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Abstract We study convex polyhedra in three-space that are inscribed in a
quadric surface. Up to projective transformations, there are three such sur-
faces: the sphere, the hyperboloid, and the cylinder. Our main result is that
a planar graph � is realized as the 1-skeleton of a polyhedron inscribed in
the hyperboloid or cylinder if and only if � is realized as the 1-skeleton of a
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238 J. Danciger et al.

polyhedron inscribed in the sphere and � admits a Hamiltonian cycle. This
answers a question asked by Steiner in 1832. Rivin characterized convex poly-
hedra inscribed in the sphere by studying the geometry of ideal polyhedra in
hyperbolic space. We study the case of the hyperboloid and the cylinder by
parameterizing the space of convex ideal polyhedra in anti-de Sitter geometry
and in half-pipe geometry. Just as the cylinder can be seen as a degeneration of
the sphere and the hyperboloid, half-pipe geometry is naturally a limit of both
hyperbolic and anti-de Sitter geometry. We promote a unified point of view to
the study of the three cases throughout.
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1 Introduction and results

1.1 Polyhedra inscribed in a quadric

According to a celebrated result of Steinitz (see e.g. [43, Chapter 4]), a graph
� is the 1-skeleton of a convex polyhedron in R

3 if and only if � is planar
and 3-connected. Steinitz [38] also discovered, however, that there exists a
3-connected planar graph which is not realized as the 1-skeleton of any poly-
hedron inscribed in the unit sphere S, answering a question asked by Steiner
[37] in 1832. An understanding of which polyhedral types can or can not be
inscribed in the sphere remained elusive until Hodgson et al. [22] gave a full
characterization in 1992. This article is concernedwith realizability by polyhe-
dra inscribed in other quadric surfaces inR

3. Up to projective transformations,
there are two such surfaces: the hyperboloid H , defined by x21 + x22 − x23 = 1,
and the cylinder C , defined by x21 + x22 = 1 (with x3 free).

Definition 1.1 A convex polyhedron P is inscribed in the hyperboloid H
(resp. the cylinder C) if P ∩ H (resp. P ∩ C) is exactly the set of vertices
of P .

If a polyhedron P is inscribed in the cylinder C , then P lies in the solid
cylinder x21 + x22 ≤ 1 (and x3 free), with all points of P except its vertices
lying in the interior. A polyhedron P inscribed in the hyperboloid H could
lie in (the closure of) either complementary region of R

3\H . However, after
performing a projective transformation, preserving H and exchanging the two
complementary regions of R

3\H , we may (and will henceforth) assume that
all points of P , except its vertices, lie in the interior of the solid hyperboloid
x21 + x22 − x23 ≤ 1.

Recall that a Hamiltonian cycle in a graph is a closed path visiting each
vertex exactly once. We prove the following result, which provides an answer
to Question 77 in Steiner’s book [37] about the possibility of realizing a poly-
hedron as inscribed in a sphere or another quadric.

Theorem 1.2 Let � be a planar graph. Then the following conditions are
equivalent:

(C): � is the 1-skeleton of some convex polyhedron inscribed in the cylinder.
(H): � is the 1-skeleton of some convex polyhedron inscribed in the hyper-

boloid.
(S): � is the 1-skeleton of some convex polyhedron inscribed in the sphere

and � admits a Hamiltonian cycle.

Recall that the projective model for hyperbolic 3-space H
3 is given by the

space of lines in R
3,1 which have negative signature, where R

3,1 denotes
R
4 equipped with a quadratic form of signature (3, 1). The quadratic form
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240 J. Danciger et al.

defines ametric of constant negative curvature onH
3. Viewed in an appropriate

affine chart, H
3 is simply the unit ball x21 + x22 + x23 < 1, with the sphere S

describing the projective boundary ∂H
3. In this model, projective lines and

planes intersecting the ball correspond to totally geodesic lines and planes
in H

3. Therefore a convex polyhedron inscribed in the sphere is naturally
associated to a convex ideal polyhedron in the hyperbolic space H

3.
Following the pioneering work of Andreev [2,3], Rivin [32] gave a parame-

terization of the deformation space of such ideal polyhedra in terms of dihedral
angles. As a corollary, Hodgson et al. [22] showed that deciding whether a pla-
nar graph � may be realized as the 1-skeleton of a polyhedron inscribed in
the sphere amounts to solving a linear programming problem on �. To prove
Theorem 1.2, we show that, given a Hamiltonian path in �, there is a similar
linear programming problem whose solutions determine polyhedra inscribed
in either the cylinder or the hyperboloid.

Just as polyhedra inscribed in a sphere can be interpreted as ideal polyhedra
in the 3-dimensional space H

3, polyhedra inscribed in a one-sheeted hyper-
boloid can be interpreted as ideal polyhedra in the 3-dimensional anti-de Sitter
space AdS

3. Similarly to the projective model for H
3, the projective model for

AdS
3 is given by the set of lines in R

2,2 with negative signature, where R
2,2

denotes R
4 now equipped with a quadratic form of signature (2, 2). Similarly

as in H
3, the quadratic form defines a metric on AdS

3 of constant negative
curvature, but unlike in H

3, this metric is indefinite, of signature (2, 1). Hence
AdS

3 is a Lorentzian analogue of H
3. Topologically, AdS

3 is a solid torus.
Unlike H

3, the projective model of AdS
3 does not fit inside a single affine

chart. The solid hyperboloid x21 + x22 − x23 < 1 in R
3 gives a picture of the

projective model of most of AdS
3. The full affine lines contained inside the

hyperboloid close up at infinity along a copy of the hyperbolic plane, which
is the remaining piece of AdS

3 not seen in this affine chart. As in hyperbolic
geometry, projective lines and planes intersecting this solid hyperboloid cor-
respond to geodesics in AdS

3. Therefore a convex polyhedron inscribed in the
hyperboloid is naturally associated to a convex ideal polyhedron in the anti-de
Sitter space AdS

3, which is a Lorentzian analogue of hyperbolic space.
Similarly, the solid cylinder x21 + x22 < 1 (with x3 free) in an affine chart R3

of RP
3 gives the projective model for half-pipe (HP) geometry. Therefore a

convex polyhedron inscribed in the cylinder is naturally associated to a convex
ideal polyhedron in the half-pipe space HP

3. Half-pipe geometry, introduced
by Danciger [14–16], is a transitional geometry which, in a natural sense, is
a limit of both hyperbolic and anti-de Sitter geometry. In order to prove The-
orem 1.2 we study the deformation spaces of ideal polyhedra in both AdS

3

and HP
3 concurrently. By viewing polyhedra in HP

3 as limits of polyhedra
in both H

3 and AdS
3, we are able to translate some geometric information

between the three settings. In fact we are able to give parameterizations (The-
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Polyhedra inscribed in a quadric 241

Fig. 1 A polyhedron inscribed in the hyperboloid (left) and a combinatorial equivalent poly-
hedron inscribed in the cylinder (right). The 1-skeleton of any such polyhedron admits a
Hamiltonian cycle which we call the equator (red) (color figure online)

orems 1.4, 1.5 and 1.9) of the spaces of ideal polyhedra in both AdS
3 and

HP
3 in terms of geometric features of the polyhedra. This, in turn, describes

the moduli of convex polyhedra inscribed in the hyperboloid and the moduli
of convex polyhedra inscribed in the cylinder, where polyhedra are consid-
ered up to projective transformations fixing the respective quadric. It is these
parameterizations which should be considered the main results of this article;
Theorem 1.2 will follow as a corollary.

1.2 Rivin’s two parameterizations of ideal polyhedra in H
3

Rivin gave two natural parameterizations of the space of convex ideal poly-
hedra in the hyperbolic space H

3. Let P be a convex ideal polyhedron in H
3,

let E denote the edges of the 1-skeleton of P , and let P∗ denote the Poincaré
dual of P . We denote by e∗ the edge of the 1-skeleton of P∗ dual to an edge
e ∈ E . Then the function θ ∈ R

E assigning to each edge its dihedral angle
satisfies the following three conditions.

(1) 0 < θ(e) < π for all edges e ∈ E .
(2) If e∗

1, . . . , e
∗
k bound a face of P

∗, then θ(e1) + · · · + θ(ek) = 2π .
(3) If e∗

1, . . . , e
∗
k form a simple circuit which does not bound a face of P∗,

then θ(e1) + · · · + θ(ek) > 2π .

Rivin [32] shows that, for an abstract polyhedron P , any assignment of weights
θ to the edges of P that satisfy the above three conditions is realized as the
dihedral angles of a unique (up to isometries) non-degenerate ideal polyhedron
inH

3. Further themap taking any ideal polyhedron P to its dihedral angles θ is
a homeomorphism onto the complex of all weighted planar graphs satisfying
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242 J. Danciger et al.

the above linear conditions. This was first shown by Andreev [3] in the case
that all angles are acute.

The second parameterization [31] characterizes an ideal polyhedron P in
terms of the geometry intrinsic to the surface of the boundary of P . The path
metric on ∂P , called the inducedmetric, is a complete hyperbolicmetric on the
N -times punctured sphere �0,N , which determines a point in the Teichmüller
space T0,N . Rivin also shows that the map taking an ideal polyhedron to its
induced metric is a homeomorphism onto T0,N .

1.3 Two parameterizations of ideal polyhedra in AdS
3

AdS geometry is a Lorentzian analogue of hyperbolic geometry in the sense
that the anti-de Sitter space AdS

n has all sectional curvatures equal to −1.
However, the metric is Lorentzian (meaning indefinite of signature (n−1, 1)),
making the geometry harder to work with than hyperbolic geometry, in some
ways. For our purposes, it is most natural to work with the projective model of
AdS

3 (see Sect. 2.2), which identifiesAdS
3 with an open region inRP

3, and its
projective boundary ∂AdS

3 with the boundary of that region. The intersection
of AdS

3 with an affine chart is the region x21 + x22 − x23 < 1 bounded by the
hyperboloid H . The projective boundary ∂AdS

3, seen in this affine chart, is
exactly H .

Let P be a convex ideal polyhedron in AdS
3 with N vertices. That P is

ideal means that the closure of P in AdS
3 ∪ ∂AdS

3 is a polyhedron whose
intersection with ∂AdS

3 is precisely its vertices. That P is convex means that
after removing a space-like plane in its complement, P is geodesically convex.
Alternatively, P is convex if and only if it is convex in some affine chart of
RP

3. Unlike in the hyperbolic setting, there are restrictions (Proposition 2.8)
on the positions of the N vertices. Some choices of N vertices on the projective
boundary ∂AdS

3 do not determine a convex ideal polyhedron. Roughly, this
is because the hyperboloid H has mixed curvature and the convex hull of a
collection of vertices on H may contain points both inside and outside of H .
All facets of P are spacelike, meaning the restriction of the AdS metric is pos-
itive definite. Therefore, by equipping AdS

3 with a time-orientation, we may
sort the faces of P into two types, those whose normal is future-directed, and
those whose normal is past-directed. The future-directed faces unite to form a
disk (a bent ideal polygon), as do the past-directed faces (Proposition 2.9). The
edges which separate the past faces from the future faces form a Hamiltonian
cycle, which we will refer to as the equator of P . Amarking of P will refer to
an identification, up to isotopy, of the equator of P with the standard N -cycle
graph so that the induced ordering of the vertices is positive with respect to the
orientation and time orientation of AdS

3. We let AdSPolyh = AdSPolyhN
denote the space of all marked, non-degenerate convex ideal polyhedra in
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Fig. 2 A marking of an ideal polyhedron P (right) in AdS
3 is a labeling of the ideal vertices

in order going around the equator in the positive direction. It defines an identification of �0,N
with P that takes γ to the equator (red) and the top (resp. bottom) hemisphere of �0,N (left) to
the union of the future (resp. past) faces of P . The 1-skeleton of P (right, blue and red) defines
a graph � ∈ Graph(�0,N , γ ) (left, blue and red) (color figure online)

AdS
3 with N vertices, considered up to orientation and time-orientation pre-

serving isometries Isom0AdS
3 of AdS

3. The term ideal polyhedron in AdS
3

will henceforth refer to an element of this space. The topology onAdSPolyhN
is induced from the quotient of the space of pairwise-distinct N -tuples of points
in ∂AdS

3 by the action of IsomAdS
3, which is proper. Let �0,N denote two-

sphere with N marked points, which we will refer to as punctures. Fix an
orientation on �0,N , a simple loop γ visiting each marked point once, and
label the marked points in order along the path. We call the polygon on the
positive side of γ the top and the polygon on the negative side the bottom
of �0,N . Then, each ideal polyhedron P is naturally identified with �0,N via
the (isotopy class of the) map taking each ideal vertex to the corresponding
puncture and the equator to γ . This identifies the union of the future faces of
P with the top of �0,N and the past faces with the bottom. See Fig. 2. We let
Graph(�0,N , γ ) denote the collection of three-connected graphs embedded
in �0,N , up to isotopy, whose vertices are the N punctures and whose edge
set contains the edges of γ . Via the marking, any ideal polyhedron P real-
izes the edges of a graph in Graph(�0,N , γ ) as a collection of geodesic lines
either on the surface of or inside of P . In particular, there is a unique graph
� ∈ Graph(�0,N , γ )whose edges are realized as the 1-skeleton of P; we will
say � is realized as the 1-skeleton of P , or by abuse that � is the 1-skeleton
of P .

Consider a space-like oriented piecewise totally geodesic surface in AdS
3

and let T and T ′ be two faces of this surface meeting along a common edge e.
We measure the exterior dihedral angle at e as follows. The group of isome-
tries ofAdS

3 that pointwise fix the space-like line e is a copy of O(1, 1), which
should be thought of as the group of hyperbolic rotations or Lorentz boosts
of the time-like plane orthogonal to e. By contrast to the setting of hyperbolic
(Riemannian) geometry, O(1, 1) has two non-compact components. There-
fore there are two distinct types of dihedral angles possible, each of which is
described by a real number rather than an element of the circle. Let ϕ be the
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244 J. Danciger et al.

amount of hyperbolic rotation needed to rotate the plane of T ′ into the plane
of T . The sign of ϕ is defined as follows. The light-cone of e locally divides
AdS

3 into four quadrants, two of which are space-like and two of which are
time-like. If T and T ′ lie in opposite space-like quadrants, then we take ϕ to
be non-negative if the surface is convex along e, and negative if the surface is
concave along e. If T and T ′ lie in the same space-like quadrant, we take ϕ

to be non-positive if the surface is convex at e, and positive if the surface is
concave at e. Therefore, the dihedral angles along the equator of a convex ideal
polyhedron P are negative, while the dihedral angles along the other edges are
positive. Note that this definition of angle, and in particular the sign conven-
tion, agrees with a natural alternative definition in terms of cross-ratios (see
Sect. 2). Let � ∈ Graph(�0,N , γ ) be the 1-skeleton of P , and let E denote its
edges. We will show (Proposition 1.16) that the function θ ∈ R

E assigning to
each edge of � the dihedral angle along the corresponding edge of P satisfies
the following triple of conditions, which we will call γ -admissibility. It will
be convenient to express the conditions in terms of the dual graph �∗ ⊂ �0,N ,
which determines a cellulation (the polyhedral type dual to P) of the two-
sphere each face of which contains a unique puncture. Note that the edges
E(�) are in one-one correspondence with the edges E(�∗).

Definition 1.3 Let � ∈ Graph(�0,N , γ ), and let �∗ ⊂ �0,N denote the
dual graph. For each edge e ∈ E(�) denote the corresponding dual edge by
e∗ ∈ E(�∗). A function θ ∈ R

E (�) is said to be γ -admissible if it satisfies
the following three conditions:

(i) θ(e) < 0 if e is an edge of the equator γ , and θ(e) > 0 otherwise.
(ii) If e∗

1, . . . , e
∗
k bound a face of �∗, then θ(e1) + · · · + θ(ek) = 0.

(iii) If e∗
1, . . . , e

∗
k form a simple circuit which does not bound a face of �∗, and

such that exactly two of the edges are dual to edges of γ , then θ(e1) +
· · · + θ(ek) > 0.

For any � ∈ Graph(�0,N , γ )with edge set E = E(�), we defineA� to be
the space of all functions θ ∈ R

E which are γ -admissible. DefineAdSPolyh�

to be the space of ideal polyhedra in AdS
3 with 1-skeleton identified with �,

and let �AdS
� : AdSPolyh� → A� denote the map assigning to an ideal

polyhedron its dihedral angles. All of the maps�AdS
� may be stitched together

into one. LetA denote the disjoint union of allA� glued together along faces
corresponding to common subgraphs. Then, we show:

Theorem 1.4 The map �AdS : AdSPolyh → A, defined by �AdS(P) =
�AdS

� (P) if P ∈ AdSPolyh� , is a homeomorphism.

The equivalence of conditions (H) and (S) in Theorem 1.2 follows directly
from this theorem and from Rivin’s theorem (see Sect. 1.2). Indeed, it is an
easy exercise in basic arithmetic to convert any weight function θ ∈ A� into
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Polyhedra inscribed in a quadric 245

one that satisfies conditions (1), (2), and (3) of Rivin’s theorem. If there is a
Hamiltonian cycle γ in the 1-skeleton, it is also easy to convert any weight
function on the edges of a graph� that satisfies Rivin’s conditions into aweight
function which is γ -admissible (and is in A�). See Sect. 7.4 for the detailed
proof.

We also give a second parameterization of ideal polyhedra in terms of
the geometry intrinsic to their boundaries. Here we parameterize the space
AdSPolyhN = AdSPolyhN∪polygN of allmarked polyhedrawith N vertices
including both the non-degenerate polyhedra AdSPolyhN and the degenerate
(or collapsed) polyhedra, parameterized by the space polygN of marked ideal
polygons in H

2 with N vertices. These spaces are each topologized as quo-
tients of subspaces of the pairwise distinct N -tuples in ∂AdS

3. Any space-like
plane inAdS

3 is isometric to the hyperbolic planeH
2. Therefore, similar to the

setting of hyperbolic 3-space, the path metric on the surface of P is a complete
hyperbolic metric on the N -times punctured sphere �0,N determining a point
in the Teichmüller space T0,N , again called the induced metric. We show the
following result:

Theorem 1.5 The map 
 : AdSPolyhN → T0,N , taking a convex ideal
polyhedron P in AdS

3 to the induced metric on ∂P, is a diffeomorphism.

The (weaker) local version of this theorem is a crucial ingredient in proving
Theorem 1.4.

