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Abstract We give results and inequalities bounding the greatest common
divisor of multivariable polynomials evaluated at S-unit arguments, generaliz-
ing to an arbitrary number of variables results of Bugeaud–Corvaja–Zannier,
Hernández–Luca, and Corvaja–Zannier. In closely related results, and in line
with observations of Silverman, we prove special cases of Vojta’s conjecture
for blowups of toric varieties. As an application, we classify when terms from
simple linear recurrence sequences can have a large greatest common divisor
(in an appropriate sense). The primary tool used in the proofs is Schmidt’s
Subspace Theorem from Diophantine approximation.

Mathematics Subject Classification Primary 11J25; Secondary 11G35 ·
11B37

1 Introduction

We study two closely related problems: greatest common divisors ofmultivari-
able polynomials evaluated at S-unit arguments and certain cases of Vojta’s
conjecture involving blowups of the algebraic torus G

n
m . The main result

obtained towards the first problem is a generalization of results of Bugeaud et
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494 A. Levin

al. [4],Hernández andLuca [21], andCorvaja andZannier [7,8] to polynomials
in an arbitrary number of variables:

Theorem 1.1 Let n be a positive integer, � ⊂ G
n
m(Q) a finitely gener-

ated group, and f (x1, . . . , xn), g(x1, . . . , xn) ∈ Q[x1, . . . , xn] nonconstant
coprime polynomials such that not both of them vanish at (0, 0, . . . , 0). Let
h(α) denote the (absolute logarithmic) height of an algebraic numberα. For all
ε > 0, there exists a finite union Z of translates of proper algebraic subgroups
of G

n
m such that

log gcd( f (u1, . . . , un), g(u1, . . . , un)) < ε max{h(u1), . . . , h(un)}

for all (u1, . . . , un) ∈ �\Z.
The greatest common divisor on the left-hand side of the inequality is a

generalized notion of the usual quantity for integers, adapted to algebraic
numbers, which also notably includes archimedean contributions (Definition
1.4). As an application of Theorem 1.1 and related results, we study when
terms from two simple linear recurrence sequences can have a “large” greatest
common divisor (Theorem 1.11).

In a related set of results, we prove a family of special cases of Vojta’s
conjecture. Towards this end, in Sect. 1.2 we formulate a version of Vojta’s
conjecture attached to pairs (X, V ), where X is a nonsingular complete variety
andV ⊂ X is an open subvariety (the pair (X, X) recovers a standard version of
Vojta’s conjecture for X ). With this formulation, we prove Vojta’s conjecture
for pairs (X, V ), where X is a suitable blowup of an n-dimensional toric
variety and V is the corresponding blowup of G

n
m ⊂ X . The connection

between Vojta’s conjecture and Bugeaud–Corvaja–Zannier’s result (and its
generalizations) was originally observed by Silverman [39].

A special case of these results is the following inequality: let � ⊂ G
n
m(Q)

be a finitely generated subgroup and let Y be a closed subscheme of P
n of

codimension at least 2, appropriately in general position with the boundary of
G

n
m in P

n (see Theorem 1.16 for the precise condition). Let hY be a height
associated to Y and let h denote the standard height on P

n . Then there exists
a finite union Z of translates of proper algebraic subgroups of G

n
m such that

hY (P) < εh(P) (1)

for all P ∈ �\Z . This result may be viewed as a geometric or projective
version of Theorem 1.1.

In the next two sections we describe and contextualize the above results in
more detail. The remainder of the paper is organized as follows. In Sect. 2
we collect together and give the necessary background material. In Sect. 3 we
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Greatest common divisors and Vojta’s conjecture 495

prove Theorem 1.1 and some related results, and in the following Sect. 4 we
derive consequences for Vojta’s conjecture. In the final section, Sect. 5, we
give an application to greatest common divisors of terms from simple linear
recurrence sequences. As in nearly all previous work on these topics, the
primary tool in our proofs is Schmidt’s Subspace Theorem from Diophantine
approximation.

1.1 Greatest common divisors

In 2003, Bugeaud et al. [4] initiated a new line of results by proving the
following simply-stated theorem.

Theorem 1.2 (Bugeaud et al. [4])Let a, b ∈ Zbemultiplicatively independent
integers. Then for every ε > 0,

log gcd(an − 1, bn − 1) ≤ εn (2)

for all but finitely many positive integers n.

Despite the simplicity of the statement, the proof required the powerful
Schmidt Subspace Theorem fromDiophantine approximation. It follows from
a result of Adleman et al. [1, Prop. 10] (see also [4, Remark (2)]) that there is a
constant c > 0 such that for all pairs of integers a, b > 1, there exist infinitely
many positive integers n with

log gcd(an − 1, bn − 1) > ec log n/ log log n.

Thus, the inequality (2) is close to being optimal.
In proving a conjecture of Győry et al. [18], Corvaja and Zannier [7] and,

independently,Hernández andLuca [21], gave an improvement toTheorem1.2
where gcd(an −1, bn −1) is replaced by gcd(u−1, v−1) for multiplicatively
independent S-unit integers u and v.

Theorem 1.3 (Corvaja and Zannier [7] and Hernández and Luca [21]) Let
p1, . . . , pt ∈ Z be prime numbers and let S = {∞, p1, . . . , pt }. Then for
every ε > 0,

log gcd(u − 1, v − 1) ≤ ε max{log |u|, log |v|} (3)

for all but finitelymanymultiplicatively independent S-unit integers u, v ∈ Z
∗
S.

More generally, Corvaja and Zannier [8] replace an and bn by elements of
a finitely generated subgroup � ⊂ G

2
m(Q) = Q

∗ × Q
∗
and replace u − 1 and
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496 A. Levin

v − 1 by other pairs of polynomials. Before stating this generalization, we
discuss extending the quantities in (3) to all algebraic numbers.

First, note that if u is an integer, then log |u| is the same as the absolute
logarithmic height h(u). Thus, in extending (3) to arbitrary algebraic numbers,
the right-hand side readily generalizes. To make sense of greatest common
divisors for arbitrary algebraic numbers, we note that if a and b are integers,
not both zero, then

log gcd(a, b) =
∑

p prime

min{ordp(a), ordp(b)} log p

= −
∑

v∈M0
Q

logmax{|a|v, |b|v}

= −
∑

v∈M0
Q

log− max{|a|v, |b|v},

where M0
Q

denotes the set of nonarchimedean places of Q and log− z =
min{0, log z}.

Extending this sum to archimedean places and to all algebraic numbers,
following [8,39], we make the following definition (see Sect. 2 for our con-
ventions on absolute values).

Definition 1.4 Let α, β ∈ Q be two algebraic numbers, not both zero. We
define the generalized logarithmic greatest common divisor of α and β by

log gcd(α, β) = −
∑

v∈Mk

log− max{|α|v, |β|v},

where k is any number field containing both α and β.

Equivalently, it is easily seen that

log gcd(α, β) = h([1 : α : β]) − h([α : β]),
where h is the standard height (on the appropriate projective spaces), and
in particular, Definition 1.4 is independent of the choice of number field k
containing α and β. For completeness, if α = β = 0, then by convention
we also define log gcd(α, β) = ∞ and − log− max{|α|v, |β|v} = ∞ (for
any place v). Since this situation will always correspond to a codimension
two phenomenon, it will be easily avoided (sometimes implicitly, and without
comment).

Finally, we note that the condition that u and v are multiplicatively inde-
pendent can be rephrased as saying that (u, v) is not an element of a proper
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algebraic subgroup of G
2
m . In fact, Corvaja and Zannier [8, Prop. 2] show that

the multiplicative independence condition in Theorem 1.3 can be replaced by
the assumption that (u, v) does not lie in one of finitely many proper algebraic
subgroups of G

2
m (depending only on ε). Explicitly, one needs to exclude sub-

groups given by an equation u p = vq with p and q coprime integers satisfying
|p|, |q| ≤ 1/ε (in fact, Corvaja and Zannier prove this in the more general set-
ting discussed below, with u and v lying in a finitely generated subgroup of
Q

∗
). When one replaces u−1 and v−1 in Theorem 1.3 by more general poly-

nomials in u and v, proper algebraic subgroups must be replaced, in general,
by translates of proper algebraic subgroups.

We now state Corvaja and Zannier’s generalization of Theorem 1.3.

Theorem 1.5 (Corvaja and Zannier [8]) Let � ⊂ G
2
m(Q) be a finitely

generated group. Let f (x, y), g(x, y) ∈ Q[x, y]be nonconstant coprimepoly-
nomials such that not both of them vanish at (0, 0). For all ε > 0, there exists
a finite union Z of translates of proper algebraic subgroups of G

2
m such that

log gcd( f (u, v), g(u, v)) < ε max{h(u), h(v)}
for all (u, v) ∈ �\Z.

Theorem 1.1 from the introduction is the same assertion, generalized in the
obvious way from G

2
m to G

n
m for n ≥ 2.

Corvaja and Zannier also show that the nonvanishing hypothesis on f
and g can be dropped for u, v ∈ O∗

k,S if one removes the contribution to
log gcd( f (u, v), g(u, v)) coming from places in S.

Theorem 1.6 (Corvaja and Zannier [8]) Let k be a number field and S a finite
set of places of k containing the archimedean places. Let f (x, y), g(x, y) ∈
k[x, y] be nonconstant coprime polynomials. For all ε > 0, there exists a finite
union Z of translates of proper algebraic subgroups of G

2
m such that

−
∑

w∈Mk\S
log− max{| f (u, v)|w, |g(u, v)|w} < ε max{h(u), h(v)}

for all (u, v) ∈ G
2
m(Ok,S)\Z.

In the same way, we also generalize Theorem 1.6 to higher dimensions
(Theorem 3.2).

