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Abstract We compute p-adic étale and pro-étale cohomologies of Drinfeld
half-spaces. In the pro-étale case, the main input is a comparison theorem for
p-adic Stein spaces; the cohomology groups involved here are much bigger
than in the case of étale cohomology of algebraic varieties or proper analytic
spaces considered in all previous works. In the étale case, the classical p-adic
comparison theorems allow us to pass to a computation of integral differential
forms cohomologies which can be done because the standard formal models of
Drinfeld half-spaces are pro-ordinary and their differential forms are acyclic.
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1 Introduction

Let p be a prime. Let OK be a complete discrete valuation ring of mixed
characteristic (0, p) with perfect residue field k and fraction field K . Let F
be the fraction field of the ring of Witt vectors OF = W (k) of k. Let K be an

algebraic closure of K , C = ̂K its p-adic completion and GK = Gal(K/K ).

1.1 The p-adic étale cohomology of Drinfeld half-spaces

This paper reports on some results of our research project that aims at under-
standing the p-adic (pro-)étale cohomology of p-adic symmetric spaces. The
main question of interest being: does this cohomology realize the hoped for
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Cohomology of p-adic Stein spaces 875

p-adic local Langlands correspondence in analogy with the �-adic situation?
When we started this project we did not knowwhat to expect and local compu-
tations were rather discouraging: geometric p-adic étale cohomology groups
of affinoids and their interiors are huge and not invariant by base change to a
bigger complete algebraically closed field. However there was one computa-
tion done long ago by Drinfeld [23] that stood out. Let us recall it.

Assume that [K : Qp] < ∞ and let HK = P
1
K \P

1(K ) be the Drinfeld
half-plane, thought of as a rigid analytic space. It admits a natural action of
G := GL2(K ). We set HC := HK ,C .

Fact 1.1 (Drinfeld) If � is a prime number (including � = p !), there exists a
natural isomorphism of G × GK -representations

H1
ét(HC , Q�(1)) � Spcont(Q�)

∗,

where Spcont(Q�) := C (P1(K ), Q�)/Q� is the continuous Steinberg repre-
sentation of G with coefficients in Q� equipped with a trivial action of GK and
(−)∗ denotes the weak topological dual.

The proof is very simple: it uses Kummer theory and vanishing of the Picard
groups (of the standard Stein covering of HK ) [27], [17, §1.4]. This result was
encouraging because it showed that the p-adic étale cohomology was maybe
not as pathological as one could fear.

Drinfeld’s result was generalized by Schneider–Stuhler [71], for � �= p, to
higher dimensions. Let d ≥ 1 and let H

d
K be the Drinfeld half-space [24] of

dimension d, i.e.,

H
d
K := P

d
K \

⋃

H∈H
H,

whereH denotes the set of K -rational hyperplanes. We set G := GLd+1(K ).
If 1 ≤ r ≤ d, and if � is a prime number, denote by Spr (Q�) and Spcontr (Q�)

the generalized locally constant and continuous Steinberg Q�-representations
of G (see Sect. 5.2.1), respectively, equipped with a trivial action of GK .

Theorem 1.2 (Schneider–Stuhler) Let r ≥ 0 and let � �= p. There are natural
G × GK -equivariant isomorphisms

Hr
ét(H

d
C , Q�(r)) � Spcontr (Q�)

∗, Hr
proét(H

d
C , Q�(r)) � Spr (Q�)

∗.

The computations of Schneider–Stuhler work for any cohomology theory
that satisfies certain axioms, the most important being the homotopy property
with respect to the open unit ball, which fails rather dramatically for the p-adic
(pro-)étale cohomology since the p-adic étale cohomology of the unit ball is
huge. Nevertheless, we prove the following result.
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Theorem 1.3 Let r ≥ 0.

1. There is a natural isomorphismofG×GK -locally convex topological vector
spaces (over Qp).

Hr
ét(H

d
C , Qp(r)) � Spcontr (Qp)

∗.

These spaces are weak duals of Banach spaces.
2. There is a strictly exact sequence of G × GK -Fréchet spaces

0 �r−1(Hd
C)/ ker d Hr

proét(H
d
C , Qp(r)) Spr (Qp)

∗ 0.

3. The natural map Hr
ét(H

d
C , Qp(r)) → Hr

proét(H
d
C , Qp(r)) identifies étale

cohomology with the space of G-bounded vectors1 in the pro-étale coho-
mology.

Hence, the p-adic étale cohomology is given by the same dual of a Steinberg
representation as its �-adic counterpart. However, the p-adic pro-étale coho-
mology is a nontrivial extension of the same dual of a Steinberg representation
that describes its �-adic counterpart by a huge space.

Remark 1.4 (i) In [17] we have generalized the above computation of Drin-
feld in a different direction, namely, to the Drinfeld tower [24] in
dimension 1. We have shown that, if K = Qp, the p-adic local Lang-
lands correspondence (see [16,19]) for de Rham Galois representations
of dimension 2 (of Hodge–Tate weights 0 and 1 and not trianguline) can
be realized inside the p-adic étale cohomology of the Drinfeld tower (see
[17, Th.0.2] for a precise statement). The two important cohomological
inputs were:
1. a p-adic comparison theorem that allows us to recover the p-adic pro-

étale cohomology from the de Rham complex and the Hyodo–Kato
cohomology; the latter being compared to the �-adic étale cohomology
computed, in turn, by non-abelian Lubin–Tate theory,

2. the fact that the p-adic étale cohomology is equal to the space of
G-bounded vectors in the p-adic pro-étale cohomology.

In contrast, herewe obtain the third part of Theorem 1.3 only after proving
the two previous parts. In fact, for a general rigid analytic variety, we
do know that the natural map from p-adic étale cohomology to p-adic
pro-étale cohomology does not have to be injective: this is the case, for
example, for a unit open ball over a field that is not spherically complete.

1 Recall that a subset X of a locally convex vector space overQp is called bounded if pnxn 
→ 0
for all sequences {xn}, n ∈ N, of elements of X . In the above, x is called a G-bounded vector
if its G-orbit is a bounded set.
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(ii) There are now two other proofs [11,64] of point 2 of the Theorem.

Remark 1.5 The proof of Theorem 1.3 establishes a number of other isomor-
phisms (see Theorem 6.28) refining results of [22,44,71].

Remark 1.6 (i) For r ≥ d + 1, all spaces in Theorem 1.3 are 0.
(ii) For 1 ≤ r ≤ d, the spaces on the left and on the right in the exact

sequence in Theorem 1.3 describing the pro-étale cohomology of H
d
C ,

despite being huge spaces, have some finiteness properties: they are both
duals of admissible locally analytic representations of G (over C on the
left and Qp on the right), of finite length [on the left, this is due to Orlik
and Strauch ( [62] combined with [66])].

Remark 1.7 For small Tate twists (r ≤ p − 1), the Fontaine–Messing period
map,which is an essential input in the proof of Theorem1.3, is an isomorphism
“on the nose”. It is possible then that our proof of Theorem 1.3, with a better
control of the constants, could give the integral p-adic étale cohomology of the
Drinfeld half-space for small Tate twists, that is, a topological isomorphism

Hr
ét(H

d
C , Fp(r)) � Spr (Fp)

∗.

By combining the results of Chapter 6 of this paper with the integral p-adic
Hodge Theory of Bhatt–Morrow–Scholze [5,6] and Česnavičius–Koshikawa
[12] one can actually prove such a result for all twists [18].

1.2 A comparison theorem for p-adic pro-étale cohomology

The proof of Theorem1.3 uses the result below, which is the main theorem of
this paper and generalizes the above mentioned comparison theorem to rigid
analytic Stein spaces2 over K with a semistable reduction. Let the field K be
as stated at the beginning of the introduction.

Theorem 1.8 Let r ≥ 0. Let X bea semistable Steinweak formal scheme3 over
OK . There exists a commutative GK -equivariant diagram of Fréchet spaces

0 �r−1(XC )/ ker d Hr
proét(XC , Qp(r))

˜β

(Hr
HK(Xk)̂⊗FB+

st )
N=0,ϕ=pr

ιHK⊗θ

0

0 �r−1(XC )/ ker d d
�r (XC )d=0 can Hr

dR(XC ) 0

2 Recall that a rigid analytic space Y is Stein if it has an admissible affinoid covering
Y = ∪i∈NUi such that Ui � Ui+1, i.e., the inclusion Ui ⊂ Ui+1 factors over the adic
compactification of Ui . The key property we need is the acyclicity of cohomology of coherent
sheaves.
3 See Sect. 3.1.1 for the definition.
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The rows are strictly exact and the maps ˜β and ιHK ⊗ θ are strict (and have
closed images). Moreover,

ker(˜β) � ker(ιHK ⊗ θ) � (Hr
HK(Xk)̂⊗FB+

st )
N=0,ϕ=pr−1

.

Here Hr
HK(Xk) is the overconvergent Hyodo–Kato cohomology of Grosse-

Klönne [32],

ιHK : Hr
HK(Xk) ⊗F K

∼→ Hr
dR(XC )

is the Hyodo–Kato isomorphism, B+
st is the semistable ring of periods defined

by Fontaine, and θ : B+
st → C is Fontaine’s projection.

Example 1.9 In the case the Hyodo–Kato cohomology vanishes we obtain a
particularly simple formula. Take, for example, the rigid affine space A

d
K . For

r ≥ 1, we have Hr
dR(Ad

K ) = 0 and, by the Hyodo–Kato isomorphism, also
Hr
HK(Ad

K ) = 0. Hence the above theorem yields an isomorphism

Hr
proét(A

d
C , Qp(r))

∼← �r−1(Ad
C )/ ker d.

This was our first proof of this fact but there is a more direct argument in
[21]. Another approach, using relative fundamental exact sequences in pro-
étale topology and their pushforwards to étale topology, can be found in [51].

Remark 1.10 (i) We think of the above theorem as a one-way comparison
theorem, i.e., the pro-étale cohomology Hr

proét(XC , Qp(r)) is the pullback
of the diagram

(Hr
HK(Xk)̂⊗FB+

st )
N=0,ϕ=pr ιHK⊗θ−−−−→Hr

dR(XK )̂⊗KC
can←− �r (XC )d=0

built from the Hyodo–Kato cohomology and a piece of the de Rham
complex.

(ii) When we started doing computations of pro-étale cohomology groups
(for the affine line), we could not understand why the p-adic pro-étale
cohomology seemed to be so big while the Hyodo–Kato cohomologywas
so small (actually 0 in that case): this was against what the proper case
was teaching us. If X is proper, �r−1(XK )/ ker d = 0 (since the Hodge–
de Rham spectral sequence degenerates) and the upper line of the above
diagram becomes

0 → Hr
proét(XC , Qp(r)) → (Hr

HK(Xk)̂⊗FB+
st )

N=0,ϕ=pr

→ (Hr
dR(XK )̂⊗KB+

dR)/Filr → 0.
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Hence the huge term on the left disappears, and an extra term on the
right shows up. This seemed to indicate that there was no real hope of
computing p-adic étale and pro-étale cohomologies of big spaces. It was
learning about Drinfeld’s result that convinced us to look further.4

1.3 Proof of Theorem 1.8

The starting point of computations of pro-étale and étale cohomologies in
these theorems is the same: the classical comparison theorem between p-adic
nearby cycles and syntomic sheaves [20,79]. When applied to the Stein spaces
we consider here it yields:

Proposition 1.11 Let X be a semistable Stein formal scheme5 overOK . Then
the Fontaine–Messing period morphisms

αFM : R	syn(XOC , Qp(r)) → R	proét(XC , Qp(r)),

αFM : R	syn(XOC , Zp(r))Qp → R	ét(XC , Qp(r))

are strict quasi-isomorphisms after truncation τ≤r .

Here the crystalline geometric syntomic cohomology is that defined by
Fontaine–Messing (see Sect. 3.3.1 for the details)

R	syn(XOC , Zp(r)) := [R	cr(XOC )ϕ=pr → R	cr(XOC )/Fr ],
FrR	cr(XOC ) := R	cr(XOC ,J [r ]),

where the crystalline cohomology is absolute, i.e., over W (k), and [A → B]
denotes the mapping fiber. The syntomic cohomology R	syn(XOC , Qp(r))
is defined by taking R	syn(−, Zp(r))Qp on quasi-compact pieces and then
gluing.

The next step is to transform the Fontaine–Messing type syntomic coho-
mology (that works very well for defining period maps from syntomic
cohomology to étale cohomology but is not terribly useful for computations)
into Bloch–Kato type syntomic cohomology (whose definition is motivated
by the Bloch–Kato’s definition of Selmer groups; it involves much more con-
crete objects). This can be done in the case of the pro-étale topology6 but only
partially in the case of the étale topology.

4 Actually, as was pointed out to us by Grosse-Klönne and Berkovich, the proof of Drinfeld,
in the case � = p, is flawed, but one can find a correct proof in [27].
5 See Sect. 3.1.1 for the definition.
6 At least when X is associated to a weak formal scheme.

123
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1.3.1 Pro-étale cohomology

For the pro-étale topology, we define a Bloch–Kato syntomic cohomol-
ogy (denoted by R	BK

syn(XC , Qp(r))) using overconvergent differential forms
which, due to imposedoverconvergence, behaves reasonablywell locally. Then
we construct a map from Fontaine–Messing to Bloch–Kato syntomic coho-
mology as shown in the top part of the following commutative diagram, where
the rows are distinguished triangles

R	syn(XOC , Qp(r))

�

R	cr(XOC , F)ϕ=pr can

�

R	cr(XOC , F)/Fr

�

R	BK
syn (XC , Qp(r))

θ

(R	HK(Xk)̂⊗FB+
st )

N=0,ϕ=pr

θιHK

ιHK⊗ι
(R	dR(XK )̂⊗K B+

dR)/Fr

θ

�≥r (XK )̂⊗C �•(XK )̂⊗KC �≤r−1(XK )̂⊗KC.

Here R	cr(XOC , F) and its filtration are defined by the same procedure as
R	syn(XOC , Qp(r)) (starting from rational absolute crystalline cohomology).
The horizontal triangles are distinguished (the top two by definition). The con-
struction of the top vertical maps and the proof that they are isomorphisms is
nontrivial and constitutes the technical heart of this paper. These maps are
basically Künneth maps, that use the interpretation of period rings as crys-
talline cohomology of certain “base” rings (for example, Acr � R	cr(OC )),
coupled with a rigidity of ϕ-eigenspaces of crystalline chomology, and fol-
lowed by a change of topology (from crystalline to overconvergent) that can
be done because XK is Stein (hence Xk has proper and smooth irreducible
components). To control the topology we work in the derived category of
locally convex topological vector spaces over Qp which, since Qp is spheri-
cally complete, is reasonably well-behaved.

The bottom vertical maps are induced by the projection θ : B+
dR → C and

use the fact that, since XK is Stein, we have R	dR(XK ) � �•(XK ). The
diagram in Theorem 1.8 follows by applying Hr to the above diagram.

1.4 Proof of Theorem 1.3

To prove the pro-étale part of Theorem 1.3, by Theorem 1.8, it suffices to show
that

(Hr
HK(Xk)̂⊗FB+

st )
N=0,ϕ=pr � Spr (Qp)

∗. (1.12)

But we know from Schneider–Stuhler [71] that there is a natural isomorphism
Hr
dR(XK ) � Spr (K )∗ of G-representations. Moreover, we know that both
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sides are generated by standard symbols, i.e., cup products of symbols of K -
rational hyperplanes thought of as invertible functions on XK (this is because
Spr (K )∗ is so by definition, and Iovita–Spiess prove that so is Hr

dR(XK ))
and that this isomorphism is compatible with symbols [44, Th.4.5]. Coupled
with the Hyodo–Kato isomorphism and the irreducibility of the representation
Spr (K )∗ this yields a natural isomorphism Hr

HK(Xk) � Spr (F)∗. This isomor-
phism is unique once we impose that it should be compatible with the standard
symbols. It follows that we have a natural isomorphism Hr

HK(Xk)
ϕ=pr �

Spr (Qp)
∗, which implies Hr

HK(Xk) ∼= F ⊗Qp Hr
HK(Xk)

ϕ=pr and (1.12).

1.4.1 Étale cohomology

The situation is more complicated for étale cohomology. Let X be a semistable
Stein formal scheme over OK . An analogous computation to the one above
yields the following strict quasi-isomorphism of distinguished triangles (see
Sect. 6.4)

R	syn(XOC , Zp(r))Qp R	syn(XOC , Zp(r))Qp

R	cr(XOC )
ϕ=pr

Qp

∼
(R	cr(Xk/O

0
F )̂⊗OF Ast)

N=0,ϕ=pr

Qp

γHK⊗ι

R	cr(XOC )Qp/F
r ∼

(R	dR(X)̂⊗OK Acr,K )/Fr ,

where O0
F denotes OF equipped with the log-structure induced by 1 
→ 0 and

Ast, Acr,K are certain period rings. But, in general, the map γHK is difficult to
identify. In the case of the Drinfeld half-space though its domain and target
simplify significantly by the acyclicity of the sheaves of differentials proved by
Grosse-Klönne [33,35]. This makes it possible to describe it and, as a result,
to compute the étale syntomic cohomology.

Let X be the standard formal model of H
d
K [32, 6.1]. Set

HKr := (R	cr(Xk/O
0
F )̂⊗OF Ast)

N=0,ϕ=pr

Qp
.

We show that there are naturalG×GK -equivariant strict (quasi-)isomorphisms
(see Lemma 6.37, Proposition 6.23)

HrHKr � H0
ét(Xk,W�r

log)Qp , Hr−1HKr � (H0
ét(Xk,W�r−1

log )̂⊗O F Aϕ=p
cr )Qp ,

(R	dR(X)̂⊗OK Acr,K )/Fr � ⊕r−1≥i≥0(H
0(X,�i )̂⊗OK Acr,K )/Fr−i [−i], (1.13)
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where W�r
log is the sheaf of logarithmic de Rham–Witt differentials. They

follow from the isomorphisms (see Proposition 6.23)

H0
ét(Xk,W�r

log)̂⊗ZpW (k)
∼→ Hr

cr(Xk/W (k)0),

ιHK : Hr
cr(Xk/O

0
F ) ⊗OF K � Hr

dR(X) ⊗OK K . (1.14)

The second one is just the original Hyodo–Kato isomorphism from [38]. The
first one follows from the acyclicity of the sheaves �

j
X (see Lemma 6.20)

and the fact that Xk is pro-ordinary (see Corollary 6.18), which, in turn and
morally speaking, follows from the fact that Xk is a normal crossing scheme
whose closed strata are classically ordinary (being products of blow-ups of
projective spaces). Now, the acyclicity of the sheaves �

j
X again and the fact

that the differential is trivial on their global sections (both facts proved by
Grosse-Klönne [33,35]) imply (1.13).

Hence, we obtain the long exact sequence

(H0
ét(Xk,W�r−1

log )̂⊗ZpAϕ=p
cr )Qp

γ ′
HK

(H0(X,�r−1)̂⊗OKOC )Qp

Hr
syn(XOC , Zp(r))Qp H0

ét(Xk,W�r
log)Qp −→ 0

We check that the map γ ′
HK is surjective (see Corollary 6.42): (a bit surpris-

ingly) the Hyodo–Kato isomorphism ιHK above holds already integrally and
γ ′
HK = ιHK ⊗ θ , where θ : Aϕ=p

cr → OC is the canonical projection. This
yields the isomorphism

Hr
syn(XOC , Zp(r))Qp

∼→ H0
ét(Xk,W�r

log)Qp .

A careful study of the topology allows to conclude that this isomorphism is
topological. Hence it remains to show that there exists a natural topological
isomorphism

H0
ét(Xk,W�r

log)Qp � Spcontr (Qp)
∗. (1.15)

We do that (see Theorem 6.45) by showing that we can replace k by k and
using the maps

H0
ét(Xk,W�r

log) ⊗Zp K
f→ Hr

dR(XK )G−bd

� (Spr (K )∗)G−bd ∼← Spcontr (Qp)
∗ ⊗Qp K .
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Here, the second isomorphism is that of Schneider–Stuhler [71]. The map f (a
composition of natural maps with the Hyodo–Kato isomorphism) is injective
by pro-ordinarity of Y . It is surjective because H0

ét(Xk,W�r
log) is compact

and nontrivial and Spcontr (Zp)/p � Spr (Fp) is irreducible—a nontrivial fact
proved by Grosse-Klönne [36, Cor. 4.3]. This yields an isomorphism (1.15).

Part (3) of Theorem 1.3 follows now easily from the two previous (compat-
ible) parts and the fact that

(Spr (K )∗)G−bd � Spcontr (Qp)
∗ ⊗Qp K , Hr

dR(XK )G−bd � Hr
dR(X) ⊗OK K

(the latter isomorphism uses the fact that X can be covered by G-translates of
an open subscheme U such that UK is an affinoid).

1.4.2 Notation and conventions

Let OK be a complete discrete valuation ring with fraction field K of char-
acteristic 0 and with perfect residue field k of characteristic p. Let � be a
uniformizer of OK that we fix in this paper. Let K be an algebraic closure of
K and let OK denote the integral closure of OK in K . Let W (k) be the ring
of Witt vectors of k with fraction field F (i.e, W (k) = OF ); let e be the ram-
ification index of K over F . Set GK = Gal(K/K ), and let σ be the absolute
Frobenius on W (k).

We will denote by OK , O
×
K , and O

0
K , depending on the context, the scheme

Spec(OK ) or the formal scheme Spf(OK ) with the trivial, the canonical (i.e.,
associated to the closed point), and the induced by N → OK , 1 
→ 0, log-
structure, respectively.

Unless otherwise stated all formal schemes are p-adic, locally of finite type,
and equidimensional. For a (p-adic formal) scheme X overOK , let X0 denote
the special fiber of X ; let Xn denote its reduction modulo pn , if n ≥ 1.

We will denote by Acr, B+
cr, B+

st , B+
dR the crystalline, semistable, and de

Rhamperiod rings of Fontaine.WehaveB+
st = B+

cr[u] andϕ(u) = pu, N (u) =
−1. The embedding ι = ι� : B+

st → B+
dR is defined by u 
→ u� =

log([��]/�) and the Galois action on B+
st is induced from the one on B+

dR via
this embedding.

Unless otherwise stated, we work in the derived (stable) ∞-categoryD(A)

of left-bounded complexes of a quasi-abelian category A (the latter will be
clear from the context). Many of our constructions will involve (pre)sheaves
of objects from D(A). The reader may consult the notes of Illusie [43] and
Zheng [85] for a brief introduction to how to work with such (pre)sheaves and
[53,54] for a thorough treatment.
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We will use a shorthand for certain homotopy limits: if f : C → C ′ is a
map in the derived ∞-category of a quasi-abelian category, we set

[ C f
C ′ ] := holim (C → C ′ ← 0).

2 Review of p-adic functional analysis

We gather here some basic facts from p-adic functional analysis that we use
in the paper. The reader is advised, on the first reading, to ignore this chapter
and topological issues in ensuing computations.

2.1 The category of locally convex K -vector spaces

Westart with the rational case, wherewework in the category of locally convex
K -vector spaces. Our main references are [25,68,72].

2.1.1 Derived category of locally convex Kvector spaces

A topological K -vector space7 is called locally convex (convex for short) if
there exists a neighbourhood basis of the origin consisting of OK -modules.
Since K is spherically complete, the theory of such spaces resembles the
theory of locally convex topological vector spaces over R or C (with some
simplifications).

We denote by CK the category of convex K -vector spaces. It is a quasi-
abelian category8 [68, 2.1.11]. Kernels, cokernels, images, and coimages are
taken in the category of vector spaces and equipped with the induced topology
[68, 2.1.8]. A morphism f : E → F is strict if and only if it is relatively open,
i.e., for any neighbourhood V of 0 in E there is a neighbourhood V ′ of 0 in F
such that f (V ) ⊃ V ′ ∩ f (E) [68, 2.1.9].

Our convex K vector spaces are not assumed to be separated. We often use
the following simple observation: if F is separated and we have an injective
morphism f : E → F then E is separated as well; if, moreover, F is finite
dimensional and f is bijective then f is an isomorphism in CK .

The category CK has a natural exact category structure: the admissible
monomorphisms are embeddings, the admissible epimorphisms are open sur-
jections. A complex E ∈ C(CK ) is called strict if its differentials are strict.

7 For us, a K -topological vector space is a K -vector space with a linear topology.
8 An additive category with kernels and cokernels is called quasi-abelian if every pullback of
a strict epimorphism is a strict epimorphism and every pushout of a strict monomorphism is a
strict monomorphism. Equivalently, an additive category with kernels and cokernels is called
quasi-abelian if Ext(−,−) is bifunctorial.
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There are truncation functors on C(CK ):

τ≤n E := · · · → En−2 → En−1 → ker(dn) → 0 → · · ·
τ≥n E := · · · → 0 · · · → coim (dn−1) → En → En+1 → · · ·

with cohomology objects

˜Hn(E) := τ≤nτ≥n(E) = (coim (dn−1) → ker(dn)).

We note that here coim (dn−1) and ker(dn) are equipped naturally with the
quotient and subspace topology, respectively. The cohomology H∗(E) taken
in the category of K -vector spaces we will call algebraic and, if necessary, we
will always equip it with the sub-quotient topology.

We will denote the left-bounded derived ∞-category of CK by D(CK ). A
morphism of complexes that is a quasi-isomorphism in D(CK ), i.e., its cone
is strictly exact, will be called a strict quasi-isomorphism. We will denote by
D(CK ) the homotopy category of D(CK ) [68, 1.1.5].
For n ∈ Z, let D≤n(CK ) (resp. D≥n(CK )) denote the full subcategory of

D(CK ) of complexes that are strictly exact in degrees k > n (resp. k < n).9

The above truncation maps extend to truncations functors τ≤n : D(CK ) →
D≤n(CK ) and τ≥n : D(CK ) → D≥n(CK ). The pair (D≤n(CK ), D≥n(CK ))
defines a t-structure on D(CK ) by [73]. The (left) heart D(CK )♥ is an abelian
category LH(CK ): every object of LH(CK ) is represented (up to equivalence)
by a monomorphism f : E → F , where F is in degree 0; if f is strict
this object is also represented by the cokernel of f (the whole point of this
construction is to keep track of the two possibly different topologies on E : the
given one and the one inherited by the inclusion into F).

We have an embedding I : CK ↪→ LH(CK ), E 
→ (0 → E), that
induces an equivalence D(CK )

∼→ D(LH(CK )) which is compatible with
the t-structures. These t-structures pull back to t-structures on the derived dg
categories D(CK ),D(LH(CK )) and so does the above equivalence. There is
a functor (the classical part) C : LH(CK ) → CK that sends the monomor-
phism f : E → F to coker f .We haveC I � IdCK and a natural epimorphism
e : IdLH(CK ) → IC .

We will denote by ˜Hn : D(CK ) → D(LH(CK )) the associated cohomo-
logical functors. Note that C ˜Hn = Hn and we have a natural epimorphism
˜Hn → I Hn . If, evaluated on E , this epimorphism is an isomorphism we will
say that the cohomology ˜Hn(E) is classical.

9 Recall [73, 1.1.4] that a sequence A
e→ B

f→ C such that f e = 0 is called strictly exact if
the morphism e is strict and the natural map im e → ker f is an isomorphism.
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Wewill often use the following simple facts ([73, Prop. 1.2.28, Cor. 1.2.27]):

1. If, in the following short exact sequence in LH(CK ), both A1 and A2 are
in the essential image of I then so is A:

0 → A1 → A → A2 → 0.

2. A complex E ∈ C(CK ) is strictly exact in a specific degree if and only if
D(I )(E) is exact in the same degree.

All the above has a dual version: we have a notion of a costrict morphism, a
right abelian envelope I : CK → RH(CK ), and the cohomology objects ˜Hn :
D(CK ) → D(RH(CK )), ˜Hn := (coker (dn−1) → im (dn)) in degrees 0 and
1 (which we will, if necessary, write as RHn). We have C ˜Hn = Hn , where
C : RH(CK ) → CK sends the epimorphism f : E → F to ker f . There is a
natural monomorphism I Hn → ˜Hn; if, evaluated on E , this monomorphism
is an isomorphism we will say that the cohomology ˜Hn(E) is classical.

2.1.2 Open mapping theorem

Let f : X → Y be a continuous surjective map of locally convex K -vector
spaces.Wewill need awell-known version of the OpenMapping Theorem that
says that f is open if both X and Y are LF-spaces, i.e., countable inductive
limits of Fréchet spaces.10

If E, F are Fréchet, f : E → F is strict if and only if f (E) is closed in
F (the “if” part follows from the Open Mapping Theorem, the “only if” part
from the fact that a Fréchet space is a metric space and a complete subspace
of a metric space is closed). The following lemma is a simple consequence of
this observation but we spell it out because we will use all the time.

Lemma 2.1 1. Let E be a complex of Banach or Fréchet spaces. If E has
trivial algebraic cohomology then it is strictly acyclic.

2. A morphism E1 → E2 of complexes of Banach or Fréchet spaces that is
an (algebraic) quasi-isomorphism is a strict quasi-isomorphism.

Proof The second point follows from the first one by applying the latter to the
cone of the morphism. For the first point, note that the kernel of a differential is
a closed subspace of a Fréchet space hence a Fréchet space and we can evoke
the observation above the lemma.

2.1.3 Tensor products

Let V ,W be two convex K -vector spaces. The abstract tensor product V ⊗K W
can be equippedwith several natural topologies among them the projective and

10 If the spaces involved are actually Banach, we will sometimes use the notation LB instead
of LF .
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injective tensor product topologies: V ⊗K ,π W and V ⊗K ,ε W . Recall that the
projective tensor product topology is universal for jointly continuous bilinear
maps V ×W → U ; the injective tensor product topology, on the other hand, is
defined by cross seminorms that satisfy a product formula and is the “weakest”
topology with such property. There is a natural map V ⊗K ,π W → V ⊗K ,ε W .
We denote by V̂⊗K ,αW , α = π, ε, the Hausdorff completion of V ⊗K ,α W
with respect to the topology α.

Recall the following facts.

1. The projective tensor product functor (−)⊗K ,π W preserves strict epimor-
phisms; the injective tensor product functor (−) ⊗K ,ε W preserves strict
monomorphisms.

2. The natural map V ⊗K ,π W → V ⊗K ,ε W is an isomorphism11 [67,
Th.10.2.7]. In what follows we will often just write V ⊗K W for both
products.

3. From (1), (2), and the exactness properties of Hausdorff completion [80,
Cor. 1.4], it follows that the tensor product functor (−)̂⊗KW : CK → CK
is left exact, i.e., it carries strictly exact sequences

0 → V1 → V2 → V3 → 0

to strictly exact sequences

0 → V1̂⊗KW → V2̂⊗KW → V3̂⊗KW.

Moreover, the image of the last map above is dense [80, p. 45]. It follows
that this map is surjective if its image is complete as happens, for example,
in the case when the spaces V∗,W are Fréchet [80, Cor. 1.7].

4. For V = lim←−n
Vn , where each Vn is a Fréchet space, and for a Fréchet

space W , there is a natural isomorphism

V̂⊗K ,πW = (lim←−
n

Vn)̂⊗K ,πW
∼→ lim←−

n

(Vn̂⊗K ,πW ).

