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Abstract We prove that every bounded stable solution of

(−�)1/2u + f (u) = 0 in R
3

is a 1D profile, i.e., u(x) = φ(e · x) for some e ∈ S
2, where φ : R → R is a

nondecreasing bounded stable solution in dimension one. Equivalently, stable
critical points of boundary reaction problems in R

d+1+ = R
d+1 ∩ {xd+1 ≥ 0}

of the form ∫
{xd+1≥0}

1

2
|∇U |2 dx dxd+1 +

∫
{xd+1=0}

F(U ) dx

are 1D when d = 3. These equations have been studied since the 1940’s
in crystal dislocations. Also, as it happens for the Allen–Cahn equation, the
associated energies enjoy a �-convergence result to the perimeter functional.
In particular, when f (u) = u3 − u (or equivalently when F(U ) = 1

4(1 −
U2)2), our result implies the analogue of the De Giorgi conjecture for the
half-Laplacian in dimension 4, namely that monotone solutions are 1D. Note
that our result is a PDE version of the fact that stable embedded minimal
surfaces in R

3 are planes. It is interesting to observe that the corresponding
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154 A. Figalli, J. Serra

statement about stable solutions to the Allen–Cahn equation (namely, when
the half-Laplacian is replaced by the classical Laplacian) is still unknown for
d = 3.

1 Introduction

1.1 De Giorgi conjecture on the Allen–Cahn equation

In 1978, De Giorgi stated the following famous conjecture [16]:

Conjecture 1.1 Let u ∈ C2(Rd) be a solution of the Allen–Cahn equation

− �u = u − u3, |u| ≤ 1, (1.1)

satisfying ∂xd u > 0. Then, if d ≤ 8, all level sets {u = λ} of u must be
hyperplanes.

To motivate this conjecture, we need to explain its relation to minimal sur-
faces.

1.2 Allen–Cahn versus minimal surfaces

It is well-known that (1.1) is the condition of vanishing first variation for the
Ginzburg–Landau energy

E1(v) :=
∫

Rd

(
1

2
|∇v|2 + 1

4
(1 − v2)2

)
dx .

By scaling, if u is a local minimizer of E1 (namely, a minimizer with respect to
compactly supported variations), then uε(x) := u(ε−1x) is a local minimizer
of the ε-energy

E1,ε(v) := 1

ε

∫
Rd

(
ε2

2
|∇v|2 + 1

4
(1 − v2)2

)
dx . (1.2)

In [28,29], Modica and Mortola established the �-convergence of E1,ε to the
perimeter functional as ε ↓ 0. As a consequence, the rescalings uε have a
subsequence uεk such that

uεk → χE − χEc in L1
loc,

and E is a localminimizer of the perimeter inR
d . This resultwas later improved

byCaffarelli andCordoba [9],who showed a density estimate forminimizers of
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On stable solutions for boundary reactions 155

E1,ε, and proved that the super-level sets {uεk ≥ λ} converge locally uniformly
(in the sense of Hausdorff distance) to E for each fixed λ ∈ (−1, 1). Hence,
at least heuristically, minimizers of E1,ε for ε small should behave similarly to
sets of minimal perimeter.

1.3 Classifications of entire minimal surfaces and De Giorgi conjecture

Here we recall some well-known facts on minimal surfaces:1

(i) If E is a local minimizer of the perimeter in R
d with d ≤ 7, then E is a

halfspace.
(ii) The Simons cone

{
x21 + x22 + x23 + x24 < x25 + x26 + x27 + x28

}
is a local

minimizer of perimeter in R
8 which is not a halfspace.

Also, we recall that these results hold in one dimension higher if we restrict
to minimal graphs:

(i′) If E = {
xd > h(x1, . . . , xd−1) : h : R

d−1 → R
}
, ∂ E is a minimal

surface, and d ≤ 8, then h is affine (equivalently, E is a halfspace).
(ii′) There is a non-affine entire minimal graph in dimension d = 9.

These assertions combine several classical results. The main contributions
leading to (i)–(ii)–(i′)-(ii′) are the landmark papers of De Giorgi [14,15]
(improvement of flateness – Bernstein theorem for minimal graphs), Simons
[39] (classification of stable minimal cones), and Bombieri, De Giorgi, and
Giusti [5] (existence of a nontrivial minimal graph in dimension d = 9, and
minimizing property of the Simons cone).

Note that, in the assumptions of Conjecture 1.1, the function u satisfies
∂xd u > 0, a condition that implies that the super-level sets {u ≥ λ} are
epigraphs. Thus, ifwe assume that d ≤ 8, it follows by (i′) and the discussion in
Sect. 1.2 that the level sets of uε(x) = u(ε−1x) should be close to a hyperplane
for ε 
 1. Since

{uε = λ} = ε{u = λ},

this means that all blow-downs of {u = λ} (i.e., all possible limit points of
ε{u = λ} as ε ↓ 0) are hyperplanes. Hence, the conjecture of De Giorgi asserts
that, for this to be true, the level sets of u had to be already hyperplanes.

1 Note that, here and in the sequel, the terminology “minimal surface” denotes a critical point
of the area functional (in other words, a surface with zero mean curvature).
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156 A. Figalli, J. Serra

1.4 Results on the De Giorgi conjecture

Conjecture 1.1 was first proved, about 20years after it was raised, in dimen-
sions d = 2 and d = 3, by Ghoussoub and Gui [23] and Ambrosio and Cabré
[3], respectively. Almost 10years later, in the celebrated paper [32], Savin
attacked the conjecture in the dimensions 4 ≤ d ≤ 8, and he succeeded in
proving it under the additional assumption

lim
xd→±∞ u = ±1. (1.3)

Shortly after, Del Pino, Kowalczyk, and Wei [19] established the existence of
a counterexample in dimensions d ≥ 9 .

