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1 Introduction

This work grew out of Buzzard and Taylor’s attempt to generalise, to the
Hilbert case, Taylor’s programme ([53]) to prove new cases of the strong Artin
conjecture for odd continuous two-dimensional Galois representations in the
icosahedral case. We complete the programme in the Hilbert case in this paper
by a method slightly different from what they probably had in mind.

In 1999, Buzzard and Taylor [7,9] made substantial progress on the strong
Artin conjecture for odd, continuous representations ρ : Gal(Q/Q) →
GL2(C) of the absolute Galois group Gal(Q/Q) ofQ, which culminated in [8]
and subsequently in [54]. In proving the hitherto intractable ‘icosahedral’ case
of the conjecture, Buzzard and Taylor built on the work of Katz in the 70s and
Coleman in the 90s on the theory of p-adic modular forms, to prove a modular
lifting theorem which constructs a weight one eigenform corresponding to an
odd two-dimensional p-adic representation Gal(Q/Q) → GL2(Qp) (poten-
tially) unramified at p. One of the key observations they made in [9] was the
idea that one can use Hida theory of p-adic modular forms to draw results
about weight one forms from results about weight two forms in the form of
modular lifting theorems by Wiles, Taylor–Wiles and Diamond.

In generalising Taylor’s strategy to the Hilbert case, one has to work with
sections of the determinant of the ‘universal’ cotangent sheaf over (admis-
sible subsets of) Hilbert modular varieties. Rapoport [39] probably was the
first to consider a [F : Q]-dimensional moduli space Y of abelian varieties
with real multiplication (HBAV) by a totally real field F satisfying some PEL
conditions (in particular of ‘level prime to p’); and [39] shows that Y gives
rise to a Zp-integral model for the (connected) Shimura variety correspond-
ing, in particular, to the algebraic Q-group G, defined by the pull-back of
ResF/QGL2 → ResF/QG along G → ResF/QG (where G denotes the mul-
tiplicative group scheme base-changed over to F). The determinant of the
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Integral models of Hilbert modular varieties 173

cotangent bundle of the universal HBAV defines an automorphic line bun-
dle AY of parallel weight one and one may identify weight one holomorphic
modular forms with integral coefficients with global sections of AY over the
moduli space Y . With the assumption that p divides the discriminant of F , one
is naturally led to work with the models Deligne–Pappas constructed in [13].
However, they no longer satisfy the ‘Rapoport condition’—the Lie algebras of
HBAVs A over S have to be locally free OF ⊗Z OS-modules of rank one–and
they are not smooth over the base as aresult; in particular, one can calculate
local models to deduce that the special fibre at a prime p which ramifies in F
is singular in codimension 2 and geometry of the corresponding rigid space is
discouragingly complicated for arithmetic applications. To at least resolve the
difficulties arising from geometry, it was suggested by Buzzard and Taylor to
the author to ‘resolve’ the singularities of the Deligne–Pappas models using
ideas from Pappas–Rapoport [35].

Fix an embeddingQ intoQp. In this paper, we constructs an integral model
Y PR
U of G of level U ⊂ G(A∞) with U ∩ G(Qp) = G(Zp) over the ring

of integers O of a finite extension L of Qp containing the image of every
embedding F → Q→ Qp, and prove that it is smooth over O . We also define
a model Y PR

U Iw with Iwahori level at the primes of F above p, analogous to the
construction given by Pappas [34] and Katz–Mazur [29]. Note that our models
all have explicit descriptions as moduli problems. This is critical, for example,
when one defines Hecke operators moduli-theoretically as in the work of Katz
[28] and consider overconvergent eigenforms. We accordingly build a p-adic
theory of Hilbert modular forms on the models Y PR

U Iw. For applications, we
shall prove a modular lifting theorem which generalises a result of [9]. More
precisely,

Theorem 1 Suppose p > 3 and let L be a finite extension of Qp with ring O
of integers and maximal ideal λ. Let

ρ : Gal(F/F)→ GL2(O)

be a continuous representation such that

– ρ is totally odd,
– ρ is ramified at only finitely many primes of F,
– ρ = (ρ mod λ) is absolutely irreducible when restricted toGal(F/F(ζp)),
– if p = 5 and the projective image of ρ is isomorphic to PGL2(F5), the
kernel of the projective representation of ρ does not fix F(ζ5),

– there exists a cuspidal automorphic representationΠ ofGL2/F which are
ordinary at every place of F above p such that ρΠ � ρ,

– the image of inertia subgroup at every finite place of F above p is finite.
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174 S. Sasaki

Then there exists a cuspidal Hilbert modular eigenform defined as a section
of the automorphic bundle AX (−cusps) over the p-adic generic fibre X =
XPR
U Iw[1/λ] of a compactification XPR

U Iw of Y PR
U Iw of parallel weight one, whose

associated Galois representation, in the sense of Rogawski-Tunnell/Wiles, is
isomorphic to ρ.

Assuming that p splits completely in F and that ρ, when restricted to every
place of F above p, is the direct sum of two characters which are distinct mod
λ, the theorem is proved in [43]. Assuming p is unramified in F and that the
restriction of ρ at every place of F above p is the direct sum of two characters
whose ratio is non-trivial mod λ and is unramified (resp. tamely ramified), the
theorem is proved in [26] (resp. [27]). On the other hand, Pilloni [37] has a a
result stronger than [26] allowing small ramification of p in F , while Pilloni
and Stroh have a paper [38] announcing the same set of statements as the main
theorem above (although our approach is completely different from theirs).

The theorem is established in two major steps. Given a residually auto-
morphic p-adic representation ρ as above (note that ρ is not assumed
‘p-distinguished’), we firstly prove an R = T theorem for p-ordinary repre-
sentations/forms such thatρ defines amap from R toO , where R parameterises
deformations of ρ which are reducible at every place of F above p (as in
[19]) and where T is a Hida (nearly) ordinary Hecke algebra localised at ρ.
Our R = T theorem holds without recourse to taking reduced quotients (we
indeed prove that, not only T but R is also reduced); we do this by follow-
ing Snowden’s insight in [49], non-trivially observing that the relevant local
deformation rings (including those at places above p) are Cohen–Macaulay.
The maps from T to O , corresponding to ρ and eigenvalues of ρ(Frobp) for
all places p above p, define a family of p-adic overconvergent cuspidal Hilbert
modular eigenforms of weight one which are ‘in companion’. The construc-
tion, however, is no longer as straightforward as the case ρ is split with distinct
eigenvalues at places above p (as in [7,9], and [26]), and we follow Taylor’s
idea in the case F = Q, combined with the reducedness of R, to deal with
the general case. We then follow Kassaei’s paper [26] morally to ‘glue’ these
p-adic companion forms in order to construct a classical weight one form over
X . The beautiful idea of Buzzard and Taylor [9] that, from their q-expansion
coefficients (by the strong multiplicity one theorem), one can spot a set of lin-
ear equations satisfied by the p-adic companion eigenforms is sill very much
in force in this paper.

It is absolutely crucial that we work with Y PR
U and Y PR

U Iw. Suppose for brevity
that p has only one prime p in F . Let k be the residue field of p and let |k| = p f .
Let A be aHBAVover an O-scheme of the type considered byDeligne–Pappas
[13], equipped with a finite flat OF -subgroup scheme C of A[p] of order |k|
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which equals its orthogonal for the Weil paring on A[p]. In proving analytic
continuation results, it is desirable to describe, for a fixed C , exactly the locus
where

deg(C) > deg(A[p]/D)

hold1 for all OF -subgroup schemes D ⊂ A[p] that intersect trivially with C
in A[p].

If F = Q, it is proved in [28] (and made more precise in [7]) that one can
explicitly ‘solve equations’ in one-dimensional formal groups to compute and
compare deg(C) and deg(D) explicitly. In the general unramifed Hilbert case,
in dealing with this problem, Goren–Kassaei [20] finds a way to understand
degrees near ordinary loci in terms of local geometry of Hilbert modular vari-
eties, and instead solves ‘local equations’ of HMVs. When p ramified in F ,
A[p] is no longer a truncated Barsotti–Tate of level 1 in general (indeed, A[p]
is truncated Barsotti–Tate of level 1 if and only if A satisfies the Rapoport con-
dition), and it is not a straightforward task to compute the Dieudonne module
of A[p] in the standard sense, let alone deducing results about deg(C) and
deg(D). Indeed, the gist of work of Andreatta–Goren [1] is to keep track of
the relative Frobenius in characteristic p that is no longer ‘well-behaved’ in
the presence of ramification. We propose a solution to these issues by working
with the integral models Y PR

U and Y PR
U Iw over O . More precisely, we

– define new invariants for HBAVs parameterised by the κ-fibre Y
PR
U (where

κ is the residue field of O), bywhichwe single out HBAVs in co-dimension
≤ 1 that are ‘not too supersingular’ and ‘well-behaved’ for analytic contin-
uation (and analytic continuation results are established exclusively over
this locus);

– define a finer degree which reads geometry of the κ-fibre Y
PR
U Iw of Y PR

U Iw
better;

– use these invariants to understand geometry of fibres of the forgetful func-

tor/morphism from Y
PR
U Iw to Y

PR
U ;

– over the p-adic generic fibre of Y PR
U Iw, we make appeal to its comparatively

simple set of local equations to prove a canonical subgroup theorem, and
make use of ‘mod pDieudonne crystals’, in place of Breuil-Kisin modules
in the unramfied case, to prove analytic continuation results we need in the
general ramified case.

The condition that ρΠ is (nearly) ordinary at all place of F above p is essen-
tial in our approach; more precisely, essential in constructing overconvergent

1 deg(C) is ‘normalised’ such that deg(C) = 0 (resp. f ) if and only ifC is multiplicative (resp.
étale).
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176 S. Sasaki

companion forms. On the other hand, it is quite likely that one can extend the
main theorem to p = 2 (See [44]). In return for assuming that ρ is indeed a
direct sum of distinct characters at every place of F above p, Skinner–Wiles
[48] allows us to ‘extend’ our main theorem ‘orthogonally’ to the case ρ is
reducible. The general residually reducible case requires somemore work, and
is considered also in [44].

A conjecture of Fontaine–Mazur asserts that an n-dimensional continuous
irreducible p-adic representation of the absolute Galois group Gal(F/F) of
a number field F , which are unramified outside a finite set of places and
which are finite when restricted to the inertia subgroup at every place of F
above p, has finite image. Since p-adic Galois representations associated to
classical weight one forms have finite image, the Fontaine–Mazur conjecture
for ρ exactly as above follows immediately. Manymore cases of the Fontaine–
Mazur conjectures are proved in [44].

Finally, combined with a theorem about modularity of mod 5 representation
ρ, we shall prove the strong Artin conjecture:

Theorem 2 The strongArtin conjecture for two-dimensional, totally odd, con-
tinuous representations ρ : Gal(F/F) → GL2(C) of the absolute Galois
group Gal(F/F) of a totally real field F, holds.

By work of Artin, Langlands, and Tunnell, the ‘soluble’ cases where the
image of projective representation of ρ is dihedral, octahedral, and tetrahedral
are known; and the theorem proves the icosahedral case completely.

We remark that the p-adic integral models we construct also have appli-
cations to p-adic theory of Hilbert modular forms. As Johansson [25]
demonstrates, one can prove an analogue of Coleman’s theorem, ‘overcon-
vergent modular forms of small slope are classical’, using our models. His
approach is a generalisation to quaternion Hilbert modular forms of Cole-
man’s original ‘cohomological approach’,while one can takeKassaei’s ‘gluing
approach’ with our p-adic integral models to prove it. It is also likely that one
can extend the ‘geometric’ construction of an eigenvariety for Hilbert modular
forms by Andreatta–Iovita–Stevens and Pilloni to the general ramified case,
and prove various Langlands functoriality in p-adic families.

The author would like to thank his Ph.D. supervisor Kevin Buzzard, Fred
Diamond, Toby Gee, Payman Kassaei, Vytas Paškūnas, Timo Richarz, and
TeruyoshiYoshida for helpful comments and conversations on numerous occa-
sions. He would also like to thank Alain Genestier for a helpful comment.

Sections 3 and 5.1 were originally written as a chapter in author’s Ph.D.
thesis at Imperial College London, and owes their existence to various ideas
he discussed and numerous conversations he had with Kevin Buzzard, as well
as to the financial support he received from EPSRC through him in the form of
an EPSRC Project Grant (PI Kevin Buzzard). While this paper was prepared,
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the author was financially supported by EPSRC and DFG/SFB. And he would
like to thank all these research councils for their support. Last but not least,
he would like to thank Kevin Buzzard, Fred Diamond, Payman Kassaei, and
Vytas Paškūnas for moral support while this paper was being prepared.

The author acknowledges most gratefully that, if it were not for Kassaei’s
paper [26], Taylor’s idea (to deal with the case ρ(Frobp) has equal eigenvalues
for places p of F above p) and countless conversations and discussions he
had with Diamond, this paper could not have been completed. He is grateful
to Taylor for having given him permission to use his argument (in F = Q) to
deal with the p-non-distinguished case.

2 Deformation rings and Hecke algebras (following Geraghty)

This section follows [11] and [19].
Let L be a finite extension of Qp with ring of integers O , maximal ideal λ,

and residue field k.
For every finite place Q, let FQ denote the completion of F at Q with ring

of integers OFQ, DQ � Gal(FQ/FQ) denote the decomposition subgroup at Q
and IQ denote the inertia subgroup at Q of the absoluteGalois groupGal(F/F)

of a totally real field F . Let ArtQ denote the local Artin map, normalised to
send a uniformiser πQ of OFQ to a geometric Frobenius element FrobQ.

Let

ρ : Gal(F/F)→ GLn(k)

be a totally odd (i.e., the image of complex conjugation with respect to every
embedding of F into R is non-trivial), continuous, irreducible representation
of Gal(F/F). For every prime Q of F , let ρQ denote the restriction to the
decomposition group DQ at a place Q of F .

For every prime Q of F , let R�
Q denote the universal ring for liftings of ρQ.

Let S be a finite set of places in F containing the set SP of all places of F
above p and the set S∞ of all infinite places of F , and let T be a subset of S.
Suppose that T does not contain S∞.

Let FS denote the maximal extension unramified outside S, and let GS =
Gal(FS/F). Let

Σ = (S, T, (I�
Q )Q∈S)

be a deformation data, where I�
Q ⊂ R�

Q is an ideal defining a local deformation

problem ΣQ and a subspace LQ ⊂ H1(DQ, adρ) (2.2.4, [11]), and we define
Ht

Σ(GS, adρ) as follows: Firstly, let
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178 S. Sasaki

C0,loc
Σ (GS, adρ) =

⊕

Q∈S−T
(0)⊕

⊕

Q∈T
C0(DQ, adρ),

C1,loc
Σ (GS, adρ) =

⊕

Q∈S−T
C1(DQ, adρ)/MQ ⊕

⊕

Q∈T
C1(DQ, adρ),

where MQ denotes the pre-image in C1(DQ, adρ) of LQ, and let

Ct,loc
Σ (GS, adρ) =

⊕

Q∈S
Ct (DQ, adρ)

for t ≥ 2; and let

Ct
Σ(GS, adρ) = Ct (GS, adρ)

⊕
Ct−1,loc

Σ (GS, adρ)

with the boundary map Ct
Σ(GS, adρ)→ Ct+1

Σ (GS, adρ) sending (φ, (φloc
Q ))

to (∂φ, (resQφ− ∂φloc
Q )). We then define Ht

Σ(GS, adρ) to be the cohomology
group defined by the complex.

Let C = CO denote the category of O-algebras as defined in 2.2 of [11];
its objects are inverse limits of objects in the category C f of Artinian local
O-algebras R for which the structure map O → R induces an isomorphism
on residue fields and its morphisms are homomorphisms of O-algebras which
induce isomorphisms on residue fields. Let R�

Σ denote the universal ring for
T -framed deformation of type (ΣQ)Q∈S (when T is non-empty). If T is empty,
write RΣ . We let Rloc

Σ denote the completed tensor product of R�
Q/I�

Q for Q

in T , and let R�
T denote the formal power series ring in n2|T | − 1 variables

with coefficients in O normalised such that

R�
Σ � RΣ ⊗ R�

T .

Proposition 1 R�
Σ is the quotient of a power series ring over Rloc

Σ in
dim H1

Σ(GS, adρ) variables. If furthermore H2
Σ(GS, adρ) = (0), then it is

indeed a power series ring over Rloc
Σ in dim H1

Σ(GS, adρ) variables.

Proof Corollary 2.2.12, [11]. �

The local Tate duality

adρ × adρ(1) −→ k(1)

given by the ‘trace pairing’ gives rise to the perfect pairing

H1(DQ, adρ)× H1(DQ, adρ(1)) −→ k.

123



Integral models of Hilbert modular varieties 179

The orthogonal complement L⊥Q of LQ ⊂ H1(DQ, adρ) will be taken with
respect to the pairing.

Following 2.3 [11], given a deformation problem Σ = (S, T, (LQ)Q∈S,
(I�

Q )Q∈S), define

H1
Σ⊥(GS, adρ(1))

to be the kernel of the map

H1(GS, adρ(1)) −→
⊕

S−T
H1(DQ, adρ(1))/L⊥Q .

Proposition 2 Suppose n = 2.

dim H1
Σ(GS, adρ)

= dim H1
Σ⊥(GS, adρ(1))+ dim H0

Σ(GS, adρ)− dim H0(GS, adρ(1))

+
∑

Q∈S−T
dim LQ − dim H0(DQ, adρ)

Proof It follows from the long exact sequence defining Ht
Σ(GS, adρ) that

∑

t

(−1)tdim Ht
Σ(GS, adρ)

=
∑

t

(−1)tdim Ht (GS, adρ)−
∑

Q∈S
χ(DQ, adρ)

−
∑

Q∈S−T
(dim LQ − dim H0(DQ, adρ)),

hence, we deduce dim H1
Σ(GS, adρ) is

dim H0
Σ(GS, adρ)+ dim H2

Σ(GS, adρ)− dim H3
Σ(GS, adρ)− χ(GS, adρ)

+
∑

Q∈S
χ(DQ, adρ)+

∑

Q∈S−T
(dim LQ − dim H0(DQ, adρ)).

By the Poitou–Tate global duality, we deduce dim H3
Σ(GS, adρ) = dim H0

(GS, adρ(1)), and dim H2
Σ(GS, adρ) = dim H1

Σ⊥(GS, adρ(1)). By the global
Euler characteristic formula ([33], Theorem 5.1), χ(GS, adρ) = −2[F : Q].
By the local Euler characteristic formulae (Theorem 2.13 in [33] and Theorem
5, Chapter II, 5.7 in [45])

∑
S χ(DQ, adρ) = −2[F : Q]. Combining these,

we get the assertion. �


123



180 S. Sasaki

Suppose that SQ is a set of primes Q of F not in S such that

– NF/QQ ≡ 1 mod p;
– ρQ is unramified, and is a direct sum of unramified characters ρ1 and ρ2,
where ρ1(FrobQ) and ρ2(FrobQ) distinct.

Define LQ ⊂ H1(DQ, adρ) to be the subspace of classes corresponding
to conjugacy classes of liftings ρ which are direct sum of characters ρ1 and
ρ2 such that ρt lifts ρt (t = 1, 2) and ρ2 is unramified; hence dim LQ −
dim H0(DQ, adρ) = 1 (see 2.4.6 in [11]).

Fixing a deformation data Σ as above, let

ΣQ = (S ∪ SQ, T, (LQ)Q∈S∪SQ, (I�
Q )Q∈S∪SQ).

The restriction to the inertia subgroup IQ at Q in SQ (as in the preceding
section), of the determinant of a lifting ρ of ρ of type ΣQ as above factors
through the composition of the local Artin map (restricted to IQ) followed by
the surjection to the maximal pro-p quotient ΔQ of (OF/Q)×. As a result, we
have a map ΔQ → RΣQ; and

∏
Q ΔQ → RΣQ where Q ranges over SQ.

We now apply the formula above toΣQ to compute dim H1
ΣQ

(GS∪SQ, adρ).

Proposition 3 Suppose n = 2, and suppose that ρ is absolutely irreducible
when restricted to Gal(F/F(ζp)). Suppose that T is non-empty. Suppose for
a finite place Q in S − T that dim LQ − dim H0(DQ, adρ) = 0 if Q is not in
SP, while dim LQ − dim H0(DQ, adρ) = [FQ : Qp] if Q is in SP. Then

dim H1
ΣQ

(GS∪SQ, adρ)

= dim H1
Σ⊥Q

(GS∪SQ, adρ(1))+ |SQ| −
∑

Q|∞
1−

∑

Q∈T∩SP
[FQ : Qp].

Proof Since dim H0
Σ(GS, adρ) is 0 (resp. 1) when T is non-empty (resp.

empty), dim H0
Σ(GS, adρ) − dim H0(GS, adρ(1)) = 0, and it suffices to

check

∑

Q∈(S∪SQ)−T
dim LQ − dim H0(DQ, adρ)

equals

|SQ| −
∑

Q|∞
1−

∑

Q∈(T∩SP)
[FQ : Qp].
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By the definition of SQ, it is equivalent to check

∑

Q∈(S−T )

dim LQ − dim H0(DQ, adρ) = −
∑

Q|∞
1−

∑

Q∈(T∩SP)
[FQ : Qp].

By the assumptions of the proposition, it is equivalent to the validity of

∑

Q∈(S−T )∩SP
[FQ : Qp] +

∑

Q∈(T∩SP)
[FQ : Qp] = −

⎛

⎝
∑

Q|∞
−2

⎞

⎠−
∑

Q|∞
1

but this holds as both sides equal [F : Q]. �


2.1 Universal rings for local liftings

In this section, we define universal rings for liftings/deformations that we need.
As in the previous section, SP denote the set of all primes above p and

S∞ denote the set of infinite places of F . Let SR, SL and SA denote disjoint
finite sets of finite primes of F not dividing p. Suppose furthermore that SA
is non-empty and any prime Q of SR ∪ SL satisfies NF/QQ ≡ 1 mod p.

Suppose that p is odd. Suppose now that

ρ : Gal(F/F)→ GL2(k)

is a continuous representation of the absolute Galois group Gal(F/F) of F
such that

– ρ is totally odd,
– ρ is unramified outside SP ∪ SR ∪ SL ∪ SA,
– ρ, when restricted to any prime in SP ∪ SR ∪ SL, is trivial,
– the restriction to Gal(F/F(ζp)) of ρ is absolutely irreducible.
– ρ, when restricted to any primeQ in SA, is unramified and H0(DQ, ad ρ(1))
= 0 (it is possible to find a such Q, indeed satisfying NF/QQ �≡ 1 mod p,
follows for example from Proposition 4.11 in [12]),

– if p = 5 and the projective image of ρ is PGL2(F5), the kernel of the
projective representation of ρ does not fix F(ζ5),

We remark that S earlier will be SP ∪ SR ∪ SL ∪ SA ∪ S∞ and T will be
S − S∞.
For every place p of F above p, let Gp denote the image of the inertia

subgroup Ip in the pro-p-completion of the maximal abelian quotient of the
decomposition group Dp at p, and let G denote the product of Gp over all p
above p. The local Artin map Artp identifies Gp with 1+πOp where π = πp

is a uniformiser. Let Σp denote the Qp-linear embeddings of Fp into L .
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Let G denote the multiplicative group over F and let ResF/QG denote the
Weil restriction. Let T � G × G denote the algebraic group of diagonal
torus over F in GL2/F and let ResF/QT denote its Weil restriction, which is
isomorphic to ResF/QG×ResF/QG. By slight abuse of notation, we continue
to use the same symbols to mean the integral models of the aforementioned
algebraic groups.

For every integer r ≥ 1, let ResF/QT (Zp)[pr ] ⊂ ResF/QT (Zp) denote the
kernel

ker(ResF/QT (Zp)→ ResF/QT (Z/prZ))

of the standard ‘reductionmod pr ’ morphism. Simialrly, define ResF/QG(Zp)

[pr ]. Granted, we may identify ResF/QT (Zp)[p] with G × G and ResF/Q
G(Zp)[p] with G. When convenient and no confusion is expected, we may
writeΔ = ΔT (resp.ΔG) tomeanResF/QT (Zp)[p] (resp. ResF/QG(Zp)[p]).

We define the ‘local’ Iwasawa algebraΛp to be the O-algebra O[[Gp×Gp]]
of the pro-p-group Gp × Gp, and let Λp denote the Iwasawa algebra

⊗̂
pΛp.

The ‘global’ Iwasawa algebra Λp is identified with O[[G × G]], and hence
with O[[Δ]].

The O-algebra Λp parameterises the pairs of characters χ = (χ1, χ2) =∏
p(χp,1, χp,2) of G which take values in objects of C and which are liftings of

the trivial character in k×; each algebraic character χp,t of Gp is parametrised
by a |Σp|-tuple λp,t = (λτ,t )τ of integers with τ ranging over Σp. By slight
abuse of notation, by a tuple λ = (λp,1, λp,2)p of integers as above, we shall
also mean the pair of algebraic characters corresponding to λ.