For products this is proved in [70, Prop. 9, p. 192] and the general case
follows from the fact that tensor product is exact on sequences of Fréchet
spaces.

11 Here we used the fact that our field K is spherically complete.
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5. Let {Vn}, n ∈ N, be a regular12 inductive system of Fréchet spaces with
injective nuclear13 transition maps. Then, for any Banach space W , we
have an isomorphism [55, Th.1.3]

(lim−→
n

Vn)̂⊗KW
∼← lim−→

n

(Vn̂⊗KW ).

2.1.4 Acyclic inductive systems

If {Vn}n, n ∈ N is an inductive system of locally convex K -vector spaces then
it is called acyclic if L1hocolim nVn = 0. We will find useful the following
criterium of acyclicity [83, Th.1.1].

Proposition 2.2 An inductive system {Vn}n, n ∈ N, of Fréchet spaces with
injective transition maps is acyclic if and only if in every space Vn there is a
convex neighbourhood Un of 0 such that

1. Un ⊂ Un+1, n ∈ N, and
2. For every n ∈ N there is m > n such that all topologies of the spaces Vk,

k > m, coincide on Un.

2.1.5 Derived tensor products

The categoryCK has enough injectives hencewe have the right derived functor
V̂⊗R

KW of the tensor functor V̂⊗KW . We will need to know the conditions
under which it is strictly quasi-isomorphic to the tensor functor.

Lemma 2.3 The natural map

V̂⊗KW → V̂⊗R
KW

is a quasi-isomorphism when

1. both V and W are Fréchet spaces,
2. V = lim−→n

Vn, for an acyclic inductive system {Vn}, n ∈ N, of Banach
spaces, and W is a Banach space.

12 Inductive system {Vn}, n ≥ 0, with injective transition maps is called regular if for each
bounded set B in V = lim−→n

Vn there exists an n such that B ⊂ Vn and B is bounded in Vn .
13 A map f : V → W between two convex K -vector spaces is called nuclear if it can be

factored f : V → V1
f1→ W1 → W , where the map f1 is a compact map between Banach

spaces.
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Proof In the first case, take an injective resolution W → I • of W by Fréchet
spaces I i , i ≥ 0. This means that the map W → I • is a strict quasi-
isomorphism. Such a resolution exists by [68, Prop. 2.1.12]. Tensoring this
resolution with V we get a sequence

0 → V̂⊗W → V̂⊗I 0 → V̂⊗I 1 → · · · (2.4)

By Sect. 2.1.3, this sequence is strictly exact, as wanted.
In the second case, we take an injective resolutionW → I • ofW by Banach

spaces I i , i ≥ 0. Such a resolution exists by loc. cit. Tensoring this resolution
with V we get a sequence (2.4) as above. Since V = lim−→n

Vn , by Sect. 2.1.3,
this sequence is an inductive limit of sequences

0 → Vn̂⊗W → Vn̂⊗I 0 → Vn̂⊗I 1 → · · ·
which are strictly exact by Sect. 2.1.3. Hence, by Sect. 2.1.4, the sequence
(2.4) is strictly exact, as wanted.

2.2 The category of pro-discrete OK -modules

For integral topological questions we have found it convenient to work in the
category PDK of pro-discrete OK -modules. For details see [9, §2], [84, §1],
[45], [46].

2.2.1 The category of pro-discrete OKmodules and its ind-completion

Objects in the category PDK are topological OK -modules that are count-
able inverse limits, as topological OK -modules, of discrete OK -modules Mi ,
i ∈ N. It is a quasi-abelian category. It has countable filtered projective limits.
Countable product is exact.

Objects in PDK are not necessarily separated for the p-adic topology: for
example Banach spaces are objects of PDK (if B is a Banachwith unit ball B0,
then B = lim←− B/pnB0), hence also countable products or projective limits of
Banach spaces (i.e. Fréchet spaces) are objects of PDK .

Inside PDK we distinguish the category PCK of pseudocompact OK -
modules, i.e., pro-discrete modules M � lim←−i Mi such that each Mi is of

finite length (we note that if K is a finite extension of Qp this is equivalent to
M being profinite). It is an abelian category. It has countable exact products
as well as exact countable filtered projective limits.

Let Ind(PDK ) be the ind-completion of PDK . That is, PDK is a full
subcategory of Ind(PDK ) and Ind(PDK ) has the universal property that any
functor F : PDK → C into a category with filtered inductive limits extends
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uniquely to a functor ˜F : Ind(PDK ) → C which preserves filtered inductive
limits. In particular, any functor F : PDK → C induces a compatible functor
˜F : Ind(PDK ) → Ind(C) and if C has filtered inductive limits then the
inclusion C → Ind(C) has a canonical left inverse Ind(C) → C .

The category Ind(PDK ) is also quasi-abelian [45, Th.1.3.1]. The natural
functor PDK → Ind(PDK ) is exact. The category Ind(PDK ) admits filtered
inductive limits and projective limits. The lim←− functor is left exact. For any
functor F : PDK → C to a quasi-abelian category, the functor F is left, resp.
right, exact if and only if so is the functor ˜F .

2.2.2 Tensor product

For M, N ∈ PD we define the completed tensor product

M̂⊗OK N := lim←−
U∈UM ,V∈UN

M/U ⊗OK N/V,

where UM ,UN denote the inductive system of open submodules of M, N
and M/U ⊗OK N/V is given the discrete topology. It is a pro-discrete OK -
module. It satisfies the usual universal property with respect to pro-discrete
OK -modules [84, Prop. 6.1]. In general, the completed tensor product is neither
right nor left exact. It is however right exact when restricted to PCK [84,
Prop. 1.10]. It commutes also with filtered limits {Ni }i such that N = lim←−i

Ni
surjects onto Ni , i ∈ I [84, Prop. 1.7]; in particular, it commutes with products
of pro-discrete OK -modules and with filtered limits of pseudocompact OK -
modules.

2.2.3 The functor to convex spaces

Since K � lim−→(OK
�→ OK

�→ OK
�→ · · · ), the algebraic tensor product

M ⊗OK K is an inductive limit:

M ⊗OK K � lim−→(M
�→ M

�→ M
�→ · · · ).

We equip it with the induced inductive limit topology. This defines a tensor
product functor

(−)⊗K : PDK → CK , M 
→ M ⊗OK K .

Since CK admits filtered inductive limits, the functor (−)⊗K extends to a
functor (−)⊗K : Ind(PDK ) → CK .
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Remark 2.5 Recall that K belongs to PDK : K � lim←−(K/OK
�← K/OK

�←
· · · ). The above tensor functor should be distinguished from the functor
(−)̂⊗K : PDK → PDK discussed above which is always 0 and which
we will never use.

The functor (−)⊗K is right exact but not, in general, left exact.14 For
example, the short strict exact sequence

0 →
∏

i≥0

piZp
can−−→

∏

i≥0

Zp →
∏

i≥0

Zp/p
i → 0

tensored with Qp is not costrict exact on the left (note that (
∏

i≥0 Zp/pi )⊗Qp
is not Hausdorff). We will consider its (compatible) left derived functors

(−)⊗L K : D−(PDK ) → Pro(D−(CK )),

(−)⊗L K : D−(Ind(PDK )) → Pro(D−(CK )).

The following fact is probably well-known but we could not find a reference
(see however [9, Prop. 3.9, Cor. 3.13] for the case of profinite modules).

Proposition 2.6 If E is a complex of torsion free and p-adically complete
(i.e., E � lim←−n

E/pn) modules from PDK then the natural map

E⊗L K → E⊗K

is a strict quasi-isomorphism.

Proof By [48, Lemma14.1] our proposition is implied by the following lemma
that shows that the terms of the complex E are F-acyclic for the functor
F = (−)⊗K .

Lemma 2.7 If 0 → A → B
π→ C → 0 is a strict exact sequence of pro-

discrete OK -modules and C is torsion free and p-adically complete then
π : B → C admits a OK -linear continuous section and B � A ⊕ C as
a topological OK -module.

Proof The strict exact sequence 0 → A → B → C → 0 is a limit of exact
sequences 0 → Ai → Bi → Ci → 0, where all the terms are discrete and
Ai+1 → Ai is surjective (idem for B and C) [9, Rem.2.9]. Let Ai be the
kernel of A → Ai (idem for B and C). Now, if X = A, B,C , the Xi form a

14 We will call a functor F right exact if it transfers strict exact sequences 0 → A → B →
C → 0 to costrict exact sequences F(A) → F(B) → F(C) → 0; functor RR in the language
of Schneiders [72, §1.1].
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decreasing filtration and a series
∑

xn , xn ∈ X , converges in X if and only if,
for all i ∈ N, there exists n(i) such that xn ∈ Xi for all n ≥ n(i). Moreover,
the sequence 0 → Ai → Bi → Ci → 0 is exact for all i (since Ai → Bi is
injective).

Let C = C/� and let Ci be the image of Ci in C . The Ci , i ∈ N, form a
decreasing filtration of C and Ci/Ci+1 is a discrete k-module (it is a quotient
of Ci/Ci+1 ⊂ Ci+1). Choose a basis (ei, j ) j∈Ji of Ci/Ci+1 over k, a lifting
ẽi, j of ei, j in Ci , a lifting ei, j of ẽi, j in Ci , and a lifting êi, j of ei, j in Bi (it
exists because Bi → Ci is surjective).

Let Y = ∏

i∈N �0∞(Ji ,OK ), where �0∞(Ji ,OK ) is the space of sequences
(yi, j ) j∈Ji with values in OK , going to 0 at infinity. If y = ((yi, j ) j∈Ji )i∈I ∈ Y ,
the double series

∑

i∈N(
∑

j∈Ji yi, j ei, j ) and
∑

i∈N(
∑

j∈Ji yi, j êi, j ) converge in
C and B respectively: the series corresponding to a fixed i converges because
yi, j → 0when j → ∞ and its sumbelongs toCi or Bi and hence the series

∑

i
converges as well. We denote by ιC (y) and ιB(y) the sums of these series. The
map ιX : Y → X , X = B,C , is a continuous injection (to check injectivity, it
suffices to argue modulo� , where it is clear). Moreover, we have π ◦ ιB = ιC .

To finish the proof of the lemma it suffices to show that ιC is a topological
isomorphism (because then s = ιB ◦ ι−1

C gives the desired continuous section

and we have a topological isomorphism A⊕C
∼→ B sending (a, c) to a+s(c)

with the inverse given by b 
→ (b − s(π(b)), π(b))).
Let us proving it first modulo � . For c ∈ C , one constructs an element of

Y using the following algorithm. Set c0 = c and C0 = C . The image of c0
in C0/C1 can be written, uniquely, in the form

∑

j∈J0 y0, j e0, j (and there is
only a finite number of nonzero y0, j ’s). Hence c1 = c − ∑

j∈J0 y0, j ẽ0, j ∈
C1. The image of c1 in C1/C2 can be written, in a unique way, in the form
∑

j∈J1 y1, j e1, j (and there is only a finite number of nonzero y1, j ’s). Hence

c2 = c1 − ∑

j∈J1 y1, j ẽ1, j ∈ C2. We continue in this way and get in the end

an element yc = ((yi, j ) j∈Ji )i∈I of Y whose image by ιC is c and c 
→ yc is a
continuous inverse of ιC (modulo� ): it is an inverse since we have uniqueness
at every stage.

Let α : C → Y be the inverse of ιC constructed above. Write [ ] : Y → Y
for the map sending ((yi, j ) j∈Ji )i∈I to (([yi, j ]) j∈Ji )i∈I , where [ ] : k → OK
is the Teichmüller lift; it is a continuous map. The inverse α : C → Y of ιC
is given by the following algorithm: for c ∈ C , set c0 = c, c1 = 1

�
(c0 −

ιC([α(c0)])) (we write c0 for the image of c0 modulo � and we can divide by
� since C has no torsion). Then set c2 = 1

�
(c1 − ιC ([α(c1)])), etc. Finally,

set α(c) = ∑

n≥0 � n[α(cn)]. We have ιC (α(c)) = ∑

n≥0 � nιC([α(cn)]) =
∑

n≥0(�
ncn − � n+1cn+1) = c0 = c. Hence α = ι−1

C , as wanted.
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3 Syntomic cohomologies

The period map of Fontaine–Messing (see Sect. 3.3.2) gives a descrip-
tion of (pro-)étale cohomology in terms of the syntomic cohomology of
Fontaine–Messing. This syntomic cohomology can be made more concrete
(see Sect. 3.3.3) bymimicking the construction of Selmer groups by Bloch and
Kato [8]: syntomic cohomology is described as derived filtered eigenspaces of
Frobenius acting on the geometric Hyodo–Kato cohomology [38]. Now, the
geometric Hyodo–Kato cohomology behaves very badly locally (as does the
de Rham cohomology) and the standard way to fix this problem is to do every-
thing in an overconvergent way. So we define (see Sect. 3.2.2) overconvergent
syntomic cohomology a laBloch–Kato, replacing the usualHyodo–Kato coho-
mology by the overconvergent Hyodo–Kato cohomology of Grosse-Klönne
[32] which we review in Sect. 3.1. In the next chapter, we will show (The-
orem 4.1) that these two syntomic cohomologies coincide for Stein spaces.
This definition a la Bloch–Kato makes it easy to show (Proposition 3.36) that
the overconvergent syntomic cohomology sits in a “fundamental diagram”
involving the de Rham complex and overconvergent Hydo–Kato cohomology.
It follows that so does pro-étale cohomology and this “fundamental diagram”
will become our main tool for computations of the latter later on in the paper.

3.1 Overconvergent Hyodo–Kato cohomology

We will review in this section the definition of the overconvergent Hyodo–
Kato cohomology and the overconvergent Hyodo–Kato isomorphism due to
Grosse-Klönne [32]. We will pay particular attention to topological issues.

3.1.1 Dagger spaces and weak formal schemes

We will review, very briefly, basic facts concerning dagger spaces and weak
formal schemes. Our main references are [29,56,81], where the interested
reader can find a detailed exposition.

Let, for a moment, K denote the usual K orC . We start with dagger spaces.
For δ ∈ R

+, set

Tn(δ) = K {δ−1X1, . . . , δ
−1Xn}

:= {
∑

v

avX
v ∈ K [[X1, . . . , Xn]] | lim|v|→∞ |av|δ|v| = 0}.

Here |v| = ∑n
i=1 vi , v = (v1, . . . , vn) ∈ Nn . We have Tn := K {X1, . . . , Xn}

= Tn(1). If δ ∈ pQ, this is an affinoid K -algebra; the associated Banach norm
|•|δ : Tn(δ) → R, |∑ avXv|δ = maxv |av|δ|v|. We set
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K [X1, . . . , Xn]† :=
⋃

δ>1,δ∈pQ

Tn(δ) =
⋃

δ>1

Tn(δ)

It is a Hausdorff LF-space.
A dagger algebra A is a topological K -algebra isomorphic to a quotient of

the overconvergent Tate algebra K [X1, . . . , Xd ]†. It is canonically aHausdorff
LF-algebra [1, Cor. 3.2.4]. It defines a sheaf of topological K -algebras O†

on Sp̂A, ̂A being the p-adic completion of A, which is called a dagger structure
on Sp̂A. The pair Sp(A) := (|Sp̂A|,O†) is called a dagger affinoid.

A dagger space15 X is a pair (̂X ,O†) where ̂X is a rigid analytic space
over K and O† is a sheaf of topological K -algebras on ̂X such that, for some
affinoid open covering {̂Ui → ̂X}, there are dagger structures Ui on ̂Ui such
that O†|̂Ui � O†

Ui
. The set of global sections 	(X,O†) has a structure of a

convex K -vector space given by the projective limit lim←−Y
	(Y,O†|Y ), where

Y runs over all affinoid subsets of X . In the case of dagger affinoids this agrees
with the previous definition.

Let X = Sp(A) → Y = Sp(B) be a morphism of affinoid dagger spaces
and let U ⊂ X be an affinoid subdomain. We write U �Y X if there exists
a surjection τ : B[X1, . . . , Xr ]† → A and δ ∈ pQ, δ > 1, such that U ⊂
Sp(A[δ−1τ(X1), . . . , δ

−1τ(Xr )]†). A morphism f : X → Y of dagger (or
rigid) spaces is called partially proper if f is separated and if there exist
admissible coverings Y = ⋃

Yi and f −1(Yi ) = ⋃

Xi j , all i , such that for
every Xi j there exists an affinoid subset ˜Xi j ⊂ f −1(Yi ) with Xi j �Y ˜Xi j .
A partially proper dagger space that is quasi-compact is called proper. This
notion is compatible with the one for rigid spaces. In fact, the category of
partially proper dagger spaces is equivalent to the category of partially proper
rigid spaces [29, Th.2.27]. In particular, the rigid analytification of a finite
type scheme over K is partially proper.

A dagger (or rigid) space X is called Stein if it admits an admissible affinoid
covering X = ⋃

i∈N Ui such that Ui ⊂† Ui+1 for all i ; we call the covering
Ui , i ∈ N, a Stein covering. Here the notationUi ⊂† Ui+1 means that the map
̂Ui = Sp(C) ⊂ ̂Ui+1 = Sp(D) is an open immersion of affinoid rigid spaces
induced by a map D � Tn(δ)/I → C � Tn/I Tn for some I and δ > 1. Stein
spaces are partially proper.

We pass now to weakly formal schemes; the relation between dagger spaces
and weak formal schemes parallels [50] the one between rigid spaces and
formal schemes due to Raynaud. A weakly complete OK -algebra A† (with
respect to (�)) is an OK -algebra which is � -adically separated and which
satisfies the following condition: for any power series f ∈ OK {X1, . . . , Xn},
f = ∑

avXv, such that there exists a constant c forwhich c(vp(av)+1) ≥ |v|,

15 Sometimes called rigid analytic space with overconvergent structure sheaf.
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all v, and for any n-tuple x1, . . . , xn ∈ A†, the series f (x1, . . . , xn) converges
to an element of A†. The weak completion of an OK -algebra A is the smallest
weakly complete subalgebra A† of ̂A containing the image of A.

A weak formal scheme is a locally ringed space (X,O) that is locally iso-
morphic to an affine weak formal scheme. An affine weak formal scheme is
a locally ringed space (X,O) such that X = Spec(A†/�) for some weakly
complete finitely generated OK -algebra A† and the sheaf O is given on the
standard basis of open sets by 	(X f ,O) = (A†

f )
†, f ∈ A†. We say that

X = Spwf(A†), the weak formal spectrum of A†. For a weak formal scheme
X , flat overOK , the associated dagger space XK is partially proper if and only
if all irreducible closed subsets Z of X are proper over OK [39, Rem.1.3.18].

We come back now to K being a discrete valuation field. A weak formal
scheme over OK is called semistable if, locally for the Zariski topology, it
admits étale maps to the weak formal spectrum

Spwf(OK [X1, . . . , Xn]†/(X1 · · · Xr − �)), 1 ≤ r ≤ n.

We equip it with the log-structure coming from the special fiber. We have a
similar definition for formal schemes.A (weak) formal scheme X is calledStein
if its generic fiber XK is Stein. It is called Stein with a semistable reduction if
it has a semistable reduction overOK (and then the irreducible components of
Y := X0 are proper and smooth) and there exist closed (resp. open) subschemes
Ys , s ∈ N, (resp. Us , s ∈ N) of Y such that
1. each Ys is a finite union of irreducible components,
2. Ys ⊂ Us ⊂ Ys+1 and their union is Y ,
3. the tubes {]Us[X }, s ∈ N, form a Stein covering of XK .
We will call the covering {Us}, s ∈ N, a Stein covering of Y . The schemes
Us, Ys inherit their log-structure from Y (which is canonically a log-scheme
log-smooth over k0). The log-schemes Ys are not log-smooth (over k0) but
they are ideally log-smooth, i.e., they have a canonical idealized log-scheme
structure and are ideally log-smooth for this structure.16

3.1.2 Overconvergent Hyodo–Kato cohomology

Let X be a semistable weak formal scheme over OK . We would like to define
the overconvergent Hyodo–Kato cohomology as the rational overconvergent
rigid cohomology of X0 over O0

F :

16 Recall [61] that an idealized log-scheme is a log-scheme together with an ideal in its log-
structure that maps to zero in the structure sheaf. There is a notion of log-smooth morphism
of idealized log-schemes. Log-smooth idealized log-schemes behave like classical log-smooth
log-schemes. One can extend the definitions of log-crystalline, log-convergent, and log-rigid
cohomology, as well as that of de Rham–Witt complexes to idealized log-schemes. In what
follows we will often skip the word “idealized” if understood.
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R	HK(X0) := R	rig(X0/O
0
F ).

The foundations of log-rigid cohomology missing17 this has to be done by
hand [32, §1].

Let Y be a fine k0-log-scheme. Choose an open covering Y = ∪i∈I Yi and,
for every i ∈ I , an exact closed immersion Yi ↪→ Zi into a log-smooth weak
formal O0

F -log-scheme Zi . For each nonempty finite subset J ⊂ I choose
(perhaps after refining the covering) an exactification18 [49, Prop. 4.10]

YJ = ∩i∈J Yi
ι→ Z J

f→
∏

O0
F

(Zi )i∈J

of the diagonal embedding YJ → ∏

O0
F
(Zi )i∈J . Let �•

Z J /O
0
F
be the de Rham

complex of the weak formal log-scheme Z J over O0
F . This is a complex of

sheaves on Z J ; tensoring itwith F weobtain a complex of sheaves�•
Z J,F

on the
F-dagger space Z J,F . By [32, Lemma1.2], the tube ]YJ [Z J and the restriction
�•]YJ [Z J := �•

Z J,F
|]YJ [Z J of �•

Z J,F
to ]YJ [Z J depend only on the embedding

system {Yi ↪→ Zi }i not on the chosen exactification (ι, f ). Equip the de Rham
complex 	(]YJ [Z J , �

•) with the topology induced from the structure sheaf of
the dagger space ]YJ [Z J .

For J1 ⊂ J2, one has natural restrictionmaps δJ1,J2 :]YJ2[Z J2
→]YJ1[Z J1

and

δ−1
J1,J2

�•]YJ1 [Z J1
→ �•]YJ2 [Z J2

.Well-ordering I , we get a simplicial dagger space

]Y•[Z• and a sheaf �•]Y•[Z• on ]Y•[Z• . Consider the complex R	(]Y•[Z•, �
•).

We equip it with the topology induced from the product topology on every
cosimplicial level. In the classical derived category of F-vector spaces this
complex is independent of choices made but we will make everything inde-
pendent of choices by simply taking limit over all the possible choices. We
define a complex in D(CF )

R	rig(Y/O0
F ) := hocolim	(]Y•[Z•, �

•), (3.1)

where the limit is over the category of hypercovers built from the data that we
have described above.19 Note that the data corresponding to affine coverings

17 See however [77].
18 Recall that an exactification is an operation that turns closed immersions of log-schemes
into exact closed immersions.
19 Note that the category of hypercovers, up to a simplicial homotopy, is filtered. Indeed, since
we have fiber products, the issue here is just with equalizers but those exists, up to a simplicial
homotopy, by the very general fact [78, Tag 01GS]. Moreover, they induce a homotopy on the
corresponding complexes.
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form a cofinal system. We set

˜Hi
rig(Y/O0

F ) := ˜HiR	rig(Y/O0
F ), Hi

rig(Y/O0
F ) := HiR	rig(Y/O0

F ).

The complex R	rig(Y/O0
F ) is equipped with a Frobenius endomorphism ϕ

defined by lifting Frobenius to the schemes Zi in the above construction. In
the case Y is log-smooth over k0 we also have a monodromy endomorphism20

N = Res(
�

(dlog0)) defined by the logarithmic connection satisfying pϕN =
Nϕ.

Proposition 3.2 Let Y be a semistable scheme over k with the induced log-
structure [32, 2.1].

1. If Y is quasi-compact then H∗
rig(Y/O0

F ) is a finite dimensional F-vector
space with its unique locally convex Hausdorff topology.

2. The endomorphism ϕ on H∗
rig(Y/O0

F ) is a homeomorphism.

3. If k is finite then H∗
rig(Y/O0

F ) is a mixed F-isocrystal, i.e., the eigenvalues

of the linearized Frobenius ϕ f , where |k| = p f , are Weil numbers.

Proof All algebraic statements concerning the cohomology are proved in [32,
Th.5.3]. They follow immediately from the followingweight spectral sequence
[32, 5.2, 5.3] that reduces the statements to the analogous ones for (classically)
smooth schemes over k

E−k,i+k
1 =

⊕

j≥0, j≥−k

∏

S∈�2 j+k+1

Hi−2 j−k
rig (S/OF ) ⇒ Hi

rig(Y/O0
F ). (3.3)

Here � j denotes the set of all intersections S of j different irreducible com-
ponents of Y that are equipped with trivial log-structure. By assumptions, the
intersections S are smooth over k.

Let us pass to topology. Recall the following fact (that we will repeatedly
use in the paper)

Lemma 3.4 ([29, Lemma4.7], [30, Cor. 3.2]) Let X be a smooth Stein space
or a smooth affinoid dagger space. All de Rham differentials di : �i (X) →
�i+1(X) are strict and have closed images.

Remark 3.5 The above lemma holds also for log-smooth Stein spaces with the
log-structure given by a normal crossing divisor. The proof in [30, Cor. 3.2]
goes through using the fact that for such quasi-compact log-smooth spaces the
rigid de Rham cohomology is isomorphic to the rigid de Rham cohomology of

20 The formula that follows, while entirely informal, should give the reader an idea about the
definition of the monodromy. The formal definition can be found in [59, formula (37)].
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the open locus where the log-structure is trivial (hence it is finite dimensional
and equipped with the canonical Hausdorff topology).

We claim that, in the notation used above, if YJ is affine, then the complex

	(]YJ [Z J , �
•) = R	(]YJ [Z J , �

•)

has finite dimensional algebraic cohomology H∗ whose topology isHausdorff.
Moreover, its cohomology ˜H∗ is classical. Indeed, note that, using the con-
tracting homotopy of the Poincaré Lemma for an open ball, we may assume
that the tube ]YJ [Z J is the generic fiber of a weak formal scheme lifting YJ
to O0

F . Now, write Hi = ker di/im di−1 with the induced quotient topology.
By the above lemma, the natural map coim di−1 → im di−1 is an isomor-
phism and im di−1 is closed in ker di . Hence ˜Hi is classical and ˜Hi ∼→ Hi is
Hausdorff, as wanted.

Note that, by the above, a map between two de Rham complexes asso-
ciated to two (different) embeddings of YI is a strict quasi-isomorphism.
This implies that, if Y is affine, all the arrows in the system (3.1) are strict
quasi-isomorphisms and the cohomology of R	rig(Y/O0

F ) is isomorphic to
the cohomology of 	(]Y•[Z•, �

•) for any embedding data.
This proves claim (1) of our proposition for affine schemes; the case of

a general quasi-compact scheme can be treated in the same way (choose a
covering by a finite number of affine schemes). Claim (2) follows easily from
claim (1).

Remark 3.6 In an analogous way to R	rig(Y/O0
F ) we define complexes

R	rig(Y/O×
K ) ∈ D(CK ).

For a quasi-compact Y , their cohomology groups are classical; they are finite
K -vector spaces with their canonical Hausdorff topology.

3.1.3 Overconvergent Hyodo–Kato isomorphism

Set r+ := k[T ], r† := OF [T ]† with the log-structure associated to T . Let X
be a log-scheme over r+ := k[T ] (in particular, we allow log-schemes over
k0). Assume that there exists an open covering X = ∪i∈I Xi and, for every
i , an exact closed immersion Xi ↪→ ˜Xi into a log-scheme log-smooth over
r̃ := OF [T ]. For each nonempty finite subset J ⊂ I , choose an exactification
(product is taken over r̃ )

X J := ∩i∈J Xi
ι

↪→ ˜X J
f→

∏

i∈J

˜Xi

of the diagonal embedding as in Sect. 3.1.2.
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LetXJ be theweak completion of ˜X J . Define the deRhamcomplex�•
XJ /r†

as the weak completion of the de Rham complex�•
˜X J /r̃

. The tube ]X J [XJ with

the complex (�•
XJ /r†

⊗ Q)|]X J [X J
is independent of the chosen factorization

(ι, f ). For varying J one has natural transitionmaps, hence a simplicial dagger
space ]X•[X• and a complex

(�•
X•/r† ⊗ Q)|]X•[X• (3.7)

One shows that, in the derived category of vector spaces over Qp,

R	(]X•[X•, �
•
X•/r† ⊗ Q|]X•[V• )

is independent of choices.Wemake it though functorial as a complex by going
to limit over all the choices and define a complex in D(CF )

R	rig(X/r†) := hocolim	(]X•[X•, (�
•
X•/r† ⊗ Q)|]X•[X• ),

where the index set runs over the data described above.
Cohomology R	rig(X/r†) is equipped with a Frobenius endomorphism ϕ

defined by liftingmod p Frobenius to the schemes ˜Xi in the above construction
in a manner compatible with the Frobenius on r† induced by T 
→ T p. If
X is log-smooth over k0, we also have a monodromy endomorphism N =
Res(

�
(dlogT )) defined by the logarithmic connection satisfying pϕN = Nϕ.

Themap p0 : R	rig(X/r†) → R	rig(X/O0
F ) induced by T 
→ 0 is compatible

with Frobenius and monodromy.
For a general (simplicial) log-scheme with boundary (X , X) over r+

satisfying certain mild condition21 the definition of rigid cohomology
R	rig((X , X)/r†) is analogous. For details of the construction we refer the
reader to [32, 1.10] and for the definition of log-schemes with boundary to
[31].

Let X0 be a semistable scheme over k with the induced log-structure [32,
2.1]. Let {Xi }i∈I be the irreducible components of X0 with induced log-
structure. Denote by M• the nerve of the covering

∐

i∈I Xi → X0. We define
the complex R	rig(M•/O0

F ) ∈ D(CK ) in an analogous way to R	rig(X0/O
0
F )

using the embedding data described in [32, 1.5].

Lemma 3.8 Let O denote O0
F or O×

K . The natural map

R	rig(X0/O) → R	rig(M•/O)

is a strict quasi-isomorphism.

21 The interested reader can find a description of this condition in [32, 1.10]. It will be always
satisfied by the log-schemes we work with in this paper.
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Proof It suffices to argue locally, so we may assume that there exists an exact
embedding of X0 into a weak formal scheme X that is log-smooth over O .

Let us first prove that the above map is a quasi-isomorphism. The com-
plex R	rig(M•/O) can be computed by de Rham complexes on the tubes
]MJ [X , where, for a nonempty subset J ⊂ I , we set MJ = ∩ j∈J X j with
the induced log-structure. To compute R	rig(X0/O), recall that, for a weak
formal scheme X and a closed subscheme Z of its special fiber, if Z = ∪i∈I Zi
is a finite covering by closed subschemes of Z , then the dagger space cov-
ering ]Z [X= ∪i∈I ]Zi [X is admissible open [32, 3.3]. Hence R	rig(X0/O)

can be computed as the de Rham cohomology of the nerve of the covering
XK = ∪i∈I ]Mi [X . Since the two above mentioned simplicial de Rham com-
plexes are equal, we are done.

