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1 Introduction

This work grew out of Buzzard and Taylor’s attempt to generalise, to the
Hilbert case, Taylor’s programme ([53]) to prove new cases of the strong Artin
conjecture for odd continuous two-dimensional Galois representations in the
icosahedral case. We complete the programme in the Hilbert case in this paper
by a method slightly different from what they probably had in mind.

In 1999, Buzzard and Taylor [7,9] made substantial progress on the strong
Artin conjecture for odd, continuous representations p : Gal(Q/Q) —
GL;(C) of the absolute Galois group Gal (6/ Q) of Q, which culminated in [8]
and subsequently in [54]. In proving the hitherto intractable ‘icosahedral’ case
of the conjecture, Buzzard and Taylor built on the work of Katz in the 70s and
Coleman in the 90s on the theory of p-adic modular forms, to prove a modular
lifting theorem which constructs a weight one eigenform corresponding to an
odd two-dimensional p-adic representation Gal(Q/Q) — GL2(Q,) (poten-
tially) unramified at p. One of the key observations they made in [9] was the
idea that one can use Hida theory of p-adic modular forms to draw results
about weight one forms from results about weight two forms in the form of
modular lifting theorems by Wiles, Taylor—Wiles and Diamond.

In generalising Taylor’s strategy to the Hilbert case, one has to work with
sections of the determinant of the ‘universal’ cotangent sheaf over (admis-
sible subsets of) Hilbert modular varieties. Rapoport [39] probably was the
first to consider a [F : Q]-dimensional moduli space Y of abelian varieties
with real multiplication (HBAV) by a totally real field F satisfying some PEL
conditions (in particular of ‘level prime to p’); and [39] shows that Y gives
rise to a Zp-integral model for the (connected) Shimura variety correspond-
ing, in particular, to the algebraic Q-group G, defined by the pull-back of
Resp/QGL, — Resp/QG along G — Resp/G (where G denotes the mul-
tiplicative group scheme base-changed over to F). The determinant of the
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Integral models of Hilbert modular varieties 173

cotangent bundle of the universal HBAV defines an automorphic line bun-
dle o7y of parallel weight one and one may identify weight one holomorphic
modular forms with integral coefficients with global sections of .27y over the
moduli space Y. With the assumption that p divides the discriminant of F', one
is naturally led to work with the models Deligne—Pappas constructed in [13].
However, they no longer satisfy the ‘Rapoport condition’—the Lie algebras of
HBAVs A over S have to be locally free Or ®z Os-modules of rank one—and
they are not smooth over the base as aresult; in particular, one can calculate
local models to deduce that the special fibre at a prime p which ramifies in F
is singular in codimension 2 and geometry of the corresponding rigid space is
discouragingly complicated for arithmetic applications. To at least resolve the
difficulties arising from geometry, it was suggested by Buzzard and Taylor to
the author to ‘resolve’ the singularities of the Deligne—Pappas models using
ideas from Pappas—Rapoport [35].

Fix an embedding Q into 61,. In this paper, we constructs an integral model
Y{R of G of level U C G(A™) with U N G(Q,) = G(Zp) over the ring
of integers O of a finite extension L of Q, containing the image of every
embedding F — Q — 61,, and prove that it is smooth over O. We also define
a model Y(l;lfw with Iwahori level at the primes of F above p, analogous to the
construction given by Pappas [34] and Katz—Mazur [29]. Note that our models
all have explicit descriptions as moduli problems. This is critical, for example,
when one defines Hecke operators moduli-theoretically as in the work of Katz
[28] and consider overconvergent eigenforms. We accordingly build a p-adic
theory of Hilbert modular forms on the models Y, Elfw. For applications, we
shall prove a modular lifting theorem which generalises a result of [9]. More
precisely,

Theorem 1 Suppose p > 3 and let L be a finite extension of Q, with ring O
of integers and maximal ideal A. Let

p :Gal(F/F) - GL»(0)

be a continuous representation such that

p is totally odd,

p is ramified at only finitely many primes of F,

0 = (p mod L) is absolutely irreducible when restricted to Gal(f/ F(&p)),

if p = 5 and the projective image of p is isomorphic to PGL;(Fs), the

kernel of the projective representation of p does not fix F ({s),

— there exists a cuspidal automorphic representation I1 of GLy/ F which are
ordinary at every place of F above p such that pr; = p,

— the image of inertia subgroup at every finite place of F above p is finite.
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174 S. Sasaki

Then there exists a cuspidal Hilbert modular eigenform defined as a section
of the automorphic bundle </x(—cusps) over the p-adic generic fibre X =
X ]Z,l}w[l /A] of a compactification X BI}W of Yglfw of parallel weight one, whose
associated Galois representation, in the sense of Rogawski-Tunnell/Wiles, is

isomorphic to p.

Assuming that p splits completely in F and that p, when restricted to every
place of F above p, is the direct sum of two characters which are distinct mod
A, the theorem is proved in [43]. Assuming p is unramified in F and that the
restriction of p at every place of F above p is the direct sum of two characters
whose ratio is non-trivial mod A and is unramified (resp. tamely ramified), the
theorem is proved in [26] (resp. [27]). On the other hand, Pilloni [37] has a a
result stronger than [26] allowing small ramification of p in F, while Pilloni
and Stroh have a paper [38] announcing the same set of statements as the main
theorem above (although our approach is completely different from theirs).

The theorem is established in two major steps. Given a residually auto-
morphic p-adic representation p as above (note that p is not assumed
‘ p-distinguished’), we firstly prove an R = T theorem for p-ordinary repre-
sentations/forms such that p defines amap from R to O, where R parameterises
deformations of p which are reducible at every place of F above p (as in
[19]) and where T is a Hida (nearly) ordinary Hecke algebra localised at p.
Our R = T theorem holds without recourse to taking reduced quotients (we
indeed prove that, not only 7 but R is also reduced); we do this by follow-
ing Snowden’s insight in [49], non-trivially observing that the relevant local
deformation rings (including those at places above p) are Cohen—Macaulay.
The maps from 7' to O, corresponding to p and eigenvalues of p (Froby) for
all places p above p, define a family of p-adic overconvergent cuspidal Hilbert
modular eigenforms of weight one which are ‘in companion’. The construc-
tion, however, is no longer as straightforward as the case p is split with distinct
eigenvalues at places above p (as in [7,9], and [26]), and we follow Taylor’s
idea in the case F' = Q, combined with the reducedness of R, to deal with
the general case. We then follow Kassaei’s paper [26] morally to ‘glue’ these
p-adic companion forms in order to construct a classical weight one form over
X. The beautiful idea of Buzzard and Taylor [9] that, from their g-expansion
coefficients (by the strong multiplicity one theorem), one can spot a set of lin-
ear equations satisfied by the p-adic companion eigenforms is sill very much
in force in this paper.

It is absolutely crucial that we work with Y’ 5R and Y{}lfw. Suppose for brevity
that p has only one prime p in F. Let k be the residue field of p and let k| = p/.
Let A be a HBAV over an O-scheme of the type considered by Deligne—Pappas
[13], equipped with a finite flat O p-subgroup scheme C of A[p] of order |k|
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which equals its orthogonal for the Weil paring on A[p]. In proving analytic
continuation results, it is desirable to describe, for a fixed C, exactly the locus
where

deg(C) > deg(A[p]/D)

hold! for all Op-subgroup schemes D C A[p] that intersect trivially with C
in A[p].

If F = Q, itis proved in [28] (and made more precise in [7]) that one can
explicitly ‘solve equations’ in one-dimensional formal groups to compute and
compare deg(C) and deg(D) explicitly. In the general unramifed Hilbert case,
in dealing with this problem, Goren—Kassaei [20] finds a way to understand
degrees near ordinary loci in terms of local geometry of Hilbert modular vari-
eties, and instead solves ‘local equations’ of HMVs. When p ramified in F,
Al[p] is no longer a truncated Barsotti—Tate of level 1 in general (indeed, A[p]
is truncated Barsotti—Tate of level 1 if and only if A satisfies the Rapoport con-
dition), and it is not a straightforward task to compute the Dieudonne module
of A[p] in the standard sense, let alone deducing results about deg(C) and
deg(D). Indeed, the gist of work of Andreatta—Goren [1] is to keep track of
the relative Frobenius in characteristic p that is no longer ‘well-behaved’ in
the presence of ramification. We propose a solution to these issues by working
with the integral models Y{}R and Y l‘;‘fw over O. More precisely, we

— define new invariants for HBAVs parameterised by the « -fibre YPUR (where
k is the residue field of O), by which we single out HBAVs in co-dimension
< 1 that are ‘not too supersingular’ and ‘well-behaved’ for analytic contin-
uation (and analytic continuation results are established exclusively over
this locus);

— define a finer degree which reads geometry of the x-fibre Y?TW of Y Elfw
better;

— use these invariants to understand geometry of fibres of the forgetful func-
. —PR , =PR
tor/morphism from Y ;1. to Yy, ;

— over the p-adic generic fibre of Yglfw, we make appeal to its comparatively
simple set of local equations to prove a canonical subgroup theorem, and
make use of ‘mod p Dieudonne crystals’, in place of Breuil-Kisin modules
in the unramfied case, to prove analytic continuation results we need in the

general ramified case.

The condition that pj7 is (nearly) ordinary at all place of F above p is essen-
tial in our approach; more precisely, essential in constructing overconvergent

1 deg(C) is ‘normalised’ such that deg(C) = O (resp. f) if and only if C is multiplicative (resp.
étale).
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176 S. Sasaki

companion forms. On the other hand, it is quite likely that one can extend the
main theorem to p = 2 (See [44]). In return for assuming that p is indeed a
direct sum of distinct characters at every place of F' above p, Skinner—Wiles
[48] allows us to ‘extend’ our main theorem ‘orthogonally’ to the case p is
reducible. The general residually reducible case requires some more work, and
is considered also in [44].

A conjecture of Fontaine—Mazur asserts that an n-dimensional continuous
irreducible p-adic representation of the absolute Galois group Gal(F/F) of
a number field F, which are unramified outside a finite set of places and
which are finite when restricted to the inertia subgroup at every place of F
above p, has finite image. Since p-adic Galois representations associated to
classical weight one forms have finite image, the Fontaine—Mazur conjecture
for p exactly as above follows immediately. Many more cases of the Fontaine—
Mazur conjectures are proved in [44].

Finally, combined with a theorem about modularity of mod 5 representation
0, we shall prove the strong Artin conjecture:

Theorem 2 The strong Artin conjecture for two-dimensional, totally odd, con-
tinuous representations p : Gal(F/F) — GL2(C) of the absolute Galois
group Gal(F / F) of a totally real field F, holds.

By work of Artin, Langlands, and Tunnell, the ‘soluble’ cases where the
image of projective representation of p is dihedral, octahedral, and tetrahedral
are known; and the theorem proves the icosahedral case completely.

We remark that the p-adic integral models we construct also have appli-
cations to p-adic theory of Hilbert modular forms. As Johansson [25]
demonstrates, one can prove an analogue of Coleman’s theorem, ‘overcon-
vergent modular forms of small slope are classical’, using our models. His
approach is a generalisation to quaternion Hilbert modular forms of Cole-
man’s original ‘cohomological approach’, while one can take Kassaei’s ‘gluing
approach’ with our p-adic integral models to prove it. It is also likely that one
can extend the ‘geometric’ construction of an eigenvariety for Hilbert modular
forms by Andreatta—lovita—Stevens and Pilloni to the general ramified case,
and prove various Langlands functoriality in p-adic families.

The author would like to thank his Ph.D. supervisor Kevin Buzzard, Fred
Diamond, Toby Gee, Payman Kassaei, Vytas Paskunas, Timo Richarz, and
Teruyoshi Yoshida for helpful comments and conversations on numerous occa-
sions. He would also like to thank Alain Genestier for a helpful comment.

Sections 3 and 5.1 were originally written as a chapter in author’s Ph.D.
thesis at Imperial College London, and owes their existence to various ideas
he discussed and numerous conversations he had with Kevin Buzzard, as well
as to the financial support he received from EPSRC through him in the form of
an EPSRC Project Grant (PI Kevin Buzzard). While this paper was prepared,

@ Springer



Integral models of Hilbert modular varieties 177

the author was financially supported by EPSRC and DFG/SFB. And he would
like to thank all these research councils for their support. Last but not least,
he would like to thank Kevin Buzzard, Fred Diamond, Payman Kassaei, and
Vytas Paskunas for moral support while this paper was being prepared.

The author acknowledges most gratefully that, if it were not for Kassaei’s
paper [26], Taylor’s idea (to deal with the case p (Froby) has equal eigenvalues
for places p of F above p) and countless conversations and discussions he
had with Diamond, this paper could not have been completed. He is grateful
to Taylor for having given him permission to use his argument (in F = Q) to
deal with the p-non-distinguished case.

2 Deformation rings and Hecke algebras (following Geraghty)

This section follows [11] and [19].

Let L be a finite extension of Q,, with ring of integers O, maximal ideal A,
and residue field k.

For every finite place Q, let Fg denote the completion of F at Q with ring
of integers OF,, Dq =~ Gal(fQ / Fq) denote the decomposition subgroup at Q
and Iq denote the inertia subgroup at Q of the absolute Galois group Gal (F/F)
of a totally real field F. Let Artg denote the local Artin map, normalised to
send a uniformiser 7q of O, to a geometric Frobenius element Frobq.

Let

7 : Gal(F/F) — GL, (k)

be a totally odd (i.e., the image of complex conjugation with respect to every
embedding of F' into R is non-trivial), continuous, irreducible representation
of Gal(F/F). For every prime Q of F, let Pq denote the restriction to the
decomposition group Dq at a place Q of F'.

For every prime Q of F, let RS denote the universal ring for liftings of pq,.

Let S be a finite set of places in F containing the set Sp of all places of F
above p and the set S, of all infinite places of F, and let T be a subset of S.
Suppose that T does not contain Se.

Let Fs denote the maximal extension unramified outside S, and let Gg =
Gal(Fs/F). Let

= (S, T.(3)qes)
be a deformation data, where Ig C RS is an ideal defining a local deformation
problem X and a subspace Lo C H! (Dq, adp) (2.2.4, [11]), and we define
H§(Gs, adp) as follows: Firstly, let
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178 S. Sasaki

C5*(Gs.adp) = ) 0 @ @ C*(Dq. adp),
QesS-T QeT

Cy'*(Gs.adp) = @ C'(Dq.adp)/Mq & €P €' (Dq. adp).
QeS—T QeT

where Mg denotes the pre-image in C!(Dq, adp) of L, and let

C5™(Gs. adp) = @) €' (Dq. adp)
Qes

fort > 2; and let
C(Gs,adp) = C'(Gs, adp) P €5 '™ (Gs. adp)

with the boundary map C%.(Gs, adp) — C t;l(GS, adp) sending (¢, (‘l%)c))

to (0¢, (resqep — 8¢5’°)). We then define H jj (Gs, adp) to be the cohomology
group defined by the complex.

Let C = Cp denote the category of O-algebras as defined in 2.2 of [11];
its objects are inverse limits of objects in the category C/ of Artinian local
O-algebras R for which the structure map O — R induces an isomorphism
on residue fields and its morphisms are homomorphisms of O-algebras which
induce isomorphisms on residue fields. Let RE denote the universal ring for
T -framed deformation of type (Xg)ges (When T is non-empty). If 7" is empty,
write Ry. We let R1§C denote the completed tensor product of Rg / Ig for Q

in T, and let R? denote the formal power series ring in n%|T| — 1 variables
with coefficients in O normalised such that

RY ~ Rs ® RY.

Proposition 1 Rg is the quotient of a power series ring over RIEOC in
dim H é(GS, adp) variables. If furthermore H% (Gs,adp) = (0), then it is
indeed a power series ring over Rl):OC in dim Hé(GS, adp) variables.

Proof Corollary 2.2.12, [11]. O
The local Tate duality

adp x adp(1) — k(1)
given by the ‘trace pairing’ gives rise to the perfect pairing

H'(Dq, adp) x H'(Dq, adp(1)) —> k.
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The orthogonal complement Lé of Lo C H'(Dq, adp) will be taken with
respect to the pairing.

Following 2.3 [11], given a deformation problem X~ = (S, T, (Lg)qes.
(IQD)Qe s), define

Hj (Gs,adp(1))
to be the kernel of the map
H'(Gs.adp(1)) — @D H'(Dq. adp(1)/Lg.
S—T

Proposition 2 Suppose n = 2.

dim H}-(G g, adp)
= dim H}, (G, adp(1)) + dim HY.(Gs, adp) — dim H(Gg, adp(1))
+ Y dim Lo — dim H(Dq. adp)
QesS-T

Proof Tt follows from the long exact sequence defining H§. (G, adp) that
Z(—l)’dim H%(Gs, adp)
t

=Y (—=1'dim H'(Gs, adp) — ) _ x(Dq. adp)
t Qes
— Y (im Lq — dim H%(Dq, adp)).
QeS-T

hence, we deduce dim H )é (Ggs,adp) is

dim HY(Gs, adp) + dim Hz(G s, adp) — dim H3-(Gs, adp) — x (G, adp)

+ 3 x(Dq.adp) + Y (dim Lo — dim H(Dq. adp)).
Qes QeS—T

By the Poitou-Tate global duality, we deduce dim H% (Gs,adp) = dim H
(Gs,adp(1)),anddim H (G5, adp) = dim H ., (Gs, adp(1)). By the global
Euler characteristic formula ([33], Theorem 5.1), x(Gs, adp) = —2[F : Q].
By the local Euler characteristic formulae (Theorem 2.13 in [33] and Theorem
5, Chapter II, 5.7 in [45]) ) ¢ x (Dq, adp) = —2[F : Q]. Combining these,
we get the assertion. O
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180 S. Sasaki

Suppose that Sq is a set of primes Q of F' notin S such that

- Nr/Q = 1 mod p;
— Pq is unramified, and is a direct sum of unramified characters p; and p,,
where p; (Frobg) and p, (Frobg) distinct.

Define Lo C H 1(DQ, adp) to be the subspace of classes corresponding
to conjugacy classes of liftings p which are direct sum of characters p; and
p2 such that p, lifts p, (t = 1,2) and p> is unramified; hence dim Lg —
dim H%(Dq, adp) = 1 (see 2.4.6 in [11]).

Fixing a deformation data X' as above, let

2 =(SUSq, T, (LQ)Qesusy> (Ig)QeSUSQ)-

The restriction to the inertia subgroup /g at Q in Sq (as in the preceding
section), of the determinant of a lifting p of p of type X as above factors
through the composition of the local Artin map (restricted to /) followed by
the surjection to the maximal pro-p quotient Ag of (Of/Q)*. As aresult, we
have amap Aqg — Ryq; and ]—[Q Aq — Ry, where Q ranges over Sq.

We now apply the formula above to X to compute dim H éo (Gsusg» adp).

Proposition 3 Suppose n = 2, and suppose that p is absolutely irreducible
when restricted to Gal(F | F (¢ »)). Suppose that T is non-empty. Suppose for
a finite place Q in S — T that dim Lg — dim HO(DQ, adp) = 0ifQ is not in
Sp, while dim Lo — dim HO(DQ, adp) = [Fq : Qpl if Q is in Sp. Then

dim Hz (Gsuso- adp)

= dim A}, (Gsuse- adp(1) +1Sol — Y 1= Y [Fo:Q)l.
Q
Qloo QeTNSp

Proof Since dim Hg (Gs,adp) is O (resp. 1) when T is non-empty (resp.
empty), dim Hg—(Gs, adp) — dim H%(Gg, adp(1)) = 0, and it suffices to
check

> dim Lo — dim H(Dq, adp)
Qe(SUSQ)—T

equals

1Sol = Y 1= > [Fo:Qyl.

Qloo Qe(TNSp)
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By the definition of Sg, it is equivalent to check

> dimLqg—dimH'(Dg,adp) ==Y 1— > [Fq:Q,l

Qe(5-T) Qloo Qe(TNSp)

By the assumptions of the proposition, it is equivalent to the validity of

Yo R Qi+ Y [F:Ql=—Y 2| -1

Qe(S—-T)NSp Qe(TNSp) Qoo Qloo

but this holds as both sides equal [ F : Q]. O

2.1 Universal rings for local liftings

In this section, we define universal rings for liftings/deformations that we need.
As in the previous section, Sp denote the set of all primes above p and

Seo denote the set of infinite places of F. Let Sr, S and Sa denote disjoint

finite sets of finite primes of F not dividing p. Suppose furthermore that Sa

is non-empty and any prime Q of Sg U S satisfies Nr/QQ = 1 mod p.
Suppose that p is odd. Suppose now that

% : Gal(F/F) — GLa(k)

is a continuous representation of the absolute Galois group Gal(F /F) of F
such that

— p is totally odd,

— p is unramified outside Sp U Sr U S, U Sa,

— 0, when restricted to any prime in Sp U Sg U SL, is trivial,

— the restriction to Gal(f/ F(¢p)) of p is absolutely irreducible.

— 0, whenrestricted to any prime Q in Sa, is unramified and H 0 (Dq, adp(1))
= 0 (it is possible to find a such Q, indeed satisfying Nr,QQ # 1 mod p,
follows for example from Proposition 4.11 in [12]),

— if p = 5 and the projective image of p is PGLy(Fs), the kernel of the
projective representation of p does not fix F(¢s),

We remark that S earlier will be Sp U Sg U St U Sa U Sy and T will be
S — Seo-

For every place p of F above p, let G, denote the image of the inertia
subgroup I in the pro-p-completion of the maximal abelian quotient of the
decomposition group D, at p, and let G denote the product of Gy, over all p
above p. The local Artin map Art,, identifies Gy with 1 + 7 Oy, where 7 =
is a uniformiser. Let X, denote the Q -linear embeddings of F, into L.
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182 S. Sasaki

Let G denote the multiplicative group over F and let Resz,QG denote the
Weil restriction. Let T >~ G x G denote the algebraic group of diagonal
torus over F in GLy,r and let Resg/QT denote its Weil restriction, which is
isomorphic to Resr/QG x Resr/@G. By slight abuse of notation, we continue
to use the same symbols to mean the integral models of the aforementioned
algebraic groups.

For every integer r > 1,letResg/QT (Z,)[p"] C Resg/QT (Z)) denote the
kernel

ker(Resr/QT (Z,) — Resp/T (Z/p"Z))

of the standard ‘reduction mod p”” morphism. Simialrly, define Res r,QG(Z),)
[p"]. Granted, we may identify Resr,Q7 (Z,)[p] with G x G and Resfg/q
G(Zp)[p] with G. When convenient and no confusion is expected, we may
write A = Ar (resp. Ag)tomeanResr /7 (Z,)[ p] (resp.Res/QG(Z,)[ p]).

We define the ‘local’” Iwasawa algebra Ay, to be the O-algebra O[[G x Gy]]
of the pro-p-group G, x Gy, and let A, denote the Iwasawa algebra ®pAp.
The ‘global’ Iwasawa algebra A, is identified with O[[G x G]], and hence
with O[[A]].

The O-algebra A, parameterises the pairs of characters x = (x1, x2) =
]_[p (Xp,1, Xxp,2) of G which take values in objects of C and which are liftings of
the trivial character in k*; each algebraic character y, ; of Gy is parametrised
by a | Xp|-tuple Ay ; = (A ), of integers with 7 ranging over Xy,. By slight
abuse of notation, by a tuple A = (Ap 1, Ap2)p Of integers as above, we shall
also mean the pair of algebraic characters corresponding to A.

Define A to be the quotient O[A/ (0;, LN A)]] of O[[A]] parameterising
all characters which satisfy the ‘parity condition’, i.e., factor through the p-

adic closure O ; + N A of the diagonal image of the totally positive units Or
inA=Gx G Note that A is of relative dimension 1 + [F : Q] + €L, over
O, where e, = 0 if the Leopoldt conjecture of the pair F and p holds.

If w is a fixed integer, the set of 2[ F' : Q]-tuples A (corresponding to a pair of
algebraic characters by definition) such that A; 1 > A;pand A1 + A0 =w
for every p and 7 in X, is in bijection with the set of [F' : Q]-tuples k = (k)
such that k; > 2 and k; = w mod 2 by decreeing that A = (A; 1, Ar2)
corresponds to k = (A1, — A2 + 2) and, conversely, k = (k;) corresponds
tor=({(w+k: —2)/2, (w— ks +2)/2).

2.2 Local liftings at places above p

Let L be a finite extension of Q,, and let O denote its ring of integers with
maximal ideal A and residue field k . Let V = OZ. Let p be a place of F above
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p that we fix, and let pp : Dy — GLz(RpD) denote the universal lifting of the
restriction p,, (assumed to be trivial) to the decomposition group Dy at p of p
above.
Define a functor GrpD which sends an O-algebra R to the set of data con-
sisting of
— a filtration Fil(V ®o R) = (0 = (V ®o R)(0) C (V ®o R)(1) C
(V®o R)(2)=V®o R)of V®o R,
— amap RpD — R whose composition pp ® o R : Dy — GL2(R) with the
universal lifting Dy, — GLQ(RE) preserves the filtration.

Define a functor Gr%p which sends an O-algebra R to the set of data con-

sisting of an R-valued point of GrpD as above, together with an O-algebra
morphism 7 from Ay to R, satisfying the following condition: if x = (x1, x2)
is the universal pair of characters G, — Ay, the R-valued character, defined
as the projection of /, to G, followed by x; ®; R, matches up with the action
via pp ®o Ron (V ®p R)(1)/(V ®o R)(t — 1), when restricted to /.

Lemma 1 The functor GrpD (resp. Gl’ap ) is representable by a scheme X Grl)
(resp. X Gr%p ).

Proof This is standard. O

Forgetting filtrations for every S-point defines a morphism X;o —
Gry

Spec RS, while, by definition, we have a closed immersion Xg Gl
p

Spec Rp (X)OA,J (Lemma 3.1.2 in [19]). We define RE’Ord = RpD/IpD rord by
letting Spec RE "4 pe the schematic closure of the image of X oo [1/p]1 =
P

X~o0 — Spec RpD®0AP- By the projection, X; o is thought of as a Ap-
Ap

Gry
’ D d
scheme; and, similarly, R, "

J,ord

is a Ap-algebra. In particular, let ¥ denote the

morphism Spec Ry, — Spec Ay.

Let & denote a closed point of Spec Lg — Spec RIj Ord[l /p] for a finite

extension L¢ of L and x = (x1, x2) denote a pair of characters corresponding
to the point k 0§ of Spec Ap[1/p]. Suppose that x| and x> are distinct and that
€ x2 and y are also distinct (where € is the cyclotomic character). The pair of
characters satisfying these conditions are evidently dense in Spec Ap[1/p].

Lemma 2 The fibre Spec RD ord of Spec RD ord 4t X along « is regular 0f

dimension [Fy : Q,] +4; and the localisation Spec RE ;rd of Spec REI ord

& is regular of dimension 3[Fy : Q,] + 4.

