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Abstract Liouville quantum gravity (LQG) and the Brownian map (TBM) are
two distinct models of measure-endowed random surfaces. LQG is defined in
terms of areal parameter y, and it has long been believed that when y = /8/3,
the LQG sphere should be equivalent (in some sense) to TBM. However, the
LQG sphere comes equipped with a conformal structure, and TBM comes
equipped with a metric space structure, and endowing either one with the
other’s structure has been an open problem for some time. This paper is the
first in a three-part series that unifies LQG and TBM by endowing each object
with the other’s structure and showing that the resulting laws agree. The present
work considers a growth process called quantum Loewner evolution (QLE) on
a 4/8/3-LQG surface S and defines dg(x, y) to be the amount of time it takes
QLE to grow from x € Stoy € S. We show that dg(x, y) is a.s. determined
by the triple (S, x, y) (which is far from clear from the definition of QLE)
and that dg a.s. satisfies symmetry (i.e., dg(x, y) = do(y, x)) for a.a. (x, y)
pairs and the triangle inequality for a.a. triples. This implies that dg is a.s. a
metric on any countable sequence sampled i.i.d. from the area measure on S.
We establish several facts about the law of this metric, which are in agreement
with similar facts known for TBM. The subsequent papers will show that this
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metric a.s. extends uniquely and continuously to the entire ,/8/3-LQG surface
and that the resulting measure-endowed metric space is TBM.
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1 Introduction
1.1 Overview

Brownian motion is in many ways the “canonical” or “most natural” probability
measure on the space of continuous paths. It is uniquely characterized by
special properties (independence of increments, stationarity, etc.) and it arises
as a scaling limit of many kinds of discrete random walks.

It is natural to wonder whether there is a similarly “canonical” or “most
natural” probability measure on the space of two dimensional surfaces that are
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topologically equivalent to the sphere. In fact, over the past few decades, two
mathematical objects have emerged which have seemed to be equally valid
candidates for the title of “canonical random sphere-homeomorphic surface.”

The first candidate is the spherical form of Liouville quantum gravity (LQG)
[1,9,10,12,27,41]. Roughly speaking, the LQG sphere is a random surface
obtained by exponentiating a form of a conformally invariant random distri-
bution called the Gaussian free field (GFF). LQG has its roots in the physics
literature, particularly the work of Polyakov [36—38] and others in string the-
ory and conformal field theory in the 1980’s. The definition of LQG involves
a parameter y that can be tuned to make surfaces more or less “rough.” The
particular value y = /8/3 has long been understood to be special, and is said
to correspond to pure quantum gravity. Roughly speaking, this means that
/8/3-LQG (ak.a. pure LOG) should arise as a scaling limit of discretized
random surfaces that are not decorated by extra statistical physical structures
(a.k.a. matter fields).

The second candidate is an object called the Brownian map (TBM) [21-
25] which has its roots in the mathematical analysis of discretized random
surfaces (a.k.a. random planar maps), beginning with the work of Tutte [44]
in the 1960’s. Around 2000 it was noticed by Chassaing and Schaeffer [7]
(building on the bijections [8,40]) that the large scale behavior of the profile
of distances from a random point on a random planar map could be encoded
using the Brownian snake of Le Gall (see [20] for a general review). This
perspective ultimately led to the definition of the Brownian map as a ran-
dom metric measure space constructed from the Brownian snake, and to the
proofs of Le Gall [22] and Miermont [24] that the Brownian map arises as the
Gromov—Hausdorff limit of uniformly random planar maps.

Both LQG and TBM have been thoroughly studied and appear in hundreds
of papers in physics and mathematics. However, until now, there has not been
a direct link between these two objects, and the corresponding literatures have
been relatively disconnected.

It has long been believed that TBM and the /8/3-LQG sphere should be
equivalent in some sense. Both objects are random measure-endowed, sphere-
homeomorphic surfaces. The problem is that the LQG sphere comes equipped
with a conformal structure and TBM comes equipped with a metric space
structure, and it is far from obvious how to endow either of these objects with
the other’s structure. Until one does this, it is not clear how an equivalence
statement can even be formulated.

This paper is the first in a three part series (also including [28,29]) that
will establish the equivalence of +/8/3-LQG and TBM and provide a robust
unification of the corresponding theories. Over the course of these three papers,
we will show the following:
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1. Aninstance of the \/8/3-LQG sphere a.s. comes with a canonical metric
space structure, and the resulting measure-endowed metric space agrees
in law with TBM.

2. Given an instance of TBM, the 4/8/3-LQG sphere that generates it is a.s.
uniquely determined. This implies that an instance of TBM a.s. comes with
a canonical (up to Mobius transformation) embedding in the Euclidean
sphere. In other words:

3. An instance of TBM a.s. comes with a canonical conformal structure
and the resulting measure-endowed conformal sphere agrees in law with
the /8/3-LQG sphere.

4. The canonical (up to Mobius transformation) embedding of TBM (with its
intrinsic metric) into the Euclidean sphere (with the Euclidean metric) is
a.s. Holder continuous with Holder continuous inverse. This in particular
implies that a.s. all geodesics in TBM are sent to Holder continuous curves
in the Euclidean sphere.

In [28,29], we will also extend these results to infinite volume surfaces (the
so-called Brownian plane [4] and the +/8/3-LQG quantum cone [10,41]) and
to surfaces with boundary (the Brownian disk and its LQG analog).

The main technical achievements of the current paper concern a growth
process called quantum Loewner evolution (QLE), introduced in [33]. We show
that QLE growth on a +/8/3-LQG surface is a.s. determined by the starting
point of the growth process and the surface it is growing on. (It is still an open
question whether this remains true when y # /8/3.) Moreover, given two
typical points x and y on the surface, the amount of time it takes QLE to grow
from x to y a.s. equals the amount of time it takes QLE to grow from y to x. This
time can be interpreted as a distance between x and y (this paper establishes
the appropriate triangle inequality) and this is what ultimately allows us to
endow +/8/3-LQG surfaces with a metric space structure. However, we stress
that the results in the current paper can also be appreciated as stand alone
conclusions about QLE.

1.2 Main result

Before we begin to explain how these results will be proved, let us describe one
reason one might expect them to be true. Both TBM and the /8 /3-LQG sphere
are known to be n — o0 scaling limits of the uniformly random planar map
with n edges, albeit w.r.t. different topologies.! One should therefore be able

I TBM is the scaling limit w.r.t. the Gromov—Hausdorff topology on metric spaces [21-24].
The 4/8/3-LQG sphere (decorated by CLEg) is the scaling limit of the uniformly random
planar map (decorated by critical percolation) w.r.t. the so-called peanosphere topology, as well
as a stronger topology that encodes loop lengths and intersection patterns (see [10,42], the
forthcoming works [13-15], and the brief outline in [26]).
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to use a compactness argument to show that the uniformly random planar map
has a scaling limit (at least subsequentially) in the product of these topologies,
and that this scaling limit is a coupling of TBM and the /8/3-LQG sphere.
It is not obvious that, in this coupling, the instance of TBM and the instance
of the 4/8/3-LQG sphere a.s. uniquely determine one another. But it seems
reasonable to guess that this would be the case. And it is at least conceivable
that one could prove this through a sophisticated analysis of the planar maps
themselves (e.g., by showing that pairs of random planar maps are highly likely
to be close in one topology if and only if they are close in the other topology).

Another reason to guess that an LQG sphere should have a canonical metric
structure, and that TBM should have a canonical conformal structure, is that it
is rather easy to formulate reasonable sounding conjectures about how a metric
on an LQG sphere might be obtained as limit of approximate metrics, or how
a conformal structure on TBM might be obtained as a limit of approximate
conformal structures. For example, the peanosphere construction of [10] gives
a space-filling curve on the LQG sphere; one might divide space into regions
traversed by length-§ increments of time, declare two such regions adjacent if
they intersect, and conjecture that the corresponding graph distance (suitably
rescaled) converges to a continuum distance as § — 0. Similarly, an instance
of TBM comes with a natural space-filling curve; one can use this to define a
graph structure as above, embed the graph in the Euclidean sphere using circle
packing (or some other method thought to respect conformal structure), and
conjecture that as 6 — 0 these embeddings converge to a canonical (up to
Mobius transformation) embedding of TBM in the Euclidean sphere. In both
of these cases, the approximating graph can be constructed in a simple way
(in terms of Brownian motion or the Brownian snake) and could in principle
be studied directly.

The current series of papers will approach the problem from a completely
different direction, which we believe to be easier and arguably more enlighten-
ing than the approaches suggested above. Instead of using approximations of
the sort described above, we will use a combination of the quantum Loewner
evolution (QLE) ideas introduced in [33], TBM analysis that appears in [26],
and the /8/3-LQG sphere analysis that appears in [27]. There are approxima-
tions involved in defining the relevant form of QLE, but they seem to respect
the natural symmetries of the problem in a way that the approximation schemes
discussed above do not. In particular, our approach will allow us to take full
advantage of an exact relationship between the LQG disks “cut out” by SLEg
and those cut out by a metric exploration.

In order to explain our approach, let us introduce some notation. If (S, d)
is a metric space, like TBM, and x € S then we let B(x, r) denote the radius
r ball centered at x. If the space is homeomorphic to 8> and comes with
a distinguished “target” point y, then we let B®(x, r) denote the filled metric
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ball of radius r, i.e., the set of all points that are disconnected from y by B(x, r).
Note thatif 0 < r < d(x, y), then the complement of B®(x, r) contains y and
is homeomorphic to the unit disk D.

The starting point of our approach is to let x and y be points on an LQG-
sphere and to define a certain “growth process” growing from x to y. We
assume that x and y are “quantum typical,” i.e., that given the LQG-sphere
itself, the points x and y are independent samples from the LQG measure on
that sphere. The growth process is an increasing family of closed subsets of
the LQG-sphere, indexed by a time parameter ¢, which we denote by I'; =
Ff_)y . Ultimately, the set I'; will represent the filled metric ball B®(x, t)
corresponding to an appropriately defined metric on the LQG-sphere (when
y is taken to be the distinguished target point). However, we will get to this
correspondence somewhat indirectly. Namely, we will first define I'; = I} Y
as a random growth process (for quantum typical points x and y) and only
show a posteriori that there is a metric for which the I'; thus defined are a.s.
the filled metric balls.

As presented in [33], the idea behind this growth process (whose discrete
analog we briefly review and motivate in Sect. 3) is that one should be able to
“reshuffle” the SLEg decorated quantum sphere in a particular way in order
to obtain a growth process on a LQG surface that hits points in order of their
distance from the origin. This process is a variant of the QLE(8/3, 0) pro-
cess originally constructed in [33] by starting with an SLE¢ process and then
“resampling” the tip location at small capacity time increments to obtain a
type of first passage percolation on top of a +/8/3-LQG surface. The form of
QLE(8/3, 0) that we use here differs from that given in [33] in that we will
resample the tip at “quantum natural time” increments as defined in [10] (i.e.,
time steps which are intrinsic to the surface rather than to its specific choice
of embedding). We expect that these two constructions are in fact equivalent,
but we will not establish that fact here.

As discussed in [33], the growth process QLE(8/3, 0) can in some sense
be understood as a continuum analog of the Eden model. The idea explained
there is that in some small-increment limiting sense, the (random) Eden model
growth should correspond to (deterministic) metric growth. In fact, a version
of this statement for random planar maps has recently been verified in [6],
which shows that on a random planar map, the random metric associated with
an Eden model (or first passage percolation) instance closely approximates
graph distance.

Once we have defined the growth process for quantum typical points x and
v, we will define the quantity do(x, y) to be the amount of time it takes for a
QLE growth process to evolve from x to y. This dg is a good candidate to be
a distance function, at least for those x and y for which it is defined. However,
while our initial construction of QLE will produce the joint law of the doubly
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marked LQG surface and the growth process I', it will not be obvious from this
construction that do(x, y) = do(y, x) a.s. In fact, it will not even be obvious
that the growth process is a.s. determined by the LQG sphere and the (x, y)
pair, so we will a priori have to treat dg(x, y) as a random variable whose
value might depend on more than the LQG-surface and the (x, y) pair.

The bulk of the current paper is dedicated to showing that if one first samples
a 4/8/3-LQG sphere, and then samples x1, X2, ... as i.i.d. samples from its
LQG measure, and then samples conditionally independent growth processes
from each x; to each x;, then it is a.s. the case that the dg defined from these
growth processes is a metric, and that this metric is determined by the LQG
sphere and the points, as stated in Theorem 1.1 below.

Both the +/8/3-LQG sphere and TBM have some natural variants that differ
in how one handles the issues of total area and special marked points; these
variants are explained for example in [26,27]. On both sides, there is a natural
unit area sphere measure dS in which the total area measure is a.s. one. On
both sides, one can represent a sphere of arbitrary positive and finite area by a
pair (S, A), where S is a unit area sphere and A is a positive real number. The
pair represents the unit area sphere S except with area scaled by a factor of A
and distance (where defined) scaled by a factor of A'/4. On both sides it turns
out to be natural to define infinite measures on quantum spheres such that the
“total area” marginal has the form APdA for some B. In particular, on both
sides, one can define a natural “grand canonical” quantum sphere measure on
spheres with £ marked points (see the notation in Sect. 1.4). Sampling from
this infinite measure amounts to

1. first sampling a unit area sphere S,

2. then sampling & marked points i.i.d. from the measure on S,

3. then independently selecting A from the infinite measure A¥~7/2d A and
res;:fling the sphere’s area by a factor of A (and distance by a factor of
AV,

Theorem 1.1, stated below, applies to all of these variants. Recall that in the
context of an infinite measure, almost surely (a.s.) means outside a set of
measure zero.

Theorem 1.1 Suppose that S is an instance of the /8/3-quantum sphere,
as defined in [10,27] (either the unit area version or the “grand canonical”
version involving one or more distinguished points). Let (x,) be a sequence
of points chosen independently from the quantum area measure on S. Then it
is a.s. the case that for each pair x;, x j, the quantity do(x;, x;) is uniquely
determined by S and the points x; and x ;. Moreover, it is a.s. the case that

L. do(xi, xj) =do(xj, x;) € (0, 00) for all distinct i and j, and
2. dg satisfies the (strict) triangle inequality do(x;,xx) < do(xi,xj) +
dg(xj, xi) for all distinct i, j, and k.
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The fact that the triangle inequality in Theorem 1.1 is a.s. strict implies that if
the metric dg can be extended to a geodesic metric on the entire LQG-sphere
(something we will establish in the subsequent paper [28]) then in this metric
it is a.s. the case that none of the points on the countable sequence lies on a
geodesic between two other points in the sequence. This is unsurprising given
that, in TBM, the measure of a geodesic between two randomly chosen points
is a.s. zero. (This is well known and essentially immediate from the definition
of TBM; see [26] for some discussion of this point.)

The construction of the metric in Theorem 1.1 is “local” in the sense that it
only requires that the field near any given point is absolutely continuous with
respect to a /8/3-LQG sphere. In particular, Theorem 1.1 yields a construction
of the metric on a countable, dense subset of any /8/3-LQG surface chosen
i.i.d. from the quantum measure. Moreover, the results of the later papers
[28,29] also apply in this generality, which allows one to define geodesic
metrics on other 4/8/3-LQG surfaces, such as the torus constructed in [11].

The proof of Theorem 1.1 is inspired by a closely related argument used in
a paper by the second author, Sam Watson, and Hao Wu (still in preparation)
to define a metric on the set of loops in a CLE4 process. To briefly sketch
how the proof goes, suppose that we choose a 4/8/3-LQG sphere S with
marked points x and y, and then choose a growth process I" from x to y and
a conditionally independent growth process I' from y to x. We also let U be
chosen uniformly in [0, 1] independently of everything else. Let ® be the joint
distribution of (S, x, y, I', T', U). Since the natural measure on /8/3-LQG
spheres is an infinite measure, so is ®. However, we can make sense of ®
conditioned on S as a probability measure. Given S, we have that dg(x, y)
and dg(y, x) are well defined as random variables denoting the respective
time durations of I" and . As discussed above, we interpret do(x, y) (resp.
do(y, x)) as a measure of the distance from x to y (resp. y to x). Write @* 7
for the weighted measure dg(x, y)d®. In light of the uniqueness of Radon—
Nikodym derivatives, in order to show that dg(x, y) = do(y, x) a.s., it will
suffice to show that @ 7Y = @Y7+,

The main input into the proof of this is Lemma 1.2, stated below (which will
later be restated slightly more precisely and proved as Theorem 7.1). Suppose
we sample (S, x,y, I, T, U) from ©*~7, then let T = Udg(x, y)—so that
7 is uniform in [0, dgo(x, y)], and then define T = inf{r > 0 : T, N T, #
@}. Both T'|j9.r and T'|jp 7] are understood as growth processes truncated
at random times, as illustrated in Fig. 1. We also let 0 = Udg(y, x) and
o =inf{t > 0:T; NTs # ¥}. Under ®~*, we have that & is uniform in
[0, do(y, x)].

Lemma_l.Z Using the definitions above, the ®*~Y-induced law of (c_S‘ , X, Y,
[lj0.71, T'ljo.7)) is equal to the ©Y~*-induced law of (S, x, y, I'|j0.61. T'l[0.57)-
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Fig. 1 A “figure-8” consisting of meeting QLE(8/3, 0) processes which illustrates the main
input into the proof of Theorem 1.1. Here, T = Udg(x, y) and T is the first time that I" hits

['z. The blue (resp. red) arcs contained in the illustration of I'[[o, 7] (resp. F|[oﬂ) represent the
regions which have been cut off from y (resp. x) (color figure online)

The proof of Lemma 1.2 is in some sense the heart of the paper. It is established
in Sect. 7 (see Theorem 7.1), using tools developed over several previous
sections, which in turn rely on the detailed understanding of SLEg processes
on 4/8/3-LQG spheres developed in [10,27] as well as in [30-32,34]. We note
that the intuition behind this symmetry is also sketched at the end of [26] in
the context of TBM.

To derive ®*~Y = ®Y7* from Lemma 1.2, it will suffice to show the
following:

Lemma 1.3 The ©®*~ conditional law ofF,_F given (S, x,y, Fl[o,f],fl[oﬂ)
is the same as the ©Y~* conditional law of T', " given (S, x, y, I'[{0.01, I'l[0.57)-

Intuitively, sampling from either conditional law should amount to just con-
tinuing the evolution of I" and T on S, beyond their given stopping times,
independently of each other. However, it will take some work to make this
intuition precise and we will carry this out in Sect. 8.

We will see a posteriorithat t = dg(x, y) —T, which we will prove by using
the fact that dg(x, y) = do(y, x) and the symmetry of Lemma 1.2, which
implies that both T and t are ®*~Y-conditionally uniform on [0, do(x, y)],
once (S, x,y) is given. We will also use this fact to derive the triangle
inequality. Note that if z is a third point and we are working on the event
that do(x,z) < do(x,y), then gy (x,;) and ng(y,z) must intersect each
other, at least at the point z. In fact, it will not be hard to see that a.s.
for some € > 0 the processes 'z (x,;) and ng(y,z)_e still intersect. This
implies that if T = dg(x, z) then T < do(y,z) — € < do(y, z). Plugging
inT =do(x,y) —tv = do(x,y) —do(x, z), we obtain the strict triangle
inequality.
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The QLE(8/3, 0) process that we construct will in fact be given as a sub-
sequential limit of approximations which are defined by resampling the tip
of an SLEg after each § > 0 units of time. The symmetry statements (e.g.,
Lemma 1.2) hold when I' and T arise as subsequential limits as § — 0 along
different subsequences. Therefore the distance dg that we define does not
depend on the choice of subsequence. We will not prove in this paper that the
growth process I' itself does not depend on the choice of subsequence, but this
will be a consequence of [28].

1.3 Observations and sequel overview

In the course of establishing Theorem 1.1, it will also become clear (almost
immediately from the definitions) that the growth process from x; to x; and the
growth process from x; to xi a.s. agree up until some random time at which x;
and xy, are first separated from each other, after which the two processes evolve
independently. Thus one can describe the full collection of growth processes
from x; to all the other points in terms of a single “branching” growth process
with countably many “branch times” (i.e., times at which some x; and x; are
separated for the first time).

