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Abstract Some connected components of a moduli space are mundane in the
sense that they are distinguished only by obvious topological invariants or
have no special characteristics. Others are more alluring and unusual either

The authors acknowledge support from U.S. National Science Foundation Grants DMS
1107452, 1107263, 1107367 “RNMS: GEometric structures And Representation varieties”
(the GEAR Network). The third author is funded by a National Science Foundation
Mathematical Sciences Postdoctoral Fellowship, NSF MSPRF no. 1604263. The fourth author
was partially supported by the Spanish MINECO under ICMAT Severo Ochoa Project No.
SEV-2015-0554, and under Grant No. MTM2016-81048-P. The fifth and sixth authors were
partially supported by CMUP (UID/MAT/00144/2019) and the Project
PTDC/MAT-GEO/2823/2014 funded by FCT (Portugal) with national funds. The sixth author
was also partially supported by the Post-Doctoral fellowship SFRH/BPD/100996/2014 funded
by FCT (Portugal) with national funds

André Oliveira on leave from: Universidade de Trás-os-Montes e Alto Douro.

B Oscar García-Prada
oscar.garcia-prada@icmat.es

Marta Aparicio-Arroyo
Marta.Aparicio@raet.com

Steven Bradlow
bradlow@math.uiuc.edu

Brian Collier
briancollier01@gmail.com

Peter B. Gothen
pbgothen@fc.up.pt

André Oliveira
andre.oliveira@fc.up.pt; agoliv@utad.pt

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00222-019-00885-2&domain=pdf


198 M. Aparicio-Arroyo et al.

because they are not detected by primary invariants, or because they have
special geometric significance, or both. In this paper we describe new exam-
ples of such ‘exotic’ components in moduli spaces of SO(p, q)-Higgs bundles
on closed Riemann surfaces or, equivalently, moduli spaces of surface group
representations into the Lie group SO(p, q). Furthermore, we discuss how
these exotic components are related to the notion of positive Anosov repre-
sentations recently developed by Guichard and Wienhard. We also provide a
complete count of the connected components of these moduli spaces (except
for SO(2, q), with q � 4).

Mathematics Subject Classification 14D20 · 14F45 · 14H60
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1 Introduction

For a fixed closed orientable surface S and a semisimple Lie group G, the rep-
resentation variety R(S,G), i.e. the moduli space of group homomorphisms
from the fundamental group of S into G, has multiple connected components.
Some of the components are mundane in the sense that they are distinguished
by obvious topological invariants and have no known special characteristics.
Others are more alluring and unusual, either because they are not detected by
the primary invariants or because they parametrize objects of special signifi-
cance, or both.

Instances of such ‘exotic’ components arewell understood in two situations.
The first is the case where G is the split real form of a complex semisimple
Lie group, in which case the exotic components are known as Hitchin com-
ponents (see [35]). The second occurs when G is the isometry group of a
non-compact Hermitian symmetric space, in which case the subspace with
so-called maximal Toledo invariant has exotic components (see [12]). In [16],
both of these classes of exotic components of representation varieties have been
called higher Teichmüller components since they enjoy many of the geometric
features of Teichmüller space.

One common feature to all higher Teichmüller components is that the rep-
resentations which they parametrize are all Anosov, a concept introduced by
Labourie [37]. Anosov representations have many interesting dynamical and
geometric properties, generalizing convex cocompact representations into rank
one Lie groups. In particular, higher Teichmüller components consist entirely
of discrete and faithful representations [37]which are holonomies of geometric
structures on certain closed manifolds [31]. In general, the Anosov condition
is open in the representation variety and so does not by itself distinguish con-
nected components. More recently, in [32], Guichard and Wienhard defined
a notion of positivity which refines the Anosov property and is still an open
condition. They conjecture that such positivity for Anosov representations is
also a closed condition, and hence should detect connected components of a

123



200 M. Aparicio-Arroyo et al.

representation variety. They showed, moreover, that apart from the split real
forms and the real forms of Hermitian type, the only other non-exceptional
groups which allow positive representations are the groups locally isomorphic
to SO(p, q) for 1 < p < q, i.e. to the special orthogonal groups with signature
(p, q). This leads directly to the conjecture that R(S,SO(p, q)) should have
‘exotic’ connected components, fitting in the higher Teichmüller components
framework in the above sense.

In this paper we establish the existence of such exotic components, count
them, and show that each exotic component contains positiveAnosov represen-
tations. Our methods exploit the Non-Abelian Hodge (NAH) correspondence
which defines a homeomorphism between R(S,G) and the moduli space of
polystable G-Higgs bundles on a Riemann surface, say X , homeomorphic to
S. Denoting these moduli spaces by M(X,G) or simply M(G) (where we
drop the X from the notation unless explicitly needed for clarity or emphasis)
our results thus actually address the connected components ofM(SO(p, q)).
Our main theorem1 has two parts — one is an existence result and one is a
non-existence result. Namely we prove

1. the existence of a class of explicitly described exotic components of
M(SO(p, q)) for 1 < p � q, and

2. the non-existence of any other exotic components of M(SO(p, q)) for
both p = 1 and 2 < p � q.

Combining these two results, and including the 22g+2 ‘mundane’ components,
yields a complete count of the connected components for the moduli spaces of
SO(p, q)-Higgs bundlesM(X,SO(p, q)) or, equivalently, the representation
varietiesR(S,SO(p, q)), for 2 < p � q.

Theorem 6.1 Let X be a compact Riemann surface of genus g � 2 and
denote the moduli space of SO(p, q)-Higgs bundles on X by M(SO(p, q)).

For 2 < p � q, we have

|π0(M(SO(p, q)))| = 22g+2 +
{
22g+1 + 2p(g − 1) − 1 if q = p + 1

22g+1 otherwise.

Remark 1.2 Our methods also show that M(SO(1, q)) does not have exotic
components for q > 2, yielding 22g+1 connected components. For q � 4
our techniques fall short of a component count ofM(SO(2, q)). However, we
expect no new exotic components to exist (see Sect. 6.2 for details).

Except for the special cases p = 2, q = p or q = p + 1, the group
SO(p, q) is neither split nor of Hermitian type, so the relation between topo-
logical invariants and connected components in the representation varieties or

1 This result was announced, without details, in [1]. We now provide the details of the proof.
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related Higgs bundle moduli spaces cannot be inferred from previously known
mechanisms.

The primary topological invariants are apparent from the structure of the
Higgs bundles. In the case of SO(p, q)-Higgs bundles on X , the objects are
described by a triple (V, W, η), where V and W are holomorphic orthog-
onal bundles of rank p and q respectively, such that �pV ∼= �q W , and
η is a holomorphic section of the bundle Hom(W, V ) ⊗ K , where K is
the canonical bundle of X . The topological invariants are then the first and
second Stiefel–Whitney classes of V and W , subject to the constraint that
sw1(V ) = sw1(W ). These invariants provide a primary decomposition of
the moduli spaceM(SO(p, q)) into (not necessarily connected) components
labeled by triples (a, b, c) ∈ H1(S,Z2) × H2(S,Z2) × H2(S,Z2). Using
the notationMa,b,c(SO(p, q)) to denote the union of components labeled by
(a, b, c), we can thus write

M(SO(p, q)) =
∐

(a,b,c)∈Z2g
2 ×Z2×Z2

Ma,b,c(SO(p, q)). (1.1)

Each space Ma,b,c(SO(p, q)) has one connected component characterized
entirely by the topological invariants (a, b, c). This is the connected compo-
nent which contains the moduli space of polystable orthogonal bundles with
these invariants, corresponding to Higgs bundles for the maximal compact
subgroup of SO(p, q). Denoted by Ma,b,c(SO(p, q))top, these comprise the
22g+2 ‘mundane’ components for 2 < p � q. Our existence result identifies
additional components disjoint from the Ma,b,c(SO(p, q))top components.
Identifying the topological invariants of each component of Theorem 6.1 gives
the following precise component count.

Corollary 6.4 For 2 < p < q − 1 and (a, b, c) ∈ H1(S,Z2) × H2(S,Z2) ×
H2(S,Z2), we have

|π0(Ma,b,c(SO(p, q)))| =

⎧⎪⎨
⎪⎩
2 if p is odd and b = 0

22g + 1 if p is even, a = 0 and b = 0

1 otherwise.

Remark 1.4 For p = 1 and p = 2, the primary topological invariants are
slightly different. For p = q and p = q − 1, the connected component count
of Ma,b,c(SO(p, q)) is different (see Corollaries 6.5 and 6.6). For p = q
and p = q − 1, all components had been previously detected in [17,35]
respectively. Nevertheless, the nonexistence of additional components is new.

One advantage of working on the Higgs bundle side of the NAH correspon-
dence is that Higgs bundles and their moduli spaces possess a rich structure
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that provides tools which are not readily available in the representation vari-
eties. Two of these tools, which we exploit, are a real-valued proper function
defined by the L2-norm of the Higgs field, called the Hitchin function, and a
natural holomorphic C∗-action. These are related since the critical points of
the Hitchin function occur at fixed points of the C∗-action. When the moduli
space is smooth the Hitchin function is a perfect Morse–Bott function. While
this is not the case in general, the properness of the Hitchin function implies
that it attains its minimum on each connected component. This allows useful
information about π0 to be extracted from the loci of local minima which,
in turn, can be described using information about the corresponding C∗-fixed
points.

For many groups G the Hitchin function has no local minima on M(G)

other than those defining the mundane components (see for example [25,26]).
In such cases these localminima yield enough information to completely count
the components of M(G). The group SO(p, q) is not of this type. While we
are able to classify all the local minima on M(SO(p, q)), the singularities in
the space render this insufficient for completely determining the number of
connected components. The classification of local minima nevertheless plays
a crucial role in the non-existence part of our main result. In the proof of the
main existence theorem, the C

∗-fixed points are helpful but the new exotic
components are detected by a more direct approach.

To show that the components exist,wefirst describe amodel for the supposed
components. We then construct a map from the model to M(SO(p, q)) and
show that the map has open and closed image. The description of the model
invokes a variant of Higgs bundles in which the canonical bundle K is replaced
by the pth power of K .

Theorem 4.1 Let X be a compact Riemann surface with genus g � 2 and
canonical bundle K . Denote the moduli space of K p-twisted SO(1, q − p+1)-
Higgs bundles on X by MK p(SO(1, q − p + 1)) and the moduli space of
K -twisted SO(p, q)-Higgs bundles on X by M(SO(p, q)). For 1 � p � q,

there is a well defined map

� : MK p(SO(1, q − p + 1)) ×
p−1⊕
j=1

H0(X, K 2 j ) M(SO(p, q))

(1.2)
which is an isomorphism onto its image and has an open and closed image.
Furthermore, if p > 1, then every Higgs bundle in the image of � has a
nowhere vanishing Higgs field.

In the case p = 2, the model described in this theorem coincides exactly
with the description of the ‘exotic’ maximal components of M(SO(2, q))

123



SO(p, q)-Higgs bundles... 203

(see [7,12]), where the objects parametrized by the components are described
by K 2-twisted Higgs bundles referred to as Cayley partners. In that setting, the
emergence of the Cayley partners is a consequence of the fact that SO(2, q) is
a group of Hermitian type; our new results for SO(p, q) with p � 2 show that
the phenomenon has a more fundamental origin. In this regard, we note that
our new components generalize both the afore-mentioned Cayley partners in
the Hermitian case (i.e. for p = 2) and also the Hitchin components for the
split real forms SO(p, p) and SO(p, p + 1) (see Sect. 7.3 for more details).

A key technical detail required to show that the map (1.2) has open image, is
the fact that the spaces (both the model and its image under the map) are essen-
tially smooth. This means that all points are either smooth points or mildly
singular, thus allowing the use of Kuranishi’s methods to describe open neigh-
borhoods of all points. The proof of this key technical detail uses the relation
between the tangent spaces for points in M(SO(p, q)) and hypercohomol-
ogy spaces computed from a deformation complex. This complex has three
terms, with the first term coming from infinitesimal automorphisms and the
third term encoding integrability obstructions. The crucial lemma establishes
the vanishing of the second hypercohomology, i.e. of integrability obstruc-
tions for infinitesimal deformations. This is the first place where we exploit
the natural C∗-action on the moduli space. More precisely, it is the special
structure of the fixed points of the action which allows us to prove the van-
ishing results for the deformation complexes at those points. We then use an
upper-semicontinuity argument to extend the result to all points where it is
needed. To show that the image of the map (1.2) is closed, the properness of
the Hitchin fibration is exploited.

The non-existence part of the main theorem follows from a careful analysis
of all the C∗-fixed points, most of which is devoted to identifying which fixed
points correspond to local minima of the Hitchin function. We show that these
are of two types, namely those where the Higgs field is identically zero, and
thosewhich lie in the new exotic components. Since the former label the known
‘mundane’ components, this proves that we have not missed any components.

We now discuss a few consequences of our work for the SO(p, q)-
representation variety R(S,SO(p, q)). Recall that a representation ρ :
π1(S) → SO0(2, 1) is called Fuchsian if it is discrete and faithful. Recall
also that there is a unique (up to conjugation) principal embedding

ι : SO0(2, 1) → SO0(p, p − 1). (1.3)

One consequence of our techniques is a dichotomy for polystable SO(p, q)-
Higgs bundles (see Corollary 6.3). Translating this statement across the NAH
correspondence leads to the following dichotomy for surface group represen-
tations into SO(p, q).
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Theorem 7.6 Let S be a closed surface of genus g � 2. For 2 < p < q − 1,
the representation variety R(S,SO(p, q)) is a disjoint union of two sets,

R(S,SO(p, q)) = Rcpt (S,SO(p, q)) � Rex (S, S,SO(p, q)), (1.4)

where

• [ρ] ∈ Rcpt (S,SO(p, q)) if and only if ρ can be deformed to a compact
representation,

• [ρ] ∈ Rex (S,SO(p, q)) if and only ifρ can be deformed to a representation

ρ′ = α ⊕ (ι ◦ ρFuch) ⊗ det(α), (1.5)

where α is a representation of π1(S) into the compact group O(q − p +1),
ρFuch is a Fuchsian representation of π1(S) into SO0(2, 1), and ι is the
principal embedding from (1.3).

Remark 1.7 The above theorem still holds for p = q > 2, with
Rex (S,SO(p, p)) being the union of the Hitchin components, but it does
not hold when 2 < p = q − 1. Namely, there are exactly 2p(g − 1) exotic
components ofR(S,SO(p, p + 1)) for which the result fails. With the excep-
tion of the Hitchin component, in [17] it is conjectured that all representations
in these components are Zariski dense.

The model representations (1.5) connect our work on the Higgs bundle side
of the NAH correspondence to the theory of positive Anosov representations.
For a parabolic subgroup P < G, the set of P-Anosov representations (see
Definition 7.7) defines an open set in the representation variety consisting
of representations with desirable dynamic and geometric properties [37]. In
[32], Guichard and Wienhard show that for certain pairs (G,P) Anosov rep-
resentations can satisfy an additional positivity property. The set of positive
Anosov representations is open inR(S,G) and also conjectured by Guichard,
Labourie andWienhard to be closed [32], and hence to define connected com-
ponents. Moreover the connected components of this set carry natural labels
determined by the topological types of principal P-bundles (see [30]). For the
classical groups, the pairs (G,P) which admit a notion of positivity come in
three families: one with G a split real form, one with G a Hermitian group of
tube type, and a third in which G is locally isomorphic to SO(p, q). In the first
two families the set of positive Anosov representations corresponds exactly
to the connected components of Hitchin representations and maximal repre-
sentations respectively; thus, for these families, positivity is indeed a closed
condition. In the case of SO(p, q) the conjecture is open. However, it fol-
lows from the work of Guichard and Wienhard that the model representations
(1.5) are positive Anosov representations with respect to a parabolic subgroup
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P which stabilizes a partial isotropic flag in R
p+q . Hence as a corollary to

Theorem 7.6 we have:

Proposition 7.13 Let P ⊂ SO(p, q) be the stabilizer of the partial flag V1 ⊂
V2 ⊂ · · · ⊂ Vp−1, where Vj ⊂ R

p+q is an isotropic j-plane. If 2 < p < q−1,
then each connected component of Rex (S,SO(p, q)) from (1.4) contains a
nonempty open set of positive P-Anosov representations.

Assuming the conjecture of Guichard and Wienhard, it would follow from
Proposition 7.13 that the exotic components described in this paper correspond
exactly to the components in R(S,SO(p, q)) containing positive Anosov
SO(p, q)-representations. As further evidence for this conclusion it is note-
worthy that in the cases where positivity is known to be a closed condition,
the representations all satisfy a certain irreducibility condition, namely they
do not factor through any proper parabolic subgroup of G. For the components
ofR(S,SO(p, q)) which do not contain representations into compact groups,
we can establish this irreducibility property as a corollary to Theorem 4.1. In
particular, it holds for all representations in the componentsRex (S,SO(p, q))

from Theorem 7.6.

Proposition 7.15 Let Rcpt (S,SO(p, q)) be the union of the connected com-
ponents of R(S,SO(p, q)) containing compact representations. Let 2 <

p � q and ρ ∈ R(S,SO(p, q))\Rcpt (S,SO(p, q)). Then ρ does not fac-
tor through any proper parabolic subgroup of SO(p, q).

Though our main results are the first to prove the existence of exotic com-
ponents outside the realm of higher Teichmüller theory for groups of split and
Hermitian type, evidence for such components has been building for some
time. As mentioned above, considerations based on the Guichard–Wienhard
positivity property had placedR(S,SO(p, q)) among the representation vari-
eties expected to have such components. Even earlier indications had come
from a study of the local minima of the Hitchin function on M(SO(p, q)).
While the absolute minimum, i.e. the zero level, of the function is attained on
the components Ma,b,c(SO(p, q))top, in [3] the first author described addi-
tional smooth local minima at non-zero values, thus opening up the possibility
that further components exist.

The special case q = p+1 provided the first confirmation of this possibility.
Hitchin components were known to exist inM(SO(p, p +1)) by virtue of the
fact that the group SO(p, p + 1) is the split real form of SO(2p + 1,C).
The results in [17] show that these are not the only exotic components.
With the luxury of hindsight, we now see that the additional components in
M(SO(p, p + 1)) coincide exactly with the exotic components described by
our main results for the case q = p + 1.

We note finally that additional features of the connected components
of M(SO(p, q)) have been detected by Baraglia and Schaposnik (in [5])
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by examining spectral data on generic fibers of the Hitchin fibration for
M(SO(p + q,C)). Their methods cannot distinguish connected components
because of the genericity assumption on the fibers, but, where they apply, their
methods provide an intriguing alternative perspective.

2 Higgs bundle background

In this section we recall the necessary background on G-Higgs bundles on a
compact Riemann surface and their deformation theory. Special attention is
then placed on the group SO(p, q).Higgs bundles were introduced by Hitchin
in [34] and Simpson in [44], and have been studied extensively by many
authors. For real groups we will mostly follow [24]. For the rest of the paper,
let X be a compact Riemann surface of genus g � 2 and with canonical bundle
K → X .

2.1 General definitions

Let G be a real reductive Lie group with Lie algebra g and choose a maximal
compact subgroup H ⊂ G with Lie algebra h ⊂ g. Fix a Cartan splitting
g ∼= h ⊕ m, where m is the orthogonal complement of h ⊂ g with respect to
a nondegenerate Ad(G)-invariant bilinear form. In particular, [h,m] ⊂ m and
[m,m] ⊂ h, thus such a splitting is preserved by the adjoint action of H on g,
giving a linear representation H → GL(m). Complexifying everything yields
an Ad(HC)-invariant splitting gC ∼= hC ⊕ mC.

For any group G, if P is a principal G-bundle and α : G → GL(V ) is a
linear representation, denote the associated vector bundle P ×G V by P[V ].
Definition 2.1 Fix a holomorphic line bundle L → X . An L-twisted G-Higgs
bundle is a pair (E, ϕ) where E is a holomorphic principal HC-bundle and
ϕ ∈ H0(X, E[mC]⊗ L) is a holomorphic section of the associatedmC-bundle
twisted by L . The section ϕ is called the Higgs field.

Remark 2.2 As usual, when the line bundle L is the canonical bundle K of
the Riemann surface, we refer to a K -twisted Higgs bundle as a Higgs bundle.
We are mainly interested in the case L = K , however, taking L = K p will
also play an important role.

Example 2.3 When G is a compact group, we have GC = HC and mC = 0,
so a G-Higgs bundle is just a holomorphic GC-bundle on X. When G is a
complex group, we have G = HC and mC ∼= g. In this case, the Higgs field is
just an L-twisted section of the adjoint bundle.

Rather than dealing with principal bundles, we will use a linear representa-
tionα : HC → GL(V ) andworkwith vector bundles and sections of associated
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bundles. A holomorphic principal GL(n,C)-bundle is equivalent to a rank n
holomorphic vector bundle E . For SL(n,C)we obtain an oriented vector bun-
dle (E, ω), whereω ∈ H0(�n E) is nowhere vanishing. For O(n,C)we get an
orthogonal vector bundle (E, Q), where Q ∈ H0(Sym2E∗) such that det(Q)

is nowhere vanishing. Finally, for SO(n,C) we obtain an oriented orthogonal
vector bundle (E, Q, ω), where det(Q)(ω, ω) = 1.

The standard representations give the following vector bundle definitions,
which are equivalent to the principal bundle formulations given by Definition
2.1.

Definition 2.4 An L-twisted GL(n,C)-Higgs bundle over X is a pair
(E, �), where E → X is a rank n holomorphic vector bundle and
� ∈ H0(End(E) ⊗ L).

An L-twisted SL(n,C)-Higgs bundle is a triple (E, ω, �), where (E, ω)

is a rank n holomorphic oriented vector bundle and � ∈ H0(End(E) ⊗ L)

satisfies tr(�) = 0.
An L-twisted O(n,C)-Higgs bundle is a triple (E, Q, �), where (E, Q) is

a rank n holomorphic orthogonal vector bundle and � ∈ H0(End(E) ⊗ L)

satisfies �T Q + Q� = 0.
An L-twisted SO(n,C)-Higgs bundle is a quadruple (E, Q, ω, �), where

(E, Q, ω) is a rank n holomorphic oriented orthogonal vector bundle and
� ∈ H0(End(E) ⊗ L) satisfies �T Q + Q� = 0.

TwoGL(n,C)-Higgs bundles (E1, �1) and (E2, �2) are isomorphic if there
exists a holomorphic bundle isomorphism f : E1 → E2 so that f ∗�2 =
�1. For SL(n,C), O(n,C) and SO(n,C)-Higgs bundles we require that the
isomorphism f pulls back the additional structure.

The group O(p, q) is the group of linear automorphisms of Rp+q which
preserve a nondegenerate symmetric quadratic form of signature (p, q). Note
that O(p, q) and O(q, p) are isomorphic groups, so we can assume that p �
q without loosing any generality. We are mainly interested in the subgroup
G = SO(p, q) of O(p, q) which also preserves an orientation of Rp+q . This
group has two connected components provided p and q are both positive, and
the connected component of the identity is denoted by SO0(p, q). We shall
assume throughout the paper that 0 < p � q.

If Q p and Qq are positive definite symmetric p × p and q × q matrices,
then the Lie algebra so(p, q) is defined by the matrices

so(p, q) ∼=
{(

A B
C D

) ∣∣∣ ( A B
C D

)T
(

Q p
−Qq

)
+

(
Q p

−Qq

) (
A B
C D

) = 0
}

,

where A is a p × p matrix, B is a p × q matrix, C is a q × p matrix and D is
a q × q matrix. Thus,
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AT Q p + Q p A = 0, DT Qq + Qq D = 0 and C = −Q−1
q BT Q p.

(2.1)
Themaximal compact subgroup ofO(p, q) is O(p)×O(q) and themaximal

compact subgroup of SO(p, q) is S(O(p) ×O(q)). Using (2.1), the complex-
ified Cartan decomposition of so(p, q) is

so(p + q,C) ∼= (so(p,C) ⊕ so(q,C)) ⊕ Hom(W, V ),

where V and W are the standard representations of O(p,C) and O(q,C).

Using these representations, we have the following vector bundle definition of
an SO(p, q)-Higgs bundle.

Definition 2.5 An L-twisted O(p, q)-Higgs bundle is a tuple
(V, QV , W, QW , η), where (V, QV ), (W, QW ) are rank p, q holomorphic
orthogonal vector bundles respectively and η ∈ H0(Hom(W, V ) ⊗ L).

An L-twisted SO(p, q)-Higgs bundle is a tuple (V, QV , W, QW , ω, η),

where (V, QV , W, QW , η) is an L-twisted O(p, q)-Higgs bundle and(
V ⊕ W,

(
QV −QW

)
, ω

)
is an oriented orthogonal vector bundle.

Remark 2.6 We will usually interpret the orthogonal structures and the orien-
tation as isomorphisms:

QV : V
∼=−−→ V ∗, QW : W

∼=−−→ W ∗ and ω : �pV
∼=−−→ �q W.

Moreover, we will usually suppress the orthogonal structures and orientation
from the notation.

Two SO(p, q)-Higgs bundles (V1, QV1, W1, QW1, ω1, η1) and
(V2, QV2, W2, QW2, ω2, η2) are isomorphic if there exists bundle isomor-
phisms gV : V1 → V2 and gW : W1 → W2 so that

QV1 = gT
V QV2gV , QW1 = gT

W QW2gW ,

ω1 = det(gV ) det(gW )ω2 and η1 = g−1
V η2gW .

Given an L-twisted SO(p, q)-Higgs bundle (V, QV , W, QW , η), let

η∗ = (Q−1
W ⊗ IdL)(ηT ⊗ IdL)QV ,

where ηT : V ∗ ⊗ L−1 → W ∗ is the dual map. The L-twisted SO(p + q,C)-
Higgs bundle associated to (V, QV , W, QW , η) is given by

(E, Q, ω, �) =
(

V ⊕ W,
(

QV 0
0 −QW

)
, ω,

(
0 η

η∗ 0

) )
. (2.2)
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In subsequent sections, we will also need the notions of U(p, q)-Higgs bun-
dles and GL(n,R)-Higgs bundles. The complexified Cartan decompositions
for these groups are given by

u(p, q)C ∼= (gl(p,C) ⊕ gl(q,C)) ⊕ (Hom(E, F) ⊕ Hom(F, E)),

gl(n,R)C ∼= o(n,C) ⊕ sym(Cn),

where E and F are respectively the standard representations of GL(p,C) and
GL(q,C) and sym(Cn) denotes the set of symmetric endomorphisms of Cn.

Definition 2.7 An L-twisted U(p, q)-Higgs bundle is a tuple (E, F, β, γ ),
where E , F are holomorphic vector bundles of rank p, q respectively, β ∈
H0(Hom(F, E) ⊗ L) and γ ∈ H0(Hom(E, F) ⊗ L).
An L-twisted GL(n,R)-Higgs bundle is a tuple (E, Q, �) where (E, Q)

is a holomorphic rank n orthogonal vector bundle and � ∈ H0(End(E) ⊗ L)

such that �T Q = Q�.

2.2 The Higgs bundle moduli space and deformation theory

To form a moduli space of G-Higgs bundles we need a notion of stability for
these objects. In general, these stability notions involve the interaction of the
Higgs field with certain parabolic reductions of structure group. For the above
groups, stability can be simplified and expressed in vector bundle terms (see
[24]).

Proposition 2.8 An L-twisted SL(n,C)-Higgs bundle (E, �) is

• semistable if for every holomorphic subbundle F ⊂ E with �(F) ⊂ F ⊗L
we have deg(F) � 0,

• stable if for every proper holomorphic subbundle F ⊂ E with �(F) ⊂
F ⊗ L we have deg(F) < 0,

• polystable if it is semistable and for every degree zero subbundle F ⊂ E
with �(F) ⊂ F ⊗ L, there is a subbundle F ′ with �(F ′) ⊂ F ′ ⊗ L so
that E ∼= F ⊕ F ′. That is,

(E, �) =
(

F ⊕ F ′,
(

�F 0
0 �F ′

) )
.

Remark 2.9 For the notions of stability, semistability and polystability for
an L-twisted O(n,C)-Higgs bundles (E, Q, �), one only needs to consider
isotropic subbundles F ⊂ E with �(F) ⊂ F ⊗ K . Here a subbundle F ⊂ E
is isotropic if F ⊂ F⊥, where F⊥ is the perpendicular subbundle defined by
Q. For a polystable L-twisted O(n,C)-Higgs bundle, if F ⊂ E is a degree
zero isotropic subbundle with �(F) ⊂ F ⊗ L , then E ∼= F ⊕ F ′ where F ′ is
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a degree zero coisotropic subbundle satisfying�(F ′) ⊂ F ′ ⊗ L . We note also
that the polystability of (E, Q) as an orthogonal vector bundle is equivalent
to the polystability of E as a vector bundle [40].

For real groups, the notions of semistability, stability and polystability are
a bit more involved. However, for the purpose of defining the moduli spaces
we are interested in, it is sufficient to use the following result of [24].

Proposition 2.10 LetG be a real form of a simple subgroup ofSL(n,C). An L-
twistedG-Higgs bundle (E, ϕ) is polystable if and only if the inducedSL(n,C)-
Higgs bundle is polystable in the sense of Proposition 2.8. The analogous
statement for semistability also holds.

Definition 2.11 The moduli space of L-twisted G-Higgs bundles on X is the
setML(G) of isomorphism classes of polystable L-twisted G-Higgs bundles.
The subset where E has fixed topological type a is denoted by Ma

L(G) ⊂
ML(G). In the case L = K , we shall denote the corresponding moduli spaces
just by Ma(G) ⊂ M(G).