Proof The assertions follow from Lemma 3.2.2 in [19]. m|
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Proposition 4 Suppose that [Fy : Q] > 2. Let I' be a minimal ideal of Ay.

Then Spec RE ord ) A, Ap/ I is geometrically irreducible of relative dimension

3[Fy : Qpl +4over O.

Proof This is proved essentially in Corollary 3.4.2 in [19] or Proposition

3.14 in [56]. The essence of the proof is to establish that every irreducible

component of X, o [1/p] is of dimension 3[F, : Qp] + 4, which one
Ap

checks by computing (Lemma 3.2.3 in [19]) its completed local ring at a
closed point whose projection to Spec Ay, corresponds to a pair of characters
X = (x1, x2) such that x| = € x2 does not hold. It follows that for every mini-
mal ideal I" of Ay, Spec RE rord ®a, Ap /I is irreducible of dimension at most

1 + 3[F, : Qp] + 4. However, it follows from the ‘moduli description” of the

morphism XGr%p [1/p] — Spec RpD’Ord[l/p] of Spec Ay[1/p]-schemes that

the morphism is finite (more precisely, quasi-finite with its fibres singletons,
but, combined with the projectivity of the morphism, the finiteness holds) if
it is pull-back over to the open subscheme of Spec Ap[1/p] corresponding to
the pairs of distinct characters, and this suffices to establish the assertion as in
the proof of Corollary 3.4.2 in [19]. O

We need a variant of RpEI o4 that further parameterises ‘eigenvalues of the

characteristic polynomial of a Frobenius element of D,’. Let ¢ = ¢, be a
Frobenius lift in Dy, that we fix. We proceed differently from Pilloni—Stroh’s
construction in Section 4.1 of [38] in the ordinary case.

Let RpEI "+ denote the universal ring for the liftings p of (the trivial two-
dimensional representation) p,,, together with choices of roots of the quadratic
polynomial X% — tr p(¢)X + det p(¢) = 0.

Define RpEI ord,+ by the pull-back:

Spec RE’ord’+ —> Spec RE’+®Ap

i

Spec RE’Ord —> Spec RPDQAZ)A,,
where the horizontal morphisms are closed immersions. Similarly, define
Xz}rrg to be the pull-back of XG% along Spec RpD”L(EAiJAp — Spec RE@Ap.

As the formation of scheme-theoretic closure commutes with flat base

change, Spec RE 014+ i5 also the scheme-theoretic closure of the morphism

+ + O+ 4
XGr%’[l/p] — XGri — Spec Ry, " ®Ayp.

Proposition 5 Suppose that [F, : Qp] > 2. Let I be a minimal ideal of
Ayp. Then Spec RE’Ord’Jr ®a, Ap/I" is geometrically irreducible of relative
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dimension 3[F, : Qp] + 4 over O. Furthermore, RpD’Ord’+ ®a4, Ap /T is

flat over O, Cohen—Macaulay and reduced; and RE ord+ o Ay Ap/(I, 1) is
reduced.

Proof For the first assertion, the proof of Proposition 4 works verbatim if

the morphism X gr'ﬂ [1/p] — Spec RE’Ord’+[1 /p] is finite when restricted to
A

the open subscheme of Spec Ap[1/p] corresponding to the pairs of distinct
characters. But this is immediate.

To prove the second assertion, we define another Ay-algebra RpEI 014 hich
is universal for ‘explicit’ liftings of p,. This is more amenable to explicit
calculations, and we shall write down a set of explicit equations to establish
that it is Cohen—Macaulay, reduced and flat over O.

Let RpD 14 denote the quotient of RpD & A, parametrising (p, a(¢), x)
where x = (x1, x2) and where «(¢) denote a root of the polynomial X? —
tr p(¢)X + det p(¢) = 0 satisfying the following conditions:

(D trp(z) = x1(2) + x2(z) for z in I,

(D) tr p(¢) = a(¢) + B(¢) where B(¢) denotes det p() /e (),
(L) det (p(¢) — B(#)) =0,
(IV) 1 +det(x2(2) "' p(2)) = tr (x2(2) "' p(2)) for z in Gy,

V) (p(2) = x2@)(pET) — x2(z7)) = (x1(2) — X2 (T — x2(z))
for z and z* in I,

(VD (p(¢) — a(#))(p(2) = x2(2)) = (B(¢) — a(¢))(p(z) — x2(2)) for z in

I, or equivalently,

p(92) = B(@D)(p(2) — x2(2)) + x2(2)p ().

Let {z;};, where 1 <1 < [F; : Q,], be the generators of /. In writing

_ (B@®) 0 Ay By
"“”‘( 0 ,3<¢>)+(c¢, D¢)

and, forevery 1 <t < [F, : Q,1,

_ x2(z7) 0 Ar B
pae) = < 0 X2(Zt)> + <Cr Dr) '

it is possible to check that RpD ord T g given by the formal power series ring

with coefficients in O with (4 + D[F, : Q] + (4 +1) = 5[F, : Qp]1 + 5
variables

{A‘[a B‘[a C‘E7 D‘[a XZ(Z‘E)}‘[$ A(ﬁa B¢7 C¢, D(Z)’ ﬂ(¢)
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with their relations given by the 2 by 2 minors in

Ap Cyp —Cy =Dy --- —Cyq —Dy
By Dy Ay By --- Ag By

whered = [F, : Q,]. Let RpD 0141V denote the quotient of the polynomial ring
by the ideal given by the same set of variables with the same set of relations.

By definition, RpD’Ord’T’v is determinantal in the sense of Section 1-C in [6]

or Section 7 in [5], while RpD’Ord’T is determinantal according to Section 18.5

in [15]. As the Cohen—Macaulay-ness and the flatness (over O) pass from

RE oV RpEI ’Ord’T, we establish these properties for RE ord 1,V

Firstly, RpD ord .V g Cohen—Macaulay (see Theorem 18.18 in [15], or Corol-

lary 2.8 in Section 2.B in [6]). It is also possible to explicitly spot a regular
sequence in RpD 0141V and use that to prove RpD 0rd: TV s Cohen—Macaulay
directly, as in the proof of Proposition 2.7 in [47]. Eisenbud (see Section 18.5
with its reference to Exercises 10.9 and 10.10 in [15]) also claims, without a

proof, that it is of relative dimension
SIFy : Qpl+5 — (2F, : Qpl+1) =3[F, : Q)] +4

over O; this will be checked directly in the forthcoming argument.

The reducedness of R)pEI 0147V indeed follows from the defining equations.

To see this, we shall prove that the L-algebra RpD ’Ord’T’v[l /A] and the k-

algebra RE ord, T,V /A are both domains of the same dimension 3[F,, : Q] +4.

Granted, it follows from Lemma 2.2.1 in [49] (also see Theorem 23.1 in

[32]) that RPD’Ord’T’V is flat over O and follows, as result, that RpD’Ordiv C

RE’Ord’T’V[l/A] is reduced.

To see that the naturally graded L-algebra RpD’Ord’T’v[l /A] is a domain, one
notes that Proj RE 0rd TV 1 /2] is covered by the open sets {X # 0} where
X ranges over the single-variable equations defined by those appearing in the
relations defining RPD’Ord’T’V, i.e, X is any one of the 4 + 4[F;, : Q,] variables
in the list

{A¢9 B¢)a C(f)a D(f)’ {AT’ BT? C‘L’a DT}T}'

Each covering {X # 0} is isomorphic to the domain (Ap — {0}) x
Ai([Fp:Q”HI)HFp:QP]H (where the right-most ‘[F,, : Q]+ 1" reads {x2(z7)}+
and B(¢), for example), therefore RE 0rd 7.V 11 /2] is a domain. The same proof

(with k in place of L) works in the case of RE ord,T,v (as the ‘coefficient’ £ is,

again, a field).
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To transfer our calculations so far about R,C,D ord T RE ord+ e shall prove

that they are isomorphic.
Firstly, one observes that there is a natural map,
+ ,ord, T
XG 0 — Spec R,

I'Ap

,ord, ¥

which, when followed by the closed immersion Spec RE — Spec RF,D’Jr

®0Ap, factors through X ;}er — Spec RpEI ’+®0Ap. It then follows from the
Ap

universal property of the scheme-theoretic closure Spec RpD 14 that there is

a closed immerion

U,ord,+ O,ord, ¥
Spec R, """ — Spec R, "

.. . . . O,ord, T O,ord,+
giving rise to a surjection Ry — Ry .

To prove that the surjection is indeed bijective, we follow the proof of
Lemma 4.7.3 in [49] to show that Spec R, [1/i] C Spec R,"**T[1/A]
(and as a result RpD ’Ord’*[l JA] RE ’Ord’+[1 /A]) ‘moduli-theoretically’ using
the Eqgs. ()—(VI) defining R, """,

Let (p, a(¢), x = (x1, x2)) be a closed point of Spec RpD’Ord’T defined over
a finite extension K of L = O[1/A]. For simplicity, we write « = «(¢) and
B =det p(¢)/a(¢). From (I) and (IV), we may deduce that the restriction of
p to Iy is either an extension of K (x2) by K (x1) or an extension of K (x1) by

K (x2).
Suppose that it is the latter. We may then choose a basis of p to write the

restriction of p to I, to be of the form p|;, = ()g ;1> But it follows from
(V) that

c@(x1ET) — x2@M) = (x1() — x2@))ezh),

1.€.,

((x2/x0)E") = De@) = ((xa/x1) @) — De@™).

If x1 and x, are distinct, x2/x1 is non-trivial and we may therefore see the
equality as saying that the co-cycle ¢ in H l(Dp, K (x2/x1)) is coboundary,
in other words, p is split when restricted to I,. Hence the restriction to I,

of p is of the form ()(()l ;2>, in other words, (p, x) defines a K-point of

Spec Ry [1/A].
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Suppose x1 = x». With respect to the basis chosen above, suppose that
p(p) = ’30 at). By (III), we may deduce that (8~ — g)(«¢™ — B) = 0.
Hence either (¢, 87) = (a, B) or (™, 7)) = (B, @) holds. By (VI), one
can check that the latter occurs only when the restriction of p to I, is split. In
any case, (p, «, x) defines a K -point of Spec RE’Ord’+[1/A].

Suppose that x; and x» are distinct. It then follows from (VI) that

B” —a)(x1 — x2) = (B—a)(x1 — x2)- As x1 and x» are distinct,

B~ = B,and o~ = « as a result. It therefore follows that (p, o, x) defines
O,ord,+

a K-point of Spec R, [1/A] and thereby establishes that the surjection
RE’Ord’T[l/)\] — RE’ord’+[1/A] is indeed an isomorphism.

As RpEI ord T is flat over O and X thus is not a zero-divisor in RD’Ord’T, the
kernel of the surjection RE ord,F RpD ord.+ ¢ indeed trivial, i.e., RpD ord. T
RE’Ord’+. This concludes our proof of the proposition. i

2.3 Local liftings at places not dividing p

Sr: Suppose that Nr,9Q = 1 mod p. Let O be as above. By enlarging O if
necessary to assume that i x,—1 C (14 2). Suppose that xq.1, xQ.2 : Do —>
(1 4+ X) C O are characters of finite order such that their reductions mod A
are trivial. Write x = xq to mean the pair (xQ,1, xQ,2)-

Lemma 3 There exists an ideal Ig X of RS which corresponds to the liftings
p of the trivial representation pq such that

— the characteristic polynomial of the restriction of p to the inertia subgroup

Ig at Q in X is of the form (X — xq,1 (ArtQ(g))_l)(X — XQ,Q(ArtQ(g))_l)

for every g in Ig;

RS / Ig X is flat over O, reduced, Cohen—-Macaulay and of equi-dimensional
of relative dimension 4 over O;

RS/[S’X [1/p] is formally smooth over L;
Rg/(k, ID’X) is reduced;

the generic point of every irreducible component of RS /1 S X has charac-
teristic zero.

Furthermore,

— if xQ.1 and x> are distinct, then RS / Ig X is geometrically irreducible of
relative dimension 4 over O;
— if xQ,1 and xq,» are both trivial and if L is sufficiently large, every minimal

prime ong/(k, ID’X) contains a unique minimal prime ong/(A, ID’X).
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Proof Following the notation of [47], when xq,1 and xq, are distinct, let
RS / IQD * be RD(EQ, 7) with the inertial type T given by a representation of
, - xQ,1(8) %

Io sending g in Ig to and N = 0. When and

Q g8 Q ( 0 XQ,2(8)> XQ.1 XQ.2
are both trivial, let Spec RS / IQD X denote the union of Spec RD(ﬁQ, T) where
the inertial types T range over those given by the trivial representation of /
with open kernel (when N = 0, it corresponds to the unramified liftings while
non-trivial N corresponds to the ‘Steinberg’ liftings).

Firstly, observe that RS / Ig % is flat over O and reduced by defini-
tion. Proposition 5.8 in [47] proves that Rg / Ig % is Cohen-Macaulay
(equi-dimensional of relative dimension 4 over O) and, less explicitly,
Rg / IQD “X[1/ p] is formally smooth over L.

When xq,1 and xq,» are distinct, Proposition 5.8 in [47] also proves that
Rg /(A D’X) is reduced. Furthermore, the proof of Proposition 3.1 in [52]

proves that Rg / Ig X is geometrically integral.

: 0,(1,1 O, 1),
When xq.1 = xQ2 = 1, as A is RS/IQ’( D _regular, RS/(A, IQ’( Dy i

Cohen—Macaulay by Theorem 17.3 in [32]. On the other hand, the proof of
Lemma 3.2 in [52], combined with the corollary of Theorem 23.9 in [32],

establishes that RS /(A IQD ’(1’1)) is generically reduced. The reducedness of

RS /(A Igl (L 1)) therefore follows. The last assertion is proved in Proposition
3.11in [52]. O

SL:

Lemma 4 Suppose Q satisfies Np,QQ = 1 mod p. Then there exists an ideal
Ig .St of RS, containing 13 (LD above, which corresponds to the liftings of

the trivial representation pg : Do — GLa(k) such that

— the characteristic polynomial of p when restricted to I (resp. p(Frobg)
where Frobq, by abuse of notation, is a lifting of the arithmetic Frobenius)
is of the form (X — 1)2 (resp. (X — |kq|)(X — alkql) for some a);

- Rg / Ig Stis flat over O, reduced, Cohen—Macaulay and equi-dimensional
of relative dimension 4 over O;

- (RS/IE’St)[l/p] is formally smooth;
- Rg' / Ig St geometrically integral;
— the generic point of R(%' / Ig S has characteristic zero.

Proof This is proved in Proposition 3.1 of [52], Proposition 3.17 in [56] and
Proposition 5.8 in [47] as in the proof of Lemma 3. O
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Sa: For every Q in Sa, Rg is formally smooth of relative dimension 4, and
let I = (0).

SQ,V:

Lemma$§ Let v > 1 be an integer. Suppose that Q satisfies Np;qQ = 1
mod p". Suppose that pq is unramified, and is the direct sum of (unramified)
characters xQ.1, xQ,2 : Dq — k™. Then there exists an ideal Ig ong which
corresponds to the liftings p = xQ.1 ® xQ.2 of pq such that xq.; lifts X ., for
t =1,2, and xq,> is unramified.

Proof See Section 2.4.6 in [11], or Definition 4.1 and Lemma 4.2 in [57]. O

We shall suppose that |Sq,,| = ¢ is independent of v. Existence of a such
set of ‘Taylor-Wiles primes’ will be stated with a reference in the following.
In the following, let ', denote the deformation data defined by

- S=SpUSRUSLUSAUS;
and the ideals of universal rings for local liftings at 7', namely

_ IE’Ord’+ for every p in Sp assuming [Fy : Qp] > 2;

atuple x = (xo = (XQ.1, xQ,2)) of characters where Q ranges over Sg,

and IS’XQ for every Q in Sg;

Ig’St for every Q in Sr;
— Ig = .(0) for every Q in Sa (any lifting of pg for Q in Sa is necessarily
unramified);

The ideals Ig of RS for every Q in S define a subspace Lo C H'!(Dq, adp).
When xq is trivial for all Q in Sg, we write X instead.

Let C denote the category as defined in 2.2, [11], with A, in place of O. The
functor which sends an object R of C to the set of T-framed deformations of
p of type X', is represented by a complete local noetherian A ,-algebra Rgx.
If T is empty, write it Ry, .

Lemma 6 If p = 5 and the projective image of p is isomorphic to PGL;(Fs),
assume that the kernel of the projective representation of p does not fix F ({s).

For every integer v > 1 there exists a finite set S, of Q such that

- Nr/QQ = 1 mod p¥;
— p at Q is a direct sum of two distinct characters which are unramified;
- |SQ,v| =4q,
and if we let Xy q.» denote the deformation data (S U Sq,,, T, ...) defined

by the ideals of universal rings for local liftings at T exactly as in X, =
(S,T,...), together with Ig for Q in Sq,, defined as above, then REX 0w is

topologically generated over Rlxoi byr =q —2[F : Q] elements.
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Proof The proof of Proposition 2.5.9, [11] works verbatim (with n = 2) to
constructs the sets Sq,, as required. The last assertion follows from Proposi-
tion 3. O

2.4 Hecke algebras

Let Ar denote the ring of adeles of F and let A7’ denote its finite part. Let
D be the quaternion algebra over F ramified exactly at S;. U S such that
|SL U S| is even. Let G denote the corresponding algebraic group over F
such that G(F) = D*. Once for all, we fix a maximal order Op of D, and for
every finite place Q not in Sp, we fix an isomorphism G (O Fo) =~ GL2(OF,).
For a finite place Q of F, we shall let Iw(OF,) denote the subgroup of matrices
in GL2(OF,) which reduce mod Q to upper triangular matrices.

Let x be a set of characters indexed by Sg such that xq = (xqQ.,1, xQ.2)
for every Q in Sr defines a character of IW(OFQ) C GLZ(OFQ), trivial on
the subgroup of matrices in GL2(OF,) which reduce mod Q to the unipotent
matrices.

For an algebraic character A = (Ap 1, Ap2) of A), such that A; | > A; > for
every T in Sy, let Vj , be the O-tensor module

VP VR® VL

where Vp is the Sp-tensor product Q) V, with V,, = ), Sym’tdet” 0% where
At = Ar1—Ar2and y; = Ay o forevery T inHomg, (Fy, L); VR = & O(xq)
and we let the Sg-product [ [ Iw(O FQ) act by x; VL is the Sy -tensor product
of the one-dimensional trivial representation of (D ®F Fg)* for Q in S,
which is given by the the determinant (D ®F Fg)* — FS (followed by

the trivial character Fé‘ — Fé() and corresponds by the Jacquet—Langlands
correspondence to the special representation Sp, (Chapter I, Section 3 in [21])
of the trivial character, which in turn corresponds by the local Langlands
correspondence to a two-dimensional reducible local Galois representation
with the cyclotomic and the trivial characters on the diagonal.

For an O-algebra A, let S))f (A) denote the space of functions

f:GFNGMAL) = Vi, ®0 A.

Let G(A%OUT) x ] G(Or,) x HIW(OFQ), where T = Sp U Sgr U S U Sa
and where in the first (resp. second) product Q ranges over Sp U Sp, U Sa (resp.
Sr), acton S{ (A) by

(rf)(&) = (vspuse) f(gY)

where ys,us, 1s the projection of y onto the Sp U Sg-components.
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Let U = UP be an open compact subgroup of G(A%OUT) x [[G(OFy) x
[[Iw(O Fo)> where the first product ranges over Sp U St U S and the second
over SR, such that Ug is a maximal compact subgroup of G (Fg) for every Q
in Sy and such that Uq for every Q in Sg is the subgroup of matrices which
reduce mod the maximal ideal to the identity matrix. In this case, because of
the primes in Sa, U is sufficiently small in the sense that, for every 7 in G (A}),
the finite group (U Nt~'G(F)t)/ 0} is {1}.

For integers N > 1 and v > 1, let Sq,, as in the previous section, and
define Uy, .~ to be a sufficiently small open compact subgroup of G(AF’)
as above such that, at every p above p, it reduces modulo the N-th power of p
to the upper triangular unipotent matrices while, at every Q in Sq,,, reduces
mod Q to the upper triangular matrices. We also define Us, , v to be the
subgroup of Ulwg.,.N that is identical to Ulwq,,.N away from the primes in
Sq,v but, for every Q in Sq v, Usq,.N N GL,(Fg) consists of all matrices in
Ulwg,,.n N GL2(FqQ) C GL2(OF,) whose right-bottom entries reduce mod Q
to the elements of (Of/Q)™ that map trivially when passing to the maximal
pro-p-quotient Ag of (Of/Q)*. In other words, U SN is defined such that
UIWQ,V,N/ Usqg,.N = HQ Aq where Q ranges over Sq .

When Sq,, is empty, we shall write Uy. By slight abuse of notation, the
N-direct limit of U Souw.N (esp. Ulwg,.N) will be denoted by U So. (resp.
UIWQ,V )

Let Sf (U, A) denote the set f € Si( (A)suchthatyf = f foreveryy € U.

Definition When xq is trivial, i.e., xqQ,1 and xq,2 are both trivial, for every
Q in SR, in which case we will often say x is trivial, we in particular write
S»(U, A). If, on the other hand, xq,1 and xq,» are distinct for all Q in Sg, we
say that xq is distinct. We only need these two extreme cases.

For Qnotin SpUSRUSL.USx, A[UQ\G L2(Fg)/Ugl acts on Sf (U, A): for
ginGLy(Fq),if[UggUql = ]_[y y Uq, define the Hecke operator correspond-
ing to g by Zy vf.LetTy (resp.SQ) denote the Hecke operator corresponding

7Q 0 7q 0 o
to ( 0 1) <resp, < 0 m))) where 7q is a uniformiser of Of,.

ForU = Uy orUsx,, N, S f (U, A) comes equipped with the Hecke oper-

ator U, (resp.Sp) for every p in Sp, corresponding to the matrix (78’ (1))

(resp. (78’ 7'?;3)) but normalised by multiplying the product over 7 in X,

of r(np)_kzsf (resp. r(np)_(MJHlf)). The normalisation is in common with
[22] for example. It also has action of S; (this is denoted by () in Definition
2.3.1 of[19], but we save ( ) for another operator) corresponding an element
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Oy
0 0
(tp)p of 7y in T'(Oy) for every p in Sp, let S; denote the product of ST,g over p.
When U = Uy or U o N> We follow Geraghty Definition 2.6.2 in [19] to
define

7 in the diagonal torus T (0Op) = ( for every p in Sp. If 7 is a tuple

(t) =y, 'S,

where y; = ]_[p Yep and yrp = 1p 2 for 1, = (7,1, 7p,2) in T(Op) for every
p.

Let T, 50w U SN > A) denote the Hecke algebra generated by the images
in End(Si( (Usq,.NsA)) of Tg and Sq for Q not in S U Sq,», Uy for p in Sp,
and S; for r € T. When Sq,, is empty, we shall write TA,EX Uy, A).

When A = O, we will not make references to A henceforth. When A, ; =
Az,2 = 0 for every T in Sy and p in Sp, write 2 in place of A.

Section 2.4 of [19] defines the ‘Hida’ idempotent e on Sf (Ux,,, N),

S¥(Usq,.N.L/0), and Ty, 5., (Ux, ,.~), and define

§1(Ux,,)
(resp. ¥ (U, L/0))

to be the N-direct limit of eS% (Uxq,.N) (resp. eS% (Uxq,.N,L/0O)); and

ord
Ty o,WUsq,)

to be the N-inverse limit of 6’T2,EX,Q,V(U2Q,V,N)- When Sq,, is empty, we
shall write $%-°"(U), $X-°4(U, L/0O) and Tgid(U ) respectively. Naturally,

Tg)’(oédv (Us,,) and sx-ord (g >o.,) are algebras over A, and hence over A, by

()
Lemma7 - Tgid(U ) is reduced.
- Tgfxd(U) is a finite faithful A-module, S*-°"Y(U) is a faithful Tgrxd(U)-
module and is finite free over A.

Proof The first assertion follows from Lemma 2.4.4 in [19]. The second asser-
tion follows from Propositions 2.5.3 and 2.5.4 in [19]. |

Let m be a maximal ideal of Tg;d(U ) when  is trivial. Since S°4(U) /A =
$©o(U)/a, it induces a maximal m, C TPI(U). Let my Q. C
Tng (Ux,,) be the maximal ideal defined by the surjection

T, Usy,) = TEUU).
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Define HEX,Q,V Uxq,)s also denoted by HEX,Q,V’ by letting
\Y2 ,ord \Y2
(Hz, o,)" C Sx-or Usq.,» L/O)mxquv

(where by the dual v we mean the ‘Pontrjagin dual’ Homp(—, L/0)) as in
Section 4.2 of [19], let H 5y 0w Utwg.,) denote the one defined similarly with
Ulw., in place of U EQ,vand let

Ts C End(Hyx

x.Q.v )(A,Q.v)

denote the image of ng(dQ V(UEQ,v)mx,Q,u in End(HEX,Q,.))' When Sq,, = @,

. . D
we simply write Ty, and Hyx, for Ts, o, and Hs, .- Let HEX,Q,u

O
Hx, o, ®R2X$Q,U REX,Q,U

Recall that Utwg,, /Uxq., is isomorphic to the ]_[Q Aq where Q ranges over

; when Sq,, = @, we simply write it ng'

Sq,v and where Aq is the maximal pro-p quotient of (Ofr/Q)* for every
Q. Let Aq,, denote the quotient (Ury,, N AT )05 /(Us,, NAF)Op =~

(1o Aq)/ O by the image O 1 of the units 0.
Lemma 8 The co-invariants of HZX,Q,U(UEQ,U) by O[Aqg,] is isomorphic

to Hx, o, (Utwg,) by the trace map corresponding to Urwg,/Us,,, and
H);X,Q'v = HZX,Q,U (UZQ,U) is a finite faithful and free module over A[Aq,v].

Proof For a sufficiently small open compact subgroup U of G(A%),

Gy =]Jewrru
t

holds, where ¢ ranges over a finitely many representatives in G(A%’); and
¢ 'G(FrNU) / O; is trivial. For an O-module A, it therefore follows that

—1
SEWU. A) ~ P (Vay @0 4) N,
t

The first assertion follows if the co-invariants Sg ) .. N> 0) Ag.y 18 is0-
morphic to Sé( (Utwq,,.N» O). This, in turn, follows (by the standard duality
pairing and Pontryagin duality) if the invariants Sé( (Usq,.Ns L/ 0)4Qv is iso-
morphic to Sﬁ( (Urwg.,.N» L/ O). As the order of t'G(F)t N Ulwg,,.n and the
order of Aq,, = (]_[Q AQ) /5; are coprime, this holds.

