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Abstract In this paper, we explicitly compute the semisimplifications of all
Jacquet modules of irreducible representations with generic L-parameters of
p-adic split odd special orthogonal groups or symplectic groups. Our com-
putation represents them in terms of linear combinations of standard modules
with rational coefficients. The main ingredient of this computation is to apply
Mœglin’s explicit construction of local A-packets to tempered L-packets.
Finally, we study the derivatives introduced by Mínguez.
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1 Introduction

When G is a p-adic reductive group and P = MN is a parabolic subgroup,
there is the normalized parabolic induction functor

IndGP : Rep(M) → Rep(G),
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where Rep(G) is the category of smooth admissible representations of G. The
(normalized) Jacquet functor

JacP : Rep(G) → Rep(M)

is the left adjoint functor of IndGP . For π ∈ Rep(G), the object JacP(π) ∈
Rep(M) is called the Jacquet module of π with respect to P . In the repre-
sentation theory of p-adic reductive groups, the parabolic induction functors
and the Jacquet functors are ones of the most basic and important terminolo-
gies. One of the reasons why they are so important is that they are both exact
functors.

The Jacquet modules have many applications. For example:

• Looking at the Jacquet modules of irreducible representation π of G, one
can take a parabolic subgroup P = MN and an irreducible supercuspidal
representation ρM of M such that π ↪→ IndGP (ρM). Such a ρM is called
the cuspidal support of π .

• Casselman’s criterion says that the growth of matrix coefficients of an
irreducible representation π is determined by exponents of the Jacquet
modules of π .

• Mœglin explicitly constructed the local A-packets, which are the “local
factors of Arthur’s global classification”, by taking Jacquet functors intel-
ligently.

In this paper, we shall give an explicit description of the semisimplifica-
tions of Jacquet modules of tempered representations of split odd special
orthogonal groups SO2n+1(F) or symplectic groups Sp2n(F), where F is a
non-archimedean local field of characteristic zero. To do this, it is necessary to
have some sort of classification of irreducible representations of these groups.
We use the local Langlands correspondence established by Arthur [1] for such
a classification.

The local Langlands correspondence attaches each irreducible representa-
tion π of G = SO2n+1(F) (resp. G = Sp2n(F)) to its L-parameter (φ, η),
where

φ : WF × SL2(C) → ̂G

is a homomorphism from the Weil–Deligne group WF × SL2(C) of F to the
Langlands dual group ̂G = Sp2n(C) (resp. ̂G = SO2n+1(C)) of G, and

η ∈ Irr(Aφ)

is an irreducible character of the component group Aφ = π0(Cent̂G(Im(φ)))

associated to φ which is trivial on the image of the center Z(̂G) of ̂G.
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Jacquet modules and local Langlands correspondence 833

The Jacquetmoduleswill be computed by twomain theorems (Theorems 4.2
and 4.3) and Tadić’s formula (Theorem 2.8) together with Lemma 2.7. Fix
an irreducible unitary supercuspidal representation ρ of GLd(F). By abuse of
notation,wedenote by the samenotationρ the irreducible representation ofWF
corresponding to ρ by the local Langlands correspondence. Let Pk = MkNk be
the standard parabolic subgroup ofG with Levi subgroupMk

∼= GLk(F)×G0
for some classical group G0 of the same type as G. When k = d, for an
irreducible representation π of G, if the semisimplification of JacPd (π) is of
the form

s.s.JacPd (π) =
⊕

i∈I
τi � πi

with τi (resp. πi ) being an irreducible representation of GLd(F) (resp. G0),
we define a partial Jacquet module Jacρ|·|x (π) for x ∈ R by

Jacρ|·|x (π) =
⊕

i∈I
τi∼=ρ|·|x

πi .

Here, |·| : WF → R
× is the normmap normalized so that |Frob| = q−1, where

Frob ∈ WF is a fixed (geometric) Frobenius element, and q is the cardinality
of the residual field of F . The first main theorem is the description of the partial
Jacquet module Jacρ|·|x (π) for tempered π (Theorem 4.2).

For discrete series π , Theorem 4.2 has been proven by Xu [16, Lemma
7.3] to describe the cuspidal support of π in terms of its L-parameter. As
related works, Aubert–Moussaoui–Solleveld [2–4] defined the “cuspidality”
of L-parameters (φ, η) by a geometric way, and compared this notion with
the cuspidal supports or the Bernstein components of corresponding π . The-
orem 4.2 gives us more information for π than its cuspidal support. The main
ingredient for the proof of Theorem 4.2 is Mœglin’s explicit construction of
tempered L-packets (Theorem 3.5).

The second main theorem (Theorem 4.3) is a reduction of the computation
of the Jacquet module s.s.JacPk (π) with respect to any maximal parabolic
subgroup Pk to the ones of partial Jacquet modules Jacρ|·|x (π). Using Theo-
rems 4.2 and 4.3 (together with Lemma 2.7), we can explicitly compute the
semisimplifications of all Jacquet modules of irreducible tempered represen-
tations π . In fact, using a generalization of the standard module conjecture by
Mœglin–Waldspurger (Theorem 3.4) and Tadić’s formula (Theorem 2.8), we
can apply this explicit computation to any irreducible representation π with
generic L-parameter (φ, η).
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834 H. Atobe

This paper is organized as follows. In Sect. 2, we review some basic results
on parabolically induced representations and Jacquet modules for classical
groups. In particular, Tadić’s formula, which computes the Jacquet modules
of parabolically induced representations, is stated in Sect. 2.2. In Sect. 3,
we explain the local Langlands correspondence and Mœglin’s explicit con-
struction of tempered L-packets. In Sect. 4, we state the main theorems
(Theorems 4.2 and 4.3) and give some examples. Finally, we prove the main
theorems in Sect. 5. Some complements are in Sect. 6. In Sect. 6.1, we give
an irreducibility condition for standard modules. In Sect. 6.2, we study deriva-
tives of irreducible tempered representations introduced by Mínguez. It was a
key notion for the proof of the Howe duality conjecture by Gan–Takeda [7].

Notation

Let F be a non-archimedean local field of characteristic zero. We denote by
WF the Weil group of F . The norm map | · | : WF → R

× is normalized so that
|Frob| = q−1, where Frob ∈ WF is a fixed (geometric) Frobenius element,
and q = qF is the cardinality of the residual field of F .

Each irreducible supercuspidal unitary representation ρ of GLd(F) is iden-
tifiedwith the irreducible bounded representation ofWF of dimension d via the
local Langlands correspondence for GLd(F). Through this paper, we fix such
a ρ. For each positive integer a, the unique irreducible algebraic representation
of SL2(C) of dimension a is denoted by Sa .

For a p-adic group G, we denote by Rep(G) (resp. Irr(G)) the set of equiv-
alence classes of smooth admissible (resp. irreducible) representations of G.
For � ∈ Rep(G), we write s.s.(�) for the semisimplification of �.

2 Induced representations and Jacquet modules

In this section, we recall some results on parabolically induced representations
and Jacquet modules.

2.1 Representations of GLk(F)

Let P = MN be a standard parabolic subgroup of GLk(F), i.e., P contains
the Borel subgroup consisting of upper half triangular matrices. Then the Levi
subgroup M is isomorphic to GLk1(F) × · · · × GLkr (F) with k1 + · · · +
kr = k. For smooth representations τ1, . . . , τr of GLk1(F), . . . ,GLkr (F),
respectively, we denote the normalized parabolically induced representation
by
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Jacquet modules and local Langlands correspondence 835

τ1 × · · · × τr := IndGLk(F)
P (τ1 � · · · � τr ).

A segment is a symbol [x, y], where x, y ∈ R with x − y ∈ Z and x ≥ y.
We identify [x, y] with the set {x, x − 1, . . . , y} so that #[x, y] = x − y + 1.
Then the normalized parabolically induced representation

ρ| · |x × · · · × ρ| · |y

of GLd(x−y+1)(F) has a unique irreducible subrepresentation, which is
denoted by

〈ρ; x, . . . , y〉 .

If y = −x ≤ 0, this is called a Steinberg representation and is denoted by

St(ρ, 2x + 1) = 〈ρ; x, . . . , −x〉 ,

which is a discrete series representation of GLd(2x+1)(F). In general,

〈ρ; x, . . . , y〉 is the twist | · | x+y
2 St(ρ, x − y + 1). We say that two segments

[x, y] and [x ′, y′] are linked if [x, y] 
⊂ [x ′, y′], [x ′, y′] 
⊂ [x, y] as sets,
and [x, y] ∪ [x, y′] is also a segment. The linked-ness gives an irreducibility
criterion for parabolically induced representations.

Theorem 2.1 (Zelevinsky [18, Theorem 9.7]) Let [x, y] and [x ′, y′] be seg-
ments, and let ρ and ρ′ be irreducible unitary supercuspidal representations
of GLd(F) and GLd ′(F), respectively. Then the parabolically induced repre-
sentation

〈ρ; x, . . . , y〉 × 〈

ρ′; x ′, . . . , y′〉

is irreducible unless [x, y] are [x ′, y′] are linked, and ρ ∼= ρ′.

Let Irrρ(GLdm(F)) be the subset of Irr(GLdm(F)) consisting of τ with
cuspidal support of the form ρ| · |x1 × · · · × ρ| · |xm , i.e.,

τ ↪→ ρ| · |x1 × · · · × ρ| · |xm

for some x1, . . . , xm ∈ R. We understand that 1GL0(F) ∈ Irrρ(GL0(F)). It is
easy to see that

• for pairwise distinct irreducible unitary supercuspidal representations
ρ1, . . . , ρr , if τi ∈ Irrρi (GLdimi (F)) for i = 1, . . . , r , then the paraboli-
cally induced representation τ1 × · · · × τr is irreducible;
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836 H. Atobe

• any irreducible representation of GLk(F) is of the above form for some
τi ∈ Irrρi (GLdimi (F)).

Lemma 2.2 Let 	m be the subset of R
m consisting of elements

x = (x1, x1 − 1, . . . , y1
︸ ︷︷ ︸

x1−y1+1

, x2, x2 − 1, . . . , y2
︸ ︷︷ ︸

x2−y2+1

, . . . , xt , xt − 1, . . . , yt
︸ ︷︷ ︸

xt−yt+1

)

such that

• xi ≥ yi and xi − yi ∈ Z for 1 ≤ i ≤ t;
• x1 ≤ x2 ≤ · · · ≤ xt ;
• yi−1 ≤ yi if xi−1 = xi .

Let 
i = 〈ρ; xi , xi − 1, . . . , yi 〉 be the essentially discrete series represen-
tation of GLd(xi−yi+1)(F) corresponding to the segment [xi , yi ]. Then the
parabolically induced representation 
x := 
1 × · · · × 
t has a unique
irreducible subrepresentation τx . The map x 
→ τx gives a bijection

	m → Irrρ(GLdm(F)).

Proof This follows from the Langlands classification and Theorem 2.1, See
also [18, Proposition 9.6]. ��

For a partition (k1, . . . , kr ) of k, we denote by Jac(k1,...,kr ) the normalized
Jacquet functor on Rep(GLk(F)) with respect to the standard parabolic sub-
group P = MN with M ∼= GLk1(F) × · · · × GLkr (F). The Jacquet module
of 〈ρ; x, . . . , y〉with respect to a maximal parabolic subgroup is computed by
Zelevinsky.

Proposition 2.3 ([18, Proposition 9.5]) Suppose that x 
= y and set k =
d(x − y + 1). Then Jac(k1,k2)(〈ρ; x, . . . , y〉) = 0 unless k1 ≡ 0 mod d. If
k1 = dm with 1 ≤ m ≤ x − y, we have

Jac(k1,k2)(〈ρ; x, . . . , y〉) = 〈ρ; x, . . . , x − (m − 1)〉 � 〈ρ; x − m, . . . , y〉 .