Remark 2.12 The above defines the moduli space as a set. It can be given the
structure of a complex analytic variety using standard methods, as we briefly
outline in Sect. 2.3 below. Alternatively, the moduli space can be constructed
algebraically as the set ofS-equivalence classes of semistableG-Higgs bundles
as a particular case of a construction of Schmitt [42] using geometric invariant
theory.When themaximal compact subgroup ofG is semisimple and deg(L) �
2g−2, the expected dimension ofML(G) is dim(h)(g−1)+dim(m)(deg(L)+
1 − g).

The automorphism group Aut(E, ϕ) of a G-Higgs bundle (E, ϕ) consists of
holomorphic bundle automorphisms which act trivially on the Higgs field:

Aut(E, ϕ) = { f : E → E | Ad f ϕ = ϕ}. (2.3)

The center Z(GC) of GC is the intersection of the center of HC and the kernel
of the representation Ad : HC → GL(mC). Thus, we always have Z(GC) ⊂
Aut(E, ϕ).

Remark 2.13 If GC is semisimple, then a G-Higgs bundle is stable if and only
if it is polystable with finite automorphism group.

The deformation theory of a G-Higgs bundle (E, ϕ) is governed by the
complex of sheaves

C•(E, ϕ) : E[hC] adϕ E[mC] ⊗ L; (2.4)
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indeed H
0(C•(E, ϕ)) can be identified with the Lie algebra of Aut(E, ϕ) and

H
1(C•(E, ϕ)) is the infinitesimal deformation space (see [8]). There is a long

exact sequence in hypercohomology:

0 H
0(C•(E, ϕ)) H0(E[hC]) adϕ

H0(E[mC] ⊗ L) H
1(C•(E, ϕ))

H1(E[hC]) adϕ
H1(E[mC] ⊗ L) H

2(C•(E, ϕ)) 0.

(2.5)

Remark 2.14 When the group G is complex, Serre duality implies that the sec-
ond hypercohomology group in this deformation complex is isomorphic to the
dual of the zeroth hypercohomology group [24, Proposition 3.17]. In partic-
ular, this implies that for complex semisimple groups H2(C•(E, ϕ)) vanishes
if and only if the Higgs bundle (E, ϕ) is stable.

2.3 The complex analytic point of view on the moduli space

Fix a C∞ principal HC-bundle P . The set of holomorphic structures on P is
an affine space modeled on �0,1(X, P[hC]): indeed, since dim(X) = 1, any
partial connection on P is integrable and thus defines a holomorphic structure
on P . A partial connection induces a Dolbeault operator ∂̄P on any vector
bundle associated to P and we shall by a slight abuse of notation denote the
partial connection itself by the same symbol. We can now introduce the space
of L-twisted Higgs bundle structures on P by

HL(G, P) = {(∂̄P , ϕ) | ∂̄Pϕ = 0}, (2.6)

where ϕ ∈ �0(X, P[mC] ⊗ L) is the Higgs field.
The complex gauge group GHC of C∞ bundle automorphisms of P

acts on the space HL(G, P). Moreover, this action preserves the subspace
HL(G, P)ps ⊂ HL(G, P)of polystable L-twistedHiggs bundles. Ifwedenote
the topological type of P by a, we thus have an identification

Ma
L(G) = HL(P,G)ps/GHC .

In order to give the moduli space a topology, suitable Sobolev completions
must be used in standard fashion; see [4], and also [33, Sec. 8] where the
straightforward adaptation to Higgs bundles is discussed in the case G =
GL(n,C). Then the orbits of the GHC-action onHL(G, P)ps are closed in the
space of semistable G-Higgs bundles and the moduli spaceML(G) becomes
a Hausdorff topological space.

Remark 2.15 If Hs
L(P,G) ⊂ Hps

L (P,G) denotes the subset of stable Higgs
bundle structures, then Hs

L(P,G) is open in Hps
L (P,G). The stable objects

thus define open subsets of Ma
L(G).
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The moduli space can be given the structure of a complex analytic variety
using the Kuranishi model in a way analogous to the case of vector bundles
on algebraic surfaces; see, e.g., [20, Sec 6.4.1] or [23, Chap. 4]. We briefly
recall this for a point represented by a Higgs bundle (E, ϕ) with vanishing
H

2(C•(E, ϕ)), this being the only casewe shall need. For any such (E, ϕ), there
is an open neighborhood U of zero in H1(C•(E, ϕ)) and a local versal family
of G-Higgs bundles parametrized by U which restricts to (E, ϕ) over {0}× X .
Moreover, if (E, ϕ) is polystable then (semistability being an open condition)
U can be taken to consist only of semistable G-Higgs bundles, and the map
taking a semistable G-Higgs bundle in U to the polystable representative of
its S-equivalence class projects U onto an open neighborhood of (E, ϕ) in the
moduli space.

Though we shall not need this, we note that the neighborhood U can be
taken to be Aut(E, ϕ)-invariant and then an open neighborhood of (E, ϕ) in
the moduli space is modeled on the GIT quotient U � Aut(E, ϕ). When the
automorphismgroupAut(E, ϕ) is finite, theGITquotient simplifies to a regular
quotient, and the isomorphism class (E, ϕ) defines (at worst) an orbifold point
of ML(G).

2.4 Stability and deformation complex for G = SO( p, q)

We shall need the precise notion of stability for SO(p, q)-Higgs bundles. The
derivation of the following simplification of the stability notion for SO(p, q)-
Higgs bundles is very similar to many cases treated in the literature. For
example, see [26] for the case G = Sp(2p, 2q).

Proposition 2.16 Let (V, QV , W, QW , ω, η) be an L-twisted SO(p, q)-
Higgs bundle and let η∗ = Q−1

W ηT QV . Then it is

• semistable if and only if for any pair of isotropic subbundles V1 ⊂ V and
W1 ⊂ W such that η(W1) ⊂ V1 ⊗ L and η∗(V1) ⊂ W1 ⊗ L, we have
deg(V1) + deg(W1) � 0,

• stable if and only if for any pair of isotropic subbundles V1 ⊂ V and
W1 ⊂ W , at least one of which is a proper2 subbundle, and such that
η(W1) ⊂ V1⊗ L and η∗(V1) ⊂ W1⊗ L, we have deg(V1)+deg(W1) < 0,

• polystable if and only if it is semistable and whenever V1 ⊂ V and W1 ⊂ W
are isotropic subbundles with η(W1) ⊂ V1 ⊗ L, η∗(V1) ⊂ W1 ⊗ L and
deg(V1) + deg(W1) = 0, there are coisotropic bundles V2 ⊂ V and W2 ⊂
W , complementary to V1 and W1 respectively, so that η(W2) ⊂ V2 ⊗ L

2 We note that for a rank two orthogonal bundle of the form (L ⊕ L∗,
(
0 Id
Id 0

)
), the isotropic

subbundle L is not considered to be proper. This is because SO(2,C) ∼= C
∗, so L does not

define a proper reduction of structure group.
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and η∗(V2) ⊂ W2 ⊗ L. That is,

(V, W, η) =
(

V1 ⊕ V2, W1 ⊕ W2,
(

η1 0
0 η2

) )
.

Wenow give a recursive classification of strictly polystable SO(p, q)-Higgs
bundles, which will be important in the following sections of the paper.

Given a U(p, q)-Higgs bundle (E, F, β, γ )with deg(E ⊕ F) = 0, consider
the associated SO(2p, 2q)-Higgs bundle

(V, QV , W, QW , η) =
(

E ⊕ E∗,
(
0 Id
Id 0

)
, F ⊕ F∗,

(
0 Id
Id 0

)
,
(

β 0
0 γ T

) )
.

If (E, F, β, γ ) is a polystable U(p, q)-Higgs bundle, then this SO(2p, 2q)-
Higgs bundle is strictly polystable. Indeed, E , E∗, F and F∗ are all isotropic
subbundles with deg(E) + deg(F) = 0 and

η(F) ⊂ E ⊗ K , η(F∗) ⊂ E∗ ⊗ K , η∗(E) ⊂ F ⊗ K , and η∗(E∗) ⊂ F∗ ⊗ K .

Proposition 2.17 An SO(p, q)-Higgs bundle (V,QV ,W,QW ,η) is polystable
if and only if it is isomorphic to

(
E ⊕ E∗ ⊕ V0,

( 0 Id 0
Id 0 0
0 0 QV0

)
, F ⊕ F∗ ⊕ W0,

(
0 Id 0
Id 0 0
0 0 QW0

)
,

(
β 0 0

0 γ T 0
0 0 η0

))
, (2.7)

where (E, F, β, γ ) is a polystable U(p1, q1)-Higgs bundle with deg(E) +
deg(F) = 0, and (V0, QV0, W0, QW0, η0) is a stable SO(p − 2p1, q − 2q1)-
Higgs bundle.

Proof If (V, QV , W, QV , η) is stable, take p1 = q1 = 0. Suppose that
(V, QV , W, QW , η) is strictly polystable and that E ⊂ V and F ⊂ W
are isotropic subbundles of rank p1 and q1 respectively, such that deg(E) +
deg(F) = 0 and

η(F) ⊂ E ⊗ K and η∗(E) ⊂ F ⊗ K.

Since (V, W, η) is polystable, the bundles V and W split as V = E ⊕ V ′ and
W = F ⊕ W ′, where V ′ and W ′ are both coisotropic subbundles with the
property

η(W ′) ⊂ V ′ ⊗ K and η∗(V ′) ⊂ W ′ ⊗ K .
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Since the bundles E and F are isotropic, the bundles V ′ and W ′ are extensions
of the form:

0 E⊥/E V ′ E∗ 0 and 0 F⊥/F W ′ F∗ 0 .

We claim that the above extension classes vanish. For the bundle V we have
a holomorphic splitting E ⊕ V ′ and a smooth splitting E ⊕ E⊥/E ⊕ E∗. In
this smooth splitting, the orthogonal structure QV and the ∂̄-operator on V are
isomorphic to

QV
∼=

( 0 0 Id
0 QE⊥/E 0

Id 0 0

)
and ∂̄V

∼=
(

∂̄E 0 0
0 ∂̄E⊥/E α

0 0 ∂̄E∗

)
,

where α ∈ �0,1(Hom(E∗, E⊥/E)). However, since the orthogonal structure
QV is holomorphic, we have α = 0. By applying the same argument to the
bundle W , we have the following holomorphic splitting

(W, QW ) ∼=
(

F ⊕ F⊥/F ⊕ F∗,
(

0 0 Id
0 QF⊥/F 0

Id 0 0

))
.

The conditions η(F) ⊂ E ⊗ K , η∗(E) ⊂ F ⊗ K and η(W ′) ⊂ V ′ ⊗ K imply
that η is given by

η =
(

β 0 0
0 η0 0
0 0 γ T

)
: F ⊕ F⊥/F ⊕ F∗ −→ E ⊕ E⊥/E ⊕ E∗.

The tuple (E, F, β, γ ) defines a polystable U(p1, q1)-Higgs bundle and

(V0, QV0, W0, QW0, η0) = (E⊥/E, QE⊥/E , F⊥/F, QF⊥/F , η0)

defines a polystable SO(p − 2p1, q − 2q1)-Higgs bundle. By iterating this
process if necessary, we may assume (V0, W0, η0) is stable.

The converse statement is clear. ��
For an L-twisted SO(p, q)-Higgs bundle (V, QV , W, QW , ω, η), write

so(V ) = {α ∈ End(V ) | αT QV + QV α = 0} and so(W ) = {β ∈ End(W ) | βT QW + QW β = 0}.

Then the Lie algebra bundles E[hC] and E[mC] ⊗ L are given by

E[so(p,C) ⊕ so(q,C)] ∼= so(V ) ⊕ so(W ) and E[mC] ⊗ L ∼= Hom(W, V ) ⊗ L .
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The deformation complex (2.4) becomes

C•(V, W, η) : so(V ) ⊕ so(W )
adη

Hom(W, V ) ⊗ L ,

(α, β) η ⊗ β − (α ⊗ IdL) ⊗ η

(2.8)

and the long exact sequence (2.5) is given by

0 H
0(C•(V, W, η)) H0(so(V ) ⊕ so(W ))

adη

H0(Hom(W, V ) ⊗ L) H
1(C•(V, W, η))

H1(so(V ) ⊕ so(W ))
adη

H1(Hom(W, V ) ⊗ L) H
2(C•(V, W, η)) 0.

(2.9)
Wewill use the above complex and long exact sequence extensively throughout
the paper.

Finally, we make explicit the gauge theoretic perspective for SO(p, q)-
Higgs bundles. Fix C∞ rank p and q orthogonal vector bundles (V , QV )

and (W , QW ) respectively, and a smooth nowhere vanishing section ω of
�p+q(V ⊕ W ) so that det(QV ⊕−QW )(ω, ω) = 1. An SO(p, q)-Higgs bun-
dle structure on (V , QV , W , QW , ω) consists of a triple (∂̄V , ∂̄W , η), where
η ∈ �0,1(Hom(W, V )⊗ K ) and ∂̄V and ∂̄W are Dolbeault operators on V and
W with respect to which QV , QW , ω and η are each holomorphic. An isomor-
phism between two such Higgs bundle structures (∂̄V , ∂̄W , η) and (∂̄ ′

V , ∂̄ ′
W , η′)

is given by an element of the S(O(p,C) × O(q,C))-gauge group. That is, a
pair of C∞ bundle automorphism fV : V → V and fW : W → W so that

f T
V QV fV = QV , f T

W QW fW = QW , and det( fV ) ⊗ det( fW ) = 1,

with the property that ( f ∗
V ∂̄ ′

V , f ∗
W ∂̄ ′

W , f −1
W η′ fV ) = (∂̄V , ∂̄W , η).

2.5 The Hitchin fibration and Hitchin component

Let GC be a complex semisimple Lie group of rank � and let p1, . . . , p� be
a basis of GC-invariant homogeneous polynomials on gC with deg(p j ) =
m j + 1. Given an L-twisted GC-Higgs bundle (E, ϕ), the tensor p j (ϕ) is
a holomorphic section of Lm j +1. The map (E, ϕ) �→ (p1(ϕ), . . . , p�(ϕ))

descends to a map

h : ML(GC)

�⊕
j=1

H0(Lm j +1) (2.10)
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known as the Hitchin fibration. In [34], Hitchin showed that h is a proper map
for L = K , and for general L properness was shown by Nitsure in [39].

Another important aspect of theHitchin fibration for this paper is theHitchin
section.

Theorem 2.18 (Hitchin [35]) Let G be the split real form of a complex
semisimple Lie group GC of rank �. There is a section of the fibration (2.10)
with L = K such that the image consists of G-Higgs bundles and defines a
connected component of M(G).

Remark 2.19 For a split real group G, a connected component of M(G)

described by Theorem 2.18 is called a Hitchin component. Since the Hitchin
components are smooth, the automorphism group of a Higgs bundle in such a
component is as small as possible. For O(p, p−1), it is given by±(IdV , IdW ).

We now describe an explicit construction of a section of (2.10) for the
group GC = O(2p − 1,C). This construction will be used in Sect. 4. We will
construct one such section s I

H for each choice of a holomorphic line bundle
I with I 2 ∼= O. In this case, the rank is p − 1, the integers m j + 1 equal to
2 j and the split real form is isomorphic to O(p, p − 1). Therefore the Hitchin
section is given by

s I
H :

p−1⊕
j=1

H0(K 2 j ) → M(O(2p − 1,C)).

For each n, consider the holomorphic orthogonal bundle

(Kn, Qn) =
(

K n ⊕ K n−2 ⊕ · · · ⊕ K 2−n ⊕ K −n,

(
1

. .
.

1

))
. (2.11)

For (q2, . . . , q2p−2) ∈
p−1⊕
j=1

H0(K 2 j ), the O(p, p − 1)-Higgs bundle (V, QV ,

W, QW , η) in the image of a Hitchin section s I
H is given by

s I
H (q2, . . . , q2p−2) = (I⊗Kp−1, Q p−1, I⊗Kp−2, Q p−2, η(q2, . . . , q2p−2)),

(2.12)
where η(q2, . . . , q2p−2) depends on a choice of the basis of invariant polyno-
mials. Notice that, in particular, the holomorphic structures on V = I ⊗Kp−1
and W = I ⊗ Kp−2 are fixed. One choice for η(q2, . . . , q2p−2) is given by
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η(q2, . . . , q2p−2) =
⎛
⎝

q2 q4 ··· q2p−2
1 q2 ··· q2p−4

. . .
. . .
1 q2

1

⎞
⎠ : I ⊗ Kp−2 I ⊗ Kp−1 ⊗ K .

(2.13)
For example, when p = 3 we have

(V, QV , W, QW , η(q2, q4))

=
(

I K 2 ⊕ I ⊕ I K −2,
(

1
1

1

)
, I K ⊕ I K −1,

(
1

1

)
,
( q2 q4

1 q2
0 1

) )
.

If (E, Q, �) is the associated O(5,C)-Higgs bundle from (2.2), then tr(�2) =
8q2 and tr(�4) = 20q2

2 + 8q4. So the above description describes the Hitchin
section for the basis p1(�) = 1

8 tr(�
2) and p2 = 1

8 tr(�
4) − 20

64 (tr(�
2))2.

2.6 Topological invariants

Since HC and G are both homotopy equivalent to H, the set of equivalence
classes of topological HC-bundles on X is the same as the set of equivalence
classes of topological G-bundles on X . Denote this set by BunX (G). This gives
a decomposition of the Higgs bundle moduli space,

ML(G) =
∐

a∈BunX (G)

Ma
L(G),

where a ∈ BunX (G) is the topological type of the underlying HC-bundle of
the Higgs bundles in Ma

L(G).

In general, the number of connected components of the moduli space of G-
Higgs has not been established. However, when G is compact and semisimple,
the spacesMa(G) are connected and nonempty [41]. Using Example 2.3, this
implies the following proposition.

Proposition 2.20 If G is a connected real semisimple Lie group such that the
maximal compact subgroup H is semisimple, then, for each a ∈ BunX (G), the
space Ma(G) is nonempty. Moreover, each space Ma(G) contains a unique
connected component with the property that every Higgs bundle in it can be
deformed to a Higgs bundle with zero Higgs field.

The above proposition implies that, when G is a semisimple complex Lie
group, the spaceMa(G) is nonempty for each a ∈ BunX (G). In fact, each of
the spacesMa(G) is connected. This was proven for connected groups by Li
[38] and in general in [25]. In particular, we have the following:
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Corollary 2.21 If G is a semisimple complex Lie group, then every Higgs
bundle (E, ϕ) ∈ M(G) can be deformed to a Higgs bundle with vanishing
Higgs field. In particular,

|π0(M(G))| = |BunX (G)|.
A semisimple Lie group G whose maximal compact subgroup is not semisim-
ple but only reductive is called a group of Hermitian type. Wewill discuss this
case in more detail in Sect. 6.2.

We have O(1) ∼= Z2 and O(1)-bundles are classified by their first Stiefel–
Whitney class sw1 ∈ H1(X,Z2). For p � 2, topological O(p)-bundles
have two characteristic classes, a first Stiefel–Whitney class and a second
Stiefel–Whitney class sw2 ∈ H2(X,Z2). When the first Stiefel–Whitney
class vanishes, the structure group can be reduced to SO(p). Since SO(2)
is a circle, the second Stiefel–Whitney class of an O(2)-bundle lifts to the
degree of a circle bundle when sw1 = 0. However, as an O(2)-bundle, it
is only the absolute value of the degree which is a topological invariant. For
p > 2, the first and second Steifel–Whitney classes classify topological O(p)-
bundles over X , while the SO(p)-bundles are classified topologically just
by sw2.

We will be particularly interested in the case of K p-twisted SO(1, n)-
Higgs bundles and K -twisted SO(p, q)-Higgs bundles. Since the maximal
compact subgroup of SO(p, q) is S(O(p) × O(q)), the Higgs bundles are
determined by two orthogonal bundles which have the same first Stiefel–
Whitney class. Let Ma,b,c

L (SO(p, q)) denote the subset of SO(p, q)-Higgs
bundles (V, QV , W, QV , η) so that

a =sw1(V, QV )=sw1(W, QW ) b=sw2(V, QV ) and c = sw2(W, QW ).

These invariants are constant on connected components, thuswe have a decom-
position

ML(SO(p, q)) =
∐

Ma,b,c
L (SO(p, q)). (2.14)

Note that when p = 1 the invariant b is zero, while when q = 1 then c = 0.
The case of SO(2, q) with vanishing first Stiefel–Whitney class behaves

differently. Let (V, W, η) be a polystable K p-twisted SO(2, q)-Higgs bundle
with sw1(V ) = 0. Then there is a line bundle N so that the SO(2,C)-bundle
(V, QV ) is isomorphic to

(V, QV ) ∼= (N ⊕ N−1,
(
0 1
1 0

)
). (2.15)

123



SO(p, q)-Higgs bundles... 219

With respect to this splitting, the Higgs field η : W → V ⊗ K p decomposes
as

η = ( γ
β

) : W → (N ⊕ N−1) ⊗ K p.

3 The C
∗-action and its fixed points

In this section we recall the definition of the C
∗-action on the Higgs bun-

dle moduli space and discuss its importance for the study of the connected
components of the moduli space of G-Higgs bundles. This method was pio-
neered by Hitchin [34,35] using gauge theoretic methods. For completeness
we have included in Appendix A a brief review of some essential facts coming
from the gauge theoretic approach and how they translate into the language of
holomorphic geometry used in the main body of the paper.

3.1 Definition and basic properties of the action

The action of C∗ on the L-twisted Higgs bundle moduli space is defined by
scaling the Higgs field. Namely, λ · (E, ϕ) = (E, λϕ) for λ ∈ C

∗. Since
this preserves the notions of (poly)stability, it induces a holomorphic action
on the moduli space. By properness of the Hitchin fibration, if (E, ϕ) is the
isomorphism class of a polystable L-twisted G-Higgs bundle, then the limit
lim
λ→0

(E, λϕ) exists and is a polystable fixed point of the C∗-action [44].

Notation 3.1 Note that we have denoted the isomorphism class of a Higgs
bundle and the Higgs bundle itself with the same symbol. The context will
always clarify which object we are referring to.

Consider the function on themoduli space ofG-Higgs bundleswhich assigns
the L2-norm of the Higgs field with respect to the harmonic metric solving the
self-duality equations (cf. (A.5)):

f : M(G) → R, (E, ϕ) �→
∫

X
||ϕ||2. (3.1)

We will refer to the function f as the Hitchin function. Note that f is non-
negative and zero if and only if ϕ = 0. Using Uhlenbeck compactness, Hitchin
showed that the map f is proper and hence it attains local minima on each
closed subset of M(G) [34]. In particular, we have

|π0(M(G))| � |π0(Min(M(G)))|,
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where Min(M(G)) ⊂ M(G) denotes the subset where f attains a local min-
imum.

The starting point for determining the local minima of f is the following
result (Lemma A.8):

Proposition 3.2 Let (E, ϕ) be a G-Higgs bundle such that H0(C•(E, ϕ)) = 0
and H

2(C•(E, ϕ)) = 0. If (E, ϕ) is a local minimum of f then it is a fixed
point of the C

∗-action.

In the situation of Proposition 3.2 there is a weight space splitting (see
Proposition A.16, (A.6) and also Sect. 3.2 for G = SO(p, q)) of the Lie
algebra bundle E[gC] = E[hC] ⊕ E[mC] as

E[hC] = ⊕ E[hC]k and E[mC] = ⊕ E[mC]k

with ϕ ∈ H0(E[mC]1 ⊗ K ). Thus, the complex C• = C•(E, ϕ) defined in
(2.4) splits (see (A.7)) as C• = ⊕

C•
k , where

C•
k = C•

k (E, ϕ) : E[hC]k
adϕ E[mC]k+1 ⊗ K , (3.2)

yielding corresponding splittings Hi (C•(E, ϕ)) = ⊕
k H

i (C•
k (E, ϕ)). There

is also a corresponding splitting of the long exact sequence in cohomology
from (2.5):

0 H
0(C•

k ) H0(E[hC]k )
adϕ

H0(E[mC]k+1 ⊗ K ) H
1(C•

k )

H1(E[hC]k )
adϕ

H1(E[mC]k+1 ⊗ K ) H
2(C•

k ) 0.

(3.3)
We have the following criterion for local minima of f (see Lemma A.19).

Proposition 3.3 Let (E, ϕ) be a G-Higgs bundle which is a fixed point of the
C

∗-action such that H0(C•(E, ϕ)) = 0 and H
2(C•(E, ϕ)) = 0. Then (E, ϕ)

is a local minimum of the Hitchin function f if and only if H1(C•(E, ϕ))k = 0
for all k > 0.

The following criterion for the vanishing in Proposition 3.3 will be useful
(see [13, Section 3.4]).

Proposition 3.4 If (E, ϕ) is a G-Higgs bundle which is a fixed point of the
C

∗-action such that H0(C•) = 0 and H
2(C•) = 0, then (E, ϕ) is a local

minimum of the Hitchin function f if and only if either ϕ = 0 or the map (3.2)
is an isomorphism of sheaves for every k > 0.
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To classify the local minima of f , the following two results are needed (with
proofs given in the Appendix, where they appear as Lemmas A.9 and A.20
respectively).

Proposition 3.5 Let G′ ⊂ G be a reductive subgroup. Suppose (E, ϕ) is a
G-Higgs bundle which reduces to a G′-Higgs bundle. If (E, ϕ) is a minimum
of the Hitchin function on M(G) then it is a minimum of the Hitchin function
on M(G′).

Proposition 3.6 Let (E0, ϕ0) ∈ M(G) be a fixed point of the C∗-action. Sup-
pose there exists a semistableG-Higgs bundle (E, ϕ), which is notS-equivalent
to (E0, ϕ0), and such that limt→∞(E, tϕ) = (E0, ϕ0) in M(G). Then (E0, ϕ0)

is not a local minimum of f .

The following result will help us show the vanishing ofH2(C•) for relevant
Higgs bundles.

Lemma 3.7 If (E, ϕ) is a polystable L-twisted Higgs bundle and (E ′, ϕ′) =
lim
λ→0

(E, λϕ), then

dim
(
H

2(C•(E, ϕ))
)

� dim
(
H

2(C•(E ′, ϕ′))
)
.

Proof If (E, ϕ) is fixed by theC∗-action then we are done. If (E, ϕ) is not fixed
by C

∗, then consider the C∗-family (E, λϕ). Since lim
λ→0

(E, λη) exists, we can

extend this to a family over A1, hence the result follows by semi-continuity of
H

2. ��
Example 3.8 The above minima criterion was used in [9] to classify all local
minima for the group GL(n,R), with n � 2, and in [11] for the group U(p, q)

(cf. Definition 2.7). For U(p, q), all minima (E, F, β, γ ) have either β = 0 or
γ = 0. For GL(n,R), and n � 3, the only local minima (E, Q, �) with non-
zero Higgs field are the ones defining the Hitchin components. More precisely,
they are given by

E = I K (n−1)/2 ⊕ · · · ⊕ I K (1−n)/2, Q =
(

1
. .

.

1

)
and � =

( 0
1 0

. . .
. . .
1 0

)
,

(3.4)

with I a 2-torsion line bundle. If n = 2, the non-zero local minima are of the
form

E = L ⊕ L−1 Q = (
0 1
1 0

)
and � = ( 0 0

�1 0

)
, (3.5)

with �1 : L → L−1K non-zero and 0 < deg(L) � g − 1.
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3.2 SO( p, q)-fixed points

We now focus on the details of fixed points of the C∗-action on the L-twisted
SO(p, q)-Higgs bundle moduli space. In order to get a precise picture, the
simplest approach is to analyze these directly, following Simpson’s procedure
for usual Higgs (vector) bundles [45].

Let (V, W, η) be a polystable SO(p, q)-Higgs bundle with (V, W, η) ∼=
(V, W, λη) for all λ ∈ C

∗. If η �= 0, then for each λ there are holo-
morphic orthogonal automorphisms gV

λ and gW
λ of V and W such that

(gV
λ )−1 · η · gW

λ = λη. Following Simpson, we take a λ which is not a root
of unity. If we additionally take λ ∈ S1 we may, using the gauge theoretic
machinery of Appendix A, take the automorphisms in the maximal compact
subgroup, thus avoiding the generalized eigenspaces considered by Simpson.

Let V = ⊕
ν∈R Vν and W = ⊕

μ∈R Wμ denote the eigenbundle decompo-

sitions of gV
λ and gW

λ respectively, so that gV
λ |Vν = λν · IdVν and gW

λ |Wμ =
λμ · IdWμ . Since the gauge transformations gV

λ and gW
λ are orthogonal, two

eigenbundles Vν and Vν′ or Wμ and Wμ′ are orthogonal if ν + ν′ �= 0 or
μ + μ′ �= 0. Moreover, the quadratic forms define isomorphisms Vν

∼= V ∗−ν

and Wμ
∼= W ∗−μ.

For all weights μ and ν, we have η(Wμ) ⊂ Vμ+1 ⊗ L and η∗(Vν) ⊂
Wν+1 ⊗ L . Thus, η = ∑

ημ and η∗ = ∑
η∗

ν , where

ημ = η|Wμ : Wμ −→ Vμ+1 ⊗ L and η∗−1−ν =η∗|Vν : Vν −→ Wν+1 ⊗ L .

(3.6)
We may decompose V ⊕ W into a direct sum of minimal unbroken chains of
Vν’s and Wμ’s connected by non-zero Higgs fields. Consider such a chain

Va
η∗−a−1−−−→ Wa+1

ηa+1−−→ · · ·

For simplicity of notation, we have suppressed the twisting by L from the
Higgs field. This will be done every time we use these chain representations.
We now consider two cases. (Of course similar arguments will apply for chains
starting with a Wμ.)

Case 1. Suppose V−a
∼= V ∗

a is among the bundles of the chain. Then W−a−1 ∼=
W ∗

a+1 is also among the bundles of the chain, because the non-zero map
Va → Wa+1 is dual to W−a−1 → V−a . Moreover, V−a is evidently the last
bundle of the chain. Thus, the weights must be integers and the restriction of
the quadratic forms on V and W to the chain is non-degenerate.

