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Abstract We show that for every positive integer n there exists a simple
group that is of type Fn−1 but not of type Fn . For n ≥ 3 these groups are
the first known examples of this kind. They also provide infinitely many
quasi-isometry classes of finitely presented simple groups. The only previ-
ously known infinite family of such classes, due to Caprace–Rémy, consists
of non-affine Kac–Moody groups over finite fields. Our examples arise from
Röver–Nekrashevych groups, and contain free abelian groups of infinite rank.

Mathematics Subject Classification Primary 20E32 · Secondary 57M07,
20F65, 20E08

The first author was partially supported by a grant from the Simons Foundation (#245855 to
Marcin Mazur). The second author is funded through the DFG project WI 4079-2/2.

B Rachel Skipper
skipper.rachel.k@gmail.com

Stefan Witzel
switzel@math.uni-bielefeld.de

Matthew C. B. Zaremsky
mzaremsky@albany.edu

1 Mathematics Institute, University of Göttingen, Bunsenstrasse 3-5,
37073 Göttingen, Germany

2 Department of Mathematics, Bielefeld University, PO Box 100131, 33501 Bielefeld,
Germany

3 Department of Mathematics and Statistics, University at Albany (SUNY), Albany,
NY 12222, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00222-018-0835-8&domain=pdf


714 R. Skipper et al.

Introduction

Agroup is of type Fn if it admits a classifying spacewith a compact n-skeleton.
These topological finiteness properties generalize being finitely generated
(type F1) and being finitely presented (type F2), and are quasi-isometry invari-
ants. In this article we prove:

Main Theorem For every positive integer n there exists a simple group that
is of type Fn−1 but not of type Fn.

This result is new for every n ≥ 3; see Theorem 7.1 for a precise version.
We say that two groups are separated by finiteness properties if, for some n,
one of them is of type Fn and the other is not. In this sense the Main Theorem
provides infinitely many simple groups that are pairwise separated by finite-
ness properties. Our examples arise from certain groups of homeomorphisms
of Cantor spaces, called Röver–Nekrashevych groups. Roughly speaking, a
Röver–Nekrashevych group is built out of a Higman–Thompson group and a
self-similar group, and we prove the Main Theorem by showing that, under
certain conditions, the Röver–Nekrashevych group inherits (virtual) simplicity
from the Higman–Thompson group and finiteness properties from the self-
similar group. The main novelty is that the groups can be constructed to not
be of type Fn .

One of our primary motivations is to distinguish infinite simple groups:

Corollary There are infinitely many quasi-isometry classes of groups that are
finitely presented, simple and contain free abelian subgroups of infinite rank.

While finite simple groups have been classified, in one of the largest col-
lective efforts in pure mathematics, comparatively little is known about the
possible variety among infinite simple groups. Tomake the problem approach-
able, it is natural to restrict to the countable family of finitely presented groups
and, following Gromov’s insight, to study them up to quasi-isometry (note
that all finite groups form a single quasi-isometry class). So far there was only
one known infinite family of quasi-isometry classes of finitely presented sim-
ple groups: Caprace and Rémy showed that non-affine Kac–Moody groups
provide such a family [24,25]. Rémy asked whether infinitely many quasi-
isometry classes of finitely presented simple groups could also be found in the
realm of generalized Thompson groups, and we answer this question affirma-
tively. Since every Kac–Moody group has finite asymptotic dimension, none
of our examples is quasi-isometric to any of them.

It is unclear whether the Main Theorem, at least restricted to even n, could
also be proved usingKac–Moody groups. An irreducible Kac–Moody group is
virtually simple if it is not of affine type [24]. However, the precise finiteness
properties of infinite Kac–Moody groups are known only in the affine case
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Simple groups separated by finiteness properties 715

[53]. A 2-sphericalKac–Moody group over a large enough finite field is finitely
presented [3]. On the other hand unless it is finite it is not of type F∞, being a
non-uniform lattice [29,33,35].

Infinite simple groups are easy to obtain if one does not require finite gener-
ation. The existence of a finitely generated infinite simple group was shown by
Higman [31]. Uncountably many such groups were constructed shortly after
by Camm [22]. The first known finitely presented infinite simple groups were
Thompson’s groups T and V (described in unpublished notes). They were
extended to an infinite family of examples by Higman [32]. Brown [19] later
showed that all these finitely presented examples are of type F∞, following
Brown andGeoghegan’s proof [9] that Thompson’s group F (which is not sim-
ple) is of type F∞. Since then other simple variations of Thompson’s groups
have been constructed, notably the Brin–Thompson groups nV [17,18]. How-
ever, in all cases established so far, these groups are of type F∞ [14,28,49] or
not finitely presented [54].

Another class of finitely presented simple groups consists of the examples
by Burger and Mozes [13]. While these are interesting for various reasons,
they only form a single quasi-isometry class, because all of them are uniform
lattices on a product of two trees.

There has also been a great deal of interest in studying groups separated
by finiteness properties. The first group of type F2 but of type not F3 was
constructed by Stallings [47]. It was generalized by Bieri [11] to an infinite
sequence of groups separated by finiteness properties, and then to a very gen-
eral construction by Bestvina and Brady [5]. This program was eventually
finished by Meier, Meinert, and VanWyk [40]. All the groups in this vein are
subgroups of right-angledArtin groups and hence are residually finite. Another
large source of groups separated by finiteness properties is S-arithmetic
groups [1,12,21] and variations thereof [15], which are also residually finite.
Examples of non-residually finite groups separated by finiteness properties
include Houghton’s groups [19, Section 5], subgroups of Thompson’s group
F constructed by Bieri–Geoghegan–Kochloukova [10], and certain general-
ized Thompson groups considered in [55]. In all these cases the abelianization
is infinite.

The paper is organized as follows. We recall some background on finite-
ness properties and quasi-isometries in Sect. 1, and on self-similar groups and
Röver–Nekrashevych groups in Sect. 2. The following sections are largely
independent and contain the proofs that certain Röver–Nekrashevych groups
are virtually simple (Sect. 3), of type Fn−1 (Sect. 4), and not of type Fn (Sect. 5),
assuming the existence of self-similar groupswith appropriate properties. Such
self-similar actions of groups separated by finiteness properties are constructed
in Sect. 6. Finally, in Sect. 7 we prove theMain Theorem, provide some exam-
ples, and discuss the (non-)relationship with Kac–Moody groups.
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716 R. Skipper et al.

1 Finiteness properties and quasi-isometries

A classifying space for a group G is a connected CW-complex X with fun-
damental group G and contractible universal cover. A group is of type Fn if
it admits a classifying space with compact n-skeleton. Being of type F1 is
equivalent to being finitely generated, and being of type F2 is equivalent to
being finitely presented. A group is of type F∞ if it is of type Fn for all n.
These topological finiteness properties Fn also have slightly weaker homolog-
ical analogues FPn . Rather than defining these we summarize the relationship:
type Fn implies type FPn; type FP1 is equivalent to type F1; type F2 and type
FPn imply type Fn; type FP2 does not imply F2, by a famous result due to
Bestvina and Brady [5], recently expanded by Leary [38,39].

Topological andhomological finiteness properties are quasi-isometry invari-
ants. This was shown by Alonso [2] applying Brown’s criterion [19] to Rips
complexes. We will need a more precise result from [2] which we describe
now.

Definition 1.1 ((C, D)-Lipschitz, quasi-isometric) A function f : X → Y
between metric spaces (X, dX ) and (Y, dY ) is (C, D)-Lipschitz (for C ≥ 1
and D ≥ 0) if

dY ( f (x), f (x ′)) ≤ CdX (x, x ′) + D

for all x, x ′ ∈ X . The metric spaces X and Y are quasi-isometric if there exist
functions f : X → Y and f ′ : Y → X and constants C and D such that f and
f ′ are (C, D)-Lipschitz and for all x ∈ X and y ∈ Y we have

dX ( f ′ f (x), x) ≤ D and dY ( f f ′(y), y) ≤ D.

Definition 1.2 (Quasi-retract) Let H and Q be finitely generated groups,
equipped with word metrics dH and dQ respectively. If there exist (C, D)-
Lipschitz functions r : H → Q and ι : Q → H such that dQ(r ◦ ι(x), x) ≤ D
for all x ∈ Q then we call Q a quasi-retract of H , and r a quasi-retraction.

Recall that Q is called a retract of H if ι and r are homomorphisms and
r ◦ ι = idQ , so quasi-retracts are a natural geometric generalization of retracts.
Finiteness properties are preserved under passing to retracts (see Remark 5.9),
andAlonso proved that they are even preserved under passing to quasi-retracts:

Theorem 1.3 [2, Theorem 8] Let H and Q be finitely generated groups such
that Q is a quasi-retract of H. If H is of type Fn (or FPn) then so is Q.

Corollary 1.4 [2, Corollary 9] Let H and Q be finitely generated, quasi-
isometric groups (under the word metric). Then H is of type Fn (or FPn) if
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Simple groups separated by finiteness properties 717

and only if Q is of type Fn (or FPn). In particular, finiteness properties are
invariant under quasi-isometry.

Remark 1.5 The main difficulty in proving the Main Theorem is to show that
the groups are not of type Fn . One possibility for proving that a group H is
not of type Fn is to show that it has a retract Q that is not of type Fn . For a
simple group this is clearly not an option. Theorem 1.3 says that it suffices for
Q to be a quasi-retract, which, as we will see in Sect. 5, can happen even for
simple groups.

2 Self-similar groups and Röver–Nekrashevych groups

Let X be a set with d ≥ 2 elements, called an alphabet, and let X∗ be the set
of finite words in X , including the empty word ∅. Then X∗ can be identified
with the vertex set of the infinite rooted d-ary tree Td . Two words u, v ∈ X∗
share an edge in Td precisely when u = vx or v = ux for some x ∈ X . The
root corresponds to ∅, the only vertex of degree d. We fix a total order on X
and order X∗ lexicographically.

