].

For each y ∈ U the representation ρy (see (3.2)) is crystalline upon restric-
tion to Kv , because of the existence of the model Xy for Xy . By p-adic Hodge
theory, there is [7, Proposition 9.1.9] a fully faithful embedding of categories:

crystalline representations ofGalKv on Qp vector spaces ↪→ FL,
(3.12)

where the objects of FL are triples (W, φ, F) of a Kv-vector space W , a
Frobenius-semilinear automorphism φ:W → W , and a descending filtration
F of W . The morphisms in the category FL are morphisms of Kv-vector
spaces that respect φ and filtrations [17, Expose III, §4.3].

By the crystalline comparison theorem of Faltings [15], the embedding
(3.12) carries ρy to the triple

(
Hq
dR(Xy/Kv), φv, Hodge filtration forXy

)
. But

(3.9) induces an isomorphism in FL:
(
Hq
dR(Xy/Kv), φv, Hodge filtration for Xy

) � (Vv, φv,�v(y)),

As a sample result of what we can now show, we give the following. We
will use the method of proof again and again, so it seems useful to present it
in the current simple context.
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Proposition 3.4 Notation as above: in particular X → Y is a smooth proper
family over K , V is the degree q de Rham cohomology of a given fiber X0
above y0 ∈ Y (K ), H a space of flags in V ,

�v: {y ∈ Y(Ov): y ≡ y0} −→ H(Kv)

is the v-adic period mapping, � ⊂ GL(VC) is the Zariski closure of the
monodromy group, and h0 = �(y0) is the image of y0 under the period
mapping.

Suppose that

dimKv

(
Z(φ

[Kv :Qp]
v )

)
< dimC � · hι0 (3.13)

where the left-hand side Z(. . . ) denotes the centralizer, in AutKv (Vv), of the

Kv-linear operator φ
[Kv :Qp]
v .

Then the set

{y ∈ Y (O): y ≡ y0modulo v, ρy semisimple} (3.14)

is contained in a proper Kv-analytic subvariety of the residue disk of Y (Kv)
at y0.

Proof For any y as in (3.14) the Galois representation ρy belongs to a finite
set of isomorphism classes (Lemma 2.3). By our previous discussion the triple
(Vv, φv,�v(y)) also belongs to a finite set of isomorphism classes (now in the
category FL). Choosing representatives (Vv, φv, hi ) for these isomorphism
classes, we must have

�v(y) ∈
⋃

i

Z(φv) · hi ,

where Z(φv) is the subgroup of elements in GLKv (Vv) which commute with
φv .

Now certainly Z(φv) ⊂ Z(φ
[Kv :Qp]
v ), and the right-hand side is now the Kv-

points of a Kv-algebraic subgroup of GLKv (Vv). Therefore, any y as in (3.14)
is contained in the preimage, under �v , of a proper Zariski-closed subset of
Hv with dimension the left hand side of (3.13). This is obviously a Kv-analytic
subvariety as asserted. It is proper because of Lemma 3.3. �

In conclusion we note that we really have bounded Y(O) rather than the
set of y ∈ Y (K ) for which the abstract Galois representation ρy has good
reduction outside S. To bound the latter set, we would have to deal with the
possibility that such y would be nonintegral at S; this would require a more
detailed analysis “at infinity” and we have not attempted it.
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4 The S-unit equation

As a first application, and a warm-up to the more complicated case of curves
of higher genus, we will show finiteness of the set of solutions to the S-unit
equation. This argument is not logically necessary for the later proofs but we
hope it will serve as a useful introduction to them.

Theorem 4.1 The set

U = {t ∈ O∗
S: 1− t ∈ O∗

S}
is finite.

4.1 Reductions

We begin with some elementary reductions.
Wemay freely enlarge both S and K . Thus, we may suppose that S contains

all primes above 2 and that K contains the 8th roots of unity. Let m be the
largest power of 2 dividing the order of the group of roots of unity in K . By
assumption m � 8.

First of all, it suffices to prove finiteness of the set

U1 = {t ∈ O∗
S: 1− t ∈ O∗

S, t /∈ (K ∗)2},
becauseU ⊂ U1 ∪U 2

1 ∪U 4
1 ∪ · · · ∪Um

1 . To see this, we take t ∈ U and try to
repeatedly extract its square root; observe that such a square root, if in K , also
belongs to U . If we cannot extract an mth root of t , we are done; otherwise,
write t = tm1 and adjust t1 by a primitive mth root of unity to ensure that t1 is
nonsquare.

Suppose that t ∈ U1. Since t is a nonsquare and μm ⊂ K the order of t in
the group (K ∗)/(K ∗)m is exactly m. Otherwise there is some proper divisor
k > 1 of m, and an element a ∈ K ∗, such that tk = am , i.e. t ∈ am/kμk ,
contradicting the fact that t is nonsquare.

Fixing t1/m an mth root of t in K , the field K (t1/m) is Galois over K , and
Kummer theory guarantees that its Galois group isZ/mZ. There are (Hermite–
Minkowski) only finitelymany possibilities for K (t1/m). Enumerate them; call
them L1, . . . , Lr , say. Each Li is a cyclic degree-m extension of K , and it is
sufficient to prove finiteness of the set

U1,L = {t ∈ U1, K (t
1/m) � L}. (4.1)

for a fixed field L ∈ {L1, . . . , Lr }; here we understand K (t1/m) =
K [x]/(xm − t).
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Fix an L as above. L is cyclic of degree m over K . Choose a prime v of K
such that:

(i) the class of Frobenius at v generates Gal(L/K );
(ii) the prime p of Q below v is unramified in K .
(iii) no prime of S lies above p.

In particular, v is inert in L/K ; thus, if t ∈ U1,L then t is not a square in Kv ,
for otherwise L ⊗K Kv � Kv[x]/(xm − t) would not be not a field.

In summary, it is enough to prove the following lemma.

Lemma 4.2 Suppose K contains the 8th roots of unity, and S contains all
primes above 2. Fix a cyclic field extension L/K, a place v /∈ S as above, and
a basepoint t0 ∈ OS. Let U1,L be as above. Then the set

{t ∈ U1,L : t ≡ t0 modulo v} (4.2)

is finite.

The proof of this Lemma will occupy the rest of the section. Throughout
the proof, p is the prime of Q below v, and “Tate module” always refers to
p-adic Tate module.

4.2 A variant of the Legendre family

As discussed in Sect. 1, we apply Proposition 3.4 not to the Legendre family,
but to a modification of it: let Y = P1

O − {0, 1,∞} (where 0, 1,∞ denote
the corresponding sections over SpecO) and let Y ′ = P1

O − {0, μm, ∞}; let
π :Y ′ → Y be the map u �→ um .

Let X → Y ′ be the Legendre family, so that its fiber over t is the curve
y2 = x(x − 1)(x − t); and consider the composite

X −→ Y ′ π−→ Y.

We will apply our prior results to the family X → Y; also, as before, we
denote by X and Y the fibers of X and Y over Spec(K ). Thus the geometric
fiber Xt of X → Y over t ∈ Y (K ) is the disjoint union of the curves y2 =
x(x − 1)(x − t1/m) over all mth roots of t .

4.3 Proof of finiteness

Assume for the moment the following two Lemmas; they will be proved in
Sect. 4.4.
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Lemma 4.3 (Big monodromy) Consider the family of curves over C−{0, 1}
whose fiber over t ∈ C is the union of the elliptic curves Ez: y2 = x(x −
1)(x − z), over all mth roots zm = t . Then the action of monodromy

π1(C − {0, 1}, t0) −→ Aut

⎛

⎝
⊕

zm=t0

H1
B(Ez,Q)

⎞

⎠ (4.3)

has Zariski closure containing
∏

z SL(H
1
B(Ez,Q)).

Lemma 4.4 (Generic simplicity) Let L be a number field and p a rational
prime, larger than 2, and unramified in L. There are only finitely many z ∈ L
such that z, 1− z are both p-units, but for which the Galois representation of
GL on the Tate module Tp(Ez) = H1

et(Ez,L̄ ,Qp) of the elliptic curve

Ez: y2 = x(x − 1)(x − z),

fails to be simple.

Of course much stronger results than Lemma 4.4 are known. The point
here is that we prove this in a “soft” fashion, using the Torelli theorem as
a substitute for more sophisticated arguments; although we use the specific
feature of Hodge weights 0 and 1, the argument is robust enough to generalize
(although with a little added complexity, see e.g. Lemma 6.3).

Proof of Lemma 4.2 assuming Lemmas 4.3 and 4.4 This argument is similar
to the proof of Proposition 3.4, with added complication coming from the
interaction of the fields K and L . Recall that we have fixed t0 ∈ U1,L and we
must verify the finiteness of the set of t ∈ U1,L with t ≡ t0 modulo v.

By Lemmas 4.4 and 2.3, it is enough to verify the finiteness of the subset
of such t where the pair (K (t1/m), ρt |GK (t1/m)) lies in a fixed isomorphism
class; in particular (Kv(t1/m), ρt |GKv(t1/m)) lies in a fixed isomorphism class.

Under the correspondence of p-adic Hodge theory, ρt restricted to Kv(t1/m)
corresponds to the filtered φ-module

(
H1
dR(Xt,Kv /Kv) as Kv(t

1/m)-module,Frobenius, filtration
)
, (4.4)

where we equip H1
dR(Xt,Kv /Kv) with the structure of 2-dimensional vector

space over Kv(t1/m) that arises from the scheme structure of Xt over K (t1/m).
Let us clarify this vector space structure over Kv(t1/m), which is crucial to

our argument. Although a priori a K -scheme, the factorization X → Y ′ → Y
induces on Xt the structure of K (t1/m)-scheme, i.e. arising from themorphism
Xt → (Y ′)t � SpecK (t1/m). Now the de Rham cohomology of Xt is the same
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whether we consider it as a K (t1/m)-variety or as a K -variety. If we consider
it as K -variety, we can recover its structure of K (t1/m)-vector space by means
of the natural map

K (t1/m) = H0
dR(Y

′
t /K )→ H0

dR(Xt/K ).

The same picture works with K replaced by Kv everywhere.
(Similarly, there are two natural interpretations for “Frobenius” in (4.4),

but they are equivalent: as just explained, we can consider the space H1
dR

as the de Rham cohomology of either a Kv(t1/m)-scheme, or of the asso-
ciated Kv-scheme obtained simply by restricting the scalars. Both of these
schemes have evident integral models, over Ov[x]/(xm − t) and Ov respec-
tively. Accordingly, the de Rham cohomologies can be identified with the
crystalline cohomologies of the special fibers; these crystalline cohomologies
are identified, in a fashion that respects the semilinear Frobenius endomor-
phisms.)

The Gauss–Manin connection for the family X → Y induces

H1
dR(Xt,Kv /Kv) � H1

dR(Xt0,KvKv) (4.5)

which, by compatibility of Gauss–Manin connection with the cup prod-
uct, is compatible with their module structures over the corresponding H0s.
The corresponding identification of H0s induces the standard identification
Kv(t1/m) � Kv(t

1/m
0 ) and therefore the isomorphism (4.5) is compatible with

structures of Kv(t1/m) � Kv(t
1/m
0 )-modules.

Therefore, under the identification of (4.5), the F1-step of the filtration on
H1
dR(Xt,Kv /Kv) is identified with a Kv(t

1/m
0 )-line inside H1

dR(Xt0,Kv /Kv).
Call this line �(t). The variation of this line gives a Kv-analytic period map-
ping

�: {t ∈ Kv, t ≡ t0 modulo v} �� Kv(t
1/m
0 )-lines in H1

dR(Xt0,Kv /Kv)

��

� �� P1
Kv(t

1/m
0 )

��
Kv-subspaces in H1

dR(Xt0,Kv /Kv)
� �� Gr(2m,m)Kv .

(4.6)

(The period mapping for the family X → Y a priori takes values in the bottom
row, but we have just seen that it factors through the top row. See Sect. 3.3 for
a more detailed discussion of the radius of convergence; in particular it defines
a rigid analytic function on a domain containing {t ∈ Kv, t ≡ t0 modulo v}
i.e. the Kv-points in a residue disk.)
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Therefore (applying the Gauss–Manin connection to identify (4.4) with
similar data over t0) the isomorphism class of the quadruple

(
Kv(t

1/m
0 ), H1

dR(Xt0,Kv /Kv) as Kv(t
1/m
0 )-module,�(t),Frobv

)

is determined from (4.4) and therefore the triple

(
H1
dR(Xt0,Kv /Kv) as Kv(t

1/m
0 )-module,�(t),Frobv

)

lies in a finite set of isomorphism classes for filtered φ-modules over Kv(t
1/m
0 )

(coming from the finitely many automorphisms of Kv(t
1/m
0 ) over Kv). There-

fore, �(t) lies in a finite collection of orbits for

Z = centralizer of Frob
[Kv :Qp]
v in Kv(t

1/m
0 )

-linear automorphisms of H1
dR(Xt0,Kv /Kv).

Now we can apply Lemma 2.1 to the field extension Kv(t
1/m
0 )/Kv and the

Kv-linear automorphism Frob
[Kv :Qp]
v of H1

dR(Xt0,Kv /Kv). This gives us that

dimKv Z � (dim
Kv(t

1/m
0 )

H1
dR)

2 = 4.

Our analysis thus far has shown that the set of t ∈ U1,L such that t ≡ t0
modulo v is contained in

�−1 (Z) ,

where � is the period map as in (4.6) and Z ⊂ GrKv (2m,m) has dimension
at most 4. By Lemma 3.3, this set is finite so long as we verify an assertion
about the complex period map, namely, that the dimension of the orbit of the
algebraicmonodromy group overC is strictly greater than 4. As in Lemma 3.3,
we fix an embedding K ↪→ C throughout the following discussion.

As mentioned, the vector space V = H1
dR(Xt0/K ) has the natural structure

of a 2-dimensional vector space over K (t1/m0 ). The splitting of Xt0,C into
geometric components induces a splitting

VC =
m⊕

i=1

Vi , (4.7)

where each Vi is a 2-dimensional complex vector space; moreover the Hodge
filtration on H1

dR(Xt0/K )⊗C also splits along this decomposition. Lemma 4.3
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shows that the algebraic monodromy group � contains
∏m

i=1 SL(Vi ). The per-
tinent flag varietyH � Gr(V,m) is the variety ofm-dimensional subspaces in
V ; the splitting (4.7) induces a natural inclusion

∏m
i=1 PVi ↪→ HC. Therefore

the orbit �hι0 is all of
∏m

i=1 PVi and, in particular, has dimension m � 8.
Lemma 3.3 now gives the desired finiteness.

In conclusion, assuming Lemmas 4.3 and 4.4, we have shown that the set
described in (4.1) is finite. �

4.4 Big monodromy and generic simplicity

In this section we prove Lemmas 4.3 and 4.4.

Proof of Lemma 4.3 Write � for the Zariski closure in question. It preserves
the splitting of (4.3), although not the individual summands. Then:

– � transitively permutes the factors on the right-hand side of (4.3), by con-
sidering the action of local monodromy near t = 0;

– �∩SL(2)m projects to SL(2) in each factor: indeed, this projection contains
a finite-index subgroup of the algebraic monodromy group of the Legendre
family.

– � contains an element of the form

(1, 1, . . . , 1, u, 1, . . . , 1)

where u ∈ SL(2) is a nontrivial unipotent element, aswe see by considering
the action of local monodromy near t = 1.

We now apply a slight variant of Lemma 2.12 to conclude that � ⊃ SL(2)m .
�

Proof of Lemma 4.4 Fix z0 ∈ L with the quoted p-integrality properties; in
particular, Ez0 has good reduction at all primes of L above p.

It is enough to show the same finiteness when we restrict to the set

VL = {z ∈ L: z ≡ z0 modulo v, for all v|p}.
If Tp(Ez) is reducible there exists a one-dimensional subrepresentationWz ⊂
Tp(Ez). By Lemma 2.10 (applied with K = Q) there is a place w of L
above p such that F1(W dR

z ) = W dR
z ; hereW dR

z is the filtered Lw-vector space
associated to Wz by p-adic Hodge theory over the p-adic field Lw.

Because the Newton and Hodge polygons of W dR
z have the same endpoint,

the slope of semilinear Frobenus acting on W dR
z is equal to 1; by the same

reasoning for H1
dR(Ez/Lw), the sum of slopes for the semilinear Frobenius

acting on H1
dR(Ez/Lw) is 1, so it has another slope equal to 0.
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In particular, the Lw-linear Frobenius Frob
[Lw :Qp]
w has distinct eigenvalues.

Also, the Lw-line W dR
z must coincide with F1H1

dR(Ez/Lw), so that the
latter space is the slope-1 eigenline for the semilinear Frobenius Frobw.

As in the discussion around (3.9), Gauss–Manin induces an identification

H1
dR(Ez0/Lw) � H1

dR(Ez/Lw) (4.8)

of Lw-vector spaces with semilinear Frobenius action. But the position of
the Hodge line F1H1

dR(Ez/Lw) varies w-adic analytically inside the disk
VL—here we use (4.8) to identify this line to a line inside the fixed space
H1
dR(Ez0/Lw)—and the associated w-adic analytic function is nonconstant

(by the—trivial—Torelli theorem for elliptic curves). It follows there are at
most finitely many z ∈ VL for which F1H1

dR(Ez/Lw) is the slope-1 Frobenius
eigenline. Taking the union over possible w we still see that the exceptional
set is finite. �

5 Outline of the argument for Mordell’s conjecture

The proof of the Mordell conjecture is substantially harder than the S-unit
equation. To try to assist the reader, we summarize the proof here, and then
elaborate on the ingredients over the next three sections.

First of all, we will make crucial use of the type of structure that occurred
in Sect. 4.2, to which we give a name:

Definition 5.1 An abelian-by-finite family over Y is a sequence ofmorphisms

X −→ Y ′ π−→ Y

where π is finite étale, and X → Y ′ is (equipped with the structure of) a
polarized abelian scheme.

A good model for such a family, over an S-integer ring O ⊂ K , is a family
X → Y ′ → Y of smooth, proper O-schemes, satisfying the same conditions
and also the assumptions at the start of Sect. 3.1, and recovering X → Y ′ → Y
on base change to K .

Of course the polarization on X → Y ′ is an additional structure but for
brevity we do not explicitly include it in the notation.

For any such abelian-by-finite family X → Y ′ → Y take a complex point
y0 ∈ Y (C) and consider the action of the topological fundamental group
π1(Y (C), y0) on

H1
B(Xy0,Q) �

⊕

π(ỹ)=y0

H1
B(X ỹ,Q),
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where the sum is taken over ỹ ∈ Y ′(C) lying over y0. We say that the family
has full monodromy if the Zariski closure of π1(Y, y0), in its action on the
right-hand side, contains the product of symplectic groups:

(image of π1(Y (C), y0)) ⊃
∏

π(ỹ)=y0

Sp
(
H1
B(X ỹ,Q), ω

)
, (5.1)

where the symplectic group is with reference to the form ω defined by the
polarization.

The key reason to use abelian-by-finite families is that we can guarantee
that the Galois orbits on any fiber of Y ′ → Y , above a K -rational point of Y ,
are “large.” In fact, what we need (see discussion in Introduction) is that most
points in the fiber above y0 ∈ Y (K ) cannot be defined over “small” extensions
of Kv . To quantify the notions of large and small we introduce the following
quantity:

Definition 5.2 Let E be a GK -set and v a place of K such that the GK -action
on E is unramified at v. Let

sizev(E) = number of elements of E that belong to Frobv-orbits of size < 8

number of elements of E
(5.2)

If E is a zero-dimensional K -scheme, we will write sizev(E) instead of
sizev(E(K̄ )).

Note that if E → E ′ is a morphism of GK -sets, and all fibers have the same
cardinality, then

sizev(E) � sizev(E
′). (5.3)

The next result is, in essence, a variant of Proposition 3.4, but it requires
some careful indexing. It will be proved in Sect. 6.

Proposition 5.3 Let Y be a curve over K of genus g � 2.
Let X → Y ′ π→ Y be an abelian-by-finite family over Y , with full mon-

odromy (see Definition 5.1 and subsequent discussion). Let d be the relative
dimension of X → Y ′. Suppose that X → Y ′ π→ Y admits a good model over
the ring O of S-integers of K . Let v /∈ S be a friendly place of K (Definition
2.7).

Let sizev be as in (5.2). Then the set

Y (K )∗ :=
{
y ∈ Y (K ): sizev(π−1(y)) <

1

d + 1

}
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is finite.

In Sect. 7, we introduce a specific abelian-by-finite family Xq → Y ′
q
π→ Y

for each prime q � 3, referred to as the “Kodaira–Parshin family for the group
Aff(q).” Roughly, Y ′

q is a Hurwitz space for Aff(q) and Xq is the Prym of the
universal curve. It has the following properties:

(i) It has full monodromy (Theorem 8.1).
(ii) The relative dimension dq of Xq → Y ′

q is given by dq = (q − 1)(g− 1
2 ).

(iii) For each y0 ∈ Y (K ) there is a GK -equivariant identification of π−1(y0)
with the conjugacy classes of surjections πgeom

1 (Y− y0, ∗) � Aff(q) that
are nontrivial on a loop around y0.

Note that we can identify πgeom
1 with the profinite completion of a free

group on 2g generators x1, x ′1, . . . , xg, x ′g in such away that the loop around y0
corresponds to the conjugacy class of [x1, x ′1][x2, x ′2] . . . [xg, x ′g]. Therefore,
the set of surjections πgeom

1 (Y − y0, ∗) � Aff(q) nontrivial on a loop around
y0 is identified with the left-hand side of (2.3).
There is probably nothing very special about the use of Aff(q), but it is

simple enough that we can compute everything explicitly.
Assuming these things we can prove.

Theorem 5.4 Let Y be a curve over the number field K with genus g � 2.
Then Y (K ) is finite.

Proof We apply Proposition 5.3 to the Kodaira–Parshin family with parameter
q. What we will show is that we may choose q and the place v in such a way
that v is friendly and

sizev(π
−1(y)) <

1

dq + 1
for all y ∈ Y (K ). (5.4)

The key point is to use the mapping (5.5) below and the Weil pairing to give
an upper bound on sizev(π−1(y)).