Case 2. Suppose now that V−a
∼= V ∗

a is not among the bundles of the chain.
Then, arguing in a similar way to case (1), we see that W−a−1 cannot be in
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the chain either. In this case the chain is isotropic for the quadratic forms on
V and W . Note that the weights are only well defined up to overall translation
on such a chain.

We summarize the above characterization ofC∗-fixedpoints in the following
proposition.

Proposition 3.9 If (V, W, η) is a polystable L-twistedSO(p, q)-Higgs bundle
which is a fixed point of the C

∗-action with η �= 0, then it is a direct sum of
holomorphic chains with non-zero Higgs fields of the following two types:

· · · η−3
V−2

η∗
1

W−1
η−1

V0
η∗−1

W1
η1

V2
η∗−3 · · ·

⊕
· · · η∗

2
W−2

η−2
V−1

η∗
0

W0
η0

V1
η∗−2

W2
η2 · · ·

(3.7)

or

· · · ηa−1
Va

η∗−a−1
Wa+1

ηa+1
Va+2

η∗−a−3
Wa+3

ηa+3 · · ·
⊕

· · · η∗
a+3

W−a−3
η−a−3

V−a−2
η∗

a+1
W−a−1

η−a−1
V−a

η∗
a−1 · · ·

(3.8)

where the corresponding quadratic forms define isomorphisms Vj
∼= (V− j )

∗
and W j

∼= (W− j )
∗. The two chains in (3.8) are dual to each other.

Proposition 3.9 provides a characterization of polystable C
∗-fixed points

with non-vanishing Higgs field. The next result shows that stability imposes
further conditions on such fixed points.

Proposition 3.10 Suppose (p, q) �= (2, 2). If (V, W, η) is a stable L-twisted
SO(p, q)-Higgs bundle which is a C

∗-fixed point, then it is represented by a
chain of type (3.7).

Proof Suppose (V, W, η) is represented by (3.8). Consider the subbundles
V ′ ⊂ V and W ′ ⊂ W formed by the summands of the first chain. This is a pair
of isotropic η-invariant subbundles (at least one of which is proper because
(p, q) �= (2, 2)), and the same is true for the pair V ′∗ ⊂ V and W ′∗ ⊂ W
formed by the summands of the second chain. Since deg(V ′) + deg(W ′) =
− deg(V ′∗) − deg(W ′∗), such an SO(p, q)-Higgs bundle is not stable. This
argument also shows that if (V, W, η) has a summand given by (3.8), then it
is not stable. ��
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3.3 Special fixed points on M(SO(2, q))

When p = 2, we have special fixed points of the form

V−1
η∗
0−→ W0

η0−→ V1, (3.9)

where V−1 ∼= V ∗
1 and η0 �= 0. Note that deg(V1) < 0 by polystability. Also,

such a Higgs bundle is of the form (2.15) with either N = V1, γ = η0 and
β = 0, or N−1 = V1, β = η0 and γ = 0. Conversely, an SO(2, q)-Higgs
bundle of the form (2.15) with exactly one of β or γ zero is such a fixed point.

Proposition 3.11 Any SO(2, q)-Higgs bundle (V, W, η) which is a fixed point
of the C∗-action of the form (3.9) has sw1(V ) = sw1(W ) = 0 and represents
a local minimum of the Hitchin function.

Proof The vanishing of the first Stiefel–Whitney class is immediate from V =
V ∗
1 ⊕V1. To see that such a fixed point is aminimum, associate to it theU(1, q)-

Higgs bundle (V1, W0, η0, 0). Since a U(1, q)-Higgs bundle with γ = 0 is
a minimum of the Hitchin function on its respective moduli space [11] the
conclusion follows by Proposition 3.5. ��

Fixed points of the C
∗-action in M(SO(2, 2)) are particularly easy to

describe using (3.7) and (3.8). Let (V, W, η) be an SO(2, 2)-Higgs bun-
dle. If sw1(V ) = sw1(W ) �= 0, then neither V nor W have holomorphic
isotropic subbundles, thus (V, W, η) is a fixed point if and only if η = 0. If
sw1(V ) = sw1(W ) = 0, then V = N ⊕ N−1 and W = M ⊕ M−1 where N
and M are isotropic line bundles. Up to switching the roles of N , M , N−1 and
M−1, the holomorphic chains are given by

M

(
a
b

)
N ⊕ N−1 ( b a )

M−1 , (3.10)

which are of the form (3.9). Hence, in view of Proposition 3.11, we have the
following result.

Proposition 3.12 Every fixed point in M(SO(2, 2)) is a local minimum.

3.4 SO(1, n)-fixed points and local structure of MK p(SO(1, n))

Recall from Definition 2.5 that a K p-twisted SO(1, n)-Higgs bundle is a tuple
(I, Q I , W, QW , ω, η).

Note that the isomorphism (− IdI ⊕ IdW ) : I ⊕ W → I ⊕ W acts on such
a tuple by (I, QI , W, QW , ω, η) �→ (I, QI , W, QW , −ω, −η). In particular,
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for C∗-fixed points, the isomorphism class is independent of the choice of ω.

This implies that the two choices of orientation define SO(1, n)-Higgs bundles
which are in the same connected component. For this reason, we ignore the
orientation in this section.

Lemma 3.13 If (I, W, η) is a polystable K p-twisted SO(1, n)-Higgs bundle
which is a C

∗-fixed point with η �= 0, then it decomposes as

(I, W, η) ∼=
(

I, W−1 ⊕ W0 ⊕ W1,
(
η−1 0 0

))
,

where (W0, Q0) is a polystable orthogonal bundle and W1 ∼= W ∗−1. Further-
more,

(
I, W−1 ⊕ W1,

(
η−1 0

))
is a stable K p-twisted O(1, n′)-Higgs bundle

which is stable as a K p-twisted O(n′ + 1,C)-Higgs bundle. In the notation of
(3.7), such an (I, W, η) is given by the chain

W−1
η−1

I
η∗−1

W1

⊕
W0

.

Proof The first part of the statement follows directly from Proposition 3.9.
Since the bundles W1 and W−1 are isotropic, if W1 has a degree zero sub-
bundle U , then W−1 has U∗ as a subbundle contained in the kernel of η−1
by polystability. We may thus assume that the invariant polystable orthogonal
subbundle U∗ ⊕ U is a summand of W0. Now since (W−1 ⊕ W1, I, ( η−1 0 ))

is a stable O(1, n′)-Higgs bundle, the associated O(n′ + 1,C)-Higgs bundle
is stable by [2, Proposition 2.7]. ��

As in (3.2) with K replaced with K p, at a C
∗-fixed point (I, W, η) ∼=

(I, W−1 ⊕ W0 ⊕ W1, (η−1 0 0)) in MK p(SO(1, n)) the deformation
complex (2.8) splits as C•(I, W, η) = ⊕

C•
k , where

C•
k : sok(I ) ⊕ sok(W )

adη
Homk+1(W, I ) ⊗ K p .

We have so(I ) = 0 and End(W−1 ⊕ W0 ⊕ W1) =
2⊕

j=−2
End j (W ), where

End2(W )∗ = End−2(W ) = Hom(W1, W−1),

End1(W )∗ = End−1(W ) = Hom(W1, W0) ⊕ Hom(W0, W−1),

End0(W ) = End(W−1) ⊕ End(W0) ⊕ End(W1).
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This gives the grading on so(W ) =
2⊕

j=−2
so j (W ), where

so2(W )∗ = so−2(W ) = {β ∈ Hom(W1, W−1) | β + β∗ = 0},
so1(W )∗ = so−1(W ) = {(β, −β∗) ∈ End−1(W )},

so0(W ) = {(β−1, β0, −β∗−1) ∈ End0(W ) | β0 + β∗
0 = 0}.

Notice that so0(W ) ∼= so(W0) ⊕ End(W−1), where so(W0) is the bun-
dle of skew-symmetric endomorphisms of W0 with respect to Q0. Also,
Hom(W, I ) ⊗ K p = Hom−1(W, I ) ⊗ K p ⊕ Hom0(W, I ) ⊗ K p ⊕
Hom1(W, I ) ⊗ K p, where

Hom±1(W, I ) ⊗ K p = Hom(W∓1, I ) ⊗ K p and Hom0(W, I ) ⊗ K p = Hom(W0, I ) ⊗ K p.

For each k = −2, . . . , 2, the above splittings give adη : sok(W ) →
Homk+1(W, I ) ⊗ K p, where adη is defined by composing with η−1. This
yields long exact sequences in cohomology

0 H
0(C•

k ) H0(sok(W ))
η−1

H0(Homk+1(W, I K p)) H
1(C•

k )

H1(sok(W ))
η−1

H1(Homk+1(W, I K p)) H
2(C•

k ) 0.

(3.11)

Lemma 3.14 For p > 1, if (I, W, η) is a polystable K p-twisted SO(1, n)-
Higgs bundle, then the second hypercohomology group H

2(C•(I, W, η))

vanishes.

Proof By Lemma 3.7, to show that H2(C•(I, W, η)) vanishes it suffices to
show the vanishing of each graded piece of (3.11) at a fixed point of the
C

∗-action. Such fixed points are given by Lemma 3.13.
First note that H2(C•

k ) = 0 for k � 1 since Homk+1(W, I ) = 0 for k � 1.
Stability implies W1 and W0 have no positive degree subbundles, and, by Serre
duality, we have

H1(Homk+1(W, I K p)) ∼=
{

H0(Hom(I K p−1, W1))
∗ k = −2

H0(Hom(I K p−1, W0))
∗ k = −1.

Thus, since p > 1, H1(Homk+1(W, I K p)) = 0 for k � −1.
Finally, the form of the Higgs field implies the kernel of adη : so0(W ) →

Hom1(W, I )⊗ K p is so(W0). Hence,H2(C•
0) injects into the second hyperco-

homology group of the stable O(1, n′)-Higgs bundle
(
I, W−1⊕W1,

(
η−1 0

))
.
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The associated O(n′ + 1,C)-Higgs bundle is stable by Lemma 3.13, so this
hypercohomology group vanishes by Remark 2.14. ��
Lemma 3.15 If p > 1 and (I, W, η) = (

I, W−1 ⊕ W0 ⊕ W1,
(
η−1 0 0

))
is a

polystable K p-twisted SO(1, n)-Higgs bundle which is a C
∗-fixed point, then

H
0(C•) ∼= H0(so(W0)) and H

1(C•) =
2⊕

k=−2

H
1(C•

k ).

Moreover,

• H
1(C•

2)
∼= H1(so2(W )),

• H
1(C•

1)
∼= H1(Hom(W−1, W0)),

• H
1(C•

0)
∼= H1(so(W0)) ⊕ H

1
0, where H

1
0 is defined by the sequence

0 H0(End(W−1))
η−1

H0(Hom(W−1, I K p)) H
1
0

H1(End(W−1))
η−1

H1(Hom(W−1, I K p)) 0,

• H
1(C•−1) is defined by the sequence

0 −→ H0(Hom(W0, W−1))
η−1−→ H0(Hom(W0, I K p))

−→ H
1(C•−1) −→ H1(Hom(W0, W−1)) −→ 0,

• H
1(C•−2) is defined by the sequence

0 −→ H0(so−2(W ))
η−1−→ H0(Hom(W1, I K p))

−→ H
1(C•−2) −→ H1(so−2(W )) −→ 0.

Proof By Lemma 3.13, a C∗-fixed point is given by (I, W, η) = (
I, W−1 ⊕

W0 ⊕ W1,
(
η−1 0 0

))
, where W0 is a polystable orthogonal bundle and

(I, W−1 ⊕ W1, ( η−1 0 )) is a stable O(1, n′)-Higgs bundle such that the asso-
ciated O(n′ + 1,C)-Higgs bundle is also stable. In particular, W1 has no non-
negative degree subbundles and W0 has no positive degree subbundles. Recall
that in the proof of Lemma 3.14 it was shown that H1(Homk+1(W, I K p)) = 0
for k � −1.

For k = 2, we have C•
2 : so2(W ) → 0, thus, H0(C•

2) = H0(so2(W ))

and H
1(C•

2) = H1(so2(W )). In particular, H0(C•
2) injects into the zeroth

hypercohomology group of the deformation complex of the O(1, n′)-Higgs
bundle (I, W−1 ⊕ W1, ( η−1 0 )), which vanishes by stability.
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For k = 1, so1(W ) ∼= Hom(W−1, W0) and C•
1 : so1(W ) → 0 imply

H
0(C•

1) = H0(Hom(W−1, W0)) and H
1(C•

1) = H1(Hom(W−1, W0)). The
vanishing of H0(Hom(W−1, W0)) ∼= H0(Hom(W0, W1)) follows from sta-
bility. Namely, any non-zero homomorphism f : W0 → W1 defines
a non-negative degree subbundle of W1, contradicting the stability of
(I, W−1 ⊕ W1, ( η−1 0 )).

For k = 0, C•
0 : so0(W ) → Hom1(W, I ) ⊗ K p is given by

C•
0 : End(W−1) ⊕ so(W0) → Hom(W−1, I ) ⊗ K p, (β−1, β0) �→ η−1β−1.

Thus, we can split C•
0 as C•

0 = C•,′
0 ⊕ C•,′′

0 with C•,′
0 : End(W−1)

η−1−−→
Hom(W−1, I ) ⊗ K p and C•,′′

0 : so(W0) → 0. The hypercohomology groups
split accordingly, hence

H
0(C•,′′

0 ) = H0(so(W0)) and H
1(C•,′′

0 ) ∼= H1(so(W0)) .

For C•,′
0 , H0(C•,′

0 ) = 0 by stability of
(
I, W−1 ⊕ W1,

(
η−1 0

))
. Thus, if

H
1
0 = H

1(C•,′
0 ), we have

0 H0(End(W−1))
η−1

H0(Hom(W−1, I K p)) H
1
0

H1(End(W−1))
η−1

H1(Hom(W−1, I K p)) 0.

For k = −1,we have H1(Hom0(W, I K p)) = 0 andC•−1 : Hom(W0, W−1)
η−1−−→ Hom(W0, I ) ⊗ K p. Thus,

0 H
0(C•−1) H0(Hom(W0, W−1))

η−1
H0(Hom(W0, I K p))

H
1(C•−1) H1(Hom(W0, W−1)) 0.

It remains to show thatH0(C•−1) = 0. If N is the kernel of η−1 : W−1 → I K p,
then H

0(C•−1)
∼= H0(Hom(W0, N )). If N = 0 we are done so sup-

pose N �= 0. Stability of
(
I, W−1 ⊕ W1,

(
η−1 0

))
implies deg(N ) < 0

and moreover N has no non-negative degree subbundles. A non-zero sec-
tion β ∈ H0(Hom(W0, N )) must have a non-trivial kernel since otherwise
β(W0) ⊂ N would define a non-negative degree subbundle. However, this
implies that deg(ker(β)) > 0, contradicting the polystability of W0. We con-
clude that H0(Hom(W0, N )) = 0, and thus H0(C•−1) = 0.

Finally consider the case of C•−2 : so−2(W )
adη−−→ Hom(W1, I )⊗ K p. As in

the case k = 2, stability of the O(1, n′)-Higgs bundle (I, W−1 ⊕ W1, ( η−1 0 ))
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implies H0(C•−2) = 0. The group H
1(C•−2) is defined by the exact sequence

in the statement of the lemma since H1(Hom(W1, I K p)) = 0. ��

4 Existence of exotic components of M(SO( p, q))

In this section we will prove the following theorem exhibiting connected com-
ponents ofM(SO(p, q))which are not distinguished by primary characteristic
classes for p � 2.

Theorem 4.1 Let X be a compact Riemann surface with genus g � 2 and
canonical bundle K . Denote the moduli space of K p-twisted SO(1, q − p+1)-
Higgs bundles on X by MK p(SO(1, q − p + 1)) and the moduli space of
K -twisted SO(p, q)-Higgs bundles on X by M(SO(p, q)). For 1 � p � q,

there is a well defined map

� : MK p(SO(1, q − p + 1)) ×
p−1⊕
j=1

H0(K 2 j ) M(SO(p, q)) (4.1)

which is an isomorphism onto its image and has an open and closed image.
Furthermore, if p � 2, then every Higgs bundle in the image of � has a
nowhere vanishing Higgs field.

Remark 4.2 As a direct corollary of the above theorem, we have that, for
p > 2,∣∣π0

(M(SO(p, q))
)∣∣ � 22g+2 + ∣∣π0

(MK p(SO(1, q − p + 1))
)∣∣ .

In Theorem 6.1 we will show that the above inequality is in fact an equality.

Remark 4.3 The space of holomorphic differentials H0(K 2 j ) can be identified
with the moduli space MK 2 j (R+). This will be used in Sect. 7.3, to interpret
Theorem 4.1 as a generalized Cayley correspondence.

4.1 Defining the map �

Recall that a K p-twisted SO(1, n)-Higgs bundle is a triple (I, Ŵ , η̂), where
Ŵ is a rank n vector bundle with an orthogonal structure QŴ , I ∼= �nŴ and
η̂ ∈ H0(Hom(Ŵ , I ) ⊗ K p).

Let HK p(SO(1, q − p + 1)) denote the configuration space of all
K p-twisted SO(1, q − p + 1)-Higgs bundles and let H(SO(p, q))

denote the configuration space of all SO(p, q)-Higgs bundles. That is,
HK p(SO(1, q − p + 1)) consists of pairs (∂̄Ŵ , η̂) where ∂̄Ŵ is a Dolbeault
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operator on Ŵ , η̂ ∈ �1,0(Hom(Ŵ , �q−p+1Ŵ )) such that ∂̄Ŵ η̂ = 0
and ∂̄Ŵ QŴ = 0. The spaceH(SO(p, q)) is defined analogously.

Recall that the Hitchin section s I
H :

p−1⊕
j=1

H0(K 2 j ) → M(SO(p, p − 1)) is

given by (2.12), and that

(I ⊗ Kn, Qn) =
(

I ⊗ (K n ⊕ K n−2 ⊕ · · · ⊕ K 2−n ⊕ K −n),

(
1

. .
.

1

))
.

Recall that the Higgs field in the image of s I
H is given by η(q2, . . . , q2p−2) :

I ⊗ Kp−2 → I ⊗ Kp−1 ⊗ K , as in (2.13).
Define the map

�̃ : HK p(SO(1, q − p + 1)) ×
p−1⊕
j=1

H0(K 2 j ) H(SO(p, q)) (4.2)

by

�̃((I, Ŵ , η̂), q2, . . . , q2p−2) =
(

I ⊗ Kp−1, Ŵ ⊕ I ⊗ Kp−2,
(
ηŴ η(q2, . . . , q2p−2)

))
(4.3)

where

ηŴ =
(

η̂
0
...
0

)
: Ŵ I ⊗ (K p ⊕ K p−2 ⊕ · · · ⊕ K 2−p) = I ⊗ Kp−1 ⊗ K .

It is clear that the map �̃ is continuous.

Remark 4.4 When defining themap �̃,we have ignored the orientations of the
SO(1, n) and SO(p, q)-Higgs bundles. An orientation ω̂ : I ⊗ �q−p+1Ŵ →
O clearly induces an orientation ω : I p ⊗ I p−1 ⊗ �q−p+1Ŵ → O on
the image. Moreover, the two choices of orientation will not define different
components of the moduli space (see Remark 6.2).

Lemma 4.5 For (I, Ŵ , η̂, q2, . . . , q2p−2) ∈ HK p(SO(1, q − p + 1)) ×
p−1⊕
j=1

H0(K 2 j ), the SO(p, q)-Higgs bundle �̃(I, Ŵ , η̂, q2, . . . , q2p−2) is

(poly)stable if and only if the K p-twisted SO(1, q − p + 1)-Higgs bundle

(I, Ŵ , η̂) is (poly)stable.

Proof Fix (I, Ŵ , η̂, q2, . . . , q2p−2) ∈ HK p(SO(1, q−p+1))×
p−1⊕
j=1

H0(K 2 j ).

Recall that an SO(p, q)-Higgs bundle is polystable if and only if the associ-
ated SL(p + q,C)-Higgs bundle is polystable. Suppose first that q2 j = 0
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for all j . Then the SL(p + q,C)-Higgs bundle associated to the image of
�̃(I, Ŵ , η̂, 0, . . . , 0) is represented by

I K p−1 1 I K p−2 1 · · · 1 I K 2−p 1 I K 1−p

η̂∗
Ŵη̂

.

To check (poly)stability for such a “cyclic” Higgs bundle, it suffices to show
that each of the bundles in the above cycle do not contain an invariant desta-
bilizing subbundle (see Proposition 6.3 of [43]). Thus �̃(I, Ŵ , η̂, 0, . . . , 0)
is polystable if and only if there are no destabilizing subbundles of Ŵ in
the kernel of η̂, that is, if and only if (I, Ŵ , η̂) is polystable. Furthermore,
since �̃(I, Ŵ , η̂, 0, . . . , 0) is strictly polystable if and only if Ŵ contains
a degree zero isotropic subbundle in the kernel of η̂, we conclude that
�̃(I, Ŵ , η̂, 0, . . . , 0) is stable if and only if (I, Ŵ , η̂) is stable.

Now suppose (q2, . . . , q2p−2) �= (0, . . . , 0) and let (V, W, η) = �̃(I, Ŵ ,

η̂, q2, . . . , q2p−2) be given by (4.3). For λ ∈ C
∗, consider the following holo-

morphic orthogonal gauge transformations of V and W

gV =
⎛
⎝ λ1−p

λ3−p

. . .

λp−1

⎞
⎠ and gW =

⎛
⎜⎝

IdŴ

λ2−p

λ4−p

. . .

λp−2

⎞
⎟⎠ .

Using the description of s I
H from (2.12) and (2.13), a straightforward compu-

tation shows that

(gV , gW )·(V, W, λη) = �̃(I, Ŵ , λpη̂, λ2q2, λ
4q4, . . . , λ

2p−2q2p−2). (4.4)

Assume (I, Ŵ , η̂) is stable. In particular, (I, Ŵ , λpη̂) is a stable K p-twisted
SO(1, q − p + 1)-Higgs bundle for all λ ∈ C

∗. By the above argu-
ment, �̃(I, Ŵ , λpη̂, 0, . . . , 0) is also stable for all λ ∈ C

∗. Hence, by
the continuity of �̃ and since stability is an open condition (cf. Remark

2.13), there is a neighborhood U of (0, . . . , 0) ∈
p−1⊕
j=1

H0(K 2 j ) such that

�̃(I, Ŵ , λpη̂, λ2q2, λ4q4, . . . , λ2p−2q2p−2) is stable for (λ2q2, . . . , λ2p−2

q2p−2) ∈ U i.e. for small λ. From (4.4), (V, W, λη) is stable, and thus,
(V, W, η) is also stable. This argument is reversible, so (V, W, η) is stable
if and only if (I, Ŵ , η̂) is stable.

Assume now that (I, Ŵ , η̂) is strictly polystable. By Proposition 2.17, there
is q ′ satisfying p − 1 � q ′ < q, such that

(I, Ŵ , η̂) = (
Ŵ ′ ⊕ Ŵ ′′,

(
η̂′ 0

))
,
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where (I, Ŵ ′, η̂′) is a stable K p-twisted O(1, q ′ − p + 1)-Higgs bundle and
Ŵ ′′ is a polystable orthogonal bundle of rank q − q ′. In this case, we have

�̃(I, Ŵ , η̂, q2, . . . , q2p−2) = (
V, Ŵ ′ ⊕ Ŵ ′′,

(
η̂′ 0

))
where

(V, W ′, η̂′) = �̃(I, Ŵ ′, η̂′, q2, . . . , q2p−2), (4.5)

and the map �̃ in (4.5) is defined as in (4.2) and (4.3), but with q replaced by
q ′. By the above argument, �̃(I, Ŵ ′, η̂′, q2, . . . , q2p−2) is a stable O(p, q ′)-
Higgs bundle. Since Ŵ ′′ is a polystable orthogonal bundle, we conclude that
�̃(I, Ŵ , η̂, q2, . . . , q2p−2) is a strictly polystable SO(p, q)-Higgs bundle.
Again, the argument is reversible, hence the converse also holds. ��

The next lemma shows that �̃ both respects isomorphism classes of the
corresponding objects and is injective on such classes.

Lemma 4.6 Two SO(p, q)-Higgs bundles �̃(I, Ŵ , η̂, q2, . . . , q2p−2) and
�̃(I ′, Ŵ ′, η̂′, q ′

2, . . . , q ′
2p−2) are in the same S(O(p,C) × O(q,C))-gauge

orbit if and only if (I, Ŵ , η̂) and (I ′, Ŵ ′, η̂′) are in the same S(O(1,C) ×
O(q − p + 1,C))-gauge orbit and q2 j = q ′

2 j for all 1 � j � p − 1. Further-
more, each S(O(1,C) × O(q − p + 1,C))-gauge transformation between
(I, Ŵ , η) and (I ′, Ŵ ′, η̂′) uniquely determines an S(O(p,C) × O(q,C))-
gauge transformation between the Higgs bundles �̃(I, Ŵ , η̂, q2, . . . , q2p−2)

and �̃(I ′, Ŵ ′, η̂′, q2, . . . , q2p−2).

Proof Let (I, Ŵ , η̂) and (I ′, Ŵ ′, η̂′) be two points inHK p(SO(1, q−p+ 1)),

and (q2, . . . , q2p−2) and (q ′
2, . . . , q ′

2p−2) be two points in
p−1⊕
j=1

H0(K 2 j ).

Denote the associated points in the image of the map �̃ from (4.3) by

(V, W, η) = �̃(I, Ŵ , η̂, q2, . . . , q2p−2) and (V ′, W ′, η′) = �̃(I ′, Ŵ ′, η̂′, q ′
2, . . . , q ′

2p−2),

and recall that V = I ⊗ Kp−1 and W = Ŵ ⊕ I ⊗ Kp−2.

First suppose (det(gŴ ), gŴ ) is an S(O(1,C) × O(q − p + 1,C))-gauge
transformation with

(det(gŴ ), gŴ ) · (I, Ŵ , η̂) = (I ′, Ŵ ′, η̂′).

A straightforward computation shows that the S(O(p,C) × O(q,C))-gauge
transformation

(gV , gW ) =
(
det(gŴ ) IdV ,

(
gŴ 0
0 det(gŴ ) IdKp−2 )

) )
(4.6)
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acts on (V, W, η) as

(gV , gW ) · (V, W, η) = �̃(I ′, Ŵ ′, η̂′, q2, . . . , q2p−2).

Thus, if (I, W, η) and (I ′, W ′, η′) are in the sameS(O(1,C)×O(q−p+1,C))-
gauge orbit, then �̃(I, W, η, q2, . . . , q2p−2) and �̃(I ′, W ′, η′, q2, . . . , q2p−2)

are in the same S(O(p,C) × O(q,C))-gauge orbit.
Now suppose (V, W, η) and (V ′, W ′, η′) are in the same S(O(p,C) ×

O(q,C))-gauge orbit. The action of (gV , gW ) on (V, W, η) is given by

(gV , gW ) · (∂̄V , ∂̄W , η) = (g−1
V ∂̄V gV , g−1

W ∂̄W gW , g−1
V ηgW ).

With respect to the decompositions W = Ŵ ⊕ I ⊗ Kp−2 and W ′ = Ŵ ′ ⊕
I ′ ⊗ Kp−2, write

gW =
(

gŴ A
B gKp−2

)
and η =

(
ηŴ η(q2, . . . , q2p−2)

)
.

The gauge transformation (gV , gW ) acts on the Higgs field by

g−1
V ηgW = g−1

V ·
(
ηŴ gŴ + η(q2, . . . , q2p−2)B ηŴ A + η(q2, . . . , q2p−2)gKp−2

)
,

and hence

(
η′̂

W
η(q ′

2, . . . , q ′
2p−2)

)
= g−1

V ·
(
ηŴ gŴ + η(q2, . . . , q2p−2)B ηŴ A + η(q2, . . . , q2p−2)gKp−2

)
.

(4.7)

We now use the description of η(q2, . . . , q2p−2) from (2.13). Since g−1
V

is invertible and holomorphic, its matrix representation in the decompositions
V = I ⊗Kp−1 and V ′ = I ′⊗Kp−1 is upper triangular with non-zero diagonal
entries. A straightforward computation, using the form of η(q ′

2, . . . , q ′
2p−2)

and the fact that g−1
V ηŴ gŴ has the form

( ∗
0
...
0

)
, shows that B = 0. By orthog-

onality of gW we conclude also that A = 0, gŴ is an QŴ -orthogonal gauge
transformation and gKp−2 is a QKp−2-orthogonal gauge transformation.

We now have η(q ′
2, . . . , q ′

2p−2) = g−1
V η(q2, . . . , q2p−2)gKp−2 . Since

(I ⊗ Kp−1, I ⊗ Kp−2, η(q2, . . . , q2p−2)) and (I ′ ⊗ Kp−1, I ′ ⊗ Kp−2,

η(q ′
2, . . . , q ′

2p−2)) define gauge equivalent Higgs bundle in an O(p, p − 1)-
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Hitchin component, we have (q2, . . . , q2p−2) = (q ′
2, . . . , q ′

2p−2). By Remark
2.19, this implies

(gV , gKp−2) = ±(IdV , IdKp−2).

Finally, the determinant of gŴ determines the above sign since det(− IdV ) det
(− IdKp−2) = −1 and

1 = det(gV ) det(gW ) = det(gV ) det(gKp−2) det(gŴ ).

Thus, the gauge transformation gŴ uniquely determines gKp−2 and gV . This
shows that (gV , gW ) is given by (4.6), completing the proof. ��

As a consequence of the two previous lemmas, we have the following propo-
sition.

Proposition 4.7 The map �̃ from (4.3) descends to a continuous map of mod-
uli spaces

� : MK p(SO(1, q − p + 1)) ×
p−1⊕
j=1

H0(K 2 j ) −→ M(SO(p, q)), (4.8)

which is a homeomorphism onto its image.