Define Λ to be the quotient O[Δ/(O×F,+ ∩Δ)]] of O[[Δ]] parameterising
all characters which satisfy the ‘parity condition’, i.e., factor through the p-

adic closure O×F,+ ∩Δ of the diagonal image of the totally positive units O×F,+
in Δ = G × G. Note that Λ is of relative dimension 1 + [F : Q] + εL over
O , where εL = 0 if the Leopoldt conjecture of the pair F and p holds.
Ifw is a fixed integer, the set of 2[F : Q]-tuples λ (corresponding to a pair of

algebraic characters by definition) such that λτ,1 ≥ λτ,2 and λτ,1 + λτ,2 = w

for every p and τ in Σp is in bijection with the set of [F : Q]-tuples k = (kτ )

such that kτ ≥ 2 and kτ ≡ w mod 2 by decreeing that λ = (λτ,1, λτ,2)

corresponds to k = (λ1,τ − λ2,τ + 2) and, conversely, k = (kτ ) corresponds
to λ = ((w + kτ − 2)/2, (w − kτ + 2)/2).

2.2 Local liftings at places above p

Let L be a finite extension of Qp, and let O denote its ring of integers with
maximal ideal λ and residue field k . Let V = O2. Let p be a place of F above
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p that we fix, and let ρp : Dp → GL2(R�
p ) denote the universal lifting of the

restriction ρp (assumed to be trivial) to the decomposition group Dp at p of ρ

above.
Define a functor Gr�p which sends an O-algebra R to the set of data con-

sisting of

– a filtration Fil (V ⊗O R) = (0 = (V ⊗O R)(0) ⊂ (V ⊗O R)(1) ⊂
(V ⊗O R)(2) = V ⊗O R) of V ⊗O R,

– a map R�
p → R whose composition ρp ⊗O R : Dp → GL2(R) with the

universal lifting Dp → GL2(R�
p ) preserves the filtration.

Define a functor Gr�Λp
which sends an O-algebra R to the set of data con-

sisting of an R-valued point of Gr�p as above, together with an O-algebra
morphism τ from Λp to R, satisfying the following condition: if χ = (χ1, χ2)

is the universal pair of characters Gp → Λp, the R-valued character, defined
as the projection of Ip to Gp followed by χt ⊗τ R, matches up with the action
via ρp ⊗O R on (V ⊗O R)(t)/(V ⊗O R)(t − 1), when restricted to Ip.

Lemma 1 The functor Gr�p (resp. Gr�Λp
) is representable by a scheme XGr�p

(resp. XGr�Λp
).

Proof This is standard. �

Forgetting filtrations for every S-point defines a morphism XGr�p

→
Spec R�

p , while, by definition, we have a closed immersion XGr�Λp
→

Spec R�
p ⊗̂OΛp (Lemma 3.1.2 in [19]). We define R�,ord

p = R�
p /I�,ord

p by

letting Spec R�,ord
p be the schematic closure of the image of XGr�Λp

[1/p] ↪→
XGr�Λp

→ Spec R�
p ⊗̂OΛp. By the projection, XGr�Λp

is thought of as a Λp-

scheme; and, similarly, R�,ord
p is a Λp-algebra. In particular, let κ denote the

morphism Spec R�,ord
p → SpecΛp.

Let ξ denote a closed point of Spec Lξ → Spec R�,ord
p [1/p] for a finite

extension Lξ of L and χ = (χ1, χ2) denote a pair of characters corresponding
to the point κ ◦ξ of SpecΛp[1/p]. Suppose that χ1 and χ2 are distinct and that
εχ2 and χ1 are also distinct (where ε is the cyclotomic character). The pair of
characters satisfying these conditions are evidently dense in SpecΛp[1/p].
Lemma 2 The fibre Spec R�,ord

p,χ of Spec R�,ord
p at χ along κ is regular of

dimension [Fp : Qp] + 4; and the localisation Spec R�,ord
p,ξ of Spec R�,ord

p at
ξ is regular of dimension 3[Fp : Qp] + 4.

Proof The assertions follow from Lemma 3.2.2 in [19]. �
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Proposition 4 Suppose that [Fp : Qp] > 2. Let Γ be a minimal ideal of Λp.

ThenSpec R�,ord
p ⊗ΛpΛp/Γ is geometrically irreducible of relative dimension

3[Fp : Qp] + 4 over O.

Proof This is proved essentially in Corollary 3.4.2 in [19] or Proposition
3.14 in [56]. The essence of the proof is to establish that every irreducible
component of XGr�Λp

[1/p] is of dimension 3[Fp : Qp] + 4, which one

checks by computing (Lemma 3.2.3 in [19]) its completed local ring at a
closed point whose projection to SpecΛp corresponds to a pair of characters
χ = (χ1, χ2) such that χ1 = εχ2 does not hold. It follows that for every mini-
mal ideal Γ ofΛp, Spec R

�,ord
p ⊗Λp Λp/Γ is irreducible of dimension at most

1+ 3[Fp : Qp] + 4. However, it follows from the ‘moduli description’ of the
morphism XGr�Λp

[1/p] → Spec R�,ord
p [1/p] of SpecΛp[1/p]-schemes that

the morphism is finite (more precisely, quasi-finite with its fibres singletons,
but, combined with the projectivity of the morphism, the finiteness holds) if
it is pull-back over to the open subscheme of SpecΛp[1/p] corresponding to
the pairs of distinct characters, and this suffices to establish the assertion as in
the proof of Corollary 3.4.2 in [19]. �


We need a variant of R�,ord
p that further parameterises ‘eigenvalues of the

characteristic polynomial of a Frobenius element of Dp’. Let φ = φp be a
Frobenius lift in Dp that we fix. We proceed differently from Pilloni–Stroh’s
construction in Section 4.1 of [38] in the ordinary case.

Let R�,+
p denote the universal ring for the liftings ρ of (the trivial two-

dimensional representation) ρp, together with choices of roots of the quadratic
polynomial X2 − tr ρ(φ)X + det ρ(φ) = 0.

Define R�,ord,+
p by the pull-back:

Spec R�,ord,+
p −→ Spec R�,+

p ⊗̂Λp⏐� ⏐�
Spec R�,ord

p −→ Spec R�
p ⊗̂Λp

where the horizontal morphisms are closed immersions. Similarly, define
X+
Gr�Λp

to be the pull-back of XGr�Λp
along Spec R�,+

p ⊗̂Λp → Spec R�
p ⊗̂Λp.

As the formation of scheme-theoretic closure commutes with flat base
change, Spec R�,ord,+

p is also the scheme-theoretic closure of the morphism

X+
Gr�Λp

[1/p] ↪→ X+
Gr�Λp

→ Spec R�,+
p ⊗̂Λp.

Proposition 5 Suppose that [Fp : Qp] > 2. Let Γ be a minimal ideal of

Λp. Then Spec R�,ord,+
p ⊗Λp Λp/Γ is geometrically irreducible of relative
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dimension 3[Fp : Qp] + 4 over O. Furthermore, R�,ord,+
p ⊗Λp Λp/Γ is

flat over O, Cohen–Macaulay and reduced; and R�,ord,+
p ⊗Λp Λp/(Γ, λ) is

reduced.

Proof For the first assertion, the proof of Proposition 4 works verbatim if
the morphism X+

Gr�Λp

[1/p] → Spec R�,ord,+
p [1/p] is finite when restricted to

the open subscheme of SpecΛp[1/p] corresponding to the pairs of distinct
characters. But this is immediate.

To prove the second assertion, we define anotherΛp-algebra R
�,ord,†
p which

is universal for ‘explicit’ liftings of ρp. This is more amenable to explicit
calculations, and we shall write down a set of explicit equations to establish
that it is Cohen–Macaulay, reduced and flat over O .

Let R�,ord,†
p denote the quotient of R�,+

p ⊗̂Λp parametrising (ρ, α(φ), χ)

where χ = (χ1, χ2) and where α(φ) denote a root of the polynomial X2 −
tr ρ(φ)X + det ρ(φ) = 0 satisfying the following conditions:

(I) tr ρ(z) = χ1(z)+ χ2(z) for z in Ip,
(II) tr ρ(φ) = α(φ)+ β(φ) where β(φ) denotes det ρ(φ)/α(φ),
(III) det (ρ(φ)− β(φ)) = 0,
(IV) 1+ det(χ2(z)−1ρ(z)) = tr (χ2(z)−1ρ(z)) for z in Gp,
(V) (ρ(z)− χ2(z))(ρ(z+)− χ2(z+)) = (χ1(z)− χ2(z))(ρ(z+)− χ2(z+))

for z and z+ in Ip,
(VI) (ρ(φ)− α(φ))(ρ(z)− χ2(z)) = (β(φ)− α(φ))(ρ(z)− χ2(z)) for z in

Ip, or equivalently,

ρ(φz) = β(φ)(ρ(z)− χ2(z))+ χ2(z)ρ(φ).

Let {zτ }τ , where 1 ≤ τ ≤ [Fp : Qp], be the generators of Ip. In writing

ρ(φ) =
(

β(φ) 0
0 β(φ)

)
+

(
Aφ Bφ

Cφ Dφ

)

and, for every 1 ≤ τ ≤ [Fp : Qp],

ρ(zτ ) =
(

χ2(zτ ) 0
0 χ2(zτ )

)
+

(
Aτ Bτ

Cτ Dτ

)
,

it is possible to check that R�,ord,†
p is given by the formal power series ring

with coefficients in O with (4 + 1)[Fp : Qp] + (4 + 1) = 5[Fp : Qp] + 5
variables

{Aτ , Bτ ,Cτ , Dτ , χ2(zτ )}τ , Aφ, Bφ,Cφ, Dφ, β(φ)
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with their relations given by the 2 by 2 minors in

(
Aφ Cφ −C1 −D1 · · · −Cd −Dd
Bφ Dφ A1 B1 · · · Ad Bd

)

where d = [Fp : Qp]. Let R�,ord,†,∨
p denote the quotient of the polynomial ring

by the ideal given by the same set of variables with the same set of relations.
By definition, R�,ord,†,∨

p is determinantal in the sense of Section 1-C in [6]

or Section 7 in [5], while R�,ord,†
p is determinantal according to Section 18.5

in [15]. As the Cohen–Macaulay-ness and the flatness (over O) pass from
R�,ord,†,∨
p to R�,ord,†

p , we establish these properties for R�,ord,†,∨
p .

Firstly, R�,ord,†,∨
p is Cohen–Macaulay (seeTheorem18.18 in [15], orCorol-

lary 2.8 in Section 2.B in [6]). It is also possible to explicitly spot a regular
sequence in R�,ord,†,∨

p and use that to prove R�,ord,†,∨
p is Cohen–Macaulay

directly, as in the proof of Proposition 2.7 in [47]. Eisenbud (see Section 18.5
with its reference to Exercises 10.9 and 10.10 in [15]) also claims, without a
proof, that it is of relative dimension

5[Fp : Qp] + 5− (2[Fp : Qp] + 1) = 3[Fp : Qp] + 4

over O; this will be checked directly in the forthcoming argument.
The reducedness of R�,ord,†,∨

p indeed follows from the defining equations.

To see this, we shall prove that the L-algebra R�,ord,†,∨
p [1/λ] and the k-

algebra R�,ord,†,∨
p /λ are both domains of the same dimension 3[Fp : Qp]+4.

Granted, it follows from Lemma 2.2.1 in [49] (also see Theorem 23.1 in
[32]) that R�,ord,†,∨

p is flat over O and follows, as result, that R�,ord,†,∨
p ⊂

R�,ord,†,∨
p [1/λ] is reduced.
To see that the naturally graded L-algebra R�,ord,†,∨

p [1/λ] is a domain, one

notes that Proj R�,ord,†,∨
p [1/λ] is covered by the open sets {X �= 0} where

X ranges over the single-variable equations defined by those appearing in the
relations defining R�,ord,†,∨

p , i.e, X is any one of the 4+ 4[Fp : Qp] variables
in the list

{Aφ, Bφ,Cφ, Dφ; {Aτ , Bτ ,Cτ , Dτ }τ }.
Each covering {X �= 0} is isomorphic to the domain (AL − {0}) ×

A
2([Fp:Qp]+1)+[Fp:Qp]+1
L (where the right-most ‘[Fp : Qp]+1’ reads {χ2(zτ )}τ

and β(φ), for example), therefore R�,ord,†,∨
p [1/λ] is a domain. The same proof

(with k in place of L) works in the case of R�,ord,†,∨
p (as the ‘coefficient’ k is,

again, a field).
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To transfer our calculations so far about R�,ord,†
p to R�,ord,+

p , we shall prove
that they are isomorphic.

Firstly, one observes that there is a natural map,

X+
Gr�Λp

→ Spec R�,ord,†
p

which, when followed by the closed immersion Spec R�,ord,†
p → Spec R�,+

p

⊗̂OΛp, factors through X+
Gr�Λp

→ Spec R�,+
p ⊗̂OΛp. It then follows from the

universal property of the scheme-theoretic closure Spec R�,ord,+
p that there is

a closed immerion

Spec R�,ord,+
p → Spec R�,ord,†

p

giving rise to a surjection R�,ord,†
p → R�,ord,+

p .
To prove that the surjection is indeed bijective, we follow the proof of

Lemma 4.7.3 in [49] to show that Spec R�,ord,†
p [1/λ] ⊂ Spec R�,ord,+

p [1/λ]
(and as a result R�,ord,†

p [1/λ] � R�,ord,+
p [1/λ]) ‘moduli-theoretically’ using

the Eqs. (I)–(VI) defining R�,ord,†
p .

Let (ρ, α(φ), χ = (χ1, χ2)) be a closed point of Spec R
�,ord,†
p defined over

a finite extension K of L = O[1/λ]. For simplicity, we write α = α(φ) and
β = det ρ(φ)/α(φ). From (I) and (IV), we may deduce that the restriction of
ρ to Ip is either an extension of K (χ2) by K (χ1) or an extension of K (χ1) by
K (χ2).
Suppose that it is the latter. We may then choose a basis of ρ to write the

restriction of ρ to Ip to be of the form ρ|Ip =
(

χ2 c
0 χ1

)
. But it follows from

(V) that

c(z)(χ1(z
+)− χ2(z

+)) = (χ1(z)− χ2(z))c(z
+),

i.e.,

((χ2/χ1)(z
+)− 1)c(z) = ((χ2/χ1)(z)− 1)c(z+).

If χ1 and χ2 are distinct, χ2/χ1 is non-trivial and we may therefore see the
equality as saying that the co-cycle c in H1(Dp, K (χ2/χ1)) is coboundary,
in other words, ρ is split when restricted to Ip. Hence the restriction to Ip

of ρ is of the form

(
χ1 ∗
0 χ2

)
, in other words, (ρ, χ) defines a K -point of

Spec R�,ord
p [1/λ].
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Suppose χ1 = χ2. With respect to the basis chosen above, suppose that

ρ(φ) =
(

β∼ ∗
0 α∼

)
. By (III), we may deduce that (β∼ − β)(α∼ − β) = 0.

Hence either (α∼, β∼) = (α, β) or (α∼, β∼) = (β, α) holds. By (VI), one
can check that the latter occurs only when the restriction of ρ to Ip is split. In
any case, (ρ, α, χ) defines a K -point of Spec R�,ord,+

p [1/λ].
Suppose that χ1 and χ2 are distinct. It then follows from (VI) that

(β∼ − α)(χ1 − χ2) = (β − α)(χ1 − χ2). As χ1 and χ2 are distinct,
β∼ = β, and α∼ = α as a result. It therefore follows that (ρ, α, χ) defines
a K -point of Spec R�,ord,+

p [1/λ] and thereby establishes that the surjection

R�,ord,†
p [1/λ] → R�,ord,+

p [1/λ] is indeed an isomorphism.

As R�,ord,†
p is flat over O and λ thus is not a zero-divisor in R�,ord,†

p , the

kernel of the surjection R�,ord,†
p → R�,ord,+

p is indeed trivial, i.e., R�,ord,†
p �

R�,ord,+
p . This concludes our proof of the proposition. �


2.3 Local liftings at places not dividing p

SR: Suppose that NF/QQ ≡ 1 mod p. Let O be as above. By enlarging O if
necessary to assume that μ|kQ|−1 ⊂ (1+ λ). Suppose that χQ,1, χQ,2 : DQ →
(1+ λ) ⊂ O× are characters of finite order such that their reductions mod λ

are trivial. Write χ = χQ to mean the pair (χQ,1, χQ,2).

Lemma 3 There exists an ideal I�,χ
Q of R�

Q which corresponds to the liftings
ρ of the trivial representation ρQ such that

– the characteristic polynomial of the restriction of ρ to the inertia subgroup
IQ atQ in X is of the form (X −χQ,1(ArtQ(g))−1)(X −χQ,2(ArtQ(g))−1)
for every g in IQ;

– R�
Q/I�,χ

Q is flat over O, reduced,Cohen–Macaulayandof equi-dimensional
of relative dimension 4 over O;

– R�
Q/I�,χ

Q [1/p] is formally smooth over L;
– R�

Q/(λ, I�,χ
Q ) is reduced;

– the generic point of every irreducible component of R�
Q/I�,χ

Q has charac-
teristic zero.

Furthermore,

– if χQ,1 and χQ,2 are distinct, then R�
Q/I�,χ

Q is geometrically irreducible of
relative dimension 4 over O;

– if χQ,1 and χQ,2 are both trivial and if L is sufficiently large, every minimal

prime of R�
Q/(λ, I�,χ

Q ) contains a unique minimal prime of R�
Q/(λ, I�,χ

Q ).

123



Integral models of Hilbert modular varieties 189

Proof Following the notation of [47], when χQ,1 and χQ,2 are distinct, let

R�
Q/I�,χ

Q be R�(ρQ, τ ) with the inertial type τ given by a representation of

IQ sending g in IQ to

(
χQ,1(g) ∗

0 χQ,2(g)

)
and N = 0. When χQ,1 and χQ,2

are both trivial, let Spec R�
Q/I�,χ

Q denote the union of Spec R�(ρQ, τ ) where
the inertial types τ range over those given by the trivial representation of I
with open kernel (when N = 0, it corresponds to the unramified liftings while
non-trivial N corresponds to the ‘Steinberg’ liftings).

Firstly, observe that R�
Q/I�,χ

Q is flat over O and reduced by defini-

tion. Proposition 5.8 in [47] proves that R�
Q/I�,χ

Q is Cohen–Macaulay
(equi-dimensional of relative dimension 4 over O) and, less explicitly,
R�
Q/I�,χ

Q [1/p] is formally smooth over L .
When χQ,1 and χQ,2 are distinct, Proposition 5.8 in [47] also proves that

R�
Q/(λ, I�,χ

Q ) is reduced. Furthermore, the proof of Proposition 3.1 in [52]

proves that R�
Q/I�,χ

Q is geometrically integral.

When χQ,1 = χQ,2 = 1, as λ is R�
Q/I�,(1,1)

Q -regular, R�
Q/(λ, I�,(1,1)

Q ) is
Cohen–Macaulay by Theorem 17.3 in [32]. On the other hand, the proof of
Lemma 3.2 in [52], combined with the corollary of Theorem 23.9 in [32],
establishes that R�

Q/(λ, I�,(1,1)
Q ) is generically reduced. The reducedness of

R�
Q/(λ, I�,(1,1)

Q ) therefore follows. The last assertion is proved in Proposition
3.1 in [52]. �

SL:

Lemma 4 Suppose Q satisfies NF/QQ ≡ 1 mod p. Then there exists an ideal

I�,St
Q of R�

Q , containing I�,(1,1)
Q above, which corresponds to the liftings of

the trivial representation ρQ : DQ → GL2(k) such that

– the characteristic polynomial of ρ when restricted to IQ (resp. ρ(FrobQ)

where FrobQ, by abuse of notation, is a lifting of the arithmetic Frobenius)
is of the form (X − 1)2 (resp. (X − |kQ|)(X − α|kQ|) for some α);

– R�
Q/I�,St

Q is flat over O, reduced, Cohen–Macaulay and equi-dimensional
of relative dimension 4 over O;

– (R�
Q/I�,St

Q )[1/p] is formally smooth;
– R�

Q/I�,St
Q is geometrically integral;

– the generic point of R�
Q/I�,St

Q has characteristic zero.

Proof This is proved in Proposition 3.1 of [52], Proposition 3.17 in [56] and
Proposition 5.8 in [47] as in the proof of Lemma 3. �
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SA: For every Q in SA, R�
Q is formally smooth of relative dimension 4, and

let IQ = (0).

SQ,ν :

Lemma 5 Let ν ≥ 1 be an integer. Suppose that Q satisfies NF/QQ ≡ 1
mod pν . Suppose that ρQ is unramified, and is the direct sum of (unramified)
characters χQ,1, χQ,2 : DQ → k×. Then there exists an ideal I�

Q of R�
Q which

corresponds to the liftings ρ = χQ,1⊕ χQ,2 of ρQ such that χQ,t lifts χQ,t for
t = 1, 2, and χQ,2 is unramified.

Proof See Section 2.4.6 in [11], or Definition 4.1 and Lemma 4.2 in [57]. �

We shall suppose that |SQ,ν | = q is independent of ν. Existence of a such

set of ‘Taylor-Wiles primes’ will be stated with a reference in the following.
In the following, let Σχ denote the deformation data defined by

– S = SP ∪ SR ∪ SL ∪ SA ∪ S∞;
– T = S − S∞;

and the ideals of universal rings for local liftings at T , namely

– I�,ord,+
p for every p in SP assuming [Fp : Qp] > 2;

– a tuple χ = (χQ = (χQ,1, χQ,2)) of characters where Q ranges over SR,

and I
�,χQ
Q for every Q in SR;

– I�,St
Q for every Q in SL;

– I�
Q = (0) for every Q in SA (any lifting of ρQ for Q in SA is necessarily
unramified);

The ideals I�
Q of R�

Q for every Q in S define a subspace LQ ⊂ H1(DQ, adρ).
When χQ is trivial for all Q in SR, we write Σ instead.

Let C denote the category as defined in 2.2, [11], withΛp in place of O . The
functor which sends an object R of C to the set of T -framed deformations of
ρ of type Σχ is represented by a complete local noetherian Λp-algebra R�

Σχ
.

If T is empty, write it RΣχ .

Lemma 6 If p = 5 and the projective image of ρ is isomorphic to PGL2(F5),
assume that the kernel of the projective representation of ρ does not fix F(ζ5).

For every integer ν ≥ 1 there exists a finite set SQ,ν of Q such that

– NF/QQ ≡ 1 mod pν;
– ρ at Q is a direct sum of two distinct characters which are unramified;
– |SQ,ν | = q,

and if we let Σχ,Q,ν denote the deformation data (S ∪ SQ,ν, T, . . . ) defined
by the ideals of universal rings for local liftings at T exactly as in Σχ =
(S, T, . . . ), together with I�

Q for Q in SQ,ν defined as above, then R�
Σχ,Q,ν

is

topologically generated over Rloc
Σχ

by r = q − 2[F : Q] elements.
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Proof The proof of Proposition 2.5.9, [11] works verbatim (with n = 2) to
constructs the sets SQ,ν as required. The last assertion follows from Proposi-
tion 3. �


2.4 Hecke algebras

Let AF denote the ring of adeles of F and let A
∞
F denote its finite part. Let

D be the quaternion algebra over F ramified exactly at SL ∪ S∞ such that
|SL ∪ S∞| is even. Let G denote the corresponding algebraic group over F
such that G(F) = D×. Once for all, we fix a maximal order OD of D, and for
every finite place Q not in SL, we fix an isomorphism G(OFQ) � GL2(OFQ).
For a finite place Q of F , we shall let Iw(OFQ) denote the subgroup of matrices
in GL2(OFQ) which reduce mod Q to upper triangular matrices.

Let χ be a set of characters indexed by SR such that χQ = (χQ,1, χQ,2)

for every Q in SR defines a character of Iw(OFQ) ⊂ GL2(OFQ), trivial on
the subgroup of matrices in GL2(OFQ) which reduce mod Q to the unipotent
matrices.

For an algebraic character λ = (λp,1, λp,2) of Λp such that λτ,1 ≥ λτ,2 for
every τ in Sp, let Vλ,χ be the O-tensor module

VP ⊗ VR ⊗ VL

where VP is the SP-tensor product
⊗

Vp with Vp =⊗
τ Sym

λτ detγτ O2 where
λτ = λτ,1−λτ,2 and γτ = λτ,2 for every τ in HomQp(Fp, L); VR =⊗

O(χQ)

and we let the SR-product
∏

Iw(OFQ) act by χ ; VL is the SL-tensor product
of the one-dimensional trivial representation of (D ⊗F FQ)× for Q in SL,
which is given by the the determinant (D ⊗F FQ)× → F×Q (followed by

the trivial character F×Q → F×Q ) and corresponds by the Jacquet–Langlands
correspondence to the special representation Sp2 (Chapter I, Section 3 in [21])
of the trivial character, which in turn corresponds by the local Langlands
correspondence to a two-dimensional reducible local Galois representation
with the cyclotomic and the trivial characters on the diagonal.