In a different direction, Luca [28] proved a generalization of Theorem 1.3
where u and v are only assumed to be close (in an appropriate sense) to S-
units. Analogues of Theorems 1.2, 1.3, and 1.5 have also been considered
[2,8–10,13,38] in the context of function fields (both in characteristic 0 and
positive characteristic).
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498 A. Levin

Another line of related results comes into view via the deep analogies
between Nevanlinna theory and Diophantine approximation. Using Vojta’s
dictionary [42, Ch. 3], statements in Diophantine approximation for integral
points on G

n
m should correspond to certain statements in Nevanlinna theory

for a holomorphic map f : C → G
n
m . From this point of view, Noguchi et

al. [31, Main Theorem and Th. 5.1] (see also [30, § 6.5]) proved a general
inequality for holomorphic maps to semi-abelian varieties (and associated jet
spaces), which contains as a special case an analogue of Theorem 1.1. The
results of [31] are stated in a formulation analogous to inequality (1) (and
results of Sect. 1.2), but one can also formulate statements directly analogous
to Theorem 1.1, involving counting functions of common zeros of appropriate
holomorphic functions (see [32] for this and some related problems).

As an application of our results, in Sect. 5we studygreatest commondivisors
of terms from simple linear recurrence sequences. Consider a sequence of
power sums given by

F(n) =
r∑

i=1

ciα
n
i , n ∈ N, (4)

where αi , ci ∈ C
∗, i = 1, . . . , r . As is well-known, such sequences satisfy a

linear recurrence relation of the form

F(n) = A1F(n − 1) + · · · + Ar F(n − r), n = r, r + 1, r + 2, . . . , (5)

for some constants Ai ∈ C. To situate things in a larger context, we note that
more generally, F satisfies a relation of the form (5) if and only if one may
write

F(n) =
s∑

i=1

fi (n)αn
i , n ∈ N, (6)

for some nonzero polynomials fi ∈ C[x] and distinct αi ∈ C
∗, classically

called the roots of F . In fact, α1, . . . , αs are precisely the distinct roots of the
corresponding characteristic polynomial

Xr − A1X
r−1 − · · · − Ar ,

and fi is a polynomial of some degree strictly smaller than the multiplicity
of αi in the characteristic polynomial. In particular, F has the form (4) if and
only if F satisfies a linear recurrence relation as above and every root of the
associated characteristic polynomial is simple. In accordance with this, such
a linear recurrence is called simple.
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Greatest common divisors and Vojta’s conjecture 499

Before discussing greatest common divisors of linear recurrences, we dis-
cuss the related topic of divisibility relations between linear recurrences. The
set of linear recurrences of the form (6) forms a ring under the usual addition
and multiplication of sequences. Then, as in any ring, we obtain a notion of
divisibility between the elements, and so a notion of divisibility between linear
recurrences.

If F and G are linear recurrences and G divides F , then F(n)/G(n) obvi-
ously lies in a finitely generated ring for all n ∈ N with G(n) 	= 0. The
Hadamard quotient theorem, proven by van der Poorten (following an incom-
plete argument of Pourchet), gives a converse to this statement.

Theorem 1.7 (Hadamard quotient theorem, Pourchet-van der Poorten [33,34,
40,41]) Let F and G be linear recurrences and let R be a finitely generated
subring of C with F(n),G(n) ∈ R for all n ∈ N. If G(n) divides F(n) in R
for all n ∈ N, then G divides F (in the ring of linear recurrences).

Corvaja and Zannier [6] proved a similar result, but under the much weaker
hypothesis that G(n) divides F(n) for infinitely many n ∈ N (as opposed to
all n). We let F(q • +r) denote the sequence n 
→ F(qn + r).

Theorem 1.8 (Corvaja and Zannier [6]) Let F and G be linear recurrences
and let R be a finitely generated subring of C with F(n),G(n) ∈ R for all
n ∈ N. If G(n) divides F(n) in R for infinitely many n ∈ N, then there exist
positive integers q and r such that G(qn + r) = P(n)H(n), n ∈ N, for
some polynomial P ∈ C[x] and some linear recurrence H dividing the linear
recurrence F(q • +r). In particular, if G is a simple linear recurrence, then
there exist q and r such that G(q • +r) divides F(q • +r).

We now turn to greatest common divisors among linear recurrences. From
now on, we consider only algebraic linear recurrences, i.e., fi ∈ Q[x] and
αi ∈ Q

∗
in (6) [or αi , ci ∈ Q

∗
in (4)]. Theorem 1.2 provides a starting point

and a prototype for such results. More generally, it is clear that Theorem 1.5
can be used to analyze log gcd(F(n),G(n)) (or log gcd(F(m),G(n))) for
algebraic simple linear recurrences when the involved roots generate a small-
rank group. In this vein, we have work of Luca [26–28] and Hernández and
Luca [20], including results for nonsimple linear recurrences. For instance, in
[28], Luca proved:

Theorem 1.9 (Luca [28]) Let a and b be nonzero integers which are multi-
plicatively independent and let f1, f2, g1, g2 ∈ Z[x] be nonzero polynomials.
Let

F(n) = f1(n)an + f2(n),

G(n) = g1(n)bn + g2(n).
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500 A. Levin

Then for all ε > 0,

log gcd(F(n),G(m)) < ε max{m, n}

for all but finitely many pairs of positive integers (m, n).

Fuchs [17] (see also [16]) proved a result for simple linear recurrences,
including cases where the roots generate a group of arbitrarily large rank.

Theorem 1.10 (Fuchs [17]) Let

F(n) = c1α
n
1 + c2α

n
2 + · · · + csα

n
s ,

G(n) = d1β
n
1 + d2β

n
2 + · · · + dtβ

n
t ,

define two simple linear recurrence sequences of integers, where c1, . . . , cs,
d1, . . . , dt ∈ Q

∗ and α1 > · · · > αs > 0 and β1 > · · · > βt > 0 are integers
with α1 and α2 . . . αsβ1 . . . βt coprime. Let ε > 0. Then

log gcd(F(n),G(n)) < εn

for all but finitely many positive integers n.

Before stating ourmain application, we discuss greatest common divisors in
certain rings of linear recurrences. Let � ⊂ Q

∗
be a torsion-free multiplicative

subgroup of rank t with generators u1, . . . , ut . It is well-known (and easy to
check) that the ring R� of algebraic simple linear recurrences with roots in� is
isomorphic to the ring of Laurent polynomials Q[T1, . . . , Tt , T−1

1 , . . . , T−1
t ],

with the isomorphism induced by mapping Ti to the linear recurrence Fi
defined by Fi (n) = uni . In particular, the ring R� is a unique factorization
domain.

Now suppose that F and G are algebraic simple linear recurrences whose
combined roots generate a torsion-free subgroup � of Q

∗
. Then we say that

F and G are coprime if they are coprime as elements of R� (i.e., 1 is a
greatest common divisor of F and G in R�). Otherwise, we say that F and
G have a nontrivial common factor. Whenever we use this terminology, we
tacitly assume that the roots of F and G generate a torsion-free group under
multiplication. We also note that these properties are stable under enlarging �

[6, p. 438], that is, F andG are coprime in R� if and only if they are coprime in
R�′ , where �′ is any finitely generated torsion-free subgroup of Q

∗
containing

�.
With this terminology, we can state our application to greatest common

divisors of terms from simple linear recurrence sequences.
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Theorem 1.11 Let

F(n) = c1α
n
1 + c2α

n
2 + · · · + csα

n
s ,

G(n) = d1β
n
1 + d2β

n
2 + · · · + dtβ

n
t ,

define two algebraic simple linear recurrence sequences. Let k be a number
field such that ci , αi , d j , β j ∈ k for i = 1, . . . , s, j = 1, . . . , t . Let

S0 = {v ∈ Mk : max{|α1|v, . . . , |αs |v, |β1|v, . . . , |βt |v} < 1}.

(a) There exists δ > 0 and an integer N such that

− log− max{|F(m)|v, |G(n)|v} > δmin{m, n}

for all v ∈ S0 and all integers m, n ≥ N.
(b) Let ε > 0. If the inequality

∑

v∈Mk\S0
− log− max{|F(m)|v, |G(n)|v} > ε max{m, n}

has infinitely many solutions (m, n), then all but finitely many of them
satisfy one of finitely many linear relations

(m, n) = (ai t + bi , ci t + di ), t ∈ Z, i = 1, . . . , r,

where ai , bi , ci , di ∈ Z, ai ci 	= 0, and the linear recurrences F(ai • +bi )
and G(ci • +di ) have a nontrivial common factor for i = 1, . . . , r .
In particular, if S0 = ∅, then the same statement holds for the inequality

log gcd(F(m),G(n)) > ε max{m, n}.

Theorem 1.11 asserts, roughly speaking, that F(m) and G(n) can have a
“large” greatest common divisor only for obvious algebraic reasons: the roots
of F and G have a nontrivial common divisor, or m and n lie in arithmetic
progressions such that F and G, restricted to the arithmetic progressions, have
a nontrivial common divisor (as linear recurrences).

1.2 Vojta’s conjecture

In this section, we develop and describe our results from the point of view of
Vojta’s conjecture. The perspective here was influenced by and borrows from
Silverman’s paper [39].
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We begin by stating Vojta’s conjecture (i.e., the “Main Conjecture” from
[42, Conj. 3.4.3]; see also [5, Conj. 15.6]). We will have nothing to say
about the more difficult “General Conjecture” of Vojta for algebraic points
[5, Conj. 25.1].

Conjecture 1.12 (Vojta’s Main Conjecture) Let X be a nonsingular complete
variety with canonical divisor K . Let D be a normal crossings divisor on X,
and let A be a big divisor on X. Let k be a number field over which X and D
are both defined, and let S be a finite set of places of k. Let ε > 0. Then there
exists a proper Zariski closed subset Z of X such that

mD,S(P) + hK (P) ≤ εhA(P) + O(1)

for all points P ∈ X (k)\Z.
We will also find it useful to formulate a version of Vojta’s conjecture

for nonsingular varieties V (not necessarily complete). More precisely, we
consider V embedded in a nonsingular complete variety X such that D0 =
X\V is a normal crossings divisor (with both X and D defined over some
number field). In this case, we call (X, V ) an admissible pair. Note that by
a theorem of Nagata, every variety can be embedded as an open subvariety
of a complete variety, and then using Hironaka’s theorem on resolution of
singularities (we always assume characteristic 0), it follows that for any such
nonsingular variety V we can always find a nonsingular complete variety X
such that X\V is a normal crossings divisor. The variety X is, of course, not
unique (except when V is a curve).