In this section we recall our groups of interest, namely self-similar groups
and Röver–Nekrashevych groups. More background can be found for example
in [43].

2.1 Self-similar groups

An automorphism of Td will always mean a bijection from Td to Td taking
vertices to vertices, edges to edges, and preserving incidence. We denote by
Aut(Td) the group of automorphisms of Td . Note that every automorphism
fixes the root ∅.

If we identify X with {1, . . . , d} then, since automorphisms of Td preserve
length of words in X∗, any automorphism of Td induces a permutation of
{1, . . . , d}, i.e., an element of the symmetric group Sd . Hence we get a map
ρ : Aut(Td) → Sd . Moreover, since for any x ∈ X the subgraph of Td spanned
by the vertex set {xw | w ∈ X∗} is canonically isomorphic to Td via xw ↔ w,
the kernel of ρ is a direct product of d copies of Aut(Td). The action of Sd
naturally permutes these copies, andwe conclude that Aut(Td) ∼= Sd �Aut(Td).
Definition 2.1 (Wreath recursion) Let ψ : Aut(Td) → Sd � Aut(Td) be the
above isomorphism. For any f ∈ Aut(Td) if ψ( f ) = ρ( f )( f1, . . . , fd) then
we call ρ( f )( f1, . . . , fd) the wreath recursion of f . As is standard, we will
often abuse notation and just write f = ρ( f )( f1, . . . , fd).

Given f ∈ Aut(Td) we will be interested in the states of f , meaning the
elements that can appear when applying iterated wreath recursions to f . More
rigorously, we have the following definition.
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718 R. Skipper et al.

Definition 2.2 (States) For f ∈ Aut(Td), the level-1 states of f are the ele-
ments f1, . . . , fd appearing in the wreath recursion f = ρ( f )( f1, . . . , fd).
The states of f are the elements of the smallest subset of Aut(Td) that contains
f and is closed under taking level-1 states.

Iterating the wreath recursion n times produces a permutation of the vertices
on the nth level and a collection of states on the nth level.

Definition 2.3 (Self-similar) Let S ⊆ Aut(Td). We call S self-similar if for
all s ∈ S, every state of s lies in S. We will also refer to a group G as having
a faithful self-similar action on Td if G acts faithfully on Td and its resulting
image in Aut(Td) is self-similar.

Self-similar groups are sometimes called state-closed groups in the litera-
ture.

Definition 2.4 (Finite-state) An element s ∈ Aut(Td) is finite-state if its set
of states is finite. A set S ⊆ Aut(Td) is finite-state if each of its elements is.
(In the literature this is sometimes only defined when S is self-similar.) We
will also refer to a group G as having a faithful finite-state action on Td if G
acts faithfully on Td and its resulting image in Aut(Td) is finite-state.

Finite-state self-similar groups are often called automata groups in the lit-
erature.

Note that the wreath recursion of a product, say f g for f, g ∈ Aut(Td), is

f g = ρ( f )ρ(g)( fρ(g)(1)g1, . . . , fρ(g)(d)gd)

where f = ρ( f )( f1, . . . , fd) and g = ρ(g)(g1, . . . , gd) are the wreath recur-
sions of f and g. Iterating this, we see:

Lemma 2.5 If f, g ∈ Aut(Td) are finite-state then so is f g. In particular,
G ≤ Aut(Td) is finite-state if it admits a finite-state generating set.

2.2 Röver–Nekrashevych groups

Let Xω be the set of infinite words in X , so Xω can be identified with the
boundary ∂Td , which is a d-ary Cantor set. For any u ∈ X∗ define the cone of
u to be C(u):={uw | w ∈ Xω} ⊆ Xω. Call a finite subtree T of Td rooted if it
contains the root of Td . Call T complete if whenever ux ∈ T for u ∈ X∗ and
x ∈ X , in fact uy ∈ T for all y ∈ X . A vertex u of T is a leaf of T if no ux
for x ∈ X lies in T .

Definition 2.6 (Almost-automorphism) An almost-automorphism of Td is a
homeomorphism of ∂Td → ∂Td that can be obtained as follows. Take two
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Simple groups separated by finiteness properties 719

finite complete rooted subtrees T− and T+ of Td with the same number of
leaves, say n. Let u1, . . . , un be the leaves of T− in order and let v1, . . . , vn be
the leaves of T+ in order. Also let f1, . . . , fn ∈ Aut(Td) and σ ∈ Sn . Note that
the cones C(u1), . . . ,C(un) partition ∂Td , as do the cones C(v1), . . . ,C(vn).
We collect all these data into a triple (T−, σ ( f1, . . . , fn), T+). Now define the
almost-automorphism [T−, σ ( f1, . . . , fn), T+] to be the self-homeomorphism
of ∂Td sending viw to uσ(i) fi (w) for all 1 ≤ i ≤ n. We denote by AAut(Td)
the group of all almost-automorphisms of Td .

Definition 2.7 (Higman–Thompson group) TheHigman–Thompson group Vd
is the subgroup of AAut(Td) consisting of homeomorphisms [T−, σ, T+].

The following is well known, and is the reason that our Main Theorem
implies the Corollary in the introduction:

Lemma 2.8 [23, Theorem 4.8] The group Vd contains free abelian subgroups
of infinite rank.

Definition 2.9 (Röver–Nekrashevychgroup) LetG ≤ Aut(Td)be self-similar.
TheRöver–Nekrashevychgroup Vd(G) is the subgroupofAAut(Td) consisting
of homeomorphisms [T−, σ (g1, . . . , gn), T+] for g1, . . . , gn ∈ G.

Note that Vd(G) really is a subgroup of AAut(Td), since self-similarity
ensures that it is closed under multiplication. Röver–Nekrashevych groups
were introduced in this degree of generality in [42]. The first such group con-
sidered was the Röver group [46], which is V2(Grig) for Grig the Grigorchuk
group. The Röver group is simple and of type F∞ [14].

A given almost-automorphism is represented by various triples, and the
rest of this section will be devoted to understanding this non-uniqueness. For
example [T, (id, . . . , id), T ] is the identity for any T . More generally, two
triples

(T−, σ ( f1, . . . , fn), T+) and (U−, τ (g1, . . . , gn),U+)

describe the same almost-automorphism

[T−, σ ( f1, . . . , fn), T+] = [U−, τ (g1, . . . , gn),U+]

if both can be expanded in the following sense to produce the same triple. Let
(T−, σ ( f1, . . . , fn), T+) be a triple representing an element of AAut(Td). Say
the leaves of T− are u1, . . . , un and the leaves of T+ are v1, . . . , vn (in order).
Now let T ′+ be a finite complete rooted subtree of Td containing T+, say with
leaves v′

1, . . . , v
′
n′ , so the partition of ∂Td by the cones C(v′

1), . . . ,C(v′
n′)

is a refinement of the partition by the cones C(v1), . . . ,C(vn). Looking at
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720 R. Skipper et al.

the image of these cones under [T−, σ ( f1, . . . , fn), T+] we get a partition
refiningC(u1), . . . ,C(un), of the form C(u′

1), . . . ,C(u′
n′) for u′

i the leaves of
some tree T ′−. Now by iterated applications of wreath recursions, we can view
σ( f1, . . . , fn) as some σ ′( f ′

1, . . . , f ′
n′), acting on C(v′

i ) by f ′
i and then taking

it to C(u′
σ ′(i)).

Definition 2.10 (Expansion) With the above setup, we call (T ′−, σ ′( f ′
1, . . . ,

f ′
n′), T ′+) an expansion of (T−, σ ( f1, . . . , fn), T+).

The following confluence result provides a converse to what was said above
(cf. [37, Lemma 2.3]).

Lemma 2.11 Two triples represent the same almost-automorphism if and only
if they have a common expansion.

Proof Note that if f = [T−, σ ( f1, . . . , fn), T+] is an almost-automorphism,
the entries σ( f1, . . . , fn) and T− are uniquely determined by f and T+. The
claim therefore follows from the fact that for any two finite rooted trees there
is a finite rooted tree containing both. ��

Note that every expansion can be obtained by a sequence of expansions of a
single leaf, whichmakes the following lemma particularly useful. By a d-caret
we mean the finite rooted complete subtree of Td with d leaves.

Lemma 2.12 (One leaf expansion) Let (T−, σ ( f1, . . . , fn), T+) be a triple
representing an element of AAut(Td) and let 1 ≤ k ≤ n. Let T ′+ be the
result of adding a single d-caret to the kth leaf of T+. Then the corresponding
expansion of (T−, σ ( f1, . . . , fn), T+) is

(T ′−, σ ′( f1, . . . , fk−1, f 1k , . . . , f dk , fk+1, . . . , fn), T
′+),

where fk = ρ( fk)( f 1k , . . . , f dk ) is the wreath recursion of fk , T ′− is some tree
and σ ′ is some element of Sn+d−1.

Proof Let v1, . . . , vn be the leaves of T+ (in order). Write X = {x1, . . . , xd},
so the leaves of T ′+ are

v1, . . . , vk−1, vk x1, . . . , vk xd , vk+1, . . . , vn .

Now for any 1 ≤ i ≤ d and any w ∈ X∗ we have fk(xiw) = xρ( fk)(i) f
i
k (w).

This implies that σ( f1, . . . , fn) acts on the partition by cones of vertices of
T ′+ as

σ ′( f1, . . . , fk−1, f 1k , . . . , f dk , fk+1, . . . , fn)

for some σ ′, as desired. ��
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Simple groups separated by finiteness properties 721

The precise description of T ′− and σ ′ is the content of a d-ary cloning system,
as in [49], and will not be needed here.