It will also become clear from our construction that when exploring from
a marked point x to a marked point y, one can make sense of the length of
dB*®(x, t),and that as a process indexed by ¢ this evolves as the time-reversal of
an excursion of a continuous state branching process (CSBP), with the jumps
in this process corresponding to branch times.” We will review the definition
of a CSBP in Sect. 2.1. Letting y vary over all of the points x;, one obtains
a branching version of a time-reversed CSBP excursion, and it will become
clear that the law of this branching process agrees with the analogous law for
TBM, as explained in [26].

All of this suggests that we are well on our way to establishing the equiva-
lence of the +/8/3-LQG sphere and TBM. As further evidence in this direction,
note that it was established in [26] that the time-reversed branching process
(together with a countable set of real numbers indicating where along the
boundary each “pinch point” occurs) contains all of the information necessary
to reconstruct an instance of the entire Brownian map. That is, given a com-
plete understanding of the exploration process rooted at a single point, one can
a.s. reconstruct the distances between all pairs of points. This suggests (though
we will not make this precise until the subsequent paper [28]) that, given the

2 We will see in [28] that if one defines a quantum-time QLE(8/3, 0) on an infinite volume
LQG surface, namely a 4/8/3 quantum cone, then the evolution of the boundary length is a
process that matches the one described by Krikun (discrete) [17] and Curien and Le Gall [5]
for the Brownian plane [4].
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information described in the QLE branching process provided in this paper,
one should also be able to recover an entire Brownian map instance.
In order to finish the project, the program in [28] is to:

1. Derive some continuity estimates and use them to show that dg a.s. extends
uniquely to a metric defined on the entire LQG sphere, and to establish
Holder continuity for the identify map from the sphere endowed with the
Euclidean metric to the sphere endowed with the random metric, and then

2. Learn enough about the geodesics within the so-called metric net (as
defined in [27]) to allow us to show that the random metric satisfies the
properties that are shown in [27] to characterize TBM.

This will imply that the metric space described by dg has the law of TBM
and, moreover, that the instance of TBM is a.s. determined by the underlying
+/8/3-LQG sphere. The program in [29] will be to prove that in the coupling
between TBM and the /8/3-LQG sphere, the former a.s. determines the latter,
i.e., to show that an instance of TBM a.s. has a canonical embedding into the
sphere. Thus we will have that the 4/8/3-LQG sphere and TBM are equivalent
in the sense that an instance of one a.s. determines the other. The ideas used
in [29] will be related to the arguments used in [10] to show that an instance
of the peanosphere a.s. has a canonical embedding.

1.4 Prequel overview

As noted in Sect. 1.1, both TBM and the /8/3-LQG sphere have natural
infinite volume variants that in some sense correspond to grand canonical
ensembles decorated by some fixed number of marked points. In this paper,
because we deal frequently with exploration processes from one marked point
to another, we will be particularly interested in the natural infinite measures
on doubly marked spheres. We recall that

1. In [26] this natural measure on doubly marked Brownian map spheres with
two marked points is denoted [L%PH (and more generally MéPH refers to the
measure with & marked points).

2. In [27] the natural measure on doubly marked ./8/3-LQG spheres is
denoted by Mpy.

As noted in Sect. 1.1, in both cases, the law of the overall area is given (up to
a multiplicative constant) by A=3/2d A. In both cases, the conditional law of
the surface given A is that of a sample from a probability measure on unit area
surfaces (with the measure rescaled by a factor of A, and distance rescaled
by A!/4*—though of course distance is not a priori defined on the LQG side).
We remark that in much of the literature on TBM the unit area measure is the
primary focus of attention (and it is denoted by Mgﬁ{l in [26]).
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The paper [27] explains how to explore a doubly marked surface (S, x, y)
sampled from MgPH with an SLE¢ curve drawn from x to y. The paper [26]
explains how to explore a doubly marked surface (S, x, y) sampled from ;L%PH
by exploring the so-called “metric net,” which consists of the set of points that
lie on the outer boundary of B® (x, r) forsomer € [0, d(x, y)]. (We are abusing
notation slightly here in that S represents a quantum surface in the first case and
ametric space in the second, and these are a priori different types of objects.) In
both cases, the exploration/growth procedure “cuts out” a countable collection
of disks, each of which comes with a well defined boundary length. Also in
both cases, the process that encodes the boundary length corresponds (up to
time change) to the set of jumps in the time-reversal of a 3/2-stable Lévy
excursion with only positive jumps. Moreover, in both cases, the boundary
length of each disk “cut out” is encoded by the length of the corresponding
jump in the time-reversed 3/2-stable Lévy excursion. Finally, in both cases,
the disks can be understood as conditionally independent measure-endowed
random surfaces, given their boundary lengths.

The intuitive reason for the similarities between these two types of explo-
rations is explained in the QLE paper [33], and briefly reviewed in Sect. 3. The
basicideais thatin the discrete models involving triangulations, the conditional
law of the unexplored region (the component containing y) does not depend on
the rule one uses to decide which triangle to explore next; if one is exploring
via the Eden model, one picks a random location on the boundary to explore,
and if one is exploring a percolation interface, one explores along a given path.
The law of the set of disks cut out by the exploration is the same in both cases.

The law of a “cut out” disk, given that its boundary length is L, is referred to
as V‘IL)ISK in [26]. If one explores up to some stopping time before encountering
v, then the conditional law of the unexplored region containing y is that of a
marked Brownian disk with boundary length L (here y is the marked point),
and is referred to as ,uIIDILSK in [26]. It is not hard to describe how these two
measures are related. If one forgets the marked point y, then both ulL)ISK and
MllﬁlléK describe probability measures on the space of quantum disks; and from
this perspective, the Radon—-Nikodym derivative of ,u]ID’ILSK W.I.L. M]LJISK is given
(up to multiplicative constant) by the total surface area. Given the quantum
disk sampled from ,u]ID’IIéK, the conditional law of the marked point y is that of
a sample from the quantum measure on the surface.

Precisely analogous statements are given in [27] for the SLE¢ exploration
of a sample from MZpy;.> The following objects are shown in [27] well defined,

3 These results are in turn consequences of the fact, derived by the authors and Duplantier in
an infinite volume setting in [10], that one can weld together two so-called Lévy trees of 1/8/3-
LQG disks to produce a new /8/3-LQG surface decorated by an independent SLEg curve that
represents the interface between the two trees.
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and are analogous to objects produced by the measures MIL)ISK and MlleLSK in
[26]:

1. The ,/8/3-LQG disk with boundary length L. This is a random quantum
surface whose law is the conditional law of a surface cut out by the SLEg
exploration, given only its boundary length (and not its embedding in the
larger surface).

2. The marked /8/3-L.QG disk with boundary length L. This is a random
quantum surface whose law is obtained by weighting the unmarked law
by total area, and letting the conditional law of y given the surface be that
of a uniformly random sample from the area measure (normalized to be a
probability measure). It represents the conditional law of the unexplored
quantum component containing y.

Proposition 1.4 Consider a doubly marked /8/3-LQG sphere decorated by
an independent whole plane SLEg path n' from its first marked point x to its
second marked point y. We consider n' to be parameterized by its quantum
natural time. Fixans > 0 and let T; denote the outer boundary of the closed set
n'([0, s]), i.e., the boundary of the y-containing component of the complement
of 7' ([0, s1). Then the conditional law of the y-containing region (given that
its boundary length is Ly) is that of a marked /8/3-LQG disk with boundary
length L. In particular, since this law is rotationally invariant, the overall law
of the surface is unchanged by the following random operation: “cut” along
T, rotate the disk cut out by a uniformly random number in [0, L], and then
weld this disk back to the beaded quantum surface n' ([0, s]) (again matching
up quantum boundary lengths).

It is natural to allow s to range over integer multiples of a constant §. As
illustrated in Fig. 2, we let Ny denote the “necklace” described by the union
Tis UTkc1)s U n'([k8, (k+1)8]), which we interpret as a beaded quantum sur-
face (see [10] and Sect. 2.2) attached to a “string” of some well defined length.
Applying the above resampling for each integer multiple of § corresponds to
“reshuffling” these necklaces in the manner depicted in Fig. 6.

Proposition 1.5 Fix§ > 0 and apply the random rotation described in Propo-
sition 1.4 for each s that is an integer multiple of §. Taking any subsequential
limitas § — 0, we obtain a coupling of a /8 /3-quantum sphere with a growth
process on that sphere, such that the law of the ordered set of disks cut out by
that process is the same as in the SLEg case.

The growth process obtained this way is what we will call the quantum nat-
ural time QLE(8/3, 0) (as opposed to the capacity time QLE(8/3, 0) process
described in [33], which we expect but do not prove to be equivalent to the
quantum time version). As already noted in Sect. 1.1, we will make exten-
sive use of quantum natural time QLE(8/3, 0) in this paper. When we use the
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term QLE(8/3, 0) without a qualifier, we will mean the quantum natural time
variant.

Let us highlight one subtle point about this paper. Although we a priori
construct only subsequential limits for the growth process QLE(8/3, 0) using
the procedure described in Proposition 1.5, we ultimately show that the met-
ric dg defined on a countable sequence of i.i.d. points (x,) chosen from the
quantum measure does not depend on the particular choice of subsequence.
Once we know this metric we know, for each ¢t > 0 and each x and y in (x,),
which points from the set (x,) lie in the set I'; ~”. Since I'} ~” is closed,
we would expect it to be given by precisely the closure of this set of points,
which would imply that the growth process described in Proposition 1.5 is a.s.
defined as a true (non-subsequential) limit. This would follow immediately if
we knew, say, that Ff_)y was a.s. the closure of its interior. However, we will
not prove in this paper that this is the case. That is, we will not rule out the
possibility that the boundary of I'; ~” contains extra “tentacles” that possess
zero quantum area and somehow fail to intersect any of the (x,) values. Ruling
out this type of behavior will be part of the program in [28], where we estab-
lish a number of continuity estimates for QLE(8/3, 0) and dg. Upon showing
this, we will be able to remove the word “subsequential” from the statement
of Proposition 1.5.

1.5 Outline

The remainder of this article is structured as follows. In Sect. 2 we review
preliminary facts about continuous state branching processes, quantum sur-
faces, and conformal removability. In Sect. 3, we recall some of the discrete
constructions on random planar triangulations that appeared in [33], which
we use to explain and motivate our continuum growth processes. In particular,
we will recall that on these triangulated surfaces random metric explorations
are in some sense “reshufflings” of percolation explorations, and in Sect. 4
we construct quantum-time QLE(8/3, 0) using an analogous reshuffling of
SLEg. In Sect. 5 we establish a certain symmetry property for continuum per-
colation explorations (SLE¢) on /8/3-LQG surfaces (a precursor to the main
symmetry result we require). Then in Sect. 6 we will give the construction of
the quantum natural time variant of QLE(8/3, 0). In Sect. 7, we establish the
main symmetry result we require, and in Sect. 8 we will finish the proof of
Theorem 1.1.
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2 Preliminaries
2.1 Continuous state branching processes

We will now review some of the basic properties of continuous state branching
processes (CSBPs) and their relationship to Lévy processes. CSBPs will arise
in this article because they describe the time-evolution of the quantum bound-
ary length of the boundary of a QLE(8/3, 0). We refer the reader to [2] for an
introduction to Lévy processes and to [18,20] for an introduction to CSBPs.

A CSBP with branching mechanism  (or ¥ -CSBP for short) is a Markov
process Y on R, whose transition kernels are characterized by the property
that

E[exp(—AY)) | Ys] = exp(=Ysu;—s(1)) forall t>s>0 2.1

where u;(A), t > 0, is the non-negative solution to the differential equation

au,
W(M = =Y (u; (X)) for up(h) = A. (2.2)
Let
®(g) =sup{d > 0: ¢ () =q} (2.3)
and let
C=inf{r >0:Y, =0} 2.4)

be the extinction time for Y. Then we have that [18, Corollary 10.9]
E[efq Iy sts] — o P@Yo (2.5)

A 1-CSBP can be constructed from a Lévy process with only positive jumps
and vice-versa [19] (see also [18, Theorem 10.2]). Namely, suppose that X is
a Lévy process with Laplace exponent . That is, if X¢o = x then we have that
E[e—l(xt—x)] — e Y1
Let
1
s(t) = / X—du and s*(t) =inf{r > 0:5(r) > t}. (2.6)
0 u

Then the time-changed process Y; = X+(;) is a -CSBP. Conversely, if Y is
a Y¥-CSBP and we let
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t(s) = fs Yydu and t*(s) =inf{r > 0:1(r) > s} 2.7
0

then X, = Y;«(y) is a Lévy process with Laplace exponent /.
We will be interested in the particular case that ¥ (1) = u® for o € (1, 2).
For this choice, we note that

1/(1—a)

ur () = (A7 + (@ — ) (2.8)

2.2 Quantum surfaces

Suppose that £ is an instance of (a form of) the Gaussian free field (GFF) on a
planar domain D and y € [0, 2) is fixed. Then the y-LQG surface associated
with 4 is described by the measure y;, which is formally given by ¢?"@dz
where dz denotes Lebesgue measure on D. Since the GFF & does not take
values at points (it is a random variable which takes values in the space of
distributions), it takes some care to make this definition precise. One way of
doing so is to let, for each € > 0 and z € D such that B(z,€) C D, h¢(z) be
the average of & on dB(z, €) (see [12, Sect. 3] for more on the circle average
process). The process (z, €) + he(z) is jointly continuous in (z, €) and one
can define ¢”*@dz to be the weak limit as € — 0 along negative powers of
2 of €7/2e7h®@ 47 [12]; the normalization factor €7°/2 is necessary for the
limit to be non-trivial. We will often write u, for the measure eV dz n the
case that & has free boundary conditions, one can also construct the natural
boundary length measure v, = e?"@/24d7 in a similar manner.

The regularization procedure used to construct u; leads to the following
change of coordinates formula [12, Proposition 2.1]. Let

0==+

X |
YN

for y €(0,2). (2.9)

Suppose that Dy, D, are planar domains and ¢: Dy — D is a conformal
map. If &, is (a form of) a GFF on D, and

hi =hy o+ Qlogly| (2.10)

then
thy (A) = pp, (9(A)) and vy (A) = vp, (9(A)) (2.11)

for all Borel sets A. This allows us to define an equivalence relation on pairs
(D, h) by declaring (D1, h1) and (D3, h>) to be equivalent as quantum surfaces
if 41 and A, are related as in (2.10). An equivalence class of such a (D, h) is
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then referred to as a quantum surface. A choice of representative is referred
to as an embedding of the quantum surface.

More generally, suppose that Dy, D, are planar domains, xi, R xfl e D;
for i = 1,2 are given points, and /; is a distribution on D;. Then we say
that the marked quantum surfaces (D;, h;, xi, R x,‘;) are equivalent if there
exists a conformal transformation ¢: D; — D3, (p(le.) = x? for each 1 <

j <n,and hy, hy are related as in (2.10). Finally, if nﬁ, e n}'{ is a collection
of paths on D;, then we say that the marked and path-decorated quantum
surfaces (D;, h;, xi, .. .,xfl, ’iiv e n;;) are equivalent for i = 1,2 if the
marked quantum surfaces (D;, h;, xi, el x,i) are equivalent and ¢(n }.) = 17?
foreach 1 < j < k (where ¢ is the associated conformal transformation). We
emphasize that we will refer to a quantum surface without marked points as
simply a quantum surface.

In this work, we will be primarily interested in two types of quantum sur-
faces, namely quantum disks and spheres. We will remind the reader of the
particular construction of a quantum sphere that we will be interested in for
this work in Sect. 4.1. We also refer the reader to [10,27] for a careful definition
of a quantum disk as well as several equivalent constructions of a quantum
sphere.

We will also consider so-called beaded quantum surfaces, which can be
defined as a pair (D, h), modulo the equivalence relation described in (2.11),
except that D is now a closed set (not necessarily homeomorphic to a disk)
such that each component of its interior is homeomorphic to the disk, & is
only defined as distribution on each of these components, and ¢ is allowed
to be any homeomorphism from D to another closed set that is conformal
on each component of the interior of D. One can also consider marked and
path-decorated beaded quantum surfaces as above.

2.3 Conformal removability

An LQG surface can be obtained by endowing a topological surface with
both a good measure and a conformal structure in a random way. (And we
can imagine that these two structures are added in either order.) Given two
topological disks with boundary (each endowed with a good area measure in
the interior, and a good length measure on the boundary) it is a simple matter to
produce anew good-measure-endowed topological surface by taking a quotient
that involves gluing (all or part of) the boundaries to each other in a boundary
length preserving way.

The problem of conformally welding two surfaces is the problem of obtain-
ing a conformal structure on the combined surface, given the conformal
structure on the individual surfaces. (See, e.g., [3] for further discussion and
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references.) To make sense of this idea, we will draw from the theory of remov-
able sets, as explained below.

A compact subset K of adomain D C Cis called (conformally) removable
if every homeomorphism from D into C that is conformal on D\K is also
conformal on all of D. A Jordan domain D < C is said to be a Holder
domain if any conformal transformation from D to D is Holder continuous all
of the way up to dD. It was shown by Jones and Smirnov [16] thatif K C D is
the boundary of a Holder domain, then K is removable; it is also noted there
that if a compact set K is removable as a subset of D, then it is removable in
any domain containing K, including all of C. Thus, at least for compact sets
K, one can speak of removability without specifying a particular domain D.

The following proposition illustrates the importance of removability in the
setting of quantum surfaces (see also [10, Sect. 3.5]):

Proposition 2.1 Suppose that (D, h) is a quantum surface, K C D is compact
suchthat D\K = D{UD; for Dy, D, disjoint. Suppose that (D', h’) is another
quantum surface, K' C D' is compact such that D'\K' = D} UD; for D, D)
disjoint. Assume that (Dj, h) is equivalent to (D';, h') as a quantum surface
for j = 1,2 and that, furthermore the associated conformal transformations
¢j: Dj — D; for j = 1,2 extend to a homeomorphism D — D'. If K is
conformally removable, then (D, h) and (D', h') are equivalent as quantum
surfaces.

Proof This follows immediately from the definition of conformal removability.
O

One example of a setting in which Proposition 2.1 applies is when the quantum
surface (D, h) is given by a so-called quantum wedge and K is the range of
an SLE, curve 5 for k € (0,4) [10,41]. A quantum wedge naturally comes
with two marked points x and y, which are also the seed and the target point of
the SLE curve. In this case, the conformal maps ¢; (which are defined on the
left and right components of D\ K) are chosen so that the quantum length of
the image of a segment of 1 as measured from the left and right sides matches
up. With this choice, the ¢; extend to a homeomorphism of the whole domain
and it shown in [39] that the range of n is a.s. conformally removable, so
Proposition 2.1 applies.

3 Eden model and percolation interface

In this section we briefly recall a few constructions from [33, Sect. 2], together
with some figures included there. Figure 3 shows a triangulation 7" of the sphere
with two distinguished edges e| and e>, and the caption describes a mechanism
for choosing a random path in the dual graph of the triangulation, consisting
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Fig. 3 Upper left: a triangulation of the sphere together with two distinguished edges colored
green. Upper right: It is conceptually useful to “fatten” each green edge into a 2-gon. We fix
a distinguished non-self-intersecting dual-lattice path p (dotted red line) from one 2-gon to
the other. Bottom: Vertices are colored red or blue with i.i.d. fair coins. There is then a unique
dual-lattice path from one 2-gon to the other (triangles in the path colored orange) such that each
edge it crosses either has opposite-colored endpoints and does not cross p, or has same-colored
endpoints and does cross p. The law of the orange path does not depend on the choice of p,
since shifting p across a vertex has the same effect as flipping the color of that vertex (color
figure online)

of distinct triangles t1, 5, . . ., , that goes from e to e;. It will be useful to
imagine that we begin with a single 2-gon and then grow the path dynamically,
exploring new territory as we go. At any given step, we keep track of the total
number edges on the boundary of the already-explored region and the number
of vertices remaining to be seen in the component of the unexplored region
that contains the target edge. The caption of Fig. 4 explains one step of the
exploration process. The exploration process induces a Markov chain on the
set of pairs (m,n) with m > 0 and n > 0. In this chain, the n coordinate is
a.s. non-increasing, and the m coordinate can only increase by 1 when the n
coordinate decreases by 1.
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Fig. 5 Same as Fig. 3 except that one explores using the Eden model instead of percolation.
At each step, one chooses a uniformly random edge on the boundary of the unexplored region
containing the target and explores the face incident to that edge. The faces are numbered accord-
ing to the order in which they were explored. When the unexplored region is divided into two
pieces, each with one or more triangles, the piece without the target is called a bubble and is
never subsequently explored by this process. In this figure there is only one bubble, which is
colored blue (color figure online)

Now consider the version of the Eden model in which new triangles are
only added to the unexplored region containing the target edge, as illustrated
Fig. 5. In both Figs. 3 and 5, each time an exploration step separates the unex-
plored region into two pieces (each containing at least one triangle) we refer
to the one that does not contain the target as a bubble. The exploration process
described in Fig. 3 created two bubbles (the two small white components), and
the exploration process described in Fig. 5 created one (colored blue). We can
interpret the bubble as a triangulation of a polygon, rooted at a boundary edge
(the edge it shares with the triangle that was observed when the bubble was
created).