If (X, V ) is an admissible pair and D0 = X\V , then we define K(X,V ) =
KX + D0. We will say that D is a normal crossings divisor on (X, V ) if D is
an effective divisor on X such that D+ D0 is a normal crossings divisor on X .
With this terminology, we state the following version of Vojta’s conjecture for
the pair (X, V ), where hKX is replaced by hK(X,V )

and the inequality holds for
a set of integral points on V (equivalently, a set of D0-integral points) instead
of the full set of all rational points:

Conjecture 1.13 Let (X, V ) be an admissible pair and let D be a normal
crossings divisor on (X, V ). Let A be a big divisor on X. Let k be a number
field over which X, V, and D are all defined and let S be a finite set of places
of k containing the archimedean places. Let ε > 0. Then there exists a proper
Zariski closed subset Z of X such that for any set R of S-integral points on V
we have

mD,S(P) + hK(X,V )
(P) ≤ εhA(P) + O(1)

for all points P ∈ R\Z.
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When V = X is complete, Conjecture 1.13 is exactly Vojta’s conjecture
for X . Conversely, it is not hard to see (Lemma 2.3) that Conjecture 1.13
follows from Conjecture 1.12. Thus, the main use of Conjecture 1.13 is as an
organizational tool for our results, and to highlight a certain natural class of
cases of Vojta’s conjecture.

From this point of view, we prove Vojta’s conjecture for blowups of G
n
m ,

with the compactification coming from any projective toric variety (e.g., P
n

or (P1)n). More precisely, if X is a nonsingular projective toric variety of
dimension n (containing, by definition, V = G

n
m as a dense open subvariety)

and π : X̃ → X is a suitable birational morphism, then Vojta’s conjecture
holds for the pair (X̃ , π−1(Gn

m)) (assuming it is an admissible pair).
Before stating the full result wemake two further definitions. For a birational

morphism π : X̃ → X , we let Exc(π) denote the exceptional locus of π , that
is, the locus of points of X̃ where π is not a local isomorphism. We say that
Y ⊂ X is in general position with the boundary X\V if Y does not contain
any point of intersection of n distinct irreducible components of X\V (where
n = dim X ). The main result towards Vojta’s conjecture is the following
theorem.

Theorem 1.14 Let X be a nonsingular projective toric variety of dimension n.
Let X̃ be a nonsingular projective variety, π : X̃ → X a birational morphism,
Ṽ = π−1(Gn

m), D0 = X̃\Ṽ a (reduced) divisor, A a big divisor on X̃ , and D
an effective divisor on X̃ . Additionally, suppose that π(Exc(π)) ∪ Suppπ∗D
is in general position with X\G

n
m. Let k be a number field over which X̃ , X, D,

D0, and π are defined, S a finite set of places of k containing the archimedean
places, and ε > 0. Then there exists a proper Zariski closed subset Z of X̃
such that the inequality

mD,S(P) + hKX̃+D0(P) ≤ εhA(P) + O(1)

holds for all points P ∈ π−1(Gn
m(Ok,S))\Z. In particular, if (X̃ , Ṽ ) is admis-

sible then Vojta’s conjecture holds for the pair (X̃ , Ṽ ).

The last statement of the theorem is clear once one makes the easy observa-
tion that ifπ(Exc(π)) is in general positionwith X\G

n
m and D+D0 is a normal

crossings divisor, then Suppπ∗D is in general position with X\G
n
m . Thus, the

general position condition on Suppπ∗D is a weakening of the normal cross-
ings condition present in Vojta’s conjecture. We also note that R ⊂ X (k) is a
set of (D0, S)-integral points for some S if and only if R ⊂ π−1(Gn

m(Ok,S′))
for some S′ (where S and S′ are finite sets of places of k containing the
archimedean places).

Remark 1.15 The inequality of Theorem 1.14 is true without the O(1) term,
but then the exceptional set Z must be allowed to depend on the choice ofmD,S ,
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hKX+D0 , and hA (which are only determined up to O(1)), as well as on the
choice of ε. Hence, we will typically include an O(1) term in such inequalities
involving height functions (and when we omit it, the exceptional set Z will
depend on the choice of height functions in addition to other data). Moreover,
the O(1) term allows one to choose Z to consist only of positive-dimensional
components. Since all of our results depend ultimately on applications of the
Schmidt Subspace Theorem, it follows easily from our proofs and Vojta’s
refinement of the Subspace Theorem (Remark 2.5), that Z may be chosen
independent of k and S (or �) here and elsewhere (up to finitely many points
in inequalities without an O(1) term, such as Theorem 1.1). However, since
the constructions in the proofs depend crucially on ε, we do not obtain any
independence of Z from ε.

From a slightly different perspective, recall that every birational morphism
of projective varieties π : X̃ → X is a blowup along some closed subscheme
Y of X [19, Th. 7.17]. The inequality on X̃ of Theorem 1.14 is closely related
to inequalities on X for heights associated to closed subschemes Y (in fact,
this is the basis of the proof of Theorem 1.14). For simplicity, we assume now
that X = P

n and we identify G
n
m with P

n\∪n
i=0 Hi , where H0, . . . , Hn are the

n + 1 coordinate hyperplanes of P
n . Let Y be a nonsingular subvariety of P

n

of codimension r ≥ 2, such that Y intersects P
n\G

n
m = ∪n

i=0Hi transversally.
Let π : X̃ → P

n be the blowup along Y . Then from our assumptions (using
the notation of Theorem 1.14), we have

KX̃ ∼ π∗KPn +(r − 1)E ∼−π∗
(

n∑

i=0

Hi

)
+(r − 1)E ∼ −D0 + (r − 1)E,

where E = π−1(Y ) is the exceptional divisor. Thus, taking D = 0 , the
inequality in Theorem 1.14 becomes

hE (P) ≤ εhA(P) + O(1).

Alternatively, to formulate the inequality on P
n , we can take hA(P) =

h(π(P)) and use the equality

hE (P) = hY (π(P)) + O(1), ∀P ∈ X (k)\Supp E,

where hY is a height associated to the closed subscheme Y . In this case, this
yields, together with Laurent’s theorem (Theorem 2.1), the inequality (1) dis-
cussed in the beginning of the introduction. In fact, as an easy consequence
of Theorem 1.1 and related results, we derive an inequality for hY under a
general position assumption on Y in place of a transversality assumption. Let
P0 = [1 : 0 : · · · : 0], . . . , Pn = [0 : 0 : · · · : 0 : 1], or equivalently,
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Pi =
n⋂

j=0
j 	=i

H j , i = 0, . . . , n.

Theorem 1.16 Let Y be a closed subscheme of P
n, defined over a number

field, of codimension at least 2. Suppose that

P0, . . . , Pn /∈ Y.

Let � ⊂ G
n
m(Q) be a finitely generated subgroup. Then for all ε > 0, there

exists a finite union Z of translates of proper algebraic subgroups of G
n
m such

that

hY (P) ≤ εh(P) + O(1)

for all P ∈ �\Z ⊂ P
n(Q).

The n = 2 cases of Theorems 1.14 and 1.16 follow (essentially) from
Corvaja and Zannier’s Theorem 1.5. In this case, Yasufuku [45] has extended
Theorem 1.14, showing for instance that one can eliminate the general position
condition onπ(Exc(π)).Moreover, for certain special blowups ofPn involving
the boundary ofGn

m , Yasufuku [44] proves an inequality as in Theorem1.14 for
rational points, and with the height hD0 replaced by the sum of local heights
mD0,S . Lastly, for completeness, we mention a result of McKinnon [29], fully
proving Vojta’s conjecture over a number field k for a blowup of a product
E × E , where E is an elliptic curve over k and E(k) has rank one (or more
generally, rank one over Endk(E)).

2 Notation and background material

We collect together some notation and background material that will be used
throughout.

2.1 Algebra and algebraic geometry

Let k be a field and let A = k[x1, . . . , xn] be the polynomial ring in n variables
over k. For i = (i1, . . . , in) ∈ N

n , we define

xi = xi11 · · · xinn
and write

|i| = i1 + · · · + in = deg xi.
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Let X be a projective variety of dimension n and let D be a Cartier divisor on
X . We let Supp D denote the support of D and h0(D) = dim H0(X,O(D)).
Recall that D is called a big divisor if

lim sup
m→∞

h0(mD)

mn
> 0.

If D1, . . . , Dq are effective Cartier divisors on X , then we say that
D1, . . . , Dq are in general position if for any subset I ⊂ {1, . . . , q}, |I | ≤
n + 1, we have codim∩i∈I Supp Di ≥ |I |, where we set dim ∅ = −1. In
particular, the supports of any n + 1 divisors in general position have empty
intersection. If D and E are Cartier divisors on X , then we write D ∼ E if D
and E are linearly equivalent, and define D ≥ E if D − E is effective.

Let φ : Y → X be a morphism of projective varieties. If the image of φ is
not contained in the support of D, then we let φ∗D denote the pullback Cartier
divisor. More generally, if Z is a closed subscheme of X with corresponding
ideal sheaf I, we let φ∗Z denote the closed subscheme of Y associated to the
ideal sheaf φ−1I · OY .

Assume now that X is a nonsingular complex projective variety (in particu-
lar, Cartier and Weil divisors coincide on X ). Let D be a divisor on X . We say
that D has normal crossings if every point P in the support of D has an analytic
open neighborhood in X with analytic local coordinates z1, . . . , zn such that
D is locally defined by z1 · z2 · · · zi = 0 for some i . If Y is a projective variety
and φ : X → Y is a morphism, we let φ∗D denote the pushforward of D.

2.2 Algebraic tori, toric varieties, and Laurent’s theorem

We give a short naïve treatment of the algebraic torus G
n
m , sufficient for our

purposes. Let k be a field of characteristic 0. As an affine variety over k, we
identify G

n
m with the Zariski open subset

x1 · · · xn 	= 0

of affine space A
n . Coordinate-wise multiplication

(x1, . . . , xn) · (y1, . . . , yn) = (x1y1, . . . , xn yn)

gives G
n
m(k) the structure of a group, so that G

n
m(k) = (k

∗
)n as groups, where

k
∗
is the multiplicative group of nonzero elements of k. More generally, if R

is a subring of k, we let

G
n
m(R) = (R∗)n ⊂ (k

∗
)n,

where R∗ is the group of units of R.
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An algebraic subgroup of G
n
m is a Zariski closed subset Z ⊂ G

n
m such that

Z(k) is a subgroup of G
n
m(k). As is well-known, every algebraic subgroup of

G
n
m is defined by a system of equations

xi11 · · · xinn = 1, (i1, . . . , in) ∈ 	,

for some subgroup 	 of Z
n . A translate of an algebraic subgroup H ⊂ G

n
m is

a coset of the form gH , where g ∈ G
n
m(k).