If

s.s.Jac(d,k−d)(τ ) =
⊕

i∈I
τi � τ ′

i ,

for x ∈ R, we define a partial Jacquet module Jacρ|·|x (τ ) by

Jacρ|·|x (τ ) =
⊕

i∈I
τi∼=ρ|·|x

τ ′
i .
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Jacquet modules and local Langlands correspondence 837

For x = (x1, . . . , xr ) ∈ R
r , we also set

Jacρ|·|x = Jacρ|·|xr ◦ · · · ◦ Jacρ|·|x1 .

This is a functor

Jacρ|·|x : Rep(GLk(F)) → Rep(GLk−dr (F)).

In particular, when τ ∈ Rep(GLdm(F)) is of finite length, for x =
(x1, . . . , xm) ∈ R

m , the partial Jacquet module Jacρ|·|x (τ ) is a representation
of the trivial group GL0(F) of finite length so that it is a finite dimensional
C-vector space.

Lemma 2.4 Let x = (x1, . . . , y1, . . . , xt , . . . , yt ) ∈ 	m such that xi−1 ≤ xi
for 1 < i ≤ t , and yi−1 ≤ yi if xi−1 = xi as in Lemma 2.2. For (x, y) ∈
{(xi , yi )}i , if we set m(x,y) = #{i | (xi , yi ) = (x, y)}, then for y ∈ 	m, we
have

dimC Jacρ|·|y (
x ) =

⎧

⎪

⎨

⎪

⎩

∏

(x,y)∈{(xi ,yi )}i
m(x,y)! if y = x,

0 if y < x .

Here, we regardR
m as a totally ordered set with respect to the lexicographical

order.

Proof Fix z ∈ R. We note that Jacρ|·|z (
x ) 
= 0 if and only if z ∈ {x1, . . . , xt }.
Let x ′

1, . . . , x
′
l ∈ 	m−1 be the elements obtained by removing z from a

component of x , and rearranging it (so that l = #{i | xi = z}). Then
Jacρ|·|z (
x ) = ∑l

i=1 
x ′
i
. Using this, we obtain the lemma by induction on

m. ��
When y > x , one can also compute dimC Jacρ|·|y (
x ) inductively.
LetRk be theGrothendieck group of the category of smooth representations

of GLk(F) of finite length. By the semisimplification, we identify the objects
in this category with elements inRk . Elements in Irr(GLk(F)) form a Z-basis
of Rk . Set R = ⊕k≥0Rk . The parabolic induction functor gives a product

m : R ⊗ R → R, τ1 ⊗ τ2 
→ s.s.(τ1 × τ2).

This product makes R an associative commutative ring. On the other hand,
the Jacquet functor gives a coproduct

m∗ : R → R ⊗ R
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838 H. Atobe

which is defined by the Z-linear extension of

Irr(GLk(F)) � τ 
→
k
∑

k1=0

s.s.Jac(k1,k−k1)(τ ).

Then m and m∗ make R a graded Hopf algebra, i.e., m∗ : R → R ⊗ R is a
ring homomorphism.

2.2 Representations of SO2n+1(F) and Sp2n(F)

We set G to be split SO2n+1(F) or Sp2n(F), i.e., G is the group of F-points
of the split algebraic group of type Bn or Cn . Fix a Borel subgroup of G, and
let P = MN be a standard parabolic subgroup of G. Then the Levi part M
is of the form GLk1(F) × · · · × GLkr (F) × G0 with G0 = SO2n0+1(F) or
G0 = Sp2n0(F) such that k1 +· · ·+ kr +n0 = n. For a smooth representation
τ1 � · · · � τr � π0 of M , we denote the normalized parabolically induced
representation by

τ1 × · · · × τr � π0 = IndGP (τ1 � · · · � τr � π0).

The functor IndGP : Rep(M) → Rep(G) is exact.
On the other hand, for a smooth representation π of G, we denote the

normalized Jacquet module with respect to P by

JacP(π),

and its semisimplification by s.s.JacP(π). The functor JacP : Rep(G) →
Rep(M) is exact. The Frobenius reciprocity asserts that

HomG(π, IndGP (σ )) ∼= HomM(JacP(π), σ )

for π ∈ Rep(G) and σ ∈ Rep(M).
The maximal standard parabolic subgroup with Levi GLk(F) × G0 is

denoted by Pk = MkNk for 0 ≤ k ≤ n.

Definition 2.5 Let π be a smooth representation of G. Consider s.s.JacPd (π)

(and a fixed irreducible supercuspidal unitary representation ρ of GLd(F)). If

s.s.JacPd (π) =
⊕

i∈I
τi � πi
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Jacquet modules and local Langlands correspondence 839

with τi (resp. πi ) being an irreducible representation of GLd(F) (resp. G0),
for x ∈ R, we define a partial Jacquet module Jacρ|·|x (π) by

Jacρ|·|x (π) =
⊕

i∈I
τi∼=ρ|·|x

πi .

This is a representation of G0, which is SO2(n−d)+1(F) or Sp2(n−d)(F).

Also, for x = (x1, . . . , xr ) ∈ R
r , we set

Jacρ|·|x (π) = Jacρ|·|x1 ,...,ρ|·|xr (π) = Jacρ|·|xr ◦ · · · ◦ Jacρ|·|x1 (π).

We recall some properties of Jacρ|·|x1 ,...,ρ|·|xr .

Lemma 2.6 ([16, Lemmas 5.3, 5.6]) Let π be an irreducible representation
of G.

(1) Suppose that Jacρ|·|x1 ,...,ρ|·|xr (π) is nonzero. Then there exists an irre-
ducible constituentσ of Jacρ|·|x1 ,...,ρ|·|xr (π) such thatwe have an inclusion

π ↪→ ρ| · |x1 × · · · × ρ| · |xr � σ.

(2) If |x − y| 
= 1, then Jacρ|·|x ,ρ|·|y (π) = Jacρ|·|y ,ρ|·|x (π).
(3) If ρ � ρ′, then Jacρ|·|x ◦ Jac

ρ′|·|x ′ = Jac
ρ′|·|x ′ ◦ Jacρ|·|x for any x, x ′ ∈ R.

LetRn(G) be the Grothendieck group of the category of smooth represen-
tations of G of finite length, where n = rank(G), i.e., G = SO2n+1(F) or
G = Sp2n(F). Set R(G) = ⊕n≥0Rn(G). The parabolic induction defines a
module structure

� : R ⊗ R(G) → R(G), τ ⊗ π 
→ s.s.(τ � π),

and the Jacquet functor defines a comodule structure

μ∗ : R(G) → R ⊗ R(G)

by

Irr(G) � π 
→
rank(G)
∑

k=0

s.s.JacPk (π).

When

μ∗(π) =
∑

i∈I
τi ⊗ πi ,
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840 H. Atobe

we define μ∗
ρ(π) by

μ∗
ρ(π) =

∑

i∈I
τi∈Irrρ(GLdm(F))

τi ⊗ πi .

Lemma 2.7 If we define ι : R(G) → R ⊗ R(G) by π 
→ 1GL0(F) ⊗ π , we
have

μ∗ = ◦ρ

(

(m ⊗ id) ◦ (id ⊗ μ∗
ρ)
) ◦ ι,

where ρ runs over all irreducible unitary supercuspidal representations of
GLd(F) for d > 0. Namely, for π ∈ Irr(G), if {ρ1, . . . , ρt } is the finite set
of irreducible unitary supercuspidal representations ρ of some GLd(F) such
that μ∗

ρ(π) 
= 0, then

μ∗(π) = (

(m ⊗ id) ◦ (id ⊗ μ∗
ρt

)
) ◦ · · · ◦ ((m ⊗ id) ◦ (id ⊗ μ∗

ρ1
)
)

(1GL0(F) ⊗ π).

Proof Fix an irreducible representation π of G. First, we note that there are
only finitely many ρ such that μ∗

ρ(π) 
= 0. Second, we claim that

(m ⊗ id) ◦ (id ⊗ μ∗
ρ′) ◦ μ∗

ρ(π) = (m ⊗ id) ◦ (id ⊗ μ∗
ρ) ◦ μ∗

ρ′(π)

for distinct ρ and ρ′. In fact, this is the sum of subrepresentations appearing
μ∗(π) of the form

(τ × τ ′) ⊗ π0 = (τ ′ × τ) ⊗ π0,

where τ ∈ Irrρ(GLdm(F)) and τ ′ ∈ Irrρ′(GLd ′m′(F)) for various m and m′.
By the same argument, we have

μ∗(π) = ◦ρ

(

(m ⊗ id) ◦ (id ⊗ μ∗
ρ)
) ◦ ι(π),

as desired. ��
Tadić established a formula to compute μ∗ for parabolically induced rep-

resentations. The contragredient functor τ 
→ τ∨ defines an automorphism
∨: R → R in a natural way. Let s : R⊗R → R⊗R be the homomorphism
defined by

∑

i τi ⊗ τ ′
i 
→ ∑

i τ
′
i ⊗ τi .

Theorem 2.8 (Tadić [15]) Consider the composition

M∗ = (m ⊗ id) ◦ (∨ ⊗ m∗) ◦ s ◦ m∗ : R → R ⊗ R.

123



Jacquet modules and local Langlands correspondence 841

Then for the maximal parabolic subgroup Pk = MkNk of G and for an admis-
sible representation τ � π of Mk, we have

μ∗(τ � π) = M∗(τ ) � μ∗(π).

In particular, we have the following.

Corollary 2.9 For a segment [x, y], we have

μ∗(〈ρ; x, . . . , y〉 � π) =
∑

k,l≥0
k+l≤x−y+1

⎛

⎝

〈

ρ∨; −y, . . . , −y − k + 1
︸ ︷︷ ︸

k

〉

×
〈

ρ; x, . . . , x − l + 1
︸ ︷︷ ︸

l

〉

⎞

⎠

⊗ 〈ρ; x − l, . . . , y + k〉 � μ∗(π).

3 Local Langlands correspondence

In this section, we review the local Langlands correspondence for split
SO2n+1(F) or Sp2n(F).

3.1 L-parameters

A homomorphism

φ : WF × SL2(C) → GLk(C)

is called a representation of the Weil–Deligne group WF × SL2(C) if

• φ(Frob) ∈ GLk(C) is semisimple;
• φ|WF is smooth, i.e., has an open kernel;
• φ|SL2(C) is algebraic.

We say that a representation φ of WF × SL2(C) is tempered if φ(WF ) is
bounded. The local Langlands correspondence for GLk(F) asserts that there
is a canonical bijection

Irr(GLk(F)) ←→ {φ : WF × SL2(C) → GLk(C)}/ ∼=,

which preserves the tempered-ness.
We say that a representation φ : WF × SL2(C) → GLk(C) is symplectic

or of symplectic type (resp. orthogonal or of orthogonal type) if the image
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842 H. Atobe

of φ is in Spk(C) (so that k is even) (resp. in Ok(C)). An L-parameter for
SO2n+1(F) is a 2n-dimensional symplectic representation

φ : WF × SL2(C) → Sp2n(C).

