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Abstract Given an ample line bundle on a toric surface, a question of Don-
aldson asks which simple closed curves can be vanishing cycles for nodal
degenerations of smooth curves in the complete linear system. This paper pro-
vides a complete answer. This is accomplished by reformulating the problem
in terms of the mapping class group-valued monodromy of the linear system,
and giving a precise determination of this monodromy group.

1 Introduction

Let X be a smooth toric surface and L an ample line bundle on X . In the
complete linear system |L|, there is a hypersurfaceD knownas thediscriminant
locus consisting of the singular curves C ∈ |L|. The complement

M(L) := |L| \D
therefore supports a tautological family of closed Riemann surfaces of some
genus g(L). Topologically, this is a fiber bundle π : E(L) → M(L) with fiber
�g(L). Consequently, there is a monodromy representation
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154 N. Salter

μL: π1(M(L),C0) → Mod(C0).

Here, C0 ∈ M(L) is a fixed curve, and Mod(C0) := π0(Diff+(C0)) denotes
the mapping class group of C0 (see Sect. 2.1). Under μL, a based loop
γ ∈ π1(M(L),C0) is mapped to (the isotopy class of) the diffeomorphism
μL(γ ) ∈ Diff(C0) obtained by “parallel transport” of C0 along γ . For details,
see, e.g., [7, Section 5.6.1].

In this paper,we give a nearly complete answer to the following fundamental
question. Define

�L := Im(μL) � Mod
(
�g(L)

)
.

Question 1.1 What is �L? When is it a finite-index subgroup ofMod(�g(L))?
Can one give a precise characterization of �L?

Question 1.1 is closely related to a question posed by Donaldson [6]. Fix a
curve C0 ∈ M(L) and an identification C0 ∼= �g(L). Define a vanishing cycle
for L as a simple closed curve γ on C0 for which there is a degeneration of
C0 to a curve C ′ with a single node, such that γ becomes null-homotopic on
C ′. If c is a vanishing cycle, then necessarily the Dehn twist Tc lies in �L; it
arises from a loop in M(L) encircling the nodal curve in |L|.
Question 1.2 (Donaldson) For L an ample line bundle on a smooth toric
surface X, which curves (on a fixed C0) are vanishing cycles?

A first insight into Questions 1.1 and 1.2 is to observe the presence of an
invariant “higher spin structure”. Let KX denote the canonical bundle of X .
The adjoint line bundle of L is the line bundle L⊗ KX . Define r ∈ N to be the
highest root ofL⊗KX in Pic(X). As explained in Proposition 10.2, associated
to L ⊗ KX is a Z/rZ-valued spin structure φL, and the associated stabilizer
subgroup Mod(�g(L))[φL] (see Definition 3.14). Proposition 10.2 asserts that
necessarily �L � Mod(�g(L))[φL]. The function φL gives rise to a notion
of admissible curve and the associated subgroup TφL � Mod(�g(L))[φL] of
admissible twists (see Definition 3.16). If a curve c is a vanishing cycle, it is
necessarily admissible; see Lemma 3.15. Our main theorem asserts that these
necessary conditions are also sufficient (at least “virtually” so, in the case r is
even).

Theorem A Let L be an ample line bundle on a smooth toric surface X for
which the generic fiber is not hyperelliptic. Assume r > 1 or else g(L) ≥ 5.

• If r is odd, then �L = Mod(�g(L))[φL].
• If r is even, then�L � Mod(�g(L)) is a finite-index subgroup that contains
TφL .
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Monodromy and vanishing cycles in toric surfaces 155

In either case, [Mod(�g(L)) : �L] is finite. Moreover, Question 1.2 admits the
following complete answer: a curve γ is a vanishing cycle if and only if γ is
an admissible curve.

We remark thatmany familiar algebraic surfaces such asCP
2 andCP

1×CP
1

are smooth toric surfaces. For instance, as a special case of Theorem A we
obtain the following theorem concerning smooth plane curves. The case d = 5
was addressed in [17], while the cases d ≤ 4 are either classical or trivial.

Theorem 1.3 Set g = (d−1
2

)
, and define

�d � Mod(�g)

to be the monodromy group of the family of smooth curves in CP
2 of degree

d, i.e. the group �L for the line bundle L = O(d) on CP
2. Then there exists a

Z/(d − 3)Z-valued spin structure φd such that the following hold.

• If d is even, then �d = Mod(�g)[φd ].
• If d is odd, then �d is of finite index in Mod(�g)[φd ], where �d contains
the subgroup Tφd of admissible twists.

Theorem A also addresses a conjecture that was independently formulated
by the author in [17] in the case of X = CP

2, and in full generality by Crétois
and Lang [3].

Conjecture 1.4 For any pair (X,L) as above, there is an equality

�L = Mod(�g(L))[φL].

TheoremA resolves Conjecture 1.4 in the affirmativewhenever r is odd, and
shows that in the case r even, �L is at least of finite index in Mod(�g(L))[φL].

Theorem A is proved using a combination of methods from toric geometry
and the theory of themapping class group. On the toric end of the spectrum, we
make essential use of the powerful results developed by Crétois and Lang [3].
The centerpiece of their theory is a combinatorial model for a curve C0 ∈
M(L) based around a convex lattice polygon. Their results give a description
of vanishing cycles in terms of lattice points and line segments, and allow
one to produce many elements of �L. Crétois–Lang developed their methods
in order to address Question 1.2 and Conjecture 1.4 in the case r ≤ 2, and
obtained complete answers in these cases. See [3] for the case r = 1, and [4]
for the case r = 2, as well as the case where the general fiber is hyperelliptic.

On the mapping class group side, we carry out an extensive investigation
of the groups Mod(�g)[φ] and Tφ mentioned above. We remark here that the
theory of higher spin structures does not require the presence of a specific
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156 N. Salter

ample line bundle L, and so we adjust notation accordingly and refer to Rie-
mann surfaces �g, spin structures φ, etc. Our main result here is a general
criterion for a collection of Dehn twists to generate (a finite-index subgroup
of) Mod(�g)[φ], given in Theorem 9.5.
Outline of the paper The bulk of the paper (Sects. 2–9) is devoted to developing
the mapping class group technology necessary to show that the vanishing
cycles investigated by Crétois–Lang generate a finite-index subgroup of the
mapping class group. This culminates in Theorem 9.5. Portions of Theorem
9.5 are established earlier in Propositions 5.1 and 6.2.

Sections 2–4 contain preliminary results that are used throughout the paper.
Section 2 collects the necessary background on mapping class groups; these
results are standard and are included so as to fix notation and terminology, and
to serve as a guide to the reader approaching the paper from a background in
toric geometry. Section 3 presents the basic theory of higher spin structures,
building off the foundational work of Humphries and Johnson [9]. Section
4 describes the action of the mapping class group on the set of higher spin
structures. This yields several crucial corollaries (Corollaries 4.5, 4.10, 4.11)
concerning the existence of configurations of curveswith prescribed properties
which are used extensively in subsequent sections.

Theorem 9.5 gives a criterion for a collection of Dehn twists to generate
the so-called admissible subgroup Tφ associated to a higher spin structure φ.
A study of the admissible subgroup is sufficient to answer Question 1.2. The
reader interested only in this portion of Theorem A can skip Sects. 5 and 6 and
jump directly from Sects. 4–7.

The proof of Theorem 9.5 is carried out in Sects. 7–9. Section 7 establishes
the connectivity of certain simplicial complexes acted on by the stabilizer
subgroup of a higher spin structure. These results are used in the argument
of Sect. 8, and also underlie the method by which the admissible subgroup
is used to study the set of vanishing cycles. Section 8 is devoted to a study
of certain subgroups of the admissible subgroup; the main result Proposition
8.2 furnishes a generating set for Tφ in terms of these subgroups. Section 9
introduces the notion of a network; ultimately a network is a technical device
used to factor the generators given in Proposition 8.2 into products of Dehn
twists. Theorem 9.5 gives a sufficient condition, formulated in the language
of networks, for a collection of Dehn twists to generate a subgroup containing
the admissible subgroup.

The portion of Theorem A that goes beyond Question 1.2 concerns estab-
lishing that the admissible subgroup is finite-index in the mapping class group.
This is the content of Sects. 5 and6,which treat the casewhere theZ/rZ-valued
spin structure under study has r odd or even, respectively. The arguments for
these two cases are substantially different, owing to the fact that in the case of

123



Monodromy and vanishing cycles in toric surfaces 157

r even, the higher spin structure has an Arf invariant which must be accounted
for in various guises.

The net result of Sects. 2–9 is a criterion for a finite collection of Dehn twists
to generate a finite-index subgroup of the mapping class group. In the final two
sections, these results are applied in the setting of monodromy groups of linear
systems on toric surfaces. Section 10 contains the necessary backgroundmate-
rial on toric surfaces, concentrating on the work of Crétois–Lang describing a
particular finite collection of vanishing cycles. Section 11 exhibits a network
amongst the set of vanishing cycles discussed in Sect. 10 and verifies that this
network satisfies the hypotheses of Theorem 9.5 in order to obtain Theorem
A.

2 Mapping class groups

This section collects background material on mapping class groups that will
be used throughout the arguments in Sects. 3–9. Most of the material can be
found in [7] and so will only be touched on briefly. The exception to this is
the Dn relation of Sect. 2.3, which will consequently be dealt with in greater
detail.

2.1 Basics

The material in this section is almost certainly well-known to a reader con-
versant in mapping class groups, but is included so as to fix notation and
terminology.

Genus, boundary, puncturesAll surfaces under consideration are oriented and
of finite type. A surface of genus g with n punctures and b boundary compo-
nents is denoted by �n

g,b. When one or more of b, n = 0, the corresponding
decoration will be omitted.

Intersection numbersLet a, b be simple closed curves on a surface S. Often we
will confuse the distinction between a simple closed curve and its isotopy class.
The geometric intersection number between a, b will be notated i(a, b) (see
[7, Section 1.2.3]). For oriented simple closed curves a, b, the algebraic inter-
section number is denoted 〈a, b〉. Of course, algebraic intersection depends
only on the homology classes [a], [b] ∈ H1(S; Z).

Mapping class groupsLet�n
g,b be a surface. Themapping class group of�

n
g,b,

written Mod(�n
g,b), is defined as
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a1 a2

b1 b2 b3 bg

c1 c2

d1

d2

d3

d4

d5

Fig. 1 The standard generators for �3
g,3

Mod(�n
g,b) :=π0

(
Diff+(�n

g,b, ∂�n
g,b)

)
,

where Diff+(�n
g,b, ∂�n

g,b) denotes the group of orientation-preserving diffeo-
morphisms of �n

g,b that restrict to the identity on the boundary of �n
g,b and fix

the punctures pointwise (not merely setwise, as some authors adopt).

The standard generators For a simple closed curve a on �n
g,b, the left-handed

Dehn twist about a is written Ta . For g ≥ 2, the standard generators form a
generating set for Mod(�n

g,b) consisting of the Dehn twists about the curves
a1, a2, b1, . . . , bg, c1, . . . , cg−1, d1, . . . , db+n−1 shown in Fig. 1.

The change-of-coordinates principle The classification of surfaces theorem
asserts that if S, S′ are two (connected and orientable) surfaces of finite type
with the same genus, number of punctures, and number of boundary compo-
nents, then there is a diffeomorphism f : S → S′. This is often exploited in
the study of mapping class groups in the guise of the “change-of-coordinates
principle”. It is difficult to write down a single, all-encompassing statement of
the change-of-coordinates principle, but informally, it states that any configu-
ration of curves, arcs, and/or subsurfaces of a surface S is determined up to
diffeomorphism by combinatorial information alone. In the present paper, the
change-of-coordinates principle will often be invoked tacitly. The reader inter-
ested in a more thorough discussion of the change-of-coordinates principle is
referred to [7, Section 1.3].

One consequence of the change-of-coordinates principle is that it becomes
easy to understand theMod(S) orbits ofmanydifferent kinds of configurations.
As an example, we discuss here the action on geometric symplectic bases for
S.

Definition 2.1 Let S be a surface of genus g ≥ 0 with n ≥ 0 boundary
components and b ≥ 0 punctures. A geometric symplectic basis for S is a col-
lection of oriented simple closed curves B = {α1, β1, . . . , αg, βg} satisfying
the following properties:
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Monodromy and vanishing cycles in toric surfaces 159

(1) i(ai , bi ) = 1 for each i = 1, . . . , g, and all other pairs of elements of B
are disjoint,

(2) 〈[ai ], [bi ]〉 = 1 for each i = 1, . . . , g.

Remark 2.2 The (homology classes of the) curves in a geometric symplectic
basis form a basis for H1(S; Z) in the sense of linear algebra only when
n + b ≤ 1. In this paper, geometric symplectic bases are used to study Z/rZ-
valued spin structures. Proposition 3.8 and Theorem 3.9 together imply that a
Z/rZ-valued spin structure is determined by its “signature” (Definition 4.1)
in combination with its values on a geometric symplectic basis.

The following is a typical statement that is proved using the change-of-
coordinates principle.

Lemma 2.3 LetB andB′ be two geometric symplectic bases for S. Then there
is a diffeomorphism f : S → S such that f (B) = B′.

2.2 The Birman exact sequence

A reference for this subsection is [7, Section 4.2]. Consider a surface �n
g,b

with n ≥ 1 and 2g+b+n ≥ 4. There is an inclusion �n
g,b ↪→ �n−1

g,b obtained
by filling p in. This induces the Birman exact sequence

1 → π1(�
n−1
g,b , p) → Mod(�n

g,b) → Mod(�n−1
g,b ) → 1. (1)

There is a slight variation on the Birman exact sequence where one fills in a
boundary component with a closed disk, originally due to Johnson. In order to
formulate this, we recall that the unit tangent bundle to a surface S is written
UTS. Then the inclusion �n

g,b → �n
g,b−1 induces the short exact sequence

1 → π1(UT�n
g,b−1, p̃) → Mod(�n

g,b) → Mod(�n
g,b−1) → 1, (2)

where p̃ is a unit tangent vector based at p. In both situations, the kernels
admit descriptions in terms of Dehn twists. Consider first the case of (1). Let
α be an embedded, oriented simple closed curve based at p, corresponding
to an element α ∈ π1(�

n−1
g,b , p). Let αL (resp. αR) denote the left (resp.

right) side of a neighborhood of α. Both αL , αR are simple closed curves
on �n

g,b. Then α ∈ π1(�
n−1
g,b , p) corresponds to TαL T

−1
αR

∈ Mod(�n
g,b). The

embedding P: π1(�
n−1
g,b , p) → Mod(�n

g,b) is known as the point-pushing

map, and π1(�
n−1
g,b ) is often referred to as the point-pushing subgroup of

Mod(�n
g,b).

It is a basic topological fact that for any surface �n−1
g,b , there exists a col-

lection of simple closed curves α1, . . . , αk based at p, such that {α1, . . . , αk}
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160 N. Salter

generates π1(�
n−1
g,b , p). In practice, this means that to exhibit π1(�

n
g,b, p) as

a subgroup of some group H � Mod(�n
g,b), it suffices to exhibit this finite

collection of multitwists.
In the case of (2), everything is much the same. Let �n

g,b ↪→ �n
g,b−1 be an

inclusion corresponding to capping off a boundary component � of �n
g,b. Let

p ∈ �n
g,b−1 be a point on the interior of this new disk, and p̃ a tangent vector at

p. Suppose that α̃ ∈ π1(UT�n
g,b−1, p̃) corresponds to a framed simple closed

curve α based at p̃. We define αL and αR as before. Then

P(α̃) = TαL T
−1
αR

T k
�

where k ∈ Z is the winding number of the tangent vector field specified by
α̃, relative to the tangential framing of the underlying curve α. The subgroup
π1(UT�n

g,b−1, p̃) is known as the disk-pushing subgroup of Mod(�n
g,b).

There is an analogous set of “geometric” generators for π1(UT�n
g,b−1, p̃).

Letα1, . . . , αk be a collection ofC1-embedded simple closed curves on�n
g,b−1

based at p such that π1(�
n
g,b−1, p) = 〈α1, . . . , αk〉 as above. Each αi deter-

mines an element α̃i ∈ π1(�
n
g,b−1, p̃) via the so-called Johnson lift, whereby

αi is framed using the forward-pointing tangent vector. Suppose that each
α̃i is based at some common tangent vector p̃. Then π1(UT�n

g,b−1, p̃) has a
generating set of the following form:

π1(UT�n
g,b−1, p̃) = 〈α̃1, . . . , α̃k, ζ 〉,

where ζ is the loop around the S1 fiber in the fibration S1 → UT�n
g,b−1 →

�n
g,b−1. In terms of Dehn twists, the Johnson lifts α̃i correspond to mapping

classes Tαi,L T
−1
αi,R

as before, while ζ corresponds to T�.

2.3 Relations

In this subsection we collect various relations in the mapping class group that
will be used throughout the paper.

The braid relation Suppose a, b are simple closed curves satisfying i(a, b) =
1. Then the corresponding Dehn twists satisfy the braid relation:

TaTbTa = TbTaTb.

Wewill also employ the following alternative form, formulated in terms of the
curves a, b themselves:
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Monodromy and vanishing cycles in toric surfaces 161

TaTb(a) = b.

The chain relation A chain of simple closed curves is a sequence (a1, . . . , an)
of simple closed curves such that i(ai , ai+1) = 1 and i(ai , a j ) = 0 other-
wise. Let ν denote a regular neighborhood of a chain of length n, where the
representative curves a1, . . . , an are in minimal position. When n is odd, ∂ν

has two components �1 and �2; for n even, ∂ν = � is a single (necessarily
separating) curve. Abusing terminology, we will speak of the boundary of a
chain itself, by which we mean the boundary of ν. Given a subsurface S with
1 or 2 boundary components, a chain a1, . . . , an of curves on S is maximal if
there is a deformation retraction of S onto a1∪· · ·∪an . The following appears
as [7, Proposition 4.12].

Proposition 2.4 (Chain relation) For n odd,

(Ta1 . . . Tan )
n+1 = T�1T�2,

and for n even,

(Ta1 . . . Tan )
2n+2 = T�.