We will use throughout the following fundamental result of Laurent [24],
describing the Zariski closure of subsets of finitely generated subgroups of
G

n
m(Q).

Theorem 2.1 (Laurent) Let � ⊂ G
n
m(Q) be a finitely generated subgroup and

let R ⊂ � be a subset. Then the Zariski closure of R in G
n
m is a finite union of

translates of algebraic subgroups of G
n
m.

In fact, Laurent proved a stronger statement, conjectured by Lang, where �

is only assumed to be a subgroup of G
n
m(C) of finite Q-rank.

We will also frequently want to work with compactifications of G
n
m . A

natural class of such compactifications arises from toric varieties. A toric
variety X is a variety over k containing G

n
m as a dense open subvariety such

that the action of G
n
m on itself extends to an algebraic action of G

n
m on X . For

instance, P
n and (P1)n are projective toric varieties, with embeddings of G

n
m

given, respectively, by

G
n
m ↪→ P

n

(x1, . . . , xn) 
→ [1 : x1 : · · · : xn]

and

G
n
m ↪→ (P1)n

(x1, . . . , xn) 
→ ([x1 : 1], . . . , [xn : 1]).

Toric varieties admit a rich combinatorial description and theory, for which
we refer to [11] for the general theory and for the few facts that we will need
in Sect. 4.

2.3 Absolute values, heights, and Schmidt’s Subspace Theorem

Let k be a number field. Recall that we have a canonical set Mk of places
(or absolute values) of k consisting of one place for each prime ideal p of
Ok , one place for each real embedding σ : k → R, and one place for each
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pair of conjugate embeddings σ, σ : k → C. For v ∈ Mk , let kv denote the
completion of k with respect to v. We normalize our absolute values so that
|p|v = p−[kv :Qp]/[k:Q] if v corresponds to p and p lies above a rational prime
p, and |x |v = |σ(x)|[kv :R]/[k:Q] if v corresponds to an embedding σ (in which
case we say that v is archimedean).

Let S be a finite set of places of k containing the archimedean places. We
use Ok , Ok,S , and O∗

k,S to denote the ring of integers of k, ring of S-integers
of k, and group of S-units of k, respectively.

For v ∈ Mk and α ∈ k, we define the height

h(α) =
∑

v∈Mk

logmax{|α|v, 1}.

More generally, for a point P = [x0 : · · · : xn] ∈ P
n(k), we have the standard

(absolute logarithmic) height

h(P) =
∑

v∈Mk

logmax{|x0|v, . . . , |xn|v}.

Note that this is independent of the choice of number field k (with P ∈ P
n(k)),

and it is independent of the choice of homogeneous coordinates x0, . . . , xn ∈ k
by the product formula: ∏

v∈Mk

|x |v = 1

for all x ∈ k∗.
Let X be a projective (or more generally, complete) variety defined over a

number field k. The classical theory of heights [3,22,23] associates to every
Cartier divisor D on X a height function hD : X (k) → R and local height
functions, λD,v : X (k)\ Supp D → R, v ∈ Mk , well-defined up to bounded
functions, such that

∑

v∈Mk

λD,v(P) = hD(P) + O(1)

for all P ∈ X (k)\Supp D. When D is effective, λD,v(P) is essentially the
negative of the logarithm of the v-adic distance between P and D, and in
particular, if D is a hypersurface in P

n defined by a homogeneous polynomial
F ∈ k[x0, . . . , xn] of degree d, then a local height function for D is given by

λD,v(P) = logmax
i

|xi |dv
|F(P)|v = log

|P|dv
|F(P)|v , v ∈ Mk,
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where P = [x0 : · · · : xn] ∈ P
n(k)\ Supp D and |P|v = maxi |xi |v (this last

quantity, of course, depends on the choice of homogeneous coordinates for P ,
but we only ever use it in ratios which are well-defined).

Generalizing the theory of heights forCartier divisors, Silverman [37] devel-
oped a theory of heights for arbitrary closed subschemes of projective varieties.
We give here a quick summary of the relevant properties of such heights (see
[37] for the general theory and details).

Let Y be a closed subscheme of a projective variety X , both defined over a
number field k. One can associate toY local height functionsλY,v : X (k)\Y →
R, v ∈ Mk , unique up to a bounded function (more precisely, unique up to an
Mk-bounded function; see [37]). A global height function hY , unique up to a
bounded function, can be constructed as the sum of local height functions. If
Y = D is an effective (Cartier) divisor (which we identify with the associated
closed subscheme), these height functions agree with the previously discussed
height functions associated to divisors. Local height functions satisfy the fol-
lowing properties: if Y and Z are two closed subschemes of X , defined over
k, and v ∈ Mk , then up to O(1),

λY∩Z ,v = min{λY,v, λZ ,v},
λY+Z ,v = λY,v + λZ ,v,

λY,v ≤ λZ ,v, if Y ⊂ Z ,

λY,v ≤ cλZ ,v, if SuppY ⊂ Supp Z ,

for some constant c > 0, where Supp Y denotes the support of Y . If φ : W →
X is a morphism of projective varieties, then

λY,v(φ(P)) = λφ∗Y,v(P) + O(1), ∀P ∈ W (k)\φ∗Y.

Here, Y ∩ Z , Y + Z , Y ⊂ Z , and φ∗Y are defined in terms of the associated
ideal sheaves (see Sect. 2.1 and [37]). We will typically avoid points in Y (k),
but at times it will be convenient to define λY,v(P) = ∞ for P ∈ Y (k), with
typical conventions for ∞ (e.g., so that the formula for λY∩Z ,v holds for all
P ∈ X (k)).
Global height functions satisfy similar properties (except the first property

above, which becomes hY∩Z ≤ min{hY , hZ }+O(1)). Global height functions
satisfy two additional properties that we will use. First, if D and E are linearly
equivalent Cartier divisors on X , then

hD(P) = hE (P) + O(1)
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for all P ∈ X (k). Second, if D is any Cartier divisor on X and A is an ample
divisor on X , then there is a constant c > 0 such that

hD(P) < chA(P) + O(1)

for all P ∈ X (k). More generally, if A is a big divisor, then there is a constant
c > 0 and a proper Zariski closed subset Z ⊂ X such that

hD(P) < chA(P) + O(1)

for all P ∈ X (k)\Z . We will use a slightly extended version of this fact.

Lemma 2.2 Let φ : X → Y be a birational map of nonsingular projective
varieties over a number field k. Let A be a divisor on X and B be a big divisor
on Y , both defined over k. Then there exists a constant c and a proper Zariski
closed subset Z ⊂ X such that

hA(P) ≤ chB(φ(P))

for all P ∈ X (k)\Z.
Proof LetU ⊂ X be an open subset such that φ restricts to a morphism onU .
We can resolve φ to a morphism φ̃ : X̃ → Y , where φ ◦ π = φ̃ on π−1(U )

and π : X̃ → X is a birational morphism. Then by functoriality,

hA(π(P)) = hπ∗A(P) + O(1),

hB(φ̃(P)) = hφ̃∗B(P) + O(1),

for all P ∈ X̃(k). Since φ̃∗B is again big on X̃ , there exists a constant c and a
proper Zariski closed subset Z̃ ⊂ X̃ such that

hπ∗A(P) < chφ̃∗B(P)

for all P ∈ X̃(k)\Z̃ . Combining the above, we find that

hA(P) ≤ chB(φ(P)) + O(1)

for all P ∈ X (k)\Z , where Z = π(Z̃) ∪ (X\U ). Finally, by an appropriate
version of Northcott’s theorem for big divisors [42, Prop. 1.2.9(h)], we may
remove the O(1) at the expense of possibly enlarging c and Z . ��
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We also define two functions related to height functions, depending on a
finite set of places S of k. We define the proximity function

mY,S(P) =
∑

v∈S
λY,v(P)

and the counting function

NY,S(P) = hY (P) − mY,S(P) =
∑

v∈Mk\S
λY,v(P)

for P ∈ X (k)\Y . Both functions are well-defined up to a bounded function.
Lastly, we define the notion of a set of (D, S)-integral points. Let D be an

effective Cartier divisor on X , hD = ∑
v∈Mk

λD,v a height function associated
to D, and S a finite set of places of k containing the archimedean places. A set
of points R ⊂ X (k)\ Supp D is called a set of (D, S)-integral points on X if
there exist constants cv, v ∈ Mk , such that cv = 0 for all but finitely many v,
and for all v ∈ Mk\S,

λD,v(P) ≤ cv

for all P ∈ R. In this case, clearly

mD,S(P) = hD(P) + O(1)

for all P ∈ R. We will also call a set R of (D, S)-integral points a set of
S-integral points on V = X\Supp D (indeed, this notion is independent of
how we write V = X\Supp D [42, Cor. 1.4.2, Th. 1.4.11]).

Sets of integral points on G
n
m , subsets of finitely generated subgroups of

G
n
m(Q), and subsets of G

n
m(Ok,S) (varying k and S) are all essentially equiv-

alent objects. In particular, if X is a nonsingular projective toric variety and
D = X\G

n
m , then R ⊂ G

n
m(k) is a set of (D, S)-integral points on X for some

S if and only if R ⊂ G
n
m(Ok,S′) for some S′ (where S and S′ are finite sets of

places of k containing the archimedean places).
We note that Conjecture 1.13 is an easy consequence of Vojta’s conjecture.

Lemma 2.3 Conjecture 1.12 implies Conjecture 1.13.