It is worth mentioning that the extra assumption (1.3) in [32] is only used
to guarantee that u is a local minimizer of E1. Indeed, while in the case of
minimal surfaces epigraphs are automatically minimizers of the perimeter, the
same holds for monotone solutions of (1.1) under the additional assumption
(1.3). Note also that (1.3) guarantees that, for λ ∈ (−1, 1), the sets {u > λ}
are epigraphs of the form

{
xd > hλ(x1, . . . , xd−1)

}
with hλ : R

n−1 → R,
while under the original monotonicity assumption of De Giorgi the functions
hλ could take also the values ±∞ in some regions of R

n−1.

1.5 Monotone versus stable solutions

Before introducing the problem investigated in this paper, we make a connec-
tion between monotone and stable solutions.

It is well-known (see [2, Corollary 4.3]) that monotone solutions to (1.1) in
R

d are stable solutions, i.e., the second variation of E1 is nonnegative. Actually,
in the context of monotone solutions it is natural to consider the two limits

u± := lim
xd→±∞ u,

which are functions of the first d − 1 variables x1, . . . , xd−1 only, and one can
easily prove that u± are stable solutions of (1.1) in R

d−1. If one could show
that these functions are 1D, then the results of Savin [32] would imply that u
was also 1D.

In other words, the following implication holds:

stable solutions to (1.1) in R
d−1 are 1D ⇒ De Giorgi conjecture holds in R

d .
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On stable solutions for boundary reactions 157

1.6 Boundary reaction and line tension effects

A natural variant of the Ginzburg-Landau energy, fist introduced in the 1940’s
in the context of crystal dislocations by Peierls and Nabarro [30,31], and later
studied by Alberti, Bouchitté, and Seppecher [1] and Cabré and Solà-Morales
[8], consists in studying a Dirichlet energy with boundary potential on a half
space R

d+1+ := {xd+1 > 0} (the choice of considering d + 1 dimensions will
be clear by the discussion in the next sections). In other words, one considers
the energy functional

J (V ) :=
∫

R
d+1+

1

2
|∇V |2 dx dxd+1 +

∫
{xd+1=0}

F(V ) dx,

where F : R → R is some potential. Then, the Euler-Lagrange equation
corresponding to J is given by

{
�U = 0 in R

d+1+ ,

∂νU = − f (U ) on {xd+1 = 0}, (1.4)

where f = F ′, and ∂νU = −∂xd+1U is the exterior normal derivative. When
f (U ) = sin(c U ), c ∈ R, the above problem is called the Peierls–Navarro
equation and appears in a model of dislocation of crystals [24,40]. Also, the
same equation is central for the analysis of boundary vortices for soft thin films
in [26]. Othermotivations, as well as constructions of oscillating solutions, can
be found in [13].

1.7 Non-local interactions

To state the analogue of the De Giorgi conjecture in this context we first recall
that, for a harmonic function V , the energy J can be rewritten in terms of its
trace v := V |xd+1=0. More precisely, a classical computation shows that (up
to a multiplicative dimensional constant) the Dirichlet energy of V is equal to
the H1/2 energy of v:

∫
R

d+1+
|∇V |2 dx1 . . . dxd dxd+1 =

∫∫
Rd×Rd

|v(x) − v(y)|2
|x − y|d+1 dx dy

(see for instance [10]). Hence, instead of J , one can consider the energy
functional

E(v) :=
∫∫

Rd×Rd

1

2

|v(x) − v(y)|2
|x − y|d+1 dx dy +

∫
Rd

F(v(x)) dx
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and because harmonic functions minimize the Dirichlet energy, one can easily
prove that

U is a local min. of J in R
d+1+ ⇔

{
u = U |xd+1=0 is a local min. of E in R

d

and U is the harmonic extension of u.

Hence, in terms of the function u, the Euler–Lagrange equation (1.4) corre-
sponds to the first variation of E , namely

(−�)1/2u + f (u) = 0 in R
d , (1.5)

where

(−�)1/2u(x) = 2 p.v.
∫

Rd

u(x) − u(y)

|x − y|d+1 dy.

1.8 �-convergence of nonlocal energies to the classical perimeter, and
the De Giorgi conjecture for the 1/2-Laplacian

Analogously to what happens with the classical Allen–Cahn equation, there is
a connection between solutions of (−�)1/2u = u − u3 and minimal surfaces.
Namely, if u is a local minimizer of E in R

d with F(u) = 1
4(1 − u2)2, then

the rescaled function uε(x) = u(ε−1x) is a local minimizer of the ε-energy

Eε(v) := 1

ε log(1/ε)

(∫∫
Rd×Rd

ε

2

|v(x) − v(y)|2
|x − y|d+1 dx dy

+
∫

Rd

1

4
(1 − v2)2 dx

)
.

As happened for the energies E1,ε in (1.2), the papers [1,27] established the �-
convergence of Eε to the perimeter functional as ε ↓ 0, as well as the existence
of a subsequence uεk such that

uεk → χE − χEc in L1
loc,

where E is a local minimizer of the perimeter in R
d . Moreover, Savin and

Valdinoci [36] proved density estimates for minimizers of Eε, implying that
{uεk ≥ λ} converge locally uniformly to E for each fixed λ ∈ (−1, 1).