Remark 2.5 The intersection pattern of a chain of n simple closed curves
is recorded by the Dynkin diagram of type An , where vertices in the graph
are adjacent if the corresponding curves intersect, and are nonadjacent if the
curves are disjoint. Such a chain of curves determines a homomorphism from
theArtin group A(An) of type An into themapping class groupMod(ν), where
generators of A(An) are sent to Dehn twists about the corresponding curves.

Under this homomorphism, the chain relation is a consequence of the fact
that A(An) has nontrivial center. The twist(s) about the boundary component(s)
appearing on the right-hand side of the expressions in Proposition 2.4 are
elements of the center of Mod(ν), while the left-hand side merely gives the
expression for a generator of Z(A(An)) as a word in the standard generators of
A(An). In [15, Section 2.4], Matsumoto explains how to determine the precise
expression for this central element as a Dehn multitwist; this is the principle
underlying the “Dn relation” given in Proposition 2.6 below.

The Dn relation There is an analogous (though less ubiquitous) relation that
arises from a configuration of curves whose intersection pattern is modeled on
the Dynkin diagram of type Dn . Proposition 2.6 below is the specialization of
[15, Proposition 2.4] to the case of an Artin group of type Dn . The case of n
odd is treated explicitly in [15, Theorem 1.5], while the case of n even is given
an alternate proof in [17, Proposition 4.5].
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Δ0

Δ1

Δ′
1

Δ2
a

a′

c1

c2

c3

c4

c2g−1

c2g

Fig. 2 The configuration of curves used in the Dn relation. Note the presence of the unlabeled
curve c2g+1 on the far right side

Proposition 2.6 (Dn relation) Let n ≥ 3 be given, and express n = 2g+ 1 or
n = 2g + 2 according to whether n is odd or even. With reference to Fig. 2,
let Hn be the group generated by elements of the form Tx , with x ∈ Dn one of
the curves below:

Dn = {
a, a′, c1, . . . , cn−2

}
.

Then for n = 2g + 1 odd,

T 2g−1
�0

T�2 ∈ Hn,

and for n = 2g + 2 even,

T g
�0

T�1T�′
1

∈ Hn.

The Dn relation has some useful consequenceswhichwe record inCorollary
2.7 below. It is necessary to first describe the curves Ck that will appear in
the statement. For 1 ≤ k ≤ g + 1, let νk be a regular neighborhood of the
subconfiguration D2k+1 ⊂ Dn . Each such νk is a surface of genus k with two
boundary components. One of these is �0; the other is defined to be the curve
Ck . Note in particular that Cg = �2 and that Cg+1 is the unlabeled boundary
component of the ambient surface on the far right side of Fig. 2.

Corollary 2.7 Fix notation as in Proposition 2.6, and for 1 ≤ � ≤ 2g + 3,
consider the configurations

D� = {
a, a′, c1, . . . , c�−2

}

as in Fig. 2. Let H+
2g+3 be the group generated by H2g+3 and the Dehn twist

T�1 . Then the following assertions hold:

(1) T�′
1

∈ H+
2g+3,
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(2) Tm
Ck

∈ H+
2g+3 for any 1 ≤ k ≤ g + 1 and any m such that (2k − 1)m

divides g.

Proof The proof of (1) follows from an important simple principle. Given a
mapping class f and a simple closed curve d, there is a relation

f Td f
−1 = T f (d).

It follows that if f, Td ∈ H+
2g+3, then also T f (d) ∈ H+

2g+3. To establish (1), we

will find f ∈ H+
2g+3 such that f (c2g+1) = �′

1. This will be accomplished by
means of the braid relation.

The curves a, a′, c1, . . . , c2g are arranged in the configuration of the D2g+2
relation; the boundary components correspond to �0, �1, �

′
1. By the D2g+2-

relation (Proposition 2.6),

T g
�0

T�1T�′
1

∈ H+
2g+3,

and since T�1 ∈ H+
2g+3 by assumption, also T g

�0
T�′

1
∈ H+

2g+3. Since �0 is
disjoint from both c2g+1 and �′

1, the braid relation implies that

Tc2g+1T
g
�0

T�′
1
(c2g+1) = Tc2g+1T�′

1
(c2g+1) = �′

1.

Since (T g
�0

T�′
1
) ∈ H+

2g+3, this shows T�′
1

∈ H+
2g+3 as required.

We observe that (2) follows from the D2k−1 relation (as applied to the
subconfiguration D2k−1) and the claim that T g

�0
∈ H+

2g+3; this latter assertion
follows from the D2g+2 relation (applied to D2g+2) and (1). �

2.4 The Torelli group

Most of the material in this subsection can be found in [7, Chapter 6], but see
also [12]. We begin by observing that the action of Mod(�g) on H1(�g; Z)

preserves the algebraic intersection pairing 〈·, ·〉, leading to the symplectic
representation

�: Mod(�g) → Sp(2g, Z). (3)

This is classically known to be a surjection. The Torelli group, notated Ig, is
the kernel of this representation:

Ig := ker(�).
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Bounding pairs and separating twists There are two types of elements in Ig
thatwill be of particular importance. Suppose that c, d are simple closed curves
such that c∪d bounds a subsurface S ∼= �h,2. Then TcT

−1
d ∈ Ig is known as a

bounding pair map. The genus of a bounding pair map is slightly ambiguous:
if c ∪ d bounds a surface �h,2, then also c ∪ d bounds a surface �g−h−1,2

on the other side. One defines the genus of TcT
−1
d as min{h, g − h − 1}. The

second important class of elements is the class of separating twists—these are
Dehn twists Tc for c a separating curve. The genus of a separating twist Tc that
bounds a subsurface of genus h is defined as g(c) = min{h, g − h}.
The Johnson homomorphismA fundamental tool in the study of Ig is the John-
son homomorphism, due to Johnson [10]. This is a surjective homomorphism

τ : Ig → ∧3HZ/HZ, (4)

where for convenience we define HA := H1(�g; A) for some abelian group
A. The embedding HZ ↪→ ∧3HZ is defined via

z �→ z ∧ (x1 ∧ y1 + · · · + xg ∧ yg),

where {x1, . . . , yg} is a symplectic basis for HZ. Recall that a symplectic basis
must satisfy 〈xi , yi 〉 = 1 and 〈xi , x j 〉 = 〈xi , y j 〉 = 0 for i �= j .

We will not need to know a precise definition of τ , but it will be useful to
know some basic properties of τ , including how to compute τ on bounding
pair maps and separating twists.

Lemma 2.8 (Johnson [10])

(1) τ is Sp(2g; Z)-equivariant, with respect to the conjugation action on Ig
and the evident action on ∧3HZ/HZ.

(2) τ(Tc) = 0 for any separating twist Tc.
(3) Let c∪d bound a subsurface�h,2. Choose any further subsurface�h,1 ⊂

�h,2, and let {x1, y1, . . . , xh, yh} be a symplectic basis for H1(�h,1; Z).
Then

τ(TcT
−1
d ) = (x1 ∧ y1 + · · · + xh ∧ yh) ∧ [c],

where c is oriented with �h,2 to the left. In the case h = 1, if α, β, γ is a
maximal chain on �1,2, then

τ(TcT
−1
d ) = [α] ∧ [β] ∧ [γ ].
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The Johnson kernelThe Johnson kernel,writtenKg, is the kernel of the Johnson
homomorphism:

Kg := ker(τ ).

A fundamental theorem of Johnson gives an alternate characterization of Kg
in terms of separating twists.

Theorem 2.9 (Johnson [13]) Let Tg be the subgroup of Kg generated by all
separating twists of genus at most two. Then for all g ≥ 3,

Tg = Kg.

3 Spin structures

In this sectionwe introduce and study higher spin structures and their stabilizer
subgroups. Section 3.1 defines higher spin structures and presents the work
of Humphries–Johnson that gives a cohomological formulation of a higher
spin structure. Section 3.2 discusses some cut-and-paste operations on simple
closed curves and how these operations interact with higher spin structures.
Section 3.3 defines spin structure stabilizer groups and some important ele-
ments of these groups. Finally Sect. 3.4 explains the connection between higher
spin structures and the classical theory of spin structures as quadratic forms
on vector spaces over Z/2Z.

3.1 Spin structures

Let S be a surface of genus g ≥ 0. For simplicity, we assume in this section
that S can have boundary components but not punctures; for surfaces with
puncture, one can simply remove an open neighborhood of the puncture to
produce a surface with boundary. Let S denote the set of isotopy classes of
oriented simple closed curves on S. In keeping with standard practice, the term
“curve” will often be used to refer to an isotopy class of curves. Crucially,
curves are not required to be essential [see property (2) of Definition 3.1]. The
following definition is due to Humphries and Johnson [9]; see Remark 3.2 for
a discussion of how to reconcile their definition with the one given here.

Definition 3.1 (spin structure) A Z/rZ-valued spin structure on S is a func-
tion φ:S → Z/rZ satisfying the following two properties.

(1) (Twist-linearity) Let c, d ∈ S be arbitrary. Then

φ(Tc(d)) = φ(d) + 〈d, c〉φ(c) (mod r).
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(2) (Normalization) For ζ the boundary of an embedded disk D ⊂ S, oriented
with D to the left, φ(ζ ) = 1.

Remark 3.2 The definition of a Z/rZ-valued spin structure presented in
Definition 3.1 is superficially different from that given byHumphries and John-
son [9] in several respects. First, it should be noted that Humphries–Johnson
study a more general notion of “twist-linear function”; only spin structures are
needed in the present paper. Secondly, in Definition 3.1, simple closed curves
are considered up to the equivalence relation of isotopy. This is an a priori
different equivalence relation than the notion of “L-direct homotopy” defined
in [9, p. 366]. The precise definition of L-directness is cumbersome, but if two
simple closed curves c and d are L-directly homotopic, then they are in par-
ticular homotopic in the ordinary sense. It is well-known that homotopy and
isotopy determine the same equivalence relation on simple closed curves, see
e.g. [7, Proposition 1.10]. Moreover, an isotopy is an instance of an L-direct
homotopy, so that these notions coincide in our setting.

Remark 3.3 In the literature, higher spin structures go by various names and
have various definitions; the term “r -spin structure” is especially common. It
is not a priori clear how to reconcile the definition given here with others. See
Remark 3.7 for a brief discussion, or [17, Sections 2–3] for a fuller treatment.

Convention 3.4 Oftenwewill speak of the valueφ(c)whereφ is someZ/rZ-
valued spin structure and c is a curve without a specified orientation. Such a
statement should be understood to mean that there is some unspecified orien-
tation on c for which φ(c) has the stated value.

The Johnson lift Recall from the discussion in Sect. 2.2 the notion of the John-
son lift. In [9], Johnson-Humphries use the Johnson lift to give a homological
formulation of a Z/rZ-valued spin structure. The following is an amalgama-
tion of the Remark following Theorem 2.1 and Theorem 2.5 of [9].

Theorem 3.5 (Humphries–Johnson) Let S be a surface. An element ψ ∈
H1(UTS; Z/rZ) determines a Z/rZ-valued spin structure via

α �→ ψ(α̃),

where α is a simple closed curve on S and α̃ is the Johnson lift. This determines
a 1 − 1 correspondence

{φ aZ/rZ-valued spin structure onS} ↔ {
φ ∈ H1(UTS; Z/rZ) | φ(ζ ) = 1

}
.
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Remark 3.6 From the standard presentation

π1(UT�g) =
〈

a1, b1, . . . , ag, bg, ζ |
g∏

i=1

[ai , bi ] = ζ 2−2g

〉

and the Universal Coefficient Theorem, one sees that

H1(UT�g; A) ∼= Hom(π1(UT�g), A) ∼= Hom(Z2g ⊕ Z/(2g − 2)Z, A).

The factor Z/(2g − 2)Z in H1(UT�g; Z) = Z
2g ⊕ Z/(2g − 2)Z is generated

by the class of ζ̃ , the Johnson lift of the non-essential curve ζ . In the case
A = Z/rZ, it follows that there exists a spin structure if and only if r | (2g−2).

Remark 3.7 Via covering space theory,Z/rZ-valued spin structures on�g are

in correspondence with cyclic r -fold coverings ŨT�g → UT�g that restrict
to connected coverings of the fiber S1. In the setting of linear systems on toric
surfaces, such coverings arise from the presence of roots of the canonical line
bundle of the generic fiber. See Proposition 10.2 and the references mentioned
therein for more details.

An important consequence of Theorem 3.5 is the fact thatZ/rZ-valued spin
structures satisfy a property known as the homological coherence criterion.
This follows by combining Theorem 3.5 with [9, Lemma 2.4].

Proposition 3.8 (Homological coherence criterion) Let φ be a Z/rZ-valued
spin structure on a surface S, and let S′ ⊂ S be a subsurface with Euler
characteristic χ(S′) = m. Suppose ∂(S′) = c1 ∪ · · · ∪ ck, and all ci are
oriented so that S′ is to the left. Then

∑
φ(ci ) = m.

Theorem 3.5 shows that Z/rZ-valued spin structures are determined by a
finite amount of data. In the sequel it will be useful to have an explicit criterion
for the equality of two Z/rZ-valued spin structures. The following appears as
[9, Corollary 2.6].

Theorem 3.9 (Humphries–Johnson) Let S be a surface of genus g ≥ 0. Let
B = {γ1, . . . , γk} be a set of oriented simple closed curves such that the set
{[γ1], . . . , [γk]} forms a basis for H1(�g; Z). Suppose φ and ψ are Z/rZ-
valued spin structures on S. Then φ = ψ if and only if φ(γi ) = ψ(γi ) for
each γi ∈ B.

3.2 Operations on curves

In what follows, we will make use of two procedures for constructing new
simple closed curves from old. Here, we define these operations and collect
some facts about how they interact with spin structures.
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Fig. 3 The smoothing operation

Fig. 4 The curve-arc sum operation

Definition 3.10 (Smoothing, curve sum) Let C = {c1, . . . , cn} be a collection
of oriented embedded simple closed curves on a surface S. Suppose that all
intersections between elements of C are transverse. The smoothing of C is the
embedded multicurve obtained from C by smoothly resolving all intersections
in the unique orientation-preserving way. See Fig. 3.

Nowsupposeα andβ are oriented simple closed curves. For natural numbers
m, n, define the curve sum mα + nβ as the smoothing of m parallel copies of
α with n copies of β. In case m < 0 or n < 0, the curve sum mα + nβ can be
defined as before, with the orientation on α (resp. β) reversed if m < 0 (resp.
n < 0). See Fig. 4.

By choosing arbitrary representatives in minimal position, both of these
operations are well-defined on the level of isotopy classes.

Lemma 3.11 Let α, β be oriented simple closed curves in minimal position,
and let φ be a Z/rZ-valued spin structure. Then for any integers m, n,

φ(mα + nβ) = mφ(α) + nφ(β).

If in addition, i(α, β) = 1 and gcd(m, n) = 1, then mα + nβ has a single
component.

Proof The first assertion follows directly from the identification of φ with
an element of H1(UTS; Z/rZ) given in Theorem 3.5, while the second is
straightforward to verify. �
Definition 3.12 (Curve-arc sum) Let α and β be disjoint oriented simple
closed curves on S, and let ε be an arc connecting α to β whose interior
is disjoint from α ∪ β. A regular neighborhood ν of α ∪ ε ∪ β is homeomor-
phic to �0,3. Two of the boundary components of ν are homotopic to α and
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β, respectively. The curve-arc-sum α +ε β is the third boundary component
of ν. Again, the curve-arc sum descends to the level of isotopy classes.

Lemma 3.13 Let α, β, ε, ν be as above. Orient α, β so that ε connects the left
sides of α, β, and orient α +ε β so that the subsurface ν is to the right. Then
for φ a Z/rZ-valued spin structure,

φ(α +ε β) = φ(α) + φ(β) + 1.

In addition, on the level of homology, [α +ε β] = [α] + [β].
Proof Observe that χ(ν) = −1. By the homological coherence criterion
(Proposition 3.8),

−1 = φ(α) + φ(β) + φ(−(α +ε β)),

where −(α +ε β) denotes the curve α +ε β with orientation opposite to that
specified above. By the case (m, n) = (−1, 0) of Lemma 3.11, it follows that
φ(−(α +ε β)) = −φ(α +ε β), from which the first claim follows. The second
claim is an immediate consequence of the orientation conventions. �

3.3 The group Mod(S)[φ]; first examples of elements

For any surface S, there is an obvious (left) action of Mod(S) on the set
of Z/rZ-valued spin structures: for f ∈ Mod(S) and c ∈ S, define ( f ·
φ)(c) = φ( f −1(c)). Similarly, if f : S → S′ is a diffeomorphism and φ is a
Z/rZ-valued spin structure on S′, there is a pullback f ∗(φ) defined on S via
( f ∗φ)(c) = φ( f (c)).

Definition 3.14 (Stabilizer subgroup) Let φ be a spin structure on a surface
S. The stabilizer subgroup of φ, written Mod(S)[φ], is defined as

Mod(S)[φ] = { f ∈ Mod(S) | ( f · φ) = φ} .

Let φ be a Z/rZ-valued spin structure on a surface S. Below we discuss
some fundamental examples of elements in Mod(S)[φ].
Dehn twist powers and admissible twists The twist-linearity formula of Defi-
nition 3.1 immediately implies the following characterization of Dehn twists
in Mod(S)[φ].
Lemma 3.15 Let c be a simple closed curve on S. If c is separating, then
Tc ∈ Mod(S)[φ]. If c is nonseparating, then T k

c ∈ Mod(S)[φ] if and only if
kφ(c) ≡ 0 (mod r). In particular, for c nonseparating, Tc ∈ Mod(S)[φ] if
and only if φ(c) = 0.
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Definition 3.16 (Admissible) A nonseparating curve cwith φ(c) = 0 is called
an admissible curve. The associated element Tc ∈ Mod(S)[φ] is called an
admissible twist. The group generated by all admissible twists is written Tφ ,
and is called the admissible subgroup.

Fundamental multitwists Let P ∼= �0,3 be a pair of pants with boundary
curves α, β, γ . Suppose that φ(α) = a, φ(β) = b, and that φ(γ ) = c, with
all curves oriented so that P lies to the left. By the homological coherence
property, a + b + c = −1.

