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Abstract We study convex polyhedra in three-space that are inscribed in a
quadric surface. Up to projective transformations, there are three such sur-
faces: the sphere, the hyperboloid, and the cylinder. Our main result is that
a planar graph I" is realized as the 1-skeleton of a polyhedron inscribed in
the hyperboloid or cylinder if and only if I" is realized as the 1-skeleton of a
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polyhedron inscribed in the sphere and I" admits a Hamiltonian cycle. This
answers a question asked by Steiner in 1832. Rivin characterized convex poly-
hedra inscribed in the sphere by studying the geometry of ideal polyhedra in
hyperbolic space. We study the case of the hyperboloid and the cylinder by
parameterizing the space of convex ideal polyhedra in anti-de Sitter geometry
and in half-pipe geometry. Just as the cylinder can be seen as a degeneration of
the sphere and the hyperboloid, half-pipe geometry is naturally a limit of both
hyperbolic and anti-de Sitter geometry. We promote a unified point of view to
the study of the three cases throughout.
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1 Introduction and results
1.1 Polyhedra inscribed in a quadric

According to a celebrated result of Steinitz (see e.g. [43, Chapter 4]), a graph
I is the 1-skeleton of a convex polyhedron in R3 if and only if I is planar
and 3-connected. Steinitz [38] also discovered, however, that there exists a
3-connected planar graph which is not realized as the 1-skeleton of any poly-
hedron inscribed in the unit sphere S, answering a question asked by Steiner
[37] in 1832. An understanding of which polyhedral types can or can not be
inscribed in the sphere remained elusive until Hodgson et al. [22] gave a full
characterization in 1992. This article is concerned with realizability by polyhe-
dra inscribed in other quadric surfaces in R3. Up to projective transformations,
there are two such surfaces: the hyperboloid H, defined by x12 + x% — x% =1,
and the cylinder C, defined by x12 + x% = 1 (with x3 free).

Definition 1.1 A convex polyhedron P is inscribed in the hyperboloid H
(resp. the cylinder C) if P N H (resp. P N C) is exactly the set of vertices
of P.

If a polyhedron P is inscribed in the cylinder C, then P lies in the solid
cylinder xl2 + x% < 1 (and x3 free), with all points of P except its vertices
lying in the interior. A polyhedron P inscribed in the hyperboloid H could
lie in (the closure of) either complementary region of R3\ H. However, after
performing a projective transformation, preserving H and exchanging the two
complementary regions of R\ H, we may (and will henceforth) assume that
all points of P, except its vertices, lie in the interior of the solid hyperboloid
xl2 + x% — x32 <1.

Recall that a Hamiltonian cycle in a graph is a closed path visiting each
vertex exactly once. We prove the following result, which provides an answer
to Question 77 in Steiner’s book [37] about the possibility of realizing a poly-
hedron as inscribed in a sphere or another quadric.

Theorem 1.2 Let I" be a planar graph. Then the following conditions are
equivalent:

(C): T is the 1-skeleton of some convex polyhedron inscribed in the cylinder.

(H): T is the 1-skeleton of some convex polyhedron inscribed in the hyper-
boloid.

(S): T is the 1-skeleton of some convex polyhedron inscribed in the sphere
and I admits a Hamiltonian cycle.

Recall that the projective model for hyperbolic 3-space H? is given by the
space of lines in R>! which have negative signature, where R*! denotes
R* equipped with a quadratic form of signature (3, 1). The quadratic form
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240 J. Danciger et al.

defines a metric of constant negative curvature on H>. Viewed in an appropriate
affine chart, H? is simply the unit ball x12 + x% + x% < 1, with the sphere S
describing the projective boundary dH?>. In this model, projective lines and
planes intersecting the ball correspond to totally geodesic lines and planes
in H3. Therefore a convex polyhedron inscribed in the sphere is naturally
associated to a convex ideal polyhedron in the hyperbolic space H?.

Following the pioneering work of Andreev [2,3], Rivin [32] gave a parame-
terization of the deformation space of such ideal polyhedra in terms of dihedral
angles. As a corollary, Hodgson et al. [22] showed that deciding whether a pla-
nar graph I may be realized as the 1-skeleton of a polyhedron inscribed in
the sphere amounts to solving a linear programming problem on I". To prove
Theorem 1.2, we show that, given a Hamiltonian path in I', there is a similar
linear programming problem whose solutions determine polyhedra inscribed
in either the cylinder or the hyperboloid.

Just as polyhedra inscribed in a sphere can be interpreted as ideal polyhedra
in the 3-dimensional space H?, polyhedra inscribed in a one-sheeted hyper-
boloid can be interpreted as ideal polyhedra in the 3-dimensional anti-de Sitter
space AdS?. Similarly to the projective model for H?, the projective model for
AdS? is given by the set of lines in R>? with negative signature, where R>>
denotes R* now equipped with a quadratic form of signature (2, 2). Similarly
as in H3, the quadratic form defines a metric on AdS® of constant negative
curvature, but unlike in H?, this metric is indefinite, of signature (2, 1). Hence
AdS? is a Lorentzian analogue of H?>. Topologically, AdS? is a solid torus.
Unlike H?, the projective model of AdS® does not fit inside a single affine
chart. The solid hyperboloid x12 + x% — x32 < 1in R? gives a picture of the
projective model of most of AdS>. The full affine lines contained inside the
hyperboloid close up at infinity along a copy of the hyperbolic plane, which
is the remaining piece of AdS> not seen in this affine chart. As in hyperbolic
geometry, projective lines and planes intersecting this solid hyperboloid cor-
respond to geodesics in AdS>. Therefore a convex polyhedron inscribed in the
hyperboloid is naturally associated to a convex ideal polyhedron in the anti-de
Sitter space AdS?, which is a Lorentzian analogue of hyperbolic space.

Similarly, the solid cylinder xl2 + x% < 1 (with x3 free) in an affine chart R
of RP? gives the projective model for half-pipe (HP) geometry. Therefore a
convex polyhedron inscribed in the cylinder is naturally associated to a convex
ideal polyhedron in the half-pipe space HIP3. Half-pipe geometry, introduced
by Danciger [14-16], is a transitional geometry which, in a natural sense, is
a limit of both hyperbolic and anti-de Sitter geometry. In order to prove The-
orem 1.2 we study the deformation spaces of ideal polyhedra in both AdS?
and HIP? concurrently. By viewing polyhedra in HIP? as limits of polyhedra
in both H? and AdS?, we are able to translate some geometric information
between the three settings. In fact we are able to give parameterizations (The-
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Fig. 1 A polyhedron inscribed in the hyperboloid (left) and a combinatorial equivalent poly-
hedron inscribed in the cylinder (right). The 1-skeleton of any such polyhedron admits a
Hamiltonian cycle which we call the equator (red) (color figure online)

orems 1.4, 1.5 and 1.9) of the spaces of ideal polyhedra in both AdS?® and
HP3 in terms of geometric features of the polyhedra. This, in turn, describes
the moduli of convex polyhedra inscribed in the hyperboloid and the moduli
of convex polyhedra inscribed in the cylinder, where polyhedra are consid-
ered up to projective transformations fixing the respective quadric. It is these
parameterizations which should be considered the main results of this article;
Theorem 1.2 will follow as a corollary.

1.2 Rivin’s two parameterizations of ideal polyhedra in H?3

Rivin gave two natural parameterizations of the space of convex ideal poly-
hedra in the hyperbolic space H?>. Let P be a convex ideal polyhedron in H?,
let E denote the edges of the 1-skeleton of P, and let P* denote the Poincaré
dual of P. We denote by e* the edge of the 1-skeleton of P* dual to an edge
e € E. Then the function & € R¥ assigning to each edge its dihedral angle
satisfies the following three conditions.

(1) 0 < f(e) < m foralledges e € E.

(2) If e}, ..., ¢f bound a face of P*, thenO(ey) + - -+ 6(ex) = 2m.

(3) If e}, ..., e form a simple circuit which does not bound a face of P*,
then O(e1) + --- + O(ex) > 2m.

Rivin [32] shows that, for an abstract polyhedron P, any assignment of weights
6 to the edges of P that satisfy the above three conditions is realized as the
dihedral angles of a unique (up to isometries) non-degenerate ideal polyhedron
in 3. Further the map taking any ideal polyhedron P to its dihedral angles 6 is
a homeomorphism onto the complex of all weighted planar graphs satisfying
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the above linear conditions. This was first shown by Andreev [3] in the case
that all angles are acute.

The second parameterization [31] characterizes an ideal polyhedron P in
terms of the geometry intrinsic to the surface of the boundary of P. The path
metric on d P, called the induced metric, is a complete hyperbolic metric on the
N-times punctured sphere Xy, which determines a point in the Teichmiiller
space %,y . Rivin also shows that the map taking an ideal polyhedron to its
induced metric is a homeomorphism onto % v .

1.3 Two parameterizations of ideal polyhedra in AdS3

AdS geometry is a Lorentzian analogue of hyperbolic geometry in the sense
that the anti-de Sitter space AdS" has all sectional curvatures equal to —1.
However, the metric is Lorentzian (meaning indefinite of signature (n — 1, 1)),
making the geometry harder to work with than hyperbolic geometry, in some
ways. For our purposes, it is most natural to work with the projective model of
AdS? (see Sect. 2.2), which identifies AdS? with an open region in RP3, and its
projective boundary 9 AdS? with the boundary of that region. The intersection
of AdS? with an affine chart is the region x% + x% — x% < 1 bounded by the
hyperboloid H. The projective boundary dAdS?>, seen in this affine chart, is
exactly H.

Let P be a convex ideal polyhedron in AdS® with N vertices. That P is
ideal means that the closure of P in AdS® U dAdS? is a polyhedron whose
intersection with dAdS? is precisely its vertices. That P is convex means that
after removing a space-like plane in its complement, P is geodesically convex.
Alternatively, P is convex if and only if it is convex in some affine chart of
RP3. Unlike in the hyperbolic setting, there are restrictions (Proposition 2.8)
on the positions of the N vertices. Some choices of N vertices on the projective
boundary 9AdS? do not determine a convex ideal polyhedron. Roughly, this
is because the hyperboloid H has mixed curvature and the convex hull of a
collection of vertices on H may contain points both inside and outside of H.
All facets of P are spacelike, meaning the restriction of the AdS metric is pos-
itive definite. Therefore, by equipping AdS?® with a time-orientation, we may
sort the faces of P into two types, those whose normal is future-directed, and
those whose normal is past-directed. The future-directed faces unite to form a
disk (a bent ideal polygon), as do the past-directed faces (Proposition 2.9). The
edges which separate the past faces from the future faces form a Hamiltonian
cycle, which we will refer to as the equator of P. A marking of P will refer to
an identification, up to isotopy, of the equator of P with the standard N-cycle
graph so that the induced ordering of the vertices is positive with respect to the
orientation and time orientation of AdS>. We let AdSPolyh = AdSPolyh,
denote the space of all marked, non-degenerate convex ideal polyhedra in
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Fig. 2 A marking of an ideal polyhedron P (right) in AdS3isa labeling of the ideal vertices
in order going around the equator in the positive direction. It defines an identification of X y
with P that takes y to the equator (red) and the top (resp. bottom) hemisphere of X y (left) to
the union of the future (resp. past) faces of P. The 1-skeleton of P (right, blue and red) defines
agraph I' € Graph(Xg n, y) (left, blue and red) (color figure online)

AdS?® with N vertices, considered up to orientation and time-orientation pre-
serving isometries IsomoAdS?® of AdS>. The term ideal polyhedron in AdS?
will henceforth refer to an element of this space. The topology on AdSPolyh
isinduced from the quotient of the space of pairwise-distinct N -tuples of points
in AdS? by the action of IsomAdS?, which is proper. Let X y denote two-
sphere with N marked points, which we will refer to as punctures. Fix an
orientation on Xy n, a simple loop y visiting each marked point once, and
label the marked points in order along the path. We call the polygon on the
positive side of y the top and the polygon on the negative side the bottom
of Xy n. Then, each ideal polyhedron P is naturally identified with ¥¢ x via
the (isotopy class of the) map taking each ideal vertex to the corresponding
puncture and the equator to y. This identifies the union of the future faces of
P with the top of ¥ x and the past faces with the bottom. See Fig. 2. We let
Graph(Xg v, y) denote the collection of three-connected graphs embedded
in Xo, n, up to isotopy, whose vertices are the N punctures and whose edge
set contains the edges of y. Via the marking, any ideal polyhedron P real-
izes the edges of a graph in Graph(XZo,_y, y) as a collection of geodesic lines
either on the surface of or inside of P. In particular, there is a unique graph
I' € Graph(Xg, v, y) whose edges are realized as the 1-skeleton of P; we will
say I' is realized as the 1-skeleton of P, or by abuse that I" is the 1-skeleton
of P.

Consider a space-like oriented piecewise totally geodesic surface in AdS?
and let T and T’ be two faces of this surface meeting along a common edge e.
We measure the exterior dihedral angle at e as follows. The group of isome-
tries of AdS? that pointwise fix the space-like line e is a copy of O(1, 1), which
should be thought of as the group of hyperbolic rotations or Lorentz boosts
of the time-like plane orthogonal to e. By contrast to the setting of hyperbolic
(Riemannian) geometry, O(1, 1) has two non-compact components. There-
fore there are two distinct types of dihedral angles possible, each of which is
described by a real number rather than an element of the circle. Let ¢ be the
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amount of hyperbolic rotation needed to rotate the plane of 7' into the plane
of T. The sign of ¢ is defined as follows. The light-cone of e locally divides
AdS? into four quadrants, two of which are space-like and two of which are
time-like. If 7" and T’ lie in opposite space-like quadrants, then we take ¢ to
be non-negative if the surface is convex along e, and negative if the surface is
concave along e. If T and T lie in the same space-like quadrant, we take ¢
to be non-positive if the surface is convex at e, and positive if the surface is
concave at e. Therefore, the dihedral angles along the equator of a convex ideal
polyhedron P are negative, while the dihedral angles along the other edges are
positive. Note that this definition of angle, and in particular the sign conven-
tion, agrees with a natural alternative definition in terms of cross-ratios (see
Sect. 2). Let I' € Graph(Z, y, y) be the 1-skeleton of P, and let E denote its
edges. We will show (Proposition 1.16) that the function & € R¥ assigning to
each edge of I the dihedral angle along the corresponding edge of P satisfies
the following triple of conditions, which we will call y-admissibility. It will
be convenient to express the conditions in terms of the dual graph I'* C X v,
which determines a cellulation (the polyhedral type dual to P) of the two-
sphere each face of which contains a unique puncture. Note that the edges
E(I") are in one-one correspondence with the edges E (I"*).

Definition 1.3 Let I' € Graph(XZg v, y), and let I'* C %o n denote the
dual graph. For each edge ¢ € E(I") denote the corresponding dual edge by
e* € E(I'"). A function 0 € RE(I") is said to be y-admissible if it satisfies
the following three conditions:

(i) 6(e) < 0if e is an edge of the equator y, and 6(e) > 0 otherwise.
(i) If e}, ..., e} bound a face of I'*, then O (e;) + - - - + 6 (ex) = 0.
(iii) Ife}, ..., ¢; form a simple circuit which does not bound a face of I'*, and
such that exactly two of the edges are dual to edges of y, then 6(ey) +
<o+ 0(e) > 0.

For any I' € Graph(X v, y) with edge set E = E(I"), we define Ar to be
the space of all functions § € R” which are y-admissible. Define AdSPolyh-
to be the space of ideal polyhedra in AdS? with 1-skeleton identified with T,
and let \Ille‘ds : AdSPolyh — Ar denote the map assigning to an ideal
polyhedron its dihedral angles. All of the maps \Ifﬁds may be stitched together
into one. Let A denote the disjoint union of all Ar glued together along faces
corresponding to common subgraphs. Then, we show:

Theorem 1.4 The map WA9S : AdSPolyh — A, defined by WAIS(p) =
\IJI'SdS(P) if P € AdSPolyhr, is a homeomorphism.

The equivalence of conditions (H) and (S) in Theorem 1.2 follows directly
from this theorem and from Rivin’s theorem (see Sect. 1.2). Indeed, it is an
easy exercise in basic arithmetic to convert any weight function 6 € Ar into

@ Springer



Polyhedra inscribed in a quadric 245

one that satisfies conditions (1), (2), and (3) of Rivin’s theorem. If there is a
Hamiltonian cycle y in the 1-skeleton, it is also easy to convert any weight
function on the edges of a graph I that satisfies Rivin’s conditions into a weight
function which is y-admissible (and is in Ar). See Sect. 7.4 for the detailed
proof.

We also give a second parameterization of ideal polyhedra in terms of
the geometry intrinsic to their boundaries. Here we parameterize the space
AdSPolyh, = AdSPolyh, Upolyg, of all marked polyhedra with N vertices
including both the non-degenerate polyhedra AdSPolyh,, and the degenerate
(or collapsed) polyhedra, parameterized by the space polyg, of marked ideal
polygons in H? with N vertices. These spaces are each topologized as quo-
tients of subspaces of the pairwise distinct N-tuples in dAdS>. Any space-like
plane in AdS? is isometric to the hyperbolic plane H?. Therefore, similar to the
setting of hyperbolic 3-space, the path metric on the surface of P is a complete
hyperbolic metric on the N-times punctured sphere Xy y determining a point
in the Teichmiiller space % v, again called the induced metric. We show the
following result:

Theorem 1.5 The map ® : AdSPolyhy, — % n, taking a convex ideal
polyhedron P in AdS? to the induced metric on 3 P, is a diffeomorphism.

The (weaker) local version of this theorem is a crucial ingredient in proving
Theorem 1.4.