Hence, the discussion in Sect. 1.3 motivates the validity of the De Giorgi
conjecture when −� is replaced with (−�)1/2, namely:
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On stable solutions for boundary reactions 159

Conjecture 1.2 Let u ∈ C2(Rd) be a solution of the fractional Allen–Cahn
equation

(−�)1/2u = u − u3, |u| ≤ 1, (1.6)

satisfying ∂xd u > 0. Then, if d ≤ 8, all level sets {u = λ} of u must be
hyperplanes.

In this direction, Cabré and Solà-Morales proved the conjecture for d = 2
[8]. Later, Cabré and Cinti [6] established Conjecture 1.2 for d = 3. Very
recently, under the additional assumption (1.3), Savin first announced in [33]
and then gave in [34] a proof of Conjecture 1.2 in the remaining dimensions
4 ≤ d ≤ 8. Thanks to the latter result, the relation between monotone and
stable solutions explained in Sect. 1.5 holds also in this setting.

1.9 Stable solutions versus stable minimal surfaces

Exactly as in the setting of Conjecture 1.1, given u as in Conjecture 1.2 it
is natural to introduce the two limit functions u± := limxd→±∞ u. These
functions depend only on the first d − 1 variables x1, . . . , xd−1, and are stable
solutions of (1.6) in R

d−1.
As mentioned at the end of last section, the classification of stable solutions

to (1.6) in R
d−1, 3 ≤ d − 1 ≤ 7, together with the improvement of flatness

for (−�)1/2u = u − u3 proved in [34], would imply the full Conjecture 1.2
in R

d .
The difficult problem of classifying stable solutions of (1.6) (or of (1.1)) is

connected to the following well-known conjecture for minimal surfaces:

Conjecture 1.3 Stable embedded minimal hypersurfaces in R
d are hyper-

planes as long as d ≤ 7.

A positive answer to this conjecture is only known to be true in dimension
d = 3, a result of Fischer-Colbrie and Schoen [22] and Do Carmo and Peng
[20].

Note that, for minimal cones, the conjecture is true (and the dimension 7
sharp) by the results of Simons [39] and Bombieri, De Giorgi, and Giusti [5].

Conjecture 1.3 above suggests a “stable De Giorgi conjecture”:

Conjecture 1.4 Let u ∈ C2(Rd) be a stable solution of (1.1) or of (1.6).
Then, if d ≤ 7, all level sets {u = λ} of u must be hyperplanes.

As explained before, the validity of this conjecture would imply both Con-
jectures 1.1 and 1.2.
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160 A. Figalli, J. Serra

1.10 Results of the paper

As of now, Conjecture 1.4 has been proved only for d = 2 (see [4,23] for
(1.1), and [8] for (1.6)). The main result of this paper establishes its validity
to (1.6) for d = 3, a case that heuristically corresponds to the classification in
R
3 of stable minimal surfaces of [22]. Note that, for the classical case (1.1),

Conjecture 1.4 in the case d = 3 is still open.
This is our main result:

Theorem 1.5 Let u be a bounded stable solution of (1.5) with d = 3, and
assume that f ∈ C0,α for some α > 0. Then u is 1D profile, namely, u(x) =
φ(e · x) for some e ∈ S

2, where φ : R → R is a nondecreasing bounded stable
solution to (1.5) in dimension one.

As explained before, as an application of Theorem 1.5 and the improvement
of flatness for (−�)1/2u = u − u3 in [34], we obtain the following:

Corollary 1.6 Conjecture 1.2 holds true in dimension d = 4.

A key ingredient behind the proof of Theorem 1.5 is the following general
energy estimate which holds in every dimension d ≥ 2:

Proposition 1.7 Let R ≥ 1, Mo ≥ 2, and α ∈ (0, 1). Let u be a stable solution
of

(−�)1/2u + f (u) = 0, |u| ≤ 1 in BR ⊂ R
d , (1.7)

where f : [−1, 1] → R satisfies ‖ f ‖C0,α([−1,1]) ≤ Mo. Then there exists a
constant C > 0, depending only on d and α, such that

∫
BR/2

|∇u| ≤ C Rd−1 log(Mo R)

and

∫∫
Rd×Rd\Bc

R/2×Bc
R/2

|u(x) − u(y)|2
|x − y|d+1 dxdy ≤ C Rd−1 log2(Mo R).

Because of recent results on the structure of stable solutions to fractional
Allen–Cahn equations, it is likely that Proposition 1.7 is sharp: indeed, for
d ≥ 3 one may expect to build a stable solution in BR that saturates the
bounds above by taking log R catenoidal ends at mutual distance (log R)−1R
in BR , and then construct a stable solution that has these catenoidal ends as
0-level set.

On the other hand, at least in low dimensions, for global stable solutions one
would like to improve the bounds by a factor log(Mo R) (since that corresponds
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On stable solutions for boundary reactions 161

to the case when u is a 1D profile). This is indeed what we do in R
3: in Sect. 4

we are able to bootstrap the estimates from Proposition 1.7 to obtain the sharp
energy bound, from which Theorem 1.5 follows easily.

1.11 Comments on the results

Aswe have explained above, the classification of global stable critical points to
boundary reactions is the natural boundary analogue of the similar problem for
Allen-Cahn. While originally this boundary problem is of purely local nature
(see (1.4)) and indeed it was studied as a local problem in [8], by looking at it as
a nonlocal equation we are able to use some of the recent techniques developed
in these areas. In particular we can exploit some arguments developed in [12]
in the context of the so-called nonlocal minimal surfaces.