To prove the second assertion, it is enough to prove |S§( Uszq,.N> DAl

= |S§ (UIWQ,V. ~N, L)| by Nakayama’s lemma. But this follows as one observes,
as Utwq,,.N is sufficiently small,
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—1
t7'G(F)tNUpy N
X ~ Qv
SZ (UIWQ,V,Ns L) — 2,x

and therefore

17 \G(F)iNULy, N
S Wroun- L) = DD Vay :
t AQu

as the order of Aq,, and ~1G(F)rn Utwg,,.N are coprime. O

Let AY = A®RY where T = Sp U Sg U SL U Sa and let Aq o be the
free Z,-module ([],Z,)/Oy of rank ¢ —1kOy > q — ([F : Q] — 1)
by Dirichlet’s unit theorem, which surjects onto Aq,y = ([[q 4¢) /5; for
every v. Let J denote the kernel of the homomorphism AD[[AQ,OO]] — A
which sends Ag o to 1 and all 4|T'| — 1 variables in R? to 0. Let RIE")C(’OO =
ngi [[X1, ..., X,]]. Following Geragthy 4.3, [19], the HEX’Q.V patch together

: 1 S A0 d
to yield a RBE’OO(X)A [[AQ,00]]-module HEX,oo'
Lemma 9 Let A be a minimal ideal of A.

— If x is distinct, Spf Rl):oi ® A/A is O-flat and geometrically irreducible of
relative dimension 1 + 2[F : Q] + ¢, + 4|T|.

— If x is trivial and if L is sufficiently large, Spf Rl):"C ® A/A is equi-
dimensional of relative dimension 1 +2[F : Q|+ eL + 4|T|; furthermore,
every minimal prime of RIE‘)C ® A/(A, L) contains a unique minimal prime
ole):Oc ® A/A. Furthermore, RIEOC is O-flat, Cohen—Macaulay and Rl)g’c/)»
is generically reduced.

Proof See Lemma 4.12 in [19] and Lemma 3.3 [3]. When y is trivial and K is
sufficiently large, it follows from Lemma 3.3 in [3] that every prime, minimal
amongst those containing A, contains a unique minimal prime.

It follows from Propositions 5, 3 and 4 that RlzOC ® A is Cohen—Macaulay.
Lemma 1.4 in [56] establishes that the fibres RIEOC /A is generically reduced.

O

Remark The Cohen—Macaulayness of RIEOCOO is critical to our proof of Ry =~

T without recourse to taking the reduced quotients. This is based on Snow-
den’s insight in [49].

Lemma 10 As RY /) = R /h-modules, Hy /%> Hy . /5 holds.
Furthermore, ng,oo (resp. Hg’oo) is a finite free module over AD[[AQ,OO]]
(resp. AD[[AQ,OO]] ) (and hence are finitely generated ngi ~-Modules); and
ng,oo/‘] ~ Hy, and HE’OO/J =~ Hy holds respectively.
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Proof See Proposition 2.5.3 and Corollary 2.5.4 in [19] O

The following is a summary of Geraghty’s results [19] about Hida theory
that we shall implicitly use; their proofs can be found in [19]. See Proposition
3.4.4 in [11], Lemma 2.6.4, Proposition 2.7.4, and Lemma 4.2.2 in [19] for
example.

If L : A — O is an algebraic character defined by the set A = (A 1, Ap 2)
of integers, and if a character y : A — O is of finite order, we shall let I'}, ,,
denote the ideal ker(y (—Az, —A1 — 1)) of A where (—X;, —A; — 1) denote
the character A, — O™ defined by the product of (—A; 2, —A; 1 — 1) over t
in Sy, for all p in Sp.

If ker y contains the product over p of ker(T'(Op) — T (Oy /pN )) for an
integer N > 1, the quotient Tg&d ®a Arn,, /Ty surjects onto the maximal

quotient of Tfrgx (Un) where S; operates as y; for every 7 in T; furthermore,
the kernel of the surjection is nilpotent.
There exists a continuous representation

P ="Pm, g, Gal(F/F) = GLy(Tz, o, /My.qQ.u)

such that

— p is unramified outside S, and
trﬁ(Fron) = TQ
and

detp(Frobg) = (NF/QQ)So

for every Q notin S,

— for every place Q in Sg, the characteristic polynomial in X of the restriction
of p(g) is of the form (X — xq.1(Artg(g)) ™) (X — xq.2(Artg(g)) ") for
every g in Iq.

— for every place Q in Sy, the characteristic polynomial of p(Frobg) (resp.
p(g)) is of the form (X — |kq|)(X — alkg|) for some o (resp. (X — 1)?)
for a Frobenius lifting Frobq (resp. for every g in Ig),

— p is unramified at every place in Sa.

— p is a direct sum of two distinct unramified characters when restricted to
every place of Sq .

Suppose that m, is non-Eisenstein. There exists a continuous representation
p = Pm,qu : Gal(F/F) > GLa(Tx, )

for which the following hold:
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— p is a conjugate lifting of o of type X'y q.v-

— Suppose Sq,» = . The maximal ideal m, uniquely determines an irre-
ducible component of Spec A, over which it lies, and the component is
characterised by a character of the torsion subgroup of A. Suppose that
y equals —(Xp 2, Ap 1)p When restricted to the torsion subgroup. If " is a
dimension one prime ideal of Ty, lying above I,

pm,.r : Gal(F/F) — GLa(Lr),

where L denote the field of fractions of Ty, /T, satisfies:

— for every p in Sp, the restriction P, I.p of P, t0 Dy is de
Rham/potentially semi-stable with Hodge-Tate weights (A7
+1, )Vr,Z)r;

— Pm, .I.p 18 reducible of the form (SI P *

xoLsP 0 6_1 52,9
&> p o Arty), as a character of Oy, is given by ((—A;2) o T) (resp.
((=A¢,1)071)7 );and &1 poArty(mry) = Upymod I', and &3 o Arty (7)) =
Sp/Up mod I'.

> where & j o Art,, (resp.

In applications, we consider I" corresponding to A; 1 — A; 2 = —1 for T in §,,
for every p in Sp.

25 R=T

Suppose that p as in the previous section is modular, i.e., p >~ p,, for a non-
Eisenstein maximal ideal m C T4(U).

Theorem 3 Hg’oo is a (Cohen—Macaulay) faithful Rlzofoo-module.

« . . . . 1
Proof For every minimal prime A of A, the Krull-dimension of R Eoi oo/
for a distinct yx, is

1+r+04+2[F:Q]+e)+4|SpUSRUSLUSA|
=14(q—2[F:Q)+ 1 +2[F:Q]+e)+4|SpUSRUSL US4l

On the other hand, the Rlzoi’oo-depth of HEX’OO/A is at least the
AT[[Aq.coll-depth of Hy . /A. As Hy /A is free as a AP[[Aq,w]l-
module, the latter depth equals the Krull-dimension of AD[[AQ,OO]] which is

greater than or equal to

I+ A+ [F:Ql+e) +4[SpUSRUSLUSAl —1+g —([F:Q]—1).
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Since Spec Rlzoi oo/ A s irreducible, it then follows from Lemma 2.3 in [52]
that Hy /A is anearly faithful RS /A-module. By Lemma 2.2, 1, [52],
HD oo/ (A, A) is anearly faithful Rl"C oo/ (A, A)-module, hence HE’OO/A isa
nearly faithful Rl"C ~/A-module. It then follows from Lemma 2.2, 2, [52], that

o/Aisa nearly faithful Rl"C ~/A-module. As this holds for any minimal
prrme A, one concludes that Hy D ~ 18 a nearly faithful Rl"C -module.

On the other hand, one may observe that p and the generators of J define a
system of parameters of RIOC /. Since RlOC /A is Cohen—Macaulay, it fol-
lows from Theorem 17.4 in [32] that it 1ndeed deﬁnes aregular sequence of the
noetherian local ring. In particular, p is RloC o/ A-regular. It therefore follows
from Lemma 9 that RloC o/ (A, 1) s Cohen—Macaulay and that Rl"C o/ (A1)
is reduced. The regularrty also establishes that Rlzofoo /A is reduced and, by

extension, Rlzofoo is reduced. The faithfulness of Hg’ o @s an Rlzo‘foo—module
follows. o

By the theorem above, HE, oo/J = Hy isanearly faithful Rlzofoo /J-module.
Hence the maximal reduced quotient of Ry is isomorphic to T'x. To promote
this isomorphism on the reduced quotients to the isomorphism Ry >~ Ty, it
suffices to prove that Ry itself is also reduced. In achieving the reducedness,
the key input is Snowden’s insight in [49] (Sect. 5 to be more precise), i.e.
by establishing that RIZO?OO >~ Ry  is Cohen—Macaulay and, by extension,
Rlxofoo /J is Cohen—Macaulay and O-flat.

As the preceding theorem proves that RloC ~/J is isomorphic to Ry, it is
enough to establish that R10C o/ J, or equrvalently R10C /(A J) is reduced

for every minimal prime A. To this end, we need a lemma which paraphrases
Lemma 8.5 in [23]:

Lemma 11 Let R be a noetherian local ring and let M be a faithful, Cohen—

Macaulay, finitely generated R-module. Let r,ry,...,rN be a system of

parameters of R, let J denote the ideal generated by rl,...,rN and let
=R/Jand M = M Qg R/J. Suppose that

— M[1/r] is a semi-simple R[1/r]-module,
— forevery prime ideal B in R[1/r]whichis the pre-image of a maximal ideal
m that lies in Suppﬁ[l/r](M[l/r]), the localisation R[1/r]y is regular.

Then R[1/r] is reduced.

Proof of the lemma Since M 1is a finitely generated Cohen—Macaulay mod-
ule over R, for a prime P as in the second assumption, M[1/r]yp is a
finitely generated Cohen—-Macaulay module over R[1/r]y. It then follows
from Auslander-Buchsbaum that M[1/r ]y is finite free over R[1/r]sy; in par-
ticular, M[1 /7 1s finite free over R[1 /¥]m. One may then deduce from the
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semi-simplicity assumption that the Jacobson radical of R[1/r]y, is zero, and
therefore the nilradical of R[1 /¥ ]m 18 zero.

On the other hand, M is assumed to be faithful over R, and therefore
M[l/ r]is nearly faithful over R[1 /r], or equivalently, SuppE[1 /r (M[1 /r]) =
Spec R[1 /r]. As R[1 /r] is aritinian, Spec R[1 /r] equals the maximum spec-
trum Max R[1 /r] and an isomorphism

RI1/r] = [ RI1/r]w.

where m ranges over Maxﬁ[l/r] = Suppﬁ[l/r](ﬁ[l/r]), holds. As each

R[1 /r]m 1s reduced, the assertion follows. O
Corollary 1 Ry ~ Ty,

Proof For a minimal ideal I" of Rloc /(A J, p), we apply Lemma 11 to the
localisation (R10C /N of Rl"C o/ A at I to establish that (R10C /(N I
[1/p] is reduced. It therefore follows that R10C o/ (A, D)1/ p] is generically
reduced. As it is Cohen—Macaulay by Lemma 9 (and Theorem 2.1.3 in [5]), it
is indeed reduced. To promote the reducedness of Rl"C o/ (A, D[1/p] to the
reducedness of RIE"COQ /(A, J), it suffices to establish that Rl‘)C o/ (A, ) is p-
torsion free so that RIE""oo /(A, J) embeds into Rl"c o/ (A, )[1/p]. But since

RIE"COO /A is noetherian local, p is Rloc o/ (A, J)-regular and the p-torsion
freeness follows. O

3 Models of Hilbert modular varieties
3.1 Pappas—Rapoport integral models

Let F be a totally real field with [F' : Q] = d and let O denote the ring of
integers. Let D = D/ denote the different of F. Fix anembedding Q < Q,,
once for all.

For every place p of F above p, we shall denote the completion of F at p by
Fy, its ring of integers by Oy, and a uniformiser 7y, (or 7 when the reference
to p is clear from the context); denote the ramification index by e, (or e when
the reference to p is clear from the context) and the residue degree by fp Let
Fp denote the maximal unramified extension of Q,, in Fy; and let E € Fp [u]
denote the Eisenstein polynomial in u defining the totally ramified extension
Fy, over ﬁp of degree ey.

Let L be a finite extension of Q, which contains the image of every embed-
dingof F — Q — Q > and let O denote its ring of integers and let x denote
the residue field.
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For every place p of F above p, we shall let X}, denote Homg, (Fp, L) and
let ﬁ‘p denote Homg, (I:”p, L). For every t € ﬁ’p, let Z:’p’r denote the set of

elements in X, whose restriction to ﬁp is 7, and we fix, once for all, a bijection
between X, ; and the set of integers between 1 and ey; if we let E; € L[u]
denote the image of E by 7 for 7 € ﬁ'p, it mean that we order (and fix) the
roots of E; in L.

For every place p of F above p and 7 in ﬁp, let !, forevery 1 <t < ey,
be the image of 7y by the element of X, ; corresponding to 7; and let E; ()
be the polynomial (u — y!)(u — y!+1) -+ (u — y;*) in u with coefficients in
O (and hence in Og for any O-scheme S).

Let V = F? and let (, ) denote the standard non-generate alternating
bilinear pairing on V. Let B = F thought of coming equipped with identity
‘involution’. Define the closed algebraic subgroup G over Q of GLp(V) =
Resr/QGL; as in 6.1 in [40].

Let U be an open compact subgroup of G(A>) such that U N G(Q,) =
G(Z)). Indeed we suppose that U is the principal congruence subgroup mod
n of G(A°°), and suppose that n > 3 and is prime to p.

Fix, once for all, a set of representatives ¢ € AIX, for the strict ideal class
group A5 /F*(OF @z Z")* (F ®QR)} of F; by abuse of notation, let £ also
denote the corresponding fractional ideal of F.

By ‘4’ we shall always mean ‘the subgroup of its totally positive elements’.

For every (fixed) representative ¢, define ./\/IB ; to be the functor which
sends an O-scheme S to the set of isomorphism classes of data (A, i, A, n)
consisting of

— an abelian scheme A/S of relative dimension d = [F : Q]

—1:0F — End(A/S)

— an Op-linear morphism of étale sheaves A : (£, £,) — (Sym(A/S), Pol
(A/S)) which is indeed an isomorphism, and by which the natural mor-
phism A ® Sym(A/S) — AV is also an isomorphism (note that these
are equivalent to the condition Deligne—Pappas defines: a homomorphism
€, €1) = (Sym(A/S), Pol(A/S)) of Of-modules such that the compos-
ite A® ¢ — A®Sym(A/S) — A" is an isomorphism);

— an Op-linear isomorphism A[n] >~ Of ®z (Z/nZ).

The functor is representable by a scheme over O which we shall denote

by Yl]ﬁ, it follows from local model theory that its fibre Yy U ¢ over Speck is
smooth outside a codimension 2 closed subscheme. The main result of this
section is to construct an integral model over O which is smooth over O (and
hence its fibre over « is smooth).

For every ¢ as above, define MP v ¢ to be the functor which sends an O-
scheme S to the set of isomorphism classes of data (A, i, A, n) where

DP
— (A, i, A, n) define a S-valued point of MU,@
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— For every place p of F above p and every T € EAp, the T-component
Lie¥(AY/S). of the Og-dual Lie¥ (A" /S) of the sheaf Lie(AY /S) of Lie
algebras of the dual abelian variety A over S, comes equipped with a
filtration

0=Lie"(AY/S):(0) C Lie"(AY/S);(1) C--- C Lie"(A"/S)(ep)
=LieV(AY/S); C Hix(A/S)Y

such that Lie¥ (A" /S). () is, Zariski locally on S, a direct summand of
Lie¥(AY/S). of rank  and is a sheaf of O, ®; Os-submodule (where ®

1S meant over ﬁp) of LieY(AY/S)., satisfying the condition
(mp, ® 1 — 1 @ y})LieV(AY/S)-(t) C Lie” (A" /S) (1t — 1).
Forevery 7 € Z:’p and every 1 <1 < ¢y, let
GrY(AY/8)(t) = Lie” (A" /8) (t)/Lie” (A" /) (t = 1),
and let
Gr™Y(A/S): (1) = Hyg(A/S)) /Lie"(AY /). (t — 1);
the former (resp. the latter) is a locally free sheaf of Og-modules of rank 1

(resp. 2ep, — (t — 1)).
Let

D™ (A/S) (1) =ker(E.(t) |Gr™V(A/S): (1))
and

D(A/S):(t) =ker(m @ 1 —1®@ ¥/ | D™ (A/S): (1))
=ker(m® 1 — 1@yl |Gr YV (A/S):(1)).
We know the ranks of these Og-modules:

Lemma 12 Forevery t € ﬁ‘p and for every 1 <t < ey,

— D7 (A/S)(¢) is a locally free sheaf of Oglul/E.(t)-modules of rank 2
and is also a locally free sheaf of Og-modules of rank 2(ep — t + 1);
— D(A/S).(t) is a locally free sheaf of Os-modules of rank 2.

Proof This is essentially Proposition 5.2(b) of [36] with d = 2. O
Lemma 13 Foreveryt € Z:'p andeveryl <t < ep, Gr’(AY/8): () islocally
a rank I direct summand of D(A/S)(t) as an Og-module.
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Proof Since this is not proved in [36], we shall give a complete proof. By
definition, Gr¥(A"Y/S).(t) is a subsheaf of Og-modules of D(A/S).(r). It
suffices to prove that the quotient D(A/S).(1)/GrY (AY/S)(¢) is locally free
of rank 1. Consider the exact sequence

0 — D(A/8):(1)/Gr”(A”/S):(t) — Gr™ Y (A/S)<(t)/Gr"(AY/S)< (1)
— Gr™V(A/8):(t)/ D(A/S)< (1) — .

Firstly observe that the middle term
Gr™(A/$):(1)/Gr”(AY/S)c (1) = Gr™"(A/S): (t + 1),

and it is locally free of rank 2e, — t; hence it suffices to show that
Gr~V(A/S):(t)/D(A/S)(t) is locally free of rank 2e, — (¢t + 1). The
preceding lemma asserts that D(A/S).(¢) is locally a direct summand of
D™ (A/S).(¢t) with the quotient D™ (A/S)(t)/D(A/S).(¢) locally free of
rank 2(ep —t + 1) — 2 = 2(ep — 1). It is proved in the proof of Proposition
5.2 in [36] that D~ (A/S) () is locally a direct summand of Gr™ (A/S)(¢)
with the quotient Gr™Y (A/S).(1)/ D~ (A/S);(¢) locally free of rank r — 1.
Hence the quotient Gr™Y(A/S).(t)/D(A/S).(t) is locally free of rank
2(ep — 1) + (t — 1) = 2ep — (¢t + 1), as desired. |

Proposition 6 The functor MPURZ is representable by a smooth scheme, which
we shall henceforth denote by Y. l}}R@ over O. Furthermore, the forgetful mor-

phism, Y, II;RE —Y [1])12 is proper.

Proof Representability: Define Mgre to be the functor which sends an O-

scheme S to the set of isomorphism classes of data as in MZ‘}, except
that it ‘forgets’ the last condition about the prescribed action of Of; then
Mgrg — MBZ, forgetting filtrations, is clearly relatively representable
and proper, hence Mg’,rg is representable. The relative representability of
Mf}; — Mgfe follows from Lemma 1.3.4 in [29], for example.
Smoothness YII;FZ is locally of finite presentation, and it suffices to show
its formal smoothness in the following sense. Choose a closed point of Y}E,
and let RB{‘E denote the completed local ring of YEFZ at the closed point and
M 51?[ its maxim ideal. Let Mgl?é/\ denote the ‘local formal moduli’ functor
Spf REI?Z, and let R be a complete noetherian local ring with maximal ideal M

such that R/M =~ REI?Z /M 55,. It suffices to prove that
M () = MG S,

@ Springer



Integral models of Hilbert modular varieties 203

induced by 3 & Spec R/M'=! = § o Spec R/M! for an integer [ > 2
which we fix, is surjective. We shall show this by the Grothendieck-Messing
crystalline Dieudonne theory.

Let (A/S,i, %, n, (Lie" (A" /S).(1) C --- C LieV(A /S):)) be a point
of /\/lP " over S. Then, for every t, Gr” (ZV /E)t(t) is locally a Og-direct
summand of the locally free sheaf D(A/S) () of Og-modules of rank 2 by
the preceding lemma.

Let ! be a lifting in Og of ¥’ in Og. The Og-dual HL(A/S)" of the
crystalline cohomology sheaf of Og-module is alocally free sheaf of Or ® Og-
modules of rank 2, and ker(r ® 1 — 1 ® y! | HL(A/S)Y) defines a locally
free sheaf of Og-modules of rank 2 which lifts D(A/S).(1). It then follows
that there exists a locally free subsheaf Lie“ (Zv /S):(1) ofker(r @1 —-1®
v HL(A/S)Y) of rank 1 which lifts Lie¥ (A" /S) (1).

Suppose, for 1 < [ < ¢, that every Lie" (ZV /8) (1), locally free of rank /
over S, lifts LieV (A~ /S)- (1) and which satisfy Gr" (ZV /8 () C ker(wr ®
1 —1@yl | HL(A/S)Y /Lie" (A" /S) (I — 1)) for 1 <1 <t.

One may and will define Lie" (Zv /8)z(t + 1) to be a rank ¢ 4+ 1 locally
free Og-submodule of Hclr (A/S)V satisfying the condition that its quotient
Liev(zv /S + 1) /LieV(ZV /8):(t) defines a rank 1 direct summand of
ker(m @ 1 — 1@ y/ T | HL(A/S){ /Lie" (A/S): (1)) which is an Og-module
of rank 2 lifting D(A/S),(t +1).

It then follows from the Grothendieck-Messing crystalline Dieudonné defor-
mation theory that there exists a Hilbert—-Blumenthal abelian variety A over
S whose pull-back to S is (A/S, i) and Lie (AY/S); x5 8 ~ LieV (A" /S),
for every 7. Evidently, Lie(A/S) satisfies that the Kottwitz ‘determinant’ con-
dition (Definition 2.4 in [58]), and it follows from Corollary 2.10 of Vollaard
[58] that X lifts over to S. m|

Let YP R denote the disjoint union Yy, PR ¢ over £.

Let ‘.B denote the product of all prlme ideals of OFf above p. For a repre-
sentative £, let £z denote the element (or its corresponding fractional ideal) in
the fix set of representatives representing the fractional ideal ¢5]3.

Define MBI ¢ to be the functor which sends an O-scheme S to the set of
isomorphism classes of Op-linear i isogenies

f:A/S— B/S

of degree |OF /| such that ker f C A[‘B] Where A and B come equipped
with PEL structure defining S-points of Y e Pand Y ‘fin respectively such that

(f¥oSym(B/S)o f. " oPol(B/S)o f) equals (BSym(A/S), PPol(A/S)).
One can check that the last condition is equivalent to demanding that C = ker f
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is an isotropic subgroup of A[*3] in the sense that, for any A in Sym(A/S) (in
fact, it suffices for any A of degree prime to p), A maps C to (A[3]/C)". The
functor is representable by an O-scheme Y EIPW’ ¢

Similarly, we define MPUI}W ; to be the functor which sends an O-scheme §
to the set of isomorphism classes of O-linear isogenies f : A/S — B/S of
degree |OF /B| such that ker f C A[3] defining an S-point of Y, l]?IPW’ ¢» Where
A and B are respectively S-points of ¥ 558 and Y, 55’413 such that the filtrations
commutes the diagram of locally free Og-sheaves:

HLY(A/S): — HiY (B/S): — HiY (A/S):
U U U
LieV(AV/S), — LieV(BV/S), — LieV(AV/S)r
I I I
LieV(AY/S)c(ep) —> LieV(BY/S)c(e;) —> LieY(AY/S):(ep)

U U U
LieV(AY/S)c(ep —1) —> LieY(B"/S)c(ep — 1) —> LieY(AY/S)(ep — 1)
U U U
U U U

LieV(AY/S).(1) —> LieY(BY/S):(1) —> LieV(AY/S):(1)

If welet C = ]_[p Cy C APl = ]_[10 A[p] denote the kernel of 7 : A/S —
B/S, one can see that Lie" (C"/S) comes equipped with a filtration

0 = Lie"(CY/$):(0) C Lie"(C¥/S)¢(1) C --- C Lie"(C"/S) (ep)
= Lie¥(C"/S),

defined by coker(LieV(AV/S)r(t)/LieV(AV/S)AT (t—1) — LieV(BY/S).(1)/
LieV(BY/S)¢(t — 1)) for every p in Sp, 7 in Xp, and 1 < r < ep; and each
Lie¥ (CV/S)¢(1)/Lie¥(CV/S):(t — 1) is killed by .

Proposition 7 The functor MPUI}W’ ¢ s representable by an O-scheme.
Proof 1t is clear that ./\/lf}}w’ ¢ 18 relatively representable over MB}I)W’ ¢ O

LetY 51§w, , denote the O-scheme representing /\/llz,l}w’ , 1n the proposition

and let Y, glfw denote the disjoint union of Y, EIIQW, ¢, over £ ranging over the fixed
set of representatives as before.

As the definition of YER and Y, glfw are based on the local model constructions
of Pappas—Rapoport [36], it is clear what their local models should be.
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3.2 Compactification
Fix a representative ¢; we shall compactify Y, 55 and Y Elfwv , following
Rapoport’s [39] and Stroh’s [50] observations. Fix the integer n > 3 defined
in the previous section.

By a ¢-cusp degeneration data C, we shall mean two fractional ideals M and
N of F, an exact sequence

0D 'M'S5L N0

of projective Op-modules, and an isomorphism MN~! ~ D; suppose fur-
thermore that it comes equipped with a choice of an isomorphism L/nL =~
(OF/nOp)>.

Given an {-cusp degeneration data C as above, let M = MN, M, =
n~IM™T,and MY = Homz(M™, Z); let M;{y\jr denote the submodule of the
positive elements in M ® R where its positivity is defined via the isomor-
phism MY ~ ¢M~2D~! and the positivity of each of the fractional ideals
on the RHS.

Let X' denote a rational polyhedral cone decomposition {7} of Ml—{,\-/',- U {0};
we may and will choose it so that it is level-n-admissible in the sense that
it satisfies the conditions of 3.2 and 3.3 of [10] (see p. 299 of [39]). Let
S¢ = Spec R with R = O[M,f], and let Sy — S¢: = Spec R; denote the
affine torus embedding where R, = O[M,;Ir NntVl.

As Stroh [50] puts it, we may think of S, as a moduli space (stack) of Deligne
1-motives corresponding to an £-cusp degeneration data C: let X = Spec A be
a normal scheme, Y an open dense subscheme, and Z = X — Y = Spec A/I
for an ideal I of A. In our context, a Mumford I1-motive over (¥ <> X) in the
sense of Stroh is a set of data: the semiabelian variety G = G ®z D~'M~!
thought of as it is defined over X (where G is the multiplicative group scheme
base-changed over to F'), a ‘lattice’ N over X (i.e. alocally constant €tale sheaf
of finite free abelian groups), and a complex ¢ : N — G of fppf sheaves of
abelian groups over Y defined by an Opg-linear homomorphism N — G(Y)
whose induced homomorphism trp/g o ¢ : M™ — G(Y) maps MjrL to 1.