Definition 3.17 Let P and φ be as above. A φ-bounding multitwist associated
to P , denoted TP(x, y, z), is given by

TP(x, y, z) = T x
α T

y
β T

z
γ

for any choice of integers x, y, z such that TP ∈ Mod(S)[φ].
By the above, TP(r, r, r) is a φ-bounding multitwist for any P and φ, but

for special values of a, b, c, there are much simpler examples.

Lemma 3.18 Let P be as above, and suppose that b = −a, so that c =
−1. Then TP(1, −1, b) = TαT

−1
β T b

γ is a φ-bounding multitwist. The element
TP(1, −1, b) is called a fundamental multitwist for P and is denoted TP.

Proof Let d be any curve on S; we must show that φ(d) = φ(TαT
−1
β T b

γ (d)).
As α, β, γ are all disjoint, the twist-linearity property, in combination with the
fact that [α + β + γ ] = 0 in H1(S), gives

φ(TαT
−1
β T b

γ (d)) = φ(d) + 〈d, α〉a − 〈d, β〉b − 〈d, γ 〉b
= φ(d) − 〈d, α + β + γ 〉b
= φ(d).

�
Remark 3.19 Of course, if TP(1, −1, b) is a fundamental multitwist, then so
is TP(1, −1, b+kr) for any k ∈ Z. An important special case is when φ(α) =
φ(β) = 0. Then TαT

−1
β is a fundamental multitwist.

3.4 “Classical” spin structures

Spin structures in the sense of Definition 3.1 generalize the more familiar
notion of a “classical” spin structure. In our setting, a classical spin structure
is a spin structure valued inZ/2Z.We pause here to briefly review the theory of
classical spin structures and the connection with our definition. These results,
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especially the theory of the Arf invariant, will play a crucial role in the analysis
of Z/rZ-valued spin structures for r even to be begun in Proposition 4.9 and
Corollary 4.10, and returned to in Sect. 6.

Let V be a vector space over the field Z/2Z equipped with a nondegen-
erate symplectic pairing 〈·, ·〉 (i.e. a nondegenerate bilinear pairing satisfying
〈x, x〉 = 0 for all x ∈ V ). Themotivating example is V = H1(�g; Z/2Z)with
the intersection pairing. A Z/2Z quadratic form relative to 〈·, ·〉 is a function
q: V → Z/2Z such that for any x, y ∈ V , the equation

q(x + y) = q(x) + q(y) + 〈x, y〉 (5)

holds.
Let B = {x1, y1, . . . , xg, yg} be a symplectic basis for V . It is clear that q is

determined by its values on B. Define Q(V, 〈·, ·〉) as the set ofZ/2Z quadratic
forms on V relative to 〈·, ·〉; then a choice of B provides a bijection

Q(V, 〈·, ·〉) ∼= (Z/2Z)2g.

There is an evident action of the group Sp(V, 〈·, ·〉) of 〈·, ·〉-preserving auto-
morphisms on Q(V, 〈·, ·〉).

To understand the set of orbits, we introduce the Arf invariant. The Arf
invariant of q is the element of Z/2Z defined by the following formula:

Arf(q) :=
g∑

i=1

q(xi )q(yi ).

q is said to be even or odd according to whether Arf(q) = 0, 1 respectively; in
this way we will speak of the parity of a spin structure. The following records
some well-known properties of the Arf invariant.

Lemma 3.20 Let (V, 〈·, ·〉) be a symplectic vector space over Z/2Z, and let
q, q ′ ∈ Q(V, 〈·, ·〉) be quadratic forms.
(1) Arf(q) is well-defined independently of the choice of symplectic basis,
(2) q and q ′ are in the same orbit of Sp(V, 〈·, ·〉) if and only if Arf(q) =

Arf(q ′).
Suppose now that φ is a Z/2dZ-valued spin structure in the sense of Def-

inition 3.1. The reduction Z/2dZ → Z/2Z associates to φ an underlying
Z/2Z-valued spin structure which we denote φ̄. A priori, φ̄ is defined on the
set S of isotopy classes of oriented curves on �g. It follows from [11, Theo-
rem 1A] that φ̄ factors through the map [·]:S → H1(�g; Z/2Z). The induced
map

¯̄φ: H1(�g; Z/2Z) → Z/2Z
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is not quite a classical spin structure, but it follows from [11, Theorem 1A]
that the function

qφ := ¯̄φ + 1 (6)

does determine a classical spin structure.
In the remainder of this paper we will exclusively use the term “spin struc-

ture” in the sense ofDefinition 3.1.The reader versed in classical spin structures
should be aware that certain formulas appear different in this setting. For
instance, a Dehn twist about some nonseparating curve c preserves a Z/2Z-
valued spin structure φ if and only if φ(c) = 0, whereas a transvection about
some nonzero v ∈ V preserves a quadratic form q if and only if q(v) = 1.
Likewise, if φ is aZ/2dZ-valued spin structure, the formula for the Arf invari-
ant Arf(φ) of the underlying classical spin structure is given by

Arf(φ) =
g∑

i=1

(φ̄(xi ) + 1)(φ̄(yi ) + 1) (mod 2). (7)

4 The action of the mapping class group on spin structures

In what follows, we will need to understand the action of Mod(�g) on the set
of Z/rZ-valued spin structures. Following the discussion in Sect. 3.4, when
r is even, the Arf invariant shows there are at least two orbits of Mod(S) on
the set of Z/rZ-valued spin structures, but it is not clear what happens for odd
r , nor whether there are further invariants leading to more orbits. The goal of
this section is to give a complete description of this action. In the case of r
odd, the mapping class group action on the set of Z/rZ-valued spin structures
is described in Proposition 4.2, and for r even it is described in Proposition
4.9. Both results can be understood as asserting that there are no “higher Arf
invariants”.

4.1 Odd r

In the case of r odd, we will need to consider surfaces with multiple bound-
ary components. Before formulating the results, we define the notion of the
signature of a Z/rZ-valued spin structure.

Definition 4.1 (Signature of a Z/rZ-valued spin structure) Let S be a surface
equipped with a Z/rZ-valued spin structure φ. Enumerate the boundary com-
ponents as�1, . . . , �n , each one oriented so that S is to the left. The signature
of S rel φ is defined as the n-tuple of values sig(S, φ) = (φ(�1), . . . , φ(�n)).
We will also speak of the signature of an individual �k , defined as φ(�k).
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Proposition 4.2 Fix an odd integer r . Let S be a surface, and let φ and ψ be
Z/rZ-valued spin structures on S satisfying sig(φ) = sig(ψ). Suppose that
either g(S) �= 1 or else g = 1 and there is at least one boundary component
with signature φ(c1) = ψ(c1) = k for some k such that k+1 generatesZ/rZ.
Then there is a mapping class f ∈ Mod(S) such that f ∗(ψ) = φ.

Proof The proof is by induction on the genus g(S). If g(S) = 0, then every
curve c on S is separating, so that the homological coherence criterion (Propo-
sition 3.8) implies that φ(c) andψ(c) can be computed just from the signature.
In this case, it follows that in fact φ = ψ .

For g(S) ≥ 1, let α0, β0 be curves on S satisfying i(α0, β0) = 1. Choose
nonzero integers a, b ∈ Z such that a ≡ φ(α0) and b ≡ φ(β0) (mod r).
Let d = gcd(a, b), and define x = a/d, y = b/d; by construction, x, y are
coprime. Define the curve α1 = yα0 − xβ0 in the sense of Definition 3.10. By
Lemma 3.11, φ(α1) = 0.

Choose any curve γ0 satisfying i(α1, γ0) = 1. We claim there exists some
separating oriented curve c on S that is disjoint from γ0 ∪ α1 and such that
φ(c) = k for k such that k + 1 generates Z/rZ. In the case g(S) = 1 this
is true by hypothesis, while for g(S) ≥ 2, the curve c can be taken to be the
neighborhood of some subsurface T ⊂ S with T ∼= �1,1 and T disjoint from
α1 ∪ γ0. In this case, orient c so that T lies to the right. By the homological
coherence property, such a c satisfies φ(c) = 1, and since r is odd, the claim
follows.

Either c is isotopic to a boundary component of S and is oriented with
S lying to the right, or else (by the change-of-coordinates principle), there
exists an arc ε0 from the left side of γ0 to the left side of c that is disjoint
from α1. In the former case, there exists an arc ε0 from the right side of γ0
to the right side of c that is disjoint from α1. Via Lemma 3.13, the curve-arc
sum γ1 = γ0 +ε0 c satisfies φ(γ1) = φ(γ0) − (k + 1) in the former case, and
φ(γ1) = φ(γ0)+(k+1) in the latter case. Since the curve c is null-homologous,
there is an equality [γ1] = [γ0]. A further appeal to the change-of-coordinates
principle shows that there is another arc ε1 from the left side of γ1 to the left of
c, again disjoint from α1. This process can therefore be repeated indefinitely,
giving rise to curves γm satisfying φ(γm) = φ(γ0)+m(k+1). By hypothesis,
k + 1 ∈ Z/rZ is a generator, so that φ(γm) = 0 for some m. Set β1 = γm for
such an m. By construction, i(α1, β1) = 1.

Likewise, construct curves α′
1, β

′
1 satisfying i(α′

1, β
′
1) = 1 and ψ(α′

1) =
ψ(β ′

1) = 0.Take (open) regular neighborhoods T1 and T ′
1 ofα1∪β1 andα′

1∪β ′
1,

respectively. There is a diffeomorphism f1: T1 → T ′
1 for which f1(α1) = α′

1

and f1(β1) = β ′
1. Define c1 = ∂T1 and c′

1 = ∂T ′
1. Then φ(c1) = 1 when c1

is oriented with T1 on the right, and similarly for c′
1. The curve c1 is therefore

a boundary component of S\T1 with signature φ(c1) = 1, and likewise for
c′
1. This shows that the inductive hypothesis is satisfied, and so there exists a
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diffeomorphism f2: S\T1 → S\T ′
1 taking c1 to c′

1 and fixing each remaining
mutual boundary component, such that

f ∗
2 (ψ |S\T ′

1
) = φ |S\T1.

The diffeomorphisms f1 and f2 can be chosen in such a way as to extend to
a diffeomorphism f : S → S. Let B = {α1, β1, . . . , αg, βg} be a geometric
symplectic basis for S,withα1, β1 the samecurves as above.Necessarilyαk, βk
are curves on S\T1 for k ≥ 2. By construction, the spin structuresφ and f ∗(ψ)

take the same values on each element of B, and sig(S, φ) = sig(S, f ∗(ψ)). It
then follows from Proposition 3.9 that φ = f ∗(ψ) as claimed. �

Proposition 4.2 has several corollaries that will be used extensively in the
remainder of the paper. These play the role of a change-of-coordinates principle
for surfaces in the presence of a Z/rZ-valued spin structure. The first of these
was established in the second paragraph of the proof of Proposition 4.2. We
remark that the assumption that r is odd played no role in the argument.

Corollary 4.3 Let r be an integer and let φ be a Z/rZ-valued spin structure
on a surface S. Let S′ ⊂ S be a subsurface of genus h ≥ 1. Then there is some
admissible curve a ⊂ S′ that is not parallel to a boundary component.

This in turn leads to another useful result that will allow us to construct
curves with prescribed intersection properties and arbitrary φ-values.

Corollary 4.4 Let r be an integer and letφ be aZ/rZ-valued spin structure on
a surface S. Let a, c1, . . . , ck be a collection of simple closed curves. Assume
that there is some connected subsurface T ⊂ S of positive genus disjoint from
a, c1, . . . , ck, and that there is an arc ε connecting a to ∂T that is disjoint
from all ci . Then for � ∈ Z/rZ arbitrary, there is a simple closed curve a� for
which i(a�, ci ) = i(a, ci ) for i = 1, . . . , k, and for which φ(a�) = �.

Proof By Corollary 4.3, there exists an admissible curve b ⊂ T that is not
boundary-parallel. The arc ε can be concatenated with an arc joining ∂T to
b; denote this extended arc by ε′. Set �0 = φ(a) (where a is oriented with ε′
lying to the left), and define a�0 := a. Define a�0+1 := a�0 +ε′ b. By Lemma
3.13, φ(a�0+1) = φ(a�0) + 1 = �0 + 1.

To see that i(a�0+1, ci ) = i(a, ci ), we appeal to the bigon criterion of [7,
Proposition 1.7]. Choose representative curves for a, c1, . . . , ck , pairwise in
minimal position. The bigon criterion asserts that a, ci are in minimal position
if and only if the configuration a ∪ ci does not bound any bigons, i.e. an
embedded disk whose boundary is the union of an arc of a and an arc of
ci meeting in exactly two points. The curve-arc sum a�0+1 meets each ci in
exactly the same set of points as a�0 . To conclude, it thus suffices to see that
no bigons were introduced by the summing procedure. The only arc of a�0+1
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that is not also an arc of a�0 is the one along which the summing procedure
is performed; denote the original arc of α�0 by α and the modified arc by
α′. Suppose that there is an arc γ of ci such that α′ ∪ γ bounds a bigon. As
α′ = α +ε′ b, it must be the case that the curve α ∪ γ is isotopic to b. But by
assumption, b ⊂ T is not boundary-parallel, so this cannot happen.

To construct a� for � ∈ Z/rZ arbitrary, one simply repeats the above con-
struction, producing, for any t ≥ 0, a curve a�0+t with the same intersection
properties as a�0 and satisfying φ(a�0+t ) = �0 + t . �

For the remaining corollaries of Proposition 4.2, we re-instate the require-
ment that r be odd.

Corollary 4.5 Let r be an odd integer and let φ be a Z/rZ-valued spin struc-
ture on a surface S. Let S′ ⊂ S be a subsurface of genus h ≥ 1, and suppose
that if h = 1, then S′ includes some boundary component of signature k such
that k + 1 generates Z/rZ.

(1) For all x ∈ Z/rZ, there exists some nonseparating curve c supported on
S′ satisfying φ(c) = x,

(2) For any 2h-tuple (i1, j1, . . . , ih, jh) of elements of Z/rZ, there is some
geometric symplectic basis B = {a1, b1, . . . , ah, bh} for S′ with φ(a�) =
i� and φ(b�) = j� for all 1 ≤ � ≤ h,

(3) For any 2h-tuple (k1, . . . , k2h) of elements of Z/rZ, there is some chain
(a1, . . . , a2h) of curves on S′ such that φ(a�) = k� for all 1 ≤ � ≤ 2h.

Proof Certainly (1) follows from (2). To establish (3), choose any geometric
symplectic basis B = {a′

�, b
′
�} on S′. There is some spin structure ψ on S′ for

which ψ(a′
�) = i� and ψ(b′

�) = j�. By Proposition 4.2, there is a diffeomor-
phism f of S′ such that f ∗(ψ) = φ. Then B = f −1(B′) has the required
properties.

We will deduce (3) from (2). Given the 2h-tuple (k1, . . . , k2h), define a
2h-tuple (i1, j1, . . . , ih, jh) as follows: set i� = 1 − � + ∑�

t=1 k2t−1, and set
j� = k2�. By (2), there exists a geometric symplectic basis B = {c�, d�} on S′
whoseφ-values realize the tuple (i1, j1, . . . , ih, jh). Any geometric symplectic
basis can be “completed” into a chain as follows: for � = 1, . . . , h−1, let f� be
a simple closed curve satisfying i( f�, d�) = i( f�, d�+1) = 1 and i( f�, x) = 0
for all other elements x ∈ B. As B is a geometric symplectic basis, this
imposes the homological relation [ f�] = [c�+1] − [c�], and the intersection
conditions imposed on the set of curves { f�} imply that this homology is
realized geometrically: c� ∪ f� ∪ c�+1 must bound a pair of pants P� for each
� = 1, . . . , h − 1. The orientations can be arranged so that P� lies to the right
of c� and f� and to the left of c�+1.

Applying the homological coherence property to each P�, it follows that
φ( f�) = k2�+1.Byconstruction, the curves c1, d1, f1, d2, f2, d3, . . . , fh−1, dh

123



176 N. Salter

form a chain of length 2h; denote this chain by C . By construction, φ(c1) =
i1 = k1, and φ(d�) = k2�. Altogether, this shows that C has the required
properties. �

4.2 Even r

Following the discussion in Sect. 3.4,we see that theArf invariant distinguishes
at least two orbits ofMod(�g) on the set ofZ/rZ-valued spin structures. To see
that there are exactly two orbits, in Definition 4.6 we formulate two “model”
Z/rZ-valued spin structures φB

even and φB
odd of prescribed Arf invariant, and in

Proposition 4.9 we show that every Z/rZ-valued spin structure is equivalent
to one of φB

even or φB
odd . We restrict attention here to the case where the sur-

face S has at most one boundary component. The general setting of multiple
boundary components introduces considerable subtlety owing to the failure
for the intersection pairing to determine a symplectic form, and our results
require only the case of at most one boundary component.

Definition 4.6 Let S be a surface of genus g ≥ 1 with at most one bound-
ary component. Fix a geometric symplectic basis B = {α1, β1, . . . , αg, βg}.
DefineφB

even andφB
odd as theZ/rZ-valued spin structures such thatφB

even(γ ) =
φB
odd(γ ) = 0 for all γ ∈ B\{βg}, andwhereφB

even(βg) andφB
odd(βg) are chosen

to be 0 or 1 as necessary so that Arf(φB
even) = 0 and Arf(φB

odd) = 1.

In spite of the evident dependence on geometric symplectic basis, as B
ranges over the set of all geometric symplectic bases, the elements φB

odd lie in
a single orbit of Mod(S) (and the same is also true of φB

even). The following is
immediate via the change-of-coordinates principle.

Lemma 4.7 Let B and B′ be geometric symplectic bases. Then there is a
diffeomorphism f : S → S such that f (B) = B′. Consequently, f ∗(φB′

even) =
φB
even and f ∗(φB′

odd) = φB
odd .

Definition 4.8 Let S be a surface of genus g ≥ 1 with at most one boundary
component endowed with a Z/rZ-valued spin structure φ. We say that φ is
even if there is a geometric symplectic basis B such that φ = φB

even , and we
say that φ is odd if φ = φB

odd .