Proof Let R ⊂ X (k) be a set of (D0, S)-integral points on X . Then by defini-
tion,

mD0,S(P) = hD0(P) + O(1)
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for all P ∈ R. By additivity of heights and proximity functions, we obtain

mD+D0,S(P) + hK (P) = mD,S(P) + mD0,S(P) + hK (P) + O(1)

= mD,S(P) + hK+D0(P) + O(1)

for all P ∈ R. Thus, Conjecture 1.13 follows from Conjecture 1.12 applied
to the normal crossings divisor D + D0 on X and restricted to the set of
points R. ��

The essential tool in all of our proofs is Schmidt’s Subspace Theorem [36].
We state a general formulation of the theorem, including subsequent improve-
ments by Schlickewei [35] to allow for arbitrary number fields and finite sets
of places.

Theorem 2.4 (Subspace Theorem) Let S be a finite set of places of a number
field k. For each v ∈ S, let H0,v, . . . , Hn,v ⊂ P

n be hyperplanes over k in
general position. Let ε > 0. Then there exists a finite union of hyperplanes
Z ⊂ P

n such that the inequality

∑

v∈S

n∑

i=0

λHi,v,v(P) < (n + 1 + ε)h(P) + O(1)

holds for all points P ∈ P
n(k)\Z.

Remark 2.5 In [43], Vojta proved that the exceptional set Z may be chosen to
depend only on ∪v∈S ∪0≤i≤n Hi,v , and not on ε, k, or S. Moreover, it follows
from [43] that such a set Z is effectively computable (however, note that the
implicit constant in the O(1) in the inequality is ineffective, as already happens
in Roth’s theorem). In contrast to this, it is known [25] that the exceptional
set Z in Vojta’s conjecture (Conjecture 1.12) must, in general, be allowed to
depend on ε.

It will also be convenient to use the Subspace Theorem in the equivalent
affine form:

Theorem 2.6 Let S be a finite set of places of a number field k. For each v ∈ S,
let L1,v, . . . , LN ,v be linearly independent linear forms over k in N ≥ 2
variables. Let ε > 0. Then there exists a finite union of proper subspaces
Z ⊂ kN such that the inequality

∑

v∈S

N∑

i=1

log
|P|v

|Li,v(P)| < (N + ε)h(P) + O(1)

holds for all points P ∈ kN\Z.
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Here, if P = (x1, . . . , xN ) ∈ kN , N ≥ 2, then h(P) denotes the height of
the associated projective point [x1 : · · · : xN ] ∈ P

N−1(k).

3 Proof of Theorem 1.1

Given a finitely generated subgroup � ⊂ G
n
m(Q) and polynomials f, g ∈

Q[x1, . . . , xn], there exists a number field k and a finite set of places S of
k (containing the archimedean places) such that � ⊂ G

n
m(Ok,S) and f, g ∈

k[x1, . . . , xn]. Thus, Theorem 1.1 is equivalent to the following statement.

Theorem 3.1 Let k be a number field and S a finite set of places of k containing
the archimedean places. Let f, g ∈ k[x1, . . . , xn] be coprime polynomials that
do not both vanish at the origin. For all ε > 0, there exists a finite union Z of
translates of proper algebraic subgroups of G

n
m such that

−
∑

v∈Mk

log− max{| f (u1, . . . , un)|v, |g(u1, . . . , un)|v}

< ε max{h(u1), h(u2), . . . , h(un)}

for all (u1, . . . , un) ∈ G
n
m(Ok,S)\Z.

We prove the theorem by breaking up the sum on the left-hand side in to a
sum over places v /∈ S and a sum over places v ∈ S. The inequality for the
latter sum (Theorem 3.3) follows from work of Evertse [15], but we give a
self-contained proof here for completeness (see also [8, Prop. 1]).

We first consider the sum over places not in S, in which case one may drop
the vanishing hypothesis on f and g. As mentioned in the introduction, in the
case n = 2 this result is due to Corvaja and Zannier [8].

Theorem 3.2 Let k be a number field and let S be a finite set of places of
k containing the archimedean places. Let f, g ∈ k[x1, . . . , xn] be coprime
polynomials. For all ε > 0, there exists a finite union Z of translates of proper
algebraic subgroups of G

n
m such that

−
∑

v∈Mk\S
log− max{| f (u1, . . . , un)|v, |g(u1, . . . , un)|v}

< ε max{h(u1), h(u2), . . . , h(un)}

for all (u1, . . . , un) ∈ G
n
m(Ok,S)\Z.
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Proof Let m be a positive integer. For a subset T ⊂ k[x1, . . . , xn], we let
Tm = {p ∈ T | deg p ≤ m},

where deg p denotes the (total) degree of the polynomial p.
Consider the ideal ( f, g) ⊂ k[x1, . . . , xn]. If ( f, g) = (1) is the entire poly-

nomial ring, then it is elementary that the left-hand side of the inequality of the
theorem is bounded by a constant, and the result holds (with Z a finite set). Sup-
pose now that ( f, g) is a proper ideal. Let u = (u1, . . . , un) ∈ G

n
m(Ok,S). For

v ∈ S, we construct a basis Bv for Vm = k[x1, . . . , xn]m/( f, g)m as follows.
Choose a monomial xi1 ∈ k[x1, . . . , xn]m so that |ui1 |v is minimal subject to
the condition xi1 /∈ ( f, g). Suppose now that xi1, . . . , xi j have been constructed
and are linearly independent modulo ( f, g)m , but don’t span k[x1, . . . , xn]m
modulo ( f, g)m . Then we let xi j+1 ∈ k[x1, . . . , xn]m be a monomial such
that |ui j+1 |v is minimal subject to the condition that xi1, . . . , xi j+1 are lin-
early independent modulo ( f, g)m . In this way, we construct a basis of Vm
with monomial representatives xi1, . . . , xiN ′ , where N ′ = N ′

m = dim Vm . Let
Iv = {i1, . . . , iN ′ }. We also choose a basis φ1, . . . , φN of the k-vector space
( f, g)m , where N = Nm = dim( f, g)m . Now for each i, |i| ≤ m, we have that

xi +
N ′∑

j=1

ci, jxi j ∈ ( f, g)m

for some choice of coefficients ci, j ∈ k. Then for each such i there is a linear
form Lv

i over k such that

Lv
i (φ1, . . . , φN ) = xi +

N ′∑

j=1

ci, jxi j .

Note that {Lv
i (φ1, . . . , φN ) | |i| ≤ m, i /∈ Iv} is a basis for ( f, g)m , and

{Lv
i | |i| ≤ m, i /∈ Iv} is a set of N linearly independent linear forms in N

variables. Let

P = φ(u) := (φ1(u), . . . , φN (u)) ∈ kN .

From the triangle inequality and the definition of xi1, . . . , xiN ′ , for any i with
|i| ≤ m, i /∈ Iv , we have the key inequality

log |Lv
i (P)|v ≤ log |ui|v + Cv,

where the constant Cv depends only on v ∈ S and the set {i1, . . . , iN ′ } (and
not on u).
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We will apply the Subspace Theorem with the choice of linear forms Lv
i ,|i| ≤ m, i /∈ Iv , for each v ∈ S. We want to estimate the sum

∑

v∈S

∑

|i|≤m
i/∈Iv

log
|P|v

|Lv
i (P)|v .

Towards this end, we estimate the sums

−
∑

v∈S

∑

|i|≤m
i/∈Iv

log |Lv
i (P)|v

and

∑

v∈S

∑

|i|≤m
i/∈Iv

log |P|v

separately.
We have

−
∑

v∈S

∑

|i|≤m
i/∈Iv

log |Lv
i (P)|v ≥ −

∑

v∈S

∑

|i|≤m
i/∈Iv

log |ui|v − CN ,

where C = ∑
v∈S Cv . Since ui is an S-unit, by the product formula,

∑

v∈S
log |ui|v =

∑

v∈Mk

log |ui|v = 0.

It follows that

−
∑

v∈S

∑

|i|≤m
i/∈Iv

log |ui|v = −
∑

v∈S

∑

|i|≤m

log |ui|v +
∑

v∈S

∑

i∈Iv
log |ui|v

=
∑

v∈S

∑

i∈Iv
log |ui|v.

Using the easy inequality

−
∑

v∈S

∑

i∈Iv
log |ui|v ≤ N ′m(h(u1) + · · · + h(un)) ≤ N ′mnmax

i
h(ui ),

123



516 A. Levin

we find that

−
∑

v∈S

∑

|i|≤m
i/∈Iv

log |Lv
i (P)|v ≥ −N ′mnmax

i
h(ui ) − CN .

On the other hand,

∑

v∈S

∑

|i|≤m
i/∈Iv

log |P|v = N
∑

v∈S
log |P|v = N

⎛

⎝h(P) −
∑

v∈Mk\S
log |P|v

⎞

⎠ .

Since φi ∈ ( f, g), we can write φi = f pi + gqi for some pi , qi ∈
k[x1, . . . , xn]. Then for v ∈ Mk\S,

log |φi (u)|v ≤ log− max{| f (u)|v, |g(u)|v} + C ′
i,v,

where C ′
i,v depends only on v and the coefficients of f, g, pi , qi , and C ′

i,v = 0
for all but finitely many v ∈ Mk\S.

Then

∑

v∈S

∑

|i|≤m
i/∈Iv

log |P|v ≥ N

⎛

⎝h(P) −
∑

v∈Mk\S
log− max{| f (u)|v, |g(u)|v} + C ′

⎞

⎠

for some constant C ′ depending only on f, g, and the basis φ1, . . . , φN .
We will also make use of the estimate

h(P) ≤ mnmax
i

h(ui ) + O(1).