3 Virtual simplicity

We are mainly interested in Röver–Nekrashevych groups that are virtually
simple. It turns out this is the case as soon as the abelianization is finite:

Theorem 3.1 (Simple commutator [44, Theorem 4.7]) For any self-similar
G ≤ Aut(Td), the commutator subgroup Vd(G)′ is simple.

See [42, Theorem 9.14] for a description of the abelianization and commu-
tator subgroup of Vd(G). In order to ensure finite abelianization we introduce
the following notion.

Definition 3.2 (Coarsely diagonal) Let G ≤ Aut(Td). We call G coarsely
diagonal if for every g ∈ G and every state g′ of g the element (g′)−1g
has finite order. We will also refer to a group G as having a faithful coarsely
diagonal action on Td if G acts faithfully on Td and its resulting image in
Aut(Td) is coarsely diagonal.
Theorem 3.3 (Finite abelianization) Let G ≤ Aut(Td) be a finitely generated,
coarsely diagonal self-similar group. Then Vd(G) has finite abelianization.

In the proof of the theorem we will use an explicit generating set for Vd(G).
For u ∈ X∗ let ιu : G → Vd(G) be the embedding sending g to the automor-
phism that applies g to the cone C(u) and is trivial outside this cone. More
rigorously, this means ιu(g)(uw) = ug(w) for all w ∈ X∗ and ιu(g)(w) = w

whenever u is not a prefix of w. If we identify X with {1, . . . , d} then we can
refer to the maps ιi for 1 ≤ i ≤ d.

Lemma 3.4 [44, Lemma 5.11] The group Vd(G) is generated by Vd ∪ ι1(G).

Proof of Theorem 3.3 ByLemma3.4, Vd(G) is generated by Vd∪ι1(G). Since
Vd is virtually simple [32] its image in the abelianization of Vd(G) is finite, so
it suffices to show that the image of ι1(G) in the abelianization of Vd(G) is also
finite. We will do this by proving that the image of ι1(g) in the abelianization
of Vd(G), for any g ∈ G, is torsion (this gives us what we want since G is
finitely generated). Write f for the image of f ∈ Vd(G) in the abelianization
of Vd(G). Note that for any u, v ∈ X∗\{∅} and any g ∈ G, the elements ιu(g)
and ιv(g) are conjugate in Vd(G) by an element of Vd that takes uw to vw for
all w ∈ X∗, so ιu(g) = ιv(g). Also note that if g = ρ(g)(g1, . . . , gd) is the
wreath recursion for g, then

ιu(g) = ιu(ρ(g))
d∏

i=1

ιui (gi ),
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722 R. Skipper et al.

where by ιu(ρ(g)) we mean the automorphism acting as ρ(g) on C(u) and
the identity elsewhere. In particular ιu(g) = ιu(ρ(g)) + ∑d

i=1 ιui (gi ). Using
u = 1 this gives us ι1(g) = ι1(ρ(g))+∑d

i=1 ι1i (gi ), which equals ι1(ρ(g))+∑d
i=1 ι1(gi ). Now sinceG is coarsely diagonal, for each 1 ≤ i ≤ d there exists

a torsion elementai of the abelianizationofVd(G) such that ι1(gi ) = ι1(g)+ai ,
so we get

ι1(g) = ι1(ρ(g)) + d(ι1(g)) + a1 + · · · + ad .

This tells us that (d − 1)ι1(g) = −ι1(ρ(g)) − a1 − · · · − ad . Since ι1(ρ(g))
and all the ai are torsion, we conclude that ι1(g) is torsion, and we are done.

��
Another consequence of Lemma 3.4 is the following.

Observation 3.5 If G has finite abelianization then so does Vd(G).

Proof As in the proof of Theorem3.3 it suffices to show that the image of ι1(G)

in the abelianization of Vd(G) is finite, and since G has finite abelianization
this is immediate. ��

4 Proving type Fn−1

In this section we prove that Vd(G) is of type Fn−1 if G ≤ Aut(Td) is self-
similar and of type Fn−1. The proof is implicitly contained in [49], and relies on
established machinery that has been used to prove that various generalizations
of Thompson groups are of type F∞; see [8,14,19,27,28,41,48,50]. We will
use the following recent formalization of that machinery:

Theorem 4.1 [52, Theorem 3.12] Let C be a right-Ore category and let ∗ be
an object of C. Let E be a locally finite left-Garside family of morphisms that
is closed under taking factors. Let δ : Ob(C) → N be a height function such
that {x ∈ Ob(C) | δ(x) ≤ n} is finite for every n ∈ N. Assume

(stab) C×(x, x) is of type Fn for all x ∈ Ob(C),
(lk) |E(x)| is (n−1)-connected for all x with δ(x) beyond a fixed bound.

Then π1(C, ∗) is of type Fn.

Wewill explain the relevant notions as we go.We start by describing certain
categories of homeomorphisms underlying Röver–Nekrashevych groups. Let
C = Xω and for each k ∈ N let Ck :={1, . . . , k} × Xω. Note that Ck is the
boundary of the infinite d-ary forest on k roots. The set of vertices of this forest
is {1, . . . , k} × X∗. All the categories in what follows will have as objects the
spaces Ck for k ∈ N.
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Simple groups separated by finiteness properties 723

Notationally, we treat morphisms in a category as elements of the category.
If D is a category with objects Ob(D) = {Ck | k ∈ N} we denote the set
of morphisms from C� to Ck in D by D(Ck,C�). Similarly, D(Ck, −) and
D(−,C�) denote the set of morphisms with target Ck respectively source C�.
We denote sets of invertible such morphisms by replacing D with D× in the
notation. We always write morphisms as pointing left, which is convenient

when evaluating compositions: if A
f← B

g← C then f g(c) ∈ A for c ∈ C .
This is purely notational; all our morphisms represent bijective maps, and
one could equivalently reverse all arrows and decorate all morphisms with an
exponent −1 (cf. also [52, Remark 1.1] and the preceding paragraphs).

A finite rooted complete subtree T of Td with m leaves (u1, . . . , um) (in
order) defines a homeomorphism ϕT : C ← Cm, uiw ←� (i, w). This works
analogously for forests: let F be a finite rooted d-ary forest (by which we
will always mean a disjoint union of finitely many finite rooted complete
subtrees of Td ) on r roots with n leaves. Each leaf of F is an element (i, u) ∈
{1, . . . , r} × X∗ and we index the words in X∗ that occur in some leaf from
left to right as u1, . . . , un . For each 1 ≤ i ≤ r we choose indices ai , zi
such that the leaves of the i th tree are those (i, u j ) with ai ≤ j ≤ zi . The
homeomorphism defined by F is ϕF : Cr ← Cn, (i, u jw) ←� ( j, w) where
i is the index satisfying ai ≤ j ≤ zi . We take Fd to be the category whose
morphisms are the ϕF for F a finite rooted d-ary forest.

LetW be the groupoid of homeomorphisms given by the (left) action of the
wreath product Sk � G on Ck , where Sk acts on {1, . . . , k} and G acts on the
copies ofC . In particular, note thatW contains nomorphisms between distinct
objects. Now define the categoryN , which is the one we are mainly interested
in, to have as its morphisms all products of morphisms from Fd and W .

Lemma 4.2 Every morphism in N can be written uniquely as f w for some
f ∈ Fd , w ∈ W .

Proof First we prove uniqueness. Suppose f w = f ′w′ ∈ N (Ck,C�). Then
f = f ′(w′w−1),withw′w−1 a homeomorphismofC�. Since f and f ′ identify
Ck and C� in an order-preserving way, in fact w′w−1 has to be the identity.

Now we prove existence. It suffices to show that if w′ ∈ W(Cr ,Cr ) and
f ′ ∈ Fd(Cr ,Cn) then there exists f ∈ Fd(Cr ,Cn) and w ∈ W(Cn,Cn)

such that w′ f ′ = f w. Since W(Cr ,Cr ) = Sr � G, it is enough to assume
w′ ∈ Sr ∪Gr . Let F ′ be the forest with r roots and n leaves such that f ′ = ϕF ′ .
Say the leaves of F ′ are ((1, ua1), . . . , (1, uz1), . . . , (r, uar ), . . . , (r, uzr )).

If w′ ∈ Sr then w′ f ′ = f w with f = ϕF such that the leaves of F are

((1, ua
(w′)−1(1)

), . . . , (1, uz
(w′)−1(1)

), . . . , (r, ua
(w′)−1(r)

), . . . , (r, uz
(w′)−1(r)

))
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and w the permutation given by w( j) = w′(ai )+ ( j −ai ) where i is such that
ai ≤ j ≤ zi .

If w′ = (g′
1, . . . , g

′
r ) ∈ Gr then w′ f ′ = f w with f = f ′ and

w = σ(g1, . . . , gn),

where g j is the state of gi at u j for ai ≤ j ≤ zi , and σ ∈ Sn is defined by
σ( j) = θi ( j−(ai −1))+(ai −1)whenever ai ≤ j ≤ zi , with θi ∈ Szi−(ai−1)
the permutation induced on { j − (ai − 1) | ai ≤ j ≤ zi } by g′

i . ��
Acategory is right-Ore if it is cancellative,meaning that abc = ab′c implies

b = b′, and has common right multiples, meaning that if a and a′ have the
same target then there exist b and b′ such that ab = a′b′.

Lemma 4.3 The category N is right-Ore.