Now, strictness of the above quasi-isomorphism follows from the fact that
the cohomology groups of the left complex are finite dimensional vector spaces
(over F or K ) with their canonical Hausdorff topology and so are the coho-
mology groups of the right complex (basically by the same argument using
the quasi-isomorphism R	rig(MJ/O)

∼→ R	rig(M tr
J /O) [32, Lemma4.4],

where M tr
J denotes the open set of MJ , where the horizontal log-structure is

trivial.)

Let J ⊂ I and M = MJ = ∩ j∈J X j . Grosse-Klönne [32, 2.2] attaches
to M finitely many log-schemes with boundary (P J ′

M , V J ′
M ), ∅ � J ′ ⊂ J .

We think of (P J ′
M , V J ′

M ) as the vector bundle V J ′
M on M (built from the log-

structure corresponding to J ′) that is compactified by P J ′
M —a direct sum of

projective space bundles. It is a log-scheme with boundary over r+ which,
in particular, means that V J ′

M is a genuine log-scheme over r+ (however this
is not the case for P J ′

M ). This construction of Grosse-Klönne corresponds to
defining the Hyodo–Kato isomorphism using not the deformation space rPD�

as in the classical constructions but its compactification (a projective space).
The key advantage being that the cohomology of the structure sheaf of the new
deformation space is now trivial.

The following proposition is the main result of [32].

Proposition 3.9 Let ∅ �= J ′ ⊂ J ⊂ I and let OF (0) = O0
F ,OF (�) = O×

K .
The map

R	rig((P
J ′
M , V J ′

M )/r†) ⊗F F(a) → R	rig(M/OF (a)), a = 0, �,

defined by restricting to the zero section M = MJ → P J ′
M and sending T 
→ a,

is a strict quasi-isomorphism.

Proof The algebraic quasi-isomorphism was proved in [32, Th.3.1]. To show
that this quasi-isomorphism is strict we can argue locally, for X0 affine. Then
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the cohomology of the complex on the right is a finite rank vector space over
F(a)with its natural locally convex and Hausdorff topology. Algebraic quasi-
isomorphism and continuity of the restriction map imply that the cohomology
of the complex on the left is Hausdorff as well. Since it is a locally convex
space the map has to be an isomorphism in CF(a), as wanted.

Example 3.10 Wehave found that the best way to understand the above propo-
sition is through an example supplied by Grosse-Klönne himself in [32]. Let
X0 be of dimension 1 and let M be the intersection of two irreducible com-
ponents. Hence the underlying scheme of M is equal to Speck. Let U be the
2-dimensional open unit disk over K with coordinates x1, x2, viewed as a dag-
ger space. Consider its two closed subspaces: U 0 defined by x1x2 = 0 and
U� defined by x1x2 = � .

Let ˜�•
U be the de Rham complex ofU with log-poles along the divisorU 0;

let �•
U be its quotient by its sub-OU -algebra generated by dlog(x1x2). Denote

by �•
U0 and �•

U� its restriction toU 0 andU� , respectively. We note thatU�

is (classically) smooth and that �•
U� is its (classical) de Rham complex. We

view the k0-log-scheme M as an exact closed log-subscheme of the formal
log-scheme Spf(OF [[x1, x2]]/(x1x2)) that is log-smooth over O0

F or of the
formal log-scheme Spf(OK [[x1, x2]]/(x1x2 − �)) that is log-smooth over
O×

K . The corresponding tubes are U
0 and U� . We have

R	rig(M/O0
F ) ⊗F K = R	(U 0, �•), R	rig(M/O×

K ) = R	(U�, �•).

(3.11)

Weeasily see thatH∗(U 0, �•) � H∗(U�, �•); in particular,H1(U 0, �•
U0) =

H1(U�, �•) is a one dimensional K -vector space generated by dlogx1.
The quasi-isomorphism between the cohomologies in (3.11) is constructed

via the following deformation space (P, V ):

P := (P1
K × P

1
K )an = ((Spec(K [x1]) ∪ {∞}) × (Spec(K [x2]) ∪ {∞}))an,

V := (Spec(K [x1, x2]))an.

Let ˜�•
P be the de Rham complex of P with log-poles along the divisor

({0} × P
1
K ) ∪ (P1

K × {0}) ∪ ({∞} × P
1
K ) ∪ (P1

K × {∞}).
The section dlog(x1x2) ∈ ˜�1

U (U ) = ˜�1
P(U ) extends canonically to a section

dlog(x1x2) ∈ ˜�1
P(P). Let �•

P be the quotient of ˜�•
P by its sub-OP -algebra

generated by dlog(x1x2). The natural restriction maps

R	(U 0, �•) ← R	(P, �•) → R	(U�, �•), 0 ←� T, T 
→ �,
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are quasi-isomorphisms. This is because we have killed one differential of
˜�P and the logarithmic differentials of P

1
OK

are isomorphic to the structure
sheaf hence have cohomology which is 1-dimensional in degree 0 and trivial
otherwise.

Varying the index set J ′ in a coherent way one glues the log-schemes
(P J ′

M , V J ′
M ) into a simplicial r+-log-scheme (P•, V•) with boundary. Set

R	rig(X0/r
†) := R	rig((P•, V•)/r

†).

Wehave the corresponding simplicial log-schemeM ′
• over k

0. There is a natural

map M• → M ′
• (that induces a strict quasi-isomorphism R	rig(M ′

•/O
0
F )

∼→
R	rig(M•/O0

F )) and a natural map M ′
• → (P•, V•). The following proposition

is an immediate corollary of Proposition 3.9 and Lemma 3.8.

Proposition 3.12 ([32, Th.3.4]) Let a = 0, � . The natural maps

R	rig(X0/OF (a)) → R	rig(M
′
•/OF (a)) ← R	rig(X0/r

†) ⊗F F(a)

are strict quasi-isomorphisms.

Let X be a semistable weak formal scheme over OK . We define the over-
convergent Hyodo–Kato cohomology of X0 as R	HK(X0) := R	rig(X0/O

0
F ).

Recall that the Hyodo–Kato map

ιHK : R	HK(X0) → R	dR(XK )

is defined as the zigzag (using the maps from the above proposition)

R	HK(X0) = R	rig(X0/O
0
F ) R	rig(X0/r†)

∼

R	rig(X0/r†) ⊗F K ∼ R	rig(X0/O
×
K ) ∼= R	dR(XK )

It yields the (overconvergent) Hyodo–Kato strict quasi-isomorphism

ιHK : R	HK(X0) ⊗F K
∼→ R	dR(XK ).

Remark 3.13 The overconvergent Hyodo–Kato map, as its classical counter-
part, depends on the choice of the uniformizer � . This dependence takes the
usual form [79, Prop. 4.4.17].
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3.2 Overconvergent syntomic cohomology

In this section we will define syntomic cohomology (a la Bloch–Kato) using
overconvergent Hyodo–Kato and de Rham cohomologies of Grosse-Klönne
and discuss the fundamental diagram that it fits into. We call this definition
“a la Bloch–Kato” because it is inspired by Bloch–Kato’s definition of local
Selmer groups [8].

3.2.1 Period rings ̂B+
st , Acr,K

We will recall the definition of the rings of periodŝB+
st and Acr,K that we will

need. We denote by r+
� the algebra OF [[T ]] with the log-structure associated

to T . Sending T to � induces a surjective morphism r+
� → O×

K . We denote
by rPD� the p-adic divided power envelope of r+

� with respect to the kernel of
this morphism. Frobenius is defined by T 
→ T p, monodromy by T 
→ T .

We start with the definition of the ring of periods ̂B+
st [79, p. 253]. Let

̂Ast,n := H0
cr(O

×
C,n/r

PD
�,n),

̂Ast := lim←−
n

̂Ast,n, ̂B+
st := ̂Ast[1/p].

We note that ̂B+
st is a Banach space over F (which makes it easier to handle

topologically than B+
st ). The rinĝAst,n has a natural action of GK , Frobenius ϕ,

and a monodromy operator N . We have a morphism Acr,n → ̂Ast,n induced
by the map H0

cr(OC,n/OF,n) → H0
cr(O

×
C,n/r

PD
�,n). Both it and the natural map

rPD�,n → ̂Ast,n are compatible with all the structures (Frobenius, monodromy,
and Galois action). Moreover, we have the exact sequence

0 → Acr,n → ̂Ast,n
N→ ̂Ast,n → 0. (3.14)

We can view ̂Ast,n as the ring of the PD-envelope of the closed immersion

SpecO×
C,n ↪→ Spec(A×

cr,n ⊗OF,n r
+
�,n)

defined by themaps θ : Acr,n → OC,n and r+
�,n → OK ,n , T 
→ � . HereA×

cr,n

is Acr,n equipped with the unique log-structure extending the one on O×
C,n .

This makes SpecO×
C,1 ↪→ SpeĉAst,n into a PD-thickening in the crystalline

site of O×
K ,1

. It follows [47, §3.9] that

̂Ast,n � R	cr(O
×
C,n/r

PD
�,n). (3.15)

There is [47, Th.3.7] a canonical B+
cr-linear isomorphism B+

st
∼→ ̂B+,N−nilp

st
compatible with the action of GK , ϕ, and N .
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We will now pass to the definition of the ring of periods Acr,K [79, §4.6].
Let

Acr,K ,n := H0
cr(O

×
C,n/O

×
K ,n), Acr,K := lim←−

n

Acr,K ,n.

The ring Acr,K ,n is a flat Z/pn-module and Acr,K ,n+1 ⊗ Z/pn � Acr,K ,n;
moreover, it has a natural action of GK . These properties generalize, for r ∈ Z,
to H0

cr(O
×
C,n/O

×
K ,n,J

[r ]), and we have Hi
cr(O

×
C,n/O

×
K ,n,J

[r ]) = 0, i ≥ 1,
r ∈ Z. Set

FrAcr,K ,n := H0
cr(O

×
C,n/O

×
K ,n,J

[r ]), FrAcr,K := lim←−
n

FrAcr,K ,n.

We have

FrAcr,K ,n � R	cr(O
×
C,n/O

×
K ,n,J

[r ]),
FrAcr,K ,n/F

s � R	cr(O
×
C,n/O

×
K ,n,J

[r ]/J [s]), r ≤ s.

The natural map grrFAcr,n → grrFAcr,K ,n is a pa-quasi-isomorphism for a
constant a depending on K , a ∼ vp(dK/F ), [79, Lemma4.6.2]. We set

B+
cr,K := Acr,K [1/p].

There is a natural GK -equivariant map ι : ̂B+
st → B+

dR induced by the maps

p� : ̂B+
st → B+

cr,K , B+
cr/F

r ∼→ B+
cr,K /Fr ∼← B+

cr/F
r ,

where p� denotes the map induced by sending T 
→ � . The composition
B+
st→̂B+

st
ι→ ̂B+

dR is the map ι = ι� from Sect. 1.4.2.

3.2.2 Overconvergent geometric syntomic cohomology

Let X be a semistable weak formal scheme over OK . Take r ≥ 0. We define
the overconvergent geometric syntomic cohomology of XK by the following
mapping fiber (taken in D(CQp))

R	syn(XC , Qp(r)) :=
[[R	HK(X0)̂⊗R

F
̂B+
st ]N=0,ϕ=pr ιHK⊗ι−−−−→(R	dR(XK )̂⊗R

KB+
dR)/Fr ].

This is an overconvergent analog of the algebraic geometric syntomic coho-
mology studied in [59]. Here, we wrote [R	HK(X0)̂⊗R

F
̂B+
st ]N=0,ϕ=pr for the

123



Cohomology of p-adic Stein spaces 905

homotopy limit of the commutative diagram22

R	HK(X0)̂⊗R
F
̂B+
st

ϕ−pr

N

R	HK(X0)̂⊗R
F
̂B+
st

N

R	HK(X0)̂⊗R
F
̂B+
st

pϕ−pr
R	HK(X0)̂⊗R

F
̂B+
st .

The filtration on R	dR(XK )̂⊗R
KB+

dR is defined by the formula

Fr (R	dR(XK )̂⊗R
KB+

dR) := hocolim i+ j≥r F
iR	dR(XK )̂⊗R

K F jB+
dR.

Set

HK(XC , r) := [R	HK(X0)̂⊗R
F
̂B+
st ]N=0,ϕ=pr ,

DR(XC , r) := (R	dR(XK )̂⊗R
KB+

dR)/Fr .

Hence

R	syn(XC , Qp(r)) = [HK(XC , r)
ιHK⊗ι−−−−→DR(XC , r)].

Example 3.16 Assume X to be quasi-compact.Weclaim that then the complex

R	HK(X0)̂⊗R
F
̂B+
st

has classical cohomology isomorphic to H∗
HK(X0)̂⊗F̂B+

st , a finite rank free
module over ̂B+

st . To show this, consider the distinguished triangle

H0
HK(X0) → R	HK(X0) → τ≥1R	HK(X0).

Tensoring it with ̂B+
st we obtain the distinguished triangle

H0
HK(X0)̂⊗R

F
̂B+
st → R	HK(X0)̂⊗R

F
̂B+
st → (τ≥1R	HK(X0))̂⊗R

F
̂B+
st . (3.17)

Note that, since H0
HK(X0) is a finite rank vector space over F , we have the

natural strict quasi-isomorphism

H0
HK(X0)̂⊗F̂B+

st
∼→ H0

HK(X0)̂⊗R
F
̂B+
st . (3.18)

22 In general, in what follows we will use the brackets [ ] to denote derived eigenspaces and
the brackets ( ) or nothing to denote the non-derived ones.
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Since ˜H0((τ≥1R	HK(X0))̂⊗R
F
̂B+
st ) = 0, this implies that

H0
HK(X0)̂⊗F̂B+

st
∼→ ˜H0(R	HK(X0)̂⊗R

F
̂B+
st ),

˜Hi (R	HK(X0)̂⊗R
F
̂B+
st )

∼→ ˜Hi ((τ≥1R	HK(X0))̂⊗R
F
̂B+
st ), i ≥ 1.

Repeating now, for (τ≥1R	HK(X0))̂⊗R
F
̂B+
st , (τ≥2R	HK(X0))̂⊗R

F
̂B+
st , etc, the

above computation, we get that

˜Hi (R	HK(X0)̂⊗R
F
̂B+
st ) � Hi

HK(X0)̂⊗F̂B+
st , i ≥ 0 , (3.19)

as wanted.

Lemma 3.20 Let X be quasi-compact. The above isomorphism induces a nat-
ural isomorphism

˜Hi (HK(XC , r)) � (Hi
HK(X0)̂⊗F̂B+

st )
N=0,ϕ=pr , i ≥ 0,

of Banach spaces (so ˜Hi (HK(XC , r)) is classical).

Proof The argument here is similar to the one given in [59, Cor. 3.26] for
the Beilinson–Hyodo–Kato cohomology but requires a little bit more care. We
note that Hi

HK(X0) is a finite dimensional (ϕ, N )-module (by Proposition 3.2).
For a finite (ϕ, N )-module M , we have the following short exact sequences

0 →M ⊗F B+
cr

β→ M ⊗F ̂B+
st

N→ M ⊗F ̂B+
st → 0,

0 →(M ⊗F B+
cr)

ϕ=pr → M ⊗F B+
cr

pr−ϕ−−→M ⊗F B+
cr → 0. (3.21)

The first one follows, by induction on m such that Nm = 0 on M , from the
fundamental exact sequence, i.e., the same sequence for M = F . The map β

is the (Frobenius equivariant) trivialization map defined as follows

β : M ⊗ B+
cr

∼→ (M ⊗ ̂B+
st )

N=0, m ⊗ b 
→ exp(Nu)m ⊗ b. (3.22)

Wenote here that it is notGalois equivariant; however thiswill not be a problem
in this proof. The second exact sequence follows from [20, Rem.2.30].

We will first show that

˜Hi ([R	HK(X0)̂⊗R
F
̂B+
st ]N=0) � (Hi

HK(X0)̂⊗F̂B+
st )

N=0. (3.23)

Set HK := R	HK(X0)̂⊗R
F
̂B+
st . We have the long exact sequence

N→ ˜Hi−1(HK) → ˜Hi ([HK]N=0) → ˜Hi (HK)
N→ ˜Hi (HK) → ˜Hi+1([HK]N=0) →
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By the isomorphism (3.19) and the exact sequence (3.21), it splits into the
short exact sequences

0 → ˜Hi ([HK]N=0) → Hi
HK(X0) ⊗F ̂B+

st
N→ Hi

HK(X0) ⊗F ̂B+
st → 0

The isomorphism (3.23) follows. By (3.21), we also have

˜Hi ([HK]N=0) � Hi
HK(X0) ⊗F B+

cr.

Now, set D := [HK]N=0. We have the long exact sequence

ϕ−pr−−→ ˜Hi−1(D) → ˜Hi ([D]ϕ=pr ) → ˜Hi (D)
ϕ−pr−−→ ˜Hi (D) → ˜Hi+1([D]ϕ=pr ) →

Since ˜Hi (D) � Hi
HK(X0) ⊗F B+

cr, the sequence (3.21) implies that the above
long exact sequence splits into the short exact sequences

0 → ˜Hi ([D]ϕ=pr ) → Hi
HK(X0) ⊗F B+

cr
ϕ−pr−−→Hi

HK(X0) ⊗F B+
cr → 0

Our lemma follows from the sequence in (3.21).

Assume now that X is Stein and let {Un}, n ∈ N, be a Stein covering. We
claim that we have a natural strict quasi-isomorphism

R	HK(X0)̂⊗R
F
̂B+
st

∼→ holim n(R	HK(Un,0)̂⊗R
F
̂B+
st ). (3.24)

To show this we will compute the cohomology of both sides. Since, by
Lemma 2.3, the natural map

Hi
HK(X0)̂⊗F̂B+

st → Hi
HK(X0)̂⊗R

F
̂B+
st , i ≥ 0,

is a strict quasi-isomorphism, the argument in Example 3.16 goes through and
we get that

˜Hi (R	HK(X0)̂⊗R
F
̂B+
st ) � Hi

HK(X0)̂⊗F̂B+
st , i ≥ 0.

Similarly, applying holim to the analogs of the distinguished triangle (3.17),
we get the distinguished triangles

holim n(H0
HK(Un,0)̂⊗R

F
̂B+
st ) holim n(R	HK(Un,0)̂⊗R

F
̂B+
st )

holim n(τ≥1R	HK(Un,0))̂⊗R
F
̂B+
st ).
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We have

˜H0holim n(H
0
HK(Un,0)̂⊗R

F
̂B+
st ) � lim←−n (H0

HK(Un,0)̂⊗F̂B+
st ),

˜Hiholim n(H
0
HK(Un,0)̂⊗R

F
̂B+
st ) � ˜Hiholim n(H

0
HK(Un,0)̂⊗F̂B+

st ) = 0 , i ≥ 1.
(3.25)

The vanishing in the second line can be seen by evoking the Mittag–Leffler
criterium in the category of convex vector spaces [68, Cor. 2.2.12]: the projec-
tive system {H0

HK(Un,0)̂⊗F̂B+
st } is Mittag–Leffler because so is the projective

system {H0
HK(Un,0)}. Now, the argument in Example 3.16 can be repeated and

it will yield that

˜Hi (holim n(R	HK(Un)̂⊗R
FB+

st )) � lim←−n (Hi
HK(Un,0)̂⊗F̂B+

st ), i ≥ 0.

The computations of cohomology of both sides of (3.24) being compatible,
to prove that they are strictly quasi-isomorphic, it remains to show that the
natural map

(lim←−n Hi
HK(Un,0))̂⊗F̂B+

st → lim←−n (Hi
HK(Un,0)̂⊗F̂B+

st )

is an isomorphism. But this follows from the fact that each Hi
HK(Un,0) is a

finite rank vector space (see Sect. 2.1.3).
To sum up the above discussion:

Lemma 3.26 The cohomology of R	HK(X0)̂⊗R
F
̂B+
st is classical and we have

˜Hi (R	HK(X0)̂⊗R
F
̂B+
st ) � Hi

HK(X0)̂⊗F̂B+
st � lim←−

n

(Hi
HK(Un,0)̂⊗F̂B+

st ).

(3.27)

Lemma 3.28 The cohomology ˜Hi ([R	HK(X0)̂⊗R
F
̂B+
st ]N=0,ϕ=pr ) is classical

and we have natural isomorphisms

Hi ([R	HK(X0)̂⊗R
F
̂B+
st ]N=0,ϕ=pr ) � (Hi

HK(X0)̂⊗F̂B+
st )

N=0,ϕ=pr .

In particular, the space Hi ([R	HK(X0)̂⊗R
F
̂B+
st ]N=0,ϕ=pr ) is Fréchet. More-

over,

˜Hi ([R	HK(X0)̂⊗R
F
̂B+
st ]N=0) � (Hi

HK(X0)̂⊗F̂B+
st )

N=0 � Hi
HK(X0)̂⊗FB+

cr,

where the last isomorphism is not, in general, Galois equivariant.
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Proof For the first claim,we argue as in the proof of Lemma 3.20 using analogs
of the exact sequences (3.21) (for M = Hi

HK(X0)):

0 →Hi
HK(X0)̂⊗FB+

cr
β→ Hi

HK(X0)̂⊗F̂B+
st

N→ Hi
HK(X0)̂⊗F̂B+

st → 0,

0 →(Hi
HK(X0)̂⊗FB+

cr)
ϕ=pr → Hi

HK(X0)̂⊗FB+
cr

pr−ϕ−−→Hi
HK(X0)̂⊗FB+

cr → 0.
(3.29)

These sequences are limits of sequences (3.21) applied to Hi
HK(Un,0), n ∈ N.

We wrote β := lim←−n
βn and used the isomorphism (3.27) (and its analog

for B+
cr) as well as the vanishings

˜H jholim n(H
i
HK(Un,0)̂⊗FB+

cr) = 0 , ˜H jholim n((H
i
HK(Un,0)̂⊗FB+

cr)
ϕ=pr ) = 0 ,

for j ≥ 1. The vanishing of the first cohomology follows from the fact that
the projective system {Hi

HK(Un,0)} is Mittag–Leffler. The vanishing of the
second cohomology is a little subtler. Note that the system of Banach spaces
{(Hi (Un,0)̂⊗FB+

cr)
ϕ=pr } can be lifted to a system of finite dimensional BC

spaces with Dimensions (di , hi ), di , hi ≥ 0 [14, Prop. 10.6]. The images
of the terms in the system in a fixed BC space form a chain with decreasing
dimensions D (in lexicographical order). Since the heighth of anyBCsubspace
of these spaces is also ≥ 0 [15, Lemma2.6], they stabilize. Hence the original
system satisfies theMittag–Leffler criterium from [68, Cor. 2.2.12] and, hence,
it is acyclic.

The last claim of the lemma was proved while proving the first claim.

Example 3.30 Assume that X is affine or Stein. In that case�i (XK ) is an LB-
space or a Fréchet space, respectively. The de Rham cohomology ˜Hi

dR(XK ) is
classical; it is a finite dimensional K -vector space with its natural Hausdorff
topology or a Fréchet space, respectively.

• Assume first that X is Stein. We claim that (in D(CK ))

Fr (R	dR(XK )̂⊗R
K B+

dR) � Fr (�•(XK )̂⊗K B+
dR)

= (O(XK )̂⊗K FrB+
dR → �1(XK )̂⊗K Fr−1B+

dR → · · · )
DR(XC , r) = (R	dR(XK )̂⊗R

K B+
dR)/Fr � (�•(XK )̂⊗K B+

dR)/Fr

= (

O(XK )̂⊗K Br → �1(XK )̂⊗K Br−1 → · · · → �r−1(XK )̂⊗K B1
)

,

(3.31)

where Bi = B+
dR/Fi .
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In low degrees we have

DR(XC , 0) = 0, DR(XC , 1) � O(XK )̂⊗KC,

DR(XC , 2) � (O(XK )̂⊗K (B+
dR/F2) → �1(XK )̂⊗KC).

To prove the first strict quasi-isomorphism in (3.31), it suffices to show that
the natural map

�•(XK )̂⊗KB+
dR → �•(XK )̂⊗R

KB+
dR

is a strict quasi-isomorphism. Or that so is the map

�i (XK )̂⊗KB+
dR → �i (XK )̂⊗R

KB+
dR, i ≥ 0. (3.32)

But this follows from Lemma 2.3 since both �i (XK ) and B+
dR are Fréchet

spaces.
To prove the second strict quasi-isomorphism above, i.e., the natural strict

quasi-isomorphism

Fr (�•(XK )̂⊗KB+
dR)

∼→ hocolim i+ j≥r (F
i�•(XK )̂⊗R

K F jB+
dR),

since the inductive limit is, in fact, finite, it suffices to show that the natural
map

Fi�•(XK )̂⊗K F jB+
dR → Fi�•(XK )̂⊗R

K F jB+
dR

is a strict quasi-isomorphismand this follows from the strict quasi-isomorphism
(3.32).

Recall that the de Rham complex is built from Fréchet spaces and it has
strict differentials. The complex DR(XC , r) is a complex of Fréchet spaces as
well. Its differentials are also strict: write the i’th differential as a composition

�i (XK )̂⊗K B+
dR/Fr−i Id⊗can

�i (XK )̂⊗K B+
dR/Fr−i−1 di⊗Id

�i+1(XK )̂⊗K B+
dR/Fr−i−1.

(3.33)

Since �i (XK ) is a Fréchet space and B+
dR/Fi is a Banach space the first map

is surjective and strict (we use here point (3) from Sect. 2.1.3)). The second
map is induced from the differential di : �i (XK ) → �i+1(XK ), which is
strict, hence it is strict since everything in sight is Fréchet. It follows that the
cohomology ˜HiDR(XC , r) is classical and Fréchet as well.

123



Cohomology of p-adic Stein spaces 911

• Assume now that X is affine. Then the computation is a bit more
complicated because �i (XK ) and B+

dR (an LB-space and a Fréchet space,
respectively) do not interact well with tensor products. We claim that
(in D(CK ))

Fr (R	dR(XK )̂⊗R
K (B+

dR/Fr )) � Fr (�•(XK )̂⊗K (B+
dR/Fr ))

= (

O(XK )̂⊗K FrBr → �1(XK )̂⊗K Fr−1Br → · · · )

DR(XC , r) = (R	dR(XK )̂⊗R
K B+

dR)/Fr � (�•(XK )̂⊗K (B+
dR/Fr ))/Fr ,

= (

O(XK )̂⊗K Br → �1(XK )̂⊗K Br−1) → · · · → �r−1(XK )̂⊗K B1
)

,

where Bi = BdR/Fi .
The first and the second strict quasi-isomorphisms we can prove just as in

the Stein case. We can again invoke Lemma 2.3 here because FiB+
dR/F jB+

dR
is a Banach space and �i (XK ) can be represented by an inductive limit of an
acyclic inductive system of Banach spaces. It remains to prove the third strict
quasi-isomorphism, i.e., that the natural map

(�•(XK )̂⊗R
KB+

dR)/Fr → (�•(XK )̂⊗R
K (B+

dR/Fr ))/Fr

is a strict quasi-isomorphism. But this easily follows from the distinguished
triangle

�•(XK )̂⊗R
K FrB+

dR → Fr (�•(XK )̂⊗R
KB+

dR) → Fr (�•(XK )̂⊗R
K (B+

dR/Fr )).

Concerning cohomology, we claim that the cohomology ˜HiDR(XC , r) is
classical and that it is an LB-space; for i ≥ r , ˜HiDR(XC , r) = 0. Recall that
the deRham complex is built from LB-spaces and that it has strict differentials.
The complex DR(XC , r) is a complex of LB-spaces as well (use Sect. 2.1.3,
point (5)). Its differentials are also strict. Indeed, write the i’th differential as
a composition (3.33). The first map in this composition is a strict surjection:
the surjection B+

dR/Fr−i−1 → B+
dR/Fr−i has a continuous K -linear section

since both spaces are K -Banach. The second map factors as

�i (XK )̂⊗K (B+
dR/Fr−i−1)

di⊗Id−−→im dî⊗K (B+
dR/Fr−i−1) ↪→ �i+1(XK )̂⊗K (B+

dR/Fr−i−1).

Here, the first map is strict. Since a composition of a strict map and a strict
injection is strict the i’th differential in DR(XC , r) is strict. It follows that the
cohomology ˜HiDR(XC , r) is classical, as wanted. The claimed vanishing is
now clear.

Moreover, we easily compute that we have a strict exact sequence
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0 → �i (XC )/im di−1 → HiDR(XC , r) → Hi
dR(XK )̂⊗K (B+

dR/Fr−i−1) → 0

Since �i (XC )/im di−1 is Hausdorff so is HiDR(XC , r). Since, by [25,
Th.1.1.17], a Hausdorff quotient of a Hausdorff LB-space is an LB-space, to
show that HiDR(XC , r) is an LB-space it suffices to show that so is ker d̃i ,
for

d̃i : �i (XK )̂⊗K (B+
dR/Fr−i ) → �i+1(XK )̂⊗K (B+

dR/Fr−i−1).

But we easily compute that there is a strict exact sequence

0 → �i (XK )̂⊗K (grr−i−1
F B+

dR) → ker d̃i → ker dî⊗K (B+
dR/Fr−i−1) → 0

that is, in fact, split because the surjection B+
dR/Fr−i−1 → B+

dR/Fr−i has a
continuous K -linear section. It follows that, since ker di is a space of compact
type (this follows from [25, Prop. 1.1.41] and the fact that �i (XK ) is a space
of compact type) the space ker dî⊗K (B+

dR/Fr−i−1) is LB (use Sect. 2.1.3,
point (5)) and, finally, so is ker d̃i , as wanted.

Let X be affine or Stein. We can conclude from the above that our syntomic
cohomology fits into the long exact sequence

· · · → Hi−1DR(XC , r)
∂

˜Hi
syn(XC , Qp(r))

(Hi
HK(X0)̂⊗K̂B+

st )
N=0,ϕ=pr ιHK⊗ι

HiDR(XC , r) → · · ·

where all the terms but the syntomic one were shown to be classical and LB
or Fréchet, respectively. We will show later that the syntomic cohomology has
these properties as well (see Proposition 3.36).

Example 3.34 Assume that X is affine or Stein and geometrically irreducible.
For r = 0, from the above computations, we obtain the isomorphism

˜H0
syn(XC , Qp)

∼→ (H0
HK(X0)̂⊗FB+

st )
ϕ=p,N=0 � B+,ϕ=1

cr = Qp.

Hence ˜H0
syn(XC , Qp) is classical.

For r = 1, we obtain the following exact sequence

H0HK(XC , 1)
ιHK⊗ι−−→O(XK )̂⊗KC → ˜H1

syn(XC , Qp(1)) → (H1
HK(X0)̂⊗F̂B+

st )
ϕ=p,N=0 → 0

Since H0
HK(X0) = F , we have H0HK(XC , 1) = B+,ϕ=p

cr and the map ιHK ⊗ ι

from H0HK(XC , 1) to O(XK )̂⊗KC is induced by B+
cr → B+

dR → B+
dR/F1.
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Since we have the fundamental sequence

0 → Qp(1) → B+,ϕ=p
cr → B+

dR/F1 → 0

we get the exact sequence

0 → C → O(XC )
∂−−→ ˜H1

syn(XC , Qp(1)) → (H1
HK(X0)̂⊗F̂B+

st )
ϕ=p,N=0 → 0

Hence ˜H1
syn(XC , Qp(1)) is classical.