Proposition 4.9 Fix an even integer r . Let S be a surface of genus g ≥ 2 with
at most one boundary component. Let φ be a Z/rZ-valued spin structure on
S. Then in the sense of Definition 4.8, either φ is even, or else φ is odd.

Proof The argument makes use of the techniques of the proof of Proposition
4.2. Let B = {α1, β1, . . . , αg, βg} be a geometric symplectic basis, and let Si
denote the genus-1 subsurface determined by αi , βi ; define Di as the boundary
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curve of Si . Exactly as in Proposition 4.2, each pair αi , βi can be replaced by
new curves α′

i , β
′
i supported on Si and satisfying i(α′

i , β
′
i ) = 1, such that α′

i is
admissible. Denote the corresponding geometric symplectic basis by B′. For
an arc ε connecting β ′

1 to D2 and disjoint from all other Di , the curve-arc sum
β ′
1 +ε D2 satisfies φ(β ′

1 +ε D2) = φ(β ′
1) + 2. By repeatedly performing this

curve-arc sum using an arc ε disjoint from B′\{β ′
2} (as in Proposition 4.2),

β ′
2 can be replaced with a curve β ′′

2 such that φ(β ′′
2 ) = 0 or 1. By performing

an analogous operation on all β ′
i , one obtains a geometric symplectic basis

B′′ = {α′
1, β

′′
1 , . . . , α′

g, β
′′
g } such that φ(α′

i ) = 0 and φ(β ′′
i ) = 0 or 1.

It remains to further alter each β ′′
1 , . . . , β ′′

g−1 so that φ(β ′′
i ) = 0 in this

range. For 1 ≤ i ≤ g − 1, let γi be a collection of disjoint curves such that
β1, γ1, . . . , βg−1, γg−1, βg forms a chain of length 2g− 1, and such that each
γi is disjoint from all α′

j . Then necessarily αi , γi , αi+1 forms a pair of pants,
and so φ(γi ) = −1. If φ(β ′′

1 ) = 1, then φ(Tγ1(β
′′
1 )) = 0. Replace β ′′

1 , β ′′
2

by Tγ1(β
′′
1 ), Tγ1(β

′′
2 ), respectively. Repeat, applying T k

γ2
to Tγ1(B′′) for k such

that φ(T k
γ2
Tγ1(β

′′
2 )) = 0. Proceed in this way, taking each β ′′

i for i ≤ g − 1
to some β ′′′

i with φ(β ′′′
i ) = 0. At the end, the geometric symplectic basis

B′′′ = {α′
1, β

′′′
1 , . . . , α′

g, β
′′′
g } will satisfy φ(γ ) = 0 for all γ ∈ B′′′ except

possibly γ = β ′′′
g . By repeating the curve-arc summing procedure, β ′′′

g can be
altered to satisfy ψ(β ′′′

g ) = 0 or 1 as required. Define B̃ to be this geometric

symplectic basis. Applying Theorem 3.9, we see that φ = φB̃
even or φB̃

odd as
required. �

There is an analogue of Corollary 4.5 for r even, although the Arf invariant
provides an obstruction that was not present in the case of odd r .

Corollary 4.10 Let r be an even integer, and let S′ ⊂ S be a subsurface of
genus h ≥ 2 endowedwith aZ/rZ-valued spin structureφ. Then the following
assertions hold:

(1) For all x ∈ Z/rZ, there exists some nonseparating curve c supported on
S′ satisfying φ(c) = x.

(2) For a given 2h-tuple (i1, j1, . . . , ih, jh) of elements of Z/rZ, there is
some geometric symplectic basis B = {a1, b1, . . . , ah, bh} for S′ with
φ(a�) = i� and φ(b�) = j� for 1 ≤ � ≤ h if and only if the parity of
the spin structure defined by these conditions agrees with the parity of the
restriction φ S′ to S′.

(3) For any (2h−2)-tuple (i1, j1, . . . , ih−1, jh−1) of elements of Z/rZ, there
is some geometric symplectic basis B = {a1, b1, . . . , ah, bh} for S′ with
φ(a�) = i� and φ(b�) = j� for 1 ≤ � ≤ h − 1.

(4) For a given 2h-tuple (k1, . . . , k2h) of elements ofZ/rZ, there is some chain
(a1, . . . , a2h) of curves on S′ such that φ(a�) = k� for all 1 ≤ � ≤ 2h
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if and only if the parity of the spin structure defined by these conditions
agrees with the parity of the restriction φ S′ to S′.

(5) For any (2h − 2)-tuple (k1, . . . , k2h−2) of elements of Z/rZ, there is
some chain (a1, . . . , a2h−2) of curves on S′ such that φ(a�) = k� for all
1 ≤ � ≤ 2h − 2.

Proof The proof is essentially identical to that of Corollary 4.5. The arguments
for (2) and (3) are slightly novel; the remaining points follow their counterparts
in Corollary 4.5 verbatim. To establish (2), let B′ = {a′

�, b
′
�} be a geometric

symplectic basis on S′. Let S′′ be a subsurface of S′ containing each curve
in B′ that has only one boundary component. Given (i1, j1, . . . , ih, jh), there
is some spin structure ψ on S′′ for which ψ(a′

�) = i� and ψ(b′
�) = j� for

1 ≤ � ≤ h. By Proposition 4.9, there is an element f ∈ Mod(S′′) for which
f ∗(ψ) = φ if and only if the Arf invariants of φ and ψ agree; if they do, then
B = f −1(B′) has the required properties.

(3) will be obtained from (2). Let ε ∈ Z/2Z denote the Arf invariant of φ,
and define the quantity

η =
h−1∑

�=1

(i� + 1)( j� + 1) (mod 2).

As the formula (7) for the Arf invariant shows, given any (2h − 2)-tuple
(i1, ji , . . . , ih−1, jh−1) and any value ε ∈ Z/2Z, there is a choice of ih, jh ∈
Z/rZ for which η + (ih + 1)( jh + 1) ≡ ε (mod 2). The result now follows
by applying (2) to the tuple (i1, j1, . . . , ih, jh). �

Wewill also require a result establishing the existence of configurationsDn
as in the Dn relation (Proposition 2.6).

Corollary 4.11 Let r = 2d be an even integer, and let �g be a closed surface
endowed with a Z/2dZ-valued spin structure φ. Let � be a curve on �g that
separates �g into subsurfaces S1, S2 for which the genus g(S1) ≥ d + 1. Set
n = 2g(S1) − 2d + 1. Then there exists a configuration a, a′, c1, . . . , cn−2 of
curves on S1 arranged in the Dn configuration, such that the elements a, a′,
and ci are admissible for all i , and such that � = �2 as in Fig. 2.

Proof By Corollary 4.10.5, there exists a chain a, c1, . . . , cn−2 of admissible
curves on S1. Let a′ ⊂ S1 be chosen so that a ∪ a′ ∪ � bounds a subsurface
of genus g(S1) − d − 1 containing ci for i ≥ 2, and such that i(a′, c1) = 1.
The other side of a ∪ a′ bounds a subsurface of genus d, and so the homo-
logical coherence property implies that a′ is admissible. By construction, the
curves a, a′, c1, . . . , cn−2 form the configuration Dn of the Dn relation, and
the boundary component �2 of Fig. 2 is given here by �. �
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5 r odd: generating Mod(�g)[φ] by Dehn twists

Let φ be a Z/rZ-valued spin structure on a closed surface �g. Throughout
this section we assume that r | (2g − 2) (so that, following Remark 3.6, �g
admits a Z/rZ-valued spin structure) and that r is odd. Recall from Definition
3.16 that the admissible subgroup is defined via

Tφ = 〈Ta | a nonseparating curve,φ(a) = 0〉.
By construction, Tφ � Mod(�g)[φ]. The main result of this section is that for
r odd, this containment is an equality.

Proposition 5.1 For any g ≥ 3 and for any odd integer r satisfying r < g−1,
there is an equality

Tφ = Mod(�g)[φ].
Before beginning with the proof, we will first establish some properties of

the group Tφ which will be used throughout this section and the next.

Lemma 5.2 Let φ be a Z/rZ-valued spin structure on a surface �g with
r < g − 1 and g ≥ 5. Let c be any nonseparating simple closed curve on
�g. Suppose that r is odd, or else that r is even and φ(c) ≡ 1 (mod 2). Then
T r
c ∈ Tφ .

Proof Let c be as in the statement of Lemma 5.2. Our first objective is
to construct a configuration of admissible curves D2r+3 as in Corollary
2.7 for which c = Ck . By hypothesis, there is an expression of the form
φ(c) = 2k − 1 (mod r) for some integer 1 ≤ k ≤ r . Invoking Corollary
4.5.3 or 4.10.5 as appropriate, the hypothesis r < g − 1 implies that there
is a chain a, c1, . . . , c2k−1 of admissible curves disjoint from c, and there
is a chain c2k+1, . . . , c2r+1 of admissible curves disjoint from c and from
a, c1, . . . , c2k−1. Let a′ be a curve such that a ∪ a′ ∪ c bounds a surface
of genus k − 1 containing c2, . . . , c2k−1, and satisfying i(a′, c1) = 1 and
i(a′, ci ) = 0 for 2k + 1 ≤ i ≤ 2r + 1. The homological coherence property
implies that a′ is admissible.

To complete the construction, it remains only to find the curve c2k . Such
a curve c2k must be admissible, and c2k must have the following intersection
properties:

i(c2k, c2k±1) = 1, i(c2k, a) = i(c2k, a
′) = i(c2k, ci ) = 0 for |i − 2k| > 1,

i(c2k, c) = 2. (8)

Let c′
2k be any curve satisfying the intersection properties (8). If we can

show that the complement of a regular neighborhood of the configuration
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D ′
2r+3 := a, a′, c1, . . . , c2k−1, c2k′, c2k+1, . . . , c2r+1 is a surface of positive

genus, then the existence of c2k will follow from Corollary 4.4.
The configuration D ′

2r+3 is contained in a surface of genus r + 1 with
two boundary components. Each boundary component is homologous to the
nonseparating curve c, so the complement has genus g− r −2. We must show
that this quantity is positive. Establishing g − r − 2 ≥ 1 is a matter of simple
arithmetic. Writing r = 2g−2

m for some m ≥ 3, we have

g − r − 2 = m − 2

m
(g − 1) − 1 ≥ g

3
− 1 > 0,

since g ≥ 5 by hypothesis.
Recalling that the group H+

2r+3 fromCorollary 2.7 is defined to be the group
generated by theDehn twists about the elements ofD2r+3∪{�1}, it follows that
if each element ofD2r+3 is admissible, then H+

2r+3 � Tφ .We have constructed
the curves a, a′, c1, . . . , c2r+1 so as to be admissible; homological coherence
implies that also �1 is admissible. Corollary 2.7.2 then implies that T r

Ck
∈ Tφ

for any 1 ≤ k ≤ r + 1. �
Lemma 5.3 Let φ be a Z/rZ-valued spin structure on a surface �g, and let
v ∈ H1(�g; Z) be any primitive homology class. If r is odd, then for any
k ∈ Z/rZ, there exists a curve c for which [c] = v and φ(c) = k. If r is even,
then for any k ∈ Z/rZ such that φ (mod 2)(v) ≡ k (mod 2), there exists a
curve c for which [c] = v and φ(c) = k.

Proof Let c0 be any (oriented) curve on �g with [c0] = v; set φ(c0) = k0.
Let c1 be a curve disjoint from c0 such that c0 ∪ c1 bounds a subsurface of
genus 1, oriented to the left of c0. Then φ(c1) = k0 + 2 when oriented with
the subsurface to the right, and [c0] = [c1]. This construction can be repeated,
giving rise to curves cm with φ(cm) = k0 + 2m. If r is odd, then the set of
values k0 + 2m for various values of m exhausts Z/rZ, and if r is even, then
the set of values k0 + 2m exhausts the coset k0 + 2Z/rZ. The claim follows
by taking c = cm for the appropriate value of m. �
Proof of Proposition 5.1 Themethod is to compare the intersections of Tφ and
Mod(�g)[φ] with Ig and Kg. We first present a high-level overview of the
logical structure of the proof that explains how Proposition 5.1 follows from
ancillary results; these results are then obtained in Steps 1–4.

Overview Recall from (3) the symplectic representation �: Mod(�g) →
Sp(2g, Z) with kernel given by the Torelli group Ig. To show that Tφ =
Mod(�g)[φ], it suffices to show that (I) �(Tφ) = �(Mod(�g)[φ]) and that
(II) Tφ ∩ Ig = Mod(�g)[φ] ∩ Ig.
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The equality of (I) is obtained in Step 1 as Lemma 5.4. The proof of (II) is
carried out in Steps 2–4. The method is to study the restriction of the Johnson
homomorphism to the groups Tφ ∩ Ig and Mod(�g)[φ] ∩ Ig. Recall from (4)
that the Johnson homomorphism is the surjective homomorphism

τ : Ig → ∧3HZ/HZ,

and that the kernel is written Kg. To establish (II), it suffices to show that (i)
τ(Tφ ∩Ig) = τ(Mod(�g)[φ]∩Ig) and that (ii) Tφ ∩Kg = Mod(�g)[φ]∩Kg .
The equality of (i) is carried in Steps 2 and 3. The main result of Step 2,
Lemma 5.7, establishes an upper bound on the image τ(Mod(�g)[φ] ∩ Ig),
and the main result of Step 3, Lemma 5.8, shows that the subgroup τ(Tφ ∩Ig)
realizes this upper bound. Finally (ii) is established in Step 4: Lemma 5.9
shows that there is a containment Kg � Tφ .

Step 1: The symplectic quotient The first step is to understand the image of Tφ

and Mod(�g)[φ] in the symplectic group Sp(2g, Z).

Lemma 5.4 For r odd, the symplectic representation �: Mod(�g) →
Sp(2g, Z) restricts to a surjection

�: Tφ � Sp(2g, Z).

It follows that also �: Mod(�g)[φ] � Sp(2g, Z) is a surjection.

Proof Let v ∈ H1(�g; Z) be a primitive element. By Lemma 5.3, there is
some curve c with [c] = v and φ(c) = 0. The result follows from this, since
Sp(2g, Z) is generated by the set of transvections Tv given by x �→ x+〈x, v〉v
for v ∈ H1(�g; Z) primitive, and �(Tc) = T[c]. �
Step 2: Mod(�g)[φ] and the Johnson homomorphism Our next objective is
Lemma 5.7 below. This concerns the image of Mod(�g)[φ] ∩ Ig under the
Johnson homomorphism. In order to formulate the result, it is necessary to
first study a different quotient of Ig first constructed by Chillingworth [1,2].
Chillingworth’s work is formulated using the notion of a “winding number
function”; as explained in [9, Introduction], a winding number function is
a particular instance of a spin structure. The properties of a winding num-
ber function that Chillingworth exploits in his work are common to all spin
structures, and so we formulate his results in this larger context. See also [10,
Section 5] for a brief summary of Chillingworth’s work. Recall in the state-
ment below that S is defined to be the set of isotopy classes of oriented simple
closed curves on a surface �g.
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Theorem 5.5 (Chillingworth) Let φ be a Z/rZ-valued spin structure on a
closed surface �g. Let c be the function c: Ig × S → Z/rZ defined by the
formula

c( f, γ ) = φ( f (γ )) − φ(γ ).

Then the value c( f, γ ) depends only on the homology class [γ ] ∈ HZ, and c
descends to a homomorphism

c: Ig → Hom(HZ, Z/rZ) ∼= H1(�g; Z/rZ).

In particular, c does not depend on the choice of Z/rZ-valued spin structure.

In [10], Johnson related Chillingworth’s homomorphism to the Johnson
homomorphism. To formulate the precise connection, we require the following
well-known lemma; see e.g [10, Sections 5,6].

Lemma 5.6 There is a Sp(2g, Z)-equivariant surjection

C : ∧3 HZ/HZ → HZ/(g−1)Z

given by the “contraction”

C(x ∧ y ∧ z) = 〈x, y〉z + 〈y, z〉x + 〈z, x〉y (mod g − 1). (9)

It follows that for any r | (g−1), there is a Sp(2g, Z)-equivariant surjection

Cr : ∧3 HZ/HZ → HZ/rZ

given by post-composing C with the reduction mod r . We can now formulate
the main result of Step 3.

Lemma 5.7 Let φ be a Z/rZ-valued spin structure on a surface of genus g,
with g ≥ 3 and r odd. Then Cr ◦ τ = 0 onMod(�g)[φ] ∩ Ig.

Proof According to [10, Theorem3], the compositionCr◦τ coincides (up to an
application of Poincaré duality) with themod-r Chillingworth homomorphism
c: Ig → H1(�g; Z/rZ). The formula for c given in Theorem 5.5 shows that
c measures how f ∈ Ig alters the set of values {φ(γ ) | γ ∈ S}; it therefore
follows immediately that the restriction of c to Mod(�g)[φ] ∩ Ig is trivial. �
Step 3 Tφ and the Johnson homomorphism In the previous step, we showed
that there is a containment

τ(Mod(�g)[φ] ∩ Ig) � ker(Cr ◦ τ).
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Our next result establishes that this containment is an equality, even when
restricted to the subgroup τ(Tφ ∩ Ig).

Lemma 5.8 For r < g − 1 odd and for g ≥ 3, the Johnson homomorphism τ

gives a surjection

τ : Tφ ∩ Ig � ker(Cr ◦ τ).

Proof Define K := ker(Cr ). Wemust show that Tφ ∩Ig surjects onto K under
τ . The first step will be to determine a generating set for K , and then we will
exhibit each generator within τ(Tφ ∩ Ig).

To determine a generating set for K , we consider the short exact sequence

1 → K → ∧3HZ/HZ → HZ/rZ → 1.

determined by Cr . By lifting a set of relations {ri } for HZ/rZ to ∧3HZ/HZ,
we will obtain a set of generators {r̃i } for K . Let B = {x1, y1, . . . , xg, yg} be
a symplectic basis for HZ. There is an associated basis ∧3B ⊂ ∧3HZ given
by

∧3B := {z1 ∧ z2 ∧ z3 | zi ∈ B distinct}
Thus also ∧3HZ/HZ is generated by the image of ∧3B.