The specific growth pattern in Fig. 5 is very different from the one depicted
in Fig. 3. However, the analysis used in Fig. 4 applies equally well to both sce-
narios. The only difference between the two is that in Fig. 5 one re-randomizes
the seed edge (choosing it uniformly from all possible values) after each step.
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In either of these models, we can define Cy to be the boundary of the target-
containing unexplored region after k steps. If (My, Ny) is the corresponding
Markov chain, then the length of Cy is M + 2 for each k. Let Dy denote the
union of the edges and vertices in Cy, the edges and vertices in Cx_1 and the
triangle and bubble (if applicable) added at step k, as in Fig. 6. We refer to
each Dy, as a necklace since it typically contains a cycle of edges together with
a cluster of one or more triangles hanging off of it. The analysis used in Fig. 4
(and discussed above) immediately implies the following:

Proposition 3.1 Consider a random rooted triangulation of the sphere with a
fixed number n > 2 of vertices together with two distinguished edges chosen
uniformly from the set of possible edges. If we start at one edge and explore
using the Eden model as in Fig. 5, or if we explore using the percolation
interface of Fig. 3, we will find that the following are the same:

1. The law of the Markov chain (My, Ny) (which terminates when the target
2-gon is reached).

2. The law of the total number of triangles observed before the target is
reached.

3. The law of the sequence Dy of necklaces.

Indeed, one way to construct an instance of the Eden model process is to start
with an instance of the percolation interface exploration process and then
randomly rotate the necklaces in the manner illustrated in Fig. 6.

4 Infinite measures on quantum spheres
4.1 Lévy excursion description of doubly-marked quantum spheres

The purpose of this section is to review the results established in [27] which
are relevant for this article. First, we let M%PH be the measure which is defined
as follows. Suppose that X; is a 3/2-stable Lévy process with only upward
jumps and let I; be its running infimum. Then we let N be the Itd excursion
measure associated with the excursions that X; — I; makes from 0. The law of
the duration of such an excursion follows a power law. Indeed, following [2],
the process of sampling N can be described as follows (see [2, Sect. VIIL.4]):

1. Pick a lifetime T from the measure ¢T*~2dT = ¢T ~>/3dT on R, where
dT denotes Lebesgue measure and ¢ > 0 is a constant. Here, p = 1 —
1/a = 1/3 (where o = 3/2) is the so-called positivity parameter of the
process [2, Sect. VIIL.1].

2. Given T, pick a unit length excursion from the normalized excursion mea-
sure n associated with a 3/2-stable Lévy process with only positive jumps
and then rescale it spatially and in time so that it has length 7.
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As explained in [27], we can construct a doubly-marked quantum sphere
(S, x, y) decorated by a non-crossing path n’ connecting x and y from such an
excursion e: [0, T] — Ry as follows. For each upward jump of e, we sample
a conditionally independent quantum disk whose boundary length is equal to
the size of the jump. We assume that each of the quantum disks has a marked
boundary point sampled uniformly from its boundary measure together with
a uniformly chosen orientation of its boundary. We assume that the marked
points and orientations are chosen conditionally independently given the real-
izations of the quantum disks. Let D denote the collection of marked and
oriented quantum disks sampled in this way. Then the pair e, D together
uniquely determines a doubly-marked surface (S, x, y) which is homeomor-
phic to the sphere together with a non-crossing path n” which connects x and
y. For each t > 0, we let U; be the component of S\n/([0, ¢]) which con-
tains y. Then the time-reversal of e describes the evolution of the quantum
boundary length of dU, and the jumps of e describe the boundary lengths of
the quantum disks that n’ cuts off from y. The time-parameterization of n’ so
that the quantum boundary length of dU; is equal to e(T — ¢) is the so-called
quantum natural time introduced in [10].

One of the main results of [27] is that a doubly-marked surface/path pair
(S, x, y), n produced from M%PH conditioned to have quantum area equal to
1 (although MgPH is infinite, this conditioning yields a probability measure)
has the law of the unit area quantum sphere constructed in [10], the points x, y
conditional on S are chosen uniformly at random from the quantum measure,
and the conditional law of n’ given x, y, S is that of a whole-plane SLE¢
process connecting x and y. This holds more generally when we condition
the surface to have quantum area equal to m for any fixed m > 0 except in
this setting S is a quantum sphere of area m rather than 1. (As noted earlier,
a sample from the law of such a surface can be produced by starting with a
unit area quantum sphere and then scaling its associated area measure by the
factor m.)

The relationship between M%PH and the law of a unit area quantum sphere
decorated with an independent whole-plane SLEg process implies that M%PH
possesses certain symmetries. These symmetries will be important later on so
we will pause for a moment to point them out.

e If we condition on S, then the points x and y are both chosen independently
from the quantum area measure on S.

e If we condition on x, y, and S, then n’ is whole-plane SLE¢ from x to y.

e The amount of quantum natural time elapsed for 1’ to travel from x to y is
equal to T (the time corresponding to the Lévy excursion).

This also implies that MéPH is invariant under the operation of swapping x
and y and then reversing the time of n’ [34] (with the quantum natural time
parameterization). To see the symmetry of the quantum natural time param-
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eterization under time-reversal, we have from the previous observations that
the law of the ordered collection of bubbles cut off by " from its target point
is invariant under the operation of swapping x and y and reversing the time
of n’. The claim thus follows because the quantum natural time parameteriza-
tion can be constructed by fixing j € N, counting the number N (e=/~!, e=/)
of bubbles cut off by 1’ with quantum boundary length in [e=7~!, ¢7/], and
then normalizing by a constant times the factor ¢3/?/. That this is the correct
normalization follows since the Lévy measure for a 3/2-stable Lévy process
is given by a constant times u ~>/?du where du denotes Lebesgue measure on
R, . See, for example, [27, Sect. 6.2] for additional discussion of this point as
well as Remark 6.4 below in the context of the construction of QLE(8/3, 0).
We also emphasize that under M%PH, we have that:

e 7'(¢) is distributed uniformly from the quantum boundary measure on U,
(see [27, Proposition 6.4]).

e The components of S\n'([0, ¢]), viewed as quantum surfaces, are con-
ditionally independent given their boundary lengths. Those components
which do not contain y are quantum disks given their boundary lengths.
The component which does contain y has the law of a quantum disk with
the given boundary length weighted by its total quantum area.

4.2 Weighted measures

Throughout, we will work with the following two measures which are defined
with Mng as the starting point. Namely, with T equal to the length of the
associated Lévy excursion and X, the quantum boundary length of the com-
plementary component of 1’([0, #]) containing y we write

dMpyy w = Ljo,77(H)dtdMgpy  and (4.1)

1 1
dMSpy p = 110,710 3-dtdMpyy = ~——dMgpy w (4.2)
Xt Xt

where dt denotes Lebesgue measure. We note that the marginal of M%PH’W on
(S, x, y) and n’ is given by TdM%PH, i.e., by weighting M%PH by the length of
the Lévy excursion. (The additional subscript “W” is to indicate that M;%,PH,W
is a weighted measure.) It will be convenient throughout to think of M%PH’W

as a measure on triples (t, (S, x,y),n ) where t is a uniformly random point

chosen from the total length of the Lévy excursion.
The marginal of MéPH’D on (S, x, y) and n’ is given by DdM%PH where

|
D= —ds. 4.3
[ as)

N
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As we will see later, after the QLE “reshuffling” this will have the interpretation
of taking M%PH and then weighting it by the amount of QLE(8/3, 0) quantum
distance from x to y. (The additional subscript “D” is to indicate that M%FH’D
is the “distance weighted” measure.)

We finish this section by recording the following proposition which relates
the conditional law of M%PH’W and M%PH’D given t and X to M3py,.

Proposition 4.1 (i) Given t, the conditional distribution of M%PH’W is the

same as the conditional distribution of M%PH when we condition on the
event that the length of the Lévy excursion is at least t.

(ii) Forbothm = MépH’W andm = M%PH,D, given t and Xy, the conditional
distribution of m is the same as the conditional distribution of M%PH
when we condition on the event that the length of the Lévy excursion is
at least t and the given value of Xi.

Proof We will explain the argument in the case that m = M%PH’W; the same
argument gives part (ii).

If we fix the value of t, the conditional distribution of the Lévy excursion in
the definition of M%PH’W is given by ¢l o0)(T)dnr T—3/3dT where nr is the
measure on 3/2-stable Lévy excursions which arises by scaling n spatially and
in time so that the excursion length is equal to 7. This representation clearly
implies (i). A similar argument gives (ii). O

4.3 Continuum scaling exponents

We now determine the distribution of D (as defined in (4.3)) and A (total
quantum area of the surface) under MgPH.

Proposition 4.2 There exists constants cg, c1 > 0 such that

C

Mpy[D > 1] = t—g and (4.4)
1

MpulA = al = —75. (4.5)

Note that the exponents in (4.4), (4.5) match the corresponding exponents
derived in [26].

Proof of Proposition 4.2 We note that (4.5) is explained just after the statement
of [27, Theorem 1.4]. Therefore we only need to prove (4.4).

For an excursion e: [0, T] — Ry sampled from N we write e* =
sup;¢po. 77 €(t). By scaling and the explicit form of N described above, it is
not difficult to see by making the change of variables u = t7~2/3 that there
exists a constant ¢y > 0 such that
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0
Nle* > 1] = / I (0
0

Foreache > 0, welet T, = inf{t > 0 : e(t) > €} and let

T
D€ =f —ds.
€ Xs

Suppose that Y is a u3/>-CSBP with Yy = €. Let ¢ = inf{r > 0 : ¥; = 0} be
the extinction time of Y. Then it follows from (2.1) and (2.8) that

P <t]= lim E[e ] = lim e ™ = o4/
A—>00 A—>00
Therefore
4de
Pl¢ > 1] = t_2+0(6) as € — 0.

By combining this with (4.6), it therefore follows that there exists a constant
c1 > 0 such that

MZpy [ D€ > 1] = MZpy[ D€ > 1| e > e]M3pyle”* > €]

=C;—2€-Z—°+o(1)=62%+o(1) as € — 0.
Sending € — 0 implies the result. O

5 Meeting in the middle

In this section, we shall assume that we are working in the setting described
in Sect. 4.2. The main result is the following theorem which proves a certain
symmetry statement for the measure M%PH’D. This result will later be used
in Sect. 7 to prove an analogous symmetry result for QLE(8/3, 0) which, in
turn, is one of the main inputs in the proof of Theorem 1.1. See Fig. 7 for an
illustration of the result.

Theorem 5.1 Suppose that (S, x, y) is a doubly-marked quantum sphere, n’
is a path on S from x to y, and t > 0, where these objects are sampled from
M%PH’D as in Sect. 4.2. Let ' be the time-reversal of ' and let t be the first
time that ' hits n'([0, t]). Let

o X be the path-decorated and beaded quantum surface parameterized by
the union of n'|j0.4) and the part of S separated from y by n' ([0, t]),

@ Springer



Liouville quantum gravity and the Brownian 103

Fig. 7 Illustration of the setup for Theorem 5.1, the main result of Sect. 5. Shown is a doubly-
marked quantum sphere (S, x, y) decorated with a whole-plane SLE¢ process " connecting x
and y. The blue path shows »" drawn up to a time t which is uniform in the total amount of
quantum distance time required by 7’ to connect x and y and the red path is the time-reversal
7 drawn up until the first time ¥ that it hits 5’ ([0, t]). Let X’ (resp. X') consist of n/|[o, ¢ (resp.
ﬁ’|[0;]) and the part of S separated bln’([O, t]) (resp. 7/ ([0, 1)) froEy (resp. x) and let BB be
the part of S which is not in & and X. In the illustration, X (resp. X’) is shown in light blue
(resp. light red). In Theorem 5.1, we show that the M%PH p distribution of the triple (X', X', B)
is invariant under the operation of swapping X’ and X’ (color figure online)

e X be the path-decorated and beaded quantum surface parameterized by
the union of |j0.5y and the part of S separated from x by 7' ([0, t]), and

o B be the (disk-homeomorphic) quantum surface parameterized by S\(X N
X).

We view X (resp. X) as a random variable taking values in the space of
path-decorated and beaded quantum surfaces with a marked point which cor-
responds ton' (t) (resp. ' (t)) and we view B as a random variable taking values
in the space of quantum surfaces. Under M%PH’D, we have that X, X, and B
are conditionally independent given the quantum lengths of the boundaries of
X and X (which together determine the boundary length of B). Moreover, the
M%PH’D distribution of (X, X, B) is invariant under the operation of swap-

ping X and X.

Remark 5.2 We emphasize that the assertion of Theorem 5.1 does not give
that the surface S decorated by the paths 7|[9,¢ and 7|} 7, is invariant under
swapping 7’'[0,t) and 77" o ;- This statement does not hold because there is an
asymmetry in that n’(t) ¢ 7/([0, t]) while we have that 7/ (t) € »/([0, t]).
Rather, Theorem 5.1 implies that the induced distribution on triples of
(X, X, B) is invariant under swapping X and X'. The difference between the
two statements is that the first statement depends on how the surfaces which

correspond to X', X', and B3 are glued together (which determines the locations

@ Springer



104 J. Miller, S. Sheffield

of the tips) while the second statement does not depend on how everything is
glued together. In the QLE(8/3, 0) analog of Theorem 5.1, which is stated as
Theorem 7.1 below (and will be derived as a consequence of Theorem 5.1),
we do have the symmetry of the whole picture because the tips are “lost” in
the “reshuffling” procedure used to construct QLE(8/3, 0) from SLEg.

Our ultimate aim in this section is to deduce Theorem 5.1 by showing that
the M%PH,D distribution on (X, X', B) can be constructed from M%PH’W by
“conditioning” on the event that t is a cut time for n’. This will indeed lead
to the desired result because, as we will explain in Proposition 5.3 just below,
MéPH’W possesses a symmetry property which is similar to that described in
Theorem 5.1.

Proposition 5.3 Suppose that (S, x, y) is a doubly-marked quantum sphere,
n' is a path connecting x to y, and t > 0, where these objects are sampled
from M%PH,W as defined in Sect. 4.2. Let T be the first time that 7' hits n' ().
(We emphasize that T is not the same as t, the first time that 7’ hits ' ([0, t]).)
Let

e ) be the path-decorated and beaded quantum surface parameterized by
the union of '|(0,q and the part of S which is separated from y by n' ([0, t]),

e ) be the path-decorated and beaded quantum surface parameterized by the
union of 1'|[0,7) and the part of S which is separated from x by 7'([0, T]),
and

e Q be the quantum surface parameterized by S\() U ).

We view Y (resp. Y) as a random variable taking values in the space of path-
decorated and beaded quantum surfaces with a single marked point which
corresponds to 1/ (t) (resp. 7' (T)) and we view Q as a random variable taking
values in the space of beaded quantum surfaces. Then M%PH,W is invariant

under the operation of swapping ) and Y. Moreover, under M%PH w> we have

that Y, Y, and Q are conditionally independent given the quantum lengths
of the boundaries of Y and Y (which together determine the boundary length

of Q).

Proof We start with the first assertion of the proposition. As mentioned in
Sect. 4.1, we know that if we condition on the quantum area m of S then the
joint law of (S, x, y) and 7’ is given by a quantum sphere of quantum area
m, x and y are independently and uniformly chosen from the quantum area
measure, and, given x, y, " is an independent whole-plane SLE¢g connecting
x and y. By the reversibility of whole-plane SLEg established in [34], it thus
follows that the joint law of (S, x, y) and n’ is invariant under swapping x
and y and reversing the time of n” when m is fixed. Since t is uniform in the
amount of quantum natural time T required by 1’ to connect x and y, we have
by symmetry that T is uniform in [0, T']. This proves the first part.
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It follows from the construction of M%PH’W that )V is independent of JV and Q
given its quantum boundary length (recall Proposition 4.1) and, by symmetry,
that ) is independent of ) and Q given its boundary length. This implies the
second assertion of the proposition. O

We will establish Theorem 5.1 using the following strategy. Suppose that we
have a triple T, (S, x, y), ' which consists of a number 7 > 0, a doubly-
marked finite volume quantum surface S homeomorphic to S2, and a non-
crossing path n” on S connecting x and y such that T is equal to the total
amount of quantum natural time taken by 1’ to go from x to y. We assume
that S is parameterized by C with 0 corresponding to x and oo corresponding
to y. Let t be uniform in [0, 7] and let U be the unbounded component of
C\7/([0, t]). Let i’ be the time-reversal of 1’ and let t be the first time that
7’ hits /([0 t]). Fix € > 0 and let E, be the event that /(%) is contained in
the interval of dU starting from n’(t) and continuing in the counterclockwise
direction until reaching quantum length €. (In the case that dU has quantum
length at most €, we take this interval to be all of dU.) In other words, E is
the event that 7’ () is contained in the quantum length € interval on the outer
boundary of n’([0, t]) which is immediately to the left of n’(t). Let T be the
first time that 77 hits (t) and let F, be the event that 7’ ([0, T]) N 1/([0, t]) is
contained in both the interval of dU centered at n’(t) with quantum length 2¢
and the similarly defined interval on the outer boundary of 7'([0, T]) with the
roles of n’ and 77" swapped.

The main two steps in the proof of Theorem 5.1 are to show that (with
M%PH’W viewed as a measure on (), ), Q) and M%PH’D viewed as a measure

on (X, X, B)) we have

e_llEedMng’W — dM%PH,D as € —> 0 and (5.1

e 17, dMgpy w — codMgpyp as € — 0, (5.2)

where cp > 0 is a fixed constant. We will prove (5.1) as a step in proving (5.2)
and deduce (5.2) from (5.1) by showing that the conditional probability of F
given E. converges as € — 0 to the positive constant cg. (The main step in
proving this is Proposition 5.7 stated and proved just below, which constructs
the scaling limit near the intersection when we condition on E and then send
€ — 0.) The notion of convergence is given by weak convergence with respect
to a topology that we will introduce in the proof of Theorem 5.1. (The exact
choice of topology is not important as long as it generates the full o-algebra.)
The result then follows because, for each € > 0, ¢ "'15.d MgPH’W is invariant

under the operation of swapping ) and )/ since M%PH w itself is invariant under
this operation and F¢ is defined in a manner which is symmetric in n’|[o,¢; and
7' l10.7]- (Moreover, given F¢, we note that 7 — tase — 0.)
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Fig. 8 Tllustration of the setup for Proposition 5.3 (continuation of Fig. 7). Let ) (resp. )
consist of 7'[[0,¢] (resp. 7'|[0,7] Where T is the first time that 7" hits 1’(t)) and the part of S
separated by 1/([0, t]) (resp. 77 ([0, T])) from y (resp. x) and let Q be the part of S which is not
in Y and V. In the illustration, ) (resp. )V) is shown in light blue (resp. light red and light green).
In Proposition 5.3, we show that the M%PH’W distribution of the triple (), Y, Q) is invariant

under the operation of swapping ) and )V (color figure online)

Throughout the remainder of this section, we will write P,, for the proba-
bility which gives the conditional law of 1’ and the remaining surface given t
and X = u under either MgPH’W or MgPH’D. (As we pointed out in Proposi-
tion 4.1, this conditional law is the same under both MéPH’W and M%PH’D and
the conditional distribution does not depend on the value of t.)