Before continuing on to half-pipe geometry and the cylinder, let us state
two questions about potential generalizations of Theorems 1.4 and 1.5. In the
proofs of Theorems 1.4 and 1.5, many of our techniques should apply in the
setting of hyperideal polyhedra, i.e. polyhedra whose vertices lie outside of
the hyperboloid, but all of whose edges pass through the hyperboloid. Like
ideal polyhedra, hyperideal polyhedra in AdS

3 have a well-defined “equator”
that forms a Hamiltonian path in their 1-skeleton, and the induced metric on
their boundary is a complete hyperbolic metric (of infinite area if at least one
vertex is strictly hyperideal). In the setting of hyperbolic geometry, hyperideal
polyhedra may be described in terms of their dihedral angles [4] or in terms of
their inducedmetrics [33]. This suggests the following questions on hyperideal
polyhedra in the Anti-de Sitter setting.

Question 1.6 Let �0,N be the 2-sphere with N points (punctures) removed.
Given a complete hyperbolic metric h on �0,N , possibly of infinite volume,
is there a unique hyperideal AdS polyhedron P so that the induced metric on
the boundary of P is isometric to h?

Question 1.7 Let � ∈ Graph(�0,N , γ ), and let �∗ ⊂ �0,N denote the dual
graph. For each edge e ∈ E(�) denote the corresponding dual edge by e∗ ∈
E(�∗). Let θ ∈ R

E (�). Suppose that
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(i) θ(e) < 0 if e is an edge of γ , and θ(e) > 0 otherwise.
(ii) If e∗

1, . . . , e
∗
k bound a face of �∗, then θ(e1) + · · · + θ(ek) ≥ 0.

(iii) If e∗
1, . . . , e

∗
k form a simple circuit which does not bound a face of �∗, and

such that exactly two of the edges are dual to edges of γ , then θ(e1) +
· · · + θ(ek) > 0.

(iv) If e∗
1, . . . , e

∗
k form a simple path starting and ending on the same face of

P∗, but not contained in the boundary of that face, and such that exactly
one of the edges is dual to an edge of γ , then θ(e1) + · · · + θ(ek) > 0.

Is there a unique hyperideal polyhedron P inAdS
3 with 1-skeleton� and with

equator isotopic to γ so that the dihedral angles are given by θ?

Condition (iv) in Question 1.7 is the analog of a condition occurring in
the description of the dihedral angles of hyperideal polyhedra in hyperbolic
space [4]. Given a hyperideal polyhedron in AdS

3, a doubling argument along
a truncation face dual to a hyperideal vertex shows that the Condition (iv) is
implied by Condition (iii). That Condition (iv) is satisfied at an ideal vertex
follows easily from (the equality case of) Condition (ii). In particular, for ideal
polyhedra, Condition (iv) is implied by Conditions (i),(ii), and (iii), so it need
not be stated as a separate condition in that setting.

Remark 1.8 (Relationship with the bending conjecture) The statements of
Theorems 1.4 and 1.5 bear close resemblance to a conjecture of Mess [28]
in the setting of globally hyperbolic Cauchy compact AdS space-times. Mess
conjectured, by analogy to a related conjecture of Thurston in the setting of
quasifuchsian groups, that such a spacetime should be determined uniquely by
the bending data or by the induced metric on the boundary of the convex core
inside the spacetime. There are existence results known in both cases, due to
Bonsante–Schlenker [12] and Diallo [19] respectively, but no uniqueness or
parameterization statement is known in this setting. Ultimately, Theorems 1.4
and 1.5 on the one hand and Mess’s conjecture on the other hand boil down to
understanding the connection between the geometry of a subset of ∂AdS

3 and
the geometry of its convex hull in AdS

3. It is natural to ask whether Mess’s
conjecture and our theorems on ideal polyhedra might naturally coexist as part
of some larger universal theory relating the geometry of a convex spacetime
in AdS

3 to its asymptotic geometry at the projective boundary.

1.4 A parameterization of ideal polyhedron in HP
3

Half-pipe (HP) geometry is a transitional geometry lying at the intersection of
hyperbolic and anti-de Sitter geometry. Intuitively, it may be thought of as the
normal bundle of a codimension one hyperbolic plane inside of either hyper-
bolic space or anti-de Sitter space. In [15,16], the first named author constructs
paths of three-dimensional projective structures on certain manifolds which
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transition from hyperbolic geometry to AdS geometry passing through an HP
structure. In our setting, it is informative to imagine families of polyhedra in
projective space whose vertices lie on a quadric surface evolving from the
sphere to the hyperboloid passing through the cylinder. Indeed, the notion of
transition is also useful for proving several key statements needed along the
way to the main theorems.

Half-pipe geometry is a homogeneous (G, X)-geometry. The projective
model X = HP

3 for half-pipe space is simply the solid cylinder x21 + x22 <

1 in the affine x1-x2-x3 coordinate chart R
3. There is a natural projection

� : HP
3 → H

2, seen, in this model, as the projection of the solid cylinder to
the disk. The projection is equivariant taking projective transformations which
preserve the cylinder to isometries of the hyperbolic plane. The projection also
extends to take the projective boundary ∂HP

3 = C to the boundary ∂H
2 of the

hyperbolic plane. The structure group G is the codimension one subgroup of
all projective transformations preserving the cylinderwhich preserves a certain
length function along the fibers of this projection. By pullback, the projection
� determines ametric onHP

3 which is degenerate along the fiber direction. In
this metric, all non-degenerate 2-planes are isometric to the hyperbolic plane.

Let P be a convex ideal polyhedron in HP
3 with N vertices. That P is ideal

means that the closure of P in RP
3 is a polyhedron contained in HP

3 ∪ ∂HP
3

whose intersection with ∂HP
3 is precisely its vertices. Since HP

3 is contained
in an affine chart, the notion of convexity is defined to be the same as in affine
space. Then the N vertices project to N distinct points on the ideal boundary of
the hyperbolic plane (else one of the edges of P would be contained in ∂HP

3,
which we do not allow). Therefore P determines an ideal polygon p = �(P)

in the hyperbolic plane. Further, all facets of an ideal polyhedron in HP
3 are

non-degenerate; in particular the faces of P are transverse to the fibers of � .
By equipping HP

3 with an orientation of the fiber direction, we may sort the
faces of P into two types, those for which the outward pointing fiber direction
is positive, and those for which it is negative. We call such faces positive or
negative, respectively. The positive faces form a disk (a bent polygon) as do the
negative faces. The edges of P which separate a positive face from a negative
face form a Hamiltonian cycle in the 1-skeleton of P , again called the equator.
As in the AdS setting, we let HPPolyh = HPPolyhN denote the space of all
marked non-degenerate convex ideal polyhedra in HP

3 with N vertices, up to
orientation preserving and fiber-orientation preserving transfomations. Again,
the boundary of each ideal polyhedron P is naturally identified with �0,N
via the (isotopy class of) map taking each ideal vertex to the corresponding
puncture and the equator to γ . Under this identification, the union of the
positive faces (resp. the union of the negative faces) is identified with the top
(resp. bottom) disk of �0,N . Via the marking, any ideal polyhedron P realizes

123



248 J. Danciger et al.

the edges of a graph � ∈ Graph(�0,N , γ ) as a collection of geodesic lines
either on the surface of or inside of P .

The angle measure between two non-degenerate planes in HP
3 can be

defined in terms of the length function on the fibers. Alternatively, one should
think of a non-degenerate plane inHP

3 as an infinitesimal deformation of some
fixed central hyperbolic plane in H

3 or AdS
3. As such, the angle between two

intersecting planes in HP
3 should be thought of as an infinitesimal version of

the standard angle measure in H
3 or AdS

3. As in the AdS setting, we must
distinguish between two types of dihedral angles: two non-degenerate half-
planes meeting along a non-degenerate edge e either lie on opposite sides of
or the same side of the degenerate plane (which is the union of all degener-
ate lines) passing through e. As in the AdS setting, we take the convention
that the dihedral angles along the equator of a convex ideal polyhedron P are
negative, while the dihedral angles along the other edges are positive. Let �

be the 1-skeleton of P with γ the subgraph corresponding to the equator. A
simple argument in HP geometry (Sect. 3.5) shows that the function θ assign-
ing to each edge of P the exterior dihedral angle at that edge is γ -admissible
(Definition 1.3); in other words θ ∈ A. Define HPPolyh� to be the space of
ideal polyhedra in HP

3 with 1-skeleton identified with � ∈ Graph(�0,N , γ )

and let �HP
� : HPPolyh� → A� be the map assigning to an ideal polyhedron

its dihedral angles. Then all of the maps �HP
� : HPPolyh� → A� may be,

again, stitched together into one. We show:

Theorem 1.9 The map �HP : HPPolyh → A, defined by �HP(P) =
�HP

� (P), if P ∈ HPPolyh� , is a homeomorphism.

The equivalence of conditions (C) and (H) in Theorem 1.2 follows from The-
orems 1.9 and 1.4. Note that there is no direct analogue of Theorem 1.5 in the
half-pipe setting. Indeed, the induced metric on a ideal polyhedron in HP

3 is
exactly the double of the ideal polygon �(P) across its boundary. The image
of themap
HP : HPPolyhN → T0,N , taking a convex ideal polyhedron P in
HP

3 to the induced metric on ∂P , is the half-dimensional subspaceD ofT0,N
consisting of those hyperbolic metrics which are fixed by reflection across the
equator, see Sect. 3. Since the dimension ofD is half that ofHPPolyhN ,


HP

fails to be injective. Intuitively, the induced metric on ∂P does not determine
P because as a polyhedron inH

3 (orAdS
3) collapses onto a plane, the induced

metric only changes to second order: the path metric on a plane bent by angle
θ differs from the ambient metric only to second order in θ .

1.5 Strategy of the proofs and organization

There is a natural relationship between bending in AdS
3 and earthquakes on

hyperbolic surfaces.We describe this relationship, in our context of interest, in
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Sect. 2. Here is a synopsis. Via the product structure on the projective boundary
∂AdS

3 ∼= RP
1 × RP

1, an ideal polyhedron P ∈ AdSPolyhN is determined
by two ideal polygons pL and pR in the hyperbolic plane, each with N labeled
vertices (see Sect. 2.3). The twometricsmL ,mR ∈ T0,N obtained by doubling
pL and pR respectively are called the left metric and right metric respectively.
Given weights θ on a graph � ∈ Graph(�0,N , γ ), the pair pL , pR determine
an ideal polyhedron P with bending data θ if and only if the left and right
metrics satisfy:

mR = E2θmL , (1)

where Eθ is the shear map defined by shearing a surface along the edges of
� according to the weights given by θ (where a positive weight means shear
to the left, and a negative weight means shear to the right). Directly solving
for pL and pR given θ is very difficult. However, the infinitesimal version of
this problem is more tractable; this is the relevant problem in the setting of
half-pipe geometry.

An ideal polyhedron P ∈ HPPolyhN is determined by an N -sided ideal
polygon p in the hyperbolic plane and an infinitesimal deformation V of p (see
Sect. 2). Doubling yields an element m of the Teichmüller space T0,N and an
infinitesimal deformationW ofm which is tangent to the sub-space of doubled
ideal polygons. The data p, V determine an ideal polyhedron P ∈ HPPolyh
with bending data θ if and only if the infinitesimal deformationW is obtained
by infinitesimally shearing m along the edges of � according to the weights
θ . In Sect. 3, we show how to solve for the polygon p given θ ∈ A� by
minimizing an associated length function. In Sect. 3.5, we apply the results of
Sect. 3 to directly prove Theorem 1.9, that �HP is a homeomorphism, after
first proving:

Proposition 1.10 The map �HP
� taking an ideal polyhedron P ∈ HPPolyh�

to its dihedral angles θ has image in A� . In other words, θ is γ -admissible,
see Definition 1.3.

The proof of this proposition is a simple computation in half-pipe geometry,
which uses (among other things) an infinitesimal version of the Gauss–Bonnet
theorem for polygons.

In the AdS setting constructing inverses for the maps �AdS and 
 is too
difficult, so we proceed in the usual next-best way: we prove each map is a
proper, local homeomorphism, and then argue via topology. In order to do that,
we need the following result, which is proven in Sect. 7.1.

Proposition 1.11 If N ≥ 3, the spaceAdSPolyhN is connected and has (real)
dimension 2(N − 3). If N ≥ 6, then AdSPolyhN is connected and simply
connected. If N ≥ 6, then HPPolyhN is connected and simply connected.
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Because Teichmüller space T0,N is a ball and because AdSPolyhN is con-
nected and has dimension equal to that of T0,N , Theorem 1.5 is implied by
the following two statements.

Lemma 1.12 The map 
 : AdSPolyhN → T0,N is proper.

Lemma 1.13 The map 
 : AdSPolyhN → T0,N is a local immersion.

Lemma 1.12 is proved in Sect. 4 by directly studying the effect of degener-
ation of the left and right metrics mL ,mR of P on the induced metric 
(P)

via Eq. (1). Lemma 1.13 is deduced in Sect. 5 from a similar rigidity statement
in the setting of convex Euclidean polyhedra using an infinitesimal Pogorelov
map, which is a tool that translates infinitesimal rigidity questions from one
constant curvature geometry to another.

Next, to prove Theorem 1.4, we need the relevant local parameterization
and properness statements in the setting of dihedral angles. Note that in the
following lemmas, we consider each �AdS

� as having image in R
E , where

again E is the set of edges of the graph � ∈ Graph(�0,N , γ ). The first lemma
is a properness statement for �AdS.

Lemma 1.14 Consider a sequence Pn ∈ AdSPolyh� going to infinity in
AdSPolyh such that the dihedral angles θn = �AdS

� (Pn) converge to θ∞ ∈
R

E . Then θ∞ is not γ -admissible because it fails to satisfy condition (iii) of
Definition 1.3.

Lemma 1.14 is proven in Sect. 4 together with Lemma 1.12. In the next lemma,
we assume � is a triangulation (i.e. maximal) and extend the definition of ��

to all of AdSPolyh. Indeed, for P ∈ AdSPolyh, each ideal triangle of � is
realized as a totally geodesic ideal triangle in P . Therefore, the punctured
sphere �0,N maps into P as a bent (but possibly not convex) totally geodesic
surface with 1-skeleton � and we may measure the dihedral angles (with sign)
along the edges.

Lemma 1.15 Assume � is a triangulation of �0,N , with E denoting the set of
3N − 6 edges of �. If the 1-skeleton of P ∈ AdSPolyh is a subgraph of �,
then �AdS

� : AdSPolyh → R
E is a local immersion near P.

Lemma 1.15 is obtained as a corollary of Lemma 1.13 via a certain duality
between metric data and bending data derived from the natural pseudo-
complex structure on AdSPolyh. See Sects. 2.4 and 5.

The next ingredient for Theorem 1.4 is:

Proposition 1.16 Themap�AdS
� takingan ideal polyhedron P ∈ AdSPolyh�

to its dihedral angles θ has image in A� .

The content of this proposition is that�AdS
� (P) satisfies condition (iii) of Defi-

nition 1.3 (conditions (i) and (ii) are automatic). This will be proven directly in
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Sect. 6 by a computation inAdS geometry. See “AppendixA” for an alternative
indirect proof using transitional geometry.

In Sect. 7, we explain why Lemmas 1.14 and 1.15, and Proposition 1.16
imply that �AdS is a covering ontoA. We then argue thatA is connected and
simply connectedwhen N ≥ 6, using Theorem 1.9, andwe prove Theorem 1.4
(treating the cases N = 4, 5 separately). In addition, in Sect. 7.4, we deduce
Theorem 1.2 from Theorems 1.4, 1.9 and Rivin’s theorem.

2 Hyperbolic, anti-de Sitter, and half-pipe geometry in dimension 3

This section is dedicated to the description of the three-dimensional geometries
of interest in this paper, and to the relationship between these geometries.
We prove a number of basic but fundamental theorems, some of which have
not previously appeared in the literature as stated. Of central importance is
the interpretation of bending data in these geometries in terms of shearing
deformations in the hyperbolic plane (Theorems 2.11 and 2.18).

In [15], the first named author constructs a family of model geometries in
projective space that transitions from hyperbolic geometry to anti-de Sitter
geometry, passing though half-pipe geometry. We review the dimension-three
version of this construction here. Each model geometry X = X(B) is associ-
ated to a real two-dimensional commutative algebra B.

Let B = R + Rκ be the real two-dimensional, commutative algebra gener-
ated by a non-real element κ with κ2 ∈ R. As a vector space B is spanned by
1 and κ . There is a conjugation action: (a + bκ) := a − bκ, which defines a
square-norm

|a + bκ|2 := (a + bκ)(a + bκ) = a2 − b2κ2 ∈ R.

Note that | · |2 may not be positive definite. We refer to a as the real part and
b as the imaginary part of a + bκ . If κ2 = −1, then our algebra B = C is just
the complex numbers, and in this case we use the letter i in place of κ , as usual.
If κ2 = +1, then B is the pseudo-complex (or Lorentz) numbers and we use
the letter τ in place of κ . In the case κ2 = 0, we use the letter σ in place of κ .
In this case B = R + Rσ , sometimes called the dual numbers, is isomorphic
to the tangent bundle of the real numbers (note that the tangent bundle of a
R-algebra is naturally an R-algebra, see last paragraph before Remark 2.2).
Note that if κ2 < 0, then B ∼= C, and if κ2 > 0 then B ∼= R + Rτ .

Now consider the 2 × 2 matrices M2(B). Let

Herm(2,B) = {A ∈ M2(B) : A∗ = A}
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denote the 2 × 2 Hermitian matrices, where A∗ is the conjugate transpose of
A. As a real vector space, Herm(2,B) ∼= R

4. We define the following (real)
inner product on Herm(2,B):

〈[
a z
z̄ d

]
,

[
e w

w̄ h

]〉
= −1

2
tr

([
a z
z̄ d

] [
h −w

−w̄ e

])
.

We will use the coordinates on Herm(2,B) given by

X =
[
x4 + x1 x2 − x3κ
x2 + x3κ x4 − x1

]
. (2)

In these coordinates, we have that

〈X, X〉 = −det(X) = x21 + x22 − κ2x23 − x24 ,

and we see that the signature of the inner product is (3, 1) if κ2 < 0, or (2, 2)
if κ2 > 0. (See [40, Section 2.6] for the case κ = −1.)

The coordinates above identify Herm(2,B) with R
4. Therefore we may

identify the real projective space RP
3 with the non-zero elements of

Herm(2,B), considered up to multiplication by a non-zero real number. We
define the region X inside RP

3 as the negative lines with respect to 〈·, ·〉:

X = {X ∈ Herm(2,B) : 〈X, X〉 < 0} /R
∗.

Note that in the affine chart x4 = 1, our space X is the standard round ball if
κ = i , the standard solid hyperboloid if κ = τ , or the standard solid cylinder
if κ = σ .