Remark 4.8 From Remark 2.12, one can check that the dimension of
MK p(SO(1, q − p + 1)) × ⊕p−1

j=1 H0(K 2 j ) is the expected dimension of
M(SO(p, q)). In particular, the map� is open on the smooth locus. Since the
spaces M(SO(p, q)) and MK p(SO(1, q − p + 1)) are singular, we have to
examine the local structures of each space to prove openness of � at singular
points.

4.2 Local structure of fixed points in the image of �

We will now analyze the local structure of fixed points of the C
∗-action in

M(SO(p, q)) which lie in the image of the map �. The following lemma
follows immediately from Lemma 3.13 and Proposition 4.7.

Lemma 4.9 An SO(p, q)-Higgs bundle (V, W, η) in the image of � is a fixed
point of the C∗-action if and only if (V, W, η) = �(I, Ŵ , η̂, 0, . . . , 0), where
(I, Ŵ , η̂) is a fixed point of the C

∗-action in MK p(SO(1, q − p + 1)). In
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particular, such a fixed point is given by 3

(I, Ŵ , η̂) = (
I, W−p ⊕ W ′

0 ⊕ Wp,
(
η−p 0 0

))
,

where W ′
0 is a polystable orthogonal bundle of rank q − p + 1 − 2 rk(Wp)

and det(W ′
0) = I , Wp is either zero or a negative degree vector bundle with

no non-negative degree subbundles, W−p
∼= W ∗

p and η−p is non-zero if W−p
is non-zero. The associated SO(p, q)-Higgs bundle will be represented by

W−p
η−p

I K p−1 1
I K p−2 1 · · · 1

I
1 · · · 1

I K 2−p 1
I K 1−p

η∗−p
Wp

⊕
W ′

0

.

(4.9)

Let (V, W, η) be a polystable SO(p, q)-Higgs bundle in the image of � of
the form (4.9). This will be fixed until the end of Sect. 4.2. If Wp is zero, some
of the considerations below simplify.

We will repeatedly use the following bundle decompositions of V and W
from (4.9):

V = V1−p ⊕ V3−p ⊕ · · · ⊕ Vp−3 ⊕ Vp−1,

W = W−p ⊕ W2−p ⊕ · · · ⊕ W0 ⊕ · · · ⊕ Wp−2 ⊕ Wp,

Vj = I K − j for all j, W j = I K − j if 0 < | j | < p, and W0 =
{

W ′
0 if p odd

I ⊕ W ′
0 if p even.

(4.10)

In particular, even though (V, W, η) is not assumed to be stable,we get aweight
decomposition like (3.2) of the deformation complex (2.8) as C•(V, W, η) =⊕

C•
k , where

C•
k : sok(V ) ⊕ sok(W )

adη
Homk+1(W, V ) ⊗ K.

In terms of the above splittings, we have End(V ) =
⊕2p−2

k=2−2p
Endk(V ),

where End2k+1(V ) = 0 and

3 The notation from Lemma 3.13 has changed slightly, (W−1, η−1, W0) is now represented by
(W−p, η−p, W ′

0).

123



236 M. Aparicio-Arroyo et al.

End2k(V ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

p−1−k⊕
j=0

Hom(V1−p+2 j , V1−p+2 j+2k) k � 0

p−1+k⊕
j=0

Hom(Vp−1−2 j , Vp−1−2 j+2k) k < 0.
(4.11)

Similarly, End(W ) =
⊕2p

k=−2p
Endk(W ), where

End2k(W ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

End(W0) ⊕
p⊕

j=0
End(Wp−2 j ) k = 0 and p odd

p−k⊕
j=0

Hom(W−p+2 j , W−p+2 j+2k) k > 0 or k = 0 and p even

p+k⊕
j=0

Hom(Wp−2 j , Wp−2 j+2k) k < 0

(4.12)
and

End2k+1(W ) =
{
Hom(W−2k−1, W0) ⊕ Hom(W0, W2k+1) 2k + 1 � p and p odd

0 otherwise.
(4.13)

Finally, Hom(W, V ) =
⊕2p−1

k=1−2p
Homk(W, V ), where

Hom2k+1(W, V ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

p−1−k⊕
j=0

Hom(W−p+2 j , V1−p+2 j+2k) 2k + 1 � 0

p+k⊕
j=0

Hom(Wp−2 j , Vp−2 j+1+2k) 2k + 1 < 0,

(4.14)
and

Hom2k(W, V ) =
{
Hom(W0, V2k) 1 − p � 2k � p − 1 and p odd

0 otherwise.
(4.15)

Note that the Higgs field η is a holomorphic section of Hom1(W, V ) ⊗ K .
The Lie algebra bundle so(V ) ⊕ so(W ) ⊂ End(V ) ⊕ End(W ) with fiber

so(p,C) ⊕ so(q,C) consists of QV and −QW skew symmetric endomor-
phisms of V and W respectively. The decompositions (4.11), (4.12) and (4.13)
induce the following decomposition of so(V )⊕ so(W ) ⊂ End(V )⊕End(V ):
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so(V ) =
2p−2⊕

k=2−2p

sok(V ) and so(W ) =
2p⊕

k=−2p

sok(W ).

Here so2k+1(V ) = 0 and, using (4.11),

so2k(V ) =
{

{(α1−p, α3−p, . . . , αp−1−2k) ∈ End2k(V ) | αi = −α∗−2k−i } k � 0

{(αp−1, αp−3, . . . , α1−p−2k) ∈ End2k(V ) | αi = −α∗−2k−i } k < 0,
(4.16)

where the index of each homomorphismcorresponds to the index of its domain,
i.e.,

αi : Vi → Vi+2k .

For so(W ), using (4.12) we have

so2k (W ) =

⎧⎪⎨
⎪⎩

{(β ′, βp, βp−2, . . . , β−p) ∈ End0(W )| β ′ = −(β ′)∗, βi = −β∗−i } k = 0 and p odd

{(β−p, β2−p, . . . , βp−2k ) ∈ End2k (W ) | βi = −β∗−2k−i } k > 0 or k = 0 and p even

{(βp, βp−2, . . . , β−p+2k ) ∈ End2k (W ) | βi = −β∗−2k−i } k < 0,

(4.17)
where β ′ : W0 → W0 and, as above, βi : Wi → Wi+2k . For odd weights,
using (4.13) we have

so2k+1(W ) =
{

{(β−2k−1,−β∗−2k−1) ∈ Hom(W−2k−1, W0) ⊕ Hom(W0, W2k+1)} 2k + 1 � p and p odd

0 otherwise.

(4.18)
Since η ∈ H0(Hom1(W, V ) ⊗ K ), the map adη restricts to sok(V ) ⊕

sok(W ) → Homk+1(W, V )⊗ K , yielding the subcomplexC•
k ofC• of weight

k as in (3.2)

C•
k = C•(V, W, η)k : sok(V ) ⊕ sok(W )

adη−−→ Homk+1(W, V ) ⊗ K , (α, β) �→ η ◦ β − α ◦ η.

This gives rise to a splitting of the hypercohomology sequence associated to
C•:

0 H
0(C•

k ) H0(sok(V ) ⊕ sok(W ))
adη

H0(Homk+1(W, V ) ⊗ K ) H
1(C•

k )

H1(so(V )k+1 ⊕ sok+1(W ))
adη

H1(Homk+1(W, V ) ⊗ K ) H
2(C•

k ) 0.

(4.19)
For all k, we will compute H1(C•

k ) and show H
2(C•

k ) vanishes in a series
of lemmas. Using (4.10) and the decomposition of Hom1(W, V ) ⊗ K from
(4.14), we write
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η = (η−p, η2−p, . . . , ηp−2) ∈
p−1⊕
j=0

H0(Hom(W−p+2 j , V1−p+2 j ) ⊗ K ),

(4.20)
where

⎧⎪⎨
⎪⎩

η−p : W−p → V1−p ⊗ K is defined in Lemma 4.9,

η0 = ( 1 0 ) : I ⊕ W ′
0 → V1 ⊗ K if p even,

ηi = 1 : Wi → Vi+1 ⊗ K otherwise.

(4.21)

Lemma 4.10 The map adη : sok(V )⊕ sok(W ) → Homk+1(W, V )⊗ K is an
isomorphism for each positive weight k /∈ {p, 2p}. In particular,

H
0(C•

k ) = 0, H
1(C•

k ) = 0 and H
2(C•

k ) = 0 .

Proof We start by considering the caseC•
2k+1 with 0 < 2k+1 and 2k+1 �= p.

If p is even or p < 2k+1, the result is immediate since so2k+1(V ), so2k+1(W )

and Hom2k+2(W, V ) ⊗ K are all zero by (4.13) and (4.15). For p odd and
2k + 1 < p, we have so2k+1(V ) = 0, so2k+1(W ) = {(β−2k−1, −β∗−2k−1) ∈
Hom(W−2k−1, W0) ⊕ Hom(W0, W2k+1)} and Hom2k+2(W, V ) ⊗ K =
Hom(W0, V2k+2)⊗ K . Using (4.20), the map adη is the isomorphism sending
β−2k−1 to the composition of −β∗−2k−1 with 1 = η2k+1:

W0

−β∗−2k−1

V2k+2 ⊗ K

W2k+1
1

Now consider the case C•
2k with 0 < 2k and 2k /∈ {p, 2p}. We first show

so2k(V ) ⊕ so2k(W ) and Hom2k+1(W, V ) ⊗ K are isomorphic. Using (4.10)
and (4.14), we have

Hom2k+1(W, V ) ⊗ K

∼=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
Hom(W−p, I K p−2k) ⊕ K −2k ⊕ · · · ⊕ K −2k︸ ︷︷ ︸

p−k−1 times

2k > p or p odd,

Hom(W−p, I K p−2k) ⊕ Hom(W ′
0, I K −2k) ⊕ K −2k ⊕ · · · ⊕ K −2k︸ ︷︷ ︸

p−k−1 times

otherwise.

(4.22)
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On the other hand, by (4.16) and since the weight is positive, we have

so2k(V ) ∼=

⌊
p−k
2

⌋
−1⊕

j=0

Hom(V2 j−p+1, V2 j−p+1+2k) ∼= K −2k ⊕ · · · ⊕ K −2k︸ ︷︷ ︸⌊
p−k
2

⌋
times

.

(4.23)

Similarly, by (4.17), so2k(W ) ∼= ⊕⌊
p−k−1

2

⌋
j=0 Hom(W2 j−p, W2 j−p+2k), and

thus,

so2k(W ) ∼=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Hom(W−p, I K p−2k) ⊕ K −2k ⊕ · · · ⊕ K −2k︸ ︷︷ ︸⌊
p−k−1

2

⌋
times

2k > p or p odd

Hom(W−p, I K p−2k) ⊕ Hom(W ′
0, I K −2k) ⊕ K −2k ⊕ · · · ⊕ K −2k︸ ︷︷ ︸⌊

p−k−1
2

⌋
times

otherwise.

(4.24)
From (4.22), (4.23) and (4.24), we see that so2k(V ) ⊕ so2k(W ) is isomorphic
to Hom2k+1(W, V ) ⊗ K .

Now we will show

C•
2k : so2k(V ) ⊕ so2k(W )

adη−−→ Hom2k+1(W, V ) ⊗ K , adη(α, β) = η ◦ β − α ◦ η

is an isomorphism. Using the notations of (4.16), (4.17) (for positive weight)
and (4.20), if

α = (α1−p, α3−p, . . . , αp−1−2k), β = (β−p, β2−p, . . . , βp−2k) and

η = (η−p, η2−p, . . . , ηp−2),

then

adη(α, β) = (η−p+2kβ−p − α1−pη−p, η2−p+2kβ2−p

−α3−pη2−p, . . . , ηp−2βp−2−2k − αp−1−2kηp−2−2k).

First assume p − k is even. In this case we have

α = (α1−p, . . . , α−k−1, −α∗−k−1, . . . , −α∗
1−p) and

β = (β−p, . . . , β−k−2, 0, −β∗−k−2, . . . , −β∗−p).
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For p odd or 2k > p, we have ηi = 1 for all i �= −p by (4.21). Hence
adη(α, β) is given by

(β−p − α1−pη−p, β2−p − α3−p, . . . , β−k−2 − α−k−1, α
∗−k−1,

−β∗−k−2 + α∗−k−3, . . . , −β∗
2−p + α∗

1−p). (4.25)

This vanishes if and only if α and β are both identically zero, so adη is an
isomorphism. For p even and 2k � p, the only difference is that W0 = I ⊕W ′

0.
Therefore, if we write

β0 =
(
β I
0 β ′

0

)
: I ⊕ W ′

0 → W2k,

then the terms W0 → V2k+1 ⊗ K and W−2k → V1 ⊗ K of adη are given by

(
β I
0 −α1 β ′

0

)
: I ⊕W ′

0 → V2k+1⊗K and −β I∗
0 +α∗

1 : W−2k → V1⊗K.

(4.26)

Again, adη vanishes if and only if α and β both vanish, and is therefore an
isomorphism.

Now suppose p − k is odd. In this case, (4.16) and (4.17) imply that

α = (α1−p, . . . , α−k−2, 0, −α∗−k−2, . . . , −α∗
1−p) and

β = (β−p, . . . , β−k−1, −β∗−k−1, . . . , −β∗−p).

For p odd or 2k > p, adη(α, β) is given by

(β−p − α1−pη−p, β2−p − α3−p, . . . , β−k−3 − α−k−2, β−k−1,

−β∗−k−1 + α∗−k−2, . . . , −β∗
2−p + α∗

1−p).

Since this vanishes if and only if α and β both vanish, adη is an isomorphism.
The case of p even and 2k � p follows from a similar calculation as the one
done above.

Since sok(V ) ⊕ sok(W )
adη−−→ Homk+1(W, V ) ⊗ K is an isomorphism for

all positive weights k different than p and 2p, we conclude that the hyperco-
homology groups H∗(C•

k ) all vanish for such k. ��
Next we consider the subcomplexes of weight p and 2p.
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Lemma 4.11 The hypercohomology groups H∗(C•
p) and H

∗(C•
2p) are given

by

H
0(C•

p) = 0, H
1(C•

p)
∼= H1(Hom(W−p, W ′

0)) and H
2(C•

p) = 0,

H
0(C•

2p) = 0, H
1(C•

2p)
∼= H1(so2p(W )) and H

2(C•
2p) = 0,

where so2p(W ) = {β ∈ Hom(W−p, Wp)|β + β∗ = 0}.
Proof First note that so2p(V ) = 0, so2p(W ) = {β ∈ Hom(W−p, Wp)|β +
β∗ = 0} and Hom2p+1(W, V ) = 0, hence

H
0(C•

2p)
∼= H0(so2p(W )), H

1(C•
2p)

∼= H1(so2p(W )) and H
2(C•

2p)=0.

If p is odd, then W0 = W ′
0, sop(W ) ∼= Hom(W−p, W ′

0), sop(V ) = 0 and
Homp+1(W, V ) = 0, thus

H
0(C•

p) ∼= H0(Hom(W−p, W ′
0)), H

1(C•
p) ∼= H1(Hom(W−p, W ′

0)) and H
2(C•

p) = 0.

Moreover, H0(so2p(W )) and H0(Hom(W−p, W ′
0)) were shown to vanish in

the proof of Lemma 3.15, completing the proof for the case 2p and when p is
odd.

Now suppose p is even, then W0 = I ⊕ W ′
0 and, from (4.11), (4.12) and

(4.14), we have

sop(V ) ∼= K −p ⊕ · · · ⊕ K −p︸ ︷︷ ︸
� p
4 � times

,

sop(W ) ∼= Hom(W−p, I ) ⊕ Hom(W−p, W ′
0) ⊕ K −p ⊕ · · · ⊕ K −p︸ ︷︷ ︸⌊

p−2
4

⌋
times

⊕Hom(W ′
0, K −p)

and

Hom p+1(W, V ) ⊗ K ∼= Hom(W−p, I ) ⊕ K −p ⊕ · · · ⊕ K −p︸ ︷︷ ︸
p
2 −1 times

.

Thus, sop(V ) ⊕ sop(W ) ∼= Hom(W−p, W ′
0) ⊕ Homp+1(W, V ) ⊗ K .

If p
2 is even and (α, β) ∈ sop(V ) ⊕ sop(W ), then

α = (α1−p, . . . , α− p
2 −1, −α∗

− p
2 −1, . . . , −α∗

1−p) and

β = (β−p, . . . , β− p
2 −2, 0, −β∗

− p
2 −2, . . . , −β∗−p).
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Using the decomposition of η from (4.20) and (4.21), we see that ad(α, β) is
given by

(η0β−p − α1−pη−p, β2−p − α3−p, . . . , β− p
2 −2 − α− p

2 −1, α
∗
− p

2 −1, −β∗
− p

2 −2

+ α∗
− p

2 −3, . . . , −β∗
2−p + α∗

1−p).

If we write β−p =
(

β I−p

β ′−p

)
: W−p → I ⊕ W ′

0, then η0β−p = ( 1 0 )

(
β I−p

β ′−p

)
=

β I−p. Hence Hom(W−p, W ′
0) is in the kernel of adη and η0β−p − α1−pη−p =

β I−p − α1−pη−p. We conclude that the map induced by adη on (sop(V ) ⊕
sop(W ))/Hom(W−p, W ′

0) → Homp+1(W, V ) ⊗ K is given by

adη : Hom(W−p, W ′
0) ⊕ (sop(V ) ⊕ sop(W ))/Hom(W−p, W ′

0)

( 0 δ )−−−→ Homp+1(W, V ) ⊗ K

with δ an isomorphism. In particular, this implies that

H
0(C•

p)
∼= H0(Hom(W−p, W ′

0)), H
1(C•

p)
∼= H1(Hom(W−p, W ′

0)) and

H
2(C•

p) = 0.

Moreover, H0(Hom(W−p, W ′
0)) was shown to vanish in the proof of Lemma

3.15. The proof for p
2 odd follows from similar arguments. ��

Now we consider negative odd weights different from −p.

Lemma 4.12 The map adη : so2k+1(V )⊕ so2k+1(W ) → Hom2k+2(W, V )⊗
K is an isomorphism for 2k + 1 < 0 and 2k + 1 �= −p. In particular,

H
0(C•

2k+1) = 0, H
1(C•

2k+1) = 0 and H
2(C•

2k+1) = 0.

Proof First, note that so2k+1(V ) = 0. Also, if p is even or 2k + 1 < −p, then
so2k+1(W ) = 0 and Hom2k+2(W, V ) = 0. For p odd and 2k + 1 > −p,

so2k+1(W )={(β−2k−1,−β∗−2k−1)∈Hom(W−2k−1, W0)⊕Hom(W0, W2k+1)}
and Hom2k+2(W, V ) ⊗ K = Hom(W0, V2k+2) ⊗ K . Moreover, adη :
so2k+1(W ) → Hom2k+2(W, V ) ⊗ K is given by

W0

−β∗−2k−1

V2k+2 ⊗ K

W2k+1
1
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which is an isomorphism. ��

Next we deal with negative even weights different from −p and −2p.

Lemma 4.13 For 2k < 0 and 2k /∈ {−p, −2p}, Hom2k+1(W, V ) ⊗ K ∼=
so2k(W ) ⊕ so2k(V ) ⊕ K −2k and adη decomposes as

adη = ( a
b

) : so2k(W ) ⊕ so2k(V ) → (
so2k(W ) ⊕ so2k(V )

) ⊕ K −2k,

where a is an isomorphism. In particular,

H
0(C•

2k) = 0, H
1(C•

2k)
∼= H0(K −2k) and H

2(C•
2k) = 0.

Proof Using (4.14), we have that

Hom2k+1(W, V ) ⊗ K

∼=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
Hom(Wp, I K −p−2k) ⊕ K −2k ⊕ · · · ⊕ K −2k︸ ︷︷ ︸

p+k times

if p odd or 2k < −p

Hom(Wp, I K −p−2k) ⊕ Hom(W ′
0, I K −2k) ⊕ K −2k ⊕ · · · ⊕ K −2k︸ ︷︷ ︸

p+k times

otherwise.

If p + k is even, then by (4.16) and (4.17) we have

so2k(V ) ∼=
{
(αp−1, . . . , α−k+1, −α∗−k+1, . . . , −α∗

p−1) ∈
p−1+k⊕

j=0

Hom(Vp−1−2 j , Vp−1−2 j+2k)
}

so2k(W ) ∼=
{
(βp, . . . , β−k+2, 0, −β∗−k+2, . . . , −β∗

p) ∈
p+k⊕
j=0

Hom(Wp−2 j , Wp−2 j+2k)
}
.

Thus,

so2k(V ) ∼= K −2k ⊕ · · · ⊕ K −2k︸ ︷︷ ︸
p+k
2 times
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and

so2k(W ) ∼=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Hom(Wp, I K −p−2k) ⊕ K −2k ⊕ · · · ⊕ K −2k︸ ︷︷ ︸
p+k
2 −1 times

if p odd or 2k < −p

Hom(Wp, I K −p−2k) ⊕ Hom(W ′
0, I K −2k) ⊕ K −2k ⊕ · · · ⊕ K −2k︸ ︷︷ ︸

p+k
2 −1 times

otherwise.

Hence we conclude that Hom2k+1(W, V )⊗ K ∼= so2k(W )⊕so2k(V )⊕ K −2k .
By a similar argument, the conclusion also holds for the case p + k odd.

For the form of adη in this splitting, first assume p is odd or 2k < −p. If
p+k is even, then themap adη : so2k(V )⊕so2k(W ) → Hom2k+1(W, V )⊗K
is given by

adη(α, β) = (βp, βp−2 − αp−1, . . . , β−k+2 − α−k+3,

− α−k+1, −β∗−k+2 + α∗−k+1, . . . , α
∗
p−1 − η−pβ

∗
p).

(4.27)

Consider the summand K −2k ∼= Hom(W−k, Vk+1)⊗ K of Hom2k+1(W, V )⊗
K and take the corresponding quotient (Hom2k+1(W, V ) ⊗ K )/K −2k . Then
Hom2k+1(W, V ) ⊗ K = (Hom2k+1(W, V ) ⊗ K )/K −2k ⊕ K −2k and, from
(4.27), we conclude that adη can be written as

adη = ( a
b

) : so2k(V ) ⊕ so2k(W ) → (
Hom2k+1(W, V ) ⊗ K

)
/K −2k ⊕ K −2k

where a is an isomorphism. If p + k is odd, a similar conclusion holds.
If p is even and −p < 2k, the only difference is that we have the following

decompositions

β0 =
(
β I
0 β ′

0

)
: I ⊕ W ′

0 → W2k and β∗
0 =

(
(β I

0 )∗
(β ′

0)
∗
)

: W−2k → I ⊕ W ′
0.

With these decompositions, the terms of adη which involve β0 and β∗
0 are given

by

V1 ⊗ K
α1⊗IdK

I ⊕ W ′
0

( 1 0 )

β0

V2k+1 ⊗ K

W2k
1

and

V−2k+1 ⊗ K−α∗−1⊗IdK

W−2k

1

−β∗
0

V1 ⊗ K .

I ⊕ W ′
0

( 1 0 )

(4.28)
The map I ⊕ W ′

0 → V2k+1 ⊗ K is given by ( β I
0−α1 β ′

0 ) and the map W−2k →
W1 ⊗ K is given by −(β I

0 )∗ + α−1. In particular, we have adη = ( a
b

) :
so2k(W )⊕so2k(V ) → (

so2k(W )⊕so2k(V )
)⊕ K −2k with a an isomorphism.
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This implies that in the long exact sequence (4.19), for 2k < 0 and
2k /∈ {−p, −2p}, we have

H
0(C•

2k) = 0, H
1(C•

2k)
∼= H0(K −2k) and H

2(C•
2k) = H1(K −2k) = 0,

completing the proof. ��
The next lemma deals with H∗(C•−p) and H

∗(C•−2p).

Lemma 4.14 In weight −2p we have H
0(C•−2p) = 0, H2(C•

2k) = 0 and

0 −→ H0(so−2p(W ))
η−p−→ H0(Hom(Wp, K p))

−→ H
1(C•−2p) −→ H1(so−2p(W )) −→ 0,

(4.29)

where so−2p(W ) = {β ∈ Hom(Wp, W−p)|β + β∗ = 0}. For p odd, we have

H
0(C•−p) = 0, H

1(C•−p)
∼= H

1−p and H
2(C•−p) = 0,

where

0 −→ H0(Hom(Wp, W ′
0))

η−p−→ H0(Hom(W ′
0, K p)) −→ H

1−p

−→ H1(Hom(Wp, W ′
0)) −→ 0. (4.30)

For p even,

so−p(V ) ⊕ so−p(W ) ∼= Hom(Wp, W ′
0) ⊕ A and

Hom1−p(W, V ) ⊗ K = K p ⊕ Hom(W ′
0, K p) ⊕ A,

and with respect to this splitting adη =
(

0 b
η−p 0
0 a

)
, where a : A → A is an

isomorphism. In particular, for p even,

H
0(C•−p) = 0, H

1(C•−p)
∼= H0(K p) ⊕ H

1−p and H
2(C•−p) = 0.

Proof For weight −2p we have so−2p(V ) = 0, so−2p(W ) = {β ∈
Hom(Wp, W−p)|β+β∗ = 0} andHom−2p+1(W, V )⊗K ∼= Hom(Wp, I K p).

Themap adη : so−2p(W ) → Hom(Wp, K p) is given by adη(β) = η−pβ. The
result now follows from Lemmas 3.14 and 3.15.

If p is odd, then by (4.18) and (4.15) we have

so−p(V ) = 0, so−p(W ) ∼= Hom(Wp, W ′
0) and

Hom1−p(W, V ) ⊗ K = Hom(W ′
0, I K p).
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The map adη : Hom(Wp, W ′
0) → Hom(W ′

0, I K p) is given by adη(βp) =
−η−pβ

∗
p. Again, the result now follows from Lemmas 3.14 and 3.15.

If p is even, then

so−p(V ) ∼= K p ⊕ · · · ⊕ K p︸ ︷︷ ︸
� p

4 � times

,

so−p(W ) ∼= Hom(Wp, I ) ⊕ Hom(Wp, W ′
0) ⊕ K p ⊕ · · · ⊕ K p︸ ︷︷ ︸⌊

p−2
4

⌋
times

,

Hom1−p(W, V ) ⊗ K ∼= Hom(Wp, I ) ⊕ Hom(W ′
0, I K p) ⊕ K p ⊕ · · · ⊕ K p︸ ︷︷ ︸

p
2 times

.

Setting A = Hom(Wp, I )⊕ K p ⊕ · · · ⊕ K p︸ ︷︷ ︸
p
2 −1 times

we have so−p(V )⊕so−p(W ) ∼=

Hom(Wp, W ′
0) ⊕ A and Hom−p(W, V ) ⊗ K ∼= K p ⊕ Hom(W ′

0, I K p) ⊕ A.

The map adη is analogous to the one in the proof of Lemma 4.13 except that
(4.28) is given by

V1 ⊗ K
α1⊗IdK

I ⊕ W ′
0

( 1 0 )

−β∗
p

V−p+1 ⊗ K

W−p
η−p

and Wp

βp

V1 ⊗ K .

I ⊕ W ′
0

( 1 0 )

Thus, adη restricted to Hom(Wp, W ′
0) is given by β ′

p �→ −η−pβ
′∗
p . Hence,

adη =
(

0 b
η−p 0
0 a

)
: Hom(Wp, W ′

0) ⊕ A −→ K p ⊕ Hom(W ′
0, K p) ⊕ A

where a : A → A is an isomorphism.
Since H1(K p) = 0, we have H2(C•−p) = 0. As in the odd case, we also

find that H0(C•−p) = 0. Moreover, H1(C•−p)
∼= H0(K p) ⊕ H

1−p where H1−p
is given by (4.30). ��

The final case concerns the weight zero subcomplex.

Lemma 4.15 There is a bundle A so that

so0(V ) ⊕ so0(W ) ∼= so(W ′
0) ⊕ End(W−p) ⊕ A and

Hom1(W, V ) ⊗ K ∼= Hom(W−p, I K p) ⊕ A,
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where so(W ′
0) is the bundle of skew-symmetric endomorphisms of W ′

0 (with
respect to to QW ′

0
). With respect to this splitting,

adη =
(
0 η−p 0
0 b a

)
: so(W ′

0) ⊕ End(W−p) ⊕ A Hom(W−p, I K p) ⊕ A,

where a : A → A is an isomorphism. In particular,

H
2(C•

0)=0, H
0(C•

0)= H0(so(W ′
0)) and H

1(C•
0)= H1(so(W ′

0)) ⊕ H
1
0,p,

where

0 −→ H0(End(W−p))
η−p−→ H0(Hom(W−p, I K p))

−→ H
1
0,p −→ H1(End(W−p)) −→ H1(Hom(W−p, I K p) −→ 0.

Proof By (4.14) we have

Hom1(W, V ) ⊗ K ∼=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
Hom(W−p, I K p) ⊕ O ⊕ · · · ⊕ O︸ ︷︷ ︸

p−1 times

p odd

Hom(W−p, I K p) ⊕ O ⊕ · · · ⊕ O︸ ︷︷ ︸
p−1 times

⊕Hom(W ′
0, I ) p even

and by (4.16) and (4.17),

so0(V ) ⊕ so0(W ) ∼=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
End(W−p) ⊕ O ⊕ · · · ⊕ O︸ ︷︷ ︸

p−1 times

⊕ so(W ′
0) p odd

End(W−p) ⊕ O ⊕ · · · ⊕ O︸ ︷︷ ︸
p−1 times

⊕Hom(W ′
0, I ) ⊕ so(W ′

0) p even.