3.2.3 Fundamental diagram

We will construct the fundamental diagram that syntomic cohomology fits
into. We start with an example.

Example 3.35 Fundamental diagram; the case of r = 1.
Assume that X is affine or Stein and geometrically irreducible. We claim

that we have the following commutative diagram with strictly exact rows.

0 O(XC )/C
∂

H1
syn(XC , Qp(1))

β

(H1
HK(X0)̂⊗FB+

st )
ϕ=p,N=0

ιHK⊗θ

0

0 O(XC )/C
d

�1(XC )d=0 H1
dR(XK )̂⊗KC 0

The top row is the strictly exact sequence from the Example 3.2.2. The bottom
row is induced by the natural exact sequence defining H1

dR(XK ). BySect. 2.1.3,
it is isomorphic to the sequence

0 → O(XC )/C
d→ �1(XC )d=0 → H1

dR(XC ) → 0.

Hence it is strictly exact by Lemma 3.4. The map ιHK ⊗ θ is induced by the
composition

R	HK(X0)̂⊗F̂B+
st

ιHK⊗ι−−−−→R	dR(XK )̂⊗KB+
dR

θ→ R	dR(XK )̂⊗KC.

The map β is induced by the composition

R	syn(XC , Qp(1))

F1(R	dR(XK )̂⊗R
KB+

dR)
θ

(0 → �1(XK )̂⊗KC → �2(XK )̂⊗KC → · · · ).
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(The fact that the first map lands in F1 is immediate from the definition of
R	syn(XC , Qp(1)).) Clearly they make the right square in the above diagram
commute. To see that the left square commutes as well it is best to consider
the following diagram of maps of distinguished triangles

R	syn(XC , Qp(1))
β̃

F1(R	dR(XK )̂⊗K B+
dR)

θ
�≥1(XK )̂⊗KC[−1]

[R	HK(X0)̂⊗F̂B+
st ]ϕ=p,N=0 ιHK⊗ι

ιHK⊗ι

R	dR(XK )̂⊗K B+
dR

θ
�•(XK )̂⊗KC

(R	dR(XK )̂⊗K B+
dR)/F1 (R	dR(XK )̂⊗K B+

dR)/F1 θ
O(XK )̂⊗KC

The map β̃ is the map on mapping fibers induced by the commutative bot-
tom left square. We have β = θβ̃. It remains to check that the induced map
O(XK )̂⊗KC → �1(XK )̂⊗KC from the right column of the above diagram
is equal to d, but this is easy.

And here is the general case.

Proposition 3.36 Let X be an affine or a Stein weak formal scheme. Let r ≥ 0.
There is a natural map of strictly exact sequences

0 → �r−1(XC )/ ker d
∂

Hr
syn(XC , Qp(r))

β

(Hr
HK(X0)̂⊗FB+

st )
N=0,ϕ=pr → 0

ιHK⊗θ

0 → �r−1(XC )/ ker d
d

�r (XC )d=0 Hr
dR(XK )̂⊗KC −→ 0

Moreover, ker(ιHK ⊗ θ) � (Hr
HK(X0)̂⊗FB+

st )
N=0,ϕ=pr−1

, Hr
syn(XC , Qp(r))

is LB or Fréchet, respectively, and the maps β, ιHK ⊗ θ are strict and have
closed images.

Proof To deal easier with topological issues, we start with changing the period
ring in the proposition from B+

st to ̂B+
st . That is, we will show that the natural

map ιst : B+
st → ̂B+

st induces a commutative diagram (in CQp )
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(Hr
HK(X0)̂⊗FB+

st )
N=0,ϕ=pi ιHK⊗ι

1⊗ιst�
Hr
dR(XK )̂⊗KC

(Hr
HK(X0)̂⊗F̂B+

st )
N=0,ϕ=pi ιHK⊗ι

Hr
dR(XK )̂⊗KC.

(3.37)

The commutativity is clear since the composition B+
st

ιst→ ̂B+
st

ι→ B+
dR is just

the original map ι : B+
st → B+

dR. To see that 1 ⊗ ιst is a strict isomorphism it
suffices to look at the diagram

(Hr
HK(X0)̂⊗FB+

st )
N=0

ιst

Hr
HK(X0)̂⊗FB+

cr

̂β

∼

β

(Hr
HK(X0)̂⊗F̂B+

st )
N=0,

where ̂β is the trivialization from (3.22). The map ̂β is well-defined because N
is nilpotent on Hr

HK(X0) and factorizes through the map ιst yielding the map β

andmaking the above diagram commute. Themap ̂β is a strict isomorphism. It
follows that both β and ιst are algebraic isomorphisms and this easily implies
that ιst is a strict isomorphism, as wanted.

We will now prove our proposition with B+
st replaced bŷB+

st . The following
map of exact sequences (where�i , Hi

dR and Hi
HK stand for�i (XC ), Hi

dR(XK )

and Hi
HK(X0), respectively) is constructed in an analogous way to the case of

r = 1 treated in the above example

(Hr−1
HK

̂⊗F̂B+
st )

N=0,ϕ=pr

ιHK⊗θ

�r−1/d�r−2 ∂
˜Hr
syn(XC , Qp(r))

β

(Hr
HK

̂⊗F̂B+
st )

N=0,ϕ=pr → 0

ιHK⊗θ

0 → Hr−1
dR

̂⊗KC �r−1/d�r−2 d
�r,d=0 π

Hr
dR

̂⊗KC → 0

(3.38)

To prove the first claim of the proposition it suffices to show that the map
ιHK ⊗ θ in degree r − 1 is surjective. For that we will need the following
lemma.

Lemma 3.39 Let M be an effective23 finite (ϕ, N )-module over F. The
sequence

0 → (M ⊗F ̂B+
st )

ϕ=p j ,N=0 t→ (M ⊗F ̂B+
st )

ϕ=p j+1,N=0 1⊗θ−−→M ⊗F C

23 We call a (ϕ, N )-module M effective if all the slopes of the Fobenius are ≥ 0.
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is exact. Moreover, the right arrow is a surjection if the slopes of Frobenius
are ≤ j .

Proof Using the trivialization (3.22) and the fact that θ(u) = 0, we get the
following commutative diagram

0 (M ⊗F ̂B+
st )

ϕ=p j ,N=0 t
(M ⊗F ̂B+

st )
ϕ=p j+1,N=0 1⊗θ

M ⊗F C

0 (M ⊗F B+
cr)

ϕ=p j

β �
t

(M ⊗F B+
cr)

ϕ=p j+1

β �
1⊗θ

M ⊗F C

Id �

Hence it suffices to prove the analog of our lemma for the bottom sequence.
First we will show that the following sequence

0 → (M ⊗F B+
cr)

ϕ=p j t→ (M ⊗F B+
cr)

ϕ=p j+1 1⊗θ−−→M ⊗F C (3.40)

is exact. Multiplication by t is clearly injective. To show exactness in the
middle it suffices to show that

(M ⊗F F1B+
cr)

ϕ=p j+1 = (M ⊗F tB+
cr)

ϕ=p j+1
,

where F1B+
cr := B+

cr ∩ F1B+
dR. Or that (F1B+

cr)
ϕ=p j+1−α = (tB+

cr)
ϕ=p j+1−α

.

But this follows from the fact that

(F1B+
cr)

ϕ=p j+1−α ⊂ {x ∈ B+
cr|θ(ϕk(x)) = 0, ∀k ≥ 0} = tB+

cr.

It remains to show that if the Frobenius slopes of M are ≤ j then the last
arrow in the sequence (3.40) is a surjection. To see this, we note that all the
terms in the sequence are C-points of finite dimensional BC spaces24 and
the maps can be lifted to maps of such spaces. It follows that the cokernel of
multiplication by t is a finite dimensionalBC space.We compute itsDimension
[20, 5.2.2]:

Dim(M⊗FB+
cr)

ϕ=p j+1 − Dim(M ⊗F B+
cr)

ϕ=p j

=
∑

ri≤ j+1

( j + 1 − ri , 1) −
∑

ri≤ j

( j − ri , 1)

= (( j + 1) dimF M − tN (M), dimF M)

− ( j dimF M − tN (M), dimF M)

= (dimF M, 0).

24 Which are called finite dimensional Banach Spaces in [14] and Banach–Colmez spaces in
most of the literature.
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Here ri ’s are the slopes of Frobenius repeated with multiplicity, tN (M) =
vp(det ϕ), and the second equality follows from the fact that the slopes of
Frobenius are ≤ j . Since this Dimension is the same as the Dimension of the
BC space corresponding to M ⊗F C , we get the surjection we wanted.

Let us come back to the proof of Proposition 3.36.
• Assume first that X is quasi-compact. By the above lemma, to prove that
the map ιHK ⊗ θ is surjective in degree r − 1 and that its kernel in degree
r is isomorphic to (Hr

HK(X0)̂⊗F̂B+
st )

ϕ=pr−1,N=0 it suffices to show that the
slopes of Frobenius on Hi

HK(X0) are ≤ i . For that we use the weight spectral
sequence (3.3) to reduce to showing that, for a smooth scheme Y over k, the
slopes of Frobenius on the (classical) rigid cohomology H j

rig(Y/F) are ≤ j .
But this is well-known [13, Th.3.1.2].

We have shown that syntomic cohomology fits into an exact sequence

0 → �r−1(XC )/ ker d
∂

˜Hr
syn(XC , Qp(r))

π1
(Hr

HK(X0)̂⊗FB+
st )

N=0,ϕ=pr → 0

Hence, since it is an extension of two classical objects, it is classical. Since
Hr
dR(XK ) is a finite dimensional vector space over K the surjective map π

in the diagram (3.38) has a section. Since the syntomic cohomology is the
equalizer of the maps ιHK ⊗ θ and π this section lifts to a section of the
surjection π1 above. Hence Hr

syn(XC , Qp(r)) is an LB-space. Since the map
ιHK ⊗ θ lifts to a map of finite Dimensional BC spaces it is strict and has a
closed image. It follows that so does the pullback map β.

• Assume now that X is Stein with a Stein covering {Ui }, i ∈ N. Since the
map ιHK ⊗ θ is the projective limit of the maps

(ιHK ⊗ θ)i : (H∗
HK(Ui )̂⊗F̂B+

st )
N=0,ϕ=pr → H∗

dR(]Ui [X )̂⊗KC

the computation above yields the statement on the kernel in degree r . For
the surjectivity in degree r − 1, we use the vanishing, shown in the proof of
Lemma 3.28, of H1holim i (Hr

HK(Ui )̂⊗F̂B+
st )

N=0,ϕ=pr−1
.

Since the maps (ιHK ⊗ θ)i are strict and have closed images and we have
vanishing of H1holim i (Hr

HK(Ui )̂⊗F̂B+
st )

N=0,ϕ=pr−1
, it follows that the pro-

jective limitmap ιHK⊗θ inherits these properties and then so does the pullback
map β. Finally, since the syntomic cohomology is the equalizer of the maps
ιHK ⊗ θ and π of Fréchet spaces it is Fréchet.

Remark 3.41 Assume that X is affine. The image of the map ιHK⊗θ in degree
r in the fundamental diagram is the C-points of a finite dimensional BC space
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918 P. Colmez et al.

that is the cokernel of the map:

(Hr
HK(X0) ⊗F B

+
st )

N=0,ϕ=pr−1 t→ (Hr
HK(X0) ⊗F B

+
st )

N=0,ϕ=pr .

Its Dimension is equal to

∑

ri≤r

(r − ri , 1) −
∑

ri≤r−1

(r − 1 − ri , 1) =
∑

ri≤r−1

(1, 0) +
∑

r−1<ri≤r

(r − ri , 1).

3.3 Crystalline syntomic cohomology

The classical crystalline syntomic cohomology of Fontaine–Messing and the
related period map to étale cohomology generalize easily to formal schemes.
We define them and then modify this syntomic cohomology in the spirit of
Bloch–Kato to make it more computable.

3.3.1 Definition a la Fontaine–Messing

Let X be a semistable p-adic formal scheme overOK . This means that, locally
for the Zariski topology, X = Spf(R), where R is the p-adic completion of an
algebra étale over OK {T1, . . . , Tn}/(T1 · · · Tm − �). That is, we do not allow
self-intersections. We equip X with the log-structure induced by the special
fiber.

Set X := XOC . For r ≥ 0, we have the geometric syntomic cohomology of
Fontaine–Messing [26]

R	syn(X , Z/pn(r)) := [FrR	cr(Xn)
ϕ−pr−−→R	cr(Xn)] ,

FrR	cr(Xn) := R	cr(Xn,J
[r ])

R	syn(X , Zp(r)) := holim nR	syn(X , Z/pn(r)).

Crystalline cohomology used here is the absolute one, i.e., overOF,n andJ [r ]
is the r ’th level of the crystalline Hodge filtration sheaf. We have

R	syn(X , Zp(r))Qp = [FrR	cr(X)Qp

ϕ−pr−−→R	cr(X)Qp ]
= [R	cr(X)

ϕ=pr

Qp
→ R	cr(X)Qp/F

r ] (3.42)

and similarly with Zp and Z/pn coefficients.
The above geometric syntomic cohomology is related, via period mor-

phisms, to the étale cohomology of the rigid space XC (see below) and hence
allows to describe the latter using differential forms. To achieve the same for
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Cohomology of p-adic Stein spaces 919

pro-étale cohomology, we need to modify the definition of syntomic cohomol-
ogy a bit. Consider the complexes of sheaves on X associated to the presheaves
(U is an affine Zariski open in X and U := UOC )

Acr := (U 
→ (holim nR	cr(Un))Qp),

FrAcr := (U 
→ (holim n F
r R	cr(Un))Qp),

S (r) := (U 
→ R	syn(U , Zp(r))Qp).

We have

S (r) = [FrAcr
ϕ−pr−−→Acr] = [A ϕ=pr

cr → Acr/F
r ].

We define

R	cr(X , Qp) := R	(X,Acr), FrR	cr(X , Qp) := R	(X, FrAcr),

R	syn(X , Qp(r)) := R	(X,S (r)).

Hence

R	syn(X , Qp(r)) = [FrR	cr(X , Qp)
ϕ−pr−−→ R	cr(X , Qp)]

= [R	cr(X , Qp)
ϕ=pr → R	cr(X , Qp)/F

r ]. (3.43)

There is a natural map

R	syn(X , Zp(r))Qp → R	syn(X , Qp(r)). (3.44)

It is a quasi-isomorphism in the case X is of finite type but not in general
(since in the case of Zp(r) we do all computations on U ’s as above integrally
and invert p at the very end and in the case of Qp(r) we invert p already on
each U ).

By proceeding just as in the case of overconvergent syntomic cohomology
(and using crystalline embedding systems instead of dagger ones) we can
equip both complexes in (3.44) with a natural topology for which they become
complexes of Banach spaces over Qp in the case X is quasi-compact.25 We
used here the simple fact that an exact sequence of Fréchet spaces is strictly
exact.

The defining mapping fibers (3.42) and (3.44) are taken in D(CQp).
Moreover, the change of topology map in (3.44) is continuous (and a strict
quasi-isomorphism if X is of finite type).

25 We note that OK being syntomic over OF , all the integral complexes in sight are in fact
p-torsion free.
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3.3.2 Period map

We are interested in syntomic cohomology a la Fontaine–Messing because of
the following comparison [20,79].

Proposition 3.45 Let X be a semistable finite type formal scheme over OK .
The Fontaine–Messing period map26 [26]

αFM : R	syn(X , Qp(r)) → R	ét(XC , Qp(r))

is a quasi-isomorphism after truncation τ≤r .

We equip the pro-étale and étale cohomologies R	proét(XC , Qp(r)), and
R	ét(XC , Qp(r))with a natural topology by proceeding as in the case of over-
convergent rigid cohomology by using as local data compatible complexes of
freeZ/pn-modules .27 If X is quasi-compact, we obtain in this way complexes
of Banach spaces over Qp.

Corollary 3.46 Let X be a semistable formal scheme over OK . There is a
natural Fontaine–Messing period map

αFM : R	syn(X , Qp(r)) → R	proét(XC , Qp(r)) (3.47)

that is a strict quasi-isomorphism after truncation τ≤r .

Proof Cover X with quasi-compact formal schemes and invoke Proposi-
tion 3.45; we obtain a quasi-isomorphism

αFM : τ≤rR	syn(X , Qp(r)) → τ≤rR	ét(XC , Qp(r)).

To see that it is strict, it suffices to note that, locally, the period map is a zigzag
between complexes of Banach spaces and invoke Lemma 2.1.

It remains to show that, for a quasi-compact X , the natural map

R	ét(XC , Qp(r)) → R	proét(XC , Qp(r))

is a (strict) quasi-isomorphism. From [74, Cor. 3.17] we know that this is
true with Z/pn-coefficients. This implies that we have a sequence of quasi-
isomorphisms

26 We take the version of the Fontaine–Messing period map that is compatible with Chern
classes.
27 Such complexes can be found, for example, by taking the system of étale hypercovers.
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R	ét(XC , Zp(r)) = holim nR	ét(XC , Z/pn(r)) � holim nR	proét(XC , Z/pn(r))

� R	proét(XC , holim nZ/pn(r))

� R	proét(XC , lim←−
n

Z/pn(r)) = R	proét(XC , Zp(r)),

where the third quasi-isomorphism follows from the fact that R	 and holim
commute and the fourth one follows from [74, Prop. 8.2].

It remains to show that

R	proét(XC , Zp(r)) ⊗ Qp
∼→ R	proét(XC , Qp(r)).

But, since |XC | is quasi-compact, the site XC,proét is coherent [74, Prop. 3.12].
Hence its cohomology commutes with colimits of abelian sheaves, yielding
the above quasi-isomorphism.

3.3.3 Definition a la Bloch–Kato

Crystalline geometric syntomic cohomology a la Fontaine–Messing can be
often described in a very simple way using filtered de Rham complexes and
Hyodo–Kato cohomology (if the latter can be defined) and the period rings
B+
st , B+

dR.This was done for proper algebraic and analytic varieties in [20,59].
In this section we adapt the arguments from loc. cit. to the case of some non-
quasi-compact rigid varieties. The de Rham term is the same, the Hyodo–Kato
term is more complicated, and the role of the period ring B+

st is played bŷB+
st .

Let r ≥ 0. For a semistable formal scheme X over OK , we define the
crystalline geometric syntomic cohomology a la Bloch–Kato (as an object
in D(CQp))

R	BK
syn (XOC , Qp(r))

:= [[R	cr(X/rPD� , Qp)̂⊗R
rPD�,Qp

̂B+
st ]N=0,ϕ=pr p� ⊗ι−−−−→(R	dR(XK )̂⊗R

KB+
dR)/Fr ].

HereR	cr(X/rPD� , Qp) is defined in an analogousway toR	cr(X, Qp) (hence
it is rational; the corresponding integral cohomology we will denote simply by
R	cr(X/rPD� )). The completed tensor product R	cr(X/rPD� , Qp)̂⊗R

rPD�,Qp

̂B+
st is

defined in the following way (note that rPD�,Qp
is not a field hence we can not

use the tensor product in the category of convex vector spaces): if X is of finite
type, we set

R	cr(X/rPD� , Qp)̂⊗R
rPD�,Qp

̂B+
st := (R	cr(X/rPD� )̂⊗rPD�

̂A+
st )⊗LQp,
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where the integral objects are in the category D(Ind(PDQp)); for a general
X , we lift the above definition from formal schemes of finite type via the étale
cohomological descent.

Proposition 3.48 There exists a functorial quasi-isomorphism in D(CQp)

ιBK : R	BK
syn(XOC , Qp(r))

∼→ R	syn(XOC , Qp(r)).

Proof The comparison map ιBK will be induced by a pair of maps (ι1BK, ι2BK),
basically Künneth cup product maps, that make the following diagram com-
mute (in D(CQp)).

[R	cr(X/rPD� , Qp)̂⊗R
rPD�,Qp

̂B+
st ]N=0 p� ⊗ι

ι1BK�

(R	dR(XK )̂⊗R
KB+

dR)/Fr

ι2BK�

R	cr(X , Qp) R	cr(X , Qp)/Fr

(i) Construction of the map ι1BK. We may argue locally and assume that X is
quasi-compact. Consider the following maps in D(CF )

R	cr(X/rPD� , Qp)̂⊗R
rPD�,Qp

̂B+
st

∪→ R	cr(XOC /rPD� , Qp) ← R	cr(XOC , Qp).

(3.49)

We claim that the cup product map is a quasi-isomorphism: indeed, the
proof of an analogous result in the case of schemes [79, Prop. 4.5.4] goes
through in our setting. Recall the key points. By (3.15) and the fact that
Ast,n is flat over rPD�,n , it suffices to prove that the Künneth morphism

∪ : R	cr(Xn/r
PD
�,n) ⊗L

rPD�,n
R	cr(O

×
K ,n

/rPD�,n) → R	cr(XOK ,n/r
PD
�,n)

(3.50)

is a quasi-isomorphism.Byunwinding both sides onefinds aKünnethmor-
phism for certain de Rham complexes. It is a quasi-isomorphism because
these complexes are “flat enough” which follows from the fact that the
map XOK ,n

→ O×
K ,n is log-syntomic. This finishes the argument.

Both maps in (3.49) are compatible with the monodromy operator N .
Moreover, we have the distinguished triangle [47, Lemma4.2]

R	cr(XOK ,n
/OF,n) → R	cr(XOK ,n

/rPD�,n)
N→ R	cr(XOK ,n

/rPD�,n).

(3.51)
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It follows that the last map in (3.49) is a quasi-isomorphism after taking
the (derived) N = 0 part. Hence applying N = 0 to the terms in (3.49)
we obtain a functorial quasi-isomorphism in D(CF ) (for strictness, note
that, rationally, we worked only with complexes of Banach spaces)

ι1BK : [R	cr(X/rPD� , Qp)̂⊗R
rPD�,Qp

̂B+
st ]N=0 ∼→ R	cr(XOC , Qp). (3.52)

(ii) Construction of the map ι2BK. We may argue locally and assume that X is
quasi-compact. Consider the maps

(R	cr(Xn/O
×
K ,n)⊗L

OK ,n
R	cr(O

×
K ,n

/O×
K ,n))/F

r ∪
R	cr(XOK ,n

/O×
K ,n)/F

r

R	cr(XOK ,n
)/Fr

(3.53)

The cup product map is a Künneth map and it is a quasi-isomorphism for
the same reason as the map (3.50). The second map—the change of base
map fromOF toO×

K—is a quasi-isomorphism (up to a universal constant)
by [59, Cor. 2.4]. Rationally, the above maps induce a map

ι2BK : (R	dR(XK )̂⊗R
KB+

dR)/Fr ∼→ R	cr(XOC , Qp)/F
r .

Since B+
dR is a Fréchet space, the natural map

(R	dR(XK )̂⊗KB+
dR)/Fr → (R	dR(XK )̂⊗R

KB+
dR)/Fr

is a strict quasi-isomorphism, hence so is the map ι2BK.

Compatibility of the maps ι1BK, ι2BK can be inferred from the natural commu-
tative diagram

(R	cr(X/O×
K , Qp)̂⊗R

KR	cr(O
×
C /O×

K )Qp )/F
r

∪
∼

(R	dR(XK )̂⊗R
KB+

dR)/Fr

ι2BK

∼

[R	cr(X/rPD� , Qp)̂⊗R
rPD�,Qp

̂B+
st ]N=0

ι1BK

∪�

p� ⊗ι
p� ⊗p�

[R	cr(XOC /rPD� , Qp)]N=0 p�
R	cr(XOC /O×

K , Qp)/Fr

R	cr(XOC , Qp)

�

R	cr(XOC , Qp)/Fr .

�
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4 Comparison of syntomic cohomologies

We have defined two geometric syntomic cohomologies: the crystalline one
and the overconvergent one. We will show now (Theorem 4.1) that they are
naturally isomorphic for Stein spaces and that, as a result, the p-adic pro-étale
cohomology fits into a fundamental diagram (Theorem 4.12). We use this
result to describe the pro-étale cohomology of affine spaces, tori, and curves
(see Sect. 4.3).

4.1 Comparison morphism

Let X be a semistable weak formal scheme over OK . Let ̂X be the associated
formal scheme. The purpose of this section is to prove that the change of
convergence map from overconvergent syntomic cohomology to crystalline
syntomic cohomology is a strict quasi-isomorphism assuming that X is Stein.

Theorem 4.1 Let r ≥ 0. There is a functorial map in D(CQp)

ιrig : R	syn(XC , Qp(r)) → R	BK
syn(

̂XOC , Qp(r)).

It is a quasi-isomorphism if X is Stein.

Proof We will induce the comparison map ιrig in our theorem by a pair of
maps (ι1rig, ι

2
rig) defined below that make the following diagram commute (in

D(CQp))

[R	rig(X0/O
0
F )̂⊗R

F
̂B+
st ]ϕ=pr ιHK⊗ι

ι1rig

(R	dR(XK )̂⊗R
KB+

dR)/Fr

ι2rig

[R	cr(̂X/rPD� , Qp)̂⊗R
rPD�,Qp

̂B+
st ]ϕ=pr p� ⊗ι

(R	dR(̂XK )̂⊗R
KB+

dR)/Fr .

The map ι1rig is compatible with monodromy. Both maps ι1rig, ι
2
rig are quasi-

isomorphisms if X is Stein.

(i) Definition of maps ι1rig and ι2rig.

(�) Map ι2rig. The map ι2rig, the easier of the two maps, is just the map from
de Rham cohomology of a weak formal scheme to de Rham cohomology of
its completion; in the case X is Stein, it is an isomorphism induced by the
canonical identification of coherent cohomology of a partially proper dagger
space and its rigid analytic avatar [29, Th.2.26].
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Cohomology of p-adic Stein spaces 925

(�)Map ι1rig. To define the map ι1rig, consider first the change of convergence
map

R	rig(X0/O
0
F )̂⊗R

F
̂B+
st → R	cr(X0/O

0
F , F)̂⊗R

F
̂B+
st . (4.2)

It is compatible with Frobenius and monodromy. We claim that if X is Stein it
is a strict quasi-isomorphism. It suffices to show this for the change of topology
map

R	rig(X0/O
0
F ) → R	cr(X0/O

0
F , F). (4.3)

But before we proceed to do that, a small digression about convergent coho-
mology that we will use.

Remark 4.4 (Review of convergent cohomology).
Contrary to the case of rigid cohomology, the theory of (relative) convergent

cohomology is well developed [60,75,76]. Recall the key points. The set up is
the following: the base B is a p-adic formal log-scheme over OF , B := B1;
we look at convergent cohomology of X over Y , where X is a log-scheme
over B and Y is a p-adic formal log-scheme over B.

1. There exist a convergent site defined in analogy with the crystalline site,
where the role of PD-thickenings (analytically, objects akin to closed discs
of a specific radius< 1) is played by enlargements (p-adic formal schemes;
analytically, closed discs of any radius < 1). Convergent cohomology is
defined as the cohomology of the rational structure sheaf on this site.

2. Invariance under infinitesimal thickenings. If i : X → X ′ is a homeo-
morphic exact closed immersion then the pullback functor i∗ induces a
quasi-isomorphism on convergent cohomology [60, 0.6.1], [76, Prop. 3.1].

3. Poincaré Lemma. It states that, locally, convergent cohomology can be
computed by de Rham complexes of convergent tubes in p-adic formal
log-schemes log-smooth over the base (playing the role of PD-envelopes)
[76, Th.2.29]. Analytically, this means that the fixed closed discs used in
the crystalline theory are replaced by open discs.

4. There is a natural map from convergent cohomology to crystalline coho-
mology. It is a quasi-isomorphism for log-schemes log-smooth over Y1
[76, Th.2.36]. In particular,28 for a semistable scheme X0 over k0, there is
a natural quasi-isomorphism

R	conv(X0/O
0
F )

∼→ R	cr(X0/O
0
F , F).

28 This can be easily seen by looking locally at the de Rham complexes computing both sides.

123



926 P. Colmez et al.

Proposition 4.5 ([32, Th.5.3]) Let X be a semistable weak formal scheme
over OK . Assume that all irreducible components of X0 are proper. Then
the natural morphism (induced by mapping weak formal log-schemes to their
completions)

R	rig(X0/O
0
F ) → R	conv(X0/O

0
F )

is a quasi-isomorphism.

Proof Recall that we have two compatible weight spectral sequences [32, 5.2,
5.3]

E−k,i+k
1 =

⊕

j≥0, j≥−k

⊕

S∈�2 j+k+1

Hi−2 j−k
rig (S/OF ) ⇒ Hi

rig(X0/O
0
F ),

E−k,i+k
1 =

⊕

j≥0, j≥−k

⊕

S∈�2 j+k+1

Hi−2 j−k
conv (S/OF ) ⇒ Hi

conv(X0/O
0
F )

Here � j denotes the set of all intersections S of j different irreducible com-
ponents of X that are equipped with trivial log-structures. By assumptions,
they are smooth and proper over k. It suffices then to prove that the maps
H∗
rig(S/OF ) → H∗

conv(S/OF ) are isomorphisms. Since S is proper this is
classical [2, Prop. 1.9].

Hence, R	conv(X0/O
0
F ) is a convergent version of R	rig(X0/O

0
F ), i.e., a

version where we use p-adic formal schemes and rigid spaces instead of weak
formal schemes and dagger spaces.

Now, coming back to the change of topology map (4.3), note that it factors
as

R	rig(X0/O
0
F ) → R	conv(X0/O

0
F )

∼→ R	cr(X0/O
0
F , F). (4.6)

We topologized the convergent cohomology in the same way we did rigid
cohomology. The second map is quasi-isomorphism because X0 is semistable
(hence, locally, admitting liftings). By Proposition 4.5, the first map is a quasi-
isomorphism as well. We claim that the composition (4.6) is a strict quasi-
isomorphism. We will reduce checking this to X0 proper where it will be
clear. Take the subschemes {Ui }, {Yi }, i ∈ N, of X0 as in Sect. 3.1.1. We have
strict quasi-isomorphisms

R	rig(X0/O
0
F )

∼→ holim iR	rig(Ui/O
0
F )

∼→ holim iR	rig(Yi/O
0
F ).
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Cohomology of p-adic Stein spaces 927

The first one by Example 3.16, the second one trivially. We have similar strict
quasi-isomorphisms for the crystalline cohomology

R	cr(X0/O
0
F , F)

∼→ holim iR	cr(Ui/O
0
F , F)

∼→ holim iR	cr(Yi/O
0
F , F).

The second one is again trivial. The first one follows from the fact that it is
a quasi-isomorphism of complexes of Fréchet spaces. It remains to show that
the natural map

holim iR	rig(Yi/O
0
F ) → holim iR	cr(Yi/O

0
F )

is a strict quasi-isomorphism. Or that, so is the natural map

R	rig(Yi/O
0
F ) → R	cr(Yi/O

0
F , F).

We factor this map as

R	rig(Yi/O
0
F ) → R	conv(Yi/O

0
F ) → R	cr(Yi/O

0
F , F).

Since the idealized log-scheme Yi is ideally log-smooth over k0 the second
map is a quasi-isomorphism. Since Yi is also proper, so is the first map. This
finishes the proof that the map (4.3) is a strict quasi-isomorphism.