To determine the relations ri , we must understand Cr (z1 ∧ z2 ∧ z3) for the
various possibilities for {z1, z2, z3}. There are two orbits of generators under
the action of Sp(2g, Z). Thefirst orbit consists of elements of the form z∧xi∧yi
(necessarily with z �= xi , yi ), and the second orbit consists of elements of the
form zi ∧ z j ∧ zk with each z� ∈ {x�, y�} and with i, j, k mutually distinct.

The image of z ∧ xi ∧ yi in HZ/rZ is

Cr (z ∧ xi ∧ yi ) = z,

while Cr (zi ∧ z j ∧ zk) = 0 for elements of the second type. Define A to be the
abelian group generated by the symbolsCr (z1∧z2∧z3) for z1∧z2∧z3 ∈ ∧3B,
subject to the relations (R1)–(R3) below:

(R1) rCr (z ∧ xi ∧ yi ) = 0
(R2) Cr (z ∧ xi ∧ yi ) − Cr (z ∧ x j ∧ y j ) = 0
(R3) Cr (zi ∧ z j ∧ zk) = 0 for {i, j, k} ⊂ {1, . . . , g} distinct.
It can be easily verified that there is an isomorphism A ∼= HZ/rZ, so that the
relations (R1)–(R3) can be lifted to ∧3HZ/HZ to give a generating set for K
as desired. The corresponding generators are given below.

(G1) r z ∧ xi ∧ yi
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Fig. 5 The configuration of
curves used to exhibit (G2) c ba

xi

yi

xj

yj

(G2) z ∧ (xi ∧ yi − x j ∧ y j )
(G3) zi ∧ z j ∧ zk for {i, j, k} ⊂ {1, . . . , g} distinct.

Having determined a generating set for K , it remains to exhibit each such
generator in the form τ( f ) for f ∈ Tφ ∩ Ig. These will be handled on a
case-by-case basis. We start with (G1). By Lemma 2.8, there exist curves c, d
that determine a genus-1 bounding pair map with τ(TcT

−1
d ) = z∧ xi ∧ yi . By

Lemma 5.2, T r
c , T r

d ∈ Tφ , so that T r
c T

−r
d ∈ Tφ is an element with the required

properties.
Next we consider (G2). Let c be a curve with [c] = z and φ(c) = 0. By

the change-of-coordinates principle, there exist curves a, b with the follow-
ing properties: (1) a ∪ b bounds a subsurface S of genus 2, (2) c ⊂ S, (3)
[a] = [b] = [c], and c separates S into two subsurfaces S1, S2 each of genus
1, (4) xi , yi determine a symplectic basis for S1 and x j , y j determine a sym-
plectic basis for S2. Such a configuration is shown in Fig. 5. By homological
coherence, φ(a) = φ(b) = −2 when a, b are oriented with S to the left. By
Lemma 2.8,

τ(TaT
−1
c ) = z ∧ xi ∧ yi

and

τ(TbT
−1
c ) = −z ∧ x j ∧ y j .

Therefore, it is necessary to show TaTbT−2
c ∈ Tφ . By hypothesis, Tc ∈ Tφ .

By Corollary 4.5.3, there exists a chain a1, . . . , a5 of curves on S for which
φ(ai ) = 0. By the chain relation (Proposition 2.4), TaTb ∈ Tφ , and the result
follows.

It remains to exhibit generators of type (G3). Any such generator is equiv-
alent under the action of Sp(2g, Z) to y1 ∧ y2 ∧ y3. By combining the
Sp(2g, Z)-equivariance of τ (Lemma 2.8.1) with the result of Lemma 5.4,
it suffices to exhibit only y1 ∧ y2 ∧ y3. Figure 6 shows the two 3-chains
C1 = (c61, c2, c3) and C2 = (c′

1, c2, c
′
1 +ε d). Observe that d is a boundary
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bf

c2

c1

c1

c2 c3

c′
1

ε

d

b

Fig. 6 Top:The relevant portion of the geometric symplectic basisB. Bottom:The configuration
of curves used to exhibit (G3). Orientations have been suppressed wherever possible

component for regular neighborhoods of both C1 and C2; let e1, e2 denote the
other boundary component of C1,C2, respectively.

By Corollary 4.5.2, there exists a geometric symplectic basisB that contains
the elements c1, c2, b, f as depicted in the top portion of Fig. 6, with homology
classes and φ-values given in the table below. The remaining entries in the
table have been filled in using the homological coherence property. (A value
of ∗ indicates that the value is irrelevant and/or underdetermined, and if an
orientation is left unspecified, this is in accordance with Convention 3.4).

Curve: c1 c2 c3 c′
1 b f d c′

1 +ε d
Homology class: x1 y1 y2 − x1 x1 − y3 y3 −y2 y2 y2 + y3 − x1

φ-value: 0 ∗ 0 ∗ ∗ −1 −2 ∗
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186 N. Salter

By Lemma 2.8,

τ(TdT
−1
e1 ) = x1 ∧ y1 ∧ y2,

τ (TdT
−1
e2 ) = (x1 − y3) ∧ y1 ∧ y2.

It follows that τ(T−1
e1 Te2) = y3 ∧ y1 ∧ y2. As d ∪ e1 and d ∪ e2 each bound

subsurfaces of genus 1 and φ(d) = −2 when d is oriented with these subsur-
faces to the left, the homological coherence property implies that e1 and e2 are
admissible. The result follows. �
Step 4: The Johnson kernel The final piece of the analysis concerns the rela-
tionship between Mod(�g)[φ] and the Johnson kernel Kg.

Lemma 5.9 Let φ be a Z/rZ-valued spin structure with r odd. If g ≥ 3, then
Tφ contains the Johnson kernel Kg. It follows that also

Kg � Mod(�g)[φ].
Proof According to Johnson’s Theorem 2.9,Kg has a generating set consisting
of the set of all Tc for c a separating curve. Each such c divides �g into two
subsurfaces S, S′, and since g ≥ 3, without loss of generality we can assume
that g(S) > 1. By Corollary 4.5.3, there exists a chain a1, . . . , a2g(S) of curves
on S such that φ(ai ) = 0 for all i . By hypothesis, Tai ∈ Tφ for all i . By the
chain relation (Proposition 2.4), it follows that Tc ∈ Tφ as required. �

This concludes the proof of Proposition 5.1. �

6 r even: Tφ has finite index in Mod(�g)

Wecontinue to assume that r | (2g−2), but nowwe take r = 2d to be even. For
r even, we cannot give a complete characterization of Tφ as in Proposition 5.1,
but we will show that Tφ has finite index in Mod(�g). The minimal genus
for which the ensuing arguments apply has a rather intricate dependence on r ,
encapsulated in the definition below.

Definition 6.1 For an integer d ≥ 1, define k(d) as follows:

k(d) =

⎧
⎪⎨

⎪⎩

2 d odd or d ≥ 6 even

6 d = 2

5 d = 4.

Suppose r = 2d is an even integer. Define

g(r) = k(d)d + 1.
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Monodromy and vanishing cycles in toric surfaces 187

Proposition 6.2 Let r = 2d be an even integer. Suppose g ≥ g(r) and that
r < g − 1. Then Tφ is a finite-index subgroup ofMod(�g).

The presence of an underlying Z/2Z spin structure makes proving the ana-
logues of Lemmas 5.8 and 5.9 substantially more difficult. At present, we do
not know how to establish the analogue of Lemma 5.8, owing to the fact that
theArf invariant provides an obstruction to finding the configurations of curves
on subsurfaces needed for the arguments therein. Thus we content ourselves
with showing that Tφ � Mod(�g) is finite-index.

Proof of of Proposition 6.2 The proof of Proposition 6.2 follows a similar out-
line to that of Proposition 5.1. We begin with an overview of the proof.

OverviewToestablish finiteness of the index [Mod(�g): Tφ], it suffices to show
that the indices [Sp(2g, Z): �(Tφ)] and [Ig: Tφ ∩Ig] are both finite. Finiteness
of [Sp(2g, Z):�(Tφ)] is established in Lemma 6.4 of Step 1, which moreover
gives a complete description of the subgroup �(Tφ).

Finiteness of [Ig: Tφ ∩ Ig] is obtained in Steps 2 and 3, again by using the
Johnson homomorphism to analyze the intersection Tφ ∩ Ig as in Steps 2-4 of
the proof of Proposition 5.1. The main result of Step 2 is Lemma 6.6, which
shows that τ(Tφ ∩ Ig) has finite index in ∧3HZ/HZ. Step 3 completes the
argument by showing the containment Kg � Tφ ; this is obtained as Lemma
6.7. We advise the reader that Step 3 is substantially more complicated than
its counterpart Step 4 of the proof of Proposition 5.1, and will require an
explanatory outline of its own.

Step 1: The symplectic quotient The case of r even is no more difficult than
for r odd. Let q be a Z/2Z-valued spin structure. An anisotropic transvection
is a transvection

Tv(w) = w + 〈w, v〉v
for a primitive v ∈ H1(�g; Z) such that q(v) = 0.

The following theorem is surely well-known to experts but we were unable
to find a reference. A special case is treated in [5, Proposition 14].

Theorem 6.3 (Folklore) Let q be a Z/2Z-valued spin structure on �g for
g ≥ 3, and let Sp(2g, Z)[q] denote the subgroup of Sp(2g, Z) that fixes q.
Then Sp(2g, Z)[q] is generated by the collection of anisotropic transvections

{Tv | v ∈ H1(�g; Z) primitive, q(v) = 0}.
Proof The action of Sp(2g, Z) on the set of spin structures factors through
the quotient f : Sp(2g, Z) → Sp(2g, Z/2Z). Define Sp(2g, Z)[2] := ker( f ).
Thus, there is a short exact sequence
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188 N. Salter

1 → Sp(2g, Z)[2] → Sp(2g, Z)[q] → Sp(2g, Z/2Z)[q] → 1,

with Sp(2g, Z/2Z)[q] denoting the stabilizer ofq in Sp(2g, Z/2Z). According
to [8, Theorem 14.16], the group Sp(2g, Z/2Z)[q] is generated by the images
of all anisotropic transvections. So it remains to see only that the subgroup of
Sp(2g, Z)[q] generated by anisotropic transvections contains Sp(2g, Z)[2].
According to [14, Lemma 5], the group Sp(2g, Z)[2] is generated by the
collection of “square transvections” T 2

w, where w ranges over all primitive
w ∈ H1(�g; Z).

If q(w) = 0 then Tw ∈ Sp(2g, Z)[q] and so there is nothing to show.
Assume now that q(w) = 1. It is easy to produce (e.g. by the change-
of-coordinates principle on �g) vectors v1, v2, v3 ∈ H1(�g; Z) with the
following properties:

(1) q(vi ) = 0 for all i ,
(2) 〈v1, v2〉 = 〈v2, v3〉 = 1 and 〈v1, v3〉 = 0,
(3) 〈vi , w〉 = 0 for all i ,
(4) v1 + v3 = w.

The chain relation inMod(�g) (Proposition 2.4) descends to show the relation

(Tv1Tv2Tv3)
4 = T 2

w.

Since the left-hand side is a product of anisotopic transvections, it follows that
for w arbitrary, T 2

w ∈ Sp(2g, Z)[q] as required. �
The following is the main result of Step 1.

Lemma 6.4 Let φ be a Z/rZ-valued spin structure for r an even integer, and
let

q := φ (mod 2)

denote the associated Z/2Z-valued spin structure. The symplectic represen-
tation �: Mod(�g) → Sp(2g, Z) restricts to a surjection

�: Tφ � Sp(2g, Z)[q],
where Sp(2g, Z)[q] denotes the stabilizer of q in Sp(2g, Z).

Proof As Tφ preserves the Z/rZ-valued spin structure φ, it also preserves the
mod-2 reduction q. Thus Tφ � Mod(�g)[q] and so �(Tφ) � Sp(2g, Z)[q].
Let v ∈ H1(�g; Z) be a primitive element satisfying q(v) = 0. By Lemma
5.3, there is some curve c with [c] = v and φ(c) = 0. As Tc ∈ Mod(�g)[φ]
and �(Tc) = Tv , the result now follows from Theorem 6.3. �
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Monodromy and vanishing cycles in toric surfaces 189

Step 2: The Johnson homomorphism We remind the reader that while the
value φ(c) on a simple closed curve depends on more than the homology
class [c] ∈ H1(�g; Z), the discussion of Sect. 3.4 establishes that the mod-
2 reduction q(c) does depend only on the homology class [c] (indeed, the
coefficients here can be taken to be Z/2Z). Thus the arguments in Step 3 can
be carried out entirely in the homological setting.

For the duration of Step 2, we adopt the following notation. As usual, define

q :=φ (mod 2).

There exists a symplectic basis {x1, y1, . . . , xg, yg} for H1(�g; Z) such that
q(xi ) = 0 for 1 ≤ i ≤ g and q(y j ) = 0 for 1 ≤ j ≤ g − 1; with such a basis,
Arf(q) depends only on g and on q(yg).

Before proceeding to the main result of Step 2 (Lemma 6.6), we begin with
an algebraic lemma.

Lemma 6.5 Set v := x1 ∧ y1 ∧ x4. Let V � ∧3HZ denote the submodule
generated by the set

{gv | g ∈ Sp(2g, Z)[q]} .

Then V = ∧3HZ for g ≥ 5.

Proof As remarked in Lemma 5.8,∧3HZ is generated by elements of the form
zi ∧ z j ∧ zk with each zi ∈ {x1, y1, . . . , xg, yg}. To begin with, we will exhibit
generators for the submodule of ∧3HZ spanned by generators zi ∧ z j ∧ zk for
which zi , z j , zk ∈ {x1, y1, . . . , xg−1, yg−1}. The restriction of Sp(2g; Z)[q]
to this submodule is independent of the parity of q. For i �= j ≤ g − 1, define
Si, j ∈ Sp(2g, Z) via

Si, j (xi ) = x j , Si, j (yi ) = y j ,

Si, j (x j ) = xi , Si, j (y j ) = yi ,

with all other generators fixed. As q(xk) = q(yk) = 0 for k ≤ g − 1, in fact
Si, j is an element of Sp(2g, Z)[q]. Applying Si, j for i, j �= 4 to v shows that
V contains all generators of the form xi ∧ yi ∧ x4. Applying Si,4 to x j ∧ y j ∧ x4
for i �= j shows that V contains all generators of the form x j ∧ y j ∧ xi for
j �= 4; then applying S j,4 to x j ∧ y j ∧ xi shows that V contains all elements
of the form x j ∧ y j ∧ xi .

For 1 ≤ i ≤ g − 1, define Ri ∈ Sp(2g, Z) via

Ri (xi ) = yi , Ri (yi ) = −xi
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190 N. Salter

with all other generators fixed. Again, the condition q(xk) = q(yk) = 0 for
k ≤ g − 1 implies that Ri is an element of Sp(2g, Z)[q]. Applying Ri to
x j ∧ y j ∧ xi shows that also V contains all elements of the form x j ∧ y j ∧ yi .

It remains to exhibit generators of the form zi ∧ z j ∧ zk with z� ∈ {x�, y�}
and i, j, k < g all distinct. Consider the transvection Tx4−x1 ∈ Sp(2g, Z)[q].
Applied to x1 ∧ y1 ∧ x2, this shows that

x1 ∧ (y1 + x4) ∧ x2 ∈ V,

hence also x1 ∧ x2 ∧ x4 ∈ V . Now by repeated applications of the elements
Si, j and Ri , one can produce all remaining generators.
In the case q(yg) = 0, the elements Si,g and Rg are contained in

Sp(2g, Z)[q], and so the above argument extends to complete this case. It
remains to consider the case where q(yg) = 1. In this case, the formula (5)
defining aZ/2Z-valued quadratic form shows thatq(yg−1+yg) = 0.Applying
Tyg−1+yg to the elements x1∧x2∧xg−1 and x1∧y1∧xg−1 shows that x1∧x2∧yg
and x1 ∧ y1 ∧ xg are elements of V . Applying Si, j and Ri for i, j ≤ g − 1
produces all elements of the form zi ∧z j ∧ yg with z� ∈ {x�, y�} (i, j ≤ g−1).
Then applying Txg to these elements shows that also each zi ∧ z j ∧ xg ∈ V .

By (5), we have q(x1 + xg − yg) = 0. Applying T−1
x1+xg−yg to y1 ∧ y2 ∧ yg

gives

w = (y1 + x1 + xg − yg) ∧ y2 ∧ (x1 + xg);
expanding this product yields the expressionw = −y2∧ xg ∧ yg +w′, withw′
expressed entirely in terms of generators already known to be elements of V .
Applying Si, j and Ri as in the above paragraph shows that all the remaining
generators zi ∧ xg ∧ yg are elements of V . �

The following is the main result of Step 2.

Lemma 6.6 For g ≥ 5, the image τ(Tφ ∩ Ig) under the Johnson homomor-
phism is a finite-index subgroup of ∧3HZ/HZ.

Proof As stated in Lemma 2.8.1, the homomorphism τ : Ig → ∧3HZ/HZ

is Sp(2g, Z)-equivariant. The strategy for the proof of Lemma 6.6 is to first
exhibit a single nonzero element of τ(Tφ ∩ Ig), and then to exploit this equiv-
ariance.

By Corollary 4.10.5, there exists a 3-chain of admissible curves a1, a2, a3
such that

[a1] = x1, [a2] = y1, [a3] = x4 − x1.

Let ν be a regular neighborhood of this chain, and denote the boundary curves
as b, b′. As a1 and a2 are admissible, homological coherence implies that
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Monodromy and vanishing cycles in toric surfaces 191

φ(b) = φ(b′) = −1 when oriented so that ν lies to the left of both b, b′. By
Lemma5.2, T r

b is an element ofTφ . It follows by the chain relation (Proposition
2.4) that the bounding pairmap T r

b T
−r
b′ ∈ Tφ . One sees that [b] = [a1]+[a3] =

x4. By Lemma 2.8.3,

τ(T r
b T

−r
b′ ) = r(x1 ∧ y1 ∧ x4).

By Lemma 6.4 and the equivariance of τ with respect to Sp(2g, Z) (and a
fortiori with respect to Sp(2g, Z)[q]), it follows that τ(Tφ ∩ Ig) contains the
Z-span of the entire Sp(2g, Z)[q]-orbit of v := r(x1 ∧ y1 ∧ x4). Lemma 6.6
now follows from Lemma 6.5. �
Step 3: The Johnson kernel In this section, we establish the following result.