Next, define the group PGL+(2,B) to be the 2 × 2 matrices A, with coef-
ficients in B, such that | det(A)|2 > 0, up to the equivalence A ∼ λA for any
λ ∈ B×, where hereB× denotes the group of units inB. The groupPGL+(2,B)

acts on X by orientation preserving projective linear transformations as fol-
lows. Given A ∈ PGL+(2,B) and X ∈ X:

A · X := AX A∗.

Remark 2.1 The matrices with real entries determine a copy of PSL(2, R)

inside of PGL+(2,B), which preserves the set P of negative lines in the x1-
x2-x4 plane (in the coordinates above). The subspace P of X is naturally a
copy of the projective model of the hyperbolic plane. We think of P as a
common copy of H

2 contained in every model space X = X(B) independent
of the choice of κ2.
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Note that if B = C, then PGL+(2,B) = PSL(2, C) and X identifies with
the usual projective model for hyperbolic space X = H

3. In this case, the
action above is the usual action by orientation preserving isometries of H

3,
and gives the familiar isomorphism PSL(2, C) ∼= PSO(3, 1).

If B = R + Rτ , with τ 2 = +1, then X identifies with the usual pro-
jective model for anti-de Sitter space X = AdS

3. Anti-de Sitter geometry
is a Lorentzian analogue of hyperbolic geometry. The inner product 〈·, ·〉
determines a metric on X, defined up to scale. We choose the metric with
constant curvature −1. Note that the metric on AdS

3 has signature (2, 1),
so tangent vectors are partitioned into three types: space-like, time-like, or
light-like, according to whether the inner product is positive, negative, or null,
respectively. In any given tangent space, the light-like vectors form a cone that
partitions the time-like vectors into two components. Thus, locally there is a
continuous map assigning the name future pointing or past pointing to time-
like vectors. The space AdS

3 is time-orientable, meaning that the labeling of
time-like vectors as future or pastmay be done consistently over the entireman-
ifold. The action of PGL+(2, R+Rτ) onAdS

3 is by isometries, thus giving an
embedding PGL+(2, R + Rτ) ↪→ PSO(2, 2). In fact, PGL+(2, R + Rτ) has
two components, distinguished bywhether or not the action onAdS

3 preserves
time-orientation, and the map is an isomorphism.

Lastly, we discuss the caseB = R+Rσ , withσ 2 = 0. In this case,X = HP
3

is the projective model for half-pipe geometry (HP), defined in [15] for the
purpose of describing a geometric transition going from hyperbolic to AdS
structures. The algebra R + Rσ should be thought of as the tangent bundle of
R, as an algebra: Letting x be the standard coordinate function on R, we think
of a + bσ as the 1-jet of a path based at a with tangent b ∂

∂x . Alternatively, it
will be useful to think of R + Rσ as the bundle of imaginary directions in C

(or similarly, in R + Rτ ) restricted to the subspace R. Letting x + iy denote
the standard coordinates on C, then we think of a + bσ as the 1-jet of a path
in C based at a ∈ R with tangent b ∂

∂y . See Sect. 2.6.

Remark 2.2 In each case, the orientation reversing isometries are also
described by PGL+(2,B) acting by X �→ AX A∗.

Although,we focus on dimension three, there are projectivemodels for these
geometries in all dimensions. Generally, the n-dimensional hyperbolic space
H

n (resp. the n-dimensional anti-de Sitter space AdS
n) may be identified with

the space of negative lines in RP
n with respect to a quadratic form of signa-

ture (n, 1) (resp. of signature (n − 1, 2)); the isometry group is the projective
orthogonal group with respect to this quadratic form, isomorphic to PO(n, 1)
(resp. PO(n − 1, 2)). The n-dimensional half-pipe space HP

n identifies with
the space of negative lines with respect to a degenerate quadratic form with
n − 1 positive eigenvalues, one negative eigenvalue, and one zero eigenvalue.
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The structure group, as in the three-dimensional case, is a codimension one
subgroup of all projective transformations preserving this set. See Sect. 2.5.

The projective boundary The projective boundary ∂X is the boundary of the
region X in RP

3. It is given by the null lines in Herm(2,B) with respect to
〈·, ·〉. Thus

∂X = {X ∈ Herm(2,B) : det(X) = 0, X �= 0} /R
∗

can be thought of as the 2 × 2 Hermitian matrices of rank one. We now give
a useful description of ∂X that generalizes the identification ∂H

3 = CP
1.

Any rank one Hermitian matrix X can be decomposed (up to sign) as

X = ±vv∗, (3)

where v ∈ B2 is a two-dimensional column vector with entries in B, unique
up to multiplication by λ ∈ B with |λ|2 = 1 (and v∗ denotes the transpose
conjugate). This gives the identification

∂X ∼= P
1B = {

v ∈ B2 : vv∗ �= 0
}
/ ∼,

where v ∼ vλ for λ ∈ B×. The action of PGL+(2,B) on P
1B by matrix

multiplication extends the action of PGL+(2,B) on X described above. We
note also that the metric on X determines a compatible conformal structure
on ∂∞X = P

1B. Restricted to B ⊂ P
1B, this conformal structure is exactly

the conformal structure induced by the square-norm | · |2. In particular, it is
Euclidean if κ2 < 0, Lorentzian if κ2 > 0, or degenerate if κ2 = 0.

We use the square-bracket notation

[
x
y

]
to denote the equivalence class in

P
1B of

(
x
y

)
∈ B2. Similarly, a 2 × 2 square-bracket matrix

[
a b
c d

]
denotes

the equivalence class in PGL+(2,B) of the matrix

(
a b
c d

)
∈ GL+(2,B).

Throughout, we will identify B with its image under the injection B ↪→ P
1B

given by z �→
[
z
1

]
.

Remark 2.3 In the case κ2 ≥ 0, the condition vv∗ �= 0 in the definition of
P
1B is not equivalent to the condition v �= 0, because B has zero divisors.

The inclusion R ↪→ B induces an inclusion RP
1 ↪→ P

1B. This copy of
RP

1 is precisely the projective boundary of the common hyperbolic planeP
contained in all model spaces X (independent of the choice of κ2).
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Recall that a subset P of projective space is called convex if P is contained
in an affine chart and is convex in that affine chart. In the notation introduced
here, the fundamental objects of this article are defined as follows:

Definition 2.4 A convex ideal polyhedron in X is a convex polyhedron P in
projective space such that the vertices of P lie in ∂X and the rest of P lies
in X.

An ideal triangle in X is a convex ideal polyhedron with three vertices. An
ideal simplex or ideal tetrahedron is a convex ideal polyhedron with four
vertices. Ideal simplices and their moduli will play an important role in this
article. We review some of the basic theory, referring the reader to [16] for a
more detailed account.

Let Z1, Z2, Z3, Z4 ∈ Herm(2,B) have rank one, and let z1, z2, z3, z4
denote the corresponding elements of P

1B. Assume that Z1, Z2, Z3 deter-
mine an ideal triangle in X. There is a unique A ∈ PGL+(2,B) such that

Az1 = ∞ :=
[
1
0

]
, Az2 = 0 :=

[
0
1

]
, and Az3 = 1 :=

[
1
1

]
. Then

(z1, z2; z3, z4) := Az4

is an invariant of the ordered ideal points z1, . . . , z4, which will be referred to
as the cross ratio of the four points, since it generalizes the usual cross ratio in
CP

1. It is straighforward to check that z1, z2, z3, z4 define an ideal tetrahedron
in X if and only if z = (z1, z2; z3, z4) (is defined and) lies in B ⊂ P

1B and
satisfies:

|z|2, |1 − z|2 > 0. (4)

In this case z is called the shape parameter of the ideal tetrahedron (with
ordered vertices z1, z2, z3, z4). Using the language of Lorentzian geometry,
we say that z and z − 1, as in (4), are space-like. In fact, all facets of an
ideal tetrahedron are space-like and totally geodesic with respect to the metric
induced by 〈·, ·〉 on X. The shape parameter z is a natural geometric quantity
associated to the edge e = z1z2 of the tetrahedron in the following sense,
described in Thurston’s notes [39, § 4] in the hyperbolic case. Change coor-
dinates (using an element of PGL+(2,B)) so that z1 = ∞, and z2 = 0. Then
the subgroup Ge of PGL+(2,B) that preserves e is given by

Ge =
{
A =

[
λ 0
0 1

]
: λ ∈ B, |λ|2 > 0

}
.

The number λ = λ(A) associated to A ∈ Ge is called the exponential B-length
and generalizes the exponential complex translation length of a loxodromic
element of PSL(2, C). Let A ∈ Ge be the unique element so that Az3 = z4.
Then the shape parameter is just the exponential B-length of A: z = λ(A).
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Fig. 3 The shape parameters
corresponding to the six
edges of an ideal tetrahedron
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There are shape parameters associated to the other edges as well. We may
calculate them as follows. Let π be any even permutation of {1, 2, 3, 4}, which
corresponds to an orientation preserving diffeomorphism of the standard sim-
plex. Then (zπ(1), zπ(2); zπ(3), zπ(4)) is the shape parameter associated to the
edge e′ = zπ(1)zπ(2). This definition a priori depends on the orientation of
the edge e′. However, one easily checks that (z2, z1; z4, z3) = (z1, z2; z3, z4).
Figure 3 summarizes the relationship between the shape parameters of the six
edges of an ideal tetrahedron, familiar from the hyperbolic setting.

2.1 Hyperbolic geometry in dimension three

Let κ2 = −1, so that B = C is the complex numbers. In this case, the inner
product 〈·, ·〉 on Herm(2, C) is of type (3, 1) and X is the unit ball in the affine
chart x4 = 1, known as the projective model for H

3. A basic understanding of
hyperbolic geometry, although not the main setting of interest, is very impor-
tant for many of the arguments in this article. We will often use intuition from
the hyperbolic setting as a guide, and so we assume the reader has a basic level
of familiarity. Let us recall some basic facts here and present an important
theorem, whose analogue in the AdS setting will be crucial.

The projective boundary ∂H
3 identifies with P

1B = CP
1. Since the ball is

strictly convex, any N distinct points z1, . . . , zN determine an ideal polyhedron
P in H

3. In the case N = 4, the ideal simplex P is determined by the shape
parameter z = (z1, z2; z3, z4) ∈ C. Indeed, Condition (4) gives the well-
known fact that the shape parameter zmay take any value inC\{0, 1}. Consider
the two faces T = �z1z2z3 and T ′ = �z2z1z4 of P , each oriented compatibly
with the outward pointing normal, meeting along the edge e = z1z2. Then,
writing z = es+iθ , the quantity s is precisely the amount of shear along e
between T and T ′, while θ is precisely the interior dihedral angle at e.

An infinitesimal deformation of an ideal polyhedron P is given by a choice
V = (V1, . . . , VN ) of tangent vectors toCP

1 at each of the vertices z1, . . . , zN
of P . Such a deformation is considered trivial if V1, . . . , VN are the restriction
of a global Killing field on H

3 ∪ CP
1 to the vertices z1, . . . , zn . If necessary,
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augment the 1-skeleton of P so that it is an ideal triangulation � of the surface
of P . Then the map z� , taking the vertices of an ideal polyhedron P to the
collection of 3N − 6 cross ratios associated to the edges of �, is holomorphic
and the following holds:

Theorem 2.5 An ideal hyperbolic polyhedron P is infinitesimally rigid with
respect to the inducedmetric if and only if P is infinitesimally rigidwith respect
to the dihedral angles.

Proof Since the inducedmetric is determined entirely by the shear coordinates
with respect to�, we have that the infinitesimal deformation V does not change
the induced metric to first order if and only if d log z�(V ) is pure imaginary.
On the other hand, V does not change the dihedral angles to first order if and
only if d log z�(V ) is real. Therefore V does not change the induced metric if
and only if iV does not change the dihedral angles. ��

Remark 2.6 Theorem 2.5 is a simpler version of Bonahon’s argument [10]
that a hyperbolic three-manifold is rigid with respect to the metric data on the
boundary of the convex core if and only if it is rigidwith respect to bending data
on the boundary of the convex core. In this setting of polyhedra, Bonahon’s
shear-bend cocycle is replaced by a finite graph � with edges labeled by the
relevant shape parameters z (or log z).

2.2 Anti-de Sitter geometry in dimension three

Let B be the real algebra generated by an element τ , with τ 2 = +1, which
defines X = AdS

3, the anti-de Sitter space. Let us discuss some important
properties of the algebraB = R+Rτ , known as the pseudo-complex numbers.
The algebra B = R + Rτ of pseudo-complex numbers.

First, note that B is not a field as, for example, (1 + τ) · (1 − τ) = 0.
The square-norm defined by the conjugation operation |a + bτ |2 = (a +
bτ)(a + bτ) = a2−b2 comes from the (1, 1)Minkowski inner product onR

2

(with basis {1, τ }). The space-like elements ofB (i.e. square-norm> 0), acting
by multiplication on B, form a group and can be thought of as the similarities
of the Minkowski plane that fix the origin. Note that if |a + bτ |2 = 0, then
b = ±a, and multiplication by a + bτ collapses all of B onto the light-like
line spanned by a + bτ .

The elements 1+τ
2 and 1−τ

2 are two spanning idempotents which annihilate
one another:

(
1 ± τ

2

)2

= 1 ± τ

2
, and

(
1 + τ

2

)
·
(
1 − τ

2

)
= 0.
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Thus B ∼= R ⊕ R, as R-algebras, via the isomorphism

(�L , �R) : a
(
1 − τ

2

)
+ b

(
1 + τ

2

)
�−→ (a, b). (5)

Here �L and �R are called the left and right projections B → R. These
projections extend to left and right projections P

1B → RP
1 which give the

isomorphism P
1B ∼= RP

1×RP
1. Indeed, P1B is the Lorentz compactification

of B =
{[

x
1

]
: x ∈ B

}
. The added points make up a wedge of circles, so

that P
1B is topologically a torus. The square-norm | · |2 on B induces a flat

conformal Lorentzian structure on P
1B that is preserved by PGL+(2,B). We

refer toPGL+(2,B) as theLorentzMöbius transformations.With its conformal
structureP

1B is the (1+1)-dimensional Einstein universe Ein1,1 (see e.g. [5,8]
for more about Einstein space).

The splitting B ∼= R ⊕ R determines a similar splitting M2(B) ∼= M2R ⊕
M2R of the algebra of 2 × 2 matrices which respects the determinant in the
following sense: ∀A ∈ M2(B)

(�L det A, �R det A) = (det�L(A), det�R(A)),

where, by abuse of notation, �L and �R also denote the extended maps
M2(B) → M2(R). The orientation preserving isometries Isom+

AdS
3 =

PGL+(2,B) correspond to the subgroup of PGL(2, R) × PGL(2, R) such
that the determinant has the same sign in both factors. The identity compo-
nent of the isometry group (which also preserves time orientation) is given by
PSL(2, R) × PSL(2, R).

Note also that the left and right projections �L , �R : P
1B → RP

1 respect
the cross ratio:

(z1, z2; z3, z4) = 1 − τ

2
(�L z1, �L z2; �L z3, �L z4)

+ 1 + τ

2
(�Rz1, �Rz2; �Rz3, �Rz4),

where on the right-hand side (·, ·; ·, ·) denotes the usual cross ratio in RP
1.

Remark 2.7 Alternatively, the left and right projections �L , �R may be
described naturally in terms of projective geometry. Indeed, P

1B ∼= ∂AdS
3,

thought of as a subset of projective space RP
3, is a surface which is ruled by

projective lines in twoways (the so-called “doubly ruled surface”). One ruling,
called the left ruling, is given by the family of lines {�−1

L (x) : x ∈ RP
1}, and

the other, called the right ruling, is given by the family of lines {�−1
R (x) :
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x ∈ RP
1}. Hence, the left projection �L may be thought of as the map which

projects points of ∂AdS
3 along the lines of the left ruling onto a fixed line in

the right ruling. Similarly, the right projection �R may be thought of as the
map which projects points of ∂AdS

3 along the lines of the right ruling onto a
fixed line in the left ruling.

2.3 Ideal polyhedra in AdS
3

Consider an ideal polyhedron P in AdS
3 with N vertices z1, . . . , zN ∈ P

1B.
For each i = 1, . . . , N , let xi = �L(zi ) and yi = �R(zi ) be the left and right
projections of zi . Then, all of the xi (resp. all of the yi ) are distinct. Otherwise,
the convex hull of the zi (in any affine chart) will contain a full segment in
the projective boundary. The following result shows one aspect where ideal
polyhedra in AdS

3 behave differently than ideal polyhedra in H
3, where we

have no conditions on the position of the vertices in ∂H
3.

Proposition 2.8 The vertices z1, . . . , zN ∈ P
1B determine an ideal polyhe-

dron P inAdS
3 if and only the left projections x1, . . . , xN and right projections

y1, . . . , yN are arranged in the same cyclic order on the circle RP
1.

Proof In general, a closed set � in RP
M is convex if and only any M + 1

points of � span a (possibly degenerate) simplex contained in �. Therefore
the z1, . . . , zN define an ideal polyhedron if and only if any four vertices
zi1, zi2, zi3, zi4 span an ideal simplex. This is true if and only if the cross ratio
z = (zi1, zi2; zi3, zi4) is defined and satisfies that |z|2, |1 − z|2 > 0. Since
z = 1−τ

2 x + 1+τ
2 y, where x = (xi1, xi2; xi3, xi4) and y = (yi1, yi2; yi3, yi4),

we have that |z|2 = xy and |1− z|2 = (1− x)(1− y). So |z|2, |1− z|2 > 0 if
and only if x and y have the same sign and (1− x) and (1− y) have the same
sign. Hence, zi1, zi2, zi3, zi4 span an ideal simplex if and only if the two four-
tuples of vertices (xi1, xi2, xi3, xi4) and (yi1, yi2, yi3, yi4) are arranged in the
same cyclic order on RP

1. The proposition follows by considering all subsets
of four vertices. ��
We denote by pL = �L(P) (resp. pR = �R(P)) the ideal polygon in the
hyperbolic plane with vertices x1, . . . , xN (resp. y1, . . . , yN ).

Let us quickly recall the definitions and terminology from Sect. 1.3. We
fix, once and for all, a time orientation on AdS

3. Since all faces of an ideal
polyhedron P are space-like, the outward normal to each face is time-like and
points either to the future or to the past. This divides the faces into two groups,
the future (or top) faces, and the past (or bottom) faces. The union of the future
faces is a bent polygon, as is the union of the past faces.

Proposition 2.9 The union p+ of the future faces and the union p− of the
past faces are each homeomorphic to a disk. The edges of p+ ∩ p− dividing

123



260 J. Danciger et al.

the future faces from the past faces form a Hamiltonian cycle in the 1-skeleton
of P. We call this Hamiltonian cycle the equator.