We will define now the following functorial quasi-isomorphism inD(CQp)

hcr : [R	cr(X/rPD� , Qp)̂⊗R
rPD�,Qp

̂B+
st ]ϕ=pr→[R	cr(X0/O

0
F , F)̂⊗R

F
̂B+
st ]ϕ=pr .

(4.7)

We may assume that X is quasi-compact. Let J be the kernel of the map
p0 : rPD� → OF , T 
→ 0. The map p0 is compatible with Frobenius and
monodromy (“log T 
→ log 0”). Consider the exact sequence

0 → Jn → rPD�,n
p0→ OF,n → 0.

Tensoring it with ̂Ast,n , we get the following exact sequence

0 → Jn ⊗rPD�,n
̂Ast,n → ̂Ast,n

p0→ OF,n ⊗rPD�,n
̂Ast,n → 0

We used here the fact that ̂Ast,n is flat over rPD�,n . Going to limit with n, we get
the exact sequence

0 → Ĵ⊗rPD�
̂Ast → ̂Ast

p0→ OF̂⊗rPD�
̂Ast → 0 (4.8)
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928 P. Colmez et al.

Set E := Ĵ⊗rPD�
̂Ast.

Tensoring the last sequence with R	cr(Xn/rPD�,n) and R	cr(X0/O
0
F,n),

respectively, we obtain the following distinguished triangles

En ⊗L
rPD�,n

R	cr(Xn/rPD�,n)
̂Ast,n ⊗L

rPD�,n
R	cr(Xn/rPD�,n)

p0

OF,n⊗rPD�,n
̂Ast,n ⊗L

rPD�,n
R	cr(Xn/rPD�,n)

En ⊗L
OF,n

R	cr(X0/O
0
F,n)

̂Ast,n ⊗L
OF,n

R	cr(X0/O
0
F,n)

p0

OF,n⊗rPD�,n
̂Ast,n ⊗L

OF,n
R	cr(X0/O

0
F,n)

The last terms in these triangles are quasi-isomorphic. Indeed, by direct local
computations we see that the natural map

R	cr(Xn/r
PD
�,n) ⊗L

rPD�,n
OF,n → R	cr(X0/O

0
F,n)

is a quasi-isomorphism. Hence

OF,n⊗rPD�,n
̂Ast,n ⊗L

rPD�,n
R	cr(Xn/r

PD
�,n) � ̂Ast,n ⊗L

rPD�,n
R	cr(X0/O

0
F,n)

� ̂Ast,n ⊗L
rPD�,n

OF,n ⊗L
O F,n

R	cr(X0/O
0
F,n).

The complexes

[EQp
̂⊗R
rPD�,Qp

R	cr(X/rPD� , Qp)]ϕ=pr , [EQp
̂⊗R

FR	cr(X0/O
0
F , F)]ϕ=pr

(4.9)

are strictly acyclic:29 this is an immediate consequence of the fact that Frobe-
nius ϕ is highly topologically nilpotent on J (hence pr − ϕ is rationally
invertible). This implies that the following maps

[R	cr(X/rPD� , Qp)̂⊗R
rPD�,Qp

̂B+
st ]ϕ=pr p0 [R	cr(X0/O

0
F , F)̂⊗R

F (̂B+
st/EQp )]ϕ=pr

[R	cr(X0/O
0
F , F)̂⊗R

F
̂B+
st ]ϕ=pr

1⊗p0

(4.10)

29 In fact, they are both isomorphic to the trivial complex.
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are strict quasi-isomorphisms. We define the map hcr to be equal to the above
zigzag. It is compatible with the monodromy operator (for the first map in
the zigzag use the fact that the monodromy operator is defined by compatible
residue maps).

We define a map in D(CQp)

ι1rig : [R	rig(X0/O
0
F )̂⊗R

F
̂B+
st ]ϕ=pr→[R	cr(X/rPD� , Qp)̂⊗R

rPD�,Qp

̂B+
st ]ϕ=pr

(4.11)

as the composition of the maps in (4.2) and (4.7). Both maps being compatible
with the monodromy operator so is ι1rig.

ii) Compatibility of the maps ι1rig, ι
2
rig. Let r ≥ 0. The compatibility of the maps

ι1rig, ι
2
rig can be shown by the commutative diagram

[R	rig(X0/O
0
F )̂⊗R

F
̂B+
st ]ϕ=pr

�

ιHK⊗ι

ι1rig�

(R	dR(XK )̂⊗R
K B+

dR)/Fr

ι2rig�

[R	rig(X0/r
†)̂⊗R

F
̂B+
st ]ϕ=pr

p0⊗1

∼

f1

p� ⊗ι

[R	cr(X0/O
0
F , F)̂⊗R

F
̂B+
st ]ϕ=pr [R	rig(X0/r

†)̂⊗R
F
̂B+
st ]ϕ=pr

hrig

f2

p� ⊗ι

[R	cr(X/rPD� , Qp)̂⊗R
rPD
�,Qp

̂B+
st ]ϕ=pr

hcr �

p� ⊗ι
(R	dR(̂XK )̂⊗R

K B+
dR)/Fr .

Here themap f2 is the change of convergencemap defined by the composition

f2 : R	rig(X0/r
†) → R	conv(X0/r̂)

∼← R	conv(X1/r̂) → R	cr(X/rPD� , Qp),

where r̂ := OF {T }. The quasi-isomorphism is actually a natural isomorphism
by the invariance under infinitesimal thickenings. The map f2 is clearly com-
patible with the projection p� and the map ι2rig. The map hrig is defined in the

same way as the map hcr: we just replace cr by rig and rPD� by r†. It is clear
that the maps h∗ are compatible.

The map f1 is induced by the composition

R	rig(X0/r†) = R	rig((P•, V•)/r†) R	rig(M ′
•/r

†)
∼ R	rig(M•/r†)

R	rig(X0/r†).

�
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The fact that the last quasi-isomorphism is strict needs a justification. We
may assume that X0 is affine and take a log-smooth lifting Y of X0 to r†.
Since the sheaf of differentials of YF is free we are reduced to showing strict
acyclicity of the Čech complex of overconvergent functions for the covering
corresponding to {Mi }, i ∈ I . Using a dagger presentation of YF , this complex
can bewritten as an inductive limit of Čech complexes for analogous coverings
of rigid analytic affinoids. The latter complexes being strictly acyclic (because
they are acyclic and we have the Open Mapping Theorem for Banach spaces)
and the inductive system being acyclic, the former complex is acyclic as well.
For the above diagram we need strictness of the last quasi-isomorphism with
terms tensoredwitĥB+

st but this is automatic sincewe have taken derived tensor
products. Finally, it is easy to check (do it first without the period ring ̂B+

st )
that the map f1 makes the two small adjacent triangles in the above diagram
commute.

4.2 Fundamental diagram

Having the comparison theorem proved above, we can now deduce a funda-
mental diagram for pro-étale cohomology from the one for overconvergent
syntomic cohomology.

Theorem 4.12 Let X be a Stein semistable weak formal scheme overOK . Let
r ≥ 0. There is a natural map of strictly exact sequences of Fréchet spaces

0 → �r−1(XC )/ ker d Hr
proét(XC , Qp(r))

β̃

(Hr
HK(X0)̂⊗FB+

st )
N=0,ϕ=pr → 0

ιHK⊗θ

0 → �r−1(XC )/ ker d
d

�r (XC )d=0 Hr
dR(XC ) −→ 0

Moreover, ker β̃ � (Hr
HK(X0)̂⊗FB+

st )
N=0,ϕ=pr−1

, and the vertical maps have
closed images.

Proof We define β̃ := p−rβι−1
rig ι−1

BKα−1
FM, using Corollary 3.46, Proposi-

tion 3.48, and Theorem 4.1; the twist by p−r being added to make this map
compatible with symbols. The theorem follows immediately from Proposi-
tion 3.36.

Remark 4.13 The above diagram can be thought of as a one-way comparison
theorem, i.e., the pro-étale cohomology Hr

proét(XC , Qp(r)) is the pullback of
the diagram

(Hr
HK(X0)̂⊗FB+

st )
N=0,ϕ=pr ιHK⊗θ−−−−→Hr

dR(XC )
can←− �r (XC )d=0
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built from the Hyodo–Kato cohomology and a piece of the de Rham complex.
For a striking comparison, recall that if X is a proper semistable formal scheme
over OK then the Semistable Comparison Theorem from [20] shows that we
have the exact sequence

0 → Hr
proét(XC , Qp(r)) → (Hr

HK(X0)̂⊗FB+
st )

N=0,ϕ=pr ιHK⊗ι−−−−→(Hr
dR(XK )̂⊗K B+

dR)/Fr ,

(4.14)

i.e., the pro-étale cohomology Hr
proét(XC , Qp(r)) is the pullback of the dia-

gram

(Hr
HK(X0)̂⊗FB+

st )
N=0,ϕ=pr ιHK⊗θ−−−−→(Hr

dR(XK )̂⊗KB+
dR)/Fr←−0.

Of course, in this case the étale and the pro-étale cohomologies agree. The
sequence (4.14) is obtained in an analogous way to the top sequence in the
fundamental diagram above. With the degeneration of the Hodge–de Rham
spectral sequence and the theory of finite dimensional BC spaces forcing the
injectivity on the left.

Remark 4.15 The following commutative diagram illustrates the relationship
between syntomic cohomology of Qp(r) and Qp(r − 1)

. . .

t

Synr−2
r−1

t�
HKr−2

r−1

t

DRr−2
r−1

t

∂
Synr−1

r−1

t�
HKr−1

r−1

t

0 0 0 0

. . . Synr−2
r HKr−2

r

θ

DRr−2
r

∂

θ

Synr−1
r HKr−1

r

θ

DRr−1
r

∂

Id

Synrr

Id

HKr
r

Id

0

. . . 0 Hr−2
dR

Id
Hr−2
dR 0 Hr−1

dR DRr−1
r

∂
Synrr HKr

r 0

Here wewrote HKi
r ,DR

i
r , and Syn

i
r for the i’th cohomology of the complexes

HK(XC , r),DR(XC , r) and R	syn(XC , Qp(r)), and Hi
dR := Hi

dR(XC ).
We claim that the rows of the above diagram are strictly exact. Indeed,

the two top rows arise from the definition of R	syn(XC , Qp(r − 1)),
R	syn(XC , Qp(r)); the map between them is the multiplication by t ∈
(B+

cr)
ϕ=p ∩ F1BdR. These rows are clearly strictly exact. It suffices now to

show that the columns form short strictly exact sequences (with zeros at the
ends). Indeed, for i ≤ r−1,multiplication by t induces an isomorphism (using
comparison with pro-étale cohomology)

Synir ∼= t Synir−1
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as well as the following strictly exact sequences

0 →DRi
r−1

t→ DRi
r → Hi

dR(XK )̂⊗KC → 0, r ≥ i + 2,

0 →HKi
r−1

t→ HKi
r → Hi

dR(XK )̂⊗KC → 0. (4.16)

The second one from Lemma 3.39; the first strictly exact sequence follows
from the strictly exact sequence

0 grr−i−1
F B+

dR
̂⊗K (�i (XK )/d�i−1(XK )) DRi

r (B+
dR/Fr−i−1)̂⊗K Hi

dR(XK ) 0

4.3 Examples

We will now illustrate Theorem 4.12 with some simple examples.

4.3.1 Affine space

Let d ≥ 1. Let A
d
K be the d-dimensional rigid analytic affine space over K .

Recall that Hr
ét(A

d
C , Qp) = 0 for r ≥ 1 [2, Th.7.3.2]. On the other hand, as

the following proposition shows, the pro-étale cohomology of A
d
C is highly

nontrivial in nonzero degrees.

Proposition 4.17 Let r ≥ 1. There is a GK -equivariant isomorphism in CQp

(of Fréchet spaces)

�r−1(Ad
C )/ ker d

∼→ Hr
proét(A

d
C , Qp(r)).

Remark 4.18 A simpler andmore direct proof of this result (but still using syn-
tomic cohomology) has been given in [21]. See [51] for another proof working
directly with the fundamental exact sequence in the pro-étale topology.

Proof Let A d denote a semistable weak formal scheme over OK such that
A d

K � A
d
K . We will explain below how such a model A d can be constructed.

By Theorem 4.12, we have a GK -equivariant exact sequence (in CQp )

0 → �r−1(Ad
C )/ ker d Hr

proét(A
d
C , Qp(r)) (Hr

HK(A d
0 )̂⊗FB+

st )
N=0,ϕ=pr → 0

Recall that Hr
dR(Ad

K ) = 0. Since, by the Hyodo–Kato isomorphism
Hr
HK(A d

0 ) ⊗F K � Hr
dR(Ad

K ), we have Hr
HK(A d

0 ) = 0. Our proposition
follows from the above exact sequence.
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It remains to show that we can construct a semistable weak formal scheme
A d over OK whose generic fiber is A

d
K . For d = 1, we can define a model

A 1 using Theorem 4.9.1 of [27]. That theorem describes a construction of a
formal semistable model for any analytic subspace PK \L ∗, where L is an
infinite compact subset of K -rational points of the projective line PK andL ∗
is the set of its limit points. The proof of the theorem can be easily modified
to yield a weak formal model. To define the modelA 1 we want we apply this
theorem with L = {∞} ∪ {� n|n ∈ Z, n ≤ 0}. We note that the special fiber
of A 1 is a half line of projective lines.

To construct a model A d for d > 1, first we consider the d-fold product
Y of the logarithmic weak formal scheme associated to A 1. Product is taken
over O×

K . It is not a semistable scheme but it is log-smooth over O×
K . Hence

its singularities can be resolved using combinatorics of monoids describing
the log-structure. In fact, using Lemma 1.9 of [69], one can define a canonical
ideal sheaf of Y that needs to be blown-up to obtain a semistable model A d

we want.

4.3.2 Torus

Let d ≥ 1. Let G
d
m,K be the d-dimensional rigid analytic torus over K . Let

Y d denote a semistable weak formal scheme overOK such thatY d
K � G

d
m,K .

Such a modelY d exists. For d = 1, we can define a modelY 1 using Theorem
4.9.1 of [27]; just as in the case of A

1
K above. More specifically, to define the

model Y 1 we want we apply this theorem with L = {∞, 0} ∪ {� n|n ∈ Z}.
We note that the special fiber of Y 1 is a line of projective lines. To construct
a model Y d for d > 1, we use products as above.

To compute the pro-étale cohomology, we will use Theorem 4.12. To make
it explicit, we need to compute (Hr

HK(Y d
0 )̂⊗FB+

st )
N=0,ϕ=pr . For d = 1, we

have

Hr
dR(Gm,K ) =

⎧

⎪

⎨

⎪

⎩

K if r = 0,

cdR1 (z)K if r = 1,

0 if r > 1.

Here z is a coordinate of the torus and cdR1 (z) is its de Rham Chern class, i.e.
dz/z (see Chapter 7). For d > 1, we can use the Künneth formula to compute
that Hr

dR(Gd
m,K ) is a K -vector space of dimension

(d
r

)

generated by the tuples

cdR1 (zi1) · · · cdR1 (zir ). Similarly, Hr
HK(Y d

0 ) is an F-vector space of dimension
(d
r

)

generated by the tuples cHK1 (zi1) · · · cHK1 (zir ). By Lemma 7.8, the Hyodo–
Kato and the de Rham symbols are compatible under the Hyodo–Kato map
ιHK.
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Since ϕ(cHK1 (zi j )) = pcHK1 (zi j ) and N (cHK1 (zi j )) = 0, we get that

(Hr
HK(Y d

0 )̂⊗FB+
st )

N=0,ϕ=pr = Hr
HK(Y d

0 )ϕ=pr = ∧rQd
p

and that it is a Qp-vector space of dimension
(d
r

)

generated by the tuples
cHK1 (zi1) · · · cHK1 (zir ). Hence, Theorem 4.12 gives us a map of GK -equivariant
exact sequences (in CQp )

0 �r−1(Gd
m,C )/ ker d Hr

proét(G
d
m,C , Qp(r))

β̃

∧rQd
p

can

0

0 �r−1(Gd
m,C )/ ker d d

�r (Gd
m,C )d=0 ∧rCd 0

Recall, for comparison, that Hr
ét(G

d
m,C , Qp(r)) � ∧rQd

p, aQp-vector space

generated by the tuples cét1 (zi1) · · · cét1 (zir ).

4.3.3 Curves

Let X be a Stein curve over K with a semistable model X over OK . The
diagram from Theorem 4.12 takes the following form30

0 → Cπ0(X) O(XC )
exp

H1
proét(XC , Qp(1))

dlog

(H1
HK(X0)̂⊗FB+

st )
ϕ=p,N=0 → 0

ιHK⊗θ

0 → Cπ0(X) O(XC )
d

�1(XC ) H1
dR(X)̂⊗KC −→ 0

5 Pro-étale cohomology of Drinfeld half-spaces

We will use the fundamental diagram of Theorem 4.12 to compute the p-adic
pro-étale cohomologyofDrinfeld half-spaces (Theorem5.13). This boils down
to understanding the Hyodo–Kato cohomology groups as (ϕ, N )-modules
and as representations of GLd+1(K ). The latter can be done by using the
comparison with de Rham cohomology and results of Schneider–Stuhler (see
Theorem 5.8); the computation of ϕ and N uses an explicit description a la
Iovita–Spiess (see Theorem 5.10 and Lemma 5.11) of Hyodo–Kato cohomol-
ogy of Drinfeld half-spaces in terms of symbols of rational hyperplanes.

30 We note here that the conditions of that theorem are always satisfied for curves.
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5.1 Drinfeld half-spaces and their standard formal models

Let K be a finite extension of Qp. Let H
d
K , d ≥ 1, be the d-dimensional

Drinfeld half-space over K : the K -rigid space that is the complement in P
d
K

of all K -rational hyperplanes. If H = P((Kd+1)∗) = P
d(K ) is the space of

K -rational hyperplanes in Kd+1 (this is a profinite set), we have

H
d
K = P

d
K \ ∪H∈H H.

The group G := GLd+1(K ) acts on it. We will drop the subscript K if there
is no danger of confusion.

H
d
K is a rigid analytic Stein space hence also a dagger analytic Stein space.

It has a (standard) G-equivariant semistable weak formal model ˜Hd
K [32, 6.1]

(that is Stein). Recall that the set of vertices of the Bruhat–Tits building BT of
PGLd+1(K ) is the set of homothety classes of lattices in Kd+1. It corresponds
to the set of irreducible components of Y := ˜H

d
K ,0. For s ≥ 0, let BTs denote

the Bruhat–Tits building truncated at s, i.e., the simplicial subcomplex of BT
supported on the vertices v such that the combinatorial distance d(v, v0) ≤ s,
v0 = [Od+1

K ]. Here, for a lattice L , [L] denotes the homothety class of L .
Let Ys denote the union of the irreducible components corresponding to the
vertices of BTs . It is a closed subscheme of Y that we equip with the induced
log-structure. We will sometimes write Y∞ for the whole special fiber Y . We
denote by Y ◦

s := Ys\(Ys ∩ (Y\Ys)), where the bar denotes closure. We have
immersions Ys−1 ⊂ Y ◦

s ⊂ Ys , where the first one is closed and the second one
is open.

5.2 Generalized Steinberg representations

We will briefly review the definitions and basic properties of the generalized
Steinberg representations that we will need.

5.2.1 Locally constant special representations

Let B be the upper triangular Borel subgroup of G and � = {1, 2, . . . , d}.
We identify the Weyl group W of G with the group of permutations of
{1, 2, . . . , d + 1} and with the subgroup of permutation matrices in G. Then
W is generated by the elements si = (i, i + 1) for i ∈ �.

For each subset J of � we let:

• WJ be the subgroup of W generated by the si with i ∈ J .
• PJ = BWJ B, the parabolic subgroup of G generated by B and WJ .
• X J = G/PJ , a compact topological space.

123



936 P. Colmez et al.

If A is an abelian group and J ⊂ �, let

SpJ (A) = LC(X J , A)
∑

i∈�\J LC(X J∪{i}, A)
,

where LC means locally constant functions with values in A (automatically
with compact support since the X J ’s are compact). This is a smoothG-module
over A and we have a natural isomorphism SpJ (A) = SpJ (Z)⊗ A. For J = ∅
we obtain the usual Steinberg representation with coefficients in A, while for
J = � we have SpJ (A) = A (since X J is a point). For r ∈ {0, 1, . . . , d} we
use the simpler notation

Spr (A) = Sp{1,2,...,d−r}(A).

For r > d, we set Spr (A) = 0.

Proposition 5.1 If A is a field of characteristic 0 or p then the SpJ (A)’s (for
varying J ) are the irreducible constituents of LC(G/B, A), each occurring
with multiplicity 1.

Proof This is due to Casselman in characteristic 0 (see [10, X, Th.4.11]) and
to Grosse-Klönne [36, Cor. 4.3] in characteristic p.

Remark 5.2 The proposition does not hold for A a field of characteristic � �= p,
see [82, III, Th.2.8].

The rigidity in characteristic p given by the previous theorem has conse-
quences in characteristic 0 that will be very useful to us later on.

Corollary 5.3 If J is a subset of �, then SpJ (OK ) is, up to a K ∗-homothety,
the unique G-stable OK -lattice in SpJ (K ).

Proof This follows easily from Proposition 5.1 and the fact that SpJ (OK ) is
finitely generated over OK [G], see [36, Cor. 4.5] for the details.

5.2.2 Topology

If � is a topological ring, then SpJ (�) has a natural topology: the space
X J being profinite, we can write X J = lim←−n

Xn,J for finite sets Xn,J and
then LC(X J , �) = lim−→n

LC(Xn,J , �), each LC(Xn,J , �) being a finite free
�-module endowed with the natural topology. In particular, if � is a finite
extension of Qp, this exhibits SpJ (�) as an inductive limit of finite dimen-
sional�-vector spaces, and the corresponding topology is the strongest locally
convex topology on the �-vector space SpJ (�), which is an LF-space.
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If M is a topological �-module, let M∗ := Homcont(M, �) equipped
with the weak topology. Then LC(X J , �)∗ is naturally isomorphic to
lim←−n

LC(Xn,J , �)∗, i.e., a countable inverse limit of finite free �-modules.
In particular, if L is a finite extension of Qp then SpJ (L)∗ is a nuclear Fréchet
space (in fact a countable product of Banach spaces) and SpJ (OL)∗ is a com-
pactOL -module, which is torsion free. Therefore SpJ (OL)∗ ⊗ L has a natural
structure of a weak dual of an L-Banach space.

5.2.3 Continuous special representations

Consider now the corresponding continuous special representation

SpcontJ (�) = C (X J , �)
∑

α∈�\J C (X J∪{α}, �)
.

Arguing as above, we see that, for any finite extension L of Qp, the space
SpcontJ (L) has a natural structure of an L-Banach space, with the unit ball
given by SpcontJ (OL). The action of G on all these spaces is continuous and
we can recover SpJ (L) from SpcontJ (L) as the space of smooth vectors (for the
action of G).

The rigidity in characteristic p given by Proposition 5.1 and Corollary 5.3
yields:

Corollary 5.4 Let J be a subset of � and L a finite extension of Qp.

a) The universal unitary completion of SpJ (L) is SpcontJ (L).
b) The space of G-bounded vectors in SpJ (L)∗ is SpcontJ (L)∗.

Proof a) Follows fromCorollary 5.3 and the fact that StcontJ (OL) is the p-adic
completion of SpJ (OL) (which in turn uses that SpJ (A) = SpJ (Z) ⊗ A
for all A, and this is a free A-module).

b) Follows by duality from a).

Remark 5.5 One can also define a locally analytic generalized Steinberg rep-
resentation SpanJ (L) for any finite extension L or Qp (or any closed subfield
of complex numbers). It is naturally a space of compact type, whose dual is
a nuclear Fréchet space. It contains SpJ (L) as a closed subspace (it is closed
because it is the space of vectors killed by the Lie algebra of G). The dual of
SpanJ (L) surjects onto the dual of SpJ (L) and contains the dual of SpcontJ (L) as
a dense subspace. The big difference is that SpanJ (L) is topologically reducible
as a G-module. Its Jordan–Hölder constituents are described in [65].
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5.3 Results of Schneider–Stuhler

We recall the cohomological interpretation of the representations Spr (Z), fol-
lowing [71]. Recall that H is the space of K -rational hyperplanes in Kd+1.
For r ∈ {1, 2, . . . , d} we define simplicial profinite sets Y (r)

• ,T (r)
• as follows:

• Y (r)
s is the closed subset ofH s+1 of tuples (H0, . . . , Hs) ∈ H s+1 with

dimK (

s
∑

i=0

K�Hi ) ≤ r,

where �Hi ∈ (Kd+1)∗ is any equation of Hi .
• T (r)

s is the set of flags W0 ⊂ . . . ⊂ Ws in (Kd+1)∗ for which dimK Wi ∈
{1, . . . , r} for all i . This set has a natural profinite topology.

In both cases the face/degeneracy maps are the obvious ones, i.e.
omit/double one hyperplane in a tuple, resp. a vector subspace in a flag. With
the topology forgotten, T (d)

• is the Tits31 (not Bruhat-Tits!) building of G.
The following result is due to Schneider and Stuhler:

Proposition 5.6 For all r ∈ {1, 2, . . . , d} we have natural isomorphisms
(where ˜H denotes reduced cohomology)

˜Hr−1(|T (r)
• |, Z) � ˜Hr−1(|Y (r)

• |, Z) � Spr (Z).

Proof. The isomorphism ˜Hr−1(|T (r)
• |, Z) � ˜Hr−1(|Y (r)

• |, Z) is proved in
[71, Ch.3, Prop. 5]. To identify these objects with Spr (Z), assuming for sim-
plicity r > 1 from now on, consider the clopen subset N T (r)

s ⊂ T (r)
s of

T (r)
s consisting of flags W0 ⊂ . . . ⊂ Ws for which all inclusions are strict.

Using the obvious isomorphism ˜Hr−1(|N T (r)
• |, Z) � ˜Hr−1(|T (r)

• |, Z) the
result follows from the exact sequence32

LC(N T (r)
r−2, Z) → LC(N T (r)

r−1, Z) → Hr−1(|N T (r)
• |, Z) → 0

and the identifications

N T (r)
r−1 � X{1,2,...,d−r}, N T (r)

r−2 �
d

∐

i=d−r+1

X{1,...,d−r,i}

31 For instance, for d = 1 this is the set of ends of the tree.
32 Recall that if S• is any simplicial profinite set, then H∗(|S•|, Z) = H∗(LC(S•, Z)), where
|S•| is the geometric realisation of S• and LC(S•, Z) is the complex (LC(Ss , Z))s , the differen-
tials being given by the alternating sum of the maps induced by face maps in S.
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Remark 5.7 For all r ∈ {1, 2, . . . , d} and all q there are natural isomorphisms

Hq(|N T (r)
• |, Z) � Hq(|T (r)

• |, Z) � Hq(|Y (r)
• |, Z)

and these spaces are nonzero only for q = 0, r − 1, with H0 being given by
Z for r > 1 and by LC(P((Kd+1)∗), Z) for r = 1. See [71, Ch.3, Prop. 6] for
the details.

The following theorem is one of the main results of [71]. See also [63] for a
different argument (at least for a) and the compactly supported analogue of b)).

Theorem 5.8 (Schneider–Stuhler) Let r ≥ 0.

a) For a prime � �= p, there are natural isomorphisms of G × GK -modules

Hr
ét(H

d
C , Q�(r)) � Spr (Z�)

∗ ⊗ Q�, Hr
proét(H

d
C , Q�(r)) � Spr (Q�)

∗.

b) There is a natural isomorphism of G-modules

Hr
dR(Hd

K ) � Spr (K )∗.

Proof Let H∗ be any of the cohomologies occuring in the theorem. It has the
properties required by Schneider–Stuhler [71, Ch.2]. The crucial among them
is the homotopy invariance property: if D is the 1-dimensional open unit disk
then, for any smooth affinoid X , the projection X × D → X induces a natural
isomorphism H∗(X)

∼→ H∗(X × D). For de Rham cohomology this is very
simple (see the discussion preceding Prop. 3 in [71, Ch.2]); for �-adic étale and
pro-étale cohomologies this follows from the “homotopy property” of �-adic
étale cohomology with respect to a closed disk [71, proof of Th.6.0.2], and the
fact that �-adic étale and pro-étale cohomologies are the same on affinoids.

We recall very briefly the key arguments, without going into the rather
involved combinatorics. If H ∈ H and n ≥ 1, let Un(H) be the open poly-
disk in the affine space P

d
K \H given by33 |�H (z)| > |π |n . The open subsets

Un = ∩H∈H Un(H) form a Stein covering of H
d
K and Un = ∩H∈HnUn(H),

for a finite subset Hn of H , in bijection with P
d((Od+1

K /πn)∗). Writing
H∗(X,U ) for the “cohomology with support in X\U” (more precisely, the
derived functors of the functor “sections vanishing onU”), a formal argument
(see the discussion following [71, Ch.3, Cor. 5]) gives a spectral sequence

E− j,i
1 (n) =

⊕

H0,...,Hj∈Hn

Hi (Pd
K ,Un(H0) ∪ . . . ∪Un(Hj )) ⇒ Hi− j (Pd

K ,Un).

33 We use unimodular representatives for points of projective space and for linear forms giving
equations of H .
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Now, Un(H0) ∪ . . . ∪Un(Hj ) is a locally trivial fibration over a projective
space,whosefibers are open polydisks [71,Ch.1, Prop. 6].Using the homotopy
invariance of cohomology, one computes Hi (Pd

K ,Un(H0)∪ . . .∪Un(Hj )), in
particular this is always equal to A = H0(Sp(K )) or 0 (with a simple combi-
natorial recipe allowing to distinguish the two cases). The spectral sequence
simplifies greatly and34 letting n → ∞ gives (using also Proposition 5.6 and
Remark 5.7) a spectral sequence

E− j,i
2 ⇒ Hi− j (Pd

K , H
d
K ),

where

E− j,i
2 = HomZ(H j (|T ( i2 )

• |, Z), A)

if i ∈ [2, 2d] is even and j ∈ {0, i
2 − 1}, and 0 otherwise. The analysis of

this spectral sequence combined with Proposition 5.6 yields the cohomology
groups Hi (Pd

K , H
d
K ). The result follows from the exact sequence

· · · → Hi (Pd
K ) → Hi (Hd

K ) → Hi+1(Pd
K , H

d
K ) → Hi+1(Pd

K ) → · · ·

Combining Theorem 5.8 and Corollary 5.4 yields:

Corollary 5.9 The space of G-bounded vectors in Hr
dR(Hd

K ) is isomorphic
to Spcontr (K )∗.

5.4 Generalization of Schneider–Stuhler

We will extend the results of Schneider–Stuhler to Hyodo–Kato cohomology.
To do that we will use the description of the isomorphisms in Theorem 5.8 via
symbols.