However, while in [12] uniform area bounds are a rather easy consequence
of stability, in our setting this approach leads to non-sharp bounds (see Propo-
sition 1.7). Such bounds turn out to be insufficient to classify entire solutions in
R
3 by the “standard” approach (in minimal surfaces, Allen-Cahn, etc.) based

on testing stabilitywith a logarithmic cutoff function. It is well-known (see e.g.
[37]) that this standard approach works when one has an energy growth of the
typeC R2G(R)with

∑∞
k=1

1
G(2k)

= +∞, but even being sharp in every stepwe

can only get C R2 log2 R, which does not satisfy the previous condition since∑∞
k=1

1
k2

< +∞. This is actually not surprising: a purely nonlocal method
as the one in [12] cannot provide a sharp energy growth control, because our
energy is nonlocal only at small scales (recall that it approaches the local
perimeter at large scales, see Sect. 1.8) and thus estimates based on nonlocal
interactions must degenerate at large scales.

A cornerstone of our paper, which makes possible the classification result
in R

3, is the recurrence relation (4.5), that relates the natural renormalized
energies across different scales. We believe it is quite remarkable that such
a closed recursive relation holds true and it is interesting to point out that, in
order to get it, it is absolutely essential to use the sharp interpolation inequality
in Lemma 3.1. The interested reader may note that, if any of the steps of
the paper was made in a slightly non-sharp way, then the recurrence relation
obtained insteadof (4.5)wouldnot be closed (as itwould involve someconstant
depending on R) and then whole proof would break down completely.

1.12 Further directions

A series of recent papers [11,17,18] used the Allen–Cahn equation as a tool
to construct, via min-max procedures, minimal hypersurfaces with prescribed
Morse indexon compactRiemannianmanifolds. In particular, in [11],Chodosh
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andMantoulidis have used this approach to constructmultiplicity-oneminimal
surfaces in compact 3-manifolds with bounded energy and prescribed Morse
index, giving a new proof of the Yau’s conjecture recently proved by Irie,
Marques, and Neves [25].

The main ingredients needed for the construction in [11] are:

– curvature estimates for the 0-level set of stable solutions of−�u = ε−2(u−
u3) that are robust as ε ↓ 0;

– sharp lower bounds in terms of ε for the “sheet distance” (i.e., the dis-
tance between two consecutive connected components of the 0-level set,
whenever more than one component exists).

It turns out that, for stable embedded minimal surfaces on 3-manifolds, the
flatness result for complete surfaces in R

3 (i.e. the analogue of Theorem 1.5)
implies a universal curvature estimate for minimal discs through a blow-up
argument (see for instance [42]). Similarly, for Allen-Cahn, a classification
result for stable solutions with quadratic energy growth (a very strong extra
assumption with respect to the result in our Theorem 1.5, that does not require
any energy bound) is used in [11] to obtain curvature estimates for the 0-level
set of stable solutions of −�u = ε−2(u − u3) on 3-manifolds. In this case,
though, the obtained curvature estimates are not universal but depend on energy
bounds for the solutions (since so does the available classification result). In
the case of Allen-Cahn the analysis of clustering sheets in [41], which leads
to a striking regularity result for stable configurations, is also an essential tool
to obtain these curvature estimates.

One outcome of our paper is that, in the case of the half-Laplacian, the
classification result can be proven without assuming any energy bound. Also,
the methods introduced here seem to lead to “sheet distance” lower bounds
for stable solutions that are much stronger than the ones available for Allen-
Cahn. Hence, a natural further development is to exploit these techniques
(combining them with the natural extensions of the results in [41]) to provide
universal curvature and energy estimates for stable solutions of (−�)1/2u =
ε−1(u −u3). Among other applications, they could then potentially be used to
construct minimal surfaces on manifolds (as an alternative to the Allen–Cahn
equation for the min-max constructions mentioned above).

1.13 Structure of the paper

In the next section we collect all the basic estimates needed for the proof of
Proposition 1.7. Then, in Sect. 3 we prove Proposition 1.7. Finally, in Sects. 4
we prove Theorem 1.5.
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2 Ingredients of the proofs

We begin by introducing some notation.
Given R > 0, we define the energy of a function inside BR ⊂ R

d as

E(v; BR) :=
∫∫

Rd×Rd\Bc
R×Bc

R

1

2

|v(x) − v(y)|2
|x − y|d+1 dx dy +

∫
BR

F(v(x)) dx,

where Bc
R = R

d \ BR , and F is a primitive of f . Note that equation (1.7) is
the condition of vanishing first variation for the energy functional E( · ; BR).

We say that a solution u of (1.7) is stable if the second variation at u of E
is nonnegative, that is

∫
BR

(
(−�)1/2ξ + f ′(u)ξ

)
ξ dx ≥ 0 for all ξ ∈ C2

c (BR). (2.1)

Also, we say that u is stable in R
d if it is stable in BR for all R ≥ 1.

An important ingredient in our proof consists in considering variations of a
stable solution u via a suitable smooth 1-parameter family of “translation like”
deformations. This kind of idea has been first used by Savin and Valdinoci in
[35,37], and then in [7,12]. More precisely, given R ≥ 3, consider the cut-off
functions

ϕ0(x) :=

⎧⎪⎨
⎪⎩
1 for |x | ≤ 1

2

2 − 2|x | for 1
2 ≤ |x | ≤ 1

0 for |x | ≥ 1,

ϕ1(x) :=

⎧⎪⎨
⎪⎩
1 for |x | ≤ √

R

2 − 2 log |x |
log R for

√
R ≤ |x | ≤ R

0 for |x | ≥ R,

ϕ2(x) :=

⎧⎪⎪⎨
⎪⎪⎩

1 for |x | ≤ R∗
2 − 2

log log |x |
log log R

for R∗ ≤ |x | ≤ R

0 for |x | ≥ R,

where R∗ := exp(
√
log R).