We choose q with the following properties:

(i) q − 1 is not divisible by 4 or by any odd primes less than 8[K :Q].
(ii) The Galois closure K ′ of K is linearly disjoint from Q(ζq−1) over Q.

(iii) 8·2g+1

(q−1)g <
1

(g−1/2)(q−1)+1 .

This is possible by Dirichlet’s theorem: we choose q such that q is not con-
gruent to 1 mod � for any prime � that either divides the discriminant of K , or
that is less than 8[K :Q], and also q is not congruent to 1 mod 4. Then linear
disjointness follows: for ramification reasons K ′ ∩ Q(ζq−1) = Q. Such a q
can be chosen arbitrarily large; in particular it can be chosen to satisfy the third
condition.
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Now form the Kodaira–Parshin family X = Xq −→ Y ′
q −→ Y for the

group Aff(q) and choose a set S such that it has a good model over the ring
of S-integers.

Next we show that there exists a place v /∈ S of K such that:

(i) v is friendly (in the sense of Definition 2.7)
(ii) (qv, q − 1) = 1 (recall that qv was the cardinality of the residue field at

v)
(iii) For any odd prime factor r of q − 1, the class of qv in (Z/r)∗ has order

at least 8.

Note that the latter two conditions depend only on the residue class of qv
modulo q − 1. We will produce v by the Chebotarev density theorem, applied
to Gal(K ′(ζq−1)/Q). By hypothesis, K ′ and Q(ζq−1) are linearly disjoint over
Q, so the map

Gal(K ′(ζq−1)/Q) −→ Gal(K ′/Q)× Gal(Q(ζq−1)/Q).

is an isomorphism.
If K has no CM subfield, choose σ ∈ Gal(K ′/Q) arbitrarily. Otherwise

let E be the maximal CM subfield of K , and let E+ the maximal totally real
subfield; choose someσ ∈ Gal(K ′/E+) ⊆ Gal(K ′/Q) inducing the nontrivial
automorphism of E over E+.

By the Chinese Remainder Theorem, we can choose a residue class a ∈
(Z/(q − 1))∗ whose reduction modulo r is a primitive root for (Z/r)∗ for
every prime factor r of (q − 1).

ByChebotarevdensity, there is a place℘ of K ′(ζq−1) such that theFrobenius
Frob℘ is the element (σ, a) ofGal(K ′(ζq−1)/Q) � Gal(K ′/Q)×(Z/(q−1))∗.
Let p be the prime of Q below ℘; thus p ≡ a modulo q− 1. The place v of K
below ℘ has residue field of size qv = pi , with i � [K :Q]; therefore, if r is

an odd prime factor of (q − 1), the order of qv mod r is at least
⌈

r−1
[K :Q]
⌉

� 8.

For the last inequality we used property (i) of q.
If K admits a CM subfield then the place of E+ below ℘ is inert in E , by

choice of σ . This shows that there indeed exists v as desired.
Now consider the Kodaira–Parshin family X = Xq −→ Y ′

q −→ Y for
the group Aff(q) and write dq for the relative dimension of X → Y . For
any y ∈ Y (K ) property (iii) of Kodaira–Parshin covers (page 26), and the
surjection Aff(q) � F∗

q � Z/(q − 1), gives rise to a map of GK -sets

π−1(y) −→ H1
et(YK̄ ,Z/(q − 1)).︸ ︷︷ ︸

M

(5.5)

Letϒ ⊆ M be the image of the map. In explicit coordinates, the map (5.5) has
been studied in Lemma 2.11 [see also remark after (iii) on p. 26]. Therefore,
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by Lemma 2.11, all fibers of the map have the same size. Therefore, in view
of (5.3), it is enough to show that sizev(ϒ) < 1

dq+1 .

NowM has the structure of a (2g)-dimensional free module overZ/(q−1).
On choosing an identification of M with (Z/(q − 1))2g, the set ϒ consists of
those elements (y1, y′1, . . . , yg, y′g) such that the elements y1, y′1, . . . , yg, y′g
generate (Z/(q − 1)). (This is shown in the proof of Lemma 2.11.)

M is also equipped with a Galois-equivariant Weil pairing

〈−,−〉:M × M → μ∨
q−1 := Hom(μq−1,Z/(q − 1)Z).

TheWeil pairing is perfect, i.e. the corresponding map M → Hom(M, μ∨
q−1)

is an isomorphism. The Frobenius at v induces, in particular, an automorphism
T :M → M that satisfies

〈T v1, T v2〉 = q−1
v 〈v1, v2〉.

We want to bound the number of elements of M belonging to T -orbits of
size less than 8. These elements are contained in the union of the submodules
ker(T i −1) for 1 � i � 8. Ifm1,m2 ∈ ker(T i −1) then (q−i

v −1)〈m1,m2〉 =
0. For every odd prime factor r of q − 1 we know that qiv is not congruent to 1
modulo r ; therefore (qiv − 1) is relatively prime to r . Thus 2〈m1,m2〉 = 0 for
any m1,m2 ∈ ker(T i − 1).

Now if A is a finite abelian group endowed with a nondegenerate pairing
A × A → Q/Z then any subgroup B ⊂ A such that 〈B, B〉 = 0 has order at
most

√
A. Applying this to 2M we find

∣∣∣2 ker(T i − 1)
∣∣∣ �
(
q − 1

2

)g
�⇒
∣∣∣ker(T i − 1)

∣∣∣ � 2g(q − 1)g.

Hence, the number of elements of M contained in the union of the submodules
ker(T i − 1) for 1 � i � 8 is at most 8 · 2g(q − 1)g.

It remains to give an upper bound for the “sizev” of ϒ , the image of (5.5).
The number of generating (2g)-tuples inZ/N equals #(Z/N )∗×P2g−1(Z/N ),
which equals N 2g ·∏p|N (1 − p−2g) � 1

2N
2g. So ϒ has at least 1

2 (q − 1)2g

elements, of which at most 8 · 2g(q − 1)g belong to Frobenius orbits of size 8
or smaller. It follows that

sizev(π
−1(y))

(5.3)
� sizev(ϒ) � 8 · 2g(q − 1)g

1
2 (q − 1)2g

= 8 · 2g+1

(q − 1)g

<
1

(g − 1/2)(q − 1)︸ ︷︷ ︸
dq

+1
,
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the last inequality by property (iii) of the prime q. This concludes the proof of
(5.4). �

6 Rational points on the base of an abelian-by-finite family

In this section we prove Proposition 5.3, which is in essence a variant of
Proposition 3.4, and which we rewrite for the reader’s convenience.

Proposition 5.3 Let Y be a curve over K of genus g � 2.
Let X → Y ′ π→ Y be an abelian-by-finite family over Y , with full mon-

odromy (see Definition 5.1 and subsequent discussion). Let d be the relative
dimension of X → Y ′. Suppose that X → Y ′ π→ Y admits a good model over
the ring O of S-integers of K . Let v /∈ S be a friendly place of K (Definition
2.7).

Let sizev be as in (5.2). Then the set

Y (K )∗ :=
{
y ∈ Y (K ): sizev(π−1(y)) <

1

d + 1

}

is finite.

Here’swhat happens in theproof.There are twocentral lemmas,Lemmas6.1
and 6.2.

• The assumption that sizev(π−1(y)) < 1
d+1 guarantees that most points

in the fiber π−1(y) are defined over fields of large degree over Qp. As
discussed in Sect. 1.3, we will use the fact that an extension Kv of Qp is
of large degree to bound the centralizer of Frobenius for a variety defined
over Kv .
Some care is required with indexing since we only have most points; in
particular, we need to identify the fibers over p-adically nearby points y.
The discussion of indexing occupies the first part of the proof; the bound
on the Frobenius centralizer is in the proof of Lemma 6.2.

• Lemma 6.1 handles the possible failure of semisimplicity (see discussion in
Sect. 1.4). As in Lemma 4.4, we use constraints on Hodge weights coming
from global representations (Lemma 2.9) to show that only finitely many
fibers can give rise to non-semisimple Galois representations. This requires
a general position argument in linear algebra (Lemma 6.4).

Proof Through the proof, we denote by p the prime of Q below v; “Tate
module” always means “p-adic Tate module,” and “étale cohomology” means
geometric étale cohomology taken with Qp coefficients.

Recall also that we have fixed an algebraic closure K with Galois group
GK . Fix an extension of v to that field; the completion of K gives an algebraic
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closure Kv of Kv . In particular, if L ⊂ K is unramified at v, we obtain a
Frobenius element Frobv ∈ Gal(L/K ).

Fix y0 ∈ Y (K )∗. It is sufficient to show that there are only finitely many
points of Y (K )∗ that lie in the residue disk

�v = {y ∈ Y (Kv): y ≡ y0 modulo v},

which we are regarding as a Kv-analytic manifold.
For each y ∈ Y (K ), let Ey be the ring of regular functions on the zero-

dimensional scheme π−1(y); this is an étale K -algebra and Hom(Ey, K̄ ) is
identifiedwith theGK -setπ−1(y)K̄ of preimages of y underπ . By our assump-
tions, the GK -set π−1(y)K̄ is unramified at v. Write E0 for Ey0 .

The fiber Xy of X → Y above y ∈ Y (K ) is a priori a K -scheme, but the
factorization X → Y ′ → Y gives it the structure of an Ey-scheme; in particular
its de Rham cohomology H1

dR(Xy/K ) has the structure of a free Ey-module.
Moreover, the polarization on X induces an Ey-bilinear symplectic pairing

H1
dR(Xy/K )× H1

dR(Xy/K ) −→ Ey .

Write E0,v = E0 ⊗K Kv , and Vv := H1
dR(Xy0/Kv). Then Vv is a free

E0,v-module equipped with an (E0,v-bilinear) symplectic form. Denote by
Hv ⊂ Gv the Kv-schemes defined by Weil restriction:

Gv = Res
E0,v
Kv

Gr(Vv, g)

Hv = Res
E0,v
Kv

LGr(Vv, ω).

Here Res
E0,v
Kv

denotes Weil restriction of scalars, Gr(Vv, g) classifies free Ev-
submodules of rank g inside Vv , and LGr classifies free rank-g submodules
on which the symplectic pairing is trivial.

Then the period map at y0 gives a Kv-analytic function

�v:�v −→ Hv

(see Sect. 3.3 for a more detailed discussion of the radius of convergence; in
particular it defines a rigid analytic function on a domain containing �v , i.e.
the Kv-points in a residue disk).

A priori, this period mapping is valued in a suitable Lagrangian Grassman-
nian of Kv-linear subspaces inside Vv , but, just as in the discussion of Sect. 4.3,
each of these Lagrangian subspaces are actually E0,v-stable, so that the period
mapping actually takes values inside Hv . Lemma 3.3, and the assumption of
full monodromy, imply that �v(�v) is Zariski-dense inHv .
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To proceed further, as we discussed in the proof sketch, we need to carefully
index the points above y. Firstly, Ey decomposes as a product of fields:

Ey =
∏

y′
K (y′),

where the product is over points y′ of the scheme Y ′ lying above y. For any
such y′, the fiber Xy′ of X → Y ′ above y′ is a d-dimensional abelian variety
over the field K (y′); write ρy′ for the corresponding 2d-dimensional p-adic
Galois representation of the absolute Galois group of K (y′).

The base change Ey ⊗K Kv splits as a product of fields

Ey ⊗K Kv =
∏

y′,w
K (y′)w (6.1)

indexed by pairs (y′, w), where y′ is a closed point of π−1(y) as above, andw
is a place of K (y′) over v. In this situation we will say, for short, that (y′, w)
is above (y, v).

Write Xy′,w for the base change of Xy along Ey → K (y′)w, and ρy′,w for
theGK (y′)w -representation on its étale cohomology. The deRhamcohomology
Vv = H1

dR(Xy/Kv) over Kv splits as a product

Vv =
∏

y′,w
Vy′,w, Vy′,w = H1

dR(Xy′,w/K (y
′)w) (6.2)

in a fashion that is compatible with the Ey ⊗K Kv-module structure and (6.1).
The dimension of each Vy′,w over K (y′)w is the same, namely, 2d.

Crystalline cohomology of the reduction modulo v (or, phrased differently,
the Gauss–Manin connection for Y ′ → Y ) gives an isomorphism

Ey ⊗K Kv
∼−→ E0,v = E0 ⊗K Kv (6.3)

whenever y belongs to the residue disk � of y0. In particular this induces a
bijection

(y′, w) above (y, v) ∼←→ (y′0, w0) above (y0, v) (6.4)

since both sides are identified with the spectrum of the common algebra of
(6.3). Moreover, the identification (6.3) is compatible with the Gauss–Manin
isomorphism

H1
dR(Xy/Kv)

GM−→ H1
dR(Xy0/Kv). (6.5)
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If (y′, w) corresponds to (y′0, w0) under this identification, then (6.3) and
(6.5) induce

K (y′)w � K (y′0)w0, H1
dR(Xy′,w/K (y

′)w) � H1
dR(Xy′0,w0

/K (y′0)w).
(6.6)

Also, (6.2) induces the splitting of the varietyHv as a product

Hv =
∏

(y′0,w)
H(y′0,w),

where the product is taken over (y′0, w) above (y0, v), and where

H(y′0,w) = Res
K (y′0)w
Kv

LGr(Vy′0,w, ω).

We have a similar decomposition Gv =∏(y′0,w) G(y′0,w).
If y ∈ �v , and if (y′, w) above (y, v) corresponds to (y′0, w0) under (6.4),

then

projection to H(y′0,w0)
of �v(y) = F1H1

dR(Xy′,w). (6.7)

where we identify F1H1
dR(Xy′,w) with a Lagrangian in the K (y′0)w0 -vector

space Vy′0,w0
using the Gauss–Manin connection (6.6). This result (6.7) comes

down to the fact, already noted, that (6.4) and (6.5) are compatible.

We will establish the following two lemmas.

Lemma 6.1 (Generic Simplicity) There is a finite subset F ⊂ �v ∩ Y (K )∗
such that, for y ∈ (�v ∩ Y (K )∗) − F, there exists (y′, w) above (y, v) such
that:

(i) [K (y′)w: Kv] � 8
(ii) ρy′ is simple as a GK (y′)-representation.

Observe that for y ∈ (�v ∩ Y (K )∗) − F , and y′ above y, there are only
finitely many possibilities for the isomorphism class of the field K (y′). Thus,
by Lemma 2.3, there are only finitely many possibilities for the isomorphism
class of the pair (K (y)′, ρy′), and so also only finitely many possibilities for
the isomorphism class of any pair (K (y′)w, ρy′ |K (y)′w) arising from (y′, w) as
in Lemma 6.1. The proof of Proposition 5.3 will then follow from Lemma 6.1
above and Lemma 6.2 below. �
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Lemma 6.2 (Galois representations really do vary in our family) Fix a finite
field extension K ′

v of Kv , with [K ′
v: Kv] � 8, and a Galois representation ρ′

of the absolute Galois group of K ′
v .

There are only finitely many y ∈ �v ∩ Y (K ) for which there exist (y′, w)
satisfying conditions (i) and (ii) of Lemma 6.1 and moreover the pair

(K (y′)w, ρy′,w) is isomorphic to (K ′
v, ρ

′)

i.e. there is an isomorphism K (y)′w → K ′
v carrying the isomorphism class of

ρ′ to that of ρy′,w.

To prove Lemmas 6.1 and 6.2 we shall analyze the period mapping more
carefully.

Proof of Lemma 6.2 Under the correspondence of p-adic Hodge theory, ρy′,w
corresponds to the K (y′)w-vector space H1

dR(Xy′/K (y′)w), together with its
natural semilinear Frobenius operator φ, and the (two-step) filtration defined
by F1HdR(Xy′/K (y′)w).

Suppose that (y′, w) corresponds to (y′0, w0) under (6.4). Using the isomor-
phism (6.6) the triple just described corresponds to

(H1
dR(Xy′0/K (y

′
0)w0), φv = semilinear Frobenius,

projection of�v(y) toHy′0,w0
).

It is enough to show that the set of y, for which this triple belongs to a fixed
isomorphism class, is finite.

Belonging to a fixed isomorphism class means that the projection of�v(y)
to Hy′0,w0

lies inside a single orbit for the action of the Frobenius centralizer

Z(φv) on Gy′0,w0
, and so also a single orbit of Z(φ

[Kv :Qp]
v ) on Gy′0,w0

. (In both
cases, these centralizers are taken inside K (y′0)w0 -linear automorphisms of
Vy′0,w.)

Apply Lemma 2.1 to the field extension K (y′0)w/Kv to see that this Frobe-
nius centralizer has Kv-dimension at most (dimK (y′0)w0 Vy′0,w0

)2 = 4d2.
As noted earlier, the period map �v has Zariski-dense image (in the Kv-

variety Hv; therefore this remains true when projected to Hy′0,w0
). Since

dimKv Hy′0,w0
= [K (y′)w: Kv] · d(d+1)

2 � 4d(d + 1) > 4d2, Lemma 3.3
completes the proof of Lemma 6.2. �
Proof of Lemma 6.1 Let us call y ∈ Y (K )∗∩�v “bad”when, for every (y′, w)
above (y, v) such that [K (y′)w: Kv] � 8, the representation ρy′ fails to be
simple. We must show there are only finitely many bad y ∈ Y (K )∗ ∩�v .
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Sublemma: If y ∈ Y (K )∗ ∩�v is bad, there exists:
– (y′, w) above (y, v), with [K (y′)w : Kv] � 8;
– anonzeroproperFrobenius-stable subspaceW dR

y′,w ofH1
dR(Xy′/K (y′)w)

such that dim F1W dR
y′,w � dim(W dR

y′,w)/2. (Here, and in the discussion
below, dimensions are dimensions over K (y′)w.)

Proof of sublemma: Take a bad y ∈ Y (K )∗ ∩�v . For each y′ above y let
Wy′ be a nonzero subrepresentation of ρy′ ofminimal positive dimension.
(It is therefore possible that Wy′ is all of ρy′). For each place w of K (y′)
we define W dR

y′,w by applying p-adic Hodge theory to Wy′ � ρy′ ; thus

W dR
y′,w is a φ-stable submodule of H1

dR(Xy′/K (y′)w).
Note that

dimW dR
y′,w � d whenever [K (y′)w: Kv] � 8. (6.8)

Indeed because y′ is bad, the supposition [K (y′)w: Kv] � 8 forces ρy′
to be non-simple; because it preserves (up to similitude) a bilinear form,
we have dimWy′ � 1

2 dim ρy′ , thus (6.8).
Nowassume that, for each (y′, w) above (y, v), satisfying [K (y′)w: Kv] �
8, we have

dim F1W dR
y′,w <

1

2
dimW dR

y′,w.

We will derive a contradiction, which will conclude the proof.
By Lemma 2.10, applied to Wy′ as a Galois representation of K (y′), we
have

∑

w|v
[K (y′)w: Kv]

dim F1W dR
y′,w

dimW dR
y′,w

= 1

2
[K (y′): K ] (6.9)

for any y′ a closed point of π−1(y). Sum over y′ above y; using (6.8) we
get

∑

[K (y′)w : Kv]�8

[K (y′)w: Kv]
(
1

2
− 1

2d

)
+

∑

[K (y′)w : Kv]<8
[K (y′)w: Kv]

� 1

2

∑

(y′,w)
[K (y′)w: Kv].

(6.10)
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Here all summations are over (y′, w) above (y, v). Therefore,

∑

[K (y′)w : Kv]<8

1

2
[K (y′)w: Kv] � 1

2d

∑

[K (y′)w : Kv]�8

[K (y′)w: Kv].

(6.11)

Let e1, . . . , ek be the cycle structure of Frobv acting on the K̄ points of
π−1(y). The inequality above means that

1

2

∑

i : ei<8
ei � 1

2d

∑

i : ei�8

ei ,

which is to say that sizev(π−1y) � 1
d+1 . This contradicts the assumption

that y ∈ Y (K )∗. �
We now return to the proof of Lemma 6.1. Fix any (y′0, w) above (y0, v)

with [K (y′0)w: Kv] � 8. Such a (y′0, w) exists because of the assumption that
y0 ∈ Y (K )∗. In view of the Sublemma and (6.7), it is enough to show that
there are only finitely many y ∈ Y (K ) ∩ �v such the projection of �v(y) to
H(y′0,w) lies in the subvariety

Hbad
(y′0,w)

⊂ H(y′0,w)

defined as the Lagrangian, K (y′0)w-subspaces F ⊂ Vy′0,w (recall (6.2) for
definition) for which there exists a Frobenius-stable subspace W ⊂ Vy′0,w,
satisfying

dim(F ∩W ) � 1

2
dim(W ), (6.12)

By the lemmas that follow, Hbad
(y′0,w)

is contained in a proper closed Kv-

subvariety of H(y′0,w); we conclude as in the proof of Lemma 6.2. �
Lemma 6.3 Suppose Lw is a finite unramified extension of Kv of degree r � 8.
Let (V, ω) be a symplectic Lw-vector space, with dimLw V = 2d; let φ: V →
V be semilinear for the Frobenius automorphism of Lw/Kv and bijective.

Then there is a Zariski-open

A ⊆ ResLwKv LGr(V, ω)

(where LGr(V, ω) is the Lagrangian Grassmannian, and ResLwKv denotes Weil
restriction of scalars from Lw to Kv) with the following property:

123



938 B. Lawrence, A. Venkatesh

If F ⊂ V is a Lagrangian Lw-subspace, corresponding to a point ofA(Kv),
there is no φ-invariant Lw-subspace W of V satisfying (6.12).

Proof Just as in Lemma 2.1, V ⊗Kv Kv splits into 2d-dimensional spaces
V1, . . . , Vr indexed by embeddings Lw ↪→ Kv; we can order them so that φ
induces isomorphisms Vi � Vi+1 for 1 ≤ i ≤ r − 1, and thus can identify
them all with V1 (we do not use the “cyclic” isomorphism Vr � V1).

The base extension W ⊗Kv Kv of any φ-invariant Lw-subspace yields a
subspace

⊕
Wi �

⊕
Vi , where each Wi corresponds to W1 under the above

identifications. Similarly, the base extension of a Lagrangian Lw-subspace
F � V gives an subspace

⊕
Fi �

⊕
Vi , where each Fi is Lagrangian. If

(6.12) is satisfied, then dim(Fi ∩Wi ) � 1
2 dim(Wi ) for each 1 � i � r .