5.4.1 Results of Iovita–Spiess

All the isomorphisms in Theorem 5.8 are rather abstract, but following Iovita–
Spiess [44] one can make them quite explicit as follows. Let LCc(H r+1, Z)

be the space of locally constant functions f : H r+1 → Z such that, for all
H0, . . . , Hr+1 ∈ H ,

f (H1, . . . , Hr+1) − f (H0, H2, . . . , Hr+1) + · · · + (−1)r+1 f (H0, . . . , Hr ) = 0

34 This is allowable as all modules involved are finite over the Artinian ring A.

123



Cohomology of p-adic Stein spaces 941

and moreover, if �Hi are linearly dependent, then f (H0, . . . , Hr ) = 0 (i.e., f
vanishes on Y (r)

r ). Define analogously C c(H r+1, Z). It is not difficult to see
that we have a natural isomorphism (see the proof of Proposition 5.6 for the
notation used below)

˜Hr−1(|N T (r)
• |, Z) � LCc(H r+1, Z)

and, in particular, (using Proposition 5.6) a natural isomorphism

Spr (Z) � LCc(H r+1, Z).

If S is a profinite set and A an abelian group, let

D(S, A) = Hom(LC(S, Z), A)

be the space of A-valued locally constant distributions on S. If L is a discrete
valuation nonarchimedean field let M(S, L) be the space of L-valued mea-
sures, i.e., bounded L-valued distributions. It has a natural topology that is
finer than the subspace topology induced from D(S, L) [44, Ch.4].

The inclusion LCc(H r+1, Z) ⊂ LC(H r+1, Z) gives rise to a continuous
strict surjection

D(H r+1, A) → Hom(Spr (Z), A).

Define the space D(H r+1, A)deg of degenerate distributions as the kernel of
this map. Combining this with the previous theorem we obtain surjections:

D(H r+1, K ) → Hs
dR(Hd

K ), M(H r+1, Q�) → Hr
ét(H

d
C , Q�(r)),

D(H r+1, Q�) → Hr
proét(H

d
C , Q�(s)).

These surjections can be made explicit: for each (H0, . . . , Hr ) ∈ H r+1,

the invertible functions (on H
d
K )

�H1
�H0

, . . . ,
�Hr
�H0

give rise (either by taking dlog

and wedge-product or by taking the corresponding symbols in étale coho-
mology and then cup-product) to a symbol [H0, . . . , Hr ] living in Hr

dR(Hd
K ),

resp. in Hr
ét(H

d
C , Q�(r)), resp. Hr

proét(H
d
C , Q�(r)). For example, for de Rham

cohomology [H0, . . . , Hr ] is the class of the closed r -form

dlog
�H1

�H0

∧ · · · ∧ dlog
�Hr

�H0

in Hr
dR(Hd

K ).
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One shows that the following regulator map is well-defined

rdR : D(H r+1, K ) → Hr
dR(Hd

K ), μ 
→
∫

H r+1
[H0, . . . , Hr ] μ(H0, . . . , Hr ).

The problem here is that the map (H0, . . . , Hr ) 
→ [H0, . . . , Hr ] is not
locally constant on H

d
K ; however it is so on Un (see the proof of Theorem 5.8

for the notation), for all n, which makes it possibe to give a meaning to the
integral. The same integral works for �-adic étale and pro-étale cohomologies
yielding the regulator maps

rét : M(H r+1, Q�) → Hr
ét(H

d
C , Q�(r)), rproét :

D(H r+1, Q�) → Hr
proét(H

d
C , Q�(r)).

This can be easily seen in the case of étale cohomology. For the pro-étale
cohomology, the key point is that we can write

Hr
proét(H

d
C , Q�(r)) = lim←−

n

Hr
proét(Un,C , Q�(r)),

where Hr
proét(Un,C , Q�(r)) is finite dimensional and the map

H r+1 → Hr
proét(H

d
C , Q�(r)) → Hr

proét(Un,C , Q�(r)),

(H0, . . . , Hr ) 
→ [H0, . . . , Hr ],

is locally constant for all n, by arguing as in [44, Lemma4.4]. All these regu-
lators are continuous.

One can show that the above maps induce the isomorphisms in Theorem 5.8
by imitating the arguments in [44].

Theorem 5.10 (Iovita–Spiess, [44, Th.4.5])The following diagramof Fréchet
G-spaces commutes

0 D(H r+1, K )deg D(H r+1, K )

can

rdR Hr
dR(Hd

K ) 0

Spr (K )∗
�

and the sequence is strictly exact. Similarly for �-adic étale and pro-étale
cohomologies.
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5.4.2 Generalization of the results of Iovita–Spiess

Set X := ˜H
d
K and Y := ˜H

d
K ,0. The above results of Iovita–Spiess can be

generalized to Hyodo–Kato cohomology.

Lemma 5.11 Let r ≥ 0. There are natural isomorphisms of Fréchet spaces

Hr
HK(Y ) � Spr (F)∗, Hr

HK(Y )ϕ=pr � Spr (Qp)
∗

that are compatible with the isomorphism Hr
dR(XK ) � Spr (K )∗ from Theo-

rem 5.8 and the natural maps Spr (Qp)
∗ → Spr (F)∗ → Spr (K )∗.

Proof We start with Hr
HK(Y ). Consider the following diagram

D(H r+1, K )

rdR
can

D(H r+1, F)

can

rHK

can

Hr
HK(Y )

ιHK Hr
dR(XK )

∼ Spr (K )∗

Spr (F)∗
can

f

Here the regulator map rHK is defined in an analogous way to the map rdR
but by using the overconvergent Hyodo–Kato Chern classes cHK1 defined in
Chapter 7. It is continuous. The outer diagram clearly commutes. The small
triangle commutes by Theorem 5.10. The square commutes by Lemma 7.8.
Chasing the diagram we construct the broken arrow f : Spr (F)∗ → Hr

HK(Y ),
a continuous map that makes the left bottom triangle commute; it is easy to
check that it makes the right bottom triangle commute as well. This implies
that the map f is injective. Since Hr

HK(Y ) is topologically irreducible as a
G-module (use the Hyodo–Kato isomorphism), it is also surjective (use the
fact that Spr (F)∗ is closed in Spr (K )∗).

The argument for Hr
HK(Y )ϕ=pr is similar. But first we need to show that the

natural map

Hr
HK(Y )ϕ=pr ⊗Qp F → Hr

HK(Y ) (5.12)

is an injection. We compute

Hr
HK(Y )ϕ=pr ⊗Qp F � (lim←−

s

Hr
HK(Ys))

ϕ=pr ⊗Qp F � (lim←−
s

Hr
HK(Ys)

ϕ=pr ) ⊗Qp F

� lim←−
s

(Hr
HK(Ys)

ϕ=pr ⊗Qp F) ↪→ lim←−
s

Hr
HK(Ys) � Hr

HK(Y ),

123



944 P. Colmez et al.

as wanted. For the injection above we have used the fact that all Hr
HK(Ys) are

finite dimensional over F .
We look now at the commutative diagram

D(H r+1, F)
can

rHK

Spr (F)∗

f

Hr
HK(Y )

Hr
HK(Y )ϕ=pr

can

D(H r+1, Qp)
can

can

rHK

Spr (Qp)
∗

can

f ′

The key point is that, as shown in Sect. 7.2.1, the map rHK restricted to
D(H r+1, Qp) factors through Hr

HK(Y )ϕ=pr . Arguing as above we construct
the continuous map f ′. It is clearly injective. It is surjective by (5.12).

5.5 Pro-étale cohomology

We are now ready to compute the p-adic pro-étale cohomology of H
d
C . Let

r ≥ 0. Since the linearized Frobenius on Hr
HK(Y ) is equal to the multiplication

by qr , where q = |k|. [32, Cor. 6.6] and Nϕ = pϕN [32, Prop. 5.5], the
monodromy operator is trivial on Hr

HK(Y ). Hence the first isomorphism below
is Galois equivariant.

(Hr
HK(Y )̂⊗FB+

st )
N=0,ϕ=pr � (Hr

HK(Y )̂⊗FB+
cr)

ϕ=pr � (Hr
HK(Y )ϕ=pr

̂⊗QpB+
cr)

ϕ=pr

� Hr
HK(Y )ϕ=pr

̂⊗QpB+,ϕ=1
cr � Spr(Qp)

∗
̂⊗QpB+,ϕ=1

cr = Spr(Qp)
∗.

The second isomorphism follows from the proof of Lemma 5.11, the fourth
one—from this lemma itself, and the third one is clear. Using the above iso-
morphisms and Lemma 5.11, themap ιHK⊗θ : (Hr

HK(Y )̂⊗FB+
st )

N=0,ϕ=pr →
Hr
dR(XK )̂⊗KC can be identified with the natural map Spr (Qp)

∗ →
Spr (K )∗̂⊗KC .

Similarly, we compute that

(Hr
HK(Y )̂⊗FB+

st )
N=0,ϕ=pr−1 � Hr

HK(Y )ϕ=pr
̂⊗QpB+,ϕ=p−1

cr = 0.

Combined with Theorem 4.12, these yield the following theorem.
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Theorem 5.13 Let r ≥ 0. There is a natural map of strictly exact sequences
of G × GK -Fréchet spaces (over Qp)

0 �r−1(Hd
C )/ ker d Hr

proét(H
d
C , Qp(r))

β̃

Spr (Qp)
∗

can

0

0 �r−1(Hd
C )/ ker d d

�r (Hd
C)d=0 Spr (K )∗̂⊗KC 0

where the vertical maps are closed immersions.

6 Étale cohomology of Drinfeld half-spaces

The purpose of this is to compute the p-adic étale cohomology of the Drinfeld
half-space (Theorem 6.45). Using a comparison theorem (see Proposition 6.1
below) this reduces to the computation of the Fontaine–Messing syntomic
cohomology. The latter then is transformed into a syntomic cohomology built
from the crystalline Hyodo–Kato cohomology and the integral de Rham coho-
mology (see Sect. 6.4). These differential cohomologies can be computed
explicitly (Corollary 6.25 and Theorem 6.28) due to the fact that the standard
formal model of the Drinfeld half-space is pro-ordinary and the sheaves of
integral differentials are acyclic (a result of Grosse-Klönne).

Throughout this chapter we work in the category of pro-discrete modules
(see Sect. 2.2 for a quick review and Remark 6.2 for how the topology is
defined on the various cohomology complexes).

6.1 Period isomorphism

Proposition 6.1 Let X be a semistable formal scheme over OK . Let r ≥ 0,
X := XOC . There is a natural Fontaine–Messing period map

αFM : R	syn(X , Zp(r))⊗LQp → R	ét(XC , Zp(r))⊗LQp

that is a strict quasi-isomorphism (in D(CQp)) after truncation τ≤r .

Proof Let Y be a semistable finite type formal scheme over OK . Fontaine–
Messing in [26, III.5] have defined an integral period map

α̃FM : R	syn(Y , Zp(r)) → R	ét(YC , Zp(r)
′),

where Zp(r)′ := (paa!)−1Zp(r), for r = (p − 1)a + b, a, b ∈ Z, 0 ≤ b ≤
p − 1. The map τ≤r α̃FM is a pN -quasi-isomorphism for a universal constant
N = N (r). This means that its kernel and cokernel on cohomology groups in
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degrees 0 ≤ i ≤ r are annihilated by pN . It follows that the cone of α̃FM has
cohomology annihilated by pN , N = N (r), as well.

We define

α̃FM : R	syn(X , Zp(r)) → R	ét(XC , Zp(r)
′)

by cohomological descent from the above α̃FM. The above local argu-
ments imply that (τ≤r α̃FM)⊗LQp is a quasi-isomorphism. We set αFM :=
p−r (̃αFM⊗LQp). This twist by p−r is necessary to make the period morphism
compatible with Chern classes.

It remains to show that (τ≤r α̃FM)⊗LQp � τ≤r (̃αFM⊗LQp) and that this
quasi-isomorphism is strict.

Remark 6.2 Before doing that, let us recall how topology is defined on the
domain and target of α̃FM. Locally, for a quasi-compact étale open U → X ,
we get complexes of (topologically free) Zp-modules with p-adic topology.
For a quasi-compact étale hypercoveringU• of X , we take the total complex of
the Čech complex of such complexes. Hence in every degreewe have a product
of Zp-modules with p-adic topology. The functor (−)⊗Qp from Sect. 2.2, by
Proposition 2.6, associates to these complexes of pro-discrete Zp-modules
complexes of locally convex Qp-vector spaces by tensoring them degree-wise
with Qp and taking the induced topology. These new complexes represent
the domain and target of α̃FM⊗LQp. We note that we have a strict quasi-
isomorphism τ≤r (̃αFM⊗LQp) � (τ≤r α̃FM)⊗LQp (again use Proposition 2.6).

Now, note that the map α̃FM, being a pN -isomorphism on cohomology,
has a pN -inverse in D(Ind(PDQp)), i.e., ˜β : τ≤rR	ét(XC , Zp(r)′) →
τ≤rR	syn(X , Zp(r)) such that α̃˜β = pN and ˜βα̃ = pN (not the same
N = N (r), of course). It follows that (τ≤r α̃FM)⊗LQp has an inverse in
D(CQp), hence it is strict.

6.2 Cohomology of differentials

We gather in this section computations of various bounded differential coho-
mologies of the Drinfeld half-space. Let

˜X := ˜H
d
K , X := (˜Hd

K )∧

be the standard weak formal model, resp. formal model, of the Drinfeld half-
space H

d
K . It is equipped with an action of G = GLd+1(K ) compatible with

the natural action on the generic fiber. Let

Y := X0, Y := Yk .
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Let F0 be the set of irreducible components of the special fiber Y . They are iso-
morphic smooth projective schemes over k that we see as log-schemeswith the
log-structure induced from Y . Let T be the central irreducible component of Y ,
i.e., the irreducible component with stabilizer K ∗GLd+1(OK ). It is obtained
from the projective space P

d
k by first blowing up all k-rational points, then

blowing up the strict transforms of k-rational lines, etc. For 0 ≤ j ≤ d − 1,
let V j

0 be the set of all k-rational linear subvarieties Z of P
d
k with dim(Z) = j

and let V0 := ⋃d−1
j=0 V

j
0 . The set V of all strict transforms in T of elements

of V0 is a set of divisors of T ; together with the canonical log-structure of the
log-point k0, it induces the log-structure on T .

Let ˜θ0, . . . ,˜θd be the standard projective coordinate functions on P
d
k and

on T . For i, j ∈ {0, . . . , d} and g ∈ G we call gdlog(˜θi/˜θ j ) a standard
logarithmic differential 1-form on T ; exterior products of such forms we call
standard logarithmic differential forms on T .

6.2.1 Cohomology of differentials on irreducible components

As proved by Grosse-Klönne the sheaves of differentials on T are acyclic
and the standard logarithmic differential forms generate the k-vector space of
global differentials.

Proposition 6.3 ([33, Th.2.3, Th.2.8], [35, Prop. 1.1])

1. Hi (T, � j ) = 0, i > 0, j ≥ 0.
2. The k-vector space H0(T, � j ), j ≥ 0, is generated by standard logarith-

mic forms. In particular, it is killed by d.
3. Hi

cr(T/O0
F ) is torsion free and

Hi
cr(T/O0

F ) ⊗OF k = Hi
dR(T ) = H0(T, �i

T ).

We note here that, the underlying scheme of T being smooth, the crystalline
cohomology Hi

cr(T/O0
F ) = Hi

cr(T
′/OF ), where T ′ is the underlying scheme

of T equipped with the log-structure given by the elements of V .
For 0 ≤ j ≤ d, letL j

T be the k-vector subspace of� j
T (T 0), T 0 := T \∪V∈V

V , generated by all j-forms η of the type

η = ym1
1 · · · ym j

j dlogy1 ∧ · · · ∧ dlogy j

with mi ∈ Z and yi ∈ O(T 0)∗ such that y j = ˜θ j/˜θ0 for an isomorphism
of k-varieties P

d
k � Proj(k[˜θ0, · · · ,˜θd ]). By Theorem 6.3, H0(T, � j ) is the

k-vector subspace of L
j
T generated by all j-forms η as above with mi = 0 for

all 0 ≤ i ≤ j .
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Let L
j
T , resp. L

j,0
T , be the constant sheaf on T with values L

j
T , resp.

H0(T, �
j
T ). For a non-empty subset S of V such that E = ∩V∈SV is non-

empty, define the subsheaf L
j
E of �

j
T ⊗ OE as the image of the composite

L
j
T → �

j
T → �

j
T ⊗ OE .

Proposition 6.4 ([35, Th.1.2]) The canonical maps

L
j,0
T ↪→ L

j
T ↪→ �

j
T , L

j
E ↪→ �

j
T ⊗ OE

induce isomorphisms on Zariski cohomology groups.

6.2.2 Cohomology of differentials on X and truncations of Y

We quote an important result of Grosse-Klönne proving acyclicity of the
sheaves of differentials on X and vanishing of the differential on their global
sections.

Proposition 6.5 ([33, Th.4.5], [35, Prop. 4.5]) Let j ≥ 0.

1. We have topological isomorphisms35

Hi (X, �
j
X ) = 0 and Hi (X, �

j
X ⊗OK k) = 0, i > 0,

H0(X, �
j
X ) ⊗OK k � H0(X, �

j
X ⊗OK k).

2. d = 0 on H0(X, �
j
X ).

Corollary 6.6 We have topological isomorphisms H j
dR(X)

∼← H0(X, �
j
X ),

for all j ≥ 0. In particular, these groups are torsion-free.

The above theorem can be generalized to the idealized log-schemes Ys,
s ∈ N, defined in Sect. 5.1 in the following way.

Proposition 6.7 Let j ≥ 0, s ∈ N.

1. Hi (Ys, � j ) = 0 for i > 0.
2. d = 0 on H0(Ys, � j ).

35 Here and below, cohomology H∗ without a subscript denotes Zariski cohomology. All the
groups are profinite. This is because they are limits of cohomologies of the truncated log-schemes
Ys described below that are ideally log-smooth and proper.
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Proof For the first claim, the argument is analogous to the one of Grosse-
Klönne for s = ∞. We will sketch it briefly. Take s �= ∞. Since�

j
Ys
is locally

free over OYs , we have the Mayer–Vietoris exact sequence

0 → �
j
Ys

→
⊕

Z∈F0
s

�
j
Ys

⊗ OZ →
⊕

Z∈F1
s

�
j
Ys

⊗ OZ → · · ·

where Fr
s is the set of non-empty intersections of (r + 1) pairwise distinct

irreducible components of Ys and is a finite set (which is also the set of r -
simplices of BTs). By [33, Cor. 1.6], Hi (Z , �

j
Ys

⊗ OZ ) = 0, i > 0, for every

Z ∈ Fr
s . Hence to show that Hi (Ys, �

j
Ys

) = 0, i > 0, we need to prove that

Hi (BTs,F ) = 0, for i > 0, whereF is the coefficient system onBTs defined
byF (Z) = H0(Y, �

j
Ys

⊗OZ ), for Z ∈ Fr
s . We will use for that an analog of

Grosse-Klönne’s acyclicity condition. For a lattice chain in BTs

� Lr � L1 � · · · � Lr

we call the ordered r -tuple ([L1], . . . , [Lr ]), a pointed (r − 1)-simplex (with
underlying (r − 1)-simplex the unordered set {[L1], . . . , [Lr ]}). Denote it by
η̂ and consider the set

Nη̂ = {[L] | � Lr � L � L1}.
We note that Nη̂ is a subset of vertices of BTs . A subset M0 of Nη̂ is called
stable if, for all L , L ′ ∈ M0, the intersection L ∩ L ′ also lies in M0.

Lemma 6.8 Let F be a cohomological coefficient system on BTs . Let 1 ≤
r ≤ d. Suppose that for any pointed (r − 1)-simplex η̂ ∈ BTs with underlying
(r−1)-simplex η and for any stable subset M0 of Nη̂ the following subquotient
complex of the cochain complex C(BTs,F ) with values inF is exact

F (η) →
∏

z∈M0

F ({z} ∪ η) →
∏

z,z′∈M0,{z,z′}∈F1s
F ({z, z′} ∪ η).

Then the r-th cohomology group Hs(BTs,F ) of C(BTs,F ) vanishes.

Proof For BT this is the main theorem of [34]. The argument used in its proof
[34, Th.1.2] carries over to our case: when applied to a cocycle from BTs , the
recursive procedure of producing a coboundary in the proof of Theorem 1.2
in loc. cit. “does not leave” BTs .

Hence it suffices to check that the above condition is satisfied for our F .
But this was checked in [33, Cor. 1.6].
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The second claim of the proposition follows from Proposition 6.3 and the
injection

H0(Ys, �
j
Ys

)
⊕

Z∈F0
s
H0(Z , �

j
Ys

⊗ OZ )

6.2.3 Ordinary log-schemes

A quick review of basic facts concerning ordinary log-schemes.
LetWn�

•
Y denotes the deRham–Witt complex ofY/k0 [37]. Recall first [40,

Prop. II.2.1] that if T is a log-smooth and proper log-scheme over k0, for a per-
fect field k of positive characterstic p, then Hi

ét(T,Wn�
j ) is of finite length and

we have R	ét(T,W� j )
∼→ holim nR	ét(T,Wn�

j ) forW� j := lim←−n
Wn�

j .

It follows that Hi
ét(T,W� j )

∼→ lim←−n
Hi
ét(T,Wn�

j ). The module Mi, j of p-

torsion of this group is annihilated by a power of p and Hi
ét(T,W� j )/Mi, j

is a free OF -module of finite type [40, Th. II.2.13]. However, H0
ét(T,W� j )

is itself a free OF -module of finite type [40, Cor. II.2.17 ]. On the other
hand, the complex R	ét(T,W�•) is perfect and R	ét(T,W�•) ⊗L

OF
OF,n �

R	ét(T,Wn�
•) [40, Th. II.2.7].

Let V be a fine (idealized) log-scheme over k0 that is of Cartier type. We
have the subsheaves of boundaries and cocycles of �

j
V (thought of as sheaves

on Vét)

B j
V := im (d : �

j−1
V → �

j
V ), Z j

V := ker(d : �
j
V → �

j+1
V ).

Assume now that V is proper and log-smooth. Recall that it is called ordinary
if for all i, j ≥ 0, Hi

ét(V, B j ) = 0 (see [7], [41]).
We write Wn�

r−,log for the de Rham-Witt sheaf of logarithmic forms.

Proposition 6.9 ([52, Th.4.1]) The following conditions are equivalent (we
write V for Vk).

1. V/k0 is ordinary.
2. For i, j ≥ 0, the inclusion�

j
V ,log

⊂ �
j
V
induces a canonical isomorphism

of k-vector spaces

Hi
ét(V , �

j
log) ⊗Fp k

∼→ Hi
ét(V , � j ).

3. For i, j, n ≥ 0, the canonical maps

Hi
ét(V ,Wn�

j
log) ⊗Z/pn Wn(k) → Hi

ét(V ,Wn�
j ),

Hi
ét(V ,W�

j
log) ⊗Zp W (k) → Hi

ét(V ,W� j ),
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where W�r
log := lim←−n

Wn�
r
log, are isomorphisms.

4. For i, j ≥ 0, the de Rham–Witt Frobenius

F : Hi
ét(V,W� j ) → Hi

ét(V,W� j )

is an isomorphism.

Example 6.10 The above result implies that, by the Projective Space Theorem,
projective spaces are ordinary, and, more generally, so are projectivizations
of vector bundles [42, Prop. 1.4]. This implies, by the blow-up diagram, the
following:

Proposition 6.11 ([42, Prop. 1.6]) Let X be a proper smooth scheme over k.
Let Y ⊂ X be a smooth closed subscheme, ˜X the blow-up of Y in X. Then X
and Y are ordinary if and only if ˜X is ordinary.

And this, in turn, by the weight spectral sequence, implies the following:

Proposition 6.12 ([42, Prop. 1.10]) Assume that k = k. Let Y be a semistable
scheme over k. Assume that it is a union of irreducible components Yi , 1 ≤ i ≤
r such that for all I ⊂ {1, · · · , r}, the intersection YI is smooth and ordinary.
Then Y , as a log-scheme over k0, is ordinary.

Proof As suggested by Illusie in [42, Rem.2.8], this can be proved using the
weight spectral sequence

E−k,i+k
1 =

⊕

j≥0, j≥−k

Hi−s− j
ét (Y2 j+k+1,W�s− j−k)(− j − k) ⇒ Hi−s

ét (Y,W�s).

Here Yt denotes the intersection of t different irreducible components of Y
that are equipped with the trivial log-structure. Such spectral sequences were
constructed in [57, 3.23], [58, 4.1.1]. They are Frobenius equivariant (the Tate
twist (− j − k) refers to the twist of Frobenius by p j+k) [58, Th.9.9]; hence,
without the Twist twist, compatible with the de Rham–Witt Frobenius F .

Now, by assumptions, all the schemesYt are smooth and ordinary. It follows,
by Proposition 6.9, that the Frobenius F induces an isomorphism on E−k,i+k

1 .
Hence also on the abutment Hi−s

ét (Y,W�s
Y ), as wanted.

Wedrop now the assumption that V is proper.Recall that we have the Cartier
isomorphism

C : Z j/B j ∼→ � j , x pdlogy1 ∧ . . . ∧ dlogy j 
→ xdlogy1 ∧ . . . ∧ dlogy j .
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Lemma 6.13 Assume that Hi
ét(V, � j ) = 0 and that d = 0 on H0

ét(V, � j ) for
all i ≥ 1 and j ≥ 0. Then V is ordinary [52, §4], i.e., for i, j ≥ 0, we have
Hi
ét(V, B j ) = 0.

Proof Consider the exact sequences

0 → B j → Z j f→ � j → 0, 0 → Z j → � j → B j+1 → 0, (6.14)

where the map f is the composition Z j → Z j/B j ∼→ � j of the natural
projection and the Cartier isomorphism. Since Hi

ét(V, � j ) = 0, i > 0, the
first exact sequence yields the isomorphisms

Hi
ét(V, B j )

∼→ Hi
ét(V, Z j ), i ≥ 2. (6.15)

It also yields the long exact sequence

0 → H0
ét(V, B j )→H0

ét(V, Z j )→H0
ét(V,� j )

∂→ H1
ét(V, B j )→H1

ét(V, Z j ) → 0.
(6.16)

Since d = 0 on H0
ét(V, � j ) and hence the natural map H0

ét(V, Z j ) →
H0
ét(V, � j ) is an isomorphism, the second exact sequence from (6.14) yields

the isomorphisms (since we assumed Hi
ét(V, � j ) = 0 for i > 0)

Hi
ét(V, B j+1)

∼→ Hi+1
ét (V, Z j ), i ≥ 0. (6.17)

To prove the lemma, we will argue by increasing induction on j ; the case of
j = 0 being trivial since B0 = 0. Assume thus that our lemma is true for j and
all i ≥ 0. We will show that this implies that it is true for j + 1 and all i ≥ 0.
Since H1

ét(V, B j ) = 0 by assumption, the exact sequence (6.16) implies that
H1
ét(V, Z j ) = 0. And this implies, by (6.15), that Hi

ét(V, Zr ) = 0, i ≥ 1.
This, in turn, yields, by (6.17), that Hi

ét(V, B j+1) = 0, i ≥ 0. This concludes
the proof of the lemma.

6.2.4 HK as a pro-ordinary log-scheme

It follows from Lemma 6.13 and Proposition 6.7 that:

Corollary 6.18 The idealized log-schemes Ys, s ∈ N ∪ {∞}, are ordinary.
Remark 6.19 Proposition 6.12 and Proposition 6.11 show that the underlying
scheme of Ys, for s < ∞, is (classically) ordinary by using the weight spectral
sequence. One should be able to prove Corollary 6.18 in an analogous way.
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Lemma 6.20 For i ≥ 1, j ≥ 0, we have

1. Hi
ét(Z ,Wn�

j ) = 0, for Z = Y, T ,
2. d = 0 on H0

ét(T,Wn�
j ).

3. For V = Y, Y , the following sequence is strictly exact36

0 → H0(V, � j )
V n→ H0(V,Wn+1�

j ) → H0(V,Wn�
j ) → 0,

Proof For claim (1), we start with Z = Y . We have subsheaves

0 = B j
0 ⊂ B j

1 ⊂ . . . ⊂ Z j
1 ⊂ Z j

0 = �
j
Y

such that B j
1 = B j

Y , Z
j
0 = �

j
Y , Z

j
1 = Z j

Y and for all n we have inverse Cartier
isomorphisms

C−1 : B j
n

∼→ B j
n+1/B

j
1 , C−1 : Z j

n
∼→ Z j

n+1/B
j
1 .

By Proposition 6.5 and Lemma 6.13, we have Hi
ét(Y, B j

1 ) = Hi
ét(Y, Z j

1 ) = 0

for i > 0, thus the same holds with B j
1 and Z j

1 replaced by B j
n and Z j

n . On the

other hand, define R j
n by the exact sequence

0 → R j
n → B j

n+1 ⊕ Z j−1
n → B j

1 → 0, (6.21)

the last map being (Cn, dCn−1). By the previous discussion, Hi
ét(Y, R j

n ) = 0
for i > 0. Hyodo and Kato prove [38, Th.4.4] that we have an exact sequence

0 → � j ⊕ � j−1

R j
n

→ Wn+1�
j → Wn�

j → 0. (6.22)

Note that � j⊕� j−1

R j
n

does not have higher cohomology since each of � j , � j−1,

R j
n has this property (use Proposition 6.5). Using the previous exact sequence,

the result follows by induction on n (using that W1�
j � � j ).

In the case of Z = T we argue in a similar way using Proposition 6.3 instead
of Proposition 6.5.

For claim (2), since 	ét(T,Wn�
j ) ↪→ 	ét(Tk,Wn�

j ), we can pass to Tk .
But then, by ordinarity of Tk , we have (see Proposition 6.9)

H0
ét(Tk,Wn�

j ) � H0
ét(Tk,Wn�

j
log) ⊗Z/pn Wn(k)

36 Do not confuse V with the Verschiebung in Vn .
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and the latter group clearly has a trivial differential.
To prove claim (3), we note first that Lemma 6.13 applies to both Y and Y .

For Y this follows from Proposition 6.5. For Y , we use Corollary 6.18 to write
down a sequence of quasi-isomorphisms

R	(Y , � j ) � holim sR	(Y
◦
s , �

j ) � holim sR	(Y s, �
j )

� holim s H
0(Y s, �

j ) � lim←−
s

H0(Y s, �
j ).

It follows that Hi (Y , � j ) = 0 for i > 0. To see that d = 0 on H0(Y , � j ) we
use the embedding H0(Y , � j ) ↪→ ∏

C∈F0 H0(C, � j ) and Proposition 6.3.
Now, set V = Y, Y . By Lemma 6.13, we have Hi

ét(V, B j ) = 0 i, j ≥ 0.
Note that, by (6.22), we have the exact sequence

0 → H0
ét(V,� j )⊕H0

ét(V,� j−1)

H0
ét(V,R j

n )

(V n ,dV n)
H0
ét(V,Wn+1�

j ) −→ H0
ét(V,Wn�

j ) → 0 .