Proof First, let x+ be a point in the interior of p+ and L a timeline line through
x+ in AdS

3. Then L intersects p− in a point x− in the interior of p−. Let T be
any timelike plane in AdS

3 containing L . The intersection T ∩ P is a convex
polygon in T ∼= AdS

2. The boundary ∂(T ∩ P) is the union of T ∩ p+ and
T ∩ p−. Each point of T ∩ p+ has a future pointing normal in T and each
point of T ∩ p− has a past pointing normal in T . By convexity of T ∩ P , each
of T ∩ p+ and T ∩ p− is a connected segment and these segments meet in
two distinct points of p+ ∩ p−. Rotating T around the axis L sweeps out a
radial foliation of p+ by arcs of emanating from x+ and a radial foliation of
p− by arcs emanating from x−. Hence both p+ and p− are seen explicitly to
be homeomorphic to disks. The points of p+ ∩ p− in each timelike plane T
sweep out a Jordan curve in ∂P separating the interior of p+ from the interior
of p−. ��

Each face of P is isometric to an ideal polygon in the hyperbolic plane.
Therefore the induced metric on the boundary of P is naturally a hyperbolic
metric m on the N -punctured sphere; it is a complete metric. Further, the
labeling of the vertices, the equator, and the top and bottom of P determine an
identification (up to isotopy) of the surface of P with the N -punctured sphere
�0,N , making m into a point of the Teichmüller space T0,N . The marking
also identifies the 1-skeleton of P with a graph � on �0,N with vertices at
the punctures. We may project P combinatorially to the left and right ideal
polygons pL and pR respectively. The edges of the equator project to exterior
edges of pL (resp. pR) and top/bottom edges project to interior edges of pL
(resp. pR). Wemay assume the 1-skeleton gives a triangulation of P by adding
additional top/bottom edges as needed. Consider an edge e = z1z2 adjacent to
two faces T = �z1z2z3 and T ′ = �z1z4z2, each oriented so that the normal
points out of P . Then the cross ratio z = (z1, z2; z3, z4) contains the following
information:

Proposition 2.10 The edge e is an equatorial edge if and only if z = a + bτ
has real part a > 0.

Since the edge e is space-like, we may express it as

z = ±es+τθ := ±es(cosh θ + τ sinh θ).

By convexity of P , the imaginary part of z is always positive. Hence, either
z = +es+τθ with θ > 0, or z = −es+τθ with θ < 0. In the former case,
the edge e is an equatorial edge and in the latter case e is a top/bottom edge.
In either case, s = s(e) is precisely the shear coordinate (in the sense of
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Thurston) of the induced hyperbolic metric m along the edge e, and θ is the
exterior dihedral angle at the edge e (as defined in Sect. 1.3).

We now give the fundamentally important relationship between shearing
and bending in the setting of ideal polyhedra. Let mL (resp. mR) denote the
double of pL (resp. pR). Since the vertices of P , and its projections pL and
pR , are labeled, we may regardmL andmR as points of the Teichmüller space
T0,N ; we callmL the left metric andmR the right metric. Recall the definition
of AdSPolyhN given in Sect. 1.3.

Theorem 2.11 Let mL ,mR,m ∈ T0,N be the left metric, the right metric, and
the induced metric defined by P ∈ AdSPolyhN , and let θ denote the dihedral
angles. Then the following diagram holds:

PmL
Eθ�−→ m

Eθ�−→ mR, (6)

where Eθ denotes shearing along � according to the weights θ (a positive
weight means shear to the left). Further, given the left and right metrics mL
and mR (any two metrics obtained by doubling two ideal polygons pL and
pR), the induced metric m and the dihedral angles θ are the unique metric
and weighted graph on �0,N (with positive weights on the top/bottom edges,
and negative weights on γ ) such that (6) holds.

Proof Let � ∈ Graph(�0,N , γ ) represent the 1-skeleton of P . By adding
extra edges if necessary, we may assume � is a triangulation. As above we
associate the shape parameter z = εes(α)+τθ(α) to a given edge α of �, where
ε = ±1. Then,

z = εes(α)(cosh θ(α) + τ sinh θ(α))

= εes(α)

(
1 − τ

2
e−θ(α) + 1 + τ

2
eθ(α)

)

= 1 − τ

2
εes(α)−θ(α) + 1 + τ

2
εes(α)+θ(α)

Therefore the shear coordinates in the left metric mL are given by sL = s − θ

and the shear coordinate in the right metric mR are sR = s + θ . Equation (6)
follows.

The uniqueness statement also follows from this calculation. Indeed, given
two metrics mL and mR , obtained by doubling ideal polygons pL and pR
respectively, and any triangulation � ∈ Graph(�0,N , γ ), we may solve for
the shear coordinates s, determining a metric m, and the weights θ needed to
satisfy (6). Specifically, s = (sR + sL)/2 and θ = (sR − sL)/2, where now
sL and sR denote the shear coordinates with respect to �. We may construct a
polyhedral immersion of�0,N whose inducedmetric ism andwhose (exterior)

123



262 J. Danciger et al.

bending angles are θ as follows. Lift � to a triangulation �̃ of the universal
cover �̃0,N . Then s and θ define an equivariant polyhedral immersion f̃ :
�̃0,N → AdS

3, mapping the two triangles adjacent to a lift ẽ of an edge
e ∈ E(�) to spacelike geodesic ideal triangles in AdS

3 meeting along the
spacelike geodesic line f̃ (̃e) with sheering s(e), bending θ(e), and which
have equal time orientation if e /∈ γ or opposite time orientation if e ∈ γ .
Similarly, the shear coordinates sL and sR respectively define polygonal maps
f̃L , f̃ R : �̃0,N → H

2 with folding precisely at the (lifts of) edges of γ .
Since mL and mR are the doubles of ideal polygons pL and pR respectively,
it follows that f̃L and f̃ R have trivial monodromy and image equal to pL
and pR respectively. Hence the monodromy of f̃ , which is the product of the
monodromies of f̃L and f̃ R , is also trivial, so f̃ well-defines a polyhedral
immersion f : �0,N → AdS

3 with bending data θ and induced metricm. If θ

takes negative values on the equator and non-negative values elsewhere, then
f is locally convex and bounds a convex ideal polyhedron P . The uniqueness
statement follows because P is uniquely determined by pL and pR . ��

As a corollary we obtain a version of Thurston’s earthquake theorem for
ideal polygons in the hyperbolic plane. A measured lamination on the stan-
dard ideal N -gon is simply a pairwise disjoint collection of diagonals with
positive weights. We denote by MLN the complex of these measured lami-
nations. A function θ ∈ A� determines two measured laminations θ+ and θ−
by restriction to the top edges of � and to the bottom edges.

Corollary 2.12 (Earthquake theorem for ideal polygons) Let pL , pR ∈
polygN be two ideal polygons. Then there exists unique θ+, θ− ∈ MLN
such that pR = Eθ+ pL and pL = Eθ− pR, where again Eλ denotes shearing
according to the edges of λ ∈ MLN according to the weights of λ.

Proof Let x1, . . . , xN be the ideal vertices of pL and let y1, . . . , yN be the
ideal vertices of pR . Then, the vertices zi = 1−τ

2 xi + 1+τ
2 yi define an ideal

polyhedron P ∈ AdSPolyhN such that �L(P) = pL and �R(P) = pR .
We think of �0,N as the double of the standard ideal N -gon, meaning that
the top hemisphere is identified with the standard ideal N -gon and the bottom
hemisphere is identified with the standard ideal N -gon but with orientation
reversed. The left metric mL (resp. mR) is obtained from pL (resp. pR) by
doubling. This means that the restriction of mL to the top hemisphere of �0,N
is pL and the restriction of mL to the bottom hemisphere is pL , the same ideal
polygon but with opposite orientation. Similarly, the restriction of mR to the
top and bottom hemispheres of �0,N is pR and pR . Let � ∈ Graph(�0,N , γ )

denote the 1-skeleton of P and let θ ∈ R
E(�) denote the dihedral angles.

Theorem 2.11 implies that mR = E2θmL . Restricting to the top hemisphere,
we have that pR = Eθ+ pL where θ+ ∈ MLN is twice the restriction of θ

to the top hemisphere. Restricting to the bottom hemisphere, we have that
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pR = Eθ− pL , where θ− is the restriction of θ to the bottom hemisphere. This
implies that pR = E−θ− pL , or equivalently pL = Eθ− pR . Uniqueness of
θ+, θ− follows from uniqueness of θ in Theorem 2.11. ��

Let us briefly digress to discuss the question of whether, in the context of
Corollary 2.12, a given θ+ and θ− are realized by some pL and pR , andwhether
they are realized uniquely. In the setting of closed surfaces, it is known [12]
that given a pair of measured laminations θ+ and θ− which are filling, there
exist two hyperbolic surfaces ρL and ρR such that ρR is obtained from ρL
by left earthquake along θ+ and also by right earthquake along θ−. It is con-
jectured [28] that ρL and ρR are unique. Similarly, any pair of laminations
θ+, θ− ∈ MLN appearing in Corollary 2.12 must be filling, meaning that any
diagonal intersects the support of θ+ or θ− transversely; this is equivalent to
the statement that the graph � ∈ Graph(�0,N , γ ), obtained by placing the
support of θ+ on the top hemisphere and the support of θ− on the bottom hemi-
sphere, is three-connected. It will follow fromTheorem 1.4 that in the case N is
odd, the polygons pL , pR are unique, given the measured laminations θ+, θ−.
This is because θ ∈ A is determined entirely by its restrictions θ+ and θ− to
the top and bottom edges. However, there are examples of filling measured
laminations θ+, θ− such that there is no element θ ∈ A whose restriction
to the top edges is θ+ and whose restriction to the bottom edges is θ− (see
Appendix A). The situation is even worse in the case N is even. If θ+, θ− are
realized by a pair of ideal polygons pL , pR , then there is a one dimensional
family of pairs of ideal polygons for which the laminations θ+, θ− turn out to
be the same. This is because for any θ ∈ A, there is a one parameter family of
deformations of θ which leave θ+, θ− unchanged: simply add and subtract the
same quantity from the weights of alternating edges on the equator. Further,
in the case N even, only a codimension one subspace of filling laminations
θ+, θ− are realized in Corollary 2.12. It is an interesting problem to determine
this codimension one subspace.

2.4 The pseudo-complex structure on AdSPolyhN

The space of marked ideal polyhedra AdSPolyhN naturally identifies with
a subset of (R + Rτ)N−3, by transforming each ideal polyhedron so that
its first three vertices are respectively 0, 1, ∞ ∈ P

1B. The marking on each
polyhedron P ∈ AdSPolyhN identifies P with the standard N -punctured
sphere�0,N . So, given a triangulation� on�0,N with vertices at the punctures
and edge set denoted E , we may define the map z� : AdSPolyhN → (R +
Rτ)E which associates to each edge e of a polyhedron P the cross ratio of
the four points defining the two triangles adjacent at e. This map is pseudo-
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complex holomorphic, meaning that the differential is (R + Rτ)-linear. This
observation allows us to prove the following analogue of Theorem 2.5.

Theorem 2.13 An ideal polyhedron P ∈ AdSPolyhN is infinitesimally rigid
with respect to the induced metric if and only if P is infinitesimally rigid with
respect to the dihedral angles.

Proof Let V ∈ TPAdSPolyhN
∼= (R + Rτ)N−3. Let � be a triangulation

obtained from the 1-skeleton of P by adding edges in the non-triangular faces
if necessary. Since the induced metric is determined entirely by the shear coor-
dinates with respect to �, we have that V does not change the induced metric
to first order if and only if d log z�(V ) is pure imaginary. On the other hand,
V does not change the dihedral angles to first order if and only if d log z�(V )

is real. Therefore V does not change the induced metric if and only if τV does
not change the dihedral angles. ��

2.5 Half-pipe geometry in dimension three

Wegive some lemmas useful forworkingwithHP
3. Recall the algebraR+Rσ ,

with σ 2 = 0. The half-pipe space is given by

HP
3 := X =

{
X + Yσ : X, Y ∈ M2(R), XT = X, det(X) > 0, Y T = −Y

}
/ ∼,

where (X +Yσ) ∼ λ(X +Yσ) for λ ∈ R
×. There is a projection� : HP

3 →
H

2, defined by �(X + Yσ) = X , where we interpret the symmetric matrices
X of positive determinant, considered up to scale, as a copy ofH

2. The fibers of
this projection will be referred to simply as fibers. The projection can be made
into a diffeomorphism X → H

2 × R (not an isometry) given in coordinates
by

X + Yσ �→ (X, L), (7)

where the length L along the fiber is defined by the equation

Y = L
√
det X

(
0 −1
1 0

)
. (8)

The projective boundary ∂X identifies with P
1(R+Rσ), which identifies with

the tangent bundle TRP
1 via the natural map TR

2 → (R + Rσ)2 sending a
vector v ∈ R

2 and a tangent vector w ∈ TvR
2 = R

2 to v + σw. It will be
convenient to think of an ideal vertex as an infinitesimal variation of a point
on RP

1 ∼= ∂H
2. In this way, a convex ideal polyhedron P in HP

3 defines an
infinitesimal deformation V = V (P) of the ideal polygon p = �(P) in H

2.
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We restrict to the identity component of the structure group, which is given
by

G0 = PSL(2, R + Rσ)

= {A + Bσ : A ∈ SL(2, R), and B ∈ TASL(2, R)}/ ± .

The structure group identifies with the tangent bundle TPSL(2, R), and it
will be convenient to think of its elements as having a finite component A ∈
PSL(2, R) and an infinitesimal component a ∈ sl(2, R), via the isomorphism

PSL(2, R) � sl(2, R) → G0

(A, a) �→ A + Aaσ,

where Aa ∈ TAPSL(2, R). (This is the usual isomorphism G � g → TG for
a Lie group G with Lie algebra g = T1G, gotten by left translating vectors
from the identity.) The identification G0 ∼= TPSL(2, R) is compatible with
the identification ∂HP

3 ∼= TRP
1.

Thinking of a ∈ sl(2, R) as an infinitesimal isometry of H
2, recall that at

each point X ∈ H
2 we may decompose a into its translational (X -symmetric)

and rotational (X -skew) parts:

a = aX -sym + aX -skew

:= 1

2

(
a + XaT X−1

)
+ 1

2

(
a − XaT X−1

)
,

where the rotational part aX -skew is a rotation centered at X of infinitesimal
angle rot(a, X) defined by

√
X

−1
aX -skew

√
X = rot(a, X)

(
0 −1/2
1/2 0

)
.

The action of an element of G0 in the fiber direction depends on the rotational
part of the infinitesimal part of that element.

Lemma 2.14 Theactionof a pure infinitesimal1+aσ on thepoint X+Yσ ∈ X

is by translation in the fiber direction by amount equal to the rotational part
rot(a, X) of the infinitesimal isometry a at the point X ∈ H

2. In the product
coordinates (7):

1 + aσ : (X, L) �→ (X, L + rot(a, X)).

More generally, the action of A + Aaσ is given by

A + Aaσ : (X, L) �→ (A · X, L + rot(a, X)).
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Proof

(1 + aσ) · (X + Yσ) = (1 + aσ)(X + σY )(1 − aTσ)

= X + σY + σ(aX − XaT )

= X + σY + σ 2aX -skewX

= X + σY + σ 2 rot(a, X)
√
X

(
0 −1/2
1/2 0

) √
X

= X + σY + σ rot(a, X) det(
√
X)

(
0 −1
1 0

)
,

where the last equality follows from the algebraic identity

Y

(
0 −1
1 0

)
Y = det(Y )

(
0 −1
1 0

)
.

The first statement now follows fromEq. (8). The secondmore general formula
follows easily after left multiplication by A. ��
Definition 2.15 Let a ∈ sl2R be an infinitesimal translation of length t along
an oriented geodesic � in H

2. Then, for any oriented geodesic �̃ in HP
3 that

projects to �, the element 1 + aσ is called an infinitesimal rotation about the
axis �̃ of infinitesimal angle t .

Thinking of the fiber direction in HP
3 as the direction of infinitesimal unit

length normal to H
2 into either H

3 or AdS
3, the definition is justified by the

previous lemma. In fact, the amount of translation in the fiber direction is t
times the signed distance to �̃.

2.6 Ideal polyhedra in HP
3

There are several important interpretations of a convex ideal polyhedron P in
HP

3. As described in the previous section, P defines an infinitesimal deforma-
tion V = V (P) of the ideal polygon p = �(P) inH

2. Alternatively, P may be
interpreted as an infinitesimally thick polyhedron in H

3 or AdS
3. Multiplying

the tangent vector V by i (resp. τ ) describes an infinitesimal deformation iV
(resp. τV ) of the polygon p into H

3 (resp. AdS
3). The polyhedron P in HP

3

is a rescaled limit of a path of hyperbolic (resp. anti-de Sitter) polyhedra col-
lapsing to p and tangent to iV (resp. τV ) in the following sense. Consider the
path of algebras Bt generated by κt such that κ2

t = −t |t |. Then the geometries
X(Bt ) associated to these algebras are conjugate to X(B1) = X(C) = H

3 for
all t > 0, or to X(B−1) = X(R + Rτ) = AdS

3 for t < 0. For t > 0, the map
at : C → Bt defined by i �→ κt/|t | is an isomorphism of algebras. For t < 0,
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the map at : R + Rτ → Bt defined by τ �→ κt/|t | is an isomorphism. Each
of these maps defines a projective transformation, again denoted at , taking the
standard model of hyperbolic space H

3 = X(B1) (resp. the standard model of
anti-de Sitter space AdS

3 = X(B−1)) to the conjugate model X(Bt ).

Proposition 2.16 Consider a smooth family Qt of ideal polyhedra inH
3 (resp.

AdS
3), defined for t > 0 (resp. for t < 0). Assume that Q0 = p is an

ideal polygon contained in the central hyperbolic plane P bounded by RP
1

and Q′
0 = U + iW (resp. Q′

0 = U + τW), where U,W are infinitesimal
deformations of p as an ideal polygon in H

2. Then the limit of at (Qt ) as
t → 0 is an ideal polyhedron P in X(B0) = HP

3 which satisfies �(P) = Q0
and V (P) = W.

Proof We demonstrate the claim for a single ideal vertex of the ideal polyhe-
dron. Let us treat only the case t > 0, as the t < 0 case is similar. Consider
the point z = x + iy ∈ CP

1. The corresponding point in the boundary of
H

3 = X(B1) is the (projective class of) Hermitian matrix

[
x + iy

1

] [
x − iy 1

] =
[
x2 + y2 x + iy
x − iy 1

]
.

The transformation at maps this to

[
x2 + y2 x + κt

t y
x − κt

t y 1

]
=

[
x + κt

t y
1

] [
x − κt

t y 1
]
.