The next, and final, Lemma shows that the set of (F1 . . . , Fr ) for which
such aW exists is a proper, Zariski-closed subset. Thus there is a Zariski-open
set inside in

(
ResLwKv LGr(V, ω)

)
×Kv Kv

such that, if F belongs to this Zariski-open, it has the property quoted in the
statement. Taking the intersection of Galois conjugates of this set, we get the
desired Zariski-open inside ResLwKv LGr(V, ω). �
Lemma 6.4 Let (V, ω) be a symplectic vector space over a field of charac-
teristic zero with dim(V ) = 2d; write LGr(V, ω) for the Grassmannian of
Lagrangian subspaces. Let E be the set of r-tuples of Lagrangian subspaces

(F1, . . . , Fr ) ∈ LGr(V, ω)r

for which there exists a proper nonzero subspace W ⊂ V such that dim(Fj ∩
W ) � 1

2 dim(W ) for every j . If r � 8 then E is contained in a proper, Zariski-
closed subset of LGr(V, ω)r .

Proof In fact our argument will show that r � 5 is enough.
First we argue that E is Zariski-closed. Consider the product Gr(V ) ×

LGr(V, ω)r parametrizing tuples (W, F1, F2, . . . , Fr ) such that each Fi is
Lagrangian. For each i , the dimension dim Fi ∩ W is (Zariski) upper semi-
continuous; so the set Ẽ of tuples satisfying the conditions described is closed.
NowE is the image of the closed set Ẽ under a proper map, so it is itself closed.

Since E is closed it’s enough to produce a single tuple (F1, . . . , Fr ) not in
E .
Take e1, . . . , ed , e′1, . . . , e′d a standard symplectic basis for V , so 〈ei , e′i 〉 =

1, and 〈e′i , ei 〉 = −1, and all other pairings between basis vectors are zero.
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Let

F1 = span(e1, e2, . . . , ed)

F2 = span(e′1, e′2, . . . , e′d)
F3 = span(e1 + e′1, e2 + e′2, . . . , ed + e′d)
F4 = span(e1 + 2e′1, e2 + 4e′2, . . . , ed + 2de′d).

Now each of these four spaces is maximal isotropic, and any two of them have
trivial intersection.

Write π12: V → F1 for the projection along the decomposition V = F1 ⊕
F2, and similarly define π21: V → F2. Both π12 and π21 are isomorphisms
when restricted to either F3 or F4. Write�12;3: F1 → F2 for the isomorphism

F1
π−1
12←− F3

π21−→ F2.

In explicit coordinates�12;3 takes ei to e′i , and the similar map�12;4 takes ei
to 2ie′i .

We claim that only finitely many W can satisfy the condition stated in
the Lemma with respect to F1, F2, F3, F4. Suppose given such a W . Since
W ∩ F1 and W ∩ F2 have trivial intersection with each other, and they each
have dimension at least 1

2 dim(W ), we have a direct sum decomposition

W = (W ∩ F1)⊕ (W ∩ F2) (6.13)

and an equality dim(W ∩ F1) = dim(W ∩ F2) = 1
2 dimW . Similarly, we find

that dim(W ∩ F3) = dim(W ∩ F4) = 1
2 dimW .

Next π12 gives an isomorphism F3 → F1; comparing dimensions, we see
the restriction

π12:W ∩ F3
∼−→ W ∩ F1

is an isomorphism as well. Similarly π21:W ∩ F3
∼−→ W ∩ F2.

In particular, �12,3 carries W ∩ F1 isomorphically to W ∩ F2. The same
reasoning applies to �12,4. Therefore, W ∩ F1 is stable under �−1

12,4�12,3,
which shows that W ∩ F1 ⊆ F1 is stable under the map ei �→ 2iei .

There are then finitely many possibilities for W ∩ F1; then there are also
finitely many possibilities for W ∩ F2 = �12,3(W ∩ F1) and then by (6.13)
finitely many possibilities for W ; call them W1, . . . ,WN .

Now, for eachWi , the condition that dim(F5 ∩Wi ) � 1
2 dim(Wi ) cuts out a

proper Zariski-closed subset of the Lagrangian Grassmannian parametrizing
F5; thus we may choose F5 so that no W satisfies the dimension bound. �
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7 The Kodaira–Parshin family

The argument that we have given for Mordell’s conjecture in Sect. 5 made
use of a specific abelian-by-finite family, the Kodaira–Parshin family. In this
section we explain how to construct this family, making use (in effect) of an
algebraic version of the theory of Hurwitz spaces. We need this theory only in
characteristic zero.

7.1 Hurwitz spaces for curves

Proposition 7.1 Let Y be a curve of genus at least 2 over a number field K ,
and let G be a center-free finite group. Then there is a K -curve Y ′ equipped
with an étale mapπ :Y ′ → Y , and a relative curve Z → Y ′, with the following
properties:

(i) “Y ′ parameterizes G-covers of Y branched at a single point”: for y ∈
Y (K̄ ), there is a bijection between π−1(y) and the set of G-conjugacy
classes of surjections πgeom

1 (Y − y, ∗) � G nontrivial on a loop around
y. Moreover, if y ∈ Y (K ), this identification is GK -equivariant.

(ii) “Z gives the universal G-cover of Y branched at a single point”: there is a
morphism Z → Y ′ ×Y of relative curves over Y ′ (here, we are regarding
Y ′ × Y as the trivial family of curves over Y ′, with fiber Y everywhere).
Moreover G acts on Z covering the trivial action on Y ′ × Y . This action
makes Z → Y ′ × Y into a G-covering away from the graph of π . If we
take the fiber of this morphism of relative curves above y′ ∈ Y ′(K̄ ), the
resulting map Zy′ → Y of curves is ramified exactly at π(y′). The induced
homomorphism

π
geom
1 (Y − y′, y0)→ AutG(Z(y′,y0))

∼= G

is exactly (in the conjugacy class of) the surjection from (i) classified by
y′.

There are several references on this matter that address much more general
settings (e.g. [29, §3.22]) but since none of them give the precise statement
we need, we will simply outline a direct proof, descending from the complex
analytic analogue, in Sect. 7.3.

Now we apply this to the group G = Aff(q):

Definition 7.2 Let Y be a curve of genus at least 2 over a number field K ,
and let q be a prime number. The Kodaira–Parshin curve family over Y with
parameter q will be the sequence of morphisms

Zq −→ Y ′
q −→ Y, (7.1)
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obtained from Proposition 7.1 applied to the group G = Aff(q).

We nowwant to form an associated abelian-by-finite family to the Kodaira–
Parshin curve family.

7.2 Prym varieties

We first describe the situation fiberwise:
Given a morphism C1 → C2 of curves over an algebraically closed field,

the associated Prym variety is the cokernel of the induced map Pic0(C2) →
Pic0(C1) on Jacobians.

Now suppose that the covering C1 → C2 is Galois, with Galois group
Aff(q), and ramified over exactly one point of C2. The degree of this covering
is q(q − 1). Rather than take its Prym directly, however, we prefer to use a
reduced version. Namely, we can form a smaller degree-q covering C ′

1 → C2
using the permutation action of Aff(q) on Z/qZ, and we are interested in the
Prym variety of this associated covering:

coker(Pic0(C2)→ Pic0(C ′
1)). (7.2)

We emphasize again that this is not the Prym variety of C1 → C2 but a
“reduced” version of it where the role of C1 has been replaced by C ′

1.
We can reformulate this in terms of C1, rather than the associated curve C ′

1.
Both Pic0(C2) and Pic0(C ′

1)map to Pic0(C1), with finite kernel. The image of
Pic0(C2) in Pic0(C1) is now the connected component of theAff(q)-invariants;
similarly the image of Pic0(C ′

1) in Pic
0(C1) is the connected component of the

invariants by the subgroup Hq = (Z/qZ)∗, which is a point stabilizer in the
permutation action of Aff(q) on Z/qZ. In summary, then, the Prym variety
of C ′

1 → C2 is isogenous to cokernel of the map connected component of
Pic0(C1)

Gq → connected component of Pic0(C1)
Hq .

This is an abelian variety of dimension (2g − 1) · q−1
2 , isogenous to (7.2).

We may alternately describe this as follows: form the idempotent

e := 1

#Hq

∑

h∈Hq

h − 1

#Aff(q)

∑

g∈Aff(q)
g ∈ Q[Aff(q)]

and let e′ = 1−e be the complementary idempotent. Then e′′ := #Aff(q)·e′ ∈
Z[Aff(q)] acts on Pic0(C1), and moreover the connected component of its
kernel is isogeneous to the Prym variety described above:

connected component of Pic0(C1)[e′′] isog.−→ (Prym for C ′
1 → C2

)
. (7.3)
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Equation 7.3 gives a way to access the ‘reduced” Prym variety (at least up
to isogeny) that we can conveniently apply in our relative situation: in the
situation described in Definition 7.2, Zq → Y ′

q is a relative curve over Y
′
q and

it admits a Aff(q)-action, where Aff(q) acts trivially on the base. The relative
Picard scheme of this curve is an abelian scheme over Y ′

q equipped with a
symmetric and fiberwise ample line bundle. Thus we may form

Xq = relative identity component of Pic0Zq→Y ′
q
[e′′],

where [e′′] means the kernel of e′′, and for the notion of “relative identity
component,” see [12, Proposition 15.6.4]. This Xq is an abelian scheme over
Y ′
q , equipped with a symmetric and fiberwise ample line bundle; its fiber over

any y ∈ Y ′
q(K̄ ) coincides with the construction on the left hand side of (7.3); in

particular this fiber is isogenous to the reduced Prym variety of the associated
Aff(q)-covering Zy → Y .

Definition 7.3 Notation as in the prior definition. The Kodaira–Parshin fam-
ily of Jacobians over Y , associated to the group Aff(q), is the sequence of
morphisms

Xq −→ Y ′
q → Y,

where Xq is, as defined above, the reduced relative Prym of Z → Y ′
q × Y ,

considered as a morphism of relative curves over Y ′
q .

This is an abelian-by-finite family, in the sense of Definition 5.1.

7.3 Proof of Proposition 7.1

We give the proof of Proposition 7.1. As we have mentioned this is largely for
lack of a good reference which states precisely what we need; certainly much
more general statements about Hurwitz schemes exist in the literature.

We start by supposing that Y is a proper smooth curve over C; while we
work over C we identify Y with its complex points.

For y ∈ Y set S(y) to be the set of conjugacy classes of surjective homo-
morphisms from π1(Y− y, ∗) � G, with the property that a loop around y has
nontrivial image. Equivalently, S(y) is the finite set of isomorphism classes of
connected coverings of Y with Galois group G, branched precisely at y.

For y near y∗ there is a natural identification S(y) ∼= S(y∗) since we can
topologically identify (Y, y) and (Y, y∗). Thus the set

∐
y∈Y (C) S(y) has the

structure of a Riemann surface Y ′ equipped with a covering map e: Y ′ → Y .
Explicitly, for each y′ ∈ Y ′, we have y′ ∈ S(e(y′)), or in words: y′ classifies
a connected G-covering of Y branched at y = e(y′).
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Moreover, the coverings indexed by the elements of S(y) fit together to a
morphism

f : Z → Y ′ × Y

of smooth complex manifolds; here G acts on Z , covering the trivial action on
Y ′ × Y . More explicitly:

• f is a covering map and a G-torsor when restricted to the complement of
the analytic divisor

� := graph of e ⊂ Y ′ × Y ;

• the pullback of the above morphism along y′ × Y ↪→ Y ′ × Y (for y′ ∈ Y ′)
is isomorphic to the covering of Y classified by y′.

Near the preimage of� on Z the map looks in local coordinates like (z, w) �→
(z, wn) for suitable n.

Now everything can be algebraized, i.e. Z and Y ′ have unique structures
of complex algebraic variety compatible with their analytic structures, and
the G-action on Z as well as the morphisms Z → Y ′ × Y and Y ′ → Y are
algebraic. This is clear for Y ′; also the structure sheaf of Z defines a coherent
analytic sheaf on Y ′×Y which can be made algebraic by GAGA [40, Theorem
3]; similarly the algebra structure on this coherent analytic sheaf comes from
an algebra structure on the algebraic sheaf [40, Theorem 2].

We now switch to using the letters Z , Y, . . . for the complex algebraic
varieties, rather than the associated analytic spaces. So we have defined a
sequence of complex algebraic varieties

Z
f−→ Y ′ × Y

e×id−→ Y × Y (7.4)

where f is étale away from the graph of e, and e is étale; the composite Z → Y 2

is therefore étale away from the diagonal�. (Note that it is equivalent to check
étale in the algebraic and analytic settings, see [33, XII, §3]).

Now suppose that Y is actually defined over a subfield K ⊂ C; we denote
by YK the corresponding K -scheme (similarly (Y 2)K , etc.); we want now to
descend everything in sight to K .

Lemma 7.4 Write Z◦ for the preimage of Y 2 −� in Z.

(1) The étale cover F : Z◦ → Y 2 − � can be uniquely extended to a cover
FK : Z◦

K → (Y 2 −�)K . (In both cases, these étale covers are understood
to be equipped with G-action.)
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(2) Let (y1, y0) ∈ Y (K̄ )2, with y1 �= y0. The geometric fiber

F−1
K (y1, y0)/G

is identifiedwith the set S(y0), as definedabove, nowusing étaleπgeom
1 (Y−

y0, y1). If (y1, y0) ∈ Y (K )2 this identification is equivariant for GK .
(3) The quotient Z◦

K /G (which is étale over (Y
2−�)K ) extends uniquely to an

étale cover of Y 2
K . This cover is isomorphic to one of the form Y ′

K ×YK →
Y 2
K for an étale cover Y ′

K → YK , such that Y ′ is the base change of Y ′
K to

C.

Assume Lemma 7.4 (the proof, which will be given in a moment, will
involve only the theory of étale π1 and group theory). It produces a sequence
Z◦
K → Y ′

K × YK → Y 2
K ; we need to extend Z◦

K to a K -structure on all of Z ,
and extend the first map accordingly.

Let ZK → Y 2
K be the normalization of Y 2

K inside the fraction field of
Z◦
K . Then ZK is normal, and finite over Y 2

K . The base extension ZK ⊗K C is
therefore also normal (the extension of a normal scheme along a field extension
in characteristic zero is normal—see [44, Tag 037Z] or [19, Cor. 6.14.2]), and
it is finite over Y 2. Consequently, ZK ⊗K C coincides with the normalization
of Y 2 in the function field of Z◦. This latter normalization is identified with
Z , for Z is also normal and finite over Y 2.
Themorphism Z◦

K → Z◦
K /G → Y ′

K×YK now extends to ZK → Y ′
K×YK ,

and the other desired properties can be verified since they are true over C.

Proof of Lemma 7.4 We do this by means of the theory of the étale fundamen-
tal group. We first formulate the basic point in purely group theoretic terms.

Let �,G be groups, with G finite center-free, and c a conjugacy class of
morphisms in Hom(�, �) for some other group �; when we apply this, �
will be a π1 of a punctured curve, � will be the profinite completion of an
infinite cyclic group, and c will come from monodromy around the puncture.
Consider the set S = S(�, c,G) of all surjective homomorphisms ϕ:� → G,
with the property that they are nontrivial when pulled back by c. There are
natural commuting actions of � and G on S:

γ · ϕ = ϕ ◦ Ad(γ )−1 (γ ∈ �), ϕ · h = Ad(h−1) ◦ ϕ (h ∈ G).

where we’ve written Ad(x) for the automorphism g �→ xgx−1.
This �-action extends uniquely to an action (commuting with G) of any

overgroup �̃ ⊃ � inwhich� is normal andwhose conjugation action preserves
c. Indeed the extension is described by exactly the same formula; uniqueness
comes from the fact that the stabilizer of ϕ ∈ S(�, c,G) inside � × Gop is
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given by

{(γ ∈ �, h ∈ G): h−1 = ϕ(γ )},

and so ϕ is determined by its stabilizer in�×Gop. (We used that ϕ is surjective
and that G is center-free.)

We apply this as follows. As above, fix two points y0 �= y1 ∈ Y (C); we will
use y = (y1, y0) as a geometric basepoint for Y × Y . Consider the sequence
of pointed schemes:

(Y − {y0}, y1)︸ ︷︷ ︸
�:=π1

p �→(p,y0)−→ (Y 2 −�, y)︸ ︷︷ ︸
�̃geom:=π1

(y,y′)�→y′−→ (Y, y0) (7.5)

and let �, �̃geom be defined as the geometric étale π1 of the first and second
spaces, at the specified basepoints. Now the long exact sequence for homotopy
groups of a fibration gives rise to an exact sequence of topological fundamental
groups; in the setting at hand this is short exact because the π2 of Y − {y0}
vanishes. The corresponding sequence of geometric étale fundamental groups
is obtained by profinite completion; it remains exact by the results of [38].
Therefore the first map above identifies � with a normal subgroup of �̃geom.
It follows easily that, if we write

�̃ = π1((Y
2 −�)K , y),

(arithmetic fundamental group) then the map � → �̃geom identifies � to a
normal subgroup of �̃.

Now let S = S(�, c,G) be as above, where c is the conjugacy class of
maps Ẑ → π1(Y − {y0}, y1) = � arising from the monodromy around y0.
The commuting �×G actions on S define a cover of Y −{y0}, equipped with
an action of G by automorphisms, whose fiber at y1 is identified with S. This
cover may be described as follows: it is the disjoint union of all the connected
G-covers of Y branched precisely at y0. In other words, it is the restriction
of Z → Y 2 − � to the fiber {y0} × (Y − {y0}). From the uniqueness just
described, the extension of this � × G action on S to an action of �̃geom ×
G corresponds to the cover Z → Y 2 − �. Therefore, the (further) unique
extension of the � × G-action on S to �̃ × G gives the statement (1) in the
Claim.

Statement (2) of the Claim (and the GK -equivariance if y1, y0 are K -
rational) follows for the specific (y1, y0) chosen above; however, since we
showed that the K -structure on Z◦ is unique, it must also be true for any
choice of (y1, y0).
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For statement (3) we notice that the action of � on S(�, c,G)/G is in
fact trivial. Therefore the resulting action of �̃ factors through the quotient
π1(YK , y0) arising from the last map of (7.5). This amounts to the third asser-
tion. �

8 The monodromy of Kodaira–Parshin families

8.1 Introduction, notation, statement of main theorem

In this section we consider surfaces in the classical topological category: by
a “surface” we mean the complement of finitely many interior points inside
a connected, orientable, compact two-dimensional manifold with boundary.
Thus a surface can have both boundary and punctures. Throughout this sec-
tion, the letters Y and Z will denote such a surface, andwewill use y0 to denote
a base point on Y . For such a surface Y , MCG(Y ) denotes the mapping class
group of Y . To emphasize, Y could have “punctures” or boundary. The book
of Farb and Margalit [16] is a reference on this material that contains all
the results we will use. When we discuss homology or cohomology, the
coefficients are always assumed to be the rational numbers Q unless stated
otherwise.

We first reformulate the statement to be proven.

8.2 Covers and their homology

Let Y be a surface (possibly with punctures or boundary). An Aff(q)-cover of
Y is, by definition, a connected surface Z together with a degree q covering
map

π : Z −→ Y

whose monodromy representation on a general fiber is equivalent to the
action of Aff(q) on Fq (i.e. we can label points in the fiber by Fq in such
a way that the monodromy representation has image Aff(q)). We will often
abuse notation and refer to this cover simply as Z , i.e., regard the map π as
implicit.

After choice of basepoint y0 ∈ Y , such a cover determines an Aff(q)-
conjugacy class5 of maps

5 A priori, the map is defined up to conjugation by the normalizer of Aff(q) in Sym(Fq ). This
normalizer is equal to Aff(q).
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π1(Y, y0) � Aff(q). (8.1)

We define two Aff(q)-covers (Z1, π1) and (Z2, π2) to be isomorphic when
there is a homeomorphism Z1 � Z2 commuting with the projections to Y ;
equivalently,when the associated conjugacy classes ofπ1-representations (8.1)
coincide.

If we have fixed a Aff(q)-cover Z → Y , we denote by Cov :π1 → Aff(q)
any homomorphism in the conjugacy class of (8.1). For η ∈ π1 we can unam-
biguously talk about the cycle decomposition of Cov(η) in Sym(Fq), which
we regard as a partition of the positive integer q; this cycle decomposition is
conjugation-invariant.

Given any covering map π : Z → Y , the pullback and pushforward on
homology define a splitting

H1(Z ,Q) = π∗H1(Y,Q)⊕ HPr
1 (Z , Y ;Q)︸ ︷︷ ︸

ker(π∗: H1(Z)→H1(Y )).

Henceforth we will drop the coefficients Q from the notation. The symbol
Pr stands for primitive; alternatively, HPr

1 (Z , Y ) is the homology of a Prym
variety.

Now H1(Z ,Q) and H1(Y,Q) are both equipped with skew-symmetric pair-
ings, the intersection pairings. The map π∗ scales the pairing by the degree
q of the covering of Z → Y . If the pairing on H1(Z ,Q) is nondegenerate,
we may identify the primitive homology with the orthogonal complement to
π∗H1(Y,Q) in H1(Z ,Q), and in particular this primitive homology inherits a
skew-symmetric pairing. In our case, Z and Y will both be compact surfaces
punctured at a single point, and therefore the intersection pairings on H1(Z ,Q)
and H1(Y,Q) are perfect.

8.2.1 The mapping class group and its action on homology; the mapMon

Clearly the diffeomorphism group of Y acts on the finite set of isomorphism
classes of Aff(q)-covers of Y , and this action factors through the mapping
class group MCG(Y ). In algebraic terms, this action is induced from the map
MCG(Y ) −→ Out(π1(Y, y0)).

Let MCG(Y )Z denote the stabilizer of (Z , π) for this action. Since Aff(q)
has trivial centralizer in Sym(Fq), such elements lift uniquely to mapping
classes on Z , i.e. there is a homomorphism

MCG(Y )Z −→ MCG(Z).
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Namely, fixing a representative α: Y → Y , there is a unique f : Z → Z that
renders the diagram

Z

π
��

f �� Z

π
��

Y α �� Y

(8.2)

commutative. Sending themapping class ofα to themapping class of f defines
the desired homeomorphism.