Lemma 5.4 We have that

PE]=SAl.
u

Proof This follows because the location of 1'(t) on 3 is uniform from the
quantum measure given the quantum boundary length of 9. O

In our next lemma, we show that the conditional law of (X, X, B) given (t, Xy)
sampled from M%PH’W does not change when we further condition on E.. We
emphasize, however, that the conditional law of the part of " which connects
n’(t) and 7/ (t) (the green path segment in Fig. 8) given E. is not the same as
its unconditioned law.

Lemma 5.5 Suppose that X, X, and B are as in the statement of Theorem 5.1.
The joint law of X, X, and B under M_%,PH conditional on (t, X4) is equal to
the joint law of X, X, and B under Mng conditional on (t, X¢) and E.. The
same holds with either M%PH’W or M%PH?D in place of Mpyy.
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Proof Recall from the end of Sect. 4.1 that, conditionally on X, the quantum
surface parameterized by the component of S\ X which contains y is a quantum
disk weighted by its quantum area decorated by the path 7’ lj0.7)- Moreover,
by the locality property for SLE¢, we have that the conditional law of 7’ 0.1
is equal to that of a whole-plane SLEg stopped at the first time that it hits .
(Note that this path-decorated surface determines /3 and X'.) This implies that,
given X’ and this path decorated-surface, n’(t) is still uniformly distributed
according to the quantum measure on its boundary. Therefore conditioning
further on E. does not change its conditional law. m]

In our next lemma, we show that the local behavior of X near t is that of a
3/2-stable Lévy process with only downward jumps.

Lemma 5.6 Suppose that Y is given by the time-reversal of a 3/2-stable Lévy
excursion with only upward jumps of length at least t conditioned so that
Y; = u. Let Z be the Radon—Nikodym derivative between the law of s — Y;4
for s € [0, €] with respect to the law of a 3/2-stable Lévy process with only
downward jumps in [0, €] starting from u. Then we have that Z — 1 in
probability as € — 0.

Proof This follows, for example, from [26, Lemma 3.19]. O

We will now describe the local behavior of a surface sampled from P,, near
n’(t) both conditioned on E. and unconditioned. See Fig. 9 for an illustration
of the setup.

Proposition 5.7 Fix u,e > 0 and let U be the unbounded component of
C\n'([0, £]). Let ¢1: U — H be the unique conformal map which takes oo
toi andn'(t) to 0 and let 3 : H — H be the conformal map which corresponds
to scaling so that with ¢ = @) o @1 the quantum length assigned to [—1, 0]
by the quantum boundary measure associated with the field h = h o ¢! +
Qlog (e~ + %log e Visequalto 1. Let 7 = o(1)).

Let o be any stopping time for the filtration Fs generated by the time-
reversal of n" and n'|(0,1), which a.s. occurs before the path first hits n'([0, t]).
We have that the joint law of the quantum surface (H, h) and path 7 under
P,[- | Ec, F5] converges as € — 0 to a pair consisting of a «/8/3-quantum
wedge with scaling factor chosen so that the quantum boundary length of
[—1, 0] is equal to I and an independent path 1 whose law can be sampled
from using the following steps.

e Sample w € [—1, 0] according to Lebesgue measure

e Sample an SLE¢(2; 2) process 1., from w to oo with force points located
atw™, w™; let Vy be the component of H\T,,, with 0 on its boundary

e Given 1, sample an SLE¢ process 1, in Vo from 0 to w

e Take the concatenation of 1, and 7.
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In the statement of Proposition 5.7, we emphasize that since "7/ — 2 is equal to
1 for k” = 6, we have that 77/, a.s. does not hit R except at its starting point; see
[30, Remark 2.3]. Before we give the proof of Proposition 5.7, we will need
to collect several intermediate results.

Lemma 5.8 Suppose that n' is a chordal SLE¢ process from 0 to oo in H
and let 1 be its time-reversal. Let [x,y] € R be an interval containing a
neighborhood of 0, let T be the first time t that 7 (t) € [x, y], and letw = 7' (T).
Let T be the last time that 1’ hits w (so that 1'|[r,00) is the time-reversal
of 'l (0,71)- Then the law of 5! (|r.00) — W) reparameterized by capacity
converges weakly as § — 0 to that of an SLEg(2; 2) process in H from 0 to oo
with force points located at 0~ and 0T with respect to the topology of local
uniform convergence.

See Fig. 10 for an illustration of the statement of Lemma 5.8. The proof of
Lemma 5.8 will make use of the ideas developed in [30-32,34]. We will not
give an in-depth introduction to imaginary geometry here, but rather refer
the reader to the introductions of these articles as well as to [35, Sect. 2] for
background. For k € (0,4) and ¥’ = 16/k € (4, 8), we will make use of the
following notation (which matches that used in [30-32,34]):

2
:A—%X, 2 53

Jk 2

We recommend that the reader reference [35, Fig. 2.5] while reading the proof
of Lemma 5.8.

Proof of Lemma 5.8 Weletk = 8/3,«k’ = 16/k = 6, and will write A, A’, and
x for the constants in (5.3) with these values of k and «”. By [30, Theorem 1.1],
we can view 7]’ as the counterflow line from co to 0 of a GFF i on H with
boundary conditions given by —A" + 7x = —A + %n’ x (resp. M —wyx =
A= %JT x) on R_ (resp. Ry). Moreover, by [30, Theorem 1.4] we have that
the left (resp. right) boundary of 77’ is given by the flow line iy, (resp. ng) of h
starting from O with angle 7 /2 (resp. —m/2). That is, ny, (resp. ng) is the flow
line of h+m x /2 (resp. h —m x /2) from O to co. By [30, Theorem 1.1], the law
of nz (resp. ng) is that of an SLE, (k — 4; k/2 — 2) = SLEg,3(—4/3; —=2/3)
(resp. SLE,(k/2 — 2;« — 4) = SLEg;3(—2/3; —4/3)) process in H from
0 to co with force points located at 0~ and 0. (See also [35, Fig. 2.5].) In
particular, iz a.s. hits R_ but not R and likewise ng a.s. hits R4 and not R_;
recall that k /2 — 2 is the critical p-value at or above which SLE, (p) does not
hit the boundary.

Since 7’ visits the points on iz (resp. ng) in the reverse order in which
they are visited by ny (resp. ng), we have that w is either equal to the last
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intersection of ny with [x, O] or to the last intersection of ng with [0, y].
These two possibilities correspond to when w € [x, 0] or w € [0, y]. We shall
assume without loss of generality that we are working on the event that the latter
holds. Let 77, be the flow line with angle 7 /2 of the GFF given by restricting &
to the component of H\ng which is to the left of ng. It follows* from [10,
Proposition 5.7] that the two segments of ng (which correspond to before
and after the path hits w or, equivalently, before and after the path starts the
excursion that it makes over y) translated by —w and rescaled by the factor § !
converge as § — 0 to a pair of flow lines ny, n2 of a GFF on H with boundary
conditions A + 7 x /2 = /2/37 (resp. =31 + 57w x /2 = —+/2/37) on R4
(resp. R_) with respective angles 6] = —m /2,6, = 2A/x — /2 = 5w /2.
Moreover, 77 translated by —w and rescaled by 6! converges along with the
two segments of 1 to the flow line 77 of the same limiting GFF used to generate
n1, n2 with angle 7 /2 (since the angle gap between 77 and ng is equal to 7,
so the angle gap between 7] and 7, is the same). In particular,

e The marginal law of 7y is that of an SLE, (¢ —2) = SLEg,3(2/3) process
with a single force point located at 0.

e The marginal law of n; is that of an SLE, (¢ — 4; 2) = SLEg/3(—4/3;2)
process with force points located at 0~, 0.

e The conditional law of np given n; is that of an SLE,(x — 4) =
SLEg,3(—4/3) process with force point located at 0.

e The conditional law of 7] given 51, 07 is that of an SLE, (k /2 —2; —«/2) =
SLEg/3(—2/3; —4/3) process with force points located immediately to the
left and right of its starting point.

As k = 8/3 and k¥’ = 6, we note that

5 3
_3)\+ﬂ _NX:—3A+ﬂ=—3A/ and
3 2
3
<,\+%X)+nx=x+—zx =35

Therefore by [30, Theorem 1.4], we have that 77 and n; respectively give
the left and right boundaries of the counterflow line from oo to 0 which, by
the form of the boundary data, is an SLEg(2; 2) process with force points
located immediately to the left and right of co. The result thus follows by the
reversibility of SLE¢(2; 2) established in [32]. O

Lemma 5.9 Suppose that n' is a whole-plane SLEg process from 0 to 0o
in C. Let T be a stopping time for n' so that n'([0, T]) is a.s. bounded and

4110, Proposition 5.7] is stated in the setting of SLE, (p) processes with a single boundary
force point; however, the same proof goes through verbatim to describe the local behavior of the
start point an excursion which straddles a given boundary point for SLE, (p1; p2) processes.
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let & be a stopping time for the time-reversal ' of n' given n'|[0.r] such
that 7'|j0.z) does not hit n'([0, t]) a.s. Let T be the first time that 7' hits
n'([0, T]). Let Y be the unique conformal map from the unbounded compo-
nent of C\n'([0, t]) to H which sends oo to i and n'(t) to 0. Then law of the
time-reversal of 8~ (7' lj0,7]) parameterized by capacity converges weakly
respect to the topology of local uniform convergence as § — 0 to that of
a chordal SLE(2; 2) process from 0 to oo with force points located at 0~
and 0*.

Proof This follows by combining the locality property of whole-plane SLE¢
with Lemma 5.8. o

Lemma 5.10 Suppose that ' is a whole-plane SLEg process from 0 to o0 in
C. Let T be a stopping time for ' such that ' ([0, t]) is bounded a.s. Let ' be
the time-reversal of n' and let T be the first time that 7' hits n'([0, t]). Then
7 (T) is distributed according to harmonic measure as seen from oo on the
boundary of the unbounded component of C\n' ([0, 1]).

Proof This is a consequence of the locality for whole-plane SLEg, the domain
Markov property, and conformal invariance. O

Proof of Proposition 5.7 We will first prove a version of the proposition in
which we have not conditioned on E. or F5. That is, we willNﬁrst argue that
as € — 0 (but u > 0 fixed), we have that the joint law of (H, &) and % under
P, converges to a pair consisting of a 1/8/3-quantum wedge normalized to
assign quantum boundary length 1 to [—1, 0] and an independent chordal SLE¢
process in H from 0O to oo. R R

We will establish this using Lemma 5.6. Suppose that W = (H, k, 0, 00)
is a /8/3-quantum wedge and thatjl\’ is a chordal SLE¢ process from 0 to oo
sampled independently of h. Let (f;) denote the forward centered Loewner
flow associated with h:and, for eac}’l\s, we let X denote the change in the
boundary length of ho -1+ Q log |(f, )| relative to s = 0. Assume that 7 is
parameterized according to quantum natural time. By [10, Corollary 1.19], we
have that X evolves as a 3/2-stable Lévy process with only downward jumps.
Moreover, by [10, Tl}f:orem 1.18], we have that conditional on the realization
of the entire process X, the components of H\7’ (viewed as quantum surfaces)
are conditionally independent quantum disks given their boundary length and
the boundary length of each such disk is given by the corresponding jump of
Xs.

We can construct a coupling of the surface near n’(t) and W as follows.
Let X denote the quantum length of the outer boundary of »/([0, t + s])
relative to the quantum length of the outer boundary of 7'([0, t]). In other
words, we normalize so that Xo = 0. Fix § > 0. Lemma 5.6 implies that there
exists so > 0 such that we can find a coupling of X and X so that the event
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A = {Xl0,59 = )?|[0,so]} satisfies P,[A] > 1 — §. Note that the conditional
law of the quantum disks cut off by »’ in the time interval [0, so] given X|[o,s,]
is the same as that for the quantum disks cut off by 7 in the time interval
[0, so] given X|[o,5y]. Consequently, we can couple together these quantum
disks so that they are the same (equal as boundary-marked quantum surfaces
and with the same orientation) on A. We sample the remainder of the quantum
disks conditionally independently. On A¢, we sample all of the quantum disks
conditionally independently given X|jo,y,) and X |[0 sol-

Let K (resp. K ) be the region cuto off from oo by 7 ([0, so]) (resp. 7' ([0, s0])).
On A, we have that (K I, 0) and (K n, 0) are equal as (marked) quantum sur-
faces and (H\K h) and (H\K h) are condltlonally independent as quantum
surfaces given X, = =X so- Let 1% (resp. V) be the component of the interior of
K (resp. K ) which contains 0. Then there exists a conformal map w Vo>V
which takes O to 0 since (V, h, 0) and (V, h, 0) are equal as (marked) quantum
surfaces. By scaling, we can take the embedding of (H, 1) so that 1;/ 0) =1.
It therefore follows that |$(z) —z| = 0 as z — 0, hence it is easy to see
that the total variation distance between the laws of the restrictions of the two
surfaces to HN B(0, §) converges to 0 as § — 0.

We have now proved the part of the proposition which involves the behavior
of the surface near n’(t). The same proof works if we condition on E¢ and F5
since this conditioning does not change the local behavior of the surface near
0. We shall now assume that we are conditioning on both E. and F%. To finish
the proof, we need to describe the behavior of " near 7' (t). Let zo = ¢(00)
and let T be the first time that 7’ hits 1/([0, t]). Lemma 5.10 then implies that
the distribution of ¢ (7' (7)) is equal to the distribution on [—1, 0] induced by
harmonic measure as seen from zg (normalized to be a probability). Since we
know that zg — o0 as € — 0, it follows that the distribution of ¢(77'(T))
converges to the uniform distribution as € — 0. Moreover, that the law of the
path is as claimed follows from Lemma 5.9. O

Lemma 5.11 There exists pg > 0 such that for each u > 0 we have that
P,[Fc|Ec]l — po as € — 0.

Proof This is obvious from the representation of the conditional law of the
configuration near the tip described in Proposition 5.7. O

We are now ready to combine everything to complete the proof of Theorem 5.1.

Proof of Theorem 5.1 As mentioned above, we will complete the proof of the
theorem by establishing (5.1) and (5.2). We now introduce the topology respect
to which we will establish the weak limits in (5.1) and (5.2). (As mentioned
earlier, the exact topology is not important.)
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We will first define a metric on the space X of finite volume quantum surfaces
which are homeomorphic to D. We can associate with each quantum surface

= (D, h) a probability measure on random distributions /4 by picking z € D
according to the quantum measure, 6 € [0, 2] uniformly at random and
independently of z, letting ¢ : D — D be the unique conformal transformation
with ¢(z) = 0 and ¢'(0)/|¢'(0)| = €', and then taking i = h o ¢~ +
Qlog (¢~ VY| Clearly, if Sy = (D1, h1) and S» = (D3, hy) are equivalent as
quantum surfaces then the corresponding random distributions /1 and s, on
D have the same law. We define our metric d on X by taking d(S1, S») for
81, &2 € X to be given by the sum over j € N of 277 times the Prokhorov
distance between the laws of the restrictions of /1 and /5 to B(0, 1 —27/).
We can also extend the definition of X to the setting of k-marked quantum
surfaces X; which are homeomorphic to D by taking the sum over j € N of
2 J times the Prokhorov distance between the joint law of the restriction of
h to B(O, 1 =27 7y and its marked points and the joint law of the restriction
of h2 to B(0, 1 — 27/) and its marked points.

We next recall from [10,27] (as well as Sect. 4) that if we draw an inde-
pendent whole-plane SLE¢ on top of a 4/8/3-LQG sphere starting from one
quantum typical point and targeted at another, then the quantum boundary
length of the complementary component containing the target point is given
by the time-reversal of a 3/2-stable Lévy excursion e. Moreover, the jumps of
e correspond to the components cut out by the SLEg where the magnitude of a
given jump gives the quantum boundary length of the corresponding compo-
nent. Given e, these components are conditionally independent quantum disks
which are oriented depending on whether the SLEg surrounded it clockwise
or counterclockwise and are also marked by the first (equivalently last) point
on the disk boundary visited by the SLEg. It is shown in particular in [27,
Theorem 1.1] that the SLEg-decorated quantum sphere is a.s. determined by
e and the collection of oriented and marked quantum disks. Therefore we can
view the path-decorated, beaded quantum surface which corresponds to the
region separated by an SLEg from its target point as well as the path stopped
at a given time as a random variable which takes values in X* which is the
product of the space of cadlag functions with only downward jumps (with the
local Skorokhod topology) and (X x {0, 1)N; we equip X* with the product
topology. Indeed, the time-reversed Lévy excursion naturally is an element
of the former space and the ordered collection of marked, oriented quantum
disks naturally take values in the latter space (the orientation corresponds to
the extra bit).

Fix € > 0. For any interval I = (x1, x) with 0 < x| < x» and any interval
J = (1, ) with 0 < 11 < t» we have that M%PH,W[Xt el,teJ] e (0,00)
so that M%PH’W conditioned on X € I and t € J makes sense as a probability
measure. We can thus write
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Mépy wlEe, Xe € I t € J]
= Mépp wlEe | Xce I, t € JIMgpy wXc € I, te J1.

Lemma 5.4 implies that for all € € (0, x;) we have that

€ €
— <MipywlEelXeel teJ] < —. (5.4)
X2 X1

We let
Gj:{zj_1§t§2j} foreach j € Z.

Suppose that f: X* x X* x X — R is a bounded, continuous function. Let
X, X, and B be as in the statement of Theorem 5.1. Lemma 5.5 implies that
the M%PH’W conditional laws of X', X, and B are the same if we condition on
X or if we condition on both X¢ and E.. It therefore follows from (5.4) that
for each j € Z we have

e—I/f(X,?, B)lEendolvlgPH,Wa/f(X,?, B)1g,dMgpy
as € — 0. (5.5)

Let Y, ), and Q be as in the statement of Proposition 5.3 and let Q* be
the component of Q with the largest quantum area (there is a.s. a unique
such component). Then Proposition 5.3 implies that M%PH,W is invariant under

the operation of swapping ) and ). Since the event F, is also defined in a
way which is symmetric under swapping ) and ), we have that the measure
15d M%FH,W is symmetric in the same sense. Thus to finish the proof it suffices
to show that there exists a constant ¢y > 0 such that for any f as above,

! / FO. T, Qg dMEpys w — <o / FX T B)lg, dMEgy
as € = 0. (5.6)

Note that we in fact have that X = )). Moreover, it follows from Proposition 5.7
that for each § > 0 and j € Z we have that

M&pyl[d(X,Y) > 8| Ec,G;1— 0 as € — 0.

Lemma 5.11 implies that the same is true when we condition on F¢ instead of
E.. Therefore for f bounded and continuous as above, we have that

e / 1fQ. Y. Q5 — f(X, X, B)1rnc,dMipyw — 0 as € — 0
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for each j € Z. Therefore it suffices to prove (5.6) with X', X, B in place of

Y, Y, O* Assume that I, J are as above. Then we have that

Mépy wlFe, Xy € I, t e J]
= MpywlFe | Ec, Xy € I, t € JIMgpy wlEe | Xe € I, te J]

By Lemma 5.11, we have that the first term on the right hand side converges
to po as € — 0. Therefore (5.6) follows from (5.5). |

As aconsequence of the analysis which gave the proof of Theorem 5.1, we will
also be able to identify the conditional law of B under M%PH’D given its bound-
ary length. This will be rather important for us later in this article because, as
we will explain now, it implies that 3B is a.s. conformally removable.

Proposition 5.12 Suppose that B is as in Theorem 5.1.

(i) Conditionally on its boundary length, the law of B under M%PH’ p is that of
a quantum disk.

(ii) Suppose that (C, h) is any embedding of (S, x, y) distributed according
to MgPH,D- Then the image of the embedding of 0B is a.s. conformally
removable.