Now if z(t) = x(t) + iy(t) is a smooth path in t with x(0) = x0, y(0) = 0,
x ′(0) = u and y′(0) = w, then the limit as t → 0 of the above is the point

[
x0 + σw

1

] [
x0 − σw 1

]

of the projective boundary of HP
3 = X(B0) corresponding to x0 + σw ∈

P(B0), which has �(x0 + σw) = x0 ∈ RP
1 and V (x0 + σw) = w ∈

Tx0RP
1 ∼= R. ��

The interplay between these two interpretations leads to Theorem 2.18
below, which is a fundamental tool for studying half-pipe geometry. Before
stating the theorem, let us recall the terminology introduced in Sect. 1.4 and
state a proposition. We fix an orientation of the fiber direction once and for
all. Every convex ideal polyhedron in HP

3 has a top, for which the outward
pointing fiber direction is positive, and a bottom, for which the outward point-
ing fiber direction is negative. The edges naturally sort into three types: an
edge is called a top edge if it is adjacent to two top faces or a bottom edge
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if it is adjacent to two bottom faces, or an equatorial edge if it is adjacent
to both a top and bottom face. The union of the top faces is a bent polygon
which projects down to the ideal polygon p = �(P) in H

2. The union of the
bottom faces also projects to p. The infinitesimal dihedral angle at an edge is
measured in terms of the infinitesimal rotation angle needed to rotate one face
adjacent to the edge into the same plane as the other. The dihedral angle at a
top/bottom edge will be given a positive sign, while the dihedral angles at an
equatorial edge will be given a negative sign. This sign convention is justified
by the following (see [15, §4.2]).

Proposition 2.17 The infinitesimal dihedral angle along an edge of P is sim-
ply the derivative of the dihedral angle of the corresponding edge of Qt , where
Qt is as in Proposition 2.16.

Alternatively, dihedral angles may also be measured using the cross ratio.
Indeed, if two (consistently oriented) ideal triangles T = �z1z2z3 and
T ′ = �z4z1z2 meet at a common edge α = z1z2, then the cross ratio
z = (z1, z2; z3, z4) satisfies that z = εes+σθ = εes(1 + σθ), where s is
the shear between T and T ′, where θ is the dihedral angle, and where ε is +1
if α is an edge of the equator and −1 if α is a top/bottom edge.

We consider the bending angles on the top (resp. bottom) edges of an ideal
polyhedron P as a (positive) measured lamination on the ideal polygon p =
�(P). The following theorem is the infinitesimal version of Theorem 2.11
about the interplay between earthquakes and AdS geometry.

Theorem 2.18 Let P be an ideal polyhedron in HP
3 and let θ+ (resp. θ−) be

the measured lamination on p = �(P) describing the bending angles on top
(resp. on bottom). Then the infinitesimal deformation V = V (P) of p defined
by P is equal to eθ+(p), where eθ+ is the infinitesimal left earthquake along
θ+. Similarly, V = −eθ−(p) is obtained by right earthquake along θ−.

Proof Let � ∈ Graph(�0,N , γ ) represent the 1-skeleton of ∂P . By adding
extra edges if necessary, we may assume � is a triangulation. As above we
associate the shape parameter z(α) = εes(α)+σθ(α) to any given edge α of �.
Note that the map taking four points on RP

1 to their cross ratio is smooth and
that, under the identifications TRP

1 ∼= P
1(R + Rσ) and TR ∼= R + Rσ ,

the differential of the cross-ratio map (RP
1)(4) → R is exactly the cross ratio

(P1(R + Rσ))(4) → R + Rσ . Therefore the shear coordinate of p = �(P)

at α is s(α) and the infinitesimal variation of the shear coordinate at α under
the deformation V (P) is θ(α). The result follows. ��
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2.7 Half-pipe geometry in dimension two

The structure group G for HP
3 acts transitively on degenerate planes, i.e. the

planes for which the restriction of the metric on HP
3 is degenerate. These are

exactly the planes that appear vertical in the standard picture of HP
3 (as in

Fig. 4); they are the inverse image of lines (copies of H
1) in H

2 under the
projection � . Each degenerate plane is a copy of two-dimensional half-pipe
geometry HP

2. For the purposes of the following discussion, we will fix one
degenerate plane in HP

3 as our model:

HP
2 :=

{(
x 0
0 x−1

)
+ σ

(
0 y

−y 0

)}
.

Here we describe two important facts about HP
2. The first is (reasonably)

named the infinitesimal Gauss–Bonnet formula. See [15, §3] for details about
half-pipe geometry in arbitrary dimensions.

There is an invariant notion of area in HP
2. As above, let L denote the

length function along the fiber direction. Then the area of a polygon p (or a
more complicated body) is the integral of the length L(�−1(x) ∩ p) of the
segment of p above x , over all x ∈ �(p) ⊂ H

1. Alternatively, if p is the limit
as t → 0 of at pt , where pt is a smooth family of collapsing polygons in H

2,
then the area of p is simply the derivative at t = 0 of the area of pt .

Proposition 2.19 (Infinitesimal Gauss–Bonnet formula) Let p be a polygon
in HP

2 whose edges are each non-degenerate. Then the area of p is equal to
the sum of the exterior angles of p. In particular, the sum of the exterior angles
of any polygon is positive.

x H
2

P

(1 + σa) ·P

L

P

(1 + σa) ·P
HP

3

� �

Fig. 4 The action of 1+aσ on HP
3 when a is an infinitesimal rotation centered at x (left), or a

is an infinitesimal translation along L (right). The central hyperbolic planeP (see Remark 2.1)
and its image under the action are depicted
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Proof Let pt be a smooth family of collapsing polygons in H
2 so that p is the

limit as t → 0 of at pt . Then the area of p is the derivative of the area of pt
at t = 0. Each exterior angle of p is the derivative of the corresponding angle
of pt at t = 0. The proposition follows from the usual Gauss–Bonnet formula
for polygons in H

2. ��
Secondly, we give a bound on the dihedral angle between two non-

degenerate planes in terms of the angle seen in the intersection with a
degenerate plane H ∼= HP

2. This will be used in the proof of Proposition 1.10.

Proposition 2.20 Let P, Q be two non-degenerate planes inHP
3 which inter-

sect at dihedral angle θ . Let H be a degenerate plane so that the lines H ∩ P
and H ∩ Q intersect at angle ϑ in H ∼= HP

2. Then sign(ϑ) = sign(θ) and
|ϑ | ≤ |θ | with equality if and only if H is orthogonal to the line P ∩ Q.

Proof We may change coordinates so that P = P (recall thatP is a copy of
H

2 common to all of the models X(B) in projective space, see Remark 2.1).
The second plane Q is the limit as t → 0 of at Qt , where Qt is a smoothly
varying family of planes in H

3 with limit Q0 = P . We may choose the path
Qt so that the line L = Qt ∩ P is constant for all t > 0. The dihedral angle
between Q and P is the derivative at t = 0 of the dihedral angle θt between
Qt and P , now thought of as a plane in H

3. The degenerate plane H defines
a plane H ′ in (the projective model of) H

3 which is orthogonal to P .
Let ϕ be the angle between Qt ∩ P and H ′. Let σ0 be a small sphere

centered at the intersection point of P, Qt and H ′. After scaling up σ0 to a
sphere of constant curvature 1, the spherical trianglewith vertices Qt∩P∩σ0,
P∩H ′∩σ0 and H ′∩Qt∩σ0 has edge lengthsd(Qt∩P∩σ0,P∩H ′∩σ0) = ϕ

and d(P∩H ′∩σ0, H ′∩Qt∩σ0) = ϑt , while it has a right angle atP∩H ′∩σ0
and angle θt at Qt∩P∩σ0, see Fig. 5. It then follows from a standard spherical
triangle formula that

tan ϑt = tan θt sin ϕ.

Fig. 5 The triangle on σ0
with right angle at
P ∩ H ′ ∩ σ0, angle θt at
Qt ∩P ∩ σ0 and angle ϕt at
Qt ∩ H ′ ∩ σ0

θt

Qt

ϑt

H ′

φ
P
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The proposition now follows since ϑ = d
dt

∣∣
t=0ϑt , θ = d

dt

∣∣
t=0θt and θ0 = ϑ0

(both are either zero or π ). ��

3 Length functions and earthquakes

We prove Theorem 1.9 by showing that each ideal polyhedron in HP
3 is real-

ized as the unique minimum of a certain length function defined in terms
of its dihedral angles. Our strategy is inspired by a similar one used by
Series [36], and later Bonahon [11], in the setting of quasifuchsian hyperbolic
three-manifolds with small bending.

3.1 Shear and length coordinates on the Teichmüller space of a
punctured sphere

Consider an ideal triangulation � of the N -times punctured sphere �0,N . Let
α1, . . . , αn denote the n = 3N−6 edges of�. There are two natural coordinate
systems on the Teichmüller space T0,N of complete hyperbolic metrics on
�0,N (see [29,41]):

• Let s1, . . . , sn denote the shear coordinates along the edges of �. The
sum of the shear coordinates over edges adjacent to a particular vertex
is always zero. Under this condition, the shears along the edges provide
global coordinates on T0,N .

• We may define length coordinates �1, . . . , �n on T0,N as follows. In any
hyperbolic structure, choose a horocycle around each cusp, and let �i denote
the (signed) length of the segment of αi connecting the two relevant horo-
cycles. By abuse, we call �i the length of αi . Changing a horocycle at a
particular cusp corresponds to adding a constant to the lengths of all edges
going into that cusp. The lengths �1, . . . , �n are only well-defined up to
this addition of constants, making these coordinates elements of R

n/R
N .

It is well-known [29,41] that both the shears and the lengths give global coor-
dinate systems for Teichmüller space. It is quite simple to go from length
coordinates to shear coordinates, in fact the map sending lengths to shears is
linear. To describe this coordinate transformation more precisely, let us estab-
lish some notation. The orientation of the surface determines a cyclic order
on the edges of any triangle. Given any two edges αi , α j , let εi j = −ε j i be
the number of positively oriented triangles T of � such that αi , α j are dis-
tinct edges of T counted with a positive sign if α j follows αi in the cyclic
order on the edges of T , and with negative sign if αi follows α j . By defini-
tion, (εi j )1≤i, j≤n is an anti-self adjoint matrix with entries in {−1, 0, 1}. It is
straightforward to check the following, see Thurston [41, p. 44], Penner [29].
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Lemma 3.1 (Thurston, Penner) Given a hyperbolic metric h ∈ T0,N with
length coordinates (�i ), the corresponding shear coordinates are defined by

si = 1

2

∑
j

εi j� j .

Note that the right-hand side is independent of the horocycles chosen to define
the �i .

Definition 3.2 Letω denote the anti-symmetric bilinear formonT0,N , defined
by

ω = 1

2

∑
i, j

εi j d�i ⊗ d� j . (9)

Note that, by Lemma 3.1, we may also express ω as

ω =
∑
i

d�i ⊗ dsi . (10)

It follows thatω is well-defined (independent of the ambiguity in the definition
of d�i ) because for any tangent vector Y , dsi (Y ) is a balanced function on the
set E = E(�) of edges, meaning it is a function whose values sum to zero on
those edges incident to any vertex.

From the second expression for ω, we can see that it is a symplectic form,
i.e. it is non-degenerate. In fact, we mention that ω is nothing other than (a
multiple of) the Weil–Petersson symplectic form (see Wolpert [42] and Fock–
Goncharov [21]), though we will not need this fact. It is straight-forward to
check directly that ω does not depend on the particular triangulation used in
its definition.

3.2 The gradient of the length function

Given a function f : T0,N → R, we denote by Dω f its symplectic gradient
with respect to ω, defined by the following relation: for any vector field X on
T0,N ,

ω(Dω f, X) = d f (X).

Let θ = (θ1, . . . , θn) be any balanced assignments of weights to the edges of
�. Then one may define the corresponding length function �θ as a function on
T0,N : for any hyperbolic metric h ∈ T0,N , with length coordinates (�i )1≤i≤n ,
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set

�θ (h) =
∑
i

θi�i .

The function �θ does not depend on the choice of horocycles at the cusps
precisely because θ is balanced. We let eθ denote the vector field on T0,N
defined by dsi (eθ ) = θi , in other words eθ shears along each edge according
to the weights θ . It follows immediately from (10) that:

Lemma 3.3 Let θ = (θ1, . . . , θn) be balanced weights on the edges of �.
Then

Dω�θ = −eθ .

3.3 The space of doubles is Lagrangian

We assume, from here on, that our graph� admits a Hamiltonian cycle γ . Then
cutting �0,N along γ yields two topological ideal polygons, one of which we
label top and the other bottom. There is an orientation reversing involution ι

on �0,N which exchanges top with bottom and pointwise fixes γ . We let D
denote the half-dimensional subspace of T0,N which is fixed by the action of
ι, i.e. those hyperbolic metrics which are obtained by doubling a hyperbolic
ideal polygon and marking the surface in such a way that the boundary of the
polygon identifies with γ .

Proposition 3.4 The space of doubles D is a Lagrangian subspace of T0,N
with respect to ω.

Proof We may compute ω with respect to a symmetric triangulation � (one
which is fixed under the involution ι). For h ∈ T0,N , the shear coordinates
(si (h)) are anti-symmetric, in the sense that, if ι(αi ) = α j , then si (h) =
−s j (h). (So, in particular, si (h) = 0, if αi is an edge of γ .) On the other
hand, the lengths (�i (h)) are symmetric, in the sense that, if ι(αi ) = α j ,
then �i (h) = � j (h). The proposition follows immediately from the second
expression (10) for ω above. ��

3.4 Convexity of the length function

Wenow show a form of convexity for the restriction of the length function �θ to
the space of doublesD inT0,N . It will sometimes be convenient to identify the
space of doublesD with the space polyg = polygN of marked ideal polygons
in the hyperbolic plane, and to think of (the restriction of) �θ as a function on
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polyg. The graph � on �0,N , then, projects to each polygon p in polyg, with
γ identified to the perimeter edges of p and all other edges of � identified with
diagonals of p.

The following proposition is the analog, in the (simpler) setting of ideal
polygons, of a theorem of Kerckhoff [25] which played a key role in Series’s
analysis of quasifuchsian manifolds with small bending [36]. In a similar way,
the proposition is crucial for Theorem 1.9.

Proposition 3.5 For all θ ∈ A� , the length function �θ : polygN → R is
proper and admits a unique critical point which is a non-degenerate minimum.

The proof is based on two lemmas.

Lemma 3.6 If θ ∈ A� , then �θ : polyg → R is proper.

Lemma 3.7 If θ ∈ A� , then �θ is convex and non-degenerate on earthquake
paths in polyg.

Proof of Proposition 3.5 Let θ ∈ A� . Since �θ is proper by Lemma 3.6, it has
at least one minimum in polyg. Moreover Lemma 3.7 shows that any critical
point is a non-degenerate minimum.

Let p, p′ ∈ polygN be two minima of �θ . There is, by Corollary 2.12, a
unique measured lamination λ on p such that Eλ(p) = p′. Then Lemma 3.7
shows that the function t �→ �θ (Etλ(p)) is convex and non-degenerate, so it
cannot have critical points both at t = 0 and at t = 1, a contradiction. So �θ

has a unique critical point on polygN . ��
We now turn to the proofs of the two lemmas.

Proof of Lemma 3.6 Let (pn)n∈N be a sequence of ideal polygons with N
vertices, which degenerates in polygN . Then, after taking a subsequence, if
necessary, there is a finite collection of segments a1, . . . , ap on the polygon
such that:

• ai and a j are disjoint, if i �= j ,
• for all n, each ai is realized as a minimizing geodesic segment connecting
two non-adjacent edges of pn ,

• for all i ∈ {1, . . . , p}, the length of ai in pn goes to zero, as n → ∞,
• any two edges of pn that can be connected by a segment disjoint from the
ai remain at distance at least ε, for some ε > 0 independent of n.

After taking a further subsequence, the pn converge to the union of p + 1
ideal polygons p(1)∞ , . . . , p(p+1)∞ , which, topologically, is obtained by cutting
the original polygon along each ai and then collapsing each (copy of each) seg-
ment ai to a new ideal vertex. Recall that given r > 0 and a geodesic line α in
H

2, the r -neighborhood ofα is called a hypercycle neighborhood of α.Wemay
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choose horoballs at each ideal vertex and disjoint hypercycle neighborhoods
Ni,n of the (geodesic realization in pn of) ai , with radii ri,n → ∞, which con-
verge to a system of horoballs for the limiting ideal polygons p(1)∞ , . . . , p(p+1)∞ .
Our function θ is naturally defined on the limiting polygons, since all edges of
the limit correspond to edges of the original polygon. However, θ is no longer
balanced at the new ideal vertices of p(1)∞ , . . . , p(p+1)∞ ; instead the sum of the
θ values along the edges going into one of the new vertices is strictly positive,
since θ satisfies assumption (iii) of Definition 1.3. Now, we may split �θ into
two pieces

�θ = �θ

∣∣∪Ni,n
+ �θ

∣∣
(∪Ni,n)

c ,

corresponding to the weighted length contained in the union of the neigh-
borhoods Ni,n and the weighted length outside of those neighborhoods. The
former is always positive, since θ is γ -admissibile, so it satisfies condition
(iii) of Definition 1.3, and since the arcs with positive weight crossing ai have
length at least 2ri,n in Ni,n , while the two arcs with negative weight crossing ai
have length exactly 2ri,n in Ni,n . The later converges to the θ -length function
�θ (p

(1)∞ )+· · ·+�θ (p
(p+1)∞ ) of the limiting polygonswith respect to the limiting

horoballs. However, by altering the radii of the neighborhoods Ni,n , we may
arrange for the limiting horoball around each of the new vertices to be arbi-
trarily small (i.e. far out toward infinity), making �θ (p

(1)∞ ) + · · · + �θ (p
(p+1)∞ )

arbitrarily large. It follows that �θ (pn) → +∞. ��
Proof of Lemma 3.7 Let p ∈ polygN , and let λ be a measured lamination on
p, that is, a set of disjoint diagonals β1, · · · , βq each with a weight λi > 0.We
need to prove that the function t → �θ (Etλ p) is convex with strictly positive
second derivative. To prove this, we prove an analogue of the Kerckhoff–
Wolpert formula in this setting, specifically:

d

dt
�θ (Etλ p) =

∑
θiλ j cos(ϕi j ) + K , (11)

where ϕi j ∈ (0, π) is the angle at which the edge αi of � crosses the edge
β j of the support of λ, the sum is taken over all i, j so that αi intersects β j
non-trivially, and K := K (θ, λ) is independent of p and t . The lemma follows
from this formula by a standard argument about earthquakes (see [24, Lemma
3.6]): each angle ϕi j of intersection strictly decreases with t because, from the
point of view of the edge β j , the endpoints at infinity of αi are moving to the
left.