For a fixed unit vector v ∈ S
n−1 define


 i
t,v(z) := z + tϕi (z)v, t ∈ R, z ∈ R

d , i = 0, 1, 2. (2.2)
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Then, given a function v : R
d → R and t ∈ (−1, 1) with |t | small enough (so

that 
 i
t,v is invertible), we define the operator

P i
t,vv(x) := v

(
(
 i

t,v)
−1(x)

)
. (2.3)

Also, we use ESob and EPot to denote respectively the fractional Sobolev term
and the Potential term appearing in the definition of E :2

ESob(u; BR) :=
∫∫

Rd×Rd\Bc
R×Bc

R

|u(x) − u(y)|2
|x − y|d+1 dx dy,

EPot(u; BR) :=
∫

BR

F(u(x)) dx .

We shall use the following bounds:

Lemma 2.1 There exists a dimensional constant C such that the following
hold for all v : R

d → R, |t | small, and v ∈ S
d−1:

(1) We have

E(P0
t,vv; B1) + E(P0−t,vv; B1) − 2E(v; B1) ≤ Ct2ESob(v; B2). (2.4)

(2) For R = 22k , k ≥ 1, we have

E(P1
t,vv; BR) + E(P1−t,vv; BR) − 2E(v; BR) ≤ C

t2

k2

k∑
j=1

ESob(v; B2k+ j )

22(k+ j)
.

(2.5)
(3) For R ≥ 4,

E(P2
t,vv; BR)+E(P2−t,vv; BR)−2E(v; BR) ≤ C

t2

log log R
sup
ρ≥2

ESob(v; Bρ)

ρ2 log ρ
. (2.6)

Proof The lemma follows as in [12, Lemma2.1] and [7, Lemma2.3].However,
since we do not have a precise reference for the estimates that we need, we
give a sketch of proof. Note that, by approximation, it suffices to consider the
case when v ∈ C2

c (Rd).

2 To simplify the notation we define ESob without the coefficient 1/2, so that

E = 1

2
ESob + EPot.
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On stable solutions for boundary reactions 165

First observe that, since v has unit norm, the Jacobian of the change of
variables z �→ 
 i

t,v(z) is given by

J i
t (z) := |det(D
 i

t,v(z))| = |det(Id + t∇ϕi (z) ⊗ v)| = 1 + t∂vϕ
i (z). (2.7)

Set

Ri :=
{
1 if i = 0
R if i = 1, 2.

(2.8)

Then, performing the change of variables x := 
 i
t,v(z), we get

EPot(P i
t,vv; BRi ) =

∫
BRi

F
(
v
(
(
 i

t,v)
−1(x)

))
dx

=
∫

BRi

F(v(z))
(
1 + t∂vϕ

i (z)
)

dz,

thus

EPot(P i
t,vv; BRi ) + EPot(P i−t,vv; BRi ) − 2EPot(v; BRi ) = 0.

Hence, we only need to estimate the second order incremental quotient of ESob.
To this aim, using the same change of variable and setting

Ar := R
n × R

n \ Bc
r × Bc

r (r > 0)

and K (z) := |z|−(d+1), we have (note that 
 i
t,v preserves BRi )

ESob(P i
t,vv; BRi ) =

∫∫
ARi

|v(y) − v(y)|2K
(

 i

t,v(y) − 
 i
t,v(y)

)
J i

t (y) dy J i
t (y) d y .

(2.9)
Recalling that 
 i

t,v(y) − 
 i
t,v(y) = y − y + t

(
ϕi (y) − ϕi (y)

)
v and defining

εi (y, y) := ϕi (y) − ϕi (y)

|y − y| ,

as in the proof of [12, Lemma 2.1] we have, for |t | small,

∣∣K (z ± tε|z|v)− K (z) ∓ t∂v K (z)ε|z|∣∣ ≤ Ct2ε2K (z) (2.10)
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and

|εi (y, y)| + |J i
t (y) − 1|

t
+ |J i

t (y) − 1|
t

≤

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

C if i = 0,
C

log R max
{√

R,min(|y|, |y|)} if i = 1,

C

log log R log ρ ρ
for ρ ≥ R∗, |y| ≥ ρ, |y| ≥ ρ if i = 2.

(2.11)
Then, using (2.9), (2.7), (2.10), and (2.11), and decomposing AR = A22k =
A2k ∪

(
∪k

j=1A2k+ j \ A2k+ j−1

)
when i = 1, an easy computation yields

ESob(P i
t,vv; BRi ) + ESob(P i−t,vv; BRi ) − 2ESob(v; BRi )

≤

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Ct2
∫∫

A1

|v(y) − v(y)|2K (y − y) dy d y if i = 0,

C
t2

k2

k∑
j=1

∫∫
A2k+ j

1

22(k+ j)
|v(y) − v(y)|2K (y − y) dy d y if i = 1

(see the proof of [12, Lemma 2.1] for more details). Therefore (2.4) and (2.5)
follow.

The proof of (2.6) needs a more careful estimate. For ρ > 0, we denote

e(ρ) := ESob(v; Bρ) =
∫∫

Aρ

|v(y) − v(y)|2K (y − y) dy d y.

Note that

e′(ρ) = lim
h↓0

1

h

∫∫
Aρ+h\Aρ

|v(y) − v(y)|2K (y − y) dy d y.