Schmidt’s Subspace Theorem (with, say, ε = 1) implies that there exists a
finite union Z of proper subspaces of kN such that

∑

v∈S

∑

|i|≤m
i/∈Iv

log
|Q|v

|Lv
i (Q)|v ≤ (N + 1)h(Q)

for all Q ∈ kN\Z .
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Using the above estimates, if P = φ(u) /∈ Z , we find that

N

⎛

⎝h(P) −
∑

v∈Mk\S
log− max{| f (u)|v, |g(u)|v} − C ′′

⎞

⎠

− N ′mnmax
i

h(ui ) ≤ (N + 1)h(P)

or

N

⎛

⎝−
∑

v∈Mk\S
log− max{| f (u)|v, |g(u)|v} − C ′′′

⎞

⎠ ≤ (N ′ + 1)mnmax
i

h(ui )

(7)

for some constants C ′′ and C ′′′.
Since f and g are coprime, the ideal ( f, g) defines a closed subset of A

n of
codimension at least 2. As is well-known from the theory of Hilbert functions
and Hilbert polynomials, this easily implies that N ′ = O(mn−2) and N =
mn

n! + O(mn−1). Let ε > 0. Then choosing m large enough, depending on ε,
(7) implies that

−
∑

v∈Mk\S
log− max{| f (u)|v, |g(u)|v} ≤ ε max

i
h(ui ) + O(1), (8)

as long as u does not lie in the proper closed subset of G
n
m coming from the

exceptional set in the application of the Subspace Theorem.
Finally, we note that the choice of linear forms in the application of

Schmidt’s Subspace Theorem depends not on u, but on the choice of the
monomial bases Bv , v ∈ S. Since for fixed m there are only finitely many
monomials of degree at most m, and hence only finitely man choices for these
bases, we see that for fixed m the given argument leads to only finitely many
applications of Schmidt’s Subspace Theorem (over all choices of u). Therefore
the inequality (8) is valid for all u = (u1, . . . , un) ∈ G

n
m(Ok,S), outside of

some proper Zariski closed subset Z of G
n
m . We may also eliminate the O(1)

term in (8) by enlarging Z . By Laurent’s theorem, after replacing Z by the
Zariski closure ofG

n
m(Ok,S)∩Z inG

n
m , wemay assume that Z is a finite union

of translates of proper algebraic subgroups of G
n
m . ��

We now consider the sum over places in S. In fact, in this setting, we prove
a stronger statement for a single polynomial that doesn’t vanish at the origin.
As mentioned, this inequality follows from work of Evertse [15]. We give a
proof that is a slight variation of the proof for n = 2 in [8, Prop. 1].
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Theorem 3.3 Let k be a number field and S a finite set of places of k containing
the archimedean places. Let f ∈ k[x1, . . . , xn] be a polynomial that doesn’t
vanish at the origin (0, . . . , 0). For all ε > 0, there exists a finite union Z of
translates of proper algebraic subgroups of G

n
m such that

−
∑

v∈S
log− | f (u1, . . . , un)|v < ε max{h(u1), . . . , h(un)}

for all (u1, . . . , un) ∈ G
n
m(Ok,S)\Z.

Proof By Laurent’s theorem, the set of points {(u1, . . . , un) ∈ G
n
m(Ok,S) |

f (u1, . . . , un) = 0} lies in a finite union of translates of proper algebraic
subgroups of G

n
m . Thus, we may always choose Z to contain all such points

and we will (implicitly) ignore such points in the remainder of the proof.
We first prove a Diophantine approximation statement depending on the

choice of a subset S′ ⊂ S. Having chosen S′ ⊂ S, let R consist of the set of
points (u1, . . . , un) ∈ G

n
m(Ok,S) such that

S′ = {v ∈ S | log | f (u1, . . . , un)|v < 0}.
Then for (u1, . . . , un) ∈ R,

log− | f (u1, . . . , un)|v =
{
log | f (u1, . . . , un)|v if v ∈ S′,
0 if v ∈ S\S′.

Let d = deg f and let φ : P
n → P

N , φ = (φ0, . . . , φN ), N = (n+d
n

) − 1,
be the d-uple embedding of P

n given by the set of monomials of degree d in
k[x0, . . . , xn] (in some order). Let F = xd0 f (x1/x0, . . . , xn/x0) be the homog-
enization of f in k[x0, . . . , xn]. Let Vd be the vector space of homogeneous
polynomials of degree d, and let Mond consist of the set of all monomials in
k[x0, . . . , xn] of degree d.

If v ∈ S′, we let

Bv = B = {F(x0, . . . , xn)} ∪ Mond \{xd0 },

so that B is obtained by replacing xd0 in Mond by F . Since f doesn’t vanish at
the origin, xd0 appears with a nonzero coefficient in F , and thus it’s clear that
B is a basis for Vd .
If v ∈ S\S′, thenwe let Bv = Mond . Let ε > 0. Then applying the Subspace

Theorem on P
N with appropriate linear forms, we find that

∑

v∈S

∑

Q∈Bv

log
|φ(P)|v
|Q(P)|v < (N + 1 + ε)h(φ(P)) (9)
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for all P ∈ P
n(k)\Z , where Z = φ−1(Z ′) and Z ′ is a finite union of hyper-

planes in P
N . From the definition of Bv , we can rewrite the left-hand side of

(9) as

∑

v∈S

∑

Q∈Mond

log
|φ(P)|v
|Q(P)|v −

∑

v∈S′
log

|F(P)|v
|xd0 (P)|v

< (N + 1 + ε)h(φ(P)).

Suppose now that (u1, . . . , un) ∈ R and let P = [1 : u1 : · · · : un] ∈ P
n(k).

It follows immediately from the definitions that

−
∑

v∈S′
log

|F(P)|v
|xd0 (P)|v

= −
∑

v∈S′
log | f (u1, . . . , un)|v

= −
∑

v∈S
log− | f (u1, . . . , un)|v.

Since the ui are S-units,

∑

v∈S

∑

Q∈Mond

log
|φ(P)|v
|Q(P)|v =

∑

v∈Mk

∑

Q∈Mond

log
|φ(P)|v
|Q(P)|v

=
∑

v∈Mk

∑

Q∈Mond

log |φ(P)|v

= (N + 1)
∑

v∈Mk

log |φ(P)|v

= (N + 1)h(φ(P)),

where the second equality follows from the product formula. We also have

h(φ(P)) = dh(P) ≤ dnmax
i

h(ui ).

Then combining everything, (9) implies that

−
∑

v∈S
log− | f (u1, . . . , un)|v < εdnmax

i
h(ui )

for all (u1, . . . , un) ∈ R outside of some proper Zariski closed subset Z of
G

n
m . In fact, since there are only finitely many choices of the subset S′ ⊂ S

(and so G
n
m(Ok,S) is partitioned into finitely many sets R as above), we find

that the inequality holds for all P ∈ G
n
m(Ok,S)\Z , for some (possibly larger)

proper closed subset Z ⊂ G
n
m . Finally, by Laurent’s theorem, after replacing

Z by the Zariski closure of G
n
m(Ok,S) ∩ Z in G

n
m , we may assume that Z is a

finite union of translates of proper algebraic subgroups of G
n
m . ��
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Theorem 3.1 now follows immediately from combining Theorems 3.2
and 3.3.

4 Vojta’s conjecture for blowups of G
n
m

The goal of this section is to prove (Theorem 1.14) a general form of Vojta’s
Conjecture for blowups of G

n
m (in the sense of Conjecture 1.13), with the

compactification coming from an embedding ofGn
m in a nonsingular projective

toric variety. To illustrate elements of the general proof, in the next section
we consider the simple case when G

n
m is embedded in projective space P

n .
By an easy direct explicit computation, we transform Theorems 3.2 and 3.3
into related Diophantine approximation statements on projective space. In the
subsequent section, we extend these results to nonsingular projective toric
varieties and derive Theorem 1.14.

4.1 Two inequalities on projective space

We state some easy consequences of Theorems 3.2 and 3.3 in terms of Dio-
phantine approximation on projective space.

The first result we derive, Theorem4.1, is not new (it traces back to Evertse’s
paper [15]), but the derivation given here will be generalized to projective toric
varieties in the next section. Let k be a number field and let D be an effective
divisor on P

n defined by a homogeneous polynomial F ∈ k[x0, . . . , xn] of
degree d > 0. Recall that a local height associated to D and v ∈ Mk is given
by

λD,v(P) = log
|P|dv

|F(P)|v = log
maxi |xi |dv

|F(x0, . . . , xn)|v ,

for P = [x0 : · · · : xn] ∈ P
n(k)\ Supp D.

Consider the n + 1 isomorphisms

ψi : P
n\ ∪n

j=0 Hj → G
n
m,

[x0 : · · · : xn] 
→
(
x0
xi

,
x1
xi

, . . . ,
xi−1

xi
,
xi+1

xi
, . . . ,

xn
xi

)
,

for i = 0, . . . , n, where H0, . . . , Hn are the coordinate hyperplanes in P
n . Let

fi ∈ k[x1, . . . , xn], i = 0, . . . , n, be the i th dehomogenized polynomial such
that

xdi fi

(
x0
xi

,
x1
xi

, . . . ,
xi−1

xi
,
xi+1

xi
, . . . ,

xn
xi

)
= F(x0, . . . , xn).
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Let P = [x0 : · · · : xn] ∈ P
n(k)\ ∪n

j=0 Hj and let v ∈ Mk . Let i be such
that

|xi |v = max
j

|x j |v.

Then using the representation P = [x0/xi : · · · : xn/xi ], we have |P|v = 1
and

λD,v(P) = log
|P|dv

|F(P)|v = − log | fi (ψi (P))|v ≤ − log− | fi (ψi (P))|v.

Therefore,

λD,v(P) ≤
n∑

i=0

− log− | fi (ψi (P))|v + O(1). (10)

Note that all of the n+1 polynomials fi , i = 0, . . . , n+1, are nonvanishing
at the origin if and only if the support of the divisor D doesn’t contain any of the
n+1 points P0 = [1 : 0 : · · · : 0], . . . , Pn = [0 : 0 : · · · : 0 : 1]. Equivalently,
this occurs if and only if D is in general position with the components of the
boundary ofG

n
m in P

n (i.e., the coordinate hyperplanes H0, . . . , Hn). Since the
heights of the coordinates of ψi (P) are trivially bounded by h(P), Theorem
3.3 and (10) immediately imply the following (known) result.

Theorem 4.1 Let D be an effective divisor on P
n, defined over a number field

k, such that

P0, . . . , Pn /∈ Supp D.

Let S be a finite set of places of k containing the archimedean places. For all
ε > 0, there exists a finite union Z of translates of proper algebraic subgroups
of G

n
m such that

mD,S(P) ≤ εh(P) + O(1)

for all points P ∈ G
n
m(Ok,S)\Z ⊂ P

n(k).