It suffices to prove the formula (11) in the case that the lamination λ is
a single diagonal β with weight equal to one. We choose horocycles hv,t at
each vertex v and at each time t along the earthquake path as follows. Begin

123



276 J. Danciger et al.

at time t = 0 with any collection of horocycles {hv,0}. For a vertex v that
is not an endpoint of β, we simply apply the earthquake Etλ to hv,0: Define
hv,t = Etλhv,0. If w is an endpoint of β, then the earthquake breaks the
horocycle hw,0 into two pieces. We define hw,t to be the horocycle equidistant
from these two pieces.An easy calculation in hyperbolic plane geometry shows
that, for αi an edge of � crossing β, we have

d

dt
�(αi ) = d

dt
dist(hv,t , hv′,t ) = cos(ϕi ),

where ϕi is the angle at which αi crosses β, where v and v′ are the endpoints
of αi , and where dist(·, ·) denotes the signed distance between horocycles.
Further �(β) remains constant along the earthquake path. Finally, for any edge
αk which shares one endpoint v with β, we have that d

dt �(αk) = ±1/2 is
independent of p and t ; the sign depends on whether αk lies on one side of β,
or the other. ��

3.5 Proof of Theorem 1.9

We now have tools to prove Theorem 1.9. First, however, we must prove
Proposition 1.10.

Proof of Proposition 1.10 We must prove that the dihedral angles function
θ = ��(P) of any ideal polyhedron P ∈ HPPolyh� is γ -admissible (Defini-
tion 1.3). Condition (i) is simply our convention of labeling the dihedral angles
of equatorial edges with negative signs. So, we must prove that θ satisfies (ii)
and (iii).

That θ satisfies condition (ii) follows from the fact that the sum of the
dihedral angles at a vertex of an ideal polyhedron in H

3 is constant (equal to
2π ). By Proposition 2.17, the dihedral angles of P are simply the derivatives
of the (exterior) dihedral angles of Qt , where Qt is a path of ideal polyhedra
in hyperbolic space (or anti-de Sitter space), as in Proposition 2.16.

Now, let us prove that θ satisfies (iii). Consider a path c on P normal to
the 1-skeleton � and crossing exactly two non-adjacent edges of the equator.
Then, without affecting the combinatorics of the path, we deform so that c is
precisely P ∩ H for some vertical (degenerate) plane H that is orthogonal to
both edges of the equator crossed by c. Note that the angle between a non-
degenerate line α and a degenerate plane H is precisely the angle formed
between the lines�(α) and�(H) in H

2 and therefore we can indeed achieve
that H is orthogonal to both edges of the equator simultaneously (by contrast to
the analogous situation in H

3 or AdS
3). The plane H is isomorphic to a copy

of two-dimensional half-pipe geometry HP
2. Inside H , the edges of c are

non-degenerate, forming a polygon with exterior angles bounded above by the
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corresponding dihedral angles of P . Indeed, if θi is the dihedral angle between
two faces in HP

3 and ϑi is the angle formed by those faces when intersected
with H , then by Proposition 2.20, sign(ϑi ) = sign(θi ) and |ϑi | ≤ |θi | with
equality if and only if H is orthogonal to the line of intersection between
the faces. Therefore the exterior angle in H at each of the two points where c
intersects the equator is equal to the exterior dihedral angle along that equatorial
edge (and both are negative) while the exterior angle at any other vertex of
c is strictly less than the exterior dihedral angle of P at the corresponding
edge (and both are positive). By the infinitesimal Gauss–Bonnet formula in
HP

2 (Proposition 2.19), the sum of the exterior angles of c is positive and so it
follows that the sum of the exterior dihedral angles over the edges of P crossed
by c is also positive. ��
Proof of Theorem 1.9 The map F : HPPolyh → polyg × A, taking an HP
ideal polyhedron to its projection to H

2, an ideal polygon, and to its dihedral
angles, has a continuous left inverse. Let G : polyg × A → HPPolyh be
the map that takes p ∈ polyg and bends according to the top angles θ+ of
θ ∈ A, ignoring the rest of the information in θ (the bottom and equatorial
dihedral angles). Then G ◦ F is the identity. Hence, to show that � = �HP

is a homeomorphism, we need only show that there is a continuous map H :
A → polyg such that G(H(�(P)), �(P)) = P . The existence of such a
continuous map H is guaranteed by Proposition 3.5 and a simple application
of the Implicit Function Theorem as follows. For θ ∈ A, define H(θ) to be the
uniqueminimum inpolyg of �θ given by Proposition 3.5. That H is continuous
(in fact differentiable on all strata of A) follows from the convexity of �θ ,
thought of as a function on polyg. Now, recall that the space of ideal polygons
polyg identifies with the space of doubles D in T0,N . Hence, because H(θ)

minimizes �θ over polyg, the restriction of d�θ (now thought of as a one-form
on all of T0,N ) to D is zero at (the double of) H(θ). It then follows that the
infinitesimal shear eθ on T0,N is tangent to the subspace of doubles D at (the
double of) H(θ) because eθ is dual to �θ (Lemma 3.3) and the space of doubles
D is Lagrangian (Proposition 3.4). Therefore eθ determines a well-defined
infinitesimal deformation of the polygon H(θ) and the pair p = H(θ), V =
eθ (H(θ)) determines an HP polyhedron P such that F(P) = (H(θ), θ) as in
the discussion in Sect. 2.6. The formula G(H(�(P)), �(P)) = P follows,
and this completes the proof of Theorem 1.9. ��

4 Properness

In this section we will prove the two properness lemmas needed for the proofs
of the main results. Lemma 1.12 states that the map 
, sending an ideal poly-
hedron in AdS

3 to its induced metric, is proper. Lemma 1.14, when combined
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with Proposition 1.16, will imply properness of the map sending a polyhedron
of fixed combinatorics to its dihedral angles.

4.1 Properness for the induced metric (Lemma 1.12)

To prove Lemma 1.12, we consider a compact subset K ⊂ T0,N . We must
show that the set 
−1(K) is a compact subset of AdSPolyh. In other words,
if P is a polyhedron with m = 
(P) ∈ K, we must show that P lies in a
compact subset of AdSPolyh.

Since there are finitely many triangulations of the disk with N vertices, we
may consider polyhedra P with fixed combinatorics, that is the graph � is
fixed. We may assume � is a triangulation by adding edges if necessary.

Recall that the induced metricm on P is related to the left and right metrics
mL andmR by the diagram in Theorem 2.11:mR = Eθ (m) andm = Eθ (mL),
where θ : � → R is the assignment of exterior dihedral angles to the edges
of P and Eθ is the shear map associated to θ . Also, recall that mL and mR are
cusped metrics on the sphere that come from doubling the metric structures
on the ideal polygon obtained by projecting the vertices of P to the left and
right foliations of ∂AdS

3. To show that P lies in a compact set, we must
show that mL and mR lie in compact sets. It is enough to show that θ remains
bounded over 
−1(K). Although we have not yet proved Proposition 1.16,
we will use here that θ is γ -admissible, so it satisfies conditions (i) and (ii) in
Definition 1.3. That these conditions are satisfied is essentially trivial, see the
first paragraph of Sect. 6.

Consider an edge e of the equator γ of �, and recall that θ(e) < 0 (by
condition (i) of the definition of A�). Let sL(e), sR(e), s(e) denote the shear
coordinate along e, with respect to �, of the left metric mL , the right metric
mR , and the induced metric m. Then, by Theorem 2.11, we have:

sR(e) − s(e) = θ(e) = s(e) − sL(e).

Now the edge e belongs to a unique triangle of � in the top hemisphere of
�0,N , the third vertex of which we denote by v+. On the bottom hemisphere,
the edge e, again, belongs to a unique triangle, whose third vertex we denote
by v−.

There are two cases to consider. Recall that we fixed an orientation of the
equator γ . Imagining that we view �0,N from above, it is intuitive to call the
positive direction left and the negative direction right. First suppose v+ lies
to the left of v− when viewed from e. The restriction of the right metric mR
to the top hemisphere of �0,N is a marked hyperbolic ideal polygon pR , in
which the vertex v+ again lies to the left of v−. Since mR is the double of pR ,
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Fig. 6 The polyhedron P
with combinatorics given by
�. The red edge is e, and
q+ = πR(v+; e),
q− = πR(v−; e) (color
figure online)

v+

v−

e
q+

q−

we may calculate the shear coordinate sR(e) of sR by the simple formula:

sR(e) = πR(v+; e) − πR(v−; e),
whereπR(v; e) denotes the hyperbolic orthogonal projection of v onto the edge
e in pR , see Fig. 6. Then we have sR(e) > 0 and so sL(e) > s(e) > sR(e) > 0.
In particular,

θ(e) = sR(e) − s(e) > −s(e).

In the case that v+ lies to the right of v−, we examine the left metric mL . In
the restriction pL of mL to the top hemisphere, the vertex v+ again lies to
the right of v− and so, by a similar calculation as above, sL(e) < 0 and so
sR(e) < s(e) < sL(e) < 0. Therefore

θ(e) = s(e) − sL(e) > s(e).

In either case, θ(e) is bounded, because the shears s(e) are bounded, as m
varies over the compact set K.

We have shown that all of the edges e forwhich θ(e) < 0 have θ(e) bounded.
It then follows that the other edges e′, for which θ(e′) ≥ 0, also have θ(e′)
bounded, since the sum of all positive and negative angles along edges coming
into any vertex of P must be zero (condition (ii) of the definition of A�).
Therefore 
−1(K) is compact.

4.2 Proof of Lemma 1.14

Let � ∈ Graph(�0,N , γ ). We consider a sequence (Pn)n∈N going to infinity
in AdSPolyhN such that the dihedral angles θn = �AdS

� (Pn) converge to
θ∞ ∈ R

E , where E = E(�) denotes the edges of � as usual. We must show
that θ∞ fails to satisfy condition (iii) of Definition 1.3.
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For each n, let pLn = �L(Pn) and pRn = �R(Pn) be the ideal polygons
whose ideal vertices are the left and right projections of the ideal vertices of
Pn (as in Sect. 2.3). Let vL

1,n, . . . , v
L
N ,n denote the vertices in RP

1 of pLn , and

similarly let vR
1,n, . . . , v

R
N ,n denote the vertices of p

R
n . By applying an isometry

of AdS
3, we may assume that the first three vertices of Pn are (0, 0), (1, 1)

and (∞, ∞) independent of n, so that vL
1,n = vR

1,n = 0, vL
2,n = vR

2,n = 1 and

vL
3,n = vR

3,n = ∞ for all n.
Since θn converges to the limit θ∞ and the polyhedra Pn diverge, the

sequence of ideal polygons (pLn )n∈N diverges (in the space of ideal N -gons
up to equivalence). Reducing to a subsequence, we may assume all of the
vertices converge to well-defined limits vL

i,n → vL
i,∞ ∈ RP

1. However, since

the sequence of polygons (pLn )n∈N does not converge in the space of ideal N -
gons, there is at least one index i such that vL

i,∞ = vL
i+1,∞. Now, since the right

polygon pRn is obtained from pLn by an earthquake of bounded magnitude, it
follows that each vertex vR

i,n also converges to a well-defined limit vR
i,∞ and

that vL
i,∞ = vL

i+1,∞ if and only if vR
i,∞ = vR

i+1,∞. In other words the polyhedra
Pn converge to a convex ideal polyhedron P∞ of strictly fewer vertices.
The combinatorial structure of P∞ is obtained from� by collapsing vertices

and the corresponding edges and faces in the obvious way: if two vertices that
span an edge collapse together, then that edge disappears. If that edge bounded
a triangle, then that triangle collapses to an edge, and so on. Let �∞ denote
the 1-skeleton of P∞, and let �∗∞ denote the dual graph. Consider a simple
path c∞ in �∗∞. We may lift c∞ to a path c in the dual graph �∗ fof � in the
obvious way: an edge of c∞ is dual to an edge e of P∞. Under the collapse
� → �∞, e lifts to a collection of consecutive edges in � which determines a
path of adjacent edges in �∗. The sum of the dihedral angles assigned by θn
to the path c converges to the sum of the dihedral angles of P∞ over the edges
of c∞.

Nowconsider an ideal vertex of P∞ which is the limit of twoormore vertices
of the Pn , and let c∞ denote the path of edges bounding the face of �∗∞ dual
to this vertex. Of course, the sum of the angles over the edges of c∞ is zero,
since P∞ satisfies condition (ii) of Definition 1.3. It therefore follows that θ∞
assigns angles that sum to zero around the edges of the path c. Therefore θ∞
violates condition (iii) in the definition of γ -admissible maps, since c does not
bound a face in �∗, and the proof is complete.

5 Rigidity

This section is dedicated to the local versions of Theorems 1.4 and 1.5, which
are Lemmas 1.13 and 1.15.
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5.1 The Pogorelov map for AdS
n

We recall here the definition andmain properties of the infinitesimal Pogorelov
map, which turns infinitesimal rigidity problems for polyhedra (or subman-
ifolds) in constant curvature pseudo-Riemannian space-forms into similar
infinitesimal rigidity problems in flat spaces, where they are easier to deal
with. These maps, as well as their non-infinitesimal counterparts, were dis-
covered by Pogorelov [30, Chapter 5] (in the Riemannian case). Another
account and some geometric explanations of the existence of these maps can
be found in Schlenker [33, Prop. 5.7] or in Fillastre [20, Section 3.3]. See also
Labourie–Schlenker [26, Cor. 3.3] or Izmestiev [23]. We follow here mostly
the presentation given in [20, Section 3.3], and refer to this paper for the proofs.

Although we will return to dimension three shortly, we describe the
Pogorelov map in any dimension n. Consider the complement U in AdS

n

of a spacelike totally geodesic hyperplane H0, dual to a point x0 ∈ AdS
n .

Here duality means that H0 is defined by the equation 〈x0, x〉 = 0, where 〈·, ·〉
is the inner product of signature (n−1, 2) defining AdS

n . ThenU is naturally
the intersection of AdS

n with an affine chart R
n of projective space, and we

may take ι(x0) = 0 to be the origin of this affine chart, where ι : U ↪→ R
n

denotes the inclusion. The union of all light-like geodesics passing through x0
is called the light cone C(x0).

We equip R
n with a flat Lorentzian metric, making it into a copy of

Minkowski space R
n−1,1. We may choose this metric so that the inclusion

ι is an isometry at the tangent space to x0. This has the pleasant consequence
that ι(C(x0)) is precisely the light cone of ι(x0) in R

n−1,1. We now define
a bundle map ϒ : TU → TR

n−1,1 over the inclusion ι : U ↪→ R
n−1,1 as

follows: ϒ agrees with dι on Tx0U . For any x ∈ U\C(x0), and any vector
v ∈ TxU , write v = vr +v⊥, where vr is tangent to the radial geodesic passing
through x0 and x , and v⊥ is orthogonal to this radial geodesic, and define

ϒ(v) =
√

‖r̂‖2
‖dι(r̂)‖2 dι(vr ) + dι(v⊥), (12)

where r̂ is the unit radial vector (so ‖r̂‖2 = ±1) and the norm ‖ · ‖ in the
numerator of the first term is theAdSmetric,while the norm in the denominator
is the Minkowski metric. Note that a radial geodesic of U (passing through
x0) is taken by ι to a radial geodesic in R

n−1,1 (passing through the origin) of
the same type (space-like, light-like, time-like), although the length measure
along the geodesic is not preserved. Hence the quantity under the square-root
in (12) is always positive.

The key property of the infinitesimal Pogorelov map is the following (the
proof is an easy computation in coordinates, see [20, Lemma 3.4]).
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Lemma 5.1 Let Z be a vector field on U\C(x0) ⊂ AdS
n. Then Z is a Killing

vector field if and only if ϒ(Z) (wherever defined) is a Killing vector field for
the Minkowski metric on R

n−1,1.

In fact, the lemma implies that the bundle map ϒ , which so far has only been
defined overU\C(x0), has a continuous extension to all ofU . The bundle map
ϒ is called an infinitesimal Pogorelov map.

Next, the bundle map� : TR
n−1,1 → TR

n over the identity, which simply
changes the sign of the n-th coordinate of a given tangent vector, has the same
property: it sends Killing vector fields in R

n−1,1 to Killing vector fields for the
Euclidean metric on R

n . Hence the map � = � ◦ ϒ is a bundle map over the
inclusion U ↪→ R

n with the following property:

Lemma 5.2 Let Z be a vector field on U ⊂ AdS
n. Then Z is a Killing vector

field if and only if �(Z) is a Killing vector field for the Euclidean metric on
R
n.

The bundle map � is also called an infinitesimal Pogorelov map. Henceforth
we return to the setting of three-dimensional geometry.

5.2 Rigidity of Euclidean polyhedra

In order to make use of the infinitesimal Pogorelov map defined above, we
recall some elementary and well-known results about the rigidity of convex
Euclidean polyhedra. It has been known since Legendre [27] and Cauchy [13]
that convex polyhedra in Euclidean three-space R

3 are globally rigid. In fact,
given two polyhedra P1, P2, if there is map ∂P1 → ∂P2 which respects the
combinatorics and is an isometry on each face, then the map is the restriction
of a global isometry of Euclidean space. Later Dehn [18] proved that con-
vex Euclidean polyhedra are also infinitesimally rigid. In fact, he showed that
any first-order deformation V of a polyhedron P that preserves the combina-
torics and the metric on each face is the restriction of a global Killing vector
field. Here V is not allowed, for example, to deform the polyhedron so that a
quadrilateral face becomes two triangular faces. Still later, A.D. Alexandrov
[1] proved a stronger version of this statement:

Theorem 5.3 (Alexandrov) Let P be a convex polyhedron in R
3, and let V

be an infinitesimal deformation of P (that might or might not change the
combinatorics). Then, if the induced metric on each face is fixed, at first order,
under V , the deformation V is the restriction to P of a global EuclideanKilling
field.
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5.3 Proof of Lemma 1.13 (and Lemma 1.15)

We first prove Lemma 1.13. Lemma 1.15 then follows from it and Theo-
rem 2.13.

Let P ∈ AdSPolyhN . We argue by contradiction and suppose that 
 is
not a local immersion at P . This means that there exists a tangent vector V
to AdSPolyh at P such that d
(V ) = 0. In other terms, there is a first-order
deformation V of P , as an ideal polyhedron in AdS

3, which does not change
the induced metric.