Similarly, an L-parameter for Sp2n(F) is a (2n+ 1)-dimensional orthogonal
representation

φ : WF × SL2(C) → SO2n+1(C)

with trivial determinant. For G = SO2n+1(F) or G = Sp2n(F), we let 
(G)

be the set of equivalence classes of L-parameters for G. We say that

• φ ∈ 
(G) is discrete if φ is a multiplicity-free sum of irreducible self-dual
representations of the same type as φ;

• φ ∈ 
(G) is of good parity if φ is a sum of irreducible self-dual repre-
sentations of the same type as φ;

• φ ∈ 
(G) is tempered if φ(WF ) is bounded;
• φ ∈ 
(G) is generic if the adjoint L-function L(s, φ,Ad) is regular at
s = 1. Here, L(s, φ,Ad) = L(s,Ad ◦ φ) is the L-function associated
to the composition of φ and the adjoint representation Ad : Sp2n(C) →
GL(Lie(Sp2n(C))) or Ad : SO2n+1(C) → GL(Lie(SO2n+1(C))).

We denote by 
disc(G) (resp. 
gp(G), 
temp(G), and 
gen(G)) the subset of

(G) consisting of discrete L-parameters (resp. L-parameters of good parity,
tempered L-parameters, and generic L-parameters). Then we have inclusions


disc(G) ⊂ 
gp(G) ⊂ 
temp(G) ⊂ 
gen(G) ⊂ 
(G).

For φ ∈ 
(G), we can decompose

φ = m1φ1 ⊕ · · · ⊕ mrφr ⊕ (φ′ ⊕ φ′∨),

where φ1, . . . , φr are distinct irreducible self-dual representations of the same
type as φ, mi ≥ 1 is the multiplicity of φi in φ, and φ′ is a sum of irreducible
representations which are not self-dual or self-dual of the opposite type to φ.
We define the component group Aφ of φ by

Aφ =
r
⊕

i=1

(Z/2Z)αφi
∼= (Z/2Z)r .
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Namely, Aφ is a free Z/2Z-module of rank r and {αφ1, . . . , αφr } is a basis of
Aφ with αφi associated to φi . We set

zφ =
r
∑

i=1

miαφi ∈ Aφ

and we call zφ the central element in Aφ .
We shall introduce an enhanced component group Aφ associated to φ ∈


(G). Write φ = φgp ⊕ (φ′ ⊕ φ′∨), where φgp is the sum of irreducible self-
dual subrepresentations of the same type as φ, and φ′ is a sum of irreducible
representations which are not of the same type as φ. We decompose

φgp =
⊕

i∈I
φi

into the sum of irreducible representations.

Definition 3.1 With the notation above, we define the enhanced component
group Aφ associated to φ by

Aφ =
⊕

i∈I
(Z/2Z)αi .

Namely, Aφ is a free Z/2Z-module whose rank is equal to the length of φgp.

By abuse of notation, we put zφ = ∑

i∈I αi ∈ Aφ and call it the central
element in Aφ . There is a canonical surjection

Aφ � Aφ, αi 
→ αφi .

This map preserves the central elements. The kernel of this map is generated
by αi + α j such that φi

∼= φ j . In particular, if φ is discrete, then this map is
an isomorphism.

Remark 3.2 For the definition of this enhanced component group, we rely on
the shape of φ. A similar definition will work for SO2n(F) and unitary groups
as well, but we do not know a uniform definition for general (connected)
reductive groups, nor whether this notion makes sense.

3.2 Local Langlands correspondence

We denote by Irrdisc(G) (resp. Irrtemp(G)) the set of equivalence classes of
irreducible discrete series (resp. tempered) representations of G. The local
Langlands correspondence established by Arthur is as follows:
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Theorem 3.3 ([1, Theorem 2.2.1]) Let G be a split SO2n+1(F) or Sp2n(F).

(1) There exists a canonical surjection

Irr(G) → 
(G).

For φ ∈ 
(G), we denote by �φ the inverse image of φ under this map,
and call �φ the L-packet associated to φ.

(2) There exists an injection

�φ → ̂Aφ,

which satisfies certain endoscopic character identities. Here, ̂Aφ is the
Pontryagin dual of Aφ . The image of this map is

{η ∈ ̂Aφ | η(zφ) = 1}.
When π ∈ �φ corresponds to η ∈ ̂Aφ , we write π = π(φ, η).

(3) For ∗ ∈ {disc, temp},

Irr∗(G) =
⊔

φ∈
∗(G)

�φ.

(4) Assume that φ = φτ ⊕ φ0 ⊕ φ∨
τ ∈ 
temp(G), where

• φ0 ∈ 
temp(G0) with a classical group G0 of the same type as G;
• φτ is a tempered representation of WF × SL2(C) of dimension k.
Let τ be the irreducible tempered representation ofGLk(F) corresponding
to φτ . Then for π0 ∈ �φ0 , the induced representation τ � π0 decomposes
into a direct sum of irreducible tempered representations of G. The L-
packet �φ is given by

�φ = {

π
∣

∣ π ⊂ τ � π0, π0 ∈ �φ0

}

.

Moreover there is a canonical inclusion Aφ0 ↪→ Aφ . If π(φ, η) is a direct
summand of τ � π0 with π0 = π(φ0, η0), then η0 = η|Aφ0 .

(5) Assume that

φ = φ1| · |s1 ⊕ · · · ⊕ φr | · |sr ⊕ φ0 ⊕ φ∨
r | · |−sr ⊕ · · · ⊕ φ∨

1 | · |−s1,

where
• φ0 ∈ 
temp(G0) with a classical group G0 of the same type as G;
• φi is a tempered representation of WF × SL2(C) of dimension ki for
1 ≤ i ≤ r;

• si is a real number such that s1 ≥ · · · ≥ sr > 0.
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Let τi be the irreducible tempered representation ofGLki (F) correspond-
ing toφi . Then the L-packet�φ consists of the unique irreducible quotients
π of the standard modules

τ1| · |s1 × · · · × τr | · |sr � π0,

where π0 runs over�φ0 . Moreover, there is a canonical inclusion Aφ0 ↪→
Aφ , which is in fact bijective. If π(φ, η) is the unique irreducible quotient
of the above standard module with π0 = π(φ0, η0), then η0 = η|Aφ0 . In
this case, we denote this standard module by I (φ, η).

The injection �φ → ̂Aφ is not canonical when G = Sp2n(F). To specify
this, we implicitly fix an F×2-orbit of non-trivial additive characters of F
through this paper. Remark that our main results (Theorems 4.2 and 4.3 below)
are independent of such a choice.

We have the following irreducibility criterion for standard modules.

Theorem 3.4 (Generalized standard module conjecture) For φ ∈ 
(G), the
standard module I (φ, 1) attached to π(φ, 1) is irreducible if and only if φ is
generic. Moreover, if φ is generic, then all standard modules I (φ, η), where
η ∈ ̂Aφ with η(zφ) = 1, are irreducible.

Proof The first assertion is the usual standard module conjecture proven in
[5,8,9,14]. The second assertion was proven by Mœglin–Waldspurger [13,
Corollaire 2.14] for special orthogonal groups and symplectic groups. Heier-
mann [10] also proved the second assertion in a more general setting. Note
that their definition of generic L-parameters might look different from ours.
The equivalence of two definitions is called a conjecture of Gross–Prasad and
Rallis, which was proven by Gan–Ichino [6, Proposition B.1]. ��

However, even if φ is not generic, there might exist an irreducible stan-
dard module I (φ, η). An example of such standard modules will be given by
Corollary 6.1 and Example 6.2 below.

3.3 Extension to enhanced component groups

To describe Jacquet modules of π(φ, η) for φ ∈ 
gp(G), it is useful to extend
π(φ, η) to the case where η is a character of the enhanced component group
Aφ as follows. Recall that there exists a canonical surjectionAφ � Aφ so that
we have an injection ̂Aφ ↪→ ̂Aφ . For η ∈ ̂Aφ , set

π(φ, η) =
{

π(φ, η) if η ∈ ̂Aφ, η(zφ) = 1,

0 otherwise.
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In particular, π(φ, η) is irreducible or zero for any η ∈ ̂Aφ .
More precisely, if φ = ⊕i∈Iφi is the irreducible decomposition so that

Aφ = ⊕i∈I (Z/2Z)αi , then π(φ, η) is nonzero if and only if η(zφ) = 1 and
η(αi ) = η(α j ) whenever φi

∼= φ j .

3.4 Mœglin’s construction of tempered L-packets

The L-packets are used for a local classification. On the other hand, Arthur [1,
Theorem 2.2.1] introduced the notion of A-packets for a global classification.
Mœglin constructed the local A-packets in her consecutive works (e.g., [11,
12], etc.). For a detailed why Mœglin’s local A-packets agree with Arthur’s,
one can see Xu’s paper [17] in addition to the original papers of Mœglin.
Since the tempered A-packets are the same notion as the tempered L-packets,
Mœglin’s construction can be applied to the tempered L-packets.

We explain Mœglin’s construction of �φ for φ ∈ 
gp(G). Assume that

φ =
(

t
⊕

i=1

ρ � Sai

)

⊕ φe

with a1 ≤ · · · ≤ at and ρ � Sa 
⊂ φe for any a > 0. (In particular, ρ must be
self-dual if t ≥ 1.) Take a new L-parameter

φ� =
(

t
⊕

i=1

ρ � Sa′
i

)

⊕ φe

for a bigger group G ′ of the same type as G such that

• a′
1 < · · · < a′

t ;• a′
i ≥ ai and a′

i ≡ ai mod 2 for any i ;

Then we can identifyAφ� withAφ canonically, i.e.,Aφ� = Aφ and ifAφ� �
α 
→ αρ�Sa′

i
∈ Aφ� , then Aφ � α 
→ αρ�Sai

∈ Aφ . Let η� ∈ Âφ� be the

character corresponding to η ∈ ̂Aφ , i.e., η� = η via Aφ� = Aφ .

Theorem 3.5 (Mœglin) With the notation above, we have

π(φ, η) = Jac
ρ|·|

a′
t−1
2 ,...,ρ|·| at+1

2

◦ · · · ◦ Jac
ρ|·|

a′
1−1
2 ,...,ρ|·|

a1+1
2

(π(φ�, η�)).

For a proof, one can specialize [17, Corollary 8.10], which treats all local
A-packets. Using this theorem repeatedly, we can construct the L-packets �φ

for φ ∈ 
gp(G) from the L-packets associated to discrete L-parameters for
bigger groups.
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Example 3.6 We construct �φ for φ = S2 ⊕ S4 ⊕ S4 ⊕ S6 ⊕ S6 ∈

gp(SO23(F)). Note that Aφ = (Z/2Z)αS2 ⊕ (Z/2Z)αS4 ⊕ (Z/2Z)αS6 with
zφ = αS2 . Let η ∈ ̂Aφ . We write η(αS2a ) = ηa ∈ {±1}. If η(zφ) = 1, then
η1 = +1.

Now we take new L-parameters

φ� = S2 ⊕ S4 ⊕ S6 ⊕ S8 ⊕ S10 ∈ 
disc(SO31(F)),

φ′ = S2 ⊕ S4 ⊕ S4 ⊕ S8 ⊕ S10 ∈ 
disc(SO29(F)),

φ′′ = S2 ⊕ S4 ⊕ S4 ⊕ S6 ⊕ S10 ∈ 
disc(SO27(F)),

and we consider η� ∈ Âφ� , η′ ∈ ̂Aφ′ and η′′ ∈ Âφ′′ given by

• η�(αS2) = η′(αS2) = η′′(αS2) = η1 = +1;
• η�(αS4) = η�(αS6) = η′(αS4) = η′′(αS4) = η2;
• η�(αS8) = η�(αS10) = η′(αS8) = η′(αS10) = η′′(αS6) = η′′(αS10) = η3.