This construction gives rise to actions of MCG(Y )Z on H1(Z) and
HPr
1 (Z , Y ). This latter action is the monodromy map

Mon :MCG(Y )Z → Sp(HPr
1 (Z , Y )).

8.2.2 The main theorem

Fix a surface Y of genus g � 2, a point y ∈ Y , a prime q � 3; as before,
Aff(q) denotes the group of affine-linear transformations of Fq .

We consider Aff(q)-covers Z◦ of Y −{y} such that the monodromy around
y is nontrivial (hence a q-cycle); the compactification of such a cover is a
surface Z of genus gq − q−1

2 . We call such Z singly ramified Aff(q)-covers
of Y . The notation hides the dependence on the point y, which will remain
fixed. There are, up to isomorphism, only finitely many such Z ; choose a
representative for each isomorphism class and call them Z1, Z2, . . . , ZN , and
let Cov1,Cov2, . . . ,CovN :π1(Y − {y})→ Aff(q) be representatives for the
associated monodromy mappings.

Let MCG(Y −{y})0 denote the intersection of the groupsMCG(Y −{y})Zi .
The individual monodromy maps attached to the covers Zi combine to give a
map

Mon :MCG(Y − {y})0 →
N∏

i=1

Sp(HPr
1 (Zi , Y )). (8.3)

The mapping class group of a punctured surface fits in the Birman exact
sequence [16, Theorem 4.6]

0 → π1(Y, y)→ MCG(Y − {y})→ MCG(Y )→ 0. (8.4)

Let π1(Y, y)0 denote the inverse image of MCG(Y − {y})0 in π1(Y, y); the
inclusion π1(Y, y)0 ⊆ π1(Y, y) is of finite index.
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The restriction of (8.3) to the subgroup π1(Y, y)0 describes the monodromy
of a Kodaira–Parshin family, as in Definition 7.3. We review this connection
in more detail in Sect. 8.2.3. The following statement is equivalent to the
large monodromy property of Kodaira–Parshin families, stated without proof
as point (i) before Theorem 5.4.

Theorem 8.1 Let notation be as above; in particular, Z1, . . . , ZN are a set
of representatives for isomorphism classes of singly ramifiedAff(q)-covers of
Y . Then the map

Mon :π1(Y, y)0 →
N∏

i=1

Sp(HPr
1 (Zi , Y )) (8.5)

has Zariski-dense image.

We briefly outline the proof. We give in Sect. 8.4 a “normal form” for each
Aff(q)-cover. Using the sequence (8.4), we reduce to showing a similar asser-
tion with π1(Y, y)0 replaced by MCG(Y − {y})0. This allows us to use Dehn
twists. Using our normal form for Aff(q)-covers, and constructing a suitable
systemof curves toDehn-twist around,we can see that themonodromy surjects
onto each factor Sp(HPr

1 (Zi , Y )). A version of Goursat’s lemma completes the
proof.

When considering the general problem (replacing Aff(q) or cyclic covers
by G-covers) the primitive homology must be further decomposed according
to the representation theory ofG. Looijenga [27] has proven a similar result for
cyclic covers of surfaces without monodromy; in fact, Looijenga determines
the exact image of Mon in this situation. See also [18, Theorem 1.6] for an
analogous result for unramified covers of a closed surface, and [37] for covers
whose covering group is the Heisenberg group.

8.2.3 Application to Theorem 5.4

For clarity we now write out why Theorem 8.1, in the form stated, above,
implies what is used in Theorem 5.4: namely, the Kodaira–Parshin family
Xq → Y ′

q
π→ Y for the group Aff(q), q ≥ 3, has full monodromy.

In stages:

• We begin, as in Sect. 7.1 with a family Zq → Y ′
q → Yq , with Zq → Y ′

q a
relative curve. (The Kodaira–Parshin family was constructed by applying
a Prym construction to this, as explicated in Definition 7.3).

• Fix y ∈ Yq(C). The fiber of Y ′
q → Yq above y ∈ Yq(C) is identified

with the isomorphism classes of singly ramified Aff(q)-covers of Y (C),
branched at y. This follows from property (i) of Proposition 7.1.
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• Fix y′ ∈ Y ′
q(C) above y ∈ Yq(C). Let Zq,y′ be the fiber of Zq → Y ′

q over
y′.
By construction, Zq,y′ → Y (C) is a singly branched Aff(q)-cover, and we
can form the degree q cover associated to the action of Aff(q) on Z/qZ,
i.e. Zq,y′(C)×Aff(q) Z/qZ. By our definitions above, we have

Zq,y′(C)×Aff(q) Z/qZ � Zi

(for some unique i in {1, 2, . . . , N }) as Riemann surfaces over Y (C).
• The construction of Kodaira–Parshin families then gives rise, as in (7.3),
to an isogeny

fiber Xq,y′ of Xq above y
′ −→ Prym(Zi → Y (C))

This isogeny induces an isomorphism of the rational homology groups:

HPr
1 (Zi , Y ;Q) � first homology of Xq,y′(C)with rational coefficients.

• This identification is compatible with monodromy, and so Theorem 8.1
translates to definition (5.1) of full monodromy.

8.3 Dehn twists and liftable curves

We say that e is a simple closed curve in a surface Y if it is the image of a
smooth embedding S1 → Y ; a simple closed curve has no self-intersection.
For us, a simple closed curve will always come with an orientation, namely,
the orientation induced from a fixed orientation on S1. If y ∈ Y is a point, then
we say η ∈ π1(Y, y) is represented by a simple closed curve if there is a loop
e in Y , based at y and representing the class η ∈ π1(Y, y), which is a simple
closed curve. We may say (somewhat imprecisely) that η “is” a simple closed
curve.

If e is a simple closed curve in Y − {y}, the Dehn twist De about e acts
on H1(Y ) by the transvection Te; indeed, we can regard De as an element of
MCG(Y −{y}). We want to study how this lifts to an Aff(q)-cover Z → Y : let
ne be the order of the image of e in Aff(q). Then Dne

e lifts to an automorphism
of the cover Z , as we now describe. Suppose the image of e underπ1(Y, y0)→
Aff(q)→ Sym(Fq) has cycle structure (d1, . . . , dk). The preimage of e under
Z → Y is a disjoint union of circles e1, . . . , ek , with the circles ei in natural
bijection with the cycles in the permutation. Then Dne

e lifts to the product of
commuting Dehn twists

∏

i

Dne/di
ei
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on Z .
In our cases, the only possibilities for cycle structure are as follows:

– If emaps to an element of Aff(q) that is not in F+
q , i.e. has nontrivial image

a ∈ F∗
q , then (d1, . . . , dk) = (1, ordq(a), ordq(a), . . . , ordq(a)).

– If e maps to a nonzero element of F+
q then (d1, . . . , dk) = (q).

– If emaps to the identity element of Aff(q), then (d1, . . . , dk) = (1, . . . , 1).

Now we note that:

Lemma 8.2 Let e be a simple closed curve in Y − {y}. Then the classes of
the preimages [e1], . . . , [ek] in the homology of Z are linearly independent;
projected to HPr

1 (Z , Y ), their span has dimension k − 1.

Proof Y admits the structure of a CW complex with one 2-cell such that e
belongs to the 1-skeleton. The inclusion of this 1-skeleton into Y − y is a
homotopy equivalence. Correspondingly the inclusion of the preimage (in Z )
of this 1-skeleton into the preimage (in Z ) of Y − y is also a homotopy equiv-
alence. Note also that the inclusion of Y − y into Y induces an isomorphism
on H1, with a similar statement for Z − π−1(y).

These remarks allow us to reduce the Lemma to corresponding assertions
for a covering of a finite graph, which are clear. �

The action of Mon(Dne
e ) on HPr

1 (Z , Y ) is a unipotent transformation u such
that the image of u − 1 is exactly the span of the classes of the circles ei . By
the Lemma just proven, this has dimension k − 1; correspondingly the fixed
space Mon(Dne

e ) on HPr
1 (Z , Y ) has codimension k − 1.

We record the following consequence.

Lemma 8.3 Suppose Z → Y is an Aff(q)-cover. Let e be a simple closed
curve in Y , and take M such that DM

e ∈ MCG(Y )Z . Then the rank of
Mon(DM

e )−Id acting on HPr
1 (Z , Y ) determines the conjugacy class ofCov(e)

in the symmetric group Sym(Fq).

A particularly important case is when e is a simple closed curve in Y such
that Cov(e) maps to a generator for F∗

q under the natural map Aff(q) → F∗
q .

We call such a e a liftable curve (for the Aff(q)-cover Z → Y ). Its preimage
in Z splits into a union of simple closed curves e+ of degree 1 over e, and e−
of degree q − 1 over e. For liftable e we write

ẽ := projection of the class of e+ to primitive homology.

According to our discussion above, De induces a transvection on HPr
1 (Z , Y ),

with center ẽ.
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Write · for the intersection pairing on homology. Given liftable curves A
and B, we have

Ã · B̃ = (A+ · B+)− 1

q
A · B. (8.6)

Indeed, identifying primitive homology with the kernel of the pushforward,
we have q Ã = q A+ −π∗A, and so the intersection pairing of q Ã with q B̃ is

(q A+ − π∗A) · (qB+ − π∗B) = q2(A+ · B+)− 2q(A · B)+ q(A · B),

as desired.

8.4 A normal form for an Affq-cover

Again, take Z a singly ramified Aff(q)-cover of Y . We will describe the cover
Z → Y in a normal form by cutting Y carefully, using essentially the fact that
Aff(q) is solvable. The end result is roughly that the covering Z → Y can be
expressed as the sum of a trivial cover of a genus g−1 surface and a nontrivial
cover on a torus.

Choose a basepoint y0 ∈ Y . The map Cov :π1(Y − {y}, y0) → Aff(q)
specifying the cover Z → Y induces a map

H1(Y,Z) ∼= H1(Y − {y},Z)→ F∗
q

on abelianizations. The group F∗
q is cyclic and H1(Y,Z) is free. If we choose

a surjection Z � F∗
q , then the map on abelianizations lifts to a map

H1(Y,Z)→ Z → F∗
q .

We can choose this map so that H1(Y,Z)→ Z is surjective, so it is given by
intersecting with a primitive integral homology class α1.

Choose a simple closed curve, whichwe also call α1, representing this class.
(Indeed, any primitive integral homology class is represented by a simple
closed curve: [16, Proposition 6.2].) In fact, choose two such curves, α+1 and
α−1 , which pass “close by” but on either side of the ramification point y, and
are parallel to one another (Fig. 1). Note that, since our cover is ramified at
y, and the monodromy at y is a nontrivial element of in F+

q , Cov(α
+
1 ) and

Cov(α−1 ) cannot both be trivial.
Cutting Y along the curves α±1 and discarding the connected component

of y, we obtain a surface Y 1 with two boundary components. Let Z1 be the
pullback of our covering to Y 1. The map Cov :π1(Y 1, y0) → Aff(q) has
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Fig. 1 The curves α±1 and α2 on Y

image contained in F+
q ⊆ Aff(q) by our choice of α; so it factors through

H1(Y 1,Z).
The boundary components (with orientations defined by an outward normal)

define classes b+, b− ∈ H1(Y 1,Z); these classes satisfy b++b− = 0 because
their sum is the boundary of Y 1.We saw above that b+ and b− cannot both have
trivial image inF+

q ; so Cov(b+) = −Cov(b−)must be nontrivial. Conjugating
by a suitable element of Aff(q) as necessary, we may as well suppose that
b+ ∈ H1(Y 1,Z) maps to 1 ∈ F+

q .
For a surface such as Y 1 with boundary ∂Y 1, Poincaré duality takes the

form of a perfect pairing between absolute and relative homology:

H1(Y
1, ∂Y 1;Z)× H1(Y

1;Z)→ Z. (8.7)

The map H1(Y 1,Z)→ F+
q lifts to a map H1(Y 1,Z)→ Z; since b+ is a prim-

itive element of H1(Y 1,Z), we can choose such a lift taking b+ to 1. This lift is
of the form x �→ 〈x, α2〉 for a relative homology class α2 ∈ H1(Y 1, ∂Y 1;Z).
Therefore α2 intersects the boundary components with multiplicity +1 and
−1.

The following lemma readily implies that α2 can be represented by a simple
curve, the image of an immersion e: [0, 1] → Y 1 that meets ∂Y 1 only at the
endpoints, which we also call α2. Indeed, it implies MCG(Y ) acts transitively
on that subset of H1(Y, ∂Y ) � Hom(H1(Y,Z),Z) consisting of elements
whose pairing with a fixed boundary circle is 1. It follows that we can find a
mapping class carrying the homology class of e to the homology class α2, as
desired.

Lemma 8.4 Suppose Y is a surface of genus g with 2 boundary components,
so V = H1(Y,Z) is a free Z-module of rank 2g+ 1. We regard it as equipped
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with a (degenerate) alternating form via H1(Y )→ H1(Y, ∂Y ) and the duality
pairing (8.7); the radical of this form is the rank-1 submodule V 0 generated
by b, the class of one of the two boundary components of Y .

Let Sp(V, b) denote the group of automorphisms of V preserving the bilin-
ear form and fixing b. Then the natural map MCG(Y ) → Sp(V, b) is
surjective.

Proof The group Sp(V, b) fits into an exact sequence

1 → Hom(V/V 0, V 0)→ Sp(V, b)→ Sp(V/V 0)→ 1,

where the left-hand map is given by f �→ 1+ f .
Now one obtains a closed surface from Y by capping off both boundary

components. The mapping class group MCG(Y ) surjects onto the mapping
class group of this closure [16, Prop 3.19]. Therefore (by the surjectivity of
the symplectic representation for a closed surface [16, Theorem6.4]) it surjects
onto Sp(V/V 0).

Now let v ∈ V be a class, not in V 0, which is represented by a simple closed
curve in Y ; and let b be one of the two boundary components of Y . We can
represent v + b by a simple closed curve as well (possibly after replacing b
with−b). Thus the image of MCG(Y ) contains the transvections Tv and Tv+b.
The composition Tv+bT−1

v is a nontrivial element of Sp(V, b), coming from
the element

x �→ 〈x, v〉b ∈ Hom(V/V 0, V 0).

These generate Hom(V/V 0, V 0) so the result follows. �
Cut Y 1 along α2, and let Y 2 be the resulting surface; it is a surface of genus

g − 1 with one boundary component. The pullback of the cover Z → Y to
Y 2 splits, i.e., becomes a disjoint union of q copies of Y 2. We can recover
Y from Y 2 by gluing to Y 2 a torus with one boundary component. Thus our
discussion has shown that it is possible to put any Aff(q)-cover Z → Y into a
normal form: a connected sum of a trivial cover of a genus g − 1 surface and
a nontrivial cover of a torus (Fig. 2).

To summarize: let Sg−1 be a genus-(g− 1) surface and let T be a torus. Fix
a small open disk D in Sg−1 and D′ in T, and set

S◦
g−1 = Sg−1 − D, T◦ = T − D′, (8.8)

so these are, respectively, a surface of genus g− 1 with one boundary compo-
nent and a toruswith one boundary component.We identify Y with the genus-g
surface obtained by gluing S◦

g−1 to T◦ along an identification ∂D′ � ∂D. (In

relation to the discussion just given, S◦
g−1 is homotopy-equivalent to Y 2.)
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Fig. 2 Y as a connected sum

Proposition 8.5 (Normal form for Aff(q)-covers) Let Z be a singly ramified
Aff(q)-cover of Y . Then we may write Y as a connected sum:

Y = Sg−1#T,

where Sg−1 is a genus-(g − 1) surface and T is a genus-1 surface, satisfying
the following properties (with notation as above).

• The ramification point y belongs to the interior of T◦.
• The cover Z → Y splits over S◦

g−1.
• The cover Z → Y , when restricted to T◦, extends over T, i.e. has trivial
monodromy around the boundary circle of T◦.

• With respect to a standard basis for π1(T − y, ∗), a free group on two
generators β1, β2, the monodromy of the cover sends
– β1 to an element of Aff(q) projecting to a generator for F∗

q , and
– β2 to an nonzero element of F+

q .

Hereβ1 is a curvewhich crossesα1 once and does not crossα2; and similarly
for β2 (Fig. 3).

Thus Z consists of q copies of S◦
g−1 glued to a degree-q cover T̃◦ of T◦

along q boundary circles. In the sequel we will use ˜S◦
g−1 for the cover of S

◦
g−1

induced by Z .

8.5 Proof of Theorem 8.1

We must show (8.5) has Zariski-dense image. We will perform a series of
reductions; the main steps are Lemmas 8.7, 8.9, and 8.10.
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Fig. 3 The curves β1 and β2. (The basepoint is the intersection of β1 and β2)

Lemma 8.6 The image of π1(Y, y)0 (see after (8.4) for definition) under the
monodromy map

π1(Y, y)0 → Sp(HPr
1 (Zi , Y ))

to any factor Sp(HPr
1 (Zi , Y )) of the right-hand side of (8.5) is not contained

in the center of Sp.

Proof We leave the simple topological proof to the reader.6 �
Because π1(Y, y)0 is normal inside MCG(Y − {y})0 and the symplectic

groups are almost simple, Theorem 8.1 follows from the subsequent Lemma:

Lemma 8.7 The monodromy map restricted toMCG(Y − {y})0,

Mon :MCG(Y − {y})0 →
N∏

i=1

Sp(HPr
1 (Zi , Y )),

has Zariski-dense image.

In turn, using Lemma 2.12, this will follow from Lemmas 8.8 and 8.9.

6 One can also give an algebro-geometric argument, as follows. Suppose to the contrary. Now,
as in Sect. 7, there is an associated finite covering Y ′ → Y such that the various Zi fit together
into a curve fibration Z → Y ′. If (a) were false, the theorem of the fixed part means that the
Hodge structure of the fibers of Z → Y ′ are constant, at least over one component of Y ′. By
Torelli, this means that all the fibers are actually isomorphic. This contradicts de Franchis’s
theorem.
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Lemma 8.8 (Distinct covers are distinguished by monodromy around a sim-
ple closed curve.) For two non-isomorphic Aff(q)-covers Z1, Z2 there exists
a simple closed curve η in Y such that the cycle decompositions of the mon-
odromy around η in Z1 and Z2 are different.

Proof Two coverings Z1, Z2 define two maps π1(Y − y)→ Aff(q). Suppose,
first of all, that their projections to F∗

q have different kernels (i.e. are not related
by an automorphism of F∗

q ). We may find a primitive homology class whose
images under the two maps f1, f2: H1(Y,Z) → F∗

q have different orders in
F∗
q . Indeed, there is a basis e1, . . . , er for H1(Y,Z) such that the kernel of
f1 equals (q − 1)e1, e2, . . . , er ; not all of e2, . . . , er can be in the kernel of
f2, and so at least one of these latter classes suffice. Represent this primitive
homology class by a simple closed curve to construct η.

Otherwise, the coverings Z1, Z2 define maps π1(Y − y)→ F∗
q having the

same kernel. Accordingly, in the algorithm to convert an Aff(q)-cover into a
normal form described in Sect. 8.4, we can cut Y along the same curve α1, as
in Sect. 8.4, for both Z1 and Z2. We obtain, as before, a surface Y 1 with two
boundary components; the covers Z1, Z2 define two maps

g1, g2: H1(Y
1,Z) −→ F+

q .

If g1 is not proportional to g2, we can find a primitive homology class for
H1(Y 1,Z) which is in the kernel of one map but not the other. Represent this
primitive homology class by a simple closed curve to construct η.

Otherwise g1 and g2 are proportional, so the two maps π1(Y 1)→ F+
q have

the same kernel. Therefore, we can cut Y1 along the same curve α2 for both
Z1 and Z2. So we get a decomposition of Y as a connected sum Y = Sg−1#T
as above, such that both Z1 and Z2 become trivial on Sg−1.

Let β1 and β2 be curves on T as in the end of Sect. 8.4. Then both maps
π1(Y− y)→ Aff(q) send β1 to an element of Aff(q) projecting to a generator
for F∗

q ; and they both send β2 to an element of F+
q . Each of Cov1(β1) and

Cov2(β1) has a unique fixed point in Fq ; up to conjugation, we may suppose
this fixed point is 0. By a further conjugation we may assume that Cov1(β2) =
Cov2(β2) = 1 ∈ F+

q .
So we can write

Cov1(β1) : x �→ c1x

and

Cov2(β1) : x �→ c2x .

If Z1 and Z2 are not isomorphic covers, we must have c1 �= c2.
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Fig. 4 The curve η. How to read the picture: follow along the path η, starting at the basepoint
y0. Write down a word in the symbols β1 and β2 as follows. Every time η crosses α1, write
β1 or β−1

1 , depending whether the crossing was in the positive or negative direction. Every

time η crosses α2, write β2 or β−1
2 . The resulting word is the image of η under the map

π1(Y − y, y0)→ π1(T − y, y0), which we readily see is β1β2β
−1
1 β22

There is a map

π1(Y − y) −→ π1(T − y)

which is obtained [in the notation of (8.8)] by collapsing S◦
g−1 to a point; this

gives a map from Y − y to a surface that is homotopy equivalent to T − y.
There exists a simple closed curveη ∈ π1(Y−y)mapping toβ1β2β

−1
1 β

q−c1
2

under this map π1(Y − y)→ π1(T − y): see Fig. 4 and its caption.
Then Cov1(η) is trivial but Cov2(η) is not trivial. This concludes the proof.

�

Lemma 8.9 ThemonodromymapMon:MCG(Y )Zi −→ Sp(HPr
1 (Zi , Y )) has

Zariski-dense image.

We are now reduced to proving Lemma 8.9. Let Z = Zi for some fixed
i . By the construction of Dehn twists from liftable curves (see discussion at
end of Sect. 8.3), as well as Lemma 2.14 on generation by transvections, it is
enough to show:

Lemma 8.10 There exists a collection of liftable curves A1, . . . , AN on Y
such that:

(a) the Ãi span the primitive homology HPr
1 (Z , Y );

(b) the graph obtained by connecting Ai , A j when Ãi · Ã j �= 0 is connected.
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8.6 Proof of Lemma 8.10

Weput the singly ramifiedAff(q)-cover Z → Y in a normal form, as explained
in Sect. 8.4. Recall notation (D, D′, Sg−1, T, and so forth) from the end of
Sect. 8.4. We will produce the curves Ai by concatenating curves on T◦ and
curves on S◦

g−1.
Fix a point p ∈ ∂D ∼= ∂D′. Fix a labelling of the points of Z above p by

Fq , compatible with the usual action of Aff(q) for some fixed homomorphism

Cov :π1(Y − y, p) −→ Aff(q).