Before continuing on to half-pipe geometry and the cylinder, let us state
two questions about potential generalizations of Theorems 1.4 and 1.5. In the
proofs of Theorems 1.4 and 1.5, many of our techniques should apply in the
setting of hyperideal polyhedra, i.e. polyhedra whose vertices lie outside of
the hyperboloid, but all of whose edges pass through the hyperboloid. Like
ideal polyhedra, hyperideal polyhedra in AdS® have a well-defined “equator”
that forms a Hamiltonian path in their 1-skeleton, and the induced metric on
their boundary is a complete hyperbolic metric (of infinite area if at least one
vertex is strictly hyperideal). In the setting of hyperbolic geometry, hyperideal
polyhedra may be described in terms of their dihedral angles [4] or in terms of
their induced metrics [33]. This suggests the following questions on hyperideal
polyhedra in the Anti-de Sitter setting.

Question 1.6 Let X y be the 2-sphere with N points (punctures) removed.
Given a complete hyperbolic metric 4 on X y, possibly of infinite volume,
is there a unique hyperideal AdS polyhedron P so that the induced metric on
the boundary of P is isometric to /?

Question 1.7 Let I' € Graph(XZo_y, y), and let I'* C ¥ y denote the dual
graph. For each edge ¢ € E(I") denote the corresponding dual edge by ¢* €
E(T*). Let 6 € RE(I"). Suppose that
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(i) 6(e) < 0if eis anedge of y, and O(e) > 0 otherwise.
(i) If e, ..., e} bound a face of I'*, then 6 (e1) + - - - + 0 (ex) > 0.

(iii) Ife], ..., e¢f form a simple circuit which does not bound a face of I'*, and
such that exactly two of the edges are dual to edges of y, then 0(ey) +
<-4 6(ex) > 0.

(iv) If e}, ..., e; form a simple path starting and ending on the same face of
P*, but not contained in the boundary of that face, and such that exactly
one of the edges is dual to an edge of y, then 8(e;) + - - - + 0 (ex) > 0.

Is there a unique hyperideal polyhedron P in AdS? with 1-skeleton I' and with
equator isotopic to y so that the dihedral angles are given by 67

Condition (iv) in Question 1.7 is the analog of a condition occurring in
the description of the dihedral angles of hyperideal polyhedra in hyperbolic
space [4]. Given a hyperideal polyhedron in AdS?, a doubling argument along
a truncation face dual to a hyperideal vertex shows that the Condition (iv) is
implied by Condition (iii). That Condition (iv) is satisfied at an ideal vertex
follows easily from (the equality case of) Condition (ii). In particular, for ideal
polyhedra, Condition (iv) is implied by Conditions (1),(ii), and (iii), so it need
not be stated as a separate condition in that setting.

Remark 1.8 (Relationship with the bending conjecture) The statements of
Theorems 1.4 and 1.5 bear close resemblance to a conjecture of Mess [28]
in the setting of globally hyperbolic Cauchy compact AdS space-times. Mess
conjectured, by analogy to a related conjecture of Thurston in the setting of
quasifuchsian groups, that such a spacetime should be determined uniquely by
the bending data or by the induced metric on the boundary of the convex core
inside the spacetime. There are existence results known in both cases, due to
Bonsante—Schlenker [12] and Diallo [19] respectively, but no uniqueness or
parameterization statement is known in this setting. Ultimately, Theorems 1.4
and 1.5 on the one hand and Mess’s conjecture on the other hand boil down to
understanding the connection between the geometry of a subset of dAdS® and
the geometry of its convex hull in AdS>. It is natural to ask whether Mess’s
conjecture and our theorems on ideal polyhedra might naturally coexist as part
of some larger universal theory relating the geometry of a convex spacetime
in AdS? to its asymptotic geometry at the projective boundary.

1.4 A parameterization of ideal polyhedron in HP?

Half-pipe (HP) geometry is a transitional geometry lying at the intersection of
hyperbolic and anti-de Sitter geometry. Intuitively, it may be thought of as the
normal bundle of a codimension one hyperbolic plane inside of either hyper-
bolic space or anti-de Sitter space. In [15,16], the first named author constructs
paths of three-dimensional projective structures on certain manifolds which
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Polyhedra inscribed in a quadric 247

transition from hyperbolic geometry to AdS geometry passing through an HP
structure. In our setting, it is informative to imagine families of polyhedra in
projective space whose vertices lie on a quadric surface evolving from the
sphere to the hyperboloid passing through the cylinder. Indeed, the notion of
transition is also useful for proving several key statements needed along the
way to the main theorems.

Half-pipe geometry is a homogeneous (G, X)-geometry. The projective
model X = HIP? for half-pipe space is simply the solid cylinder xl2 + x% <
1 in the affine x-x2-x3 coordinate chart R3. There is a natural projection
w : HP? — H2, seen, in this model, as the projection of the solid cylinder to
the disk. The projection is equivariant taking projective transformations which
preserve the cylinder to isometries of the hyperbolic plane. The projection also
extends to take the projective boundary dHP? = C to the boundary 9H? of the
hyperbolic plane. The structure group G is the codimension one subgroup of
all projective transformations preserving the cylinder which preserves a certain
length function along the fibers of this projection. By pullback, the projection
@ determines a metric on HIP? which is degenerate along the fiber direction. In
this metric, all non-degenerate 2-planes are isometric to the hyperbolic plane.

Let P be a convex ideal polyhedron in HP3 with N vertices. That P is ideal
means that the closure of P in RP? is a polyhedron contained in HP3 U §HP?
whose intersection with 9HP? is precisely its vertices. Since HP3 is contained
in an affine chart, the notion of convexity is defined to be the same as in affine
space. Then the N vertices project to N distinct points on the ideal boundary of
the hyperbolic plane (else one of the edges of P would be contained in OHP3,
which we do not allow). Therefore P determines an ideal polygon p = @w (P)
in the hyperbolic plane. Further, all facets of an ideal polyhedron in HP? are
non-degenerate; in particular the faces of P are transverse to the fibers of @ .
By equipping HP? with an orientation of the fiber direction, we may sort the
faces of P into two types, those for which the outward pointing fiber direction
is positive, and those for which it is negative. We call such faces positive or
negative, respectively. The positive faces form a disk (a bent polygon) as do the
negative faces. The edges of P which separate a positive face from a negative
face form a Hamiltonian cycle in the 1-skeleton of P, again called the equator.
As in the AdS setting, we let HPPolyh = HPPolyh,, denote the space of all
marked non-degenerate convex ideal polyhedra in HP® with N vertices, up to
orientation preserving and fiber-orientation preserving transfomations. Again,
the boundary of each ideal polyhedron P is naturally identified with X¢ v
via the (isotopy class of) map taking each ideal vertex to the corresponding
puncture and the equator to y. Under this identification, the union of the
positive faces (resp. the union of the negative faces) is identified with the top
(resp. bottom) disk of X y. Via the marking, any ideal polyhedron P realizes
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the edges of a graph I' € Graph(Xy v, y) as a collection of geodesic lines
either on the surface of or inside of P.

The angle measure between two non-degenerate planes in HP? can be
defined in terms of the length function on the fibers. Alternatively, one should
think of a non-degenerate plane in HIP? as an infinitesimal deformation of some
fixed central hyperbolic plane in H? or AdS?. As such, the angle between two
intersecting planes in HIP? should be thought of as an infinitesimal version of
the standard angle measure in H? or AdS>. As in the AdS setting, we must
distinguish between two types of dihedral angles: two non-degenerate half-
planes meeting along a non-degenerate edge e either lie on opposite sides of
or the same side of the degenerate plane (which is the union of all degener-
ate lines) passing through e. As in the AdS setting, we take the convention
that the dihedral angles along the equator of a convex ideal polyhedron P are
negative, while the dihedral angles along the other edges are positive. Let I'
be the 1-skeleton of P with y the subgraph corresponding to the equator. A
simple argument in HP geometry (Sect. 3.5) shows that the function 6 assign-
ing to each edge of P the exterior dihedral angle at that edge is y-admissible
(Definition 1.3); in other words 6 € A. Define HPPolyh- to be the space of
ideal polyhedra in HP? with 1-skeleton identified with I € Graph(Zo v, y)
and let lI’FHP : HPPolyh — Ar be the map assigning to an ideal polyhedron
its dihedral angles. Then all of the maps \DFHP : HPPolyh — Ar may be,
again, stitched together into one. We show:

Theorem 1.9 The map WP : HPPolyh — A, defined by WHP(pP) =
lI!FHP(P), if P € HPPolyhr, is a homeomorphism.

The equivalence of conditions (C) and (H) in Theorem 1.2 follows from The-
orems 1.9 and 1.4. Note that there is no direct analogue of Theorem 1.5 in the
half-pipe setting. Indeed, the induced metric on a ideal polyhedron in HP? is
exactly the double of the ideal polygon @ (P) across its boundary. The image
of the map ®#* : HPPolyh,, — %_ v, taking a convex ideal polyhedron P in
HP? to the induced metric on 9 P, is the half-dimensional subspace Z of % n
consisting of those hyperbolic metrics which are fixed by reflection across the
equator, see Sect. 3. Since the dimension of Z is half that of HPPolyh ,, ®7
fails to be injective. Intuitively, the induced metric on d P does not determine
P because as a polyhedron in H? (or AdS?) collapses onto a plane, the induced
metric only changes to second order: the path metric on a plane bent by angle
0 differs from the ambient metric only to second order in 6.

1.5 Strategy of the proofs and organization

There is a natural relationship between bending in AdS? and earthquakes on
hyperbolic surfaces. We describe this relationship, in our context of interest, in
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Sect. 2. Here is a synopsis. Via the product structure on the projective boundary
dAdS? = RP' x RP!, an ideal polyhedron P € AdSPolyh, is determined
by two ideal polygons py and pp in the hyperbolic plane, each with N labeled
vertices (see Sect. 2.3). The two metrics mp, mg € J, y obtained by doubling
pL and pg respectively are called the left metric and right metric respectively.
Given weights 6 on a graph I € Graph(Zo_y, y), the pair pr, pg determine
an ideal polyhedron P with bending data 6 if and only if the left and right
metrics satisfy:

mg = Exyymp, (D

where Ejy is the shear map defined by shearing a surface along the edges of
" according to the weights given by 6 (where a positive weight means shear
to the left, and a negative weight means shear to the right). Directly solving
for pr and pr given 6 is very difficult. However, the infinitesimal version of
this problem is more tractable; this is the relevant problem in the setting of
half-pipe geometry.

An ideal polyhedron P € HPPolyhy, is determined by an N-sided ideal
polygon p in the hyperbolic plane and an infinitesimal deformation V of p (see
Sect. 2). Doubling yields an element m of the Teichmiiller space 7% y and an
infinitesimal deformation W of m which is tangent to the sub-space of doubled
ideal polygons. The data p, V determine an ideal polyhedron P € HPPolyh
with bending data 6 if and only if the infinitesimal deformation W is obtained
by infinitesimally shearing m along the edges of I' according to the weights
6. In Sect. 3, we show how to solve for the polygon p given 6 € Ar by
minimizing an associated length function. In Sect. 3.5, we apply the results of
Sect. 3 to directly prove Theorem 1.9, that wHP is a homeomorphism, after
first proving:

Proposition 1.10 The map \IIFHP taking an ideal polyhedron P € HPPolyhp
to its dihedral angles 0 has image in Ar. In other words, 0 is y-admissible,
see Definition 1.3.

The proof of this proposition is a simple computation in half-pipe geometry,
which uses (among other things) an infinitesimal version of the Gauss—Bonnet
theorem for polygons.

In the AdS setting constructing inverses for the maps WAIS 4nd @ is too
difficult, so we proceed in the usual next-best way: we prove each map is a
proper, local homeomorphism, and then argue via topology. In order to do that,
we need the following result, which is proven in Sect. 7.1.

Proposition 1.11 [fN > 3, the space AdSPolyh is connected and has (real)
dimension 2(N — 3). If N > 6, then AdSPolyhy is connected and simply
connected. If N > 6, then HPPolyh y, is connected and simply connected.
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Because Teichmiiller space .7 y is a ball and because AdSPolyh is con-
nected and has dimension equal to that of .7 y, Theorem 1.5 is implied by
the following two statements.

Lemma 1.12 The map ® : AdSPolyhy, — %y is proper.
Lemma 1.13 The map ® : AdSPolyhy, — 9 v is a local immersion.

Lemma 1.12 is proved in Sect. 4 by directly studying the effect of degener-
ation of the left and right metrics my, mg of P on the induced metric ®(P)
via Eq. (1). Lemma 1.13 is deduced in Sect. 5 from a similar rigidity statement
in the setting of convex Euclidean polyhedra using an infinitesimal Pogorelov
map, which is a tool that translates infinitesimal rigidity questions from one
constant curvature geometry to another.

Next, to prove Theorem 1.4, we need the relevant local parameterization
and properness statements in the setting of dihedral angles. Note that in the
following lemmas, we consider each \Illé‘ds as having image in R, where
again E is the set of edges of the graph I' € Graph(Z¢ x, 7). The first lemma
is a properness statement for WAdS

Lemma 1.14 Consider a sequence P, € AdSPolyhr going to infinity in
AdSPolyh such that the dihedral angles 0, = \plédS(Pn) converge to O €
RE. Then 0 is not y-admissible because it fails to satisfy condition (iii) of
Definition 1.3.

Lemma 1.14 is proven in Sect. 4 together with Lemma 1.12. In the next lemma,
we assume [ is a triangulation (i.e. maximal) and extend the definition of W
to all of AdSPolyh. Indeed, for P € AdSPolyh, each ideal triangle of T is
realized as a totally geodesic ideal triangle in P. Therefore, the punctured
sphere ¥ y maps into P as a bent (but possibly not convex) totally geodesic
surface with 1-skeleton I and we may measure the dihedral angles (with sign)
along the edges.

Lemma 1.15 Assume I is a triangulation of o, n, with E denoting the set of
3N — 6 edges of T. If the 1-skeleton of P € AdSPolyh is a subgraph of T,
then \IJlédS : AdSPolyh — RE is a local immersion near P.

Lemma 1.15 is obtained as a corollary of Lemma 1.13 via a certain duality
between metric data and bending data derived from the natural pseudo-
complex structure on AdSPolyh. See Sects. 2.4 and 5.

The next ingredient for Theorem 1.4 is:

Proposition 1.16 The map \I!l'f‘ds taking an ideal polyhedron P € AdSPolyhr-
to its dihedral angles 6 has image in Ar.

The content of this proposition is that \Ill’f‘ds (P) satisfies condition (iii) of Defi-
nition 1.3 (conditions (i) and (ii) are automatic). This will be proven directly in

@ Springer



Polyhedra inscribed in a quadric 251

Sect. 6 by acomputation in AdS geometry. See “Appendix A” for an alternative
indirect proof using transitional geometry.

In Sect. 7, we explain why Lemmas 1.14 and 1.15, and Proposition 1.16
imply that WA9S is a covering onto A. We then argue that A is connected and
simply connected when N > 6, using Theorem 1.9, and we prove Theorem 1.4
(treating the cases N = 4, 5 separately). In addition, in Sect. 7.4, we deduce
Theorem 1.2 from Theorems 1.4, 1.9 and Rivin’s theorem.

2 Hyperbolic, anti-de Sitter, and half-pipe geometry in dimension 3

This section is dedicated to the description of the three-dimensional geometries
of interest in this paper, and to the relationship between these geometries.
We prove a number of basic but fundamental theorems, some of which have
not previously appeared in the literature as stated. Of central importance is
the interpretation of bending data in these geometries in terms of shearing
deformations in the hyperbolic plane (Theorems 2.11 and 2.18).

In [15], the first named author constructs a family of model geometries in
projective space that transitions from hyperbolic geometry to anti-de Sitter
geometry, passing though half-pipe geometry. We review the dimension-three
version of this construction here. Each model geometry X = X(B) is associ-
ated to a real two-dimensional commutative algebra B.

Let B = R 4 Rk be the real two-dimensional, commutative algebra gener-
ated by a non-real element « with k%> € R. As a vector space B is spanned by
1 and «. There is a conjugation action: (a + bk) := a — bk, which defines a
square-norm

la + b/c|2 = (a4 br)(a + bx) = a®> — b*k* € R.

Note that | - | may not be positive definite. We refer to a as the real part and
b as the imaginary part of a + bk . If k> = —1, then our algebra B = C is just
the complex numbers, and in this case we use the letter i in place of «, as usual.
If k2 = +1, then B is the pseudo-complex (or Lorentz) numbers and we use
the letter 7 in place of «. In the case k> = 0, we use the letter o in place of «.
In this case B = R 4 Ro, sometimes called the dual numbers, is isomorphic
to the tangent bundle of the real numbers (note that the tangent bundle of a
R-algebra is naturally an R-algebra, see last paragraph before Remark 2.2).
Note that if k2 < 0, then B = C, and if k2 > 0 then B = R + Rr.
Now consider the 2 x 2 matrices M (BB). Let

Herm(2, B) = {A € M(B) : A* = A}
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denote the 2 x 2 Hermitian matrices, where A* is the conjugate transpose of
A. As a real vector space, Herm (2, B) = R*. We define the following (real)
inner product on Herm (2, B):

(EIR T | R B R ]

We will use the coordinates on Herm(2, B) given by

2)

X2 + X3K X4 — X1

X:|:)C4+X1 xz—xyc]‘

In these coordinates, we have that
(X, X) = —det(X) = x{ + x5 — *x3 — x3,

and we see that the signature of the inner product is (3, 1) if k2 <0,0r(2,2)
if k2 > 0. (See [40, Section 2.6] for the case k = —1.)

The coordinates above identify Herm(2, B) with R*. Therefore we may
identify the real projective space RP? with the non-zero elements of
Herm(2, B), considered up to multiplication by a non-zero real number. We
define the region X inside RP? as the negative lines with respect to (-, -):

X ={X € Herm(2, B) : (X, X) < 0} /R*.