Then Theorem 3.5 says that

Jac|·| 52 (π(φ�, η�)) = π(φ′, η′),

Jac|·| 72 (π(φ′, η′)) = π(φ′′, η′′),

Jac|·| 92 ,|·| 72 (π(φ′′, η′′)) = π(φ, η).

4 Description of Jacquet modules

In this section, we state the main theorems, which compute the semisimplifi-
cations of the Jacquet modules of π(φ, η) for φ ∈ 
gp(G).

4.1 Statements

Note that:

Lemma 4.1 For φ ∈ 
gp(G) and x ∈ R, if Jacρ|·|x (π) 
= 0 for some π ∈ �φ ,
then x is a non-negative half-integer and ρ � S2x+1 ⊂ φ.

Proof When φ ∈ 
disc(G), it follows from [16, Lemma 7.3]. We may assume
that φ ∈ 
gp(G) \ 
disc(G). Then there exists an irreducible representation
ρ′ � Sa which φ contains at least multiplicity two. By Theorem 3.3 (4), we
have

π ↪→ St(ρ′, a) � π0
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for some π0 ∈ �φ0 with φ0 = φ − (ρ′ � Sa)⊕2. Then by Corollary 2.9, we
have

Jacρ|·|x (π) ↪→ (1 ⊗ St(ρ′, a)) � Jacρ|·|x (π0)

+
{

2 〈ρ; x, . . . , −(x − 1)〉 � π0 if ρ′ ∼= ρ, a = 2x + 1,

0 otherwise.

Hence if Jacρ|·|x (π) 
= 0, then Jacρ|·|x (π0) 
= 0 or ρ � S2x+1 ∼= ρ′ � Sa ⊂ φ.
By induction, we conclude that ρ � S2x+1 ⊂ φ as desired. ��

The following is the first main theorem, which is a description of
Jacρ|·|x (π(φ, η)).

Theorem 4.2 Let φ ∈ 
gp(G) and η ∈ ̂Aφ such that π(φ, η) 
= 0. Fix a
non-negative half-integer x ∈ (1/2)Z. Write

φ = φ0 ⊕ (ρ � S2x+1)
⊕m

with ρ � S2x+1 
⊂ φ0 and m > 0.

(1) Assume that m ≥ 3. Take δ ∈ {1, 2} such that δ ≡ m mod 2. Then

Jacρ|·|x (π(φ, η))

= (m − δ) ·
〈

ρ; x, x − 1, . . . , −(x − 1)
︸ ︷︷ ︸

2x

〉

� π
(

φ − (ρ � S2x+1)
⊕2, η

)

+ St(ρ, 2x + 1) × · · · × St(ρ, 2x + 1)
︸ ︷︷ ︸

(m−δ)/2

�Jacρ|·|x
(

π
(

φ0 ⊕ (ρ � S2x+1)
⊕δ, η

))

.

Here, we canonically identify the (usual) component groups of φ − (ρ �
S2x+1)

⊕2 and φ0 ⊕ (ρ � S2x+1)
⊕δ with Aφ , so that we regard η as a

character of these groups.
(2) Assume that x > 0 and m = 1. Set

φ′ = φ − (ρ � S2x+1) ⊕ (ρ � S2x−1).

There is a canonical inclusion Aφ′ ↪→ Aφ , which is in fact bijective if

x > 1/2. Let η′ ∈ Âφ′ be the character corresponding to η ∈ ̂Aφ , i.e.,
η′ = η|Aφ′ . Then

Jacρ|·|x (π(φ, η)) = π(φ′, η′).

In particular, Jacρ|·|x (π(φ, η)) is irreducible or zero.
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(3) Assume that x > 0 and m = 2. Set η+ = η, and take the unique character
η− ∈ ̂Aφ so that η−|Aφ0 = η+|Aφ0 , η−(zφ) = η+(zφ) = 1 but η− 
=
η+. For φ′ as in (2) and for ε ∈ {±}, let η′

ε ∈ Âφ′ be the character
corresponding to ηε ∈ ̂Aφ via the canonical inclusion Aφ′ ↪→ Aφ . Then

Jacρ|·|x (π(φ, η)) = 〈ρ; x, x − 1, . . . , −(x − 1)〉 � π(φ0, η|Aφ0)

+ π(φ′, η′+) − π(φ′, η′−).

(4) Assume that x = 0. If m = 1, then Jacρ(π(φ, η)) = 0. If m = 2, then
Jacρ(π(φ, η)) = π(φ0, η|Aφ0).

When φ ∈ 
disc(G), Theorem 4.2 has been already proven by Xu ([16,
Lemma 7.3]). In (2) (resp. (3)), we note that π(φ′, η′) (resp. π(φ′, η′

ε)) can be
zero even if π(φ, η) 
= 0. In (3), the character η− is characterized so that

π(φ, η+) ⊕ π(φ, η−) = St(ρ, 2x + 1) � π(φ0, η|Aφ0).

The second main theorem concerns μ∗
ρ(π).

Theorem 4.3 Let φ ∈ 
gp(G), and write

φ =
(

t
⊕

i=1

ρ � Sai

)

⊕ φe

with a1 ≤ · · · ≤ at and ρ � Sa 
⊂ φe for any a > 0. Set xi = ai−1
2 . For

0 ≤ m ≤ (2d)−1 · dim(φ), we denote by K (m)
φ the set of tuples of integers

k = (k1, . . . , kt ) such that

• 0 ≤ ki ≤ ai for any i;
• ki−1 ≥ ki if ai−1 = ai ;
• k1 + · · · + kt = m.

For k ∈ K (m)
φ , set

x(k) = (x1, . . . , x1 − k1 + 1
︸ ︷︷ ︸

k1

, . . . , xt , . . . , xt − kt + 1
︸ ︷︷ ︸

kt

) ∈ 	m .

For k, l ∈ K (m)
φ , we set

mk,l = dimC Jacρ|·|x(k) (
x(l)),
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and define (m′
k,l)k,l∈K (m)

φ

to be the inverse matrix of (mk,l)k,l∈K (m)
φ

, i.e.,

∑

k′∈K (m)
φ

m′
k,k′mk′,l =

{

1 if k = l,

0 if k 
= l.

Then for π ∈ �φ , we have

μ∗
ρ(π) =

(2d)−1 dim(φ)
∑

m=0

∑

k,l∈K (m)
φ

m′
k,l · 
x(k) ⊗ Jacρ|·|x(l) (π).

When we formally regard (
x(k))k∈K (m)
φ

and (⊗Jacρ|·|x(l) (π))
l∈K (m)

φ

as col-

umn vectors, we have

∑

k,l∈K (m)
φ

m′
k,l · 
x(k) ⊗ Jacρ|·|x(l) (π) = t (
x(k)) · (mk,l)

−1 · (⊗Jacρ|·|x(l) (π)).

By Lemma 2.4, (mk,l)k,l∈K (m)
φ

is a “triangular matrix”, which can be computed

inductively. Here, we regard K (m)
φ as a totally ordered set with respect to

the lexicographical order. The diagonal entries mk,k are given in Lemma 2.4
explicitly.

By Tadić’s formula (Theorem 2.8), Lemma 2.7, and Theorems 4.2, 4.3, we
can deduce the following corollary.

Corollary 4.4 We can compute μ∗(π) explicitly for any π ∈ �φ with φ ∈

gen(G).

4.2 Examples

We shall give some examples.

Example 4.5 Fix two positive integers a, b such that a ≡ b mod 2 and a < b,
and consider

φ = ρ � (Sa ⊕ Sb) ∈ 
disc(SOd(a+b)+1(F)),

where ρ is symplectic (resp. orthogonal) if a ≡ 1 mod 2 (resp. if a ≡ 0 mod
2). Then �φ = {π+(a, b), π−(a, b)} with generic π+(a, b) and non-generic
π−(a, b). Note that bothπ+(a, b) andπ−(a, b) are discrete series.We compute
μ∗(πε(a, b)) for ε ∈ {±}.
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Note that K (m)
φ = {(k1, k2) ∈ Z

2 | 0 ≤ k1 ≤ a, 0 ≤ k2 ≤ b, k1 + k2 = m}.
For (k1, k2) ∈ K (m)

φ , since x1 = a−1
2 and x2 = b−1

2 ,


x(k1,k2) =
〈

ρ; a − 1

2
, . . . ,

a + 1

2
− k1

〉

×
〈

ρ; b − 1

2
, . . . ,

b + 1

2
− k2

〉

.

This induced representation is irreducible unless (a+3)/2−k1 ≤ (b+1)/2−
k2 ≤ (a + 1)/2, i.e., (b − a)/2 ≤ k2 ≤ (b − a)/2 + k1 − 1. Moreover, one
can easy to see that for (l1, l2) ∈ K (m)

φ , the virtual representation

∑

(k1,k2)∈K (m)
φ

m′
(k1,k2),(l1,l2) · 
x(k1,k2)

is the unique irreducible subrepresentation τx(l1,l2) of 
x(l1,l2) (cf. see [18,
Proposition 4.6]).

Note that

Jac
ρ|·| a−1

2 ,...,ρ|·| a+1
2 −k1

(πε(a, b)) =
{

πε(a − 2k1, b) if k1 ≤ a/2,

0 otherwise.

Here, when k1 = a/2, we understand that π+(0, b) is the unique element in
�ρ�Sb , and π−(0, b) = 0. Moreover, for (k1, k2) ∈ K (m)

φ , when k1 ≤ a/2 and
k2 ≤ (b − a)/2 + k1, we have

Jacρ|·|x(k1,k2) (πε(a, b)) = πε(a − 2k1, b − 2k2).

When k1 < a/2 and (b − a)/2 + k1 + 1 ≤ k2 ≤ b/2, we have

Jacρ|·|x(k1,k2) (πε(a, b)) =
〈

ρ; a − 1

2
− k1, . . . , −b − 1

2
+ k2

〉

� 1SO1(F)

+ πε(b − 2k2, a − 2k1) − π−ε(b − 2k2, a − 2k1).

When k1 < a/2 and b/2 < k2 ≤ (a + b)/2 − k1, we have

Jacρ|·|x(k1,k2) (πε(a, b)) =
〈

ρ; a − 1

2
− k1, . . . , −b − 1

2
+ k2

〉

� 1SO1(F).

In particular, if k1 + k2 = (a + b)/2, then Jacρ|·|x(k1,k2) (πε(a, b)) = 1SO1(F).
Hence s.s.JacPd(a+b)/2(πε(a, b)) contains the irreducible representation

〈

ρ; a − 1

2
, . . . ,

a + 1

2
− k1

〉

×
〈

ρ; b − 1

2
, . . . , −

(

a − 1

2
− k1

)〉

⊗ 1SO1(F)
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with multiplicity one if k1 < a/2, or if k1 = a/2 and ε = +1.

Example 4.6 Consider the L-parameter φ = S2 ⊕ S4 ⊕ S4 ∈ 
gp(SO11(F)).
Then�φ has twoelementsπ+(2, 4, 4) andπ−(2, 4, 4)withgenericπ+(2, 4, 4)
and non-generic π−(2, 4, 4). Then

K (m)
φ ={(k1, k2, k3) ∈ Z

3 | 0 ≤ k1 ≤ 2, 0≤k3≤k2≤4, k1 + k2 + k3 = m}
for 0 ≤ m ≤ 5. Write �ε

x(k) = Jacρ|·|x(k) (πε(2, 4, 4)) for ε ∈ {±}, and
Sta = St(1GL1(F), a).We denote by deta the determinant character ofGLa(F).

(1) When m = 1, we have K (1)
φ = {(1, 0, 0) > (0, 1, 0)}. Since

(


x(1,0,0) 
x(0,1,0)
) =

(

| · | 12 | · | 32
)

,

we have

(mk,k′)−1
k,k′ =

(

1 0
0 1

)−1

=
(

1 0
0 1

)

.