Let Spf R; denote the affine formal completion of Sy ; along S¢  — Se. Let
X¢.r = Spec Iér ,let Yy denote its open dense subscheme defined by the pull-
back of Xy . over S, along Sy < Sy 7, and let Z; . denote the complement
X lt — Y LT

Rapoport’s application [39] of the Mumford construction (in the ‘splitcase’)
gives rise to a semi-abelian scheme

(G®z D 'MYy/qN

over Xy r such that
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— the pull-back to Yy, of (G ®z D~'M~1)/q" is a HBAV [see (i) and (ii)
of [39], p. 297] which is £-polarisable [see (v) and (vi) in [39], p. 298]
which comes equipped with a level n-structure [see (iii) and (iv) in [39],
pp- 297-298], and whose dual Lie algebra ‘sheaf” M comes equipped with
a canonical PR-filtration in the sense of Sect. 3.1 (and gives rise to a map
from Yy ; to Yl];i),

— if A denote the universal HBAV over Y, 55,, the p-torsion of (G ®z
D! M*I)/qN over Yy ;,1.e., the pull-back to Yy  of (G@ZD*IM*I)/qN,
is canonically isomorphic to the p-torsion of the fibre product of A and
Yy . over Y}E.

Definition Suppose that (G ®z D~'M~")/¢") over Y, . comes equipped
with a Raynaud submodule scheme Cy, of (G ®z D~ 'Mm *1) / qN )[p] of rank
1 for all p in Sp. Let Sp,x and Sp .; be subsets of Sp defined such that p lies
in Sp « if Cy is multiplicative while it lies in Sp ¢, if it is €tale; in which case
Sp,x and Sp ¢, are disjoint and their union is Sp.

Definition Let S, denote the disjoint union over all partitions (Sp, x, Sp,er)
of Sp of Sy; and define X1 ; and Y7 ; similarly.

Let Spec R;L denote the henselisation of (S¢ r, S¢,r — S¢). Then it follows
exactly as in Proposition 2.3.3.1 in [50] that there exists semi-abelian scheme
(G®z D'M~1)/gN)* which is ‘as universal’ as (G ®z D~'M ™) /q" is.
It furthermore follows as in 2.4 in [50] that there exists an étale extension Rﬁ’
over R, and a semi-abelian scheme (G @z D~'M~—1) / qN )¢! which satisfies
the same properties as (G ®z D~'M ™) /¢" with (G @z D~'M~1)/q"N)¢!
in place of (G ®z D~'M~1)/q".

Definition Let Xf’Z . denote the pull-back to Sy, of X;’fr over Sy ; along
the natural forgetful map from Sy ¢ ; to S¢ .. Similarly define Yf% , to be the
pull-back to Sy ¢ of YZ’T over S along S ¢ — Sp.

Definition Let }fé’z =L Yy and X'y =1lc L1, XZT where C ranges
over the set of isomorphism classes (i.e. homotheties of ideals) of £-cusp
degeneration data and where t ranges over X with C given. Define X F[f 5 and

Y(y 5 similarly.

: : et _ yet et
Lemma 14 The quotient algebraic stack of Y, s by R = Yy XYl];]i Yy
is isomorphic to Y. II;RK' Similarly, the quotient algebraic stack of YﬁZ 5 by

__ yet et o7 : PR
Ri=Y, s XyrR Y, 5 is isomorphic to Yy,

Recall that Y gRe 1s smooth over O, and Yglfw ¢ 18 normal. The second asser-
tion can be checked by its local model.
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Definition Let X E,RE denote the quotient algebraic stack of X zz’t 5 by the nor-
malisation of X§\ x X{'y in R.

Let X 5}} ¢ denote the quotient algebraic stack of X¢ L¢, s by the normalisa-
tion of XI,Z,E X XM’E in Ry.

Proposition 8 Xy, PR and X Zliw ¢ are proper over O.
Proof See Proposition 3.1.5.2 and Théoreme 3.1.8.3 in [50]. |

Recall that U is the full congruence subgroup of level n for an integer n > 3
prime to p.

Let O , denote the totally positive units in F and O | denote the
subgroup of the squares of elements in O, i.e., units, congruent to 1 mod 7.

As explained more carefully in Section 2 in [14], observe that 0X acts
(and 0X , acts trivially) on £-polarisations, hence acts on XFPR Ut and on
Xg%w ¢ Let O>< — 0X 4/ 0>< ,- Furthermore, Section 2 in [14] explains

that GLy(OF ®z Z) acts on X/ PR and X U,

Definition Let K denote the preimage in GL,(OF ®z Z) = (Resr/QGL>) (2)
of (0 1) C (Resr;QGL2)(Z/nZ) by the reduction mod n map (Resr;qgGL2)

(Z) — (Resp/QGL2)(Z/nZ) and let XPR (resp. X Iw) denote the dlS]OlIlt
union over £ ofXPl?E = XPI?L,/(O Fo X K) (resp. XKIWE = XUIWE/(O Fli X
K)). We similarly deﬁne Y ,ER (resp. Y,E}I{W) to be the d1s101nt union over £ of
YRR = YER /(07 x K) (resp. YRR, , = YR, /(O] x K)) . The set of
geometncally connected components of YPR may be 1dent1ﬁed with the strict
ideal class group AT /F(OF ®z Z)X.

The formation of 0; ’I—invariants does not change p-adic and mod p geom-
etry of X ER and X ]l)]l}w we are interested.

4 Hecke operators, odds and ends
4.1 Classical p-adic Hilbert modular eigenforms

Let V denote the open compact subgroup K or KIw of (Resg /QGLZ)(Z) as
above. With that choice made, let X \P;],Qz denote its toroidal compactification
over O defined as above. While the smooth O-scheme X ??g depend on a
choice of an admissible polyhedral cone decomposition, we shall not refer to
the choice. Furthermore, we may and will choose an admissible polyhedral
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cone decomposition for V. = KIw compatible with the choice we make for
XK,

Let(A/S,i, A, n, (LieV(AY/S)(1) C --- C LieV(AY/S);)) be an S-point
of Y 553 for an O-scheme S. Let Lg denote the direct sum of two copies of O,
‘base-changed’ over O to Og. The cotangent sheaf Lie¥ (A/S) of A over S is
a direct sum of locally free sheaves Lie¥ (A/S); of Os-modules of rank e}, for
T in ﬁ‘p = Homg, (ﬁp, L) for every p in Sp. For every 7, the polarisation A
equips LieY (A/S); with a filtration

0 = LieV(A/S);(0) C Lie"(A/S); (1) C --- C Lie" (A/S): (ep) = Lie" (A/S): C Hjz(A/S):

definedonLie” (A" /S).. Thelocally free sheafker(m @ 1—1®y/ | Hle (A/S)/
LieY(A/S)(t — 1)) of Og-modules is of rank 2 for every 1 <t < e, and

Lie"(A/S)(r)/Lie” (A/S).(t — 1)
Cker(r ® 1 — 1 ®y! | Hg(A/S)/Lie" (A/S)(t — 1)).

The covering over S, defined as the Zariski sheaf over S of isomorphisms
ker(m ® 1 — 1@ v/ | H&R(A/S)/LieV(A/S)(t — 1))~ Lg

for all T in ﬁp, 1 <t < ep, and p in Sp, which sends GrV(A/S).(t) =
LieV(A/S).(t)/Lie¥(A/S)(t — 1) to aline in Lg which equals its orthogonal
for the standard alternating form on Lg, is a torsor with respect to the X'-
product of a Borel subgroup B of the base-change GL,,¢ (by the standard
embedding of Q into L), where ¥ = Homgq(F, L). In the unramified case, this
sort of construction is standard (using the smooth model of Rapoport [39]);
the Pappas—Rapoport filtration exactly makes it possible to see all isotypic
components, which does not seem possible with the integral models defined
in [13].

For a pair A = (k, w) consisting of a [F : Q]-tuple of integers k = >_ k¢
where ¢ ranges over X' and an integer w such that k, = w mod 2, consider the
following invertible sheaf of Og-modules:

QGr(A/$): ()™ ® 24y , ® SdF
L

where all tensor products are defined for Og-modules, and the first tensor
product ranges over X where, for every ¢ in X, there exists a unique prime p
above p such that ¢ : ' ®q Q, — L factors through F, and its restriction to
the unramified extension I:”p over Q,, is exactly T and ¢, as an element of X, ;
corresponds to 1 < ¢ < ep; and where .Q(}R, , 18 the ¢-isotypic component of
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the sheaf of relative differentials of S over O, and where Std, is the invertible
sheaf of Og-module corresponding to the standard representation of the centre
in B followed by the projection to S by ¢.

Let <7, denote the invertible sheaf on Y‘];R obtained when applying the
construction to the universal HBAV A over § = Y ER. The invertible sheaf
extends to Xf,R, which we shall again call «7,. It should be possible to use
these sheaves to define an eigenvariety for Hilbert modular forms in the general
ramified case.

Definition We define a section of the induced invertible sheaf <7, over X ER
(resp. X?}W) for A = (k, w), to be a p-adic classical cusp Hilbert modular
form (on Resr;@GL2) over O of level K (resp. K N Iw) and of weight A, or
of weight k and central character of weight w.

Remark We will only interested in the case of A = (k, w) where k, = 1 for
every tin X,

For every prime p of F above p, let wy, denote the automorphism of X ?}w
defined on the non-cuspidal points by the automorphism sending (A, C) to
(A/Cy, Alp]/Cy x C?) where by C*, we mean the finite flat subgroup ‘C
away from p’.

Let 71, or w when it is clear what it is meant (resp. 72 or 7p), denote the
morphism X ;ﬁw - X ;}R defined on the non-cuspidal points by the correspon-
dence sending (A, C) to A (resp. to A/Cp).

We define Hecke operators on X IP(]}W. For a prime Q of F notdividing p (with
auniformiser ), let X ?%w,le denote the toroidal compactification of the fine
moduli O-space YII;II{W’IWQ of A, parameterised by Y I}?fw, together with a finite
flat subgroup scheme D = D, of the finite étale group scheme A[mq], étale
locally isomorphic to (Of/ nQ)Z, of order Nr,QQ which locally f.p.p.f. admits
a OF /mg-generator. It follows from the proof of Theorem 3.7.1 in [29] that the

forgetfulmap 7y g : ¥ Iglfw,le - Y I}?fw is a relatively representable morphism

which is finite étale. Let 2 ¢ denote the extension to X ?}W’IWQ —- X ?}W of
the morphism defined by sending a non-cuspidal point (A, D) to A/D.
For p above p, let X ;ﬁw W, [1/p] denote the toroidal compactification of

the fine moduli L-space Y}?I{w’lwp

Y }?fw[l / p] parameterising (A, C) together with a finite flat subgroup scheme

D of the étale group scheme A[p] of order Nr/Qp which has only trivial
intersection with C. It again follows from the proof of Theorem 3.7.1 in [29]
that the forgetful map 7y : YII;II{w,pr[l /p]l — Y}?fw[l /p] is a relatively
representable morphism which is finite étale. Let 75 , denote the morphism
X ?}W,pr (1/p] > X }I)(Riw[l / p] defined on the non-cuspidal points by the rep-
resentable morphism sending (A, C, D) to (A/D, (C + D)/D).

[1/p] which is the finite étale covering over
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Let 7y, 2 denote either 7y g, m2,Q : X?}w, — X?}W OF 7T p, M2p -

Xw.w, [1/P1 = Xi,[1/p].

Let X?}\’NR'a denote the Raynaud generic fibre associated to the formal
completion of X Zl}w along its fibre. By slight abuse of notation, we let
X ?}W’IWF [1/p]R-2 denote the Tate rigid analytic space associated to the generic
fibre X ?}WJWP[I /pl. Let < r-, denote the Raynaud analytification of the
invertible sheaf &% over X llb(l}w and X ;}R.

By definition, we have 7} %, r-a — 7| % R-a- If U and V are admissible
open subsets of X ?}"VR_a in the case of Q and X ?}W[l /pIR"% in the case of p
satisfying 7~ ! (U) Cm, ! (V), we have a homomorphism of sections

Iwq

D R-a(V) —> (2,475 5 R-a) (V) (1475 D R-D(U) —> (01477 D R-2)(U) —> Hy R-a(U)
Il I

T h R V) — mhh ey U)

where the rightmost map is the map of U-sections of the trace morphism; and
we shall call it HeckeCor (p)(U) or HeckeCor(Q)(U) depending on the case
with p or Q.

Let Uy, denote the morphism

(Nr/p) ™ "HeckeCor(p)(U) : o g-a(V)—> %% R-a(U)

We define T (Ug if Q divides the level of U) exactly the same with Q in
place of p.

Finally we define an operator wy, of sections of the invertible rigid analytic
sheaf 2%, r-, over an admissible open subset U of X?}"VR_"I. For a section f
of .7y r-a over U, the pull-back w;‘f is a section over wyU of w;‘m,R_a;
its pull-back n;’pw f is a section over wpU of @7, Rr-a, Which we shall call

wp(f)-

*
p

4.2 Overconvergent p-adic Hilbert modular forms

We shall define an invariant ‘finer’ than the degree functions of Raynaud
[41] and Fargues [18]. This is specific to HBAVs of Pappas—Rapoport type
parameterised by X ?}\’NR'E‘, and is a key technical input that allows us to perform
analogues of Kassaei’s calculations in the unramified case [26]. One significant
advantage of our construction is that, as we shall see it in Lemma 27 for
example, it reads p-adic geometry of X ;‘}&R'a qualitatively more than the

standard degree function on the Raynaud generic fibre of Y}?fw.
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Let K be a finite extension of L; and let Ok denote its ring of integers
and let vg denote the valuation on K normalised such that vg (p) = 1. Let
S = Spec Ok.

Following Tate [51],

Definition Let & be an associative ring with a unit. An ¢-module scheme
over a scheme § is a commutative group scheme G over S together with a
unitary ring homomorphism & — End(G/S); this makes G(T') for every S-
scheme T a free &-module. If O is of characteristic p and the &-rank of G(T')
is independent of T and indeed 1, we call G a Raynaud &-module scheme (or
O-vector space scheme if & is a field).

Let f : A/S — B/S denote a (closed) non-cuspidal S-point of X?}W

corresponding to a K -point of X ?}\’NR'a. For every p in Sp, T in ﬁ‘p, and 1 <
t < ep, define deg((A, C)/S).(t) in[0, 1/e] to be the vk of a generator in Ok
of the annihilator of coker(Gr¥ (AY /S);(t) — Gr¥(BY/S);(1)).

The sum of all the deg((A, C)/S).(¢) equals the degree function of Raynaud
[41] and Fargues [18]. While it is defined pointwise, this definition works ‘in
families’, i.e., one may take S to be an admissible covering of X Zl}w (and glue).

Note that our degree functions are defined solely as a result of filtrations
defined on both ends of the isogeny f. Incorporating one’s ‘choices of uni-
formisers’ into the equation is what seems to be achieved by this definition.

Suppose that a cusp corresponding to a (class of) £-cusp degeneration
data C as above correspond to a semi-abelian A = (G ®z D~'M~1)/qV
over S = [], X¢,r, whose pull-back to ]_[T Yy r is a HBAV and which
comes equipped with an isotropic Op-stable Raynaud submodule scheme
C =T1,Cp CT1,(G&D~'M~"/q")[p] as above, let deg(A). () be O (resp.
1) for every t in ﬁ‘p and 1 <1t < e, whenever p isin Sp x (resp. Sp ). In fact,

YPR,R-a PR,R-a
KT

analytic functions on defining degrees extend to X g0

to define admissible open subsets in terms of degrees.

, allowing us

Definition For A = (k, w) as above, a p-adic overconvergent (cusp) Hilbert
modular form over O of level K N Iw of weight k (and central character of
weight w) is defined to be an element in the direct limit, over the positive
rationals ¢, of the sections of @, r-, over the admissible open subset of points

& in X?}"VR_a satisying deg(§) < e.

5 Mod p geometry of modulil spaces of p-divisible groups

In this section, we study mod p geometry of XER and X ?}W, by phrasing
the essential part of arguments in terms of stacks, or morally ‘local Shimura
varieties’, of p-divisible groups. We define two new invariants for p-divisible
groups of Pappas—Rapoport type, namely
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— Xt where ‘BT’ stands for Bruhat-Tits as we consider ‘combinatorial
choices of lines in vectors spaces of a fixed dimension’ at Pappas—Rapoport
filtrations; this invariant generalises the ‘Deligne—Pappas invariant’ in [13],

— and Xgo, which is based on the observation of Reduzzi—Xiao [42].

YEo will be used as an essential geometric input in proving an analytic contin-
uation theorem (Proposition 22), which allows us to pass from one ‘canonical
end’ of the valuation hypercube to near the far (opposite) end of the hypercube.
In Section 5.4, the ‘Rapoport—Zink’ [40] stratification is introduced. Proposi-
tions 12 and 13 are the key observations in characteristic p that are to be used
in studying the dynamics of Uy-operator in characteristic zero generic fibre.
In fact they play the same role as Lemma 2.1 in [26].

Let p be a rational prime. Fix once for all an algebraic closure Q »0fQp. In
this section, let 7 a uniformiserin the ring & of integers of Fy,, e the ramification
index, and f the residue degree.

LetL Cc Q » be an extension of Q), containing the image of every conjugate

of F in 61,, and let O denote its ring of integers; and let k denote its residue
field, and 3 = ﬁ‘p denote the set of all Q,-linear embeddings of the residue
field F = [, of F} into k. Let f denote the element of > which is (the unique

lifting of) the standard Frobenius automorphism.
The map sending = ® 1 to a variable u defines an isomorphism

0 & ~ @ rlul/u

where €P ranges over >

Let X be a Barsotti—Tate (Définition 1.5 in [24]) p-divisible group over
a k-scheme S of dimension ef ([24] Remarques 2.2.2, (b)) and of height
2ef, equipped with endomorphism i : & — End(X/S). Suppose that it is
principally polarisable, i.e., there exists an &-linear isomorphism A : X/S —
XV/S. It then follows that Lie(X/S). is a locally free sheaf of Og-modules
of rank ef, while the S-dual (5.3 in [4]) DY (X/S) of the Dieudonné crystal
sheaf D(X/S)s on the (small) site S is a locally free sheaf of & ®z, Os-
modules of rank 2. The dual DV (X/S) comes equipped with Frobenius-semi-
linear endomorphisms F and V defined by duality in terms of V and F on
the Dieudonné crystal D(X/S) respectively; hence DV (X/S) is isomorphic
to D(XY/S) as Dieudonné modules, and Lie¥(XV/S) ~ VDY (X/S) for
example.

Definition For aclosed immersion of S into the first-order thickening S[e] /€2,
let DY (X/S[e] /62) denote the S-dual of the Dieudonné crystal D(X/S) on
the site S[€]/€2. For a homomorphism ¢ : L — M of Og-modules, we shall
let L[¢] denote the kernel ¢ in L.
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5.1 Filtered Deligne-Pappas/Kottwitz—Rapoport

Definition A principally polarisable Barsotti—Tate p-divisible group X/S$ as

above is said to be filtered if, for every 7 in > , the T-component Lie¥ (X" /S),
of the dual of the Lie algebra sheaf Lie(X " /S) of the dual p-divisible group
XY over S, comes equipped with a filtration

0 =Lie¥(X"/5):(0) C Lie"(X"/S): (1) C --- C Lie” (X" /S)(e) = Lie" (X" /S): C DV(X/S):

such that LieY (XY /S)(t) is, Zariski locally on S, a direct summand of
LieV(XV/S); of rank ¢ and is a sheaf of & ®; Og-submodule of Lie¥ (X" /S).,
satisfying, if we let u denote 7 ® 1,

u(Lie¥ (X" /S).(t)) C Lie"(X"/S).(t — 1).

For brevity, we often write Gr” (X" /S)(¢) to mean the quotient Lie"
(XY/8)c(t)/Lie” (XY /S).(t = 1).

Lemma 15 For every T in >,

uLie¥(XV/8). (1)) =0, u’(LieV(XV/$):(2) =0, ...,
u¢(Lie” (XY /8)(e)) =0

Proof Since u(Lie¥(XV/S):(t + 1)) C LieV(X"Y/S).(t), it follows that
u ™t (LieV(XV/8): (r + 1)) C u'(LieV (X" /S)¢(1)); hence it suffices to show
that u(Lie" (X" /S); (1)) = 0 but this holds by definition. O

Lemma 16 u¢~'Lie¥ (XV/S); C Lie¥ (X" /S):(t) forevery 1 <t <e.

Proof This can be proved by induction. When ¢ = e, the equality evidently
holds. Suppose u¢~+DLieV(XV/S), € LieV(XV/S):(t + 1) holds for t <
e — 1. Then

uLieV(XV/8): = uu¢"+VLieV(XV/S): C uLieV(XV/S):(r +1) C Lie" (X" /S): (¢).

Definition Since X /S is principally polarisable, Lie(X/S) is also filtered if it
is filtered. Indeed, by duality, Lie(X/S) comes equipped with surjections:

Lie(X/S); >~ Lie"(X"/S)Y = Lie"(X"/S)z(e)” — Lie" (X" /S)(e — 1)
— ... = LieV(XY/9): (1) = 0
such that every kernel is a locally free sheaf of Og-modules of rank 1 and is
annihilated by u; indeed, Lie" (XY /S). (t +1)/Lie¥ (X" /S)(¢) is isomorphic
to the dual of ker(Lie" (XY /S):(t + 1)V — LieY(XV/S):(1)Y).
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Define Lie(X/S)(¢) to be the kernel of the composite of surjections:
LieV(X"/S):(e)” — Lie"(X"/S):(e —1)” — Lie" (X" /S):(e — 1)".
Then Lie(X/S), comes equipped with a filtration
0 =Lie(X/S):(0) C Lie(X/S)-(1) C --- C Lie(X/S):(e) = Lie(X/S)

which is analogous to the filtration on Lie" (XY /S); in particular, the assertions
in the preceding lemmas hold for Lie(X/S) in place of Lie” (X ¥ /S). Note that,
by definition, Lie(X /S), (r+1) /Lie(X/S); (¢) isdual toker(Lie" (X /S) (e)/
LieV(XY/S);(e —t — 1) — LieV(XY/S);(e)/Lie¥ (XY /S):(e — 1)) =
LieV(XY/S):(e —1)/LieV (XY /S): (e —t — 1).

Definition Let SBT denote the stack of principally polarisable filtered
Barsotti—Tate p-divisible groups over Spec «. The stack SBT parametrises that
p-divisible groups arising from points of Y,ER as defined in Sect. 3.

Definition For a principally polarisable filtered p-divisible group X over a
k-scheme S, let

D(X/8): (1) = ker(u| D"(X/S):/Lie” (X" /)< (t — 1))

for every 7 in Yandl <t <eltisa locally free sheaf of Og-modules of
rank 2 [see Proposition 5.2(b) of [36] with d = 2].

5.2 Bruhat-Tits

For every 7 in ﬁ‘, define a set X'pt ; of e integers Xt = {vBT, (1), ...,
VBT, (€)} satisfying:
— vpT, (1) =0;
— forevery 2 <t < e, exactly one of the conditions, (BT-1): vgr . (t — 1) =
VBT, 7 (1), or (BT-2): vp1 (¢ — 1) + 1 = v, (¥) is satisfied;
— for every ¢,

t — vBT,¢(t) > vBT, (1).

When convenient, we let vgt 7 (0) = 0, and let vgt ; denote vpT ¢ (€).
Remark The number of #’s satisfying (BT-2) equals vpT ;.

Definition Let Ypt 1 (resp. Zpt,¢,2) denote the subset of {1, ..., e} con-
sisting of 1 and the set of 2 < ¢ < e satisfying (BT-1) (resp. consisting of
1 <t < e satisfying (BT-2)). Evidently X'pr 1 and X ;2 defines a parti-
tionof {1, ..., e}
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Definition Given Xt ., define a subset ypT  of {1,..., e} the following
way. Firstly, for every t, we define a map ¢, (dependent of Xpr ;) from
{1, ..., e} to the set of length e (labeled) sequences of two elements {e1, ez},
by defining ¢, () = e; ift liesin X'pr 1 and {; (t) = ez ift liesin X'pr 2. We
then turn the resulting sequence ¢; (1), ..., {;(e) of ‘words’ into its reduced
expression by sequentially (as ¢ increases) eliminating the adjacent pair eje;
the corresponding pairs of indices in {1, ..., e}, or an index that is in pair,
so eliminated will be referred to as Xt ;-redundant. Finally define ypT, .
to be the set of all 1 < ¢ < e that is not YpT -redundant. By definition,
|¥BT,z| = € — 2vBT,r, Which is defined to be non-negative.

Definition For every integer 1 < N < e, let DY (X" /S);(N) denote the
image of DV(XV/S); by u®

Definition Given data X' consisting of Ygt = (XBT,¢), define SET to be the
closed «-substack of SBT of principally polarisable filtered p-divisible groups
X over k-schemes S satisfying

DY(X/S)z(e — vpr,r (1)) C Lie"(X"/$)<(t) C DY(X"/S)r{e — (t — vr, (1))).

Observe that when Y'pr is defined by demanding that vgt - (#) = O for every
7 in X and ¢, the stack SET is nothing other than SBT.

For two sets of data ¥ = {vpr (¢)} and yt = {IBT,(t)} as above, we
may define a partial order ¥ < X if IpT,-(t) < vBT,(?) holds for every T
in ¥ and 1 <t < e. If this is the case, DV (X/S); (e — Ir.¢) is contained
in DY(X/S):{e — vpr.¢), while DY (X/S);(e — (f — vBT.7)) is contained in
DY (X/S)z{e — (t — IgT.7)), hence SAB\TTF defines a closed «-substack of SET.

Definition If a principally polarisable filtered p-divisible group X over a k-
scheme X lies in the S-fibre of SET —Usgtexs Sgi, we say that X is of type
Y = Xprandlet vgT(X/S):(t) and ypT,- (X/S) respectively denote vpr 1 (?)
and ypT,; corresponding to X.

Proposition 9 For X = Xgt as above, the closed immersion from SE—T to
SBT is representable and formally smooth of relative dimension Y ,e—(e—

2VBT,7) = D, 2VBT -

In earlier versions of the paper, we gave a ‘linear algebra’ proof of this
proposition by carefully inspecting the moduli problem. In the following, we
opt for a proof that is admittedly rather highbrow, yet sheds more light on
Pappas—Rapoport constructions ([35] and [36]), in particular, on their relevance
to Deligne—Pappas constructions.

For simplicity and for ease of reference to [35] and [36], we assume |ZA] | = 1.
The transfer of a proof to the general case is straightforward, as the case
12 =1 typifies what happens at every t in b3 independently.
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Let k be a field of characteristic p and let k[[u]] (resp. k((#))) be the power
series (resp. Laurent series) ring k[[u]] with coefficients in k and a variable u.