Note that in the affine chart x4 = 1, our space X is the standard round ball if
k = i, the standard solid hyperboloid if ¥k = t, or the standard solid cylinder
ifk =o0.

Next, define the group PGL™ (2, B) to be the 2 x 2 matrices A, with coef-
ficients in B, such that | det(A)|*> > 0, up to the equivalence A ~ 1A for any
A € B>, where here B> denotes the group of units in B. The group PGL™ (2, B)
acts on X by orientation preserving projective linear transformations as fol-
lows. Given A € PGL*(2, B) and X € X:

A-X:=AXA*

Remark 2.1 The matrices with real entries determine a copy of PSL(2, R)
inside of PGL™ (2, B), which preserves the set & of negative lines in the x1-
x2-x4 plane (in the coordinates above). The subspace &2 of X is naturally a
copy of the projective model of the hyperbolic plane. We think of &2 as a
common copy of H” contained in every model space X = X(B) independent
of the choice of k2.
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Note that if B = C, then PGLT (2, B) = PSL(2, C) and X identifies with
the usual projective model for hyperbolic space X = H3. In this case, the
action above is the usual action by orientation preserving isometries of H?,
and gives the familiar isomorphism PSL(2, C) = PSO(3, 1).

If B = R+ Rr, with 2 = +1, then X identifies with the usual pro-
jective model for anti-de Sitter space X = AdS’. Anti-de Sitter geometry
is a Lorentzian analogue of hyperbolic geometry. The inner product (-, -)
determines a metric on X, defined up to scale. We choose the metric with
constant curvature —1. Note that the metric on AdS® has signature (2, 1),
so tangent vectors are partitioned into three types: space-like, time-like, or
light-like, according to whether the inner product is positive, negative, or null,
respectively. In any given tangent space, the light-like vectors form a cone that
partitions the time-like vectors into two components. Thus, locally there is a
continuous map assigning the name future pointing or past pointing to time-
like vectors. The space AdS? is time-orientable, meaning that the labeling of
time-like vectors as future or past may be done consistently over the entire man-
ifold. The action of PGL™ (2, R4+R7) on AdS? is by isometries, thus giving an
embedding PGL™' (2, R + Rt) < PSO(2, 2). In fact, PGL™ (2, R + R7) has
two components, distinguished by whether or not the action on AdS? preserves
time-orientation, and the map is an isomorphism.

Lastly, we discuss the case B = R+Ro, with 02 = 0.Inthiscase, X = HP3
is the projective model for half-pipe geometry (HP), defined in [15] for the
purpose of describing a geometric transition going from hyperbolic to AdS
structures. The algebra R 4+ Ro should be thought of as the tangent bundle of
R, as an algebra: Letting x be the standard coordinate function on R, we think
of a + bo as the 1-jet of a path based at a with tangent b%. Alternatively, it
will be useful to think of R 4+ R as the bundle of imaginary directions in C
(or similarly, in R + R7) restricted to the subspace R. Letting x + iy denote
the standard coordinates on C, then we think of a + bo as the 1-jet of a path
in C based at a € R with tangent b%. See Sect. 2.6.

Remark 2.2 In each case, the orientation reversing isometries are also
described by PGL™ (2, B) acting by X > AXA*.

Although, we focus on dimension three, there are projective models for these
geometries in all dimensions. Generally, the n-dimensional hyperbolic space
H" (resp. the n-dimensional anti-de Sitter space AdS") may be identified with
the space of negative lines in RPP" with respect to a quadratic form of signa-
ture (n, 1) (resp. of signature (n — 1, 2)); the isometry group is the projective
orthogonal group with respect to this quadratic form, isomorphic to PO(n, 1)
(resp. PO(n — 1, 2)). The n-dimensional half-pipe space HP" identifies with
the space of negative lines with respect to a degenerate quadratic form with
n — 1 positive eigenvalues, one negative eigenvalue, and one zero eigenvalue.
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The structure group, as in the three-dimensional case, is a codimension one
subgroup of all projective transformations preserving this set. See Sect. 2.5.

The projective boundary The projective boundary 0X is the boundary of the
region X in RPP?. It is given by the null lines in Herm(2, B) with respect to
(-, ). Thus

9X = {X € Herm(2, B) : det(X) = 0, X # 0} /R*

can be thought of as the 2 x 2 Hermitian matrices of rank one. We now give
a useful description of 39X that generalizes the identification dH> = CP".
Any rank one Hermitian matrix X can be decomposed (up to sign) as

X = +ov*, 3)

where v € B2 is a two-dimensional column vector with entries in 3, unique
up to multiplication by A € B with |A|> = 1 (and v* denotes the transpose
conjugate). This gives the identification

8XE]P’18={UEBZ:UU*7£O}/~,

where v ~ vA for A € B*. The action of PGL*(2, B) on P'B by matrix
multiplication extends the action of PGL™ (2, B) on X described above. We
note also that the metric on X determines a compatible conformal structure
on 9,,X = P! . Restricted to B C P13, this conformal structure is exactly
the conformal structure induced by the square-norm | - |>. In particular, it is
Euclidean if ¥2 < 0, Lorentzian if 2 > 0, or degenerate if K2 =0.

We use the square-bracket notation § to denote the equivalence class in
P!B of <§> € B?. Similarly, a 2 x 2 square-bracket matrix [CCZ Z] denotes

the equivalence class in PGL™ (2, B) of the matrix <Ccl Z) e GL*(2, B).
Throughout, we will identify B with its image under the injection B — P'B
given by z — f

Remark 2.3 In the case k2 > 0, the condition vv* # 0 in the definition of

P! B is not equivalent to the condition v # 0, because B3 has zero divisors.

The inclusion R < B induces an inclusion RP! < P!B. This copy of
RP! is precisely the projective boundary of the common hyperbolic plane %
contained in all model spaces X (independent of the choice of «?).
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Recall that a subset P of projective space is called convex if P is contained
in an affine chart and is convex in that affine chart. In the notation introduced
here, the fundamental objects of this article are defined as follows:

Definition 2.4 A convex ideal polyhedron in X is a convex polyhedron P in
projective space such that the vertices of P lie in dX and the rest of P lies
in X.
An ideal triangle in X is a convex ideal polyhedron with three vertices. An
ideal simplex or ideal tetrahedron is a convex ideal polyhedron with four
vertices. Ideal simplices and their moduli will play an important role in this
article. We review some of the basic theory, referring the reader to [16] for a
more detailed account.

Let Zy,Z>, Z3,Z4 € Herm(2, B) have rank one, and let z1, 22, 23, 24
denote the corresponding elements of P!B. Assume that Z,, Z», Z3 deter-
mine an ideal triangle in X. There is a unique A € PGL™" (2, B) such that

Az =00 = [é],Azz =0:= [?],andAm =1:= [”.Then

(21,225 23, 24) '= Aza

is an invariant of the ordered ideal points z1, ..., z4, which will be referred to
as the cross ratio of the four points, since it generalizes the usual cross ratio in
CP'. 1tis straighforward to check that z1, z2, z3, z4 define an ideal tetrahedron
in X if and only if z = (z1, 22; 23, z4) (is defined and) lies in B C P'B and
satisfies:

121211 —z]> > 0. )

In this case z is called the shape parameter of the ideal tetrahedron (with
ordered vertices z1, 22, 23, z4). Using the language of Lorentzian geometry,
we say that z and z — 1, as in (4), are space-like. In fact, all facets of an
ideal tetrahedron are space-like and totally geodesic with respect to the metric
induced by (-, -) on X. The shape parameter z is a natural geometric quantity
associated to the edge e = z1z2 of the tetrahedron in the following sense,
described in Thurston’s notes [39, § 4] in the hyperbolic case. Change coor-
dinates (using an element of PGL™ (2, B)) so that z; = oo, and z» = 0. Then
the subgroup G, of PGL™ (2, B) that preserves e is given by

I U O 2
emfa=ls O] remn-o)

The number A = A(A) associatedto A € G, is called the exponential B-length
and generalizes the exponential complex translation length of a loxodromic
element of PSL(2, C). Let A € G, be the unique element so that Azz3 = z4.
Then the shape parameter is just the exponential B-length of A: z = A(A).
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Fig. 3 The shape parameters 1
corresponding to the six >
edges of an ideal tetrahedron
z
1 z—1
1—=2 P

There are shape parameters associated to the other edges as well. We may
calculate them as follows. Let 7 be any even permutation of {1, 2, 3, 4}, which
corresponds to an orientation preserving diffeomorphism of the standard sim-
plex. Then (27 (1), 27 (2); Z7(3)» Zx(4)) 18 the shape parameter associated to the
edge ¢/ = Zz(1)Zx(2)- This definition a priori depends on the orientation of
the edge ¢’. However, one easily checks that (z3, z1; 24, 23) = (21, 22; 23, 24)-
Figure 3 summarizes the relationship between the shape parameters of the six
edges of an ideal tetrahedron, familiar from the hyperbolic setting.

2.1 Hyperbolic geometry in dimension three

Let k2 = —1, so that B = C is the complex numbers. In this case, the inner
product (-, -) on Herm(2, C) is of type (3, 1) and X is the unit ball in the affine
chart x4 = 1, known as the projective model for H3. A basic understanding of
hyperbolic geometry, although not the main setting of interest, is very impor-
tant for many of the arguments in this article. We will often use intuition from
the hyperbolic setting as a guide, and so we assume the reader has a basic level
of familiarity. Let us recall some basic facts here and present an important
theorem, whose analogue in the AdS setting will be crucial.

The projective boundary 9H? identifies with P' B = CP'. Since the ball is
strictly convex, any N distinct points z1, . . ., zy determine an ideal polyhedron
P in H3. In the case N = 4, the ideal simplex P is determined by the shape
parameter z = (z1, 22; 23, z4) € C. Indeed, Condition (4) gives the well-
known fact that the shape parameter z may take any value in C\ {0, 1}. Consider
the two faces T = Azjz2z3 and T’ = Azpz1z4 of P, each oriented compatibly
with the outward pointing normal, meeting along the edge e = z1z2. Then,
writing z = €', the quantity s is precisely the amount of shear along e
between T and 7', while 6 is precisely the interior dihedral angle at e.

An infinitesimal deformation of an ideal polyhedron P is given by a choice
V = (Vy, ..., Vn) of tangent vectors to CP! at each of the vertices Z1y--+» 2N
of P. Such a deformation is considered trivial if Vi, ..., Vj are the restriction
of a global Killing field on H? U CP! to the vertices z1, .. ., z,. If necessary,
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augment the 1-skeleton of P so that it is an ideal triangulation I" of the surface
of P. Then the map zr, taking the vertices of an ideal polyhedron P to the
collection of 3N — 6 cross ratios associated to the edges of I', is holomorphic
and the following holds:

Theorem 2.5 An ideal hyperbolic polyhedron P is infinitesimally rigid with
respect to the induced metric if and only if P is infinitesimally rigid with respect
to the dihedral angles.

Proof Since the induced metric is determined entirely by the shear coordinates
withrespect to I', we have that the infinitesimal deformation V does not change
the induced metric to first order if and only if d log zr (V') is pure imaginary.
On the other hand, V does not change the dihedral angles to first order if and
only if d log zr (V) is real. Therefore V does not change the induced metric if
and only if i V does not change the dihedral angles. O

Remark 2.6 Theorem 2.5 is a simpler version of Bonahon’s argument [10]
that a hyperbolic three-manifold is rigid with respect to the metric data on the
boundary of the convex core if and only if it is rigid with respect to bending data
on the boundary of the convex core. In this setting of polyhedra, Bonahon’s
shear-bend cocycle is replaced by a finite graph I with edges labeled by the
relevant shape parameters z (or log z).

2.2 Anti-de Sitter geometry in dimension three

Let B be the real algebra generated by an element 7, with 7> = +1, which
defines X = AdS?, the anti-de Sitter space. Let us discuss some important
properties of the algebra B = R+Rt, known as the pseudo-complex numbers.
The algebra 5 = R + Rt of pseudo-complex numbers.

First, note that B is not a field as, for example, (1 +7) - (1 — ) = 0.
The square-norm defined by the conjugation operation |a + b7|> = (a +
bt)(a + bt) = a* —b? comes from the (1, 1) Minkowski inner product on R2
(with basis {1, 7}). The space-like elements of B (i.e. square-norm > 0), acting
by multiplication on 3, form a group and can be thought of as the similarities
of the Minkowski plane that fix the origin. Note that if |a 4+ br|> = 0, then
b = =%a, and multiplication by a + bt collapses all of B onto the light-like
line spanned by a + br.

The elements % and 1% are two spanning idempotents which annihilate
one another:

1+7\> 1+ 1 1—
i = T, and tr . i = 0.
2 2 2 2
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Thus B = R & R, as R-algebras, via the isomorphism

1—1 1+
(wL,wR):a< 5 )+b( > )i—)(a,b). ®))

Here @, and wpg are called the left and right projections B — R. These
projections extend to left and right projections P'B — RP! which give the
isomorphism P' B = RP' x RP'. Indeed, P! B is the Lorentz compactification

of B = { |:)1c:| cxeB } The added points make up a wedge of circles, so

that P! is topologically a torus. The square-norm | - |*> on B induces a flat
conformal Lorentzian structure on P! that is preserved by PGL* (2, B). We
refer to PGL™ (2, B) as the Lorentz Mébius transformations. With its conformal
structure P! B is the (1+ 1)-dimensional Einstein universe Ein!-! (seee.g. [5,8]
for more about Einstein space).

The splitting B = R @ R determines a similar splitting M>(B) = M>R &
M;R of the algebra of 2 x 2 matrices which respects the determinant in the
following sense: VA € M»(B)

(w det A, wrdet A) = (detwy (A), detwr(A)),

where, by abuse of notation, @ and @wpg also denote the extended maps
M>(B) — M>(R). The orientation preserving isometries Isom™ AdS® =
PGL™ (2, B) correspond to the subgroup of PGL(2, R) x PGL(2, R) such
that the determinant has the same sign in both factors. The identity compo-
nent of the isometry group (which also preserves time orientation) is given by
PSL(2, R) x PSL(2, R).

Note also that the left and right projections wy , g : P'B — RP! respect
the cross ratio:

1—1
(21, 22; 23, 24) = 5 (w21, ©L22; BLI3, TL24)
1+
> (WRZ1, WRZ2; DRI3, WRZ4),
where on the right-hand side (-, -; -, -) denotes the usual cross ratio in RP!,

Remark 2.7 Alternatively, the left and right projections @y, wg may be
described naturally in terms of projective geometry. Indeed, P'B = 9AdS?,
thought of as a subset of projective space RP3, is a surface which is ruled by
projective lines in two ways (the so-called “doubly ruled surface”). One ruling,
called the left ruling, is given by the family of lines {w, ') :xe RP'}, and

the other, called the right ruling, is given by the family of lines {@ ")
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x € RP'}. Hence, the left projection e may be thought of as the map which
projects points of dAdS? along the lines of the left ruling onto a fixed line in
the right ruling. Similarly, the right projection g may be thought of as the
map which projects points of dAdS? along the lines of the right ruling onto a
fixed line in the left ruling.

2.3 Ideal polyhedra in AdS3

Consider an ideal polyhedron P in AdS? with N vertices z1, ..., zy € P!B.
Foreachi =1,..., N,letx; = w(z;) and y; = @g(z;) be the left and right
projections of z;. Then, all of the x; (resp. all of the y;) are distinct. Otherwise,
the convex hull of the z; (in any affine chart) will contain a full segment in
the projective boundary. The following result shows one aspect where ideal
polyhedra in AdS? behave differently than ideal polyhedra in H?>, where we
have no conditions on the position of the vertices in JH?.

Proposition 2.8 The vertices z1,...,zN € P'B determine an ideal polyhe-
dron P in AdS? ifand only the left projections x1, . . ., xy and right projections
V1, ..., yn are arranged in the same cyclic order on the circle RP'.

Proof In general, a closed set € in RPY is convex if and only any M + 1
points of €2 span a (possibly degenerate) simplex contained in 2. Therefore
the zy, ..., zy define an ideal polyhedron if and only if any four vertices
Ziy» Zis» Zis» iy SPan an ideal simplex. This is true if and only if the cross ratio
2 = (2, Ziys Ziy» 2iy) 18 defined and satisfies that |z|2, 1 — zl2 > 0. Since
<= 1_Trx + l%y’ where x = (xila Xiys Xizs xi4) and y = (}’ip Yias Vi )’i4),
we have that |z|> = xy and |1 —z|> = (1 —x)(1 — y). So |z|%, [1 — z]* > Oif
and only if x and y have the same sign and (1 — x) and (1 — y) have the same
sign. Hence, z;,, 2i,, Zi3, 2iy span an ideal simplex if and only if the two four-
tuples of vertices (x;,, xilz, Xiy, Xiy) and (Yi,, Yi,, Vi3, Yi,) are arranged in the
same cyclic order on RPP". The proposition follows by considering all subsets
of four vertices. |

We denote by p; = @ (P) (resp. pr = @r(P)) the ideal polygon in the
hyperbolic plane with vertices xp, ..., xy (resp. yi, ..., Yn)-

Let us quickly recall the definitions and terminology from Sect. 1.3. We
fix, once and for all, a time orientation on AdS>. Since all faces of an ideal
polyhedron P are space-like, the outward normal to each face is time-like and
points either to the future or to the past. This divides the faces into two groups,
the future (or top) faces, and the past (or bottom) faces. The union of the future
faces is a bent polygon, as is the union of the past faces.

Proposition 2.9 The union p™* of the future faces and the union p~ of the
past faces are each homeomorphic to a disk. The edges of p™ N p~ dividing
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the future faces from the past faces form a Hamiltonian cycle in the 1-skeleton
of P. We call this Hamiltonian cycle the equator.