Moreover
(

�ε
x(1,0,0)

�ε
x(0,1,0)

)

=
(

πε(4, 4)

| · | 12 St3 � π+(2) + ε · π+(2, 2, 4)

)

.

Hence

s.s.JacP1(πε(2, 4, 4)) = | · | 12 ⊗ πε(4, 4)

+ | · | 32 ⊗
(

| · | 12 St3 � π+(2) + ε · π+(2, 2, 4)
)

.

(2) When m = 2, we have K (2)
φ = {(2, 0, 0) > (1, 1, 0) > (0, 2, 0) >

(0, 1, 1)}. Since
(


x(2,0,0) 
x(1,1,0) 
x(0,2,0) 
x(0,1,1)
)

=
(

St2 | · | 12 × | · | 32 | · |1St2 | · | 32 × | · | 32
)

,

we have

(mk,k′)−1
k,k′ =

⎛

⎜

⎜

⎝

1 0 0 0
0 1 0 0
0 1 1 0
0 0 0 2

⎞

⎟

⎟

⎠

−1

=

⎛

⎜

⎜

⎝

1 0 0 0
0 1 0 0
0 −1 1 0
0 0 0 1

2

⎞

⎟

⎟

⎠

.
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Moreover

⎛

⎜

⎜

⎜

⎜

⎜

⎝

�ε
x(2,0,0)

�ε
x(1,1,0)

�ε
x(0,2,0)

�ε
x(0,1,1)

⎞

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0

| · | 12 St3 � 1SO1(F) + πε(2, 4) − π−ε(2, 4)

| · |1St2 � π+(2) + | · | 12 St3 � 1SO1(F)

+ε
(

| · | 12 � π+(4) + π+(2, 4)
)

(1 + ε) · π+(2, 2, 2)

⎞

⎟

⎟

⎟

⎟

⎟

⎠

.

Hence

s.s.JacP2(πε(2, 4, 4)) = |det2|1 ⊗
(

| · | 12 St3 � 1SO1(F) + πε(2, 4) − π−ε(2, 4)
)

+ | · |1St2 ⊗
(

| · |1St2 � π+(2) + | · | 12 St3 � 1SO1(F)

+ ε
(

| · | 12 � π+(4) + π+(2, 4)
) )

+
(

| · | 32 × | · | 32
)

⊗ 1 + ε

2
· π+(2, 2, 2).

(3) When m = 3, we have K (3)
φ = {(2, 1, 0) > (1, 2, 0) > (1, 1, 1) >

(0, 3, 0) > (0, 2, 1)}. Since
(


x(2,1,0) 
x(1,2,0) 
x(1,1,1) 
x(0,3,0) 
x(0,2,1)
)

=
(

St2 × | · | 32 | · | 12 × | · |1St2 | · | 12 × | · | 32 × | · | 32 | · | 12 St3 | · |1St2 × | · | 32
)

,

we have

(mk,k′)−1
k,k′ =

⎛

⎜

⎜

⎜

⎜

⎝

1 0 0 0 0
0 1 0 0 0
0 0 2 0 0
1 0 0 1 0
0 0 2 0 1

⎞

⎟

⎟

⎟

⎟

⎠

−1

=

⎛

⎜

⎜

⎜

⎜

⎝

1 0 0 0 0
0 1 0 0 0
0 0 1

2 0 0
−1 0 0 1 0
0 0 −1 0 1

⎞

⎟

⎟

⎟

⎟

⎠

.

Moreover

⎛

⎜

⎜

⎜

⎜

⎜

⎝

�ε
x(2,1,0)

�ε
x(1,2,0)

�ε
x(1,1,1)

�ε
x(0,3,0)

�ε
x(0,2,1)

⎞

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0
| · |1St2 � 1SO1(F) + ε · π+(4)

2 · πε(2, 2)

| · | 32 � π+(2) + ε · π+(4)

(1 + ε)
(

| · | 12 � π+(2) + π+(2, 2)
)

+ π−(2, 2)

⎞

⎟

⎟

⎟

⎟

⎟

⎠

.
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Hence

s.s.JacP3(πε(2, 4, 4))

=
(

| · | 12 × | · |1St2
)

⊗
(

| · |1St2 � 1SO1(F) + ε · π+(4)
)

+
(

|det2|1 × | · | 32
)

⊗ πε(2, 2)

+ | · | 12 St3 ⊗
(

| · | 32 � π+(2) + ε · π+(4)
)

+
(

| · |1St2 × | · | 32
)

⊗
(

(1 + ε)| · | 12 � π+(2) + π+(2, 2) + ε · π−ε(2, 2)
)

.

(4) When m = 4, we have K (4)
φ = {(2, 2, 0) > (2, 1, 1) > (1, 3, 0) >

(1, 2, 1) > (0, 4, 0) > (0, 3, 1) > (0, 2, 2)}. Since

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝


x(2,2,0)

x(2,1,1)

x(1,3,0)

x(1,2,1)

x(0,4,0)

x(0,3,1)

x(0,2,2)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

St2 × | · |1St2
St2 × | · | 32 × | · | 32
| · | 12 × | · | 12 St3

| · | 12 × | · |1St2 × | · | 32
St4

| · | 12 St3 × | · | 32
| · |1St2 × | · |1St2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

we have

(mk,k′)−1
k,k′ =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 0 0 0 0 0 0
0 2 0 0 0 0 0
1 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 2 0 0 0 1 0
0 0 0 3 0 0 2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

−1

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 0 0 0 0 0 0
0 1

2 0 0 0 0 0
−1 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 − 1 0 0 0 1 0
0 0 0 − 3

2 0 0 1
2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.
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Moreover

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

�ε
x(2,2,0)

�ε
x(2,1,1)

�ε
x(1,3,0)

�ε
x(1,2,1)

�ε
x(0,4,0)

�ε
x(0,3,1)

�ε
x(0,2,2)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0
0

| · | 32 � 1SO1(F)

| · | 12 � 1SO1(F) + ε · π+(2)
π+(2)

(1 + ε) · π+(2)

(3 + 2ε)| · | 12 � 1SO1(F) + (1 + 2ε) · π+(2)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

Hence

s.s.JacP4(πε(2, 4, 4))

=
(

| · | 12 × | · | 12 St3
)

⊗ | · | 32 � 1SO1(F)

+ (| · |1St2 × |det2|1
)⊗

(

| · | 12 � 1SO1(F) + ε · π+(2)
)

+ St4 ⊗ π+(2)

+
(

| · | 12 St3 × | · | 32
)

⊗ (1 + ε) · π+(2)

+ (| · |1St2 × | · |1St2
)⊗

(

(1 + ε)| · | 12 � 1SO1(F) + 1 + ε

2
· π+(2)

)

.

(5) When m = 5, we have K (5)
φ = {(2, 3, 0) > (2, 2, 1) > (1, 4, 0) >

(1, 3, 1) > (1, 2, 2) > (0, 4, 1) > (0, 3, 2)}. Since

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝


x(2,3,0)

x(2,2,1)

x(1,4,0)

x(1,3,1)

x(1,2,2)

x(0,4,1)

x(0,3,2)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

St2 × | · | 12 St3
St2 × | · |1St2 × | · | 32

| · | 12 × St4
| · | 12 × | · | 12 St3 × | · | 32

| · | 12 × | · |1St2 × | · |1St2
St4 × | · | 32

| · | 12 St3 × | · |1St2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,
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we have

(mk,k′)−1
k,k′ =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 1 0 1 0 0 0
0 0 0 0 2 0 0
0 0 0 0 0 1 0
0 2 0 1 0 0 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

−1

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 −1 0 1 0 0 0
0 0 0 0 1

2 0 0
0 0 0 0 0 1 0
0 −1 0 −1 0 0 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

Moreover

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

�ε
x(2,3,0)

�ε
x(2,2,1)

�ε
x(1,4,0)

�ε
x(1,3,1)

�ε
x(1,2,2)

�ε
x(0,4,1)

�ε
x(0,3,2)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0
0

1SO1(F)

1SO1(F)

(1 + ε) · 1SO1(F)

0
(1 + ε) · 1SO1(F)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

Hence

s.s.JacP5(πε(2, 4, 4)) =
(

| · | 12 × St4
)

⊗ 1SO1(F)

+
(

| · | 12 St3 × |det2|1
)

⊗ 1SO1(F)

+
(

| · | 12 × | · |1St2 × | · |1St2
)

⊗ 1 + ε

2
· 1SO1(F)

+
(

| · | 12 St3 × | · |1St2
)

⊗ (1 + ε) · 1SO1(F).

Remark 4.7 In Theorem 4.3, one can replace 
x(k) with its unique irre-
ducible subrepresentation τx(k). Then one should consider the matrix (Mk,l) =
(dimC Jacρ|·|x(k) (τx(l))). One might seem that (Mk,l) is easier than (mk,l). For
instance, if φ is in Example 4.5, all (Mk,l) are the identity matrix, but not so
is some (mk,l). However, in general, (Mk,l) is not always diagonal. In Exam-
ple 4.6 (3) and (4), such non-diagonal (Mk,l) would appear.

5 Proof of the main theorems

In this section, we prove the main theorems (Theorems 4.2 and 4.3).
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5.1 The case of higher multiplicity

We prove Theorem 4.2 (1) in this subsection. It immediately follows from
Tadić’s formula (Corollary 2.9).

Proof of Theorem 4.2 (1) We prove the assertion by induction on m. Since

π(φ, η) = St(ρ, 2x + 1) � π(φ − (ρ � S2x+1)
⊕2, η)

with St(ρ, 2x + 1) = 〈ρ; x, . . . , −x〉, by Corollary 2.9, s.s.JacPd (π(φ, η)) is
equal to

(ρ∨| · |x ⊗ 〈ρ; x, . . . , −(x − 1)〉) � (1GL0(F) ⊗ π(φ − (ρ � S2x+1)
⊕2, η))

+ (ρ| · |x ⊗ 〈ρ; x − 1, . . . , −x〉) � (1GL0(F) ⊗ π(φ − (ρ � S2x+1)
⊕2, η))

+ (1GL0(F) ⊗ St(ρ, 2x + 1)) � s.s.JacPd (π(φ − (ρ � S2x+1)
⊕2, η)).

Note that s.s.(〈ρ; x − 1, . . . , −x〉 � π0) ∼= s.s.(
〈

ρ∨; x, . . . , −(x − 1)
〉

� π0)

for any representation π0. Since ρ∨ ∼= ρ, we have

Jacρ|·|x (π(φ, η)) = 2 · 〈ρ; x, . . . , −(x − 1)〉 � π
(

φ − (ρ � S2x+1)
⊕2, η

)

+ St(ρ, 2x + 1) � Jacρ|·|x
(

π
(

φ − (ρ � S2x+1)
⊕2, η

))

.

This proves the assertion when m = 3 or m = 4. When m ≥ 5, since

St(ρ, 2x + 1) × 〈ρ; x, . . . , −(x − 1)〉 � π
(

φ − (ρ � S2x+1)
⊕4, η

)

∼= 〈ρ; x, . . . , −(x − 1)〉 × St(ρ, 2x + 1) � π
(

φ − (ρ � S2x+1)
⊕4, η

)

∼= 〈ρ; x, . . . , −(x − 1)〉 � π
(

φ − (ρ � S2x+1)
⊕2, η

)

,

we obtain the assertion by the induction hypothesis. ��

5.2 The case of multiplicity one

Next, we prove Theorem 4.2 (2). Let φ = φ0 ⊕ (ρ � S2x+1) with ρ � S2x+1 
⊂
φ0, and η ∈ ̂Aφ . Set

φ′ = φ − (ρ � S2x+1) ⊕ (ρ � S2x−1).