Lemma 6.7 Let φ be a Z/2dZ-valued spin structure on �g. Assume that
g satisfies the hypotheses of Proposition 6.2. Then Tφ contains the Johnson
kernel Kg.

Before beginning the proof, we explain the difficulties imposed by the
assumption that r = 2d is even.

The Arf invariant as obstruction The mechanism of proof for Lemma 5.9 was
the chain relation (Proposition 2.4): if S ⊂ �g has one boundary component,
we exploited Corollary 4.5 to produce a maximal chain {ai } of curves on S
with φ(ai ) = 0, and then used the chain relation to express T∂S in terms of the
admissible twists {Tai }. Now suppose φ is a Z/rZ-valued spin structure for r
even, and let q = φ (mod 2) denote the mod-2 reduction. For any subsurface
S ⊂ �g with one boundary component, q restricts to give a Z/2Z-valued spin
structure q S on S. The Arf invariant of q S , written here as ε(S), provides an
obstruction to the existence of a maximal chain {ai } of admissible curves on
S, since such a chain determines the value ε(S) solely as a function of g(S).
Suppose c ⊂ �g is a separating curve that divides �g into disjoint surfaces

S, S′. Such a c is called easy if at least one of S, S′ supports a maximal chain
of admissible curves, and is hard otherwise. By Corollary 4.10.4 and the chain
relation (Proposition 2.4), if c is easy, then Tc ∈ Tφ .

Outline of proof of Lemma 6.7We begin with Lemma 6.8, which characterizes
those subsurfaces supporting a maximal chain of admissible curves in terms
of the Arf invariant. This in particular shows the relevance of the genus of
the subsurface mod 4, which in turn forces us to treat the cases r ≡ 0, r ≡ 2
(mod 4) separately.We therefore establish Lemma 6.7 by combining Lemmas
6.10 and 6.13, which treat the cases of r ≡ 2 (mod 4) and r ≡ 0 (mod 4),
respectively.
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192 N. Salter

These are handled in Substeps 1 and 2, respectively. In each case, we first
show that all separating twists of particular genera are elements of Tφ . In
Substep 1, Lemma 6.9 shows that all separating twists of genus d lie in Tφ . In
Substep 2, Lemma 6.11 shows that all separating twists of genus h ≡ d + 2
(mod 2d) lie in Tφ , and Lemma 6.12 establishes the same result for separating
twists of genus h ≡ d+4 (mod 2d). Lemmas 6.10 and 6.13 then follow from
these preliminary results and an application of the Dn relation (Proposition
2.6).

Lemma 6.8 Let S ⊂ � be a subsurface with single boundary component.
Assume the genus g(S) ≥ 2. Then there is a maximal chain of admissible
curves on S if and only if one of the following conditions hold:

• g(S) ≡ 1 or 2 (mod 4) and ε(S) = 1,
• g(S) ≡ 3 or 0 (mod 4) and ε(S) = 0.

Proof Suppose S supports a maximal chain a1, . . . , a2g(S) of admissible
curves. Since the chain determines a basis for H1(S; Z), the conditions
φ(ai ) = 0 completely determineφ. One can easily compute ε(S) from this and
see that the above conditions are necessary. Sufficiency follows from Corol-
lary 4.10.4. �
Substep 1: d oddThe objective of Substep 1 is Lemma6.10 below. The first step
is to see that all separating twists Tc of genus d are elements of Tφ , regardless
of whether c is easy.

Lemma 6.9 Let S ⊂ �g be a subsurface of genus d with a single boundary
component c. If φ is a Z/2dZ-valued spin structure with d odd, then Tc ∈ Tφ .

Proof If c is easy then there is nothing to show. Assume therefore that c is
hard. If c is oriented so that S lies to the right, then φ(c) = −(1 − 2d) ≡ −1
(mod 2d). The assumption that r = 2d < g − 1 implies that �g\S has genus
at least 2. We claim that there exists a 3-chain of admissible curves x, y, z
on �g\S such that c ∪ x ∪ z forms a pair of pants. To see this, we invoke
Corollary 4.3 to let x ⊂ �g\S be an admissible curve. Let z ⊂ �g\S be any
curve such that c ∪ x ∪ z bounds a pair of pants; admissibility of z follows by
the homological coherence property, as c is oriented with �g\S to the left. To
construct y, let y′ ⊂ �g\S be any curve such that x, y′, z forms a chain. By
Corollary 4.4, y′ can be replaced with an admissible curve y with the same
intersection properties.

Let S′ denote the connected surface of genus d+1 containing S and x∪y∪z.
If B is a basis for H1(S; Z), then B ∪ {x, y} forms a basis for H1(S′; Z).
Applying the formula (7) for the Arf invariant, it follows that ε(S′) = ε(S)+1.

Since c is hard and d = g(S) is odd, Lemma 6.8 implies that ε(S) = 0
if g(S) ≡ 1 (mod 4) and that ε(S) = 1 otherwise. Recalling that ε(S′) =
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ε(S)+1, in the first case, g(S′) ≡ 2 (mod 4) and ε(S′) = 1, and in the second
case, g(S′) ≡ 0 (mod 4) and ε(S′) = 0. Lemma6.8 then implies that c′ := ∂S′
must be easy, and so Tc′ ∈ Tφ . Applying the chain relation (Proposition 2.4)
to x, y, z shows that TcTc′ ∈ Tφ ; this implies that also Tc ∈ Tφ . �
Lemma 6.10 Let φ be a Z/2dZ-valued spin structure on �g with d odd.
Assume that g satisfies the hypotheses of Proposition 6.2. Then Tφ contains
the Johnson kernel Kg.

Proof ByTheorem2.9, it suffices to show that Tc ∈ Tφ for all separating curves
c of arbitrary genus. To do this, we combine Lemma 6.9 with the Dn relation
(Proposition 2.6). Suppose c is a separating curve on �g. Since g = kd + 1
with k ≥ 2, at least one side of cmust be a subsurface S of genus g(S) ≥ d+1.
Set n := 2g(S) − 2d + 1. By Corollary 4.11, there is a configuration Dn of
admissible curves as in the Dn relation for which�2 = c. The other boundary
component �0 bounds a subsurface of genus d. Applying the Dn relation, we
have T n−1

�0
Tc ∈ Tφ . But since �0 bounds a surface of genus d, also T�0 ∈ Tφ

by Lemma 6.9. Thus Kg � Tφ in this case. �
Substep 2: d even The objective is to establish Lemma 6.13. The argument
here follows a similar outline to that of Substep 1 but now requires the two
preliminary Lemmas 6.11 and 6.12.

Lemma 6.11 Let S ⊂ �g be a subsurface of genus g(S) ≥ 5 with a single
boundary component c, such that g(S) ≡ d + 2 (mod 2d). If φ is a Z/2dZ-
valued spin structure with d even, then Tc ∈ Tφ .

Proof Orient c so that S lies to the left. Then

φ(c) = 1 − 2g(S) ≡ 1 − 2(d + 2) ≡ −3 (mod 2d).

By Corollary 4.10.5, there exists a chain a1, . . . , a6 of admissible curves on
S. Let a7 be any curve on S such that i(a7, ak) = 1 for k = 6 and is zero
for k ≤ 5, and such that c ∪ a1 ∪ a3 ∪ a5 ∪ a7 bounds a subsurface of S
homeomorphic to �0,5. By homological coherence, a7 is admissible.

Let S′ denote the subsurface of S homeomorphic to �g(S)−3,1 determined
by the complement of the chain a1, . . . , a7. Applying the formula (7) for the
Arf invariant, one finds that ε(S′) = ε(S). On the other hand, g(S′) ≡ g(S)+1
(mod 4). By hypothesis, g(S) is even, and so referring to Lemma 6.8, if c is
hard, then c′ := ∂S′ must be easy. The arguments given at the conclusion of
Lemma 6.9 now apply to give the result. �
Lemma 6.12 Let S ⊂ � be a subsurface of genus g(S) ≥ 9 with a single
boundary component c, such that g(S) ≡ d + 4 (mod 2d). If φ is a Z/2dZ-
valued spin structure with d even, then Tc ∈ Tφ .

123



194 N. Salter

Proof This is proved along similar lines to Lemma 6.11. Arguing as in the
first paragraph of the proof of Lemma 6.11, there exists a chain a1, . . . , a15 of
admissible curves on S such that c ∪ a1 ∪ a3 ∪ · · · ∪ a15 bounds a subsurface
of S homeomorphic to �0,9. Let S′ denote the subsurface of S homeomorphic
to �g(S)−7,1 determined by the complement of the chain a1, . . . , a15. The
rest of the argument proceeds as in Lemma 6.11: one shows that if c is hard,
necessarily c′ := ∂S′ must be easy, and the result follows as before by the chain
relation (Proposition 2.4). �
Lemma 6.13 Let φ be a Z/2dZ-valued spin structure on �g with d even.
Assume that g satisfies the hypotheses of Proposition 6.2. Then Tφ contains
the Johnson kernel Kg.

Proof According to Johnson’s Theorem 2.9, in order to show that Kg � Tφ ,
it suffices to exhibit all separating twists of genus 1 and 2 as elements of Tφ .
To do this, we again appeal to the Dn relation (Proposition 2.6). Suppose c is
a separating curve on �g with g(c) ≤ 2. By hypothesis, g ≥ kd + 1 with d
even and k ≥ 2. Since the genus of one side of c is at most 2, the genus h of
the other side of c is at least kd − 1 ≥ 2d − 1. If d ≥ 6, then 2d − 1 ≥ 11. If
d = 4, then by assumption k ≥ 5, and so h ≥ 19. If d = 2 then we assume
k ≥ 6, so that h ≥ 11.

In all three of these cases, Corollary 4.11 implies that there exists an n ≥ 4
and a configuration a, a′, c1, . . . , c2n−1 of admissible curves in the configu-
ration of the D2n+1 relation, with �2 = c and C4 bounding a subsurface of
genus g(S) ≡ d + 4 (mod 2d) disjoint from S, such that the hypotheses of
Lemmas 6.11 and 6.12 hold.

By the Dk relation (for k = 2n+1, 5, 9 respectively), T 2n−1
�0

Tc and T 3
�0

TC2

and T 7
�0

TC4 are all elements of Tφ . By Lemma 6.11, TC2 ∈ Tφ as well, hence

T 3
�0

∈ Tφ . Likewise, Lemma 6.12 shows that TC4 ∈ Tφ , hence T 7
�0

∈ Tφ .
Combining these last two results shows that T�0 ∈ Tφ , and ultimately that
Tc ∈ Tφ as required. �

This concludes the proof of Proposition 6.2. �

7 Connectivity of some complexes

This section is devoted to establishing the connectivity of the simplicial com-
plexes Csep,2(�g) and C1φ(�g) to be defined below. The first of these will be
an important ingredient in the proof of Proposition 8.2, and the second will
feature in the proof of Theorem A. The mechanism by which these will be
seen to be connected is the so-called Putman trick. The version given below
is slightly less general than the full theorem as stated in [16], but will suffice
for our purposes.
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c d

Fig. 7 The configuration of curves needed for Lemma 7.3

Theorem 7.1 (The Putman trick) Let X be a simplicial graph, and let G act
on X by simplicial automorphisms. Suppose that the action of G on the set of
vertices X (0) is transitive. Fix some base vertex v ∈ X (0). Let � = �−1 be a
symmetric set of generators for G, and suppose that for each s ∈ �, there is
a path in X connecting v to s · v. Then X is connected.

Definition 7.2 Csep,2(�g) is the simplicial graphwhere vertices correspond to
(isotopy classes of) separating curves c bounding a subsurface homeomorphic
to �2,1, and where c and d are adjacent in Csep,2(�g) whenever c and d are
disjoint in �g.

Lemma 7.3 Csep,2(�g) is connected for g ≥ 5.

Proof This is a straightforward consequence of Theorem 7.1. With reference
to Fig. 7 and the standard generating set of Fig. 1, observe that only the gen-
erator T±

c2 does not fix the base vertex c. In this case, the genus 2 subsurface
determined by d is disjoint from both c and T±

c2 (c), and so there is a path
c, d, T±

c2 (c) in Csep,2(�g). �
Definition 7.4 Let φ be a Z/rZ-valued spin structure on a surface �g. The
graph Cφ(�g) has vertices consisting of the admissible curves for φ, where
a and b are adjacent whenever i(a, b) = 0. The graph C1φ(�g) has the same
vertex set as Cφ(�g), but vertices a, b are adjacent whenever i(a, b) = 1.

Lemma 7.5 C1φ(�g) is connected for g ≥ 5.

Proof The first step is to establish the connectivity of Cφ(�g). Let a, b be
vertices. Choose subsurfaces Sa, Sb containing a, b respectively, each home-
omorphic to �2,1. By Lemma 7.3, there is a path Sa0, . . . , San in Csep,2(�g)

with a ⊂ Sa0 and b ⊂ San , with each Sai disjoint from Sai+1 . By Corol-
lary 4.3, on each Sai there exists some admissible curve ai . By construction,
a = a0, a1, . . . , an = b is a path in Cφ(�g) connecting a to b.

The connectivity of C1φ(�g) now follows readily. Given a path a =
a0, . . . , an = b in Cφ(�g), Corollary 4.4 implies that for each i , there exists
some admissible curve ci such that i(ai , ci ) = i(ai+1, ci ) = 1. The path
a0, c0, a1, c1, . . . , cn−1, an connects a to b in C1φ(�g). �
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8 Subsurface push subgroups and Tφ

As discussed in the introduction, the main technical result on the groups
Mod(�g)[φ] and Tφ that we require is a criterion for a collection of Dehn
twists to generate Tφ , given below as Theorem 9.5. This is the first of two
sections dedicated to proving Theorem 9.5. Here, we formulate and prove the
intermediate result Proposition 8.2,which gives a generating set forTφ not con-
sisting entirely of Dehn twists. The results here concern a class of subgroups
known as spin subsurface push subgroups; these are introduced in Sects. 8.1
and 8.2.

8.1 Subsurface push subgroups

Recall the classical inclusion map, as discussed in [7, Theorem 3.18]. Let
S′ ⊂ S be a subsurface either of genus g(S′) ≥ 2 with n ≥ 1 boundary
components, or else of genus g(S′) = 1 with n ≥ 2 boundary components.
Assume that no component of ∂S′ bounds a closed disk in S. Let a1, . . . , ak
denote the boundary components of S′ that bound punctured disks in S, let
b1, b′

1, . . . , b�, b′
� denote the pairs of boundary components of S′ that cobound

an annulus in S, and c1, . . . , cm denote the remaining boundary components.
Let i∗: Mod(S′) → Mod(S) denote the map on mapping class groups arising
from the inclusion i : S′ ↪→ S. Then

ker(i∗) =
〈
Ta1, . . . , Tak , Tb1T

−1
b′
1

, . . . , Tb�
T−1
b′
�

〉
.

Let � be a boundary component of S′, and suppose that � does not bound
a punctured disk in S. Let S′ denote the surface obtained from S′ by capping
off � with a closed disk. According to (2), there is a subgroup of Mod(S′)
isomorphic to π1(UT S′). The subsurface push subgroup for (S′, �) is defined
to be the image of π1(UT S′) under the inclusion i∗: Mod(S′) → Mod(S).
This will be written �(S′, �), or simply �(S′) if the boundary component
does not need to be emphasized.

We remark here that i∗ restricts to an injection π1(UT S′) ↪→ Mod(S), even
when there exists some other boundary component �′ of S′ such that � ∪ �′
cobounds an annulus on S. To see this, observe that π1(UT S′) � Mod(S′) is
characterized by the property that f ∈ π1(UT S′) if and only if f becomes
isotopic to the identity when extended to S′. It is easy to see that no element
of ker(i∗) has this property.
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8.2 Spin subsurface push subgroups

Let S′ ⊂ S be a subsurface with some boundary component � satisfying
φ(�) = −1. The following lemma shows that Mod(S)[φ] contains a finite-
index subgroup of �(S′, �). This subgroup, written �̃(S′, �), is called a spin
subsurface push subgroup. Before proceeding with the rest of the section, the
reader may wish to review the notion of a fundamental multitwist defined in
Sect. 3.3.

Lemma 8.1 Let S′ ⊂ S be a subsurface with some boundary component
� satisfying φ(�) = −1. Then there is a finite-index subgroup �̃(S′, �) �
Mod(S)[φ]∩�(S′, �) characterized by the diagram given below, whose rows
are short exact sequences:

1 〈T r
�〉 �̃(S′, �) π1(S′) 1

1 〈T�〉 �(S′, �) π1(S′) 1.

(10)

The subgroup �̃(S′, �) contains all fundamental multitwists for pairs of pants
P ⊂ S′ of the form P = a ∪ b ∪ �.

Proof Following the discussion of Sect. 2.2, there exists a “geometric” gener-
ating set for π1(UT S′, �) of the following form:

π1(UT S′) = 〈α̃1, . . . , α̃k, ζ 〉. (11)

Here αi is some simple closed curve on S′ based at �, and α̃i denotes the
Johnson lift to π1(UT S′). As before, ζ denotes the loop around the fiber. As
an element of Mod(S′), each α̃i is of the form Tαi,L Tαi,R , where αi,L denotes
the curve on S′ lying to the left of αi and αi,R lies to the right. It follows that
Pi = αi,L ∪ αi,R ∪ � forms a pair of pants on S′. Following Lemma 3.18, the
fundamental multitwist

TPi = Tαi,L T
−1
αi,R

T
φ(αi,R)

�

lies inMod(S)[φ]∩�(S′, �). Embeddingπ1(UT S′) intoMod(S′), the gener-
ating set of (11) can be replaced by the following generating set for�(S′, �):

�(S′, �) = 〈TP1, . . . , TPk , T�〉.
Define

�̃(S′, �) = 〈TP1, . . . , TPk , T r
�〉.
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By construction, �̃(S′, �) � Mod(S)[φ]. Under the projection �(S′, �) →
π1(S′), the set {TPi } maps onto a generating set for π1(S′). It follows that
�̃(S′, �) surjects onto π1(S′). As Tm

� ∈ Mod(S)[φ] if and only if r | m, it
follows that �̃(S′, �) is indeed characterized by the diagram (10) as claimed.