Let F,, denote a free k((u))-module of rank 2 and fix a k((u))-basis. Let
& C F denote the free k[[u]]-module generated by the basis over k[[u]].

For a k-algebra R, by a k[[u]] Qi R-lattice in .« ®; R =~ R((u))z, we mean
a submodule over R[[u]] of F.y ®; R which is, locally on Spec R, a free R
module of rank 2 and, when u is inverted, it gives rise to F; ®; R. We often
say ‘...parameterises k[[u]]-lattices of F,’ to abbrivaite this functorial view.

Let G denote GL2(k((z))) and K denote the subgroup scheme of
GL;(k((u))) whose k-valued points stabilise the lattice «7. We see G (resp.
K) as the (resp. positive) loop group of GL; and let G/K be the fpqc sheaf
quotient, i.e., the affine Grassmannian of GL;. For brevity, let X denote the e
copies of G/K, which is also an ind k-scheme.

For an element 7 of dominant coweight GL», let G(t) denote the closure
of KTK in G.

Fix a positive integer ¢. Let

¢ =(d1.....0)

be an ¢-tuple of coweights of GL, which are either trivial or (dominant) minus-
cule, in other words, by the standard identification of the coweights with 72,
¢ is an £ tuple of vectors (0, 0) or (1, 0).

Let G(¢) denote the closed subscheme of the £ copies of G which parame-
terises (¥1, ..., ¥¢) € G x --- x G such that yt_lyt_l lies in G (¢;) (where we
set y; = 1 when ¢ = 0); itis evidently a closed subscheme of the £ copies of G.
We define right action of K¢ by right translations component-by-component.

On the other hand, define an isomorphism

G(¢p1) x -+ x G(¢pe) = G(¢)
by
Y1y v) = (VL VY2 o YY)

By this isomorphism, the aforementioned right action of K* on G(¢)
induces right action of KtonG(¢1) x -+ x G(¢y):

Do VOB s B) = (B By ' 12Bas - B veBo).
The isomorphism G (¢1) X - -- X G(¢p¢) = G(¢) induces an isomorphism
D(¢) = (G(¢1) x --- x G(¢p))/ Kt — G(¢)/ K" of the right K *-quotients
(in the fpqc topology) and it is possible to interpret them slightly differently.
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The quotient G(¢)/K* C X parameterises, for a k-algebra R, the set of
k[[u]] ® R-lattices

o =0)DF)D- DA

in F such that, for every 1 <t < ¢, the relative position p (27 (t — 1), 7 (t))
satisfies the inequality p(2/(t — 1), 2/ (t)) < ¢, in terms of the standard
partial order on the dominant coweights of GL,. The condition about the
relative positions indeed implies that u.o/ (t — 1) C &/ (t) C &/ (t — 1) for all
t. Furthermore, if ¢ is an index such that ¢, is trivial, .2/ (t — 1) = &7 (¢); hence
there are only maximum ¢ — |{1 <t < £ | ¢, is miniscule}| distinct lattices in
each chain &/ (1) D --- D &/ (£) contained in <.

With this ‘moduli viewpoint’, the isomorphism from G(¢)/K* to D(¢) is
given by sending a chain of lattices (&7 (1) D --- D &/ (£)) in F.y as above to
() ), S/ I 2),..., o (e— 1)/ X)).

On the other hand, D(¢) = (G(¢p1) X - - - X G(¢g))/K£ is thought of as a left
G-homogenous bundle that is given by iterated P! -fibrations in the following
sense:

— Let K act on G, and hence on G(¢¢), from right by right translations and
let L(¢¢) denote the quotient G(¢¢)/K C G/K, which come equipped
with natural left G action by left translations.

— Fixingt > 0, suppose D(¢¢—;, ..., ¢¢) is a left G-equivariant bundle over
G (¢¢—1)/ K. We then define

D(¢o—(t+1)s Pe—ts - -+ s P0) = (G(Pr—(1+1) X D(Po—z, ..., ¢e))/K

where we see D(¢e—s, ..., ¢¢) as aright K-module by left-inverse trans-
lations and K acts on G (¢¢—(;+1)) by right translations. We let G acts on
D(po—(+1), - - - » ¢¢) from left by letting it act on the G (¢pe—(;+1))-factor
only by left translations; as aresult, D (¢¢—(+1). - - . , $¢) is a G-equivariant
bundle over over G (¢¢—+1))/K.
If ¢, is minuscle, G (¢;)/K is P! over k which is smooth and consequently,
D(¢) is smooth of dimension

{1 <t < £]|¢, is miniscule}| = (¢ + - - - ¢, (1, —1))

where (, ) is the standard scaler product on R? and where we see the dominant
weight ¢1 + - - - + ¢¢ as a pair of integers. One normally thinks of D(¢) as a
resolution? of G(p1+---+¢¢)/K by iterated P!-fibrations. As [36] Section 6
establishes, G(¢1) x - - - X G(¢¢) i1s naturally thought of as a K t=1_torsor over

D(¢).

2 The construction is often attributed to Demazure, Lusztig, Bott, Samelson and Hansen.

@ Springer



218 S. Sasaki

Definition Let XR be the closed ind-subscheme of X parametrising k[[u]]-
lattice chains & D /(1) D --- D &/ (£) in F such that

A DAN)D - DAU)=E)DEE—-1)D---&1) Dules
where, for every 1 <t < £, we denote
E® =u" ).
Definition Let X"R(¢) denote G(¢)/K*.

By definition, X PR (¢) is a closed ind-subscheme of X PR " Also, since D(¢)
is smooth over k, so is XPR(¢). Evidently, if ¢ is such that ¢, is miniscule for
every 1 <t < ¢, then XPR(¢) = xR,

We now recall Pappas—Rapoport local models. Unless otherwise specified,
£ is chosen to be e in the following.

Fix an isomorphism & ®z, k >~ klu]/u® sending m ® 1 to u and A denote
a free R-module &7 Qg k[[u]l/u.

The Pappas—Rapoport local model NPR parameterises, for a k-algbera R,
the iset of of locally free R-modules

0=A0)CA()C---Ale) CAQR

such that A(r) is, locally on Spec R, a free R-module of rank 7 and such that
7 ®1e(0®k) ® R annihilates A(¢)/A(t — 1) forevery 1 <t <e.

For a such chain of locally free R-modules A(1) C --- C A(e), if £(1) C
-+ C &(e) C & R R denote a chain of k[[u]]-lattices in & lifting A(1) C
-+ C A(e) by & ®r R — A ® R then the map

fr(A)C---CAe))—~> (&) C---Cé(e) C ulEe—1)c---cC ul‘eé”(l))

gives a bijection between NFR and XPR where the ‘converse’ f~! is given by
sending (27 (1) D --- D </ (e)) to the image of (¢~ '/ (1) C u"2a/ (e —
) C---Culdt) C - C () C A R R)in A®; R by reduction
o Qi R — A ®r R mod uf.

For ¢ = (41,...,¢.), we define a closed stratum NPR(¢p) of NFR
parameterising locally free modules A(1) € --- C A(e) C A such
that the relative position p(A(t — 1), A(#)), naturally thought of as an ele-
ment of GL(k[u]/u)\GL2(k((1)))/GLy(k[u]/u®) lies in the closure of
GLy (k[u]/u®)¢;GLo (k[u]/u®) in G forevery 1 <t <e.

The map f : NPR — XPR gives rise to an isomorphism

NR(#) — XR(¢).
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We finally prove the proposition. We define a closed subscheme N ER of NFR
with X = Xt = {vgT(1), ..., vBT(e)}: it parametrises the set of locally free
modules A(1) C --- A(e) C A such that A(¢) is, locally on Spec R, a free
R-module of rank ¢ and satisfies

Afe — vpT(1)) C A(t) C Ale — (t — vBT(?)))

for every 1 < t < e. Note that the condition, evidently closed, is placed
to specify the elementary divisors, i.e., a pair of integers defined as the u-
valuations of a two generators of A(¢) when written in terms of k[u]/u®-basis
of A. More precisely, the elementary divisors of A(¢) is a pair e — vpr(¢) and
e — (t — vpT(?)), which satisfy the inequality e — vT(¥) > ¢ — (¢t — vBT(?))
by definition and which we might see as a dominant weight of GL,. If we let
&) C--- C &(e) C o denote a chain of liftings in &7 of A(1) C --- A(e),
the elementary divisors of & (¢) remain the pair (e — vgr(?), e — (t — vpT(?)))
but &(t)(—(e — t)) has elementary divisors (t — vg(¢), vr(t)) for every
1<t<e.

The scheme N E-R is a local model for § AB\TT and the proposition follows from
the smoothness of N ER which we prove in the following Lemma.

Lemma 17 Let ¥ = X7 = {vpT(1l), ..., vBT(€)}. Define ¢ by ¢, is minuscle
if t lies in ygT, and ¢, is trivial if t is redundant, for every 1 <t < e. Then

NER ~ NFR(g).
In particular, NgR is smooth of dimension |ygt| = e — 2vpT over k.

Proof Since XPR(¢) is isomorphic to NPR(¢), we prove the assertion as an
isomorphism of closed subschemes in X"R. For a k -algebra R, let £(1) C

- C &(e) C &« denote a chain of lattices in F,y ®; R that reduced to
an R-point of N;R. For every 1 <t < e, let &7/(¢) denote &(t){—(e — t)).
Then one observes that the <7 (¢)(—vpT(¢)) as f ranges over ypt define an R-
valued point of X PR (¢) where ¢ is the |ypT| = (¢ — 2vpT)-tuple of minuscule
dominant coweight (1, 0). It is easy to check that this defines an isomorphism
NER ~ X PR((p). By the definition of ¢, XPR(9) is evidently isomorphic to
XPR(g). u!

Remark Wehave NER ~ NPR(¢) ~ XPR(¢) ~ D(¢).Inparticular, D(¢) can
be seen as aresolution of G(¢; +- - -+ ¢.)/ K . The local model corresponding
to G(¢1 + - - - + ¢.) /K therefore parameterises, for a k-algebra R, the set of
locally free R-module A(e) C A ®; R of rank e satisfying the condition

Afe —vpT) C A(e) C A(vaT).
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This is precisely the closed k-singular stratum of the Deligne—Pappas local
model, 4.2 in [13]; and N;R is thought of as a resolution of the stratum at the
singularities.

Proof of Proposition 9 Since NgR is a local model for S;R when | ¥| = 1, the
proposition follows from the lemma above, combined with the observation that
NPR(¢) >~ D(¢) is smooth over k = « of dimension e —2vgT and NPR ~ X PR
is smooth of dimension e. O

5.3 Ekedahl-Oort

In this section, we shall consider an ‘Ekedahl-Oort stratification’ on SBT. To
this end, we use a slight variant of the construction of ‘partial Hasse invariants’
by Reduzzi and Xiao in [42]; the ‘source’ of our maps are on D(X/S).(¢) in
comparison to [40] on Gr¥ (X" /S). (). We emphasise that the idea is essen-
tially Reduzzi—Xiao’s.

Let S be a k-scheme S and X be a filtered principally polarisable Barsotti—
Tate p-divisible group over S. The Verschiebung Vyv : XV — XxVU/P)
defines, for every 7 in Y, a ¢~ !-semi-linear homomorphism

Lie¥(X"/S)jor — (Lie" (X" /S) x,-1 8); = Lie"(XV(1/P/$),
V.
X LieY(XY/S):

of Og-modules that we shall denote simply by V, where ¢ denote the (absolute)
Frobenius morphism on S.

Lemma 18 V above sends LieY (XY /S).(t) C LieY(XY/S); to Lie¥
(XV/ )10 (1),

Proof Since u'Lie¥(XV/S):(t) = 0, one sees that LieY(X"/S).(t) C
u®"'DY(X/S);.As Visu-linear, V(LieV (X" /S): (1)) Cu"'VDY(X/S); =
ue_’LieV(XV/S)f_1or.Itfollows from Lemma 16thatue_tLieV(XV/S)f_lo, C
LieV(XV/S )]c— 1., (). Combining these two, the assertion follows. O
For2 <t < e, welet
AL D(X/S): (1) — D(X/S).(t — 1)
denote the multiplication-by-u-map, and, when ¢ = 1, we let

AL :D(X/8)c (1) —> GrY (X /)1, (e) C D(X/S)(e)
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be the map ‘V o u—¢t1” that sends an element u"_l“g‘ in D(X/S):(1) =
ker(u | DY (X/S);) with & in DY (X/S). to the class V(§)+Liev(XV/S)f—1Or
(e — 1) in Gr¥(X"/S)s-1,.(e).

For 2 <t < e, D(X/S).(¢) is nothing other than u‘lLiev(X/S)T(t —
1)/LieY (X" /S).(t — 1), and therefore the image of AL is Gr¥ (X" /S). (t —1).
The rank of the kernel D(X/S); (£)[AL]is 1 as a result. Similarly, the image of
AlisGrV(XV/S )i-1o7 (€). As pointed out in Lemma 3.8 in [42], the restriction

to Gr¥(XV/S).(¢) of the composite A;fllot 00 A? or © Alo...oAl:

e

At A7 A i
D(X/$):(t) — -+ — D(X/$)< (1) — D(X/S)j-1,,(e) —

At+l

f~lot
—> D(X/S)s-10,(2)
defines the Verschiebung map
V:Gr'(XV/S).:(t) — Grv(XV/S)f—lo.[(t)

induced by Lemma 18. When f = 1, we recover the standard Verschiebung.
For every t in 2 let ygo,; denote a subset of {1, ..., e}, and Ygo denote
the - -tuple (yYE0,7)r as T ranges over >,
For ¥ = Ygo, we define SBT to be the «-substack of SBT parameterising
filtered principally polarisable p-divisible groups X over «-schemes § such
that, for every 7 in ZAJ, A’T is zero if ¢ lies in ygQ,¢-

Remark In the light of the proof of Proposition 9, it is possible to relate X't
and Xgo.

For two sets of data ¥ = Ypo = (¥go,r)r and ¥ = I}, = (yEO s
we may define a partial order X+ < X if ypo.; < VEO,r holds for every 7 in

3. If X+t < X but T is distinct from ¥, we write X+ < X. If this is the
case, SEZ defines a closed «-substack of SgT.

Definition If a principally polarisable filtered p-divisible group X over a «-
scheme S lies in the S-fibre of SET —Ust<x ng, we say that X of of type
2’r0, and let Yo7 (X/S) denote ygo,; corresponding to Xgo.

Proposition 10 Let X' denote Xro. The closed immersion from SET to SBT is
representable and formally smooth of relative dimension ) | Xgo .

Proof Let U be a k-scheme. Let S be a U-scheme, and S[e]/e? its first-order
thickening. Let X be a principally polarisable filtered Barsotti—Tate p-divisible
group over S defining an S-point of the fibre SB sy over U. As SB >y 1s given

@ Springer



222 S. Sasaki

by the vanishing sections over S of line bundles AL for 7 in ygo, ; for every
7, the relative dimension of S%TU — S?,T is at most ) __ | g0, |. It therefore

suffices to establish that the tangent space of SETU at X /S has codimension

> . | Zgo,7| in the tangent space of SBT. Fixrand 1 <t < e, and suppose that
Lie¥ (XY /S).(t — 1) lifts to S[e]/ez. If t lies in yEo 1, it follows, by definition,
that Gr¥(X"/S); is contained in the rank 1 module D(X/S);(#)[A.], and
therefore they are equal. As D(X/ S)t(t)[A’T] lifts uniquely to S[e]/ €2, so
does Gr¥(XV/S).(1). |

5.4 Rapoport-Zink

Let SIBT denote the «-stack of principally polarisable filtered Barsotti—Tate
p-divisible groups equipped with &-linear isogenies to principally polarisable
filtered Barsotti—Tate p-divisible groups. More precisely, the fibre of SIBT over
a k-scheme of S parameterises (the set of isomorphism classes of) of &'-linear
isogenies f : X/§ — Y/S§ of principally polarisable Barsotti—Tate p-divisible
groups X and Y over S such that

— C = ker f is a finite flat &-subgroup of X[x] of order |0 /n| = |F|
such that any principal polarisation on X induces an isomorphism X[r] >~
X[7]¥ which sends C to (X[]/C)" isomorphically,

— for every t in ¥, both

LieV(fY) : Lie"(XY/S); — Lie"(Y"/S),
and
LieV(f")Y : LieV(Y"'/S); — Lie"(X"/S):,

given by f : X — Y and the ‘dual’ isogeny Y /S — X/S such that
frof =monXand f o f* =m onY, will be denoted again by
and (f")Y respectively by slight abuse of notation, commute with their
respective filtrations, and let

VG (XY /S).(t) — GrY(YY/S): (1)

and

(f™MY 1 Gr (YY) (1) — Gr' (X7 /)« (1)

also denote the corresponding morphisms.

For pairs of 0-isogenies f and f” as above, we define analogues of the
invariants defined in [40] and [20].
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Definition For every 7 in b3 , define yrz : (f) (resp. vrz,: (f)) to be the set
of 1 <t < esuchthat f¥ (resp. (f")Y) is zero on Gr¥ (X" /S).(t) (resp.
GrY (Y'Y /S):(1)).

Note that, as m = 0, for every 1 <t < e, either ¢ lies in yrz, ; orin vrz r,
or indeed in both.

Definition Let X denote a tuple (Vvrz.r, YrRZ.7)r, Where T ranges over > , of
subsets yrz: € {1,...,e}and vrz ; C {1, ..., e}, satisfying the following
condition that every 1 < ¢ < e lies in at least one of yrz ; or vrz, ; for every
Tin X.

For a such X, define SIBE to be the closed x-substack of ¢-isogenies

f: X/S — Y/S of filtered principally polarisable Barsotti—Tate p-divisible
groups over S such that

— fY i GrY(XVY/S)(t) — GrY(YV/S).(¢) is zero for every ¢ that lies in
VRZ,T’ i-e'9 VRZ,‘L’ g )/RZ,r(f),

— (fMHY:GrY(YY/S)(t) — GrY (X" /S). (1) is zero for every ¢ that lies in
VRZ,7»1.€., VRZ,t € VRZ,z (f").

Proposition 11 For X as above, the closed immersion of SIB} into SPT is

representable of relative dimension Y ;_ (f — (f — |yrz.t| + f — vrz.1])) =
>i=1(rrz el + IvRzi | = ).

Proof This can be proved as Theorem 2.5.2 in [20]. a

If yrz.: NVrRZ.: = D, |YrRZ.1| + |VRZ.:| = f, and if this is the case for every
1 <t < e, the relative dimension of the closed immersion is O.

Lemma 19 Let f : X/S — Y/S and its dual isogeny f~ : Y/S — X/S
be as above. Then the equalities D(X/S): ([ f¥] = (f)V(DY/S). (1)) and
D(X/S):(O[(fM)Y] = fYDY/S)(t)) hold, and they are all of rank 1.

Proof One observes firstly that, as (f")Y(D(Y/S);(¢)) is contained in
D(X/S):(t)[f"], it suffices to check that they are both of rank 1 over
S. However, it follows immediately from Proposition 5.2 in [36] that
D(X/S):(t)[f] is locally free of rank 1 over S. A similar argument shows
that D(Y/S): ()[(f")V] is rank 1 over S and, as D(Y/S).(¢) is rank 2 over
S, (fM)Y(D(Y/S)(t)) is rank 1 over S. An analogous argument proves the
other equality. O

Proposition 12 Let f : X/S — Y /S and f" : Y/S — X/S be as above. If
t >2andt — 1 lies in vrz - while t lies in yrz -, then t lies in yro,-(X/S).
Ift = 1 and e lies in vgy -1, while t =1 lies in yrz <, then t =1 lies in
yi0,0 (X/5).
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Proof Firstly suppose t > 2. The assumption that + — 1 lies in vrz ¢
implies that (f”)" vanishes on the image by A = AL of D(Y/S). (7). As
AD(Y/S):(t) DY /S).(t)/D(Y/S):(t)[A] and similarly for X, it then fol-
lows that (f)V(D(Y/S):(t)) C D(X/S).(t)[A]. On the other hand, 7 is in
yrz.r(f) and therefore Gr¥ (X" /S).(¢) is contained in D(X/S).(1)[fV] =
(fM)Y(DY/S)(t)). Combining, one deduces that Gr¥ (X" /S).(t) is con-
tained in D(X/S); (t)[A]. As AGrY (X" /S).(¢t) is zero, t lies in ygo 7.

The case t = 1 is similar, except that one has to be careful that the image
by AL of D(Y/8)- (1) is Gr¥(X/S)i-1., (€). o

Proposition 13 Let f : X/S — Y/S and f~ : Y/S — X/S be as above. If
t > 2 and if either

— t — 1 lies in vrz,  while t does not lie in yrz.z,
— ort — 1 does not lie in vrz,; while t lies in yrz -,

holds, then t does not lie in ypo (X/S). If t = 1, if either

— e lies in vgy s-1,, while t = 1 does not lie in yrz <,
— or e does not lie in vgy s-1,; while t =1 lies in yrz,x,

holds, then t = 1 does not lie in ypo,  (X/S).

Proof Suppose that t+ > 2. The case t = 1 is similar as in Proposition 12.
Firstly, suppose that r — 1 lies in vrz r but ¢ does not in yrz . It then follows
exactly as in the proof of Proposition 12, using the assumption that ¢ — 1
lies in vz, 7, that D(X/S): (D[ f¥] = (f))D(Y/S):(t) C D(X/S): (DA
Observing that they all are of rank 1, one sees that they are equal. Therefore,
if Gr¥ (XY /8).(¢) lay in D(X/S).(¢)[A], it would contradict the assumption
that # does not lie in yrz . As Gr¥ (XY /S); () does not lie in D(X/S); (¢)[A],
t does not lie in Yo -

Secondly, suppose that ¢ lies in yrz, but it does not in vrz, ;. One observes
that Gr¥ (XY /8)- (1) C D(X/S)OLf] = (f")YD(Y/S):(t) are equal (of
rank 1). One also observes that A(D(Y/S).(t)) is Gr¥ (Y /S).(¢) and in par-
ticular it is of rank 1. It then follows that

AGr (XY /8)-(t) = A(f")'DY /) (1) = (f)"AD(Y /) (1)
= (fM7Gr (YY)t — 1)

but the assumption that # does notlie in vgy, -1, (f) implies that AGrY(XV/S),
() is non-zero. Consequently ¢ does not lie in ygo, 7. O
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Swapping f for f” and f” for f, itis possible to prove:

Proposition 14 Ift > 2 and t — 1 lies in yrz.r while t lies in vrz. ¢, then t
lies in Yo, (Y/S). If t = 1 and e lies in YRZ,§~lot while t = 1 lies in vrz, 1,
thent = 1 lies in ygo, (Y /S).

On the other hand, if t > 2 and if either

— t — 1 lies in yrz r while t does not lie in vrz ,
— ort — 1 does not lie in yrz,r while t lies in vrz ¢,

holds, then t does not lie in ygo - (Y/S). If t = 1, if either

— e lies in yrz -1, while t =1 does not lie in vrz «,
— or e does not lie in yryz ;-1 while t =1 lies in vrz,<,

holds, then t = 1 does not lie in ygo (Y /S).

Proof See the proofs of Proposition 12 and Proposition 13. O

5.5 Calculations with de Rham—-Breuil modules

As in the previous sections, let 7 be a uniformiser in the valuation ring &' of
F, e the ramification index, and f the residue degree. Let F = &'/m denote
the residue field. Let &1, denote the valuation ring of a finite extension L of
F, which contains the image of every embedding of F}, into 61,. Write the set
Y= ﬁ‘p and the Frobenius automorphism f in Y asin the previous section.

Let K denote a finite extension of L with ring Ok of integers, a uniformiser
&, the ramification index ex and k = Ok /& Ok the residue field. We normalise
the valuation on K so that p has valuation 1. Unless otherwise specified,
S = Spec Ok and S = Spec Ok where O = Ok /m Ok in this section.

By a Barsotti—Tate p-divisible group (which comes equipped with an endo-
morphism ¢ — End(X/S)), we shall mean it in the sense of Définition 1.5
in [24] over S, and is of dimension fe and of height 2 fe.

Definition A principally polarisable Barsotti—Tate p-divisible group X over
S is said to be filtered if, for every 7 in X, Lie” (X" /S), comes equipped with
a filtration

0 = Lie(X"/5)(0) C Lie"(X"/$): (1) C--- C Lie¥(X"/S)(e) = Lie"(X"/S): C DY(X/S):

such that Lie¥ (X" /S). () is, locally on S, a direct summand of Lie" (X" /S)
of rank ¢ and is a sheaf of & ®,; Ok -submodule satisfying the condition

T ®1—1®yHLieV(XV/S). (1) C Lie" (X" /S):(t — 1)

where y,l, ..., y¢ are the fixed roots of the Eisenstein polynomial E; over
0 ® O, which may also be thought of as over & ®, Ok as defined in Sect. 3.
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Definition If X is a principally polarisable Barsotti—Tate p-divisible group
over S, and C is an F-subgroup of X[r] of order |F| such that any principal
polarisation X — X" on X induces an isomorphism X[7] ~ X[x]" which
sends C to (X[r]/C)Y, we say that C is a Raynaud [F-vector subspace scheme
of X for brevity.

Furthermore, we say that C is filtered if it is the kernel of an &'-linear isogeny
f : X/S — Y/S of filtered principally polarisable Barsotti—Tate p-divisible
groups over S such that both Lie¥ fV : LieV(XV/S); — Lie¥(Y"/S), and
LieV(f™Y : LieV(YV/S); — Lie¥(X"Y/S); commute with filtrations on
LieV(XVY/S); and LieV(Y"/S)-.

Lemma 20 A principal polarisation ). : X — XV defines an isomorphism
from C onto the Cartier dual (X[]/C)" of Raynaud submodule scheme.

Proof By definition, the image by A of C is contained in (X[7]/C)V. Since
both are Raynaud submodule scheme, A defines an isomorphism. O

Fix a filtered principally polarisable Barsotti—Tate p-divisible group X over
S equipped with a filtered Raynaud submodule scheme C which is the kernel
of an O-linear isogeny f : X — Y = X/C; f gives rises to a map of
O’k -modules

Lie” f¥ : Gr'(XY/S).(t) — Gr' (Y /S). (1)

for every t in 3 and 1 <t < e, and define deg((X, C)/S).(¢) in [0, 1] to
be the (normalised) valuation of a generator in Ok of the annihilator of its
cokernel.

We remark that these invariants are qualitatively ‘finer’ than degrees defined
by Fargues in [18], and are exactly the reason we succeed in better understand-
ing p-adic geometry of Hilbert modular varieties of level at p.

Let

deg((X,0)/S) =) Y deg((X, C)/S): (1)
T t

where ¢ ranges over 1 < t < e and t ranges over > By definition,
deg((X, C)/S) ranges over [0, ef].