For an O-algebra A, let Sχ
λ (A) denote the space of functions

f : G(F)\G(A
f
F )→ Vλ,χ ⊗O A.

Let G(A∞∪TF )×∏
G(OFQ)×∏

Iw(OFQ), where T = SP ∪ SR ∪ SL ∪ SA
and where in the first (resp. second) product Q ranges over SP∪ SL∪ SA (resp.
SR), act on Sχ

λ (A) by

(γ f )(g) = (γSP∪SR) f (gγ )

where γSP∪SR is the projection of γ onto the SP ∪ SR-components.
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Let U = UD be an open compact subgroup of G(A∞∪TF )×∏
G(OFQ)×∏

Iw(OFQ), where the first product ranges over SP ∪ SL ∪ SA and the second
over SR, such that UQ is a maximal compact subgroup of G(FQ) for every Q
in SL and such that UQ for every Q in SR is the subgroup of matrices which
reduce mod the maximal ideal to the identity matrix. In this case, because of
the primes in SA,U is sufficiently small in the sense that, for every t inG(A∞F ),
the finite group (U ∩ t−1G(F)t)/O×F is {1}.

For integers N ≥ 1 and ν ≥ 1, let SQ,ν as in the previous section, and
define UIwQ,ν ,N to be a sufficiently small open compact subgroup of G(A∞F )

as above such that, at every p above p, it reduces modulo the N -th power of p
to the upper triangular unipotent matrices while, at every Q in SQ,ν , reduces
mod Q to the upper triangular matrices. We also define UΣQ,ν ,N to be the
subgroup of UIwQ,ν ,N that is identical to UIwQ,ν ,N away from the primes in
SQ,ν but, for every Q in SQ,ν , UΣQ,ν ,N ∩ GL2(FQ) consists of all matrices in
UIwQ,ν ,N ∩GL2(FQ) ⊂ GL2(OFQ) whose right-bottom entries reduce mod Q
to the elements of (OF/Q)× that map trivially when passing to the maximal
pro-p-quotient ΔQ of (OF/Q)×. In other words, UΣQ,ν ,N is defined such that
UIwQ,ν ,N/UΣQ,ν ,N �

∏
Q ΔQ where Q ranges over SQ,ν .

When SQ,ν is empty, we shall write UN . By slight abuse of notation, the
N -direct limit of UΣQ,ν ,N (resp. UIwQ,ν ,N ) will be denoted by UΣQ,ν (resp.
UIwQ,ν ).

Let Sχ
λ (U, A) denote the set f ∈ Sχ

λ (A) such that γ f = f for every γ ∈ U .

Definition When χQ is trivial, i.e., χQ,1 and χQ,2 are both trivial, for every
Q in SR, in which case we will often say χ is trivial, we in particular write
Sλ(U, A). If, on the other hand, χQ,1 and χQ,2 are distinct for all Q in SR, we
say that χQ is distinct. We only need these two extreme cases.

For Q not in SP∪SR∪SL∪S∞, A[UQ\GL2(FQ)/UQ] acts on Sχ
λ (U, A): for

g inGL2(FQ), if [UQgUQ] =∐
γ γUQ, define theHeckeoperator correspond-

ing to g by
∑

γ γ f . Let TQ
(
resp.SQ

)
denote the Hecke operator corresponding

to

(
πQ 0
0 1

) (
resp.

(
πQ 0
0 πQ

))
where πQ is a uniformiser of OFQ.

For U = UN or UΣQ,ν ,N , S
χ
λ (U, A) comes equipped with the Hecke oper-

ator Up

(
resp.Sp

)
for every p in SP, corresponding to the matrix

(
πp 0
0 1

)

(
resp.

(
πp 0
0 πp

))
but normalised by multiplying the product over τ in Σp

of τ(πp)
−λ2,τ (resp. τ(πp)

−(λ1,τ+λ2,τ )). The normalisation is in common with
[22] for example. It also has action of Sτ (this is denoted by 〈τ 〉 in Definition
2.3.1 of[19], but we save 〈 〉 for another operator) corresponding an element
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τ in the diagonal torus T (Op) =
(
O×p 0
0 O×p

)
for every p in SP. If τ is a tuple

(τp)p of τp in T (Op) for every p in SP, let Sτ denote the product of Sτp over p.
When U = UN or UΣQ,ν ,N , we follow Geraghty Definition 2.6.2 in [19] to

define

〈τ 〉 = γ−1τ Sτ ,

where γτ = ∏
p γτ,p and γτ,p = τp,2 for τp = (τp,1, τp,2) in T (Op) for every

p.
Let Tλ,Σχ,Q,ν (UΣQ,ν ,N , A) denote theHecke algebra generated by the images

in End(Sχ
λ (UΣQ,ν ,N , A)) of TQ and SQ for Q not in S ∪ SQ,ν , Up for p in SP,

and Sτ for τ ∈ T . When SQ,ν is empty, we shall write Tλ,Σχ (UN , A).
When A = O , we will not make references to A henceforth. When λτ,1 =

λτ,2 = 0 for every τ in Sp and p in SP, write 2 in place of λ.
Section 2.4 of [19] defines the ‘Hida’ idempotent e on Sχ

λ (UΣQ,ν ,N ),
Sχ
λ (UΣQ,ν ,N , L/O), and Tλ,ΣQ,ν (UΣQ,ν ,N ), and define

Sχ,ord(UΣQ,ν )

(resp. Sχ,ord(UΣQ,ν , L/O))

to be the N -direct limit of eSχ
2 (UΣQ,ν ,N ) (resp. eSχ

2 (UΣQ,ν ,N , L/O)); and

T ord
Σχ,Q,ν

(UΣQ,ν )

to be the N -inverse limit of eT2,Σχ,Q,ν (UΣQ,ν ,N ). When SQ,ν is empty, we
shall write Sχ,ord(U ), Sχ,ord(U, L/O) and T ord

Σχ
(U ) respectively. Naturally,

T χ,ord
Σχ,Q,ν

(UΣQ,ν ) and Sχ,ord(UΣQ,ν ) are algebras over Λp, and hence over Λ, by
〈 〉.
Lemma 7 – T ord

Σχ
(U ) is reduced.

– T ord
Σχ

(U ) is a finite faithful Λ-module, Sχ,ord(U ) is a faithful T ord
Σχ

(U )-
module and is finite free over Λ.

Proof The first assertion follows from Lemma 2.4.4 in [19]. The second asser-
tion follows from Propositions 2.5.3 and 2.5.4 in [19]. �


Letm be a maximal ideal of T ord
Σχ

(U ) when χ is trivial. Since Sord(U )/λ =
Sχ,ord(U )/λ, it induces a maximal mχ ⊂ T ord

Σχ
(U ). Let mχ,Q,ν ⊂

T ord
Σχ,Q

(UΣQ,ν ) be the maximal ideal defined by the surjection

T ord
Σχ,Q,ν

(UΣQ,ν )→ T ord
Σχ

(U ).
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Define HΣχ,Q,ν (UΣQ,ν ), also denoted by HΣχ,Q,ν , by letting

(HΣχ,Q,ν )
∨ ⊂ Sχ,ord(UΣQ,ν , L/O)∨mχ,Q,ν

(where by the dual ∨ we mean the ‘Pontrjagin dual’ HomO(−, L/O)) as in
Section 4.2 of [19], let HΣχ,Q,ν (UIwQ,ν ) denote the one defined similarly with
UIwQ,ν in place of UΣQ,νand let

TΣχ,Q,ν ⊂ End(HΣχ,Q,ν )

denote the image of T ord
Σχ,Q,ν

(UΣQ,ν )mχ,Q,ν in End(HΣχ,Q,ν ). When SQ,ν = ∅,

we simply write TΣχ and HΣχ for TΣχ,Q,ν and HΣχ,Q,ν . Let H�
Σχ,Q,ν

=
HΣχ,Q,ν ⊗RΣχ,Q,ν

R�
Σχ,Q,ν

; when SQ,ν = ∅, we simply write it H�
Σχ

.

Recall thatUIwQ,ν /UΣQ,ν is isomorphic to the
∏

Q ΔQ where Q ranges over
SQ,ν and where ΔQ is the maximal pro-p quotient of (OF/Q)× for every
Q. Let ΔQ,ν denote the quotient (UIwQ,ν ∩ A

∞×
F )O×F /(UΣQ,ν ∩ A

∞×
F )O×F �

(
∏

Q ΔQ)/O
×
F by the image O

×
F of the units O×F .

Lemma 8 The co-invariants of HΣχ,Q,ν (UΣQ,ν ) by O[ΔQ,ν] is isomorphic
to HΣχ,Q,ν (UIwQ,ν ) by the trace map corresponding to UIwQ,ν /UΣQ,ν , and
HΣχ,Q,ν = HΣχ,Q,ν (UΣQ,ν ) is a finite faithful and free module over Λ[ΔQ,ν].
Proof For a sufficiently small open compact subgroup U of G(A∞F ),

G(A∞F ) =
∐

t

G(F)tU

holds, where t ranges over a finitely many representatives in G(A∞F ); and
(t−1G(F)t ∩U )/O×F is trivial. For an O-module A, it therefore follows that

Sχ
2 (U, A) �

⊕

t

(V2,χ ⊗O A)t
−1G(F)t∩U .

The first assertion follows if the co-invariants Sχ
2 (UΣQ,ν ,N , O)ΔQ,ν is iso-

morphic to Sχ
2 (UIwQ,ν ,N , O). This, in turn, follows (by the standard duality

pairing and Pontryagin duality) if the invariants Sχ
2 (UΣQ,ν ,N , L/O)ΔQ,ν is iso-

morphic to Sχ
2 (UIwQ,ν ,N , L/O). As the order of t−1G(F)t ∩UIwQ,ν ,N and the

order of ΔQ,ν = (
∏

Q ΔQ)/O
×
F are coprime, this holds.

To prove the second assertion, it is enough to prove |Sχ
2 (UΣQ,ν ,N , L)||ΔQ,ν |

= |Sχ
2 (UIwQ,ν ,N , L)| by Nakayama’s lemma. But this follows as one observes,

as UIwQ,ν ,N is sufficiently small,
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Sχ
2 (UIwQ,ν ,N , L) �

⊕

t

V
t−1G(F)t∩UIwQ,ν ,N

2,χ

and therefore

Sχ
2 (UΣQ,ν ,N , L) �

⊕

t

⊕

ΔQ,ν

V
t−1G(F)t∩UIwQ,ν ,N

2,χ

as the order of ΔQ,ν and t−1G(F)t ∩UIwQ,ν ,N are coprime. �

Let Λ� = Λ⊗̂R�

T where T = SP ∪ SR ∪ SL ∪ SA and let ΔQ,∞ be the

free Zp-module (
∏

q Zp)/O
×
F of rank q − rkO

×
F ≥ q − ([F : Q] − 1)

by Dirichlet’s unit theorem, which surjects onto ΔQ,ν = (
∏

Q ΔQ)/O
×
F for

every ν. Let J denote the kernel of the homomorphism Λ�[[ΔQ,∞]] → Λ

which sends ΔQ,∞ to 1 and all 4|T | − 1 variables in R�
T to 0. Let Rloc

Σχ,∞ =
Rloc

Σχ
[[X1, . . . , Xr ]]. Following Geragthy 4.3, [19], the H�

Σχ,Q,ν
patch together

to yield a Rloc
Σχ,∞⊗̂Λ�[[ΔQ,∞]]-module H�

Σχ,∞.

Lemma 9 Let � be a minimal ideal of Λ.

– If χ is distinct, Spf Rloc
Σχ
⊗Λ/� is O-flat and geometrically irreducible of

relative dimension 1+ 2[F : Q] + εL + 4|T |.
– If χ is trivial and if L is sufficiently large, Spf Rloc

Σ ⊗ Λ/� is equi-
dimensional of relative dimension 1+ 2[F : Q]+ εL+ 4|T |; furthermore,
every minimal prime of Rloc

Σ ⊗Λ/(�, λ) contains a unique minimal prime
of Rloc

Σ ⊗Λ/�. Furthermore, Rloc
Σ is O-flat, Cohen–Macaulay and Rloc

Σ /λ

is generically reduced.

Proof See Lemma 4.12 in [19] and Lemma 3.3 [3]. When χ is trivial and K is
sufficiently large, it follows from Lemma 3.3 in [3] that every prime, minimal
amongst those containing λ, contains a unique minimal prime.

It follows from Propositions 5, 3 and 4 that Rloc
Σ ⊗Λ is Cohen–Macaulay.

Lemma 1.4 in [56] establishes that the fibres Rloc
Σ /λ is generically reduced.

�

Remark The Cohen–Macaulayness of Rloc

Σ,∞ is critical to our proof of RΣ �
TΣ without recourse to taking the reduced quotients. This is based on Snow-
den’s insight in [49].

Lemma 10 As Rloc
Σχ,∞/λ � Rloc

Σ,∞/λ-modules, H�
Σχ,∞/λ � H�

Σ,∞/λ holds.

Furthermore, H�
Σχ,∞ (resp. H�

Σ,∞) is a finite free module over Λ�[[ΔQ,∞]]
(resp. Λ�[[ΔQ,∞]]) (and hence are finitely generated Rloc

Σχ,∞-modules); and

H�
Σχ,∞/J � HΣχ and H�

Σ,∞/J � HΣ holds respectively.
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Proof See Proposition 2.5.3 and Corollary 2.5.4 in [19] �

The following is a summary of Geraghty’s results [19] about Hida theory

that we shall implicitly use; their proofs can be found in [19]. See Proposition
3.4.4 in [11], Lemma 2.6.4, Proposition 2.7.4, and Lemma 4.2.2 in [19] for
example.

If λ : Λ→ O× is an algebraic character defined by the set λ = (λp,1, λp,2)

of integers, and if a character γ : Λ→ O× is of finite order, we shall let Γλ,γ

denote the ideal ker(γ (−λ2,−λ1 − 1)) of Λ where (−λ2,−λ1 − 1) denote
the character Λp → O× defined by the product of (−λτ,2,−λτ,1 − 1) over τ

in Sp for all p in SP.
If ker γ contains the product over p of ker(T (Op) � T (Op/p

N )) for an
integer N ≥ 1, the quotient T ord

Σχ
⊗Λ ΛΓλ,γ /Γλ,γ surjects onto the maximal

quotient of T ord
λ,Σχ

(UN )where Sτ operates as γτ for every τ in TG ; furthermore,
the kernel of the surjection is nilpotent.

There exists a continuous representation

ρ = ρmχ,Q,ν
: Gal(F/F)→ GL2(TΣχ,Q,ν /mχ,Q,ν)

such that

– ρ is unramified outside S, and

trρ(FrobQ) = TQ

and

detρ(FrobQ) = (NF/QQ)SQ

for every Q not in S,
– for every place Q in SR, the characteristic polynomial in X of the restriction
of ρ(g) is of the form (X − χQ,1(ArtQ(g))−1)(X − χQ,2(ArtQ(g))−1) for
every g in IQ.

– for every place Q in SL, the characteristic polynomial of ρ(FrobQ) (resp.
ρ(g)) is of the form (X − |kQ|)(X − α|kQ|) for some α (resp. (X − 1)2)
for a Frobenius lifting FrobQ (resp. for every g in IQ),

– ρ is unramified at every place in SA.
– ρ is a direct sum of two distinct unramified characters when restricted to
every place of SQ,ν .

Suppose thatmχ is non-Eisenstein. There exists a continuous representation

ρ = ρmχ,Q,ν : Gal(F/F)→ GL2(TΣχ,Q,ν )

for which the following hold:
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– ρ is a conjugate lifting of ρ of type Σχ,Q,ν .
– Suppose SQ,ν = ∅. The maximal ideal mχ uniquely determines an irre-
ducible component of SpecΛp over which it lies, and the component is
characterised by a character of the torsion subgroup of Λ. Suppose that
γ equals −(λp,2, λp,1)p when restricted to the torsion subgroup. If Γ is a
dimension one prime ideal of TΣχ lying above Γλ,γ ,

ρmχ ,Γ : Gal(F/F)→ GL2(LΓ ),

where LΓ denote the field of fractions of TΣχ /Γ , satisfies:
– for every p in SP, the restriction ρmχ ,Γ,p of ρmχ ,Γ to Dp is de
Rham/potentially semi-stable with Hodge–Tate weights (λτ,1
+ 1, λτ,2)τ ;

– ρmχ ,Γ,p is reducible of the form

(
ξ1,p ∗
0 ε−1ξ2,p

)
where ξ1,p ◦Artp (resp.

ξ2,p ◦ Artp), as a character of O×p , is given by ((−λτ,2) ◦ τ)τ (resp.
((−λτ,1)◦τ)τ ); and ξ1,p◦Artp(πp) = Up modΓ , and ξ2,p◦Artp(πp) =
Sp/Up mod Γ .

In applications, we consider Γ corresponding to λτ,1− λτ,2 = −1 for τ in Sp
for every p in SP.

2.5 R = T

Suppose that ρ as in the previous section is modular, i.e., ρ � ρm for a non-
Eisenstein maximal ideal m ⊂ T ord

Σ (U ).

Theorem 3 H�
Σ,∞ is a (Cohen–Macaulay) faithful Rloc

Σ,∞-module.

Proof For every minimal prime � of Λ, the Krull-dimension of Rloc
Σχ,∞/�,

for a distinct χ , is

1+ r + (1+ 2[F : Q] + εL)+ 4|SP ∪ SR ∪ SL ∪ SA|
= 1+ (q − 2[F : Q])+ (1+ 2[F : Q] + εL)+ 4|SP ∪ SR ∪ SL ∪ SA|.

On the other hand, the Rloc
Σχ,∞-depth of H�

Σχ,∞/� is at least the

Λ�[[ΔQ,∞]]-depth of H�
Σχ,∞/�. As H�

Σχ,∞/� is free as a Λ�[[ΔQ,∞]]-
module, the latter depth equals the Krull-dimension of Λ�[[ΔQ,∞]] which is
greater than or equal to

1+ (1+ [F : Q] + εL)+ 4|SP ∪ SR ∪ SL ∪ SA| − 1+ q − ([F : Q] − 1).
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Since Spec Rloc
Σχ,∞/� is irreducible, it then follows from Lemma 2.3 in [52]

that H�
Σχ,∞/� is a nearly faithful Rloc

Σχ,∞/�-module. By Lemma 2.2, 1, [52],

H�
Σχ,∞/(�, λ) is a nearly faithful Rloc

Σχ,∞/(�, λ)-module, hence H�
Σ,∞/� is a

nearly faithful Rloc
Σ,∞/�-module. It then follows from Lemma 2.2, 2, [52], that

H�
Σ,∞/� is a nearly faithful Rloc

Σ,∞/�-module. As this holds for any minimal

prime �, one concludes that H�
Σ,∞ is a nearly faithful Rloc

Σ,∞-module.
On the other hand, one may observe that p and the generators of J define a

system of parameters of Rloc
Σ,∞/�. Since Rloc

Σ,∞/� is Cohen–Macaulay, it fol-
lows from Theorem 17.4 in [32] that it indeed defines a regular sequence of the
noetherian local ring. In particular, p is Rloc

Σ,∞/�-regular. It therefore follows
from Lemma 9 that Rloc

Σ,∞/(�, λ) is Cohen–Macaulay and that Rloc
Σ,∞/(�, λ)

is reduced. The regularity also establishes that Rloc
Σ,∞/� is reduced and, by

extension, Rloc
Σ,∞ is reduced. The faithfulness of H�

Σ,∞ as an Rloc
Σ,∞-module

follows. �

By the theoremabove, H�

Σ,∞/J � HΣ is a nearly faithful Rloc
Σ,∞/J -module.

Hence the maximal reduced quotient of RΣ is isomorphic to TΣ . To promote
this isomorphism on the reduced quotients to the isomorphism RΣ � TΣ , it
suffices to prove that RΣ itself is also reduced. In achieving the reducedness,
the key input is Snowden’s insight in [49] (Sect. 5 to be more precise), i.e.
by establishing that Rloc

Σ,∞ � RΣ,∞ is Cohen–Macaulay and, by extension,
Rloc

Σ,∞/J is Cohen–Macaulay and O-flat.
As the preceding theorem proves that Rloc

Σ,∞/J is isomorphic to RΣ , it is
enough to establish that Rloc

Σ,∞/J , or equivalently Rloc
Σ,∞/(�, J ) is reduced

for every minimal prime �. To this end, we need a lemma which paraphrases
Lemma 8.5 in [23]:

Lemma 11 Let R be a noetherian local ring and let M be a faithful, Cohen–
Macaulay, finitely generated R-module. Let r, r1, . . . , rN be a system of
parameters of R, let J denote the ideal generated by r1, . . . , rN and let
R = R/J and M = M ⊗R R/J . Suppose that

– M[1/r ] is a semi-simple R[1/r ]-module,
– for every prime idealP in R[1/r ]which is the pre-image of amaximal ideal
m that lies in SuppR[1/r ](M[1/r ]), the localisation R[1/r ]P is regular.

Then R[1/r ] is reduced.
Proof of the lemma Since M is a finitely generated Cohen–Macaulay mod-
ule over R, for a prime P as in the second assumption, M[1/r ]P is a
finitely generated Cohen–Macaulay module over R[1/r ]P. It then follows
fromAuslander–Buchsbaum that M[1/r ]P is finite free over R[1/r ]P; in par-
ticular, M[1/r ]m is finite free over R[1/r ]m. One may then deduce from the
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semi-simplicity assumption that the Jacobson radical of R[1/r ]m is zero, and
therefore the nilradical of R[1/r ]m is zero.

On the other hand, M is assumed to be faithful over R, and therefore
M[1/r ] is nearly faithful over R[1/r ], or equivalently, SuppR[1/r ](M[1/r ]) =
Spec R[1/r ]. As R[1/r ] is aritinian, Spec R[1/r ] equals the maximum spec-
trum Max R[1/r ] and an isomorphism

R[1/r ] �
∏

m

R[1/r ]m,

where m ranges over Max R[1/r ] = SuppR[1/r ](M[1/r ]), holds. As each

R[1/r ]m is reduced, the assertion follows. �

Corollary 1 RΣ � TΣ

Proof For a minimal ideal Γ of Rloc
Σ,∞/(�, J, p), we apply Lemma 11 to the

localisation (Rloc
Σ,∞/�)Γ of Rloc

Σ,∞/� at Γ to establish that (Rloc
Σ,∞/(�, J ))Γ

[1/p] is reduced. It therefore follows that Rloc
Σ,∞/(�, J )[1/p] is generically

reduced. As it is Cohen–Macaulay by Lemma 9 (and Theorem 2.1.3 in [5]), it
is indeed reduced. To promote the reducedness of Rloc

Σ,∞/(�, J )[1/p] to the
reducedness of Rloc

Σ,∞/(�, J ), it suffices to establish that Rloc
Σ,∞/(�, J ) is p-

torsion free so that Rloc
Σ,∞/(�, J ) embeds into Rloc

Σ,∞/(�, J )[1/p]. But since
Rloc

Σ,∞/� is noetherian local, p is Rloc
Σ,∞/(�, J )-regular and the p-torsion

freeness follows. �


3 Models of Hilbert modular varieties

3.1 Pappas–Rapoport integral models

Let F be a totally real field with [F : Q] = d and let OF denote the ring of
integers. Let D = DF/Q denote the different of F . Fix an embeddingQ ↪→ Qp
once for all.

For every place p of F above p, we shall denote the completion of F at p by
Fp, its ring of integers by Op, and a uniformiser πp (or π when the reference
to p is clear from the context); denote the ramification index by ep (or e when
the reference to p is clear from the context) and the residue degree by fp. Let
F̂p denote the maximal unramified extension of Qp in Fp; and let E ∈ F̂p[u]
denote the Eisenstein polynomial in u defining the totally ramified extension
Fp over F̂p of degree ep.
Let L be a finite extension ofQp which contains the image of every embed-

ding of F ↪→ Q ↪→ Qp; and let O denote its ring of integers and let κ denote
the residue field.
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For every place p of F above p, we shall let Σp denote HomQp(Fp, L) and

let Σ̂p denote HomQp(F̂p, L). For every τ ∈ Σ̂p, let Σ̂p,τ denote the set of

elements inΣp whose restriction to F̂p is τ , and we fix, once for all, a bijection
between Σp,τ and the set of integers between 1 and ep; if we let Eτ ∈ L[u]
denote the image of E by τ for τ ∈ Σ̂p, it mean that we order (and fix) the
roots of Eτ in L .

