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Abstract We extend the Ax–Schanuel theorem recently proven for Shimura
varieties byMok–Pila–Tsimerman to all varieties supporting a pure polarizable
integral variation ofHodge structures. In fact, Hodge theory provides a number
of conceptual simplifications to the argument. The essential new ingredient is
a volume bound for Griffiths transverse subvarieties of period domains.

1 Introduction

1.1 History

Motivated by arithmetic considerations, much recent work has focused on
functional transcendence, specifically on generalizations of the famous Ax–
Schanuel theorem on the exponential function to the context of hyperbolic
uniformizations. Indeed, the strategy of Pila and Zannier for proving the
André–Oort conjecture is reliant on a functional transcendence result dubbed
the ‘Ax–Lindemann theorem’ by Pila. The approach originates in the cel-
ebrated paper [13], where Pila used his counting theorem with Wilkie to
establish the result in the case of the Shimura variety X (1)n , for n ≥ 1.
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78 B. Bakker, J. Tsimerman

The Ax–Lindemann theorem was finally established in full generality for
Shimura varieties in [10] by Klingler, Ullmo, and Yafaev, and for mixed
Shimura varieties by Gao [5]. Motivated by an analogous (though much more
difficult to carry out) approach to the more general Zilber–Pink conjectures,
Mok, Pila, and the second author recently proved the full Ax–Schanuel conjec-
ture for general Shimura varieties [12]. In this paperwe prove theAx–Schanuel
conjecture in the more general setting of variations of (pure) Hodge structures
(formulated recently byKlingler [9, Conjecture 7.5]). This is motivated largely
by a recent approach of Lawrence–Venkatesh [11] to proving analogs of the
arithmetic Shafarevich conjecture for families of varieties with a generically
immersive period map, which seems to require the theorem we prove to work
in full generality.

1.2 Statement of results

Let S = ResC/RGm be the Deligne torus. Given a pure polarized Hodge struc-
ture h : S → Aut(HZ, QZ), the Mumford-Tate group MTh ⊂ Aut(HZ, QZ)

is the Q-Zariski closure of h(S). The associated Mumford–Tate domain
D(MTh) is the MTh(R)-orbit of h in the full period domain of polarized
Hodge structures on (HZ, QZ). By a weak Mumford–Tate domain D(M) we
mean the M(R)-orbit of h for some normal Q-algebraic subgroup M of MTh .

Let X be a smooth algebraic variety over C supporting a pure polar-
ized integral variation of Hodge structures HZ. Let MTHZ

be the generic
Mumford–Tate group, and let� ⊂ MTHZ

(Q) be the image of the monodromy
representation π1(X) → MTHZ

(Q) after possibly passing to a finite cover.
Let G be the identity component of theQ-Zariski closure of�. Let D = D(G)

be the associated weak Mumford–Tate domain and ϕ : X → �\D the period
map ofHZ. The compact dual Ď of D is a projective variety containing D as
an open set in the Archimedean topology.

Consider the fiber product

X × D W⊃ ϕ̃
D

π

X
ϕ

�\D.

In this situation, for any weak Mumford–Tate subdomain D′ = D(M′) ⊂ D
such that�∩M′(Q) isQ-Zariski dense,ϕ−1π(D′) is an algebraic subvariety of
X by a result of Cattani–Deligne–Kaplan [2], and we refer to such subvarieties
as weak Mumford–Tate subvarieties of X .
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The Hodge-theoretic Ax–Schanuel conjecture 79

Theorem 1.1 (Ax–Schanuel for variations of Hodge structures) In the above
setup, let V ⊂ X × Ď be an algebraic subvariety, and let U be an irreducible
analytic component of V ∩ W such that

codimX×Ď(U ) < codimX×Ď(V ) + codimX×Ď(W ).

Then the projection of U to X is contained in a proper weak Mumford–Tate
subvariety.

Theorem 1.1 for example implies that the (analytic) locus in X where the
periods satisfy a given set of algebraic relations must be of the expected codi-
mension unless there is a reduction in the generic Mumford–Tate group. See
[9] for some related discussions.

1.3 Outline of the proof

We follow closely the strategy of proof in [12]. There are two serious compli-
cations that have to be addressed, which are as follows:

First, we need to find a suitable fundamental domain in D for the image of
X in �\D. This domain has to be definable in the o-minimal structure Ran,exp,
and have certain growth properties. In the Shimura case, this is done by using
a Siegel set. In our current setup this seems more difficult, due to the absence
of toroidal co-ordinates. Instead, we use Schmid’s theory of degenerations of
Hodge structures to define our fundamental domain, which also provides a
new approach in the setting of Shimura varieties. For more details on this, see
Sect. 3.

Second, the proof of Theorem 1.1 requires a volume bound on Griffiths
transverse1 subvarieties X ⊂ D analogous to those proven by Hwang–To for
Hermitian symmetric domains [8]. We prove this in Sect. 2 and the result is as
follows:

Theorem 1.2 There are constants β, ρ > 0 (only depending on D) such that
for any R > ρ, any x ∈ D, and any positive-dimensional Griffiths transverse
closed analytic subvariety Z ⊂ Bx (R) ⊂ D, we have

vol(Z) ≥ eβ R multx Z

where Bx (R) is the radius R ball centered at x and vol(Z) the volume with
respect to the natural left-invariant metric on D.