Hence, setting A to be

A =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
O ⊕ · · · ⊕ O︸ ︷︷ ︸

p−1 times

p odd

O ⊕ · · · ⊕ O︸ ︷︷ ︸
p−1 times

⊕Hom(W ′
0, I ) p even

yields so0(V )⊕so0(W ) = so(W ′
0)⊕End(W−p)⊕ A andHom(W, V )1⊗K =

Hom(W−p, I K p) ⊕ A.

Since, W ′
0 is an invariant bundle, the restriction of the map adη : so0(W ) ⊕

so0(V ) → Hom1(W, V )⊗ K to so(W ′
0) is identically zero. The restriction of

the map adη to End(W−p) ⊕ A is similar to (4.25) with the exception that the
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term W−p → V1−p ⊗ K is given by

V1−p ⊗ K
α1−p⊗IdK

W−p

η−p

β−p

V1−p ⊗ K .

W−p
η−p

In particular, it is given by
(

η−p 0
b a

)
: End(W−p)⊕A → Hom(W−p, I K p)⊕A

where a is an isomorphism.
The hypercohomology complex forC• splits as a direct sumof the following

two complexes

0 −→ H
0
0,′ −→ H0(so(W ′

0)) −→ 0 −→ H
1
0,′ −→ H1(so(W ′

0)) −→ 0,

and

0 H
0
0,p H0(End(W−p)) H0(Hom(W−p, I K p)) H

1
0,p

H1(End(W−p)) H1(Hom(W−p, I K p)) H
2
0,p 0.

By Lemma 3.13,

(
Wp ⊕ I ⊕ W−p,

(
0 0 0

η−p 0 0
0 η∗−p 0

))
is a stable K p-twisted

O(2 rk(Wp) + 1,C)-Higgs bundle, so the hypercohomology groupsH0
0,p and

H
2
0,p both vanish and H1(C•

0) = H1(so(W ′
0)) ⊕ H

1
0,p. ��

4.3 Proof of Theorem 4.1

Weare now set up to proveTheorem4.1.We start by describing a neighborhood
of the image of the map � which is open inM(SO(p, q)).

Proposition 4.16 For each (I, Ŵ , η̂, q2, . . . , q2p−2) inMK p(SO(1, q−p+1))

×
p−1⊕
j=1

H0(K 2 j ), the second hypercohomology group for the associated

SO(p, q)-Higgs bundle vanishes

H
2(C•(�(I, Ŵ , η̂, q2, . . . , q2p−2))) = 0.
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In particular, an open neighborhood of �(I, Ŵ , η̂, q2, . . . , q2p−2) in the mod-
uli space M(SO(p, q)) is isomorphic to an open neighborhood of zero in

H
1(C•(�(I, Ŵ , η̂, q2, . . . , q2p−2)) � Aut(�(I, Ŵ , η̂, q2, . . . , q2p−2)).

Proof By Lemma 3.7, it suffices to prove the above proposition at the fixed
points of the C∗-action in the image of �. These are the Higgs bundles given
in Lemma 4.9. In Lemmas 4.10, 4.11, 4.12, 4.13, 4.14 and 4.15 it is shown
that if (W, V, η) is a fixed point of the C∗-action in the image of �, then each
of the graded pieces of H2(C•(W, V, η)) vanish. ��
Proposition 4.17 For all �((I, Ŵ , η̂), 0, . . . , 0) which are fixed points of the
C

∗-action we have an isomorphism induced by �.

H
1(C•(�(I, Ŵ , η̂, 0, . . . , 0)) � Aut(�(I, Ŵ , η̂, 0, . . . , 0))

∼=
(
H

1(C•(I, Ŵ , η̂)) � Aut(Ŵ )
)

×
p−1⊕
j=1

H0(K 2 j ).

Proof Let �(I, Ŵ , η̂, 0, . . . , 0) be a fixed point of the C
∗-action. For the

SO(1, q − p + 1)-Higgs bundle (I, Ŵ , η̂), the first hypercohomology group
H

1(C•(I, Ŵ , η̂)) of the deformation complex was computed in Lemma 3.15.
In Lemmas 4.10, 4.11, 4.12, 4.13, 4.14 and 4.15 it was shown that the first
hypercohomology group of the deformation complex of the SO(p, q)-Higgs
bundle is given by

H
1(C•(�(I, Ŵ , η̂, 0, . . . , 0))) ∼= H

1(C•(I, Ŵ , η̂)) ×
p−1⊕
j=1

H0(K 2 j ).

It is clear from our constructions that the isomorphism is induced by �.
By Lemma 4.6, every S(O(1,C) × O(q − p + 1,C)) automorphism

(det(gŴ ), gŴ ) of (I, Ŵ , η̂) determines a unique automorphism of�(I, Ŵ , η̂,

0 . . . , 0)

(gV , gW ) =
(
det(gŴ ) IdKp−1,

(
gŴ 0
0 det(gŴ ) IdKp−2

))
.

Moreover, the action of such an automorphismon the holomorphic differentials
in the above description of H1(C•(�(I, Ŵ , η̂, 0, . . . , 0)) is trivial. Thus,

H
1(C•(�(I, Ŵ , η̂, 0, . . . , 0)) � Aut(�(I, Ŵ , η̂, 0, . . . , 0))
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∼=
(
H

1(C•(I, Ŵ , η̂)) � Aut(Ŵ )
)

×
p−1⊕
j=1

H0(K 2 j )

as claimed. ��
Theorem 4.18 The image of the map � from (4.1) is open and closed.

Proof By Propositions 4.16 and 4.17, the map � is open at all fixed points of
the C∗-action. For (V, W, η) in the image of �, there is λ sufficiently close
to zero such that (V, W, λη) is in a sufficiently small open neighborhood of a
fixed point of the C∗-action. Thus, � is open at all points.

To show the image of � is closed, we use the properness of the Hitchin
fibration. Namely, suppose (I, Ŵi , η̂i , qi

2, . . . , qi
2p−2) is a sequence of points

in MK p(SO(1, q − p + 1)) × ⊕p−1
j=1 H0(K 2 j ) which diverges. Denote the

associated Hitchin fibrations by

h p : MK p(SO(1, q − p + 1)) → H0(K 2p) and

h : M(SO(p, q)) →
p⊕

j=1

H0(K 2 j ).

By the properness of h p, (qi
2, . . . , qi

2p−2, h p(I, Ŵi , η̂i )) diverges in
⊕p

j=1 H0

(K 2 j ). Moreover, by the definition of the map �, applying the SO(p, q)-
Hitchin fibration to the image sequence yields

h(�(I, Ŵi , η̂i , qi
2, . . . , qi

2p−2)) = (qi
2, . . . , qi

2p−2, h p(I, Ŵi , η̂i )).

Since h is proper, we conclude that �(I, Ŵi , η̂i , qi
2, . . . , qi

2p−2) also diverges
in M(SO(p, q)). ��

The following direct consequence of the construction of the map � will be
used in Sect. 7.

Corollary 4.19 Consider the subgroup GL(n,R) × SO(p − n, q − n) ⊂
SO(p, q) defined by the embedding

(A, B) �→
( A

B
A−1

)
.

Then no Higgs bundle in the image of � reduces to such a subgroup.
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5 Classification of local minima of the Hitchin function for
M(SO( p, q))

In this section we will prove Theorem 5.10 which classifies all local minima of
the Hitchin function (3.1) onM(SO(p, q)). The strategy of proof is to divide
the objects into the following three families:

1. stable SO(p, q)-Higgs bundles with H2(C•(V, W, η)) = 0,
2. stable SO(p, q)-Higgs bundles whose corresponding SO(p +q,C)-Higgs

bundle is strictly polystable,
3. strictly polystable SO(p, q)-Higgs bundles.

The first family consists of points which are either smooth or orbifold points
ofM(SO(p, q)). For these points we can use Proposition 3.4 to classify such
local minimum. The local minima in the other two families will be described
by a direct study of their deformations.

Recall from (3.2) that the deformation complex of an SO(p, q)-Higgs bun-
dle (V, W, η) which is a C∗-fixed point decomposes as

C•
k : sok(V ) ⊕ sok(W )

adη−−−→ Homk+1(W, V ) ⊗ K. (5.1)

Each graded piece gives rise to the long exact sequence (3.3) in hypercoho-
mology.

5.1 Stable minima with vanishing H
2(C•)

By Proposition 3.10, stable C
∗-fixed points are given by (3.7). We start by

studying the constraints on these chains imposed by the localminima condition
for stable SO(p, q)-Higgs bundles with vanishing H2(C•). This will be done
by first proving two lemmas.

Lemma 5.1 Let (V, W, η) be a stable SO(p, q)-Higgs bundle with η �= 0 and
H

2(C•(V, W, η)) = 0. If (V, W, η) is a local minimum of f , then the chain
given by (3.7) must have one of the following forms (with ηi �= 0 for all i ):

V−s
η∗

s−1
W1−s

η1−s · · · η−2
V−1

η∗
0 W0

η0
V1

η∗−2 · · · η∗
1−s

Ws−1
ηs−1

Vs
(5.2)

W−r
η−r

V1−r
η∗

r−2 · · · η∗
1 W−1

η−1
V0

η∗−1
W1

η1 · · · ηr−2
Vr−1

η∗−r
Wr
(5.3)
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V−r
η∗

r−1
W1−r

η1−r · · · η∗
1 W−1

η−1
V0

η∗−1
W1

η1 · · · η∗
1−r

Wr−1
ηr−1

Vr ,

⊕
W0

(5.4)

W−s
η−s

V1−s
η∗

s−2 · · · η−2
V−1

η∗
0 W0

η0
V1

η∗−2 · · · ηs−2
Vs−1

η∗−s
Ws

⊕
V0

(5.5)

Proof If one of the chains in (3.7) vanishes, we are done. Assume both chains
are non-zero chains. Let r � 0 be the maximal weight of the first chain and
s � 0 be the maximal weight of the second chain. We have r > 0 or s > 0
since η �= 0. Since (V, W, η) is a stable local minimum of the Hitchin function
with H

2(C•) = 0, the subcomplexes from (5.1) are isomorphisms for k � 1
by Proposition 3.4.

If r and s have different parity, then both of the chains start and end with
a summand of W if r is odd and start and end with a summand of V if r is
even. In either case, Homr+s+1(W, V ) ⊗ K = 0 but sor+s(W ) ⊕ sor+s(V ) is
non-zero. Hence, the subcomplex C•

r+s from (5.1) is not an isomorphism for
k = r + s, contradicting (V, W, η) being a stable minima with H2(C•) = 0.

Now assume r and s have the same parity, so the first chain starts and ends
with a summand of W if and only if r is odd and the second chain starts
and ends with a summand of W if only only if s is even. If r � s, then
Hom2r+1(W, V ) ⊗ K = 0 and so2r (V ) ⊕ so2r (W ) = �2Vr ⊕ �2Wr . So the
isomorphism of C•

2r : �2Vr ⊕ �2Wr → 0 implies that, whenever Vr and Wr
are non-zero, they must be line bundles; more precisely we must have: (i) if
r is odd, rk(Wr ) = 1 and, if s = r , rk(Vr ) = 1 (if s < r , Vr = 0), or (ii) if
r is even, rk(Vr ) = 1 and, if s = r , rk(Wr ) = 1 (if s < r , Wr = 0). Since
r + s − 1 is odd, we have:

sor+s−1(V ) =
{

{(α,−α∗) ∈ Hom(V−s, Vr−1) ⊕ Hom(V1−r , Vs)} if r is odd

{(α,−α∗) ∈ Hom(V−r , Vs−1) ⊕ Hom(V1−s, Vr )} if r is even

sor+s−1(W ) =
{

{(β,−β∗) ∈ Hom(W−r , Ws−1) ⊕ Hom(W1−s, Wr )} if r is odd

{(β,−β∗) ∈ Hom(W−s, Wr−1) ⊕ Hom(W1−r , Ws)} if r is even

Homr+s(W, V ) ⊗ K ∼=
{
Hom(W−r , Vs) ⊗ K if r is odd

Hom(W−s, Vr ) ⊗ K if r is even.
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If s > 0, then r + s − 1 � 1 so the isomorphism C•
r+s−1 : sor+s−1(V ) ⊕

sor+s−1(W ) → Homr+s(W, V ) ⊗ K gives

{
rk(Vs) rk(Vr−1) + rk(Ws−1) = rk(Vs) if r is odd

rk(Ws) rk(Wr−1) + rk(Vs−1) = rk(Ws) if r is even.

This implies either rk(Ws−1) = 0 or rk(Vr−1) = 0 if r is odd, and that
either rk(Vs−1) = 0 or rk(Wr−1) = 0 if r is even. Any of these conclusions
contradicts Proposition 3.10. Thus, we conclude that s = 0 and thus r is even,
so the holomorphic chain is given by (5.4). A similar argument shows that the
holomorphic chain is of the form (5.5) for s > r . ��

Lemma 5.2 Let (V, W, η) be a stable SO(p, q)-Higgs bundle which is a local
minimum of the Hitchin function with η �= 0 and H

2(C•(V, W, η)) = 0; the
associated holomorphic chain is given by (5.2), (5.3), (5.4) or (5.5). For all
j �= 0, we have rk(W j ) = 1 and rk(Vj ) = 1. Moreover:

• In case (5.2), V j
∼= V−1K − j−1 and W j

∼= V−1K − j−1 for 0 < | j | < s.
• In case (5.3), V j

∼= W−1K − j−1 and W j
∼= W−1K − j−1 for 0 < | j | < r.

• In case (5.4), rk(V0) = 1, and Vj
∼= V0K − j and W j

∼= V0K − j for
0 < | j | < r .

• In case (5.5), rk(W0) = 1, and Vj
∼= V0K − j and W j

∼= V0K − j for
0 < | j | < s.

Proof The proof involves an inductive argument on the weights. We first con-
sider the case where (V, W, η) is the holomorphic chain (5.4). We have the
following decompositions

End(V ) =
2r⊕

j=−2r

Endk(V ), End(W ) =
2r−2⊕

k=2−2r

Endk(W ) and

Hom(W, V ) =
2r−1⊕

k=1−2r

Homk(W, V ).
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For 2k > 0 we have Hom2k+1(W, V ) =
r−k−1⊕

j=0

Hom(W1−r+2 j , V2−r+2 j+2k),

End2k(V ) =
r−k⊕
j=0

Hom(V2 j−r , V2 j+2k−r ) and

End2k(W ) =
r−k−1⊕

j=0

Hom(W1−r+02 j , W1−r+2 j+2k).

(5.6)

With respect to these splittings, so(V ) =
⊕

sok(V ) and so(W ) =⊕
sok(W ) where, for k > 0

so2k(V ) = {(α0, . . . , αr−k) ∈ End2k(V ) | αi + α∗
r−k−i = 0},

so2k(W ) = {(β0, . . . , βr−k−1) ∈ End2k(V ) | βi + β∗
r−k−1−i = 0}.

(5.7)

Since (V, W, η) is a stableminimaof theHitchin functionwithH2(C•) = 0,
for all k > 0 we have so2k(V )⊕ so2k(W ) ∼= Hom2k+1(W, V )⊗ K . Note that
r is even and non-zero. The isomorphism for k = 2r implies�2Vr

∼= 0, hence
rk(Vr ) = 1.

The isomorphism for k = 2r − 2 implies Hom(V−r , Vr−2) ⊕ �2Wr−1 ∼=
Hom(W1−r , Vr ) ⊗ K . Thus,

rk(Vr−2) + rk(�2W1−r ) = rk(W1−r ),

which implies rk(W1−r ) is either one or two. If rk(W1−r ) = 2, taking the
determinant of the isomorphism C•

2r−2 implies Vr K 2 = Vr−2. Also, the ker-
nels of the maps ηr−1 : Wr−1 → Vr ⊗ K and η1−r : W1−r → V2−r ⊗ K have
negative degree by stability. Using V ∗

j
∼= V− j and W ∗

j
∼= W− j , we have

deg(Vr−2) − 2g + 2 < deg(Wr−1) < deg(Vr ) + 2g − 2,

which contradicts Vr K 2 = Vr−2. So rank Wr−1 = 1 and the isomorphism for
C•
2r−2 gives the base case of our induction:

1 = rk(V−r ) = rk(W1−r ) = rk(V2−r ) and W1−r
∼= V2−r K .
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If r = 2 we are done, so assume r � 4 and that for an integer k ∈ [1, r
2 −1]

we have

W1−r
∼= V2−r K ∼= W3−r K 2 ∼= · · · ∼= W2k−1−r K 2k−2 ∼= V2k−r K 2k−1.

(5.8)
We will prove that V2k−r

∼= W2k+1−r K ∼= V2k+2−r K 2.
The isomorphism C•

2r−2−2k gives

⌊
k
2

⌋
⊕
j=0

Hom(V2 j−r , Vr+2 j−2−2k) ⊕

⌊
k−1
2

⌋
⊕
j=0

Hom(W2 j+1−r , Wr+2 j−1−2k)

∼=
k⊕

j=0

Hom(W2 j+1−r , Vr+2 j−2k) ⊗ K .

(5.9)

since �2Vr−k−1 = 0 for k odd and �2Wr−k−1 = 0 for k even by (5.8).
Using (5.8), computing the ranks of both sides gives rk(V2k+2−r ) + ⌊ k

2

⌋ +
rk(W2k+1−r ) + ⌊ k−1

2

⌋ = k + rk(W2k+1−r ). Thus,

rk(V2k+2−r ) = 1.

The isomorphism C•
2r−2−4k implies

k⊕
j=0

Hom(V2 j−r , Vr+2 j−2−4k) ⊕
k−1⊕
j=0

Hom(W2 j+1−r , Wr+2 j−1−4k) ⊕ �2Wr−1−2k

∼=
2k⊕
j=0

Hom(W2 j+1−r , Vr+2 j−4k) ⊗ K .

Using (5.8), this gives the following equality on ranks

k∑
j=0

rk(Vr+2 j−2−4k) +
k−1∑
j=0

rk(Wr+2 j−1−4k) + rk(�2Wr−1−2k)

=
k−1∑
j=0

rk(Vr+2 j−4k) +
2k∑
j=k

rk(W2 j+1−r ).

Simplifying, yields rk(V4k+2−r ) + rk(�2W2k+1−r ) = rk(W2k+1−r ). Thus,
rk(W2k+1−r ) is one or two.
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If rk(W2k+1−r ) = 2, then the determinant of the isomorphism in (5.9) gives
⌊

k
2

⌋
⊗
j=0

Vr−2 j Vr+2 j−2−2k ⊗ W 2
r−1�

2Wr−1−2k ⊗

⌊
k−1
2

⌋
⊗
j=1

Wr−2 j−1Wr+2 j−1−2k

∼=
k−1⊗
j=0

Wr−2 j−1Vr+2 j−2k K ⊗ V 2
r K 2 ⊗ �2Wr−1−2k .

(5.10)

By (5.8), the above terms satisfy

V 2
r−2k K 2−2k ∼=

⎧⎪⎨
⎪⎩

Vr−2 j Vr+2 j−2−2k, for j = 1, . . . , � k
2�

Wr−2 j−1Wr+2 j−1−2k, for j = 1, . . . , � k−1
2 �

Wr−2 j−1Vr+2 j−2k K , for j = 0, . . . , k − 1.

(5.11)

Hence, simplifying (5.10) yields Vr−2k−2 ∼= Vr K 2+2k . The Higgs field gives
rise to non-zero maps Vr−2k−2 → Vr−2k K 2 and Vr−2k → Vr K 2k by Proposi-
tion 3.10. Thus, deg(Vr−2k−2)−deg(Vr−2k) = 4g−4. As in the base case, this
leads to a contradiction of stability. Namely, stability implies that the kernels
of η2k+1−r : W2k+1−r → V2k+2−r K and of ηr−1−2k : Wr−1−2k → Vr−2k K
have negative degree, so that deg(V2k−r ) − 2g + 2 < deg(W2k+1−r ) <

deg(V2k+2−r ) + 2g − 2. So rk(W2k+1−r ) = 1.
Using rk(W2k+1−r ) = 1, (5.8) and (5.11), the determinant of (5.9) gives

Vr Vr−2k−2 ⊗

⌊
k
2

⌋
⊗
j=1

(V 2
r−2k K 2−2k) ⊗ Vr−2k K 1−2k Wr−1−2k ⊗

⌊
k−1
2

⌋
⊗
j=1

(V 2
r−2k K 2−2k)

∼=
k−1⊗
j=0

(V 2
r−2k K 2−2k) ⊗ Wr−1−2k Vr K ,

which simplifies to V2k−r
∼= V2k+2−r K 2. The Higgs field defines a non-zero

map V2k−r → W2k+1−r K → V2k+2−r K 2. Thus,

V2k−r
∼= W2k+1−r K ∼= V2k+2−r K 2. (5.12)

Recall that k was an integer between 1 and r−2
2 . Since r is even, we can take

k = (r −2)/2, and hence (5.12) gives V−2 ∼= W−1K ∼= V0K 2. This completes
the proof for the chain (5.4).

The difference for the chain (5.3) is that r is odd and instead of (5.8) we
must assume

V1−r
∼= W2−r K ∼= V3−r K 2 ∼= · · · ∼= V2k−1−r K 2k−2 ∼= W2k−r K 2k−1,
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where k is an integer satisfying 1 � k � (r − 3)/2. The same proof as above
shows that W2k−r

∼= V2k+1−r K ∼= W2k+2−r K 2. By taking k = (r − 3)/2 we
have W−3 ∼= V−2K ∼= W−1K 2, and no condition on V0 is imposed. Switching
the roles of V and W gives the proof for the chains (5.2) and (5.5). ��
We can now complete the classification of the stable minima with vanishing
H

2(C•).

Theorem 5.3 A stable SO(p, q)-Higgs bundle (V, W, η) with p � q, η �= 0
and H

2(C•(V, W, η)) = 0 defines a local minimum of the Hitchin function
if and only if it is a holomorphic chain of the form (5.2), (5.3), (5.4) or (5.5)
which satisfies one of the following:

1. The chain is given by (5.2) with p = 2 and 0 < deg(V−1) < 2g − 2.
2. The chain is given by (5.2) with p � 2, s = p − 1 and the bundle W0

decomposes as W0 = I ⊕ W ′
0, where W ′

0 is a stable O(q − p + 1,C)-
bundle with det(W ′

0) = I . Moreover, Vj = I K − j and W j = I K − j for all
j �= 0, and with respect to the splitting of W0, the chain is given by

I
V−s

η∗
s−1

W1−s
η1−s · · · η−2

V−1

(
η∗
0
0

)
⊕ ( η0 0 )

V1
η∗−2 · · · η∗

1−s
Ws−1

ηs−1
Vs ,

W ′
0

(5.13)
3. The chain is of the form (5.3) with q = p, and for some 2-torsion line

bundle I , V0 = I ⊕ I , Vj = I K − j and W j = I K − j for all j �= 0, and
the chain is given by

I
W−r

η−r
V1−r

η∗
r−2 · · · η∗

1
W−1

(
η−1
0

)
⊕( η∗−1 0 )

W1
η1 · · · ηr−2

Vr−1
η−r∗

Wr ,

I
(5.14)

4. The chain is of the form (5.3)with q = p+1, V j = K − j and W j = K − j for
all | j | < p and W−p is a line bundle satisfying deg(W−p) ∈ (0, p(2g−2)].

5. The chain is of the form (5.4) where W0 is a stable O(q − p +1,C)-bundle
with det(W0) = I , and Vj = I K − j and W j = I K − j for all j �= 0.

6. The chain is of the form (5.5) with q = p+1, V0 = 0, W0 ∼= O, V j = K − j

and W j = K − j for 0 < | j | < p and W−p is a line bundle satisfying
deg(W−p) ∈ (0, p(2g − 2)].

7. The chain is of the form (5.5) with q = p, and for some 2-torsion line
bundle I , Vj = I K − j and W j = I K − j for all j.

Remark 5.4 Cases (2)–(7) are special cases of the fixed points considered in
Lemma 4.9. In case (2), the Higgs bundle is still a local minimum of the
Hitchin function if the invariant bundle W ′

0 is strictly polystable. Similarly,
replacing the stable orthogonal bundle W0 in case (5) with a strictly polystable
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orthogonal bundle still defines a local minimum. We will prove that these are
the only local minima apart from η = 0.Note also that none of the above cases
have p = 1 and q > 2.

Proof Wefirst show that cases (1) and (2) are sufficient for the chain (5.2) to be
a stableminimawithH2(C•) = 0 by invoking Proposition 3.4. For case (1),C•

2
is the only isomorphism to consider. We have so2(V ) ⊕ so2(W ) = �2V1 and
Hom3(W, V )⊗ K = 0,which is an isomorphism since rk(V−1) = 1. For case
(2), the holomorphic chain (5.13) is a fixed point considered in Lemma 4.9with

Wp = 0. By Lemma 4.10, C•
k : sok(V ) ⊕ sok(W )

adη−−→ Homk+1(W, V ) ⊗ K
is an isomorphism for all k > 0.

We now show that cases (1) and (2) are necessary for chains of the form
(5.2). We have a chain

V−s

η∗
s−1

W1−s
η1−s · · · η−2

V−1

η∗
0

W0
η0

V1

η∗−2 · · ·
η∗
1−s

Ws−1
ηs−1

Vs ,

with s � 1 odd. By Lemma 5.2 each of the bundles in the chain is a line bundle
except W0. So p = s + 1 is even and rk(W0) = q − p + 2 � 2. Note that
O = det(V ) = det(W ) = det(W0).

If N = ker(η0), then η∗
0 maps V−1 to N⊥K ⊂ W0⊗K . By Proposition 3.10,

η∗
0 is non-zero, hence deg(N⊥) − deg(V−1) + 2g − 2 � 0. If N is coisotropic

then N⊥ is isotropic, and stability implies deg(V−1) + deg(N⊥) < 0, which
implies deg(V−1) < g − 1. If N is not coisotropic, then η0η

∗
0 is a non-zero

section of the line bundle V 2
1 K 2. Thus,

deg(V−1) � 2g − 2. (5.15)

If p = 2 and deg(V−1) < 2g − 2 we are done. If deg(V−1) = 2g − 2, then
η0η

∗
0 is a nowhere vanishing section of the line bundle V 2

1 K 2, and hence the
kernel of η0 is a holomorphic orthogonal bundle W ′

0 ⊂ W0 of rank q − p + 1.
Furthermore, stability of (V, W, η) forces W ′

0 to be stable. Taking orthogonal
complements gives a decompositionW0 = W ′

0⊕I where K V1 = I = det(W ′
0)

sinceO = det(W0). By Lemma 5.2, the holomorphic chain is given by (5.13).
Thus, for p = 2 we are done. For p > 2 we will show that stability forces
deg(V−1) = 2g − 2 and V−s = K s I.

For p � 4 and even, we have s � 3 and odd. Using decompositions analo-
gous to (5.6) and (5.7) and rk(Vj ) = rk(W j ) = 1 for j �= 0, the isomorphism
of C•

s−1 gives
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sos−1(V ) ⊕ sos−1(W ) ∼=

⌊
s−1
4

⌋
⊕
j=0

Hom(V2 j−s, V2 j−1)

⊕

⌊
s−3
4

⌋
⊕
j=0

Hom(W2 j+1−s, W2 j )

Homs(W, V ) ⊗ K ∼=
s−1
2⊕

j=0

Hom(W2 j+1−s, V2 j+1) ⊗ K .

Since det(W0) = O, the determinant of both sides of the isomorphism C•
s−1

is given by

Vs V−1 ⊗

⌊
s−1
4

⌋
⊗
j=1

Vs−2 j V2 j−1 ⊗ W rk(W0)
s−1 ⊗

⌊
s−3
4

⌋
⊗
j=1

Ws−1−2 j W2 j

∼=
s−3
2⊗

j=0

Ws−1−2 j V2 j+1K ⊗ (Vs K )rk(W0). (5.16)

From Lemma 5.2, we have Ws−1 ∼= V1K 2−s and

V 2
1 K 3−s ∼=

⎧⎪⎨
⎪⎩

Vs−2 j V2 j−1, for j = 1, . . . , �(s − 1)/4�
Ws−1−2 j W2 j , for j = 1, . . . , �(s − 3)/4�
Ws−1−2 j V2 j+1K , for j = 0, . . . , (s − 3)/2.

This simplifies (5.16) to (Vs V−1K s−1)p−q−1 ∼= (V1K )2. As in the proof of
Lemma 5.2, the Higgs field gives a non-zero map V1 → Vs K s−1. Therefore,

0 � (p − q − 1)(deg(Vs) − deg(V1) + (s − 1)(2g − 2))

= 2(deg(V1) + 2g − 2),

and hence deg(V1) � 2−2g. By (5.15), we conclude that deg(V−1) = 2g −2
and deg(Vs) = −s(2g−2).As above, since deg(V−1) = 2g−2, the bundleW0
decomposes as W ′

0⊕ I,where W ′
0 is the kernel of η0 and det(W0)

′ = I = V1K .

Moreover, we have Vs = I K −s since, by Lemma 5.2, Ws−1 = I K 1−s and
ηs−1 : Ws−1 → Vs ⊗ K is non-zero. This completes the proof of (2).

Case (3) is similar to case (2), and cases (4) and (6) are almost identical. By
Lemma 5.2, the holomorphic chain (5.3) is given by
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W−r
η−r

V1−r
η∗

r−2 · · · η∗
1 W−1

η−1
V0

η∗−1
W1

η1 · · · ηr−2
Vr−1

η∗−r
Wr ,

where rk(W j ) = 1 for all j. Thus, r = q − 1 and either rk(V0) = 1 and
q = p + 1 or rk(V0) = 2 and q = p. If q = p, then, the holomorphic
chain is identical to case (2) with the roles of V and W switched. By the same
argument as case (2), we conclude that the holomorphic chain must be of the
form (5.14).