For every place p of F above p and τ in Σ̂p, let γ t
τ , for every 1 ≤ t ≤ ep,

be the image of πp by the element of Σp,τ corresponding to t ; and let Eτ (t)
be the polynomial (u − γ t

τ )(u − γ t+1
τ ) · · · (u − γ

ep
τ ) in u with coefficients in

O (and hence in OS for any O-scheme S).
Let V = F2 and let ( , ) denote the standard non-generate alternating

bilinear pairing on V . Let B = F thought of coming equipped with identity
‘involution’. Define the closed algebraic subgroup G over Q of GLB(V ) =
ResF/QGL2 as in 6.1 in [40].

Let U be an open compact subgroup of G(A∞) such that U ∩ G(Qp) =
G(Zp). Indeed we suppose that U is the principal congruence subgroup mod
n of G(A∞), and suppose that n ≥ 3 and is prime to p.

Fix, once for all, a set of representatives � ∈ A
×
F for the strict ideal class

group A
×
F/F×(OF ⊗Z Z∧)×(F ⊗Q R)×+ of F ; by abuse of notation, let � also

denote the corresponding fractional ideal of F .
By ‘+’ we shall always mean ‘the subgroup of its totally positive elements’.
For every (fixed) representative �, define MDP

U,� to be the functor which
sends an O-scheme S to the set of isomorphism classes of data (A, i, λ, η)

consisting of

– an abelian scheme A/S of relative dimension d = [F : Q]
– i : OF → End(A/S)

– an OF -linear morphism of étale sheaves λ : (�, �+) → (Sym(A/S),Pol
(A/S)) which is indeed an isomorphism, and by which the natural mor-
phism A ⊗ Sym(A/S) → A∨ is also an isomorphism (note that these
are equivalent to the condition Deligne–Pappas defines: a homomorphism
(�, �+)→ (Sym(A/S),Pol(A/S)) of OF -modules such that the compos-
ite A ⊗ �→ A ⊗ Sym(A/S)→ A∨ is an isomorphism);

– an OF -linear isomorphism A[n] � OF ⊗Z (Z/nZ).

The functor is representable by a scheme over O which we shall denote

by YDP
U,�; it follows from local model theory that its fibre Y

DP
U,� over Spec κ is

smooth outside a codimension 2 closed subscheme. The main result of this
section is to construct an integral model over O which is smooth over O (and
hence its fibre over κ is smooth).

For every � as above, define MPR
U,� to be the functor which sends an O-

scheme S to the set of isomorphism classes of data (A, i, λ, η) where

– (A, i, λ, η) define a S-valued point of MDP
U,�
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– For every place p of F above p and every τ ∈ Σ̂p, the τ -component
Lie∨(A∨/S)τ of the OS-dual Lie∨(A∨/S) of the sheaf Lie(A∨/S) of Lie
algebras of the dual abelian variety A over S, comes equipped with a
filtration

0 = Lie∨(A∨/S)τ (0) ⊂ Lie∨(A∨/S)τ (1) ⊂ · · · ⊂ Lie∨(A∨/S)τ (ep)

= Lie∨(A∨/S)τ ⊂ H1
dR(A/S)∨τ

such that Lie∨(A∨/S)τ (t) is, Zariski locally on S, a direct summand of
Lie∨(A∨/S)τ of rank t and is a sheaf of Op ⊗τ OS-submodule (where ⊗
is meant over F̂p) of Lie∨(A∨/S)τ , satisfying the condition

(πp ⊗ 1− 1⊗ γ t
τ )Lie∨(A∨/S)τ (t) ⊂ Lie∨(A∨/S)τ (t − 1).

For every τ ∈ Σ̂p and every 1 ≤ t ≤ ep, let

Gr∨(A∨/S)τ (t) = Lie∨(A∨/S)τ (t)/Lie
∨(A∨/S)τ (t − 1),

and let

Gr∼∨(A/S)τ (t) = H1
dR(A/S)∨τ /Lie∨(A∨/S)τ (t − 1);

the former (resp. the latter) is a locally free sheaf of OS-modules of rank 1
(resp. 2ep − (t − 1)).

Let

D∼(A/S)τ (t) = ker(Eτ (t) |Gr∼∨(A/S)τ (t))

and

D(A/S)τ (t) = ker(π ⊗ 1− 1⊗ γ t
τ | D∼(A/S)τ (t))

= ker(π ⊗ 1− 1⊗ γ t
τ |Gr∼∨(A/S)τ (t)).

We know the ranks of these OS-modules:

Lemma 12 For every τ ∈ Σ̂p and for every 1 ≤ t ≤ ep,

– D∼(A/S)τ (t) is a locally free sheaf of OS[u]/Eτ (t)-modules of rank 2
and is also a locally free sheaf of OS-modules of rank 2(ep − t + 1);

– D(A/S)τ (t) is a locally free sheaf of OS-modules of rank 2.

Proof This is essentially Proposition 5.2(b) of [36] with d = 2. �

Lemma 13 For every τ ∈ Σ̂p and every 1 ≤ t ≤ ep,Gr∨(A∨/S)τ (t) is locally
a rank 1 direct summand of D(A/S)τ (t) as an OS-module.
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Proof Since this is not proved in [36], we shall give a complete proof. By
definition, Gr∨(A∨/S)τ (t) is a subsheaf of OS-modules of D(A/S)τ (t). It
suffices to prove that the quotient D(A/S)τ (t)/Gr∨(A∨/S)τ (t) is locally free
of rank 1. Consider the exact sequence

0→ D(A/S)τ (t)/Gr
∨(A∨/S)τ (t)→ Gr∼∨(A/S)τ (t)/Gr

∨(A∨/S)τ (t)

→ Gr∼∨(A/S)τ (t)/D(A/S)τ (t)→ 0.

Firstly observe that the middle term

Gr∼∨(A/S)τ (t)/Gr
∨(A∨/S)τ (t) � Gr∼∨(A/S)τ (t + 1),

and it is locally free of rank 2ep − t ; hence it suffices to show that
Gr∼∨(A/S)τ (t)/D(A/S)τ (t) is locally free of rank 2ep − (t + 1). The
preceding lemma asserts that D(A/S)τ (t) is locally a direct summand of
D∼(A/S)τ (t) with the quotient D∼(A/S)τ (t)/D(A/S)τ (t) locally free of
rank 2(ep − t + 1) − 2 = 2(ep − t). It is proved in the proof of Proposition
5.2 in [36] that D∼(A/S)τ (t) is locally a direct summand of Gr∼∨(A/S)τ (t)
with the quotient Gr∼∨(A/S)τ (t)/D∼(A/S)τ (t) locally free of rank t − 1.
Hence the quotient Gr∼∨(A/S)τ (t)/D(A/S)τ (t) is locally free of rank
2(ep − t)+ (t − 1) = 2ep − (t + 1), as desired. �

Proposition 6 The functorMPR

U,� is representable by a smooth scheme, which

we shall henceforth denote by Y PR
U,�, over O. Furthermore, the forgetful mor-

phism, Y PR
U,� → YDP

U,� is proper.

Proof Representability: Define MGr
U,� to be the functor which sends an O-

scheme S to the set of isomorphism classes of data as in MPR
U,�, except

that it ‘forgets’ the last condition about the prescribed action of OF ; then
MGr

U,� → MDP
U,�, forgetting filtrations, is clearly relatively representable

and proper, hence MGr
U,� is representable. The relative representability of

MPR
U,� →MGr

U,� follows from Lemma 1.3.4 in [29], for example.

Smoothness Y PR
U,� is locally of finite presentation, and it suffices to show

its formal smoothness in the following sense. Choose a closed point of Y PR
U,�,

and let RPR
U,� denote the completed local ring of Y PR

U,� at the closed point and

MPR
U,� its maxim ideal. Let MPR,∧

U,� denote the ‘local formal moduli’ functor

Spf RPR
U,�, and let R be a complete noetherian local ring with maximal ideal M

such that R/M � RPR
U,�/M

PR
U,�. It suffices to prove that

MPR,∧
U,� (S)→MPR,∧

U,� (S),
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induced by S
def= Spec R/Ml−1 → S

def= Spec R/Ml for an integer l ≥ 2
which we fix, is surjective. We shall show this by the Grothendieck-Messing
crystalline Dieudonne theory.

Let (A/S, i, λ, η, (Lie∨(A
∨
/S)τ (1) ⊂ · · · ⊂ Lie∨(A

∨
/S)τ )) be a point

of MPR
U,� over S. Then, for every τ , Gr∨(A

∨
/S)τ (t) is locally a OS-direct

summand of the locally free sheaf D(A/S)τ (t) of OS-modules of rank 2 by
the preceding lemma.

Let γ t
τ be a lifting in OS of γ t

τ in OS . The OS-dual H1
cr(A/S)∨ of the

crystalline cohomology sheaf of OS-module is a locally free sheaf of OF⊗OS-
modules of rank 2, and ker(π ⊗ 1 − 1 ⊗ γ 1

τ | H1
cr(A/S)∨τ ) defines a locally

free sheaf of OS-modules of rank 2 which lifts D(A/S)τ (1). It then follows
that there exists a locally free subsheaf Lie∨(A

∨
/S)τ (1) of ker(π ⊗ 1− 1⊗

γ 1
τ | H1

cr(A/S)∨τ ) of rank 1 which lifts Lie∨(A
∨
/S)τ (1).

Suppose, for 1 ≤ l ≤ t , that every Lie∨(A
∨
/S)τ (l), locally free of rank l

over S, lifts Lie∨(A
∨
/S)τ (l) and which satisfy Gr∨(A

∨
/S)τ (l) ⊂ ker(π ⊗

1− 1⊗ γ l
τ | H1

cr(A/S)∨τ /Lie∨(A
∨
/S)τ (l − 1)) for 1 ≤ l ≤ t .

One may and will define Lie∨(A
∨
/S)τ (t + 1) to be a rank t + 1 locally

free OS-submodule of H1
cr(A/S)∨ satisfying the condition that its quotient

Lie∨(A
∨
/S)τ (t + 1)/Lie∨(A

∨
/S)τ (t) defines a rank 1 direct summand of

ker(π ⊗ 1− 1⊗ γ t+1
τ | H1

cr(A/S)∨τ /Lie∨(A/S)τ (t)) which is an OS-module
of rank 2 lifting D(A/S)τ (t + 1).

It then follows from theGrothendieck-Messing crystallineDieudonnédefor-
mation theory that there exists a Hilbert–Blumenthal abelian variety A over
S whose pull-back to S is (A/S, i) and Lie∨(A∨/S)τ ×S S � Lie∨(A

∨
/S)τ

for every τ . Evidently, Lie(A/S) satisfies that the Kottwitz ‘determinant’ con-
dition (Definition 2.4 in [58]), and it follows from Corollary 2.10 of Vollaard
[58] that λ lifts over to S. �


Let Y PR
U denote the disjoint union Y PR

U,� over �.
Let P denote the product of all prime ideals of OF above p. For a repre-

sentative �, let �P denote the element (or its corresponding fractional ideal) in
the fix set of representatives representing the fractional ideal �P.

Define MDP
U Iw,� to be the functor which sends an O-scheme S to the set of

isomorphism classes of OF -linear isogenies

f : A/S→ B/S

of degree |OF/P| such that ker f ⊂ A[P], where A and B come equipped
with PEL structure defining S-points of YDP

U,� and Y
DP
U,�P

respectively such that

( f ∨ ◦Sym(B/S)◦ f, f ∨ ◦Pol(B/S)◦ f ) equals (PSym(A/S),PPol(A/S)).
One can check that the last condition is equivalent to demanding thatC = ker f
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is an isotropic subgroup of A[P] in the sense that, for any λ in Sym(A/S) (in
fact, it suffices for any λ of degree prime to p), λ maps C to (A[P]/C)∨. The
functor is representable by an O-scheme YDP

U Iw,�.

Similarly, we defineMPR
U Iw,� to be the functor which sends an O-scheme S

to the set of isomorphism classes of OF -linear isogenies f : A/S → B/S of
degree |OF/P| such that ker f ⊂ A[P] defining an S-point of YDP

U Iw,�, where

A and B are respectively S-points of Y PR
U,� and Y PR

U,�P
such that the filtrations

commutes the diagram of locally free OS-sheaves:

H1∨
dR (A/S)τ −→ H1∨

dR (B/S)τ −→ H1∨
dR (A/S)τ

∪ ∪ ∪
Lie∨(A∨/S)τ −→ Lie∨(B∨/S)τ −→ Lie∨(A∨/S)τ

|| || ||
Lie∨(A∨/S)τ (ep) −→ Lie∨(B∨/S)τ (ep) −→ Lie∨(A∨/S)τ (ep)

∪ ∪ ∪
Lie∨(A∨/S)τ (ep − 1) −→ Lie∨(B∨/S)τ (ep − 1) −→ Lie∨(A∨/S)τ (ep − 1)

∪ ∪ ∪
...

...
...

∪ ∪ ∪
Lie∨(A∨/S)τ (1) −→ Lie∨(B∨/S)τ (1) −→ Lie∨(A∨/S)τ (1)

If we let C =∏
p Cp ⊂ A[P] =∏

p A[p] denote the kernel of π : A/S→
B/S, one can see that Lie∨(C∨/S) comes equipped with a filtration

0 = Lie∨(C∨/S)τ (0) ⊂ Lie∨(C∨/S)τ (1) ⊂ · · · ⊂ Lie∨(C∨/S)τ (ep)

= Lie∨(C∨/S)τ

defined by coker(Lie∨(A∨/S)τ (t)/Lie∨(A∨/S)τ (t−1)→ Lie∨(B∨/S)τ (t)/
Lie∨(B∨/S)τ (t − 1)) for every p in SP, τ in Σ̂p, and 1 ≤ t ≤ ep; and each
Lie∨(C∨/S)τ (t)/Lie∨(C∨/S)τ (t − 1) is killed by πp.

Proposition 7 The functorMPR
U Iw,� is representable by an O-scheme.

Proof It is clear thatMPR
U Iw,� is relatively representable overMDP

U Iw,�. �


Let Y PR
U Iw,� denote the O-scheme representing MPR

U Iw,� in the proposition

and let Y PR
U Iw denote the disjoint union of Y PR

U Iw,� over � ranging over the fixed
set of representatives as before.

As the definition ofY PR
U andY PR

U Iw are based on the localmodel constructions
of Pappas–Rapoport [36], it is clear what their local models should be.
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3.2 Compactification

Fix a representative �; we shall compactify Y PR
U,� and Y PR

U Iw,� following
Rapoport’s [39] and Stroh’s [50] observations. Fix the integer n ≥ 3 defined
in the previous section.

By a �-cusp degeneration data C, we shall mean two fractional ideals M and
N of F , an exact sequence

0→ D−1M−1 → L → N → 0

of projective OF -modules, and an isomorphism MN−1 � D; suppose fur-
thermore that it comes equipped with a choice of an isomorphism L/nL �
(OF/nOF )2.

Given an �-cusp degeneration data C as above, let M+ = MN , M+n =
n−1M+, and M+∨ = HomZ(M+,Z); let M+∨R,+ denote the submodule of the
positive elements in M+∨ ⊗ R where its positivity is defined via the isomor-
phism M+∨ � �M−2D−1 and the positivity of each of the fractional ideals
on the RHS.

Let Σ denote a rational polyhedral cone decomposition {τ } of M+∨R,+ ∪ {0};
we may and will choose it so that it is level-n-admissible in the sense that
it satisfies the conditions of 3.2 and 3.3 of [10] (see p. 299 of [39]). Let
S� = Spec R with R = O[M+n ], and let S� ↪→ S�,τ = Spec Rτ denote the
affine torus embedding where Rτ = O[M+n ∩ τ∨].

As Stroh [50] puts it, wemay think of S� as amoduli space (stack) ofDeligne
1-motives corresponding to an �-cusp degeneration data C: let X = Spec A be
a normal scheme, Y an open dense subscheme, and Z = X − Y = Spec A/I
for an ideal I of A. In our context, a Mumford 1-motive over (Y ↪→ X) in the
sense of Stroh is a set of data: the semiabelian variety G̃ = G ⊗Z D−1M−1
thought of as it is defined over X (where G is the multiplicative group scheme
base-changed over to F), a ‘lattice’ N over X (i.e. a locally constant étale sheaf
of finite free abelian groups), and a complex q : N → G̃ of fppf sheaves of
abelian groups over Y defined by an OF -linear homomorphism N → G̃(Y )

whose induced homomorphism trF/Q ◦ q : M+ → G(Y ) maps M++ to I .
Let Spf R̂τ denote the affine formal completion of S�,τ along S�,τ − S�. Let

X�,τ = Spec R̂τ , let Y�,τ denote its open dense subscheme defined by the pull-
back of X�,τ over S� along S� ↪→ S�,τ , and let Z�,τ denote the complement
X�,τ − Y�,τ .
Rapoport’s application [39] of theMumford construction (in the ‘split case’)

gives rise to a semi-abelian scheme

(G⊗Z D−1M−1)/qN

over X�,τ such that
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– the pull-back to Y�,τ of (G⊗Z D−1M−1)/qN is a HBAV [see (i) and (ii)
of [39], p. 297] which is �-polarisable [see (v) and (vi) in [39], p. 298]
which comes equipped with a level n-structure [see (iii) and (iv) in [39],
pp. 297–298], and whose dual Lie algebra ‘sheaf’ M comes equipped with
a canonical PR-filtration in the sense of Sect. 3.1 (and gives rise to a map
from Y�,τ to Y PR

U,�),

– if A denote the universal HBAV over Y PR
U,�, the p-torsion of (G ⊗Z

D−1M−1)/qN overY�,τ , i.e., the pull-back toY�,τ of (G⊗ZD−1M−1)/qN ,
is canonically isomorphic to the p-torsion of the fibre product of A and
Y�,τ over Y PR

U,�.

Definition Suppose that (G ⊗Z D−1M−1)/qN ) over Y�,τ comes equipped
with a Raynaud submodule scheme Cp of ((G⊗Z D−1M−1)/qN )[p] of rank
1 for all p in SP. Let SP,× and SP,et be subsets of SP defined such that p lies
in SP,× if Cp is multiplicative while it lies in SP,et if it is étale; in which case
SP,× and SP,et are disjoint and their union is SP.

Definition Let SI,� denote the disjoint union over all partitions (SP,×, SP,et )

of SP of S�; and define XI,τ and YI,τ similarly.

Let Spec R+τ denote the henselisation of (S�,τ , S�,τ − S�). Then it follows
exactly as in Proposition 2.3.3.1 in [50] that there exists semi-abelian scheme
((G⊗Z D−1M−1)/qN )+ which is ‘as universal’ as (G⊗Z D−1M−1)/qN is.
It furthermore follows as in 2.4 in [50] that there exists an étale extension Ret

τ

over Rτ and a semi-abelian scheme ((G⊗Z D−1M−1)/qN )et which satisfies
the same properties as (G⊗Z D−1M−1)/qN with ((G⊗Z D−1M−1)/qN )et

in place of (G⊗Z D−1M−1)/qN .

Definition Let Xet
I,�,τ denote the pull-back to SI,�,τ of Xet

�,τ over S�,τ along
the natural forgetful map from SI,�,τ to S�,τ . Similarly define Y et

I,�,τ to be the
pull-back to SI,� of Y et

�,τ over S� along SI,� → S�.

Definition Let Y et
�,Σ =

∐
C
∐

τ Y
et
�,τ and Xet

�,Σ =
∐

C
∐

τ Xet
�,τ where C ranges

over the set of isomorphism classes (i.e. homotheties of ideals) of �-cusp
degeneration data and where τ ranges over Σ with C given. Define Xet

I,�,Σ and
Y et
I,�,Σ similarly.

Lemma 14 The quotient algebraic stack of Y et
�,Σ by R = Y et

�,Σ ×Y PR
U,�

Y et
�,Σ

is isomorphic to Y PR
U,�. Similarly, the quotient algebraic stack of Y et

I,�,Σ by

RI = Y et
I,�,Σ ×Y PR

U Iw,�
Y et
I,�,Σ is isomorphic to Y PR

U Iw,�.

Recall that Y PR
U,� is smooth over O , and Y PR

U Iw,� is normal. The second asser-
tion can be checked by its local model.
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Definition Let XPR
U,� denote the quotient algebraic stack of Xet

�,Σ by the nor-
malisation of Xet

Σ × Xet
�,Σ inR.

Let XPR
U Iw,� denote the quotient algebraic stack of X

et
I,�,Σ by the normalisa-

tion of Xet
I,�,Σ × Xet

I,�,Σ in RI.

Proposition 8 XPR
U,� and XPR

U Iw,� are proper over O.

Proof See Proposition 3.1.5.2 and Théorème 3.1.8.3 in [50]. �

Recall thatU is the full congruence subgroup of level n for an integer n ≥ 3

prime to p.
Let O×F,+ denote the totally positive units in F and O×F,+,n denote the

subgroup of the squares of elements in O×F , i.e., units, congruent to 1 mod n.
As explained more carefully in Section 2 in [14], observe that O×F,+ acts

(and O×F,+,n acts trivially) on �-polarisations, hence acts on XPR
U,� and on

XPR
U Iw,�. Let O

×,+
F,+ = O×F,+/O×F,+,n . Furthermore, Section 2 in [14] explains

that GL2(OF ⊗Z Ẑ) acts on XPR
U,� and XPR

U Iw,�.

Definition Let K denote the preimage in GL2(OF⊗ZẐ) = (ResF/QGL2)(Ẑ)

of

(∗ ∗
0 1

)
⊂ (ResF/QGL2)(Z/nZ) by the reduction mod n map (ResF/QGL2)

(Ẑ) → (ResF/QGL2)(Z/nZ) and let XPR
K (resp. XPR

K Iw) denote the disjoint
union over � of XPR

K ,� = XPR
U,�/(O

×,+
F,+ ×K ) (resp. XPR

K Iw,� = XPR
U Iw,�/(O

×,+
F,+ ×

K )). We similarly define Y PR
K (resp. Y PR

K Iw) to be the disjoint union over � of
Y PR
K ,� = Y PR

U,�/(O
×,+
F,+ × K ) (resp. Y PR

K Iw,� = Y PR
U Iw,�/(O

×,+
F,+ × K )) . The set of

geometrically connected components of Y PR
K may be identified with the strict

ideal class group A
∞,×
F /F×+ (OF ⊗Z Ẑ)×.

The formation of O×,+
F,+ -invariants does not change p-adic andmod p geom-

etry of XPR
U and XPR

U Iw we are interested.

4 Hecke operators, odds and ends

4.1 Classical p-adic Hilbert modular eigenforms

Let V denote the open compact subgroup K or K Iw of (ResF/QGL2)(Ẑ) as
above. With that choice made, let XPR

V,� denote its toroidal compactification

over O defined as above. While the smooth O-scheme XPR
K ,� depend on a

choice of an admissible polyhedral cone decomposition, we shall not refer to
the choice. Furthermore, we may and will choose an admissible polyhedral
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cone decomposition for V = K Iw compatible with the choice we make for
XPR
K ,�.
Let (A/S, i, λ, η, (Lie∨(A∨/S)τ (1) ⊂ · · · ⊂ Lie∨(A∨/S)τ )) be an S-point

of Y PR
V,� for an O-scheme S. Let LS denote the direct sum of two copies of O ,

‘base-changed’ over O to OS . The cotangent sheaf Lie∨(A/S) of A over S is
a direct sum of locally free sheaves Lie∨(A/S)τ of OS-modules of rank ep for
τ in Σ̂p = HomQp(F̂p, L) for every p in SP. For every τ , the polarisation λ

equips Lie∨(A/S)τ with a filtration

0 = Lie∨(A/S)τ (0) ⊂ Lie∨(A/S)τ (1) ⊂ · · · ⊂ Lie∨(A/S)τ (ep) = Lie∨(A/S)τ ⊂ H1
dR(A/S)τ

definedonLie∨(A∨/S)τ . The locally free sheaf ker(π⊗1−1⊗γ t
τ | H1

dR(A/S)/

Lie∨(A/S)(t − 1)) of OS-modules is of rank 2 for every 1 ≤ t ≤ ep, and

Lie∨(A/S)τ (t)/Lie
∨(A/S)τ (t − 1)

⊂ ker(π ⊗ 1− 1⊗ γ t
τ | H1

dR(A/S)/Lie∨(A/S)(t − 1)).

The covering over S, defined as the Zariski sheaf over S of isomorphisms

ker(π ⊗ 1− 1⊗ γ t
τ | H1

dR(A/S)/Lie∨(A/S)(t − 1)) � LS

for all τ in Σ̂p, 1 ≤ t ≤ ep, and p in SP, which sends Gr∨(A/S)τ (t) =
Lie∨(A/S)τ (t)/Lie∨(A/S)τ (t−1) to a line in LS which equals its orthogonal
for the standard alternating form on LS , is a torsor with respect to the Σ-
product of a Borel subgroup B of the base-change GL2/O (by the standard
embedding ofQ into L), whereΣ = HomQ(F, L). In the unramified case, this
sort of construction is standard (using the smooth model of Rapoport [39]);
the Pappas–Rapoport filtration exactly makes it possible to see all isotypic
components, which does not seem possible with the integral models defined
in [13].