We consider ‘Breuil modules’ of p-torsion subgroups of filtered principally
polarisable Barsotti—Tate p-divisible groups over S. Because it seems difficult
(if not impossible, perhaps) to ‘integrally’ incorporate Pappas—Rapoport fil-
trations (which are inherently ‘of de Rham’) into Breuil modules of p-torsion
(or worse still, -torsion) subgroups, we instead work directly with de Rham
crystals over the ‘truncated” valuation ring . To this end suppose ¢ > 1; when
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e = 1, we simply make appeal to calculations with Breuil modules in Section 3
of [26] which is our model for the construction in the following. Parenthet-
ically, Section 3 of [26] is based on Kisin’s proof in [31] of a conjecture of
Breuil when p > 2; the conjecture itself is also proved by Kisin [30] in the
connected case when p = 2 and by Kim, Lau, Liu in the general p = 2 case,
and the argument in [26] works verbatium when p = 2.

Fix a filtered principally polarisable Barsotti—Tate p-divisible group X over
S. For every t in Yand1 <1 <e,let

G (X" [pl/$) (1) =D(X[p]/S)s/Lie” (X [pl/S):(t = 1)
and let D(XV[p]/S):(t) denote the free rank 2 module over Ok

ker(r @ 1 — 1@ y! |Gr™ V(X [pl/S): (1))
=E®1-1®yH 'Lie"(XV[pl/S):(t — 1)/Lie" (XY [pl/S):(t — 1),

which contains the rank 1 0x-module Gr¥ (X [p]/S).(¢) by definition. Let
D(XV[p1/S)¢(t) denote the pull-back of D(XV[p]/S); () to S; it is a rank
2 module over Ok . Let D(Yv [pl/ k) (t) denote the pull-back to the closed
fibre Spec k; it is a rank 2 module over k.

Let

AL D(XY[pl/S)c (1) — D(X[pl/S):(t = 1)
denote the map defined by multiplication by « if # > 1 and
AL DXV [p1/S)e(1) —> D(XV[pl/S)s-1: ()

denote V o (u®~ 1)~ if + = 1. By definition, the image of AL is exactly
GrV(XV[pl/S):(t — 1) ift > 1 and GrV(XV[p]/E)rlor(e) ifr =1.

Let C denote a filtered Raynaud submodule scheme of X[m] and let

= X/C be the filtered principally polarisable Barsotti—Tate p-divisible
group over S. Let D(C/S):(tr) denote the kernel of D(XV[p] /S) —
D(YY[pl/S)(¢). If G is one of the X [p], Y"[p] or C, let D(G/S) (resp.
D(G/k)) denote the pull-back of D(G/S) to S (resp. Spec k).

The image of D(XV[pl/S):(¢) in D(YV[p] 1/8)<(¢) defines a rank 1 sub-
module over &'k and consequently D(C/ )¢ (1) is free of rank 1 over Ok . This
follows if it holds over S, which in turn follows by Nakayama if the image
of D(Yv[p]/k),(t) defines a rank 1 subspace of D(?v[p]/k)f(t). But this
follows from Lemma 19.
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Indeed, given_Y over k, the existence of a filtered Raynaud F-vector sub-
space scheme of X over k is equivalent to the existence of a family of subspaces

L of D(Yv[p]/k)t(t) of rank 1 for all 7 in X and 1 <t < e satisfying the
conditions:

— AL ("") c gi-! 1ft > 1 (in which case, AL is multiplication by u);
~ and A Leh ¥ Ef,,, if t = 1 (in which case Al =Voulo),

To see the claim, suppose firstly that one is given a family of vector sub-
spaces Z! as above. As one can immediately see, by definition (observing that

both have the same rank over k), that D(X ' [p1/k): (1) = u*~'D(X '[p1/k)-
where D(Yv [pl/ k), denotes the t-isotypic part of the Dieudonne module
D(Yv[p] /k) over k, define &; to be the e-dimensional vector subspace
u' =g of DX [pl/k); and & = @, &, c D(X '[p]/k). It is immediate
to see that, for every t, & satisfies, for the Verschiebung V on D(YV[ pl/k),

Vuf — V(Ml f?r-vl) C H C M_lEfefillr CcC---Cu (6 l)r-vl — Ef*]

f_l T f lor oT

and therefore = is a Dieudonne submodule of D(YV[ pl/ k) with its quotient
D(YV [pl/k)/E free of rank 1 over F ® k. By Dieudonne theory, there exists a
Raynaud F-vector space scheme C of rank 1 in X[ p] such thatits corresponding
Dieudonne module is exactly ='.

On the other hand, the converse of the claim is clear and will be left unat-
tended.

Suppose that ST 1» &, form a O'k-basis of D(XY| p]/S) (1) such that 5

defines a 0 -basis of D(C/S)T(t) in D(Xv[p]/S)r(t) and ST , maps onto a

O g -basis of the image of D(XY[p]/S) in D(YV[p]l/S).(t).
For every T, we may and will assume if t > 1

ALEL ) = &0 RUTE]!
and
ALELy) = S E p e g

where R.=1, S2=1 T!=1 are elements of O and R:™!, T/~ are in particular
units in O’k ; and similarly if r = 1,

0
Argr) =81 1°1R? orbi-1or.1
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and
1/l \ _ ge e Xe—l
AT(ST,Z) - Sf*lorgfflor,l +$ ! f lotsf log,2°
By construction, if # > 1, it is an easy exercise to check:

Lemma 21 Fixtin X and 1 <t < e. Then Xé_l equals exdeg((X, C)/S):
(t—1) while pL~ Usatisfies the inequality ,oé_l > eg(1/e—deg((X,C)/S) . (t—
1)) = exdeg((X/C, X[m]/C)/S)-(t — 1).

Proof To see the first assertion about x!~ I observe that x! computes the

truncated valuation of the annihilator in & k of Coker(GrY (X" [p] /E)T(t —
1) - Gr¥V(YV[p] /E)r(t — 1)). Since the normalised truncated valuation of
the uniformiser £ is ex /e, the assertion follows.

The assertion about p.~ I follows as ALD(C /E)t(t) is contained in
ker(Gr¥ (XV[pl/S):(t — 1) — Gr¥(YV[p] /S) (r —1)). O

Similarly,

Lemma 22 Fix t in Y. Then Xfilor equals egdeg((X, C)/S)f_1or(e) and
,o]f_lor satisfies the inequality pf_lor > ex(1/e — deg((X, C)/S)s-15.(e)) =
exdeg((X/C, X[r]/C)/S)j-141 (€).

Let D be another Raynaud submodule scheme of X [r] distinct from C. For

every T and 1 < 7 < e, we may suppose that the image of D(D /8): (1) is
generated by &/ | + e7&; , for some element ¢} in O ; and if > 1

t—1,~ _
ALEL +elel )y =& U E e e

andifr =1
Fou
A‘%(g‘rl,l + 8115.}72) =€ = IOT Ufe— O.L.(Sfe_lor,l + g]f_lorgfe_lorl)

for some unit U! in Ok, where pL~, when t > 1, similarly satisfies the
inequality

pr” = ek /e — deg((X, D)/S)(t) = deg(X/D, X[x]/S)<(t)

as in the case for C (Lemma 21). One can readily observe that . is non-zero

in Ok for every 7 in Y and 1 <1 < ¢; otherwise el = 0forevery 7 in Y and
1 <t < e, and C would equal D which contradlcts the assumption that C and
D are distinct.
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In the light of Lemmas 21 and 22, let x.-~ de_note deg((X, D)/8):(t) for
brevity. The cokernel of the embedding of D(D/S). () into D(XY[p]/S):(t)
is generated by the image of 5;2, and as its image is

— _ _ _ t—1 _ _ _ _
ALEL )+ Ok ES + et e = @ T = s el hel !
+ Ok EL + e e,

: L= S e
ek /e minus the truncated valuationin O of §%= T/ ~1 — §i=1gl~1

x!=1~. Similar when ¢ = 1.

Equating the coefficients of 5;_11 and S;‘zl ift > 1and Sfe_lor , and 5;_1

computes

ot,2
if + = 1, we have the following equations (which, for ease of reference in the

following, we name 3;1 and 3;2): ifr > 1

t—1,~

t -1 = —
I L A e A

and
Lot eter T =g e,
andifr =1
L TR T EDse —sere
and

1 - X J
bot @ eE T = ET el US|
where, by slight abuse of notation, ¢ again denotes the absolute Frobenius on
Ok . From Siﬁz’s, we deduce the following Lemma 23 and Corollary 2 which
are not strictly necessary for our proof of the main theorem but serve as a

‘sanity check’: .
Forevery ¢t > 1 and 7 in X, let 52[ x ] denote

t
Xfe—lor +-t Xf_lof’
and, forevery r > 1 and 7 in ﬁ‘, let 5?ﬁ[ x ] denote
X+l
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Similarly define s/ [)N(] and s©7 [)N(] with )N( in place of x; and s. [;] and s©7 [,Z]
with p. A
For brevity, for every t > 1 and 7 in X, let

def ~
st = sl [x] — stlp]

and, forevery t > 1 and 7 in ZAJ,

t,— def 4 T
sy =87 [x]—s7 ol

By Lemma 21,

st < s [x]+5[x]— (e — (t —1))eg/e
and

57 < st [x] 45T [x] — (£ — Dek e
hold.

Lemma 23 Fix 7 in ¥ and 1 <t < e. The valuation of €L is calculated by

Y PV Y s e -
I<N<f

ift > 1 and by

> op sl ol =1
I<N<f

ift = 1.
Remark This is an analogue of Lemma 3.3 of [26].

t—1,~ t—1
Proof Supposet > 1.Since g, = (£Pfer Ufto_rl/fgthor Tf’ozl)aat_l and AL lo

fot ?
--r0Afo Aflor 0---0 Agor =u""oVo ") !isthe Verschiebung V on
D(XY[p] /E)fo, (t), one may deduce that the image of 8;0 . by V is computed

by
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t—1,~ _ t—1 _ _ 1.~ 1 o .
(p—l(gpfor Uftorl/%-xfor Tfto-rl) RN 1(§pfor Uflo‘t/SXfor Tfi‘[)(gpf Uf/gxr Tre)
[fiad t
(P ULER T e
In other words, the p-th power of & is .9;0 . times

%‘Xfor+ +xfor+p(x,+ +x,)Tt 1
fot

—1,~
1 Tepebpl T p(pE T+ 1
..Tﬁr(Tf...jg)p/spbr Pror +p (07 pr )(G;t

. UfloT(Uf L UHP,
Similarly, the p-th power of 8 is ef times

e e,~ 1,~
gl’(Xr+"'+Xrl)(Tr€ . TII)P/SP(Pz +-4pr )(Uf . Ul)l?_

T
Repeating the argument, we get the assertion. O

Corollary 2 Foreveryl <t <eandtin >,

Z Pf_N (X’:INOr +oot X]cN + P(XfN P X:Nflor)>

I<N<f
> PV (s )+ psialx))
I=sN<f
f-N
> pI N = Deg/e+ ple — (t — D)ex /e
I=sN<f

(e, X1+ 3 [XD)

S PV ((erfe = xiT) +o  (erfe = X3 )
I<N<f

+plex/e = X, +e+ ple/e = x5T,)

ift > 1and

S 0 (it 1)

I<N<f

Z Pf Ne leot[X]

I<N<f
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> Y p/Nex/e—siv . IxD

I<N<f

= 2 PPV ((ekfe—xiT) + o+ ek /e = X))

1<N<f

whent = 1.

Proof This follows from the preceding lemma, noting that the valuation of &’
is non-negative and x! — pL™ < I 4+ xL™ — ek /e. o

Remark Since Xé =egdeg((X, C)/S)(t)and x;~ = exdeg((X, D)/S). (1),
the case when t = e = 1 recovers Corollary 3.4 in [26].

The following three lemmas replace calculations with Breul modules in [26]
and essential for our proof of the main theorem.

Lemma24 Fixtin ¥ and 1 <t < e. Ift > 1 and if x!~' = 0, then
X7V £ 0. Similarly if x¢ = 0 then x&~ # 0.

Proof Suppose t > 1 and x!~! = 0. If x!=1~ = 0, it would follow from

t—1,~

Lemma 21 that p = ek /e. However, it then follows from the equality 3;2

thate! = (¢ " U!~1 /&% T!= 1)~ and therefore the truncated valuation
of 2 would be greater than and equal to ek /e and e would be 0 in & g, which

is a contradiction. The case when ¢ = 1 is similar. O
We know a great deal at the ‘far end of the valuation hypercube’:

Lemma 25 Suppose that there exists T in > and 1 <[ < e such that

— every xL = ek /e as T ranges over Sand1 <t <e, except when Tt = ¥,
t=101—1,andl > 1 (resp. | = 1), at which 0 < Xl I < ex /e (resp.
0< Xf_loJ( < ex/e) holds,

— the induced map A" on Gr” (X" / k). (t) does not vanish except when v = 1
and t = [ at which it does.

Then pl. = 0 for every t inXandl <t < e expectwhent = fandt =1—1.

Proof Suppose firstly that either t is not 1 or if T = T, ¢ is neither / nor
[ — 1. In this case, since the image of A*! is Gr¥(XV/S).(¢) and EXr = 0
in Ok, Gr¥ (XY /S8).(1) is generated by 5;1- It then follows from the second
assumption that p!~! = 0.

Suppose that T = § and ¢t = [ — 1. In this case, Gr(XV/E)t(t) is generated
by AFEED =& gxisgz (up to multiplying ! | and & , by units in
Ok if necessary), since it follows from Lemma 21 that p! > ex /e — x! > 0
and x! > 0 that S’ has to be a unit in Og.

@ Springer



234 S. Sasaki

Because Xé_l =eg/e,

ALGH(XY [S)e (1) = ALEL, + §%7EL5) = (&7 4 g% St el !

1

and it follows from the second assumption and x! > 0 that p!~" is zero. O

Maintaining the notation and assumptions in Lemma 25, we have:

Lemma 26 — The valuation of €. is zero for every t in Yand1 <t <e
except when v = tandt = 1.

— p?w = ex /e for every T € 3 and 1 <t < e except when T = | and
t=[01—1orl

— The valuation of S. is zero for every T € Yand1 <t <e except when
tT=%andt=1—-1.

Proof Suppose firstly that the (truncated) valuation of elT“ is positive. It then

follows from the equation SITTII and pé = 0 by Lemma 25 that pé’w = 0.

Combined with X% = ek /e and the valuation of 8IT+1 being non-negative,

. I+1 . . .. S
it follows from 3T , that the valuation of eifrl is non-positive, which is a

contradiction. The valuation of 4! is therefore zero.

If 7 is an integer satisfying / + 1 < t < e and if we suppose that the

. . . 1+1 ~
truncated valuation of 8% is zero, the equation 3?72 then forces pé’ =eg/e

and the truncated valuation of 8?1 to be zero, in order to attain the valuation

of &'*! to be non-negative (because x! = ex /e). As the valuation of e Tlis
g X ¥
~ . t+1 . .
Zero, ,oé =0and ,07{’ = e /e, it follows from L( | that the valuation of S;L is

N 1
zero. Continuing the argument (when ‘r = e’, we use ST fort =t,fjof,...
and so on), we get the assertion.
The case when T = f and t =/ — 1 is proved in the proof of Lemma 25. O

Still maintaining the assumptions of Lemma 25,

Corollary 3 x.~ = ex /e for every T in Yand1 <t <e except whent = 1
andt =1.

Proof Suppose that either 7 is not { or if T = T, ¢ is not /. It follows from
Lemma 26 that the valuations of €L and S! are both zero. As x™ is computed

by ek /e minus the valuation of £Xr — S’ and x! = ex /e by assumption,
the assertion follows. O

6 Overconvergent companion forms are classical

Results in this section establish links between geometry of the fibre Yl;ﬁw and
p-adic geometry of X ?}W defined in terms of degrees.
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6.1 ‘Global’ mod p and p-adic geometry

A non-cuspidal point & of X ;l}\;vR'a corresponds to a closed point of X ;ﬁw

thence to an S-point of X IP(I}W, where S = Spec Ok for the ring Ok of integers
of a finite extension K of L with residue field k. Let ¢ denote its image in

PR,R-a
X il

K by the forgetful morphism 7 : X?i;VR'a - X ;}R’R_a. By &, we shall

mean the S-point (S = Speck) of the x-scheme YII){}}W defined by & and let

¢ denote its image by 7 : Y;}}W — Y;R. We shall freely use the invari-
ants defined in the previous section for the corresponding component of the
Barsotti—Tate p-divisible group (which is filtered and principally polarisable),
given respectively by ¢ and .

Remark/Definition. By slight abuse of notation, we often write ygo ; (£/S)
to mean the ygo,r-invariant of the source of the isogeny corresponding to &.

Proposition 15 The formal completion R g1y, of 75’(}}‘” at & is the tensor prod-
uct over Xy, for all p in Sp of

QIR NSQKIIT:. 2211/ (T, 2L )

where the left-most ranges over those 1 <t < e, whichdonot lie in vrz, ¢ (E) N
YRz, (&), while the right-most tensor product is over the set of 1 <t < e

which lies in sz,I(g) N )/RZJ@); the formal completion ﬁK of Y;R is
kw11

where the tensor product ranges over all ZAJp x {l <t < ep} forpin Sp.

Proof Follows from local model calculations. O

On the Raynaud generic fibre sp~ ! (§) C X ?};VR_a, there are ‘local parame-

ters’, i.e., analytic functions which specialise to X", ' , ., u’ ; we shall denote
them by x!, y., z., u’ satisfying y’ z!. = 7, for every r in X,.

Proposition 16 The formal completion of Y}?}W at & is the tensor product over

ﬁ‘p for all p in Sp of

QIkIx NEQ)Oklyr. 211/ (v 7, — mp)
where the left-most ranges over those 1 < t < ey whichdonot lie in vgz, (§)N
YRz, 7 (§) while the right-most tensor product is over the set of | <t < e, which

lies in uRZ,T(E) N )/RZ?,@?); the formal completion of X ;}R at¢ is
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Rkl

where the tensor product ranges over all Z:’p x {l <t < ep} forpin Sp.

Proof This follows from local model calculations. O

Definition Let & be a point of X il};vR'a. When £ is not a cusp, it corresponds

to an S-point (A, C) of X ?}W, where S = Spec Ok for the ring Ok of integers
of a finite exter}sion K of L (whose normalised valuation takes p to 1). For
every p, T in Xy and 1 < r < ¢, that we fix, we shall define a measure
degl;(l};VR'a(E ) () of (over)convergence/supersingularity on X ?}\’NR'a that may
be thought of as a ‘local model’ of deg(&).(¢) defined earlier and of seeing
. .. PR,R-a . .

intrinsic geometry of X" ° (hence our notation, but we apologise for our
nomenclature).

Firstly if £ is indeed a cusp, let deglgys *(§) (t) = deg (&), (1). If £ is not
a cusp, and

— i1 ¢ vrz,c(E/S) and 1 € yrz,: B/, let degienn " (§/8) (1) = 1/ep;
— if1 € Rz < (E/S) and 1 € yrz,-(E/S), define degrix *(£/S). (1) to be the
minimum of 1 and the valuation (on Ok) of y. evaluated at the point &;
~ift € vrz,r(E/S) and 1 ¢ yrz.c (E/S). let deglyn “(£/8)< (1) = 0.
If ¢ is a point of Xl;(R’R'a, define degl;(R’R'a(g“)f (t) for T in ﬁ'p and1 <t < ey
as follows: if  isnotacuspandif f € ygo. ¢ (E/E), define degl;{R’R_a(C/S)f (1)
to be the minimum of 1 and the valuation of u’ evaluated at the point ¢;

otherwise let degIID(R’R'a(g“),(t) =0.

These degl;ﬁ;f_a (&) (¢)’s are the invariants first introduced by Coleman in
the curve case; and are subsequently used in gluing overconvergent eigenforms
in [7-9] in the modular curve case and [26] in the unramified Hilbert case, in
order to to construct classical weight one forms.

Lemma 27 degv N (6) (1) = deg(£) (1).

Proof 1t suffices to show the equality when & is non-cuspidal. Suppose that
it corresponds to an S-point (A, C)/S and let B denote the target of the
corresponding isogeny A/C for brevity. If ¢ does not lie in vrz ;(£) but
lies in yrz (), the map Gr¥ (A" /S):(t) — Gr¥(B /S):(t) on the spe-
cial fibres induced from the isogeny is zero, hence the normalised valuation
of Gr¥(AY /8);(t) — GrY(BY/S),(¢) is 1. Similarly for the case when 7 lies
in sz,,(g) but does not lie in )/RZ’,(E). When ¢ € sz,T(E) N VRZ,r(E), we
note from Proposition 16 that the coordinates y. and z. are chosen such that,
for example, the annihilator of coker(GrY(AY/S);(r) — GrY(BY/S)(t))
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is locally defined by y’ evaluated at £&. As deg(&/S).(¢) is defined to be its
valuation, the assertion follows. O

Definition In the light of the lemma, we shall let deg(¢/S).(¢) denote
degl;(R’R'a(g“/S)f(t). In fact, it is also possible to define deg(¢/S).(t) ‘more

directly’.

6.2 Canonical subgroups and analytic continuation in a tubular
neighbourhood of the multiplicative ordinary locus

In this section, we prove a few results constructing canonical subgroups of
Hilbert—Blumenthal abelian varieties A of Pappas—Rapoport type as ‘canoni-
cal’ Raynaud vector subspace schemes of A[p] for every place p of F above
p. As it does not seem possible to ‘see’ Pappas—Rapoport filtrations on Breuil
modules, linear algebra calculations ‘on points’ does not take us far; perhaps
enlarging coefficients of Breuil modules (in the sense of Section 1.2 in [31]) to
allow roots of Eisenstein polynomials and hoping for (faithfully flat) descent
might be one possible approach. It may also be possible to follow Fargues
([17]) and construct a ‘canonical’ subgroup of the p-torsion subgroup A[p],
and subsequently single out its F-stable part killed by all p.

We, on the other hand, take the Goren—Kassaei approach ([20]) of mak-
ing essential use of geometry of relevant moduli spaces, in order to construct
‘canonical subgroups’. Note that it is important to construct canonical sub-
groups for HBAVs, whether A[p] is BT level one or not for every p, for it
is humbly used to establish that weight one specialisations of Hida (nearly
ordianary) families define overconvergent eigenforms.

Proposition 17 Let & be a point over S of Yl;ﬁw. Fix p, T in > = ZA‘p and
1 <t < e = ey. Suppose that
—ift>2,t—1liesin sz,T(_g/_E) and that t lies in sz,,(E/E)_; B
—ift =1, eliesin vRZ’f_1O,(§/S) and thatt = 1 lies in yrz - (§/5).
Forn* : Rk — Rgrw, the following equations in R hold:
Ift =2, and
(D) ¢ lies sz,T(g/E) and t — 1 lies in VRZ,r(E/E), there elements y! and

A X
o=V in Ry, such that
Tl = yiyy + ot 2P

where, by slight abuse of notation, Séil(p ) denotes the p-th power of
S;—l’.
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(IT) ¢ lies vrz 1(5/5) and t — 1 does not lie in yrz, T(S/S) there exists an
element y! in R KIw Such that
s (u ) - nyp

(III) ¢ does not lie in sz’r(g/E) andt — 1 lies in yrz ¢ (?/E), there exists an

t—1

A X
element p.~" in R gy, such that

'l = pi~ 21,

(IV) neithert lies in sz,,(E/E) nort — 1 lies in sz,f(E/E)
T*ut) = 0.
Ift =1, and
@t =1 lies VRZ.f~lot (E/E) and e lies in )/RZJ(E/E), there elements yfl
A X
and pl in R gy, such that

T (u )—nyf-i-,oﬁ :SP)

D t =1 lies VRZ. ot (E/E) and e does not lie in sz,r(E/E), there exists
A X
an element v} in R gy, such that
s (u ) - Vf ytv

() t = 1does not lie in vgz -1, (£/S) and e lies in yrz. (£/S), there exists

A X
an element ,of‘ilor in Ry, such that

7 () = P, ﬁ(’fzt

(IV) neithert = 1 lies in VRZ. ot (?/E) nor e lies in VRZ,,(E/E)
by = 0.

Remark This is a generalisation of Lemma 2.8.1 in [20]. The case t = e = 1
recovers their result.

Proof We shall only sketch a proof, which is a generalisation of the proof of
Lemma2.8.11in[20]. For brevity, forevery t in X, let vrz . (resp. yrz, ) denote
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sz,,(g/S) (resp. sz,t(g/E)). An irreducible components of Yfﬁw passing
through & is parameterised by a subset J = > _Jr of Jrz = ) . Jrz¢

where Jrz,: = Vrz.r N Yrz.r in the sense that, if ﬁmw, 7 denote the ideal

of Rk generated by . for all ¢ lying in Jrz; — J; and Z. for all ¢ lying

A

in J; as T ranges over 3, the intersection Spf (Rxtw/Ik1w.7) N Spf Rilw
is the formal completion at £ of the irreducible component Y;IW’ », Where
Yj = (VRz,J,v> YRZ,J,7) defined by

- YRZ,J,r = WRz,+ — J1,
— vz r=1{1,...,e} — ¥Rz J.z

We now fix 7 in X and 1 < ¢ < e as in the assertion of the proposition. We
deal with the case (I) and leave the rest as an exercise for the reader. There are
four different ‘types’ of J; C Jrz.r to consider:

(A) botht — 1 and ¢ lie in J;;

(B) botht — 1 and ¢ liein Jrz, — Jr;

(C) t —1liesin J; while ¢ lies in Jrz,r — Jr;
(D) t —1liesin Jrzr — J; while ¢ lies in J;.

(I-A) Since t — 1 lies in J, t — 1 does not lie in yrz, s -, hence t — 1 lies in
VRZ.J.z- Also t lies in yrz ; and in Jr, therefore ¢ does not lie in yrz s . As
any point E in Y;IW’ 5, satisfies the conditions that vrz ¢ (E) contains vrz, J.
(and sz,T(Z) contains yrz, j.r), t — 1 lies in sz,,(E). It then follows from
Proposition 12 that ¢ lies in sz,T(Z) if and only if 7 lies in ygo ¢ ).

(I-B) Since t lies in yrz r but does not lie in J, ¢ lies in yrz, jr. Alsot — 1
lies in yrz . but does not lie in J;, hence # — 1 lies in yrz, ;.- and consequently
t — 1 does not lie in vrz, ; ;. It then follows from Proposition 12 that, for any
point ¢ in Y}Iw, 5,1 — 1lies in vrz - if and only if 7 lies in ygo,¢ ().