Recall that the cover Z → Y splits over S◦
g−1; the labelling above p there-

fore permits us also to label the components of S◦
g−1 by F+

q .

Lemma 8.11 There exist q + 1 simple closed curves {γ j : 0 � j � q} on T◦,
beginning and ending at p, not passing through y, and intersecting ∂D′ only
at its endpoints, such that:

(i) For each j , the monodromy Cov(γ j ) projects under Aff(q)→ F∗
q to the

same fixed generator of F∗
q .

(ii) The monodromy of γ j , defining a map Fq → Fq , fixes exactly j modulo
q.

(iii) The (unique) lifts γ+
j to simple closed curves on T̃◦ span the homology

of T̃◦ modulo the homology of its boundary.
(iv) Each γ j has the same orientation near p, i.e., either the outgoing branch

is “above” the incoming branch for all j , or vice versa.

Proof Take an explicit basis β1, β2 of homology of T , such as was described in
Sect. 8.4; conjugating if necessarywe can suppose that themonodromy ofβ1 is
x �→ gx (for g ∈ F∗

q a generator) and the monodromy of β2 is x �→ x +1. We

can choose this basis in such a way that all powers β1β
j
2 with j non-negative

are represented by simple closed curves on T◦, which start and end at p.
The monodromy around β1β

j
2 is given by x �→ g(x + j), which fixes

g j
1−g ∈ F+

q . Write [�] for the unique representative of � ∈ Fq that lies in
[0, q − 1], and put

j∗ =
{
[ g j
1−g ], j �= q

q, j = q.

The map j �→ j∗ gives a bijection from [0, q] to itself. Now put

γ j∗ = β1β
j
2 ( j ∈ [0, q]).
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Conditions (i) and (ii) are clearly satisfied. To check (iii) wemust verify that
the associated homology classes span homology of T̃◦ modulo its boundary.
One could verify this by computing an explicit CW-complex for T̃◦; we present
an alternative group-theoretic proof. It is sufficient to show that

the homology clases of the lifts of γ j span H1(˜T − y). (8.9)

Here and inwhat followswemake use of the fact that ourAff(q)-cover extends
over T, and thus write (e.g.) T̃. To see that (8.9) indeed implies (iii), consider
the diagram

H1( ˜T◦ − y)

��

�� H1(T̃◦)/H1(∂T̃◦)

∼
��

H1(˜T − y)
f�� H1(̃T)/H1(D̃) = H1(̃T)

where f is surjective because in fact H1(˜T − y) � H1(̃T): the preimage of y
is a single point.

Let p̃ be the point above p corresponding to 0 ∈ Fq . Projection to T

identifies π1(˜T − y, p̃) with the subgroup H � 〈β1, β2〉 defined by

H = stabilizer of 0 ∈ Fq .

Therefore the first homology of ˜T − y is the abelianization of H. Under this
correspondence, the homology class of the lift of γ j corresponds to the image

in Hab of (β− j∗
2 )β1β

j
2 (β

j∗
2 ) ∈ H.

We must therefore show that the elements β− j∗
2 β1β

j+ j∗
2 actually generate

Hab. Note that among these elements are β1 and (a conjugate of) β1β
q
2 , so it

is enough to show that

β
q
2 andβ

− j∗
2 β1β

j+ j∗
2 (0 � j � q − 1) (8.10)

generate Hab. However, a set of left coset representatives for H are given by
1, β2, . . . , β

q−1
2 ; according to Schreier’s algorithm a generating set for H is

given by

β
q
2 , β

−[g j]
2 β1β

j
2 , j ∈ [0, q − 1].
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Fig. 5 The curves γ j and w on Y

Now considered modulo q the set of pairs (−[g j], j) ≡ (−g j, j) appearing
here coincidewith the pairs (− j∗, j+ j∗) ≡ (− g j

1−g ,
j

1−g ) appearing in (8.10).
So the elements of (8.10) even generate H not just its abelianization. �

We return to the proof of Lemma 8.10. For each primitive homology class in
S◦
g−1 we fix a representative which is a simple closed curve onS◦

g−1 beginning
and ending at p. Let W be the resulting collection of simple closed curves.
For each w ∈ W at least one of the two homotopy classes

A(w, j) = γ j · w±1 ∈ π1(Y, p) (8.11)

is representable by a simple closed curve on Y . The choice of sign depends
only on w and does not depend on j , in view of property (iv) of the curves γ j .
For a picture of the curve A(w, j), see Fig. 5.

The image of this curve in Aff(q) projects to a generator of F∗
q ; therefore

it is “liftable” in the sense of Sect. 8.3. Recall also from Sect. 8.3 the notation
e+ for the degree-1 lift of a liftable curve e. The lift of A(w, j) has homology
class given by

[A(w, j)+] = [γ+
j ] ± [w j ],

where w j means that we lift w to a closed loop on the j th preimage of S◦
g−1

inside Z ; the sign above is the same as in (8.11).
We have

[A(w, j)+] − [A(w′, j)+] = ε[w j ] + ε′[(w′) j ] (ε, ε′ ∈ ±1)
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and we see readily that these classes—as both w,w′ vary through W—span
the homology of the j th preimage of S◦

g−1 in the cover Z .

The boundary of ˜S◦
g−1 is a union of q circles. Considering the Mayer–

Vietoris sequence

H1(S
1)q → H1(˜S◦

g−1)⊕ H1(T̃◦) � H1(Z).

and using the fact that the [γ j ] span H1(T̃◦)modulo its boundary (Lemma 8.11
(iii)), we see that the [A(w, j)+] span H1(Z).

As before, we define

Ã(w, j) = projection of [A(w, j)+] to primitive homology.

so that the homology classes Ã(w, j) span HPr
1 (Z , Y ). This completes the

proof of part (a) of Lemma 8.10.
To prove part (b), we need to compute some intersection numbers. We note

that the intersection number between any γ+
j and any wk is trivial. Thus

[A(w1, j)] · [A(w2, k)] = [γ j ] · [γk] ± [w1] · [w2]
[A(w1, j)

+] · [A(w2, k)
+] = [γ+

j · γ+
k ] ± δ jk[w1] · [w2],

where δ jk is the Kronecker δ symbol, and, in both instances, the sign that
appears the product of the sign for w1 and the sign for w2. Upon projecting to
primitive homology, (8.6) gives

˜A(w1, j) · ˜A(w2, k)

= ±(δ jk − q−1)[w1] · [w2] + ([γ+
j ] · [γ+

k ] − q−1[γ j · γk]).

The connectedness of the “intersection graph” follows from this. It is enough
to show that given (w1, j) and (w2, �) there exists (w3, k) with both intersec-
tion numbers nonzero. For this, we note that the factor (δ jk − q−1) is never
zero, so we simply choose w3 so that [w1] · [w3] and [w2] · [w3] are suffi-
ciently large: this is possible because [w1], [w2] �= 0, the intersection pairing
on H1(S◦g−1) is perfect, and we can choose w3 such that [w3] is any given
primitive homology class. This proves Lemma 8.10 and Theorem 8.1. �

9 Transcendence of period mappings; the Bakker–Tsimerman theorem

It is desirable to extend the method to settings where the base Y is higher-
dimensional, thus feasibly leading to finiteness results for integral points on Y .
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We will study the example when X → Y is the moduli space of smooth hyper-
surfaces in Pm ; then integral points on Y correspond to integral homogeneous
polynomials P(x0, . . . , xm) of degree d whose discriminant (disc P) ∈ O∗.

(A natural family of generalizations of this example is given by considering
the integral points on Pm− Z∨, where Z ⊂ Pm is a smooth subvariety, and Z∨
is the dual projective variety to Z : there is a natural smooth projective family
over Pm − Z∨, namely, the family of smooth hyperplane sections of Z .)

9.1 The Ax–Schanuel theorem of Bakker and Tsimerman

Suppose that we are given a smooth proper map X → Y of relative dimension
d over the complex numbers (we identify complex algebraic varieties with
their complex points). The primitive cohomology of each fiber Hd(Xy,C)prim

carries a polarized Hodge structure. Let H be the associated period domain
which classifies polarized Hodge structures with the same numerical data as
this primitive cohomology, so we have an analytic period map

�: Ỹ −→ H

where Ỹ is the universal cover of Y (C). This H is open (for the analytic
topology) in a certain complex flag variety H∗, which parameterizes isotropic
flags with a given dimensional data inside a certain orthogonal or symplectic
complex vector space.

Bakker and Tsimerman [1] have proven the following analogue of the Ax–
Schanuel theorem. It is a very strong statement about the transcendence of
�.

To simplify the statement, we assume that the monodromy mapping

π1(Y )→ Aut(Hd(Xy,C)prim)

has image whose Zariski closure contains the full special orthogonal or
symplectic group, stabilizing the intersection form. (This restriction, which
guarantees that the image �(Ỹ ) is Zariski-dense in H∗, is not important, and
in [1] the theorem is formulated for an arbitrary Mumford–Tate domain as
target.)

Theorem 9.1 (Theorem of Bakker and Tsimerman.) Suppose that V ⊂ Y ×
H∗ is algebraic.Write W for the image of Ỹ in Y×H. Suppose thatU ⊂ V ∩W
is irreducible analytic such that

codimY×H∗(U ) < codimY×H∗(V )+ codimY×H∗(W ),
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where all the codimensions are taken inside Y ×H∗. Then the projection of U
to Y is contained in a proper (“weak Mumford–Tate”) subvariety.

In particular this has the following corollary:

Corollary 9.2 (Transcendence property of period mappings)With notation as
above, suppose that Z ⊂ H∗ is an algebraic subvariety, and

codimH∗(Z) � dim(Y ). (9.1)

Then any irreducible component of �−1(Z) is contained inside the preim-
age, in Ỹ , of the complex points of a proper subvariety of Y .

Proof Let Q be an irreducible component as in the statement of the corollary.
Let V = Y × Z . The intersection WZ of W with Y × (Z ∩H), intersection

taken in Y ×H, is an analytic set. Moreover, the image of Q under the analytic
map Ỹ → Y ×H is contained in WZ . Therefore, the image of Q is contained
in some irreducible component of WZ , call it U :

U = an irreducible component ofW ∩ (Y × (Z ∩ H)) .

We apply Theorem 9.1 with this choice of U, V,W . Then

codimY×H∗V = codimH∗Z and codimY×H∗W = dimH∗,

so

codimY×H∗W + codimY×H∗V = dimH∗ + codimH∗Z
(9.1)
� dimH∗ + dim(Y ).

This shows dimU = 0, unless the projection of U to Y is contained in a
proper weakMumford–Tate subvariety. This implies the same property for Q,
as desired. �

9.2 Transferring transcendence to a p-adic setting

Theorem 9.1 can be transferred to the p-adic setting, which is where we use
it:

With notation as above, suppose additionally that X → Y is defined over
Z[S−1]. Fix p /∈ S and y0 ∈ Y (Zp). As before we can form the p-adic period
map

�p: residue disk around y0 inY (Qp)︸ ︷︷ ︸
Up

−→ H∗
Qp
, (9.2)
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where H∗
Qp

is the base-change of H∗ to Qp; the map above is p-adic ana-
lytic, i.e., it is given in suitable coordinate charts by power series absolutely
convergent on the residue disk.

Now suppose that we give ourselves a Qp-algebraic subvariety Z ⊂ H∗
Qp

satisfying the dimensional condition (9.1), i.e. the codimension of Z is greater
than or equal to the dimension of Y .

Lemma 9.3 Let Up be as in (9.2), i.e. {y ∈ Y (Zp): y ≡ y0 modulo p}. The
set

�−1
p (Z)

is not Zariski dense in Y .

Note that �p is defined only on the residue disk Up.

Proof 7 It will be convenient to have the freedom to vary y0 later in the argu-
ment. To that end, note that the statement above depends only onUp; after all,
at the level of points, �p is the map sending y ∈ Up to the induced Hodge
filtration on the primitive crystalline cohomology of the special fiber of Xy .

By [28, Thm. 7.6] (or by the discussion of Sect. 3.3) the image of �p(Up)

is contained in a residue disk on H∗
p containing�p(y0), in particular, in some

affine open set SpecAp of H∗
p containing �p(y0). We may suppose that Z ⊂

H∗
Qp

is defined locally by equations Fi = 0, where we suppose Fi ∈ Ap, i.e.
the Fi are regular functions on this affine open set.

Consider now

Gi = Fi ◦�p.

These are defined by power series converging absolutely inUp, i.e. in a suitable
choice of local coordinates, Gi lies in a Tate algebra

R = Qp

〈
x1
p
, . . . ,

xN
p

〉

of formal power series convergent on a disk of p-adic radius |p|. In these
coordinatesUp corresponds to (x1, . . . , xN ) ∈ (pZp)

N . We want to show that
the common zero-locus, inside Up, of the Gi is contained in (the Qp-points
of) an algebraic set. As a preliminary reduction, we will reduce to considering
a single “irreducible component” of this common zero locus.

7 It seems likely that we could also deduce the p-adic transcendence result from the complex
transcendence result using the Seidenberg embedding theorem, as in [31, Section 2.5].We thank
the referee for bringing this to our attention.
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Fix a suitable open affine set Spec Bp ⊂ YQp “containing the residue disc of
y0.” (More precisely, we may fix an open affine neighbourhood in Y , consid-
ered nowasZp-scheme, of the image of theZp-valued point y0:SpecZp → Y ,
and take its generic fiber.) Then there is a morphism from Bp to R. Our result
will now follow from the

Claim: Let p be a prime ideal of R, vanishing at some point of Up.
Suppose that p is minimal among prime ideals containing 〈G1, . . . ,Gn〉.
Then p contains (the image in R of) a regular function H , i.e. a function
H belonging to Bp as above.

To see why this implies the statement of the lemma, assume the Claim.
There are only finitely many such minimal primes as in the statement. Call
them p1, . . . , pt . Let Hj ∈ p j the function constructed according to the claim
above. Then the vanishing locus of

∏
j H j contains the common vanishing

locus of the Gi : if y lies in this common zero-locus, it lies in the vanishing
locus of some p j , and then Hj (y) = 0.

We now prove the Claim. The ideal p vanishes at some point at Up by
assumption; choose such a point y0.

We now transfer the question to the complex numbers. We fix an isomor-
phism σ :Qp � C, which gives in particular an embedding σ :Qp ↪→ C. Then
y0 gives rise to a complex point yσ0 ∈ Y (C), and the de Rham cohomology of
Xσy0 is obtained from that of Xy0 via σ :

H∗
dR(Xy0)⊗(Qp,σ ) C = H∗

dR(Xyσ0
/C). (9.3)

We may regard the period map �p as taking values in the Grassmannian
H∗

Qp
for the left-hand de Rham cohomology. Also let UC be a small complex

neighbourhood of yσ0 and let�C:UC → H∗
C be the complex period mapping,

which we regard as taking values in the associated complex variety H∗
C :=(

H∗
Qp

)σ
. This complex variety parameterizes certain flags inside the right-

hand space of (9.3). Note the identification �C(yσ0 ) = �p(y0)σ .
Now Z gives rise to an algebraic subvariety Zσ ⊂ H∗

C and this subvariety
again satisfies condition (9.1). The functions Fi are regular on an open affine
containing �p(y0); correspondingly we obtain Fσi on an affine open in H∗

C
containing �C(yσ0 ), which locally cut out Z

σ .
Ignoring convergence for a moment, regard the Gi in the completed local

ring of YQp at y0. This is a formal power series ring over Qp, and σ induces an
injection from this completed local ring to the corresponding completed local
ring of YC at yσ0 ; call this map G �→ Gσ . Then we have in fact

Gσi = power series expansion of Fσi ◦�C at yσ0 . (9.4)
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This follows from just the same analysis of Sect. 3.3, or phrased informally,
from the fact that the complex and p-adic period map satisfy the same differ-
ential equation.

It follows from (9.4) that the Gσi , a priori complex formal power series, are
in fact convergent in a small complex neighbourhood of yσ0 ; their common
vanishing locus for a sufficiently small such neighbourhood V coincides with
�−1

C (Zσ ) ∩ V .
Corollary 9.2, applied to Zσ ⊂ H∗

C, shows that �
−1
C (Zσ ) ∩ V ⊂ YC is

not Zariski dense in YC. Indeed, after analytically continuing �C from V to a
universal cover of YC, there are only finitely many irreducible components of
�−1

C (Zσ ) which intersect V (by local finiteness of irreducible components of
an analytic set). We can apply Corollary 9.2 to each of them to conclude that
the common zero-locus of Gσi on V is contained in the zero locus of some
algebraic function G (i.e., G arises from a regular function on a Zariski-open
subset of YC containing V ).

Consider the ring RC = C{x1, . . . , xn} of formal power series that are
convergent in some neighbourhood of 0. Given an ideal I of this ring, we can
associate a germ V (I ) of an analytic set at the origin. The locally analytic
Nullstellensatz [9, §3.4] asserts that the ideal of functions vanishing along this
germ is precisely the radical

√
I of I .

We apply this with RC the ring of germs of holomorphic functions near
yσ0 ∈ YC, taking I to be the ideal generated by the Gσi . Then

√
I is the ideal

of functions vanishing on V (I ) and in particular contains G. Thus Gm ∈ I for
some m � 1.

Therefore the ideal spanned by Gσi inside the ring of locally convergent
power series contains the image of an algebraic function, i.e. a regular function
on some Zariski-open subset of YC containing yσ0 . The same is then a fortiori
true if we replace “locally convergent” by “formal,” and this latter assertion
can be carried back, via σ−1, to YQp

. Thus, there is a regular function H , in a
neighbourhood of y0 on YQp

, belonging to the ideal

H ∈ 〈G1, . . . ,Gk〉 (9.5)

generated by the Gi in the completed local ring Ô of YQp
at y0.

By taking a norm we may suppose that H in fact arises from a regular
function in a neighbourhood of y0 on YQp . Without loss of generality (mul-
tiplying by a suitable denominator if necessary), we may suppose that H
is regular on the chosen open affine around y0, i.e., H ∈ Bp. Note that
Bp ⊗ Qp surjects on to each quotient Ô/mt

Ô (where mÔ is the maximal

ideal). Therefore, for each t � 1, there are Z1, . . . , Zk ∈ Bp ⊗ Qp such
that
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H ∈
∑

ZiGi +mt
Ô. (9.6)

By linear algebra we see that we can even choose Zi ∈ Bp.
The function H then defines a rigid-analytic function on the residue disk

of y0. Thus H and Gi both lie inside the Tate algebra R previously defined.
Recall that we have fixed a prime ideal p of R, contained in the maximal ideal
m associated to y0, and containing the ideal J generated by the Gi inside
R.
Now (9.6) implies that

H ∈ J +mt

for every t � 1. Then the image of H in R/p lies in the intersection
⋂

t�1m
t .

Krull’s intersection theorem, applied to the Noetherian integral domain R/p,
implies that the intersection of powers of m is trivial. Therefore H ∈ p, as
desired. �

10 Bounds on points with good reduction

Let π : X → Y be a smooth proper morphism over Z[S−1], whose fibers
are geometrically connected of relative dimension d. The goal of this section
is to bound Y (Z[S−1]) by means of the same general techniques we have
used elsewhere in the paper, i.e., by studying the variation of p-adic Galois
representations of the fibers. We refer the reader to the Introduction (Sect. 1)
for a discussion of the methods and how they compare with the curve case;
the main difference in this general setting is that the linear algebra arguments
required to avoid semisimplicity are much more elaborate, and are discussed
in Sect. 11.

10.1 Statement of the result

Fix y0 ∈ Y (C), with fiber X0 and setV0 = Hd(X0,C,Q)prim. This is equipped
with an intersection form 〈−,−〉. Assume that the image of

π1(YC, y0)→ Aut (V0 ⊗ C, 〈−,−〉) (10.1)

has Zariski closure containing the identity component of the right-hand group.
The Hodge structure on V0 induces a weight-zero Hodge structure on

Lie GAut (V0 ⊗ C, 〈−,−〉) � C ⊕ Sym2V0 or C ⊕∧2V0, (10.2)
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according to the parity of 〈−,−〉. We will refer to this as the adjoint Hodge
structure to distinguish it from the Hodge structure on V0 ⊗ C.

Let h p be the dimension of the Hodge component (p,−p) in the adjoint
Hodge structure.8 For any E ∈ Z�0 that is at most the dimension of the adjoint
Hodge structure, let

T (E) = sum of the topmost E Hodge numbers.

Here theHodge numbers are the list of ps for which h p �= 0, each written with
multiplicity h p; thus, for example, if pmax is the largest p for which h p �= 0,
then T (1) = pmax, and if h pmax > 1 then T (2) = 2pmax.

Wecan extendT to be a continuouspiecewise linear function [0,∑ j∈Z h j ] →
R�0 such that T (0) = 0, and with derivative specified as

T ′(x) =

⎧
⎪⎨

⎪⎩

pmax for x ∈ (0, h pmax),

pmax − 1 for x ∈ (h pmax, h pmax + h pmax−1),

and so forth.

(10.3)

The transcendence property of period mappings is an essential ingredient in
the following theorem. It says that integral points on the base are not Zariski
dense whenever the adjoint Hodge structure is quite “spread out,” that is to say,
whenever the contribution of large |p| to the total dimension

∑
h p is large.

Theorem 10.1 Let π : X → Y be a smooth proper morphism over Z[S−1],
whose fibers are geometrically connected of relative dimension d. With nota-
tion as above, suppose that the monodromy representation has large image,
i.e. that (10.1) is satisfied, and moreover that

∑

p>0

h p � h0 + dim(Y ) (10.4)

and

∑

p>0

ph p > T
(
h0 + dim(Y )

)+ T

(
3

2
h0 + dim(Y )

)
. (10.5)

Then Y (Z[S−1]) is not Zariski dense in Y .