It remains to show that the natural map from H0
ét(V, � j ) to the leftmost term

is an isomorphism, or that, the natural map H0
ét(V, R j

n ) → H0
ét(V, � j−1)

is an isomorphism. The exact sequence (6.21) yields that the natural map
H0
ét(V, R j

n ) → H0
ét(V, Z j−1

n ) is an isomorphism. It remains thus to show that

so is the natural map H0
ét(V, Z j−1

n ) → H0
ét(V, � j−1).

For that it suffices to show that the natural maps H0
ét(V, Z j−1

n+1) →
H0
ét(V, Z j−1

n ), n ≥ 0, are isomorphisms.Wewill argue by induction on n ≥ 0.
Since d = 0 on H0

ét(V, � j−1) this is clear for n = 0. Assume now that this is
true for n−1. We will show it for n itself. Consider the commutative diagram

H0
ét(V, Z j−1

n+1)
C
∼

can

H0
ét(V, Z j−1

n )

�can

H0
ét(V, Z j−1

n )
C
∼ H0

ét(V, Z j−1
n−1)

The right vertical map is an isomorphism by the inductive assumption. The
top and bottom isomorphisms follow from the isomorphisms C−1 : Z j

i
∼→

Z j
i+1/B

j
1 , for i ≥ 0. We get that the left vertical map is an isomorphism, as

wanted.
Finally, to see that the exact sequence in claim (3) is strictly exact note that

for Y this follows from compactness of H0(Y, � j ) and H0(Y,Wn+1�
j ) and

for Y this follows from the case of Y by étale base change.
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6.2.5 Cohomology of differentials II

Wewill need a generalization of the above results and amore careful discussion
of topological issues.

Proposition 6.23 Let j ≥ 0. Let S be a topological OK -module and let R be
a topological W (k)- or W (k)-module. Assume that S and R are topologically
orthonormalizable.

1. The followingnaturalmapsare strict quasi-isomorphisms (inD(Ind(PD?)),
with ? = K , F, Qp)

H0(X, �
j
X,n)̂⊗OK ,n Sn

∼→ R	(X, �
j
X,n)̂⊗OK ,n Sn,

H0
ét(Y,Wn�

j )̂⊗OF,n Rn
∼→ R	ét(Y,Wn�

j )̂⊗OF,n Rn,

R	ét(Y ,Wn�
j
log)̂⊗Z/pn Rn

∼→ R	ét(Y ,Wn�
j )̂⊗Wn(k)

Rn,

H0
ét(Y ,Wn�

j
log)̂⊗Z/pn Rn

∼→ R	ét(Y ,Wn�
j
log)̂⊗Z/pn Rn.

2. d = 0 on H0
ét(X, �

j
X,n)̂⊗OK ,n Sn and on H0

ét(Y,Wn�
j
Y )̂⊗Z/pn Rn.

3. The following natural map is a strict quasi-isomorphism

⊕

j≥r

H0(X, �
j
X,n)[− j] ∼→ FrR	dR(Xn), r ≥ 0.

Remark 6.24 The completed tensor products for the above complexes of pro-
discretemodules can bemademore explicit using a Stein covering {Ui }, i ∈ N
of Y . For example:

R	cr(Y/O0
F,n)̂⊗OF,n

̂Ast,n � holim i (R	cr(Ui/O
0
F,n)⊗OF,n

̂Ast,n).

Note that ̂Ast,n has discrete topology.

Proof Note that the last claim follows from the previous two claims.
In the rest of the proof, to lighten the notation, we will write simply

R	(Z , �•
n) := R	(Z , �•

Z ,n) for the de Rham cohomology of the log-scheme
Zn . We have the spectral sequence

Eq,i
2 = ˜Hqholim s( ˜Hi (Y ◦

s , �
j
n)⊗OK ,n Sn) ⇒ ˜Hq+i (R	(X, �

j
n)̂⊗OK ,n Sn).

Since the pro-systems

{ ˜Hi (Y ◦
s , �

j
n)⊗OK ,n Sn}, s ≥ 0, { ˜Hi (Ys, �

j
n)⊗OK ,n Sn}, s ≥ 0,
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are equivalent (and ˜Hi (Ys, �
j
n) is classical and of finite type since Ys is ideally

log-smooth and proper over k0), they both have trivial ˜Hqholim s , q > 0.
Hence the spectral sequence degenerates and we have

˜Hi (R	(X,�
j
n)̂⊗OK ,n Sn) � lim←−

s

( ˜Hi (Y ◦
s ,�

j
n)⊗OK ,n Sn) � lim←−

s

(Hi (Ys,�
j
n)⊗OK ,n Sn).

In particular, it is classical.
Moreover, using a basis {eλ}, λ ∈ I, of Sn overOK ,n , we get an embedding

lim←−
s

( ˜Hi (Y ◦
s , �

j
n)⊗OK ,n Sn) ↪→

∏

λ∈I
Hi (X, �

j
n)eλ

Since the latter groups are trivial for i > 0, by Proposition 6.5, the vanishing
of ˜Hi (R	(X, �

j
n)̂⊗OK ,n Sn) follows. This embedding also shows that d = 0

on H0 in part (2) of the proposition.
The proof for the second map in part (1) of the proposition is analogous

with Lemma 6.20 replacing Proposition 6.5.
For the proof for the third map in part (1) of the proposition, consider now

the sequence of strict quasi-isomorphisms

R	ét(Y ,Wn�
j
log)̂⊗Z/pn Rn = holim s(R	ét(Y

◦
s ,Wn�

j
log)⊗Z/pn Rn)

� holim s(R	ét(Y s,Wn�
j
log)⊗Z/pn Rn)

∼→ holim s(R	ét(Y s,Wn�
j )⊗Wn(k)

Rn)

� holim s(R	ét(Y
◦
s ,Wn�

j )⊗Wn(k)
Rn) = R	ét(Y ,Wn�

j )̂⊗Wn(k)
Rn .

The second and the fourth strict quasi-isomorphisms are clear. The third
strict quasi-isomorphism follows from the fact that, by Corollary 6.18, the
log-scheme Y s is ordinary and we have Proposition 6.9.

For the fourth strict quasi-isomorphism in part (1) of the proposition, use
the second and the third one to reduce to showing that we have a natural
topological isomorphism

H0
ét(Y ,Wn�

j
log)̂⊗Z/pn Rn � H0

ét(Y ,Wn�
j )̂⊗Wn(k)

Rn.

But, by Proposition 6.9, we have topological isomorphisms

H0
ét(Y ,Wn�

j
log)̂⊗Z/pn Rn = lim←−

s

(H0
ét(Y

◦
s ,Wn�

j
log)⊗Z/pn Rn)

� lim←−
s

(H0
ét(Y s,Wn�

j
log)⊗Z/pn Rn) � lim←−

s

(H0
ét(Y s,Wn�

j )⊗Wn(k)
Rn)

� lim←−
s

(H0
ét(Y

◦
s ,Wn�

j )⊗Wn(k)
Rn) = H0

ét(Y ,Wn�
j )̂⊗Wn(k)

Rn .
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It remains to show that d = 0 on H0
ét(Y,Wn�

j )̂⊗OF,n Rn . First assume R to be
aW (k)-module. Arguing as abovewe obtain an embedding (notation as above)

H0
ét(Y,Wn�

j )̂⊗O F,n Rn
∼−→ H0

ét(Y ,Wn�
j
log)̂⊗Z/pnRn ↪→

∏

λ∈I
H0
ét(Y ,Wn�

j
log)eλ.

d = 0 follows. If R is only a W (k)-module, we write

H0
ét(Y,Wn�

j )̂⊗OF,n Rn ↪→ H0
ét(Y,Wn�

j )̂⊗OF,n (Wn(k) ⊗OF,n Rn)

to obtain d = 0 in this case as well.

Corollary 6.25 1. For j ≥ 0, we have a canonical topological isomor-
phism37

H0
ét(Y , �

j
log)̂⊗Fpk

∼→ H0
ét(Y , � j ).

2. For j, n ≥ 0, the canonical maps

H0
ét(Y ,Wn�

j
log)̂⊗Z/pnWn(k) → H0

ét(Y ,Wn�
j ),

H0
ét(Y ,W�

j
log)̂⊗ZpW (k) → H0

ét(Y ,W� j )

are topological isomorphisms.38 In higher degrees all the above cohomol-
ogy groups are trivial.

3. The cohomologies ˜Hi (X, �
j
X ) and ˜H j

dR(X) are classical, Hi (X, �
j
X ) = 0

for i > 0, and H j
dR(X) � H0(X, �

j
X ).

Proof The first two quasi-isomorphisms are actually included in the above
proposition. For the third quasi-isomorphism, both sides are nontrivial only in
degree zero: by Lemma 6.20 and the second isomorphism of this corollary, the
projective systems {H0

ét(Y ,Wn�
j
log)̂⊗Z/pnWn(k)}n and {H0

ét(Y ,Wn�
j )}n are

Mittag–Leffler. In degree zero we pass, as usual, to the limit over the truncated
subschemes of the special fiber and there, since these subschemes are ordinary,
we have a term-wise isomorphism, as wanted.

For the cohomology ˜Hi (X, �
j
X ), the fact that it is classical follows from

the fact that the cohomology ˜Hi (Xn, �
j ) is classical and nontrivial only for

i = 0, which was proved in Proposition 6.23, and the fact that the natural
maps H0(Xn+1, �

j ) → H0(Xn, �
j ) are surjective: a direct consequence,

via Proposition 6.23, of Lemma 6.20.

37 of projective limits of k-vector spaces of finite dimension.
38 of projective limits of W?(k)-modules, free and of finite rank.
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For the cohomology ˜H j
dR(X), we have ˜H j

dR(Xn)
∼← H0(Xn, �

j ) by Propo-
sition 6.23. It follows, since the maps H0(Xn+1, �

j ) → H0(Xn, �
j ) are

surjective, taht ˜H j
dR(X) is classical (by a Mittag–Leffler argument).

Remark 6.26 There is an alternative argument which proves Proposition 6.23
and which does not use ordinarity of the truncated log-scheme Ys . It starts with
proving the above corollary. We present it in the Appendix.

6.2.6 de Rham cohomologies of the model and the generic fiber

Proposition 6.27 below will be crucial in understanding the de Rham coho-
mology of the model and its variants. Define the map

ιY : Hi
ét(Y,W�•

Y ) � Hi
cr(Y/O0

F ) → Hi
cr(Y/O0

F , F)
∼← Hi

rig(Y/O0
F )

ιHK−→ Hi
rig(Y/O×

K ).

Proposition 6.27 1. The above map induces an injection

ιY : Hi
ét(Y,W�•)⊗OF K ↪→ Hi

rig(Y/O×
K ).

2. The canonical map

Hi
dR(X)⊗OK K → Hi

dR(XK )

is injective.

Proof For the first claim, it suffices to show that we have a commutative
diagram

Hi
ét(Y,W�•) α

ιY

∏

j∈N Hi
ét(C j ,W�•)

∏

j ιC j

Hi
rig(Y/O×

K )
∏

j∈N Hi
rig(C j/O

×
K ),

where C j , j ∈ N, is the set of irreducible components of Y and the map ιC j is
defined in an analogous way to the map ιY but by replacing the Hyodo–Kato
map by the composition
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Hi
rig(C j/O

0
F )

∼→ Hi
rig(C

0
j /O

0
F )

ιHK−−→Hi
rig(C

0
j /O

×
K )

∼← Hi
rig(C j/O

×
K ).

Since the Hyodo–Kato map is compatible with Zariski localization the above
diagram commutes.

We claim that we have natural isomorphisms

H0
ét(Y,W�i )

∼→ Hi
ét(Y,W�•), H0

ét(C j ,W�i )
∼→ Hi

ét(C j ,W�•).

Indeed, set Z = Y,C j . We have H0
ét(Z ,W�i ) = lim←−n

H0
ét(Z ,Wn�

i ). Since,
by Proposition 6.23 and Lemma 6.20,

R	ét(Z ,Wn�
•) � ⊕ j H

0
ét(Z ,Wn�

j )[− j],
this implies that

Hi
ét(Z ,W�•) � lim←−

n

Hi
ét(Z ,Wn�

•) � lim←−
n

H0
ét(Z ,Wn�

i ),

as wanted. In particular, there is no torsion.
It follows that the maps ιC j in the above diagram are injections: they are

isomorphisms after tensoring the domains with K and the domains are torsion-
free. The map α is an injection because so is, by definition, the map α′ in the
commutative diagram

H0
ét(Y,W�i )

α′

α ∏

j∈N H0
ét(C j ,W�i )

∏

j∈N H0
ét(C

0
j ,W�i )

H0
ét(Ytr,W�i

Ytr
),

�

where Ytr denotes the nonsingular locus of Y .
We note that the above computation shows also that the natural map

Hi
cr(Y/O0

F )⊗OF F → Hi
cr(Y/O0

F , F) is an injection. This will be useful in
proving the second claim of the proposition. Using the diagram (7.7) we can
form a commutative diagram

Hi
dR(X)⊗OK K

can Hi
dR(XK )

Hi
cr(Y/O0

F )⊗OF K

ιHK �

Hi
cr(Y/O0

F , F) ⊗F K Hi
rig(Y/O0

F ) ⊗F K

ιHK �
∼

Here the first map ιHK is the bounded Hyodo–Kato isomorphism described
in Chapter 7. Since the first bottom map is an injection so is the top map, as
wanted.
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6.3 Relation to Steinberg representations

We proved in the previous section that, for all i > 0, the spaces Hi
ét(Y,W�r )

and Hi
ét(Y ,W�r

log)vanish. The purpose of this section is to prove the following
result describing the corresponding spaces for i = 0 in terms of generalized
Steinberg representations.

Theorem 6.28 Let r ≥ 0.

1. We have natural isomorphisms of locally convex topological Qp-vector
spaces (more precisely, weak duals of Banach spaces)
(a) H0(Y,W�r )⊗OF F � Hr (Y,W�•)⊗OF F � Spcontr (F)∗,
(b) H0

ét(Y,W�r
log)⊗Qp � Spcontr (Qp)

∗,
(c) H0(X, �r )⊗OK K � Hr

dR(X)⊗OK K � Spcontr (K )∗,
(d) H0

ét(Y ,W�r
log)⊗Qp � Spcontr (Qp)

∗.
They are compatible with the canonical maps between Steinberg represen-
tations and with the isomorphisms

Hr
dR(XK ) � Spr (K )∗, Hr

HK(X) � Spr (F)∗

from Theorem 5.10 and Lemma 5.11.
2. We have natural isomorphisms of pro-discrete Zp-modules

(a) H0
ét(Y,W�r ) � Hr

ét(Y,W�•) � Spcontr (OF )∗ and H0(Y, �r ) �
Spr (k)

∗,
(b) H0

ét(Y,W�r
log) � Spcontr (Zp)

∗ and H0
ét(Y, �r

log) � Spr (Fp)
∗,

(c) H0(X, �r ) � Hr
dR(X) � Spcontr (OK )∗,

(d) H0
ét(Y ,W�r

log) � Spcontr (Zp)
∗ and H0

ét(Y , �r
log) � Spr (Fp)

∗.
They are compatible with the canonical maps between Steinberg represen-
tations and with the above isomorphisms.

Proof Consider the following diagram

Hr
ét(Y,W�•)

ιY Hr
HK(Y )

D(H r+1,OF )

rHK

can

can

D(H r+1, F)

rHK

can

Spcontr (OF )∗

rHK

can Spr (F)∗

∼

(6.29)

The bottom square clearly commutes. The first (continuous) regulator rHK is
defined by integrating the crystalline Hyodo–Kato Chern classes cHK1 defined
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inChapter 7. By Sect. 7.2.1 itmakes the top square commute. The right triangle
commutes by Lemma 5.11. It follows that there exists a broken arrow (we will
call it rHK aswell) thatmakes the left triangle commute. Thismap is continuous
and also clearly makes the adjacent square commute. Hence it is an injection.
We will prove that it is an isomorphism after inverting p.

The above combined with Proposition 6.27 and Theorem 5.11 gives the
embeddings

Spcontr (OF )∗⊗OF F
rHK
↪→ H0

ét(Y,W�r )⊗OF F
f

↪→ Hr
HK(Y ) � Spr (F)∗.

Their composite is the canonical embedding. The image of the map f must
be in the subspace of G-bounded vectors of Spr (K )∗, since H0

ét(Y,W�r )

is compact (it is naturally an inverse limit of finite free OF -modules). That
subspace is identifiedwith Spcontr (F)∗ � Spcontr (OF )∗⊗OF F by Corollary 5.9.
It follows that the map rHK is an isomorphism.

In fact, the above map rHK is already an integral isomorphism (as stated in
part (2a)). To see this, consider the commutative diagram

Spcontr (OF )∗ rHK H0
ét(Y,W�r )

Spcontr (k)∗ rHK H0
ét(Y, �r )

H0
ét(Y,W�r ) is a G-equivariant lattice in H0

ét(Y,W�r )Qp � Spcontr (F)∗
hence, by Corollary 5.3, it is homothetic to Spcontr (OF )∗. It follows that
H0
ét(Y, �r ) � Spcontr (k)∗ is irreducible. Moreover, the bottom map rHK is

nonzero: by construction of the top map rHK, the symbol dlogz1∧· · ·∧dlogzr
for coordinates z1, . . . , zr of P

d
K is in the image. It follows that it is an isomor-

phism hence so is the top map rHK as well. Moreover, the latter is a topological
isomorphism since the domain is compact and the target isHausdorff. It follows
that its rational version is a topological isomorphism as well, which proves
part (1a) of the theorem.

The proof of part (1b) is very similar to the proof of part (1a), so we will be
rather brief. Consider the commutative diagram
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Hr
ét(Y,W�•

log)
f

Hr
ét(Y,W�•)ϕ=pr

D(H r+1, Zp)

rHK

can

rlog

Spcontr (Zp)
∗

∼rlog

(6.30)

Here the (continuous) regulator rlog is defined by integrating the crystalline

logarithmic de Rham–Witt Chern classes clog1 defined in Chapter 7. Arguing
as above we can construct the broken arrow, which is again a continuous map,
making the whole diagram commute. It easily follows that both maps f and
rlog are isomorphisms. Now, to prove that they are topological isomorphisms
we argue first integrally, as for part (2b), and then rationally as for part (2a).

For part (1c) one repeats the argument starting with the following commu-
tative diagram

Hr
dR(X)

can Hr
dR(XK )

∼D(H r+1,OK )

rdR

can

can

D(H r+1, K )

rdR

can

Spr (OK )∗

rdR

can Spr (K )∗,

(6.31)

where the continuous (bounded) regulator rdR is defined by integrating the
integral de Rham Chern classes cdR1 defined in Chapter 7, and using the fact
that, by Proposition 6.27, we have

Hr
dR(X)⊗OK K ↪→ Hr

dR(X) � Spr (K )∗

and, by Proposition 6.23, we have Hr
dR(X) � H0(X, �r ). The integral part

(2c) follows as above.
Parts (1d) and (2d) follow from parts (1b) and (2b) and the following lemma.

Lemma 6.32 For n ≥ 1, we have canonical topological isomorphisms

H0
ét(Y,Wn�

r
log)

∼→ H0
ét(Y ,Wn�

r
log), H0

ét(Y,W�r
log)

∼→ H0
ét(Y ,W�r

log).
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Proof It suffices to prove the first isomorphism and, since both sides satisfy
p-adic devissage, it suffices to do it for n = 1. We have H0

ét(Y , �r
log)

∼→
H0
ét(Y , �r )C=1. On the other hand, by étale base change, we have a topological

isomorphism H0
ét(Y , �r ) � H0

ét(Y, �r )̂⊗kk. And parts (2a) and (2b) of the
theorem show that the natural map H0

ét(Y, �r
log)̂⊗Fpk → H0

ét(Y, �r ) is a

topological isomorphism. Hence, since C = 1 on H0
ét(Y, �r

log), we obtain
topological isomorphisms

H0
ét(Y , �r

log)
∼← H0

ét(Y , �r )C=1 ∼← (H0
ét(Y, �r

log)̂⊗Fpk)
C=1 ∼← H0

ét(Y, �r
log),

as wanted.

Remark 6.33 Consider the commutative diagram

Hr
ét(Y,W�•)

ιHK Hr
dR(X)

D(H r+1,OF )

rHK

can

can

D(H r+1,OK )

rdR

can

Spcontr (OF )∗

∼

can Spcontr (OK )∗

∼

The dashed arrow is defined to make the diagram commute. It is continuous. It
can be thought of as an integral Hyodo–Kato map. Compatibilities used in the
proof of Theorem 6.28 ensure that it is compatible with the bounded and the
overconvergent Hyodo–Katomaps. Because the naturalmap Spcontr (OF )∗⊗OF

OK
∼→ Spcontr (OK )∗ is an isomorphism, we get the integral Hyodo–Kato

(topological) isomorphism

ιHK : Hr
ét(Y,W�•) ⊗OF OK

∼→ Hr
dR(X).

6.4 Computation of syntomic cohomology

Wewill prove in this section that the geometric syntomic cohomology of X can
be computed using the logarithmic de Rham–Witt cohomology. To simplify
the notation we will write (−)Qp for (−)⊗LQp.

6.4.1 Simplification of syntomic cohomology

Let X now be a semistable Stein formal scheme over OK .
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Lemma 6.34 Let r ≥ 0. There exist natural and compatible strict quasi-
isomorphisms

ιcr : [R	cr(X)Qp ]ϕ=pr ∼→ [(R	cr(X0/O
0
F )̂⊗OF

̂Ast)Qp ]N=0,ϕ=pr ,

ιcr : [R	cr(X)Qp ]ϕ=pr ∼→ [R	cr(X0/O
0
F )Qp ]N=0,ϕ=pr .

Proof By (3.49), (3.50), we have a natural strict quasi-isomorphism

ι1BK : [R	cr(Xn/r
PD
�,n)̂⊗rPD�,n

̂Ast,n]N=0 ∼→ R	cr(Xn).

To check the strictness one can look locally and there everything is discrete.
We can also adapt the proof of Theorem 4.1 (and proceed as in the proof of
Proposition 6.1: note that both crystalline cohomology complexes are in the
bounded derived category) to construct a natural strict quasi-isomorphism

hcr : [(R	cr(X/rPD� )̂⊗rPD�
̂Ast)Qp ]ϕ=pr ∼→ [(R	cr(X0/O

0
F )̂⊗OF

̂Ast)Qp ]ϕ=pr .

In fact, it suffices to note that the complexes (4.9) used in that proof have
cohomology annihilated by pN , for a constant N = N (d, r), d = dim X0.

Define the first map in the lemma by ιcr := hcrι
−1
BK. The definition of the

second map ιcr is analogous (but easier: there is no need for the zigzag in the
definition of hcr).

Let r ≥ 0. From the maps in (3.53) we induce a natural strict quasi-
isomorphism

ι2BK : (R	dR(X)̂⊗OK Acr,K )Qp/F
r ∼→ R	cr(X)Qp/F

r . (6.35)

Set γHK := (ι2BK)−1ι−1
cr . The above discussion yields the following strict quasi-

isomorphism

R	syn(X , Zp(r))Qp

∼→ [[(R	cr(X0/O
0
F )̂⊗O F

̂Ast)Qp ]N=0,ϕ=pr γHK
(R	dR(X)̂⊗OK Acr,K )Qp/F

r
]

.

(6.36)

By construction, it is compatible with its pro-analog (3.43), i.e., we have a
natural continuous map of distinguished triangles, where all the horizontal
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maps are the canonical maps

R	syn(X , Zp(r))Qp R	syn(X , Qp(r))

[(R	cr(X0/O
0
F )̂⊗OF

̂Ast)Qp ]N=0,ϕ=pr

γHK

[R	cr(X0/O
0
F , F)̂⊗R

F
̂B+
st ]N=0,ϕ=pr

γHK

(R	dR(X)̂⊗OK Acr,K )Qp/F
r (R	dR(XK )̂⊗R

KB+
dR)/Fr

6.4.2 Computation of the Hyodo–Kato part

We come back now to the Drinfeld half-space.

Lemma 6.37 The cohomology of [(R	cr(Y/O0
F )̂⊗OF

̂Ast)Qp ]N=0,ϕ=pr is
classical and we have the natural topological isomorphisms

Hr ([(R	cr(Y/O0
F )̂⊗O F

̂Ast)Qp ]N=0,ϕ=pr ) � H0
ét(Y ,W�r

log)⊗Qp,

Hr−1([(R	cr(Y/O0
F )̂⊗O F

̂Ast)Qp ]N=0,ϕ=pr ) � (H0
ét(Y ,W�r−1

log )̂⊗ZpAϕ=p
cr )⊗Qp.

(6.38)

Proof By Proposition 6.23, we have strict quasi-isomorphisms39

R	cr(Y/O0
F )̂⊗O F

̂Ast � R	ét(Y,W�•)̂⊗O F
̂Ast

∼← H0
ét(Y,W�•)̂⊗O F

̂Ast

∼←
⊕

i≥0

H0
ét(Y,W�i )̂⊗O F

̂Ast[−i] �
⊕

i≥0

H0
ét(Y ,W�i )̂⊗W (k)

̂Ast[−i].

The first claim of the lemma follows.
Let M be a finite type free (ϕ, N )-module overW (k). Note that N is nilpo-

tent. We claim that we have a short exact sequence

0 → M ⊗W (k) Acr → M ⊗W (k)
̂Ast

N→ M ⊗W (k)
̂Ast → 0.

Indeed, if N = 0, this is clear from the short exact sequence (3.14). For a
general M , we argue by induction on m such that Nm = 0 using the short
exact sequence

0 → M0 → M
N→ M1 → 0,

39 Strictly speaking, the quasi-isomorphisms in that proposition are modulo pn but it is easy
to get the p-adic result by going to the limit, using Mittag–Leffler as in Corollary 6.25.
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where M0 = ker N , M1 = im N . M0, M1 are finite type free (ϕ, N )-modules
such that Nm−1 = 0. It follows that we have strict quasi-isomorphisms (reduce
to the truncated log-schemes Ys and pass to the limit)

[R	cr(Y/O0
F )̂⊗O F

̂Ast]N=0 �
⊕

i≥0

[H0
ét(Y ,W�i )̂⊗W (k)

̂Ast]N=0[−i]

�
⊕

i≥0

H0
ét(Y ,W�i )̂⊗W (k)Acr[−i] �

⊕

i≥0

H0
ét(Y ,W�i

log)̂⊗ZpAcr[−i]

We will show now that we have natural strict quasi-isomorphisms

[H0
ét(Y ,W�r

log)̂⊗ZpAcr]ϕ=pr

Qp
� H0

ét(Y ,W�r
log)Qp

[H0
ét(Y ,W�r−1

log )̂⊗ZpAcr]ϕ=pr

Qp
� (H0

ét(Y ,W�r−1
log )̂⊗ZpAϕ=p

cr )Qp . (6.39)

For i ≥ 0, set Ci := H0
ét(Y ,W�i

log)̂⊗ZpAcr. We claim that, for j ≥ i , the
classical eigenspace

Cϕ=p j

i = H0
ét(Y ,W�i

log)̂⊗ZpAϕ=p j−i

cr . (6.40)

To see that, write, using the notation from the proof of Proposition 6.23,
H0
ét(Y ,W�i

log) � lim←−s
H0
ét(Y s,W�i

log) or, to simplify the notation, Ai :=
A = lim←−s

As . Note that As is a finite type free Zp-module. Replace As with
Bs := ∩s′>s im (As′ → As). Then the maps Bs+1 → Bs are surjective and
A = lim←−s

Bs . Choose basis of Bs , s ≥ 1, compatible with the projections, i.e.,
the chosen basis of Bs+1 includes a lift of the chosen basis of Bs . Using this
basis we can write

A �ZI1
p × ZI2

p × ZI3
p × · · · , Â⊗ZpAcr � AI1

cr × AI2
cr × AI3

cr × · · · . (6.41)

Since the Frobenius on Ai = H0
ét(Y ,W�i

log) is equal to the multiplication by

pi we obtain the equality we wanted.
Consider now the following exact sequences

0 → Cϕ=pr
r → Cr

ϕ−pr−−→Cr , 0 → Cϕ=pr

r−1 → Cr−1
ϕ−pr−−→Cr−1.

Since the map Acr
pi−ϕ−−→Acr, i ≥ 0, is pi -surjective, the maps ϕ − pr above

are rationally surjective (use the basis (6.41) and the fact that the Frobenius
on Ai is equal to the multiplication by pi ). Hence, rationally, the derived
eigenspaces [Ci ]ϕ=pr , i = r, r − 1, are equal to the classical ones Cϕ=pr

i ,
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i = r, r−1. Since, by (6.40), we haveCϕ=pr
r = H0

ét(Y ,W�r
log) andC

ϕ=pr

r−1 =
H0
ét(Y ,W�r−1

log )̂⊗ZpAϕ=p
cr , the strict quasi-isomorphisms in (6.39) follow.

It remains to show that the natural maps

H0
ét(Y ,W�r

log)Qp → H0
ét(Y ,W�r

log)⊗Qp,

(H0
ét(Y ,W�r−1

log )̂⊗ZpAϕ=p
cr )Qp → (H0

ét(Y ,W�r−1
log )̂⊗ZpAϕ=p

cr )⊗Qp.

are strict quasi-isomorphisms but this follows from Proposition 2.6.

6.4.3 Computation of syntomic cohomology

Corollary 6.42 Let r ≥ 0. The r-th cohomology of R	syn(X , Zp(r))Qp is
classical and there exists a natural topological isomorphism

Hr (R	syn(X , Zp(r))Qp) � H0
ét(Y ,W�r

log)⊗Qp.

Proof We note that, by Proposition 6.23, there exist natural strict quasi-
isomorphisms

⊕i≥0H
0(X, �i )̂⊗OK F

r−iAcr,K [−i] ∼→ Fr (R	dR(X)̂⊗OK Acr,K ),

⊕r−1≥i≥0H
0(X, �i )̂⊗OK (Acr,K /Fr−i )[−i] ∼→ (R	dR(X)̂⊗OK Acr,K )/Fr .

This, combined with the strict quasi-isomorphisms (6.38), changes the map
γHK from (6.36) into

γ ′
HK : (H0

ét(Y,W�r−1
log )̂⊗ZpAϕ=p

cr )⊗Qp → (H0(X, �r−1)̂⊗OKOC )⊗Qp.

Hence we obtain the long exact sequence

(H0
ét(Y,W�r−1

log )̂⊗ZpAϕ=p
cr )⊗Qp

γ ′
HK

(H0(X,�r−1)̂⊗OKOC )⊗Qp

˜Hr (R	syn(X , Zp(r))Qp ) H0
ét(Y ,W�r

log)⊗Qp 0

It suffices to show that γ ′
HK is strictly surjective. For that we will need to

trace carefully its definition. Consider thus the following commutative diagram
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(H0
ét(Y,W�r−1

log )̂⊗ZpAϕ=p
cr )Qp [−r + 1] γ ′

HK
(H0(X,�r−1)̂⊗OKOC )Qp [−r + 1]

[(R	cr(Y/O0
F )̂⊗OF

̂Ast)Qp ]N=0,ϕ=pr

can

γHK
(R	dR(X)̂⊗OK Acr,K )Qp/F

r

can

[R	cr(Y/O0
F , F)̂⊗R

F
̂B+
st ]N=0,ϕ=pr γHK

(R	dR(XK )̂⊗R
KB+

dR)/Fr .