We now assume rk(V0) = 1 and q = p + 1. Moreover, V0 = O since
O ∼= det(V ) ∼= V0. Since the Higgs field defines a non-zero maps W−1 →
O⊗ K and W−1 → W1 ⊗ K 2,we conclude that W−1 ∼= K . Thus, W j = K − j

and Vj = K − j for all | j | < r by Lemma 5.2. Since Wp is an invariant
isotopic subbundle and the Higgs field η−p : W−p → V−p+1K is non-zero,
we conclude

0 < deg(W−p) � p(2g − 2).

Thus, the conditions in case (4) are necessary.
The holomorphic chain from case (4) is a fixed point considered in Lemma

4.9 with W ′
0 = 0 and rk(W−p) = 1.By Lemmas 4.10 and 4.11,C•

k : sok(V )⊕
sok(W )

adη−−→ Homk+1(W, V ) ⊗ K is an isomorphism for all k > 0. Thus, the
conditions in case (4) are also sufficient.

The holomorphic chain from case (5) is a fixed point considered in

Lemma 4.9 with W−p = 0. By Lemma 4.10, C•
k : sok(V ) ⊕ sok(W )

adη−−→
Homk+1(W, V ) ⊗ K is an isomorphism for all k > 0. Thus, the conditions in
case (5) are sufficient.

To show the conditions of (5) are necessary, note that the holomorphic chain
(5.4) is given by

V−r
η−r

W1−r
η∗

r−2 · · · η∗
1 W−1

η−1
V0

η∗−1
W1

η1 · · · ηr−2
Wr−1

η∗−r
Vr .

⊕
W0

By Lemma 5.2, rk(Vj ) = 1 for all j , thus r = p − 1 and rk(W0) � 1. Also, if
V0 = I , then I = det(V ) = det(W ) = det(W0), and Vj = I K − j for all | j | <

p−1 and W j = K −1 I for all j �= 0. Since W0 �= 0, sop−2(V )⊕sop−2(W ) ∼=
Hom(W1−r , W0) and Homp−1(W, V ) ⊗ K ∼= Hom(W0, Vp−1K ). Taking the
determinant of this isomorphism and using W2−p = K p−2 I we conclude that
V1−p = I K p−1, finishing the proof of case (5).
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Finally, for case (7) the holomorphic chain (5.5) is given by

W−s
η−s

V1−s
η∗

s−2 · · · η−2
V−1

η∗
0 W0

η0
V1

η∗−2 · · · ηs−2
Vs−1

η∗−s
Ws

⊕
V0

.

By Lemma 5.2, rk(W j ) = 1 for all j. Thus s = q − 1 = p − 1 and V0 is
a rank one orthogonal bundle I with I = det(V ) = det(W ) = W0, Vj =
I K − j for all j and W j = I K − j for all | j | < s. Similar to case (4), we
have sop−2(V ) ⊕ sop−2(W ) ∼= Hom(V0, Vp−2) and Homp−1(W, V ) ⊗ K ∼=
Hom(W1−p, V0K ). Thus, the isomorphism C•

p−2 implies W1−p
∼= I K p−1.

Thus, the conditions of (7) are necessary.Aswith the other cases, the conditions
of case (7) are sufficient by Lemmas 4.9 and 4.10. ��

5.2 Stable minima with non-vanishing H
2(C•)

We now classify stable SO(p, q)-Higgs bundles such that the associated
SO(p + q,C)-Higgs bundle is strictly polystable. By Remark 2.14, these
are exactly the stable SO(p, q)-Higgs bundles which may have H2(C•) �= 0.
We will prove that such SO(p, q)-Higgs bundles define minima of the Hitchin
function if and only if the Higgs field η is zero.

The SO(p + q,C)-Higgs bundle associated to an SO(p, q)-Higgs bundle
(V, QV , W, QW , η) is

(E, Q, �) =
(

V ⊕ W,
(

QV 0
0 −QW

)
,
(

0 η

η∗ 0

) )
. (5.17)

Recall that a GL(p,R)-Higgs bundle is defined by a triple (V, QV , η) where
(V, QV ) is a rank p orthogonal vector bundle and η : V → V ⊗ K is a
holomorphic map satisfying η∗ = Q−1

V ηT QV = η. Given such a GL(p,R)-
Higgs bundle, we construct the SO(p, p)-Higgs bundle (V, QV , V, QV , η).
Using the symmetry η∗ = η, the corresponding SO(2p,C)-Higgs bundle is

(E, Q, �) =
(

V ⊕ V,
(

QV 0
0 −QV

)
,
(
0 η
η 0

) )
.

Even if the SO(p, p)-Higgs bundle (V, V, η) is stable, the above SO(2p,C)-
Higgs bundle is strictly polystable. Indeed, the following pair of disjoint degree
zero isotropic subbundles are both �-invariant

V
i1 V ⊕ V and V

i2 V ⊕ V

v (v, v) v (v, −v)

.
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The following proposition shows that this example characterizes the stable
SO(p, q)-Higgs bundles which are not stable as SO(p +q,C)-Higgs bundles.

Proposition 5.5 Let (V, W, η) be a stable SO(p, q)-Higgs bundle. The asso-
ciated SO(p + q,C)-Higgs bundle (5.17) is strictly polystable if and only
if

(V, QV , W, QW , η) ∼=
(

V1 ⊕ V2,
(

QV1 0
0 QV2

)
, V1 ⊕ W2,

(
QV1 0
0 QW2

)
,
(

η1 0
0 η2

) )
,

(5.18)
where (V1, QV1, V1, QV1, η1) is a stable SO(p1, p1)-Higgs bundle with η∗

1 =
η1 and (V2, QV2, W2, QW2, η2) is a stable SO(p2, q2)-Higgs bundle.

Proof By the above discussion, the condition (5.18) is sufficient. We now
show that it is necessary. Let (V, W, η) be a stable SO(p, q)-Higgs bundle
and suppose the associated SO(p + q,C)-Higgs bundle (E, Q, �) given by
(5.17) is strictly polystable, so that there is a degree zero proper subbundle
U ⊂ V ⊕W , which is isotropicwith respect to Q and satisfies�(U ) ⊂ U ⊗K .
Let V1 ⊂ V and W1 ⊂ W be the respective image sheaves of the projection of
U onto each summand of V ⊕W.The subsheaf V1⊕W1 is preserved by�, thus
deg(V1)+deg(W1) � 0 by polystability of the associated SL(p+q,C)-Higgs
bundle (V ⊕ W, �).

Consider the sequences

0 Uw U V1 0 and 0 U v U W1 0,

where the subsheaf U v ⊂ V is QV -isotropic, the subsheaf Uw ⊂ W
is QW -isotropic, η(Uw) ⊂ U v ⊗ K and η∗(U v) ⊂ Uw ⊗ K . Stabil-
ity of the SO(p, q)-Higgs bundle gives deg(U v) + deg(Uw) < 0, which
implies deg(V1) + deg(W1) > 0. But, since V1 ⊕ W1 is preserved by �,
deg(V1) + deg(W1) � 0 by polystability of the Higgs bundle (V ⊕ W, �).

This contradiction implies

V1 ∼= U ∼= W1.

We claim that V1 and W1 are both orthogonal subbundles. Let QV1 and
QW1 be the restrictions of QV and QW to V1 and W1 respectively. Consider
the following sequences

0 −→ V
⊥V1
1 −→ V1 −→ V1/V

⊥V1
1 −→ 0 and

0 −→ W
⊥W1
1 −→ W1 −→ W1/W

⊥W1
1 −→ 0,

where, by definition, V
⊥V1
1 = V ⊥V

1 ∩V1 and W
⊥W1
1 = W ⊥W

1 ∩W1. Since V
⊥V1
1

and W
⊥W1
1 are maximally isotropic subbundles of V1 and W1 respectively,
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both V1/V
⊥V1
1 and W1/W

⊥W1
1 are orthogonal bundles. In particular, V

⊥V1
1

and W
⊥W1
1 are degree zero isotropic subbundles of V and W respectively.

Moreover, since η∗ = Q−1
W ηT QV , we have QV (η(−), −) = QW (−, η∗(−)).

This, together with the fact that η(W1) ⊂ V1 ⊗ K and η∗(V1) ⊂ W1 ⊗ K (by
�-invariance of U ), shows that

η(W
⊥W1
1 ) ⊂ V

⊥V1
1 ⊗ K and η∗(V

⊥V1
1 ) ⊂ W

⊥W1
1 ⊗ K .

Again, stability of the SO(p, q)-Higgs bundle (V, W, η) implies both V
⊥V1
1

and W
⊥W1
1 are zero, which implies V1 ⊂ V and W1 ⊂ W are both orthogonal

subbundles.
If p1 = rk(W1) = rk(V1), then (V1, W1, η|W1) is an SO(p1, p1)-Higgs

bundle.Note that isomorphismbetweenV1 andW1 is givenby includingV1 into
V ⊕ W and projecting onto W. Denoting this isomorphism by g : V1 → W1,
we have η|W1g = (g−1 ⊗ IdK )η|∗W1

. Moreover, g is orthogonal since for any
x, y ∈ V1 we have (x, g(x)), (y, g(y)) ∈ U , and

0 = Q((x, g(x)), (y, g(y))) = QV1(x, y) − QW1(g(x), g(y))

since U is isotropic. Therefore the pair (IdV , g−1) defines an isomorphism
between (V1, W1, η|W1) and (V1, V1, η1) with η1 = η|W1g. In particular, η1 =
η∗
1.
LetV2 andW2 be the orthogonal complements ofV1 andW1 respectively and

let η2 : W2 → V2 ⊗ K be the restriction of η to W2. By the above discussion,
we obtain the desired decomposition (5.18) of the SO(p, q)-Higgs bundle
(V, W, η). ��

If a stable SO(p, q)-Higgs bundle

(V, QV , W, QW , η)

∼=
(

V1 ⊕ V2,
(

QV1 0
0 QV2

)
, V1 ⊕ W2,

(
QV10
0 QW2

)
,
(

η1 0
0 η2

) )
,

with η∗
1 = η1, is a local minimum of the Hitchin function, then (V1, QV1, η1)

is a local minimum of the Hitchin function on the GL(p1,R)-Higgs bundle
moduli space and (V2, QV2, W2, QW2, η2) is a local minimum of the Hitchin
function on the SO(p2, q2)-Higgs bundle moduli space.

For p > 1, the local minima in the GL(p,R)-Higgs bundle moduli space
with non-zero Higgs field are described in Example 3.8. When p = 2, such
local minima are of the form (3.5), and hence the holomorphic chain of the
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corresponding SO(2, 2)-Higgs bundle is of the form

L
�1 L−1K
⊕

L
�1

L−1K .

(5.19)

When a stable SO(p2, q2)-Higgs bundle is added to (5.19), the resulting
SO(2 + p2, 2 + q2)-Higgs bundle is not stable since L and L−1 are a pair
of proper isotropic subbundles exchanged by the Higgs field.

For p � 3, the holomorphic chain associated to a GL(p,R) local minimum
is given by

V1−p
2

1 V3−p
2

1 · · · 1 V p−3
2

1 V p−1
2

,

where Vj = I K − j for all j and some 2-torsion line bundle I . The holomorphic
chain of the associated SO(p, p)-Higgs bundle is

V1−p
2

1 V3−p
2

1 · · · 1 V p−3
2

1 V p−1
2⊕

V1−p
2

1 V3−p
2

1 · · · 1 V p−3
2

1 V p−1
2

.

(5.20)

By Proposition 3.10, such an SO(p, p)-Higgs bundle is not stable if p � 4 is
even.

By the above discussion, the potential stable SO(p, q) local minima which
are not stable as SO(p + q,C)-Higgs bundles have the form (5.18), where
(V2, W2, η2) is a stable SO(p2, q2) local minimum and (V1, V1, η1) is either a
stable SO(p1, p1)-Higgs bundle with η1 = 0 or p1 > 2 is odd and (V1, V1, η1)

is a holomorphic chain of the form (5.20). The next two propositions address
these cases.

Proposition 5.6 For p � 3 odd, the stable SO(p, p)-Higgs bundle given by
(5.20) with Vj = I K − j for all j and some 2-torsion line bundle I is not a
minimum of the Hitchin function.

Proof By assumption r = p−1
2 is a positive integer. Set V = ⊕2r

j=0 Vj−r and

W = ⊕2r
j=0 W j−r with Vj = I K − j and W j = I K − j for all j and some

2-torsion line bundle I . The holomorphic chain (5.20) is given by

V−r
1

W1−r
1 · · · 1

V−1
1

W0
1

V1
1 · · · 1

Vr−1
1

Wr

⊕
W−r

1
V1−r

1 · · · 1
W−1

1
V0

1
W1

1 · · · 1
Wr−1

1
Vr
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Let β ∈ �0,1(K 1−2r ) which is non-zero in cohomology and, with respect
to the above splittings of V and W, consider the deformed orthogonal holo-
morphic structures:

∂̄
β
V =

⎛
⎜⎜⎝

∂̄Kr

0 ∂̄Kr−1
. . .

−β 0 ··· ∂̄K1−r

0 β∗ ··· 0 ∂̄K−r

⎞
⎟⎟⎠ and ∂̄

β
W =

⎛
⎜⎜⎝

∂̄Kr

0 ∂̄Kr−1
. . .

β 0 ··· ∂̄K1−r

0 −β∗ ··· 0 ∂̄K−r

⎞
⎟⎟⎠.

In the above splittings of V and W , the Higgs field is given by

η =
(

0
1 0

. . .
. . .
1 0

)
: W → V ⊗ K ,

and a calculation shows that η is still holomorphic with respect ∂̄β
W and ∂̄

β
V . So

∂̄
β
V , ∂̄

β
W , together with the corresponding orthogonal structures, and η, define

an SO(p, p)-Higgs bundle (V,W, η). Since (5.20) is stable, and stability is
an open condition, (V,W, η) is also stable. Moreover, since β is non-zero in
cohomology, (V,W, η) is not isomorphic to (5.20), so it is not S-equivalent
to it.

Consider the following orthogonal gauge transformations of V and W

gV
t = gW

t =
( tr

tr−1

. . .
t−r

)
.

For each t ∈ C
∗, we see that

gV
t ∂̄

β
V (gV

t )−1 =

⎛
⎜⎜⎝

∂̄Kr

0 ∂̄Kr−1
. . .

−t1−2r β 0 ··· ∂̄K1−r

0 t1−2r β∗ ··· 0 ∂̄K−r

⎞
⎟⎟⎠ = ∂̄

t1−2r β
V ,

gW
t ∂̄

β
W (gW

t )−1 = ∂̄
t1−2r β
W and gV

t (tη)(gV
t )−1 = η. Thus limt→∞(V,W, tη) is

equal to the Higgs bundle given by (5.20). By Proposition 3.6 we conclude
that (5.20) is not a local minimum. ��
Proposition 5.7 Let (V, W, η) be a stable SO(p, q)-Higgs bundle of the form

(V, QV , W, QW , η) ∼=
(

U ⊕ V ′,
(

QU 0
0 QV ′

)
, U ⊕ W ′,

(
QU 0
0 QW ′

)
,
(
0 0
0 η′

) )
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where (U, QU , U, QU , 0) is a stable S(O(p1) × O(p1))-Higgs bundle and
(V ′, QV ′, W ′, QW ′, η′) is a stable SO(p2, q2) local minimum from Theorem
5.3. Then (V, W, η) is not a local minimum.

Proof Suppose that (V ′, QV ′, W ′, QW ′, η′) is a minimum of type (1) from
Theorem 5.3. Then (V, W, η) can be represented by

U
⊕
U
⊕

V−1
η∗
0 W0

η0
V1.

Since, deg(V−1) > 0, we have H1(Hom(U, V1)) �= 0 by Riemann-Roch.
Hence, α ∈ H1(Hom(U, V1))0 defines a rank p holomorphic orthogonal
bundle V. In the C∞ splitting V−1 ⊕ U ⊕ V1 the ∂̄-operator is

∂̄V =
(

∂̄V−1

−α∗ ∂̄U
α ∂̄V1

)
.

Analogously to the previous proposition, (V, W, η), with η|U = 0 and
η|W0 : W0 → V1⊗K ↪→ V⊗K is a stable SO(p, q)-Higgs bundlewhich is not

isomorphic to (V, W, η). Using the gauge transformations gV
t =

(
t
IdU

t−1

)
and gW

t = IdW , one computes limt→∞(V, W, tη) = (V, W, η). By Proposi-
tion 3.6 (V, W, η) is not a local minimum. For the other types of local minima
fromTheorem 5.3, the argument is similar. Namely, one can take the summand
of U ⊕ U in V or in W according to where the highest weight summand of
the minimum (V ′, QV ′, W ′, QW ′, η′) lies. ��
We conclude that the only stable SO(p, q)-local minima with H

2(C•) �= 0
have vanishing Higgs field, and that the stable local minima with non-zero
Higgs field are classified by Theorem 5.3.

5.3 Strictly polystable minima

Recall from Proposition 2.17 that a strictly polystable SO(p, q)-Higgs bundle
is isomorphic to

(
E ⊕ E∗ ⊕ V,

( 0 Id 0
Id 0 0
0 0 QV

)
, F ⊕ F∗ ⊕ W,

( 0 Id 0
Id 0 0
0 0 QW

)
,

(
β 0 0
0 γ T 0
0 0 η

))
,
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where (E, F, β, γ ) is a polystable U(p1, q1)-Higgs bundle with deg(E) +
deg(F) = 0, and (V, W, η) is a stable SO(p − 2p1, q − 2q1)-Higgs bundle.
Here 0 � p1 � p/2, 0 � q1 � q/2, and (p1, q1) �= (0, 0).

Proposition 5.8 Let (E, F, β, γ ) be a polystable U(p, q)-Higgs bundle with
deg(E) + deg(F) = 0 which is a local minimum in M(U(p, q)). The associ-
ated strictly polystable SO(2p, 2q)-Higgs bundle(

E ⊕ E∗,
(
0 Id
Id 0

)
, F ⊕ F∗,

(
0 Id
Id 0

)
,
(

β 0
0 γ T

) )
(5.21)

is a local minimum of the Hitchin function if and only if β = γ = 0 or p � 1
or q � 1.

Proof If β = γ = 0, the Higgs field is identically zero and we have a min-
imum. In particular, if p = 0 or q = 0 we have β = γ = 0. Now suppose
p, q > 0 and that the SO(2p, 2q)-Higgs bundle (5.21) is a local minimum
with non-zero Higgs field. Then the U(p, q)-Higgs bundle (E, F, β, γ ) is a
local minimum in M(U(p, q)). Thus, either β = 0 or γ = 0 (cf. Example
3.8). Up to switching the roles of E , F , E∗ and F∗, the relevant holomorphic
chain for the SO(2p, 2q)-Higgs bundle is

E
F

(
β
0

)
⊕ ( 0 βT )

F∗.
E∗

(5.22)

Since the U(p, q)-Higgs bundle (E, F, β, 0) is polystable and β �= 0, we
must have deg(E) < 0 < deg(F). For p = 1 or q = 1, the associated
SO(2p, 2q)-Higgs bundle is a local minimum by Proposition 3.11.

We now show that (5.21) is not a local minimum if p, q > 1 and β, γ

not both zero. First assume (E, F, β, 0) is a stable U(p, q)-Higgs bundle.
Consider the chain (5.22). By stability, deg(F∗) and deg(E) are both negative.
When p, q > 1, Riemann-Roch implies there exist α ∈ H1(�2F∗)\0 and
σ ∈ H1(�2E)\0. These classes define holomorphic orthogonal bundles with
∂̄-operators

∂̄V =
(

∂̄E σ

0 ∂̄E∗

)
and ∂̄W =

(
∂̄F∗ α

0 ∂̄F

)
.

Define the Higgs field η : W → V ⊗ K by the composition W → F
β−→

E ⊗ K → V ⊗ K . Since semistability is an open condition, (V, W, η) is
a semistable SO(2p, 2q)-Higgs bundle. Furthermore, since (E, F, β, 0) is
stable, the pairs of isotropic subbundles (E, F) and (E∗, F∗) are the only
destabilizing pairs of (5.22). However, these are not destabilizing pairs of
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(V, W, η) because F and E∗ are not subbundles, hence (V, W, η) and (5.22)
are not S-equivalent. For each t ∈ C

∗, the gauge transformations

gV
t =

(
t−

1
2 IdE

t
1
2 IdE∗

)
and gW

t =
(

t−
1
2 IdF∗

t
1
2 IdF

)

act as

(∂̄V , ∂̄W , tη) �→
((

∂̄E t−1σ

0 ∂̄E∗

)
,
(

∂̄F∗ t−1α

0 ∂̄F

)
, η

)
.

Thus the limit limt→∞(V, W, tη) is isomorphic to (5.22). By Proposition 3.6,
(5.22) is not a minimum when (E, F, β, 0) is a stable U(p, q)-Higgs bundle.

Finally, let (E, F, β, 0) be a strictly polystable U(p, q)-Higgs bundle. The
integer τ = | rk(F) deg(E) − rk(E) deg(F)| satisfies τ � p(2g − 2) [11,
Theorem A]. For p � q and τ < p(2g − 2) or p = q and τ = p(2g − 2), it
follows from [10, Theorem 5.1] that there is a path ε : [0, 1] → M(U(p, q))

such that ε(0) = (E, F, β, 0) and ε(t) is a stable U(p, p)-Higgs bundle which
is a minimum in M(U(p, q)) for all t > 0. By the previous argument, the
SO(2p, 2p)-Higgs bundle corresponding to ε(t) is not a minimum for t > 0.
Hence, it is also not a minimum when t = 0. For p < q and τ = p(2g − 2),
[11, TheoremB] implies that (E, F, β, 0) is isomorphic to (E, F ′, β ′, 0)⊕F ′′,
where (E, F ′, β ′, 0) is a polystable U(p, p)-local minimum. By the previous
arguments, we conclude that (5.21) is not a local minimum inM(SO(2p, 2q))

when p, q > 1. ��
The next proposition shows that adding a stable SO(p, q) local minimum

from Theorem 5.3 to a certain local minimum from Proposition 5.8 is not a
local minimum.

Proposition 5.9 Let (E, F, β, γ ) be a polystable U(m, n)-Higgs bundle with
deg(E) + deg(F) = 0. Suppose that either m = 1, β = 0 and γ �= 0, or
n = 1, γ = 0 and β �= 0. If (V ′, W ′, η′) is a stable SO(p, q)-local minimum
with η′ �= 0, then the SO(p + 2m, q + 2n)-Higgs bundle

(V, QV , W, QW , η) =
(

E ⊕ E∗ ⊕ V ′,
(

0 Id 0
Id 0 0
0 0 QV ′

)
,

F ⊕ F∗ ⊕ W ′,
(

0 Id 0
Id 0 0
0 0 QW ′

)
,

(
β 0 0
0 γ T 0
0 0 η′

))

is not a local minimum.
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Proof Up to switching the roles of E, V ′, F, and W ′, it suffices to consider
holomorphic chains of one of the following six types:

F
E

(
γ
0

)
⊕ ( 0 γ T )

E∗
F∗
⊕

V−1
η∗
0 W0

η0
V1

or
E

F

(
β
0

)
⊕ ( 0 βT )

F∗
E∗
⊕

V−1
η∗
0 W0

η0
V1

(5.23)

where rk(V−1) = 1 and 0 < deg(V−1) � 2g − 2;

F
E

(
γ
0

)
⊕( 0 γ T )

E∗
F∗
⊕

V1−p
1

W2−p
1 · · · 1

Wp−2
1

Vp−1

or

E
F

(
β
0

)
⊕( 0 βT )

F∗
E∗
⊕

V1−p
1

W2−p
1 · · · 1

Wp−2
1

Vp−1

(5.24)
where Vj = I K − j and W j = I K − j for all j and some I with I 2 ∼= O;

F
E

(
γ
0

)
⊕( 0 γ T )

E∗
F∗
⊕

W−p
η−p

V1−p
1 · · · 1

V1−p

η∗−p
Wp

or

E
F

(
β
0

)
⊕( 0 βT )

F∗
E∗
⊕

W−p
η−p

V1−p
1 · · · 1

V1−p

η∗−p
Wp

(5.25)
where Vj = K − j and W j = K − j for all | j | < p, rk(W−p) = 1, 0 <

deg(W−p) � p(2g − 2) and η−p �= 0.
Furthermore, in (5.23), (5.24) and (5.25), the first chain has m = 1, n > 0,

deg(F) � 0 � deg(E) and γ �= 0, while the second chain has n = 1, m > 0,
deg(E) � 0 � deg(F) and β �= 0. We will show that each of the above
holomorphic chains is not a minimum. As in the proof of Proposition 5.8, we
may assume the U(m, n)-Higgs bundle is stable by the results of [10,11].

Since Hom(E, V1) is in the kernel of adη : so(V ) ⊕ so(W ) →
Hom(W, V ) ⊗ K , we may use α ∈ H1(Hom(E, V1))\0 to deform the holo-
morphic structure on V by considering non-zero extension

0 → V1 → Ṽ → E → 0 and 0 → E∗ → Ṽ ∗ → V−1 → 0 .

Namely, Ṽ ⊕ Ṽ ∗ is a rank p holomorphic orthogonal bundle. Defining η̃ :
F ⊕ F∗ ⊕ W0 → Ṽ ⊕ Ṽ ∗ by the compositions W0

η0−→ V1 ⊗ K → Ṽ ⊗ K and

F∗ γ T

−→ E∗ ⊗ K → Ṽ ∗ ⊗ K gives a semistable SO(p, q)-Higgs bundle (Ṽ ⊕
Ṽ ∗, F ⊕ F∗ ⊕ W0, η̃). However, this semistable Higgs bundle is S-equivalent
to the original Higgs bundle. To fix this, we also deform F ⊕ F∗ ⊕ W0.
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First assume rk(F) = 1. Since γ T is non-zero, we have a short exact
sequence

0 → F∗ γ T

−→ E∗ ⊗ K → T → 0,

where T is a torsion sheaf. Since V1 ⊗ K is locally free, this yields the exact
sequence

0 → Hom(E∗, V1) → Hom(F∗, V1 ⊗ K ) → Hom(T, V1 ⊗ K ) → 0,

which implies that the map H1(Hom(E∗, V1)) → H1(Hom(F∗, V1 ⊗ K )),
σ �→ (σ ⊗ IdK )γ T is surjective. For any δ ∈ H1(Hom(F∗, W0))\0, we have
η0δ ∈ H1(Hom(F∗, V1 ⊗ K )), and there exists σ ∈ H1(Hom(E∗, V1)) such
that

η0δ − (σ ⊗ IdK )γ T = 0 (5.26)

in cohomology. Let V andW be the holomorphic orthogonal bundles, defined
respectively by theC∞ bundles V1⊕ E ⊕ E∗⊕V−1 and F ⊕W0⊕ F∗, together
with the ∂̄-operators

∂̄V =
⎛
⎜⎝

∂̄V1 α σ

∂̄E −σ ∗
∂̄E∗ −α∗

∂̄V−1

⎞
⎟⎠ and ∂̄W =

(
∂̄F −δ∗

∂̄W0 δ

∂̄F∗

)
, (5.27)

where α ∈ �0,1(Hom(E, V1)), σ ∈ �0,1(Hom(E∗, V1)) and δ ∈
�0,1(Hom(F∗, W0)) are (0, 1)-forms representing the cohomology classes
α, σ and δ respectively. Notice that (5.26) implies that there is ε ∈
�0(Hom(F∗, V1 ⊗ K )) so that the representatives σ and δ satisfy

η0δ − (σ ⊗ IdK )γ T = ε∂̄F∗ − ∂̄V1ε. (5.28)

Finally, let η̃ : W → V ⊗ K be given, according to the above C∞ decompo-
sitions, by

η̃ =
(

0 η0 −ε
0 0 0
0 0 γ T

0 0 0

)
.

The Higgs field η̃ is holomorphic by (5.28). As in the previous propositions,
(V,W, η̃) is a semistable SO(p, q)-Higgs bundle which is not S-equivalent to

the first chain of (5.23).Using the gauge transformations gV
t =

⎛
⎝ t−1

t−
1
2

t
1
2

t

⎞
⎠
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and gW
t =

(
t−3/2

IdW0
t3/2

)
, one shows that limt→∞(V,W, t η̃) is the first

chain of (5.23). By Proposition 3.6, the first chain of (5.23) is not a local
minimum.

Now suppose n > 1. Since deg(F) � 0, we have θ ∈ H1(�2F)\0. Using
θ , we can the deformed Higgs bundle

∂̄V =
⎛
⎜⎝

∂̄V1 α

∂̄E
∂̄E∗−α∗

∂̄V−1

⎞
⎟⎠ , ∂̄W =

(
∂̄F θ

∂̄W0
∂̄F∗

)
and η̃ =

(
0 η0 0
0 0 0
0 0 γ T

0 0 0

)
,

in theC∞-decompositions V1⊕E ⊕E∗⊕V−1 and F ⊕W0⊕F∗. As above one
uses suitably chosen gauge transformations and Proposition 3.6 to conclude
that the first chain of (5.23) is not a local minimum.

An analogous argument, using Wp−2 and Vp−1 instead of W0 and V1, can
be used to prove that a strictly polystable SO(p, q)-Higgs bundle represented
by the first chain of (5.24) is not a local minimum. The second chain in (5.25)
is also dealt in a similar manner.

Consider the second chain of (5.23). Since rk(F) = 1 and β �= 0, we have

a short exact sequence 0 → F
β−→ E ⊗ K → Q → 0,where Q is the quotient

sheaf. One sees that the map H1(Hom(E, V1)) → H1(Hom(F, V1 ⊗ K )),
a �→ aβ is surjective. So, as in the previous case, by picking a non-zero
element c ∈ H1(Hom(F, W0)), there exists a ∈ H1(Hom(E, V1)) such that
η0c −aβ = 0 in cohomology. Given this choice and given a non-zero element
b ∈ H1(Hom(E∗, V1)), we construct a non-trivial deformation of the second
chain of (5.23) in a similar manner to the case rk(F) = 1 in the first chain of
(5.23).