Proof First of all, we know from Lemma 5.5 that the conditional law of 5
given t and X is the same as the conditional law of B given t, X¢, and E..
We define d(S', §?) as in the proof of Theorem 5.1. The conditional law of
the segment 7’ of n’ which is contained in B and connects 1’ (t) to 7' (t) (i.e.,
the segment indicated in green in Fig. 8) is given by a chordal SLE¢ process
independent of 3. Let 13 be the component of B\7" with the longest quantum
boundary length. Then we know that 3 is a quantum disk conditional on its
boundary length because it is a complementary component of 1" on S. The
result follows because the d-distance between 5 and 5 tends to 0 in probability
as € — 0 while, as we mentioned above, the law of B does not change with
€. This proves that the conditional law of 3 given its boundary length is a
quantum disk. N

__ Assume that B is parameterized by (', h). Then we know that the law of
h is absolutely continuous with respect to a free boundary GFF on [a, b] x
[0, 27] for any a,b € R with a < b. Likewise, we know that the law of
h in any bounded region U < C is mutually absolutely continuous with
respect to the law of the restriction to U of a free boundary GFF on a bounded
domain with U C V. Therefore it follows from [33, Theorem 8.1] that the map
¢: la, b] x [0, 27] — C which corresponds to the embedding of B into C is
a.s. Holder continuous in [a, b] x [0, 277]. By [10, Proposition A.8], we know
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that the points on 953 which correspond to 00 € 9.% are uniformly distributed
according to the quantum boundary measure on d5. By resampling them, it
follows that the embedding of B into C is a.s. a Holder domain. Therefore
it follows from [16, Corollary 2] that the embedding of 985 into C is a.s.
conformally removable. O

6 Quantum natural time QLE(8/3, 0)

The purpose of this section is to construct a “quantum natural time” version
of QLE(8/3, 0). This is a variant of the process constructed in [33] where the
approximations involve resampling the tip of the SLE¢ at §-units of quantum
natural time as opposed to §-units of capacity time. The construction that we
will give here describes a growth process on a quantum sphere, which is also in
contrast to [33] in which the process is constructed on an (unscaled) quantum
cone. The present construction also generalizes to the setting of quantum cones,
but we will focus on the sphere case. Throughout this article, whenever we refer
to the process QLE(8/3, 0) we mean the one constructed just below unless
explicitly stated otherwise. As in the case of the construction given in [33], we
will begin in Sect. 6.1 by introducing the approximations to QLE(8/3, 0). We
will then show in Sect. 6.2 that the subsequential limits of these approximations
have the following properties which will be important later on:

e The bubbles swallowed by the process have the same Poissonian structure
as the bubbles swallowed by an SLEg,

e The evolution of the quantum boundary length of the complementary com-
ponent which contains the target point is the same as in the case of an SLEg
(the time-reversal of a 3/2-stable Lévy excursion with only positive jumps),
and

e The law of the region which contains the target point is the same as in the
case of SLEg (that of a quantum disk weighted by its area).

6.1 Approximations to QLE(8/3, 0)

Fix § > 0 and suppose that e: [0, T] — Ry is a sample picked from the
excursion measure N for a 3/2-stable Lévy process with only positive jumps as
described in Sect. 4.1. We define the §-approximation to QLE(8/3, 0) associ-
ated with the excursion e as follows. First, we let (S, x, ¥) be a doubly-marked
quantum sphere constructed from e and let | = 1’ be the associated whole-
plane SLE¢ from x to y, as described in Sect. 4.1, with the quantum natural
time parameterization. For concreteness, we will take the embedding so that
(S, x,y) = (C, h, 0, 00) where 0 (resp. 0o) corresponds to x (resp. y) and the
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scaling factor is determined so that the quantum area of D is equal to 1/2 the
total quantum area of S.

We define a growth process I'® inductively as follows. First, we take Ff
to be the complement of the unbounded component of C\»’([0, ¢]) for each
t € [0, 5]. We also let gf : C\F;S — C\D be the unique conformal map with
18%(z) —z| — Oas z — oo. Fix j € N and suppose that we have defined paths
Mys s n} and a growing family of hulls I'® with associated uniformizing

conformal maps (g;S ) for t € [0, j§] such that the following hold:

e The conditional law of the surface parameterized by the complement of Fj. 5
given its quantum boundary length is the same as in the setting of ordinary
SLEg. Thatis, itis given by a quantum disk with the given boundary length
weighted by its area.

° n;. (jé) is distributed uniformly according to the quantum boundary mea-

sure on GF% conditional on l"‘;s (as a path-decorated beaded quantum
surface).

e The law of the components separated from the target point by time j§ is
the same as in the case of whole-plane SLE¢. That is, they are given by
conditionally independent quantum disks given their boundary lengths.

We then let n’j 1 be an independent radial SLEg starting from a point on 8Ff. 5
which is chosen uniformly from the quantum boundary measure conditionally
independently of everything else (i.e., we resample the location of the tip
n'(jd)). Foreacht € [j§, (j + 1)8], we also let Ff be the complement of the
unbounded component of C\(F‘JS. s U n/j +1([0, t])). Then by the construction,
all three properties described above are satisfied by the process up to time
( + 5.

By resampling the surface parameterized by the complement of Ff. s ateach
stage, we can construct a coupling of the doubly marked quantum sphere
together with the growth process I' so that the quantum boundary length of
the complement of I'® at each time 7 is given by the time-reversal e(T — 1)
of e. Indeed, this follows because the procedure of resampling the starting
point of the SLE¢g according to quantum boundary length leaves the law of
this component invariant. In particular, the jumps of e then correspond to the
quantum boundary length of the quantum disks swallowed by I"°.

It will be convenient to encode I'? in terms of a radial Loewner flow. That
is, if for each r > 0 we let s(¢) be the quantum natural time elapsed by I'?
at the first time that the capacity as seen from oo reaches ¢ then there exists
a measure vs on 0D x [0, oo) whose second-coordinate marginal is given by
Lebesgue measure such that

w+ gl (2)
gf(z) ) =z+ f/ gf(u)(z)—;(u) dvs(w,u) forall t>0.
aDx[0,1] W= 8,2
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Since the growth during each of the §-length time intervals is given by a
segment of an independent radial SLEg process, it follows that there exists a
standard Brownian motion B and a sequence of real numbers (&) such that
with W = /6B we have that

dvs(0,1) = Z Liks, (k+1)8) (5 ()8 iwi+g) dt
k

where &, denotes the Dirac mass supported at x € 0D and dt denotes Lebesgue
measure on Ry.

We emphasize that the §-approximation to QLE(8/3, 0) satisfies the fol-
lowing:

e The bubbles which it separates from y are conditionally independent quan-
tum disks given their boundary lengths,

e The boundary length of the complementary component which contains y
at time ¢ is equal to the time-reversal of e at time ¢ and is conditionally
independent of everything else given its boundary length, and

e The conditional law of the region which contains y given its quantum
boundary length is the same as in the case of SLE¢. That is, it is given by
a quantum disk with the given boundary length weighted by its area.

6.2 Subsequential limits

We are now going to construct subsequential limits of the §-approximations to
QLE(8/3, 0) described just above. We will pick the subsequence so that the
limit we obtain satisfies the three properties listed just above.

For each § > 0, we let (Ss, x5, ys) be an instance of the doubly-marked
quantum sphere decorated together with a §-approximation to QLE(8/3, 0)
which is encoded via a Loewner flow using the measure vg, as described just
above. We take the embedding of (Ss, xs, ys) to be given by (C, kg, 0, 00), as
in Sect. 6.1, where the scaling factor is chosen so that the quantum area of D
is equal to 1/2 the quantum area of S. Since we will be taking a subsequential
limit with respect to the weak topology (in a sense we will make more precise
below), we will not specify how the surfaces (Ss, x5, ys) decorated by vs are
coupled together for different values of . For each §, T > 0, we let vaT be the
restriction of vs to dD x [0, T']. Since dD x [0, T'] is compact and each vaT
has total mass equal to T, it follows that the law on random measures (vsT ) 18
tightin § > 0 (but T fixed) with respect to the weak topology on measures on
oD x [0, T].

Foreach 0 < a; < ap < oo, we let Egl’ @ be the event that the area of

Ss is contained in [aj, az]. We note that E‘él is an event of positive and

8
ap,az

, a2

finite M%PH measure so that the conditional law of (C, #s, 0, 0o) given E
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makes sense as a probability measure. Since the law of A5 conditioned on
Eg Lo does not depend on §, it follows that there exists a sequence () with
8r > 0 for all k and 6 — 0 as k — oo such that the joint law of &5 and
‘)(ST,{ given ES'; .a, converges weakly to a limiting law as k — oo. (We take the
notion of convergence of /5 to be that its coordinates converge when expanded
in terms of an orthonormal basis of H(C) consisting of C3°(C) functions.)
The Skorokhod representation theorem implies that we can find a coupling
of the laws of hs, and v[i given Eg’f’az (as k varies) with a doubly-marked
quantum sphere (C, &, 0, co) conditioned on the event E,, ,, that its area
is contained in [a1, ap] together with a measure v on 9D x [0, T'] whose
second coordinate marginal is given by Lebesgue measure such that hs, — h
as described above and VsTk — v! weakly a.s. as k — oo. By passing to
a further (diagonal) subsequence, we can find a coupling of the laws of the
(C, hs,, 0, 00) (unconditioned) and (vs,) and (C, h, 0, 00) and a measure v
on dD x [0, o0) whose second coordinate marginal is given by Lebesgue
measure so that with v? equal to the restriction of v to 8D x [0, T'] for each
T > 0 we have that i, — hand v — v’ weakly ae. forall T > 0. By
[33, Theorem 1.1], it follows that the radial Loewner flows driven by the vs,
converge locally uniformly in time and space to the radial Loewner flow driven

by v as k — oo as well.

Definition 6.1 Suppose that (S, x,y) = (C, h,0, c0) is a doubly-marked
quantum surface and that I" is an increasing family of compact hulls with
Ko = {0} so that the joint law of (S, x, y) and (K;) is equal to any one of
the subsequential limits constructed above. Then we refer to the increasing
family I' (modulo time parameterization) as QLE(8/3, 0). We say that two
QLE(8/3, 0)-decorated quantum surfaces (S, x, y), I' and (S, ¥, y), T are
equivalentif (S, x, y) and (S, X, y) are equivalent as doubly-marked quantum
surfaces and the corresponding conformal transformation takes I'" to r (modulo
time parameterization).

As explained in the introduction, it will be a consequence of the results of this
work and [28] that it is not necessary to pass along a subsequence (8;) in the
construction of QLE(8/3, 0).

Remark 6.2 As we will explain below, there are several natural parame-
terizations of time for QLE(8/3, 0). We emphasize that the definition of
QLE(8/3,0) given in Definition 6.1 does not carry with it a time parame-
terization. We in particular do not build the capacity parameterization into the
definition because it depends on the embedding of the ambient surface into
C. Later, we will want to be able to cut a QLE(8/3, 0) out of a surface and
glue it into another and such an operation in general does not preserve capac-
ity because it can lead to a different embedding. The time-parameterizations
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that we introduce shortly are, however, intrinsic to QLE(8/3, 0) viewed as a
growing family of quantum surfaces.

Definition 6.1 includes a notion of equivalence of QLE(8/3, 0)-decorated
quantum surfaces. We will later introduce a notion of equivalence for a
QLE(8/3, 0) which is stopped at a certain type of stopping time.

Suppose that I is a QLE(8/3, 0) on a doubly-marked sphere (S, x, y). We say
that a region U is swallowed by I' if U is equal to the interior of I',\I',- for
some ¢. The following proposition will imply that we can make sense of the
quantum natural time parameterization of I".

Proposition 6.3 Suppose that (S, x, y) is a doubly-marked quantum sphere
with distribution M%pH and that T is a QLE(8/3, 0) on S from x targeted at
y. Then the joint law of the regions swallowed by U, ordered by the time at
which they are swallowed and viewed as quantum surfaces, is the same as for
a whole-plane SLEg on S connecting x to y.

Proof We shall assume that we are in the setting described at the beginning of
this subsection. In particular, we take the embedding of (S, x, y) to be given
by (C, k, 0, 00).

Foreachk € N, welet ' be the growth process associated with Vs, . We take
"% to be parameterized by capacity as seen from co. By the construction of the
dr-approximation to QLE(8/3, 0), we know the law of the regions swallowed
by I'* ordered by the time at which they are swallowed and viewed as quantum
surfaces is the same as for a whole-plane SLEg on (S, x, y) connecting x to y.
Our aim is to show that this result holds in the limit as £ — oo.

For each k, we let /% be the collection of surfaces swallowed by I'* ordered
by the time at which they are swallowed. We note that for each € > 0, the
collection Z/{éS ¥ which consists of those elements of /% with quantum boundary
length at least € is finite a.s. Indeed, this follows because for N a.e. e we have
that the number of jumps made by e of size at least € is finite. Since the law
of each of the /% is the same for each k, by possibly passing to a further
subsequence (and recoupling the laws using the Skorokhod representation
theorem so that we have a.s. convergence) we have that each |L{§k | converges
a.s. to a finite limit as k — oo.

For each j we let U?f‘e be the jth element of ng , zi-’fe be a point cho-

sen uniformly at random from the quantum measure restricted to Uj"e, and

let (pj.f‘éz D — U}S”‘E be the unique conformal map with (pj{‘e 0) = zi’f . and
((pf.’fe)’ 0 > 0. (If j > |Z/{3k| then we take gojfe = 0.) Fix an orthonor-
mal basis (¢,) of H(D) consisting of CJ°(D) functions. Each element of

f" is a quantum disk hence can be described by a distribution on D given

by hs, o (pfk . T Qlog |(<pj.f‘ E)/ |. We can express this distribution in terms of
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coordinates with respect to the orthonormal basis (¢, ). Therefore by possi-
bly passing to a further, diagonal subsequence (and recoupling the laws using
the Skorokhod representation theorem so that we have a.s. convergence) we
have for each fixed j that the jth element of L[f’f a.s. converges to a limiting
distribution on D in the sense that each of its coordinates with respect to (¢y,)
converge a.s. (if j is larger than the number of elements of L{f" then we take
the jth element to be the zero distribution on D). Combining, we have that Z/{f k
converges a.s. to a limit U, which has the same law as each of the L{f" in the
sense described just above (number of elements converges and each element
converges weakly a.s. when parameterized by D).

We note that the laws of the ((pf.';)/ (0) are tight as k — oo. Indeed, if

there was a uniformly positive chance that one of the ((pj.”‘e)’ (0) is arbitrarily
large for large k, then we would have that there is a uniformly positive chance
that (Sk, xk, yk) = (C, hs,, 0, 00) assigns a uniformly positive amount of
area to C\B(0, R) for each R > 0 and k large enough. This, in turn, would
lead to the contradiction that the limiting surface (S, x, y) would have an
atom at y with positive probability. It therefore follows that by passing to a
further subsequence if necessary (and recoupling the laws using the Skorokhod
representation theorem so that we have a.s. convergence), we can arrange so
that each of the conformal maps go converge locally uniformly to a limiting
conformal map ¢; . Since (S, x, y) a.s. does not have atoms, it follows that
each of the limiting ¢;  with j < |U| satisty ¢ i, 0) #0.

For each j, e, we let Uj = ¢;, 6(D) € U,. Then we note that each of

the U ¢ is swallowed by I'. Indeed, let r * denote the time at which U

swallowed by I'%. Then by passing to a further subsequence if necessary (and
recoupling the laws using the Skorokhod representation theorem so that we
have a.s. convergence), we may assume that ‘E]S a.s. converges to a limit 7; ¢
for all j, e. It is not difficult to see that I';; . contains Uj . for each j, € as

F‘S’gk contains U . and we have the local uniform convergence of P % o Qje-

J-€
Letoj =inf{t > 0: Uj€ C It} < 1je. Note thatif ¢ > 0, thenoje — ¢
is strictly smaller than r — ¢ /2 for all k large enough. Thus as I 8" n is
—§
j €
disjoint from U 6" for all £ and I“cr —¢ does not contain Uj ¢, it must be that
Lo~ 1s dlSJOlnt from Uj . Smce ¢ > 0 was arbitrary, it therefore follows

that U; . is contained in the interior of Lo ALy
i €

Since the U; ¢ as j, € vary cover all of the quahtum area, it follows that the
regions swallowed by I at the times o  are made up entirely of the interior of
the closure of the union of families of such sets (if there was an open ball which
was contained in a region swallowed by I' which was disjoint from all of the
U;, we would have a contradiction since it would have to contain a positive
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amount of mass). However, one could worry that there exists such a set U/ ¢/
distinct from Uj ¢ which is contained in the interior of I'y; \I' - . Suppose
that there is such a set; we will derive a contradiction which W111 1mply that U; .
is premsely the set swallowed by I at time o . Fix { > 0. Define times u‘s

so that “0 = 0 and the quantum natural time elapsed by I'% in [u f , f Glis

equal to g“ Let ip € Ny be the largest such that u < 0}, and let ulk = 5" _1s

v = i +2 Ontheeventthat Uj e, Ujr 6/ are both swallowed by I' at the tlme

0j.e, we claim that the probability that U per Uj/ o are not both swallowed in
the interval [1%, v%] tends to 0 as k — oo. To see this, recall that the quantum

surface parameterized by C\F‘S" is a quantum disk weighted by its quantum
area. Therefore the probability that hs, o (g )™ '+ Qlog |(g )71 | assigns

quantum area at leasta > 0 to B(0, 1 + b)\D tendstoOas b — O witha > 0
fixed. By taking a union bound over i € Ny (note that the number of i € Ng

such that C\Fs" # () is tight) implies that (uniformly in k) the probability
that there ex1sts ani € Ny so that i, o (g ) I+ Qlog I(g 5k) DY assigns

mass at leasta > 0 to B(0, 1 + b)\D tends toOasb — 0 W1th a > 0 fixed.
This implies that the probability that U e
[u’, v%] tends to 0 as k — oo for otherwise it Would be a positive probability
event that for every b > Oand k € N large enough there exists i € Ny and

a > 0 so that A, o (g Sk) LS Qlogl(g ) Y assigns mass at leasta > 0

U ‘.Sf‘ ./ are not both swallowed in

to B(0, 1 4+ b)\D. ThlS, in turn, leads to the desired contradiction because as
¢ — 0, the probability that the boundary length process for I'** makes two
macroscopic downward jumps in a (quantum natural time) interval of length
¢ > 0 tends to 0.

Combining everything implies the result, as the law of Z/{E" is the same as
the law of each of the Uf. |

Remark 6.4 Suppose that Y; is a 3/2-stable Lévy process with only positive
jumps and that A is a Poisson point process on [0, r] x R} with intensity
measure cds ® u~>/>du where ds, du both denote Lebesgue measure on R |
and ¢ > 01is a constant. Then there exists a value of ¢ > 0 such that A is equal
in distribution to the set which consists of the pairs (¢, u) where ¢ is the time
at which Y makes a jump and u is the size of the jump. This implies that if we
observe only the jumps made by Y up to arandom time ¢, then we can determine
t by counting the number of jumps that ¥ has made with size between ¢/~
and e/, dividing by the factor coe’//> where ¢y = %(63/2 — 1), and then
sending j — oo. Using the same principle, we can a.s. determine the length
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of time that the time-reversal of a 3/2-stable Lévy excursion e: [0, T] — R4
has been run if we only observe its jumps. Combining this with Proposition 6.3,
this allows us to make sense of the quantum natural time parameterization of I'
where the jumps are provided by the quantum boundary lengths of the bubbles
cut off by I'.

Building on Remark 6.4, we have that the ordered collection of components
cut off by a QLE(8/3, 0) from its target point a.s. determines a 3/2-stable Lévy
excursion. We will now show that the time-reversal of this excursion is a.s.
equal to the process which gives the boundary length of I' when parameterized
using the quantum natural time parameterization (in the same way that the
ordered sequence of bubbles cut off by an SLEg a.s. determines the evolution
of the quantum length of its outer boundary) and that the conditional law of
the region (viewed as a quantum surface) given its quantum boundary length
which contains the target point is the same as for an SLEg — a quantum disk
with the given boundary length weighted by its quantum area.