Now, V is described by tangent vectors Vi ∈ Tzi ∂AdS
3 at each ideal ver-

tex zi . Since P is convex, it is contained in the complement U ⊂ AdS
3 of a

spacelike totally geodesic plane. We wish to use the Pogorelov map� defined
in Sect. 5.1 above. However, � is not defined over the projective boundary, so
we need to be slightly careful. We may assume that the 1-skeleton � of P is a
triangulation. If not, we simply add diagonals to all of the non-triangular faces
as needed. Consider a triangular face T = �zi1zi2zi3 . The tangent vectors
Vi1, Vi2, Vi3 determine a unique Killing field X , which defines the motion of
the points of T under the deformation. The deformation vectors for the vertices
of an adjacent triangle T ′ = �zi2zi1zi4 similarly determine a Killing field X ′,
which determines the motion of the points of T ′. In general, X and X ′ might
not agree on the common edge e = z1z2. However, because d
(V ) = 0,
the shear coordinate along e does not change to first order, and therefore X
and X ′ do agree along the edge e. It follows that V defines a vector field W
on ∂P whose restriction to any face agrees with a Killing field of AdS

3. We
now apply the Pogorelov map to obtain �(W ), a vector field on the bound-
ary of a convex polyhedron ι(P) in Euclidean space R

3. By Lemma 5.2, the
restriction of �(W ) to each face of ι(P) agrees with a Euclidean Killing field.
By Theorem 5.3, �(W ) must be the restriction of a global Euclidean Killing
field Y . Hence, again, using Lemma 5.2, we see that W was the restriction of
a global Killing field �−1(Y ) of AdS

3 and therefore V represents the trivial
deformation in AdSPolyhN . This completes the proof of Lemma 1.13.

6 Necessary conditions on the dihedral angles: proof of Proposition 1.16

In this section we prove Proposition 1.16, which states that the map �AdS
� ,

taking an ideal polyhedron P in AdS with 1-skeleton � to its dihedral angles
θ = �AdS

� (P), has image in the convex cone A�; in other words θ is γ -
admissible (Definition 1.3). That θ satisfies (i) is just our sign convention for
dihedral angles. That the dihedral angles θ satisfy (ii) follows exactly as in the
hyperbolic setting: The intersection of P with a small “horo-torus” centered
about an ideal vertex of P is a convex polygon in the Minkowski plane, whose
exterior angles are equal to the corresponding exterior dihedral angles on P .
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A

f1

f2f3

e1

e2
e3

Q

Fig. 7 In the degenerate case, the extension polyhedron Q has a single vertex in projective
space, at infinity in the figure. All faces and edges of Q are orthogonal to the time-like plane A
dual to the vertex

The difficult part of Proposition 1.16 is to prove that θ satisfies condition (iii)
of γ -admissibility (Definition 1.3), and the remainder of this section is ded-
icated to this claim. Consider a simple cycle e∗

0, e
∗
1, . . . , e

∗
n = e∗

0 in �∗ such
that θ(e j ) < 0 for exactly two edges j = 1, r . Let f ∗

i be the vertex of �∗,
dual to a two-dimensional face fi of P , which is an endpoint of e∗

i and e∗
i+1.

In other words, the face fi of P contains the edges ei and ei+1. We must prove
that the sum θ(e1) + · · · + θ(en) > 0.

We now define a polyhedron Q by “extending” the faces f1, . . . , fn and
forgetting about the other faces of P . We will call Q the extension polyhedron.
More rigorously: Since P is contained in an affine chart of RP

3, a lift P̃ of
P to the three-sphere S3 is a convex polyhedron contained in an open half-
space of S3. Define Q̃ to be the intersection of the half-spaces defined by
the lifts of f1, . . . , fn . Then generically Q̃ will be contained in an open half-
space, in which case Q̃ projects to a compact polyhedron Q in some affine
chart of RP

3. We will, in a sense, reduce the generic case to the easier case
that Q̃ is not contained in an open half-space, which we treat first. In this
case, the combinatorial structure of Q̃ is very simple in that Q̃ has exactly
two antipodal vertices. The projection Q of Q̃ to RP

3 has one vertex, which
is contained in every face f1, . . . , fn and edge e1, . . . , en of Q, see Fig. 7.
Therefore f1, . . . , fn and e1, . . . , en are orthogonal to the time-like plane A
dual to that vertex. As in Sect. 5.1, duality is defined with respect to the inner
product of signature (2, 2) that defines AdS

3. The intersection q = A∩ Q is a
convex compact polygon lying in A ∼= AdS

2 whose exterior angles are equal
to the exterior dihedral angles of Q. That (iii) holds in this case now follows
from.

Claim 6.1 The sum of the exterior angles of a compact, convex, space-like
polygon q in AdS

2 is strictly positive.

123



Polyhedra inscribed in a quadric 285

Fig. 8 A compact spacelike
polygon q in AdS

2 and its
dual q∗. All vertices of q∗ lie
in AdS

2. All edges of q∗ are
spacelike, but two of the
edges cross the boundary of
AdS

2. The exterior angles of
q∗ at the vertices are positive

q
q∗

AdS2

∂AdS2

Proof This follows directly from the Gauss–Bonnet formula for Lorentzian
polygons (see [9]). Alternatively, one may easily prove the claim directly for
triangles and then argue by induction. ��

Before continuing to the general case, it is useful to examine the dual picture
in this simple case. Let RP

2 denote the projective plane in RP
3 containing

the timelike polygon q. The intersection of RP
2 with AdS

3 is a copy of AdS
2

(called A above). Let q∗ denote the set of points inRP
2 whose dual hyperplane

does not cross the interior of q. Then q∗ is just the dual polygon to q, viewed
in the projective space containing q, rather than the dual projective space, via
the signature (1, 2) quadratic form defining AdS

2. See Fig. 8.
Since all edges of q are space-like, the vertices of q∗ are contained inAdS

2.
If v is a vertex of q with positive exterior angle, then the dual edge v∗ in q∗
is a space-like edge contained in AdS

2. However, if v is a vertex of q with
negative exterior angle, then the dual edge v∗ of q∗ begins and ends in AdS

2

but contains a segment outside of AdS
2. All exterior angles of q∗ are positive,

since all edges of q are contained in AdS
2. Conversely, if q∗ is any polygon

in RP
2 having vertices in AdS

2, spacelike edges exactly two of which leave
AdS

2, and positive exterior angles, then the dual of q∗ is a compact convex
polygon in AdS

2. Note that the length of an edge in q∗ is equal to the dihedral
angle at the corresponding vertex of q, with the two edges which leave AdS

2

having negative length. Therefore Claim 6.1 is equivalent to.

Claim 6.2 Let q∗ be a convex polygon in RP
2 with vertices in AdS

2, with
space-like edges all but two (non-adjacent) of which are contained in AdS

2,
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and with positive exterior angle at each vertex. Then the sum of the lengths of
the edges of q∗ is positive.

This dual point of view will be useful in the general case, which we turn to
now.

Consider the generic case that the extension polyhedron Q is compact in
an affine chart of RP

3. In this case, Q will have extra edges, in addition to
e1, . . . , en , which are not contained in AdS

3; these edges may be either space-
like or time-like. Let Q∗ denote the dual polyhedron inRP

3, where we identify
RP

3 with its dual via the inner product of signature (2, 2) that definesAdS
3. By

perturbing a small amount if necessary,wemay assume that all vertices of Q lie
outside of the closure of AdS

3, so that the faces of Q∗ are each time-like. The
vertices of Q∗, dual to the space-like faces f1, . . . , fn , lie in AdS

3. The dual
edges e∗

1, . . . , e
∗
n are space-like and form a Hamiltonian cycle in ∂Q∗ dividing

it into two convex polyhedral surfaces (∂Q∗)1 and (∂Q∗)2.We need onlywork
with one of these surfaces, say (∂Q∗)1. The surface (∂Q∗)1 is a polygon, bent
along some interior edges. Note that two of the perimeter edges e∗

1 and e∗
r

of (∂Q∗)1 each contain a segment outside of AdS
3, while e∗

2, . . . , e
∗
r−1 and

e∗
r+1, . . . , e

∗
n are contained in AdS

3. We will show the following lemma, the
proof is deferred until Sect. 6.2.

Lemma 6.3 The surface (∂Q∗)1 is intrinsically locally convex, with positive
exterior angles.

The lemma says thatwhen (∂Q∗)1 is “un-folded” onto a time-like plane (a copy
of AdS

2), it is convex with positive exterior angles and therefore isomorphic
to some q∗ as in Claim 6.2 above. Therefore condition (iii) will follow from
the lemma. Before embarking on the proof, we draw on some intuition from
the Riemannian setting. To show that a developable polyhedral surface S in
a Riemannian space (R3 say) is intrinsically locally convex, one must simply
show that the total angle of S at each vertex is less than π . Equivalently, one
examines the link of each vertex v of S, which is naturally a polygonal path in
the unit sphere in the tangent space at v: S is locally convex at v if and only if
the length of this polygonal path is less than π . We show that (∂Q∗)1 is locally
convex in much the same way, by examining the link of each vertex of (∂Q∗)1
and measuring how long it is. However the space of rays emanating from a
point in a Lorentzian space is not the Riemannian unit sphere, but rather what
is called the HS sphere or HS2.

6.1 The geometry of the HS sphere

HS geometry, introduced in [33,34] and used recently in [6,7], is the natural
local geometry near a point in a Lorentzian space-time such as AdS

3. In those
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papers, HS-structures with cone singularities occur naturally as the induced
geometric structures on the boundary of polyhedra or, in a related manner, on
the links of vertices of the singular graph in Lorentzian 3-manifolds with cone
singularities. Here we will use comparatively simpler notions without cone
singularities.

The tangent space at a point of AdS
3 is a copy of the three-dimensional

Minkowski space R
2,1. The HS sphere HS2 is the space of rays based at the

origin in R
2,1. It admits a natural decomposition into five subsets:

• Let H
2+ (respectively H

2−) denote the future oriented (resp. past oriented)
time-like rays. Both H

2+ and H
2− are copies of the Klein model for the

hyperbolic plane and are equipped with the standard hyperbolic metric in
the usual way.

• Let dS
2 denote the space-like rays, equipped with the standard de Sitter

metric.
• The light-like rays form two circles, ∂H

2+ and ∂H
2−, which are the bound-

aries of H
2+ and H

2− respectively.

The group SO0(2, 1) of time-orientation and orientation preserving linear
isometries of R

2,1 acts naturally (and projectively) on HS2, preserving this
decomposition. The geodesic σx,y between two (non-antipodal) points x, y ∈
HS2 is defined to be the positive span of the two rays x, y. The space HS2 is
equipped with a (partially defined) signed distance function d(·, ·) as follows.
• If x, y ∈ H

2+ or x, y ∈ H
2− then d(x, y) is the usual hyperbolic distance,

equal to the hyperbolic length of σx,y .
• Let x, y ∈ dS

2. We will only be interested in the case that σx,y is time-like,
meaning the plane in R

2,1 spanned by σx,y has mixed signature. If σx,y is
contained in dS

2, then d(x, y) is defined to be the de Sitter length of σx,y ,
taken to be a negative (rather than imaginary) number. Note that in this case
d(x, y) = −d(x∗, y∗), where x∗ (resp. y∗) denotes the geodesic line dual
to x (resp. y) in H

2+ (equal to the intersection with H
2+ of the orthogonal

complement of x (resp. y)). In the case that σx,y passes through H
2+ (or

H
2−), we define d(x, y) = +d(x∗, y∗).

• Let x ∈ H
2+ and y ∈ dS

2. Then we define d(x, y) = +d(x, y∗) if x and
y lie on opposite sides of y∗ or d(x, y) = −d(x, y∗) if x and y lie on the
same side of y∗.

We note that this distance function may be similarly defined in terms of the
Hilbert distance (cross ratios)with respect to ∂H

2+ or ∂H
2−. Letσ be apolygonal

path in HS2 with endpoints x, y ∈ dS
2 and call σ time-oriented if σ is the

concatenation of three polygonal subpaths: a path crossing from x toH
2+ which

is future-oriented, followed by a path inH
2+, followed by a path fromH

2+ back
into dS

2 which is past oriented. The length L (σ ) is defined to be the sum of
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x0 x1 xi

xi+1

xi+2

xj−1

xj

xj+1

xj+2

xn
x∗
i x∗

1 x∗
0 x∗

n

x∗
j+2

x∗
j+1

dS2

H
2
+

Fig. 9 In the proof of Claim 6.4, σ is a time oriented polygonal path in HS2. In Lemma 6.3,
we apply Claim 6.4 to the case that σ is the link of a vertex of (∂Q∗)1, which is convex (as
drawn)

the lengths of the geodesic segments comprising σ . It is important to note that
L (σ ) is well-defined under sub-division. The crucial ingredient in the proof
of Lemma 6.3 is the following substitute for the triangle inequality.

Claim 6.4 Let σ be a time-oriented polygonal path with endpoints x, y ∈ dS
2

and suppose further that the geodesic segment σx,y is time-like and crosses
through H

2+. Then L (σ ) ≥ L (σx,y).

Proof Let x = x0, x1, . . . , xn = y be the ordered vertices ofσ , with x0, . . . , xi
lying in dS

2, xi+1, . . . , x j lying in H
2+, and x j+1, . . . , xn lying in dS

2. Then,

L (σ ) = −
i−1∑
k=0

d(x∗
k , x

∗
k+1) + ε1d(x∗

i , xi+1)

+
j∑

k=i+1

d(xk, xk+1) + ε2d(x j , x
∗
j+1) −

n−1∑
k= j+1

d(x∗
k , x

∗
k+1)

where ε1, ε2 = ±1. We may assume, by sub-dividing, that xi and xi+1
are on the same side of x∗

i and that x j and x j+1 are on the same side of
x∗
j+1, so that ε1 = ε2 = −1. Therefore all of the dual lines x∗

0 , . . . , x
∗
i

and x∗
j+1, . . . , x

∗
n lie in between xi+1 and x j in H

2+. In fact, the dual lines
are arranged, in order from closest to xi+1 to closest to x j , as follows:
x∗
i , x

∗
i−1, . . . , x

∗
0 , x

∗
n , x

∗
n−1, . . . , x

∗
j+1. See Fig. 9. Therefore, we have, by the

triangle inequality in H
2, that
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d(xi+1, x j ) ≥ d(xi+1, x
∗
i ) +

i∑
k=1

d(x∗
k , x

∗
k−1)

+ d(x∗
0 , x

∗
n ) +

n∑
k= j+2

d(x∗
k , x

∗
k−1) + d(x∗

j+1, x j )

since the line connecting xi+1 to x j crosses each of the dual lines in the above
equation. Again by the triangle inequality in H

2, we also have

d(xi+1, x j ) ≤
j−1∑

k=i+1

d(xk, xk+1).

It follows thatL (σx,y) = d(x∗
0 , x

∗
n ) ≤ L (σ ). ��

6.2 Proof of Lemma 6.3

To complete the proof of Proposition 1.16 (that the dihedral angle maps are
γ -admissible), we now prove Lemma 6.3 which states that the convex pleated
polygon (∂Q∗)1 is intrinsically locally convex with positive exterior angles.
Consider a vertex f ∗

i of (∂Q∗)1. We consider the link σ at f ∗
i of (∂Q∗)1, a

polygonal path in the space of rays in T f ∗
i
AdS

3 which is naturally a copy of

HS2. The endpoints x and y of σ correspond to two consecutive dual edges
e∗
i and e

∗
i+1 in the perimeter of (∂Q∗)1. Since the e∗

j are space-like, x, y lie in

dS
2 ⊂ HS2. By assumption, the edges ei and ei+1 intersect outside of AdS

3

at a point vi (which is positive with respect to the (2, 2) form), and therefore
the plane v∗

i containing e
∗
i and e

∗
i+1, which is dual to vi , is time-like, thus so is

σx,y . Note the intersection of the spacelike face fi with v∗
i is a spacelike edge

contained in AdS
3, since the endpoints of this edge are contained in AdS

3 and
the intersection fi ∩ AdS

3 is convex (since it extends a face of the original
polyhedron P). It then follows from this and from convexity of Q that the
geodesic σx,y passes through a hyperbolic region of HS2, which without loss
in generalitywe take to beH

2+. Further, by convexity of Q and the fact that each
of the faces of ∂Q∗ is time-like, the link σ at f ∗

i of (∂Q∗)1 is time-oriented in
the sense defined in the previous section. Therefore, it follows from Claim 6.4
that L (σ ) ≥ L (σx,y) > 0. Lemma 6.3 now follows because L (σ ) is a
complete invariant of the local geometry of (∂Q∗)1 at f ∗

i ; the development
of (∂Q∗)1 onto a copy of AdS

2 is convex at this vertex, with positive exterior
angle, if and only if the length of the link is positive. This completes the proof
of Proposition 1.16.
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7 Topological arguments

7.1 The topology of the space of ideal polyhedra

In this Section we prove Proposition 1.11.

Proof of Proposition 1.11 First, let’s study AdSPolyhN and AdSPolyhN . By
Proposition 2.8, the space AdSPolyhN identifies with the space polygN ×
polygN of pairs (pL , pR) of marked ideal N -gons in the hyperbolic plane
considered up to the action of PSL2R × PSL2R. The space AdSPolyhN is
obtained from AdSPolyhN by removing all pairs (pL , pR) such that pL and
pR are isometric. Using the action of PSL2R × PSL2R we may, in a unique
way, put pL and pR into standard position so that the first three vertices of
each polygon are∞, 0 and 1. The remaining vertices of pL form an increasing
sequence of N − 3 points x4 < · · · < xN in (1, ∞). Similarly, the remaining
vertices of pR also form an increasing sequence y4 < · · · < yN in (1, ∞)

and pL is isometric to pR if and only if (x4, . . . , xN ) = (y4, . . . , yN ). It
follows thatAdSPolyhN is homeomorphic toR

N−3×R
N−3 andAdSPolyhN

is homeomorphic toR
N−3×R

N−3 minus the diagonal. ThereforeAdSPolyhN
is homotopy equivalent to the sphere of dimension N − 4.

We now study the space HPPolyhN . Recall from Sect. 2.6 that the space
HPPolyhN identifies with the space of pairs (p, V ) where p is a marked ideal
N -gon in the hyperbolic plane and V is a non-trivial infinitesimal deformation
of p considered up to the action of the tangent bundle TPSL2R. Using this
action we may, in a unique way, place (p, V ) in standard position so that the
first three vertices of p are x1 = ∞, x2 = 0, x3 = 1 and so that V (x1) = 0,
V (x2) = 0, and V (x3) = 0. The remaining N − 3 tangent vectors are not all
zero and their basepoints form an increasing sequence in (1, ∞). It follows
thatHPPolyhN is homeomorphic to TR

N−3 minus the zero section. Therefore
HPPolyhN is homotopy equivalent to the sphere of dimension N − 4. ��
As a corollary of Theorem 1.9 and this proposition we have:

Corollary 7.1 The space of angle assignments A is connected and simply
connected whenever the number of vertices N ≥ 6.

7.2 �AdS is a local homeo

Lemma 1.15 says that for each triangulation � ∈ Graph(�0,N , γ ), the map
�� : AdSPolyh → R

E is a local immersion at any ideal polyhedron P whose
1-skeleton is contained in �. We now deduce the following result.