An analogous argument can be used to prove that the second chain of (5.24)
and the first chain in (5.25) are not a local minimum. ��

5.4 Summary of classification of minima of Hitchin function on
M(SO( p, q))

Putting everything together, the following theorem classifies all polystable
minima of theHitchin function in themoduli space of SO(p, q)-Higgs bundles
for p � q.

Theorem 5.10 For 1 � p � q, let f : M(SO(p, q)) → R be the Hitchin
function on the moduli space of polystable SO(p, q)-Higgs bundles given by
(3.1). A polystable SO(p, q)-Higgs bundle (V, W, η) is a local minimum of
f if and only if η = 0 or (V, W, η) is isomorphic to a holomorphic chain of

123



272 M. Aparicio-Arroyo et al.

one of the following mutually exclusive types, where we have suppressed the
twisting by K in the Higgs field from the notation:

1. p = 2 and (V, W, η) is of the form

V−1
η∗
0 W

η0
V1 ,

where V = V−1 ⊕ V1 with rk(V−1) = 1 and 0 < deg(V−1) < 2g − 2,
V1 = V ∗−1 and η0 is non-zero.

2. p � 2 and (V, W, η) is of the form

V1−p

η∗
p−2

W2−p
η2−p

V3−p

η∗
p−4 · · · ηp−4

Vp−3
η∗
2−p

Wp−2
ηp−2

Vp−1,

⊕
W ′

0

where W ′
0 is a polystable O(q − p + 1,C)-bundle with det(W ′

0) = I ,

W = W ′
0 ⊕

p−1⊕
i=1

W−p+2i with W j = I K − j for all j , V =
p−1⊕
i=0

V1−p+2i

with Vj = I K − j for all j , and each η j is non-zero.
3. p = q and (V, W, η) is of the form

W1−p
η1−p

V2−p

η∗
p−3

W3−p
η3−p · · · η∗

p−3
Wp−3

ηp−3
Vp−2

η∗
1−p

Wp−1,

⊕
I

where I is a 2-torsion line bundle, W =
p−1⊕
i=0

W1−p+2i , V = I ⊕
p−1⊕
i=1

V−p+2i

with W j = I K − j and Vj = I K − j for all j , and each η j is non-zero.
4. q = p + 1 and (V, W, η) is of the form

W−p
η−p

V1−p

η∗
p−2

W2−p
η2−p

V3−p

η∗
p−4 · · ·ηp−4

Vp−3
η∗
2−p

Wp−2
ηp−2

Vp−1
η∗−p

Wp,

where V =
p−1⊕
i=0

V1−p+2i with Vj = K − j for all j , W =
p−1⊕
i=0

W−p+2i with

W j = K − j for all | j | < p, rk(W−p) = 1with 0 < deg(W−p) � p(2g−2)
and each η j is non-zero.

Remark 5.11 In cases (2) and (3), det(V ) = I p = det(W ). Thus, such aHiggs
bundle always reduces to SO0(p, q)when p is even, and reduces to SO0(p, q)

only when I = O for p odd.
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Proof If η = 0, then we are done, so suppose η �= 0. By Theorem 5.3 and
Propositions 5.6 and 5.7, the result holds if (V, W, η) is a stable SO(p, q)-
Higgs bundle, so suppose it is a strictly polystable SO(p, q)-Higgs bundle. By
Proposition 2.17,

(V, W, η) ∼=
(

E ⊕ E∗ ⊕ V ′, F ⊕ F∗ ⊕ W ′,
(

γ

β∗
η′

))
,

where (E, F, β, γ ) is a polystable U(p1, q1)-Higgs bundle and (V ′, W ′, η′) is
a stable SO(p2, q2)-Higgs bundle which does not necessarily have p2 � q2.
By Propositions 5.8 and 5.9, if such aHiggs bundle is aminimumof theHitchin
function, then one of the following hold

(a) β = γ = 0 and (V ′, W ′, η′) is a minimum from Theorem 5.3,
(b) p1 = 1, β = 0 or γ = 0 and η′ = 0,
(c) q1 = 1, β = 0 or γ = 0 and η′ = 0.

For case (a), note that if p2 = 0 or q2 = 0 then the Higgs field is zero and
we are at a minimum. Consider a holomorphic chain of the form

V ′−r −→ W ′
1−r −→ · · · −→ W ′

r−1 −→ V ′
r

⊕
E ⊕ E∗

or W ′−r −→ V ′
1−r −→ · · · −→ V ′

r−1 −→ W ′
r

⊕
F ⊕ F∗

where V ′−r and W ′−r are holomorphic line bundles of positive degree. Since
deg(E) = 0 and deg(V ′

r ) < 0, H1(Hom(E, V ′
r )) and H1(Hom(E∗, V ′

r )) are
both non-zero. For α ∈ H1(Hom(E, V ′

r ))\0 and σ ∈ H1(Hom(E∗, V ′
r ))\0,

take a deformation of V by fixing all the summands V ′
2−r , . . . , V ′

r−2, and
deforming V ′−r ⊕ E ⊕ E∗ ⊕ V ′

r to V as in (5.27). Keep W fixed. Keep also
the Higgs field fixed, except that its restriction to W ′

r−1 is composed with the
inclusion of V ′

r ⊗ K → V⊗ K . As in the proofs of the previous propositions,
this yields a polystable SO(p, q)-Higgs bundle deforming the first chain above
and decreasing f by Proposition 3.6. Similarly, the second chain does not
define a minimum.

Since q � p, the only way we can have a holomorphic chain

W ′−r V ′
1−r · · · V ′

r−1 W ′
r

⊕
E ⊕ E∗
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with rk(W ′
j ) = rk(V ′

j ) = 1 for all j is if E = 0. Such a holomorphic chain is
not strictly polystable. To finish case (a), consider holomorphic chains of the
form

V ′−r W ′
1−r · · · W ′

r−1 V ′
r

⊕
F ⊕ F∗

.

ByTheorem 5.3 andRemark 5.4, such aHiggs bundle is a polystableminimum
if and only if it satisfies the conditions of case (1) or case (2) in the statement
of the theorem.

For case (b), we have rk(E) = 1 and up to switching E and E∗ the holo-
morphic chains are given by

F
E

(
γ
0

)
⊕ ( 0 γ ∗ )

E∗
F∗
⊕

V ′ ⊕ W ′

(5.29)

where 0 < deg(E). As above, (with the roles of E and V ′ switched) this
does not define a local minimum if V ′ �= 0. When V ′ = 0, we have a local
minimum satisfying case (1) of the statement of theorem.

For case (c), we have rk(F) = 1 and the holomorphic chain is given by
(5.29) with E and F switched. As above, this is not a minimum if W ′ = 0.
Since p � q and rk(V ) = rk(V ′) + 2 rk(E) � 2, we have V ′ = 0, giving a
local minimum satisfying case (1) of the statement of theorem. ��

6 The connected components of M(SO( p, q))

In this section we use the results from the previous sections to count the
number of connected components of the moduli space M(SO(p, q)), with
1 � p � q. If p �= 2 or if (p, q) = (2, 2) or (p, q) = (2, 3) then we have
enough information to give a precise count. In the remaining cases, namely
p = 2, q � 4, we give a lower bound on the number of connected components
of M(SO(2, q)) and conjecture that this bound is sharp.
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6.1 Connected components of M(SO( p, q)) for 2 < p � q

Recall from (2.14) that the moduli space of SO(p, q)-Higgs bundles decom-
poses as

M(SO(p, q)) =
∐

a,b,c

Ma,b,c(SO(p, q)), (6.1)

where the indices (a, b, c) are classes in H1(X,Z2) × H2(X,Z2) ×
H2(X,Z2) and a polystable SO(p, q)-Higgs bundle (V, QV , W, QW , η) is
in Ma,b,c(SO(p, q)) if a is the first Stiefel–Whitney class of (V, QV ) and
(W, QW ), b is the second Stiefel–Whitney class of (V, QV ) and c is the sec-
ond Stiefel–Whitney class of (W, QW ). Notice that each Ma,b,c(SO(p, q))

is not necessarily connected.
When 2 < p � q, the maximal compact subgroup S(O(p) × O(q)) ⊂

SO(p, q) is semisimple. Thus by Proposition 2.20 each of the spaces
Ma,b,c(SO(p, q)) is nonempty and has a unique connected component in
which every Higgs bundle (V, QV , W, QW , η) can be deformed to one with
vanishing Higgs field. Such components account for 22g+2 connected com-
ponents of M(SO(p, q)). These are the ‘mundane’ components mentioned
in the Introduction. Taking into account the ‘exotic’ components, we obtain
the following precise count of the connected components ofM(SO(p, q)) for
2 < p � q.

Theorem 6.1 Let X be a compact Riemann surface of genus g � 2 and
denote the moduli space of SO(p, q)-Higgs bundles on X by M(SO(p, q)).

For 2 < p � q, we have

|π0(M(SO(p, q)))| = 22g+2 +
{
22g+1 − 1 + 2p(g − 1) if q = p + 1

22g+1 otherwise.

Remark 6.2 We have often ignored the orientation of an SO(p, q)-Higgs
bundle. This is justified because the choice of orientation does not effect
the component count of Theorem 6.1. Namely, every Higgs bundle can be
deformed to a local minimum of the Hitchin function, and, for 2 < p � q,

such local minima either have zero Higgs field or are given by cases (2)–(4) of
Theorem 5.10. The components corresponding to zero Higgs field are labeled
by the topological invariants of S(O(p) × O(q))-bundles. For minimum of
cases (2)–(4) of Theorem 5.10, there is a holomorphic orthogonal summand
of either V or W with odd rank. Taking the isomorphism which is − Id on this
summand and Id on the other summands reverses the orientation and acts on
the Higgs field by η �→ −η. However, since the minimum is a C∗-fixed point,
there is a orientation preserving gauge transformation which sends −η �→ η.
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Proof By the above discussion we only need to determine the number of
connected components of M(SO(p, q)) with the property that the Higgs
field never vanishes. Recall that if Min(M(SO(p, q))) is the subspace of
M(SO(p, q)) where the Hitchin function (3.1) attains a local minimum, then

|π0(M(SO(p, q)))| � |π0(Min(M(SO(p, q))))|.
From Theorem 5.10, an SO(p, q)-Higgs bundle (V, W, η), with 2 < p <

q − 1, is a minimum of the Hitchin function with non-zero Higgs field if and
only if the holomorphic chain is given by:

V1−p

η∗
p−2

W2−p
η2−p

V3−p

η∗
p−4 · · · ηp−4

Vp−3
η∗
2−p

Wp−2
ηp−2

Vp−1,

⊕
W ′

0

(6.2)

where the bundle W ′
0 is a polystableO(q− p+1,C)-bundlewith det(W ′

0) = I ,
Vj = I K − j and W j = I K − j for all j �= 0, and each η j is non-zero. Such
chains also define minimum when q = p. The other minimum when q = p
are given by holomorphic chains

I
W1−p

η1−p
V2−p

η∗
3−p · · · η∗

1
W−1

(
η−1
0

)
⊕( η∗−1 0 )

W1
η1 · · · ηp−3

Vp−2

η∗
1−p

Wp−1,

I
(6.3)

where I 2 = O, Vj = I K − j and W j = I K − j for all j �= 0, and each η j is
non-zero. When q = p + 1, in addition to minimum of the form (6.2) with
rk(W ′

0) = 2, there are also minima of the form

W−p
η−p−→ V1−p

η∗
p−2−→ W2−p

η2−p−→ V3−p

η∗
p−4−→ · · ·

ηp−4−→ Vp−3
η∗
2−p−→ Wp−2

ηp−2−→ Vp−1
η∗−p−→ Wp, (6.4)

where Vj = K − j and W j = K − j for all | j | < p, W−p is a holomorphic line
bundle with 0 < deg(W−p) � p(2g − 2) and each η j is non-zero.

For 2 < p = q, each type of minimum is labeled by the choice of the 2-
torsion line bundle I, yielding 22g+1 connected components. For 2 < p < q,
the connected components of the minima subvarieties of the form (6.2) are
labeled by the first and second Stiefel–Whitney class of the bundle W ′

0 by
Proposition 2.20. Thus, the number of connected components of these minima
subvarieties is given by |BunX (O(q − p + 1))| = 22g+1 for 2 < p < q − 1.
For 2 < p = q − 1, when the first Stiefel–Whitney class of W ′

0 vanishes the
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second Stiefel–Whitney class also vanishes since sw1(W ′
0) = 0 implies W ′

0 =
L ⊕ L−1 for some degree zero line bundle L . This gives 22g+1 − 1 connected
components of the minima subvarieties whose Higgs bundles are of the form
(6.2). There are p(2g − 2) connected components of minima subvarieties
of type (6.4) since its connected components are labeled by deg(W−p) ∈
(0, p(2g − 2)].

Finally, by Theorem 4.1, each of the above minima are in a different
connected component of the image the map � : MK p(SO(1, q − p +
1)) ×⊕p−1

j=1 H0(K 2 j ) → M(SO(p, q)). Thus, each such minima subvariety
defines a connected component. ��

The following is a direct corollary of the above proof. This formulation will
be useful in Sect. 7. Recall notation (2.11).

Corollary 6.3 Suppose 2 < p < q − 1. For polystable Higgs bundles
(V, W, η) ∈ M(SO(p, q)) we have the following dichotomy:

• Either (V, W, η) can be deformed to a polystable (V ′, W ′, 0),
• or (V, W, η) can be deformed to (Kp−1⊗ I, W ′

0⊕Kp−2⊗ I, (0 η0)), where
W ′

0 is a polystable rank q − p +1 orthogonal bundle with �q−p+1W ′
0 = I

and (Kp−1,Kp−2, η0) is the unique minimum in the SO(p −1, p)-Hitchin
component.

For minima of the form (6.2), (6.3) or (6.4), the first and second Stiefel–
Whitney classes of V and W are readily computed. The results are shown in
the table.

Type of min. a = sw1(W ) b = sw2(V ) c = sw2(W )

(6.2)
0 if p is even
sw1(W ′

0) if p is odd 0 sw2(W ′
0)

(6.3)
0 if p is even
sw1(I ) if p is odd

0 0

(6.4) 0 0 deg(W−p) (mod 2)

The following corollaries are immediate. Recall the notation of (6.1).

Corollary 6.4 For 2 < p < q − 1, we have

|π0(Ma,b,c(SO(p, q)))| =

⎧⎪⎨
⎪⎩
2 if p is odd and b = 0

22g + 1 if p is even, a = 0 and b = 0

1 otherwise.
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Corollary 6.5 For 2 < p and p = q − 1, we have

|π0(Ma,b,c(SO(p, p + 1)))|

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

2 if p is odd, b = 0 and a �= 0

2 + p(g − 1) if p is odd and a = b = c = 0

1 + p(g − 1) if p is odd and a = b = 0 and c �= 0

2 + 22g + p(g − 1) if p is even and a = b = c = 0

1 + 22g + p(g − 1) if p is even and a = b = 0 and c �= 0

1 otherwise.

Corollary 6.6 For 2 < p and p = q, we have

|π0(Ma,b,c(SO(p, p)))| =

⎧⎪⎨
⎪⎩
3 if p is odd and b = c = 0

22g+1 + 1 if p is even and a = b = c = 0

1 otherwise.

We observe finally that the following corollary is immediate since the map �

is injective.

Corollary 6.7 For p � 1, the number of connected components of MK p

(SO(1, q)) are given by

|π0(MK p(SO(1, q)))| =

⎧⎪⎨
⎪⎩
22g q = 1

22g+1 − 1 + p(2g − 2) q = 2

22g+1 q > 2.

In particular, if q > 2 then every polystable K p-twisted SO(1, q)-Higgs bun-
dle can be deformed to one with zero Higgs field.

6.2 Connected components of M(SO(2, q))

In the previous section a complete component count of M(SO(p, q)) when
p � q and p �= 2 was given. We now discuss the case p = 2. In this special
case the group SO(p, q) is a group of Hermitian type. Furthermore in this
case the minima of type (1) from Theorem 5.10 appear. These are given by
holomorphic chains of the form

V−1
η∗
0 W

η0
V1 , (6.5)

where 0 < deg(V−1) < 2g − 2 and η0 is non-zero.
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Let (V, W, η) be an SO(2, q)-Higgs bundle. As in the general case, the first
and second Stiefel–Whitney classes of the orthogonal bundles provide pri-
mary topological invariants which help distinguish the connected components
of the moduli space. However, when the first Stiefel–Whitney class vanishes,
we have (V, QV ) ∼= (L ⊕ L−1,

(
0 1
1 0

)
) for some line bundle L . The natu-

ral number | deg(L)| satisfies | deg(L)| = sw2(V ) (mod 2) and provides a
refinement of the second Stiefel–Whitney class invariant. This natural number
is the absolute value of the so-called Toledo invariant of the SO(2, q)-Higgs
bundle. Moreover, if such an SO(2, q)-Higgs bundle (V, W, η) is polystable
then

| deg(L)| � 2g − 2.

This inequality is usually referred to as the Milnor-Wood inequality and was
derived in the proof of Theorem 5.3 (see (5.15)). The special maximal case
| deg(L)| = 2g − 2 will be discussed in Sect. 7.3.

Examining the minima classification of Theorem 5.10 and using Theorem
4.1, in the case 2 = p � q we see that the only obstruction to obtaining a
full connected component count of M(SO(2, q)) is the connectedness of the
fixed point set (6.5). In particular, for 2 = p < q, we get bounds, rather than
precise values, namely

|π0(M(SO(2, q))| �
{
22g+2 − 4 + 4(g − 1) + 22g+1 + 4g − 5 if q = 3

22g+2 − 4 + 4(g − 1) + 22g+1 if q � 4

It follows from [28], that the above inequality was shown to be an equality for
q = 3:

|π0(M(SO(2, 3))| = 3 × 22g+1 + 8g − 13. (6.6)

We conjecture that equality also holds above for q � 4.
The complete count of components for M(SO(2, 2)) has been deduced

by different methods in [6, Corollary 7.1]. We obtain the same count, as we
now briefly explain, leaving the details for the reader. By Proposition 3.12
and (3.10), any non-zero local minima reduces to SO0(2, 2). The allowed
topological types of a polystable SO0(2, 2)-Higgs bundle are given by a pair
of integers (l, m) such that l � 0 and l − 2g + 2 � m � 2g − 2 − l, and if
l = 0, then only |m| is an invariant. All the minima are connected subvarieties,
except when (l, m) equals (0, 2g − 2) or (2g − 2, 0) each corresponding to
22g Hitchin components. Adding the zero minima which do not reduce to
SO0(2, 2), yields the following.

Proposition 6.8 |π0(M(SO(2, 2))| = 3(22g+1 − 1) + 2g(2g − 3).
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7 Positive surface group representations and Cayley partners

In this section, we recall the Non-Abelian Hodge correspondence between
the Higgs bundle moduli space and the moduli space of surface group repre-
sentations. After proving some immediate consequences of Theorem 6.1, we
discuss how the exotic components of Theorem 4.1 are related to recent work
of Guichard and Wienhard on positive Anosov representations [32]. Finally,
we show this relation with positive Anosov representations can be seen as a
generalization of the phenomenon which produces the so-called Cayley part-
ner of a G-Higgs bundle with maximal Toledo invariant for G a Hermitian
group of tube type.

7.1 Surface group representations

Let π1(S) be the fundamental group of a closed oriented surface S of genus
g � 2 and let G be a real semisimple Lie group. A representation ρ : π1S → G
is called reductive if the composition of ρ with the adjoint representation of
G is a completely reducible representation.

Denote the set of reductive representations by Homred(π1S,G). The con-
jugation action of G on Hom(π1S,G) does not in general have a Hausdorff
quotient. However, if we restrict to the set of reductive representations, the
quotient will be Hausdorff.

Definition 7.1 The G-representation variety R(S,G) of a surface group π1S
is the space of conjugacy classes of reductive representations of π1S in G:

R(S,G) = Homred(π1S,G)/G.

Example 7.2 The set of Fuchsian representations Fuch(S) ⊂ R(S,SO(2, 1))
is defined to be the subset of conjugacy classes of faithful representations
with discrete image. The space Fuch(S) defines one connected components of
R(S,SO(2, 1)) [27] and is in one to one correspondence with the Teichmüller
space of isotopy classes ofmarkedRiemann surface structures on the surface S.

Since the surface S is assumed to be orientable, every Fuchsian representation
reduces to SO0(2, 1).

For G a split real form, there is a preferred class of embeddings

ι : SO0(2, 1) −→ G (7.1)

called a principal embedding.WhenG is an adjoint group, the principal embed-
ding is unique up conjugation. For the split real form G = SO0(p, p − 1),
the principal embedding is given by taking the (p − 1)st -symmetric prod-
uct of the standard action of SO0(2, 1) on R

3. The principal embedding
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defines a map ι : R(S,SO0(2, 1)) → R(S,G), and the Hitchin component
Hit(S,G) ⊂ R(S,G) is defined to be the connected component containing
ι(Fuch(S)).

Each representation ρ ∈ R(S,G) defines a flat G-bundle Eρ = (S̃ ×
G)/π1S. This gives a decomposition of the G representation variety:

R(S,G) =
∐

a∈BunS(G)

Ra(G),

where a ∈ BunS(G) is the topological type of the flat G-bundle of the repre-
sentations in Ra(G). When G is a Hermitian Lie group BunS(G) is infinite.
Such G-Higgs bundles and surface group representations acquire a discrete
invariant called the Toledo invariant. While the Toledo invariant has several
different descriptions, they all yield a finite set of allowed rational values, and
hence give a notion of maximality (see for example [7,15,19]). In particular,
Ra(G) is nonempty for only finitely many values of a ∈ BunS(G).

The following theorem links the G-representation variety and the G-Higgs
bundle moduli space. It was proven by Hitchin [34], Donaldson [21], Corlette
[18] and Simpson [44] in various generalities. For the general statement below
see [24].

Theorem 7.3 Let S be a closed oriented surface of genus g � 2 andG be a real
semisimple Lie group. For each Riemann surface structure X on S there is a
homeomorphism between the moduli space MK (G) of G-Higgs bundles on X
and the G-representation variety R(S,G). Moreover, for each a ∈ BunS(G),
this homeomorphism identifies the spaces Ma

K (G) and Ra(G).

As in (6.1), for (a, b, c) ∈ H1(S,Z2) × H2(S,Z2) × H2(S,Z2), we have

R(S,SO(p, q)) =
∐

Ra,b,c(SO(p, q)).

Using Theorem 6.1 and the above correspondence we have a connected com-
ponent count of R(S,SO(p, q)).

Theorem 7.4 Let S be a closed surface of genus g � 2. For 2 < p � q, the
number of connected components of the representation varietyR(S,SO(p, q))

is given by

|π0(R(S,SO(p, q)))| = 22g+2 +
{
22g+1 − 1 + 2p(g − 1) if q = p + 1

22g+1 otherwise.

Remark 7.5 The connected components of Ra,b,c(SO(p, q)) are given by
corollaries 6.4, 6.5, and 6.6.
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Corollary 6.3 can nowbe interpreted as a dichotomy in terms of the SO(p, q)

representation variety.

Theorem 7.6 Let S be a closed surface of genus g � 2. For 2 < p < q − 1,
the representation variety R(S,SO(p, q)) is disjoint union of two sets

R(S,SO(p, q)) = Rcpt (S,SO(p, q)) � Rex (S,SO(p, q)), (7.2)

where

• [ρ] ∈ Rcpt (S,SO(p, q)) if and only if ρ can be deformed to a compact
representation,

• [ρ] ∈ Rex (S,SO(p, q)) if and only ifρ can be deformed to a representation

ρ′ = α ⊕ (ι ◦ ρFuch) ⊗ det(α), (7.3)

where α is a representation of π1S into the compact group O(q − p + 1),
ρFuch is a Fuchsian representation of π1S into SO0(2, 1), and ι is the
principal embedding from (7.1).

Proof For the first part, note that a representation ρ : π1S → SO(p, q) can be
deformed to a compact representation if and only if the corresponding Higgs
bundle can be deformed to one with vanishing Higgs field.

If ρ cannot be deformed to a compact representation, then by Corollary
6.3, the associated SO(p, q)-Higgs bundle (V, W, η) can be deformed to (cf.
(2.11))

(Kp−1 ⊗ I, Ŵ ⊕ Kp−2 ⊗ I, (0 η0)),

where Ŵ is a polystable rank q − p+1 orthogonal bundle with�q−p+1Ŵ = I
and (Kp−1,Kp−2, η0) is the unique minimum in the SO(p − 1, p)-Hitchin
component. Through Theorem 7.3, theHiggs bundle description of theHitchin
component from (2.18) is identifiedwith the representation variety fromExam-
ple 7.2. In particular, if sH is theHitchin section from (2.12), the representation
associated to sH (0) is ι ◦ ρFuch for a Fuchsian representation ρFuch [35].
In particular, the representation associated to the unique minimum in the
SO0(p, p − 1)-Hitchin component (Kp−1,Kp−2, η0) is given by ι ◦ ρFuch
for a Fuchsian representation ρFuch.

If A ∈ SO0(p, p − 1) and B ∈ O(q − p + 1), then (A, B) �→ ( det(B)·A 0
0 B

)
defines an embedding

SO0(p, p − 1) × O(q − p + 1) ↪→ SO(p, q).
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If α : π1S → O(q − p + 1) is the representation associated to the polystable
O(q− p+1,C)-bundle Ŵ , then the representation associated to the SO(p, q)-
Higgs bundle (Kp−1 ⊗ I, Ŵ ⊕Kp−2 ⊗ I, (0 η0)) is given by α ⊕ (ι◦ρFuch)⊗
det(α). ��

7.2 Positive Anosov representations

Anosov representationswere introduced byLabourie [37] and havemany inter-
esting geometric and dynamic properties which generalize convex cocompact
representations into rank one Lie groups. Important examples ofAnosov repre-
sentations include Fuchsian representations, quasi-Fuchsian representations,
Hitchin representations into split real groups andmaximal representations into
Lie groups of Hermitian type. We will describe the necessary properties of
Anosov representations and refer the reader to [29,31,36,37] for more details.

Let G be a semisimple Lie group and P ⊂ G be a parabolic subgroup. Let
L ⊂ P be the Levi factor (the maximal reductive subgroup) of P, it is given by
L = P ∩ Popp, where Popp is the opposite parabolic of P. The homogeneous
space G/L realized as the unique open G orbit in G/P × G/P, and points
(x, y) ∈ G/P × G/P in this open orbit are called transverse.

Definition 7.7 Let S be a closed orientable surface of genus g � 2. Let
∂∞π1S be the Gromov boundary of the fundamentatl group π1S, topologi-
cally ∂∞π1S ∼= RP

1. A representation ρ : π1S → G is P-Anosov if there
exists a unique continuous boundary map ξρ : ∂∞π1S → G/P which satisfies

• Equivariance: ξ(γ · x) = ρ(γ ) · ξ(x) for all γ ∈ π1S and all x ∈ ∂∞π1S.
• Transversality: for all distinct x, y ∈ ∂∞π1S the generalized flags ξ(x) and

ξ(y) are transverse.
• Dynamics preserving: see [29,31,36,37] for the precise notion.

The map ξρ will be called the P-Anosov boundary curve.

One important property ofAnosov representations is that they define an open
subset of the representation variety R(S,G). The set of Anosov representa-
tions is however not closed. For example, for the group PSL(2,C) the set of
Anosov representations corresponds to the non-closed set quasi-Fuchsian rep-
resentations ofR(S,PSL(2,C)). The special cases of Hitchin representations
and maximal representations define connected components of Anosov repre-
sentations. Both Hitchin representations and maximal representations satisfy
an additional “positivity” propertywhich is a closed condition. ForHitchin rep-
resentations this was proven by Labourie [37] and Fock-Goncharov [22], and
for maximal representations by Burger-Iozzi-Wienhard [14]. These notions of
positivity have recently been unified and generalized by Guichard and Wien-
hard [32].
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For a parabolic subgroup P ⊂ G, denote the Levi factor of P by L and
the unipotent subgroup by U ⊂ P. The Lie algebra p of P admits an AdL-
invariant decomposition p = l ⊕ u where l and u are the Lie algebras of L
and U respectively. Moreover, the unipotent Lie algebra u decomposes into
irreducible L-representation:

u =
⊕

uβ.

Recall that a parabolic subgroup P is determined by fixing a simple restricted
root system� of amaximalR-split torus ofG, and choosing a subset� ⊂ � of
simple roots. To each simple root β j ∈ � there is a corresponding irreducible
L-representation space uβ j .

Definition 7.8 ([32,Definition 4.2])Apair (G,P�) admits a positive structure
if for all β j ∈ �, the L�-representation space uβ j has an L�

0 -invariant acute
convex cone c�

β j
, where L�

0 denotes the identity component of L�.

If (G,P�) admits a positive structure, then exponentiating certain combi-
nations of elements in the L�

0 -invariant acute convex cones give rise to a
semigroupU�

>0 ⊂ U� [32, Theorem 4.5]. The existence of the semigroupU>0
gives a well defined notion of positively oriented triples of pairwise transverse
points in G/P�. This notion allows one to define a positive Anosov represen-
tation.

Definition 7.9 ([32,Definition 5.3]) If the pair (G,P�) admits a positive struc-
ture, then a P�-Anosov representation ρ : π1S → G is called positive if the
Anosov boundary curve ξ : ∂∞π1S → G/P� sends positively ordered triples
in ∂∞π1S to positive triples in G/P�.

Conjecture 7.10 ([32]) If (G,P�) admits a notion of positivity, then the set
P�-positive Anosov representations is an open and closed subset of R(S,G).

In particular, the aim of this conjecture is to characterize the connected
components of R(S,G) which are not labeled by primary topological invari-
ants as being connected components of positive Anosov representations, such
connected components are referred as higher Teichmüller components.