[R	HK(Y )̂⊗R
FB+

st ]N=0,ϕ=pr

�
ιHK⊗ι

(R	dR(˜XK )̂⊗R
KB+

dR)/Fr

ι2rig �

(6.43)

Here, the fact that the bottom square commutes follows from the proofs of
Proposition 3.48 and Theorem 4.1. Taking ˜Hr−1 of the above diagram we
obtain the outer diagram in the commutative diagram

(H0
ét(Y,W�r−1

log )̂⊗ZpAϕ=p
cr )⊗Qp

γ ′
HK

Hr−1
HK (Y )̂⊗FB+,ϕ=p

cr

ιHK⊗ι

(H0(X, �r−1)̂⊗OKOC )⊗Qp Hr−1
dR (˜XK )̂⊗KC

H0(˜XK , �r−1)̂⊗KC.

Since d = 0 on (H0(X, �r−1)̂⊗OKOC )⊗Qp, we get the shown factorization
of the slanted map and the commutative square. This square is seen (by a
careful chase of diagram (6.43)) to be compatible with the projections θ :
Aϕ=p
cr → OC , θ : B+,ϕ=p

cr → C . Using them, we obtain the commutative
diagram

(H0
ét(Y,W�r−1

log )̂⊗ZpOC )⊗Qp

can

γC
(H0(X, �r−1)̂⊗OKOC )⊗Qp

can

Hr−1
HK (Y )̂⊗FC

ιHK⊗ι
Hr−1
dR (˜XK )̂⊗KC

and reduce our problem to showing that the induced map γC is surjective.
We will, in fact, show that γC is an isomorphism. Note that the right ver-

tical map in the above diagram is injective: use the fact that the natural map
Hr−1
dR (X) → Hr−1

dR (XK ) is an injection (in particular the domain is torsion-
fee). By Remark 6.33, the above diagram yields that γC = (ιHK ⊗ 1)⊗Qp.

Since the integral Hyodo–Kato map ιHK : H0
ét(Y,W�r−1

log ) ⊗Zp OK
∼→

H0(X, �r−1) is a topological isomorphism, so is γC , as wanted.
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To check that the map γ ′
HK is strict, consider the factorization

(H0
ét(Y,W�r−1

log )̂⊗ZpAϕ=p
cr )⊗Qp

1⊗θ
γ ′
HK

(H0
ét(Y,W�r−1

log )̂⊗ZpOC )⊗Qp
γC

∼ (H0(X, �r−1)̂⊗OKOC )⊗Qp

As mentioned above, the map γC is a topological isomorphism. Hence it
suffices to show that the vertical map is strict. But this is clear because the
surjection θ : Aϕ=p

cr → OC has a Zp-linear continuous section.

6.5 Main theorem

Before proving the main theorem of this section let us state the following
corollary. Recall that X , resp. ˜X , is the standard formal, resp. weak formal,
model of the Drinfeld half-space H

d
K , Y = X0, Y = Yk .

Corollary 6.44 Let r ≥ 0. The cohomology ˜Hr
ét(XC , Qp(r)) is classical and

there is a natural topological isomorphism

Hr
ét(XC , Qp(r)) � H0

ét(Y ,W�r
log)Qp .

It is compatiblewith the étale and the logarithmic deRham–Witt Chern classes.

Proof The first claim follows from the comparison between étale and syntomic
cohomologies in Proposition 6.1 and the computation of syntomic cohomology
in Corollary 6.42.

The second claim follows from the compatibility of the étale, syntomic,
crystalline, cst1 , crystalline Hyodo–Kato, and logarithmic de Rham–Witt Chern
classes discussed in Chapter 7.

We are now ready to prove the following result.

Theorem 6.45 Let r ≥ 0.

1. There is a natural topological isomorphism of G × GK -modules

Hr
ét(XC , Qp(r)) � Spcontr (Qp)

∗ � Spr (Zp)
∗⊗Qp.

2. There are natural topological isomorphisms of G-modules

Hr
dR(X)K � Spcontr (K )∗, Hr

cr(Y/O0
F )Qp � Spcontr (F)∗,

Hi
ét(Y ,W�r

Y ,log
)Qp �

{

Spcontr (Qp)
∗ if i = 0,

0 if i > 0.
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3. The regulator maps

rdR : M(H d+1, K ) → Hr
dR(X)K , rHK : M(H d+1, F) → Hr

cr(Y/O0
F )Qp ,

rlog : M(H d+1, Qp) → H0
ét(Y ,W�r

log)Qp

are strict surjective maps (of weak duals of Banach spaces), G × GK -
equivariant, compatible with the isomorphisms in (1) and (2), and their
kernels are equal to the space of degenerate measures (defined as the inter-
section of the space of measures with the set of degenerate distributions).

4. The natural map

Hr
ét(XC , Qp(r)) → Hr

proét(XC , Qp(r))

is an injection and identifies Hr
ét(XC , Qp(r)) with the G-bounded vectors

of Hr
proét(XC , Qp(r)).

Proof Point (2) follows from Theorem 6.28 and Proposition 6.23. Point (1)
follows from Corollary 6.44, Lemma 6.32, and the computation of the loga-
rithmic de Rham–Witt cohomology in Theorem 6.28.

To prove point (4) consider the commutative diagram, where the bottom
sequence is strictly exact:

Hr
ét(XC , Qp(r))

ε

∼ Spcontr (Qp)
∗

can

0 d�r−1(XC ) Hr
proét(XC , Qp(r)) Spr (Qp)

∗ 0

Commutativity can be checked easily by looking at symbols. The change
of topology map ε has image in Hr

proét(XC , Qp(r))G−bd (since Spcontr (Zp)
∗

is compact). We need to show that this image is the whole of Hr
proét

(XC , Qp(r))G−bd . To prove that, since (Spr (Qp)
∗)G−bd � Spcontr (Qp)

∗,
it is enough to show that (d�r−1(XC ))G−bd = 0 or, equivalently, that
(�r−1(XC )d=0)G−bd → Hr−1

dR (XC ) is an injection. It is enough to show that
�r−1(XC )G−bd → Hr−1

dR (XC ) is injective or that, by an analogous argu-
ment to the one we used in the proof of Proposition 6.23, so is the map
�r−1(XK )G−bd → Hr−1

dR (XK ).
Now, since, the map �r−1(X)̂⊗OK K → �r−1(XK )G−bd is an isomor-

phism (use the fact that X can be covered byG-translates of an open subscheme
U such that UK is an affinoid), it suffices to show that �r−1(X)̂⊗OK K →
Hr−1
dR (XK ) is an injection. But this we have done in Proposition 6.27.

123



Cohomology of p-adic Stein spaces 971

Point (3) follows from the construction and Chapter 7. More precisely,
the fact that the regulator maps rdR, rHK, rlog are compatible with the iso-
morphisms in points (1) and (2) follow from diagrams 6.31, 6.29, 6.30,
respectively.

Finally, the fact that the regulators in point (3) are strict follows from the
fact that so are the corresponding maps M(H r+1, Zp) → Spr (Zp)

∗, etc, as
surjective continuous maps of profinite modules, and tensoring with Qp is
right exact.

Remark 6.46 We will show in [18] that there is a regulator map

rét : M(H d+1, Qp) → Hr
ét(XC , Qp(r))

compatible with the étale Chern class maps. Corollary 6.44 then implies that
we have an analog of point (3) of Theorem 6.45 in this setting.

7 Symbols

We gather in this chapter a few basic facts concerning symbol maps and their
compatibilities that we need in this paper. We use the notation from Chapter 6.

7.1 Hyodo–Kato isomorphisms

Let X be a semistable Stein weak formal scheme over OK . In the first part
of this paper we have used the Hyodo–Kato isomorphism as defined by
Grosse-Klönne in [32], ιHK : Hr

HK(X0) ⊗F K
∼→ Hr

dR(XK ). But one can
use the original Hyodo–Kato isomorphism defined for quasi-compact formal
schemes in [38]. Doing that we obtain two Hyodo–Kato isomorphisms. One
that, modulo canonical identifications, turns out to be the same as the one
of Grosse-Klönne, the other identifies bounded Hyodo–Kato and de Rham
cohomologies.

Proposition 7.1 We have compatible Hyodo–Kato (topological) isomor-
phisms

ιHK : Hr
cr(X0/O

0
F , F)⊗F K

∼→ Hr
dR(̂XK ),

ιHK : (Hr
cr(X0/O

0
F ) ⊗OF OK )⊗K

∼→ Hr
dR(̂X)⊗K . (7.2)

Proof As mentioned above they are induced by the original Hyodo–Kato iso-
morphism [38]. We will describe them in more detail.

To start, assume that we have a quasi-compact semistable formal scheme
Y over OK . We will work in the classical derived category. Recall that the
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Frobenius ϕ

rPD�,n,ϕ ⊗L
rPD�,n

R	cr(Y1/r
PD
�,n) → R	cr(Y1/r

PD
�,n),

OF,n,ϕ ⊗L
OF,n

R	cr(Y0/OF,n) → R	cr(Y0/O
0
F,n)

has a pN -inverse ψ , for N = N (d), d = dim Y0. This is proved in [38,
2.24].

Lemma 7.3 The projection p0 : R	cr(Y/rPD�,n) → R	cr(Y0/O0
F,n) has

a functorial (for maps between formal schemes and a change of n) and
Frobenius-equivariant pNι-section

ι�,n : R	cr(Y0/O
0
F,n) → R	cr(Y/rPD�,n),

i.e., p0ι�,n = pNι , Nι = N (d, e). Moreover, the resulting map

ι�,n : R	cr(Y0/O
0
F,n) ⊗L

OF,n
rPD�,n → R	cr(Y/rPD�,n)

is a pN -quasi-isomorphism, N = N (d, e),

Proof This follows easily from the proof of Proposition 4.13 in [38] which
deals with the case K = F ; the key point being that the Frobenius on
R	cr(Y0/O0

F,n) is close to a quasi-isomorphism and the Frobenius on the
PD-ideal of rPD� is close to zero. Hence, we just need to pass from F to K .

By [38, Prop. 4.13], the projection p0 : R	cr(Y/rPDp,n) → R	cr(Y0/O0
F,n)

has a functorial (for maps between formal schemes and a change of n) and
Frobenius-equivariant pNι-section

ιp,n : R	cr(Y0/O
0
F,n) → R	cr(Y/rPD�,n),

i.e., p0ιp,n = pNι , Nι = N (d). To pass from F to K , consider the following
commutative diagram:

Y1 Y0 Y1

Spec(OK ,1) Spec(k) Spec(OK ,1)

Spec(rPD�,n)
g

Spec(rPDp,n) Spec(rPD�,n).
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Here the map g is defined by T 
→ T pe and a 
→ ϕe(a), a ∈ Wn(k). The
composites of the horizontal arrows are the pe iterations of the Frobenius. Set

ι�,n := g∗ιp,nψe.

We have

p0ι�,n = p0g
∗ιp,nψe = ϕe p0ιp,nψ

e = ϕeψe pNι = pM ,

for M = M(d, e), as wanted.
It is easy to see that the resulting map

ι�,n : R	cr(Y0/O
0
F,n) ⊗L

OF,n
rPD�,n → R	cr(Y/rPD�,n)

is a pN -quasi-isomorphism, N = N (d, e): we use the analogous result for F
(see [38, Lemma 5.2]) and the fact that the right square in the above diagram
is cartesian.

Lemma 7.3 implies that the composite

p� ι�,n : R	cr(Y0/O
0
F,n) ⊗L

OF,n
OK ,n → R	cr(Y/O×

K ,n)

is a pN -quasi-isomorphism, N = N (d, e). Taking holim n of the last map we
obtain a map

p� ι� : R	cr(Y0/O
0
F ) ⊗L

OF
OK → R	cr(Y/O×

K ), ι� = holim nι�,n,

that is a pN -quasi-isomorphism, N = N (d, e). The twisted Hyodo–Kato map
is defined as ι̃HK = ρ−1 p� ι� . We have the commutative diagram

R	cr(Y/rPD� )

p0

p�
R	cr(Y/O×

K ) R	dR(Y )
ρ

∼

R	cr(Y0/O0
F )

ι�
ι̃HK

We note that themap ι̃HK : R	cr(Y0/O0
F )⊗OF OK → R	dR(Y ) is a pN -quasi-

isomorphism, N = N (d, e). Modulo pN , N = N (d, e), it is independent of
the choices made. The Hyodo–Kato map

ιHK : Hi
cr(Y0/O

0
F )⊗F → Hi

dR(Y )⊗K
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is defined as ιHK := p−Nι̃ ιHK.Wehave obtained theHyodo–Kato (topological)
isomorphism

ιHK : (Hi
cr(Y0/O

0
F ) ⊗OF OK )⊗K

∼→ Hi
dR(Y )⊗K .

For a Stein semistable weak formal scheme X , we choose a Stein covering
{Us}, s ∈ N, and define the compatible Hyodo–Kato maps

ιHK := lim←−
s

ιHK,Us : Hi
cr(X0/O

0
F , F) → Hi

dR(̂XK ),

ιHK := p−Nι (lim←−
s

ι̃HK,Us⊗Qp) : Hi
cr(X0/O

0
F )⊗Qp → Hi

dR(̂X)⊗Qp. (7.4)

We used here the fact that (topologically)

Hi
cr(X0/O

0
F , F) � lim←−

s

Hi
cr(Us/O

0
F , F) , Hi

cr(X0/O
0
F ) � lim←−

s

Hi
cr(Us/O

0
F ) ,

Hi
dR(̂XK ) � lim←−

s

Hi
dR(]Us[̂XK

) , Hi
dR(̂X) ⊗ Qp � (lim←−

s

Hi
dR(̂X |Us )) ⊗ Qp.

(7.5)

The third isomorphism, since XK is Stein, is standard. The first two follow
from the vanishing of the derived functors

H1holim s H
i−1
cr (Us/O

0
F , F), H1holim s H

i−1
cr (Us/O

0
F ),

which, in turn, follow from the fact that the pro-systems (s ∈ N)

{Hi−1
cr (Us/O

0
F , F)} = {Hi−1

cr (Ys/O
0
F , F)}, {Hi−1

cr (Us/O
0
F )} = {Hi−1

cr (Ys/O
0
F )}

are Mittag-Leffler. To show the last isomorphism in (7.5), it suffices to show
the vanishining of (H1holim s H

i−1
dR (̂X |Us )) ⊗ Qp. For that, we will use the

fact that the twisted Hyodo–Kato map

ι̃HK : Hi−1
cr (Us/O

0
F ) ⊗OF OK → Hi−1

dR (̂X |Us )

is a pN -isomorphism. Which implies that so is the induced map

H1holim s(H
i−1
cr (Us/O

0
F ) ⊗OF OK ) → H1holim s H

i−1
dR (̂X |Us ).

But, since the pro-system {Hi−1
cr (Us/O

0
F )} = {Hi−1

cr (Ys/O0
F )} is Mittag–

Leffler, the first derived limit made rational is trivial, as wanted.
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Now, by definition, the Hyodo–Kato maps from (7.4) are topological iso-
morphisms.

Corollary 7.6 The Hyodo–Kato isomorphisms from Proposition 7.1 are com-
patible with the Grosse-Klönne Hyodo–Kato isomorphism. That is, we have a
commutative diagram

Hi
rig(X0/O

0
F )

�

ιHK Hi
dR(XK )

�

Hi
cr(X0/O

0
F , F)

ιHK Hi
dR(̂XK )

Hi
cr(X0/O

0
F )Qp

ιHK Hi
dR(̂X)Qp

Proof We may argue locally and assume that X is quasi-compact. Then, this
can be checked by the diagram (we use the notation from Sect. 4.1).

Hi
rig(X0/O

0
F )

ιHK Hi
dR(XK )

Hi
rig(X0/r†)

p0
∼

f1

p�

Hi
rig(X0/r†)

p0

f2

p�

Hi
cr(X0/O

0
F , F)

p−Nι ι�

ιHK

Hi
cr(X/rPD� , Qp)p0

p�
Hi
dR(̂XK )

Hi
cr(X0/O

0
F ) ⊗ Qp

p−Nι ι�

ιHK

Hi
cr(X/rPD� ) ⊗ Qpp0

p�
Hi
dR(̂X) ⊗ Qp

(7.7)

Indeed, we easily reduce to checking that the dotted diagram commutes. Since
all the maps are compatible with Frobenius and Hi

rig(X0/O
0
F ) is finite dimen-

sional, this is proved by a standard argument using the fact that Frobenius on T
is highly nilpotent.
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7.2 Definition of symbols

We define now various symbol maps and show that they are compatible.
Let X be a semistable formal scheme over OK . Let M be the sheaf of

monoids on X defining the log-structure, Mgp its group completion. This log-
structure is canonical, in the terminology of Berkovich [4, 2.3], i.e., M(U ) =
{x ∈ OX (U )|xK ∈ O∗

XK
(UK )}. This is shown in [4, Th.2.3.1], [3, Th.5.3] and

applies also to semistable formal schemes with self-intersections. It follows
that Mgp(U ) = O(UK )∗.

7.2.1 Differential symbols

We have the crystalline first Chern class maps of complexes of sheaves on X ét
[79, 2.2.3]

cst1 : Mgp → Mgp
n → Rε∗J [1]

Xn/rPD�,n
[1], cHK1 : Mgp → Mgp

0 → Rε∗J [1]
X0/O

0
F,n

[1].

Here, the map ε is the projection from the corresponding crystalline-étale
site to the étale site. These maps are clearly compatible. We get the induced
functorial maps

cst1 : H0(XK ,O∗
XK

) → R	cr(X/rPD� ,J [1])[1],
cHK1 : H0(XK ,O∗

XK
) → R	cr(X0/O

0
F ,J [1])[1].

The Hyodo–Kato classes above can be also defined using the de Rham-Witt
complexes. That is, one can define (compatible)Hyodo–KatoChern classmaps
[22, 2.1]

clog1 : H0(XK ,O∗
XK

) → R	ét(X0,W�•
X0,log)[1],

cHK1 : H0(XK ,O∗
XK

) → R	ét(X0,W�•
X0

)[1].

They are compatible with the classical crystalline Hyodo–Kato Chern class
maps above (use [28, I.5] and replace O∗ by Mgp).

We also have the de Rham first Chern class map

cdR1 : Mgp → Mgp
n

dlog−−→�•
Xn/O

×
K ,n

[1].

It induces the functorial map

cdR1 : H0(XK ,O∗) → R	dR(X)[1].
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It is evident that, by the canonical map R	dR(X) → R	dR(XK ), this map is
compatible with the rigid analytic class (defined using dlog)

cdR1 : H0(XK ,O∗) → R	dR(XK )[1].

Let now X be a semistable weak formal scheme over OK . The overconver-
gent classes

cHK1 : H0(XK ,O∗) → R	rig(X0/O
0
F )[1], cdR1 : H0(XK ,O∗) → R	dR(XK )[1]

are defined in an analogous way to the crystalline Hyodo–Kato classes and
the rigid analytic de Rham classes (of ̂XK ), respectively. Clearly they are
compatible with those.

Lemma 7.8 Let X be a semistable Stein weak formal scheme over OK . The
Hyodo–Kato maps

ιHK : H1
cr(X0/O

0
F ) ⊗ Qp → H1

dR(̂X) ⊗ Qp, ιHK : H1
cr(X0/O

0
F , F) → H1

dR(̂XK ),

ιHK : H1
rig(X0/O

0
F ) → H1

dR(XK )

are compatiblewith theChern classmaps from H0(̂XK ,O∗)and H0(XK ,O∗).

Proof For the first twomaps, note that we can assume that X is quasi-compact.
This is because in the second map the cohomologies are projective limits
and in the first map this is true up to a universal constant (see the proof of
Proposition 7.1). Now, the proof of an analogous lemma in the algebraic setting
goes through with only small changes [59, Lemma5.1]. We will present it for
the secondmap (the proof for the firstmap is similarwith a careful bookkeeping
of the appearing constants).

Since ιHK = ρ−1 p� ι′� , ι′� = p−Nι ι� , and the map p� is compatible
with first Chern classes, it suffices to show the compatibility for the section
ι′� . Let x ∈ H0(̂XK ,O ∗̂

XK
). Since the map ι′� is a section of the map p0 and

the map p0 is compatible with first Chern classes, we have that the element
ζ ∈ H1

cr(X/rPD� ) defined as ζ = ι′�(cHK1 (x))− cst1 (x) ∈ ker p0. We will show
that ζ is zero.

Consider now the linearization of the map ι′�

β : (H1
cr(X0/O

0
F ) ⊗ Qp)̂⊗Fr

PD
�,Qp

→ H1
cr(X/rPD� ) ⊗ Qp (7.9)
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It is an isomorphism: this is because we have the pN -quasi-isomorphism,
N = N (d, e), (see Lemma 7.3)

ι� : R	cr(X0/O
0
F )̂⊗OF r

PD
� → R	cr(X0/r

PD
� )

andR	cr(X0/O
0
F )̂⊗OF r

PD
� is p-adically derived complete and rPD�,n is free over

OF,n . Hence, we can write ζ = β(ζ ′), for ζ ′ ∈ H1
cr(X0/O

0
F )Qp

̂⊗FrPD�,Qp
.

Since p0β(ζ ′) = 0, we have ζ ′ ∈ ker(Id ⊗ p0) = (H1
cr(X0/O

0
F ) ⊗

Qp)̂⊗F I0,Qp , where we defined the ideals In of r
PD
� as

In :=
{

∑

i≥pn

ai�i/e�!T
i , lim

i 
→∞ ai = 0
}

.

Note that we have the exact sequence

0 → I0,Qp → rPD�,Qp
→ F → 0.

Since the map ι′� is compatible with Frobenius, ϕ(cHK1 (x)) = pcHK1 (x),
ϕ(cst1 (x)) = pcst1 (x), and β is an isomorphism, we have ϕn(ζ ′) = pnζ ′. Since
ϕn(I0) ⊂ In , this implies that ζ ′ ∈ ⋂∞

n=1(H
1
cr(X0/O

0
F )⊗Qp)̂⊗F In,Qp , which

is not possible unless ζ ′ is zero. This implies that ζ = 0, as wanted.
For the last map in the lemma, we use the commutative diagram fromCorol-

lary 7.6

Hi
rig(X0/O

0
F )

ιHK

�

Hi
dR(XK )

Id�

Hi
cr(X0/O

0
F , F)

ιHK Hi
dR(̂XK ),

the compatibilities from Sect. 7.2.1, and the compatibility of the second map
in this lemma with Chern classes that we have shown above.

Acknowledgements This paper owes great deal to the work of Elmar Grosse-Klönne. We
are very grateful to him for his patient and detailed explanations of the computations and
constructions in his papers. We would like to thank Fabrizio Andreatta, Bruno Chiarellotto,
Frédéric Déglise, Ehud de Shalit, Veronika Ertl, Laurent Fargues, Florian Herzig, Luc Illusie,
Arthur-César LeBras, SophieMorel, ArthurOgus, andLue Pan for helpful conversations related
to the subject of this paper.We also thank the referee for useful comments. This paper was partly
written during our visits to the IAS at Princeton, the Tata Institute in Mumbai, Banach Center in
Warsaw (P.C, W.N), BICMR in Beijing (P.C.), Fudan University in Shanghai (W.N.), Princeton
University (W.N.), and the Mittag-Leffler Institute (W.N.). We thank these institutions for their
hospitality.

123



Cohomology of p-adic Stein spaces 979

A Alternative proof of Corollary 6.25

We present in this appendix an alternative proof of Corollary 6.25 (hence
also of Proposition 6.23 which easily follows from it) that does not use the
ordinarity of the truncated log-schemes Ys .

Let X/k0 be a fine log-scheme of Cartier type. Recall that we have the
subsheaves

Z j∞ = ∩n≥0Z
j
n , B j∞ = ∪n≥0B

j
n

of � j = �
j
X/k0

(in what follows we will omit the subscripts in differentials

if understood). Via the maps C : Z j
n+1 → Z j

n (with kernels B j
n ), Z

j∞ is the
sheaf of forms ω such that dCnω = 0 for all n. This sheaf is acted upon by
the Cartier operator C , and we recover

B j∞ = ∪n≥0(Z
j∞)C

n=0, �
j
log = (Z j∞)C=1.

The following result is proved in [40, 2.5.3] for classically smooth schemes.
It holds most likely in much greater generality than the one stated below, but
this will be sufficient for our purposes.

Lemma A.1 Assume that X/k0 is semi-stable (with the induced log structure)
and that k is algebraically closed. Then the natural map of étale sheaves

B j∞ ⊕ (�
j
log ⊗Fp k) → Z j∞

is an isomorphism.

Proof It suffices to show that, for X as above and affine, B j∞(X) ⊕
(�

j
log(X) ⊗Fp k) → Z j∞(X) is an isomorphism. Take an open dense sub-

set j : U ↪→ X which is smooth over k. Then �i
X is a subsheaf of j∗�i

U and
so Zi

∞,X is a subsheaf of j∗Zi
∞,U , giving an inclusion Zi

∞,X (X) ⊂ Zi
∞,U (U ).

By a result of Raynaud [40, Prop. 2.5.2], Zi
∞,U (U ) is a union of finite dimen-

sional k-vector spaces stable under C . We deduce that Zi
∞,X (X) is also such

a union.
The result follows now from the following basic result of semi-linear algebra

(this is where the hypothesis that k is algebraically closed is crucial): if E is a
finite dimensional k-vector space stable underC , then E = Enilp⊕Einv, where
Enilp = ∪n ECn=0, Einv = ∩nCn(E), and the naturalmap EC=1⊗Fp k → Einv
is an isomorphism.
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Proof of Corollary 6.25 (1) We prove this in several steps. We start with the
case i = 0 (the most delicate). By Lemma A.1,

H0
ét(Y , Z j∞) � H0

ét(Y , B j∞) ⊕ H0
ét(Y , �

j
log ⊗Fp k).

We need the following intermediate result:

Lemma A.2 We have H0
ét(Y , B j∞) = 0.

Proof Wenote that H0
ét(Y , B j

n ) = 0 for all n: becausewe have B j
n � B j

n+1/B
j
1

this follows from Lemma 6.13. This however does not allow us to deduce
formally our lemma because B j∞ = ∪n B

j
n andY is not quasi-compact. Instead,

we argue as follows: the formation of the sheaves B j∞ being functorial, we have
a natural map α : H0

ét(Y , B j∞) → ∏

C∈F0 H0
ét(C, B j∞). It suffices to prove that

α is injective and that H0
ét(T , B j∞) = 0. To prove the injectivity of α, it suffices

to embed both the domain and target of α in H0
ét(Y , � j ) and

∏

C H0
ét(C, � j ),

and to use the injectivity of the natural map H0
ét(Y , � j ) → ∏

C H0
ét(C, � j ).

Next, since T is quasi-compact,

H0
ét(T , B j∞) = lim−→

n

H0
ét(T , B j

n ) = 0,

the second equality being a consequence of Proposition 6.3 and Lemma 6.13
(as above, in the case of Y ).

Consider now the sequence of natural maps

H0
ét(Y , �

j
log)̂⊗Fpk

∼→ H0
ét(Y , �

j
log ⊗Fp k)

∼→ H0
ét(Y , Z j∞) → H0

ét(Y , � j ).

The first map is clearly a topological isomorphism, the second one is a
topological isomorphism by Lemma A.2. Hence it remains to show that the
last map is a topological isomorphism as well. Or that all the natural maps
H0
ét(Y , Z j

n ) → H0
ét(Y , � j ), n ≥ 1, are topological isomorphisms. But this

was done in the proof of Lemma 6.20. This gives the desired result for i = 0.
We prove next the result for i > 0, i.e., that Hi

ét(Y , �
j
log)̂⊗Fpk = 0 for

i ≥ 1. We start with showing that Hi
ét(Y , �

j
log) = 0. The exact sequence

0 → �
j
log → � j/B j

1
1−C−1−−−−→� j/B j

2 → 0

yield the exact sequence

0 → H0
ét(Y , �

j
log) → H0

ét(Y , � j )
1−C−1−−−−→H0

ét(Y , � j ) → H1
ét(Y , �

j
log) → 0
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and Hi
ét(Y , �

j
log) = 0 for i > 1. It suffices therefore to prove that 1 − C−1

is surjective on H0
ét(Y , � j ). For this, write As = H0

ét(Y
◦
s , �

j
log). As we have

already seen, we have an isomorphism

H0
ét(Y , � j ) � lim←−

s

(As ⊗Fp k) = H0
ét(Y , �

j
log)̂⊗Fpk.

We have C−1 = lim←−s
(1 ⊗ ϕ) (ϕ being the absolute Frobenius on k; note that

C − 1 = 0 on As). To conclude that 1 − C−1 is surjective on H0
ét(Y , � j ), it

suffices to pass to the limit in the exact sequences

0 → As → As ⊗Fp k
1−ϕ−−→As ⊗Fp k → 0,

whose exactness is ensured by the Artin-Schreier sequence for k and the fact
that (As)s is Mittag-Leffler.

This shows that Hi
ét(Y , �

j
log) = 0 for i > 0. Choosing a basis (eλ)λ∈I of k

over Fp we obtain an embedding

Hi
ét(Y , �

j
log)̂⊗Fpk ⊂

∏

λ∈I
Hi
ét(Y , �

j
log) = 0,

which finishes the proof of (1).
(2) We prove the claim for Wn by induction on n, the case n = 1 being part

(1). We pass from n to n + 1 using the strictly exact sequences

0 → H0(Y , � j )
V n→ H0(Y ,Wn+1�

j ) → H0(Y ,Wn�
j ) → 0,

0 → H0
ét(Y , �

j
log)̂⊗Fpk

V n→ H0
ét(Y ,Wn+1�

j
log)̂⊗Z/pn+1Wn+1(k)

→ H0
ét(Y ,Wn�

j
log)̂⊗Z/pnWn(k) → 0,

as well as the natural map between them. The first sequence is exact by
Lemma 6.20. To show that the second sequence is exact, consider, as above,
the exact sequences

0 → H0
ét(Y

◦
s , �

j
log)

V n→ H0
ét(Y

◦
s ,Wn+1�

j
log) → H0

ét(Y
◦
s ,Wn�

j
log) → H1

ét(Y
◦
s , �

j
log).

Tensoring over Z by Wn+1(k), we can rewrite them as

0 → H0
ét(Y

◦
s , �

j
log) ⊗Fp k → H0

ét(Y
◦
s ,Wn+1�

j
log) ⊗Z/pn+1 Wn+1(k)

→H0
ét(Y

◦
s ,Wn�

j
log) ⊗Z/pn Wn(k) → H1

ét(Y
◦
s , �

j
log) ⊗Fp k.
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To lighten the notation, write them simply as 0 → As → Bs → Cs →
Ds . Using that (As)s, (Cs)s are finite Wn(k)-modules and that lim←−s

Ds =
H1
ét(Y , �

j
log)̂⊗Fpk = 0 (as follows from (1)), we obtain the exact sequence

0 → lim←−
s

As → lim←−
s

Bs → lim←−
s

Cs → 0,

which finishes the proof of (2) forWn , n ≥ 1. Passing to the limit over n gives
us the proof for W .
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