Proof ThatN is cancellative is clear because all the morphisms are invertible
when viewed as maps. Since morphisms inW are invertible, to see thatN has
common right multiples it suffices to see that Fd has common right multiples.
If F and F ′ are d-ary forests on r roots, regarded as rooted subforests of the
infinite rooted d-ary forest, and F ∪ F ′ is their union, then ϕF∪F ′ is a common
right multiple of F and F ′. ��

The fundamental group π1(N ,C1) is by definition the group of all maps
C1 ← C1 that arise as products of morphisms of N and their inverses. That
N is right-Ore means that every such morphism can be written as f g−1 with
f, g ∈ N (C1, −).

Observation 4.4 The fundamental group of N at C1 is the Röver–Nekrashe-
vych group: Vd(G) = π1(N ,C1).

Proof By Lemmas 4.2 and 4.3 every element of π1(N ,C1) can be written as

(ϕT−w−)(ϕT+w+)−1 = ϕT−w−w−1+ ϕ−1
T+

where T− and T+ are finite rooted complete d-ary trees with the same number
of leaves, say n, andw−, w+ ∈ Sn �G. Writingw−w−1+ = σ(g1, . . . , gn)with
σ ∈ Sn and (g1, . . . , gn) ∈ Gn it is clear that the original homeomorphism is
[T−, σ (g1, . . . , gn), T+] as described in Sect. 2.2. For the converse, it is clear
that every homeomorphism in Vd(G) arises this way. ��

Note that everymorphism inW is invertible, whereas inFd only the identity
morphisms are invertible. Hence a product f w ∈ N (Ck,C�) decomposed as
in Lemma 4.2 is invertible if and only if f is the identity if and only if k = �.
In particular, N×(Ck,Ck) = W(Ck,Ck). In the language of [52] this can be
formulated as:
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Observation 4.5 The map δ : Ob(N ) → N, Ck �→ k is a height function. In
particular, N is strongly Noetherian.

The last ingredient to Theorem 4.1 is a Garside family. We need some more
definitions to explain it. If a morphism decomposes as f = abc then a is
called a left-factor and b is called a factor of f . Let E ⊆ N be a family of
morphisms that contains all invertible morphisms and is closed under factors,
i.e. if f ∈ E then so is every factor of f . Assume that every morphism in N
can be written as a product of morphisms in E . Then E is left-Garside if every
morphism f ∈ N admits a greatest left-factor head( f ) ∈ E in the following
sense: head( f ) is a left-factor of f and if s ∈ E is a left-factor of f then it is a
left-factor of head( f ). We take E to consist of morphisms ϕFw where w ∈ W
and F is a rooted d-ary forest in which every tree is either trivial or a single
d-caret.

Lemma 4.6 The family E is a left-Garside family in N . It is closed under
taking factors and is locally finite in the sense that up to right multiplication
by invertible morphisms the set E(Ck, −) is finite for every k.

Proof That every morphism inN can be written as a product of morphisms in
E follows from the fact that every d-ary forest can be built out of d-carets. We
need to check that every morphism in N has a greatest left-factor in E . Since
Lemma 4.2 says that up to rightmultiplication by an invertiblemorphism every
morphism ofN lies in Fd , it suffices to check that E restricts to a left-Garside
family in Fd . Let ϕF ∈ Fd(Cr ,Cn). We claim that head(ϕF ) = ϕF ′ where F ′
is described as follows: (a) if the i th tree of F is trivial then so is the i th tree
of F ′; (b) if the i th tree of F is non-trivial then the i th tree of F ′ is a single
d-caret. We see that every left-factor of ϕF needs to satisfy (a) and in order to
be an element of E the remaining trees cannot be more than single d-carets,
showing that ϕF ′ is as desired.

For local finiteness, by Lemma 4.2 every element of E(Ck, −) is, up to
right multiplication by an invertible morphism, one of the 2k elements in
(E ∩ Fd)(Ck, −). ��

In order to apply Theorem 4.1 we need to check condition (lk), namely that
for large enough k the realization of a certain poset E(Ck) is arbitrarily highly
connected. The poset E(Ck) is described as follows (see the paragraph before
Theorem 3.12 in [52]). Its elements are equivalence classes of morphisms
h ∈ E(Cm,Ck) with m < k, where the equivalence relation is given by left
multiplication by a morphism in N×(Cm,Cm) = W(Cm,Cm). The order on
equivalence classes is given by [h1] ≤ [h2] if h2 = h′h1 for some h′ ∈ E .
Rather than directly dealing with the realization |E(Ck)| we will later see that
E(Ck) is the face poset of a simplicial complex Xk described as follows: the
vertices of Xk are equivalence classes of morphisms h ∈ E(Ck−(d−1),Ck)
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up to left multiplication by a morphism inN×(Ck−(d−1),Ck−(d−1)). Vertices
[h1], . . . , [hn] form a simplex if there is a morphism h ∈ E(Ck−n(d−1),Ck)

that has each of them as a right factor.
Let h = ϕFσ(g1, . . . , gk) ∈ E(Ck−(d−1),Ck) be a representative of a vertex

of Xk , so F has a single non-trivial tree, σ ∈ Sk and (g1, . . . , gk) ∈ Gk . Note
that if the index of the non-trivial tree in F is i then ϕF ({i}×C) = {i, . . . , i +
d − 1} × C . We call the support of h the set {σ−1(i), . . . , σ−1(i + d − 1)}.
Lemma 4.7 The support is invariant under left multiplication by an invertible
morphism.

Proof It is clear that left multiplying by an element of Gk−(d−1) does not
change the support. Let ϕF be as above and let τ ∈ Sk−(d−1). Then τϕF =
ϕF ′τ ′ where τ ′ takes {i, . . . , i + d − 1} to {τ(i), . . . , τ (i) + d − 1} and the
non-trivial tree of F ′ has index τ(i). The claim follows. ��
Lemma 4.8 Vertices [h1], . . . , [hn] form a simplex in Xk if and only if they
have disjoint support. In this case the morphism h ∈ E(Ck−n(d−1),Ck) having
each hi as a right factor is unique up to left multiplication by an invertible
morphism.

Proof That vertices forming a simplex have disjoint support is clear. Con-
versely, let hi = ϕFiσigi ∈ E(Ck−(d−1),Ck). Left multiplying by a suitable
element of Sk−(d−1), for each i we can arrange the non-trivial tree of Fi to be
the i th, and moreover we can alter hi by arbitrary elements of G outside its
support. Thus we construct the morphism h as follows: we define g to coincide
with gi on the support of hi and to be arbitrary everywhere else; we define σ to
take the support of hi to {i, . . . , i +d−1}, to act on it as σi , and to be arbitrary
everywhere else; we define F to be the forest whose i th tree is the same as
that of Fi and which has all but the first n trees trivial. Then the morphism
h = ϕFσg has all the hi as right factors. The remaining choices concern how
Sk �G acts on {nd+1, . . . , k}×C , and they are reflected as left multiplication
by an element of W(Ck−n(d−1),Ck−n(d−1)) fixing {1, . . . , n} × C. ��
Corollary 4.9 The poset E(Ck) is isomorphic to the face poset of Xk. Thus
|E(Ck)| is isomorphic to the barycentric subdivision of Xk, and in particular
they are homeomorphic.

Proof Note that any morphism h in E(Ck−n(d−1),Ck) is of the form ϕFw

where F has n non-trivial trees and w ∈ W(Ck,Ck). Hence h defines an
(n−1)-simplex in Xk consisting of equivalence classes of morphisms ϕFiw ∈
E(Ck−(d−1),Ck), 1 ≤ i ≤ n, where Fi is such that the i th non-trivial tree of
F coincides with the tree of Fi on the same root and all other trees of Fi are
trivial. The map that sends [h] to that simplex is a poset map E(Ck) → Xk
that is surjective by definition of Xk . It is injective by the uniqueness statement
of Lemma 4.8. ��
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Corollary 4.10 The complex Xk is flag.

Proof We need to show that vertices that can be pairwise joined by edges form
a simplex. Such vertices have pairwise disjoint support, so the claim follows
from the existence statement of Lemma 4.8. ��

To verify (lk) we use a result due to Belk and Forrest [7]. A simplex σ

in a simplicial flag complex is called a k-ground, for k ∈ N, if every vertex
of X is adjacent to all but at most k vertices of σ . The complex is said to be
(n, k)-grounded if there is an n-simplex that is a k-ground.

Theorem 4.11 [7, Theorem 4.9] For m, k ∈ N every (mk, k)-grounded flag
complex is (m − 1)-connected.

Remark 4.12 The reference makes additional assumptions that are not nec-
essary: the assumption that m, k ≥ 1 can be removed by observing that
a (0, k)-grounded complex is always non-empty and that a (0, 0)-grounded
complex is contractible. The assumption that the complex be finite can be
removed using that in an arbitrary complex, any sphere is supported on a finite
subcomplex.

Lemma 4.13 The complex Xk is (�k/d� − 1, d)-grounded.

Proof Let h ∈ E(Ck−�k/d�(d−1),Ck) be arbitrary. We claim that the (�k/d� −
1)-simplex [h] is a d-ground. Indeed, if v ∈ E(Ck−(d−1),Ck) represents a
vertex then its support has cardinality d, so its support can be non-disjoint
from the support of at most d of the vertices of [h] (which have pairwise
disjoint supports). The result is now clear from Lemma 4.8. ��
Corollary 4.14 The complex Xk is (� k−d

d2
� − 1)-connected.

Proof This follows by combining Theorem 4.11 with Corollary 4.10 and
Lemma 4.13, and the calculation

⌊� k
d � − 1

d

⌋
=

⌊� k
d − 1�
d

⌋
=

⌊
k
d − 1

d

⌋
=

⌊
k − d

d2

⌋
.

��
Theorem 4.15 Let G ≤ Aut(Td) be self-similar. If G is of type Fn−1 then so
is Vd(G).