For the second claim, let P = a∪b∪� be a pair of pants on S′. The curves
a, b are isotopic on S′ and cobound an annulus containing the basepoint.
It follows that TaT

−1
b ∈ π1(S′). Via (10), there is some lift TaT

−1
b T k

� ∈
�̃(S′, �), and as T r

� ∈ �̃(S′, �) as well, it follows that all fundamental
multitwists for P are elements of �̃(S′, �) as claimed. �

For the purposes of this paper, we will most often be concerned with sub-
surface push subgroups for a special class of subsurfaces. Let b ⊂ �g be a
nonseparating closed curve satisfying φ(b) = −1. The boundary component
� of �g\{b} corresponding to the left side of b satisfies φ(�) = −1, and
to ease notation, we write �̃(�g\{b}) to refer to this spin subsurface push
subgroup.

8.3 Generating admissible twists

We have arrived at the key result of the section.

Proposition 8.2 Let φ be a Z/rZ-valued spin structure on a closed surface
�g for g ≥ 5 and any integer r . Let (a0, a1, b) be an ordered 3-chain of curves
with φ(a0) = φ(a1) = 0 and φ(b) = −1. Let H � Mod(�g) be a subgroup
containing Ta0, Ta1 and the spin subsurface push group �̃(�g\{b}). Then H
contains Tφ .

The proof will require the preliminary Lemma 8.3, for which we introduce
some terminology. For a subgroup H � Mod(�g), we say that a simple closed
curve a is an H-curve if Ta ∈ H .We also say that curves a, b are H-equivalent
if there exists some f ∈ H with f (a) = b. If a and b = f (a) are H -equivalent
and �̃(�g\{a}) � H , then also �̃(�g\{b}) = f �̃(�g\{a}) f −1 is a subgroup
of H .

The following lemma establishes some sufficient conditions for H -
equivalence of curves.

Lemma 8.3 Let�g be a surface of genus g ≥ 5. Let a0, a1, b be an ordered 3-
chain of curves with φ(a0) = φ(a1) = 0 and φ(b) = −1. Let H � Mod(�g)

be a subgroup containing Ta0, Ta1 and �̃(�g\{b}).
(1) Let b′ be an oriented curve satisfying φ(b′) = −1 such that i(b, b′) =

0 and i(a1, b′) = 1. Then b and b′ are H-equivalent. It follows that
�̃(�g\{b′}) � H.

(2) Let a′ be any nonseparating curve satisfying φ(a′) = 0 such that a′ is
disjoint from the configuration a0 ∪ a1 ∪ b. Then a′ is an H-curve.
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(3) Let b′ be any nonseparating curve satisfying φ(b′) = −1 such that b′ is
disjoint from the configuration a0∪a1∪b. Then b and b′ are H-equivalent,
and hence �̃(�g\{b′}) � H.

Proof (1) If b = b′ there is nothing to prove. Otherwise, given a1, b, b′, we
define a curve b′′ as follows. Let ε be the portion of a1 connecting the left
side of b to one of the sides of b′; then b′′ is defined as the curve-arc sum
b′′ := b+εb′. By construction b∪b′∪b′′ bounds a pair of pants P lying to the
left of b, and i(a1, b′′) = 0. By Lemma 3.13, there exists an orientation of
b′′ such that φ(b′′) = −1. This can be determined as follows: b′′ is oriented
with P lying to the right if and only if P lies to the left of b′. If P lies to the
left of b′, then the element TbTb′T−1

b′′ is a fundamental multitwist and hence
an element of �̃(�g\{b}) � H . Otherwise, TbT

−1
b′ Tb′′ is a fundamental

multitwist. In the first case, the braid relation implies that

Ta1(TbTb′T−1
b′′ )Ta1(b) = b′,

while in the second case,

T−1
a1 (TbT

−1
b′ Tb′′)Ta1(b) = b′.

In either case, the indicated element lies in H , showing the H -equivalence
between b, b′.

(2) Let ε be an arc connecting a0 to a′ that is disjoint from a1 ∪ b, and define
b′ := a0+ε a′. It is possible that b′ = b, but this will not pose any difficulty.
Then a0 ∪ a′ ∪ b′ forms a pair of pants and b′ satisfies the intersection
conditions i(b, b′) = 0 and i(a1, b′) = 1. By the homological coherence
property, φ(b′) = −1. By the second assertion of (1), �̃(�g\{b′}) �
H . As a0 ∪ a′ ∪ b′ forms a pair of pants, it follows that Ta0T

−1
a′ is a

fundamental multitwist, and so Ta0T
−1
a′ ∈ �̃(�g\{b′}) � H . As Ta0 ∈ H

by hypothesis, this shows that Ta′ ∈ H as desired.
(3) Given b′, Corollary 4.4 implies that there exists an admissible curve a′

that is disjoint from a0 ∪ a1 ∪ b and for which i(a′, b′) = 1. Corollary 4.4
also establishes the existence of a curve b′′, satsifying φ(b′′) = −1, with
the following intersection properties:

i(b, b′′) = i(b′, b′′) = i(a0, b
′′) = 0; i(a′, b′′) = i(a1, b

′′) = 1.

By (1), b and b′′ are H -equivalent. By (2), a′ is an H -curve, so that by (1)
again, b′′ and b′ are H -equivalent, showing the result. �

Proof of Proposition 8.2 Let a be any admissible curve. There is some genus 2
subsurface S′ ∼= �2,1 containing a, and there is also some genus 2 subsurface
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S ∼= �2,1 that contains the curves a0, a1, b. By Lemma 7.3, there is a path
S0 = S − S1 − · · · − Sn = S′ of subsurfaces homeomorphic to �2,1 with
boundary components ∂Si and ∂Si+1 disjoint for i = 1, . . . , n − 1, hence
Si ∩ Si+1 = ∅ for i = 1, . . . , n − 1.
For i = 1, . . . , n, let a2i be an admissible curve contained in Si ; we take

a2n = a. We claim that there exist curves a2i+1 and bi on Si such that
a2i , a2i+1, bi forms a chain, and φ(a2i+1) = 0, φ(bi ) = −1. To see this,
let T ⊂ Si be a subsurface of genus 1 that does not contain a2i . By Corollary
4.3, there is an admissible curve a′ contained in T . Let ε be an arc connecting
a2i and a′; then bi := a2i +ε a′ satisfies φ(b) = −1 for a suitable choice of
orientation. Let c be any curve on Si such that i(c, a2i ) = i(c, bi ) = 1. Then
a2i+1 := T φ(c)

bi
(c) is admissible, and a2i , a2i+1, bi forms a chain as required.

We assume for the sake of induction that a2i , a2i+1 are H -curves and that
�̃(�g\{bi }) � H . Then by Lemma 8.3.2, also a2i+2, a2i+3 are H -curves, and
�̃(�g\{bi+1}) � H . The base case i = 0 holds by hypothesis, taking b0 = b.
The claim now follows by induction. �

9 Networks

In this section we deduce Theorem 9.5 from Proposition 8.2. The key notion
is that of a network of curves. In Sect. 9.1, we establish the basic theory of
networks, and in Sect. 9.2, we state and prove Theorem 9.5. Departing from
our conventions elsewhere in the paper, in this section wework with individual
curves and not merely their isotopy classes.

9.1 Networks and their basic theory

Definition 9.1 Let S = �n
g,b be a surface, viewed as a compact surface with

marked points. A network on S is any collection N = {a1, . . . , an} of simple
closed curves on S, disjoint from any marked points, such that #(ai ∩ a j ) ≤ 1
for all pairs of curves ai , a j ∈ N , and such that there are no triple intersections.
A networkN has an associated intersection graph �N , whose vertices corre-
spond to curves x ∈ N , with vertices x, y adjacent if and only if #(x ∩ y) = 1.
A network is said to be connected if �N is connected, and arboreal if �N is
a tree. A network is filling if

S\
⋃

a∈N
a

is a disjoint union of disks and boundary-parallel annuli; each component is
allowed to contain at most one marked point of S.
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The data of a network encodes both an abstract finite set of curves as well
as a topological subspace of the surface S. To avoid confusing these, let the
symbol N denote this finite set, and let N̂ denote the space. When N is
arboreal, there is a simple generating set for π1(N̂ ). To describe it, endow N̂
with the structure of a CW complex, and let T be a spanning tree for this CW
complex.

Lemma 9.2 Let N be an arboreal network. Then there is a 1–1 correspon-
dence between the set of edges N̂ \T , and the set N .

Proof Each edge of N̂ is contained in a unique element of N . For a given
a ∈ N , let a1, . . . , an(a) denote these edges, ordered so that adjacent edges
are numbered consecutively. For eacha ∈ N , the sequencea1, . . . , an(a) forms
a cycle in N̂ . Thus for each a ∈ N , there is at least one edge a1 (without loss
of generality) that is not contained in T .

It remains to show that for each a ∈ N , there is exactly one edge not
contained in T . Equivalently, we must show that the intersection a ∩ T is
connected as a topological space. The assumption that N is arboreal implies
that �N has the following property: let �N (a) be the graph obtained from �N
by removing all edges incident to a. Then each vertex b adjacent to a in �N
determines a distinct component of �N (a).

Let v, w ∈ a be vertices of N̂ , and let e1, . . . , en be the unique geodesic
path in T connecting v tow. It suffices to show that this path is contained in a.
If this is not the case, let k1 (resp. k2) be the minimal (resp. maximal) integer
such that ek1 (resp. ek2) is not contained in a. Then exactly one vertex v1 of ek1
(resp. v2 of ek2) lies on a, and the other lies on some adjacent curve b1 (resp.
b2). As i(a, b1) = i(a, b2) = 1 and the path e1, . . . , en visits each vertex in N̂
at most once, it follows that b1 and b2 are distinct elements ofN . As explained
in the above paragraph, the arboreality assumption implies that every path in
N̂ connecting a point in b1 to a point in b2 must pass through a. Any such
path must pass through v1 and v2: this shows that if the path e1, . . . , en enters
b1, it must pass through v1 at least twice, contrary to assumption. �

Via Lemma 9.2, each a ∈ N determines a unique based loop P(a) by
following the unique path in T from the basepoint to a. Lemma 9.3 below
now follows by a standard application of the Seifert–Van Kampen theorem.

Lemma 9.3 Let N be an arboreal network. Then π1(N̂ ) is generated by the
set of loops {P(a) | a ∈ N }. IfN is moreover filling, then the map π1(N̂ ) →
π1(S) is a surjection, and soπ1(S) is also generated by this collection of loops.

π1(S) is a normal subgroup of Mod(S): if α ∈ π1(S) is a mapping class
corresponding to a based loop and f ∈ Mod(S) is arbitrary, then conjugation
by f takes α to the mapping class corresponding to the based loop f (α). In
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the context of the “network presentation” of π1(S) arising from the surjection
π1(N̂ ) → π1(S), this means that π1(S) has a very simple normal generating
set as a subgroup of Mod(S), as the following makes precise.

Lemma 9.4 Let N̂ ⊂ S be an arboreal filling network. Let H � Mod(S) be
a subgroup containing Ta for each a ∈ N . If H also contains P(a1) ∈ π1(S)

for some a1 ∈ N , then H contains the entire point-pushing subgroup π1(S).

Proof As recorded in Lemma 9.3, π1(N̂ ), and hence also π1(S), is generated
by the collection of elements P(a) for a ∈ N . We will proceed by induction.
Define connected subnetworks

N0 ⊂ N1 ⊂ · · · ⊂ Nn = N

as follows: Nk consists of all those curves a at a distance of at most k from
the base vertex a1 ∈ �N (viewing �N as a metric space for which each edge
has length 1). We suppose that π1(N̂k) � H ; the base case k = 0 holds by
hypothesis.

Let a ∈ Nk+1\Nk be arbitrary. Let a′ ∈ Nk be adjacent to a. By the braid
relation,

Ta′Ta(a
′) = a,

and hence P(a) = (Ta′Ta)P(a′)(Ta′Ta)−1 ∈ H . This completes the inductive
step. �

9.2 Network generating sets for Tφ

Having established someof the basic theory of networks,we cannow formulate
and prove the key technical result of the paper. For hypotheses (2) and (3),
the reader may wish to consult Fig. 2 and the surrounding discussion of the
Dn relation (Proposition 2.6) and the configuration Dn . For an example of a
network satisfying the hypotheses of Theorem 9.5, see Fig. 8.

Theorem 9.5 Let φ be a Z/rZ-valued spin structure on a closed surface �g,
with 1 ≤ r < g − 1. Let N = {an} be a connected filling network of curves
on �g with the following properties:

(1) Every element an is admissible,
(2) There is a collectiona1, . . . , a2r+4 of elements ofN such that a1, . . . , a2r+3

are arranged in the configuration of the curves D2r+3 of the D2r+3 rela-
tion, and a2r+4 corresponds to the boundary component �1 associated to
the subconfiguration D2r+2.

(3) Let b ⊂ �g correspond to the curve�0 of the D2r+3 relation, as appearing
in Fig. 2. Then N must contain some curve d with i(d, b) = 1.
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(4) LetN ′ ⊂ N be the subnetwork consisting of all curves inN disjoint from
b. Then N ′ must be an arboreal filling network for �g\{b}.

If g ≥ 5, then 〈Tai , ai ∈ N 〉 contains the admissible subgroup Tφ .
Moreover, if r is odd, then

〈Tai , ai ∈ N 〉 = Mod(�g)[φ].
If r = 2d is even and g ≥ g(r) for the function g(r) of Definition 6.1, then
〈Tai , ai ∈ N 〉 is a subgroup of finite index inMod(�g)[φ].
Proof Define

H = 〈Tai , ai ∈ N 〉.
By hypothesis (1), H � Tφ . We establish the opposite containment Tφ � H .
The remaining assertions in the statement of Theorem 9.5 follow by an appeal
to Propositions 5.1 or 6.2 as appropriate. The containment Tφ � H will follow
fromProposition 8.2. To see that the hypotheses of Proposition 8.2 are satisfied
by H , it is necessary to establish a containment �̃(�g\{b}) � H , and to find
suitable curves corresponding to a0, a1 in the statement of Proposition 8.2.

Consider the curves {a1, . . . , a2r+4} ⊂ N corresponding to D2r+3 ∪ {�1}
as in Corollary 2.7, as posited by hypothesis (2). Without loss of generality,
assume that a1, a2, a3 ∈ N correspond to the curves a, c1, a′ ofD2r+3, so that
b ⊂ �g is one of the boundary components of the chain a1, a2, a3. Let d be
the curve with i(d, b) = 1 posited by hypothesis (3), and let P be the pair of
pants bounded by a1, a3, b. The intersection d ∩ P must be a single arc, since
d ∈ N and so #(d ∩ a1) ≤ 1 and #(d ∩ a3) ≤ 1. Without loss of generality,
assume #(d ∩ a1) = 1 and #(d ∩ a3) = 0. Then the 3-chain a1, d, b on �g
corresponds to the 3-chain a0, a1, b of Proposition 8.2, sinceφ(b) = −1 by the
homological coherence property. By assumption, Td , Ta1 ∈ H , so it remains
only to establish �̃(�g\{b}) � H .

By hypothesis (4), the restrictionN ′ determines an arboreal filling network
on �g\{b}. The same is therefore true on the surface �g\{b} obtained by
filling in the boundary component corresponding to the left side of b (where b
is oriented so that a1, a3 lie to the left). The surface�g\{b} is connected, since
the hypothesis i(d, b) = 1 implies that d is nonseparating. We treat �g\{b}
as a surface �1

g−1,1, with the marked point corresponding to the filled-in left
side of b.

We will show that �̃(�g\{b}) � H by appealing to Lemma 8.1. We must
therefore show that T r

b is an element of H , and show that the image of the
map

〈Ta, a ∈ N ′〉 → Mod(�g\{b})
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contains the point-pushing subgroup π1(�g\{b}). Applying Corollary 2.7.2,
we obtain T r

b ∈ H . To exhibit π1(�g\{b}), we will appeal to Lemma 9.4. The
element Ta1T

−1
a3 corresponds to an element P(a1) ∈ π1(�g\{b}). By Lemma

9.4, it follows that the entire point-pushing subgroup π1(�g\{b}) is contained
in the subgroup 〈Ta, a ∈ N ′〉 � H . �

10 Linear systems in toric surfaces

The purpose of this section is to give aminimal account of the work of Crétois–
Lang in [3]. We do not attempt to give a detailed summary of the theory of
toric surfaces; the interested reader is referred to [3] and the references therein.

Consider the integer latticeZ
2 ⊂ R

2. A lattice polygon� is the convex hull
of a finite collection {v1, . . . , vn} of n ≥ 3 elements vi ∈ Z

2, not all collinear.
Given a polygon � which contains at least one lattice point in the interior
int(�), the adjoint polygon�a is defined to be the convex hull of int(�)∩Z

2.
The following proposition is a concise summary of the correspondence

between line bundles on toric surfaces and polygons. For details, see [3, Section
3]. In item (1), aunimodular transformationofR2 is an affinemap A: R2 → R

2

(necessarily invertible) such that AZ
2 = Z

2.

Proposition 10.1 Let X be a smooth toric surface.

(1) Associated to any nef line bundle L on X is a convex lattice polygon �L,
well-defined up to unimodular transformations.

(2) If L is nef, then the roots of L (i.e. the line bundles S for which nS = L
for some integer n) are in correspondence with the dilates 1

n�L for which
1
n�L is a lattice polygon.

(3) Suppose that L is ample and that int(�L) ∩ Z
2 is nonempty. Then the

adjoint line bundle L ⊗ KX is nef, and �L⊗KX = (�L)a.
(4) Let L be ample. The genus g(L) of a smooth C ∈ |L| is given by the

formula

g(L) = #(int(�L) ∩ Z
2) = #((�L)a ∩ Z

2).

(5) Let L be ample. A generic fiber C ∈ |L| is hyperelliptic if and only if
(�L)a is a line segment.