In Sect. 4 we establish all the required comparisons between the various
height and distance functions that show up, and Sect. 5 completes the proof.

1 It is essential to restrict to Griffiths transverse subvarieties, as the general statement is false
since, for example, D contains compact subvarieties.

123



80 B. Bakker, J. Tsimerman

2 Volume estimates

In this section we prove Theorem 1.2; we begin with some general remarks.
Without loss of generality, we may clearly assume D is a full period domain.
Further, letting H be the upper half-plane, D × H embeds isometrically into
a period domain D′ of weight one larger by tensoring with the weight one
Hodge structure of an elliptic curve, and it therefore suffices to consider D
of odd weight. We make both of these assumptions for the remainder of this
section. For general background on period domains and Hodge structures, see
for example [4].

2.1 Hodge norms

Apoint x ∈ D yields aHodge structure Hx on HZ polarized by Q Z . Recall that
theHodgemetric hx(v, w) = QZ(v, Cxw) is positive-definite, whereCx is the
Weil operator of Hx . For anyw ∈ HC we can define the norm-squared function
h(w) : x 	→ hx (w) := hx (w, w) on D. Note that g∗h(w) = h(g−1w) for
g ∈ G(R). Recall also that a choice of point x ∈ D naturally endows the Lie
algebra gR of G(R) with a weight zero Hodge structure gx polarized by the
Killing form, and that the holomorphic tangent space at x is naturally identified
with g−

x , where as usual we give g
p,−p
x grading p.We refer to the odd part of g−

x

as the horizontal directions, and to g−1,1
x as the Griffiths transverse directions.

We will use the same notation h(X) : x 	→ hx (X) for X ∈ gC for norms with
respect to the induced Hodge metric on gC, as well as for the induced Hodge
metrics on all tensor, wedge, symmetric powers etc. of gC.

The following lemma calculates the derivatives of the Hodge norm function
h(w). The computation can be expressed more compactly in terms of the
connection operators on D, but we prefer a more elementary approach for
ease of exposition.

Lemma 2.1 For Hodge-pure horizontal (in particular Griffiths transverse)
directions X ∈ g−

x , we have

∂h(w)(X) = −2hx (Xw, w)

∂∂h(w)(X, X) = 2hx (Xw) + 2hx (Xw)

Proof Note that in C[z, z]/(z2, z2) we have

exp(−z X) exp

(
z X + z X + |z|2

2

([X, X ]<0 + [X , X ]>0))

= (1 − z X)

(
1 + z X + z X + |z|2

2

([X, X ]<0 + [X , X ]>0)
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The Hodge-theoretic Ax–Schanuel conjecture 81

+|z|2
2

(
X X + X X

))

= 1 + z X + |z|2
(

−X X + 1

2

([X, X ]<0 + [X , X ]>0) + 1

2

(
X X + X X

))

= 1 + z X + |z|2
2

(−[X, X ] + [X, X ]<0 + [X , X ]>0)

= 1 + z X + |z|2
2

(−[X, X ]≥0 + [X , X ]>0)

which is in the parabolic stabilizing the Hodge flag at x . Thus, modulo (z2, z2)
we have

exp(z X).x = exp
(
M(z X, z X)

)
.x

where M(z X, z X) = z X + z X + |z|2
2

([X, X ]<0 + [X , X ]>0
) ∈ g. Hence,

∂h(w)(X) = ∂

∂z
exp(z X)∗h(w)|z=0

= ∂

∂z
hx

(
exp

(−M(z X, z X)
)
.w

) |z=0

= hx (−Xw, w) + hx (w, −Xw)

= −2hx (Xw, w)

where we have used that X is horizontal and thus conjugate self-adjoint with
respect to hx . Likewise,

∂∂h(w)(X, X) = ∂2

∂z∂z
exp(z X)∗h(w)|z=0

= ∂2

∂z∂z
hx

(
exp

(−M(z X, z X)
)
.w

) |z=0

=hx (−Xw, −Xw) + hx (−Xw, −Xw)

+ Re hx (−[X, X ]<0w, w) + Re hx (−[X , X ]>0w, w)

+ Re hx ((X X + X X)w, w)

= 2hx (Xw) + 2hx (Xw)

where we have used that [X, X ]<0 = [X , X ]>0 = 0 since X is Hodge pure,
as well as the conjugate self-adjointness of X . ��
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82 B. Bakker, J. Tsimerman

2.2 Distance functions

Letπ : D → DW be the projection to the associated symmetric spaceby taking
the Weil Jacobian Hodge structure. We briefly recall the basic definitions, and
refer to [4, §3.5] for details.

For x ∈ D and the associated Hodge structure Hx on HZ, theWeil Jacobian
Hodge structure Hπ(x) is the (pure) weight one Hodge structure on HZ given
by H1,0

π(x) = Hodd
x and H0,1

π(x) = H even
x . For each x ∈ D, we denote by hx

the Hodge structure on gC induced by the Weil Jacobian Hodge structure
Hπ(x). Note that both Hodge structures gx and hx induce the same Hodge
metric on gC. Further, hx only has (−1, 1), (0, 0), and (1, −1) parts, so that
in particular h+

x = h1,−1
x . Given a basepoint x0 ∈ D, π is identified with

G(R)/V → G(R)/K , where V is the stabilizer of x0 under G(R) and K is
the unitary subgroup of G(R) with respect to hx0 . Note that K is a maximal
compact subgroup of G(R).