8 As in Sect. 2.5, we are abusing the symbol p to refer to the indexing on a Hodge filtration.
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If we assume, moreover, that themonodromy representation for any subvari-
ety Y ′ ⊂ Y continues to have large image9 [see (10.1)], then in fact Y (Z[S−1])
is finite.

Roughly speaking, a condition of type (10.4) is easily seen to be necessary
for our method: with reference to the discussion of Sect. 1.2 we want Y to be
transverse to all orbits of a certain groupZ(φ)on aflagvariety; the dimensionof
the flag variety is

∑
p>0 h

p, and in our argument we shall bound the dimension

of Z(φ) above by h0. Equation 10.5 is in practice a much more restrictive
condition and is needed to control semisimplification.

The combinatorial machinations that give rise to inequality 10.5 could prob-
ably be greatly optimized. We aimed to give a treatment that was fairly short,
at some cost to the sharpness of the results. Informally speaking, the condition
says that the Hodge diamond of Y is not very concentrated near the middle.

10.2 Application to hypersurfaces

We will now outline the proof of the following statement10:

Proposition 10.2 There exists n0 and a function D0(n) such that both (10.4)
and (10.5) apply to X → Y the universal family of hypersurfaces in Pn of
degree d, so long as n � n0 and d � D0(n).

Numerical experiments suggest that n0 ≈ 60 will do. Note that this family
indeed has large monodromy image by [3].

We must emphasize that, in this case, the dimension of Y is very large, and
so the statement that Y (Z[S−1]) is not Zariski dense is verymodest indeed; but
it seems to us an interesting first step, and potentially one can then iterate the
argument by replacing Y by the Zariski closure of integral points. As suggested
by the last line of the Theorem, it becomes relevant to analyze the following
question:

What is the smallest possible codimension of a subvariety Y ′ ⊂ Y along
which the monodromy drops?

In outline, the proof of Proposition 10.2 is as follows. It can be verified
(we will omit the proof) that the middle Hodge numbers h pq of a degree-d
hypersurface inside Pn satisfy

h pq(d) ∼ dn

n! A(n, p) (10.6)

9 This is an unrealistically strong assumption.We include this statement simply tomake clear the
importance of this problem—controlling monodromy drop along subvarieties—for our method.
10 In Sect. 10.2 only, the symbol d represents the degree of a hypersurface, and n − 1 its
dimension.
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where p + q = n − 1, and A(n, p) is the Eulerian number: the number of
permutations σ : {1, . . . , n} → {1, . . . , n} with the property that σ(i + 1) >
σ(i) for precisely p values of i . (Here we fix the dimension n of the ambient
projective space, and the meaning of ∼ is that the ratio approaches 1 as d →
∞.) Now consider αp := 1

n! A(n, p), which defines a probability distribution
on p ∈ {0, . . . , n − 1}. The conclusion will be deduced, in essence, from the
fact that αp is well approximated by a binomial distribution with mean n/2
and variance n/12. We now describe the details.

First, consider the Hodge numbers h p for the adjoint Hodge structure. Since
the dimension of the symmetric or adjoint square of a k-dimensional vector
space equals k2±k

2 , we have

2h p =
∑

p1+p2=p+(n−1)

h p1,q1h p2,q2 ± h(p+n−1)/2,(−p+n−1)/2

where in all cases p1 + q1 = p2 + q2 = n − 1. In particular, we deduce that

h p ∼ d2n
1

2

∑

p1−p2=p

αp1αp2

︸ ︷︷ ︸
βp

. (10.7)

Next, note that the dimension of the moduli space of degree d hypersurfaces
in Pn is given by

(
n + d

d − 1

)
− 1 = d(d + 1) . . . (d + n)

(n + 1)! − 1 ∼ dn+1

(n + 1)!

where the meaning of ∼ is as before. In particular, for any fixed n � 2,

lim
d→∞

dim Y

h0
= 0, (10.8)

where h0 is the dimension of the zerothHodge number for the adjoint structure.
Let X (n) (or just X for short) be the random variable which sends a uni-

formly distributed random permutation σ of {1, . . . , n} to the number of i for
which σ(i +1) > σ(i), subtract n−1

2 . Write yi (1 ≤ i ≤ n−1) for the random
variable, on the same space, with value 1/2 if σ(i + 1) > σ(i), and −1/2
if σ(i + 1) < σ(i). Thus X = ∑ yi and the expectation E(X) is zero. The
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variance of X is then given by

Var(X) =
∑

i, j

E(yi y j ) = n − 1

4︸ ︷︷ ︸
i= j

− 2
n − 2

12︸ ︷︷ ︸
|i− j |=1

= n + 1

12
. (10.9)

Now let X ′(n) be the random variable obtained by convolving X (n) with
itself, i.e. with adding together two copies of X (n). Then

Var(X ′) = 2Var(X) = n + 1

6
, and the probability that (X ′ = p) = βp,

(10.10)

where βp is as in (10.7). Moreover, it is also known (see [8] for discussion and
references to the literature) that as n → ∞,

X (n)/
√
n

converges in distribution to a normal distribution with variance 1/12.

(10.11)

and it follows then that X ′(n)/
√
n converges in distribution to a normal dis-

tribution with variance 1/6. It follows in particular that

∑

p>0

pβp > A
√
n (10.12)

for some absolute A > 0. We also need:

Lemma 10.3 For sufficiently large n, we have β0 <
40√
n
.

Proof The sequence βp is symmetric and log-concave. The symmetry follows
readily from the definition, whereas the second statement follows from the
classical fact that the Eulerian numbers are log-concave. (See, for example,
[20, Thms 1.4, 3.3].)

Let c = 1
40 . This number is chosen to be less than the density of the nor-

mal distribution with mean zero and variance 1/6, at the point 1.1. From the
convergence in distribution of X ′, it follows that for all large enough n there
exists P >

√
n with the property that βP > c√

n
.

We show that β0 � c−1√
n
. Suppose not; then log-concavity means

βp >
(1/c)1−p/Pcp/P√

n
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for all p ∈ [0, P]. In particular, this implies that βp >
1√
n
whenever |p| ≤

P/2. This contradicts
∑
βp = 1 for large enough n. �

Proof of Proposition 10.2 In what follows, write “for big enough n and d” as
an abbreviation for “for n � n0 and d � D0(n), for some function D0 of n.”

There are two conditions to be checked, (10.4) and (10.5). That the former
condition holds for big enough n and d follows from (10.8), (10.7) and the
convergence in distribution of X ′(n)/

√
n. It remains then to verify that (10.5)

holds for big enough n and d.
Write T (y) for the sum of the topmost y adjoint Hodge numbers and H for

the total dimension of the adjoint Hodge structure. We claim that

2T (2h0) <
∑

p>0

ph p,

for big enough n and d. That statement readily implies the desired conclusion,
in view of (10.8).

By Lemma 10.3, for sufficiently large n we have β0 < 40√
n
. Therefore,

for d sufficiently large (depending on n) we have h0 < 40H/
√
n. On the

other hand, by (10.12), the right-hand side
∑

p>0 ph
p is bounded below by a

constant multiple of H
√
n, for big enough d and n. Therefore, it is enough to

verify that, for fixed positive constants c, δ, we have the inequality

T (
cH√
n
) � δH

√
n (10.13)

for big enough n and d.
Let ε = δ

2c . Separate the contribution of Hodge numbers above and below
εn to T ; we get:

T (
cH√
n
) � (εn)

cH√
n
+
∑

p>εn

ph p

Now the first quantity is bounded by 1
2δH

√
n. The second quantity equals

∑

p>εn

ph p = H
∑

p>εn

pβp + H
∑

p>εn

p

(
h p

H
− βp

)
.

There is a function D1 such that, for d � D1(n), the second term is at most
H . Also, using the variance bound

∑
p2βp = n+1

6 , the first term is at most
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Hε−1. Thus,

T (
cH√
n
) � 1

2
δH

√
n + H(1+ ε−1),

and the latter term is certainly bounded above by 1
2δH

√
n for n � n0. This

concludes the proof of (10.13), so also of our Proposition. �

10.3 Setup for the proof of Theorem 10.1

In what follows, � denotes an arbitrary prime number not belonging to the
fixed set S.

Working in the complex analytic category, let V = Rdπ∗Q. It is a local
system of Q-vector spaces on Y (C) (and it admits an integral structure); the
V0 defined in Sect. 10.1 is its fiber above y0.

Let G be the connected automorphism group of the intersection form on
V0, a semisimple Q-group; also let

G′ = GAut(V0, 〈−,−〉),
the corresponding generalized automorphism group, where we permit to scale
the form 〈−,−〉.

Passing to �-adic étale cohomology, there is a monodromy mapping
πarith
1 (Y, y0) −→ G′(Q�) and the section associated to an integral point

y ∈ Y (Z[S−1]) gives a representation
ρy,�:GQ −→ G′(Q�).

This describes the Galois action on the primitive geometric étale cohomology
of the fiber Xy in degree d (after using an isomorphism V0⊗Q� � Vy ⊗Q�).

In what follows we will freely use certain results about Galois represen-
tations into G′ which are parallel to certain known results about GLn-valued
representations; we refer to Sect. 2.3 for further discussion of these points.

Wedenote byρssy,� the semisimplification ofρy,� relative toG′ (seeSect. 2.3).
By Faltings’ finiteness theorem (Lemma 2.6) there are only finitely many
possibilities for the G′(Q�)-conjugacy class of ρssy,�.

We must understand the variation of the representation ρy with y; as usual,
wewill study this using the periodmapping.We beginwith the complexHodge
structures.

The Hodge structure on Vy , the fiber of V at y, is given by a self-dual
filtration

Vy = F0Vy ⊃ · · · ⊃ FiVy ⊃ · · · (10.14)

123



Diophantine problems and p-adic period mappings 975

and in this way we can regard the period mapping as

universal cover of YC −→ Mumford–Tate domain for G′, (10.15)

where the Mumford–Tate domain in question is understood to be the space
of self-dual filtrations on V0 with the same dimensional data as the Hodge
filtration on V0.

Also, the Hodge structure on V0 gives rise to a morphism

ϕ0: S1 −→ G′(C).

For each y ∈ Y (Z[S−1]), we may reduce modulo � and consider the crys-
talline Frobenius of the reduction Xy,F� := Xy ×Z[S−1] F�. This determines a
transformation of the (primitive) crystalline cohomology

Fcrys,�y ∈ Aut Hd
crys(Xy,F�)

prim.

The characteristic polynomial of this endomorphism is determined by the ζ -
function of Xy,F� , and it can be deduced (see [21]) that its eigenvalues coincide
with the eigenvalues of �-Frobenius on p-adic absolute étale cohomology for
any prime p �= �.

In the coming subsections we will prove the following two lemmas:

Lemma 10.4 (Frobenius centralizer small, for some � below an absolute
bound) There exists an integer L with the following property:

For any y ∈ Y (Z[S−1]), there exists a prime � � L , � /∈ S such that the
semisimplification of Fcrys,�y (and so also the crystalline Frobenius itself)
satisfies

dim Z
([

Fcrys,�y

]ss)
� dim ZG′(C)(ϕ0). (10.16)

On the left hand side, we take the centralizer inside GAut(Hd,prim
crys ), to which

the crystalline Frobenius—and so also its semisimplification—belongs.

Lemma 10.5 (Not Zariski dense. This is where semisimplicity gets taken care
of.)Given a prime � /∈ S and y0 ∈ Y (Z[ 1S ]) with the property that the central-
izer of crystalline Frobenius Frobcrys,�y0 is at most the dimension of ZG ′(C)(ϕ0),
the set

{y ∈ Y (Z[ 1
S
]): y ≡ y0 modulo �, ρ

ss
y,� � ρssy0,�} (10.17)

is not Zariski dense. (Here�means that the representations areG′-conjugate).
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Assuming these Lemmas, let us conclude the proof of Theorem 10.1. With
L as in Lemma 10.4 let N = ∏��L ,�/∈S �. Now each y ∈ Y (Z[ 1S ]) gives a
collection of representations ρssy :GQ → G′(Q�), one for each � dividing N .
For each � dividing N , let G� be the set of representations GQ → G′(Q�)

that arises as some ρssy . This is a finite set (modulo conjugacy) by Lemma
2.6 applied to G′ ⊂ GL(V0); note that it is straightforward to verify that the
integrality of characteristic polynomial of Frobenius passes from the whole
cohomology to the primitive cohomology.

Call a pair (y, �) as in Lemma 10.4 good if it satisfies (10.16). For each
�, Lemma 10.5 and the finiteness of G� guarantee that the set of y for which
(y, �) is good is not Zariski dense. Taking the union over � ≤ L and applying
Lemma 10.4, we see that Y (Z[S−1]) is itself not Zariski dense.

10.4 Proof of Lemma 10.4

Fix a prime p /∈ S and let ρy,p:GQ → G′(Qp) be the p-adic Galois repre-
sentation at y, as above. We have observed that there are only finitely many
possibilities for ρssy,p (here, and below, the semisimplification is taken inside
G′).

Let H be the Zariski closure of ρssy,p(GQ), with identity component H◦. It is
a reductive group (because we took the semisimplification, see Sect. 2.3 and
references therein). Call an element in H◦(Qp) very regular if it is semisimple
and:

(*) its centralizer inside Aut(V0 ⊗ Qp) has minimal dimension amongst
all semisimple elements of H◦(Qp).

Choose a maximal torus T0 ⊂ H◦, and let � be the set of nontrivial char-
acters T0 → Gm arising from the conjugation action of T0 on the Lie algebra
of Aut(V0 ⊗ Qp). For t ∈ T0(Qp) the dimension of the centralizer of t , in
Aut(V0 ⊗ Qp), is the dimension of the centralizer of T0 in Aut(V0 ⊗ Qp),
plus the number of roots α ∈ � with α(t) = 1 (counted with multiplicity).
The condition (*) for an element t ∈ T0(Qp) amounts to asking that α(t) �= 1
for all α ∈ �. In particular:

• Any very regular element is regular inside H◦, and
• Condition (*) implies the same condition with Aut(V0 ⊗ Qp) replaced by

G′.
The set of very regular elements is a nonempty Zariski-open subset of H◦

(so also of H). Indeed, the function f = ∏α∈�(α(t) − 1) defines a regular
function on T0 which is invariant under the Weyl group. Therefore f extends
to a regular function on H◦, and the set of very regular elements is the locus
where f �= 0 (this forces semisimplicity).
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It follows, then, that the set of very regular elements in H(Qp) is the com-
plement of a proper Zariski-closed set. The preimage of the very regular set
under ρssy,p:GQ → H(Qp) is nonempty, because ρssy,p(GQ) is Zariski-dense
in H. This preimage is also topologically open, since the very regular set is
open. By the Chebotarev density theorem, then, we may choose some � such
that

ρssy,p(Frob�) is a very regular element ofH◦. (10.18)

Because there are only finitely many possibilities for ρssy,p, this � can be taken
to be bounded above by L that depends only on S, p, dim(V).

On the other hand, it is known that:

the Zariski closure of ρy,p(GQp) (this is an algebraic subgroup of G′)
contains a group S defined over Qp, with the following property:
with respect to a suitable isomorphism Qp � C, the group S becomes
isomorphic to the Hodge torus, i.e. to the Zariski closure of the image of
ϕ0 in G′(C).
A result of rather similar nature to the quoted statement was proved by

Sen [39] using Hodge–Tate decomposition (Sen’s result pertains to the target
group GLn). It can be deduced using a remarkable result of Wintenberger [46]
about functorially splitting the Hodge filtration for Fontaine–Laffaille mod-
ules. This is carried out by Pink [32, §2]; this latter method also readily adapts
to G′ target.11

Thus

dim ZG′(S) = dim ZG′(C)(ϕ0). (10.19)

11 We outline how this is done. We may describe the Zariski closure Z in question as the
Tannakian group associated to the neutral Tannakian category of GQp -modules generated by
Vy ⊗ Qp (i.e., the automorphisms of the natural fiber functor). By the theory of Fontaine–
Laffaile, there is another fiber functor on this category, arising from passing to filtered φ-
modules; in particular, this gives rise to another Tannakian groupZ′, which acts on the (primitive
part of the) de Rham cohomology of Xy ×Q Qp . These two fiber functors become isomorphic
over Qp (cf. [11, §3]); in particular there is an isomorphism of Vy ⊗ Qp with the de Rham
cohomology of Xy ⊗Q Qp , which can be taken to preserve the respective intersection forms,
and which carries ZQp

to Z′
Qp

.

The Hodge filtration gives this fiber functor the structure of a filtered fiber functor; it gives a
parabolic subgroup P′ ⊂ Z′. Now Wintenberger’s canonical splitting of the Hodge filtration
provides a character ϕW :Gm → P′.
Now pass to C by means of an isomorphism Qp � C; then Z′

C acts on the cohomology of

Xy ⊗Q C, as does ϕ0. We claim that ϕ0 and ϕW |S1 are conjugate inside GAut(Hd (Xy ⊗Q
C)prim); but they both preserve the Hodge filtration and induce the same scalar on the successive
quotients; the conjugacy then follows by Lemma 2.5.
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Moreover, aG(Qp)-conjugate of S—call it S′—is also contained in the Zariski
closure of the image of ρssy,p(GQ). Indeed, choose a parabolic Q � G′ con-
taining the image of ρy,p and minimal for that property; then ρssy,p is obtained
by projecting ρy,p to a Levi factor of Q, and in particular the Zariski closure
of the image of ρssy,p certainly contains the projection of the Zariski closure of
the image of ρy,p. Now apply Lemma 2.5.

Now we have

[
ρy,p(Frob�)

]ss Lemma 2.4∼
[
ρssy,p(Frob�)

]ss (10.18)= ρssy,p(Frob�),

where∼ denotes G′(Qp)-conjugacy. By (10.18), the definition of “very regu-
lar” element, and the discussion that follows it, the centralizer of this element
inside G′ is as small as possible, amongst semisimple elements in H◦(Qp). In
particular, this centralizer is at most as large as the centralizer of S′ on G′, and
so

dim ZG′
[
ρy,p(Frob�)

]ss � dim ZG′(S′) = dim ZG′(S) = dim ZG′(C)(ϕ0).

(10.20)

We now transfer this to the corresponding assertion for the crystalline Frobe-
nius Frobcrys� . We know that the crystalline �-Frobenius on the �-adic vector
space Hd

crys(Xy,F�) and the usual �-Frobenius on the p-adic geometric étale
cohomology of Xy have the same characteristic polynomial. The same is true
for primitive parts. Thus ρy,p(Frob�)ss and (Frob

crys
� )ss both have the same

characteristic polynomial; also they both scale the bilinear forms by �.
Split V0 ⊗ Qp = ⊕Vλ into eigenspaces for ρy,p(Frob�)ss. The biinear

form gives a perfect pairing between each Vλ and V�λ−1 (interpreted as a self-
pairing when λ2 = �); the centralizer of ρy,p(Frob�)ss in G′ is the set of g
stabilizing each Vλ and respecting these pairings. In particular the centralizer
dimension is determined by the function λ �→ dim(Vλ); the same analysis
applies for (Frobcrys� )ss. We deduce that

dim ZGAut(
[
Frobcrys�

]ss
) = dim ZG′(ρy,p(Frob�)

ss)
(10.20)

� dim ZG′(C)(ϕ0),

(10.21)

concluding the proof of the Lemma. �
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10.5 Proof of Lemma 10.5

We must analyze the set

{y ∈ Y (Z[ 1
S
]): y ≡ y0 modulo p, ρssy,p � ρssy0,p} (10.22)

(we have switched from � to p for typographical simplicity). Here we are
assuming that the centralizer of crystalline Frobenius Frobcrys,py0 , inside the
group GAut of generalized automorphisms of the intersection pairing, has
dimension at most the dimension of ZG ′(C)(ϕ0),

Now let us unwind the condition in (10.22), namely, that the semisimpli-
fied p-adic Galois representations for y and for y0 are isomorphic. Recall
that semisimplification is taken relative to the ambient group G′(Qp). The
representation ρy,p is realized on Hd(Xy,Qp)

prim, and similarly for y0. The
semisimplification of ρy0,p (in the ambient group G′) is obtained by taking a
maximal self-dual flag of ρy0,p-stable subspaces

0 ⊂ f1 ⊂ f2 ⊂ · · · ⊂ fm ⊂ (fm)⊥︸ ︷︷ ︸
fm+1

⊂ · · · ⊂ Hd(Xy0,Qp)
prim

with the property that the representation on each graded piece is irreducible.
(For themiddle graded piece, i.e. the piece fm+1/fm, we interpret “irreducible”
to mean that there is no isotropic invariant subspace, see Sect. 2.3 for expla-
nation. We also permit the possibility that fm = fm+1.)

Sinceρssy andρssy0 are isomorphic, itmeans that there exist such flags fy and f0

for both y and y0 such that the GQ-representations on
⊕

j gr
f
j are isomorphic.

In fact, we can arrange even that this is true for every j individually, and that
the isomorphism preserves the intersection form for j = m: this follows by
using the last sentence of Lemma 2.6.12

Now the functors of p-adic Hodge theory carry Hd(Xy0,Qp) to Hd
dR(Xy0,

Qp) and similarly for y. Moreover, the intersection form

Hd(Xy0,Qp)⊗ Hd(Xy0,Qp) −→ H2d(Xy0,Qp)
(� Qp(−d)

)

12 In more detail: in our reasoning to date, instead of using the finiteness of conjugacy classes
of possible ρssy :GQ → G′, we could instead use the stronger finiteness provided by the last
sentence of Lemma 2.6. Namely, we fix for each y a parabolic subgroup Qy containing the
image of ρy , such that the projection of ρy to its Levi gives the semisimplification, and then
use the finiteness up to conjugacy of possible pairs (Qy, ρ

ss
y ).
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is carried to the intersection form Hd
dR(Xy0,Qp) ⊗ Hd

dR(Xy0,Qp) −→
H2d
dR(Xy0,Qp). These assertions remain valid for the primitive parts of coho-

mology.
The flags fy and f0 are in particular GQp -invariant, and, under the corre-

spondence of p-adic Hodge theory, these flags fy, f0 correspond to self-dual
flags fdRy and fdR0 inside the associated “de Rham” vector spaces:

fdRy in Hd
dR(Xy)

prim and fdR0 in Hd
dR(Xy0)

prim.