Proposition 6.5 Suppose that (S, x, y) is a doubly-marked quantum sphere
with distribution M%PH andthat T isaQLE(8/3, 0) on S from x to y. We take I’
to be parameterized by quantum natural time as described in Remark 6.4. For
each fixed t, the conditional law of the (unique) complementary component of
I'; viewed as a quantum surface given its boundary length is equal to the con-
ditional law of the complementary component containing y of a whole-plane
SLE¢ on S from x to y viewed as a quantum surface given its boundary length.
That is, it is given by a quantum disk with the given boundary length weighted
by its area. As t varies, the quantum boundary length of the complementary
component of I'y evolves in the same manner as for a whole-plane SLEg (i.e.,
the time-reversal of a 3/2-stable Lévy excursion with only upward jumps) and
is equal to the time-reversal of the Lévy excursion whose ordered sequence of
Jjumps is given by the boundary lengths of the components swallowed by T.

Proof We shall assume that (S, x, y) = (C, k, 0, 00) and that I" is param-
eterized by capacity as in the construction of the subsequential limits in the
beginning of this subsection. Let (8;) be a sequence as in the beginning of this
section and, for each k, let ['% be the Sr-approximation to QLE(8/3, 0). We
assume that each of the I'% are parameterized by capacity. For each € > 0, we
let ri"e and 7 ¢ be as in the proof of Proposition 6.3 (i.e., passing to a further
subsequence and recoupling the laws of the §-approximations using the Sko-
rokhod representation theorem). Then we know that the law of the quantum
surface parameterized by C\F‘S’gk is equal in distribution to the corresponding
T.

surface in the case of an SLEg e)ggloration of a doubly-marked quantum sphere
2 . ... . .

sampled from Mgpy;. Repeating the argument of Proposition 6.3 (i.e., passing to

a further subsequence and recoupling the laws of the §;-approximations using
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the Skorokhod representation theorem), we can construct a coupling with an
SLEg exploration of a doubly-marked quantum sphere so that the unexplored
region for the QLE(8/3, 0) at the time 7; ¢ is equal to the unexplored region
at the corresponding time for an SLEg. Moreover, we can arrange so that the
ordered sequence of bubbles cut off by I' by the time 7; . is equal to the
ordered sequence of bubbles cut off by the SLEg by the corresponding time.
Remark 6.4 implies that the boundary length of the unexplored region for the
SLEg at the time corresponding to 7; . is determined by the ordered sequence
of bubbles cut off by this time. By our choice of coupling, the same is also true
for the QLE(8/3, 0). This implies the result because the times of the form 7; .
are dense in the quantum natural time parameterization. O

Proposition 6.6 Suppose that we have the same setup as in Proposition 6.5
where we have taken (S, x, y) = (C, h, 0, 0c0) with I' parameterized by quan-
tum natural time. Then for each time t, we have that C\I'; is a Holder domain
foreacht > 0 fixed. In particular, oT'; is a.s. conformally removable.

Proof This follows because the law of the surface parameterized by C\I'; has
the same law as the corresponding surface for an SLE¢, hence we can apply
the argument of Proposition 5.12. |

6.3 Time parameterizations

In this article, we consider three different time parameterizations for
QLE(8/3, 0):

1. Capacity time,
2. Quantum natural time, and
3. Quantum distance.

We have already introduced the first two parameterizations. We will now give
the definition of the third. Suppose that I" is a QLE(8/3, 0) parameterized
by quantum natural time and let X; be the quantum boundary length of the
complementary component of I';. We then set

tq
= [ —du.
s(1) /0qu

We refer to the time-parameterization given by s(¢) as the quantum distance
parameterization for QLE(8/3, 0). The reason for this terminology is that, as
we shall see in the next section, those points which are swallowed by I' at
quantum distance time d have distance d from x in the metric space that we
construct. We also note that this time parameterization is particularly natural
from the perspective that QLE(8/3, 0) represents a continuum form of the Eden
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model. Recall that quantum natural time for SLEg is the continuum analog of
the time parameterization for percolation in which each edge is traversed in
each unit of time. The quantum distance time therefore corresponds to the
time parameterization in which the number of edges traversed in a unit of time
is proportional to the boundary length of the cluster. This is the usual time
parameterization for the Eden model. Let { = inf{r > 0 : X; = 0} and let

¢ 1
do(x, y) =/ i =5(0). 6.1)
0 u

Then dg(x, y) measures the quantum distance “from the left” of x and y (in the
sense that x is the “left” argument of do(x, y) and y is the “right” argument).
One of the main inputs into the proof of Theorem 1.1 given in Sect. 8.2 is that
do(x, y) is symmetric in x and y and in fact a.s. determined by the underlying
surface S.

Lemma 6.7 Suppose that U is a QLE(8/3, 0) with either the quantum distance
or quantum natural time parameterization. We a.s. have for all 0 < s < t
that Ty is a strict subset of T';.

Proof This follows because it is a.s. the case that in each open interval of time
in the quantum natural time parameterization I" swallows a bubble and the
same is also true for the quantum distance parameterization. O

Remark 6.8 Lemma 6.7 implies that the function which converts from the
quantum natural time (resp. distance) parameterization to the capacity time
parameterization is a.s. strictly increasing. It does not, however, rule out the
possibility that this time change has jumps.

7 Symmetry

The purpose of this section is to establish an analog of Theorem 5.1 for
QLE(8/3, 0), stated as Theorem 7.1 below. This will be a critical ingredi-
ent for our proof of Theorem 1.1 given in Sect. 8. We begin by introducing
a QLE(8/3, 0) analog of the measure MépH’D from Sect. 4.2. To define this
measure, we let (8) and (8;) be two sequences as in Sect. 6.2 along which the
d-approximations to QLE(8/3, 0) converge. We do not assume that (6;) and
(8x) are the same. We then let © be the measure on quadruples consisting of
a doubly-marked quantum sphere (S, x, y), QLE(8/3, 0) growth processes I'
and T from x to y (resp. y to x), and U € [0, 1]. We assume that I (resp. T)
is produced from the limiting law associated with (x) (resp. 61). A sample
from © is produced by:
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1. Picking (S, x, Y) from M%PH’
2. Picking I" and T" conditionally independently given (S, x, y), and
3. Taking U to be uniform in [0, 1] independently of everything else.

We assume that both I" and T have the quantum distance parameterization. Let
do(x,y)beasin (6.1) for I' and EQ(y, x) be as in (6.1) for I". We note that it
is not a priori clear that the quantities dg(x, y) and EQ (v, x) should be related
because the former is a measurement of distance between x and y from the
“left” while the latter measures distance from the “right.” Moreover, dg(x, y)
and dg(y, x) are defined with what a priori might be different subsequential
limits of QLE(8/3, 0).
We also let T = Udg(x, y), o = Udg(y, x),

T=inf{t>0:T,NI; #0), and o =inf{t >0: T, NT5 # ¥}.

Note that T (resp. o) is uniform in [0, do(x, y)] (resp. [O, Eg(y,x)]). We
define measures ®* Y and ®Y~* by setting

d@xay d@y%x
=do(x, d
76 o(x,y) an 10

=do(y, x). (7.1)

Theorem 7.1 Suppose that we have the setup described just above. Then the
O~ Ydistribution of T'|0,7), I'l[0.7), (S, x, y) is equal to the ®¥* distribution
of T'lj0,01, T'ljo,51, (S, x, y).

7.1 Conditional independence in the limit

We will need to have a version of the following statement in the proof of
Theorem 7.1. Suppose that we start with a doubly-marked quantum sphere
(S, x, y) together with a §;-approximation of QLE(8/3, 0) from x to y and
a 8-approximation of QLE(8/3,0) from y to x, taken to be conditionally
independent given (S, x, ¥). Then in the weak limit along sequences (§x) and
(8%) as in Sect. 6.2 we have that the resulting QLE(8/3, 0)’s are conditionally
independent given the underlying quantum surface, at least when the processes
are grown up to a time at or before they first touch.

Proposition 7.2 Suppose that (8;), (8x) are two sequences as in Sect. 6.2.
Suppose further that, for each k, we have a triple consisting of a doubly-
marked quantum sphere (Sk, xk, yk) = (C, Kk, 0, 00), a Si-approximation
rk of QLE(8/3, 0) from 0 to oo, and a Sk-approximation Fk of QLE(8/3,0)
from 0o to 0. We assume further that T* and T are conditionally indepen-
dent given h* and that both are parameterized by capacity as seen from their
target point. Let (S,x,y) = (C, h,0,00), I', I' be distributed as the weak
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Fig. 11 TIllustration of the argument used to prove Theorem 7.1. The top shows the configura-
tion of paths as in Fig. 10. By Theorem 5.1, we know that the distribution of the path-decorated
quantum surfaces parameterized by the light blue and red regions on the top and marked by
the tip of the corresponding SLEg segments is symmetric under M%PH,D' Reshuffling the
two SLEg processes on the top yields the pair of QLE(8/3,0) growths on the bottom. We
will deduce our symmetry result for the surfaces on the bottom from the symmetry of the
surfaces on the top. Part of this involves arguing that the asymmetry in the top which arises
from knowing that 7’(t) € ([0, t]) disappears in the limiting procedure used to construct
QLE(8/3, 0) (color figure online)

limit of the aforementioned triple (so both of the limiting QLE(8/3,0)’s are
parameterized by capacity as seen from their target point and the type of limit
is as in Sect. 6.2). Let T be any stopping time for the filtration generated by I
and the restriction of h to the interior of I'y so that I'; is a.s. bounded and let
T be the first time that T hits T;. Then the Jjoint distribution of (C, h, 0, 00),
T'|(0.7), and T|jo.7] is equal to the corresponding distribution if we had taken
I and T to be QLE(8/3, 0) processes generated respectively from the lim-
iting law associated with (8;) and (8) sampled conditionally independently
given h.
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In order to establish Proposition 7.2, we will need to control the Radon—
Nikodym derivative of the conditional law of the approximation of one of the
QLE(8/3, 0)’s given the other. It is not hard to find a counterexample which
shows that if a sequence (Xy, Yk, Zx) converges weakly to (X, Y, Z) such
that Xy, Yi are conditionally independent given Z; for each & then it is not
necessarily true that X, Y are conditionally independent given Z. We begin with
Lemma 7.3 which gives a condition under which the conditional independence
of Xx, Yy given Z; implies the conditional independence of X, Y given Z. We
will then use this condition in Lemma 7.5 to get the conditional independence
of the limiting QLE(8/3, 0)’s stopped upon exiting a pair of disjoint open sets
from which Proposition 7.2 will follow.

Lemma 7.3 Suppose that (Xi, Y, Zi) is a sequence of random variables
such that Xy and Yy are conditionally independent given Zj. for each k and
Xk, Y, Zy) — (X, Y, Z) weakly as k — oo. For each k, let fi (resp. gi) be
the Radon—Nikodym derivative of the conditional law of Xy (resp. Yy ) given Zx
with respect to its unconditioned law. For each k, we let m,}f , m,{, m,g respec-
tively denote the laws of Xk, Yi, Zi. Assume that fi = f and g = g do not
depend on k, that f, g are continuous, and that (X, Zx)g(Yy, Zi) is uni-
formly integrable for dm ,}f dm ,{ dm f . Then X, Y are conditionally independent

given Z.

Proof For simplicity we will prove the result in the case that f, g are bounded.
The result in the general case follows from a simple truncation argument.
Let m*, mY, m?% be the respective laws of X, Y, Z. Then the joint law of
(Xk, Yk, Zy) is given by

f Xk, Z)g(Ye, ZyydmiEdm) dmf .

Suppose that F is a bounded, continuous function of (X, Yk, Zx). Then the
weak convergence of (X, Yk, Zi) to (X, Y, Z) as k — oo implies that

/ F(Xk, Yi, Zi) f Xk, Zi) g (Y, Zi)dmiy dm} dm¥

—>/F(X, Y, Z) (X, Z)g(Y, Z)Ydm¥XdmYdm? as k — oo.

Therefore f (X, Z)g(Y, Z)dm*XdmYdm? gives the joint law of (X,Y, Z).
From the form of the joint law, it is clear that X, Y are conditionally inde-
pendent given Z, as desired. m|

In order to be able to apply Lemma 7.3, we need to give the Radon—Nikodym
derivative of the conditional law of a quantum sphere in a region conditional
on its realization in a disjoint region. We will state this result in the setting
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of the infinite measure Mggs on doubly-marked quantum spheres described
in [10,27] constructed using the excursion measure associated with a Bessel
process because this will allow us to give the simplest formulation of the result.
We recall [27, Theorem 1.4] which states that there exists a constant c;g > 0
such that M%PH = c.gMggs. It will be convenient in what follows to produce
samples of quantum spheres using Mpgs rather than MgPH because the Bessel
description is more amenable to using the Markov property for the GFF. We
will briefly recall this construction; see the introductions of [10,27] as well as
[10, Sect. 4.5, Appendix A] for additional detail. We let € = R x [0, 2] with
the top and bottom identified be the infinite cylinder. We then let H (%) be the
Hilbert space closure of C;°(%’) with respect to the Dirichlet inner product

1
(f:9v =7 /Vf(X) - Vg(x)dx (7.2)
T

and we let H1 (%) (resp. H2(%)) be the subspace of H(%) consisting of those
functions which are constant (resp. have mean zero) on vertical lines. Then
H1(€)DH2(€) gives an orthogonal decomposition of H (%) [10, Lemma4.2].
A sample can be produced from Mpgg as follows.

e Take the projection of 4 onto H (%) to be given by 2 log Z reparameterized
to have quadratic variation du where Z is picke({ from the It6 excursion

measure v?ES of a Bessel process of dimension § = 4 — %. This defines

Z modulo horizontal translation.
e Sample the projection onto H;, (%) independently from the law of the cor-
responding projection of a whole-plane GFF on %'.

(See [27, Sect. 2.1.1] for a reminder of the construction of vsBES .) Throughout,
we let €+ C € be the half-infinite cylinders given by [0, 2] x R4 with the
top and bottom identified.

Fix r € R and suppose that (¢, h, —o0, +00) is sampled from Mggs con-
ditioned on the supremum of the projection of 4 onto H; (%) exceeding r (this
defines a probability measure). We take the horizontal translation so that the
projection of & onto H (%) first hits r at u = 0. We note that the projection
of h onto H (%) takes a simple form for u > 0: it is given by the function
whose common value on u + [0, 27i] is equal to B, + (y — Q)u where B is
a standard Brownian motion with By = r.

Suppose that / is a whole-plane GFF on ¢ plus the function (y — Q)Re(z).
We assume that the additive constant for / is fixed so that its average on [0, 2]
is equal to r. Then the restriction to ¢ of the projection of 2 onto H; (¢’) has
the same law as for 4 above. This implies that the restrictions of 4 and h to
have the same distribution (as the projections of 4, 7 onto H> (%) also have
the same distribution). In particular, by the Markov property of the GFF, the
conditional law of 4 given its values in any neighborhood V of ¢_ is that of a
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GFF in ¥\ V with zero boundary values plus the function which is harmonic
in ¥\ V which has the same boundary values on dV and at 400 as h.

Lemma 7.4 Fixr € R. Suppose that (¢, h, —o0, +00) is sampled from Mpgs
conditioned on the supremum of the projection of h onto H (%) exceeding r.
We take the horizontal translation so that the projection of h onto H (%) first
hitsr atu = 0. Let U C € be a neighborhood of +00 which is contained in
@+ and let V be a neighborhood of 6— such that dist(U, V) > 0. Let g be
equal to the harmonic extension of f — hly from V to €\V and let g = g¢
where ¢ € C*®(Q) is such that ¢ = 0 in a neighborhood of V and ¢|y = 1.
Let Zy v be defined by

Zyv =E[exp ((h, D)v — I2I5/2) | hlu]. (7.3)

Then the law of a sample produced from the law of the restriction h|y of h to
U weighted by Zy v is equal to the law of h|y conditional on the restriction
hly of h to V being equal to f.

Proof We first recall that if / is a GFF on a domain D € Cand f € H(D)
then the Radon—Nikodym derivative of the law of & 4+ f with respect to the
law of A is given by exp((h, f)v — ||f||2v/2)- (This is proved by using that
the Radon—Nikodym derivative of the law of a N (u, 1) random variable with
respect to the law of a N (0, 1) random variable is given by eXHi?/ 2)

In order to make use of the aforementioned fact in the setting of the lemma,
we first recall from above that from the construction of Mggg it follows that the
conditional law of /|y given h|y is equal to that of a GFF on €'\ V restricted
to U with Dirichlet boundary conditions on dV and at 400 given by those of
h. Consequently, by the Markov property for the GFF, we can sample from
the law of |y conditioned on h|y = f by:

1. Sampling & according to its unconditioned law and then
2. Adding to |y the harmonic extension g of f — h|y from V to €\ V.

We can extract from this the result as follows. We have that (h+2)|y has the law
of h|y given h|y = f. Moreover, we have that the Radon—Nikodym derivative
of the conditional law of 4 + g given h|y with respect to the conditional law
of h given h|y is equal to

exp((h, 2)v — IIZ11%/2). (7.4)

This implies the result. O

Lemma 7.5 Suppose that (S, x,y) = (C, h, 0, 00) is as in Lemma 7.4 where
the embedding is given by applying the change of coordinates € — C given by
z+> et Let V C C be a bounded open neighborhood of D and U C C be an
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open neighborhood of oo such that dist(U, V') > 0. Let (6¢), (8x) be sequences
as in Sect. 6.2. Suppose that T* is a 8x-approximation to QLE(8/3, 0) from 0 to

oo and ™ is a 8y-approximation to QLE(8/3, 0) from 0o to 0. Assume that T'*

and ™ are conditionally independent given h and that both have the capacity
time parameterization as seen from their target point. Let Ty (resp. ty ) be the
infimum of times t that T (resp. T )isnotinV (resp. U). Then the joint law
of (C, 1,0, 00), T¥(0.2), Fkl[o,m] converges weakly as k — oo to a triple
which consists of a doubly-marked quantum sphere (C, h, 0, 00) conditioned
as in Lemma 7.4, a QLE(8/3, 0) process I from 0 to oo stopped upon exiting
V, and a QLE(8/3, 0) process T from oo to 0 stopped upon exiting U with both
" and T parameterized by capacity as seen from their target point. Moreover,
I and T are conditionally independent given h.

Proof We know that the joint law of the restriction /|y of & to V along with
I'* converges weakly as k — o0o. We likewise know that the same is true for

h|y along with Fk. As mentioned earlier, by [27, Theorem 1.4], the Radon—
Nikodym derivative of M2py; with respect to Mpgs is given by a constant. It
therefore follows that we also have weak convergence as k — oo when we
produce our sample of (S, x, y) using Mpgs in place of MZp; and it suffices
to show that the weak limit which comes from Mggs has the desired condi-
tional independence property. So, in what follows, we assume that (S, x, y) is
sampled from Mggs.

By the locality property for SLEg, observe that the Radon—Nikodym deriva-

tive Zy, v of the conditional law of |y and Fk|[0,rU] given h|y and rk 10,7y
with respect to the unconditioned law is equal to the Radon—Nikodym deriva-
tive of the conditional law of 4|y given h|y with respect to the unconditioned
law of &|y. By the explicit form of Zy v given in (7.3) of Lemma 7.4, we see
that Zy v is a continuous function of the harmonic extension of /|y to C\V
restricted to U. By passing to subsequences of (§x) and (8y) if necessary, we
may assume that this harmonic extension converges weakly with along the
other previously mentioned variables k — oo. Combining everything with
Lemma 7.3 implies the result. O

Proof of Proposition 7.2 Lemma 7.5 implies that the assertion of the propo-
sition holds if we replace T with the first time ¢ that I exits a bounded open
neighborhood V of 0 and we replace T with the first time # that " exits a neigh-
borhood U of oo with dist(U, V) > 0. By taking a limit as U increases to
the interior of the complement of V/, it follows that the assertion of the lemma
holds if we take 7 to be the first time ¢ that I" exits V and T to be the first time
t that T exits the interior of C\ V. The result follows because this holds for all
V which are bounded and open. O
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7.2 Reshuffling a pair of SLEg’s
7.2.1 Setup

We begin by describing the setup and notation that we will use throughout this
subsection. We first suppose that X', X, B, n', 7, t, and t are as in Theorem 5.1.
(In the setting of the statement of Theorem 7.1, t plays the role of T and t plays
the role of 7.) Then we know that the M%PH’D distribution of (X, X, B) is

invariant under the operation of swapping X and X Let (8;), (3x) be sequences
of positive numbers decreasing to 0 as in Sect. 6.2. Let Fk|[0,t] be the &-
approximation to QLE(8/3, 0) which we take to be coupled with 1’|[0.¢ 0O
that the bubbles that it separates from its target are the same as quantum
surfaces as the bubbles separated by 7/[[o.¢ from its target point. That is, in
the construction of ' |jo ; we take the time-reversal of the Lévy excursion e
to be the same as the time-reversal of the Lévy excursion for " up to time t
and we take the bubbles that I'¥| [0,4] separates from its target point up to time
t to be the same as the bubbles that i’ separates from its target point up to
time t. We sample the rest of the process and quantum sphere conditionally
independently given its realization of up to time t.