Remark 4.2 Let Y be any closed subscheme of P
n defined by an ideal I ⊂

k[x0, . . . , xn]. If D is any divisor defined by a nonconstant polynomial f ∈ I ,
then λY,v(P) ≤ λD,v(P) + O(1) for all P ∈ P

n(k)\ Supp D. Thus, Theorem
4.1 trivially extends to closed subschemes Y of P

n with P0, . . . , Pn /∈ Y (with
mD,S(P) replaced by mY,S(P) in the inequality). By a similar argument, to
prove upper bounds for sums of local heights associated to closed subschemes
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Y of codimension at least 2 in P
n , it suffices to consider the case where Y

has exactly codimension 2, defined by the vanishing of two homogeneous
polynomials.

We now reformulate Theorem 3.2 in terms of heights on P
n . Let F,G ∈

k[x0, . . . , xn] be coprime homogeneous polynomials of degrees d and e,
respectively. Let

f (x1, . . . , xn) = F(1, x1, . . . , xn)

g(x1, . . . , xn) = G(1, x1, . . . , xn)

be dehomogenizations of F and G, respectively.
Let Y be the closed subscheme of P

n defined by F = G = 0. Then from
the previous local height formulas, for v ∈ Mk , a local height associated to Y
can be taken to be

λY,v(P) = min

{
log

|P|dv
|F(P)|v , log

|P|ev
|G(P)|v

}
,

where P ∈ P
n(k)\Y . It is immediate from the local height formula that if

f, g ∈ Ok,S[x1, . . . , xn] and P ∈ G
n
m(Ok,S) ⊂ P

n(k), then

λY,v(P) = − logmax{| f (P)|v, |g(P)|v} = − log− max{| f (P)|v, |g(P)|v}
for all v ∈ Mk\S. In fact, this holds up to Ov(1) (and identically for all but
finitely many v) even without the S-integrality assumption on the coefficients
of f and g, since after multiplying by a nonzero constant, f and g will have
S-integral coefficients.
Then translating Theorem 3.2 into the language of heights yields the fol-

lowing theorem.

Theorem 4.3 Let Y be a closed subscheme of P
n of codimension at least 2,

defined over a number field k. Let S be a finite set of places of k containing the
archimedean places. For all ε > 0, there exists a finite union Z of translates
of proper algebraic subgroups of G

n
m such that

NY,S(P) ≤ εh(P) + O(1)

for all P ∈ G
n
m(Ok,S)\Z ⊂ P

n(k).

Combining Theorems 4.1 and 4.3 (and Remark 4.2) gives Theorem 1.16
from the Introduction. These results are generalized to nonsingular projec-
tive toric varieties in the next section, where they are used in deriving the
consequences towards Vojta’s conjecture.
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4.2 Toric varieties and their blowups

We first generalize Theorem 4.1 to an arbitrary nonsingular projective toric
variety X . The proof of Theorem 4.1 proceeded via (10), which (implicitly)
used the natural affine covering of P

n by the n + 1 affine spaces A
n = P

n\Hi ,
i = 0, . . . , n. The general proof is similar and uses a natural covering of X
by copies of A

n coming from the theory of toric varieties. We only use a few
basic facts about toric varieties available in any standard reference (e.g., [11]).

Theorem 4.4 Let X be a nonsingular projective toric variety of dimension n
defined over a number field k. Let A be a big divisor on X. Let D be an effective
divisor on X, defined over k, that is in general position with the boundary of
G

n
m in X. Let S be a finite set of places of k and let ε > 0. Then there exists a

finite union Z of translates of proper algebraic subgroups of G
n
m such that

mD,S(P) ≤ εhA(P) + O(1)

for all points P ∈ G
n
m(Ok,S)\Z ⊂ X (k).

Note that in the case X = P
n , the general position condition in the theorem

is precisely the condition P0, . . . , Pn /∈ Supp D of Theorem 4.1.

Proof It suffices to prove the inequality of the theoremwithmD,S(P) replaced
by λD,v(P) for a single place v ∈ S.

Let� be the fan corresponding to the toric variety X . Then an affine covering
of X is given by the affine varieties Xσ , where σ ranges over themaximal cones
σ ∈ �. Let σ ∈ � be a maximal cone. Since X is smooth and complete, the
fan � is smooth and complete [11, Th. 3.1.19], and it follows that σ is an
n-dimensional smooth cone. Thus, there is an isomorphism iσ : Xσ → A

n

[11, Ex. 1.2.21] . This isomorphism restricts to an automorphism ofG
n
m , where

we identify G
n
m ⊂ Xσ naturally as a subset of X and G

n
m ⊂ A

n in the standard
way, so that A

n\G
n
m consists of the affine coordinate hyperplanes defined by

xi = 0, i = 1, . . . , n. In the latter case, it will be convenient to use the height
h(u1, . . . , un) = h(u1) + · · · + h(un) for (u1, . . . , un) ∈ G

n
m(k). Since iσ

yields an automorphism of G
n
m , it follows from Lemma 2.2 that for some

constant Cσ,A and some closed subset Zσ,A ⊂ G
n
m , depending on σ and A,

h(iσ (P)) ≤ Cσ,AhA(P)

for all P ∈ G
n
m(k)\Zσ,A ⊂ X (k).

The pullback (i−1
σ )∗(D|Xσ ) of D to A

n is defined by some nonzero poly-
nomial f ∈ k[x1, . . . , xn]. Since D is in general position with the boundary
of G

n
m in X , it follows that f does not vanish at the origin. From properties of
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local Weil functions, for P ∈ Xσ (kv),

λD,v(P) = − log | f (iσ (P))|v + αv(iσ (P))

for some continuous function αv(P) on A
n(kv). Let U ⊂ A

n(kv) be an open
subset in the v-topology with compact closure. It follows that

λD,v(P) = − log | f (iσ (P))|v + O(1)

for all P ∈ i−1
σ (U ). By Theorem 3.3, there exists a finite union Zσ,A,U

of translates of algebraic subgroups such that for all P ∈ i−1
σ (U ) ∩

(Gn
m(Ok,S)\Zσ,A,U ),

λD,v(P) <
ε

Cσ,A
h(iσ (P)) + O(1) < εhA(P) + O(1).

Since X is projective, X (kv) is compact (in the v-topology) and X (kv) is
covered by finitely many such open sets i−1

σ (U ) (for varying σ ). Therefore,
we find that there exists a finite union of translates of algebraic subgroups Z
such that for all P ∈ G

n
m(Ok,S)\Z ,

λD,v(P) < εhA(P) + O(1).

��
Next, we extend Theorem 4.3 to nonsingular projective toric varieties.

Theorem 4.5 Let X be a nonsingular projective toric variety of dimension n,
and let Y be a closed subscheme of X of codimension at least 2, both defined
over a number field k. Let A be a big divisor on X. Let S be a finite set of
places of k containing the archimedean places. For all ε > 0, there exists a
finite union Z of translates of proper algebraic subgroups of G

n
m such that

NY,S(P) ≤ εhA(P) + O(1)

for all P ∈ G
n
m(Ok,S)\Z ⊂ X (k).

Proof Let IY be the ideal sheaf of Y . We identify the coordinate ring k[Gn
m]

with the ring k[x1, 1/x1, . . . , xn, 1/xn]. Since Y has codimension at least 2
in X , we can find f, g ∈ �(Gn

m, IY |Gn
m
) such that f, g ∈ k[x1, . . . , xn] are

coprime polynomials. The set G
n
m(Ok,S) × (Mk\S) is trivially Mk-bounded

inside G
n
m , and then it is immediate from properties of Weil functions [37,
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Prop. 2.4] that for P ∈ G
n
m(Ok,S) and v ∈ Mk\S,

λY,v(P) ≤ − logmax{| f (P)|v, |g(P)|v} + Ov(1),

≤ − log− max{| f (P)|v, |g(P)|v} + Ov(1),

where Ov(1) may be taken to be 0 for all but finitely many v. Then by
Theorem 3.2 (and Lemma 2.2), for all ε > 0 there exists a finite union Z
of translates of proper algebraic subgroups of G

n
m such that

NY,S(P) ≤ −
∑

v∈Mk\S
log− max{| f (P)|v, |g(P)|v} + O(1)

≤ εhA(P) + O(1)

for all P ∈ G
n
m(Ok,S)\Z ⊂ X (k). ��

Finally, we combine the previous two results with some geometry to deduce
Theorem 1.14.

Proof of Theorem 1.14 From [12, p. 29],

KX̃ ∼ π∗KX + R,

for some effective divisor R supported on Exc(π). Since a canonical divisor
KX can naturally be taken [11, Th. 8.2.3] to be the negative of the boundary
divisor X\G

n
m and π is a birational morphism, D0 ∼ −π∗KX − E ′ for some

effective divisor E ′ whose support is contained in Exc(π). Thus,

KX̃ + D0 ∼ R − E ′ = E ′′,

where E ′′ is a divisor whose support is contained in Exc(π).
Then up to O(1),

mD,S(P) + hKX̃+D0(P) = mD,S(P) + hE ′′(P) = mD+E ′′,S(P) + NE ′′,S(P)

for all P ∈ X̃(k)\ Supp(D + E ′′). Since π(Exc(π)) ∪ Suppπ∗D is in general
position with X\G

n
m , we can find an effective divisor D

′ on X , again in general
position with X\G

n
m , such that D + E ′′ ≤ π∗D′ (i.e., π∗D′ − (D + E ′′) is

effective). Then for P ∈ X̃(k)\Suppπ∗D′,

mD+E ′′,S(P) ≤ mπ∗D′,S(P) + O(1) = mD′,S(π(P)) + O(1).

Similarly, since E ′′ is supported on Exc(π) and π(Exc(π)) has codimen-
sion at least 2 in X [12, p. 28], we can find a closed subscheme Y of X of
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codimension at least 2 such that

NE ′′,S(P) ≤ Nπ∗Y,S(P) + O(1) = NY,S(π(P)) + O(1).