Let v0 be a unit-length generator of det h+
x0 in

∧dim DW hx0 , and define a
function ϕ0 : D → R by

ϕ0(x) := log hx (v0).

Evidently, ϕ0 factors through the projection π since hx = hπ(x). Moreover, if
F0 is the fiber of π containing x0, then by the K AK decomposition of G(R),
ϕ0 in fact only depends on F0 (and not on x0) since K fixes v0 up to a phase.

Lemma 2.2 i∂∂ϕ0 is strictly positive on Griffiths transverse tangent directions
at x0.

Proof Let X ∈ g−1,1
x0 , and note that X ∈ h−1,1

x0 ⊕ h1,−1
x0 since the parity

operators on gx and hx are the same. Let X−1,1, X1,−1 be the graded pieces
of X with respect to the Weil Hodge structure. Fixing a basis Yi of h+

x0 , we see
that

ad(X) (Y1 ∧ · · · ∧ Yk) =
∑

i

(−1)i−1Y1 ∧ · · · ∧ ad(X−1,1)Yi ∧ · · · ∧ Yk .

Since the Yi are a basis for h+
x0and ad(X−1,1)Yi ∈ h−

x0 it follows that the
vectors on the right-hand side are all linearly independent, so if ad(X)v0 = 0
then ad(X)h+

x0 = 0. Likewise, if ad(X)v0 = 0, then ad(X)h−
x0 = 0. Thus, if

i∂∂ϕ0(X, X) = 0 then by Lemma 2.1 ad(X) kills hoddx0 and in particular X ,
but this implies X = 0 [4, Corollary 12.6.3(iii)]. ��

Define the horizontal distance from x to x0, denoted dhoriz
0 (x), to be the

geodesic distance d DW
0 (y) between y := π(x) and y0 := π(x0) with respect
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The Hodge-theoretic Ax–Schanuel conjecture 83

to the natural G(R)-invariant metric on the symmetric space DW . Let A be an
R-split torus of G(R) that is Killing-orthogonal to K . By the K AK decom-
position of G(R), the distance d DW

0 (y) and ϕ0(x) are both determined by

d DW
0 (ay0) and ϕ0(ax0), respectively, for a ∈ A. Since Ay0 is a flat totally

geodesic submanifold of DW , and the restriction of the invariant metric is a
Euclidean metric in exponential coordinates, we have

d DW
0 (ay0)

2 ∼
∑

i

t2i (1)

where a = exp(
∑

i ti Ti ) for some chosen basis Ti of the Lie algebra a of A.
The main result of this subsection is the following comparison. Note that

both dhoriz
0 and ϕ0 vanish exactly on F0.

Proposition 2.3 dhoriz
0 (x) � ϕ0(x) + O(1) and ϕ0(x) � dhoriz

0 (x) + O(1).

Proof Griffiths–Schmid [7, Theorem 8.1] show that a function closely related
to our ϕ0 is an exhaustion function of D. For DW , their function is given by

ϕ′
0(gy0) := log hx0(gv0)

whereas our function is ϕ0(gx0) = log hgx0(v0) = log hx0(g
−1v0). Their

result implies ϕ′
0 → ∞ at the boundary of DW , which is equivalent to saying

that hx0(gv0) goes to ∞ as g → ∞ (in the sense of escaping any compact
subset of G(R)). Since g → ∞ is equivalent to g−1 → ∞, it follows that
ϕ0 → ∞ at the boundary of D.

Now, consider the decomposition

v0 =
∑
α

vα

by a-weights. Note that as A is Killing-orthogonal to K , a is odd and therefore
self adjoint with respect to hx0 . It follows then that the decomposition of∧dim DW gC into a-weight spaces is orthogonal with respect to hx0 , and thus
for T ∈ a,

ϕ0(exp(T )v0) = log hx0(exp(−T )v0) = log
∑
α

e−2α(T )hx0(vα).

Since ϕ0 → ∞ at the boundary, it follows that there can be no T ∈ a\{0} such
that α(T ) ≥ 0 for all α with vα �= 0. Thus, if 	 ⊂ a∨ is the convex hull of the
α for which vα �= 0, we must have 0 ∈ 	.
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84 B. Bakker, J. Tsimerman

For α ∈ a∨ denote by eα : A → R the function mapping exp(T ) to eα(T ),
for T ∈ a. Choosing a basis Ti of a, it then follows from the above that

log
∑

i

(
eT ∨

i (a) + e−T ∨
i (a)

)
� ϕ0 (ax0) + O(1)

and

ϕ0 (ax0) � log
∑

i

(
eT ∨

i (a) + e−T ∨
i (a)

)
+ O(1)

which imply the claim by (1). ��

2.3 Multiplicity bounds

For any r > 0 and x0 ∈ D, denote by

Bϕ0(r) := {x ∈ D | ϕ0(x) < r}
and for any Griffiths transverse analytic subvariety Z ⊂ D of dimension d,

volϕ0(Z) := 1

d!
∫

Z
(i∂∂ϕ0)

d .