For a pair λ = (k, w) consisting of a [F : Q]-tuple of integers k = ∑
kιι

where ι ranges over Σ and an integer w such that kι ≡ w mod 2, consider the
following invertible sheaf of OS-modules:

⊗

ι

Gr∨(A/S)τ (t)
⊗kι−2 ⊗Ω1

dR,ι ⊗ Std⊗(w−kι)/2
ι

where all tensor products are defined for OS-modules, and the first tensor
product ranges over Σ where, for every ι in Σ , there exists a unique prime p
above p such that ι : F ⊗Q Qp → L factors through Fp and its restriction to
the unramified extension F̂p over Qp is exactly τ and ι, as an element of Σp,τ

corresponds to 1 ≤ t ≤ ep; and where Ω1
dR,ι is the ι-isotypic component of
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the sheaf of relative differentials of S over O , and where Stdι is the invertible
sheaf of OS-module corresponding to the standard representation of the centre
in B followed by the projection to S by ι.

Let Aλ denote the invertible sheaf on Y PR
V obtained when applying the

construction to the universal HBAV A over S = Y PR
V . The invertible sheaf

extends to XPR
V , which we shall again call Aλ. It should be possible to use

these sheaves to define an eigenvariety for Hilbert modular forms in the general
ramified case.

Definition We define a section of the induced invertible sheaf Aλ over XPR
K

(resp. XPR
K Iw) for λ = (k, w), to be a p-adic classical cusp Hilbert modular

form (on ResF/QGL2) over O of level K (resp. K ∩ Iw) and of weight λ, or
of weight k and central character of weight w.

Remark We will only interested in the case of λ = (k, w) where kι = 1 for
every ι in Σ .

For every prime p of F above p, let wp denote the automorphism of XPR
K Iw

defined on the non-cuspidal points by the automorphism sending (A,C) to
(A/Cp, A[p]/Cp × Cp) where by Cp, we mean the finite flat subgroup ‘C
away from p’.

Let π1, or π when it is clear what it is meant (resp. π2,p or πp), denote the
morphism XPR

K Iw → XPR
K defined on the non-cuspidal points by the correspon-

dence sending (A,C) to A (resp. to A/Cp).
We defineHecke operators on XPR

K Iw. For a primeQ of F not dividing p (with
a uniformiserπQ), let XPR

K Iw,IwQ
denote the toroidal compactification of the fine

moduli O-space Y PR
K Iw,IwQ

of A, parameterised by Y PR
K Iw, together with a finite

flat subgroup scheme D = DQ of the finite étale group scheme A[πQ], étale
locally isomorphic to (OF/πQ)2, of orderNF/QQwhich locally f.p.p.f. admits
a OF/πQ-generator. It follows from the proof of Theorem 3.7.1 in [29] that the
forgetful map π1,Q : Y PR

K Iw,IwQ
→ Y PR

K Iw is a relatively representable morphism

which is finite étale. Let π2,Q denote the extension to XPR
K Iw,IwQ

→ XPR
K Iw of

the morphism defined by sending a non-cuspidal point (A, D) to A/D.
For p above p, let XPR

K Iw,Iwp
[1/p] denote the toroidal compactification of

the fine moduli L-space Y PR
K Iw,Iwp

[1/p] which is the finite étale covering over
Y PR
K Iw[1/p] parameterising (A,C) together with a finite flat subgroup scheme

D of the étale group scheme A[p] of order NF/Qp which has only trivial
intersection with C . It again follows from the proof of Theorem 3.7.1 in [29]
that the forgetful map π1,p : Y PR

K Iw,Iwp
[1/p] → Y PR

K Iw[1/p] is a relatively
representable morphism which is finite étale. Let π2,p denote the morphism
XPR
K Iw,Iwp

[1/p] → XPR
K Iw[1/p] defined on the non-cuspidal points by the rep-

resentable morphism sending (A,C, D) to (A/D, (C + D)/D).
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Let π1, π2 denote either π1,Q, π2,Q : XPR
K Iw,IwQ

→ XPR
K Iw or π1,p, π2,p :

XPR
K Iw,Iwp

[1/p] → XPR
K Iw[1/p].

Let XPR,R-a
K Iw denote the Raynaud generic fibre associated to the formal

completion of XPR
K Iw along its fibre. By slight abuse of notation, we let

XPR
K Iw,Iwp

[1/p]R-a denote the Tate rigid analytic space associated to the generic
fibre XPR

K Iw,Iwp
[1/p]. Let Aλ,R-a denote the Raynaud analytification of the

invertible sheaf Aλ over XPR
K Iw and XPR

K .
By definition, we have π∗2Aλ,R-a → π∗1Aλ,R-a. If U and V are admissible

open subsets of XPR,R-a
K Iw in the case of Q and XPR

K Iw[1/p]R-a in the case of p
satisfying π−11 (U ) ⊆ π−12 (V ), we have a homomorphism of sections

Aλ,R-a(V ) −→ (π2,∗π∗2Aλ,R-a)(V ) (π1,∗π∗2Aλ,R-a)(U ) −→ (π1,∗π∗1Aλ,R-a)(U ) −→ Aλ,R-a(U )

|| ||
π∗2Aλ,R-a(π

−1
2 V ) −→ π∗2Aλ,R-a(π

−1
1 U )

where the rightmost map is the map ofU -sections of the trace morphism; and
we shall call it HeckeCor(p)(U ) or HeckeCor(Q)(U ) depending on the case
with p or Q.

Let Up denote the morphism

(NF/Qp)
−1HeckeCor(p)(U ) : Aλ,R-a(V )−→Aλ,R-a(U )

We define TQ (UQ if Q divides the level of U ) exactly the same with Q in
place of p.

Finally we define an operator wp of sections of the invertible rigid analytic
sheaf Aλ,R-a over an admissible open subset U of XPR,R-a

K Iw . For a section f
of Aλ,R-a over U , the pull-back w∗p f is a section over wpU of w∗pAλ,R-a;
its pull-back π∗2,pw∗p f is a section over wpU of Aλ,R-a, which we shall call
wp( f ).

4.2 Overconvergent p-adic Hilbert modular forms

We shall define an invariant ‘finer’ than the degree functions of Raynaud
[41] and Fargues [18]. This is specific to HBAVs of Pappas–Rapoport type
parameterised by XPR,R-a

K Iw , and is a key technical input that allows us to perform
analogues ofKassaei’s calculations in the unramified case [26]. One significant
advantage of our construction is that, as we shall see it in Lemma 27 for
example, it reads p-adic geometry of XPR,R-a

K Iw qualitatively more than the
standard degree function on the Raynaud generic fibre of YDP

K Iw.
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Let K be a finite extension of L; and let OK denote its ring of integers
and let νK denote the valuation on K normalised such that νK (p) = 1. Let
S = SpecOK .
Following Tate [51],

Definition Let O be an associative ring with a unit. An O-module scheme
over a scheme S is a commutative group scheme G over S together with a
unitary ring homomorphism O → End(G/S); this makes G(T ) for every S-
scheme T a freeO-module. IfO is of characteristic p and theO-rank of G(T )

is independent of T and indeed 1, we call G a RaynaudO-module scheme (or
O-vector space scheme if O is a field).

Let f : A/S → B/S denote a (closed) non-cuspidal S-point of XPR
K Iw

corresponding to a K -point of XPR,R-a
K Iw . For every p in SP, τ in Σ̂p, and 1 ≤

t ≤ ep, define deg((A,C)/S)τ (t) in [0, 1/e] to be the νK of a generator inOK
of the annihilator of coker(Gr∨(A∨/S)τ (t)→ Gr∨(B∨/S)τ (t)).

The sumof all the deg((A,C)/S)τ (t) equals the degree function ofRaynaud
[41] and Fargues [18]. While it is defined pointwise, this definition works ‘in
families’, i.e., onemay take S to be an admissible covering of XPR

K Iw (and glue).
Note that our degree functions are defined solely as a result of filtrations

defined on both ends of the isogeny f . Incorporating one’s ‘choices of uni-
formisers’ into the equation is what seems to be achieved by this definition.

Suppose that a cusp corresponding to a (class of) �-cusp degeneration
data C as above correspond to a semi-abelian A = (G ⊗Z D−1M−1)/qN

over S = ∐
τ X�,τ , whose pull-back to

∐
τ Y�,τ is a HBAV and which

comes equipped with an isotropic OF -stable Raynaud submodule scheme
C =∏

p Cp ⊂∏
p(G⊗D−1M−1/qN )[p] as above, let deg(A)τ (t) be 0 (resp.

1) for every τ in Σ̂p and 1 ≤ t ≤ ep whenever p is in SP,× (resp. SP,et ). In fact,
analytic functions on Y PR,R-a

K Iw defining degrees extend to XPR,R-a
K Iw , allowing us

to define admissible open subsets in terms of degrees.

Definition For λ = (k, w) as above, a p-adic overconvergent (cusp) Hilbert
modular form over O of level K ∩ Iw of weight k (and central character of
weight w) is defined to be an element in the direct limit, over the positive
rationals ε, of the sections ofAλ,R-a over the admissible open subset of points
ξ in XPR,R-a

K Iw satisying deg(ξ) ≤ ε.

5 Mod p geometry of modulil spaces of p-divisible groups

In this section, we study mod p geometry of XPR
K and XPR

K Iw, by phrasing
the essential part of arguments in terms of stacks, or morally ‘local Shimura
varieties’, of p-divisible groups. We define two new invariants for p-divisible
groups of Pappas–Rapoport type, namely
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– ΣBT where ‘BT’ stands for Bruhat–Tits as we consider ‘combinatorial
choices of lines in vectors spaces of a fixed dimension’ at Pappas–Rapoport
filtrations; this invariant generalises the ‘Deligne–Pappas invariant’ in [13],

– and ΣEO, which is based on the observation of Reduzzi–Xiao [42].

ΣEO will be used as an essential geometric input in proving an analytic contin-
uation theorem (Proposition 22), which allows us to pass from one ‘canonical
end’ of the valuation hypercube to near the far (opposite) end of the hypercube.
In Section 5.4, the ‘Rapoport–Zink’ [40] stratification is introduced. Proposi-
tions 12 and 13 are the key observations in characteristic p that are to be used
in studying the dynamics of Up-operator in characteristic zero generic fibre.
In fact they play the same role as Lemma 2.1 in [26].

Let p be a rational prime. Fix once for all an algebraic closureQp ofQp. In
this section, letπ a uniformiser in the ringO of integers of Fp, e the ramification
index, and f the residue degree.

Let L ⊂ Qp be an extension ofQp containing the image of every conjugate
of F in Qp, and let O denote its ring of integers; and let κ denote its residue

field, and Σ̂ = Σ̂p denote the set of all Qp-linear embeddings of the residue
field F = Fp of Fp into κ . Let f denote the element of Σ̂ which is (the unique
lifting of) the standard Frobenius automorphism.

The map sending π ⊗ 1 to a variable u defines an isomorphism

O ⊗ κ �
⊕

κ[u]/ue

where
⊕

ranges over Σ̂ .
Let X be a Barsotti–Tate (Définition 1.5 in [24]) p-divisible group over

a κ-scheme S of dimension e f ([24] Remarques 2.2.2, (b)) and of height
2e f , equipped with endomorphism i : O → End(X/S). Suppose that it is
principally polarisable, i.e., there exists an O-linear isomorphism λ : X/S→
X∨/S. It then follows that Lie(X/S)τ is a locally free sheaf of OS-modules
of rank e f , while the S-dual (5.3 in [4]) D∨(X/S) of the Dieudonné crystal
sheaf D(X/S)S on the (small) site S is a locally free sheaf of O ⊗Zp OS-
modules of rank 2. The dual D∨(X/S) comes equipped with Frobenius-semi-
linear endomorphisms F and V defined by duality in terms of V and F on
the Dieudonné crystal D(X/S) respectively; hence D∨(X/S) is isomorphic
to D(X∨/S) as Dieudonné modules, and Lie∨(X∨/S) � V D∨(X/S) for
example.

Definition For a closed immersion of S into the first-order thickening S[ε]/ε2,
let D∨(X/S[ε]/ε2) denote the S-dual of the Dieudonné crystal D(X/S) on
the site S[ε]/ε2. For a homomorphism ϕ : L → M of OS-modules, we shall
let L[ϕ] denote the kernel ϕ in L .
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5.1 Filtered Deligne–Pappas/Kottwitz–Rapoport

Definition A principally polarisable Barsotti–Tate p-divisible group X/S as
above is said to be filtered if, for every τ in Σ̂ , the τ -component Lie∨(X∨/S)τ
of the dual of the Lie algebra sheaf Lie(X∨/S) of the dual p-divisible group
X∨ over S, comes equipped with a filtration

0 = Lie∨(X∨/S)τ (0) ⊂ Lie∨(X∨/S)τ (1) ⊂ · · · ⊂ Lie∨(X∨/S)τ (e) = Lie∨(X∨/S)τ ⊂ D∨(X/S)τ

such that Lie∨(X∨/S)τ (t) is, Zariski locally on S, a direct summand of
Lie∨(X∨/S)τ of rank t and is a sheaf ofO⊗τ OS-submodule of Lie∨(X∨/S)τ ,
satisfying, if we let u denote π ⊗ 1,

u(Lie∨(X∨/S)τ (t)) ⊂ Lie∨(X∨/S)τ (t − 1).

For brevity, we often write Gr∨(X∨/S)τ (t) to mean the quotient Lie∨
(X∨/S)τ (t)/Lie∨(X∨/S)τ (t − 1).

Lemma 15 For every τ in Σ̂ ,

u(Lie∨(X∨/S)τ (1)) = 0, u2(Lie∨(X∨/S)τ (2)) = 0, . . . ,

ue(Lie∨(X∨/S)τ (e)) = 0

Proof Since u(Lie∨(X∨/S)τ (t + 1)) ⊂ Lie∨(X∨/S)τ (t), it follows that
ut+1(Lie∨(X∨/S)τ (t + 1)) ⊂ ut (Lie∨(X∨/S)τ (t)); hence it suffices to show
that u(Lie∨(X∨/S)τ (1)) = 0 but this holds by definition. �

Lemma 16 ue−tLie∨(X∨/S)τ ⊆ Lie∨(X∨/S)τ (t) for every 1 ≤ t ≤ e.

Proof This can be proved by induction. When t = e, the equality evidently
holds. Suppose ue−(t+1)Lie∨(X∨/S)τ ⊆ Lie∨(X∨/S)τ (t + 1) holds for t ≤
e − 1. Then

ue−tLie∨(X∨/S)τ = uue−(t+1)Lie∨(X∨/S)τ ⊆ uLie∨(X∨/S)τ (t + 1) ⊂ Lie∨(X∨/S)τ (t).

Definition Since X/S is principally polarisable, Lie(X/S) is also filtered if it
is filtered. Indeed, by duality, Lie(X/S) comes equipped with surjections:

Lie(X/S)τ � Lie∨(X∨/S)∨ = Lie∨(X∨/S)τ (e)
∨ → Lie∨(X∨/S)τ (e − 1)∨

→ · · · → Lie∨(X∨/S)τ (1)
∨ → 0

such that every kernel is a locally free sheaf of OS-modules of rank 1 and is
annihilated by u; indeed, Lie∨(X∨/S)τ (t+1)/Lie∨(X∨/S)τ (t) is isomorphic
to the dual of ker(Lie∨(X∨/S)τ (t + 1)∨ → Lie∨(X∨/S)τ (t)∨).
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Define Lie(X/S)τ (t) to be the kernel of the composite of surjections:

Lie∨(X∨/S)τ (e)
∨ → Lie∨(X∨/S)τ (e − 1)∨ → Lie∨(X∨/S)τ (e − t)∨.

Then Lie(X/S)τ comes equipped with a filtration

0 = Lie(X/S)τ (0) ⊂ Lie(X/S)τ (1) ⊂ · · · ⊂ Lie(X/S)τ (e) = Lie(X/S)τ

which is analogous to the filtration onLie∨(X∨/S); in particular, the assertions
in the preceding lemmas hold for Lie(X/S) in place of Lie∨(X∨/S). Note that,
by definition,Lie(X/S)τ (t+1)/Lie(X/S)τ (t) is dual to ker(Lie∨(X∨/S)τ (e)/
Lie∨(X∨/S)τ (e − t − 1) → Lie∨(X∨/S)τ (e)/Lie∨(X∨/S)τ (e − t)) =
Lie∨(X∨/S)τ (e − t)/Lie∨(X∨/S)τ (e − t − 1).

Definition Let SBT denote the stack of principally polarisable filtered
Barsotti–Tate p-divisible groups over Spec κ . The stack SBT parametrises that
p-divisible groups arising from points of Y PR

K as defined in Sect. 3.

Definition For a principally polarisable filtered p-divisible group X over a
κ-scheme S, let

D(X/S)τ (t) = ker(u | D∨(X/S)τ /Lie
∨(X∨/S)τ (t − 1))

for every τ in Σ̂ and 1 ≤ t ≤ e. It is a locally free sheaf of OS-modules of
rank 2 [see Proposition 5.2(b) of [36] with d = 2].

5.2 Bruhat–Tits

For every τ in Σ̂ , define a set ΣBT,τ of e integers ΣBT,τ = {νBT,τ (1), . . . ,
νBT,τ (e)} satisfying:
– νBT,τ (1) = 0;
– for every 2 ≤ t ≤ e, exactly one of the conditions, (BT-1): νBT,τ (t − 1) =

νBT,τ (t), or (BT-2): νBT,τ (t − 1)+ 1 = νBT,τ (t) is satisfied;
– for every t ,

t − νBT,τ (t) ≥ νBT,τ (t).

When convenient, we let νBT,τ (0) = 0, and let νBT,τ denote νBT,τ (e).

Remark The number of t’s satisfying (BT-2) equals νBT,τ .

Definition Let ΣBT,τ,1 (resp. ΣBT,τ,2) denote the subset of {1, . . . , e} con-
sisting of 1 and the set of 2 ≤ t ≤ e satisfying (BT-1) (resp. consisting of
1 ≤ t ≤ e satisfying (BT-2)). Evidently ΣBT,τ,1 and ΣBT,τ,2 defines a parti-
tion of {1, . . . , e}.
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Definition Given ΣBT,τ , define a subset γBT,τ of {1, . . . , e} the following
way. Firstly, for every τ , we define a map ζτ (dependent of ΣBT,τ ) from
{1, . . . , e} to the set of length e (labeled) sequences of two elements {e1, e2},
by defining ζτ (t) = e1 if t lies inΣBT,τ,1 and ζτ (t) = e2 if t lies inΣBT,τ,2.We
then turn the resulting sequence ζτ (1), . . . , ζτ (e) of ‘words’ into its reduced
expression by sequentially (as t increases) eliminating the adjacent pair e1e2;
the corresponding pairs of indices in {1, . . . , e}, or an index that is in pair,
so eliminated will be referred to as ΣBT,τ -redundant. Finally define γBT,τ

to be the set of all 1 ≤ t ≤ e that is not ΣBT,τ -redundant. By definition,
|γBT,τ | = e − 2νBT,τ , which is defined to be non-negative.

Definition For every integer 1 ≤ N ≤ e, let D∨(X∨/S)τ 〈N 〉 denote the
image of D∨(X∨/S)τ by uN .

Definition Given data Σ consisting of ΣBT = (ΣBT,τ )τ , define SBTΣ to be the
closed κ-substack of SBT of principally polarisable filtered p-divisible groups
X over κ-schemes S satisfying

D∨(X/S)τ 〈e − νBT,τ (t)〉 ⊂ Lie∨(X∨/S)τ (t) ⊂ D∨(X∨/S)τ 〈e − (t − νBT,τ (t))〉.

Observe that whenΣBT is defined by demanding that νBT,τ (t) = 0 for every
τ in Σ̂ and t , the stack SBTΣ is nothing other than SBT.

For two sets of data Σ = {νBT,τ (t)} and Σ+ = {lBT,τ (t)} as above, we
may define a partial order Σ+ ≤ Σ if lBT,τ (t) ≤ νBT,τ (t) holds for every τ

in Σ̂ and 1 ≤ t ≤ e. If this is the case, D∨(X/S)τ 〈e − lBT,τ 〉 is contained
in D∨(X/S)τ 〈e − νBT,τ 〉, while D∨(X/S)τ 〈e − (t − νBT,τ )〉 is contained in
D∨(X/S)τ 〈e − (t − lBT,τ )〉, hence SBTΣ+ defines a closed κ-substack of SBTΣ .

Definition If a principally polarisable filtered p-divisible group X over a κ-
scheme X lies in the S-fibre of SBTΣ −⋃

Σ+<Σ SBT
Σ+ , we say that X is of type

Σ = ΣBT and let νBT(X/S)τ (t) and γBT,τ (X/S) respectively denote νBT,τ (t)
and γBT,τ corresponding to Σ .

Proposition 9 For Σ = ΣBT as above, the closed immersion from SBTΣ to
SBT is representable and formally smooth of relative dimension

∑
τ e− (e−

2νBT,τ ) =∑
τ 2νBT,τ .

In earlier versions of the paper, we gave a ‘linear algebra’ proof of this
proposition by carefully inspecting the moduli problem. In the following, we
opt for a proof that is admittedly rather highbrow, yet sheds more light on
Pappas–Rapoport constructions ([35] and [36]), in particular, on their relevance
to Deligne–Pappas constructions.

For simplicity and for ease of reference to [35] and [36],we assume |Σ̂ | = 1.
The transfer of a proof to the general case is straightforward, as the case
|Σ̂ | = 1 typifies what happens at every τ in Σ̂ independently.
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Let k be a field of characteristic p and let k[[u]] (resp. k((u))) be the power
series (resp. Laurent series) ring k[[u]] with coefficients in k and a variable u.

Let FA denote a free k((u))-module of rank 2 and fix a k((u))-basis. Let
A ⊂ FA denote the free k[[u]]-module generated by the basis over k[[u]].

For a k-algebra R, by a k[[u]]⊗k R-lattice inA ⊗k R � R((u))2, we mean
a submodule over R[[u]] of FA ⊗k R which is, locally on Spec R, a free R
module of rank 2 and, when u is inverted, it gives rise to FA ⊗k R. We often
say ‘…parameterises k[[u]]-lattices of FA ’ to abbrivaite this functorial view.

Let G denote GL2(k((u))) and K denote the subgroup scheme of
GL2(k((u))) whose k-valued points stabilise the lattice A . We see G (resp.
K ) as the (resp. positive) loop group of GL2 and let G/K be the fpqc sheaf
quotient, i.e., the affine Grassmannian of GL2. For brevity, let X denote the e
copies of G/K , which is also an ind k-scheme.

For an element τ of dominant coweight GL2, let G(τ ) denote the closure
of K τK in G.

Fix a positive integer �. Let

φ = (φ1, . . . , φ�)

be an �-tuple of coweights of GL2 which are either trivial or (dominant) minus-
cule, in other words, by the standard identification of the coweights with Z2,
φ is an � tuple of vectors (0, 0) or (1, 0).

Let G(φ) denote the closed subscheme of the � copies of G which parame-
terises (γ1, . . . , γ�) ∈ G×· · ·×G such that γt−1γ−1t lies in G(φt ) (where we
set γt = 1 when t = 0); it is evidently a closed subscheme of the � copies ofG.
We define right action of K � by right translations component-by-component.

On the other hand, define an isomorphism

G(φ1)× · · · × G(φ�)→ G(φ)

by

(γ1, . . . , γ�) �→ (γ1, γ1γ2, . . . , γ1 · · · γ�).

By this isomorphism, the aforementioned right action of K � on G(φ)

induces right action of K � on G(φ1)× · · · × G(φ�):

(γ1, . . . , γ�)(β1, . . . , β�) = (γ1β1, β
−1
1 γ2β2, . . . , β

−1
�−1γ�β�).

The isomorphism G(φ1)× · · · × G(φ�)→ G(φ) induces an isomorphism
D(φ) := (G(φ1)× · · · × G(φ�))/K � → G(φ)/K � of the right K �-quotients
(in the fpqc topology) and it is possible to interpret them slightly differently.
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The quotient G(φ)/K � ⊂ X parameterises, for a k-algebra R, the set of
k[[u]] ⊗k R-lattices

A = A (0) ⊃ A (1) ⊃ · · · ⊃ A (�)

in FA such that, for every 1 ≤ t ≤ �, the relative position ρ(A (t − 1),A (t))
satisfies the inequality ρ(A (t − 1),A (t)) ≤ φt in terms of the standard
partial order on the dominant coweights of GL2. The condition about the
relative positions indeed implies that uA (t − 1) ⊂ A (t) ⊂ A (t − 1) for all
t . Furthermore, if t is an index such that φt is trivial,A (t − 1) = A (t); hence
there are only maximum �− |{1 ≤ t ≤ � |φt is miniscule}| distinct lattices in
each chain A (1) ⊃ · · · ⊃ A (�) contained in A .