We likewise let Fk 0.1 be the gk—approximation to QLE(8/3, 0) which we
take to be coupled with 77’| (0.7 SO that the bubbles it separates from its target are
the same as quantum surfaces as the bubbles separated by 77| (0.g from ts target
point. We sample the rest of the process and the quantum sphere on which it
is growing conditionally independently given its realization up to time t.

Consider the doubly-marked quantum sphere (S¥, x¥, y*) which arises by
starting with the doubly-marked sphere (S, x, y) as above, cutting out the
quantum surfaces separated by n'|jo.¢ and 77’ lj0.7) from their respective target
points, and then gluing in according to quantum boundary length the cor-

responding quantum surfaces for Fkl[o,t] and Fk|[o7{]. (See Fig. 11 for an
illustration.) We identify the tip of the final SLEg segment used to build rk [10,4]
with ' (t) and likewise for Fk|[0,;] and 77’ (t). Proposition 5.12 implies that the
resulting quantum surface is uniquely determined by this gluing operation.
Moreover, the distribution of (S, x*, y*) is equal to that of (S, x, y). We

abuse notation and let T* and T be the resulting & and 8 -approximations to
QLE(8/3, 0) and let B* be the region in $* which is not in either I'{ or Ts.
Throughout, we will write T (resp. T) for t (resp. t) when referring to either
I'“or (resp. Fk or I') and use ¢ (resp. t) when referring to n’ (resp. 7).
We let ®©; denote the joint distribution of (8" , xk yk), rk, Fk, 7 and T and
let ®£_)y be given by © weighted by the amount of time it takes I'¥ to reach
its target point. We define @Z " similarly except we weight by the amount of
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. . =k . . Lo . .
time it takes I to reach its target point and we write o for a uniform variable
. . . =k .
between 0 and this time and let o be the first time that ¥ hits T';-. We write

B for the surface which is the complement of T'¥ and F];—. Note that ©, "~
and @Z_)x are the analogs of ®*~Y and ®Y~* defined at the beginning of
this section except we have used the approximations to QLE(8/3, 0) instead
of the limits.

Let (I'[{0,<7, F|[0ﬂ, B) be the configuration on the doubly-marked quan-

tum sphere (S, x, y) which arises by taking the limit of (I'¥ |0, Fk|[oﬂ, B5)
under ®, 7 as k — oo. The sense in which this limit is taken is as in
Proposition 7.2. Proposition 7.2 implies its existence and that the distribu-
tion of (S, x, ¥), I'|j0.7]» and T'|[9.7] as constructed is equal to its distribution
under ©* 7. We likewise let (I'[{0.51, Fl[o,g], B) be the configuration on the
doubly-marked quantum sphere (S, x, y) which arises by taking the limit of

— —k ,
(Fkl[o,g], Fkl[(),ﬁ], B") under @,i_” as k — o0o. Analogously, we can con-

struct the law of (S, x, y), I'[j0.6], F|[0,5] under ®Y7~* as the same type of
limit.

7.2.2 Structure of the meeting QLEs

In this section we will prove two results regarding the structure of the triple
I'l10,7]> T'l{0,7], and B under ®* Y (as well as analogous results in the setting
of ®@~%),

Lemma 7.6 Under ® 7, we have that T'|j.r) and T ||0 7] a.s. intersect at a
single point. In particular, the region B of S outside of T'|j0,r) and T |jo.7) is
a.s. connected. Moreover, the conditional law of B given its boundary length is
that of a quantum disk and 9B is a.s. conformally removable in any embedding
of § into C. The same holds in the setting of ®°~* in place of ®* 7.

See Fig. 12 for an illustration of the setup and proof of Lemma 7.6.

Proof of Lemma 7.6 We know that the statement of the lemma holds in the
setting of each of the §;-approximations; see also the proof of Lemma 7.8 just
below. Indeed, this follows because a radial SLE¢ segment a.s. hits the bound-
ary of any fixed domain for the first time at a single point. For each k € N, we
pick z¥ in B¥ according to the quantum area measure and then parameterize
B¥ by (D, h¥) by using the change of coordinates given by the unique confor-
mal map ¢*: D — BF with ¢¥(0) = z* and (¢¥)'(0) > 0. We note that the
distribution of (D, #*) does not depend on k and that, by Proposition 5.12 its
law conditionally on its boundary length is that of a quantum disk.

Fix £ > 0 and assume that we are working on the event that the quantum
boundary length of E)F’TC isin [£, £ 4 1]. Since this event has positive and finite
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@iéy mass, we can condition ®z_)y on it and we get a probability measure.
Suppose for contradiction that there is a chance p > 0 that 3T"; N 9T "¢ consists
of more than a single point. This would imply that the following is true. Let

u* be the unique element of BF’; N afi. Then there exists » > 0 such that
with probability at least p/2 there is a point v* on dT ’r‘ such that the quantum
length of either the clockwise or counterclockwise segment of BF’T‘ from u* to
v¥ is at least r and its harmonic measure as seen from z¥ is o(1) as k — 0.
In particular, the arc length of the preimage of this interval under ¢* is o(1)
as k — oo. This implies that (D, #*) converges as k — oo to a field whose
associated quantum boundary measure has a positive chance of having an atom
on dD. This is a contradiction because the law of (D, #%) does not depend on
k and its associated quantum boundary measure a.s. does not have an atom on
oD (Proposition 5.12 and [12]). This proves the first assertion of the lemma.
The second assertion follows because the distribution of B* does not depend
on k and the final assertion follows by using the argument of Proposition 5.12
(i.e., any embedding of a quantum disk into a quantum sphere a.s. has a con-
formally removable boundary). O

Lemma 7.7 Under ©®*~Y, the point on 3Ty (resp. d0'=) which is glued to
the a.s. unique pinch point of 9B is uniformly distributed from the quantum
boundary measure on 31 (resp. 01'z). The same holds in the setting of ©Y 7%
in place of @77,

Proof Itis easy to see that this is the case for I'|[o, ;] based on the construction.

Let [&, T] be the interval of time in wllich Fk |[0,7] 1s drawing its final segment
of SLE¢. The claim in the case of I'[|9 7] follows because for each of the

approximations Fk|[0’f] we know that the starting point of the final SLE¢

segment is uniformly distributed on Bfg and this final SLE¢ segment collapses
to a point as k — oo. O

7.2.3 Preliminary symmetry statements

In order to work towards the proof of Theorem 7.1, we will now:
e Show that the @;{C_)y distribution of (Fk|[0,r], Fk|[03], B) is equal to the
®) 7 distribution of (T¥|(0.5). T |j0.57. B') (Lemma 7.8)

e Deduce from this that the ®* ¥ distribution of (I'|9, 7], T| (0,71, B) is equal
to the @Y~ distribution of (I'[[0,4], I'l[0.7], B) (Lemma 7.10)

The proof of Theorem 7.1 will not require much additional work once we have
established these lemmas.

Lemma 7.8 The ®, 7 distribution of (T¥|j 7, Fk|[0ﬂ, B¥) is the same as
- —k
the © ™" distribution of (T¥|10.01. T (0.5, B ).
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. =k —k
In the statement of Lemma 7.8, we view I'*|(0 -1, T |j0.7], T¥lj0.61» T lj0.5] as
random variables taking values in the space of beaded quantum surfaces with
a single marked point which corresponds to the tip of the final SLE¢ segment
. . -5k . .
in the growth process and we view BX, B as random variables taking values
in the space of quantum surfaces.

Remark 7.9 As in Remark 5.2, we emphasize that Lemma 7.8 does not imply
that the ®; distributioil of (T¥|j0.¢1, T 1071, S¥) is equal to the CHa
distribution of (T'¥|j0.51, T |j0.7], S¥) because of the asymmetry which arises

since the tip of T |[0,7] is contained in X while the tip of I'¥| (¢, .} is uniformly
distributed according to the quantum boundary measure on SFIT‘.

Proof of Lemma 7.8 The result is a consequence of the following three obser-
vations.

First, the ordered sequence of bubbles separated by I'¥| [0.7] from its target
point is equal to the ordered sequence of bubbles separated by 7’| ¢ from
its target point and the same is true for ™ l10.71 and 7'[; ;- Theorem 5.1 thus
implies that the collection of §;-quantum natural time length SLEg segments
(viewed as beaded quantum surfaces) which make up I [0, r1under @;i_)y have
the same joint law as the corresponding collection for I'¥ (0,01 under G)y It
also implies that the quantum lengths of the outer boundary of I'¥| [0,7] at the
reshuffling times jé; for 1 < j < |t/8x] have the same joint law under ® -7
as the quantum lengths of the outer boundary of I'¥| [0,0] at the reshuffling tlmes
jorforl < j < |o/8;] under @,f_)x. Indeed, this follows since these quantum
boundary lengths are determined by the bubbles that the processes separate
from their target points and the bubbles determine the SLEg segments.

Second, the starting locations of each of the SLEg segments which make up
I'¥|(0.] have the same conditional law under ®;§_>y given the bubbles as in the
case of I'*|[o.,1 under @Z_)x. Indeed, in both cases, these starting locations
are distributed uniformly from the quantum boundary measure.

Both of the first two observations also apply for Fkl[oﬂ under ®;§_)y and
Fkl[o’g] under ®Z_>x

Third, the previous two observations imply that the induced joint distribution
of T'¥|;9.-] and T l[0,7] under @;{C_)y is the same as that of I'¥ | ,] and Fk|[075]
under @,{ . We also note that B¥ is conditionally independent given its

boundary length of |0 ;] and Fk|[05] under ®i_)y. The same is also true
under ®Y~*, so combining implies the desired result. O

The next step is to show that the symmetry established in Lemma 7.8 also holds
for (I'|j0.71, I'ljo.7], B) under @~ and (I'[{0,51, ['l[0.57, B) under ®Y~*.
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Before we state this result, we need to introduce a certain notion of equiv-
alence for QLE(8/3, 0) processes. We recall from Proposition 6.5 that the
complementary region of a QLE(8/3, 0) run up to a given quantum distance
time has the same law as the corresponding region for an SLEg and from
Proposition 6.6 that the boundary of a QLE(8/3, 0) can be parameterized by
a continuous curve. This allows us to induce a quantum boundary length mea-
sure on the prime ends of the boundary of a QLE(8/3, 0) even though it is not
a priori clear at this point whether this boundary measure can be defined in a
way which is intrinsic to the QLE(8/3, 0). (At this point, we do know that the
total boundary length is intrinsic to the QLE(8/3, 0) because it can be deter-
mined by boundary lengths of the bubbles it has cut off from its target point.
This follows because the value of a stable Lévy process at a given time can be
recovered from the jumps that it has made up to this time. See [2, Chapter I,
Theorem 1].) _

Suppose that (S, x, y), I and (S, X, y), T are two QLE(8/3, 0)-decorated
quantum surfaces which are defined on a common probability space. Suppose
further that 7 (resp. T) is a stopping time for I" (resp. ). Let h (resp. h) be the
field which describes S (resp. S) We say that I'| 10,71 is equivalent to r l10.7]
if there exists a homeomorphism ¢ taking I'; to 'z with ¢(I';) = I'; for all
t<t,p(;) = F;, and which

e Takes the quantum boundary measure defined on the prime ends of the
outer boundary of I'; to the quantum boundary measure on the prime ends
of the outer boundary of Tz, and is _

e Conformal on the interior of I'; with & o ¢ + Q log |¢’| = h on the interior
of I';.

We emphasize that, at this point, we have not proved that the boundary of a
QLE(8/3, 0) is equal to the boundary of its interior or that the boundary of a
QLE(8/3, 0) does not contain cut points or spikes. This is the reason that we
consider prime ends in this notion of equivalence. (It will be a consequence
of the subsequent work [28] that this type of behavior does not occur.) As
we will shall see later, this notion of equivalence is useful because it encodes
the information necessary for the operation of welding according to quantum
boundary length to be well-defined and uniquely determined (i.e., we will be
in a setting in which we can apply the conformal removability of the boundary;
recall Proposition 2.1).

Lemma 7.10 The @Y distribution of (I'|j0,<], F|[0,?], B) is equal to the
OY=* distribution of (I'[[0,61, I'lj0,51, B) where we use the notion of equiva-
lence for QLE(8/3, 0) processes as described just above.

See Figs. 13 and 14 for an illustration of the proof. Lemma 7.8 implies that
one can construct a coupling of an instance (I" Lk li0.z17> Fl’kl[of1], BLX) from
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, . =2,k —2,k
@i_” and an instance (Fz’k|[0’02], r |[0,62]v B7) from @,{_)x so that each
of the components are equivalent as (marked and beaded) quantum surfaces.

In particular, there is a homeomorphism of Fi’lk to Fi’zk which is conformal

on the interior of I i’,k. Since we need to establish the equivalence of the limits
as k — oo in the sense described above, we need to know that the limit of
this map is a homeomorphism and preserves the boundary length measure. In
order to show that this is the case, we will want construct the coupling so that
we can conformally map an entire neighborhood of Fi’lk to a neighborhood of
Fi’zk. The challenge is that this is not exactly possible due to the asymmetry
in the locations of the tips of the two QLE approximations.

To explain this point in further detail, the tip of ['>* {0,527 1s contained in
the outer boundary of Tt lj0.52) While the the tip of Lk lt0,717 1s uniformly
random on its boundary (see F1g 13). The difficulty that this causes is that if we

. =L,k .
couple an instance (Fl’kl[oﬁfl], ' ozt BY*) from @;{C_)y and an instance

=2,k 2.k
(02K 0,021 T ljo.72p, B) from @Z_)x so that each of the components are
equivalent as (marked and beaded) quantum surfaces, then it is not possible to
arrange so that the map which takes Fi’lk to 1"(27’2]‘ agrees with the map which

takes B* to Ez’k on the boundary to define a welding hence be conformal in a
neighborhood of Fi’lk. To handle the issue with the asymmetry, we will couple

so that (', 1y, Fl’k|[ofl]) and (I'*]9 521, Fz’k|[ojz]) are equivalent as
(marked and beaded) quantum surfaces and only consider the map of the part
of T'% up to the time €' = 8;t!/8;] to the part of ['>* up to the time
£% = 8|02 /81 ). We would like to then glue the points on arii"\a F;’lk to the

points on oI ;ak\a r i ’lk according to boundary length (boundaries of the yellow

region which are part of the outer boundary of I'"* at the times £, t1). If the
boundary lengths of ari;"\a F;’lk and 8F§1]k\8Fi’lk are not the same (which
is a.s. the case), then it is not possible to glue according to boundary length.
To circumvent this problem, we grow the segment of SLEg being drawn by
'Lk at time ©! further until the first time ¢! that the quantum length of the
outer boundary of the surface formed is the same as the quantum length of the
outer boundary of I''F at time &'. We let R! be the surface that this SLE¢
cuts off from oo in the interval [£!, £!] (union of yellow and green regions in
Fig. 13) and Bk = B"®\R!. Note that the surface BU* a.s. does not have the
same boundary length as Ez’k, so they cannot be coupled to be the same. We
correct this by growing the segment 77" of SLE¢ being drawn by Tk at time

B?,k

& until the first time Ez that the boundary length of the region outside

of Fi’zk uT>f U 7 (2, 22]) is the same as that of BU*. If we couple so that

72
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Fig. 13 Illustration of the setup for Lemma 7.10. In the figure and in the proof, we use a
superscript 1 (resp. 2) to indicate a sample from the measure which is weighted by quantum
distance time from x to y (resp. y to x). Here, [£ 1, rl] is the interval of time in which I 1'k|[0 -
is drawing its final segment of SLE¢g (shown in yellow). The green region shows the surface
which is cut off by running this SLE¢ further until the first time that the boundary length of the

surface which corresponds to Fi’lk and the additional SLEg segment is equal to the boundary

length of oI" k Itisa high probability event that this time occurs very quickly after time 7l

1,
Sl
(when 8 > 01is small). The purple region shows the final segment of SLE¢ for Fl’kl[ofl]. The

region R! is the union of the yellow and green regions (color figure online)

BLk = @’k, then we can define a map I“Sl’lk UBLk F;;k U Bk by gluing

the partof I ;’lk NOR' to dR\I ;’lk according to boundary length. This yields a
welding as the two boundary lengths agree, so this map will thus be conformal
in a neighborhood of Fgl’lk except near R' and where the two QLE(8/3, 0)’s
meet. The former does not cause a problem as diam(R!) — 0 in probability as
k — oo and the latter does not cause a problem since the two QLE(8/3, 0)’s

a.s. meet at a single point.

Proof of Lemma 7.10 Step 1. Coupling of the QLE approximations. We begin
by starting off with samples (Flsk|[0,,1],F ’k|[0’?1], BY%) and (I>*

[0,02]>

=2 =2,k . :

r ’kl[O’Ez], B~") respectively from ®i_>} and @,f_”‘. We take these to be

coupled together so that (as marked (by their tips) beaded quantum surfaces)
=1k =2,k

we have I |5 .1y = T2¥|g ;21 and T [ g 71y = T [ ;g 52)- We note that

both B and Ez’k are quantum disks conditional on their quantum boundary
length. Under this coupling, we have that 7! = 0% and 7! = 7°.
Leté& L= T 1 /x| sothat [& I t1is the interval of time in which "% | [0.71]

is drawing its final segment of SLE¢. Let 1’ be this SLE¢ process (normalized
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so that it starts at time &! ) and let ¢! be the first time after ¢! that the outer
boundary of the cluster T £l ky n’ (€Y, £ 1) is equal to the boundary length of

al’ El . Since the boundary length evolves as the time-reversal of a 3/2-stable
Lévy excursion (when parameterized by quantum natural time), we note that
¢! converges to t! in probability as k — oo. (In particular, the probability
that ¢! is finite tends to 1 as k — o0.) We let R! be the quantum surface
which is cut out by n ([, £']). On the event that Fi’lk UR!is disjoint from

Blk

=1,k .. .
I'_1", the conditional law of the quantum surface parameterized by the

region outside of I"_ : ’k UR'U Fl’k is that of a quantum disk given its quantum
boundary length. We also let 77’ be the SLEg process which is drawing the
final segment of T k|[0’5z] (normalized so that it starts at time 02) and let

-2 . _ .
z be the ﬁrst time after 2 that the quantum length of the surface outside

of I'% 2 U Ffz Umn "([62 EZ]) is equal to that of dB* and let ﬁz be the

surface which is cut out by 7’ ([2, Ez]) As before we have that 22 — o2 in

probability as k — oo and the probability that R is disjoint from r oa ¥ tends
tolask — oo Let B ok be the quantum surface parameterlzed by the region

outside of F ky R U F 2 On the event that R N F = {J, we have that

B2k given 1ts boundary length is a quantum disk. In partlcular, on the events

RN F;lk = () and RN Fi’zk = {, we have that B'* and B%¥ have the same
boundary length so we can recouple so that BLk = B2k,

Let £2 = 8;|02/8k] so that [£%, 0] is the interval of time in which
I‘Z’kl[o’az] is drawing its final segment of SLE¢. We note that £! = &2 as
! :2 1272, but we will write £! when referring to I''"f and £2 when referring
to I'>*%.