Proof First, let x be a point in the interior of p™ and L a timeline line through
x*in AdS?. Then L intersects p~ in a point x ~ in the interior of p~—. Let T be
any timelike plane in AdS® containing L. The intersection T N P is a convex
polygon in T = AdS?. The boundary 3(7 N P) is the union of 7 N p* and
T N p~. Bach point of T N p™ has a future pointing normal in 7 and each
point of 7' N p~ has a past pointing normal in 7. By convexity of T N P, each
of TN p*Tand T N p~ is a connected segment and these segments meet in
two distinct points of p* N p~. Rotating T around the axis L sweeps out a
radial foliation of p* by arcs of emanating from x™ and a radial foliation of
p~ by arcs emanating from x . Hence both p™ and p~ are seen explicitly to
be homeomorphic to disks. The points of p* N p~ in each timelike plane T
sweep out a Jordan curve in 9 P separating the interior of p* from the interior
of p~. O

Each face of P is isometric to an ideal polygon in the hyperbolic plane.
Therefore the induced metric on the boundary of P is naturally a hyperbolic
metric m on the N-punctured sphere; it is a complete metric. Further, the
labeling of the vertices, the equator, and the top and bottom of P determine an
identification (up to isotopy) of the surface of P with the N-punctured sphere
¥0,n, making m into a point of the Teichmiiller space 7% . The marking
also identifies the 1-skeleton of P with a graph I" on X y with vertices at
the punctures. We may project P combinatorially to the left and right ideal
polygons pr and ppr respectively. The edges of the equator project to exterior
edges of py (resp. pr) and top/bottom edges project to interior edges of py,
(resp. pr). We may assume the 1-skeleton gives a triangulation of P by adding
additional top/bottom edges as needed. Consider an edge e = z;z; adjacent to
two faces T = Azjzpz3 and T’ = Az)z422, each oriented so that the normal
points out of P. Then the cross ratio z = (z1, 22; 23, 24) contains the following
information:

Proposition 2.10 The edge e is an equatorial edge if and only if 7 = a + bt
has real part a > 0.

Since the edge e is space-like, we may express it as

7=+t .= +¢*(cosh 6 + T sinh 0).
By convexity of P, the imaginary part of z is always positive. Hence, either
7= 45T with 6 > 0, or 7 = —e*77 with & < 0. In the former case,

the edge e is an equatorial edge and in the latter case e is a top/bottom edge.
In either case, s = s(e) is precisely the shear coordinate (in the sense of
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Thurston) of the induced hyperbolic metric m along the edge e, and 6 is the
exterior dihedral angle at the edge e (as defined in Sect. 1.3).

We now give the fundamentally important relationship between shearing
and bending in the setting of ideal polyhedra. Let m (resp. mg) denote the
double of p; (resp. pr). Since the vertices of P, and its projections p;, and
PR, are labeled, we may regard m and m g as points of the Teichmiiller space
To.N; we call my, the left metric and m g the right metric. Recall the definition
of AdSPolyh given in Sect. 1.3.

Theorem 2.11 Letmy,mg, m € J N be the left metric, the right metric, and
the induced metric defined by P € AdSPolyhy, and let 6 denote the dihedral
angles. Then the following diagram holds:

E E
Per—9>mr—9>mR, (6)

where Eg denotes shearing along ' according to the weights 6 (a positive
weight means shear to the left). Further, given the left and right metrics mp,
and mp (any two metrics obtained by doubling two ideal polygons pr and
PR), the induced metric m and the dihedral angles 6 are the unique metric
and weighted graph on Xo n (with positive weights on the top/bottom edges,
and negative weights on y ) such that (6) holds.

Proof Let ' € Graph(X v, y) represent the 1-skeleton of P. By adding
extra edges if necessary, we may assume [ is a triangulation. As above we
associate the shape parameter 7 = ge*@+79@ (o a given edge o of I', where
& = %1. Then,

7z = ee*@(coshO(a) + T sinh O (a))

_ eot@) (1 —T 0@ 1+Tee(a>)
2 2

1= T et @—0@) | 1+ T oS @+0(@)

Therefore the shear coordinates in the left metric m are given by s; = s — 6
and the shear coordinate in the right metric mg are sg = s + 6. Equation (6)
follows.

The uniqueness statement also follows from this calculation. Indeed, given
two metrics my, and mpg, obtained by doubling ideal polygons p; and ppg
respectively, and any triangulation I' € Graph(XZo y, ), we may solve for
the shear coordinates s, determining a metric m, and the weights 6 needed to
satisfy (6). Specifically, s = (sg + sr)/2 and 8 = (sg — sp)/2, where now
st and sg denote the shear coordinates with respect to I'. We may construct a
polyhedral immersion of £y y whose induced metric is m and whose (exterior)
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bending angles are 6 as follows. Lift I" to a triangulation T of the universal
cover 20 ~- Then s and 6 define an equivariant polyhedral immersion f

EO v — AdS?, mapping the two triangles adjacent to a lift ¢ of an edge
e € E(I') to spacelike geodesic ideal triangles in AdS? meeting along the
spacelike geodesic line f(¢) with sheering s(e), bending 6(e), and which
have equal time orientation if e ¢ y or opposite time orientation if e € y.
Similarly, the shear coordinates sz, and sg respectively define polygonal maps
fL fR : Eo ~ — H? with folding precisely at the (lifts of) edges of y.
Since my, and mg are the doubles of ideal polygons py and pg respectively,
it follows that fL and fR have trivial monodromy and image equal to pr
and pg respectively. Hence the monodromy of f which is the product of the
monodromies of f; and fR, is also trivial, so f well-defines a polyhedral
immersion f : Xy — AdS? with bending data 6 and induced metric m. If 6
takes negative values on the equator and non-negative values elsewhere, then
f is locally convex and bounds a convex ideal polyhedron P. The uniqueness
statement follows because P is uniquely determined by pr and pg. |

As a corollary we obtain a version of Thurston’s earthquake theorem for
ideal polygons in the hyperbolic plane. A measured lamination on the stan-
dard ideal N-gon is simply a pairwise disjoint collection of diagonals with
positive weights. We denote by MLy the complex of these measured lami-
nations. A function 6 € Ar determines two measured laminations 64 and 6_
by restriction to the top edges of I' and to the bottom edges.

Corollary 2.12 (Earthquake theorem for ideal polygons) Let pr, pr €
polygy be two ideal polygons. Then there exists unique 04,0_ € MLy
such that pgr = Eq, pp and p; = Eg_pg, where again E, denotes shearing
according to the edges of . € MLy according to the weights of A.

Proof Let x1, ..., xy be the ideal vertices of p; and let y, ..., yy be the
ideal vertices of pg. Then, the vertices z; = I_T’xi + HTT y; define an ideal
polyhedron P € AdSPolyhy such that @ (P) = pr and @wr(P) = pr.
We think of ¥ y as the double of the standard ideal N-gon, meaning that
the top hemisphere is identified with the standard ideal N-gon and the bottom
hemisphere is identified with the standard ideal N-gon but with orientation
reversed. The left metric m (resp. mg) is obtained from pr (resp. pr) by
doubling. This means that the restriction of m, to the top hemisphere of 3¢
is pr and the restriction of m, to the bottom hemisphere is pr, the same ideal
polygon but with opposite orientation. Similarly, the restriction of mg to the
top and bottom hemispheres of X y is pg and pg. Let I' € Graph(Zo v, y)
denote the 1-skeleton of P and let & € RF(M) denote the dihedral angles.
Theorem 2.11 implies that mr = Epm . Restricting to the top hemisphere,
we have that pg = Eg, p; where 0, € MLy is twice the restriction of 6
to the top hemisphere. Restricting to the bottom hemisphere, we have that
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Pr = Ep_pr, where 0_ is the restriction of 8 to the bottom hemisphere. This
implies that pg = E_y_pr, or equivalently py = Eg_pg. Uniqueness of
05, 6_ follows from uniqueness of 6 in Theorem 2.11. O

Let us briefly digress to discuss the question of whether, in the context of
Corollary 2.12, a given 6 and 6_ are realized by some py, and pg, and whether
they are realized uniquely. In the setting of closed surfaces, it is known [12]
that given a pair of measured laminations 6 and 6_ which are filling, there
exist two hyperbolic surfaces pr and pg such that pg is obtained from pr
by left earthquake along 64 and also by right earthquake along 6_. It is con-
jectured [28] that p; and pg are unique. Similarly, any pair of laminations
04+, 0_ € MLy appearing in Corollary 2.12 must be filling, meaning that any
diagonal intersects the support of 64 or 6_ transversely; this is equivalent to
the statement that the graph I' € Graph(Zo, y, ), obtained by placing the
support of 6 on the top hemisphere and the support of 6_ on the bottom hemi-
sphere, is three-connected. It will follow from Theorem 1.4 that in the case N is
odd, the polygons pr, pr are unique, given the measured laminations 6, 6_.
This is because 6 € A is determined entirely by its restrictions 64 and 6_ to
the top and bottom edges. However, there are examples of filling measured
laminations 6, 6_ such that there is no element 6 € A whose restriction
to the top edges is 64 and whose restriction to the bottom edges is 6_ (see
Appendix A). The situation is even worse in the case N is even. If 6, 6_ are
realized by a pair of ideal polygons py, pr, then there is a one dimensional
family of pairs of ideal polygons for which the laminations 6, 6_ turn out to
be the same. This is because for any 6 € A, there is a one parameter family of
deformations of 8 which leave 0., 6_ unchanged: simply add and subtract the
same quantity from the weights of alternating edges on the equator. Further,
in the case N even, only a codimension one subspace of filling laminations
04, 6_ are realized in Corollary 2.12. It is an interesting problem to determine
this codimension one subspace.

2.4 The pseudo-complex structure on AdSPolyh

The space of marked ideal polyhedra AdSPolyhy naturally identifies with
a subset of (R 4+ Rt)¥ 3, by transforming each ideal polyhedron so that
its first three vertices are respectively 0, 1, oo € P'B. The marking on each
polyhedron P € AdSPolyh, identifies P with the standard N-punctured
sphere %o y. So, given a triangulation I" on X y with vertices at the punctures
and edge set denoted E, we may define the map zr : AdSPolyhy, — (R +
R7)E which associates to each edge e of a polyhedron P the cross ratio of
the four points defining the two triangles adjacent at e. This map is pseudo-
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complex holomorphic, meaning that the differential is (R + Rt)-linear. This
observation allows us to prove the following analogue of Theorem 2.5.

Theorem 2.13 An ideal polyhedron P € AdSPolyh, is infinitesimally rigid
with respect to the induced metric if and only if P is infinitesimally rigid with
respect to the dihedral angles.

Proof Let V e TpAdSPolyhy = (R + R7)¥ 3. Let I be a triangulation
obtained from the 1-skeleton of P by adding edges in the non-triangular faces
if necessary. Since the induced metric is determined entirely by the shear coor-
dinates with respect to I', we have that V does not change the induced metric
to first order if and only if d log zr (V) is pure imaginary. On the other hand,
V does not change the dihedral angles to first order if and only if d log zr (V')
is real. Therefore V does not change the induced metric if and only if TV does
not change the dihedral angles. O

2.5 Half-pipe geometry in dimension three

We give some lemmas useful for working with HIP?. Recall the algebra R+Ro,
with o2 = 0. The half-pipe space is given by

HP? := X = [X FYo:X,Y e MyR), X = X,det(X) > 0, YT = —Y} / ~,

where (X +Yo) ~ A(X+Yo) for A € R*. There is a projection o : HP? —
H?, defined by @ (X + Yo) = X, where we interpret the symmetric matrices
X of positive determinant, considered up to scale, as a copy of H?. The fibers of
this projection will be referred to simply as fibers. The projection can be made
into a diffeomorphism X — H? x R (not an isometry) given in coordinates
by

X+Yor— (X, L), (N

where the length L along the fiber is defined by the equation
0—1
Y=LVdetX (| ) ®)

The projective boundary 89X identifies with P! (R 4+Ro), which identifies with
the tangent bundle 7RP'! via the natural map TR> — (R + Ro)? sending a
vector v € R? and a tangent vector w € T,R?> = R? to v + ow. It will be
convenient to think of an ideal vertex as an infinitesimal variation of a point
on RP! = 9HZ. In this way, a convex ideal polyhedron P in HP3 defines an
infinitesimal deformation V = V (P) of the ideal polygon p = @ (P) in H?.
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We restrict to the identity component of the structure group, which is given
by

Go = PSL(2, R + Ro)
—{A+Bo:AeSLQ2,R), and B € T4SL(2,R)}/ % .

The structure group identifies with the tangent bundle TPSL(2, R), and it
will be convenient to think of its elements as having a finite component A €
PSL(2, R) and an infinitesimal component a € s[(2, R), via the isomorphism

PSL(2,R) x s[(2, R) — Gg
(A,a) = A+ Aao,

where Aa € T4PSL(2, R). (This is the usual isomorphism G x g — T G for
a Lie group G with Lie algebra g = T1G, gotten by left translating vectors
from the identity.) The identification Gy = TPSL(2, R) is compatible with
the identification dHP® = TRP!.

Thinking of a € s[(2, R) as an infinitesimal isometry of H?, recall that at
each point X € H? we may decompose « into its translational (X -symmetric)
and rotational (X-skew) parts:

a = ax-sym + aX-skew
1 1
= 5 (a + XaTXq) + 5 (a — XaTX*1> ,

where the rotational part ay.sew 1S a rotation centered at X of infinitesimal
angle rot(a, X) defined by

ﬁ_lax_skewﬁ =rot(a, X) (1(/)2 _%)/2) .

The action of an element of (G in the fiber direction depends on the rotational
part of the infinitesimal part of that element.

Lemma 2.14 The action of a pure infinitesimal 14+ao onthe point X+Yo € X
is by translation in the fiber direction by amount equal to the rotational part
rot(a, X) of the infinitesimal isometry a at the point X € H?. In the product
coordinates (7):

14+ao:(X,L)— (X, L+rot(a, X)).
More generally, the action of A + Aao is given by

A+ Aao : (X,L)— (A-X, L +rot(a, X)).

@ Springer



266 J. Danciger et al.

Proof

(14+a0)- (X+Yo)=(0+ac)(X +0cY)1—alo)
=X+0Y+o@@X—Xa")
=X40Y + o0 2ax-skewX

=X+4+o0Y 4 o 2rot(a, X)x/_<1/2 _é/2>\/§

=X+oY +o0 rot(a, X) det(\/}) (1 _01> ,

where the last equality follows from the algebraic identity

Y (? _01) Y = det(Y) ((1) _01) )

The first statement now follows from Eq. (8). The second more general formula
follows easily after left multiplication by A. O

Definition 2.15 Leta € s;R be an infinitesimal translation of length 7 along
an oriented geodesic £ in HZ. Then, for any oriented geodesic ¢ in HP? that
projects to ¢, the element 1 + ao is called an infinitesimal rotation about the
axis ¢ of infinitesimal angle 7.

Thinking of the fiber direction in HP? as the direction of infinitesimal unit
length normal to H? into either H or AdS?, the definition is justified by the
previous lemma. In fact, the amount of translation in the fiber direction is 7
times the signed distance to £.

2.6 Ideal polyhedra in HP?

There are several important interpretations of a convex ideal polyhedron P in
HP3. As described in the previous section, P defines an infinitesimal deforma-
tion V = V(P) of the ideal polygon p = @ (P) in H?. Alternatively, P may be
interpreted as an infinitesimally thick polyhedron in H? or AdS?. Multiplying
the tangent vector V by i (resp. t) describes an infinitesimal deformation i V
(resp. V) of the polygon p into H? (resp. AdS?). The polyhedron P in HIP?
is a rescaled limit of a path of hyperbolic (resp. anti-de Sitter) polyhedra col-
lapsing to p and tangent to i V (resp. T V) in the following sense. Consider the
path of algebras B; generated by «; such that Kt2 = —t[t|. Then the geometries
X(B;) associated to these algebras are conjugate to X(B3;) = X(C) = H? for
all > 0, orto X(B_1) = X(R + Rt) = AdS? forr < 0. For ¢ > 0, the map
a; : C — B, defined by i — «;/|t| is an isomorphism of algebras. For ¢ < 0,
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the map a; : R + Rt — B, defined by t — «;/|¢| is an isomorphism. Each
of these maps defines a projective transformation, again denoted «;, taking the
standard model of hyperbolic space H> = X(B;) (resp. the standard model of
anti-de Sitter space AdS® = X(B_1)) to the conjugate model X(15;).

Proposition 2.16 Consider a smooth family Q; of ideal polyhedra in H? (resp.
AdS?), defined for t > 0 (resp. for t < 0). Assume that Qo = p is an
ideal polygon contained in the central hyperbolic plane &2 bounded by RP!
and Qy = U +iW (resp. Qy = U + tW), where U, W are infinitesimal
deformations of p as an ideal polygon in H?. Then the limit of a;(Q;) as
t — Ois an ideal polyhedron P in X(By) = HP? which satisfies w (P) = Qg
and V(P) = W.

Proof We demonstrate the claim for a single ideal vertex of the ideal polyhe-
dron. Let us treat only the case t > 0, as the ¢ < 0 case is similar. Consider
the point z = x + iy € CP'. The corresponding point in the boundary of
H? = X(By) is the (projective class of) Hermitian matrix

x+iy . . x2 4 y* x4 iy
[ 1 ][x lyl]_|:x—iy 1 .