(I-C) As ¢ lies in yrz, r but does not lie in Jz, ¢ lies in yrz, j .. Alsot — 1
lies in J;, hence t — 1 does not lie in YRz, j ¢, and ¢ — 1 lies in vrz, ;.. It then
follows from Proposition 12 that, for any point ¢ in Y;IW’ 5,» I always lie in
YEO,t (C ) .

Applying (I-A) to J = Jrz and (I-B) to / = @, as well as a simple but
tedious calculation that () J TKIW, J, where J ranges over the subsets J of
Jrz satisfying the conditions in (C), is generated by ¥’ and z.~!, we get the
assertion in (I). The other cases may be similarly deduced.

Corollary 4 Let & be a point over S of X ?}\’NR'a and ¢ denote its image by

in X;}R’R-a. Fixp, T in 3= ZAJp and 1 <t < e = ep. Then
— the conditions t > 2, t — 1 lies in vRZ,T(E/E), and t lies in sz,T(g/E)
holds, if and only if deg(§/S):(t — 1) < 1/e and 0 < deg(§/S).(t),
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— the conditionst = 1, e lies in vRZ’]HO,(E/E), andt = 1liesin sz,,(E/E)
hold if and only if deg(§/S)-1o.(e) < 1/e and 0 < deg(§/S)- ().

Suppose that the preceding (equivalent) assertions hold. Then, for t > 2,

(D) deg(¢/S).(t) equals the normalised valuation on sp~'(€) of (yly. +
P12 P () if 0 < deg(6/S): (t — 1) and deg(£/S): (1) < 1/e;
(II) deg(£/S)< () = deg(§/5) (1) ifdeg(§/S).(t—1) = Oanddeg(§/S) (1)
< 1/e;
(II) deg(¢/S)- (1) = p(1/e —deg(§/S)-(t — 1)) if 0 < deg(§/8)(t — 1)
and deg(§/8).(t) = 1/e;
(IV) deg(¢/8):(t) = 1/e if deg(§/S).(t — 1) = 0 and deg(§/S). (1) = 1/e.

Whent = 1,

(D deg(¢/S). (1) equals the normalised valuation on sp_l(g) of (yfly% +
P 7 V(&) i O < deg(E /)14, () and deg(6/S)-(1) < 1/e;
D ((1%%({/5)1(1) = deg(§/5)< (1) if deg(§/S)j-15, () = 0 and deg(§/S)-
< 1/e;
(D) deg(¢/S)<(1) = p(1/e — deg(§/S)s-1o¢(e)) if 0 < deg(§/S)j-1,;(e)
and deg(§/S8). (1) = 1/e;
(IV) deg(5/8): (1) = 1/e if deg(§/S)s-1o (e) = 0 and deg(§/S)- (1) = 1/e.

Proof This follows immediately from the definition of deg(¢/S).(¢) and

Lemma 27. O
For every p, let C?}‘;VR; (resp. Di%"NR;a) denote the admissible open subset
PR,R-a

of points § over § of X"~ such that

— forevery t > 2 and 7 in 3= ﬁ’p,

deg(€/8) (1) + pdeg(§/S)<(r — 1) < p/e
(resp. deg(§/8): (t) + pdeg(§/9).(t — 1) > p/e)

holds; A
— fort =1andevery t in X,

deg(§/5): (1) + pdeg(§/S)s-10.(€) < p/e
(resp. deg(§/5): (1) + pdeg(§/S)s-10.(e) > p/e)

holds.
PR,R-a . . PR,R-a
Let Cyy,, ~ denote the intersection, over all places p above p, of C Klw,p °

: PR R- . PR R- PR R-
while Do) # denote the union of (ﬂpez DKIW’pa) N (ﬂp¢2 CKIW’pa) as X

ranges over the set of non-empty subsets X of the set of places above p.
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By definition, if a point of X ?}"VR'E‘ lies in CZI}‘;VR'H U D?}"VR'Q’, then it lies in
PR,R-a PR,R-a
CKIW’p U DKIW’p for every p.

PR,R-a

LetC ZR;;R'a denote the admissible open subset of points ¢ over S of X

such that

— forevery t > 2 and t in f],

deg(¢/8):(t) + pdeg(¢/S).(t —1) < p/ey

holds; .
— fort =1andevery 7 in X

deg(¢/8) (1) + pdeg(£/S)j-15.(€) < p/ep

holds.

PR,R-a

Let C;R’R'a denote the intersection, over all places p above p, of C P

Remark These admissible open sets (the loci of ‘canonical subgroups’ and
‘anti-canonical subgroups’) generalise those defined in Section 5.3 in [20]. If
t = e = 1, we recover their results.

Proposition 18 Let & be a point over S of X ?}"VR_Z‘ and ¢ denote its image by
T in XiR’R'a. Fixp, T in 3= fip and1 <t <e=ey.
Suppose that

—if2<t<e-—1,

deg(§/8).(t + 1) + pdeg(§/9):(t) < p/e,

deg(§/8)<(t) + pdeg(§/8).(t — 1) < p/e;
— ift =e,

deg(§/S)jor (1) + pdeg(§/S):(e) < p/e,

deg(§/8):(e) + pdeg(§/S).(e — 1) < p/e;

—ift =1,

deg(§/S)or (2) + pdeg(§/8)<(1) < p/e,
deg(§/8)< (1) + pdeg(§/S)s-15.(e) < p/e.

Then deg(¢/S).(t) = deg(£/S).(¢) holds.
On the other hand, suppose that
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—if2<t=<e

deg(§/8)<(t) + pdeg(§/S)(t — 1) > p/e,
—ift=1,

deg(§/S)jor (1) + pdeg(§/S)<(e) > p/e,

Then

deg(¢/8): (1) = p(1/e — deg(§/9).(t — 1))

holds if2 <t < e, and

deg(£/S)jor (1) = p(1/e — deg(§/S)<(e))
holds ift = 1.
Remark This is a generalisation/refinement of Lemma 5.3.4 in [20].

Proof Firstly, we sketch the first case when 2 < t < ¢ — 1. From the first
given inequality, one may deduce immediately that deg(&/S).(¢) cannot be 0
and therefore either deg(§/S5).(f) =0 or 0 < deg(§/S).(¢t) < 1/e holds.

Suppose deg(£/S).(¢) = 0. In which case, ¢ does not lie in VRZJ(E/E) by
definition. On the other hand, by the second given inequality, deg(§/S) . ( — 1)
cannot be 1/e, hence r — 1 lies in sz,r(g/E). It follows from Proposition 13
that ¢ does not lie in ygo, +(£/S), hence deg(¢/S).(t) = 0 by definition.

Suppose 0 < deg(§/S).(t) < 1/e holds. As deg(§/S).(t+ — 1) cannot be
1/e, it follows that  — 1 lies in vrz, T (g/S) On the other hand, deg(&/S5).(¢)
cannot be 0, and ¢ lies in )/Rz,f(é / S). We there see that the assumptions of
Proposition 4 are satisfied.

If deg(&/S).(t — 1) = 0, then the case (II) applies, and deg(¢/S).(t) =
deg(&/8):(t). If deg(&/S).(t — 1) > 0, then the case (I) applies, and
deg(g‘ /S)z(t) is computed by the normallsed valuation v of (ylyl +

,orzr 1 ))(S) for some units y, and ,o’ Lin R kx1w- However, as deg(&/ S),

p(1/e — deg(£/S).(t — 1)), it follows that the normalised valuation of ply’
evaluated at & is strictly less than p(1/e — deg(&/S).(t — 1)) = p(l/e —
vy @) = pr@ ) = pv(pl T2 E) = v(pl 2P (6)), and
therefore deg(¢/S). (t) = deg(&/S).(¢).

We shall prove the second assertion when 2 < ¢t < e. By the given inequal-
ity, deg(¢/S):(t — 1) > 0 and therefore either deg(§/S):(t — 1) = 1/e or
0 < deg(§/S).(t — 1) < 1/e holds. On the other hand, it also follows that
deg(&£/S5):(t) > 0 and ¢ lies in )/RZ’T(E/E).
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Suppose that deg(§/S):(r — 1) = 1/e. In which case, 7 — 1 does not lie
in vrz, T(é §/ S). It therefore follows from Proposition 13 that ¢ does not lie in

VE0.2(§/S), and deg(£ /) (1) = 0 = p(1/e — deg(§/5). (1 — 1)) as desired.
Suppose that 0 < deg(£/S):(t — 1) < 1/e. In which case, t — 1 lies

in vrz.:(€/S). If deg(£/S).(t) = 1/e, then it follows from Corollary 4

that deg(£/8)< (1) = p(1/e — deg(§/8).(t — 1)). If 0 < deg(§/S)(1) <
1/e, it also follows from Corollary 4 that deg({ /8)z(t) is computed by

t—1

4 z, 1p ))(S) for some units in

the normalised valuation v of (y!y. + p

R K1w. However, the given inequality implies that deg(§/S).(t) > p(1/e —
deg(£/8):(t — 1)), hence v(y!y.(£)) > v(p! =12t (&)). It therefore fol-

lows that deg(Z/S).(t) = v(p!~'z5 P (&) = pv(@~ () = p(l/e —
deg(&/S5):(t — 1)). The other cases follow similarly. O

Lemma 28 Fixpand1 <t < e =ey.

- If2 <t < e — 1, suppose that the following hold
deg(§/8)< (1) + pdeg(§/8)-(t — 1) < p/e
and
deg(§/8)«(t + 1) + pdeg(§/9).(t) = p/e;
— ift = e, suppose
deg(£/S8)<(e) + pdeg(§/S)(e — 1) < p/e
and
deg(£/S)jor (1) 4+ pdeg(§/S)<(e) = p/e;
—ift = 1, suppose
deg(§/8): (1) + pdeg(§/S)-10.(€) = p/e
and
deg(§/5):(2) + pdeg(§/S):(1) = p/e.

Then deg(¢/S):(t + 1) + pdeg(¢/S).(t) = p/e. In particular, ¢ does not lie
. R-a
inCg

P

Remark This is a generalisation of Lemma 5.3.6 in [20].
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Proof We prove the case 2 < t < e — 1. Since deg(¢£/S)(t — 1) cannot be
1/e,t — 1 lies in sz,T(E/E). Also since deg(£/S).(¢) cannot be 0, ¢ lies in
YRz.:(£/S). There are four cases (corresponding exactly to the four cases in
Proposition 4) to deal with:

(D) deg(§/5)(t — 1) > 0 and deg(§/S) (1) < 1/e;

(D) deg(§/S)-(r — 1) = 0 and deg(§/5): (1) < 1/e;
(II) deg(§/8)(t — 1) > 0 and deg(§/S). (1) = 1/e;
(IV) deg(§/8):(t — 1) = 0 and deg(§/S)- (1) = 1/e.

Suppose (I). In this case, deg(¢/S). (¢) is computed by the normalised val-
uation of (yly. + pizzt_l(p ))(S ). As it follows from the first inequality in
the assumption v(y'(§)) < v(z " (£)) that deg(£/$). (1) > deg(€/S)< (1).
On the other hand, deg(&/S).(¢) is not 1/e and it follows from the second
inequality in the assumption that deg(§/S):(t + 1) > 0, hence ¢ + 1 lies in
YRz, (§/S5).

Ifdeg(&/S).(t + 1) = 1/e, combined with deg(§/S).(¢) > 0, Corollary 4,
(III), applies and deg(¢/S) . (t + 1) = p(1/e —deg(&/S).(¢)). It then follows
that

deg(¢/8).(t + 1) + pdeg(¢/S):(t) = p(1/e — deg(§/5): (1))
+pdeg(§/S): (1) = p/e.

If, on the other hand, deg(¢/S):(t + 1) < 1/e, Corollary 4, (1),
applies, and deg(¢/S);(t 4+ 1) is computed by the normalise valuation v of

(yiflyl 4 ,oéz’r(p ))(£). The second inequality in the assumption implies

that v(y/ Ty 1(€)) > v(pl 227 (§)), hence deg(¢/S)- (t + 1) > pv(Z. (€)).
It then follows that

deg(¢/S)<(t + 1) + pdeg(£/S)-(t) > pv(ZL(§)) + pv(y.(&))
= pu(yy(§) +2.(§)) = p/e.

The other cases can be proved similarly. O
Proposition 19 n_l(CIlzR’R'a) = CII?}‘;JR"“ U DZ}}"VR'a.

Proof This can be proved as in Section 5.3 of [20]. Firstly observe that the

proof of Proposition 18 proves that 7~ (CE R ™) D Ry piR-R-2

Suppose that & does not lie in C Z}}V’VR_a U D?}\’VR_"I. Then there exists p such

. . ~PR,R-a PR,R-a PR.R-a -
that £ does not lie in CKI\Mp U DKIW’p Klw,p iD

particular, there is a pair of T in X' = ﬁ‘p and 1 <[ < e = ey such that the
following hold:

. Because & does not lie in D

deg(§/5)+(l) + pdeg(§/S)+(I = 1) < p/e
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if/ > 1,or

deg(§/5)+(1) + pdeg(§/S)s-1,1(e) < p/e
when [ = 1. We ‘order’ the ef pairs 3 x ([1,e]NZ) by

(.0, (f. 1+ 1),....(f,e), (fot, 1),....(FoT,e),
Lot D T et e (1. DL (L= 1)

if/ > 1 and

(.1, ..., (fe), ot 1),....,¢fot,e),....F Lot ),...,( ' ot,e)

if [ = 1. Since & does not lie in C%\’A,R;;a, there exists a pair of T in > and

1 <t < e such that the following hold:

deg(£/S)<(t + 1) + deg(§/S5).(t) = p/e

ift <e—1,or

deg(§/8)< (1) + pdeg(§/9)s-1,.(e) = p/e

if + = e. We may choose the pair to be ‘minimum’ (i.e. ‘left-most’ in the
arrangement above) amongst those satisfying the condition. By the ‘minimal-
ity’,

deg(§/8)< (1) + pdeg(§/S)<(r — 1) < p/e

ifl<t<e—1,

deg(§/5): (1) + pdeg(§/S)s-10.(€) < p/e

ift =1, or

deg(§/S)s-107(€) 4 pdeg(§/S)j-10.(e = 1) < p/e

if t = e, holds as otherwise deg(&§/5)+(l) + pdeg(§/S)+(I — 1) < p/e if
[ > 1, or deg(§/8)+(1) + pdeg(§/S);-1,1(e) < p/e holds. In any case, the

assumptions of the preceding lemma are satisfied, and & would not lie in
PR,R-a
CK P O

Theorem 4 An overconvergent Hilbert modular form, which is an eigenform

for Ky with non-zero eigenvalue for all p in Sp, extends to C ?}\;VR'a
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Proof Let & is a point over S of CZ};’NR'Z‘, and suppose that it corresponds

to (A, C) over S. Fix a place p above p. It suffices to establish that, for a
Raynaud submodule scheme D of A[p] distinct from C, (A/D, (C + D)/ D)
lies in CpaoR™ and deg((A/D, (C + D)/D) < deg(A, C). As & defines a
IP{I;’VI’{;, it follows from the preceding proposition that, if ¢ denotes
the point corresponding to (A, D), ¢ lies in either C?}"X,R'a or D;}}}&R-a.

If ¢ lay in C?};V‘f;a, it follows from Proposition 18 that deg(£/S);(t) =
deg(¢/S).(t) for every T and 1 < ¢t < e and C would equal D, which
is a contradiction. Hence ¢ lies in D?};&;a, as ¢ lies in n_l(CZR’R'a) =

PR,R-a PR,R-a PR,R-a PR,R-a .
Cxrw YDgn, CC Kiwp Y Dkrwyp - Granted, it follows from Propo-

sition 18 that if + > 2, deg(£/5).(¢) = p(l/e — deg(¢/S).(t — 1)), and
deg((A/D, (C + D)/D)/S)(t — 1) = deg(§/$):(¢)/p, while if 1 = 1,
deg(§/8)or (1) = p(1/e — deg(¢/S)<(e)), and therefore deg((A/D, (C +
D)/D)/S)(e) = deg(§/S)s0r (1)/p. It is immediate to see that (A/D, (C +
D)/D) lies in Cgp. " and deg((A/D, (C + D)/D)/S) = deg(6/S)/p <
deg(&/S) as desired. O

point of C

Remark The proof of the theorem indeed proves that Uy, for every p above p,
acts completely continuously on the space of overconvergent p-adic Hilbert
modular eigenforms in our sense.

6.3 Throwing away loci of ‘large’ co-dimension

In this section, in preparation of proving strong analytic continuation theorems
on the Raynayd generic fibre X ?}"VR_a, we define various admissible open sub-
sets X IJng of ‘co-dimension < 1’ (which contains the multiplicative ordinary
locus), based on the observation in Proposition 10. It is an analogue of those
defined in Section 5.2 in [26].

Let Ok denote the ring of integers of a finite extension K of L and k be its
residue field. Let S = Spec 0k and S = Spec k.

The (standard) Barsotti—Tate p-divisible group of A over S defining an
S-point of Y,ER is a product of filtered principally polarisable Barsotti—Tate
p-divisible groups X, (of dimension ey, f, and of height 2ey, f,) over S where
p ranges over Sp; for each p, one can define invariants as in Section 5 for Yp
over S according to which one can stratify moduli spaces of Barsotti—Tate p-
divisible groups. To that end, let X' = X'go (resp. X' = Xry) be a tuple (Xy),
where p ranges over Sp with each X, defined as in Section 5; and we shall

let ?;I?E (resp. Y?;W’ 5) denote the closed «-subscheme of the special fibre

7}1)} (resp. Yf;ﬁw) defined by demanding that the corresponding principally
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polarisable filtered Barsotti—Tate p-divisible group X = Yp lies in the closed
substack of SBT (resp. SFT) defined by X, as in Section 5 for every p in Sp.

—PR, . —PR —PR
Let Y x ™ denote the union (over X') of subscheme Y i 5 of Y, where
Y = Xgo is defined such that, there exists p in Sp such that

[Fp:Qpl =22 e— |ymosl:
T

where T ranges over ﬁ‘p, holds. It follows from Propositions 10 and 9 respec-
. —PR . . . . =PR
tively that every such Y i 5 is of co-dimension > 2 in Y .
Let

<PR,+ PR PR, ++

and let
—PR,+ —1 (<PR.+

As it is useful in defining ‘compactifications’ of the admissible open sets
above, if ¥ = YRz, and if, for every p in Sp, one of the following:
— (St-1) vrz,r = {1, ..., ep} while yrz ; = & for every 7 in fip,
— (St-2) vrz,: = & while yrz, = {1, ..., ep} forevery 7 in ﬁ‘p,
holds, we say that X' is semi-stable.
If X is semi-stable, let Sp, x> denote the set of all p in Sp such that X, satisfies
(St-1). If X is semi-stable, let Y‘,’ﬁw’ 5. denote the Zariski closure of Y?EW’ 5 in

—PR =PR . —PR . —PR
Xk1w- Let Z gy, » denote the complement in X g, 5 of the union of ¥ g1y, 5+
as X1 ranges over all ¥+ = (VRZ,7.+» YRZ.7.+)r Which are not equal to ¥
such that vrz ¢ 4+ contains vrz ; and yrz. r 4+ contains yrz ; simultaneously.

Definition Let X ?}"j denote the union of sp~! (71,?;;) and sp™! (71;?;% ) for

. —PR, —PR  —PR, PR,
all semi-stable X'. If we let X * denote X x — Yk T and X KIW+ denote

LX), it follows by definition that

PR+ _ 1, PR+
Xitw =P Xk )-

6.4 Overconvergent eigenforms of weight one

We shall use the notation used in Section 3.
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Theorem 5 Suppose p > 3 and let L be a finite extension of Q, with ring O
of integers and maximal ideal A. Let

p : Gal(F/F) — GL2(0)

be a continuous representation such that

— p is totally odd,

— p is ramified at only finitely many primes of F,

— 0 = (p mod A) is of the form as supposed in Section 2, and there exists a
non-Eisenstein maximal ideal m of Tgrd(K ) such that p ~ Dy,

0 is absolutely irreducible when restricted to Gal(f/ F(&p)),

if p = 5 and the projective image of p is isomorphic to PGL;(Fs), the
kernel of the projective representation of p does not fix F ({s),

— P is trivial at every finite place of F above p,

— p is unramified at every place p of F above p, and p (Froby), where Frob,

. . . .. . oy *
is the arithmetic Frobenius, is equivalent to ( Op 8 )
p

Let Sp . (‘e’ for ‘equal’) denote the subset of all primes p of F' above p such
that ay = By, and let Sp q (‘d’ for ‘distinct’) for denote the subset all primes p
of F above p such that oy and By are distinct; Sp is the disjoint union of Sp e
and Sp q.

Then there exists a family of overconvergent cuspidal Hilbert modular forms
Fx of parallel weight one and of level KIw where X = X4 x X. where
X4 C Sp.a and X C Sp.e such that

UyFs = ByFx foreverypin Xq,

UpFs = ayFx  foreverypin Spq — X4,
UpFs =apFx + Fs_py  foreverypin X,
UpFx = ayFx foreverypin Spe — Xe,
UgFs =0 foreveryQinT — Sp,

ToFs = tr p(Frobq)Fx  foreveryQnotin T,

where ay and By denote, by slight abuse of notation, the roots of characteristic
polynomial of p(Froby) and where T denotes the (disjoint) union of Sp, Sg,
SL, and Sa, and such that its associated Galois representation is isomorphic
to p.

Proof Corollary 1 gives rise to a cuspidal p-adic Hilbert modular eigenform
F's; such that

— ToFx = tr p(Frobg) Fx for every Q not T';
- UpyFy = apif p liesin Sp g — Xy, while Uy Fy = By if p lies in Xg;
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- UpFE = Olng + FZ'*{p} ifp lies in N while UpFE = OthE ifp lies in
Spe — 2e.

Furthermore, Lemmas 1.6-1.8 in [55] prove that we may increase the level
K at Q if necessary to assume that Fx maps Uq to O for every Q in 7 — Sp.

The proof that Fx; defines overconvergent modular eigenforms is analogous
to Lemma 1 in [9], with a characteristic zero lifting of a sufficiently large power
of the Hasse invariant of parallel weight p — 1 on X%R[l /p] in place of the
Eisenstein series E of weight p — 1 in the proof. It is necessary to establish that
the Hecke operator at every place of F above p, acts completely continuously
on the space of overconvergent eigenforms (in our sense), but this has been
proved already; see Remark at the end of preceding section. O

In [44], this theorem is extended to the case where not only no assumption is
made on p, but p is allowed to be reducible when restricted to Gal(f/ F(p))
(if it is not induced from a imaginary quadratic field in F(¢,) in which every
prime of F above p splits completely).

6.5 Overconvergent eigenforms of weight one, in companion, are
classical

We shall prove that those overconvergent eigenmforms of weight one con-
structed in the theorem immediately above are indeed classical, which is the
last step of proving the main theorem of this paper. We firstly prove a result
(Proposition 20) of paramount importance, which describes the degrees of a
point in xR KIW Indeed, it is to obtain a result of this kind that we study mod
p/p-adic geometry of X ?} carefully.

The construction of a weight one form on x® KIw *+ and ‘by extension’ over to
PR,R-a .
X

k1w 1sachieved by induction, designed on the observation made in Propo-
sition 20. Proposition 22 is an analogue of Proposition 5.7 in [26]. However, as
in [26], in order to extend the eigenform to the vertex of the valuation hyper-
cube (the [F} : Q] copies of the interval [0, 1] for every p) at the ‘furthest
end’, it is also necessary to glue its companion forms to it by g-expansion
calculations (Lemma 30). We also establish an analogue, Proposition 23, of
Lemma 5.9 in [26].

Proposition 20 Let & be a non-cuspidal S-point of X?};r and let ¢ denote
its image by the forgetful morphism. Suppose that yeo . (¢), as T ranges over
Ep for every p, are not simultaneously empty. Then, for every p, there exist
Tin X = Ep and an integer 1 < | < e = ey such that if we arrange the

deg(§/5):(7) as

-, deg(§/8)j-10, (), deg(§/5): (1), ..., deg(§/S): (), deg(§/S)jor (1), ...,
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i.e. a sequence of f = fy blocks of cardinality e, ordered by X, with each
block, in itself, being ordered by the index 1 < t < e, the sequence starting
with deg(&/S)+(l) takes values 1/e, --- ,1/e, in[0,1/e), 0, ..., 0.

Fixtin % and 1 <t < e such that deg(¢/S).(t) lies in [0, 1/e) above.
In which case, deg(&/S).(t) is indeed 0, i.e. deg(&/S).(t) is the first O imme-
diately after 1/e, if and only if t — 1 ¢ vrz..(€/S) and t ¢ yrz..(£/S)
hold. On the other hand, deg(&/S).(¢t) lies in (0, 1/e) if and only if t lies in
YRz, (§/S) Nvrz < (§/5).

Proof In this proof, we shall omit our reference to £ and ¢ for the invariants
defined in Sect. 5. We also fix p, and omit our reference where possible.

By assumption, if [F, : Q,] = > . e — |vEo,z|, then ygo = @ hold for
every t, but this is excluded. Hence it follows that there exists 1 in > such
that,

— for every t in b)) , distinct from T, ygo,r = 9
— for 1, ygo,+ = {l} forsome 1 </ <e.
We then make appeal to Propositions 12 and 13: if 7 lies in ygo, ¢, then
—t > 2 and either the case t — 1 € vrz  while ¥ € yrz ., or the case
t—1¢vrz while ¢ ¢ YRZ,t holds.
— ¢t = 1 and either the case ¢ € vgy ;-1
e ¢ VRz j-1or While I ¢ yrz . holds,

or While 1 € yrz ¢, or the case

while 7 does not lie in ygo ¢ if

—t > 2 and either the case t — 1 € vrz ; while t ¢ yrz ., or the case
t — 1 ¢ vrz r while t € yrz  holds.

— ¢t = 1 and either the case ¢ € vgy -1,, While 1 ¢ yrz ¢, or the case
e & VRy j-1or While 1 € yrz ¢ holds,

and ascertain the tuples {vrz ¢, yrz,¢} for all T in 5. O

Proposition 21 Let & be a non-cuspidal S-point of X Ip(li(VR'a. Suppose that
deg(&/5).(¢) is of the form in the preceding proposition, except we demand
further that, for every p, deg(&/S) is not an integer multiple of 1/ey, or equiv-
alently, if t lies in yrz.:(§/S) N vrz.¢(£/S), it is assumed that deg(£/S). (t)
liesin (0, 1/e). Then & lies in X?}":.