Proof We want to apply Theorem 4.1 with C = N , ∗ = C1, E = E and
δ : Ck �→ k. The assumptions in the running text are verified in Lemma 4.3 and
Lemma 4.6. Condition (lk) follows from Corollary 4.9 and Corollary 4.14.
The group N×(Ck,Ck) is G � Sk , which is virtually isomorphic to Gk and
therefore of type Fn by assumption. Applying the theorem it follows that
Vd(G) = π1(N ,C1) is of type Fn . ��
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5 Disproving type Fn

In this section we show that any group G with a faithful, self-similar finite-
state action on Td−1 admits an action with these same properties on Td such
that if G is not of type Fn then neither is Vd(G). This will provide us with
many examples of Röver–Nekrashevych groups that are not of type Fn . This
is the most important part of the article for various reasons. One reason is that
most generalized Thompson groups are of type F∞, so the property that we
are aiming for is simply not satisfied by them. Another reason is that even if a
generalized Thompson group is not of type Fn , there is no established way to
prove this. Often, when a group is of type Fn−1 but not of type Fn it has a natural
action on an n-dimensional space that can be utilized, but no such action is
available to us. In the few known examples of generalized Thompson groups
that are not of type F∞, individually tailored arguments have been used; see
for example [55, Section 8.2] and [54]. Here we employ a more robust strategy
using quasi-retracts.

The following property is the key to our approach.

Definition 5.1 (Persistent) Let G ≤ Aut(Td) be self-similar. We say g ∈ G is
i -persistent if, in the wreath recursion g = ρ(g)(g1, . . . , gd) we have gi = g.
We call G i-persistent if every element of G is i-persistent. We say g ∈ G is
persistent if it is i-persistent for some i , and that G is persistent if there exists
i such that every g ∈ G is i-persistent. We will also refer to a group G as
having a faithful (i-)persistent action on Td if G acts faithfully on Td and its
resulting image in Aut(Td) is (self-similar and) (i-)persistent.

Remark 5.2 One can view the property of being persistent as a strong negation
of the property of being contracting. A self-similar group is contracting if it
admits a finite subset S (with the smallest such subset called its nucleus) such
that for every element g of the group there exists an N such that every state of
g below the N th level lies in S. If the group is persistent then for every element
g and every level, at least one of the states of g at that level is g itself, and thus
unless the group is finite it can have no such S.

Note that up to isomorphism,G being i-persistent and j-persistent are equiv-
alent properties for any 1 ≤ i, j ≤ d. In particular if G is persistent then up
to isomorphism it is d-persistent.

Lemma 5.3 (Creating persistence) Let d ≥ 3. Let G be a group with a faithful
self-similar action on Td−1. Then G admits a faithful, persistent self-similar
action on Td . If the action on Td−1 is finite-state then so is the action on Td . If
the action on Td−1 is coarsely diagonal then so is the action on Td . Moreover,
an i-persistent such action can be found for any 1 ≤ i ≤ d.
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Simple groups separated by finiteness properties 729

Proof Say the wreath recursion for the action on Td−1 is given by g =
ρ(g)(g1, . . . , gd−1). Now define an action of G on Td via the wreath recur-
sion g = ι ◦ ρ(g)(g1, . . . , gd−1, g), where ι : Sd−1 → Sd is induced by the
inclusion {1, . . . , d−1} → {1, . . . , d}. This is self-similar and d-persistent by
construction. If the original action is finite-state then so is the new action. If the
original action is coarsely diagonal then so is the newaction. It remains to check
the new action is faithful. Indeed, the inclusion {1, . . . , d − 1} → {1, . . . , d}
also defines an embedding Td−1 → Td , with image invariant under the action
of G on Td . The action of G restricted to this image is the same as the action
of G on Td−1, which is faithful, so the action on Td is faithful as well. If we
want an i-persistent action for some i other than d, we need only conjugate by
the tree automorphism induced by the transposition of {1, . . . , d} switching
i and d, which preserves the properties of being self-similar, finite-state, and
coarsely diagonal. ��

For a d-persistent group G we have the following result, which allows us
to extract an element of G out of an element of Vd(G) in a canonical way.

Lemma 5.4 Let G ≤ Aut(Td) be a d-persistent self-similar group. Whenever
two triples (T−, σ (g1, . . . , gn), T+) and (T ′−, σ ′(g′

1, . . . , g
′
n′), T ′+) represent

the same element of Vd(G), we have gn = g′
n′ .

Proof ByLemma2.11 it suffices to prove this in the casewhen (T ′−, σ ′(g′
1, . . . ,

g′
n′), T ′+) is an expansion of (T−, σ (g1, . . . , gn), T+), and by induction

it suffices to assume T ′+ is T+ with a single d-caret added to one of
its leaves, say the kth. Now Lemma 2.12 implies that (g′

1, . . . , g
′
n′) =

(g1, . . . , gk−1, g1k , . . . , g
d
k , gk+1, . . . , gn), where gk = ρ(gk)(g1k , . . . , g

d
k ) is

the wreath recursion of gk . In particular if k < n then g′
n′ = gn trivially, and

if k = n then g′
n′ = gdn , which equals gn since G is d-persistent. ��

Proposition 5.5 Let G ≤ Aut(Td) be a finitely generated, persistent, finite-
state self-similar group. Then there exists a quasi-retraction Vd(G) → G.

Proof We can assume that G is d-persistent. Let ι = ι∅ : G → Vd(G) be
the monomorphism g �→ [11, g, 11]. Let r : Vd(G) → G be the function
[T−, σ (g1, . . . , gn), T+] �→ gn . Note that r is well defined by Lemma 5.4.
Clearly r ◦ ι = idG . Since ι is a homomorphism, it is (C, 0)-Lipschitz for
some C ≥ 1. It remains to prove that r is (C ′, D)-Lipschitz for some C ′ ≥ 1
and D ≥ 0, and in fact we will prove it is (1, 0)-Lipschitz given the right
choice of generating set.

Let SG be a finite, self-similar, symmetric generating set forG, which exists
since G is finitely generated and finite-state. Let SVd be a finite symmetric
generating set for Vd . By Lemma 3.4

SVd (G):=ι1(SG) ∪ SVd
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is a (finite, symmetric) generating set of Vd(G), where ι1 is as in Lemma 3.4.
We will consider the word metric on G using SG , and the word metric on
Vd(G) using SVd (G). To show that r is (1, 0)-Lipschitz we need to show that if
two elements of Vd(G) are adjacent in the Cayley graph their images under r
are adjacent or coincide. For technical reasons we consider left Cayley graphs.

Let x = [T−, σ (g1, . . . , gn), T+] ∈ Vd(G) and s = [U−, τ (h1, . . . , hm),

U+] ∈ SVd (G) be arbitrary. Up to possibly expanding, we can assumeU+ = T−
(so m = n) and hi ∈ SG ∪ {id} for all i , since SG is a self-similar set. Now

sx = [U−, τ (h1, . . . , hn)σ (g1, . . . , gn), T+]
= [U−, τσ (hσ(1)g1, . . . , hσ(n)gn), T+],

so r(sx) = hσ(n)gn . Since hσ(n) ∈ SG ∪ {id} and r(x) = gn , this implies that
r(sx) and r(x) are adjacent or coincide. ��

Note in the proof of Proposition 5.5 that hσ(n) is not necessarily r(s), unless
for example σ(n) = n. In particular we explicitly see the failure of r to be
a homomorphism in the equation r(sx) = hσ(n)r(x). Since Vd(G) may very
well be virtually simple, we should not expect r to be a homomorphism, and
indeed it need not be.

Now that we have a quasi-retract from Vd(G) to G, Theorem 1.3 says that
type Fn is passed from Vd(G) toG for n ≥ 2. In order to also include n = 1we
make the following addition to Theorem 1.3. Here dS means the word metric
with respect to S.

Lemma 5.6 Let Q and H be countable groups and let (Si )i∈N, Si ⊆ Q and
(Ti )t∈N, Ti ⊆ H be ascending sequences of finite sets such that Q is generated
by

⋃
i Si and H is generated by

⋃
i Ti . Assume that there is a map r : H → Q

such that for every i

(i) if dTi (x, y) < ∞ then dSi (r(x), r(y)) < ∞, and
(ii) every element of Q has finite distance with respect to dSi to r(H).

If H is finitely generated then so is Q.

Proof If H is finitely generated then some Ti generates it, so any two points in
H have finite distancewith respect to dTi . By the first assumption it follows that
any two points in r(H) have finite distance with respect to dSi . The second
assumption then ensures that any two points in Q have finite distance with
respect to dSi , which means that Si generates Q. ��
Lemma 5.7 Let G ≤ Aut(Td) be a persistent, finite-state self-similar group.
If Vd(G) is finitely generated then so is G.

Proof The proof is based on that of Proposition 5.5. Note that G is countable
since it lies in the finitely generated group Vd(G). Take Si to be an ascending,
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Simple groups separated by finiteness properties 731

exhaustive sequence of finite, self-similar, symmetric subsets of ι1(G), and
take Ti = Si ∪ SVd for each i . Define r : Vd(G) → G as before, so for every
i the map r : (Vd(G), dTi ) → (G, dSi ) is surjective and (1, 0)-Lipschitz. This
shows that the hypotheses of Lemma 5.6 are satisfied and the claim follows.

��
Combining Theorem 1.3 with Proposition 5.5 and Lemma 5.7 we get:

Theorem 5.8 Let G ≤ Aut(Td) be a persistent, finite-state self-similar group.
If Vd(G) is of type Fn (or FPn) then so is G.