Moreover, under the correspondence of p-adic Hodge theory, the filtered
φ-modules

(fdRy )
m+1/(fdRy )

m and (fdR0 )
m+1/(fdR0 )

m

correspond, respectively, to the Galois representations of GQp on fm+1
y /fmy

and fm+1
0 /fm0 . These Galois representations are isomorphic, so the filtered φ-

modules just mentioned above are also isomorphic. For m = m, the middle
degree, the isomorphism of Galois representations can be taken to preserve
the bilinear form, and so the same is true for the isomorphism of filtered φ-
modules.

The map sending y to the Hodge filtration on Xy defines a period map

�p: residue disk at y0, modulo p −→ p-adic period domainHp

whereHp is now the set of self-dual flags inside V := Hd
dR(Xy0,Qp)

prim with
the same dimensional data as the Hodge filtration on Hd

dR(Xy0)
prim. Write

φ for the Frobenius map on V . Our analysis above shows that the set {y ∈
Y (Z[ 1S ]): y ≡ y0 modulo p, ρssy,p � ρssy0,p} is contained in a finite union of
sets of the following type:

�−1
p (S),

whereS ⊂ Hp is the space of filtrations F on V = Hd
dR(Xy0,Qp)

prim with the
property that there exists another self-dual filtration f, the “semisimplification
filtration”:

0 = f0 ⊂ f1 ⊂ f2 ⊂ · · · ⊂ fm ⊂ (fm)⊥︸ ︷︷ ︸
fm+1

⊂ · · · ⊂ f2m+1 = V

with the following properties:

• f is φ-stable.
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• The filtration induced by F on each graded piece grfj has weight equal to
d/2. (This follows because it arises from applying p-adic Hodge theory to
the restriction of a global Galois representation that is pure of weight d,
using Lemma 2.9.)

• We have an isomorphism of filtered φ-modules

(grfj ,filtration induced by F) � (grf0j ,filtration induced by F0)

(i.e., an isomorphism of vector spaces respecting Hodge filtration and
Frobenius). In particular, the left-hand side of the above equation lies in a
fixed isomorphism class.
On the right hand side F0 is the filtration at y0. In the case of the middle
graded piece j = m, the isomorphism above may be taken, moreover, to
preserve the bilinear forms on both sides.

The following Proposition 10.6 implies that the codimension of the set
S above is at least equal to the dimension of Y . Given this Proposition,
Lemma 10.5 now follows fromLemma 9.3 (the p-adic transcendence of period
mappings).

Proposition 10.6 Suppose V is a vector space over the field K equipped with
a bilinear form 〈−,−〉 and a linear automorphism φ ∈ GAut(V ).

Suppose A1, . . . , Am is a collection of K -vector spaces, each equipped with
a decreasing filtration and a linear automorphism φi : Ai → Ai . We suppose
the final space Am is equipped with a bilinear form 〈−,−〉.

Consider all self-dual filtrations

V = F0V ⊃ F1V ⊃ · · · ⊃ FdV ⊃ Fd+1V = {0}

on V , where we fix the dimensions of each Fi .
Call such a filtration F “bad” if there exists another self-dual filtration f

on V

0 = f0 ⊂ f1 ⊂ · · · ⊂ fm ⊂ fm+1 ⊂ · · · ⊂ f2m+1 = V

such that the following conditions hold.

(a) f is φ-stable.
(b) The weight of the filtration induced by F on each graded piece grkf equals

d/2, i.e. the weight of the filtration F on V .
(c) There exists an isomorphism of filtered φ-modules:

(
gr jf V, filtration induced by F

)
� A j

123



982 B. Lawrence, A. Venkatesh

for each j ≤ m, and in the middle dimension j = m this also preserves
bilinear forms.

Define the Hodge numbers h p as the dimension of gr pF LieGAut(V ); let
T (y) be the sum of the topmost y Hodge numbers, extended by linearity as in
(10.3).

Put z = dim Z(φss), the dimension of the centralizer of the semisimple part
of φ in GAut(V ).

If e is a positive integer such that

number of positive Hodge numbers � z + e (10.23)

and

sum of all positive Hodge numbers > T (z + e)+ T

(
h0

2
+ z + e

)
,

(10.24)

then the codimension of the space of bad filtrations is greater than or equal to
e.

To be clear, we apply this with:

• K = Qp and V = Hd
dR(Xy0,Qp)

prim for some fiber of the family of
Theorem 10.1;

• The filtration F comes from the Hodge filtration on Xy , where y lies in the
residue disk of y0.

• f is another filtration which comes from a potential failure of the global
Galois representation at y to be semisimple; the passage to the graded grf
affects semisimplification of the Galois representation.

• Condition (b) comes eventually from global purity.
• We have z � h0 by assumption (this came from Lemma 10.4) and we take
e = dim(Y ).

The statement of Proposition 10.6 is complicated—it is an analogue, in
our current setting, of Lemma 6.3. We’ll offer some vague motivation here.
Proposition 10.6 asks: for which filtrations F on V do A1, . . . , Am form a
composition series for V as filtered φ-modules? Of course, filtered φ-modules
are in general far from simple, and the choice of F often amounts to a choice
of extension class. Based on this, one might expect that the space of bad
filtrations is large, perhaps even Zariski dense in the flag variety. This does not
happen here because of the condition that theweight of the filtration on each Ai
equal d/2. This equal-weight condition generalizes Eq. (6.12). Requiring the
subobjects f j V giving the composition series to have large intersection with
pieces of the filtration turns out to impose strong conditions on the filtration
F . This is the content of Proposition 10.6.
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11 Combinatorics related to reductive groups

It remains to prove Proposition 10.6 from the prior section. This is “just” a
problem in linear algebra but it is a notational mess. We analyze it using some
simple ideas about root systems. Although we work in the generality of an
arbitrary reductive group, to help the exposition we will often explicate the
discussion in the case of GLn . One other reason we chose to work in this
generality is that analysis of this type is likely necessary when carrying out a
similar analysis for more general monodromy groups.

Since Proposition 10.6 is geometric, concerning the dimensions of certain
algebraic sets, we can and will suppose that the base field K is algebraically
closed. We will therefore permit ourselves to identify algebraic groups with
their K -points; they will be correspondingly denoted by usual letters P,G
etc., rather than boldface letters as we have done previously.

There is a correspondence between filtrations and parabolic subgroups. We
have a question about the interaction of two filtrations f and F ; we’re going
to convert it to a question about the interaction of two parabolic subgroups P
and Q.

One important warning: as defined f is an increasing filtration, whereas F is
decreasing. However, in actual fact, the indexing of f is irrelevant. All that will
matter throughout is the stabilizer of f; we could re-index it to be a decreasing
filtration and nothing at all would change. On the other hand, the indexing of
F does matter, and thus we will need to keep track of extra data beyond its
stabilizer.

Tracing back the origins of Proposition 10.6, f comes from the semisim-
plification filtration on a global Galois representation, and F from the Hodge
filtration. The following informal dictionary may be helpful, at least in inter-
preting the material from Sect. 11.3 onward:

• The parabolic denoted P should be thought of as the stabilizer of the
semisimplification filtration f.

• The Levi quotient M of P corresponds to the associated graded for f;
globally, the semisimplification of the Galois representation takes values
in M .

• Theparabolic Q should be thought of as the stabilizer of theHodgefiltration
F .

The argument can be informally summarized like this:

• First of all, we bound the number of possibilities for f, using the fact that
it is φ-stable. This uses the fact that the centralizer of φss is not too large
and happens in (11.18). After this point, it is enough to work with a given
f and P .

• Having fixed f and P , we break up the space of possible F into P-orbits.
The set of F satisfying the weight condition (b) of Proposition 10.6, is a
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union of P orbits. We need to show that no P orbit of small codimension
occurs in this set.

• To illustrate the idea, we will just explain why the open P orbit doesn’t
occur. Suppose F satisfies the weight condition (b) of Proposition 10.6.
We show then that PQ/Q is not open in G/Q.
We find a maximal torus T ⊂ P ∩ Q and a cocharacter ν:Gm → T which
defines the filtration F . In particular, Q consists of non-negative root spaces
for ν. The weight condition will imply that

∑

γ∈�−�P

〈ν, γ 〉 = 0, (11.1)

the sum being taken over roots � for T that correspond to root spaces
outside P .
By using the assumed numerology of Hodge numbers, not too many of
these 〈ν, γ 〉 can be zero. In particular, (11.1) implies that 〈ν, γ 〉 < 0 for at
least one γ ∈ � −�P .
That means there is at least one such root γ ∈ �−�P that doesn’t belong
to the Lie algebra of Q; equivalently,

Lie(Q)+ Lie(P) �= Lie(G),

which implies the desired conclusion.

11.1 Filtrations on reductive groups

Let G be a reductive group over an algebraically closed field K .
A (rational) cocharacter λ:Gm ��� G is simply a cocharacter that is allowed

to be defined on a finite cover of Gm . It determines a parabolic Pλ, whose Lie
algebra is the sum of non-negative weight spaces for λ; the centralizer of λ
is therefore a Levi factor for this parabolic. A “filtration” for G will be, by
definition, an equivalence class of such rational cocharacters λ, where λ ∼ λ′
if λ′ is conjugate to λ under Pλ (or equivalently under the unipotent radical of
Pλ).

Example 1 Filtrations.

• A filtration on G = GL(V ) is the same as a (decreasing) filtration F•V on
V , where the indices are indexed by rational numbers. Specifically we set

F pV = sum of all weight spaces for λ on V with weights � p

(11.2)
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The associated parabolic Pλ is precisely the stabilizer of this filtration.
Note that F•V determinesλ up to the equivalence described above: any two
rational characters Gm → P with the same projection to a Levi quotient
are actually P-conjugate by Lemma 2.5.

• If V is equipped with a bilinear form 〈−,−〉, then a filtration on
GAut(V, 〈−,−〉) is the same as a self-dual filtration on V , again via the
formula (11.2); more precisely, if the filtration F corresponds to a character
χ :Gm ��� GAut(V ) for which χ(x) scales the form by xr , then

F pV and Fr−p+εV are orthogonal complements of one another

(for sufficiently small ε). (11.3)

A map G1 → G2 of reductive groups induces, obviously, a map from
filtrations for G1 to filtrations for G2. Thus a filtration on G determines a
filtration on the underlying space of any G-representation. If G = GLn , this
corresponds to the usualway inwhich a filtration on V induces (e.g.) a filtration
on V ⊗ V, V ∗, etc.

Indeed, for a general group G, to give a filtration of G is the same as giving
a filtration functorially on every representation of G: this is part of the theory
of filtered fibered functors, see [36, Section IV.2.1].

For any reductive group S write

aS := X∗(ZS)⊗ Q

where ZS is the center. (As usual, we write X∗ for cocharacters and X∗ for
characters.) This space is canonically in duality with X∗(S) ⊗ Q. If F is a
filtration on S the projection of the associated cocharacter to the torus quotient
of S defines a class in aS . We call this the weight of F :

wt(F) ∈ aS.

Example 2 Weights of filtrations.

• For GL(V ), aGL(V )is a one-dimensional Q-vector space. We identify it
with Q by identifying the character t ∈ Gm �→ tIdV with 1 ∈ Q. With
this identification, the weight of the filtration on GL(V ), corresponding to

F pV as in (a) above, is
∑

p p dim(F p/F p+1)

dim V ; thus this definition coincides
with our previous definition (2.2).

• For GAut(V ), we can make the same identification of a with Q as for GL.
With this identification, the weight of the filtration described before (11.3)
is necessarily equal to r/2, one-half of the integer by which the associated
character scales the form.
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We can alternately describe filtrations using parabolics: for λ:Gm → G the
projection of λ to the Levi quotient Mλ of the parabolic Pλ is central in Mλ;
thus we get a class λ̄ in aMλ . The pair (Pλ, λ̄ ∈ aMλ) depends only on the
filtration associated to λ, and moreover completely determines that filtration,
because of Lemma 2.5. In fact, any pair (P, e ∈ aM) of a parabolic and a
“strictly positive” element of aM , i.e. positive on all roots in the unipotent
radical of P , arises from a filtration.

11.2 Levi subgroups

Now suppose that N is a Levi subgroup of G. The center of N then contains
the center of G. In this way we obtain a map

aG −→ aN (11.4)

which is naturally split: a character of G, i.e. a homomorphism G → Gm , can
be pulled back to a character of N . The resulting map

X∗(G)⊗ Q︸ ︷︷ ︸
�a∗G

−→ X∗(N )⊗ Q︸ ︷︷ ︸
�a∗N

gives rise to a splitting of (11.4).

Example 3 If dim Vi = ni then GL(V1) × GL(V2) is a Levi subgroup of
GL(V1 ⊕ V2). We identify aN = Q2 as in the previous example; then aG is
embedded as the subspace (1, 1) and the complementary subspace is spanned
by (− dim(V2), dim(V1)).

11.3 The induced filtration on a Levi subgroup

If V is a vector space equipped with filtrations F• and f•, then F• induces a
filtration on grf∗V . We need to analyze this induced filtration carefully when
F• the Hodge filtration and f• the semisimplification filtration.
It is convenient to again express this abstractly: for any reductive group G

and any parabolic P , a filtration F on G induces a filtration FM on the Levi
quotient M of P . (With reference to the example above, P corresponds to the
filtration f•, and M to the associated graded). To explain this we require the
following lemma:

Lemma 11.1 Letχ :Gm → G be a character defining the parabolic subgroup
Q. Let Q act transitively on an algebraic variety Y . Then all fixed points of χ
on Y are conjugate under the centralizer N of χ .
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Proof We have a Levi decomposition Q = NV , with V the unipotent radical.
Suppose that y0 ∈ Y is χ -fixed. It is enough to verify that y0 is the unique point
in V y0 that is χ -fixed. Let V0 be the stabilizer of y0 inside V . For x ∈ Gm ,

χ(x) · (vy0) = (χ(x)vχ(x)−1)y0,

and thus the χ -fixed points on V y0 correspond to the fixed points for χ(x)-
conjugation on V/V0.

But all the weights of this Gm-action on V are positive, i.e. the limit of
χ(x)vχ(x)−1 as x → 0 is equal to the identity. Therefore the only fixed point
on V/V0 for conjugation by χ(Gm) is the identity coset. �

Before we formulate the induced filtration in terms of parabolics, we recall
some linear algebra associated to two parabolics. Suppose that P, Q are
parabolic subgroups of G, where Q is the stabilizer of a filtration F . It is
known that P and Q contain a common maximal torus T and that P ∩ Q is
connected; this, together with everything else we will use is contained in [13,
Chapter 2]. We will briefly summarize what we need.

Fixing T as above, we get Levi decompositions of P and Q such that both
Levi factors contain T :

P = MU and Q = NV (11.5)

We have a factorization

P ∩ Q = (M ∩ Q) · (U ∩ Q). (11.6)

In particular, this implies that the projection of P ∩ Q to M along P � M is
just M ∩ Q.

To verify this factorization, we note that (M ∩ Q) normalizes (U ∩ Q),
and also that it is easy to verify the corresponding splitting at the level of Lie
algebras; since P ∩ Q is connected, this factorization also follows.

Lemma 11.2 (Induced filtration on the Levi factor of a parabolic.) Let F be a
filtration for the group G. There exists a representative χP :Gm → G for the
filtration F with the property that χ is valued in P. Moreover, any two such
representatives are conjugate under P ∩ Q.

For each such representative χP , the projection of χP to the Levi quotient
M of P defines a filtration on M which is independent of the choice of χP .

Proof Let χ :Gm → G represent the filtration, and let Q be the associated
parabolic. The intersection P ∩ Q contains a maximal torus T of G and we
may certainly conjugateχ so it is valued in T , so in P; this proves the existence
statement.
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For uniqueness fix χP , which we may now suppose to be valued in P ∩ Q.
Now the image of Ad(q)−1χP is in P if and only if

χP(Gm) ⊂ Ad(q)P,

i.e. qP lies in the set of fixed points of χP(Gm) on QP/P . These fixed points
are all conjugate under N , the centralizer of χP , as we have seen above; thus
qP ∈ N P , so that q ∈ N (Q ∩ P). Thus the characters Ad(q)−1χP lie in a
single (P ∩ Q)-orbit.

It remains to prove the final statement. Choose χP , χ
′
P :Gm → P , as above,

both P-valued representatives for the filtration F . We have χ ′
P = Ad(g)χP

for some g ∈ P ∩ Q, so χ ′
P = Ad(ḡ)χP , where bars denote projection to the

Levi quotient of P . To see that these two characters define the same filtration
we need to verify that

g ∈ QχP .

This follows from the remark after (11.6): extend the image of χP to a
maximal torus inside P ∩ Q; then, with the corresponding choice M of Levi
subgroup for P , we have χP = χP and QχP = Q ∩ M .

�
Example 4 Induced filtration on the associated graded.

• Consider the case of G = GL(V ). Suppose given a decreasing filtration
F•V (with associated parabolic Q) and another parabolic P; we fix an
increasing filtration f•V with stabilizer P . We show that the construction
above gives precisely the filtration induced by F on the associated graded
to f.
As above, we can represent the character for F by a character χ preserving
the filtration f. Then, writing F̄ for the induced filtration:

F̄ j (fk/fk−1)

is the sum of all eigenspaces with weights � j ; this is the image of the
corresponding space in fk , that is to say,

F̄ j (fk/fk−1) = image of F j ∩ fk in fk/fk+1.

• We now modify the example above by taking G to be GAut(V, 〈−,−〉)
for some symmetric or skew-symmetric nondegenerate bilinear pairing
〈−,−〉. Now suppose that P is a parabolic subgroup of G, stabilizing the
self-dual increasing filtration

0 = f0 ⊂ f1 ⊂ · · · ⊂ fm ⊂ fm+1 ⊂ · · · ⊂ f2m+1 = V .
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Just as before, F induces a filtration F̄ on each graded piece g j = f j/f j−1.
The associated Levi subgroup is isomorphic to

GL(g1)× · · · × GL(gm)× GAut(gm+1),

where we regard the last factor as Gm even if fm = fm+1, and the corre-
sponding filtration on each factor is the one induced by F̄ .

11.4 Balanced filtrations and parabolic subgroups

As above, let G be a reductive group over a field K , and let:

• F be a filtration of G associated with the parabolic subgroup Q,
• P a parabolic subgroup of G, with Levi quotient M .

We say that F is balancedwith respect to P if wt(F) ∈ aG is carried, under
the embedding aG → aM , to the weight wt(FM) of the filtration induced on
the Levi quotient. Here aG ↪→ aM is as in Sect. 11.2.

Example 5 Balanced filtrations.

• If G = GL(V ), and P is associated to the increasing filtration fqV , then
“balanced” says that, for every q, the filtration that F induces on fq/fq+1

has the same weight as the filtration F on V .
• The same assertion holds for GAut(V ), where now F and f are self-dual
filtrations.

Note that if we choose a cocharacter χP :Gm ��� P representing F , the
condition of being “balanced” implies that, for any character ψ of P trivial on
the center of G,

〈ψ, χP〉 = 0. (11.7)

Now define

X (F) = {G-conjugates of F that are balanced with respect to P} ,

so that X (F) is a P-stable subvariety of G/Q and is equipped with a map

X (F) −→ {filtrations of M} (11.8)

via the rule F �→ FM . We may regard this, in an evident way, as a “con-
structible” map between algebraic varieties (i.e. its graph is a constructible
set) and thus we can reasonably speak of dimension of fibers.
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We will analyze (11.8) by breaking X (F) into P-orbits. Consider for a
moment F �→ FM as a map

filtrations P-conjugate to F −→ filtrations on Levi quotient of P (11.9)

where both sides are P-varieties. The left hand side is identified with P/(P ∩
Q), and—if we choose a maximal torus of P ∩ Q containing the image of
a character defining F , and take the corresponding Levi decomposition P =
MU—the image is identified with M/(M ∩ Q). From this and (11.6) we find
that each fiber of (11.9) has dimension

dim(U )− dim(Q ∩U ) (11.10)

where U is the unipotent radical of P , and Q the stabilizer of F .

11.5 Double cosets of parabolic subgroups

Fix, as before, F a filtration ofG associatedwith the parabolic subgroup Q, and
P a parabolic subgroup of G, with Levi quotient M . Continue with notation
X (F) as above. We will be concerned with estimating the size of the fibers of
(11.8).

Fix a Borel B contained in P and a maximal torus T ⊂ B. Since the variety
X (F) depends only on the G-orbit of F , we may harmlessly replace F by a
G-conjugate; in particular we may suppose that F is defined by a co-character
μ:Gm → T that is positive with respect to B, i.e. B ⊂ Q.

Let � ⊃ �+ be the set of roots of T on G and on B, respectively; one
therefore gets notions of simple and positive roots. Let �P , �Q be the set of
roots of T on P and Q. Therefore, �+ ⊂ �P and �+ ⊂ �Q . Let �P be the
subset of simple roots α for which −α ∈ �P , and similarly define �Q ; thus
P and Q correspond to the subsets �P ,�Q of the set of simple roots. Note
that, since μ defines the parabolic subgroup Q, �Q is the set of roots having
nonnegative pairing with μ, and in particular μ is orthogonal to all roots for
�Q :

〈μ, β〉 = 0, β ∈ �Q .

Recall the “adjoint” Hodge numbers associated to Lie GAut(V0 ⊗ C,
〈−,−〉), introduced in Sect. 10. The following proposition uses an abstraction
of that notion:

Proposition 11.3 Let the “Hodge numbers” be the multi-set of integers of the
form 〈μ, γ 〉with γ ∈ �, adding multiplicity dim(T ) to the multiplicity of zero.
For i �= 0 let ai be the number of roots γ ∈ � with 〈μ, γ 〉 = i , so that ai is
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the multiplicity of i as a Hodge number and
∑

i>0 ai = dim(G/Q); we take
a0 the dimension of the Levi factor of Q.

Suppose e ≤ dim(G/Q) is a positive integer such that

sum of all positive Hodge numbers > sum of top e Hodge numbers

+ sum of top
(a0
2

+ e
)
Hodge numbers,

(11.11)

Then the codimension inside G/Q of any fiber of the mapping (11.8)

X (F)→ filtrations of M

is greater than e.