The transformation g, maps this to

2 2 Kt Kt
xX“+y x+ >ty x+Fy
A A (S|

Now if z(f) = x(¢) + iy(¢) is a smooth path in ¢ with x(0) = xo, y(0) = 0,
x"(0) = u and y’(0) = w, then the limit as + — 0 of the above is the point

[xo Jrlaw} [xo—ow 1]

of the projective boundary of HP? = X(Byp) corresponding to xo + cw €
P(By), which has @ (xg + cw) = xo € RP! and V(xg + ow) = w €
T, RP! = R, O

The interplay between these two interpretations leads to Theorem 2.18
below, which is a fundamental tool for studying half-pipe geometry. Before
stating the theorem, let us recall the terminology introduced in Sect. 1.4 and
state a proposition. We fix an orientation of the fiber direction once and for
all. Every convex ideal polyhedron in HIP? has a top, for which the outward
pointing fiber direction is positive, and a bottom, for which the outward point-
ing fiber direction is negative. The edges naturally sort into three types: an
edge is called a top edge if it is adjacent to two top faces or a bottom edge
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if it is adjacent to two bottom faces, or an equatorial edge if it is adjacent
to both a top and bottom face. The union of the top faces is a bent polygon
which projects down to the ideal polygon p = @ (P) in H?. The union of the
bottom faces also projects to p. The infinitesimal dihedral angle at an edge is
measured in terms of the infinitesimal rotation angle needed to rotate one face
adjacent to the edge into the same plane as the other. The dihedral angle at a
top/bottom edge will be given a positive sign, while the dihedral angles at an
equatorial edge will be given a negative sign. This sign convention is justified
by the following (see [15, §4.2]).

Proposition 2.17 The infinitesimal dihedral angle along an edge of P is sim-
ply the derivative of the dihedral angle of the corresponding edge of Q;, where
Q; is as in Proposition 2.16.

Alternatively, dihedral angles may also be measured using the cross ratio.
Indeed, if two (consistently oriented) ideal triangles T = Azjzpz3 and
T' = Az4z1z2 meet at a common edge @ = 7172, then the cross ratio
7z = (21, 22: 23, z4) satisfies that z = 177 = ge’(1 + 06), where s is
the shear between T and T, where 6 is the dihedral angle, and where ¢ is +1
if o is an edge of the equator and —1 if « is a top/bottom edge.

We consider the bending angles on the top (resp. bottom) edges of an ideal
polyhedron P as a (positive) measured lamination on the ideal polygon p =
@ (P). The following theorem is the infinitesimal version of Theorem 2.11
about the interplay between earthquakes and AdS geometry.

Theorem 2.18 Let P be an ideal polyhedron in HIP® and let 6. (resp. 0_) be
the measured lamination on p = @ (P) describing the bending angles on top
(resp. on bottom). Then the infinitesimal deformation V.= V (P) of p defined
by P is equal to ey, (p), where eq, is the infinitesimal left earthquake along
04. Similarly, V = —eg_(p) is obtained by right earthquake along 0_.

Proof Let I' € Graph(Zg v, y) represent the 1-skeleton of d P. By adding
extra edges if necessary, we may assume [" is a triangulation. As above we
associate the shape parameter z(a) = ge* @%@ to any given edge o of T.
Note that the map taking four points on RP! to their cross ratio is smooth and
that, under the identifications TRP! = PY(R + Ro) and TR = R + Ro ,
the differential of the cross-ratio map (RP')* — R is exactly the cross ratio
(P'(R 4+ Ro))® — R + Ro. Therefore the shear coordinate of p =o(P)
at o is s () and the infinitesimal variation of the shear coordinate at o under
the deformation V (P) is 8 (). The result follows. ]
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2.7 Half-pipe geometry in dimension two

The structure group G for HIP? acts transitively on degenerate planes, i.e. the
planes for which the restriction of the metric on HP? is degenerate. These are
exactly the planes that appear vertical in the standard picture of HP? (as in
Fig. 4); they are the inverse image of lines (copies of H') in H? under the
projection @ . Each degenerate plane is a copy of two-dimensional half-pipe
geometry HP2. For the purposes of the following discussion, we will fix one
degenerate plane in HP? as our model:

el 2)ee (S )]

Here we describe two important facts about HP?. The first is (reasonably)
named the infinitesimal Gauss—Bonnet formula. See [15, §3] for details about
half-pipe geometry in arbitrary dimensions.

There is an invariant notion of area in HP2. As above, let L denote the
length function along the fiber direction. Then the area of a polygon p (or a
more complicated body) is the integral of the length L(w ~!'(x) N p) of the
segment of p above x, over all x € w (p) C H'. Alternatively, if p is the limit
as t — 0 of a, p;, where p, is a smooth family of collapsing polygons in H?,
then the area of p is simply the derivative at = 0 of the area of p;.

Proposition 2.19 (Infinitesimal Gauss—Bonnet formula) Let p be a polygon
in HP? whose edges are each non-degenerate. Then the area of p is equal to
the sum of the exterior angles of p. In particular, the sum of the exterior angles
of any polygon is positive.

T T
R R
HP?

1+o0a)- & (14 0a) &
|
— —
« <«
v@ v@

= o® >
Fig.4 The action of 1 +ao on HP? when « is an infinitesimal rotation centered at x (left), ora

is an infinitesimal translation along L (right). The central hyperbolic plane & (see Remark 2.1)
and its image under the action are depicted
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Proof Let p; be a smooth family of collapsing polygons in H? so that p is the
limit as ¢ — 0 of a; p;. Then the area of p is the derivative of the area of p;
att = 0. Each exterior angle of p is the derivative of the corresponding angle
of p; att = 0. The proposition follows from the usual Gauss—Bonnet formula
for polygons in H?. O

Secondly, we give a bound on the dihedral angle between two non-
degenerate planes in terms of the angle seen in the intersection with a
degenerate plane H = HIP2. This will be used in the proof of Proposition 1.10.

Proposition 2.20 Let P, Q be two non-degenerate planes in HIP® which inter-
sect at dihedral angle 6. Let H be a degenerate plane so that the lines H N P
and H N Q intersect at angle ¥ in H = HP2. Then sign(¥) = sign(0) and
|9 < 10| with equality if and only if H is orthogonal to the line P N Q.

Proof We may change coordinates so that P = & (recall that & is a copy of
H? common to all of the models X(13) in projective space, see Remark 2.1).
The second plane Q is the limit as t — 0 of a;Q;, where Q; is a smoothly
varying family of planes in H? with limit Qg = &. We may choose the path
Q, so that the line L = Q; N &2 is constant for all + > 0. The dihedral angle
between Q and &7 is the derivative at = 0 of the dihedral angle 6; between
Q; and &, now thought of as a plane in H. The degenerate plane H defines
a plane H' in (the projective model of) H? which is orthogonal to 2.

Let ¢ be the angle between Q, N & and H'. Let o be a small sphere
centered at the intersection point of &2, O, and H'. After scaling up oy to a
sphere of constant curvature 1, the spherical triangle with vertices Q; N & Noy,
PNH'Nogand H'NQ;Nog has edge lengths d(Q; NP Nay, PNH'Noy) = ¢
andd(ZNH'Noy, H'NQ;Noy) = ¥, whileithas aright angle at ZNH'Noy
and angle 6, at ;N ZNoy, see Fig. 5. It then follows from a standard spherical
triangle formula that

tan ¥, = tan 6, sin .

Fig. 5 The triangle on og H
with right angle at
2 N H' N oy, angle 6; at O
0N Z Nogp and angle ¢; at
0: NH' Noy L
Ht ¢ zgz
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The proposition now follows since ¥ = % t:Oﬁt’ 6 = %| z=09f and 6y = Vo

(both are either zero or ). O

3 Length functions and earthquakes

We prove Theorem 1.9 by showing that each ideal polyhedron in HP? is real-
ized as the unique minimum of a certain length function defined in terms
of its dihedral angles. Our strategy is inspired by a similar one used by
Series [36], and later Bonahon [11], in the setting of quasifuchsian hyperbolic
three-manifolds with small bending.

3.1 Shear and length coordinates on the Teichmiiller space of a
punctured sphere

Consider an ideal triangulation I" of the N-times punctured sphere X y. Let
af, ..., o, denotethen = 3N —6edges of I'. There are two natural coordinate
systems on the Teichmiiller space .7 y of complete hyperbolic metrics on
Yo.n (see [29,41]):

e Let s1,...,s, denote the shear coordinates along the edges of I'. The
sum of the shear coordinates over edges adjacent to a particular vertex
is always zero. Under this condition, the shears along the edges provide
global coordinates on 7 y .

e We may define length coordinates ¢y, ..., £, on J n as follows. In any
hyperbolic structure, choose a horocycle around each cusp, and let £; denote
the (signed) length of the segment of «; connecting the two relevant horo-
cycles. By abuse, we call ¢; the length of «;. Changing a horocycle at a
particular cusp corresponds to adding a constant to the lengths of all edges
going into that cusp. The lengths ¢4, ..., ¢, are only well-defined up to
this addition of constants, making these coordinates elements of R” /RV .

It is well-known [29,41] that both the shears and the lengths give global coor-
dinate systems for Teichmiiller space. It is quite simple to go from length
coordinates to shear coordinates, in fact the map sending lengths to shears is
linear. To describe this coordinate transformation more precisely, let us estab-
lish some notation. The orientation of the surface determines a cyclic order
on the edges of any triangle. Given any two edges «;, «;, let €;; = —¢j; be
the number of positively oriented triangles T of I" such that «;, or; are dis-
tinct edges of T counted with a positive sign if «; follows «; in the cyclic
order on the edges of T, and with negative sign if «; follows «;. By defini-
tion, (€;j)1<;, j<n 18 an anti-self adjoint matrix with entries in {—1, 0, 1}. It is
straightforward to check the following, see Thurston [41, p. 44], Penner [29].
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Lemma 3.1 (Thurston, Penner) Given a hyperbolic metric h € o n with
length coordinates (£;), the corresponding shear coordinates are defined by

1
si=752 it
J

Note that the right-hand side is independent of the horocycles chosen to define
the ¢;.

Definition 3.2 Let w denote the anti-symmetric bilinear form on .7y, defined
by

1
a)=§Z€,’jd5i®d€j. 9)
LJ

Note that, by Lemma 3.1, we may also express w as

w= Zd(z,- ® ds;. (10)

1

It follows that w is well-defined (independent of the ambiguity in the definition
of d¢;) because for any tangent vector Y, ds; (Y) is a balanced function on the
set E = E(I") of edges, meaning it is a function whose values sum to zero on
those edges incident to any vertex.

From the second expression for @, we can see that it is a symplectic form,
i.e. it is non-degenerate. In fact, we mention that @ is nothing other than (a
multiple of) the Weil-Petersson symplectic form (see Wolpert [42] and Fock—
Goncharov [21]), though we will not need this fact. It is straight-forward to
check directly that @ does not depend on the particular triangulation used in
its definition.

3.2 The gradient of the length function
Given a function f : % ny — R, we denote by D® f its symplectic gradient
with respect to w, defined by the following relation: for any vector field X on
N>
(D f, X) = df (X).
Let6 = (64, ..., 6,) be any balanced assignments of weights to the edges of

I'. Then one may define the corresponding length function £y as a function on
. N for any hyperbolic metric & € J, y, with length coordinates (¢;)1<;<n,
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set

Co(h) = Zeizi.

The function ¢y does not depend on the choice of horocycles at the cusps
precisely because 6 is balanced. We let ¢g denote the vector field on % y
defined by ds;(eg) = 6;, in other words ey shears along each edge according
to the weights 6. It follows immediately from (10) that:

Lemma 3.3 Let 6 = (0y,...,6,) be balanced weights on the edges of T.
Then

D%ly = —ep.

3.3 The space of doubles is Lagrangian

We assume, from here on, that our graph I" admits a Hamiltonian cycle y . Then
cutting 3oy along y yields two topological ideal polygons, one of which we
label top and the other bottom. There is an orientation reversing involution ¢
on Xo y which exchanges top with bottom and pointwise fixes y. We let &
denote the half-dimensional subspace of .7 y which is fixed by the action of
t, i.e. those hyperbolic metrics which are obtained by doubling a hyperbolic
ideal polygon and marking the surface in such a way that the boundary of the
polygon identifies with y .

Proposition 3.4 The space of doubles 9 is a Lagrangian subspace of . n
with respect to .

Proof We may compute w with respect to a symmetric triangulation I" (one
which is fixed under the involution ¢). For 4 € % y, the shear coordinates
(si(h)) are anti-symmetric, in the sense that, if ((o;) = «;, then s;(h) =
—s;j(h). (So, in particular, s;(h) = 0, if «; is an edge of y.) On the other
hand, the lengths (¢;(h)) are symmetric, in the sense that, if ((o;) = «;,
then ¢;(h) = £;(h). The proposition follows immediately from the second
expression (10) for w above. O

3.4 Convexity of the length function

We now show a form of convexity for the restriction of the length function £y to
the space of doubles Z in 9 y. It will sometimes be convenient to identify the
space of doubles & with the space polyg = polyg, of marked ideal polygons
in the hyperbolic plane, and to think of (the restriction of) £y as a function on
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polyg. The graph I" on X¢_y, then, projects to each polygon p in polyg, with
y identified to the perimeter edges of p and all other edges of I identified with
diagonals of p.

The following proposition is the analog, in the (simpler) setting of ideal
polygons, of a theorem of Kerckhoff [25] which played a key role in Series’s
analysis of quasifuchsian manifolds with small bending [36]. In a similar way,
the proposition is crucial for Theorem 1.9.

Proposition 3.5 For all 6 € Ar, the length function £y : polygy — R is
proper and admits a unique critical point which is a non-degenerate minimum.

The proof is based on two lemmas.

Lemma 3.6 If0 € Ar, then £y : polyg — R is proper.

Lemma 3.7 If0 € Ar, then £y is convex and non-degenerate on earthquake
paths in polyg.

Proof of Proposition 3.5 Let 6 € Ar. Since £g is proper by Lemma 3.6, it has
at least one minimum in polyg. Moreover Lemma 3.7 shows that any critical
point is a non-degenerate minimum.

Let p, p’ € polygy be two minima of ¢y. There is, by Corollary 2.12, a
unique measured lamination A on p such that E; (p) = p’. Then Lemma 3.7
shows that the function ¢ — £g(E; (p)) is convex and non-degenerate, so it
cannot have critical points both at # = 0 and at ¢t = 1, a contradiction. So £y
has a unique critical point on polygy. O

We now turn to the proofs of the two lemmas.

Proof of Lemma 3.6 Let (p,),en be a sequence of ideal polygons with N
vertices, which degenerates in polyg,. Then, after taking a subsequence, if
necessary, there is a finite collection of segments ay, ..., a, on the polygon
such that:

e ag; and a; are disjoint, if i # j,

e for all n, each g; is realized as a minimizing geodesic segment connecting
two non-adjacent edges of p,,

e foralli € {1,..., p}, the length of g¢; in p, goes to zero, as n — 00,

e any two edges of p, that can be connected by a segment disjoint from the
a; remain at distance at least €, for some € > 0 independent of 7.

After taking a further subsequence, the p,, converge to the union of p + 1
ideal polygons pc(,l)), ey péng]), which, topologically, is obtained by cutting
the original polygon along each a; and then collapsing each (copy of each) seg-
ment a; to a new ideal vertex. Recall that given r > 0 and a geodesic line « in

H?, the r-neighborhood of « is called a hypercycle neighborhood of «. We may
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choose horoballs at each ideal vertex and disjoint hypercycle neighborhoods
N; ,, of the (geodesic realization in p, of) a;, with radii r; , — oo, which con-
verge to a system of horoballs for the limiting ideal polygons pg) e pégﬂ).
Our function 6 is naturally defined on the limiting polygons, since all edges of
the limit correspond to edges of the original polygon. However, 6 is no longer
balanced at the new ideal vertices of pc(,é), el pégH); instead the sum of the
0 values along the edges going into one of the new vertices is strictly positive,
since 6 satisfies assumption (iii) of Definition 1.3. Now, we may split £y into
two pieces
to = tolun,,, + L0l uw,e-

corresponding to the weighted length contained in the union of the neigh-
borhoods N; , and the weighted length outside of those neighborhoods. The
former is always positive, since 6 is y-admissibile, so it satisfies condition
(iii) of Definition 1.3, and since the arcs with positive weight crossing a; have
length at least 2r; ,, in N; ,, while the two arcs with negative weight crossing a;

have length exactly 2r; , in N; ,. The later converges to the 6-length function
Lo( pé:))) 4+ 4Lo( pééﬂr 1)) of the limiting polygons with respect to the limiting
horoballs. However, by altering the radii of the neighborhoods N; ,, we may
arrange for the limiting horoball around each of the new vertices to be arbi-
trarily small (i.e. far out toward infinity), making €4 ( péé)) 4+ 4 Ly( pégﬂ))

arbitrarily large. It follows that £y (p,) — +o0. O

Proof of Lemma 3.7 Let p € polygy, and let A be a measured lamination on
p. thatis, a set of disjoint diagonals By, - - - , B, each with a weight A; > 0. We
need to prove that the function t — £g(E}) p) is convex with strictly positive
second derivative. To prove this, we prove an analogue of the Kerckhoff-
Wolpert formula in this setting, specifically:

d
Tlo(Enp) =) 0ikjcos(gi) + K, (11
where ¢;; € (0, ) is the angle at which the edge o; of I' crosses the edge
B; of the support of A, the sum is taken over all i, j so that «; intersects f8;
non-trivially, and K := K (6, 1) is independent of p and ¢. The lemma follows
from this formula by a standard argument about earthquakes (see [24, Lemma
3.6]): each angle ¢;; of intersection strictly decreases with 7 because, from the
point of view of the edge B;, the endpoints at infinity of «; are moving to the
left.