Remark 5.9 IfQ is a retract of a group H thenQ has all thefiniteness properties
that H has. This has a homological proof using the Bieri–Eckmann Criterion,
as in [21, Proposition 4.1], but it also has a geometric proof given by applying
Theorem 1.3. The relationship between the non-FPn proofs in [55] and in the
present article is similar: in [55] a sophisticated variant of the homological
argument is used, whereas here we instead use a geometric argument, by
putting ourselves into a position where we can apply Theorem 1.3.

6 Self-similar groups separated by finiteness properties

The remaining ingredient needed to prove the Main Theorem is to find
a family of coarsely diagonal, finite-state self-similar groups separated by
finiteness properties. Self-similar groups separated by finiteness properties
were first exhibited by Bartholdi, Neuhauser, and Woess in [16], followed
by Kochloukova and Sidki in [36] using virtual endomorphisms. Inspired by
their approach we consider certain metabelian S-arithmetic groups separated
by finiteness properties that naturally act on Bruhat–Tits trees and show that
these natural actions are coarsely diagonal, finite-state and self-similar.

We briefly recall some facts about rings of S-integers in positive characteris-
tic and establish notation along the way. We refer to [4,45,51] for more details
and to [53, Section 1.5] for an exposition using the same notation. Although
our description is fairly general, the familiar case of a rational function field
Fq(t) is sufficient for the purpose of the Main Theorem and we will indicate
the special cases throughout.

A global function field k is a finite extension of the field of rational functions
Fq(t) over a finite field Fq . A place [ν] is an equivalence class of a discrete
valuation ν : k → R ∪ {∞} modulo scaling (ν(α) = ∞ if and only if α = 0).
We say that an element α ∈ k has a pole (respectively a zero) at [ν] if ν(α) < 0
(respectively ν(α) > 0). If S is a non-empty finite set of places, the ring of
S-integers OS consists of those elements of k that have no poles at places
outside S.
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Example 6.1 The places of Fq(t) correspond to points of the projective line
overFq .More precisely, there is a valuation να for every irreducible polynomial
α ∈ Fq [t] of degree e, given by ν(α f (β/γ )) = f forα � β, γ , and correspond-
ing to the point at infinity there is a valuation ν∞(β/γ ) = deg(γ ) − deg(β).
These represent all places of Fq(t). If S = {[ν∞], [να1], . . . , [ναn ]} is a set of
places containing [ν∞] then OS = Fq [t, α−1

1 , . . . , α−1
n ].

The completion K = ks of k at a place s is a local field. In particular,
its ring of integers O has a unique maximal ideal m and the residue field
κ = O/m = Fqe is finite. Here e is the degree of s, which is the degree of
κ ∼= Fqe over the field of constants Fq < k. Up to scaling K has a unique
valuation ν(α) = m with m = sup{� | α ∈ m�} and the restriction to k
represents s. A uniformizing element π is a generator of m in O. If π is a
uniformizing element in a local field K of positive characteristic then K is the
field of Laurent series Fqe((π)). Its ring of integers is the ring of power series
O = Fqe [[π ]] and the maximal ideal is m = πFqe [[π ]].
Example 6.2 The completion of Fq(t) with respect to [να] is Fqe((α

−1)) if
degα = e. The completion of Fq(t) with respect to [ν∞] is Fq((t)).

Now we discuss the relevant groups. Let K be a local field of positive
characteristic p and let ν, O, m, κ and q be as above. Let Ga and Gm be
the additive and multiplicative algebraic groups respectively, and consider the
algebraic group AGL1 = Gm � Ga (with the usual action) which can be
thought of as the group of matrices given by

AGL1(R) =
{(

α β

1

)∣∣∣∣α ∈ R×, β ∈ R

}
.

This group is a subgroup of PGL2 and therefore AGL1(K ) acts on the Bruhat–
Tits tree TK associated to PGL2(K ). Since we only want to describe the action
of AGL1(K ), this tree can be realized particularly easily. The vertices of TK
are residue classes γ mod me with γ ∈ K and e ∈ Z, and two residue classes
γ mod me and δ mod m f are joined by an edge whenever |e − f | = 1
and γ ≡ δ mod mmin{e, f }. Here and in what follows we write elements of
AGL1(K ) as pairs (α, β) with α ∈ Gm(K ) = K× and β ∈ Ga(K ) = K . An
element (α, β) ∈ AGL1(K ) acts via

(α, β).(γ mod me) = αγ + β mod me+ν(α).

The boundary of TK consists of ends corresponding to elements γ of K ,
which are approached by the sequence γ mod me for e → ∞, and an end,
denoted ∞, which is approached by any sequence γ mod me for e → −∞.
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In fact, ∂TK is homeomorphic to the projective line over K in an AGL1(K )-
equivariant way. In particular AGL1(K ) fixes the end ∞.

Moreover, the action of AGL1(O) fixes the horoball around ∞ whose ver-
tices are the γ mod me with e ≤ 0. Consequently it acts on each of the rooted
trees consisting of vertices γ mod me with e ≥ 0 and γ ≡ δ mod O, for
any choice of δ ∈ K . We denote by TO the tree corresponding to δ = 0. In
particular the vertices of TO are cosets γ mod me with γ ∈ O and e ≥ 0. The
root of TO is γ mod m0 for any γ . We fix an order on κ and obtain an induced
order on the vertices of TO, which in particular identifies TO with T|κ|.

We introduce the following notation: if γ = ∑
ciπ i ∈ K is a Laurent

series then [x]ba is the truncated series
∑

a≤i<b ciπ
i . If the sub- or superscript

is omitted, then so is the corresponding condition.

Lemma 6.3 Let α ∈ Gm(O) and β ∈ Ga(O), and let γ mod me be a vertex
of TO.
(i) The state of β at γ mod me is π−e[β]e ∈ Ga(O).
(ii) The state of α at γ mod me is (α, δ) ∈ AGL1(O) where δ =

π−e (α[γ ]e − [αγ ]e).
Proof The ends of the subtree with root γ mod me are of the form [γ ]e +πeζ

for ζ ∈ O. The element β takes such an end to

β + [γ ]e + πeζ = [β + γ ]e + πe(π−e[β]e + ζ ),

showing the first claim.
Similarly, α takes [γ ]e + πeζ to

α · ([γ ]e + πeζ
) = α[γ ]e + πeαζ

= [αγ ]e + πe (
αζ + π−e (

α[γ ]e − [αγ ]e)) ,
showing the second claim. Note that the first (e− 1) coefficients of α[γ ]e and
[αγ ]e coincide so δ = π−e (α[γ ]e − [αγ ]e) really does lie in O. ��

In particular, Lemma 6.3 provides a criterion for AGL1(R) to be self-similar
for R < O: for every e ≥ 0 and every γ ∈ O, whenever β ∈ R then π−e[β]e
has to be in R aswell, and ifβ is invertible then in additionπ−e(β[γ ]e−[βγ ]e)
has to be in R.

Now let k be a global function field and let s be a place of degree 1. Let
K = ks be the completion of k at s and, as before, letO be its ring of integers.
Let π be a uniformizing element, which we take to lie in k. Using this setup
we have K = Fq((π)) and O = Fq [[π ]].

In order to get finite-state actions we will have to restrict to rational function
fields because of the following:
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Lemma 6.4 A Laurent series α ∈ K lies in Fq(t) if and only if its coefficients
are eventually periodic.

Proof It is well known that a Laurent series is rational if and only if it satisfies
a linear recurrence rule. Since the coefficient field is finite, such a sequence is
eventually periodic.

Conversely, if α has period � starting with the mth coefficient then it is also
periodic with period n = ��m/�� starting with the nth coefficient. Thus there
is an f such that π f α = β/(πn − 1) for a β a polynomial in π of degree at
most f + n − 1. It follows that α = β/(πn+ f − π f ) is rational. ��
Lemma 6.5 If k = Fq(t) is a rational function field then the action of
AGL1(k ∩ O) on TO is finite-state.

Proof Using Lemma 2.5 it suffices to show that Gm(k ∩ O) and Ga(k ∩ O)

are finite-state.
If β ∈ Ga(k ∩ O) then it is eventually periodic by Lemma 6.4. Therefore

the set of π−e[β]e for e ≥ 0, which is its set of states by Lemma 6.3, is finite.
The state of α ∈ Gm(k ∩ O) at γ mod me is (α, δ) ∈ AGL1(O) with

δ = π−e (α[γ ]e − [αγ ]e) by Lemma 6.3. Note that δ = π−e[α[γ ]e]e, so δ

is rational since α is. In particular every δ that occurs lies in Ga(k ∩ O), and
hence is finite-state by the previous paragraph. It now suffices to show that
only finitely many δ can occur for a fixed α.

To see this, write α = ∑
i aiπ

i , γ = ∑
i biπ

i and δ = ∑
i ciπ

i . Then

ci =
∑

0≤�≤e−1
j+�=e+i

a j b� =
e−1∑

�=0

ai+(e−�)b�.

It follows that δ is eventually periodic with the same period as α and,moreover,
the periodicity of δ starts (at the latest) at the same index as for α. Since these
conclusions hold regardless of γ , indeed there are only finitely many δ per α.

��
Remark 6.6 The condition on k is clearly necessary: if k is a global function
field that is not a rational function field then it contains an aperiodic power
series α by Lemma 6.4. Lemma 6.3 shows that α regarded as an element of
Ga(k) is not finite-state.

We now return to k being an arbitrary global function field. No restrictions
are necessary to get coarse diagonality:

Lemma 6.7 The action of AGL1(O) on TO is coarsely diagonal.
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Proof By Lemma 6.3, every state of g = (α, β) ∈ AGL1(O) is of the form
g′ = (α, δ) for some δ. It follows that (g′)−1g ∈ Ga(O), which has exponent
p. ��
From now on let S be a finite, non-empty set of places not containing s and

let OS be the ring of S-integers of k. We choose the uniformizing element
π ∈ m to lie in OS , which is possible by the Riemann–Roch theorem [45,
Proposition 3.6.14] (for example if [ν∞] ∈ S then k ∩O{[ν∞]} ≥ Fq [t] and we
can take π = t).