Proposition 2.4 Let ω be the positive (1,1) form associated to the natural
left-invariant Hermitian metric on D.

(1) i∂∂ϕ0 ≥trans 0 and i∂∂ϕ0 = Otrans(ω);
(2) |∂ϕ0|2 = Otrans(i∂∂ϕ0).

In the statement of the proposition, the notations Otrans(·) and ≥trans mean the
bound holds in Griffiths transverse tangent directions.

Proof By definition, ωx (X, X) ∼ hx (X). For horizontal X , tr(X X) ∼ hx (X)

is larger (up to a fixed positive constant) than the maximum eigenvalue of
X∗hx with respect to hx . For X ∈ g−

x Hodge-pure and horizontal, by Lemma
2.1 and the fact that for any function f we have

∂∂ f (h(w)) = f ′∂∂h(w) + f ′′|∂h(w)|2

it follows that

∂∂ϕ0(X, X) = 2

(
hx (Xv0)

hx (v0)
+ hx (Xv0)

hx (v0)

)
− 4

∣∣∣∣hx (Xv0, v0)

hx (v0)

∣∣∣∣
2
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The Hodge-theoretic Ax–Schanuel conjecture 85

which is nonnegative by Cauchy–Schwarz (using that X is conjugate-adjoint)
and bounded (up to a fixed positive constant) by the maximal eigenvalue of
X∗hx with respect to hx , so (1) follows.

The second claim follows by Lemma 2.1 and the following lemma:

Lemma 2.5 There is a β > 0 (only depending on D) such that for any x ∈ D,
w ∈ HC, and X ∈ g−1,1

x ,

hx (w) · hx (Xw) + hx (Xw)

2
≥ (1 + β) |hx (Xw, w)|2 .

Proof Let w = ∑
i wi,n−i be the decomposition into Hodge components

at x , so that we have Hodge decompositions Xw = ∑
i Xwi,n−i , Xw =∑

i Xwi,n−i .
Now let

a2
i = hx (w

i,n−i ), b2i−1 = hx (Xwi,n−i ), c2i+1 = hx (Xwi,n−i ),

and we’ll also set bn = c0 = 0. Note that since X and X are adjoint we have

hx (Xw, w) =
∑

i

hx (Xwi+1,n−i−1, wi,n−i )

and

|hx (Xwi+1,n−i−1, wi,n−i )| = |hx (w
i+1,n−i−1, Xwi,n−i )|

≤ min(ai bi , ai+1ci+1).

Thus it is sufficient to show that

(
n∑

i=0

a2
i

) (
n−1∑
i=0

b2i +
n∑

i=1

c2i

)
≥ (2 + δ)

(
n∑

i=0

ai (ri bi + si ci )

)2

for some choice of nonnegative ri , si with ri + si+1 = 1 for 0 ≤ i ≤ n − 1.
By the Cauchy–Schwartz inequality, the left-hand side is greater than or equal

to

(∑n
i=0 ai

√
b2i + c2i

)2

. Thus, it suffices to show for each i ,

b2i + c2i ≥ (2 + δ) (ri bi + si ci )
2 .

Note that x2 + y2 − 2(r x + sy)2 is positive definite if (1− 2r2)(1− 2s2) >

4r2s2.
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86 B. Bakker, J. Tsimerman

Lemma 2.6 There exist non-negative real numbers r0, s1, r1, s2, . . . , sn−1,

rn−1, sn, with ri + si+1 = 1 for 0 ≤ i ≤ n − 1, max(r0, sn) < 1√
2
, and

(1 − 2r2i )(1 − 2s2i ) > 4r2i s2i for all 1 ≤ i ≤ n − 1.

Proof Note that at ri = si = 1
2 we get exact equality, in that (1 − 2r2i )(1 −

2s2i ) = 4r2i s2i . Thus, we set r j = 1
2 +δ j , where δ0 = 1

9 and δ j+1 is sufficiently
small in terms of δ j to ensure (1 − 2r2j+1)(1 − 2s2j+1) > 4r2j s2j . ��

The statement now follows by picking the ri , si from the previous lemma,
and setting (2+δ) to be the largest number such that x2+y2−(2+δ)(ri x+si y)2

is positive semi-definite for 1≤ i ≤ n− and 1−(2+ δ)s20 is nonnegative. ��
��

The previous proposition implies that the exponential growth of the ϕ0-
volume of a Griffiths transverse subvariety of D:

Proposition 2.7 There is a constant β > 0 such that for any R > 0 and
any positive-dimensional Griffiths transverse closed analytic subvariety Z ⊂
Bϕ0(R),

e−βr volϕ0(Z ∩ Bϕ0(r))

is a nondecreasing function in r ∈ [0, R].
Proof Let d = dim Z . Let ψ0 = −e−βϕ0 for β the constant from Lemma 2.5.
We have

i∂∂ψ0 = βe−βϕ0
(
i∂∂ϕ0 − β|∂ϕ0|2

)

which is nonnegative in Griffiths transverse directions by the proof of Propo-
sition 2.4(ii). By Stokes’ theorem we have

volϕ(Z ∩ Bϕ0(r)) =
∫

Z∩Bϕ0 (r)