Proof of Theorem 4.2 (2) First, we assume that x > 1/2 and π(φ′, η′) 
= 0.
We apply Mœglin’s construction to �φ′ . Write

φ′ =
(

t
⊕

i=1

ρ � Sai

)

⊕ φ′
e
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with a1 ≤ · · · ≤ at and ρ � Sa 
⊂ φ′
e for any a > 0. Set

t0 = max{i ∈ {1, . . . , t} | ai = 2x − 1}.
Take a new L-parameter

φ′� =
(

t
⊕

i=1

ρ � Sa′
i

)

⊕ φ′
e

such that

• a′
1 < · · · < a′

t ;• a′
i ≥ ai and a′

i ≡ ai mod 2 for any i ;
• a′

t0 ≥ 2x + 1.

We can identify Aφ′� with Aφ′ canonically. Let η′� ∈ Âφ′� be the character

corresponding to η′ ∈ ̂Aφ′ . Then Theorem 3.5 says that

π(φ′, η′) = Jac
ρ|·|

a′
t−1
2 ,...,ρ|·| at+1

2

◦ · · · ◦ Jac
ρ|·|

a′
1−1
2 ,...,ρ|·|

a1+1
2

(π(φ′�, η′�)).

When i = t0, we note that

Jac
ρ|·|

a′
t0

−1

2 ,...,ρ|·|
at0+1

2

= Jacρ|·|x ◦ Jac
ρ|·|

a′
t0

−1

2 ,...,ρ|·|
at0+3

2

.

Since φ′ does not contain ρ � S2x+1, for i > t0 and ai < 2x ′ + 1 ≤ a′
i with

2x ′ + 1 ≡ ai mod 2, we have x ′ − x > 1. By Lemma 2.6 (2), we see that
π(φ′, η′) is the image of

Jac
ρ|·|

a′
t−1
2 ,...,ρ|·| at+1

2

◦ · · · ◦ Jac
ρ|·|

a′
t0

−1

2 ,...,ρ|·|
at0+3

2

◦ · · · ◦ Jac
ρ|·|

a′
1−1
2 ,...,ρ|·|

a1+1
2

(π(φ′�, η′�))

under Jacρ|·|x . However, by applying Theorem 3.5 again, we see that this rep-
resentation is isomorphic to π(φ, η). Therefore π(φ′, η′) = Jacρ|·|x (π(φ, η)),
as desired.

Next, we consider the case where x = 1/2 and π ′(φ′, η′) 
= 0. We reduce
this case to the case where φ is discrete ( [16, Lemma 7.3]) using Theorem 3.5
repeatedly. The argument is similar to the first case so that we omit the detail.

Finally, we assume that π(φ′, η′) = 0. We claim that Jacρ|·|x (π(φ, η)) = 0.
When φ ∈ 
disc(G), this was proven in [16, Lemma 7.3].When φ ∈ 
gp(G)\

disc(G), there exists an irreducible representation φ1 which is contained in
φ with multiplicity at least two. Then π(φ, η) is a subrepresentation of τ1 �

π(φ−φ⊕2
1 , η), where τ1 is the irreducible tempered representation of GLk(F)
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corresponding to φ1. Since ρ � S2x+1 is contained in φ with multiplicity one,
we have φ1 � ρ � S2x+1. This implies that

Jacρ|·|x (τ1 � π(φ − φ⊕2
1 , η)) = τ1 � Jacρ|·|x (π(φ − φ⊕2

1 , η)).

By the induction hypothesis, Jacρ|·|x (π(φ − φ⊕2
1 , η)) = 0 unless φ1 = ρ �

S2x−1 and φ contains it with multiplicity exactly two. In this case, one can
take η− ∈ ̂Aφ such that π(φ, η−) 
= 0 and

π(φ, η) ⊕ π(φ, η−) = St(ρ, 2x − 1) � π(φ − φ⊕2
1 , η).

Then by the first case, we see that Jacρ|·|x (π(φ, η−)) 
= 0 and St(ρ, 2x −1)�

Jacρ|·|x (π(φ − φ⊕2
1 , η)) is irreducible. Hence Jacρ|·|x (π(φ, η)) must be zero.

This completes the proof of Theorem 4.2 (2). ��
By the same argument as the last part, one can prove that Jacρ(π(φ, η)) = 0
when x = 0 and m = 1.

5.3 Description of small standard modules

Before proving Theorem 4.2 (3), we describe the structures of some standard
modules.

Lemma 5.1 Let φ ∈ 
disc(G). Suppose that x > 0, and φ ⊃ ρ � S2x−1 but
φ 
⊃ ρ � S2x+1. Let η ∈ ̂Aφ such that π(φ, η) 
= 0. We set

• � = ρ| · |x � π(φ, η) to be a standard module;
• σ to be the unique irreducible quotient of �;
• φ′ = φ − (ρ � S2x−1) ⊕ (ρ � S2x+1) so that there is a canonical injection
Aφ ↪→ Aφ′ , which is bijection unless x = 1/2;

• η′ ∈ Âφ′ to be the character satisfying η′|Aφ = η (and π(φ′, η′) 
= 0 if
x = 1/2).

Then there exists an exact sequence

0 −−−→ π(φ′, η′) −−−→ � −−−→ σ −−−→ 0.

In particular, � has length two.

Proof We note that π(φ′, η′) is an irreducible subrepresentation of � by The-
orem 4.2 (2) and Lemma 2.6 (1).

If σ ′ is an irreducible subquotient of � which is non-tempered, by Tadić’s
formula and Casselman’s criterion, there exists a maximal parabolic subgroup
Pk of G such that s.s.JacPk (σ

′) contains an irreducible representation of the
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form (ρ| · |−x × τ) � σ0. In particular, we have Jacρ|·|−x (σ ′) 
= 0. However,
since Jacρ|·|−x (�) = π(φ, η) is irreducible, we see that σ ′ = σ , i.e., � has
only one irreducible non-tempered subquotient.

Let �sub be the maximal proper subrepresentation of �, i.e., �/�sub ∼= σ .
By the above argument, all irreducible subquotients of�sub must be tempered.
Since they have the same cuspidal support, they share the same Plancherel
measure. This implies that all irreducible subquotients of �sub belong to the
same L-packet �φ′ (see [6, Lemma A.6]), so that they are all discrete series.
Hence �sub is semisimple. In particular, any irreducible subquotient π ′ of
�sub is a subrepresentation of �, so that Jacρ|·|x (π ′) 
= 0. However, since
Jacρ|·|x (�) = π(φ, η) is irreducible, � has only one irreducible subrepresen-
tation. Therefore �sub = π(φ′, η′). This completes the proof. ��

We describe the standard module appearing in Theorem 4.2 (3). When x =
1/2, the standard module was described in Lemma 5.1. Hence we assume
x > 1/2.

Proposition 5.2 Let φ ∈ 
gp(G). Suppose that x > 1/2 and φ 
⊃ ρ � S2x+1.
Let η ∈ ̂Aφ such that π(φ, η) 
= 0. We set

• � = 〈ρ; x, x − 1, . . . , −(x − 1)〉 � π(φ, η) to be a standard module;
• σ to be the unique irreducible quotient of �;
• φ′ = φ ⊕ (ρ � S2x−1) ⊕ (ρ � S2x+1);
• η′+ and η′− to be the two distinct characters of Âφ′ such that η′±|Aφ = η

and η′±(zφ′) = 1.

Then there exists an exact sequence

0 −−−→ π(φ′, η′+) ⊕ π(φ′, η′−) −−−→ � −−−→ σ −−−→ 0.

In particular, � has length 2 or 3 according to φ ⊃ ρ � S2x−1 or not.

Proof First, we show that there is an inclusion π(φ′, η′
ε) ↪→ � for each ε ∈

{±}. To do this, we may assume that π(φ′, η′
ε) 
= 0. Note that φ′ contains ρ �

S2x+1 withmultiplicity one.ByTheorem4.2 (2),we see that Jacρ|·|x (π(φ′, η′
ε))

is nonzero and is an irreducible subrepresentation of St(ρ, 2x − 1) � π(φ, η).
By Lemma 2.6 (1), we have an inclusion

π(φ′, η′
ε) ↪→ ρ| · |x × St(ρ, 2x − 1) � π(φ, η).

Since � is a subrepresentation of ρ| · |x × St(ρ, 2x − 1) � π(φ, η) such that

Jacρ|·|x
(

ρ| · |x × St(ρ, 2x − 1) � π(φ, η)
) = Jacρ|·|x (�),

the above inclusion factors through π(φ′, η′
ε) ↪→ �.
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If s.s.JacPk (�) contains an irreducible representation τ � π0 such that the
central character of τ is of the form χ | · |s with χ unitary and s < 0, by Tadić’s

formula (Theorem 2.8) and Casselman’s criterion, τ = | · |− 1
2 St(ρ, 2x) ×

(×r
i=1τi ), where τi is a discrete series representation of GLki (F) such that

the corresponding irreducible representation φi of WF × SL2(C) is contained
in φ with multiplicity at least two, and π0 = π(φ0, η0) with φ0 = φ −
(⊕r

i=1φi )
⊕2 and η0 = η|Aφ0 . Since such an irreducible representation τ � π0

is also contained in s.s.JacPk (σ ), we see that σ is the unique irreducible non-
tempered subquotient of �. Namely, if we let �sub be the maximal proper
subrepresentation of�, i.e.,�/�sub ∼= σ , then all irreducible subquotients of
�sub must be tempered. Moreover since these irreducible subquotients have
the same cuspidal support so that they share the same Plancherel measure, they
belong to the same L-packet �φ′ (see [6, Lemma A.6]).

Nowwe show that�sub is isomorphic toπ(φ′, η′+)⊕π(φ′, η′−).We separate
the cases as follows:

• φ is discrete and ρ � S2x−1 
⊂ φ;
• φ is discrete and ρ � S2x−1 ⊂ φ;
• φ is in general.

When φ is discrete and ρ � S2x−1 
⊂ φ, we note that φ′ = φ ⊕ (ρ �
S2x−1) ⊕ (ρ � S2x+1) is also discrete. Then since all irreducible subquotients
of �sub are discrete series, �sub is semisimple. In particular, any irreducible
subquotient π ′ of �sub is a subrepresentation of � so that Jacρ|·|x (π ′) 
=
0. However, since Jacρ|·|x (�) = Jacρ|·|x (π(φ′, η′+) ⊕ π(φ′, η′−)), we have
�sub ∼= π(φ′, η′+) ⊕ π(φ′, η′−).

When φ is discrete and ρ � S2x−1 ⊂ φ, any irreducible subquotient π ′ of
�sub belongs to �φ′ with φ′ = φ′

0 ⊕ (ρ � S2x−1)
⊕2, where φ′

0 = φ − (ρ �
S2x−1)⊕ (ρ � S2x+1) is discrete such that ρ � S2x−1 
⊂ φ′

0. Hence the Jacquet
module s.s.JacPd(2x−1) (π

′) contains an irreducible representation of the form
St(ρ, 2x −1)⊗π ′

0. By Tadić’s formula (Corollary 2.9), the sum of irreducible
representations of this form appearing in s.s.JacPd(2x−1) (�) is

St(ρ, 2x − 1) ⊗ s.s.(ρ| · |x � π(φ, η)).