It suffices to prove the formula (11) in the case that the lamination A is
a single diagonal 8 with weight equal to one. We choose horocycles 4, ; at
each vertex v and at each time ¢ along the earthquake path as follows. Begin
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at time ¢+ = 0 with any collection of horocycles {h, ¢}. For a vertex v that
is not an endpoint of 8, we simply apply the earthquake E;; to h, : Define
hy: = Epphyo. If wis an endpoint of 8, then the earthquake breaks the
horocycle A, ¢ into two pieces. We define 4, ; to be the horocycle equidistant
from these two pieces. An easy calculation in hyperbolic plane geometry shows
that, for o; an edge of ' crossing B, we have

d d ..
Eﬁ(ai) = dist(hy,r, hy ) = cos(g;),

where ¢; is the angle at which «; crosses 8, where v and v’ are the endpoints
of «;, and where dist(-, -) denotes the signed distance between horocycles.
Further £(8) remains constant along the earthquake path. Finally, for any edge
o which shares one endpoint v with 8, we have that %E(ak) = +1/2 is
independent of p and ¢; the sign depends on whether ¢y lies on one side of 3,
or the other. m|

3.5 Proof of Theorem 1.9

We now have tools to prove Theorem 1.9. First, however, we must prove
Proposition 1.10.

Proof of Proposition 1.10 We must prove that the dihedral angles function
0 = Wr(P) of any ideal polyhedron P € HPPolyhy is y-admissible (Defini-
tion 1.3). Condition (i) is simply our convention of labeling the dihedral angles
of equatorial edges with negative signs. So, we must prove that 0 satisfies (ii)
and (iii).

That 6 satisfies condition (ii) follows from the fact that the sum of the
dihedral angles at a vertex of an ideal polyhedron in H? is constant (equal to
2m). By Proposition 2.17, the dihedral angles of P are simply the derivatives
of the (exterior) dihedral angles of Q;, where Q; is a path of ideal polyhedra
in hyperbolic space (or anti-de Sitter space), as in Proposition 2.16.

Now, let us prove that 6 satisfies (iii). Consider a path ¢ on P normal to
the 1-skeleton I and crossing exactly two non-adjacent edges of the equator.
Then, without affecting the combinatorics of the path, we deform so that c is
precisely P N H for some vertical (degenerate) plane H that is orthogonal to
both edges of the equator crossed by c. Note that the angle between a non-
degenerate line o and a degenerate plane H is precisely the angle formed
between the lines @ (o) and @ (H) in H? and therefore we can indeed achieve
that H is orthogonal to both edges of the equator simultaneously (by contrast to
the analogous situation in H? or AdS?). The plane H is isomorphic to a copy
of two-dimensional half-pipe geometry HP?. Inside H, the edges of c are
non-degenerate, forming a polygon with exterior angles bounded above by the
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corresponding dihedral angles of P. Indeed, if 6; is the dihedral angle between
two faces in HIP? and 9; is the angle formed by those faces when intersected
with H, then by Proposition 2.20, sign(v¥;) = sign(6;) and |9;| < |6;]| with
equality if and only if H is orthogonal to the line of intersection between
the faces. Therefore the exterior angle in H at each of the two points where ¢
intersects the equator is equal to the exterior dihedral angle along that equatorial
edge (and both are negative) while the exterior angle at any other vertex of
c is strictly less than the exterior dihedral angle of P at the corresponding
edge (and both are positive). By the infinitesimal Gauss—Bonnet formula in
HP? (Proposition 2.19), the sum of the exterior angles of ¢ is positive and so it
follows that the sum of the exterior dihedral angles over the edges of P crossed
by c is also positive. |

Proof of Theorem 1.9 The map F : HPPolyh — polyg x A, taking an HP
ideal polyhedron to its projection to H?, an ideal polygon, and to its dihedral
angles, has a continuous left inverse. Let G : polyg x A — HPPolyh be
the map that takes p € polyg and bends according to the top angles 6 of
0 € A, ignoring the rest of the information in 6 (the bottom and equatorial
dihedral angles). Then G o F is the identity. Hence, to show that ¥ = wHP
is a homeomorphism, we need only show that there is a continuous map H :
A — polyg such that G(H(¥(P)), W(P)) = P. The existence of such a
continuous map H is guaranteed by Proposition 3.5 and a simple application
of the Implicit Function Theorem as follows. For 6 € A, define H () to be the
unique minimum in polyg of £y given by Proposition 3.5. That H is continuous
(in fact differentiable on all strata of A) follows from the convexity of £g,
thought of as a function on polyg. Now, recall that the space of ideal polygons
polyg identifies with the space of doubles Z in .% y. Hence, because H (6)
minimizes £g over polyg, the restriction of d¢g (now thought of as a one-form
on all of 9 n) to Z is zero at (the double of) H (). It then follows that the
infinitesimal shear eg on .7 y is tangent to the subspace of doubles Z at (the
double of) H (0) because ey is dual to £y (Lemma 3.3) and the space of doubles
2 is Lagrangian (Proposition 3.4). Therefore ¢y determines a well-defined
infinitesimal deformation of the polygon H (6) and the pair p = H(#),V =
eg(H (0)) determines an HP polyhedron P such that F(P) = (H(0), 6) as in
the discussion in Sect. 2.6. The formula G(H (¥ (P)), WV (P)) = P follows,
and this completes the proof of Theorem 1.9. O

4 Properness
In this section we will prove the two properness lemmas needed for the proofs

of the main results. Lemma 1.12 states that the map @, sending an ideal poly-
hedron in AdS? to its induced metric, is proper. Lemma 1.14, when combined
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with Proposition 1.16, will imply properness of the map sending a polyhedron
of fixed combinatorics to its dihedral angles.

4.1 Properness for the induced metric (Lemma 1.12)

To prove Lemma 1.12, we consider a compact subset X C % . We must
show that the set ®~!(K) is a compact subset of AdSPolyh. In other words,
if P is a polyhedron with m = ®(P) € K, we must show that P lies in a
compact subset of AdSPolyh.

Since there are finitely many triangulations of the disk with N vertices, we
may consider polyhedra P with fixed combinatorics, that is the graph I' is
fixed. We may assume I" is a triangulation by adding edges if necessary.

Recall that the induced metric m on P is related to the left and right metrics
my, and m g by the diagram in Theorem 2.11: mp = Eg(m) andm = Eg(mp),
where 6 : ' — R is the assignment of exterior dihedral angles to the edges
of P and Ej is the shear map associated to 6. Also, recall that m; and mg are
cusped metrics on the sphere that come from doubling the metric structures
on the ideal polygon obtained by projecting the vertices of P to the left and
right foliations of dAdS?. To show that P lies in a compact set, we must
show that m and mg lie in compact sets. It is enough to show that 0 remains
bounded over ®~! (/). Although we have not yet proved Proposition 1.16,
we will use here that 0 is y-admissible, so it satisfies conditions (i) and (ii) in
Definition 1.3. That these conditions are satisfied is essentially trivial, see the
first paragraph of Sect. 6.

Consider an edge e of the equator y of I', and recall that 6(e) < 0 (by
condition (i) of the definition of Ar). Let 57 (e), sg(e), s(e) denote the shear
coordinate along e, with respect to I', of the left metric m, the right metric
mpg, and the induced metric m. Then, by Theorem 2.11, we have:

sr(e) —s(e) =0(e) = s(e) —sr(e).

Now the edge e belongs to a unique triangle of I" in the top hemisphere of
¥0.n, the third vertex of which we denote by v*. On the bottom hemisphere,
the edge e, again, belongs to a unique triangle, whose third vertex we denote
by v™.

There are two cases to consider. Recall that we fixed an orientation of the
equator y. Imagining that we view X y from above, it is intuitive to call the
positive direction left and the negative direction right. First suppose v lies
to the left of v~ when viewed from e. The restriction of the right metric m g
to the top hemisphere of ¢ y is a marked hyperbolic ideal polygon pg, in
which the vertex v again lies to the left of v™. Since mp is the double of pg,
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Fig. 6 The polyhedron P
with combinatorics given by
I'. The red edge is e, and
gt =nr@te),

q~ =mgr(v™;e) (color

figure online) ot

we may calculate the shear coordinate sg(e) of sg by the simple formula:
sr(e) = (v e) —R(V 5 @),

where g (v; e) denotes the hyperbolic orthogonal projection of v onto the edge
ein pg,see Fig. 6. Then we have sg(e) > Oandso sy (e) > s(e) > sg(e) > 0.
In particular,

O(e) = sg(e) —s(e) > —s(e).

In the case that v™ lies to the right of v™, we examine the left metric m; . In
the restriction p; of my to the top hemisphere, the vertex v™ again lies to
the right of v~ and so, by a similar calculation as above, sy (¢) < 0 and so
sr(e) < s(e) < sp(e) < 0. Therefore

O(e) = s(e) —sp(e) > s(e).

In either case, 0(e) is bounded, because the shears s(e) are bounded, as m
varies over the compact set .

We have shown that all of the edges e for which 8 (e) < 0have 6 (e) bounded.
It then follows that the other edges ¢’, for which 6(e’) > 0, also have 6(¢’)
bounded, since the sum of all positive and negative angles along edges coming
into any vertex of P must be zero (condition (ii) of the definition of Ar).
Therefore ®~!(K) is compact.

4.2 Proof of Lemma 1.14

Let I' € Graph(Xo v, ). We consider a sequence (P,),cn going to infinity
in AdSPolyh, such that the dihedral angles 6, = \DIAdS(P,,) converge to
0 € RE, where E = E(I") denotes the edges of I' as usual. We must show
that 6, fails to satisfy condition (iii) of Definition 1.3.

@ Springer



280 J. Danciger et al.

For each n, let p,f = w(P,) and p,’f = wpr(P,) be the ideal polygons
whose ideal vertices are the left and right projections of the ideal Vertices of
P, (as in Sect. 2.3). Let vfn, .. vN , denote the vertices in RP! of pn , and

similarly let vfn, cee vf, ,, denote the vertices of pR._ By applying an isometry

of AdS?, we may assume that the first three vertices of P are (O 0), (1,1)
and (oo, 0o) independent of n, so that vf = len =0, v2 0= v2 = 1 and
vin = vﬁn = oo for all n.

Since 6, converges to the limit 6, and the polyhedra P, diverge, the
sequence of ideal polygons ( p,f)neN diverges (in the space of ideal N-gons
up to equivalence). Reducing to a subsequence, we may assume all of the

vertices converge to well-defined limits vl.L,1 — viLoo € RP!. However, since

the sequence of polygons ( p# )neN does not converge in the space of ideal N-

gons, there is at least one index i such that viL = sz+1 . Now, since the right

polygon p,lf is obtained from pn by an earthquake of bounded magnitude it
follows that each vertex v , also converges to a well-defined limit v ~ and

that vi’ = vl 1,00 if and only if v vl 1.00- In other words the polyhedra
P, converge to a convex ideal polyhedron Pso Of strictly fewer vertices.

The combinatorial structure of P is obtained from I" by collapsing vertices
and the corresponding edges and faces in the obvious way: if two vertices that
span an edge collapse together, then that edge disappears. If that edge bounded
a triangle, then that triangle collapses to an edge, and so on. Let ', denote
the 1-skeleton of P, and let I'} denote the dual graph. Consider a simple
path c in I'} . We may lift ¢ to a path ¢ in the dual graph I'* fof I' in the
obvious way: an edge of co, is dual to an edge e of P. Under the collapse
I' — ', e lifts to a collection of consecutive edges in I' which determines a
path of adjacent edges in I'*. The sum of the dihedral angles assigned by 6,
to the path ¢ converges to the sum of the dihedral angles of P, over the edges
of ¢oo.

Now consider an ideal vertex of Py, which is the limit of two or more vertices
of the P,, and let co, denote the path of edges bounding the face of '}, dual
to this vertex. Of course, the sum of the angles over the edges of c is zero,
since P satisfies condition (ii) of Definition 1.3. It therefore follows that 6
assigns angles that sum to zero around the edges of the path c. Therefore 6
violates condition (iii) in the definition of y-admissible maps, since ¢ does not
bound a face in I'*, and the proof is complete.

5 Rigidity

This section is dedicated to the local versions of Theorems 1.4 and 1.5, which
are Lemmas 1.13 and 1.15.
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5.1 The Pogorelov map for AdS”

We recall here the definition and main properties of the infinitesimal Pogorelov
map, which turns infinitesimal rigidity problems for polyhedra (or subman-
ifolds) in constant curvature pseudo-Riemannian space-forms into similar
infinitesimal rigidity problems in flat spaces, where they are easier to deal
with. These maps, as well as their non-infinitesimal counterparts, were dis-
covered by Pogorelov [30, Chapter 5] (in the Riemannian case). Another
account and some geometric explanations of the existence of these maps can
be found in Schlenker [33, Prop. 5.7] or in Fillastre [20, Section 3.3]. See also
Labourie—Schlenker [26, Cor. 3.3] or Izmestiev [23]. We follow here mostly
the presentation given in [20, Section 3.3], and refer to this paper for the proofs.

Although we will return to dimension three shortly, we describe the
Pogorelov map in any dimension n. Consider the complement U in AdS”
of a spacelike totally geodesic hyperplane Hy, dual to a point xo € AdS".
Here duality means that Hy is defined by the equation (xo, x) = 0, where (-, -)
is the inner product of signature (n — 1, 2) defining AdS”. Then U is naturally
the intersection of AdS” with an affine chart R" of projective space, and we
may take ¢(xg) = O to be the origin of this affine chart, where ¢ : U — R”"
denotes the inclusion. The union of all light-like geodesics passing through xq
is called the light cone C(xg).

We equip R" with a flat Lorentzian metric, making it into a copy of
Minkowski space R”~1'!. We may choose this metric so that the inclusion
¢ is an isometry at the tangent space to xo. This has the pleasant consequence
that ¢(C(xg)) is precisely the light cone of ¢(xg) in R"~11 We now define
abundle map Y : TU — TR"!L1 over the inclusion ¢ : U — R"~L1 ag
follows: Y agrees with dv on Ty,U. For any x € U\C(x¢), and any vector
v € T, U, write v = v, + v, where v, is tangent to the radial geodesic passing
through x¢ and x, and v is orthogonal to this radial geodesic, and define

G
T(v) = Wdt(v,)—l—ch(vj_), (12)

where 7 is the unit radial vector (so ||#||> = =£1) and the norm || - || in the
numerator of the first term is the AdS metric, while the norm in the denominator
is the Minkowski metric. Note that a radial geodesic of U (passing through
xo) is taken by ¢ to a radial geodesic in R"~!-! (passing through the origin) of
the same type (space-like, light-like, time-like), although the length measure
along the geodesic is not preserved. Hence the quantity under the square-root
in (12) is always positive.

The key property of the infinitesimal Pogorelov map is the following (the
proof is an easy computation in coordinates, see [20, Lemma 3.4]).
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Lemma 5.1 Let Z be a vector field on U\C (xo) C AdS". Then Z is a Killing
vector field if and only if Y (Z) (wherever defined) is a Killing vector field for
the Minkowski metric on R"~ 11,

In fact, the lemma implies that the bundle map Y, which so far has only been
defined over U\ C (xg), has a continuous extension to all of U. The bundle map
Y is called an infinitesimal Pogorelov map.

Next, the bundle map & : TR~ 'l — TR” over the identity, which simply
changes the sign of the n-th coordinate of a given tangent vector, has the same
property: it sends Killing vector fields in R”~!-! to Killing vector fields for the
Euclidean metric on R”. Hence the map I[1 = E o Y is a bundle map over the
inclusion U < R” with the following property:

Lemma 5.2 Let Z be a vector field on U C AdS". Then Z is a Killing vector
field if and only if T1(Z) is a Killing vector field for the Euclidean metric on
R”.

The bundle map IT is also called an infinitesimal Pogorelov map. Henceforth
we return to the setting of three-dimensional geometry.

5.2 Rigidity of Euclidean polyhedra

In order to make use of the infinitesimal Pogorelov map defined above, we
recall some elementary and well-known results about the rigidity of convex
Euclidean polyhedra. It has been known since Legendre [27] and Cauchy [13]
that convex polyhedra in Euclidean three-space R? are globally rigid. In fact,
given two polyhedra Py, P,, if there is map d P — 9 P> which respects the
combinatorics and is an isometry on each face, then the map is the restriction
of a global isometry of Euclidean space. Later Dehn [18] proved that con-
vex Euclidean polyhedra are also infinitesimally rigid. In fact, he showed that
any first-order deformation V of a polyhedron P that preserves the combina-
torics and the metric on each face is the restriction of a global Killing vector
field. Here V is not allowed, for example, to deform the polyhedron so that a
quadrilateral face becomes two triangular faces. Still later, A.D. Alexandrov
[1] proved a stronger version of this statement:

Theorem 5.3 (Alexandrov) Let P be a convex polyhedron in R3, and let V
be an infinitesimal deformation of P (that might or might not change the
combinatorics). Then, if the induced metric on each face is fixed, at first order,
under 'V, the deformation V is the restriction to P of a global Euclidean Killing
field.
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5.3 Proof of Lemma 1.13 (and Lemma 1.15)

We first prove Lemma 1.13. Lemma 1.15 then follows from it and Theo-
rem 2.13.

Let P € AdSPolyh,. We argue by contradiction and suppose that ® is
not a local immersion at P. This means that there exists a tangent vector V
to AdSPolyh at P such that d® (V) = 0. In other terms, there is a first-order
deformation V of P, as an ideal polyhedron in AdS?, which does not change
the induced metric.