(i∂∂ϕ0)
d

=
∫

Z∩∂ Bϕ0 (r)

dcϕ0 ∧ (i∂∂ϕ0)
d−1

= β−1eβr
∫

Z∩∂ Bϕ0 (r)

dcψ0 ∧ (i∂∂ϕ0)
d−1

= β−1eβr
∫

Z∩Bϕ0 (r)

i∂∂ψ0 ∧ (i∂∂ϕ0)
d−1

= β−deβdr
∫

Z∩Bϕ0 (r)

(i∂∂ψ0)
d

which implies the claim, as ψ0|Z is plurisubharmonic. ��
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The Hodge-theoretic Ax–Schanuel conjecture 87

Combining Proposition 2.7 with the comparison in Proposition 2.3, we are
now ready to prove Theorem 1.2:

Proof of Theorem 1.2 Choose a fixed euclidean ball B centered around x0
with respect to some coordinate system. By a classical result Federer (see for
example [16]), we have an inequality of the form voleucl(Z ∩ B) � multx0 Z .
Choose a fixed radius r0 such that B ⊂ Bϕ0(r0). After possibly shrinking B,
i∂∂ϕ0 is comparable to the euclidean Kähler form on B in Griffiths transverse
directions by Lemma 2.2, and combining this with the above proposition we
have

volϕ0(Z ∩ Bϕ0(r)) � eβr volϕ0(Z ∩ Bϕ0(r0)) � eβr multx0 Z (2)

for all r > r0.
Now, as the fibers of π : D → DW have fixed diameter with respect to the

natural left-invariant metric on D, there is ρ > 0 such that for any R > ρ

we have Bx0(R) ⊃ Bhoriz
x0 (R), where Bx0(R) (resp. Bhoriz

x0 (R)) is the radius R
ball centered at x0 with respect to the metric on D (resp. the distance function
dhoriz
0 ). By Proposition 2.3, after possible increasing ρ, there is a constant

C > 0 such that
Bx0(R) ⊃ Bhoriz

x0 (R) ⊃ Bϕ0(C R) (3)

for all R > ρ. Combining (3) and (2) with Proposition 2.4(1) yields the bound
in Theorem 1.2. ��

3 Definable fundamental sets

Throughout the following, by definable we mean definable with respect to the
o-minimal structure Ran,exp. Let X be a smooth algebraic variety supporting a
pure polarizable integral variation of Hodge structuresHZ, and let (X , E) be
a log-smooth compactification of X . For simplicity we may assume that HZ

has unipotent local monodromy and that the associated period map ϕ : X →
�\D is proper, although the argument carries through without making these
assumptions. We may also assume that the monodromy � is torsion-free.

The structure of X as an algebraic variety canonically endows it with the
structure of a definable complex analytic manifold, and the choice of com-
pactification (X , E) allows us to choose a definable atlas of X of finitely many
polydisks k × (∗)�. Note that any polydisk chart P in such an atlas {Pi }
can be shrunk to yield a new such atlas, as the complement of

⋃
Pi �=P Pi is

contained in P and has compact closure in the interior closure of P in X . Let

exp : k × H
� → k × (∗)�
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88 B. Bakker, J. Tsimerman

be the standard universal cover, and choose a bounded vertical strip � ⊂ H

such that k × �� is a fundamental set for the action of covering transforma-
tions. By the above remark, after shrinking a polydisk we may always restrict
to a region in k × �� where |zi | is bounded away from 1 on the  factors
and Im zi is bounded away from 0 on the � factors.

Choose lifts ϕ̃ : k × H
� → D of the period map restricted to each chart,

and let F be the disjoint union of k × �� over all charts. We then have a
diagram

F ϕ̃

exp

D

X

(4)

and F has a natural definable structure.
Note that the embedding D ⊂ Ď as a semialgebraic set gives D a canonical

definable structure.

Lemma 3.1 Both maps in (4) are definable.

Proof The claim for the vertical map is obvious. By the nilpotent orbit theo-
rem, for each polydisk ϕ̃ = ezN ψ̃ where ψ̃ = ψ ◦ exp for some extendable
holomorphic functionψ : n → D (after shrinking the polydisks). The action
of G(R) on D is definable, and ez·N is polynomial in z, so ϕ̃ : k × �� → D
is definable. ��

Fix a left-invariant metric hD on D and let � = ϕ̃(F).

Proposition 3.2 Let Z ⊂ Ď be a closed algebraic subvariety. For all γ ∈
G(Z), vol(Z ∩ γ�) = O(1).

Proof Evidently it is enough to show vol(Z ′ ∩ �) = O(1) for all Z ′ in the
same connected component of theHilbert scheme of Ď as Z . Further, it suffices
to show vol(ϕ̃−1(Z ′) ∩ k × ��) = O(1) for each lifted polydisk chart
ϕ̃ : k × H

� → D, where the volume is computed with respect to ϕ̃∗hD .
For any holomorphic horizontal map f : M → �\D we have f ∗hD � κM

where κM is the Kobayashi metric of M . In particular, for M = k × H
�

the metric κM is the maximum over the coordinate-wise Poincaré metrics.
After shrinking the polydisk, the factors in k × �� have finite volume with
respect to the Kobayashi metric of the larger polydisk, and thus it is enough
to uniformly bound the degree of the projection of ϕ̃−1(Z ′) to any subset of
coordinates.