Remark 7.11 When G is a split real form and � = �, the corresponding
parabolic is a Borel subgroup of G. In this case, the connected component of
the identity of the Levi factor is L�

0
∼= (R+)rk(G) and each simple root space

uβi is one dimensional. TheL�
0 -invariant acute convex cone in each simple root

space uβi is isomorphic toR+. The set of P�-positive Anosov representations
into a split group are exactly Hitchin representations. When G is a Hermitian
Lie group of tube type and P is the maximal parabolic associated to the Shilov
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boundary of the Riemannian symmetric space of G, the pair (G,P) also admits
a notion of positivity [15]. In this case, the space of maximal representations
into G are exactly the P-positive Anosov representations. In particular, the
above conjecture holds in these two cases.

In general, the group SO(p, q) is not a split group and not a group of Her-
mitian type. Nevertheless, if p �= q, then SO(p, q) has a parabolic subgroup
P� which admits a positive structure. Here P� is the stabilizer of the partial
flag V1 ⊂ V2 ⊂ · · · ⊂ Vp−1,where Vj ⊂ R

p+q is a j-plane which is isotropic
with respect to a signature (p, q) inner product with p < q. Here the sub-
group L�

pos ⊂ L� ⊂ SO(p, q) which preserves the cones c�
β j

is isomorphic

to L�
pos

∼= (R+)p−1 × SO(1, q − p + 1). We refer the reader to [32] and [17,
Section 7] for more details.

To construct examples of SO(p, q) positiveAnosov representationswe have
the following proposition.

Proposition 7.12 Let p < q. Consider the signature (p, q)-inner product

〈x, x〉 =
p∑

j=1
x2j −

p+q∑
j=p+1

x2j . If A ∈ SO0(p, p − 1) and B ∈ O(q − p + 1),

then the set matrices
( det(B)·A 0

0 B

)
defines an embedding

SO0(p, p − 1) × O(q − p + 1) ↪→ SO(p, q).

If ρHit : π1S → SO0(p, p − 1) is a Hitchin representation and α : π1S →
O(q − p + 1) is any representation, then

ρ = ρHit ⊗ det(α) ⊕ α : π1S → SO(p, q)

is a P�-positive Anosov representation.

This is proven for q = p + 1 in [17, Section 7], and the proof for general q
is the same. For the proof of the first part of the above proposition it suffices
to show that the map SO(p, p − 1) → SO(p, q) described above sends the
positive semigroup U�

>0 ⊂ SO(p, p − 1) into the positive semigroup U�
>0.

The second part follows from the fact that a representation ρ is a P-Anosov
representation if and only if the restriction of ρ to any finite index subgroup
is P-Anosov, and the fact that the centralizer of an Anosov representation acts
trivially on the Anosov boundary curve.

Using Proposition 7.12 and Theorem 7.6, we conclude that for q > p + 1
the connected components ofR(S,SO(p, q)) from Theorem 4.1 contain P�-
positive Anosov representations.

Proposition 7.13 Let P� ⊂ SO(p, q) be the stabilizer of the partial flag
V1 ⊂ V2 ⊂ · · · ⊂ Vp−1, where Vj ⊂ R

p+q is a j-plane which is isotropic
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with respect to a signature (p, q) inner product with p < q. If q > p + 1,
then each connected component of Rex (S,SO(p, q)) from (7.2) contains P�-
positive Anosov representations.

Remark 7.14 When q = p + 1, this was shown in [17] for the analogous
connected components which contain minima of the form (6.2). The compo-
nents which contain minima of the form (6.4) are smooth, and one cannot
use Proposition 7.12 to obtain positive representations in these components.
However, we note that if Conjecture 7.10 holds, then each of the these smooth
connected components of R(S,SO(p, p + 1)) consists of positive represen-
tations since each component would be contained in a component of positive
representations into SO(p, p + 2).

Another special feature of Hitchin representations and maximal repre-
sentations is that they satisfy a certain irreducibility condition. Namely, if
ρ : π1S → G is such a representation, then there is no proper parabolic sub-
group P so that ρ factors as ρ : π1S → P ↪→ G. For the Hitchin case, this
follows from smoothness, and for the maximal case it follows from the from
[15,Theorem5]. For the components inRex(S,SO(p, q)), with 2 < p < q−1
(cf. (7.2)), it follows from Corollary 4.19. LetRcpt (S,SO(p, q)) be the union
of the connected components of R(S,SO(p, q)) containing compact repre-
sentations.

Proposition 7.15 Let 2 < p � q and ρ ∈ R(S,SO(p, q))\Rcpt (S,SO
(p, q)). Then ρ does not factor through any proper parabolic subgroup of
SO(p, q).

Proof Suppose ρ ∈ Rex (S,SO(p, q)) factors through a proper parabolic
subgroup P. Since points of R(S,SO(p, q)) consist of completely reducible
representations, ρ must factor through the Levi factor L of P. Consequently,
the SO(p, q)-Higgs bundle associated to ρ must reduce to an L-Higgs bun-
dle. The Levi factors of parabolics of SO(p, q) are isomorphic to GL(n,R)×
SO(p − n, q − n), for some n, embedded as

(A, B) �→
( A

B
A−1

)
.

But by Corollary 4.19, the Higgs bundles in the components associated to
Rex (S,SO(p, q)) do not reduce to such groups, leading to a contradiction. ��

Propositions 7.13 and 7.15 give further evidence for Conjecture 7.10, and it
is thus natural to expect that all representations in the connected components
from Theorem 4.1 are positive Anosov representations. Indeed, this would
follow from Conjecture 7.10 and Proposition 7.13. Moreover, if Conjecture
7.10 is true, then the connected components of Theorem4.1 correspond exactly

123



SO(p, q)-Higgs bundles... 287

to those connected components of R(S,SO(p, q)) which contain positive
Anosov representations.

7.3 Positivity and a generalized Cayley correspondence

We conclude the paper by interpreting the parameterization of the ‘exotic’ con-
nected components of the SO(p, q)-Higgs bundlemoduli space fromTheorem
4.1 as a generalized Cayley correspondence.

Let G be a simple adjoint Hermitian Lie group of tube type and let G/P
be the Shilov boundary of the symmetric space of G. In [7], it is proven that
if L is the Levi factor of P, then the space of Higgs bundles with maximal
Toledo invariant is isomorphic to MK 2(L). More generally, an analogous
statement holds when G′ → G is a finite cover such that a G-Higgs bundle
withmaximal Toledo invariant lifts to a G′-Higgs bundle. This correspondence
between maximal G-Higgs bundles and K 2-twisted L-Higgs bundles is called
the Cayley correspondence.

Remark 7.16 In [7], the above statement is stated differently.We use the above
interpretation because it relates directlywith the notions of positivity discussed
in the previous section.

Note that the above parabolic and Levi factor are exactly the objects which
appear in the notion of positivity when G is Hermitian Lie group of tube
type. When G is a split real form the Hitchin components of M(G) admit
an analogous interpretation. Namely, if G is such a split group, then (G,P)

admits a positive structure when P is a minimal parabolic subgroup. In this
case, L ⊂ P is (R∗)rk(G) and the identity component L0 is given by (R+)rk(G).

Moreover, the moduli space of K j -twisted R
+-Higgs bundles is isomorphic

to H0(K j ) :

MK j (R
+) ∼= H0(K j ).

Thus, when the Hitchin base is
⊕rk(G)

j=1 H0(K m j +1), the Hitchin components
are given by

MK m1+1(R+) × · · · × MK mrk(G)+1(R+).

In particular, the Higgs bundles associated surface group to representations
into split real groups which are positive with respect the minimal parabolic
subgroup also satisfy a ‘Cayley correspondence’.

For the group SO(p, q), the Levi factor of the parabolic P� so that
(SO(p, q),P�) has a positive structure is L� = SO(1, q − p +1)× (R∗)p−1.
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Moreover, the subgroup L�
pos which preserves the positive cones is

L�
pos

∼= SO(1, q − p + 1) × R
+ × · · · × R

+︸ ︷︷ ︸
(p−1)-times

.

Recall that the ‘exotic’ connected components in the image of � Theorem 4.1
are isomorphic to

MK p(SO(1, q − p + 1)) ×
p−1∏
j=1

H0(K 2 j ).

UsingMK 2 j (R+) = H0(K 2 j ), this is equivalent to

MK p(SO(1, q − p + 1)) ×
p−1∏
j=1

MK 2 j (R
+).

When 2 = p � q, we recover the Cayley correspondence for groups of
Hermitian type [7,12]. Hence, for 2 < p � q we have established that the
Higgs bundles associated to representations into SO(p, q) which cannot be
deformed to compact representations satisfy a generalized Cayley correspon-
dence. Moreover, when p < q − 1 each such component of the representation
variety contains positive representations by Proposition 7.13. This suggests
a general theorem for positive representations which relates the connected
components of the subgroup of L� which preserves the cones with the prod-
uct of moduli spaces of appropriately twisted L j -Higgs bundles. Indeed this
is consistent with results in [30] where topological invariants for θ -positive
representations are defined in terms of principal bundles with structure group
given by the Levi subgroup we have identified as L�. It would be interesting
to understand in more detail the relation between these two points of view.

Acknowledgements The authors are grateful to Olivier Guichard, Beatrice Pozzetti, Carlos
Simpson, Richard Wentworth and Anna Wienhard for useful conversations and to the referee
for a careful reading and for a number of helpful remarks and corrections.

Appendix A: Review of gauge theory and the Hitchin–Kobayashi corre-
spondence

Details on points treated sketchily in the following can be found in [24,34].
For simplicity we consider K -twisted Higgs bundles but analagous statements
can be made for L-twisted Higgs bundles.
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Let G be a real semisimple Lie group and H ⊂ G a maximal compact
subgroup. Let P be aC∞ principal HC-bundle and fix a reduction to a principal
H-bundle PH. Hitchin’s self-duality equations are

F(A) − [ϕ, τ(ϕ)] = 0,

∂̄Aϕ = 0.
(A.1)

Here A is a H-connection on PH, ∂̄A its associated ∂̄-operator and ϕ ∈
�1,0(PH[mC]). The map τ : �1,0(PH[mC]) → �0,1(PH[mC]) is obtained by
combining the compact real structure on gC with conjugation on the form
component.

A pair (A, ϕ) gives a corresponding G-Higgs bundle structure (∂̄A, ϕ) on P;
we denote the corresponding G-Higgs bundle by (EA, ϕ). Conversely, given a
G-Higgs bundle (EA, ϕ), where the holomorphic bundle EA is defined by ∂̄A,
one obtains a pair (A, ϕ) by taking A to be the Chern connection associated to
∂̄A via the fixed reduction PH ⊂ P . The Hitchin–Kobayashi correspondence
for G-Higgs bundles [24] says that the G-Higgs bundle is polystable if and
only if there is a structure (∂̄A, ϕ) in its GHC-orbit such that the corresponding
pair (A, ϕ) solves Hitchin’s equations. Moreover, this pair is unique up to
GH-gauge transformations, where GH denotes the gauge group of H-gauge
transformations of PH.

We recall the following alternative point of view. Insteadoffixing a reduction
of the principal HC-bundle P , we can consider a fixed structure of G-Higgs
bundle (∂̄A, ϕ) and consider (A.1) as equations for a reduction of structure
group to H ⊂ HC, usually known as a a harmonic metric . The Hitchin–
Kobayashi correspondence then says that such a reduction exists if and only
if (∂̄A, ϕ) defines a polystable G-Higgs bundle.

The space A of H-connections on PH is an affine space modeled on
�1(PH[h]). Let C ⊂ A × �1,0(PH[mC]) denote the configuration space of
solutions to Hitchin’s equations (A.1). As a set, the moduli space of solutions
to Hitchin’s self-duality equations is

Ma
H(G) = C/GH,

where a is the topological type. We shall denote by MH(G) the union of the
moduli spacesMa

H(G) over all topological types a. In order to give the mod-
uli space a topology, suitable Sobolev completions must be used in standard
fashion; see [4], and also [33, Sec. 8] where the straightforward adaptation
to Higgs bundles is discussed in the case G = GL(n,C). The moduli space
MH(G) then becomes a Hausdorff topological space.
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The Hitchin–Kobayashi correspondence can now be stated as saying that
the map

MH(G)
∼=−→ M(G),

(A, ϕ) �→ (∂̄A, ϕ)
(A.2)

is a bijection. It follows from the constructions that it is in fact a homeomor-
phism. Here and below, in analogy with Notation 3.1, we do not distinguish
notationally between a pair (A, ϕ) and its gauge equivalence class.

The moduli spaceMH(G) can be given additional structure by considering
the deformation complex

�0(PH(h))
d0−→ �1(PH(h))×�1,0(PH[mC]) d1−→ �2(PH(h))×�1,1(PH[mC]).

(A.3)
The operator d0 is given by the infinitesimal action of the gauge group and
the operator d1 is obtained by linearizing Hitchin’s equations; the fact that
d1 ◦ d0 = 0 follows because (A, ϕ) is a solution. Denote the i th cohomology
group of this complex by Hi

(A,ϕ).

Proposition A.1 Let (A, ϕ) be a solution to Hitchin’s equations and let (E, ϕ)

be the corresponding Higgs bundle. Then there are isomorphisms

H0
(A,ϕ) ⊗ C ∼= H

0(C•(E, ϕ)),

H1
(A,ϕ)

∼= H
1(C•(E, ϕ)),

H2
(A,ϕ)

∼= H
2(C•(E, ϕ)) ⊕ H0

(A,ϕ),

where C•(E, ϕ) is the deformation complex (2.4).

Proof The hypercohomology groups of the complex C•(E, ϕ) can be calcu-
lated, using a Dolbeault resolution, as the cohomology groups of the complex

�0(P[hC]) δ0−→ �0,1(P[hC]) × �1,0(P[mC]) δ1−→ �1,1(P[mC]), (A.4)

where the differentials are constructed combining the adjoint action of ϕ with
∂̄A. The proposition now follows essentially as in [20, Sec. 6.4.2] (which gives
the analogous comparison between the deformation complexes for solutions to
the anti-self duality equations and holomorphic vector bundles on a complex
surface) using the Kähler identities and the bundle isomorphisms

�0,1(P[hC]) ∼= �1(PH[h])
�0(P[hC]) ∼= �0(PH[h]) ⊕ �2(PH[h]).

��
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Proposition A.2 Let (A, ϕ) ∈ MH(G) and let (EA, ϕ) be the corresponding
polystable G-Higgs bundle. Then the following statements are equivalent:

1. H0
(A,ϕ) = 0 and H2

(A,ϕ) = 0.

2. H0(C•(EA, ϕ)) = 0 and H
2(C•(EA, ϕ)) = 0.

3. (EA, ϕ) is stable as a GC-Higgs bundle.

Proof The equivalence of the first two statements is immediate from Proposi-
tion A.1. The equivalence of the last two statements is also immediate in view
of Remarks 2.13 and 2.14. ��
Definition A.3 Let Cs ⊂ C denote the subspace of pairs (A, ϕ) such that
(EA, ϕ) is stable as a GC-Higgs bundle. Similarly, let Cs

C
⊂ A×�1,0(PH[mC])

denote the subspace of pairs (A, ϕ) such that ∂̄Aϕ = 0 and (EA, ϕ) is stable
as a GC-Higgs bundle. Define Ms

H(G) ⊂ MH(G) and Ms(G) ⊂ M(G)

analogously.

We note that Cs
C
is an infinite dimensional Kähler manifold whose Kähler

structure is induced from the ambient space A × �1,0(PH[mC]).
Let�(A,ϕ) ⊂ GH denote the stabilizer of a solution (A, ϕ) to Hitchin’s equa-

tions. This is a compact Lie group with Lie algebra H0
(A,ϕ) [24]. The standard

gauge theoretic construction of the moduli space can now be summarized as
follows.

Proposition A.4 The subspace of C where H2
(A,ϕ) = 0 is a smooth infinite

dimensional manifold. Moreover, for (A, ϕ) with H2
(A,ϕ) = 0 a neighbourhood

of the corresponding point in the moduli space is modeled on a neighbourhood
of zero in H1

(A,ϕ) modulo the action of �(A,ϕ). If additionally H0
(A,ϕ) = 0, then

�(A,ϕ) is finite. Thus Ms
H(G) is a Kähler orbifold with Kähler form induced

from Cs
C

.

Remark A.5 The action of GH on Cs
C

is Hamiltonian with moment map
μ(A, ϕ) = F(A)−[ϕ, τ(ϕ)]. Hence the moduli spaceMs(G) can be viewed
as the infinite dimensional symplectic quotient

Ms(G) = μ−1(0)/GH ∼= Cs
C
/GHC .

The isomorphism comes from the Hitchin–Kobayashi correspondence, which
can thus be viewed as an infinite dimensional Kempf–Ness correspondence.
Note that the Kähler form on Cs

C
restricts to a 2-form on Cs which is non-

degenerate in directions transverse to the GH-orbits — indeed this is just the
pullback of the Kähler form on Ms(G).

The following was proved in [24]. It is analogous to the decomposition of
a polystable vector bundle into a direct sum of stable ones, and plays a central
role in the proof of the Hitchin–Kobayashi correspondence.
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Proposition A.6 Let (E, ϕ) be a polystable G-Higgs bundle. Then there is
a real reductive subgroup G′ ⊂ G and a Jordan–Hölder reduction of (E, ϕ)

to a stable G′-Higgs bundle (E ′, ϕ′). The Jordan–Hölder reduction is unique
up to isomorphism. Moreover, the solution to Hitchin’s equations on (E ′, ϕ′)
induces the solution on (E, ϕ).

Nextwe recall Hitchin’smethod [34,35] for studying the topology ofM(G)

using gauge theoretic methods, and explain how to translate it to the holo-
morphic point of view. Alternatively one could work exclusively using the
holomorphic point of view, using Simpson’s adaptation in [46, Sec. 11].

Similarly to the holomorphic action of C∗ on M(G) defined in Sect. 3.1,
there is an action of S1 on A × �1,0(PH[mC]) given by

eiθ · (A, ϕ) = (A, eiθϕ).

This action clearly preserves the subspaces Cs , C and Cs
C
, and it descends to

MH(G).

Proposition A.7 Let S1 act on M(G) by restriction of the C
∗-action defined

above. Then the following statements hold.

1. The bijection MH(G) → M(G) defined in (A.2) is S1-equivariant.
2. The class of (A, ϕ) in MH(G) is fixed under the S1-action if and only if the

class of the corresponding Higgs bundle (EA, ϕ) in M(G) is fixed under
the C

∗-action.

Proof Statement (1) is clear. Statement (2) is a consequence of the Hitchin–
Kobayashi correspondence. ��

Since the vector bundle P[mC] ∼= PH[mC] has a Hermitian metric coming
from the reduction of structure group to H, one can define theHitchin function:

f : MH(G) → R, (A, ϕ) �→
∫

X
||ϕ||2. (A.5)

We shall abuse notation and denote by the same letter the map f : M(G) → R

induced via the identification (A.2). Using Uhlenbeck’s weak compactness
theorem, Hitchin [34] showed that the map f is proper. Thus, as noted in
Sect. 3.1, the Hitchin function can be used to study the connected components
of the moduli space of G-Higgs bundles.

The following is central for identifying local minima of f .

Lemma A.8 Let (A, ϕ) ∈ Ms
H(G). If (A, ϕ) is a local minimum of f , then it

is a fixed point of the S1-action. Equivalently, the corresponding Higgs bundle
(EA, ϕ) ∈ Ms(G) is a fixed point of the C

∗-action.
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Proof On the smooth locus of MH(G), the S1-action is Hamiltonian with
respect to theKähler formand the function f (suitably normalized) is amoment
map for this action (see [34,35]). This means that, when multiplied by

√−1,
the vector field generating the S1-action is the gradient of f and, therefore,
critical points of f are exactly the fixed points of the S1-action. This proves
the proposition when �(A,ϕ) is trivial.

For a general (A, ϕ) ∈ Ms
H(G) we can argue on the smooth manifold

Cs ⊂ Cs
C
. Indeed, by its very definition, the function f lifts to the infinite

dimensional Kähler manifold Cs
C
and it is a moment map for the S1-action

there. Thus, in view of Remark A.5, and in a similar way to the argument of
the preceding paragraph, it follows that (A, ϕ) is a critical point of f restricted
to Cs if and only if its GH-gauge equivalence class is fixed by the S1-action. ��

We have the following useful observation. Let G′ ⊂ G be a reductive sub-
group (we take this to include the choice of compatible Cartan data). Then a
solution (A, ϕ) to Hithin’s equations for G′ on a principal H′-bundle induces
a solution for G on the H-bundle obtained by extension of structure group.
Hence we have a well defined map

M(G′) −→ M(G)

which is clearly compatible with the respective Hitchin functions. This leads
immediately to the following result.

Lemma A.9 Let G′ ⊂ G be a reductive subgroup. Suppose (E, ϕ) is a G-
Higgs bundle which reduces to a G′-Higgs bundle. If (E, ϕ) is a minimum of
the Hitchin function on M(G) then it is a minimum of the Hitchin function on
M(G′).

A solution (A, ϕ) to Hitchin’s equations is called simple if its stabilizer
�(A,ϕ) is trivial. The following proposition is simple to check.

Proposition A.10 Suppose that (A, ϕ) ∈ MH(G) is a fixed point for the S1-
action. Then for each eiθ there is a gauge transformation g(θ) ∈ GH such
that

g(θ) · (A, ϕ) = (A, eiθϕ).

The gauge transformation g(θ) is determined up to an element of the stabi-
lizer �(A,ϕ). Moreover, if (A, ϕ) is simple, then eiθ �→ g(θ) defines a group
homomorphism S1 → GH.

Proposition A.11 Suppose (A, ϕ) ∈ MH(G) is a fixed point for the S1-action.
If (A, ϕ) is simple, then there is an induced action of S1 on H1

(A,ϕ).
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Proof For each eiθ , the derivative of its action on C defines a map H1
(A,ϕ) →

H1
(A,eiθ ϕ)

. Composing with the inverse of the derivative of the unique gauge
transformation g(θ) from Proposition A.10 we get a well defined map
H1

(A,ϕ) → H1
(A,ϕ). Using the fact that θ → g(θ) is a group homomorphism it

is easy to see that this gives an action of S1. ��
If (A, ϕ) has discrete stabilizer, then for each θ0 and each choice of gauge

transformation g(θ0) as in Proposition A.10, there is a unique smooth family
g(θ) defined in a neighborhood of θ0. Taking θ0 = 0 and g(0) to be the identity
we get the following result, by an argument similar to the proof of the preceding
proposition.

Proposition A.12 Suppose (A, ϕ) ∈ Ms
H(G) is a fixed point for the S1-action.

Then there is an induced local action of a neighborhood of the identity in S1

on H1
(A,ϕ). In particular, there is an inifinitesimal S1-action on H1

(A,ϕ), and a

well-defined infinitesimal gauge transformation ψ = dgθ

dθ

∣∣
θ=0 ∈ �0(PH[h]).

Remark A.13 Note that [ψ, ϕ] = iφ because g(θ) · (A, ϕ) = (A, eiθϕ).

Now fix a maximal torus t ⊂ h. Since any element of h is conjugate to an
element in t, there is a point p0 ∈ PH with the property stated in the following
proposition.

Proposition A.14 Let (A, ϕ) ∈ Ms
H(G) be a fixed point and let ψ ∈

�0(PH [h]) be the infinitesimal gauge transformation provided by Proposi-
tion A.12. Let p0 ∈ P be such that the infinitesimal gauge transformation
provided by Proposition A.12 satisfies ψ(p0) ∈ t. Define

H0 = ZH(ψ(p0)) ⊂ H.

Then there is a subbundle PH0 ⊂ PH which gives a reduction of structure
group to H0.

Proof Define

PH0 = {p ∈ PH | ψ(p) ∈ t} ⊂ PH.

Let ψ(p) ∈ t. A point Ad(h)(ψ(p)) = ψ(ph−1) in the adjoint orbit of ψ(p)

lies in t if and only if h ∈ ZH(ψ(p)). Moreover, this centralizer does not
depend on the choice ofψ(p) in the adjoint orbit, as long asψ(p) lies in t. We
therefore have an identification of the fiber PH0,x of PH0 over x = π(p0) ∈ X :

H0
∼=−→ PH0,x ,
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c �→ p0 · c

where the action comes from the right action of H on PH0 .
Now note that, since dAψ = 0, the eigenvalues for the action ofψ on PH[h]

are constant. Hence the orbit in h of ψ(p) under the adjoint action of H is
independent of p ∈ PH. It follows that the centralizer used in the preceding
paragraph is the same for all fibers of PH and, therefore, the construction
globalizes to show that PH0 ⊂ PH defines a reduction of structure group, as
we wanted. ��
Remark A.15 Since the reduction PH0 ⊂ PH just constructed only depends on
the choice of the maximal torus t ⊂ h, it is unique up to conjugation by H.

Proposition A.16 Suppose (A, ϕ) ∈ Ms
H(G) is a fixed point for the S1-action.

Then there is a weight decomposition into ik-eigenspaces for the adjoint action
of ψ on the Lie algebra bundles PH [hC] and PH [mC]:

PH[hC] =
⊕

k

PH[hC]k and PH[mC] =
⊕

k

PH[mC]k,

where ϕ ∈ H0(PH [mC]1 ⊗ K ) and PH[hC]0 is identified with the adjoint
bundle PH0[hC0 ].
Proof This is immediate from Proposition A.14—indeed, taking the weight
space decomposition hC = ⊕

hCk for the adjoint action of ψ(p0) we have
PH[hC]k = PH0[hCk ], and similarly for mC. The fact that ϕ has weight one
follows from Remark A.13. ��
Remark A.17 For any fixed (A, ϕ) in the moduli space we can use the Jordan–
Hölder reduction to a stable G′-Higgs bundle to get a reduction of structure
group as in Proposition A.14. However, the weight decomposition of Propo-
sition A.16 is, in general, no longer well defined. This is because the center
of the maximal compact H′ ⊂ G′ may act non-trivially on the complement of
g′C in gC.

For a (E, ϕ) ∈ Ms(G) which is fixed under the C
∗-action, the weight

decomposition from Proposition A.16 translates into

E[gC] = E[hC] ⊕ E[mC] =
⊕

E[hC]k ⊕
⊕

E[mC]k (A.6)

with E[hC]k = PH[hC]k and E[mC]k = PH[mC]k , and where ϕ ∈
H0(E[mC]1 ⊗ K ). This gives a decomposition C•(E, ϕ) = ⊕

C•
k (E, ϕ) of

the deformation complex (2.4), where
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C•
k (E, ϕ) : E[hC]k

adϕ−−→ E[mC]k+1 ⊗ K . (A.7)

Proposition A.18 Suppose (A, ϕ) ∈ Ms
H(G) is a fixed point for the S1-action.

Let H1
(A,ϕ) = ⊕

H1
(A,ϕ),k be the decomposition into ik-eigenspaces for the

infinitesimal S1-action given by Proposition A.12. Then there are canonical
isomorphisms

H1
(A,ϕ),k

∼= H
1(C•

k (EA, ϕ)).

Proof In a similar way to Proposition A.12, there is an infinitesimal S1-action
on H1(C•(EA, ϕ)) and, clearly, the isomorphism H1

(A,ϕ)
∼= H

1(C•(EA, ϕ)) of

Proposition A.1 is S1-equivariant. Thus there is a weight space decomposition
H

1(C•(EA, ϕ)) = ⊕
H

1(C•(EA, ϕ))k with H1
(A,ϕ),k

∼= H
1(C•(EA, ϕ))k . It

remains to see that H1(C•(EA, ϕ))k
∼= H

1(C•
k (EA, ϕ)) and this is an easy

check using the induced weight decomposition of the Dolbeault resolution
(A.4). ��

We shall use the subscript “+” for the direct sums of subspaces with k > 0.

Lemma A.19 Let (A, ϕ) ∈ Ms
H(G). If (A, ϕ) is a fixed point of the S1-action,

then it is a local minimum of the Hitchin function if and only if H1
(A,ϕ),k = 0

for all k > 0. Equivalently, a fixed point (E, ϕ) ∈ Ms(G) for the C∗-action is
a local minimum of the Hitchin function if and only if H1(C•

k (E, ϕ)) = 0 for
all k > 0.

Proof Hitchin [34,35] showed that on the smooth locus of MH(G), the sub-
space H1

(A,ϕ),k can be identified with the −k-eigenspace for the Hessian of
f . The extension to points of MH(G) which are orbifold singularities fol-
lows as in the proof of Lemma A.8. The equivalence of the statement for
(E, ϕ) ∈ Ms(G) follows from Proposition A.18. ��

We shall also need to show that certain G-Higgs bundles which do not
satisfy the hypothesis of Proposition 3.4 are not local minima of f . To this
end we have the following result, analogous to a criterion of Simpson [46,
Lemma 11.8].

Lemma A.20 Let (E0, ϕ0) ∈ M(G) be a fixed point of theC∗-action. Suppose
there exists a semistable G-Higgs bundle (E, ϕ), which is not S-equivalent to
(E0, ϕ0), and such that limt→∞(E, tϕ) = (E0, ϕ0) in M(G). Then (E0, ϕ0) is
not a local minimum of f .

Proof Replacing (E, ϕ)with the polystable representative of itsS-equivalence
class, we may assume that it is polystable. Note also that (E, ϕ) cannot be a
fixed point of the C∗-action.
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Consider first the case when (E, ϕ) is stable. Then, as in the proof of
Lemma A.8, we can use the moment map interpretation of f to deduce that
the function R>0 → R defined by t �→ f (E, tϕ) is strictly increasing as t
tends to infinity. For the general case, consider the Jordan–Hölder reduction
of (E, ϕ) given by Proposition A.6. This is a stable G′-Higgs bundle for some
G′ ⊂ G and cannot be fixed under theC∗-action, since otherwise (E, ϕ)would
also be fixed. Since the natural map M(G′) → M(G) is C∗-equivariant and
compatible with the respective Hitchin functions, the result follows by the
same argument as in the previous paragraph. ��
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