Now, V is described by tangent vectors V; € TZiaAdS3 at each ideal ver-
tex z;. Since P is convex, it is contained in the complement U C AdS® of a
spacelike totally geodesic plane. We wish to use the Pogorelov map IT defined
in Sect. 5.1 above. However, I1 is not defined over the projective boundary, so
we need to be slightly careful. We may assume that the 1-skeleton I" of P is a
triangulation. If not, we simply add diagonals to all of the non-triangular faces
as needed. Consider a triangular face T = Agz; z;,2;;. The tangent vectors
Vi,» Vi, Vi determine a unique Killing field X, which defines the motion of
the points of 7' under the deformation. The deformation vectors for the vertices
of an adjacent triangle 7’ = Az;,z;,zi, similarly determine a Killing field X',
which determines the motion of the points of 7’. In general, X and X’ might
not agree on the common edge ¢ = z1z2. However, because d® (V) = 0,
the shear coordinate along e does not change to first order, and therefore X
and X’ do agree along the edge e. It follows that V defines a vector field W
on 3 P whose restriction to any face agrees with a Killing field of AdS3. We
now apply the Pogorelov map to obtain IT(W), a vector field on the bound-
ary of a convex polyhedron ¢(P) in Euclidean space R3. By Lemma 5.2, the
restriction of IT(W) to each face of ((P) agrees with a Euclidean Killing field.
By Theorem 5.3, IT(W) must be the restriction of a global Euclidean Killing
field Y. Hence, again, using Lemma 5.2, we see that W was the restriction of
a global Killing field IT~'(Y) of AdS? and therefore V represents the trivial
deformation in AdSPolyh . This completes the proof of Lemma 1.13.

6 Necessary conditions on the dihedral angles: proof of Proposition 1.16
In this section we prove Proposition 1.16, which states that the map \Ill'f\ds,
taking an ideal polyhedron P in AdS with 1-skeleton I to its dihedral angles
0 = \Illé‘ds(P), has image in the convex cone Ar; in other words 6 is y-
admissible (Definition 1.3). That 6 satisfies (i) is just our sign convention for
dihedral angles. That the dihedral angles 8 satisfy (ii) follows exactly as in the
hyperbolic setting: The intersection of P with a small “horo-torus” centered
about an ideal vertex of P is a convex polygon in the Minkowski plane, whose
exterior angles are equal to the corresponding exterior dihedral angles on P.
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f3 fo A
< e2< ‘/ T~ :
S N\

€1

Fig. 7 In the degenerate case, the extension polyhedron Q has a single vertex in projective
space, at infinity in the figure. All faces and edges of Q are orthogonal to the time-like plane A
dual to the vertex

The difficult part of Proposition 1.16 is to prove that 8 satisfies condition (iii)
of y-admissibility (Definition 1.3), and the remainder of this section is ded-
icated to this claim. Consider a simple cycle efj, e}, ..., e = e; in I'* such
that 6(e;) < O for exactly two edges j = 1,r. Let f* be the vertex of I'*,
dual to a two-dimensional face f; of P, which is an endpoint of ¢; and e ;.
In other words, the face f; of P contains the edges e; and e; 1. We must prove
that the sum 6(e;) + - -- + 0(e,) > O.

We now define a polyhedron Q by “extending” the faces f1, ..., f, and
forgetting about the other faces of P. We will call Q the extension polyhedron.
More rigorously: Since P is contained in an affine chart of RP3, a lift P of
P to the three-sphere S is a convex polyhedron contained in an open half-
space of $3. Define Q to be the intersection of the half-spaces defined by
the lifts of fi, ..., f,. Then generically Q will be contained in an open half-
space, in which case 0 projects to a compact polyhedron Q in some affine
chart of RP3. We will, in a sense, reduce the generic case to the easier case
that Q is not contained in an open half-space, which we treat first. In this
case, the combinatorial structure of Q is very simple in that O has exactly
two antipodal vertices. The projection Q of O to RPP? has one vertex, which
is contained in every face f1, ..., f, and edge ey, ..., e, of Q, see Fig. 7.
Therefore fi,..., f, and ey, ..., e, are orthogonal to the time-like plane A
dual to that vertex. As in Sect. 5.1, duality is defined with respect to the inner
product of signature (2, 2) that defines AdS®. The intersectiong = AN Q isa
convex compact polygon lying in A = AdS? whose exterior angles are equal
to the exterior dihedral angles of Q. That (iii) holds in this case now follows
from.

Claim 6.1 The sum of the exterior angles of a compact, convex, space-like
polygon q in AdS? is strictly positive.
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Fig. 8 A compact spacelike
polygon ¢ in AdS? and its AdS2

dual g*. All vertices of g™ lie 2
in AdS2. All edges of ¢* are £ OAdS
spacelike, but two of the
edges cross the boundary of
AdS?. The exterior angles of
q* at the vertices are positive

y

Proof This follows directly from the Gauss—Bonnet formula for Lorentzian
polygons (see [9]). Alternatively, one may easily prove the claim directly for
triangles and then argue by induction. O

Before continuing to the general case, it is useful to examine the dual picture
in this simple case. Let RP? denote the projective plane in RP? containing
the timelike polygon ¢. The intersection of RP? with AdS? is a copy of AdS?
(called A above). Let g* denote the set of points in RP? whose dual hyperplane
does not cross the interior of ¢. Then ¢* is just the dual polygon to ¢, viewed
in the projective space containing ¢, rather than the dual projective space, via
the signature (1, 2) quadratic form defining AdS®. See Fig. 8.

Since all edges of g are space-like, the vertices of ¢* are contained in AdS?.
If v is a vertex of ¢ with positive exterior angle, then the dual edge v* in ¢*
is a space-like edge contained in AdS?. However, if v is a vertex of ¢ with
negative exterior angle, then the dual edge v* of ¢* begins and ends in AdS?
but contains a segment outside of AdS?. All exterior angles of ¢* are positive,
since all edges of ¢ are contained in AdS?. Conversely, if ¢* is any polygon
in RP? having vertices in AdS?, spacelike edges exactly two of which leave
AdS?, and positive exterior angles, then the dual of ¢* is a compact convex
polygon in AdS?. Note that the length of an edge in ¢* is equal to the dihedral
angle at the corresponding vertex of ¢, with the two edges which leave AdS?
having negative length. Therefore Claim 6.1 is equivalent to.

Claim 6.2 Let g* be a convex polygon in RP? with vertices in AdS?, with
space-like edges all but two (non-adjacent) of which are contained in AdS?,
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and with positive exterior angle at each vertex. Then the sum of the lengths of
the edges of q* is positive.

This dual point of view will be useful in the general case, which we turn to
now.

Consider the generic case that the extension polyhedron Q is compact in
an affine chart of RP3. In this case, Q will have extra edges, in addition to
el, ..., e,, which are not contained in AdS3: these edges may be either space-
like or time-like. Let Q* denote the dual polyhedron in RP3, where we identify
RP3 with its dual via the inner product of signature (2, 2) that defines AdS>. By
perturbing a small amount if necessary, we may assume that all vertices of Q lie
outside of the closure of AdS3, so that the faces of Q* are each time-like. The
vertices of Q*, dual to the space-like faces fi, ..., fy, lie in AdS?. The dual
edgese], ..., e are space-like and form a Hamiltonian cycle in d Q* dividing
itinto two convex polyhedral surfaces (8 Q*)1 and (39 0*)>. We need only work
with one of these surfaces, say (0 0*);. The surface (9 Q™) is a polygon, bent
along some interior edges. Note that two of the perimeter edges e} and e
of (3Q*); each contain a segment outside of AdS?, while e5,...,e’_; and
ey IRTRERE e,y are contained in AdS3. We will show the following lemma, the
proof is deferred until Sect. 6.2.

Lemma 6.3 The surface (3 Q*) is intrinsically locally convex, with positive
exterior angles.

The lemma says that when (3 Q*) is “un-folded” onto a time-like plane (a copy
of AdS?), it is convex with positive exterior angles and therefore isomorphic
to some ¢* as in Claim 6.2 above. Therefore condition (iii) will follow from
the lemma. Before embarking on the proof, we draw on some intuition from
the Riemannian setting. To show that a developable polyhedral surface S in
a Riemannian space (R3 say) is intrinsically locally convex, one must simply
show that the total angle of S at each vertex is less than 7. Equivalently, one
examines the /ink of each vertex v of S, which is naturally a polygonal path in
the unit sphere in the tangent space at v: S is locally convex at v if and only if
the length of this polygonal path is less than 7. We show that (0 0*) is locally
convex in much the same way, by examining the link of each vertex of (9 0*);
and measuring how long it is. However the space of rays emanating from a
point in a Lorentzian space is not the Riemannian unit sphere, but rather what
is called the HS sphere or HS?.

6.1 The geometry of the HS sphere

HS geometry, introduced in [33,34] and used recently in [6,7], is the natural
local geometry near a point in a Lorentzian space-time such as AdS?. In those
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papers, HS-structures with cone singularities occur naturally as the induced
geometric structures on the boundary of polyhedra or, in a related manner, on
the links of vertices of the singular graph in Lorentzian 3-manifolds with cone
singularities. Here we will use comparatively simpler notions without cone
singularities.

The tangent space at a point of AdS? is a copy of the three-dimensional
Minkowski space R>!. The HS sphere HS? is the space of rays based at the
origin in R%!. It admits a natural decomposition into five subsets:

e Let ]1-]1%r (respectively HZ ) denote the future oriented (resp. past oriented)
time-like rays. Both H%r and HZ are copies of the Klein model for the
hyperbolic plane and are equipped with the standard hyperbolic metric in
the usual way.

e Let dS? denote the space-like rays, equipped with the standard de Sitter
metric.

e The light-like rays form two circles, 81HI%r and dH? , which are the bound-
aries of H%r and H? respectively.

The group SOg(2, 1) of time-orientation and orientation preserving linear
isometries of R>! acts naturally (and projectively) on HS?, preserving this
decomposition. The geodesic oy, between two (non-antipodal) points x, y €
HS? is defined to be the positive span of the two rays x, y. The space HS? is
equipped with a (partially defined) signed distance function d (-, -) as follows.

e Ifx,ye ]I-]I%r orx,y € H? then d(x, y) is the usual hyperbolic distance,
equal to the hyperbolic length of oy y.

o letx,y € dS?. We will only be interested in the case that oy, is time-like,
meaning the plane in R%! spanned by o,y has mixed signature. If o y is
contained in dS?, then d(x, y) is defined to be the de Sitter length of oy y,
taken to be a negative (rather than imaginary) number. Note that in this case
d(x,y) = —d(x*, y*), where x* (resp. y*) denotes the geodesic line dual
to x (resp. y) in Hﬁ_ (equal to the intersection with H%r of the orthogonal
complement of x (resp. y)). In the case that o, , passes through Hi (or
H? ), we define d(x, y) = +d(x*, y*).

e Let x € H2 and y € dS?. Then we define d(x, y) = +d(x, y*) if x and
y lie on opposite sides of y* or d(x, y) = —d(x, y*) if x and y lie on the
same side of y*.

We note that this distance function may be similarly defined in terms of the
Hilbert distance (cross ratios) with respect to E)H%r or 9H?2 . Let o be a polygonal
path in HS? with endpoints x, y € dS? and call o time-oriented if o is the
concatenation of three polygonal subpaths: a path crossing from x to Hi which
is future-oriented, followed by a path in H%r, followed by a path from H%r back
into dS? which is past oriented. The length % () is defined to be the sum of
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ds?

Fig. 9 In the proof of Claim 6.4, o is a time oriented polygonal path in HS2. In Lemma 6.3,
we apply Claim 6.4 to the case that o is the link of a vertex of (3 Q*);, which is convex (as
drawn)

the lengths of the geodesic segments comprising o. It is important to note that
Z (o) is well-defined under sub-division. The crucial ingredient in the proof
of Lemma 6.3 is the following substitute for the triangle inequality.

Claim 6.4 Let o be a time-oriented polygonal path with endpoints x, y € dS?
and suppose further that the geodesic segment oy y is time-like and crosses
through H%r Then £ (o) = Z(0y,y).

Proof Letx = xo, x1, ..., X, = ybetheordered vertices of o, with xg, . . ., x;
lying in dS?, x; 11, ..., x; lyingin HZ, and xj1, ..., X, lying in dS*. Then,

i—1
L) ==Y df, xiy) + ad(xf, xign)

k=0
j n—1
+ Y dO xkg) +ed(xy, x5 ) — Y A xpyy)

k=i+1 k=j+1
where €1,e, = +1. We may assume, by sub-dividing, that x; and x;4
are on the same side of x and that x; and x;,| are on the same side of
x;‘.‘H, so that €, = €, = —1. Therefore all of the dual lines xg, ..., x;
and x;f IRTREeS x, lie in between x; 41 and x; in IHI%r In fact, the dual lines

are arranged, in order from closest to x;y1 to closest to x;, as follows:

* * * * * * s
XX e X Xy Xy gy X See Fig. 9. Therefore, we have, by the

triangle inequality in H?, that
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4
d(xi1,xj) = d(xip1, x) + > d(f. xp_)
k=1
n

+d(xg, x) + Z d(x, x¢_p) +d(x;~k+1, xXj)
k=j+2

since the line connecting x; 1 to x; crosses each of the dual lines in the above
equation. Again by the triangle inequality in H?, we also have

j—1
d(xip1,x)) < Y dx, Xip1).
k=i+1
It follows that Z (o y) = d(x§, x;;) < Z(0). O

6.2 Proof of Lemma 6.3

To complete the proof of Proposition 1.16 (that the dihedral angle maps are
y-admissible), we now prove Lemma 6.3 which states that the convex pleated
polygon (0 Q™) is intrinsically locally convex with positive exterior angles.
Consider a vertex f;* of (0Q*);. We consider the link o at f* of (00*)1, a
polygonal path in the space of rays in Tfl,*AdS3 which is naturally a copy of

HS?. The endpoints x and y of o correspond to two consecutive dual edges
e’ and e ', in the perimeter of (3 Q*);. Since the ejf are space-like, x, y lie in
dS? ¢ HS?. By assumption, the edges e; and e, intersect outside of AdS?
at a point v; (which is positive with respect to the (2, 2) form), and therefore
the plane v} containing ¢; and e}, |, which is dual to v;, is time-like, thus so is
oyx,y. Note the intersection of the spacelike face f; with v} is a spacelike edge
contained in AdS?, since the endpoints of this edge are contained in AdS® and
the intersection f; N AdS? is convex (since it extends a face of the original
polyhedron P). It then follows from this and from convexity of Q that the
geodesic oy, passes through a hyperbolic region of HS?, which without loss
in generality we take to be H%r Further, by convexity of Q and the fact that each
of the faces of 9 Q* is time-like, the link o at f* of (d 9*) is time-oriented in
the sense defined in the previous section. Therefore, it follows from Claim 6.4
that £ (o) > Z(0x,y) > 0. Lemma 6.3 now follows because .Z'(0) is a
complete invariant of the local geometry of (9 Q%) at f;*; the development
of (3Q*); onto a copy of AdS? is convex at this vertex, with positive exterior
angle, if and only if the length of the link is positive. This completes the proof
of Proposition 1.16.
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7 Topological arguments
7.1 The topology of the space of ideal polyhedra

In this Section we prove Proposition 1.11.

Proof of Proposition 1.11 First, let’s study AdSPolyh and AdSPolyh,. By
Proposition 2.8, the space AdSPolyh, identifies with the space polygy x
polygy of pairs (pr, pr) of marked ideal N-gons in the hyperbolic plane
considered up to the action of PSLyR x PSL,R. The space AdSPolyh,, is
obtained from AdSPolyh, by removing all pairs (pr, pg) such that p; and
pr are isometric. Using the action of PSL,R x PSL,;R we may, in a unique
way, put pr and pg into standard position so that the first three vertices of
each polygon are oo, 0 and 1. The remaining vertices of p;, form an increasing
sequence of N — 3 points x4 < --- < xy in (1, 0o0). Similarly, the remaining
vertices of pg also form an increasing sequence y4 < --- < yy in (1, 00)
and py is isometric to pg if and only if (x4,...,xy) = (V4,...,yn). It
follows that AdSPolyh y is homeomorphic to RV =3 x RN =3 and AdSPolyh,,
is homeomorphic to R¥ ~3 x RV ~3 minus the diagonal. Therefore AdSPolyh
is homotopy equivalent to the sphere of dimension N — 4.

We now study the space HPPolyh . Recall from Sect. 2.6 that the space
HPPolyh identifies with the space of pairs (p, V) where p is a marked ideal
N-gon in the hyperbolic plane and V' is a non-trivial infinitesimal deformation
of p considered up to the action of the tangent bundle 7PSL,R. Using this
action we may, in a unique way, place (p, V) in standard position so that the
first three vertices of p are x; = 00, x2 = 0, x3 = 1 and so that V(x1) = 0,
V(x3) = 0, and V (x3) = 0. The remaining N — 3 tangent vectors are not all
zero and their basepoints form an increasing sequence in (1, oo). It follows
that HPPolyh  is homeomorphic to TRY ~ minus the zero section. Therefore
HPPolyh is homotopy equivalent to the sphere of dimension N — 4. O

As a corollary of Theorem 1.9 and this proposition we have:

Corollary 7.1 The space of angle assignments A is connected and simply
connected whenever the number of vertices N > 6.

7.2 WAdS jg a local homeo

Lemma 1.15 says that for each triangulation I' € Graph(Zg, y, ), the map
Wr : AdSPolyh — RF is a local immersion at any ideal polyhedron P whose
1-skeleton is contained in I'. We now deduce the following result.

Lemma 7.2 WA9S : AdSPolyh — A is a local homeomorphism.
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Proof Givenany I' € Graph(Xg v, y), we must first show that the dimension
of Ar (if non-empty) is 2N — 6. The dimension of the convex cone Ar is
determined by the rank of the N equations in condition (ii) of y-admissibility
(Definition 1.3). Assume first that N is odd. Then these equations may be used
to eliminate the the N weights on the equator. Indeed if £ denotes the equation
of (ii) determined by the vertex v; of I', then treating indices cyclically we find
that

Ejix1 = &2+ = &1+ &

is an equation which depends on (the weight at) the edge e; with endpoints v;
and v; 41 but on no other edge of the equator. This shows that the equations
&1, ..., En have rank N and the dimension of Ar is therefore 3N —6 — N =
2N — 6. Next if N is even, we may only eliminate N — 1 of the weights on
the equator because all equatorial weights cancel in the alternating sum:

Si—& 4+ Ev-1—ENn.