Proof It suffices toestablish | Y vgo, « (&) =1last ranges over Z:’p, for every
place p of F above p. Fix p and we shall omit the reference. By assumption,
thereisno 1 < ¢ < e such that # — 1 not lying in vrz . (§/S) and ¢ not lying in
YRZ,T (§/§). The assertion therefore follows from Propositions 12 and 13. O

Fix a proper subset I" of Sp. Fix, furthermore, a prime ‘3 above p (with a
fixed uniformiser &) which is not in I". When convenient, we shall omit our
reference to P (and only for ) from notation.
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Definition Foraninterval / C [0, f]be aninterval, we shall let X ;Ig I denote
the union of sp~! (71;(}1”’ ) for semi-stable X, such that Sp_x contains Sp — I,

and the set of non-cuspidal points & over S in YI};IIQV’V“L such that

— forpin I,
0 < deg(§/8):(t) < 1/ep

for every T in 3 and 1 < < ep;
— for pnotin I" U {3}, deg(&/S)(¢) satisfies that

deg(§/5)7 (1) + pdeg(§/S)s-16 (1) < p/ep

for every 7 in fip and 1 <1 < ep;
— for p =P, deg(&/S) liesin 1.
It is an admissible open subset of X ?}\’N“L by Maximum Modulus Principle.
For brevity, let

r=rp=1/p+1/p*+--+1/p/ P <1/p-1) <1

ife=1.

Proposition 22 [fe = ey > l and f = fp > 1, a section over XIJQ’IQ [0, 1/e)

which is a Uys-eigenform with non-zero eigenvalue, extends to X I—;Ig [0, f).
Ife = 1and f > 1 (resp. f = 1), a section over XZ’II\;[O, 1) (resp.

XJIQ’IQ[O, p/(p + 1)) which is a Ug-eigenform with non-zero eigenvalue,

extends to XZ’IQ [0, f —r) (resp. XZ’IQ[O, 1)).

Proof When e = 1, Proposition 20 recovers Lemma 5.3 in [26] and the asser-
tion follows from a straightforward generalisation of the proof of Proposition
5.7 in [26]. Suppose therefore that e > 1. For clarity, we break our proof into
two steps.

Step 1 Extending a U-eigenform, with non-zero eigenvalue, from X;g’lg
[0, 1/e) to X5k [0, f —1/e].

Suppose & is a non-cuspidal point of X ZIQ [0, f —1/e]. Let (A, C) denote
the corresponding HBAV over S together with a Raynaud vector subspace
scheme C of A.

Suppose that there exists T in > such that veo.+(€/S) = {I} for some
1 <! < e. It follows from Proposition 20 that deg(§/S5)+(! — 1) =0if/ > 1
ordeg(&/ S)fflo.{-(e) = 0if/ = 1. For brevity, we assume [ > 1. It then follows

from Lemma 24 that, if ¢ denotes the point of X ?R]R—a corresponding to (A, D)
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for a Raynaud vector space subscheme D such that D[] is distinct from C [ ],
alldeg(¢/S)+(1), deg(¢/S)+(I+1), ... are 1 /e exceptdeg(¢/S)+(I—1) which
satisfies 0 < deg(¢/S)+(! — 1) < 1/e. Because of Proposition 20 and the
observation that deg((A/D, A[x])/S).(t) = 1/e — deg(¢/S).(¢) for every T
inYand1 <1 <e,the point corresponding to (A/ D, A[rm]/D) lies in X?} +
and 0 < deg((A/D, A[r]/D)/S) < 1/e.

Step 2 Extending a U-eigenform, with non-zero eigenvalue, from X .

[0, f — 1/l to X5 [0, f).

Let & be apoint of X ik [0, £)— X 51710, f —1/e]. Asin Step 1, let (A, C)
denote the corresponding HBAV over S = Spec 0k (where Ok is the ring of
integers of a finite extension K of L) together with a Raynaud vector subspace
scheme C of A, and suppose that ygo, T(S / S) = {I} for some 1 in > and
1 <[ < e. By assumption, deg(&§/S5)+(/), deg(§/S)+({ +1),..., areall 1/e
except the last in the arrangement for which 0 < deg(§/S5)+ (l — 1) < 1/eif
['>1,0r0 < deg(§/9)-1,1(e) < 1/eif I = 1, holds. For brevity, suppose
[ >1.

We use the set of notation introduced in Sect. 5.5. Let D be a Raynaud vector
space subscheme which is distinct from C in A[xr] and let ¢ denote the point
corresponding to (A, D) as in Step 1. It follows from Lemma 25 that p. = 0
except when t is § and ¢ is [ — 1. It is enough to establish that XTD’I_I > Qasit
then follows from Proposition 20 that all deg(¢/S)+ (1), deg(¢/S)+(I+1), ...
are 1/e, except 0 < deg(¢/S)+(I — 1) < 1/e, and the assertion of Step 2
follows as concluded in Step 1. .

D

Suppose that deg(¢/S)+(l — 1) = x. D.i-1

= 0. In which case, Py =
ex /e by Lemma 21. It therefore follows from 3.}.’2 with 71’0 1 Ué =0

J— -1 J—
in R that slTer'I' = 0 in Ok. On the other hand, Corollary 3, combined

with Proposition 20, establishes, in particular, that XTD - = ek /e (we know

Xf = ex /e and XTD > 0 but it takes the knowledge of XD o+l

= ex /e and
Proposition 20 to conclude this claim). Since ex /e — XT lis computed (see
the formula for )(Jr ) by the valuation of SJrsJr in R (because XT = ex/e), it
follows that the valuation of eé (and of Sé) is zero. Combined with the claim
earlier, this would imply that xl V= ek /e which contradicts the assumption

that x{ ' = exdeg(6/8):(l — 1) < ex/e. O
Proposition 23 Let & be a point of X 21}\’: which corresponds to (A, C) defined

over S = Spec R for the ring R of integers of a finite extension of L. Fix a
prime B above p with a uniformiser . Suppose that
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(D ifep > 1 and fyg > 1, there exists T in 3 = ﬁ‘gp and 1 <t < e such
that deg(&/S).(t) = 1/e for every T in Sand1 <t <e except for
t=tandt =1—1atwhich0 < deg(&/S)+(I — 1) < 1/e holds;

(ID) ife = 1and f > 1, there exists t in ¥ = Sy such that deg(£/S), = 1
forevery T in b3 distinct from §~' ot while deg(§/S)j-1,+ lies in the open
interval (f — 1, f —r)

D) ife =1and f =1, deg(&/S) lies in (0, 1)

Then, for any Raynaud submodule scheme D of A[r] over S that is distinct
from C in A[r], (A, D)/S defines a S-point { of X?}"j such that deg(¢/S)
lyingin (f —1/e, ), (resp. (f — 1, f —r), resp. (0, 1)) if (I) (resp. (II), resp.
(IIl)) holds.

Proof The case (I11) is proved in [43] while the case (II) is dealt with in [26].
The case (I) follows from the preceding proposition . |

Remark This is a generalisation of Kassaei’s ‘saturation’ (see Lemma 5.9 in
[26]).

Definition Let X I}LIW be the admissible open subset of points £ over S'in X ?}\’j

such that, for every p, deg(§/S) liesin (f, —1/ep, fp) (resp. (fp — 1, fo—1p),
resp. (0, 1)) when (I) (resp. (II), resp. (III)) of Proposition 23 holds.

Lemma 29 For every representative £, if f > 1 (resp. f = 1), the pull-back
X i [0, f) of X b0, £) = Xl (resp. the pull-back X 11, ,[0, 1) of
X ;Ig [0,1) — X ?}"A/R'a ) along X?};&éa — X ?}\’VR'a is connected.

Proof This can be proved as in Lemma 6.3 in [26]. We sketch our proof for
the case f > 1. Firstly, we show X;ig’é[o, f —1+4 (e —1)/e] is connected.

The connectedness of X ;Il\; (L0, f — 1+ (e — 1)/e]: In the special fibre

YKIW, ¢, the irreducible components are parameterised as 72 where ¥ =
YRz = (YRz.r, VRz,r) (see Sect. 5.4) satisfies the conditions that hold for
every p: every 1 < t < ey lies either yrz ; or vrz , but it does not lie
simultaneously in yrz ; and vrz ; for every 7 in fjp.

To attain some clarity in our exposition, we may and will henceforth suppose
that |Sp| = 1, and we omit our reference to 8 when convenient.

For 0 < N < d — 1 which is of the form N = e(x — 1) + ¢ for some
<y <fand0 <t <e—1,let ¥y denote Xrz y defined by

~ YRZji = = YRzt hot = D,

— YRZ,jxot = fe—(t—1),...,e—1,e} (in particular, |VRZ,f‘XoT| =1),
— YRZf-(x-Dot = " = VRZ j-lot = {L,..., e}

— vrz,r =1{1,..., e} — yrz  forevery 7 in 3.
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For example, when N = d — 1 in which case x = fandt = e — 1, then
YRz, f-1ot = {e} while yrz = @ for every t in X' distinct from f~1o . At the
otherend of the spectrum,if N = 0(x = landt = 0),thenyrzr = {1, ..., ¢}
for every 7 in X.

= =X =y _ =x7 .

When N = 0, let X5, denote X — (X~ N X ) where ¥ = Xgz is
defined by yrz,r = {1, ...e} forevery 7 in Y and where X2 differes from X
by the corresponding VI?Z,r = @ forevery T in ¥.For N > 1, let X 5, denote

the union of X as J rangesover0 < J < N — 1.

Let X5, denote Xy, N Xy - As XZIQK [0, f — 14 (e — D)/e] =
SP_I(de,,), it suffices to prove that X):N is connected when N = d — 1.
We prove the connectedness by induction. One checks firstly that Y; , 1s con-
nected when N = 0 by the density and the connectedness of the multiplicative

. PR ++
ordinary locus of X g,,. Secondly, we assume the connectedness of X 5, to

prove the connectedness of Y;N. Let & be a point of Y; N Y;AH . Write ¥
for Xy (E), which is Xrz, y as above.

Let X be exactly the same as X' except at f~X o § at which we demand
YRZfrot = fe—1,.... e} = )/sz ot U {e — t}. One observes that X is
nothing other than Xrz y—1, and X is a member of the union X Ty We
then conclude our argument by showing, if X is an irreducible component of
— _ — —_ —y+
X~ passing through &, that XﬂX;IW’Z is connected and (XﬂX}?IW,E)ﬂXE #
.

The connectedness of X };Ig (L0, f): It suffices to prove the connectedness
of X;IQE 0,f —14 (e —1+4 y)/e] for some y € (0,1) N Q. Suppose
that X;glg (L0, f — 14 (e — 1+ y)/e] is not connected. Then there exists a

connected component X of leg [0, f =1+ (e — 1 +y)/e] which does not

intersect X JIQIQ ([0, f— 14 (e — 1)/e]. By the quasi-compactness of X, there
exists v < y /e such that XKIW J0, f =T+ (e—1+v)/elNX =0a.

Let& be apoint of X. Inwhlchcase, v(i€)=f—14(e— 1)/e+v(§‘)f71oT(e),
where v(é)f_loT (e) denotes the valuation of y?, Lot (&) as defined in Sect. 6.1,
while it follows from the definition of v that v(§) > f — 14+ (e — 1)/e + v.
Combining, one deduces that v(§)-1,;(e) > v. In fact, for any point ¢ in
X Nsp~ (%), the strict inequality V(¢)j-144(€) > v holds.

On the other hand, the admissible open subset sp~ ! (£)[0, f — 1+ (e — 1 +
y)/e] of points ¢ in sp~ ' (£), such that 0 < deg(¢) < f — 1+ (e—1+7y)/e
holds, is evidently connected and is contained in X. As for any point ¢ in
sp ' @I0, f — 1+ (e — 1+ y)/e], deg(¢) is given by f — 1+ (e — 1)/e +
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v(;)f_loT(e), one may therefore deduce v(;)f_loT(e) < y/e holds. This is a
contradiction. O

Suppose that the level K of overconvergent modular forms is K as in The-
orem 5. In particular, let T denote the disjoint union of Sp, Sr, Sr, Sa.-

Proposition 24 Fix a subset I of Sp such that |I'| < |Sp| — 1. Suppose that
Sp is a disjoint union of two subsets Sp . and Sp 4. Let I (resp. 14) denote
I' N\ Spe (resp. I' N Sp.q).

Forevery ¥ = Xgx X CSp—1I = (Spa—I4) X (Sp,e — I%), suppose
that Fyx is a section over X;’IQ[O, f=riff=fp>1land X;’IQ[O, 1) if
f = 1 satisfying

UpFE = oy FE  foreveryp in (Sp.a — I'a) — Za.
UpFi = ByFy.  for everypin £,

UpFf = apFy  foreverypin (Spe — It) — Ze
Ung = apF§ + F§_{p} for every p in X
UQFg =0 foreveryQinT — Sp,

TQFg = VQF)? for every Qnotin T

where o’s and B’s are all assumed non-zero. Then, for B3 in Sp — I" which we
fix, the family {Fx}x of eigenforms define a family of eigenforms {Fgum}}):

defined over X 1+<I§ [0, flwith ¥ = X4 x X, ranging amongst the subsets of
Sp — (" U {P}) such that, if P is in Sp.qa — Iy,

Uy F;Um} =ap F;Um} for every p in
(Spa — I'a — {PH — Zu,
Ungu{p} = ﬂngu{m} for every pin Xg,
(Ungum} - Otp)Fgum} =0 foreverypin (Spe— Ie) — X
U;,F;Um} = ap Fgu{‘m + F;Bﬁ} for every p in X
UQFgu{;‘B} =0 foreveryQinT — Sp,

TQFi:Um} = J/QF)I; for everyQnotinT,

orif BisinSpe — I¢
UPFQU{(B} = angU{iB} for everypin (Spq — I'y) — X4,

Up F§U{Q3} = ﬁnguw} for every pin Xy,

Uy FQU{‘B} = angU{‘ﬁ} foreveryypin (Spe — I — {B}) — 2.
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Uy F}gU{‘B} = O‘ngu{m} + F;{{{f}} for every p in X,
UQF§U{‘J3} =0 foreveryQinT — Sp,
TQF)SUW} = )’QFQJF’m foreveryQnotinT.

Furthermore, when f > 1 (resp. f = 1), if the equality
F£((A, ) = F5((A, D))

holds for any pair of points (A, C) and (A, D) of E;Iw N XI+{I§ [0, f) (resp.
E;glw N X;’I{;[(e — 1) /e, 1)) satisfying Cp] # DI[p] forall p in I', then

FLY® (A, ) = FLP™ (4, D))

holds for any pair of points (A, C) and (A, D) on‘IJgIWﬂXZ’I\I; [0, f) satisfying
Clpl # DIp] for every pin I" U {*3}.

Proof We shall prove the case e > 1 and f > 1. The case f = 1 follows
similarly. Fix ¥ C Sp — (I" U {{3}).

Suppose firstly that B is in Sp. g — I'y. By definition, the sections F LC and
F}i:u{ip} are both thought of as being defined over X}’Ig [0, ) C XZ’IQ [0, f]
and are eigenforms with the same eigenvalues except at ‘3. For brevity, let

ngFF = ong and U‘BFgu{ip} = ,BFgUW}; we shall also let F£U{‘B} =

FL — BFL g and HEOW = —(FL o — FL). both of which are defined

over X ;I{; [0, f) but are no longer Usp-eigenforms. We shall think of ngm}

as a section over X;g’lg [0,1/e) C XJIQ’IQ[O, f) (since f > 1 is assumed).
Suppose that B is in Sp . — I'.. The sections F g and F gu (p) are eigenforms
with the same eigenvalues for Hecke operators away from Sp and for U,
for p in Sp — I'; furthermore, F g is an Ugp-eigenform with eigenvalue o
(which we may assume to be 1 but continues to write «) while F gU{‘B} is a
multiplicity 2 generalised Uss-eigenvector and Uy FF gU{‘I?} =ofF gu T F g .
FUB) _ pr roigy _ pr r
We let Fy. _FEU{(D} and Hy, _—“qu{m}+F2-
Let w = wy denote the map of sections defined as above. We shall glue
w(H £ ™) defined over w(X 15110, 1/e)) = XL (f —1/e, f1and FLYH
at the intersection

X (f = /e, ) = XEi 10, /)0 X, (f = 1/e, f]
to construct a section over X;’IQ[O, Hu X;ig(f —1/e, f1= XIJQ’IQ[O, fl
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For the fractional ideal J = ¢~! for some fixed representative £ , let
Tate;(q) = G ®z D~'/q’ denote the algebrified (rigid analytic) quotient
over a [F : Q]-dimensional polydisc over L by the Op-linear morphism
q:J— Gz D~

The (semi)abelian variety Tate;(q) comes naturally equipped with real
multiplication and is naturally J~!-polarisable. We suppose that Tate; (q) is
equipped with a n-level structure n and (when appropriate) with choices of
isomorphisms:

- Op/p = (G ®z DIyl 1 |
—and Op/p ~p~'J/J (andletg?  denote aliftingin ¢g°  of the generator
of qp_1 /17" defined by this isomorphism)

)(PR

for every p above p, and these define cusps of X and X PR

KIw,Iwy "

For an overconvergent cuspidal modular form F of weight A = (1, w)
and of level KIw, let F; denote the restriction of F' over X Z%Rf and let
Dove e F )q" denote the g-expansion obtained by evaluating F (or Fy)

at Tate y (¢ ). By slight abuse of notation, by

(G ®z DHIPI/q’ € (G &z D HIpl/g’

we shall also mean the ‘full’ multiplicative Raynaud vector subspace of
Tate(g) (as only the 3-part is relevant to the calculations that follow). Then,
fixing J = £~! as above,

(UpF)(Tate; (q), G ®z D' [B1/p’) = ) cipy(rv, F)g"

U€J+

where  is a totally positive element satisfying J ~! = rJ;‘E ! with Jq; = 2
amember of the fixed representative for the class of the fractional ideal 3.7 ~!.
More generally, for any non-zero integer A, let Jyy. denote a member of
the fixed set of representatives satisfying P*J ! = r; Jop. for some totally
-
+.I . +.I .
Lemma 30 Over X1 (f — 1/e, f)ife > 1, over X1, (f — 1, f — 1) if
e=1land f > landoverXZ’I{;(f— 1, f—r)ife=1land f =1,

positive element r; = rz,, . We often write r for ry.

FEUB) _ (g LUy

Proof Firstly we prove the case when ‘B is in Sp ¢ — I'y. As in Proposition 6.9,
[26], it suffices to prove the equality

U

7T1*,‘~13 5 = n*n;’mngm}
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of sections over the admissible open subset rrf %(X ;I\I;; [0, f)) in the generic

PR
fibre XKIW,Iqu ,

nl"mm,R_a where A = (1, 1).

where 7 is the map of invertible sheaves ”;,mva-a —

We may and will normalise Fourier g-expansions to assume «cy (v, F g )=
Crp(rv, F) and Beg (v, Fi ) = €y (rv, Fi ), for rin Fy such that

B! = rqul, hold for all v in J4. On one hand,

7 Fr PG ®z D7V /q? .G @z D BY/q7 qF )
= (@F5 — BF{ym) (G ®z D~ /q7)
=Y (acs(v, F5) — Bes (v, Fyym))g”

VEJ+

=Y (cig(rv, FL) = ey (rv, FLoy))g”-

U€J+

On the other hand,

i pHy PG ®z D7V /q” G @z DBI/q7 qF )
= —(FL g — FEG oz D7 '/g% )
= (F5 — Fyym)(G ®z D' /q”%)
= Y (cr(rv, F5) = ey (rv, Fiyp))a”

UEJ+
We shall prove the case when ‘B is in Sp ¢ — I'.. We may normalise the Fourier
g-expansion to assume, for every v in Jy, that acy (v, Fg) = cyp(rv, Fg)
holds.
Since

for a constant ¢, one may subtract a constant multiple of F i: ; from F gu (P17
if necessary to assume, for every J that

cs(1, F)?U{;m’J) =0

from now onwards. Since F )gu{am is an eigenform for all Hecke operator Tg
for Q not in 7', we may therefore further assume that

C](U, Fgu{w}"]) = 0
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for every J and v in J4 such that vJ ~! is coprime to the primes of 7', or indeed
to p by making the tame level K sufficiently smaller, if necessary.

Sublemma 1 For A > 1, Clyy (ryv, F£U{q3}) = xa* ey (v, Fg) for vJ~!
coprime to p.

Proof Evaluating UpFy o = aFy g + Fy, at (Tate;(q), G ®z D)
[B1/g7), we have

Y cnp (v Fryga” = ) acs v, Fiympg” + D e, Fi)g"

vely velJy vely

1.€.,
qug (r\), Fgu{q}}) = aCJ(V, Fgu{gp}) + C](U’ F)I';)

Similarly, since U%Fgu{;m = O‘kFgu{m} + ra*71FL, evaluating at
(Tate; (q), G ®z D™ H[P1/q”), we have

Z qu3)~ (ryv, Fgu{gm)qv = Z O‘ACJ(Va Fgu{gp})qv

vely vely
+ra™ Y e (v, Fig,
U€J+
which proves the assertion, as c (v, F)gu{m}) =0. |

As o is a unit, we may and will explicitly assume o = 1.
Sublemma 2 For A > 1, Clyy (ryv, Fgu{zp}) = Acy(v, Fg)for vin Jy.
Proof Clear. O

We now prove the assertion of the lemma, by comparing g-expansions at
(Tate;(¢), G ®z D~'[PB1/¢”). On one hand,

Fi."%(G &z D7'/q” .G @2 D' %1/9”)
= D s Fryge”

UEJ+

Joe
In particular, the coefficient of r)\qB g v-power of ¢, where v lies in J, is
Jp—r o or r
C](I‘A Vv, FEU{(B}) == )\,C‘]{p_)\(v, FE)
by the lemma.
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On the other hand,

w(Hy ") G @z D7 /g’ . G ®z D7 [B1/q7)
= D (T P g+ D eay ()T FD)g”

U€J+ U€J+
o T, T . : T2
Because r %! = rk(‘]B / rﬁl by definition, the coefficient of the rkq3 V-
power of ¢, where v lies in J, is

Jor—n Jq—n _ Jy—a
chsfl((”xm /O™, Fgu{‘li)
Jon—n —A
teg (% /rk_ ! ‘*‘ v, F{)

= Cly- (rx ;” F):u Pty (rx 1 v, FL)
= (}\' - l)cf,‘p_)L (Ua FE) + ngp—x (V’ FE)
= ey, (v, Fx)

by the sub-lemma. The coefficients of the r; v-power of g for all A > 1 on both
sides coincide, and therefore the lemma follows. O

It remains to establish the last assertion of Proposition 24. Suppose that
(A, C) is a point of E;IW nXx ;Ia [0, f], and D is a Raynaud submodule
scheme of A[p] such that C[p] # D[p] for every prime p in I" U {I3}. By the
assumptions, it is only necessary to deal with the case at 3. To this end, let
G be a Raynaud submodule scheme of A[*J3] distinct from C[ ‘B] and D[*B].
In which case, (A, C, G) (resp. (A, D, G)) defines a point 711 (XKIW [0, £))
lying above (A, C) (resp. (A, D)) along 71, respectively. It then follows from

the identity of sheaves over ‘B(X [O f)), established in Lemma 30 that

Klw
Fi (A, 0) = 7f 5 Fs "M, €, 6) = 1" (A/G. AIB1/G))
= wyp(Hy, "4, G)).

On the other hand, one can similarly deduce the equality F Ui ((A, D)) =

wp(HL " (A, G)), we then deduce FL"F) (A, ©)) = FL"™ (4, D)).
O

Corollary 5 FgU{‘B} extends to a section over Xltlg [0, f].

Proof of the main theorem By Theorem 5, we have a family of overconvergent
eigenforms {Fx}, one for every ¥ C Sp. Inductively apply Proposition 24
on I" to construct a section F™ = Fy over X?}"; which is an eigenform
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for all Hecke operators corresponding to the ideals not in 7. Indeed, FT
descends to the level K and write F~ for w,Ft where 7 is the forgetful

morphism 7 : X;}I;’j — X;R’Jr which is finite flat of degree 1 + pZP Fe,

Hence 7*F~ = n*m. F+t = (p=»» + 1)F*. Since F~ is a section over

X ;R”L, it follows from the Riemann extension theorem (Proposition 2.10 in

[26] for example) that it extends to a section over X ER’R'a. It then follows that

the equality ( pZF fo 4 1)F+ = 7*F~ of sections over X ?};VR_a holds. To see

this, it suffices to observe that the equality ( pr fo 4 1)F* = 7*F~ holds at
the admissible open subset X ;{"IW. This, in turn, follows from the last assertion
in Proposition 24 that, if (A, C)/S is a (non-cuspidal) S-point of the set, the
equality

(T*F7)((A, ©)/S) = F7(A/S) = (. F")(A/S) =Y FT((A, D)/S)
D

= (pXo o £ HFH((A, C)/S)

holds, where the sum ranges over all Raynaud submodule schemes D C A[p]
such that (A, D)/S is in the pre-image by 7 of m(A, C). Hence F™T is a

section over X ;;l}\’NR_a which is a classical cuspidal Hilbert modular eigenform
of weight 1 of level old at p. O

6.6 Modularity of Artin representations and the strong Atrin conjecture
Proposition 25 Let F be a totally real field. Let
7 : Gal(F/F) — GL1(Fs)

be a continuous representation of the absolute Galois group Gal(F /F) of F
satisfying the following conditions.

— p is totally odd.
— The projective image of p is As.

Then there exists a finite soluble totally real field extension K of F such that
0, when restricted to Gal(F /K), is of the form in Sect. 2.1. Furthermore, the
restriction is modular in the sense of Sect. [2.4].

Proof This canbe proved as in Section 2 in [43]. Indeed, as the projective image
of p is As, one firstly replaces F by its finite soluble totally real extension to
assume that p takes values in GL,(F5) with mod 5 cyclotomic determinant.
We may and will choose a finite soluble totally real field extension K C F of
F such that the restriction of p to Gal(f/ K) is unramified at every place of K
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above 3. We then find an elliptic curve E over K whose 5-torsion representation
of Gal(F/K) is isomorphic to the restriction of p to Gal(F/K), whose 3-
torsion representation of Gal(F/K) is absolutely irreducible when restricted
to K (+/—3), and whose 3-adic Tate module representation T3 E of Gal(F/K)
is ordinary at every place of K above 3. We use the degree 24 cover of the
PlGaF / k)-twisted ‘modular curve’ of X5 over K constructed by Shepherd-
Barron-Taylor in Section 1 of [46], and make appeal to Ekedahl’s Hilbert
irreducibility theorem (Theorem 1.3 in [16]) to find a K-point of the twisted
curve.

By the Langlands-Tunnell theorem and a result of Kisin [31] (the weight
two specialisation of the Hida family passing though the weight one cusp
eigenform corresponding to E[3] renders 73 E strongly residually modular in
the sense of [31]), one deduces T3 E is modular, hence E and, by extension
the restriction of 5 to Gal(F/K), is modular. Finally, apply the main theorem
of [2]. O

As a corollary,

Corollary 6 The strong Artin conjecture for two-dimensional, totally odd,
continuous representations p : Gal(F/F) — GL2(C) of the absolute Galois
group Gal(F / F) of a totally real field F holds.

Proof This follows from Proposition 24 and the preceding proposition. O
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