Let ε > 0. Then it follows from combining the above with Lemma 2.2,
Theorems 4.4, and 4.5 that there exists a proper Zariski closed subset Z of X̃
such that the inequality

mD,S(P) + hKX̃+D0(P) ≤ εhA(P) + O(1)

holds for all points P ∈ π−1(Gn
m(Ok,S))\Z . ��

5 Greatest common divisors and simple linear recurrence sequences

In this section, we give an application of our results to greatest common divi-
sors of terms from simple linear recurrence sequences. We begin by noting
the following lemma, which is a straightforward consequence of elementary
estimates, and is equivalent to part (a) of Theorem 1.11. This yields a trivial
situation where terms from two simple linear recurrence sequences may have
a “large” greatest common divisor.

Lemma 5.1 Let

F(n) = c1α
n
1 + c2α

n
2 + · · · + csα

n
s ,

G(n) = d1β
n
1 + d2β

n
2 + · · · + dtβ

n
t ,

define two algebraic simple linear recurrence sequences. Let |·| be an absolute
value on Q such that |αi | < 1 and |β j | < 1 for all i and j . Then there exists
δ > 0 and a positive integer N such that

− log− max{|F(m)|, |G(n)|} ≥ δmin{m, n}
for all m, n ≥ N.

The next result gives a counterpart to Lemma 5.1.

Lemma 5.2 Let

F(n) = c0α
n
0 + c1α

n
1 + · · · + csα

n
s

define a nondegenerate algebraic simple linear recurrence sequence. Let | · |
be an absolute value on Q such that |αi | ≥ 1 for some i . Let ε > 0. Then

− log |F(n)| < εn
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for all but finitely many n ∈ N.

Recall that a linear recurrence is called nondegenerate if the ratios of distinct
roots αi

α j
is not a root of unity for every i 	= j .

Proof Let k be a number field and S a finite set of places of k such that
ci , αi ∈ O∗

k,S , i = 0, . . . , s, and | · | restricted to k is equivalent to | · |v for
some v ∈ S (note that if | · | is trivial, the lemma is obvious). It suffices to
prove that

− log |F(n)|v < εn

for all but finitely many n ∈ N.
Let Hi be the coordinate hyperplane in P

s defined by xi = 0, i = 0, . . . , s.
Let Hs+1 be the hyperplane in P

s defined by c0x0 + c1x1 + · · · + csxs = 0.
Note that the s + 2 hyperplanes H0, . . . , Hs+1 are in general position. Let

Pn = [αn
0 : · · · : αn

s ] ∈ P
s(k), n ∈ N.

Then the Schmidt Subspace Theorem gives that for some finite union of hyper-
planes Z in P

s ,

s+1∑

i=0

mHi ,S(Pn) < (s + 1 + ε)h(Pn) (11)

for all points Pn ∈ P
s(k)\Z . In fact, since F is nondegenerate, by the Skolem–

Mahler–Lech theorem [14, Theorem 2.1], only finitely many points Pn can
belong to any given hyperplane in P

s , and thus the inequality holds for all but
finitely many n. Since αi ∈ O∗

k,S for all i , mHi ,S(Pn) = h(Pn), i = 0, . . . , s.
Note also that

h(Pn) = nh(P1)

for all n ∈ N. Substituting into (11), we find that for all ε > 0,

mHs+1,S(Pn) < εn

for all but finitely many n ∈ N. Now

mHs+1,S(Pn) ≥ λHs+1,v(Pn) + O(1)
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and

λHs+1,v(Pn) = log
maxi |αn

i |v
|c0αn

0 + c1αn
1 + · · · + csαn

s |v
≥ − log |F(n)|v

for all n, since by our hypotheses, maxi |αn
i |v ≥ 1. Thus, for all ε > 0,

− log |F(n)|v < εn

for all but finitely many n ∈ N. ��
We now prove the main result of this section, Theorem 1.11(b). For conve-

nience, we restate the result.

Theorem 5.3 Let

F(n) = c1α
n
1 + c2α

n
2 + · · · + csα

n
s ,

G(n) = d1β
n
1 + d2β

n
2 + · · · + dtβ

n
t ,

define two algebraic simple linear recurrence sequences. Let k be a number
field such that ci , αi , d j , β j ∈ k for i = 1, . . . , s, j = 1, . . . , t . Let

S0 = {v ∈ Mk : max{|α1|v, . . . , |αs |v, |β1|v, . . . , |βt |v} < 1}.
Let ε > 0. If the inequality

∑

v∈Mk\S0
− log− max{|F(m)|v, |G(n)|v} > ε max{m, n} (12)

has infinitely many solutions (m, n), then all but finitely many of them satisfy
one of finitely many linear relations

(m, n) = (ai t + bi , ci t + di ), t ∈ Z, i = 1, . . . , r,

where ai , bi , ci , di ∈ Z, ai ci 	= 0, and the linear recurrences F(ai •+bi ) and
G(ci • +di ) have a nontrivial common factor for i = 1, . . . , r .

In particular, if S0 = ∅, then the same statement holds for the inequality
log gcd(F(m),G(n)) > ε max{m, n}.

Proof We begin with a couple of convenient reductions. First, by considering
finitely many arithmetic progressions in m and n, we may reduce to the case
where the combined roots of F and G generate a torsion-free group � of rank
r (in particular, both F and G are nondegenerate). Let S ⊃ S0 be a finite set of
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places of k, containing the archimedean places, such that ci , αi , d j , β j ∈ O∗
k,S

for all i and j . By Lemma 5.2,

∑

v∈Mk\S0
− log− max{|F(m)|v, |G(n)|v}

≤
∑

v∈Mk\S
− log− max{|F(m)|v, |G(n)|v} + ε

2
max{m, n}

for all but finitely many m, n ∈ N. Thus, it suffices to prove the statement of
the theorem with the inequality (12) replaced by

∑

v∈Mk\S
− log− max{|F(m)|v, |G(n)|v} > ε max{m, n}. (13)

Let u1, . . . , ur be generators for �. Let f, g ∈ k[x1, . . . , xr , x−1
1 , . . . , x−1

r ]
be the Laurent polynomials corresponding to F and G. We may write

f (x1, . . . , xr ) = xi11 · · · xirr f0(x1, . . . , xr ),

g(x1, . . . , xr ) = x j1
1 · · · x jr

r g0(x1, . . . , xr ),

where i1, . . . , ir , j1, . . . , jr ∈ Z and f0, g0 ∈ k[x1, . . . , xr ] with xi � f0g0,
i = 1, . . . , r . Let F0 and G0 be the corresponding simple linear recurrence
sequences. Since u1, . . . , ur ∈ O∗

k,S , it’s trivial that

∑

v∈Mk\S
− log− max{|F(m)|v, |G(n)|v}

=
∑

v∈Mk\S
− log− max{|F0(m)|v, |G0(n)|v}.

Then it suffices to prove the statement of the theorem with (12) replaced
by (13), and with F and G replaced by F0 and G0, respectively. Note that
since x1, . . . , xr are units in k[x1, . . . , xr , x−1

1 , . . . , x−1
r ], replacing F and

G by F0 and G0 has no effect on coprimality statements. Thus, we now
assume that F and G correspond to polynomials f and g, respectively, in
k[x1, . . . , xr , x−1

1 , . . . , x−1
r ], and that xi � f g, i = 1, . . . , r , viewed as poly-

nomials in k[x1, . . . , xr ].
We further reduce the problem to consideration of the casem = n as follows.

Let f̃ , g̃ ∈ k[x1, . . . , x2r ] be the polynomials

f̃ (x1, . . . , x2r ) = f (x1, . . . , xr ),

g̃(x1, . . . , x2r ) = g(xr+1, . . . , x2r ).
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Then f̃ and g̃ are coprime in k[x1, . . . , x2r ] (the polynomials involve different
sets of variables). Let

Pm,n = (um1 , . . . , umr , un1, . . . , u
n
r ) ∈ G

2r
m (Ok,S), m, n ∈ N,

R = {Pm,n : m, n ∈ N}.

ByTheorem3.2, there exists a finite union Z of translates of proper algebraic
subgroups of G

2r
m such that

∑

v∈Mk\S
− log− max{| f̃ (Pm,n)|v, |g̃(Pm,n)|v}

< ε max{h(um1 ), . . . , h(umr ), h(un1), . . . , h(unr )}

for all points Pm,n ∈ R\Z . Now we note that

f̃ (Pm,n) = F(m),

g̃(Pm,n) = G(n),

and

max{h(um1 ), . . . , h(umr ), h(un1), . . . , h(unr )}
= max{h(u1), . . . , h(ur )}max{m, n}.

It follows that for all ε > 0, there exists a finite union Z of translates of
proper algebraic subgroups of G

2r
m such that

∑

v∈Mk\S
− log− max{|F(m)|v, |G(n)|v} < ε max{m, n}

for all pairs (m, n) such that Pm,n ∈ R\Z . Since u1, . . . , ur are multiplica-
tively independent, every translate of a proper algebraic subgroup that contains
infinitely many points Pm,n lies in a translate of a proper algebraic subgroup
of the form xai x

b
i+r = uci , where a, b, c ∈ Z, and a and b are not both 0. If

Pm,n lies on such a translate, then am + bn = c. Therefore, by restricting m
and n to finitely many arithmetic progressions (with a common variable), it
suffices to show that if F and G are coprime and ε > 0, then

∑

v∈Mk\S
− log− max{|F(n)|v, |G(n)|v} < εn
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for all but finitely many n ∈ N. Suppose now that F and G are coprime. The
argument is similar to before. Let

Pn = (un1, . . . , u
n
r ) ∈ G

r
m(Ok,S), n ∈ N.

Note that since u1, . . . , ur are multiplicatively independent, it is immediate
that any translate of a proper algebraic subgroup of G

r
m contains only finitely

many points Pn . Since the polynomials f and g corresponding to F and G,
respectively, are coprime in k[x1, . . . , xr ]by assumption andbyour reductions,
by Theorem 3.2,

∑

v∈Mk\S
− log− max{| f (Pn)|v, |g(Pn)|v} < ε max{h(un1), . . . , h(unr )}

for all but finitely many n ∈ N. Since f (Pn) = F(n), g(Pn) = G(n), and

max{h(un1), . . . , h(unr )} = nmax{h(u1), . . . , h(ur )},

we obtain the desired inequality.
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