With this ‘moduli viewpoint’, the isomorphism from G(φ)/K � to D(φ) is
given by sending a chain of lattices (A (1) ⊃ · · · ⊃ A (�)) in FA as above to
(A /A (1),A (1)/A (2), . . . ,A (e − 1)/A (�)).

On the other hand, D(φ) = (G(φ1)×· · ·×G(φ�))/K � is thought of as a left
G-homogenous bundle that is given by iterated P

1-fibrations in the following
sense:
– Let K act on G, and hence on G(φ�), from right by right translations and
let L(φ�) denote the quotient G(φ�)/K ⊂ G/K , which come equipped
with natural left G action by left translations.

– Fixing t ≥ 0, suppose D(φ�−t , . . . , φ�) is a left G-equivariant bundle over
G(φ�−t )/K . We then define

D(φ�−(t+1), φ�−t , . . . , φ�) = (G(φ�−(t+1))× D(φ�−t , . . . , φ�))/K

where we see D(φ�−t , . . . , φ�) as a right K -module by left-inverse trans-
lations and K acts on G(φ�−(t+1)) by right translations. We let G acts on
D(φ�−(t+1), . . . , φ�) from left by letting it act on the G(φe−(t+1))-factor
only by left translations; as a result, D(φ�−(t+1), . . . , φ�) is aG-equivariant
bundle over over G(φ�−(t+1))/K .
If φt is minuscle, G(φt )/K is P

1 over k which is smooth and consequently,
D(φ) is smooth of dimension

|{1 ≤ t ≤ � |φt is miniscule}| = 〈φ1 + · · ·φ�, (1,−1)〉
where 〈 , 〉 is the standard scaler product onR

2 and where we see the dominant
weight φ1 + · · · + φ� as a pair of integers. One normally thinks of D(φ) as a
resolution2 ofG(φ1+· · ·+φ�)/K by iterated P

1-fibrations. As [36] Section 6
establishes, G(φ1)×· · ·×G(φ�) is naturally thought of as a K �−1-torsor over
D(φ).

2 The construction is often attributed to Demazure, Lusztig, Bott, Samelson and Hansen.

123



218 S. Sasaki

Definition Let XPR be the closed ind-subscheme of X parametrising k[[u]]-
lattice chains A ⊃ A (1) ⊃ · · · ⊃ A (�) in FA such that

A ⊃ A (1) ⊃ · · · ⊃ A (�) = E (�) ⊃ E (�− 1) ⊃ · · ·E (1) ⊃ u�A

where, for every 1 ≤ t ≤ �, we denote

E (t) = u�−tA (t).

Definition Let XPR(φ) denote G(φ)/K �.

By definition, XPR(φ) is a closed ind-subscheme of XPR. Also, since D(φ)

is smooth over k, so is XPR(φ). Evidently, if φ is such that φt is miniscule for
every 1 ≤ t ≤ �, then XPR(φ) = XPR.

We now recall Pappas–Rapoport local models. Unless otherwise specified,
� is chosen to be e in the following.

Fix an isomorphism O ⊗Zp k � k[u]/ue sending π ⊗ 1 to u and A denote
a free R-module A ⊗k[[u]] k[[u]]/ue.

The Pappas–Rapoport local model NPR parameterises, for a k-algbera R,
the iset of of locally free R-modules

0 = A(0) ⊂ A(1) ⊂ · · · A(e) ⊂ A ⊗ R

such that A(t) is, locally on Spec R, a free R-module of rank t and such that
π ⊗ 1 ∈ (O ⊗ k)⊗k R annihilates A(t)/A(t − 1) for every 1 ≤ t ≤ e.

For a such chain of locally free R-modules A(1) ⊂ · · · ⊂ A(e), if E (1) ⊂
· · · ⊂ E (e) ⊂ A ⊗k R denote a chain of k[[u]]-lattices in A lifting A(1) ⊂
· · · ⊂ A(e) by A ⊗k R→ A ⊗k R then the map

f : (A(1) ⊂ · · · ⊂ A(e)) �→ (E (1) ⊂ · · · ⊂ E (e) ⊂ u−1E (e − 1) ⊂ · · · ⊂ u1−eE (1))

gives a bijection between NPR and XPR where the ‘converse’ f −1 is given by
sending (A (1) ⊃ · · · ⊃ A (e)) to the image of (ue−1A (1) ⊂ ue−2A (e −
2) ⊂ · · · ⊂ ue−tA (t) ⊂ · · · ⊂ A (1) ⊂ A ⊗k R) in A ⊗k R by reduction
A ⊗k R→ A ⊗k R mod ue.

For φ = (φ1, . . . , φe), we define a closed stratum NPR(φ) of NPR

parameterising locally free modules A(1) ⊂ · · · ⊂ A(e) ⊂ A such
that the relative position ρ(A(t − 1), A(t)), naturally thought of as an ele-
ment of GL2(k[u]/ue)\GL2(k((u)))/GL2(k[u]/ue) lies in the closure of
GL2(k[u]/ue)φtGL2(k[u]/ue) in G for every 1 ≤ t ≤ e.

The map f : NPR → XPR gives rise to an isomorphism

NPR(φ)→ XPR(φ).
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Wefinally prove the proposition.We define a closed subscheme NPR
Σ of NPR

with Σ = ΣBT = {νBT(1), . . . , νBT(e)}: it parametrises the set of locally free
modules A(1) ⊂ · · · A(e) ⊂ A such that A(t) is, locally on Spec R, a free
R-module of rank t and satisfies

A〈e − νBT(t)〉 ⊂ A(t) ⊂ A〈e − (t − νBT(t))〉

for every 1 ≤ t ≤ e. Note that the condition, evidently closed, is placed
to specify the elementary divisors, i.e., a pair of integers defined as the u-
valuations of a two generators of A(t) when written in terms of k[u]/ue-basis
of A. More precisely, the elementary divisors of A(t) is a pair e− νBT(t) and
e − (t − νBT(t)), which satisfy the inequality e − νBT(t) ≥ e − (t − νBT(t))
by definition and which we might see as a dominant weight of GL2. If we let
E (1) ⊂ · · · ⊂ E (e) ⊂ A denote a chain of liftings in A of A(1) ⊂ · · · A(e),
the elementary divisors of E (t) remain the pair (e− νBT(t), e− (t − νBT(t)))
but E (t)〈−(e − t)〉 has elementary divisors (t − νBT(t), νBT(t)) for every
1 ≤ t ≤ e.

The scheme NPR
Σ is a local model for SBTΣ and the proposition follows from

the smoothness of NPR
Σ which we prove in the following Lemma.

Lemma 17 LetΣ = ΣBT = {νBT(1), . . . , νBT(e)}. Defineφ byφt isminuscle
if t lies in γBT; and φt is trivial if t is redundant, for every 1 ≤ t ≤ e. Then

NPR
Σ � NPR(φ).

In particular, NPR
Σ is smooth of dimension |γBT| = e − 2νBT over k.

Proof Since XPR(φ) is isomorphic to NPR(φ), we prove the assertion as an
isomorphism of closed subschemes in XPR. For a k -algebra R, let E (1) ⊂
· · · ⊂ E (e) ⊂ A denote a chain of lattices in FA ⊗k R that reduced to
an R-point of NPR

Σ . For every 1 ≤ t ≤ e, let A (t) denote E (t)〈−(e − t)〉.
Then one observes that the A (t)〈−νBT(t)〉 as t ranges over γBT define an R-
valued point of XPR(ϕ) where ϕ is the |γBT| = (e− 2νBT)-tuple of minuscule
dominant coweight (1, 0). It is easy to check that this defines an isomorphism
NPR

Σ � XPR(ϕ). By the definition of φ, XPR(φ) is evidently isomorphic to
XPR(ϕ). �

Remark Wehave NPR

Σ � NPR(φ) � XPR(φ) � D(φ). In particular, D(φ) can
be seen as a resolution ofG(φ1+· · ·+φe)/K . The local model corresponding
to G(φ1 + · · · + φe)/K therefore parameterises, for a k-algebra R, the set of
locally free R-module A(e) ⊂ A ⊗k R of rank e satisfying the condition

A〈e − νBT〉 ⊂ A(e) ⊂ A〈νBT〉.
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This is precisely the closed k-singular stratum of the Deligne–Pappas local
model, 4.2 in [13]; and NPR

Σ is thought of as a resolution of the stratum at the
singularities.

Proof of Proposition 9 Since NPR
Σ is a local model for SPRΣ when |Σ̂ | = 1, the

proposition follows from the lemma above, combinedwith the observation that
NPR(φ) � D(φ) is smooth over k = κ of dimension e−2νBT and NPR � XPR

is smooth of dimension e. �


5.3 Ekedahl–Oort

In this section, we shall consider an ‘Ekedahl-Oort stratification’ on SBT. To
this end, we use a slight variant of the construction of ‘partial Hasse invariants’
by Reduzzi and Xiao in [42]; the ‘source’ of our maps are on D(X/S)τ (t) in
comparison to [40] on Gr∨(X∨/S)τ (t). We emphasise that the idea is essen-
tially Reduzzi–Xiao’s.

Let S be a κ-scheme S and X be a filtered principally polarisable Barsotti–
Tate p-divisible group over S. The Verschiebung VX∨ : X∨ → X∨(1/p)

defines, for every τ in Σ̂ , a ϕ−1-semi-linear homomorphism

Lie∨(X∨/S)f◦τ → (Lie∨(X∨/S)×ϕ−1 S)τ � Lie∨(X∨(1/p)/S)τ

VX∨−→ Lie∨(X∨/S)τ

ofOS-modules thatwe shall denote simply byV , whereϕ denote the (absolute)
Frobenius morphism on S.

Lemma 18 V above sends Lie∨(X∨/S)τ (t) ⊂ Lie∨(X∨/S)τ to Lie∨
(X∨/S)f−1◦τ (t).

Proof Since utLie∨(X∨/S)τ (t) = 0, one sees that Lie∨(X∨/S)τ (t) ⊂
ue−t D∨(X/S)τ .AsV isu-linear,V (Lie∨(X∨/S)τ (t)) ⊂ ue−t V D∨(X/S)τ =
ue−tLie∨(X∨/S)f−1◦τ . It follows fromLemma16 thatue−tLie∨(X∨/S)f−1◦τ ⊂
Lie∨(X∨/S)f−1◦τ (t). Combining these two, the assertion follows. �


For 2 ≤ t ≤ e, we let

Δt
τ : D(X/S)τ (t) −→ D(X/S)τ (t − 1)

denote the multiplication-by-u-map, and, when t = 1, we let

Δ1
τ : D(X/S)τ (1) −→ Gr∨(X∨/S)f−1◦τ (e) ⊂ D(X/S)τ (e)
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be the map ‘V ◦ u−e+1’ that sends an element ue−1ξ in D(X/S)τ (1) =
ker(u | D∨(X/S)τ )with ξ in D∨(X/S)τ to the class V (ξ)+Lie∨(X∨/S)f−1◦τ
(e − 1) in Gr∨(X∨/S)f−1◦τ (e).

For 2 ≤ t ≤ e, D(X/S)τ (t) is nothing other than u−1Lie∨(X/S)τ (t −
1)/Lie∨(X∨/S)τ (t−1), and therefore the image ofΔt

τ is Gr
∨(X∨/S)τ (t−1).

The rank of the kernelD(X/S)τ (t)[Δt
τ ] is 1 as a result. Similarly, the image of

Δ1
τ is Gr

∨(X∨/S)f−1◦τ (e). As pointed out in Lemma 3.8 in [42], the restriction

to Gr∨(X∨/S)τ (t) of the composite Δt+1
f−1◦τ ◦ · · · ◦Δe

f−1◦τ ◦Δ1
τ ◦ · · · ◦Δt

τ :

D(X/S)τ (t)
Δt

τ−→ · · · Δ2
τ−→ D(X/S)τ (1)

Δ1
τ−→ D(X/S)f−1◦τ (e)

Δe
f−1◦τ−→ · · ·

Δt+1
f−1◦τ−→ D(X/S)f−1◦τ (t)

defines the Verschiebung map

V : Gr∨(X∨/S)τ (t) −→ Gr∨(X∨/S)f−1◦τ (t)

induced by Lemma 18. When f = 1, we recover the standard Verschiebung.
For every τ in Σ̂ , let γEO,τ denote a subset of {1, . . . , e}, and ΣEO denote

the Σ̂-tuple (γEO,τ )τ as τ ranges over Σ̂ .
For Σ = ΣEO, we define SBTΣ to be the κ-substack of SBT parameterising

filtered principally polarisable p-divisible groups X over κ-schemes S such
that, for every τ in Σ̂ , Δt

τ is zero if t lies in γEO,τ .

Remark In the light of the proof of Proposition 9, it is possible to relate ΣBT
and ΣEO.

For two sets of data Σ = ΣEO = (γEO,τ )τ and Σ+ = Σ+
EO = (γ+EO,τ )τ ,

we may define a partial order Σ+ ≤ Σ if γEO,τ ≤ γ+EO,τ holds for every τ in

Σ̂ . If Σ+ ≤ Σ but Σ+ is distinct from Σ , we write Σ+ < Σ . If this is the
case, SBT

Σ+ defines a closed κ-substack of SBTΣ .

Definition If a principally polarisable filtered p-divisible group X over a κ-
scheme S lies in the S-fibre of SBTΣ −⋃

Σ+<Σ SBT
Σ+ , we say that X of of type

ΣEO, and let γEO,τ (X/S) denote γEO,τ corresponding to ΣEO.

Proposition 10 Let Σ denote ΣEO. The closed immersion from SBTΣ to SBT is
representable and formally smooth of relative dimension

∑
τ |ΣEO,τ |.

Proof Let U be a κ-scheme. Let S be a U -scheme, and S[ε]/ε2 its first-order
thickening. Let X be a principally polarisable filteredBarsotti–Tate p-divisible
group over S defining an S-point of the fibre SBTΣ,U over U . As SBTΣ,U is given
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by the vanishing sections over S of line bundles Δt
τ for t in γEO,τ for every

τ , the relative dimension of SBTΣ,U ↪→ SBTU is at most
∑

τ |ΣEO,τ |. It therefore
suffices to establish that the tangent space of SBTΣ,U at X/S has codimension∑

τ |ΣEO,τ | in the tangent space of SBTU . Fix τ and 1 ≤ t ≤ e, and suppose that
Lie∨(X∨/S)τ (t−1) lifts to S[ε]/ε2. If t lies in γEO,τ , it follows, by definition,
that Gr∨(X∨/S)τ is contained in the rank 1 module D(X/S)τ (t)[Δt

τ ], and
therefore they are equal. As D(X/S)τ (t)[Δt

τ ] lifts uniquely to S[ε]/ε2, so
does Gr∨(X∨/S)τ (t). �


5.4 Rapoport–Zink

Let SBTI denote the κ-stack of principally polarisable filtered Barsotti–Tate
p-divisible groups equipped withO-linear isogenies to principally polarisable
filtered Barsotti–Tate p-divisible groups. More precisely, the fibre of SBTI over
a κ-scheme of S parameterises (the set of isomorphism classes of) ofO-linear
isogenies f : X/S→ Y/S of principally polarisable Barsotti–Tate p-divisible
groups X and Y over S such that

– C = ker f is a finite flat O-subgroup of X [π ] of order |O/π | = |F|
such that any principal polarisation on X induces an isomorphism X [π ] �
X [π ]∨ which sends C to (X [π ]/C)∨ isomorphically,

– for every τ in Σ̂ , both

Lie∨( f ∨) : Lie∨(X∨/S)τ → Lie∨(Y∨/S)τ

and

Lie∨( f ∧)∨ : Lie∨(Y∨/S)τ → Lie∨(X∨/S)τ ,

given by f : X → Y and the ‘dual’ isogeny Y/S → X/S such that
f ∧ ◦ f = π on X and f ◦ f ∧ = π on Y , will be denoted again by f ∨
and ( f ∧)∨ respectively by slight abuse of notation, commute with their
respective filtrations, and let

f ∨ : Gr∨(X∨/S)τ (t)→ Gr∨(Y∨/S)τ (t)

and

( f ∧)∨ : Gr∨(Y∨/S)τ (t)→ Gr∨(X∨/S)τ (t)

also denote the corresponding morphisms.

For pairs of O-isogenies f and f ∧ as above, we define analogues of the
invariants defined in [40] and [20].
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Definition For every τ in Σ̂ , define γRZ,τ ( f ) (resp. νRZ,τ ( f )) to be the set
of 1 ≤ t ≤ e such that f ∨ (resp. ( f ∧)∨) is zero on Gr∨(X∨/S)τ (t) (resp.
Gr∨(Y∨/S)τ (t)).

Note that, as π = 0, for every 1 ≤ t ≤ e, either t lies in γRZ,τ or in νRZ,τ ,
or indeed in both.

Definition Let Σ denote a tuple (νRZ,τ , γRZ,τ )τ , where τ ranges over Σ̂ , of
subsets γRZ,τ ⊆ {1, . . . , e} and νRZ,τ ⊆ {1, . . . , e}, satisfying the following
condition that every 1 ≤ t ≤ e lies in at least one of γRZ,τ or νRZ,τ for every
τ in Σ̂ .

For a such Σ , define SBTI,Σ to be the closed κ-substack of O-isogenies
f : X/S → Y/S of filtered principally polarisable Barsotti–Tate p-divisible
groups over S such that

– f ∨ : Gr∨(X∨/S)τ (t) → Gr∨(Y∨/S)τ (t) is zero for every t that lies in
γRZ,τ , i.e., γRZ,τ ⊆ γRZ,τ ( f ),

– ( f ∧)∨ : Gr∨(Y∨/S)τ (t)→ Gr∨(X∨/S)τ (t) is zero for every t that lies in
νRZ,τ , i.e., νRZ,τ ⊆ νRZ,τ ( f ∧).

Proposition 11 For Σ as above, the closed immersion of SBTI,Σ into SBTI is
representable of relative dimension

∑e
t=1( f − ( f −|γRZ,t |+ f −|νRZ,t |)) =∑e

t=1(|γRZ,t | + |νRZ,t | − f ).

Proof This can be proved as Theorem 2.5.2 in [20]. �

If γRZ,t ∩ νRZ,t = ∅, |γRZ,t | + |νRZ,t | = f , and if this is the case for every

1 ≤ t ≤ e, the relative dimension of the closed immersion is 0.

Lemma 19 Let f : X/S → Y/S and its dual isogeny f ∧ : Y/S → X/S
be as above. Then the equalitiesD(X/S)τ (t)[ f ∨] = ( f ∧)∨(D(Y/S)τ (t)) and
D(X/S)τ (t)[( f ∧)∨] = f ∨(D(Y/S)τ (t)) hold, and they are all of rank 1.

Proof One observes firstly that, as ( f ∧)∨(D(Y/S)τ (t)) is contained in
D(X/S)τ (t)[ f ∨], it suffices to check that they are both of rank 1 over
S. However, it follows immediately from Proposition 5.2 in [36] that
D(X/S)τ (t)[ f ∨] is locally free of rank 1 over S. A similar argument shows
that D(Y/S)τ (t)[( f ∧)∨] is rank 1 over S and, as D(Y/S)τ (t) is rank 2 over
S, ( f ∧)∨(D(Y/S)τ (t)) is rank 1 over S. An analogous argument proves the
other equality. �

Proposition 12 Let f : X/S → Y/S and f ∧ : Y/S → X/S be as above. If
t ≥ 2 and t − 1 lies in νRZ,τ while t lies in γRZ,τ , then t lies in γEO,τ (X/S).
If t = 1 and e lies in νRZ,f−1◦τ while t = 1 lies in γRZ,τ , then t = 1 lies in
γEO,τ (X/S).

123



224 S. Sasaki

Proof Firstly suppose t ≥ 2. The assumption that t − 1 lies in νRZ,τ

implies that ( f ∧)∨ vanishes on the image by Δ = Δt
τ of D(Y/S)τ (t). As

ΔD(Y/S)τ (t) � D(Y/S)τ (t)/D(Y/S)τ (t)[Δ] and similarly for X , it then fol-
lows that ( f ∧)∨(D(Y/S)τ (t)) ⊂ D(X/S)τ (t)[Δ]. On the other hand, t is in
γRZ,τ ( f ) and therefore Gr∨(X∨/S)τ (t) is contained in D(X/S)τ (t)[ f ∨] =
( f ∧)∨(D(Y/S)τ (t)). Combining, one deduces that Gr∨(X∨/S)τ (t) is con-
tained in D(X/S)τ (t)[Δ]. As ΔGr∨(X∨/S)τ (t) is zero, t lies in γEO,τ .

The case t = 1 is similar, except that one has to be careful that the image
by Δ1

τ of D(Y/S)τ (1) is Gr∨(X/S)f−1◦τ (e). �


Proposition 13 Let f : X/S → Y/S and f ∧ : Y/S → X/S be as above. If
t ≥ 2 and if either

– t − 1 lies in νRZ,τ while t does not lie in γRZ,τ ,
– or t − 1 does not lie in νRZ,τ while t lies in γRZ,τ ,

holds, then t does not lie in γEO,τ (X/S). If t = 1, if either

– e lies in νRZ,f−1◦τ while t = 1 does not lie in γRZ,τ ,
– or e does not lie in νRZ,f−1◦τ while t = 1 lies in γRZ,τ ,

holds, then t = 1 does not lie in γEO,τ (X/S).

Proof Suppose that t ≥ 2. The case t = 1 is similar as in Proposition 12.
Firstly, suppose that t − 1 lies in νRZ,τ but t does not in γRZ,τ . It then follows
exactly as in the proof of Proposition 12, using the assumption that t − 1
lies in νRZ,τ , that D(X/S)τ (t)[ f ∨] = ( f ∧)∨D(Y/S)τ (t) ⊂ D(X/S)τ (t)[Δ].
Observing that they all are of rank 1, one sees that they are equal. Therefore,
if Gr∨(X∨/S)τ (t) lay in D(X/S)τ (t)[Δ], it would contradict the assumption
that t does not lie in γRZ,τ . As Gr∨(X∨/S)τ (t) does not lie inD(X/S)τ (t)[Δ],
t does not lie in γEO,τ .

Secondly, suppose that t lies in γRZ,τ but it does not in νRZ,τ . One observes
that Gr∨(X∨/S)τ (t) ⊂ D(X/S)τ (t)[ f ∨] = ( f ∧)∨D(Y/S)τ (t) are equal (of
rank 1). One also observes that Δ(D(Y/S)τ (t)) is Gr∨(Y∨/S)τ (t) and in par-
ticular it is of rank 1. It then follows that

ΔGr∨(X∨/S)τ (t) = Δ( f ∧)∨D(Y/S)τ (t) = ( f ∧)∨ΔD(Y/S)τ (t)

= ( f ∧)∨Gr∨(Y∨/S)τ (t − 1)

but the assumption that t does not lie inνRZ,f−1◦τ ( f ) implies thatΔGr∨(X∨/S)τ
(t) is non-zero. Consequently t does not lie in γEO,τ . �
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Swapping f for f ∧ and f ∧ for f , it is possible to prove:

Proposition 14 If t ≥ 2 and t − 1 lies in γRZ,τ while t lies in νRZ,τ , then t
lies in γEO,τ (Y/S). If t = 1 and e lies in γRZ,f−1◦τ while t = 1 lies in νRZ,τ ,
then t = 1 lies in γEO,τ (Y/S).

On the other hand, if t ≥ 2 and if either

– t − 1 lies in γRZ,τ while t does not lie in νRZ,τ ,
– or t − 1 does not lie in γRZ,τ while t lies in νRZ,τ ,

holds, then t does not lie in γEO,τ (Y/S). If t = 1, if either

– e lies in γRZ,f−1◦τ while t = 1 does not lie in νRZ,τ ,
– or e does not lie in γRZ,f−1◦τ while t = 1 lies in νRZ,τ ,

holds, then t = 1 does not lie in γEO,τ (Y/S).

Proof See the proofs of Proposition 12 and Proposition 13. �


5.5 Calculations with de Rham–Breuil modules

As in the previous sections, let π be a uniformiser in the valuation ring O of
Fp, e the ramification index, and f the residue degree. Let F = O/π denote
the residue field. Let OL denote the valuation ring of a finite extension L of
Fp which contains the image of every embedding of Fp intoQp. Write the set

Σ̂ = Σ̂p and the Frobenius automorphism f in Σ̂ as in the previous section.
Let K denote a finite extension of L with ringOK of integers, a uniformiser

ξ , the ramification index eK and k = OK /ξOK the residue field.We normalise
the valuation on K so that p has valuation 1. Unless otherwise specified,
S = SpecOK and S = SpecOK where OK = OK /πOK in this section.
By a Barsotti–Tate p-divisible group (which comes equipped with an endo-

morphism O → End(X/S)), we shall mean it in the sense of Définition 1.5
in [24] over S, and is of dimension f e and of height 2 f e.