By definable cell decomposition, for any definable subset L ⊂ R
N and any

coordinate projection R
N → R

M , the number of connected components in
the fibers of L is bounded. Applying this to the universal family of ϕ̃−1(Z ′) ⊂
k × ��, the claim follows.

��
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4 Heights

Fix a basepoint x0 ∈ � so that we have an identification D ∼= G(R)/V for a
compact subgroup V ⊂ G(R). Thinking of D as a space of Hodge structures
on the fixed integral lattice (HZ, QZ), as before we denote by hx the induced
Hodge metric on HC corresponding to x ∈ D.

Definition 4.1 For γ ∈ G(Z) let H(γ ) be the height of γ with respect to the
representation ρZ : G(Z) → GL(HZ). For g ∈ G(R), we denote by ||ρR(g)||
the maximum Archimedean size of the entries of ρR(g), so that if γ ∈ G(Z)

we have H(γ ) = ||ρR(γ )||.
For any R > 0 let Bx0(R) ⊂ D be the ball of radius R centered at x0. The

main goal of this section is to establish the following:

Theorem 4.2 For any R > 0, every element γ of

{γ ∈ G(Z) | B0(R) ∩ γ −1� �= ∅}
has height H(γ ) = eO(R).

Define d0(x) = d(x, x0). We write f � g if | f | � |g|O(1) + O(1), and
f � g if f � g and g � f .

Lemma 4.3 Let λ(x, x ′) be the maximal eigenvalue of hx with respect to hx ′ .
Then

(1) For all g ∈ G(R) we have ||ρR(g)|| � ed0(gx0);
(2) λ(x, x ′) � ed(x,x ′).

Proof Choose a maximal compact subgroup K ⊂ G(R) containing V and a
left-invariant metric on the associated symmetric space G(R)/K . Note that
the diameters of the fibers of G(R)/V → G(R)/K are bounded. Choosing a
K -orthogonal split maximal torus A ⊂ G(R) and a basis Ai of the Lie algebra
a of A, we have for any g ∈ G(R) with K AK decomposition g = k1ak2

√∑
i

t2i � d0(gx0) = d0(ax0) + O(1) �
√∑

i

t2i + O(1)

where a = exp(
∑

i ti Ai ). As

max
i

exp(|ti |) � ρR(g) � max
i

exp(|ti |)

part (1) follows.
For part (2), note that by G(R)-invariance we may restrict to the case x ′ =

x0. Setting ρ = ρR for convenience, note that tr(ρ(g)∗ρ(g)) is a sum of the
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eigenvalues of hgx0 with respect to hx0 , where ρ(g)∗ is the adjoint of ρ(g)

with respect to hx0 . Thus tr(ρ(g)∗ρ(g)) � λ(gx0, x0). As tr(ρ(g)∗ρ(g)) is
the sum of the squares of the entries of ρ(g), part (2) follows from part (1).

��
We define a proximity function of the boundary by the minimal period

length:

μ(x) = min
v∈HZ\{0} hx (v).

For any v ∈ HC we have log
hx0 (v)

hx (v)
� d0(x) + O(1) by part (2) of Lemma

4.3, and so we deduce the following:

Corollary 4.4 − logμ � d0 + O(1).

Proof There is some v ∈ HZ\{0} with logμ(x) = log hx (v) and thus

− logμ = − log hx (v) � log
hx0(v)

hx (v)
+ O(1) � d0(x) + O(1)

where we have used that hx0 is comparable to a standard Hermitian metric on
HC, so that hx0(v) � 1 for any v ∈ HZ\{0}. ��
When restricted to the fundamental set �, we in fact have a comparison in

the other direction:

Lemma 4.5 For x ∈ � we have d0(x) � − logμ(x) + O(1).

Proof We may assume F is a single k × ��. After choosing logarithms
N1, . . . , N� of the localmonodromyoperators of the variation overk×(∗)�,
let vi be a fixed basis of HZ descending to a basis of the multi-graded module
associated to the � weight filtrations, where we take each grading centered at
0. Let w

( j)
i for j = 1, . . . , � be the weights of vi w.r.t. N j . By Cattani et al.

[3], for every permutation π and on each region Sπ ⊂ k × H
� of the form

Im zπ(1) � · · · Im zπ(�) � 1 we have

hϕ̃(z)(vi ) ∼
(
Im zπ(1)

Im z2

)w
(1)
i · · ·

(
Im zπ(�−1)

Im zπ(�)

)w
(�−1)
i · (Im zπ(�))

w
(�)
i .

where “∼” means “within a bounded function of.” As the set of weights is
preserved under negation, it follows that maxi hϕ̃(z)(vi ) ∼ (mini hϕ̃(z)(vi ))

−1,
and so by Lemma 4.3,

d0(ϕ̃(z)) � max
i

log hϕ̃(z)(vi ) � − logμ(ϕ̃(z)) + O(1)
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uniformly on every such region. The Sπ can be made to cover the region
k × �� after shrinking �, and the result follows. ��
Proof of Theorem 4.2 Suppose x ∈ B0(R) ∩ γ −1� for γ ∈ G(Z). Putting
together Lemma 4.5 and Corollary 4.4 we have

d0(γ x) � − logμ(γ x) + O(1) = − logμ(x) + O(1) � d0(x) + O(1)

and since

d0(γ x0) ≤ d(γ x, γ x0) + d(γ x, x0) ≤ d0(x) + d0(γ x)

we are finished by part (1) of Lemma 4.3. ��

5 The proof of Theorem 1.1

The remainder of the proof follows the same general strategy as [12]. There
are sufficientlymany differences, however, that we include the necessarymod-
ifications.