Our interest in the groups AGL1(OS) is based on the following result.

Theorem 6.8 [20,34] Let k be a global function field and let S be a non-empty
finite set of places. The groupAGL1(OS) is of type F|S|−1 but not of type FP|S|.
Remark 6.9 The group AGL1(OS) acts on the product of trees

∏
u∈S Tku as a

discrete group and Theorem 6.8 is proved by describing a cocompact subspace
for the action.

We need one more general lemma, which is our main reason to restrict s to
degree 1:

Lemma 6.10 For a series α ∈ O we have α ∈ OS if and only if β =
π− j [α] j ∈ OS.

Proof Consider the relation

α = π jβ + γ

where γ = [α] j is a polynomial in π ∈ OS . It follows that α ∈ OS∪{s} if and
only if β ∈ OS∪{s}, and the explicit construction shows that β does not have a
pole at s. ��

It follows that the groups AGL1(OS) suit our needs:

Proposition 6.11 Let k be aglobal functionfield and let S be afinite non-empty
set of places not containing s. The action of AGL1(OS) on TO is self-similar
and coarsely diagonal. If k is a rational function field, the action is also finite-
state.

Proof We have OS ⊆ O by the assumption that s /∈ S. It therefore follows
from Lemma 6.5 and Lemma 6.7 that the action is coarsely diagonal and that it
is finite-state if k is a rational function field.We need to check self-similarity. It
suffices to show that states of elements ofGa(OS)∪Gm(OS) lie inAGL1(OS).

The states of β ∈ Ga(OS) are of the form π−e[β]e by Lemma 6.3, which
lie in Ga(OS) by Lemma 6.10.

For α ∈ Gm(OS), by Lemma 6.3, we have to verify that δ = π−e(α[γ ]e −
[αγ ]e) ∈ OS for any γ ∈ O. But [γ ]e and [αγ ]e are polynomials in π ∈ OS ,
so indeed δ ∈ OS . ��
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Remark 6.12 Our groups AGL1(OS) are essentially the groups PU(2,OS)

considered by Kochloukova and Sidki in [36, Theorem A], and the action is
the one obtained by taking s = [νt−1]. One difference is that they require
[ν∞], [νt ] ∈ S while we do not. In particular, all their groups in [36, The-
orem A] are finitely generated. Similarly, if we take S = {[ν∞]} then our
group AGL1(OS) is exactly the group Fp[x]� B(1, Fp[x]) considered in [36,
Theorem B].

We conclude:

Theorem 6.13 Let n be a positive integer and let d be a prime power. There is a
self-similar, finite-state, coarsely-diagonal subgroup ofAut(Td) that is of type
Fn−1 but not of type FPn. If n = 1 and d ≥ 3 then it has finite abelianization.

Proof Take k = Fd(t) and let s be a place of degree 1. Let S be a set of n places
not containing s. Then K :=ks is isomorphic as a valued field to Fd((π)) and in
particular TO ∼= Td . The first sequence of claims now follows for AGL1(OS)

from Proposition 6.11 and Theorem 6.8.
If n = 1 then OS

∼= Fd [π ], so Gm(OS) is cyclic of finite order. Also, if
d ≥ 3 then Gm(OS) is the abelianization of AGL1(OS). Hence the last claim
holds. ��
Remark 6.14 If k = F2(t) and S contains a single place of degree 1 then
Gm(OS) = F

×
2 is trivial and AGL1(OS) = Ga(OS) is infinite abelian.

7 Proof of the Main Theorem and examples

To prove theMain Theorem nowwe only need to assemble pieces. The precise
formulation is as follows.

Theorem 7.1 Let n be a positive integer and let d ≥ 3. If n = 1, let
d ≥ 4. There exists a self-similar group G ≤ Aut(Td) such that the Röver–
Nekrachevych group Vd(G) is virtually simple and of type Fn−1 but not of type
FPn. More specifically, the commutator subgroup Vd(G)′ is simple, has finite
index in Vd(G), and is of type Fn−1 but not of type FPn.

Proof Let d ′ < d be a prime power and if n = 1 then take d ′ ≥ 3. By
Theorem 6.13 there exists a group G with a faithful, self-similar action on Td ′ ,
such thatG is of type Fn−1 but not of type FPn , and the action is finite-state and
coarsely diagonal. Applying Lemma 5.3 d−d ′ times, we get a faithful action of
G onTd that in addition to being self-similar, finite-state, and coarsely diagonal
is also persistent. We claim that the Röver–Nekrachevych group Vd(G) is as
desired. First, the commutator subgroup Vd(G)′ is simple by Theorem 3.1. It
is of type Fn−1 by Theorem 4.15 and not of type FPn by Theorem 5.8. Finally,
to show that Vd(G)′ is of finite index we apply Theorem 3.3 if n ≥ 2, and
Observation 3.5 if n = 1. ��
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We now discuss some concrete examples.

Example 7.2 (Grigorchuk group) Recall the standard generating set for the
Grigorchuk group, Grig, is given by a = (1 2)(id, id), b = (a, c), c = (a, d),
and d = (id, b). The action on T2 is self-similar and finite-state, and is coarsely
diagonal since Grig is torsion. These generators can be extended to create a
persistent action on T3 via a = (1 2)(id, id, a), b = (a, c, b), c = (a, d, c),
and d = (id, b, d). It was shown in [30] that Grig is not finitely presented.
Therefore, although V2(Grig) is of type F∞ [14], our results show that the
virtually simple group V3(Grig) is of type F1 but not of type F2.

Since the Main Theorem provides the first known examples of finitely pre-
sented simple groups that are not of type FP3, we describe such an example
explicitly.

Example 7.3 (F2-not-FP3) Consider the rational function field F2(t). Let

S = {[ν∞], [νt ], [ν1+t+t2]}
and consider the ring of S-integers OS = F2[t, t−1, (1 + t + t2)−1]. Since
|S| = 3, the groupAGL1(OS) is finitely presented but not of type FP3.Viewing
AGL1(OS) as a matrix group, it is

{(
α β

1

)∣∣∣∣ α ∈ O×
S , β ∈ OS

}
.

A convenient finite generating set is

a =
(
1 1
1

)
, b =

(
t 0
1

)
, c =

(
1 + t + t2 0

1

)
.

We now consider OS as living inside the completion of F2(t) at the place
[ν1+t ], and as in Sect. 6 we get a self-similar action of AGL1(OS) on T2.
Inspecting the level-1 states, as described in Lemma 6.3, and the action on the
first level, we see that we have the following wreath recursions:

a = (1 2)(id, id), b = (b, ab), c = (c, bab−1c).

It can be checked that the states of a are {id, a}, the states of b are {b, ab} and
the states of c are {c, bab−1c, ac, a−1bab−1c}, which confirms that the action
is finite state. It is also not hard to confirm that it is coarsely diagonal, since
the normal closure of a has exponent 2. Now we extend this to a self-similar
action on T3 (abusively using the same letters to denote the new elements) via:

a = (1 2)(id, id, a), b = (b, ab, b), c = (c, bab−1c, c).
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This action of AGL1(OS) satisfies all the required conditions, and so the
commutator subgroup V3(AGL1(OS))

′ of the Röver–Nekrashevych group
V3(AGL1(OS)) is a finitely presented simple group that is not of type FP3.

From the recipe in [42, Theorem 9.14], one can compute that the abelian-
ization of V3(AGL1(OS)) is Z/4Z ⊕ Z/2Z ⊕ Z/2Z and the abelianization
map is described as follows. First let χ : AGL1(OS) → Z/4Z be the map
a �→ 2+ 4Z, b �→ 1+ 4Z, c �→ 1+ 4Z, let χb : AGL1(OS) → Z/2Z be the
map a �→ 0+2Z, b �→ 1+2Z, c �→ 0+2Z, and let χc : AGL1(OS) → Z/2Z

be the map a �→ 0 + 2Z, b �→ 0 + 2Z, c �→ 1 + 2Z. Then the abelianization
map of V3(AGL1(OS)) is

V3(AGL1(OS)) → Z/4Z ⊕ Z/2Z ⊕ Z/2Z

[T−, σ (g1, . . . , gn), T+] �→ (χ(g1 · · · gn), χb(g1 · · · gn), χc(g1 · · · gn)),

and we get a concrete description of V3(AGL1(OS))
′ as the kernel of this map.

We conclude by distinguishing our examples from Kac–Moody groups. Let
G be a Kac–Moody functor and let Fq be a finite field. There is an associated
twin building (X+, X−) andG(Fq) acts on X+×X− as a lattice. Identifying the
group with a point orbit is a quasi-isometric embedding by [24, Theorem 1.1],
so the asymptotic dimension ofG(Fq) is bounded by the asymptotic dimension
of X+ × X− [6, Proposition 23], which is finite [26]. On the other hand,
Lemma2.8 implies that all of our examples have infinite asymptotic dimension,
cf. [6, Theorems 64, 74], and so none of them is quasi-isometric to anyG(Fq).

Acknowledgements We are grateful to Dessislava Kochloukova and Said Sidki for sharing a
preprint of [36] with us and to Bertrand Rémy for asking the question that motivated our search
for simple groups separated by finiteness properties.We also thankMatt Brin, Pierre-Emmanuel
Caprace, Eduard Schesler, and Marco Varisco for many helpful comments.