Proof We are going to analyze this P-orbit by P-orbit. Note that we have
G = PWPQQ, where WPQ is the subset of the Weyl group W defined via

WPQ = {w ∈ W :w−1�P > 0, w�Q > 0}. (11.12)

Indeed, it is enough to see (by the Bruhat decomposition) thatW = WP ·WPQ ·
WQ , where WP and WQ are generated by simple reflections corresponding to
�P and �Q . Writing as usual �(w) = #{α > 0:wα < 0} for the length
of a Weyl element, any minimal-length representative in a fixed double coset
WP ·w ·WQ belongs toWPQ : for α ∈ �P , the element sαw has shorter length
than w if w−1α < 0. Similarly, for β ∈ �Q , we know that wsβ has shorter
length than w if wβ < 0.

For each w ∈ WPQ we have either PwQ/Q ⊂ X (F), or PwQ/Q ∩
X (F) = ∅. Call w bad in the former case. For each bad w ∈ WPQ let X (F)w
be the corresponding locally closed subvariety of X (F), i.e.

X (F)w = X (F) ∩ ((PwQ)/Q) .

Thus X (F) = ∐ X (F)w, the union taken over bad w. Assume, by way of
contradiction, that there exists some bad w such that a fiber of

X (F)w → filtrations of M (11.13)

has codimension inside G/Q that is � e.
That w is bad means that the filtration defined by the co-character wμ is

balanced with reference to P . This means in particular that

∑

γ∈�−�P

〈wμ, γ 〉 = 0. (11.14)
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In fact
∑
γ∈�−�P

γ computes themodular character of the parabolic subgroup
P: it is the negative of the character by which P acts on the determinant of its
unipotent radical, and then use (11.7).

For this (bad) w, write

X = {β ∈ � −�P :w−1β > 0} = {β ∈ � −�P : − w−1β ∈ � −�Q}

(using Lemma 11.4, see below) and let X ′ be the complement of X inside
� −�P .

Each fiber of (11.13) has, by (11.10), dimension

dim(U )− dim(Ad(w)Q ∩U ) = #{α ∈ � −�P :
−w−1α ∈ � −�Q} = #X.

(see Lemma 11.4). This is equal to the length �(w), although we won’t make
explicit use of it. Therefore our assumption means #X � dim(G/Q) − e.
Then, since #X ′ = dim(G/P)− #X , we have

#X ′ � dim(G/P)− dim(G/Q)+ e

= dim(Q)− dim(P)+ e � dim(Q/B)+ e � a0
2

+ e. (11.15)

Also, by (11.14),

∑

β∈X
〈μ,w−1β〉 =

∑

X ′
−〈μ,w−1β〉. (11.16)

All entries on the left hand side are strictly positive because w−1β is the
negative of an element of � −�Q . All entries on the right-hand side are non-
negative (because B ⊂ Q the cocharacterμ is non-negative on positive roots.)
Now X has size � dim(G/Q) − e, so the image −w−1(X) omits at most e
roots inside � −�Q . Therefore, the left-hand side of (11.16) is at least

sum of all positive Hodge numbers− sum of the topmost e Hodge numbers.

On the other hand, the right-hand side of (11.16) is at most the sum of the top
(a0/2 + e) Hodge numbers. (Here we have used that, since e ≤ dim(G/Q),
the top e Hodge numbers are all positive.) So we get a contradiction to (11.16)
under the stated hypothesis. �

We used the following lemma.

Lemma 11.4 Let � be the set of all roots, and take w ∈ WPQ (see (11.12)).
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(i) For β ∈ � −�Q, we have wβ > 0 ⇐⇒ −wβ ∈ � −�P .
(ii) For α ∈ � −�P , we have w−1α > 0 ⇐⇒ −w−1α ∈ � −�Q.
(iii) The map x �→ −w(x) induces a bijection of these sets:

{β ∈ � −�Q :wβ > 0} −→ {α ∈ � −�P :w−1α > 0} (11.17)

The size of this set is precisely the length �(w).

Proof Take β ∈ � − �Q with wβ > 0. If −w(β) were in �P , then β is a
positive linear combination of roots in w−1�P , contradicting the negativity
of β.

This shows the �⇒ direction of (i) and the �⇒ direction of (ii) is
similar. The reverse directions for (i) and (ii) are clear. For example, if −wβ
is in � −�P , then wβ > 0 because all roots in � −�P are negative. Now it
is clear that the maps w and w−1 give inverse bijections in (11.17). �

11.6 Conclusion of the argument

Wenow return to the situation of Proposition 10.6. LetG = GAut(V, 〈−,−〉).
We translate the problem into reductive group language. Let F0 be a fixed

self-dual filtration on V ; we will consider those filtrations F that are conjugate
to F0 under G. Let Q be the stabilizer of F0 in G, with Levi quotient N .
Reformulating Proposition 10.6 (replacing f from the Proposition with the
parabolic subgroup which is its stabilizer): we must estimate the codimension
of g ∈ G/Q such that, writing F = gF0, there exists another parabolic
subgroup P � G such that:

(a)′ (from property (a) of Proposition 10.6): φ ∈ P;
(b)′ (from property (b) of Proposition 10.6): F is balanced with respect to P ,

cf. the example of Sect. 11.4.
(c)′ (from property (c) of Proposition 10.6): The G-conjugacy class of

(P, φM , FM) is fixed, where φM is the projection of φ to the Levi quotient
M of the parabolic P .13

First of all, we reduce to the case when φ is semisimple. Firstly, φ ∈ P �⇒
φss ∈ P and, supposing that φ ∈ P , then also (φss)M = (φM)

ss (the subscript
M denotes projection to M). Now if (P, φM , FM) and (P ′, φM ′, FM ′) are
conjugate, so that there is g ∈ G with Ad(g)P = P ′ and Ad(g):M → M ′
carries φM to φM ′ , then Ad(g):M → M ′ also carries (φM)ss = (φss)M to
(φM ′)ss = (φss)M ′ . In other words, if we replaceφ byφss then the codimension

13 We say here that (P, φM , FM ) is conjugate to (P
′, φM ′ , FM ′)when there is g ∈ G such that

Ad(g)P = P ′, and the induced isomorphismofLevi quotients carries (φM , FM ) to (φM ′ , FM ′).
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of the set described above will only decrease. We do this, and can therefore
assume that φ is semisimple.

We will first show that

(dimension of possible pairs (P, FM)) ≤ z = dim Z(φ), (11.18)

the dimension of the centralizer of φ inG. (Note that, because of our reduction
above, z corresponds to the dimension of the centralizer of φss , for the original
choice of φ.)

The set of P containing a given semisimple φ is a finite union of orbits of
Z(φ), aswe see by infinitesimal computations. It suffices, therefore, to examine
a single Z(φ)-orbit on the space of P . Fix P1 in this orbit. The dimension of
Z(φ) · P1 equals

dim Z(φ)− dim ZP1(φ). (11.19)

Next, if we fix P ∈ Z(φ)·P1, the collection of filtrationsF on its Levi factor
M for which (P, φM ,F) belongs to a fixed G-isomorphism class corresponds
to a finite collection of orbits of ZM(φM) on the space of filtrations on M .
Now φ is P-conjugate to φM by (2.1) so that dim ZM(φM) � dim ZP(φ).
It follows that the dimension of the space of possible filtrations on M , for P
fixed, is at most dim ZP(φ) = dim ZP1(φ). Adding this to (11.19) we deduce
(11.18).

We may now conclude the proof. Suppose e is as in (10.24), so that both
conditions are satisfied:

number of positive Hodge numbers � z + e

sum of all positive Hodge numbers > T (z + e)+ T (
h0

2
+ z + e).

Recall that X (F) ⊂ G/Q is the set of filtrations that areG-conjugate to F and
are balanced with respect to P; We may apply Proposition 11.3, but taking the
e of that Proposition to be z + e in the discussion above. (Note that the first
displayed equation above guarantees, in the notation of Proposition 11.3, that
z+ e � dim(G/Q), as needed to apply it.) Thus, if we fix P , the codimension
inside G/Q of any fiber of

X (F)→ filtrations on M

is at least z + e.
However, we saw above that the dimension of possibilities for (P, filtration

on M) is at most z. Therefore, the total codimension of the set of g ∈ G/Q
satisfying (a)’, (b)’, (c)’ is at least e, concluding the proof. �
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12 Bounding Frobenius via point counts

We remark on an alternative approach to bounding the size of the Frobe-
nius centralizer, i.e. the step that was achieved in the previous argument by
Lemma 10.4. It is likely that in some ranges this gives rise to better numerical
bounds.

Lemma 12.1 Let Y be a smooth hypersurface of degree d and dimen-
sion n � 2, defined over the finite field k with q elements; let b =
dim Hn

prim(Yk̄,Q�). Then the centralizer Z of the semisimplified Frobenius,

acting on Hn
prim(Yk̄,Q�), has dimension at most 3b2/N, where N is the largest

integer for which q(n/2+1)N < b/3.

Proof To avoid confusion between i = √−1 and as an indexwewrite e(α) :=
exp(2π iα).

Let the Frobenius eigenvalues on Hn
prim(Yk̄,Q�) be given by

λ1 = qn/2e(θ1), . . . , λb = qn/2e(θb),

and let μ be the measure on S1 given by
∑b

i=1 δθi . If the multiplicities of the
θi are m1, . . . ,mr , with

∑
mi = b, then dim Z =∑m2

i .
If g is any non-negative real-valued function on S1 we have

∫
g(t −

θ)dμ(θ) =∑s g(t − θs), and so
∫

t
dt

∣∣∣∣
∫

g(t − θ)dμ(θ)
∣∣∣∣
2

� dimZ · ‖g‖2L2 (12.1)

which bounds from above the dimension of the centralizer; this estimate is
most effective if the support of g is concentrated near 0. Here, and in what
follows, the measure is the Haar probability measure on S1.

If k′ is the field extension of k of degree j , the number of points of Y (k′) is
given by

|Y (k′)| =
n∑

�=0

q�j + (−1)nqnj/2
b∑

s=1

e( jθs).

Since this lies between 0 and the size ofPn+1(k′), i.e. between 0 and
∑n+1
�=0 q

�j ,
we see that

∣∣∣∣∣
∑

s

e( jθs)

∣∣∣∣∣ � q(n/2+1) j . (12.2)
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Let

gN (t) =
(

N∑

r=−N

e(r t)

)2
=

2N∑

r=−2N

(2N + 1− |r |)e(r t),

a function on S1. Note that ‖gN‖2L2 = (2N + 1)2 + 2
∑2N

i=1 i
2. We have

∫
gN (t − θ)dμ(θ) =

N∑

r=−N

(2N + 1− |r |)
b∑

s=1

e(r(t − θs)).

Using (12.2), we see that this is bounded in absolute value by

(2N + 1)

[
b + 2

N∑

r=1

q(n/2+1)|r |
]

� (2N + 1)
(
b + 3q(n/2+1)N

)

since qn/2+1 � 4. Therefore, by (12.1),

dim(Z) � b2(1+ 3b−1q(n/2+1)N )2 ·
(

(2N + 1)2

(2N + 1)2 + 2
∑2N

i=1 i
2

)

︸ ︷︷ ︸
≤ 3

4N

.

Choose N the largest integer with q(n/2+1)N < b/3; we get

dim(Z) � 3b2/N .

�
Acknowledgements This paper owes, of course, a tremendous debt to the work of Faltings—
indeed, all the main tools come from his work. Some of the ideas originated in a learning
seminar run at Stanford University on Faltings’s proof [14]. The 2017 Stanford Ph.D. thesis [26]
of B.L. contained an earlier version of the arguments of this paper. In particular, that thesis
presented a proof of the Mordell conjecture conditional on an assumption about monodromy,
and verified that assumption for a certain Kodaira–Parshin family in genus 2. We thank Brian
Conrad for many helpful conversations and suggestions. A.V. would like to thank Benjamin
Bakker, Andrew Snowden and Jacob Tsimerman for interesting discussions. B.L. would like
to thank Zeb Brady, Lalit Jain, Daniel Litt, and Johan de Jong. We received helpful comments
and feedback from several people about earlier versions of this paper. We would like to thank,
in particular, Dan Abramovich, Pedro A. Castillejo, Raymond Cheng, Brian Conrad, Ulrich
Goertz, Sergey Gorchinskiy, Kiran Kedlaya, Aaron Landesman, Siyan Daniel Li, Lucia Mocz,
Bjorn Poonen, Jack Sempliner, Will Sawin, and Bogdan Zavyalov. We similarly would like
to thank the anonymous referee for his or her time and effort. We thank Brian Conrad for
pointing out the proof of Lemma 2.4, and for simplifying the proof of Lemma 9.3. We thank

123



Diophantine problems and p-adic period mappings 997

Jordan Ellenberg for an interesting discussion about monodromy. During much of the work
on this paper, B.L. was supported by a Hertz fellowship and an NSF fellowship and A.V. was
supported by an NSF grant. During the final stages of writing A.V. was an Infosys member
at the Institute for Advanced Study. We thank all these organizations for their support of our
work.

References

1. Bakker, B., Tsimerman, J.: The Ax–Schanuel conjecture for variations of Hodge structures.
arXiv:1712.05088

2. Bate, M., Martin, B., Röhrle, G.: A geometric approach to complete reducibility. Invent.
Math. 161(1), 177–218 (2005)

3. Beauville, A.: Le groupe de monodromie des familles universelles d’hypersurfaces et
d’intersections complètes. In: Complex Analysis and Algebraic Geometry (Göttingen,
1985), volume 1194 of Lecture Notes in Mathematics, pp. 8–18. Springer, Berlin (1986)

4. Berthelot, P.: Cohomologie cristalline des schémas de caractéristique p>0. In: Lecture
Notes in Mathematics, vol. 407. Springer, Berlin (1974)

5. Berthelot, P., Ogus, A.: Notes on Crystalline Cohomology. University of Tokyo Press,
Tokyo, Princeton University Press, Princeton (1978)

6. Borel, A.: Linear Algebraic Groups, Volume 126 of Graduate Texts in Mathematics, 2nd
edn. Springer, New York (1991)

7. Brinon, O., Conrad, B.: CMI summer school notes on p-adic Hodge theory. http://math.
stanford.edu/~conrad/papers/notes.pdf. Accessed 1 Jan 2020

8. Chatterjee, S., Diaconis, P.: A central limit theorem for a new statistic on permutations.
Indian J. Pure Appl. Math. 48(4), 561–573 (2017)

9. de Jong, T., Pfister, G.: Local analytic Geometry. Advanced Lectures in Mathematics.
Friedr. Vieweg & Sohn, Braunschweig. Basic Theory and Applications (2000)

10. Deligne, P.: Théorème de Lefschetz et critères de dégénérescence de suites spectrales. Inst.
Hautes Études Sci. Publ. Math. 35, 259–278 (1968)

11. Deligne, P., Milne, J.S., Ogus, A., Shih, K.: Hodge Cycles, Motives, and Shimura Varieties,
volume 900 of Lecture Notes in Mathematics. Springer, Berlin (1982)

12. Grothendieck, A., Dieudonné, J.: éléments de géométrie algébrique: Iv. étude locale des
schémas et des morphismes de schémas, troisième partie. Pub. Math. IHES. 28, 5–255
(1966)

13. Digne, F., Michel, J.: Representations of Finite Groups of Lie Type. London Mathematical
Society Student Texts, vol. 21. Cambridge University Press, Cambridge (1991)

14. Faltings, G.: Endlichkeitss atze fur abelsche variet aten uber zahlk orpern. Invent. Math.
73, 349–366 (1983)

15. Faltings, G.: Crystalline cohomology and p-adic Galois-representations. In: Algebraic
Analysis, Geometry, and Number Theory (Baltimore, MD, 1988), pp. 25–80. Johns Hop-
kins University Press, Baltimore (1989)

16. Farb, B., Margalit, D.: A Primer on Mapping Class Groups. Princeton University Press,
Princeton (2012)

17. Fontaine, J.-M.: Périodes p-adiques. In Astérisque, vol. 223. Société Mathématique de
France (1994)

18. Grunewald, F., Larsen,M., Lubotzky,A.,Malestein, J.: Arithmetic quotients of themapping
class group. Geom. Funct. Anal. 25, 1493–1542 (2015)

19. Grothendieck, A.: Éléments de géométrie algébrique. IV. Étude locale des schémas et des
morphismes de schémas. II. Inst. Hautes Études Sci. Publ. Math. 24, 231 (1965)

20. Johnson, O., Goldschmidt, C.: Preservation of log-concavity on summation. ESAIM
Probab. Stat. 10, 206–215 (2006)

123

http://arxiv.org/abs/1712.05088
http://math.stanford.edu/~conrad/papers/notes.pdf
http://math.stanford.edu/~conrad/papers/notes.pdf


998 B. Lawrence, A. Venkatesh

21. Katz, N.M., Messing,W.: Some consequences of the Riemann hypothesis for varieties over
finite fields. Invent. Math. 23, 73–77 (1974)

22. Katz, N.M., Oda, T.: On the differentiation of de Rham cohomology classes with respect
to parameters. J. Math. Kyoto Univ. 8, 199–213 (1968)

23. Kim, M.: The motivic fundamental group of P1\{0, 1,∞} and the theorem of Siegel.
Invent. Math. 161(3), 629–656 (2005)

24. Kim, M.: The unipotent Albanese map and Selmer varieties for curves. Publ. Res. Inst.
Math. Sci. 45(1), 89–133 (2009)

25. Kim, M.: Tangential localization for Selmer varieties. Duke Math. J. 161(2), 173–199
(2012)

26. Lawrence, B.: Two results on period maps, Ph.D. Thesis. Stanford University (2017)
27. Looijenga, E.: Prym representations of mapping class groups. Geom. Dedic. 64(1), 69–83

(1997)
28. Mazur, B.: Frobenius and the Hodge filtration (estimates). Ann. Math. 98(1), 58–95 (1973)
29. Mochizuki, S.: The geometry of the compactification of the Hurwitz scheme. Publ. Res.

Inst. Math. Sci. 31(3), 355–441 (1995)
30. Paršin, A.N.: Algebraic curves over function fields. I. Izv. Akad. Nauk SSSR Ser. Mat. 32,

1191–1219 (1968)
31. Pila, J., Tsimerman, J.: Ax–Schanuel for the j-function. DukeMath. J. 165(13), 2587–2605

(2016)
32. Pink, R.: l-adic algebraic monodromy groups, cocharacters, and the Mumford–Tate con-

jecture. J. Reine Angew. Math. 495, 187–237 (1998)
33. Revêtements étales et groupe fondamental (SGA 1), volume 3 of Documents Mathéma-

tiques (Paris) [Mathematical Documents (Paris)]. Société Mathématique de France, Paris,
2003. Séminaire de géométrie algébrique du Bois Marie 1960–61. [Algebraic Geometry
Seminar of Bois Marie 1960–61], Directed by A. Grothendieck, With two papers by M.
Raynaud, Updated and annotated reprint of the 1971 original [Lecture Notes in Math., 224,
Springer, Berlin; MR0354651 (50 #7129)]

34. Ribet, K.A.: Galois action on division points of Abelian varieties with real multiplications.
Am. J. Math. 98(3), 751–804 (1976)

35. Richardson Jr., R.W.: Conjugacy classes in Lie algebras and algebraic groups. Ann. Math.
2(86), 1–15 (1967)

36. Rivano, N.S.: Catégories Tannakiennes. Lecture Notes in Mathematics, vol. 265. Springer,
Berlin (1972)

37. Salter, N., Tshishiku, B.: Arithmeticity of the monodromy of some Kodaira fibrations.
arXiv:1805.06789

38. Schneebeli, H.R.: Group extensions whose profinite completion is exact. Arch. Math.
(Basel) 31(3), 244–253 (1978/79)

39. Sen, S.: Lie algebras of Galois groups arising fromHodge–Tatemodules. Ann.Math. 2(97),
160–170 (1973)

40. Serre, J.-P.: Géométrie algébrique et géométrie analytique. Ann. Inst. Fourier Grenoble 6,
1–42 (1955–1956)

41. Serre, J.-P.: Abelian l-Adic Representations and Elliptic Curves. Advanced Book Classics,
2nd edition. Addison-Wesley Publishing Company, Advanced Book Program, Redwood
City, CA (1989). With the collaboration of Willem Kuyk and John Labute

42. Serre, J.-P.: Galois Cohomology. Springer, Berlin (1997). Translated from the French by
Patrick Ion and revised by the author

43. Serre, J.-P.: Complète réductibilité. Astérisque, (299): Exp. No. 932, viii, 195–217 (2005).
Séminaire Bourbaki. Vol. 2003/2004

44. The Stacks Project Authors. Stacks Project. http://stacks.math.columbia.edu (2018) .
Accessed 1 Jan 2020

123

http://arxiv.org/abs/1805.06789
http://stacks.math.columbia.edu


Diophantine problems and p-adic period mappings 999

45. Weil, A.: On a certain type of characters of the idèle-class group of an algebraic number-
field. In: Proceedings of the International Symposium onAlgebraic Number Theory, Tokyo
& Nikko, 1955, pp. 1–7. Science Council of Japan, Tokyo (1956)

46. Wintenberger, J.-P.:Un scindagede lafiltrationdeHodgepour certaines variétés algébriques
sur les corps locaux. Ann. Math. (2) 119(3), 511–548 (1984)

47. Wüstholz, G.: The finiteness theorems of Faltings. In: Rational points (Bonn, 1983/1984),
Aspects Math., E6, pp. 154–202. Friedr. Vieweg, Braunschweig (1984)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

123


	Diophantine problems and p-adic period mappings
	Abstract
	1 Introduction
	2 Notation and preparatory results
	3 Fibers with good reduction in a family
	4 The S-unit equation
	5 Outline of the argument for Mordell's conjecture
	6 Rational points on the base of an abelian-by-finite family
	7 The Kodaira–Parshin family
	8 The monodromy of Kodaira–Parshin families
	9 Transcendence of period mappings; the Bakker–Tsimerman theorem
	10 Bounds on points with good reduction
	11 Combinatorics related to reductive groups
	12 Bounding Frobenius via point counts
	Acknowledgements
	References