Recall that D sits naturally as an open subset in its compact dual Ď which
has the structure of a projective variety. Let M be the Hilbert scheme2 of all
subvarieties of X × Ď with the same Hilbert polynomial as V . Moreover let
V → M be the universal family over M , with a natural embedding V ↪→
(X × Ď) × M .

Let VW be the base-change to W × M . The action of � on X × D lifts to
VW , and we define VX := �\VW , which is naturally an analytic variety. Note
that as M is proper, VW is proper over W , and likewise VX is proper over X .

We endow VX with a definable structure as follows. Since V is algebraic it
has an induced definable structure. By Lemma 3.1, pulling back toF × M and
quotienting out by the definable equivalence relation F → X we obtain the
desired definable structure on VX .

Suppose now for the sake of contradiction that the conclusion of Theorem
1.1 is false in the above setup.Moreover, suppose that among all counterexam-
ples, dim X is minimal, and subject to that assumption, codim V +codim W −
codimU is as large as possible, and subject to that assumption, that dimU is
maximal.

Define a closed analytic subvariety T ⊂ VW consisting of all pairs (p, V ′)
such that V ′ ∩ W has dimension at least dimU around p, and let T0 be the
irreducible component containing (p, V ) for some (hence any) point p ∈ U .
LetY := �\T0 ⊂ VX , which is a closed definable analytic subvariety.Now, the
projection q : Y → X is defineable and proper, so the image Z is a definable

2 Strictly speaking, a compactification of X should be chosen.
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closed complex analytic subvariety of X by Remmert’s theorem, and therefore
it is also algebraic by definable Chow [14] (see also [12]).Moreover, it contains
prX (U ), and thus it contains the smallest algebraic variety containing prX (U ),
so we may assume Z = X .

Consider the familyF of algebraic varieties parametrized by T0. Let �F ⊂
� be the subgroup of elements γ such that a very general3 fiber ofF is stable
under γ . The stabilizer of a very general fiber of F in � is then exactly �F .
Let � be the identity component of the Q-Zariski closure of �F in G.

Lemma 5.1 � is a normal subgroup of G.

Proof Let W ′ be a connected component of W which intersects X × �. Note
that W ′ is stable under the monodromy group � of X . Clearly F is stable
under the image �Y of π1(Y ) → π1(X) → G(Z) which is finite index in �,
and therefore �Y is Zariski-dense in G by André [1].

Each element of �Y sends a very general fiber ofF to a very general fiber,
so by the above remark �F = γ · �F · γ −1 for all γ ∈ �Y . It follows that �
is invariant under conjugation by �Y and hence by the Zariski closure of �Y
as well, which is all of G. ��
Proposition 5.2 � is the identity subgroup.

Proof Without loss of generality V is a very general fiber of F , and hence is
invariant by exactly �. Since � is a Q-group by construction, it follows that
G is isogenous to �1 × �2 with �2 = � and we have a splitting of weak
Mumford–Tate domains D = D1 × D2 with Di = D(�i ). Replacing X by a
finite cover we also have a splitting of the period map [6, Theorem III.A.1]

ϕ = ϕ1 × ϕ2 : X → �1\D1 × �2\D2.

Moreover, ϕ1, ϕ2 satisfy Griffiths transversality (see the proof of [6, Theorem
III.A.1]). Note that V ⊂ X × D by assumption, and as V is invariant under
�2 it is of the form V1 × D2 where V1 ⊂ X × D1.

Consider the period map X → �1\D1, the resulting W1 ⊂ X × D1, and the
subvariety V1 ⊂ X × D1. Let U1 be the component of V1 ∩ W1 onto which U
projects. By assumption the theorem applies in this situation, and asU1 cannot
be contained in a proper weak Mumford–Tate subdomain (for then U would
as well), we must have

codimX×D1(U1) = codimX×D1(V1) + codimX×D1(W1).

3 Recall that very general means in the complement of countably many proper closed subvari-
eties.
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Note that the projection W → W1 has discrete fibers, so dim W = dim W1
and dimU = dimU1, whereas codim V1 = codim V , which is a contradiction
if ϕ2 is non-constant. ��

It follows that V is not invariant by any infinite subgroup of �. The proof
of Theorem 1.1 is then completed by the following lemma, which produces a
contradiction:

Lemma 5.3 V is invariant by an infinite subgroup of �.

Proof Consider the definable set

I := {g ∈ G(R) | dim (gV ∩ W ∩ (X × �)) = dimU }.
Clearly, I contains γ ∈ � whenever U intersects X × γ −1�. We may assume
1 ∈ I , and take x0 ∈ � the second coordinate of a point of intersection of U
and X × �.