Observing that in the complement of Aρ we have |y| ≥ ρ and |y| ≥ ρ, and
using (2.9), (2.7), (2.10), and (2.11), we obtain
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ESob(P2
t,vv; BR) + ESob(P2−t,vv; BR) − 2ESob(v; BR)

≤ Ct2

(log log R)2

(
e(R∗)

(log R∗ R∗)2
+
∫ R

R∗

e′(ρ)

(log ρ ρ)2
dρ

)

≤ Ct2

(log log R)2

(
S + C

∫ R

R∗

e(ρ)

(log ρ)2 ρ3 dρ

)

≤ Ct2

(log log R)2

(
S +

∫ R

R∗

S

log ρ ρ
dρ

)

≤ Ct2

log log R
S,

where

S := sup
ρ≥2

e(ρ)

ρ2 log ρ
= sup

ρ≥2

ESob(v; Bρ)

ρ2 log ρ
,

so (2.6) follows. ��
The following is a basic BV estimate in B1/2 for stable solutions in a ball.

Lemma 2.2 Let i ∈ {0, 1, 2}, Ri as in (2.8), and let u ∈ C1,α(BRi ) be a stable
solution to (−�)1/2u + f (u) = 0 in BRi with |u| ≤ 1. Assume there exists
η > 0 such that, for |t | small enough, we have

E(P i
t,vu; BRi )+E(P i−t,vu; BRi )−2E(u; BRi ) ≤ ηt2 ∀ v ∈ S

d−1. (2.12)

Then (∫
B1/2

(
∂vu(x)

)
+ dx

)(∫
B1/2

(
∂vu(y)

)
− dy

)
≤ 2η (2.13)

and ∫
B1/2

|∇u| ≤ C(1 + √
η), (2.14)

for some dimensional constant C.

Proof The proof is similar to the ones of [12, Lemmas 2.4 and 2.5] or [7,
Lemma 2.5 and 2.6]. The key point is to note that, since u is stable,

E(P i
t,vu; BRi ) − E(u; BRi ) ≥ −o(t2),

hence (2.12) implies

E(P i
t,vu; BRi ) − E(u; BRi ) ≤ 2ηt2

for |t | small enough.
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On the other hand, still by stability, the two functions

u := max{u, Pi
t,vu} and u := min{u, Pi

t,vu}
satisfy

E(u; BRi ) − E(u; BRi ) ≥ −o(t2), E(u; BRi ) − E(u; BRi ) ≥ −o(t2).

Hence, combining these inequalities with the identity

E(u; BRi ) + E(u; BRi )

+ 2
∫∫

BRi ×BRi

(P i
t,vu − u)+(x)(P i

t,vu − u)−(y)

|x − y|d+1 dx dy ≤

≤ E(P i
t,vu; BRi ) + E(u; BRi )

we obtain

2
∫∫

BRi ×BRi

(P i
t,vu − u)+(x)(P i

t,vu − u)−(y)

|x − y|d+1 dx dy ≤ 4ηt2

Noticing that P i
t,vu(x) = u(x − tv) for x ∈ B1/2 and that |x − y|−d−1 ≥ 1

for x, y ∈ B1/2 we obtain the bound

∫∫
B1/2×B1/2

(
u(x − tv) − u(x)

t

)
+

(
u(y − tv) − u(y)

t

)
−

dx dy ≤ 2η

for all |t | small enough, so (2.13) follows by letting t → 0.
In other words, if we define

A±
v :=

∫
B1/2

(
∂vu(x)

)
± dx,

wehave proved thatmin{A+
v , A−

v }2 ≤ A+
v A−

v ≤ 2η. In addition, since |u| ≤ 1,
by the divergence theorem

|A+
v − A−

v | =
∣∣∣∣
∫

B1/2

∂vu(x) dx

∣∣∣∣ ≤
∫

∂ B1/2

|v · ν∂ B1/2 | ≤ C.

Combining these bounds, this proves that

∫
B1/2

|∂vu(x)| dx = A+
v + A−

v = |A+
v − A−

v | + 2min{A+
v , A−

v } ≤ C + 2
√
2η,
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from which (2.14) follows immediately. ��
We now recall the following general lemma due to Simon [38] (see also

[12, Lemma 3.1]):

Lemma 2.3 Let β ∈ R and C0 > 0. Let S : B → [0, +∞] be a nonnegative
function defined on the class B of open balls B ⊂ R

n and satisfying the
following subadditivity property:

B ⊂
N⋃

j=1

B j �⇒ S(B) ≤
N∑

j=1

S(B j ).

Also, assume that S(B1) < ∞. Then there exists δ = δ(n, β) > 0 such that if

ρβS(Bρ/4(z)
) ≤ δρβS(Bρ(z)

)+ C0 whenever Bρ(z) ⊂ B1

then

S(B1/2) ≤ CC0,

where C depends only on d and β.

Finally, we state an optimal bound on the H1/2 norm of the mollification
of a bounded function with the standard heat kernel, in terms of the BV norm
and the parameter of mollification (see [21, Lemma 2.1] for a proof):

Lemma 2.4 Let Hd,t (x) := (4π t)−d/2e−|x |2/4t denote the heat kernel in R
d .

Given u ∈ BV (Rd) with |u| ≤ 1, set uε := u ∗ Hd,ε2 . Then, for ε ∈ (0, 1/2),
we have

[uε]2H1/2(Rd )
:=
∫∫

Rd×Rd

|uε(x) − uε(y)|2
|x − y|d+1 dx dy ≤ C log

1

ε
‖u‖BV (Rd ),

where C is a dimensional constant.

3 Proof of Proposition 1.7

As a preliminary result we need the following (sharp) interpolation estimate.

Lemma 3.1 Let u : R
d → R be a bounded function, with |u| ≤ 1. Assume

that u is Lipschitz in B2, with ‖∇u‖L∞(B2) ≤ Lo for some Lo ≥ 2. Then

ESob(u; B1) ≤ C log Lo

(
1 +

∫
B2

|∇u| dx

)
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where C depends only on d.