Lemma 7.2 �AdS : AdSPolyh → A is a local homeomorphism.
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Proof Given any � ∈ Graph(�0,N , γ ), we must first show that the dimension
of A� (if non-empty) is 2N − 6. The dimension of the convex cone A� is
determined by the rank of the N equations in condition (ii) of γ -admissibility
(Definition 1.3). Assume first that N is odd. Then these equations may be used
to eliminate the the N weights on the equator. Indeed if Ei denotes the equation
of (ii) determined by the vertex vi of �, then treating indices cyclically we find
that

E j+1 − E j+2 + · · · − E j−1 + E j

is an equation which depends on (the weight at) the edge e j with endpoints v j
and v j+1 but on no other edge of the equator. This shows that the equations
E1, . . . , EN have rank N and the dimension ofA� is therefore 3N − 6− N =
2N − 6. Next if N is even, we may only eliminate N − 1 of the weights on
the equator because all equatorial weights cancel in the alternating sum:

E1 − E2 + · · · + EN−1 − EN .

However, note that this sum is not trivial since it depends non-trivially on (the
weight at) any edge whose two endpoints are an even number of edges apart
along the equator. Since � is a triangulation, there must exist some such edge.
So the equations in condition (ii) of γ -admissibility (Definition 1.3) have rank
N in this case as well.
Next, for each triangulation �, let V� ⊂ R

E(�) be the subspace satisfying
the equations of condition (ii). Since V� has dimension 2N − 6, as shown
above, each of the maps �AdS

� is a local diffeomorphism at any polyhedron P
whose 1-skeleton is a subgraph of �. The map�AdS, pieced together from the
�AdS

� over all�, is an openmap by the definition of the topology of the complex
A. Further, since each �AdS

� is a local diffeomorphism in a neighborhood of
any point in the closure of the stratum ofAdSPolyh defined by�, we have that
�AdS is a local bijection toA. It follows that�AdS is a local homeomorphism.

��
Lemma 7.2 and Lemma 1.14 imply that �AdS is a covering. Since for

N ≥ 6, AdSPolyh is connected and A is connected and simply connected,
we conclude that Theorem 1.4 holds when N ≥ 6.

7.3 The cases N = 4, 5

Although the topology of A is slightly more complicated when N = 4, 5, the
proof of Theorem 1.4 is straightforward in these cases. In the case N = 4,
the space AdSPolyh is the space of marked (non-degenerate) ideal tetrahedra

123



292 J. Danciger et al.

which has two components and the map �AdS is easily seen to be a home-
omorphism. Indeed, an ideal tetrahedron in AdS

3 is determined by its shape
parameter (see Sect. 2.2); its dihedral angles may be determined directly from
the shape parameter. Conversely, the shape parameter is determined by any
two angles along edges emanating from a common vertex. Therefore an ideal
tetrahedron is determined entirely by the local geometry near any ideal vertex.

In the case N = 5, both AdSPolyh and A are homotopy equivalent to the
circle. Indeed, thatAdSPolyh is homotopy equivalent to the circle is shown in
the proof of Proposition 1.11 in Sect. 7.1. It is also shown in the same proof that
HPPolyh is homotopy equivalent to the circle, hence so isA by Theorem 1.9
(it is also easy to determine the topology of A directly in this case). To show
that themap�AdS is a homeomorphism, rather than some non-trivial covering,
consider an ideal polyhedron P with N vertices. We may cut P into two ideal
tetrahedra T, T ′ along some interior triangular face �. The tetrahedron T is
determined by the angles along the three edges emanating from any vertex of
T , in particular the vertex not belonging to �. These three angles are dihedral
angles of P as well, so it follows that the geometry of T is determined by
the dihedral angles of P . Similarly, the geometry of T ′ is determined by the
dihedral angles of P . Since there is exactly one way to glue T and T ′ back
together (with the correct combinatorics), the geometry of P is determined by
its dihedral angles, i.e. �AdS is injective, and is therefore a homeomorphism.

7.4 Proof of Theorem 1.2

Finally, we prove Theorem 1.2. The equivalence of (C) and (H) is immediate
from Theorems 1.9 and 1.4. We now show the equivalence of (H) and (S)
using Theorem 1.4 and Rivin’s Theorem, discussed in Sect. 1.2. Let � ∈
Graph(�0,N , γ ), and as usual let E = E(�) denote the edges of �. First
suppose P ∈ AdSPolyh� , and let θ = �AdS(P) ∈ A� . For any t > 0, the
weights tθ are also in A� . We choose t > 0 so that:

(A) for all edges e ∈ E , tθ(e) ∈ (−π, π)\{0}.
(B) for all of the finitely many simple cycles c in �∗, the sum of the values of

tθ along c is greater than −π .

Note that any simple cycle c, as in (B) above, crosses the equator γ at least
twice. If c crosses the equator γ exactly twice, then this sum will either be
zero, if c bounds a face of�∗ (condition (ii) of γ -admissibility, Definition 1.3),
or positive if not (condition (iii)). Noting that tθ(e) ∈ (−π, 0) if e ∈ γ and
tθ(e) ∈ (0, π) if not, we let θ ′ : E → (0, π) be defined by

θ ′(e) =
{
tθ(e) if e is not an edge of γ,

π + tθ(e) if e is an edge of γ.
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Then θ ′ satisfies the three conditions of Rivin’s Theorem and is therefore
realized as the dihedral angles of some ideal polyhedron P ′ in H

3. In the
projective model for H

3, P ′ is a polyhedron inscribed in the sphere with 1-
skeleton �.

Conversely, suppose P ′ is an ideal polyhedron in H
3 with 1-skeleton �.

Then the dihedral angles θ ′ : E → (0, π) of P ′ satisfy the three conditions of
Rivin’s Theorem. We define θ : E → R by

θ(e) =
{

θ ′(e) if e is not an edge of γ,

θ ′(e) − π if e is an edge of γ.

Then θ is easily seen to be γ -admissible (Definition 1.3) and so by Theo-
rem 1.4, θ = �AdS(P) for some P ∈ AdSPolyh. In the projective model for
AdS

3, P is a polyhedron inscribed in the hyperboloid with 1-skeleton �. This
completes the proof of Theorem 1.2.

Remark 7.3 Let� be a planar graph and suppose� is realized as the 1-skeleton
of some ideal polyhedron inscribed in the sphere. Note that � may contain
many different Hamiltonian cycles. Applying the above to each Hamiltonian
cycle γ shows the following: The components of the space of realizations of
� as the 1-skeleton of a polyhedron inscribed in the hyperboloid (or similarly,
the cylinder) are in one-one correspondence with the Hamiltonian cycles in �.
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Appendix A. Ideal polyhedra with dihedral angles going to zero

Weoutline an alternative proof of Proposition 1.16 using transitional geometry
ideas. The argument uses Lemmas 1.14 and 1.15 to produce deformation paths
of polyhedra with dihedral angles going to zero in a prescribed manner. Here
is the basic idea: starting from an ideal polyhedron P ∈ AdSPolyh with
dihedral angles θ , we deform P so that the dihedral angles are proportional to
θ and decrease toward zero. An appropriate rescaled limit of these collapsing
polyhedra yields an ideal polyhedron P ′∞ inHP

3 whose (infinitesimal) dihedral
angles are precisely θ ; we then conclude, via Proposition 1.10, that θ was in
A to begin with.
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Themain ingredient is the following proposition. Recall the projective trans-
formations at of Sect. 2.6, which when applied to (the projective model of)
AdS

3 yield HP
3 in the limit as t → 0.

Proposition A.1 Let � ∈ Graph(�0,N , γ ) and consider weights θ ∈ R
E(�)

that satisfy conditions (i), (ii) of Definition 1.3, and the following weaker
version of (iii):

(iii’): If e∗
1, . . . , e

∗
n form a simple circuit that does not bound a face of �∗, and

such that exactly two of the edges are dual to edges of the equator, then
θ(e1) + · · · + θ(en) �= 0.

Let Pk be a sequence inAdSPolyh� with dihedral angles tkθ such that tk → 0.
Then:

(1) Pk converges to an ideal N-gon P∞ in the hyperbolic plane.
(2) atk Pk converges to an ideal polyhedron P ′∞ in HP

3 with 1-skeleton � and
infinitesimal dihedral angles θ .

Proposition A.1 will be applied in the alternative proof of Proposition 1.16
below to showbycontradiction that the dihedral angles θ of an ideal polyhedron
in AdSPolyh must satisfy Condition (iii). In particular, if θ satisfies (iii’) but
not (iii), then Proposition A.1 produces an ideal polyhedron in HP

3 with the
same dihedral angles, contradicting the already proved HP geometry version
of Proposition 1.16, namely Proposition 1.10.

We briefly mention an analogue of Proposition A.1 in the setting of quasi-
fuchsian hyperbolic three-manifolds. The first conclusion of the proposition
can be seen as an analogue of Series’ theorem [35], which states that when the
bending data of a sequence of quasifuchsian representations goes to zero in a
controlledmanner, the convex cores collapse to a Fuchsian surface. The second
part is the analogue of work of Danciger–Kerckhoff [17] showing that after
application of appropriate projective transformations (in our notation, the at ),
the collapsing convex cores of such quasifuchsian representations converge to
a convex core in half-pipe geometry.

Proof We adapt the proof of Lemma 1.14 (properness of the map �AdS).
As in that proof, we may again assume that the ideal vertices (vL

1,k, v
R
1,k), . . . ,

(vL
N ,k, v

R
N ,k) of Pk satisfy that:

• vL
1,k = vR

1,k = 0, vL
2,k = vR

2,k = 1, vL
3,k = vR

3,k = ∞;

• For each i ∈ {1, . . . N }, vL
i,k → vL

i,∞ and vR
i,k → vR

i,∞; and

• vL
i,∞ = vL

i+1,∞ if and only if vR
i,∞ = vR

i+1,∞.

Therefore, we again find that the limit P∞ of Pk (in this normalization) is
a convex ideal polyhedron in AdS

3, possibly of fewer vertices, and possibly
degenerate (i.e. lying in a two-plane). The dihedral angle at an edge e of P∞
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is again the sum of θ∞(e′) over all edges e′ of � which collapse to e, where in
this case θ∞ = 0. Therefore all dihedral angles of P∞ are zero and we have
that P∞ is an ideal polygon lying in the hyperbolic plane P containing the
ideal triangle �0 spanned by (0, 0), (1, 1), and (∞, ∞). To prevent collapse,
we apply the appropriate projective transformations atk to the Pk .

Claim A.2 Up to taking a subsequence (in fact not necessary), the vertices
atkvi,k converge to points v′

i,∞ in the projective boundary ∂HP
3.

Proof This can be seen from the following simple compactness statement,
which may be verified by induction: Given M ≥ 1 and � > 0, there exists
two smooth families of space-like bounding planesQ+(t) andQ−(t), defined
for t ≥ 0, such that

• Q+(0) = Q−(0) = P .
• Q+(t) and Q−(t) are disjoint for t > 0 and their common perpendicular
is a fixed time-like line α (independent of t).

• The time-like distance (along α) between Q+(t) and Q−(t) is O(t).
• Any space-like convex connected ideal polygonal surface in AdS

3 for
which �0 is (contained in) a face, which has at most M faces, and all
of whose dihedral angles are bounded by t� lies to the past of Q+(t) and
to the future of Q−(t).

The first three conditions above imply that the limit of atQ+(t) and atQ−(t) as
t → 0 are two disjoint non-degenerate planesQ′+ andQ′− in HP

3. Therefore,
the limit of atk Pk must, after extracting a subsequence if necessary, converge
to some polyhedron in HP

3 ∪ ∂HP
3 lying below Q′+ and above Q′−. ��

As in the proof of Lemma 1.14, the limit of atk Pk is the convex hull P
′∞ of

v′
1,∞, . . . , v′

n,∞ inHP
3. The 1-skeleton �′ of P ′∞ is obtained from the original

1-skeleton � by collapsing some edges to vertices and some faces to edges or
vertices.

Lemma A.3 Given e′ ∈ �′, the infinitesimal dihedral angle θ ′∞(e′) of P ′∞ at
e′ is the sum of θ(e) = d

dt tθ(e)
∣∣
t=0 over all edges e which collapse to e

′.

Proof The sequence of edges e1, . . . , e� ∈ E(�) which collapse to e′ may
be arranged in order so that the dual edges in �∗ form a simple path. The
sequence of adjacent faces f0, . . . , f� of � are such that in Pk , each of these
faces collapses to e′ except the first f0 and last f�. After applying atk , the planes
W1, . . . ,W� containing these faces (we are suppressing the tk dependence here)
converge to planes W ′

1, . . . ,W
′
� arranged in order around the common edge

realizing e′ in HP
3. The angle θ ′∞(e′), which is the dihedral angle between

W ′
1 and W ′

�, is seen to be the sum over i of the dihedral angle between W ′
i and

W ′
i+1, which is precisely θ(ei ). ��
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Next, consider the projection � : HP3 → P . Note that �(v′
i,∞) = vi,∞.

Let H denote the HP horo-cylinder which is the inverse image under � of
a small horocycle in P centered at a vertex vi,∞ of P∞. The metric on H
inherited from HP

3 is flat and degenerate; it is the pull-back under � of the
metric on a horocycle. The intersection of H with P ′∞ is a convex polygon q
inH. The infinitesimal angles at vertices of q are the same as the infinitesimal
dihedral angles of the corresponding edges of P ′∞. Note that the vertices of q
are the intersection with H of all edges emanating from the ideal points v′

j,∞
such that v j,∞ = vi,∞. The following lemma is just the fact that the exterior
angles of a convex polygon in the Euclidean plane sum up to a constant 2π ,
interpreted in the setting that the polygon is infinitesimally thin.

Lemma A.4 The infinitesimal angles of q sum to zero.

Now, suppose, for contradiction, that vi+1,∞ = vi,∞. Then, the vertices of
q correspond to a path c′ of edges of�′ whose inverse image under the collapse
is a path c of edges in � which do not bound a face of �∗. It follows from the
above that the sum of θ(e) over the edges e of the path c is zero, contradicting
the condition (iii’). ��
Remark A.5 This argument also works in the context of hyperbolic ideal poly-
hedra with dihedral angles going to zero and π at a controlled rate.

Remark A.6 Assuming the stronger condition (iii) on θ , the limiting ideal
polygon P∞ must be the unique minimum of the length function �θ over the
space polygN of marked ideal polygons. See the proof of Theorem 1.9.

Outline of alternative proof of Proposition 1.16 Let � ∈ Graph(�0,N , γ )

and suppose P ∈ AdSPolyh� such that the dihedral angles θ = �AdS(P) ∈
R

E(�) violate condition (iii) in the definition of A� . We argue by contradic-
tion. First we show that there are nearby weights θ ′ satisfying conditions (i),
(ii), as well as condition (iii’) of Proposition A.1 above and so that at least one
of the angle sum expressions of (iii’) is strictly negative. This may already be
the case for θ . If not, then there is at least one angle sum expression as in (iii)
which evaluates to zero, and we will perturb. In the case that � is a triangula-
tion, it is simple to verify that none of the angle sum expressions in condition
(iii) is locally constant when the equations of condition (ii) are satisfied, and
therefore a nearby θ ′ exists as desired, since (iii’) consists of only finitelymany
conditions . If � is not a triangulation, then it actually could be the case that an
angle sum expression as in condition (iii) is constant equal to zero on the entire
space of weights satisfying (ii). However, it is always possible to add a small
number of edges (at most one for each angle sum expression of (iii) which
evaluates to zero for θ ) with very small positive weights, while perturbing the
other weights slightly, to produce θ ′ as desired. Let us briefly explain.
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Fig. 10 The black edges (including circular arcs, and solid and dashed straight edges) form
a three-connected graph on the sphere which contains a Hamiltonian path (the circular arcs),
but which is never realized as the 1-skeleton of a convex ideal polyhedron in AdS

3. The thick
curvy red path determines a path in the dual graph as in condition (iii) for which the angle sum
is identically zero over any systems of weights satisfying (ii). Indeed the angle sum is precisely
the alternating sum of the terms in the vertex equations (for vertices 1–9) with signs as labeled
in the diagram (color figure online)

Suppose e∗
1, . . . , e

∗
n form a simple circuit that does not bound a face of �∗,

such that exactly two of the edges are dual to edges of the equator, and such
that θ(e1) + · · · + θ(en) = 0 for all angle assignments θ satisfying (ii). Then,
in the algebra of functions on the edges of �, the sum θ(e1) + · · · + θ(en) is a
linear combination of the vertex relations of (ii). More specifically, the angle
sum θ(e1) + · · · + θ(en) is equal to the alternating sum of vertex relations for
the ordered collection of vertices (necessarily odd in number) lying on one
side of the simple circuit. See Fig. 10. Consider a face f of � containing two
such adjacent vertices v+ and v− which appear respectively with a + sign
and a − sign in the alternating sum. The only non-equatorial edges emanating
from v− end at a vertex represented in the alternating sumwith a positive sign.
Hence, we may add a diagonal edge e′ within f to � connecting v+ to another
vertex represented in the sum with a positive sign. In this new combinatorics
we may deform the angle sum θ(e1) + · · · + θ(en) = −2θ(e′) to negative
values by assigning a small positive weight to e′. If after this adjustment, there
remains other simple circuits of the type considered in (iii’) with angle sum
identically zero, we perform a similar adjustment for that simple circuit. As
there are only finitely many simple circuits to consider, this process terminates
in finitely many steps yielding an angle assignment on some supergraph of �

satisfying (iii’).
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Next, byLemma7.2 (whichwas a simple consequence ofLemma1.15, inde-
pendent of Proposition 1.16), there is an ideal polyhedron P ′ ∈ AdSPolyh,
close to P , so that �AdS(P ′) = θ ′. Now, consider the path of weights tθ ′,
defined for t > 0. Lemma 7.2 implies that there exists a path Pt in AdSPolyh
such that �AdS(Pt ) = tθ ′, defined at least for t close to one. In fact, the path
Pt may be defined for all 1 ≥ t > 0. Indeed if the limit as t → T > 0 of Pt
failed to exist, then the proof of Lemma 1.14would imply that�AdS(Pt ) either
goes to infinity or limits to an element of R

E(�) for which some angle sum
expression as in (iii) is exactly zero, impossible since the limit as t → T of
�AdS(Pt ) is, of course, equal to T θ ′. Hence, we may apply Proposition A.1 to
the path Pt . The result is an ideal polyhedron P ′∞ ∈ HPPolyhwhose infinites-
imal dihedral angles are precisely θ ′. This contradicts Proposition 1.10 since
θ ′ does not satisfy (iii). ��
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