Let ¢X be the equivalence map (as marked (by their tips) beaded quantum

surfaces) which takes Fllk to F; X Then ¢* in partlcular takes the tip z1'¥ of

'Lk at time &' to the tip z2% of I'2F at time £2. Let ¢* be the equivalence
map which takes BYk 10 B2k, As 21K is uniformly distributed according to the
quantum measure on BN al',; LK and 22K is uniformly distributed according

to the quantum measure on BN ngk,

so that ¢* (z1'¥) = z>* with probability tending to 1 as k — oo.
Step 2. Welding inside and outside of the approximations. Since ¢* and ¢* both
preserve the quantum boundary measure and both take z!¥ to z>, it therefore

follows that ¢ and ¢* agree on the component of BFi’lk\(Rl U aﬂa") which

it follows that we can take the coupling

. —1,k .
contains z'*. Note that 8Fi’1k \(R'U oI'_1") consists of two components and
we want to argue that ¢* and ¢ also agree on the other connected component.
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This, however, follows since the boundary length of 9T° %‘1 ’lk NAR! is equal to the

boundary length of R\ 9 F;;k. That is, the map ¥ which takes F;ik U Bl
to’ ;&k U B2k given by ¢f on B'“* and ¢*onT ;’lk is conformal on the interiors

of B'* and T éik and a homeomorphism on its entire domain. Therefore by the

conformal removability of oI" El’]k UaR!, we have that y* is conformal on the
interior of its domain.
Step 3. Limit of welding yields equivalence of QLE’s. Since diam(R') —

0, diam(ﬁz) — 0 in probability as k — o0, it therefore follows that, by
passing to a further subsequence if necessary (and recoupling the laws using
the Skorokhod representation theorem), ¥* converges a.s. as k — oo with

. =2
respect to the local uniform topology to a map : Fll uB —» F<272 UB
which is a homeomorphism and conformal in its interior. By Lemma 7.6, the
interior of the domain of v includes all of F;l except possibly a single point

— the unique point wq where it hits T'| [10 . However, it is not difficult to see

that i is continuous at wg. Indeed, suppose that (wy) is a sequence in I" il
which converges to wo. Let (w}, ) be a subsequence of (wy) and let (w ji) be

a further subsequence so that (y (w jzi)) converges (note that F(zyz is compact).
If limg— 00 ¥ (w J’/ﬁ) £ Y (wo), then it follows since ¥ ! is a homeomorphism

away from ¥ (wo) that w W= w_l (W (w J'A'»)) converges to a point distinct from
wo. This is a contradiction, and therefore i is continuous at wy. It therefore
follows that the distribution of I'|[9,;; under ®* 7 is the same as that of I'[[0 ]
under ®”~* (in the sense described just before the statement of the lemma).
The same argument also implies that the distribution of I'|jp 7} under @Y
is the same as the distribution of T'|jo7] under ®*~*. The result follows
because I'[j0.7], [|j0,7], B are conditionally independent under @Y given
their boundary lengths, the same holds under ®”~~*, and the joint law of the
boundary lengths is the same as that of T'|[9 4], I'|j0.5], B under @ ~*. |

7.2.4  Proof of Theorem 7.1

Lemma 7.10 implies that the ®*7Y distribution of (T'l10.21> Clio.z1, B) is
equal to the ®>~" distribution of (I'|[0.4], I'|{0.7]. B) (where the sense of
equivalence for the first two components is as described just before the
statement of Lemma 7.10 and the third component is in the usual sense
of a quantum surface). This implies that we can construct a coupling of
. =1 =2 -2
copies (T'! lio,z11> T lio. 715 B') and (F2|[0,02]v o2 B7) so that we have
=1 =2 2 e o .
l"il = Fc2r2’ [-1 = I'z2, and B! = B". This implies the existence of homeo-

morphisms ¢ : Fil — ng,a: F%l — Féz, andy: B! — EZ which are each
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conformal in the interior of their domain and preserve the quantum boundary
length. By Lemma 7.7, we know that the point on oI’ i , which is glued to
the a.s. unique pinch point on 38! is uniformly random from the quantum
boundary measure on aril and the same is likewise true for F§2' Thus we
can couple so that ¢ (resp. ¢) sends this point to the corresponding point on

81"32 (resp. Bféz). Let S/ for j = 1, 2 be the doubly-marked quantum sphere
associated with (I‘il , F%l, BYY and (Fiz, Féz, BZ), respectively. Letting ¢ be
the map S! — S? which on Fi , (resp. F;l) is given by ¢ (resp. ¢) and on
B! is given by 1/, we thus see that ¢ is a homeomorphism which is conformal

in the complement of 38! = 3Fi1 U 8?%1 . By the conformal removability of

dB' (Lemma 7.6), we thus have that ¢ is conformal everywhere hence must
be a Mobius transformation, which completes the proof. |

7.2.5 Conditional law of the unexplored surface

We finish this section by stating the analog of the final part of Proposition 4.1
for QLE(8/3, 0).

Proposition 7.11 The ®*~7Y conditional distribution given (S, x,y) and
['[[0,7] is equal to the © conditional distribution given (S, x, y) and I"||o,1).

Proof The last part of Proposition 4.1 implies that the analogous statement
holds for each of the §-approximations to QLE(8/3, 0). Therefore it follows
that this property holds in the limit. O

8 Metric construction

The purpose of this section is to show that QLE(8/3, 0) equipped with the
quantum distance parameterization defines a metric on a countable, dense
subset consisting of a sequence of i.i.d. points chosen from the quantum mea-
sure of a /8/3-LQG sphere. The approach we take, as explained and outlined
in Sect. 1.1, is based on ideas from a joint work by the second co-author, Sam
Watson, and Hao Wu.

We begin by considering a pair of QLE(8/3, 0) explorations I" and " on a
doubly marked quantum sphere (S, x, y) where the first (resp. second) process
starts from x (resp. y) and is targeted at y (resp. x). We then use several results
accumulated earlier in the paper to prove that the “distances” computed by
these two explorations are a.s. the same.

The remainder of this section is structured as follows. In Sect. 8.1, we
describe the setup and notation that we will use throughout the rest of the
section. We will complete the proof of Theorem 1.1 in Sect. 8.2.
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8.1 Setup and notation

We will use the same setup and notation described in the beginning of Sect. 7.
Since ®* 7Y and ®Y7* are infinite measures, we cannot normalize them to be
probability measures. However, these measures conditioned on certain quan-
tities do yield probability measures. In these cases, we will let Pgr—y[-| -]
(resp. Pey—«[-|-]) and Egx—y[- | -] (resp. Egy—x[- | -]) denote the correspond-
ing probability and expectation. We will similarly write Pg[- | -] and Eg[- | -]
for the probability and expectation which correspond to ® conditioned on a
quantity which leads to a probability measure. For each ¢+ > 0, we also let
Fr =0(S,x,y, Iy : s <t)and F, = o(S,x,y, T, : s < t). That is,
F; (resp. F,) is the filtration generated by (S, x, y) and I" (resp. T') with the
quantum distance parameterization.

8.2 Coupling explorations and the metric property

We will complete the proof of Theorem 1.1 in this section. The first step is to
prove the following proposition, which is in some sense the heart of the matter.

Proposition 8.1 The ®*~7 distribution of (_S ,x,y,1,0,7, T) is the same as
the ©®Y~* distribution of (S, x, y,o0,,a,T).

Theorem 7.1 implies that the ® Y distribution of (S, x, y, T'[j0.r}, Tlj0.7)) is
equal to the ®Y~* distribution of (S, x, y, I'|{0.0]. F|[0,5]). To prove Propo-
sition 8.1, we will try to understand the conditional law of " and T given this
information.

We provide here a sketch of the argument before we proceed to the details.
Because of the way that ®* Y was constructed, one can show quite easily that
the ®* Y conditional law of I" given the five-tuple (S, x, y, I'[{0,7], T| [0,7]) is
a function of the four-tuple (S, x, y, I'|[0,7]). (The existence of regular condi-
tional probabilities follows from the fact that the GFF and associated growth
processes can be defined as random variables in a standard Borel space; see
further discussion for example in [33,43].) The proof of Proposition 8.1 will
be essentially done once we establish the following claim: the ®Y~* condi-
tional law of I" given the five-tuple (S, x, y, I'[[0,01, F|[o,g]) is described by
the same function applied to the four-tuple (S, x, y, I'[[0,5]). Indeed, a sym-
metric argument implies an analogous statement about the conditional law of
T under ®* Y and ©Y~* given the corresponding five-tuple. Proposition 8.1
will follow readily from this symmetric pair of statements and the a priori
conditional independence of I' and T given (S, x, y).

The claim stated just above may appear to be obvious, but there is still some
subtlety arising from the fact that T and o are not defined in symmetric ways a
priori, and in fact o is a complicated stopping time for I" (which depends both
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on (S, x, y) and on the additional randomness encoded in T and &), and we
have not proved anything like a strong Markov property for the QLE(8/3, 0)
growth that would hold for arbitrary stopping times. We begin by fixing a
bounded function F and let

M, =Eg[F(I')|F,] and M, =Eg[F(T)|F,;] foreach t>0. (8.1)

We note that we can write M; = A(S,x,y,I'|j0,;)) for some measurable
function A. Moreover, by varying F, this family of measurable functions
determines the conditional law of I' given (S, x, y, I'[[0,;]). We will check
that M is a.s. continuous (as a function of ) at the time 7. Since M is a
continuous-time martingale, it a.s. has only countably many discontinuities.
Thatis, the limits limg4, M and limg |, M; exist for a.e. ¢ and necessarily coin-
cide except at possibly a countable set of times. It will thus suffice to prove
that when (S, x, y, T, T)is given and 7 is chosen uniformly from [0, do(x, y)]
the probability that either T assumes any fixed value is zero. This, however, is
obviously true from the definition of t.

We likewise have that M, = A(S,x, y,Fl[o,,]) for some measurable
function A and this family determines the conditional law of T given
(S, x,y,T| [0,11)- Moreover, M has the same continuity properties as M since it
is also a continuous-time martingale. We will aim to show that M is a.s. contin-
uous at 0. As in the case of M and , in the case of M and o it suffices to show
that the probability that o assumes any fixed value is zero when (S, x, y, ', T")
is given and @ is chosen uniformly in [0, do(y, x)]. This follows because the
map ¢ — o (a random function that depends on (S, x, y, I, T)) is non-
increasing by definition, and the symmetry property implies that I a.s. first
hits T's at exactly time o, which implies that there a.s. cannot be a positive
interval of o values on which o is constant.

The following lemma is the main input into the proof of Proposition 8.1.

Lemma 8.2 We have on a set of full ©® measure that

A(S, x, ¥, Tj0.6]) = Eev—=x[F(I') | F», F5] and

— — — — (8.2)
A(S.x,y,Tlo7) = Eex— [FT) | Fz, Fz].

To further clarify the statement of Lemma 8.2, we note that o is a stopping time
for the filtration generated by F;, F. Thus the conditional expectation in the
first equality of (8.2) is with respect to the stopped o -algebra for this filtration
at the time o. Similarly, T is a stopping time for the filtration generated by
Fy, F; and the conditional expectation in the second equality of (8.2) is with
respect to the stopped o -algebra for this filtration at the time 7.

Lemma 8.2 implies that Egy—x[F (") | Fo, Fsl = A, x, v, Tljo.07)-
Since Egr—y[F(I") | Fr]1 = Eol[F (') | F:] = A(S, x,y,'lj0.7]), we thus

@ Springer



Liouville quantum gravity and the Brownian 147

see that Lemma 8.2 implies that the ®Y~* conditional law of I" given

(S, x, 5, lj0.67, Tlj0.7)) is the same as the ® Y conditional law of I" given
(S, x, v, Tlo.e)-

Proof of Lemma 8.2 We will only establish the second equality in (8.2); the
proof of the first equality is analogous. We first recall that on a set of full ®
measure we have Egr—y[- | ;] = Egl[- | 77 ]; see Proposition 7.11. Through-
out, we will write dt for Lebesgue measure on R;. We now observe that
d® ® dt a.e. we have that

Eo[F(D)| Fr, Fil = Egr=s [F(D) | Fr, Fil. (8.3)

Since F; and F; are conditionally independent given (S, x, y) under ®, we
have d® ® dt a.e. that

M; =Eo[F(T) | Fr, Fil. (8.4)
Combining (8.3) and (8.4), we have d® ® dr a.e. that
M; = Eo—y[F(D)| Fr, Fil. (8.5)

In particular, the event E that (8.5) holds for all rational times simultaneously
has full ® measure.

We will deduce (8.2) from (8.5) by showing that on a set of full ® measure
we have both

M; — A(S,x,y,Tloz) as t17, te€Qy and
(8.6)

Eory[F(T) | Fr, Fil = Eeey[F(T) | Fr, Fzl as t 17, t €Qy.
(8.7)

We emphasize that in (8.6) and (8.7) we take the limit along positive rational
t.

To prove (8.7) it suffices to show that the o -algebra generated by F~, F, for
t < T is equal to the o -algebra generated by F;, Fz. It in turn suffices to show
that the closure of U, 71, is a.s. equal to T'=. This will follow by showing that
T does not correspond to a jump in the time change from capacity to quantum
distance time. Since there can only be a countable number of such jump times
and @ is uniform in [0, dg(y, x)], it follows that & a.s. does not correspond
to such a jump time for T". By Theorem 7.1, the @~ distribution of T'|{o.7]
is the same as the @~ distribution of T'||p 7. We therefore conclude that T
similarly a.s. does not correspond to a time at which the capacity of T jumps.
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The existence of the limit in (8.7) combined with (8.5) implies that M,
a.s. has a limit as ¢+ 1 T along rationals. We need to show that this limit is
a.s. equal to A(S, x, v, F|[oﬂ). As we remarked above, we know that M,
can jump at most countably many times as it is a continuous-time martingale.
Since Pglo = ¢ |.7"3Q(y’x>] = 0 a.s. for any fixed ¢, it follows that o is a.s.

not a jump time for M, = A(S, x, y, T'l{0.,)- Consequently, we have that

1i1117 AS, x,y, o) = 1i1117 M; =Mz =AS,x,y,Tloz) (8.8
t—o t—o

on a set of full ® measure. By Theorem 7.1, we know that the ®Y~~*
distribution of A(S, x, v, F|[0’t]) for t+ € [0,7] is equal to the @Y dis-
tribution of A(S, x, y, Fl[o,t]) for t+ € [0,T]. Therefore (8.8) implies that
lim, - A(S, x,y,T|j0.]) = A(S, x, v, T|j0.7]) on a set of full ® Y mea-
sure. Since ® is absolutely continuous with respect to ®* Y it therefore
follows that lim,_, - A(S, x, y, T|j0.r]) = A(S, x, y, T'|[0.7]) on a set of full
® measure. Combining everything completes the proof. |

Proof of Proposition 8.1 Theorem 7.1 implies that the ®* Y distribution of
(S, x,y), I'ljo,7], and Fl[o,?] is equal to the ®Y~* distribution of (S, x, y),
(10,61, and I'[[0,57. _

We claim that the ®*Y conditional law of T" given F;, F7 is the same as
the ®Y~* conditional law of I" given F, , 5. The same argument will give
that the ®¥~* conditional law of T" given F,, F5 is the same as the ©@* Y
conditional law of T given F;, F7. Upon showing this, the proof will be
complete. To see the claim, we first note that Proposition 7.11 implies that the
®* 7Y conditional law of " given F, F= is the same as its © conditional law
given F;, Fz. By the ® conditional independence of I" and T given (S, x, y),
this conditional law is in turn equal to the ® conditional law of I" given F7.
Lemma 8.2 then implies that the ® conditional law of I' given F7 is equal
to the ®>~* conditional law of I given F, F (this follows from the first
equation in (8.2)). This proves the claim, hence the proposition. O

Proposition 8.3 We have on a set of full © measure that do(x, y) = do(y, x)
and that the common value of dg(x,y) and dg(y, x) is a.s. determined by

(S, x, ).
Proof Proposition 8.1 implies that

de*=Y  dey—x

16 16 - do(y, x).

do(x,y) =

This implies that dg(x, y) = EQ (y, x) on a set of full ® measure. Moreover,
the common value of do(x, y) and do(y, x) is a.s. determined by (S, x, y)
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because we took I" and T" to be conditionally independent given (S, x, y) under
©. In particular, this implies that dg (x, y) and d o (v, x) are conditionally inde-
pendent given (S, x, y) and the only way that two conditionally independent
random variables given (S, x, y) can be equal on a set of full measure is if
they are a.s. determined by (S, x, y). O

Proposition 8.1 implies that if S has the law of a unit area quantum sphere
and x, y € § are chosen independently from the quantum measure on S, then
the amount of time that it takes a QLE(8/3, 0) with the quantum distance
parameterization starting from x to reach y is a.s. determined by S and is
equal to the amount of time that it takes for a QLE(8/3, 0) with the quantum
distance parameterization starting from y to reach x. Moreover, this quantity
does not depend on the choice of sequence that we chose in the construction
of the QLE(8/3, 0). Therefore from now on we will only write dg (and not
d o). Conditionally on S, we let (x,,) be a sequence of i.i.d. points picked from
the quantum area measure. For each i, j, we let dg(x;, x;) be the amount
of quantum distance time that it takes for a QLE(8/3, 0) starting from x; to
reach x;. Then it follows that do(x;, x;) = do(x;, x;) for all i, j and dg is
a.s. determined by S. Moreover, it is immediate from the construction that
do(xi,xj) > 0as. foranyi # j.

Our next goal is to establish Proposition 8.5, which will be used in the proof
of Theorem 1.1 to show that dg satisfies the triangle inequality hence is a
distance function on (x,). Before we state and prove this result, we need to
collect the following elementary lemma.

Lemma 8.4 Fix D > 0. Supposethat F : [0, D] — [0, D]is anon-increasing
Sfunction such that if U is uniform in [0, D] then F(U) is uniform in [0, D].
Then F(d) = D —d foralld € [0, D].

Proof This is essentially obvious, but let us explain the point to be clear.
Since F(U) is uniform in [0, D], we have P[F(U) > d] = 1 — d/D for all
d € [0, D]. Since F is non-increasing and F(U) is uniform it follows that
there cannot be a non-empty open interval in [0, D] on which F is constant.
Consequently, P[F(U) < F(d)] =P[U >d]=1—-d/D.Since V = F(U)
is uniform and we have shown thatP[V < F(d)] = 1—d/D foralld € [0, D],
we conclude that F(d) = D —d foralld € [0, D]. |

Proposition 8.5 On a set of full ® measure, we have that T +7T = D where
D is the common value of do(x,y) and do(y, x).

Proof Tt suffices to show that 7 + 7 = D under ®*~ since this measure is
mutually absolutely continuous with respect to ®.

Foreachd € [0, D], let F(d) be the first time that T hits ;. We emphasize
that F is determined by T, T, and S. We already know that do(x,y) =
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do(y, x) a.s. and that this quantity is a.s. determined by (S, x, y). We know
that U = t/do(x, y) is uniform in [0, 1] conditionally on (S, x, y) and T'.
The symmetry we have established in Proposition 8.1 then implies that U =
T/do(y, x) is uniform in [0, 1] conditionally on (S, x, y) and T. In the case
of 7, it is clearly also uniform in [0, D] once we condition on (S, x, y, I, ),
which determines F. That this is true for T as well follows from Proposition 8.1,
so that both 7 and T are uniform in [0, D] conditionally on F. To finish the
proof of the proposition, it suffices to show that F(d) = D — d. We know
that F': [0, D] — [0, D] is non-decreasing and that F(t) = T. Therefore the
result follows from Lemma 8.4. |

Proof of Theorem 1.1 Letdg and (x,) be as defined just before the statement
of Lemma 8.4. To finish the proof, it suffices to show that dg a.s. satisfies
the strict triangle inequality. Suppose that x, y, z € (x,) are distinct. We will
argue that a.s. we have

do(x,2) <do(x,y)+do(y, 2). (8.9)

We shall assume that we are working on the event that do(x, y) < do(x, 2),
for otherwise (8.9) is trivial. Consider the QLE(8/3, 0) growth Y starting from
x and stopped upon hitting y. Given this, we then consider the QLE(8/3, 0)
growth Y starting from z and stopped upon hitting Y. Then we must have that
the radius of this growth is at most dg (v, z) because y € Y. As itis easy to see
that the a.s. unique point in Y N Y is uniformly distributed in Y according
to the quantum measure, we a.s. have that y ¢ Y. That is, the radius of Y a.s.
is strictly less than dg(y, z). On the other hand, Proposition 8.5 implies that
the sum of dg(x, y) and the radius of this growth is a.s. equal to do(x, 2).
Combining proves (8.9), which completes the proof. O
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