Proof Let η ∈ C∞
c (B2), 0 ≤ η ≤ 1, be a radial cutoff function such that η = 1

in B3/2 and ‖∇η‖L∞(Rd ) ≤ 3, and set ũ := ηu. Observe that, since |u| ≤ 1,
0 ≤ η ≤ 1, ‖∇u‖L∞(B2) ≤ Lo, and η is supported inside B2, we have (recall
that L0 ≥ 2)

‖∇ũ‖L∞(Rd ) ≤ ‖∇u‖L∞(B2) + ‖∇η‖L∞(Rd ) ≤ L0 + 3 ≤ 3L0. (3.1)

Now, since |u| ≤ 1, we have

ESob(u; B1) ≤ ESob(̃u; B1) + C (3.2)

where C depends only on d. On the other hand, it follows by Lemma 2.4 that

‖ũε‖2H1/2(Rd )
≤ C log

1

ε
‖ũ‖BV (Rd ). (3.3)

We also observe that, because of (3.1),3

[̃uε − ũ]2H1/2(Rd )
≤ Cε‖∇ũ‖2L2(Rd )

≤ CεLo

∫
Rd

|∇ũ| dx . (3.4)

Therefore, choosing ε = (Lo)
−1 in (3.3) and (3.4), andusing a triangle inequal-

ity, we get (recall that L0 ≥ 2)

[̃u]2H1/2(Rd )
≤ 2[̃uε]2H1/2(Rd )

+ 2[̃uε − ũ]2H1/2(Rd )
≤ C log Lo

∫
Rd

|∇ũ| dx .

Finally, we note that

ESob(̃u; B1) ≤ ESob(̃u; B2) = [̃u]2H1/2(Rd )

3 The first inequality in (3.4) can be proven using Fourier transform, noticing that

̂(̃uε − ũ)(ξ) = (e−ε2|ξ |2 − 1)̂̃u(ξ),

and that |e−ε2 |ξ |2−1|2
ε|ξ | is universally bounded. Indeed,

[̃uε − ũ]2H1/2(Rd )
=
∫

|ξ | ∣∣ ̂(̃uε − ũ)(ξ)
∣∣2 dξ =

∫
|ξ | ∣∣e−ε2|ξ |2 − 1

∣∣2 |̂̃u(ξ)|2 dξ

≤ Cε

∫
|ξ |2 |̂̃u(ξ)|2 dξ = Cε‖∇ũ‖2L2(Rd )

.
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and that (cp. (3.1))
∫

Rd
|∇ũ| dx ≤ C +

∫
B2

|∇u| dx .

Hence, recalling (3.2), we obtain

ESob(u; B1) ≤ C + C log Lo

(
1 +

∫
B2

|∇u| dx

)
,

and the lemma follows. ��
We can now prove Proposition 1.7.

Proof of Proposition 1.7 This proof is similar to the proof of Theorem 2.1 in
[7] (see also the proof Theorem 1.7 in [12]). Here we need to use, as a new
ingredient, the estimate from Lemma 3.1. Throughout the proof, C denotes a
generic dimensional constant.
- Step 1. Let v be a stable solution (−�)1/2v + g(v) = 0 in B3 satisfying
|v| ≤ 1 in all of R

d .
First, using (2.4) in Lemma 2.1 and then Lemma 2.2 with i = 0 and Ri = 1,

we obtain ∫
B1/2

|∇v| dx ≤ Cd

(
1 +

√
ESob(v; B1)

)
(3.5)

for some dimensional constant Cd > 0. Note that this estimate is valid for
every stable solution v, independently of the nonlinearity g.

On the other hand, note that if ‖g‖C0,α([−1,1]) ≤ Mo for some Mo ≥ 2, then
by the interior regularity estimates for (−�)1/2 we have

‖∇v‖L∞(B2) ≤ Lo := C Mo, (3.6)

whereC depends only ond andα. Therefore, combining (3.5)withLemma3.1,
we obtain

∫
B1/2

|∇v| dx ≤ C

(
1 +

√
C log M0

(
1 +

∫
B2

|∇v| dx

))

≤ C log M0

δ
+ δ

∫
B2

|∇v| dx ∀ δ ∈ (0, 1),

(3.7)

where we used the inequality 2
√

ab ≤ δa + b/δ for a, b ∈ R+.
- Step 2. For v as in Step 1 and Bρ(z) ⊂ B1 we note that the function

ṽ(x) := v(z + 2ρx)
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satisfies (−�)1/2ṽ + g̃(̃v) = 0 with g̃(s) := 2ρg(s). In particular
‖g̃‖C0,α([−1,1]) ≤ 2ρMo ≤ 2Mo, so estimate (3.7) applied to ṽ yields

∫
B1/2

|∇ṽ| dx ≤ C log(2M0)

δ
+ δ

∫
B2

|∇ṽ| dx,

or equivalently

ρ1−d
∫

Bρ/4(z)
|∇v| dx ≤ C log(2M0)

δ
+ δρ1−d

∫
Bρ(z)

|∇v| dx . (3.8)

Hence taking δ small enough and using Lemma 2.3 with S(B) := ∫B |∇v| dx
and β := 1 − d, we obtain

∫
B1

|∇v| dx ≤ C log M0, (3.9)

where C depends only on d and α. Also, it follows by Lemma 3.1 and (3.6)
that

ESob(v, B1/2) ≤ C log2 M0. (3.10)

- Step 3. If u is a stable solution u of (−�)1/2u = f (u) in BR , given xo ∈ BR/2

we consider the function v(x) := u
(
xo + R

6 x
)
. Note that this function satisfies

(3.9) and (3.10) with M0 replaced by M0R, hence the desired estimates follow
easily by scaling and a covering argument. ��

4 Proof of Theorem 1.5

We are given u a bounded stable solution of (−�)1/2u + f (u) = 0
in R

3 with f ∈ C0,α . Up to replacing u by u/‖u‖L∞(R3) and f (s) by
f (‖u‖L∞(R3)s)/‖u‖L∞(R3), we can assume that |u| ≤ 1 and we want to show
that u is 1D. We split the proof in three steps. Throughout the proof, C f will
denote a positive constant depending only on f .