Definition A principally polarisable Barsotti–Tate p-divisible group X over
S is said to be filtered if, for every τ in Σ̂ , Lie∨(X∨/S)τ comes equipped with
a filtration

0 = Lie∨(X∨/S)τ (0) ⊂ Lie∨(X∨/S)τ (1) ⊂ · · · ⊂ Lie∨(X∨/S)τ (e) = Lie∨(X∨/S)τ ⊂ D∨(X/S)τ

such that Lie∨(X∨/S)τ (t) is, locally on S, a direct summand of Lie∨(X∨/S)τ
of rank t and is a sheaf of O ⊗τ OK -submodule satisfying the condition

(π ⊗ 1− 1⊗ γ t
τ )Lie∨(X∨/S)τ (t) ⊂ Lie∨(X∨/S)τ (t − 1)

where γ 1
τ , . . . , γ e

τ are the fixed roots of the Eisenstein polynomial Eτ over
O⊗τ OL which may also be thought of as overO⊗τ OK as defined in Sect. 3.
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Definition If X is a principally polarisable Barsotti–Tate p-divisible group
over S, and C is an F-subgroup of X [π ] of order |F| such that any principal
polarisation X → X∨ on X induces an isomorphism X [π ] � X [π ]∨ which
sendsC to (X [π ]/C)∨, we say thatC is a Raynaud F-vector subspace scheme
of X for brevity.

Furthermore,we say thatC is filtered if it is the kernel of anO-linear isogeny
f : X/S → Y/S of filtered principally polarisable Barsotti–Tate p-divisible
groups over S such that both Lie∨ f ∨ : Lie∨(X∨/S)τ → Lie∨(Y∨/S)τ and
Lie∨( f ∧)∨ : Lie∨(Y∨/S)τ → Lie∨(X∨/S)τ commute with filtrations on
Lie∨(X∨/S)τ and Lie∨(Y∨/S)τ .

Lemma 20 A principal polarisation λ : X → X∨ defines an isomorphism
from C onto the Cartier dual (X [π ]/C)∨ of Raynaud submodule scheme.

Proof By definition, the image by λ of C is contained in (X [π ]/C)∨. Since
both are Raynaud submodule scheme, λ defines an isomorphism. �


Fix a filtered principally polarisable Barsotti–Tate p-divisible group X over
S equipped with a filtered Raynaud submodule scheme C which is the kernel
of an O-linear isogeny f : X → Y = X/C ; f gives rises to a map of
OK -modules

Lie∨ f ∨ : Gr∨(X∨/S)τ (t)→ Gr∨(Y∨/S)τ (t)

for every τ in Σ̂ and 1 ≤ t ≤ e, and define deg((X,C)/S)τ (t) in [0, 1] to
be the (normalised) valuation of a generator in OK of the annihilator of its
cokernel.

We remark that these invariants are qualitatively ‘finer’ than degrees defined
by Fargues in [18], and are exactly the reason we succeed in better understand-
ing p-adic geometry of Hilbert modular varieties of level at p.

Let

deg((X,C)/S) =
∑

τ

∑

t

deg((X,C)/S)τ (t)

where t ranges over 1 ≤ t ≤ e and τ ranges over Σ̂ . By definition,
deg((X,C)/S) ranges over [0, e f ].

We consider ‘Breuil modules’ of p-torsion subgroups of filtered principally
polarisable Barsotti–Tate p-divisible groups over S. Because it seems difficult
(if not impossible, perhaps) to ‘integrally’ incorporate Pappas–Rapoport fil-
trations (which are inherently ‘of de Rham’) into Breuil modules of p-torsion
(or worse still, π -torsion) subgroups, we instead work directly with de Rham
crystals over the ‘truncated’ valuation ring S. To this end suppose e > 1; when
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e = 1, we simplymake appeal to calculationswith Breuil modules in Section 3
of [26] which is our model for the construction in the following. Parenthet-
ically, Section 3 of [26] is based on Kisin’s proof in [31] of a conjecture of
Breuil when p > 2; the conjecture itself is also proved by Kisin [30] in the
connected case when p = 2 and by Kim, Lau, Liu in the general p = 2 case,
and the argument in [26] works verbatium when p = 2.

Fix a filtered principally polarisable Barsotti–Tate p-divisible group X over
S. For every τ in Σ̂ and 1 ≤ t ≤ e, let

Gr∼∨(X∨[p]/S)τ (t) = D(X∨[p]/S)S/Lie
∨(X∨[p]/S)τ (t − 1)

and let D(X∨[p]/S)τ (t) denote the free rank 2 module over OK

ker(π ⊗ 1− 1⊗ γ t
τ |Gr∼∨(X∨[p]/S)τ (t))

= (ξ ⊗ 1− 1⊗ γ t
τ )−1Lie∨(X∨[p]/S)τ (t − 1)/Lie∨(X∨[p]/S)τ (t − 1),

which contains the rank 1 OK -module Gr∨(X∨[p]/S)τ (t) by definition. Let
D(X∨[p]/S)τ (t) denote the pull-back of D(X∨[p]/S)τ (t) to S; it is a rank
2 module over OK . Let D(X

∨[p]/k)τ (t) denote the pull-back to the closed
fibre Spec k; it is a rank 2 module over k.

Let

Δt
τ : D(X∨[p]/S)τ (t) −→ D(X∨[p]/S)τ (t − 1)

denote the map defined by multiplication by u if t > 1 and

Δ1
τ : D(X∨[p]/S)τ (1) −→ D(X∨[p]/S)f−1◦τ (e)

denote V ◦ (ue−1)−1 if t = 1. By definition, the image of Δt
τ is exactly

Gr∨(X∨[p]/S)τ (t − 1) if t > 1 and Gr∨(X∨[p]/S)f−1◦τ (e) if t = 1.
Let C denote a filtered Raynaud submodule scheme of X [π ] and let

Y = X/C be the filtered principally polarisable Barsotti–Tate p-divisible
group over S. Let D(C/S)τ (t) denote the kernel of D(X∨[p]/S) →
D(Y∨[p]/S)τ (t). If G is one of the X∨[p], Y∨[p] or C , let D(G/S) (resp.
D(G/k)) denote the pull-back of D(G/S) to S (resp. Spec k).
The image of D(X∨[p]/S)τ (t) in D(Y∨[p]/S)τ (t) defines a rank 1 sub-

module overOK and consequently D(C/S)τ (t) is free of rank 1 overOK . This
follows if it holds over S, which in turn follows by Nakayama if the image
of D(X

∨[p]/k)τ (t) defines a rank 1 subspace of D(Y
∨[p]/k)τ (t). But this

follows from Lemma 19.
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Indeed, given X over k, the existence of a filtered Raynaud F-vector sub-
space scheme of X over k is equivalent to the existence of a family of subspaces
Ξ t

τ of D(X
∨[p]/k)τ (t) of rank 1 for all τ in Σ̂ and 1 ≤ t ≤ e satisfying the

conditions:

– Δt
τ (Ξ

t
τ ) ⊂ Ξ t−1

τ if t > 1 (in which case, Δt
τ is multiplication by u);

– and Δ1
τ (Ξ

1
τ ) ⊂ Ξ e

f−1◦τ if t = 1 (in which case Δ1
τ = V ◦ u1−e).

To see the claim, suppose firstly that one is given a family of vector sub-
spacesΞ t

τ as above. As one can immediately see, by definition (observing that
both have the same rank over k), that D(X

∨[p]/k)τ (1) = ue−1D(X
∨[p]/k)τ

where D(X
∨[p]/k)τ denotes the τ -isotypic part of the Dieudonne module

D(X
∨[p]/k) over k, define Ξτ to be the e-dimensional vector subspace

u1−eΞ1
τ of D(X

∨[p]/k)τ and Ξ = ⊕
τ Ξτ ⊂ D(X

∨[p]/k). It is immediate

to see that, for every τ , Ξτ satisfies, for the Verschiebung V on D(X
∨[p]/k),

VΞτ = V (u1−eΞ1
τ ) ⊂ Ξ e

f−1◦τ ⊂ u−1Ξ e−1
f−1◦τ ⊂ · · · ⊂ u−(e−1)Ξ1

f−1◦τ = Ξf−1◦τ

and therefore Ξ is a Dieudonne submodule of D(X
∨[p]/k) with its quotient

D(X
∨[p]/k)/Ξ free of rank 1 over F⊗k. By Dieudonne theory, there exists a

RaynaudF-vector space schemeC of rank1 in X [p] such that its corresponding
Dieudonne module is exactly Ξ .

On the other hand, the converse of the claim is clear and will be left unat-
tended.

Suppose that ξ tτ,1, ξ
t
τ,2 form a OK -basis of D(X∨[p]/S)τ (t) such that ξ tτ,1

defines a OK -basis of D(C/S)τ (t) in D(X∨[p]/S)τ (t), and ξ tτ,2 maps onto a

OK -basis of the image of D(X∨[p]/S) in D(Y∨[p]/S)τ (t).
For every τ , we may and will assume if t > 1

Δt
τ (ξ

t
τ,1) = ξρt−1

τ Rt−1
τ ξ t−1τ,1

and

Δt
τ (ξ

t
τ,2) = St−1τ ξ t−1τ,1 + ξχ t−1

τ T t−1
τ ξ t−1τ,2

where Rt−1
τ , St−1τ , T t−1

τ are elements of OK and Rt−1
τ , T t−1

τ are in particular
units in OK ; and similarly if t = 1,

Δ1
τ (ξ

1
τ,1) = ξ

ρe
f−1◦τ Re

f−1◦τ ξ
e
f−1◦τ,1
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and

Δ1
τ (ξ

1
τ,2) = Se

f−1◦τ ξ
e
f−1◦τ,1 + ξ

χe
f−1◦τ T e

f−1◦τ ξ
e
f−1◦τ,2.

By construction, if t > 1, it is an easy exercise to check:

Lemma 21 Fix τ in Σ̂ and 1 < t ≤ e. Then χ t−1
τ equals eK deg((X,C)/S)τ

(t−1)whileρt−1
τ satisfies the inequalityρt−1

τ ≥ eK (1/e−deg((X,C)/S)τ (t−
1)) = eK deg((X/C, X [π ]/C)/S)τ (t − 1).

Proof To see the first assertion about χ t−1
τ , observe that χ t

τ computes the
truncated valuation of the annihilator in OK of Coker(Gr∨(X∨[p]/S)τ (t −
1) → Gr∨(Y∨[p]/S)τ (t − 1)). Since the normalised truncated valuation of
the uniformiser ξ is eK /e, the assertion follows.

The assertion about ρt−1
τ follows as Δt

τ D(C/S)τ (t) is contained in
ker(Gr∨(X∨[p]/S)τ (t − 1)→ Gr∨(Y∨[p]/S)τ (t − 1)). �


Similarly,

Lemma 22 Fix τ in Σ̂ . Then χe
f−1◦τ equals eKdeg((X,C)/S)f−1◦τ (e) and

ρe
f−1◦τ satisfies the inequality ρe

f−1◦τ ≥ eK (1/e − deg((X,C)/S)f−1◦τ (e)) =
eKdeg((X/C, X [π ]/C)/S)f−1◦τ (e).

Let D be another Raynaud submodule scheme of X [π ] distinct fromC . For
every τ and 1 ≤ t ≤ e, we may suppose that the image of D(D/S)τ (t) is
generated by ξ tτ,1 + εtτ ξ

t
τ,2 for some element εtτ in OK ; and if t > 1

Δt
τ (ξ

t
τ,1 + εtτ ξ

t
τ,2) = ξρ

t−1,∼
τ Ut−1

τ (ξ t−1τ,1 + εt−1τ ξ t−1τ,2 )

and if t = 1

Δ1
τ (ξ

1
τ,1 + ε1τ ξ

1
τ,2) = ξ

ρ
e,∼
f−1◦τUe

f−1◦τ (ξ
e
f−1◦τ,1 + εe

f−1◦τ ξ
e
f−1◦τ,2)

for some unit Ut
τ in OK , where ρt,∼

τ , when t > 1, similarly satisfies the
inequality

ρt,∼
τ ≥ eK /e − deg((X, D)/S)τ (t) = deg(X/D, X [π ]/S)τ (t)

as in the case for C (Lemma 21). One can readily observe that εtτ is non-zero
in OK for every τ in Σ̂ and 1 ≤ t ≤ e; otherwise εtτ = 0 for every τ in Σ̂ and
1 ≤ t ≤ e, and C would equal D which contradicts the assumption that C and
D are distinct.
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In the light of Lemmas 21 and 22, let χ t,∼
τ denote deg((X, D)/S)τ (t) for

brevity. The cokernel of the embedding of D(D/S)τ (t) into D(X∨[p]/S)τ (t)
is generated by the image of ξ tτ,2, and as its image is

Δt
τ (ξ

t
τ,2)+ OK (ξ t−1τ,1 + εt−1τ ξ t−1τ,2 ) = (ξχ t−1

τ T t−1
τ − St−1τ εt−1τ )ξ t−1τ,2

+OK (ξ t−1τ,1 + εt−1τ ξ t−1τ,2 ),

eK /eminus the truncated valuation inOK of ξχ t−1
τ T t−1

τ − St−1τ εt−1τ computes
χ t−1,∼

τ . Similar when t = 1.
Equating the coefficients of ξ t−1τ,1 and ξ t−1τ,2 if t > 1 and ξ e

f−1◦τ,1 and ξ e
f−1◦τ,2

if t = 1, we have the following equations (which, for ease of reference in the
following, we name >

t
τ,1 and >

t
τ,2): if t > 1

>
t
τ,1 : ξρt−1

τ Rt−1
τ + εtτ S

t−1
τ = ξρ

t−1,∼
τ Ut−1

τ

and

>
t
τ,2 : εtτ ξ

χ t−1
τ T t−1

τ = ξρ
t−1,∼
τ εt−1τ Ut−1

τ ;

and if t = 1

>
1
τ,1 : ξ

ρe
f−1◦τ Re

f−1◦τ + ϕ−1(ε1τ )Sef−1◦τ = ξ
ρ
e,∼
f−1◦τUe

f−1◦τ

and

>
1
τ,2 : ϕ−1(ε1τ )ξ

χe
f−1◦τ T e

f−1◦τ = ξ
ρ
e,∼
f−1◦τ εe

f−1◦τU
e
f−1◦τ

where, by slight abuse of notation, ϕ again denotes the absolute Frobenius on
OK . From >

t
τ,2’s, we deduce the following Lemma 23 and Corollary 2 which

are not strictly necessary for our proof of the main theorem but serve as a
‘sanity check’:

For every t ≥ 1 and τ in Σ̂ , let stτ [χ ] denote

χe
f−1◦τ + · · · + χ t

f−1◦τ ,

and, for every t > 1 and τ in Σ̂ , let st,¬τ [χ ] denote

χ t−1
τ + · · · + χ1

τ .

123



Integral models of Hilbert modular varieties 231

Similarly define stτ [∼χ ] and st,¬τ [∼χ ]with ∼χ in place of χ ; and stτ [∼ρ] and st,¬τ [∼ρ]
with

∼
ρ.

For brevity, for every t ≥ 1 and τ in Σ̂ , let

stτ
def= stτ [χ ] − stτ [∼ρ]

and, for every t > 1 and τ in Σ̂ ,

st,¬τ
def= st,¬τ [χ ] − st,¬τ [∼ρ].

By Lemma 21,

stτ ≤ stτ [χ ] + stτ [∼χ ] − (e − (t − 1))eK /e

and

st,¬τ ≤ st,¬τ [χ ] + st,¬τ [∼χ ] − (t − 1)eK /e

hold.

Lemma 23 Fix τ in Σ̂ and 1 ≤ t ≤ e. The valuation of εtτ is calculated by

⎛

⎝
∑

1≤N≤ f

p f−N st,¬
fN ◦τ + p f−(N−1)st

fN ◦τ

⎞

⎠ /(p f − 1)

if t > 1 and by

⎛

⎝
∑

1≤N≤ f

p f−(N−1)s1
fN ◦τ

⎞

⎠ /(p f − 1)

if t = 1.

Remark This is an analogue of Lemma 3.3 of [26].

Proof Suppose t > 1. Since εtf◦τ = (ξ
ρ
t−1,∼
f◦τ Ut−1

f◦τ /ξ
χ t−1
f◦τ T t−1

f◦τ )εt−1f◦τ , andΔt+1
τ ◦

· · · ◦Δe
τ ◦Δ1

f◦τ ◦ · · · ◦Δt
f◦τ = ue−t ◦ V ◦ (ue−t )−1 is the Verschiebung V on

D(X∨[p]/S)f◦τ (t), one may deduce that the image of εtf◦τ by V is computed
by
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ϕ−1(ξρ
t−1,∼
f◦τ Ut−1

f◦τ /ξ
χ t−1
f◦τ T t−1

f◦τ ) · · ·ϕ−1(ξρ
1,∼
f◦τ U 1

f◦τ /ξ
χ1
f◦τ T 1

f◦τ )(ξ
ρ
e,∼
τ Ue

τ /ξχe
τ T e

τ )

· · · (ξρ
t,∼
τ Ut

τ /ξ
χ t

τ T t
τ )εtτ .

In other words, the p-th power of εtτ is εtf◦τ times

ξ
χ t−1
f◦τ +···+χ1

f◦τ+p(χe
τ+···+χ t

τ )T t−1
f◦τ

· · · T 1
f◦τ (T

e
τ · · · T t

τ )p/ξ
ρ
t−1,∼
f◦τ +···+ρ

1,∼
f◦τ +p(ρe,∼

τ +···+ρ
t,∼
τ )Ut−1

f◦τ
· · ·U 1

f◦τ (U
e
τ · · ·Ut

τ )
p.

Similarly, the p-th power of ε1τ is ε1f◦τ times

ξ p(χe
τ+···+χ1

τ )(T e
τ · · · T 1

τ )p/ξ p(ρe,∼
τ +···+ρ

1,∼
τ )(Ue

τ · · ·U 1
τ )p.

Repeating the argument, we get the assertion. �

Corollary 2 For every 1 ≤ t ≤ e and τ in Σ̂ ,

∑

1≤N≤ f

p f−N
(
χ1
fN ◦τ + · · · + χ t−1

fN ◦τ + p(χ t
fN−1◦τ + · · · + χe

fN−1◦τ )
)

=
∑

1≤N≤ f

p f−N
(
st,¬
fN ◦τ [χ ] + pst

fN ◦τ [χ ]
)

≥
∑

1≤N≤ f

p f−N ((t − 1)eK /e + p(e − (t − 1))eK /e

−(st,¬
fN ◦τ [

∼
χ ] + pst

fN ◦τ [
∼
χ ])

)

=
∑

1≤N≤ f

p f−N
(
(eK /e − χ

1,∼
fN ◦τ )+ · · · + (eK /e − χ

t−1,∼
fN ◦τ )

+p(eK /e − χ
t,∼
fN−1◦τ )+ · · · + p(eK /e − χ

e,∼
fN−1◦τ )

)

if t > 1 and

∑

1≤N≤ f

p f−N
(
χ1
fN ◦τ + · · · + χe

fN ◦τ
)

=
∑

1≤N≤ f

p f−Ns1
fN ◦τ [χ ]
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≥
∑

1≤N≤ f

p f−N (eK /e − s1
fN ◦τ [

∼
χ ])

=
∑

1≤N≤ f

p f−N
(
(eK /e − χ

1,∼
fN−1◦τ )+ · · · + (eK /e − χ

e,∼
fN−1◦τ )

)

when t = 1.

Proof This follows from the preceding lemma, noting that the valuation of εtτ
is non-negative and χ t

τ − ρt,∼
τ ≤ χ t

τ + χ t,∼
τ − eK /e. �


Remark Sinceχ t
τ = eKdeg((X,C)/S)τ (t) andχ t,∼

τ = eKdeg((X, D)/S)τ (t),
the case when t = e = 1 recovers Corollary 3.4 in [26].

The following three lemmas replace calculationswith Breulmodules in [26]
and essential for our proof of the main theorem.

Lemma 24 Fix τ in Σ̂ and 1 ≤ t ≤ e. If t > 1 and if χ t−1
τ = 0, then

χ t−1,∼
τ �= 0. Similarly if χe

τ = 0 then χe,∼
τ �= 0.

Proof Suppose t > 1 and χ t−1
τ = 0. If χ t−1,∼

τ = 0, it would follow from

Lemma 21 that ρt−1,∼ = eK /e. However, it then follows from the equality >
t
τ,2

that εtτ = (ξρt−1,∼
Ut−1

τ /ξχ t−1
τ T t−1

τ )εt−1τ , and therefore the truncated valuation
of εtτ would be greater than and equal to eK /e and εtτ would be 0 inOK , which
is a contradiction. The case when t = 1 is similar. �


We know a great deal at the ‘far end of the valuation hypercube’:

Lemma 25 Suppose that there exists † in Σ̂ and 1 ≤ l ≤ e such that

– every χ t
τ = eK /e as τ ranges over Σ̂ and 1 ≤ t ≤ e, except when τ = †,

t = l − 1, and l > 1 (resp. l = 1), at which 0 < χ l−1
† < eK /e (resp.

0 < χ l−1
f−1◦† < eK /e) holds,

– the inducedmapΔt
τ onGr

∨(X∨/k)τ (t) does not vanish except when τ = †
and t = l at which it does.

Then ρt
τ = 0 for every τ in Σ̂ and 1 ≤ t ≤ e expect when τ = † and t = l−1.

Proof Suppose firstly that either τ is not † or if τ = †, t is neither l nor
l − 1. In this case, since the image of Δt+1

τ is Gr∨(X∨/S)τ (t) and ξχ t
τ = 0

in OK , Gr∨(X∨/S)τ (t) is generated by ξ tτ,1. It then follows from the second
assumption that ρt−1

τ = 0.
Suppose that τ = † and t = l − 1. In this case, Gr(X∨/S)τ (t) is generated

by Δt+1
τ (ξ t+1τ,2 ) = ξ tτ,1 + ξχ t

τ ξ tτ,2 (up to multiplying ξ tτ,1 and ξ tτ,2 by units in

OK if necessary), since it follows from Lemma 21 that ρt
τ ≥ eK /e − χ t

τ > 0
and χ t

τ > 0 that Stτ has to be a unit in OK .
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Because χ t−1
τ = eK /e,

Δt
τGr(X

∨/S)τ (t) = Δt
τ (ξ

t
τ,1 + ξχ t

τ ξ tτ,2) = (ξρt−1
τ + ξχ t

τ St−1τ )ξ t−1τ,1

and it follows from the second assumption and χ t
τ > 0 that ρt−1

τ is zero. �

Maintaining the notation and assumptions in Lemma 25, we have:

Lemma 26 – The valuation of εtτ is zero for every τ in Σ̂ and 1 ≤ t ≤ e
except when τ = † and t = l.

– ρt,∼
τ = eK /e for every τ ∈ Σ̂ and 1 ≤ t ≤ e except when τ = † and

t = l − 1 or l.
– The valuation of Stτ is zero for every τ ∈ Σ̂ and 1 ≤ t ≤ e except when

τ = † and t = l − 1.

Proof Suppose firstly that the (truncated) valuation of εl+1† is positive. It then

follows from the equation >
l+1
†,1 and ρl

† = 0 by Lemma 25 that ρ
l,∼
† = 0.

Combined with χ l
† = eK /e and the valuation of εl+1† being non-negative,

it follows from >
l+1
†,2 that the valuation of εl+1† is non-positive, which is a

contradiction. The valuation of εl+1† is therefore zero.
If t is an integer satisfying l + 1 ≤ t < e and if we suppose that the

truncated valuation of εt† is zero, the equation >
t+1
†,2 then forces ρ

t,∼
† = eK /e

and the truncated valuation of εt+1† to be zero, in order to attain the valuation

of εt+1 to be non-negative (because χ t
† = eK /e). As the valuation of εt+1† is

zero, ρt
† = 0 and ρ

t,∼
† = eK /e, it follows from >

t+1
†,1 that the valuation of St† is

zero. Continuing the argument (when ‘t = e’, we use >
1
τ for τ = †, f ◦ †, . . .

and so on), we get the assertion.
The case when τ = † and t = l−1 is proved in the proof of Lemma 25. �

Still maintaining the assumptions of Lemma 25,

Corollary 3 χ t,∼
τ = eK /e for every τ in Σ̂ and 1 ≤ t ≤ e except when τ = †

and t = l.