References

1. Abels, H., Brown, K.S.: Finiteness properties of solvable S-arithmetic groups: an example.
In: Proceedings of the Northwestern Conference on Cohomology of Groups (Evanston,
Illinois, 1985), vol. 44, pp. 77–83 (1987)

2. Alonso, J.M.: Finiteness conditions on groups and quasi-isometries. J. Pure Appl. Algebra
95(2), 121–129 (1994)

3. Abramenko, P., Mühlherr, B.: Présentations de certaines BN -paires jumelées comme
sommes amalgamées. C. R. Acad. Sci. Paris Sér. I Math. 325(7), 701–706 (1997)

4. Artin, E.: Algebraic Numbers and Algebraic Functions. Gordon and Breach, New York
(1967)

5. Bestvina, M., Brady, N.: Morse theory and finiteness properties of groups. Invent. Math.
129(3), 445–470 (1997)

6. Bell, G., Dranishnikov, A.: Asymptotic dimension. Topol. Appl. 155(12), 1265–1296
(2008)

123



Simple groups separated by finiteness properties 739

7. Belk, J., Forrest, B.: Rearrangement groups of fractals. Trans. Am.Math. Soc. (to appear).
arXiv:1510.03133v2

8. Bux,K.-U., Fluch,M.G.,Marschler,M.,Witzel, S., Zaremsky,M.C.B.:ThebraidedThomp-
son’s groups are of type F∞. J. Reine Angew.Math. 718, 59–101 (2016). With an appendix
by Zaremsky

9. Brown, K.S., Geoghegan, R.: An infinite-dimensional torsion-free FP∞ group. Invent.
Math. 77(2), 367–381 (1984)

10. Bieri, R., Geoghegan, R., Kochloukova, D.H.: The sigma invariants of Thompson’s group
F . Groups Geom. Dyn. 4(2), 263–273 (2010)

11. Bieri, R.: Homological Dimension of Discrete Groups. Mathematics Department, Queen
Mary College, London (1976). Queen Mary College Mathematics Notes

12. Bux, K.-U., Köhl, R.,Witzel, S.: Higher finiteness properties of reductive arithmetic groups
in positive characteristic: the rank theorem. Ann. Math. (2) 177(1), 311–366 (2013)

13. Burger, M., Mozes, S.: Lattices in product of trees. Inst. Hautes Études Sci. Publ. Math.
92, 151–194 (2000)

14. Belk, J., Matucci, F.: Röver’s simple group is of type F∞. Publ. Math. 60(2), 501–524
(2016)

15. Bux, K.-U., Mohammadi, A., Wortman, K.: SLn(Z[t]) is not FPn−1. Comment. Math.
Helv. 85(1), 151–164 (2010)

16. Bartholdi, L., Neuhauser, M., Woess, W.: Horocyclic products of trees. J. Eur. Math. Soc.
10(3), 771–816 (2008)

17. Brin, M.G.: Higher dimensional Thompson groups. Geom. Dedicata 108, 163–192 (2004)
18. Brin, M.G.: On the baker’s map and the simplicity of the higher dimensional Thompson

groups nV . Publ. Math. 54(2), 433–439 (2010)
19. Brown, K.S.: Finiteness properties of groups. In: Proceedings of the Northwestern Confer-

ence on Cohomology of Groups (Evanston, Illinois, 1985), vol. 44, pp. 45–75 (1987)
20. Bux, K.-U.: Finiteness properties of certain metabelian arithmetic groups in the function

field case. Proc. Lond. Math. Soc. (3) 75(2), 308–322 (1997)
21. Bux, K.-U.: Finiteness properties of soluble arithmetic groups over global function fields.

Geom. Topol. 8, 611–644 (2004)
22. Camm, R.: Simple free products. J. Lond. Math. Soc. 28, 66–76 (1953)
23. Cannon, J.W., Floyd,W.J., Parry,W.R.: Introductory notes on Richard Thompson’s groups.

Enseign. Math. (2) 42(3–4), 215–256 (1996)
24. Caprace, P.-E., Rémy, B.: Simplicity and superrigidity of twin building lattices. Invent.

Math. 176(1), 169–221 (2009)
25. Caprace, P.-E., Rémy, B.: Non-distortion of twin building lattices. Geom. Dedicata 147,

397–408 (2010)
26. Dymara, J., Schick, T.: Buildings have finite asymptotic dimension. Russ. J. Math. Phys.

16(3), 409–412 (2009)
27. Farley, D.S.: Finiteness and CAT(0) properties of diagram groups. Topology 42(5), 1065–

1082 (2003)
28. Fluch, M.G., Marschler, M., Witzel, S., Zaremsky, M.C.B.: The Brin–Thompson groups

sV are of type F∞. Pac. J. Math. 266(2), 283–295 (2013)
29. Gandini, G.: Bounding the homological finiteness length. Bull. Lond. Math. Soc. 44(6),

1209–1214 (2012)
30. Grigorchuk, R.I.: On the system of defining relations and the Schur multiplier of periodic

groups generated by finite automata. In: Groups St. Andrews 1997 in Bath, I, volume 260
of LondonMathematical Society Lecture Note Series, pp. 290–317. Cambridge University
Press, Cambridge (1999)

31. Higman, G.: A finitely generated infinite simple group. J. Lond. Math. Soc. 26, 61–64
(1951)

123

http://arxiv.org/abs/1510.03133v2


740 R. Skipper et al.

32. Higman, G.: Finitely Presented Infinite Simple Groups. Department of Pure Mathematics,
Department of Mathematics, I.A.S. Australian National University, Canberra, 1974. Notes
on Pure Mathematics, No. 8 (1974)

33. Kropholler, P.H., Mislin, G.: Groups acting on finite-dimensional spaces with finite stabi-
lizers. Comment. Math. Helv. 73(1), 122–136 (1998)

34. Kochloukova, D.H.: The FPm -conjecture for a class of metabelian groups. J. Algebra
184(3), 1175–1204 (1996)

35. Kropholler, P.H.: On groups of type (FP)∞. J. Pure Appl. Algebra 90(1), 55–67 (1993)
36. Kochloukova, D.H., Sidki, S.N.: Self-Similar Groups of Type FPn . arXiv:1710.04745
37. Le Boudec, A.: Compact presentability of tree almost automorphism groups. Ann. Inst.

Fourier 67(1), 329–365 (2017)
38. Leary, I.J.: Subgroups of Almost Finitely Presented Groups. arXiv:1610.05813
39. Leary, I.J.: Uncountably Many Groups of Type FP . arXiv:1512.06609
40. Meier, J., Meinert, H., VanWyk, L.: Higher generation subgroup sets and the �-invariants

of graph groups. Comment. Math. Helv. 73(1), 22–44 (1998)
41. Martínez-Pérez, C., Matucci, F., Nucinkis, B.E.A.: Cohomological finiteness conditions

and centralisers in generalisations of Thompson’s group V . Forum Math. 28(5), 909–921
(2016)

42. Nekrashevych, V.V.: Cuntz–Pimsner algebras of group actions. J. Oper. Theory 52(2),
223–249 (2004)

43. Nekrashevych, V.: Self-Similar Groups, Mathematical Surveys and Monographs, vol. 117.
American Mathematical Society, Providence (2005)

44. Nekrashevych, V.: Finitely presented groups associated with expanding maps. In: Geomet-
ric and Cohomological Group Theory LondonMathematical Society Lecture Notes Series.
Cambridge University Press, Cambridge (2017). arXiv:1312.5654

45. Niederreiter, H., Xing, C.: Algebraic Geometry in Coding Theory and Cryptography.
Princeton University Press, Princeton (2009)

46. Röver, C.E.: Constructing finitely presented simple groups that contain Grigorchuk groups.
J. Algebra 220(1), 284–313 (1999)

47. Stallings, J.: A finitely presented group whose 3-dimensional integral homology is not
finitely generated. Am. J. Math. 85, 541–543 (1963)

48. Stein, M.: Groups of piecewise linear homeomorphisms. Trans. Am. Math. Soc. 332(2),
477–514 (1992)

49. Skipper, R., Zaremsky, M.C.B.: Almost-automorphisms of Trees, Cloning Systems and
Finiteness Properties. (submitted). arXiv:1709.06524

50. Thumann, W.: Operad groups and their finiteness properties. Adv. Math. 307, 417–487
(2017)

51. Weil,A.:Basic number theory. DieGrundlehren dermathematischenWissenschaften,Band
144. Springer, New York (1967)

52. Witzel, S.: Classifying Spaces from Ore Categories with Garside Families.
arXiv:1710.02992

53. Witzel, S.: Finiteness Properties of Arithmetic Groups Acting on Twin Buildings. Lecture
Notes in Mathematics, vol. 2109. Springer, Cham (2014)

54. Witzel, S., Zaremsky, M.C.B.: The Basilica Thompson group is not finitely presented.
Groups Geom. Dyn. (to appear). arXiv:1603.01150

55. Witzel, S., Zaremsky,M.C.B.: Thompson groups for systems of groups, and their finiteness
properties. Groups Geom. Dyn. 12(1), 289–358 (2018)

123

http://arxiv.org/abs/1710.04745
http://arxiv.org/abs/1610.05813
http://arxiv.org/abs/1512.06609
http://arxiv.org/abs/1312.5654
http://arxiv.org/abs/1709.06524
http://arxiv.org/abs/1710.02992
http://arxiv.org/abs/1603.01150

	Simple groups separated by finiteness properties
	Abstract
	Introduction
	1 Finiteness properties and quasi-isometries
	2 Self-similar groups and Röver–Nekrashevych groups
	2.1 Self-similar groups
	2.2 Röver–Nekrashevych groups

	3 Virtual simplicity
	4 Proving type Fn-1
	5 Disproving type Fn
	6 Self-similar groups separated by finiteness properties
	7 Proof of the Main Theorem and examples
	Acknowledgements
	References