- Step 1. By Proposition 1.7 we have

ESob(u; BR) ≤ C f R2 log2 R (4.1)

for all R ≥ 2. Take k ≥ 1, R = 22(k+1), and v(x) := u(Rx). Note that, by
elliptic regularity, ‖∇u‖L∞(R3) ≤ C f , thus ‖∇v‖L∞(R3) ≤ C f R. Also, v is
still a stable solution of a semilinear equation in all of R

3. Hence, using (2.5)
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in Lemma 2.1 and then Lemma 2.2 with i = 1 and Ri = R, we obtain

∫
B1/2

|∇v| dx ≤ C

⎛
⎝1 +

√√√√1

k

k∑
j=1

ESob(v; B2k+ j )

k22(k+ j)

⎞
⎠ (4.2)

for some universal constant C . On the other hand, using Lemma 3.1 and the
bound ‖∇v‖L∞(R3) ≤ C f R, we have

ESob(v; B1/4)

log R
≤ C f

(
1 +

∫
B1/2

|∇v| dx

)
. (4.3)

Thus, recalling that R = 22(k+1) = 4 · 22k , v(x) = u(Rx), rewriting (4.2) and
(4.3) in terms of u we get (here we use that d = 3)

ESob(u; B22k )

k24k
≤ C f

⎛
⎝1 +

√√√√1

k

k∑
j=1

ESob(u; B23k+ j+2)

k22(k+ j)24(k+1)

⎞
⎠

≤ C f

⎛
⎝1 +

√√√√ 1

2k

2k∑
�=1

ESob(u; B22(k+�))

(k + �)24(k+�)

⎞
⎠ ∀ k ≥ 1.

(4.4)

- Step 2. Given j ≥ 1 set

A( j) := ESob(u; B22 j )

j24 j
,

so that (4.4) can be rewritten as

A(k) ≤ C f

⎛
⎝1 +

√√√√ 1

2k

2k∑
�=1

A(k + �)

⎞
⎠ . (4.5)

We claim that
A(k) ≤ M for all k ≥ 1 (4.6)

for some constant M depending only on f .
Indeed, assume by contradiction that A(k0) ≥ M for some large constant

M to be chosen later. Rewriting (4.5) as

2c f A(k0) − 1 ≤
√√√√ 1

2k0

2k0∑
�=1

A(k0 + �), c f := 1

2C f
,
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then, provided M ≥ 1
c f
, if A(k0) ≥ M we find

c f M ≤
√√√√ 1

2k0

2k0∑
�=1

A(k0 + �).

This implies that there exists k1 ∈ {k0 + 1, . . . , 3k0} such that

c f M ≤ √A(k1),

that is

(c f M)2 ≤ A(k1).

Hence, choosing M large enough so that M̃ := (c f M)2 ≥ 1
c f
, we can repeat

exactly the same argument as above with M replaced by M̃ and k0 replaced
by k1 in order to find k2 ∈ {k1 + 1, . . . , 3k1} such that

(c f M̃)2 = c6f M4 ≤ A(k2).

Iterating further we find k1 < k2, < k3 < · · · < km < · · · such that km+1 ≤
3km and

c2
m+1−2

f M2m ≤ A(km).

Now, ensuring that M is large enough so that θ := c2f M > 1, we obtain

c−2
f θ2

m ≤ A(km). (4.7)

On the other hand, recalling (4.1) and using that km ≤ 3mk0, we have

A(km) ≤ C 3mk0. (4.8)

The exponential bound from (4.8) clearly contradicts the super-exponential
growth in (4.7) for m large enough. Hence, this provides the desired contra-
diction and proves (4.6)
- Step 3. Rephrasing (4.6), we proved that

ESob(u; BR) ≤ C f R2 log R (4.9)

for all R ≥ 2. In other words, we have obtained an optimal energy estimate
in large balls BR (note that 1D profiles saturates (4.9)). Having improved the

123



On stable solutions for boundary reactions 175

energy bound of Proposition 1.7 from R2 log2 R to (4.9), we now conclude
that u is a 1D profile as follows.

Given v ∈ S
d−1 and using the perturbation P2

t,v as in (2.2)-(2.3), it follows
by (2.6), (2.12), and (2.13) that

∫∫
B1/2×B1/2

(
∂vu(x)

)
+
(
∂vu(y)

)
− dx dy ≤ C f

log log R
.

Hence, taking the limit as R → ∞ we find that

∫∫
B1/2×B1/2

(
∂vu(x)

)
+
(
∂vu(y)

)
− dx dy = 0,

thus

either ∂vu ≥ 0 in B1/2 or ∂vu ≤ 0 in B1/2 ∀ v ∈ S
d−1.

Since this argument can be repeated changing the center of the ball B1/2 with
any other point, by a continuity argument we obtain that

either ∂vu ≥ 0 in R
3 or ∂vu ≤ 0 in R

3 ∀ v ∈ S
d−1.

Thanks to this fact, we easily conclude that u is a 1D monotone function, as
desired. ��
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