The following proposition indicates the connection between the divisibility
properties of L⊗ KX as an element of Pic(X) (or after Proposition 10.1.2, the
divisibility of (�L)a), and the presence of invariant higher spin structures. It is
a folklore theorem; see [17, Theorem 1.1] and [3, Proposition 2.7] for written
accounts.
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Proposition 10.2 Let L be an ample line bundle on a smooth toric surface
X. For any r such that the adjoint line bundle L ⊗ KX admits a rth root in
Pic(X), there exists a (unique) Z/rZ-valued spin structure φ preserved by the
monodromy μL:

�L � Mod(�g(L))[φ].

Proposition 10.1 suggests that it might be profitable to “model” a smooth
C ∈ |L| on the lattice polygon �L.

Construction 10.3 (Inflation procedure) Let � be a lattice polygon. Let
B(r, x) denote the open ball of radius r centered at x ∈ R

2. Define the surface
with boundary

�◦ :=�\
⋃

v∈int(�)∩Z2

B(v, 1/4).

The inflation of � is the surface C� obtained as the double of �◦ along its
boundary. It is a closed oriented surface of genus g = #(int(�) ∩ Z

2). In
particular, for � = �L for some ample L, the inflation C� has genus g(L).
See Fig. 8 for the example of O(6) on CP

2.

The first indication of the utility of the inflation procedure is provided by the
following theorem of Crétois–Lang. For an inflation C�, define an A-curve to
be any simple closed curve on C� that corresponds to the circle of radius 1/4
centered at an interior lattice point of �.

Theorem 10.4 [3, Theorem3]LetL be an ample line bundle on a smooth toric
surface X. There is a homeomorphism f :C0 → C�L identifying a smooth
C0 ∈ |L| with C�L , such that every A-curve a ⊂ C�L is a vanishing cycle,
and

Ta ∈ �L.

Crétois–Lang also determine a second family of elements of �L arising
from the combinatorics of �. A primitive integer segment is a line segment
σ ⊂ R

2 whose endpoints lie on Z
2 and whose interior is disjoint from Z

2. A
primitive integer segment determines a line in R

2 in the obvious way. When a
lattice polygon� is fixed, it will be understood that a primitive integer segment
connects lattice points v, w ∈ � ∩ Z

2, and such that v and w do not lie along
the same edge of�. Under the inflation procedure, a primitive integer segment
corresponds to a simple closed curve. For a primitive integer segment σ , we
write Tσ for the corresponding Dehn twist.
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Suppose that � is a lattice polygon, let d ≥ 1 be an integer. We say that �
is divisible by d if the dilate 1

d� is again a lattice polygon. If � is divisible
by d, then after translating � so that one vertex lies in the sublattice dZ

2, the
remaining vertices do also. We write

�(d) :=� ∩ dZ
2,

relative to any such embedding. The following is a combination of Propositions
7.13 and 7.16 of [3].

Theorem 10.5 (Crétois–Lang) Let L be an ample line bundle on a smooth
toric surface X. Suppose that the adjoint polygon (�L)a is divisible by d.
Suppose that σ is a primitive integer segment such that the line it generates
intersects (�L)a(d). Then, with respect to the identification f :C0 → C�L of
Theorem 10.4, we have that σ is a vanishing cycle and Tσ ∈ �L.

Taken together, Theorems 10.4 and 10.5 produce a large family of Dehn
twists in �L. In the next section, we will see that they provide sufficiently
many elements to satisfy the hypotheses of Theorem 9.5, which will lead to a
proof of Theorem A.

11 Proof of Theorem A

Fix a toric surface X and an ample line bundleL. This determines the polygons
�L and (�L)a , as well as the monodromy group �L. For convenience, we will
drop reference to L from the notation, and speak of �, �a, �, etc. We also
shorten notation for the inflation curve C�L , and refer simply to C instead.

By hypothesis, r is the highest root of the line bundle L⊗ KX . Proposition
10.1.2 implies that �a is r -divisible. Our first objective is to find a network
N satisfying the hypotheses of Theorem 9.5. This will show all but the last
assertion of Theorem A. Once this has been accomplished, we will see that
the answer to Question 1.2 readily follows.

Genus hypotheses We first address the genus assumptions of Theorem 9.5.
Recalling that �a is assumed to be r -divisible, a calculation using Pick’s
formula implies that for r > 1,

g ≥ (r + 1)(r + 2)

2
.

This shows that g ≥ 5 for all r > 1 and that g ≥ r + 1 for r = 2d even. For
r = 2d = 4, this gives g ≥ 15, and for r = 2d = 8 this gives g ≥ 45. In all
cases, the hypothesis g ≥ g(r) of Theorem 9.5 holds.
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The remaining assumption to be addressed is the requirement that r < g−1.
As noted in Remark 3.6, r must divide 2g − 2, so we must only show that the
cases r = 2g − 2 and r = g − 1 do not occur in the study of linear systems
on toric surfaces. Suppose first that r = 2g − 2. This implies that the adjoint
polygon �a contains precisely g lattice points, but is also 2g − 2-divisible.
This is an absurdity: let e be an edge of the lattice polygon 1

2g−2�a; then
the dilate (2g − 2)e contains at least 2g − 1 > g lattice points. In the case
r = g − 1, a similar analysis shows that in fact �a must equal the g − 1-fold
dilation of a primitive integer segment. By Proposition 10.1.5, this implies that
the general fiber of the linear system is hyperelliptic, which we have excluded
from consideration.

Constructing the network N Recall that according to Theorem 10.4, each
integer point v ∈ �a ∩Z

2 determines a vanishing cycle in �; we introduce the
notation A(v) to refer to the curve associated to v. When we have a specific
identification of � with a lattice polygon, we will use the notation A(x, y)
to refer to the A-curve at the integer point (x, y). Similarly, given a primitive
integer segment σ , we let B(σ ) denote the associated simple closed curve on
C . When � is identified with a lattice polygon, we write B((x, y), (z, w)) for
the B-curve associated to the primitive integer segment connecting (x, y) and
(z, w). We refer to these as A-curves and B-curves, respectively.

To define the network N , it will be useful to introduce some terminology.
Let σ be a primitive integer segment, and let L(σ ) be the line determined by
σ . For an integer point v, we say that σ points towards v if v ∈ L(σ ). We also
introduce the notion of a κ-standard embedding. Let κ be a vertex of �a . A
κ-standard embedding is an embedding of � into R

2 such that κ corresponds
to (0, 0) and such that the edges of �a incident to κ lie along the x and y
axes. Any embedding � ⊂ R

2 can be made κ-standard by applying a suitable
unimodular transformation. Following Proposition 10.1.1, we are free to apply
unimodular transformations as needed.

Let κ be a vertex of �a . Let N be the network consisting of the following
curves:

(1) All A-curves.
(2) The curve B(σ ), where σ is defined as follows. Let κ ′ be a vertex of �a

adjacent to κ . Let e′ be the edge of �a containing κ ′ and not containing
κ , and let w ∈ ∂�a be the integer point lying on e′ that is connected to κ ′
by a primitive integer segment σ .

(3) The curve B(τ ) defined as follows. Under a κ-standard embedding of �,
necessarily (0, −1) ∈ ∂�. Since�a is assumed to be d-divisible, the edge
of �a lying along the x-axis extends at least as far as (d, 0). We take τ to
be the primitive integer segment identified with B((d, 0), (0, −1)) in this
embedding of �.

123



208 N. Salter

Δ

Δa

κ

κ′

w

B(σ)

B(τ)

b

Fig. 8 Example: (X,L) = (CP
2,O(6)); here r = 3. Left: the lattice polygons � and �a

(shaded). Right: the inflation construction, and the networkN , depicted in both shades of blue.
The curves a1, . . . , a10 of Theorems 9.5.2 and 9.5.3 are shown in the light shade of blue. Note
the curve b (in red) is not part of the network, but does correspond to the curve b of Theorem
9.5.3 (color figure online)

(4) All B-curves associated to primitive integer segments pointing towards κ ,
but such that the associated line does not pass through the interior of the
segments σ or τ or the primitive integer segment connecting (−1, 1) to
(0, 1).

See Fig. 8 for a picture of N in the case of the line bundle O(6) on CP
2.

Remark 11.1 As can be seen in Fig. 8, certain elements of N are mutually
isotopic. This harmless excess is introduced only to make the definition ofN
more tidy.

In anticipation of an appeal to Theorem 9.5, we also define the subnetwork

N ′ :=N \{A(0, 1)}. (12)

First properties of N We first claim thatN is a network. Indeed, all A-curves
aremutually disjoint. The set of primitive integer segments under consideration
meet only at integer points in �a , and hence the associated B-curves are
also mutually disjoint. Suppose σ has endpoints v, w. Then i(A(v), B(σ )) =
i(A(w), B(σ )) = 1, and i(A(u), B(σ )) = 0 for any other integer point u.
Thus N is a network.

Indeed, N is a connected network, as follows from the description of �N
and �N ′ given below.

Lemma 11.2 The graph �N has the homotopy type of S1, and �N ′ is a tree,
i.e. N ′ is arboreal.

Proof We first establish that �N is connected. It suffices to show that every
c ∈ N is connected to A(κ). We first consider the case of an A-curve A(v). If
v ∈ �a is some other integer point, there is a line segment L connecting v to
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κ . This decomposes as a union of primitive integer segments σi based at the
integer points v j lying on L . Each such segment determines a B-curve in N ,
and it is clear that there is a path from A(v) to A(κ) alternating between B(σi )

and A(v j ). The argument for a B-curve (including the exceptional elements
B(σ ) and B(τ )) is similarly straightforward.
We next claim that the subnetwork

N ′′ :=N \B(σ )

is arboreal. The curves B(σ ) and B(τ ) are the only B-curves inN that do not
lie on a line passing through κ . Thus the network consisting only of curves of
type (1) and (4) is arboreal by construction. As B(τ ) intersects only A(d, 0),
this shows that the network consisting of curves of type (1), (3), and (4) is also
arboreal, but this network is N ′′ by definition.

The curve B(σ ) intersects only the A-curves A(κ ′) and A(w). Thus �N is
obtained from the tree �N ′′ by adding one new vertex that is connected to two
edges, so that �N � S1 as claimed.

It will follow from this thatN ′ is also arboreal. The path in �N ′′ connecting
κ ′ tow follows the y-axis down to κ , then proceeds out along the line connect-
ing κ to w; in particular, it passes through the vertex (0, 1). Thus, removing
A(0, 1) to create the networkN ′ removes the single circuit in �N , so that �N ′
is a tree as claimed. �

We claim thatN is filling. This will be established in the next two lemmas.
Recall the definition of �◦ from the definition of the inflation procedure in
Construction 10.3.

Lemma 11.3 Let S ⊂ � denote the union of all primitive integer segments
associated to B-curves in N . Then

(1) Each component of �◦\S is simply-connected.
(2) For each component D of �◦\S, the intersection D ∩ ∂� has at most one

component.

Proof We begin by observing that there are homotopy equivalences �◦ �
�\(�a ∩ Z

2) and �◦\S � �\(S ∪ (�a ∩ Z
2)). It will be tidier to work with

this latter space, and so we formulate our arguments in this setting.
Embed � into R

2 and consider S as a planar graph contained in �. Basic
properties of convexity imply that for any integer point v ∈ Z

2 ∩ �a , the line
connecting v and κ does not intersect either of B(σ ) or B(τ ). Hence this line
determines a union of primitive integer segments inN , and upon the removal
of these segments over all v, there is an equality

�\(S ∪ (Z2 ∩ �a)) = �\S.

123



210 N. Salter

To prove (1), it therefore suffices to show that H1(�\S; Z) = 0. There is a
map of pairs f : (�, ∂�) → (S2, ∗), where ∗ ∈ S2 is an arbitrary basepoint.
f induces a homeomorphism

f : �\∂� → S2\{∗}.
Since the segment B(τ ) (among many others) intersects ∂�, it follows that f
induces a homotopy equivalence

f : �\S → S2\ f (S),

and hence there is an isomorphism

f∗: H̃1(�\S; Z) → H̃1(S
2\ f (S); Z).

By Alexander duality, H̃1(S2\ f (S); Z) ∼= H̃0( f (S); Z) = 0, the latter hold-
ing because S is connected by construction. This proves (1).

For (2), consider the subconfiguration S′ ⊂ S consisting of all primitive
integer segments lying along a line connecting κ to any integer point v ∈ ∂�.
This provides a subdivision of � into convex sets, each of which has a vertex
at κ . Convexity then implies that each component D′

i of �\S′ intersects ∂�

in at most one component. The subdivision of � induced by S is a refinement
of that induced by S′. Since all segments in S that intersect ∂� are elements
of S′, there is an equality

∂�\(S ∩ ∂�) = ∂�\(S′ ∩ ∂�).

Thus each component of ∂�\(S ∩ ∂�) corresponds to a distinct component
of �\S, and (2) follows. �
Lemma 11.4 Each component of C\N is simply-connected, i.e. N is filling.

Proof By construction, the “deflation” map p:C → � takes components of
C\N to components of �\S, where S continues to denote the union of all
primitive integer segments associated to B-curves inN . This map on compo-
nents is at most 2-to-1, and is exactly 2-to-1 in the case where the component
D of �\S does not contain a lattice point in its interior and does not intersect
∂�. In this 2-to-1 case, each component D̃1, D̃2 of C\N is mapped home-
omorphically by p onto the component of �◦\S corresponding to D. Since
D is assumed to contain no lattice points in the interior, it follows that the
corresponding component of �◦\S is simply-connected, and hence D̃1, D̃2
are as well.

Lemma 11.3.1 implies that no component of�\S contains an interior lattice
point, and so it remains only to be seen that every component of C\N that
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corresponds to a component of �\S intersecting ∂� is simply-connected. Let
D̃ ⊂ C\N be such a component, and let D be the corresponding component
of �◦\S. Observe that D̃ is constructed by attaching two copies of D along
D ∩ ∂�. It follows that D̃ is simply-connected if and only if D ∩ ∂� is
connected. The result now follows by Lemma 11.3.2. �

Applicability of Theorem 9.5 It remains to verify the properties (1)–(4) of
Theorem9.5.ByTheorem10.4, for an A-curve A(v), the associatedDehn twist
TA(v) ∈ �. By Theorem 10.5, any curve B(ξ) ∈ N arising from a primitive
integer segment ξ also satisfies TB(ξ) ∈ �. It follows from the definitions that
any curve c in any connected network is necessarily non-separating. For a
nonseparating curve c ⊂ C , the Dehn twist Tc ∈ � only if the associated spin
structure satisfies φ(c) = 0. Hence (1) holds.

For (2), we take a κ-standard embedding of �. It is now easy to find a
collection of curves S2r+4 determining the configuration D2r+3 ∪ {�1} of
Corollary 2.7. We take a = B((0, 0), (0, −1)) and a′ = B((0, 0), (0, 1)).
Since �a is assumed to be r -divisible, the edge of �a lying along the x-
axis extends at least as far as (r, 0). For 1 ≤ k ≤ r + 1, we can therefore
take c2k−1 to be A(0, k − 1), and for 1 ≤ k ≤ r , we take c2k to be
B((k − 1, 0), (k, 0)). We take ar+1 = B(τ ) = B((r, 0), (0, −1)). The seg-
ments connecting (0, −1), (0, 0), (1, 0), . . . , (d, 0), (0, −1) separate � into
two components, hence under the inflation procedure, the associated B-curves
separateC . From the construction it is clear that the curves bound a subsurface
of genus 0 with r + 2 boundary components, as required for the configuration
D2r+3 ∪ {�1} of Corollary 2.7.

For (3), we observe that from the construction, the �0 curve of the con-
figuration D2r+3 corresponds to b := B((−1, 1), (0, 1)) on �. One sees that
A(0, 1) intersects this curve, and is an element of N as needed.
For (4), we begin by observing that only the element A(0, 1) ∈ N intersects

B((−1, 1), (0, 1)). Enumerate the components of C\N as {Di }. We claim
that there are exactly three disks D1, D2, D3 in C\N with boundary lying on
A(0, 1), and that b ⊂ D1 ⊂ C . Indeed, using the notation of item (2) in the
definition of N , the disks D2 and D3 arise via inflation from the component
of �\S bounded by the triangle formed by e′, σ , and the primitive integer
segment(s) connecting κ to w. Neither D2 nor D3 intersects b, and the only
curve in N intersecting b is A(0, 1); this implies that b ⊂ D1 as claimed.

Thus, in (C\N )∪ A(0, 1), the disks D2 and D3 are joined into a single disk
D+, while D1 has two portions of its boundary joined to create an annulus with
core curve b. Upon passing to (C\{b})\N ′, this annulus is cut open to create
two annular regions bounded by b, while the disks D+ and Di for i ≥ 4 are
unaffected. Thus N ′ does determine a filling network on C\{b} as required.
Arboreality of N ′ was established in Lemma 11.2.
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From admissible twists to vanishing cycles In order to address Question 1.2,
it is necessary to better understand the relationship between admissible twists
and vanishing cycles. A first remark is that any vanishing cycle is necessarily
an admissible curve, so it remains only to show the converse. We observe
that if α is a loop in M(L) based at C0 that determines a vanishing cycle,
then any conjugate βαβ−1 also determines a vanishing cycle. To complete the
argument, it therefore suffices to establish the following claim.

Lemma 11.5 Let a be any admissible curve on C0. Then Ta is conjugate in �

to some twist Tc for c a vanishing cycle.

Proof An admissible curve a determines a vertex in the graph C1φ(C0) of
Sect. 7. Theorems 10.4 and 10.5 together imply that � has a generating set
consisting entirely of vanishing cycles. Thus the set of vertices in C1φ(C0)

corresponding to vanishing cycles is nonempty.
We claim that if a ∈ C1φ(C0) is adjacent to some vanishing cycle c, then

a is also a vanishing cycle. Indeed, the condition that a and c are adjacent in
C1φ(C0) is equivalent to i(a, c) = 1, and hence by the braid relation,

Ta = (TcTa)Tc(TcTa)
−1.

As Tc, Ta ∈ � by the first part of Theorem A, the above observation implies
that Ta is a vanishing cycle. The claim now follows from the connectivity of
C1φ(C0) established in Lemma 7.5.

This concludes the proof of Theorem A. �
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