By Lemma 5.1, we have an exact sequence

0 −−−→ π(φ′
0, η

′
0) −−−→ ρ| · |x � π(φ, η) −−−→ σ ′ −−−→ 0,

where σ ′ is the unique irreducible quotient of ρ| · |x � π(φ, η), and η′
0 ∈ Âφ′

0

is the character corresponding to η ∈ ̂Aφ via the identification Aφ =
Aφ′

0
. Now there exists ε ∈ {±} such that π(φ′, η′−ε) = 0. Moreover,

s.s.JacPd(2x−1) (π(φ′, η′
ε)) ⊃ St(ρ, 2x − 1) ⊗ π(φ′

0, η
′
0) since
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η′
ε(αρ�S2x+1) = η′

ε(αρ�S2x−1) = η(αρ�S2x−1) = η′
0(αρ�S2x+1).

On the other hand, since σ ↪→ St(ρ, 2x − 1)× ρ| · |−x
� π(φ, η), we see that

s.s.JacPd(2x−1) (σ ) is nonzero and contains St(ρ, 2x − 1) ⊗ σ ′. Hence

s.s.JacPd(2x−1) (�) − s.s.JacPd(2x−1) (π(φ′, η′
ε)) − s.s.JacPd(2x−1) (σ )

has no irreducible representation of the form St(ρ, 2x − 1) ⊗ π ′
0. This shows

that �sub = π(φ′, η′
ε).

In general, we prove the claim by induction on the dimension of φ. When φ

is not discrete, there exists an irreducible representation φ1 of WF × SL2(C)

which φ contains with multiplicity at least two. Note that φ1 � ρ � S2x+1.

Set φ0 = φ − φ⊕2
1 , and η0 = η|Aφ0 . Take �0, σ0, φ′

0 and η′
0,ε ∈ Âφ′

0
as in

the statement of the proposition. By induction hypothesis, we have an exact
sequence

0 −−−→ π(φ′
0, η

′
0,+) ⊕ π(φ′

0, η
′
0,−) −−−→ �0 −−−→ σ0 −−−→ 0.

Let τ be the irreducible discrete series representation of GLk(F) correspond-
ing to φ1. The above exact sequence remains exact after taking the parabolic
induction functor π0 
→ τ �π0. Note that τ ×〈ρ; x, x − 1, . . . , −(x − 1)〉 ∼=
〈ρ; x, x − 1, . . . , −(x − 1)〉 × τ by Theorem 2.1. Since σ0 is unitary, the
parabolic induction τ � σ0 is semisimple. In particular, any irreducible sub-
quotient of τ � σ0 is non-tempered. Considering the cases where

• φ contains φ1 with multiplicity more than two;
• φ contains φ1 with multiplicity exactly two and φ1 � ρ � S2x−1;
• φ contains φ1 with multiplicity exactly two and φ1 ∼= ρ � S2x−1

separately, we see that �sub ∼= π(φ′, η′+) ⊕ π(φ′, η′−) in all cases. This com-
pletes the proof. ��

5.4 The case of multiplicity two

Finally, we prove Theorem 4.2 (3).

Lemma 5.3 Let φ ∈ 
gp(G), η ∈ ̂Aφ and x > 0. Suppose that φ contains
both ρ � S2x+1 and ρ � S2x+3 with multiplicity one. Then we have

Jacρ|·|x+1,ρ|·|x ,ρ|·|x (π(φ, η)) ⊂ 2 · Jacρ|·|x ,ρ|·|x+1,ρ|·|x (π(φ, η)).

Proof We may assume that Jacρ|·|x+1,ρ|·|x ,ρ|·|x (π(φ, η)) 
= 0. By Lemma 2.6
(1), there exists an irreducible subquotient σ of this Jacquet module such that

π(φ, η) ↪→ ρ| · |x+1 × ρ| · |x × ρ| · |x � σ.
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Since there exists an exact sequence

0 −−−−→ 〈ρ; x + 1, x〉 −−−−→ ρ| · |x+1 × ρ| · |x −−−−→ 〈ρ; x, x + 1〉 −−−−→ 0,

where 〈ρ; x, x + 1〉 is the unique irreducible subrepresentation of ρ| · |x ×ρ| ·
|x+1, we see that π(φ, η) is a subrepresentation of 〈ρ; x + 1, x〉×ρ| · |x �σ or
〈ρ; x, x + 1〉×ρ| · |x �σ . Since 〈ρ; x + 1, x〉×ρ| · |x ∼= ρ| · |x ×〈ρ; x + 1, x〉
and 〈ρ; x, x + 1〉×ρ|·|x ∼= ρ|·|x×〈ρ; x, x + 1〉, we have Jacρ|·|x (π(φ, η)) 
=
0.

By Theorem 4.2 (2), Jacρ|·|x+1(π(φ, η)) 
= 0 and Jacρ|·|x (π(φ, η)) 
= 0
imply that σ ′ = Jacρ|·|x ,ρ|·|x+1,ρ|·|x (π(φ, η)) is nonzero and irreducible. More-
over, we have Jacρ|·|x (σ ′) = 0 and Jacρ|·|x+1(σ ′) = 0. By Lemma 2.6 (1), we
have an inclusion

π(φ, η) ↪→ ρ| · |x × ρ| · |x+1 × ρ| · |x � σ ′.

Since

Jacρ|·|x+1,ρ|·|x ,ρ|·|x (ρ| · |x × ρ| · |x+1 × ρ| · |x � σ ′) = 2 · σ ′,

we have Jacρ|·|x+1,ρ|·|x ,ρ|·|x (π(φ, η)) ⊂ 2 · σ ′, as desired. ��
Suppose that x > 0. Let φ = φ0 ⊕ (ρ � S2x+1)

⊕2 with ρ � S2x+1 
⊂ φ0,
and η ∈ ̂Aφ .

Lemma 5.4 Set φ1 = φ − (ρ � S2x+1)
⊕2 ⊕ (ρ � S2x−1)

⊕2 so that there is
a canonical injection Aφ1 ↪→ Aφ , which is bijective unless x = 1/2. Define

η1 ∈ Âφ1 by η1 = η|Aφ1 . Then we have

Jacρ|·|x ,ρ|·|x (π(φ, η)) = 2 · π(φ1, η1).

Proof Let η+ = η and η− ∈ ̂Aφ be as in the statement of Theorem 4.2 (3).

Define η1,± ∈ Âφ1 by η1,± = η±|Aφ if x > 1/2. When x = 1/2, we set
η1,+ = η|Aφ1 and π(φ1, η1,−) = 0 formally. Then we have

• π(φ, η+) ⊕ π(φ, η−) = St(ρ, 2x + 1) � π(φ0, η|Aφ0);• π(φ1, η1,+) ⊕ π(φ1, η1,−) = St(ρ, 2x − 1) � π(φ0, η|Aφ0);• Jacρ|·|x ,ρ|·|x (St(ρ, 2x + 1) � π(φ0, η|Aφ0))
∼= 2 · St(ρ, 2x − 1) �

π(φ0, η|Aφ0).

Therefore, it is enough to show that Jacρ|·|x ,ρ|·|x (π(φ, η)) ⊂ 2 · π(φ1, η1).
We apply Mœglin’s construction to �φ . Write

φ =
(

t
⊕

i=1

ρ � Sai

)

⊕ φe
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with a1 ≤ · · · ≤ at and ρ � Sa 
⊂ φe for any a > 0. There exists t0 > 1 such
that at0−1 = at0 = 2x + 1. Take a new L-parameter

φ� =
(

t
⊕

i=1

ρ � Sa′
i

)

⊕ φe

such that

• a′
1 < · · · < a′

t ;• a′
i ≥ ai and a′

i ≡ ai mod 2 for any i .

In particular, a′
t0 ≥ 2x + 3. We can identify Aφ� with Aφ canonically. Let

η� ∈ Âφ� be the character corresponding to η ∈ ̂Aφ . Then Theorem 3.5 says
that

π(φ, η) = Jac
ρ|·|

a′
t−1
2 ,...,ρ|·| at+1

2

◦ · · · ◦ Jac
ρ|·|

a′
1−1
2 ,...,ρ|·|

a1+1
2

(π(φ�, η�)).

Note that (at0 + 1)/2 = x + 1. By Lemma 2.6 (2), we see that

Jacρ|·|x ,ρ|·|x (π(φ, η))

= Jac
ρ|·|

a′
t−1
2 ,...,ρ|·| at+1

2

◦ · · · ◦ Jac
ρ|·|

a′
t0+1−1

2 ,...,ρ|·|
at0+1+1

2

◦ Jacρ|·|x+1,ρ|·|x ,ρ|·|x
(

Jac
ρ|·|

a′
t0

−1

2 ,...,ρ|·|
at0+3

2

◦ · · · ◦ Jac
ρ|·|

a′
1−1
2 ,...,ρ|·|

a1+1
2

(π(φ�, η�))

)

.

By Lemma 5.3, we have

Jacρ|·|x+1,ρ|·|x ,ρ|·|x
(

Jac
ρ|·|

a′
t0

−1

2 ,...,ρ|·|
at0+3

2

◦ · · · ◦ Jac
ρ|·|

a′
1−1
2 ,...,ρ|·|

a1+1
2

(π(φ�, η�))

)

⊂ 2 · Jacρ|·|x ,ρ|·|x+1,ρ|·|x
(

Jac
ρ|·|

a′
t0

−1

2 ,...,ρ|·|
at0+3

2

◦ · · · ◦ Jac
ρ|·|

a′
1−1
2 ,...,ρ|·|

a1+1
2

(π(φ�, η�))

)

.

Since

Jac
ρ|·|

a′
t−1
2 ,...,ρ|·| at+1

2

◦ · · · ◦ Jac
ρ|·|

a′
t0+1−1

2 ,...,ρ|·|
at0+1+1

2

◦ Jacρ|·|x ,ρ|·|x+1,ρ|·|x
(

Jac
ρ|·|

a′
t0

−1

2 ,...,ρ|·|
at0+3

2

◦ · · · ◦ Jac
ρ|·|

a′
1−1
2 ,...,ρ|·|

a1+1
2

(π(φ�, η�))

)

= π(φ1, η1)

by Theorem 3.5, we have Jacρ|·|x ,ρ|·|x (π(φ, η)) ⊂ 2 · π(φ1, η1), as desired. ��
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Now we can prove Theorem 4.2 (3).

Proof of Theorem 4.2 (3) By Corollary 2.9, we have

Jacρ|·|x (π(φ, η+) ⊕ π(φ, η−)) = 2 · 〈ρ; x, x − 1, . . . , −(x − 1)〉 � π(φ0, η|Aφ0).

By Proposition 5.2, we have an exact sequence

0 −−−→ π(φ′, η′+) ⊕ π(φ′, η′−) −−−→ � −−−→ σ −−−→ 0,

where � = 〈ρ; x, x − 1, . . . , −(x − 1)〉 � π(φ0, η|Aφ0), and σ is the
unique irreducible quotient of �. Fix ε ∈ {±}. By Lemma 5.4, we
see that Jacρ|·|x (π(φ, ηε)) ⊃ 2 · π(φ′, η′

ε). On the other hand, since
s.s.JacPd(2x+1) (π(φ, ηε)) ⊃ St(ρ, 2x + 1) ⊗ π(φ0, η|Aφ0), we have

s.s.JacP2dx (Jacρ|·|x (π(φ, ηε))) ⊃ | · |− 1
2 St(ρ, 2x) ⊗ π(φ0, η|Aφ0).

This implies that Jacρ|·|x (π(φ, ηε)) contains an irreducible non-tempered rep-
resentation, which must be σ . Hence

Jacρ|·|x (π(φ, ηε)) ⊃ 2 · π(φ′, ηε) + σ = � + π(φ′, ηε) − π(φ′, η−ε).