For any sufficiently large R > 0, consider the ball Bx0(R) centered at x0.
On the one hand, by Theorem 1.2 we have

vol
(
U ∩ (

X × Bx0(R)
)) � eβ R .

U is covered with bounded overlaps by U ∩ (X ×γ −1�) for γ ∈ G(Z), so by
Proposition 3.2 it follows that I has eω(R) integer points.4 On the other hand,
by Theorem 4.2 each of these points has height eO(R), and it follows by the
Pila–Wilkie theorem [15, Theorem 1.8] that I contains a real algebraic curve
C containing arbitrarily many integer points, in particular at least 2 integer
points.

If cV is constant in c ∈ C , then V is stable under C ·C−1. Since C contains
at least 2 integer points, it follows that V is stabilized by a non-identity integer
point, completing the proof (since � is torsion free). So we assume that cV
varies with c ∈ C . Note that since C contains an integer point that ϕ̃(cV ∩ W )

is not contained in a weak Mumford-Tate subdomain for at least one c ∈ C ,
and thus for all but a countable subset of C (since there are only countably
many families of weak Mumford–Tate subdomains).

We now have two cases to consider. First, suppose that U ⊂ cV for all
c ∈ C . Then we may replace V by cV ∩ c′V for a generic c, c′ ∈ C and lower
dim V , contradicting our induction hypothesis on dim V − dimU .

On the other hand, if it is not true that U ⊂ cV for all c ∈ C then cV ∩ W
varies with C , and so we may set V ′ to be the Zariski closure of C · V . This
increases the dimension of V by 1, but then dim V ′ ∩ W = dimU +1 as well,

4 Recall that for a function f (R), saying f (R) = ω(R) means that for some positive constant
δ > 0 we have f (R) ≥ δR.
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and thus we again contradict our induction hypothesis, this time on dimU .
This completes the proof.

��
Acknowledgements The first author was partially supported by NSF grant DMS-1702149.
We would like to thank the referee for helpful comments and for suggestions which improved
the readability of the paper.

References

1. André, Y.: Mumford-Tate groups of mixed Hodge structures and the theorem of the fixed
part. Compos. Math. 82(1), 1–24 (1992)

2. Cattani, E., Deligne, P., Kaplan, A.: On the locus of Hodge classes. J. Am. Math. Soc. 8(2),
483–506 (1995)

3. Cattani, E., Kaplan, A., Schmid, W.: Degeneration of Hodge structures. Ann. Math. (2)
123(3), 457–535 (1986)

4. Carlson, J., Müller-Stach, S., Peters, C.: PeriodMappings and Period Domains. Cambridge
Studies in AdvancedMathematics, vol. 85. Cambridge University Press, Cambridge (2003)

5. Gao, Z.: Towards the Andre–Oort conjecture for mixed Shimura varieties: the Ax–
Lindemann theorem and lower bounds for Galois orbits of special points. J. Reine Angew.
Math. 732, 85–146 (2017)

6. Green, M., Griffiths, P., Kerr, M.: Mumford–Tate Groups and Domains. Annals of Mathe-
matics Studies, vol. 183. Princeton University Press, Princeton (2012)

7. Griffiths, P., Schmid, W.: Locally homogeneous complex manifolds. Acta Math. 123, 253–
302 (1969)

8. Hwang, J., To, W.: Volumes of complex analytic subvarieties of Hermitian symmetric
spaces. Am. J. Math. 124(6), 1221–1246 (2002)

9. Klingler, B.: Hodge loci and atypical intersections: conjectures (2017). arXiv:1711.09387
10. Klingler, B.,Ullmo, E.,Yafaev,A.: The hyperbolicAx–Lindemann–Weierstrass conjecture.

Publ. Math. Inst. Hautes Études Sci. 123, 333–360 (2016)
11. Lawrence, B., Venkatesh, A.: Diophantine problems and p-adic period mappings (2018).

arXiv:1807.02721
12. Mok, N., Pila, J., Tsimerman, J.: Ax–Schanuel for Shimura varieties (2017).

arXiv:1711.02189
13. Pila, J.: O-minimality and the André–Oort conjecture forC

n . Ann.Math. (2) 173(3), 1779–
1840 (2011)

14. Peterzil, Y., Starchenko, S.: Expansions of algebraically closed fields. II. Functions of
several variables. J. Math. Log. 3(1), 1–35 (2003)

15. Pila, J., Wilkie, A.J.: The rational points of a definable set. Duke Math. J. 133(3), 591–616
(2006)

16. Stolzenberg, G.: Volumes, Limits, and Extensions of Analytic Varieties. Lecture Notes in
Mathematics, No. 19. Springer, Berlin (1966)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

123

http://arxiv.org/abs/1711.09387
http://arxiv.org/abs/1807.02721
http://arxiv.org/abs/1711.02189

	The Ax–Schanuel conjecture for variations  of Hodge structures
	Abstract
	1 Introduction
	1.1 History
	1.2 Statement of results
	1.3 Outline of the proof

	2 Volume estimates
	2.1 Hodge norms
	2.2 Distance functions
	2.3 Multiplicity bounds

	3 Definable fundamental sets
	4 Heights
	5 The proof of Theorem 1.1
	Acknowledgements
	References