However, note that this sum is not trivial since it depends non-trivially on (the
weight at) any edge whose two endpoints are an even number of edges apart
along the equator. Since I" is a triangulation, there must exist some such edge.
So the equations in condition (ii) of y-admissibility (Definition 1.3) have rank
N in this case as well.

Next, for each triangulation T, let Vi € RE(T) be the subspace satisfying
the equations of condition (ii). Since Vr has dimension 2N — 6, as shown
above, each of the maps \Ill'f‘ds is a local diffeomorphism at any polyhedron P
whose 1-skeleton is a subgraph of I'. The map WAdS, pieced together from the
\Illédsover all T, is an open map by the definition of the topology of the complex
A. Further, since each \Dﬁds is a local diffeomorphism in a neighborhood of
any point in the closure of the stratum of AdSPolyh defined by I', we have that
WAdS j5 a local bijection to A. It follows that WA9S is a local homeomorphism.

O

Lemma 7.2 and Lemma 1.14 imply that WAdS g covering. Since for

N > 6, AdSPolyh is connected and A is connected and simply connected,
we conclude that Theorem 1.4 holds when N > 6.

7.3 Thecases N =4,5
Although the topology of A is slightly more complicated when N = 4, 5, the

proof of Theorem 1.4 is straightforward in these cases. In the case N = 4,
the space AdSPolyh is the space of marked (non-degenerate) ideal tetrahedra
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which has two components and the map WAdS g easily seen to be a home-

omorphism. Indeed, an ideal tetrahedron in AdS? is determined by its shape
parameter (see Sect. 2.2); its dihedral angles may be determined directly from
the shape parameter. Conversely, the shape parameter is determined by any
two angles along edges emanating from a common vertex. Therefore an ideal
tetrahedron is determined entirely by the local geometry near any ideal vertex.

In the case N = 5, both AdSPolyh and A are homotopy equivalent to the
circle. Indeed, that AdSPolyh is homotopy equivalent to the circle is shown in
the proof of Proposition 1.11 in Sect. 7.1. It is also shown in the same proof that
HPPolyh is homotopy equivalent to the circle, hence so is .4 by Theorem 1.9
(it is also easy to determine the topology of .4 directly in this case). To show
that the map WAdS jg 5 homeomorphism, rather than some non-trivial covering,
consider an ideal polyhedron P with N vertices. We may cut P into two ideal
tetrahedra 7', T’ along some interior triangular face A. The tetrahedron T is
determined by the angles along the three edges emanating from any vertex of
T, in particular the vertex not belonging to A. These three angles are dihedral
angles of P as well, so it follows that the geometry of T is determined by
the dihedral angles of P. Similarly, the geometry of 7’ is determined by the
dihedral angles of P. Since there is exactly one way to glue T and T’ back
together (with the correct combinatorics), the geometry of P is determined by
its dihedral angles, i.e. WAdS g injective, and is therefore a homeomorphism.

7.4 Proof of Theorem 1.2

Finally, we prove Theorem 1.2. The equivalence of (C) and (H) is immediate
from Theorems 1.9 and 1.4. We now show the equivalence of (H) and (S)
using Theorem 1.4 and Rivin’s Theorem, discussed in Sect. 1.2. Let I' €
Graph(Xo v, y), and as usual let £ = E(I') denote the edges of I". First
suppose P € AdSPolyhr, and let 6 = WAIS(p) ¢ Ar. For any t > 0, the
weights 10 are also in Ar. We choose ¢ > 0 so that:

(A) for all edges e € E, t0(e) € (—m, m)\{0}.
(B) for all of the finitely many simple cycles ¢ in T'*, the sum of the values of
16 along c is greater than —.

Note that any simple cycle ¢, as in (B) above, crosses the equator y at least
twice. If ¢ crosses the equator y exactly twice, then this sum will either be
zero, if ¢ bounds a face of I'* (condition (ii) of y -admissibility, Definition 1.3),
or positive if not (condition (iii)). Noting that t6(e) € (—m,0) if e € y and
t6(e) € (0, ) if not, we let 0’: E — (0, 7) be defined by

t6(e) if e is not an edge of y,

/ —
0'e) = {n +1t0(e) if eisanedgeof y.
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Then 0’ satisfies the three conditions of Rivin’s Theorem and is therefore
realized as the dihedral angles of some ideal polyhedron P’ in H?. In the
projective model for H3, P’ is a polyhedron inscribed in the sphere with 1-
skeleton I'.

Conversely, suppose P’ is an ideal polyhedron in H? with 1-skeleton T.
Then the dihedral angles 6" : E — (0, 7r) of P’ satisfy the three conditions of
Rivin’s Theorem. We define 6 : E — R by

8(e) = 0’ (e) if e is not an edge of y,
" | 0'(e) —m if eisanedge of y.

Then 6 is easily seen to be y-admissible (Definition 1.3) and so by Theo-
rem 1.4, 6 = WAIS(P) for some P € AdSPolyh. In the projective model for
AdS?, P is a polyhedron inscribed in the hyperboloid with 1-skeleton I'. This
completes the proof of Theorem 1.2.

Remark 7.3 Let I be a planar graph and suppose I" is realized as the 1-skeleton
of some ideal polyhedron inscribed in the sphere. Note that I' may contain
many different Hamiltonian cycles. Applying the above to each Hamiltonian
cycle y shows the following: The components of the space of realizations of
I" as the 1-skeleton of a polyhedron inscribed in the hyperboloid (or similarly,
the cylinder) are in one-one correspondence with the Hamiltonian cycles in I'.

Acknowledgements Some of this work was completed while we were in residence together
at the 2012 special program on Geometry and analysis of surface group representations at
the Institut Henri Poincaré; we are grateful for the opportunity to work in such a stimulating
environment. Our collaboration was greatly facilitated by support from the GEAR network (U.S.
National Science Foundation grants DMS 1107452, 1107263, 1107367 “RNMS: GEometric
structures And Representation varieties”). We are grateful to Arnau Padrol for informing us that
Theorem 1.2 answers a question asked by Steiner in [37], and to the anonymous referees for
many constructive remarks. We also thank Qiyu Chen for pointing out a sign mistake.

Appendix A. Ideal polyhedra with dihedral angles going to zero

We outline an alternative proof of Proposition 1.16 using transitional geometry
ideas. The argument uses Lemmas 1.14 and 1.15 to produce deformation paths
of polyhedra with dihedral angles going to zero in a prescribed manner. Here
is the basic idea: starting from an ideal polyhedron P € AdSPolyh with
dihedral angles 8, we deform P so that the dihedral angles are proportional to
6 and decrease toward zero. An appropriate rescaled limit of these collapsing
polyhedrayields anideal polyhedron P/ in HP3 whose (infinitesimal) dihedral
angles are precisely 6; we then conclude, via Proposition 1.10, that 8 was in
A to begin with.
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The main ingredient is the following proposition. Recall the projective trans-
formations a; of Sect. 2.6, which when applied to (the projective model of)
AdS? yield HP? in the limit as t — 0.

Proposition A.1 Ler I' € Graph(XZo v, y) and consider weights 6 € REM)
that satisfy conditions (i), (ii) of Definition 1.3, and the following weaker
version of (iii):

(iii’): Ife], ..., ey formasimple circuit that does not bound a face of I'*, and
such that exactly two of the edges are dual to edges of the equator, then
O(e1) +---+0(ey) #0.

Let Py be a sequence in AASPolyh with dihedral angles t;,6 such that ty — O.
Then:

(1) Py converges to an ideal N-gon Py in the hyperbolic plane.
(2) a;, Py converges to an ideal polyhedron P in HP? with 1-skeleton T and
infinitesimal dihedral angles 6.

Proposition A.1 will be applied in the alternative proof of Proposition 1.16
below to show by contradiction that the dihedral angles 8 of an ideal polyhedron
in AdSPolyh must satisfy Condition (iii). In particular, if 6 satisfies (iii*) but
not (iii), then Proposition A.1 produces an ideal polyhedron in HP? with the
same dihedral angles, contradicting the already proved HP geometry version
of Proposition 1.16, namely Proposition 1.10.

We briefly mention an analogue of Proposition A.1 in the setting of quasi-
fuchsian hyperbolic three-manifolds. The first conclusion of the proposition
can be seen as an analogue of Series’ theorem [35], which states that when the
bending data of a sequence of quasifuchsian representations goes to zero in a
controlled manner, the convex cores collapse to a Fuchsian surface. The second
part is the analogue of work of Danciger—Kerckhoff [17] showing that after
application of appropriate projective transformations (in our notation, the a,),
the collapsing convex cores of such quasifuchsian representations converge to
a convex core in half-pipe geometry.

Proof We adapt the proof of Lemma 1.14 (properness of the map WAdS),
As in that proof, we may again assume that the ideal vertices (vﬁ o vf [

(vl%, . vll\e, ) of Py satisfy that:

L _ R ol —yR —1 oL — R — oo
o Vi =i = 0,03 = vy, = 1vgy = vy = 003

L R R .
0o and Uik ™ Y oob and
R

Vit 1,00

e Foreachi € {1,...N}, vfk — v

L

—_ L : : R _
® UV = Viieo if and only if Voo =

Therefore, we again find that the limit P, of Py (in this normalization) is
a convex ideal polyhedron in AdS?, possibly of fewer vertices, and possibly
degenerate (i.e. lying in a two-plane). The dihedral angle at an edge e of P
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is again the sum of O (e’) over all edges ¢’ of I which collapse to e, where in
this case 05 = 0. Therefore all dihedral angles of P, are zero and we have
that P is an ideal polygon lying in the hyperbolic plane & containing the
ideal triangle Ag spanned by (0, 0), (1, 1), and (0o, 00). To prevent collapse,
we apply the appropriate projective transformations a;, to the Py.

Claim A.2 Up to taking a subsequence (in fact not necessary), the vertices
a4 Vi k converge to points v;  in the projective boundary OHP3.

Proof This can be seen from the following simple compactness statement,
which may be verified by induction: Given M > 1 and ® > 0, there exists
two smooth families of space-like bounding planes Q. () and Q_(¢), defined
for t > 0, such that

e 01(0)=09_(0)=2.

e 9. (t) and Q_(t) are disjoint for ¢ > 0 and their common perpendicular
is a fixed time-like line « (independent of 7).

e The time-like distance (along ) between Q. (¢) and Q_(¢) is O(z).

e Any space-like convex connected ideal polygonal surface in AdS® for
which Ag is (contained in) a face, which has at most M faces, and all
of whose dihedral angles are bounded by 7® lies to the past of Q4 (¢) and
to the future of Q_(¢).

The first three conditions above imply that the limit of a, Q4 () and a;, Q_(¢) as
t — 0 are two disjoint non-degenerate planes Q’, and Q' in HP3. Therefore,
the limit of a,, P must, after extracting a subsequence if necessary, converge
to some polyhedron in HIP? U 9HP? lying below @/, and above Q' . |

As in the proof of Lemma 1.14, the limit of a;, Py is the convex hull P/ of
U oor -+ s Up oo I HP*. The 1-skeleton I of P, is obtained from the original
1-skeleton I" by collapsing some edges to vertices and some faces to edges or
vertices.

Lemma A.3 Given ¢’ € I, the infinitesimal dihedral angle 6. (') of P, at
¢’ is the sum of 0(e) = %t@ (e) |[:0 over all edges e which collapse to €'

Proof The sequence of edges ey, ...,e; € E(I') which collapse to ¢’ may
be arranged in order so that the dual edges in I'* form a simple path. The
sequence of adjacent faces fy, ..., f¢ of I' are such that in Py, each of these
faces collapses to e’ except the first fp and last f;. After applying a;,, the planes
W1, ..., W, containing these faces (we are suppressing the 7;, dependence here)
converge to planes W/, ..., W, arranged in order around the common edge
realizing ¢’ in HP3. The angle 6/ _(¢’), which is the dihedral angle between
W/ and W/, is seen to be the sum over i of the dihedral angle between W/ and
W/, |, which is precisely 6 (e;). |
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Next, consider the projection @ : HP? — 2. Note that w(vlf’ o) = Vi co-
Let ‘H denote the HP horo-cylinder which is the inverse image under @ of
a small horocycle in & centered at a vertex v; oo 0f Poo. The metric on 'H
inherited from HP? is flat and degenerate; it is the pull-back under @ of the
metric on a horocycle. The intersection of H with P/ is a convex polygon ¢
in H. The infinitesimal angles at vertices of ¢ are the same as the infinitesimal
dihedral angles of the corresponding edges of P/ . Note that the vertices of ¢
are the intersection with H of all edges emanating from the ideal points v;’ .
such that v; o = v . The following lemma is just the fact that the exterior
angles of a convex polygon in the Euclidean plane sum up to a constant 27,
interpreted in the setting that the polygon is infinitesimally thin.

Lemma A.4 The infinitesimal angles of g sum to zero.

Now, suppose, for contradiction, that v;+1 oo = Vj 0. Then, the vertices of
q correspond to a path ¢’ of edges of I'" whose inverse image under the collapse
is a path ¢ of edges in I' which do not bound a face of T'*. It follows from the
above that the sum of 6 (e) over the edges e of the path c is zero, contradicting
the condition (iii’). O

Remark A.5 This argument also works in the context of hyperbolic ideal poly-
hedra with dihedral angles going to zero and 7 at a controlled rate.

Remark A.6 Assuming the stronger condition (iii) on 6, the limiting ideal
polygon Ps, must be the unique minimum of the length function £y over the
space polyg, of marked ideal polygons. See the proof of Theorem 1.9.

Outline of alternative proof of Proposition 1.16 Let ' € Graph(Zo y, y)
and suppose P € AdSPolyh such that the dihedral angles 6 = WAdS(py ¢
REM®) violate condition (iii) in the definition of .Ar. We argue by contradic-
tion. First we show that there are nearby weights 0’ satisfying conditions (i),
(ii), as well as condition (iii’) of Proposition A.1 above and so that at least one
of the angle sum expressions of (iii’) is strictly negative. This may already be
the case for 6. If not, then there is at least one angle sum expression as in (iii)
which evaluates to zero, and we will perturb. In the case that I is a triangula-
tion, it is simple to verify that none of the angle sum expressions in condition
(iii) is locally constant when the equations of condition (ii) are satisfied, and
therefore a nearby 6’ exists as desired, since (iii”) consists of only finitely many
conditions . If I' is not a triangulation, then it actually could be the case that an
angle sum expression as in condition (iii) is constant equal to zero on the entire
space of weights satisfying (ii). However, it is always possible to add a small
number of edges (at most one for each angle sum expression of (iii) which
evaluates to zero for ) with very small positive weights, while perturbing the
other weights slightly, to produce 6’ as desired. Let us briefly explain.
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+
— 7
8 6
+
9
5 +
10
4_
3+
11
1 2

+

Fig. 10 The black edges (including circular arcs, and solid and dashed straight edges) form
a three-connected graph on the sphere which contains a Hamiltonian path (the circular arcs),
but which is never realized as the 1-skeleton of a convex ideal polyhedron in AdS3. The thick
curvy red path determines a path in the dual graph as in condition (iii) for which the angle sum
is identically zero over any systems of weights satisfying (ii). Indeed the angle sum is precisely
the alternating sum of the terms in the vertex equations (for vertices 1-9) with signs as labeled
in the diagram (color figure online)

Suppose e, ..., e, form a simple circuit that does not bound a face of I'*,
such that exactly two of the edges are dual to edges of the equator, and such
that 6 (eq1) + - - - + 6(e,) = O for all angle assignments 6 satisfying (ii). Then,
in the algebra of functions on the edges of I', the sum 6 (ey) +--- + 6 (e,) is a
linear combination of the vertex relations of (ii). More specifically, the angle
sum O (e1) + - - - + 60 (e,) is equal to the alternating sum of vertex relations for
the ordered collection of vertices (necessarily odd in number) lying on one
side of the simple circuit. See Fig. 10. Consider a face f of I" containing two
such adjacent vertices vy and v_ which appear respectively with a 4 sign
and a — sign in the alternating sum. The only non-equatorial edges emanating
from v_ end at a vertex represented in the alternating sum with a positive sign.
Hence, we may add a diagonal edge ¢’ within f to I" connecting v to another
vertex represented in the sum with a positive sign. In this new combinatorics
we may deform the angle sum 6(e;) + --- + 0(e,) = —26(¢’) to negative
values by assigning a small positive weight to ¢’. If after this adjustment, there
remains other simple circuits of the type considered in (iii’) with angle sum
identically zero, we perform a similar adjustment for that simple circuit. As
there are only finitely many simple circuits to consider, this process terminates
in finitely many steps yielding an angle assignment on some supergraph of I
satisfying (iii’).
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Next, by Lemma 7.2 (which was a simple consequence of Lemma 1.15, inde-
pendent of Proposition 1.16), there is an ideal polyhedron P’ € AdSPolyh,
close to P, so that WAYS(P’) = ¢’. Now, consider the path of weights 76/,
defined for r > 0. Lemma 7.2 implies that there exists a path P; in AdSPolyh
such that \IJAdS(P,) = t0’, defined at least for 7 close to one. In fact, the path
P; may be defined for all 1 > ¢ > 0. Indeed if the limitast — 7 > 0 of P,
failed to exist, then the proof of Lemma 1.14 would imply that WAdS(p)) either
goes to infinity or limits to an element of RE(™) for which some angle sum
expression as in (iii) is exactly zero, impossible since the limit as t — T of
WAS(p) s, of course, equal to T6’. Hence, we may apply Proposition A.1 to
the path P;. The result is an ideal polyhedron P, € HPPolyh whose infinites-
imal dihedral angles are precisely 6. This contradicts Proposition 1.10 since
0’ does not satisfy (iii). O
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