Considering Jacρ|·|x (π(φ, η+)⊕π(φ, η−)), we see that this inclusion must be
an equality. ��

If x = 0 and m = 2, we see that Jacρ(π(φ, η)) ⊃ π(φ0, η|Aφ0). By the
same argument, this inclusion must be an equality. This completes the proof
of Theorem 4.2 (4), so that the ones of all statements of Theorem 4.2.

5.5 Description of μ∗
ρ

We prove Theorem 4.3 in this subsection. To do this, we need the following
specious lemma.

Lemma 5.5 Let φ ∈ 
gp(G) and x = (x1, . . . , xm) ∈ R
m. Suppose that

Jacρ|·|x (π) 
= 0 for some π ∈ �φ .

(1) If xm < 0, then xi = −xm for some i .
(2) Suppose that x is of the form

x = (x (1)
1 , . . . , x (1)

m1
︸ ︷︷ ︸

m1

, . . . , x (k)
1 , . . . , x (k)

mk
︸ ︷︷ ︸

mk

)
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with x ( j)
i−1 > x ( j)

i for 1 ≤ j ≤ k, 1 < i ≤ m j , and x (1)
1 ≤ · · · ≤ x (k)

1 .

Then x ( j)
1 ≥ 0 for j = 1, . . . , k, and

φ ⊃
k
⊕

j=1

ρ � S
2x ( j)

1 +1
.

Proof We prove the lemma by induction on m. By Lemma 4.1, we see that
2x1+1 is a positive integer, and φ contains ρ�S2x1+1. In particular, we obtain
the lemma for m = 1.

Suppose that m ≥ 2 and put x ′ = (x2, . . . , xm) ∈ R
m−1. By Theorem 4.2,

one of the following holds.

• Jac
ρ|·|x ′ (π

′) 
= 0 for some π ′ ∈ �φ′ with φ′ = φ − (ρ � S2x1+1) ⊕ (ρ �
S2x1−1);

• Jac
ρ|·|x ′ (〈ρ; x1, x1 − 1, . . . , −(x1 − 1)〉 � π0) 
= 0 for some π0 ∈ �φ0

with φ0 = φ − (ρ � S2x1+1)
⊕2.

The former case can occur only if x1 > 0, and the latter case can occur only
if φ ⊃ (ρ � S2x1+1)

⊕2.
We consider the former case. Assume that x1 > 0 and Jac

ρ|·|x ′ (π
′) 
= 0 for

some π ′ ∈ �φ′ with φ′ = φ − (ρ � S2x1+1) ⊕ (ρ � S2x1−1). By the induction
hypothesis, we have xi = −xm for some i ≥ 2 when xm < 0, and

φ′ ⊃ (ρ � S
2x (1)

1 −1
) ⊕

⎛

⎝

k
⊕

j=2

ρ � S
2x ( j)

1 +1

⎞

⎠

when x is of the form in (2) since x ′ is also of the form. This implies the
assertion for φ.

We consider the latter case. Assume that φ ⊃ (ρ � S2x1+1)
⊕2, and that

Jac
ρ|·|x ′ (〈ρ; x1, x1 − 1, . . . , −(x1 − 1)〉 � π0) 
= 0

for some π0 ∈ �φ0 with φ0 = φ − (ρ � S2x1+1)
⊕2. By Corollary 2.9, we can

divide

{2, . . . ,m} = {i1, . . . , im1} � { j1, . . . , jm2} � {k1, . . . , km3}
with i1 < · · · < im1 , j1 < · · · < jm2 , k1 < · · · < km3 and m2 + m3 ≤ 2x1
such that

• Jacρ|·|y1 ,...,ρ|·|ym1 (π0) 
= 0 with yt = xit ;• x jt = x1 + 1 − t for t = 1, . . . ,m2;
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• xkt = x1 − t for t = 1, . . . ,m3.

Considering the following four cases, we can prove the existence xi satisfying
xi = −xm when xm < 0.

• When m = im1 , by the induction hypothesis, we have xit = −xm for some
t .

• When m = jm2 , we have xm = x1 + 1 − m2 < 0 so that x jt = −xm with
t = 2x1 + 2 − m2.

• When m = km3 and m3 < 2x1, we have xm = x1 − m3 < 0 so that
xkt = −xm with t = 2x1 − m3.

• When m = km3 and m3 = 2x1, we have x1 = −xm .

On the other hand, when x is of the form in (2), since x ( j)
1 ≥ x (1)

1 = x1, there
is at most one j0 ≥ 2 such that

x ( j0)
1 ∈ {x jt | t = 1, . . . ,m2} ∪ {xkt | t = 1, . . . ,m3},

in which case, x ( j0)
1 = x1. By the induction hypothesis, we have

φ0 ⊃
⊕

2≤ j≤k
j 
= j0

ρ � S
2x ( j)

1 +1
.

This implies the assertion for φ. This completes the proof. ��
Now we can prove Theorem 4.3.

Proof of Theorem 4.3 Since the subgroup ofRdm spanned by Irrρ(GLdm(F))

= {τx | x ∈ 	m} has another basis {
x | x ∈ 	m}, we can write

μ∗
ρ(π) =

∑

m≥0

∑

x∈	m


x ⊗ �x (π)

for some virtual representation �x (π). For y ∈ 	m , applying Jacρ|·|y to
s.s.JacPdm (π), we have

Jacρ|·|y (π) =
∑

x∈	m

Jacρ|·|y (
x ) ⊗ �x (π) =
∑

x∈	m

m(y, x) · �x (π),

where m(y, x) = dimC Jacρ|·|y (
x ). If m′(x ′, y) ∈ Q satisfies that

∑

y∈	m

m′(x ′, y)m(y, x) = δx ′,x ,
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we have

�x (π) =
∑

y∈	m

m′(x, y) · Jacρ|·|y (π).

Hence we have

μ∗
ρ(π) =

∑

m≥0

∑

x,y∈	m

m′(x, y) · 
x ⊗ Jacρ|·|y (π).

By Lemma 5.5, if Jacρ|·|y (π) 
= 0 for y ∈ 	m , then y = x(k) for some

k ∈ K (m)
φ . If m′(x, y) 
= 0, then the image of x under the canonical map

R
m → R

m/Sm coincides with the one of y since the same property holds for

m(x, y). In particular, for fixed k ∈ K (m)
φ , if m′(x, x(k)) 
= 0, then x = x(k′)

for some k′ ∈ K (m)
φ . Therefore, we have

μ∗
ρ(π) =

∑

m≥0

∑

k,k′∈K (m)
φ

m′(x(k′), x(k)) · 
x(k′) ⊗ Jacρ|·|x(k) (π).

This completes the proof of Theorem 4.3. ��

6 Complements

6.1 A remark on standard modules

As a consequence of Theorem 4.2, we can prove the irreducibility of certain
standard modules.

Corollary 6.1 Let φ ∈ 
gp(G) and η ∈ ̂Aφ such that π(φ, η) 
= 0. Suppose
that φ ⊃ ρ � S2x+1 for x > 0 but Jacρ|·|x (π(φ, η)) = 0. Then the standard
module

� = 〈ρ; x, x − 1, . . . , −(x − 1)〉 � π(φ, η)

is irreducible.

Proof Let σ be the unique irreducible quotient of �, which is non-tempered.
By the same argument as the proof of Proposition 5.2, we see that σ is
the unique irreducible non-tempered subquotient of �. Suppose that � is
reducible. If π ′ is another irreducible subquotient of �, by considering its
cuspidal support or its Plancherel measure, we see that π ′ ∈ �φ′ with
φ′ = φ ⊕ (ρ � S2x−1) ⊕ (ρ � S2x+1). Since φ ⊃ ρ � S2x+1, we see that
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φ′ ⊃ (ρ � S2x+1)
⊕2. By Theorem 4.2, Jacρ|·|x (π ′) contains an irreducible

non-tempered representation. However, Jacρ|·|x (�) = St(ρ, 2x−1)�π(φ, η)

consists of tempered representations. This is a contradiction. ��
Example 6.2 Consider φ = S2 ⊕ S4 ⊕ S6 ∈ 
disc(SO13(F)) and η ∈ ̂Aφ

given by η(αS2a ) = (−1)a for a = 1, 2, 3. Then π(φ, η) is an irreducible
supercuspidal representation. Moreover, the standard module

� =
〈

1GL1(F); 52 ,
3

2
,
1

2
, −1

2
, −3

2

〉

� π(φ, η)

of SO23(F) is irreducible. Note that the L-parameterφ′ = φ⊕|·| 12 S5⊕|·|− 1
2 S5

of � is non-generic since

L(s, φ′,Ad) = ζF (s − 1)ζF (s)3ζF (s + 1)13ζF (s + 2)10

× ζF (s + 3)12ζF (s + 4)5ζF (s + 5)3

has a pole at s = 1, where ζF is the local zeta function associated to F . In
particular, the standard module

�0 =
〈

1GL1(F); 52 ,
3

2
,
1

2
, −1

2
, −3

2

〉

� π(φ, 1)

is reducible by Theorem 3.4.

6.2 Mínguez’s derivatives

The following notion is introduced byMínguez. Fix x > 0 such that ρ�S2x+1
is good with respect to G, i.e., we assume that there exists φ ∈ 
gp(G) such
that φ ⊃ ρ � S2x+1. For π ∈ Irrtemp(G), we set

Jacρ|·|x (π) = Jacρ|·|x ◦ · · · ◦ Jacρ|·|x
︸ ︷︷ ︸

k

(π),

where k ≥ 0 is the maximal integer such that Jacρ|·|x (π) 
= 0. we call
Jacρ|·|x (π) the ρ| · |x -derivative of π .

Proposition 6.3 Letφ ∈ 
gp(G) and η ∈ ̂Aφ such thatπ(φ, η) 
= 0. Suppose
that x > 0 and Jacρ|·|x (π) 
= 0, so that the multiplicity m of ρ � S2x+1 in φ is
positive. For 1 ≤ k ≤ m, set

φ(k) = φ − (ρ � S2x+1)
⊕k ⊕ (ρ � S2x−1)

⊕k
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and η(k) ∈ Âφ(k) to be η|Aφ(k) via the canonical inclusionAφ(k) ↪→ Aφ . Then

Jacρ|·|x (π(φ, η)) = k! · π(φ(k), η(k))

with

k =
{

m if π(φ(m), η(m)) 
= 0,

m − 1 if π(φ(m), η(m)) = 0.

In particular, for the above k, we have an inclusion

π(φ, η) ↪→ ρ| · |x × · · · × ρ| · |x
︸ ︷︷ ︸

k

�π(φ(k), η(k)),

and Jacρ|·|x (π(φ(k), η(k))) = 0.

Proof When m = 1 (resp. m = 2), it is Theorem 4.2 (2) (resp. Lemma 5.4).
In general, by Theorem 4.2 (1), we can reduce the assertion to the case of
m ∈ {1, 2}. ��
Remark 6.4 (1) Embedding an irreducible representation π into (ρ| · |x )×k

�

π0 with k maximal is the key idea of the proof of the Howe duality con-
jecture by Gan–Takeda [7].

(2) If ρ is not self-dual, we should define Jacρ|·|x as the maximal nonzero
iterated composition of Jacρ∨|·|x ◦ Jacρ|·|x . Then Proposition 6.3 can be
extended to any φ ∈ 
temp(G) and any supercuspidal unitary representa-
tion ρ of GLd(F). We leave the detail for readers.

(3) In particular, one can show that for anyπ ∈ Irrtemp(G), theρ|·|x -derivative
Jacρ|·|x (π) is an isotypic of an irreducible tempered representation.
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