Proof Suppose that either τ is not † or if τ = †, t is not l. It follows from
Lemma 26 that the valuations of εtτ and Stτ are both zero. As χ t,∼

τ is computed
by eK /e minus the valuation of ξχ t

τ − Stτ ε
t
τ and χ t

τ = eK /e by assumption,
the assertion follows. �


6 Overconvergent companion forms are classical

Results in this section establish links between geometry of the fibre X
PR
K Iw and

p-adic geometry of XPR
K Iw defined in terms of degrees.
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6.1 ‘Global’ mod p and p-adic geometry

A non-cuspidal point ξ of XPR,R-a
K Iw corresponds to a closed point of XPR

K Iw
thence to an S-point of XPR

K Iw, where S = SpecOK for the ringOK of integers
of a finite extension K of L with residue field k. Let ζ denote its image in
XPR,R-a
K by the forgetful morphism π : XPR,R-a

K Iw → XPR,R-a
K . By ξ , we shall

mean the S-point (S = Spec k) of the κ-scheme X
PR
K Iw defined by ξ and let

ζ denote its image by π : X
PR
K Iw → X

PR
K . We shall freely use the invari-

ants defined in the previous section for the corresponding component of the
Barsotti–Tate p-divisible group (which is filtered and principally polarisable),
given respectively by ζ and ξ .

Remark/Definition. By slight abuse of notation, we often write γEO,τ (ξ/S)

to mean the γEO,τ -invariant of the source of the isogeny corresponding to ξ .

Proposition 15 The formal completion R̂K Iw of Y
PR
K Iw at ξ is the tensor prod-

uct over Σ̂p for all p in SP of

⊗̂
k[[xtτ ]]⊗̂

⊗̂
k[[ytτ , ztτ ]]/(ytτ ztτ )

where the left-most ranges over those 1 ≤ t ≤ ep which do not lie in νRZ,τ (ξ)∩
γRZ,τ (ξ), while the right-most tensor product is over the set of 1 ≤ t ≤ ep

which lies in νRZ,τ (ξ) ∩ γRZ,τ (ξ); the formal completion R̂K of Y
PR
K is

⊗̂
k[[utτ ]]

where the tensor product ranges over all Σ̂p × {1 ≤ t ≤ ep} for p in SP.

Proof Follows from local model calculations. �

On the Raynaud generic fibre sp−1(ξ) ⊂ XPR,R-a

K Iw , there are ‘local parame-
ters’, i.e., analytic functions which specialise to xtτ , y

t
τ , z

t
τ , u

t
τ ; we shall denote

them by xtτ , y
t
τ , z

t
τ , u

t
τ satisfying ytτ z

t
τ = πp for every τ in Σ̂p.

Proposition 16 The formal completion of Y PR
K Iw at ξ is the tensor product over

Σ̂p for all p in SP of

⊗̂
OK [[xtτ ]]⊗̂

⊗̂
OK [[ytτ , ztτ ]]/(ytτ ztτ − πp)

where the left-most ranges over those 1 ≤ t ≤ ep which do not lie in νRZ,τ (ξ)∩
γRZ,τ (ξ)while the right-most tensor product is over the set of 1 ≤ t ≤ ep which
lies in νRZ,τ (ξ) ∩ γRZ,τ (ξ); the formal completion of XPR

K at ζ is
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⊗̂
OK [[utτ ]]

where the tensor product ranges over all Σ̂p × {1 ≤ t ≤ ep} for p in SP.

Proof This follows from local model calculations. �

Definition Let ξ be a point of XPR,R-a

K Iw . When ξ is not a cusp, it corresponds
to an S-point (A,C) of XPR

K Iw, where S = SpecOK for the ringOK of integers
of a finite extension K of L (whose normalised valuation takes p to 1). For
every p, τ in Σ̂p and 1 ≤ t ≤ ep that we fix, we shall define a measure
degPR,R-a

K Iw (ξ)τ (t) of (over)convergence/supersingularity on XPR,R-a
K Iw that may

be thought of as a ‘local model’ of deg(ξ)τ (t) defined earlier and of seeing
intrinsic geometry of XPR,R-a

K Iw (hence our notation, but we apologise for our
nomenclature).

Firstly if ξ is indeed a cusp, let degPR,R-a
K Iw (ξ)τ (t) = deg(ξ)τ (t). If ξ is not

a cusp, and

– if t /∈ νRZ,τ (ξ/S) and t ∈ γRZ,τ (ξ/S), let degPR,R-a
K Iw (ξ/S)τ (t) = 1/ep;

– if t ∈ νRZ,τ (ξ/S) and t ∈ γRZ,τ (ξ/S), define degPR,R-a
K Iw (ξ/S)τ (t) to be the

minimum of 1 and the valuation (on OK ) of ytτ evaluated at the point ξ ;
– if t ∈ νRZ,τ (ξ/S) and t /∈ γRZ,τ (ξ/S), let degPR,R-a

K Iw (ξ/S)τ (t) = 0.

If ζ is a point of XPR,R-a
K , define degPR,R-a

K (ζ )τ (t) for τ in Σ̂p and 1 ≤ t ≤ ep
as follows: if ζ is not a cusp and if t ∈ γEO,τ (ζ /S), define degPR,R-a

K (ζ/S)τ (t)
to be the minimum of 1 and the valuation of utτ evaluated at the point ζ ;
otherwise let degPR,R-a

K (ζ )τ (t) = 0.
These degPR,R-a

K Iw (ξ)τ (t)’s are the invariants first introduced by Coleman in
the curve case; and are subsequently used in gluing overconvergent eigenforms
in [7–9] in the modular curve case and [26] in the unramified Hilbert case, in
order to to construct classical weight one forms.

Lemma 27 degPR,R-a
K Iw (ξ)τ (t) = deg(ξ)τ (t).

Proof It suffices to show the equality when ξ is non-cuspidal. Suppose that
it corresponds to an S-point (A,C)/S and let B denote the target of the
corresponding isogeny A/C for brevity. If t does not lie in νRZ,τ (ξ) but
lies in γRZ,τ (ξ), the map Gr∨(A

∨
/S)τ (t) → Gr∨(B

∨
/S)τ (t) on the spe-

cial fibres induced from the isogeny is zero, hence the normalised valuation
of Gr∨(A∨/S)τ (t)→ Gr∨(B∨/S)τ (t) is 1. Similarly for the case when t lies
in νRZ,τ (ξ) but does not lie in γRZ,τ (ξ). When t ∈ νRZ,τ (ξ) ∩ γRZ,τ (ξ), we
note from Proposition 16 that the coordinates ytτ and ztτ are chosen such that,
for example, the annihilator of coker(Gr∨(A∨/S)τ (t) → Gr∨(B∨/S)τ (t))
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is locally defined by ytτ evaluated at ξ . As deg(ξ/S)τ (t) is defined to be its
valuation, the assertion follows. �

Definition In the light of the lemma, we shall let deg(ζ/S)τ (t) denote
degPR,R-a

K (ζ/S)τ (t). In fact, it is also possible to define deg(ζ/S)τ (t) ‘more
directly’.

6.2 Canonical subgroups and analytic continuation in a tubular
neighbourhood of the multiplicative ordinary locus

In this section, we prove a few results constructing canonical subgroups of
Hilbert–Blumenthal abelian varieties A of Pappas–Rapoport type as ‘canoni-
cal’ Raynaud vector subspace schemes of A[p] for every place p of F above
p. As it does not seem possible to ‘see’ Pappas–Rapoport filtrations on Breuil
modules, linear algebra calculations ‘on points’ does not take us far; perhaps
enlarging coefficients of Breuil modules (in the sense of Section 1.2 in [31]) to
allow roots of Eisenstein polynomials and hoping for (faithfully flat) descent
might be one possible approach. It may also be possible to follow Fargues
([17]) and construct a ‘canonical’ subgroup of the p-torsion subgroup A[p],
and subsequently single out its F-stable part killed by all p.

We, on the other hand, take the Goren–Kassaei approach ([20]) of mak-
ing essential use of geometry of relevant moduli spaces, in order to construct
‘canonical subgroups’. Note that it is important to construct canonical sub-
groups for HBAVs, whether A[p] is BT level one or not for every p, for it
is humbly used to establish that weight one specialisations of Hida (nearly
ordianary) families define overconvergent eigenforms.

Proposition 17 Let ξ be a point over S of X
PR
K Iw. Fix p, τ in Σ̂ = Σ̂p and

1 ≤ t ≤ e = ep. Suppose that

– if t ≥ 2, t − 1 lies in νRZ,τ (ξ/S) and that t lies in γRZ,τ (ξ/S);
– if t = 1, e lies in νRZ,f−1◦τ (ξ/S) and that t = 1 lies in γRZ,τ (ξ/S).

For π∗ : R̂K → R̂K Iw, the following equations in R̂K Iw hold:
If t ≥ 2, and

(I) t lies νRZ,τ (ξ/S) and t − 1 lies in γRZ,τ (ξ/S), there elements γ t
τ and

ρt−1
τ in R̂

×
K Iw such that

π∗(utτ ) = γ t
τ y

t
τ + ρt−1

τ zt−1(p)τ

where, by slight abuse of notation, St−1(p)τ denotes the p-th power of
St−1τ ;
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(II) t lies νRZ,τ (ξ/S) and t − 1 does not lie in γRZ,τ (ξ/S), there exists an

element γ t
τ in R̂

×
K Iw such that

π∗(utτ ) = γ t
τ y

t
τ ;

(III) t does not lie in νRZ,τ (ξ/S) and t − 1 lies in γRZ,τ (ξ/S), there exists an

element ρt−1
τ in R̂

×
K Iw such that

π∗(utτ ) = ρt−1
τ zt−1(p)τ ;

(IV) neither t lies in νRZ,τ (ξ/S) nor t − 1 lies in γRZ,τ (ξ/S)

π∗(utτ ) = 0.

If t = 1, and

(I) t = 1 lies νRZ,f−1◦τ (ξ/S) and e lies in γRZ,τ (ξ/S), there elements γ 1
τ

and ρ1
τ in R̂

×
K Iw such that

π∗(u1τ ) = γ 1
τ y

1
τ + ρe

τ z
e(p)
f−1◦τ ;

(II) t = 1 lies νRZ,f−1◦τ (ξ/S) and e does not lie in γRZ,τ (ξ/S), there exists

an element γ 1
τ in R̂

×
K Iw such that

π∗(u1τ ) = γ 1
τ y

1
τ ;

(III) t = 1 does not lie in νRZ,f−1◦τ (ξ/S) and e lies in γRZ,τ (ξ/S), there exists

an element ρe
f−1◦τ in R̂

×
K Iw such that

π∗(u1τ ) = ρe
f−1◦τ z

e(p)
f−1◦τ ;

(IV) neither t = 1 lies in νRZ,f−1◦τ (ξ/S) nor e lies in γRZ,τ (ξ/S)

π∗(u1τ ) = 0.

Remark This is a generalisation of Lemma 2.8.1 in [20]. The case t = e = 1
recovers their result.

Proof We shall only sketch a proof, which is a generalisation of the proof of
Lemma2.8.1 in [20]. For brevity, for every τ in Σ̂ , let νRZ,τ (resp.γRZ,τ ) denote
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νRZ,τ (ξ/S) (resp. γRZ,τ (ξ/S)). An irreducible components of X
PR
K Iw passing

through ξ is parameterised by a subset J = ∑
τ Jτ of JRZ = ∑

τ JRZ,τ

where JRZ,τ = νRZ,τ ∩ γRZ,τ in the sense that, if R̂K Iw,J denote the ideal

of R̂K Iw generated by ytτ for all t lying in JRZ,τ − Jτ and ztτ for all t lying

in Jτ as τ ranges over Σ̂ , the intersection Spf (R̂K Iw/ Î K Iw,J ) ∩ Spf R̂K Iw

is the formal completion at ξ of the irreducible component X
+
K Iw,ΣJ

where
ΣJ = (νRZ,J,τ , γRZ,J,τ ) defined by

– γRZ,J,τ = γRZ,† − Jτ ,
– νRZ,J,τ = {1, . . . , e} − γRZ,J,τ .

We now fix τ in Σ̂ and 1 ≤ t ≤ e as in the assertion of the proposition. We
deal with the case (I) and leave the rest as an exercise for the reader. There are
four different ‘types’ of Jτ ⊂ JRZ,τ to consider:

(A) both t − 1 and t lie in Jτ ;
(B) both t − 1 and t lie in JRZ,τ − Jτ ;
(C) t − 1 lies in Jτ while t lies in JRZ,τ − Jτ ;
(D) t − 1 lies in JRZ,τ − Jτ while t lies in Jτ .

(I-A) Since t − 1 lies in Jτ , t − 1 does not lie in γRZ,J,τ , hence t − 1 lies in
νRZ,J,τ . Also t lies in γRZ,τ and in Jτ , therefore t does not lie in γRZ,J,τ . As

any point ζ in X
+
K Iw,ΣJ

satisfies the conditions that νRZ,τ (ζ ) contains νRZ,J,τ

(and γRZ,τ (ζ ) contains γRZ,J,τ ), t − 1 lies in νRZ,τ (ζ ). It then follows from
Proposition 12 that t lies in γRZ,τ (ζ ) if and only if t lies in γEO,τ (ζ ).

(I-B) Since t lies in γRZ,τ but does not lie in Jτ , t lies in γRZ,Jτ . Also t − 1
lies in γRZ,τ but does not lie in Jτ , hence t−1 lies in γRZ,J,τ and consequently
t − 1 does not lie in νRZ,J,τ . It then follows from Proposition 12 that, for any

point ζ in X
+
K Iw,ΣJ

, t − 1 lies in νRZ,τ if and only if t lies in γEO,τ (ζ ).
(I-C) As t lies in γRZ,τ but does not lie in Jτ , t lies in γRZ,J,τ . Also t − 1

lies in Jτ , hence t − 1 does not lie in γRZ,J,τ , and t − 1 lies in νRZ,J,τ . It then

follows from Proposition 12 that, for any point ζ in X
+
K Iw,ΣJ

, t always lie in
γEO,τ (ζ ).

Applying (I-A) to J = JRZ and (I-B) to J = ∅, as well as a simple but

tedious calculation that
⋂

J Î K Iw,J , where J ranges over the subsets J of
JRZ satisfying the conditions in (C), is generated by ytτ and zt−1τ , we get the
assertion in (I). The other cases may be similarly deduced.

Corollary 4 Let ξ be a point over S of XPR,R-a
K Iw and ζ denote its image by π

in XPR,R-a
K . Fix p, τ in Σ̂ = Σ̂p and 1 ≤ t ≤ e = ep. Then

– the conditions t ≥ 2, t − 1 lies in νRZ,τ (ξ/S), and t lies in γRZ,τ (ξ/S)

holds, if and only if deg(ξ/S)τ (t − 1) < 1/e and 0 < deg(ξ/S)τ (t);
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– the conditions t = 1, e lies in νRZ,f−1◦τ (ξ/S), and t = 1 lies in γRZ,τ (ξ/S)

hold if and only if deg(ξ/S)f−1◦τ (e) < 1/e and 0 < deg(ξ/S)τ (1).

Suppose that the preceding (equivalent) assertions hold. Then, for t ≥ 2,

(I) deg(ζ/S)τ (t) equals the normalised valuation on sp−1(ξ) of (γ t
τ y

t
τ +

ρt−1
τ zt−1(p)τ )(ξ) if 0 < deg(ξ/S)τ (t − 1) and deg(ξ/S)τ (t) < 1/e;

(II) deg(ζ/S)τ (t) = deg(ξ/S)τ (t) ifdeg(ξ/S)τ (t−1) = 0 anddeg(ξ/S)τ (t)
< 1/e;

(III) deg(ζ/S)τ (t) = p(1/e − deg(ξ/S)τ (t − 1)) if 0 < deg(ξ/S)τ (t − 1)
and deg(ξ/S)τ (t) = 1/e;

(IV) deg(ζ/S)τ (t) = 1/e if deg(ξ/S)τ (t − 1) = 0 and deg(ξ/S)τ (t) = 1/e.

When t = 1,

(I) deg(ζ/S)τ (1) equals the normalised valuation on sp−1(ξ) of (γ 1
τ y

1
τ +

ρe
f−1◦τ z

e(p)
f−1◦τ )(ξ) if 0 < deg(ξ/S)f−1◦τ (e) and deg(ξ/S)τ (1) < 1/e;

(II) deg(ζ/S)τ (1) = deg(ξ/S)τ (1) if deg(ξ/S)f−1◦τ (e) = 0 and deg(ξ/S)τ
(1) < 1/e;

(III) deg(ζ/S)τ (1) = p(1/e − deg(ξ/S)f−1◦τ (e)) if 0 < deg(ξ/S)f−1◦τ (e)
and deg(ξ/S)τ (1) = 1/e;

(IV) deg(ζ/S)τ (1) = 1/e if deg(ξ/S)f−1◦τ (e) = 0 and deg(ξ/S)τ (1) = 1/e.

Proof This follows immediately from the definition of deg(ζ/S)τ (t) and
Lemma 27. �


For every p, let CPR,R-a
K Iw,p (resp. DPR,R-a

K Iw,p ) denote the admissible open subset

of points ξ over S of XPR,R-a
K Iw such that

– for every t ≥ 2 and τ in Σ̂ = Σ̂p,

deg(ξ/S)τ (t)+ pdeg(ξ/S)τ (t − 1) < p/e

(resp. deg(ξ/S)τ (t)+ pdeg(ξ/S)τ (t − 1) > p/e)

holds;
– for t = 1 and every τ in Σ̂ ,

deg(ξ/S)τ (1)+ pdeg(ξ/S)f−1◦τ (e) < p/e

(resp. deg(ξ/S)τ (1)+ pdeg(ξ/S)f−1◦τ (e) > p/e)

holds.

Let CPR,R-a
K Iw denote the intersection, over all places p above p, of CPR,R-a

K Iw,p ,

while DPR,R-a
K Iw denote the union of (

⋂
p∈Σ DPR,R-a

K Iw,p ) ∩ (
⋂

p/∈Σ CPR,R-a
K Iw,p ) as Σ

ranges over the set of non-empty subsets Σ of the set of places above p.
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By definition, if a point of XPR,R-a
K Iw lies in CPR,R-a

K Iw ∪ DPR,R-a
K Iw , then it lies in

CPR,R-a
K Iw,p ∪ DPR,R-a

K Iw,p for every p.

LetCPR,R-a
K ,p denote the admissible open subset of points ζ over S of XPR,R-a

K
such that

– for every t ≥ 2 and τ in Σ̂ ,

deg(ζ/S)τ (t)+ pdeg(ζ/S)τ (t − 1) < p/ep

holds;
– for t = 1 and every τ in Σ̂

deg(ζ/S)τ (1)+ pdeg(ζ/S)f−1◦τ (e) < p/ep

holds.

Let CPR,R-a
K denote the intersection, over all places p above p, of CPR,R-a

K ,p .

Remark These admissible open sets (the loci of ‘canonical subgroups’ and
‘anti-canonical subgroups’) generalise those defined in Section 5.3 in [20]. If
t = e = 1, we recover their results.

Proposition 18 Let ξ be a point over S of XPR,R-a
K Iw and ζ denote its image by

π in XPR,R-a
K . Fix p, τ in Σ̂ = Σ̂p and 1 ≤ t ≤ e = ep.

Suppose that

– if 2 ≤ t ≤ e − 1,

deg(ξ/S)τ (t + 1)+ pdeg(ξ/S)τ (t) < p/e,

deg(ξ/S)τ (t)+ pdeg(ξ/S)τ (t − 1) < p/e;
– if t = e,

deg(ξ/S)f◦τ (1)+ pdeg(ξ/S)τ (e) < p/e,

deg(ξ/S)τ (e)+ pdeg(ξ/S)τ (e − 1) < p/e;
– if t = 1,

deg(ξ/S)f◦τ (2)+ pdeg(ξ/S)τ (1) < p/e,

deg(ξ/S)τ (1)+ pdeg(ξ/S)f−1◦τ (e) < p/e.

Then deg(ζ/S)τ (t) = deg(ξ/S)τ (t) holds.
On the other hand, suppose that
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– if 2 ≤ t ≤ e,

deg(ξ/S)τ (t)+ pdeg(ξ/S)τ (t − 1) > p/e,

– if t = 1,

deg(ξ/S)f◦τ (1)+ pdeg(ξ/S)τ (e) > p/e,

Then

deg(ζ/S)τ (t) = p(1/e − deg(ξ/S)τ (t − 1))

holds if 2 ≤ t ≤ e, and

deg(ζ/S)f◦τ (1) = p(1/e − deg(ξ/S)τ (e))

holds if t = 1.

Remark This is a generalisation/refinement of Lemma 5.3.4 in [20].

Proof Firstly, we sketch the first case when 2 ≤ t < e − 1. From the first
given inequality, one may deduce immediately that deg(ξ/S)τ (t) cannot be 0
and therefore either deg(ξ/S)τ (t) = 0 or 0 < deg(ξ/S)τ (t) < 1/e holds.

Suppose deg(ξ/S)τ (t) = 0. In which case, t does not lie in γRZ,τ (ξ/S) by
definition. On the other hand, by the second given inequality, deg(ξ/S)τ (t−1)
can not be 1/e, hence t − 1 lies in νRZ,τ (ξ/S). It follows from Proposition 13
that t does not lie in γEO,τ (ξ/S), hence deg(ζ/S)τ (t) = 0 by definition.

Suppose 0 < deg(ξ/S)τ (t) < 1/e holds. As deg(ξ/S)τ (t − 1) cannot be
1/e, it follows that t − 1 lies in νRZ,τ (ξ/S). On the other hand, deg(ξ/S)τ (t)
cannot be 0, and t lies in γRZ,τ (ξ/S). We there see that the assumptions of
Proposition 4 are satisfied.

If deg(ξ/S)τ (t − 1) = 0, then the case (II) applies, and deg(ζ/S)τ (t) =
deg(ξ/S)τ (t). If deg(ξ/S)τ (t − 1) > 0, then the case (I) applies, and
deg(ζ/S)τ (t) is computed by the normalised valuation ν of (γ t

τ y
t
τ +

ρt
τ z

t−1(p)
τ )(ξ) for some units γ t

τ and ρt−1
τ in R̂K Iw. However, as deg(ξ/S)τ <

p(1/e − deg(ξ/S)τ (t − 1)), it follows that the normalised valuation of ρt
τy

t
τ

evaluated at ξ is strictly less than p(1/e − deg(ξ/S)τ (t − 1)) = p(1/e −
ν(yt−1τ (ξ))) = pν(zt−1τ (ξ)) = pν(ρt−1

τ zt−1τ (ξ)) = ν(ρt−1
τ zt−1(p)τ (ξ)), and

therefore deg(ζ/S)τ (t) = deg(ξ/S)τ (t).
We shall prove the second assertion when 2 ≤ t ≤ e. By the given inequal-

ity, deg(ξ/S)τ (t − 1) > 0 and therefore either deg(ξ/S)τ (t − 1) = 1/e or
0 < deg(ξ/S)τ (t − 1) < 1/e holds. On the other hand, it also follows that
deg(ξ/S)τ (t) > 0 and t lies in γRZ,τ (ξ/S).
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Suppose that deg(ξ/S)τ (t − 1) = 1/e. In which case, t − 1 does not lie
in νRZ,τ (ξ/S). It therefore follows from Proposition 13 that t does not lie in
γEO,τ (ξ/S), and deg(ζ/S)τ (t) = 0 = p(1/e− deg(ξ/S)τ (t − 1)) as desired.

Suppose that 0 < deg(ξ/S)τ (t − 1) < 1/e. In which case, t − 1 lies
in νRZ,τ (ξ/S). If deg(ξ/S)τ (t) = 1/e, then it follows from Corollary 4
that deg(ζ/S)τ (t) = p(1/e − deg(ξ/S)τ (t − 1)). If 0 < deg(ξ/S)τ (t) <

1/e, it also follows from Corollary 4 that deg(ζ/S)τ (t) is computed by
the normalised valuation ν of (γ t

τ y
t
τ + ρt−1

τ zt−1(p)τ )(ξ) for some units in

R̂K Iw. However, the given inequality implies that deg(ξ/S)τ (t) > p(1/e −
deg(ξ/S)τ (t − 1)), hence ν(γ t

τ y
t
τ (ξ)) > ν(ρt−1

τ zt−1(p)τ (ξ)). It therefore fol-

lows that deg(ζ/S)τ (t) = ν(ρt−1
τ zt−1(p)τ (ξ)) = pν(zt−1τ (ξ)) = p(1/e −

deg(ξ/S)τ (t − 1)). The other cases follow similarly. �

Lemma 28 Fix p and 1 ≤ t ≤ e = ep.

– If 2 ≤ t ≤ e − 1, suppose that the following hold

deg(ξ/S)τ (t)+ pdeg(ξ/S)τ (t − 1) ≤ p/e

and

deg(ξ/S)τ (t + 1)+ pdeg(ξ/S)τ (t) ≥ p/e;
– if t = e, suppose

deg(ξ/S)τ (e)+ pdeg(ξ/S)τ (e − 1) ≤ p/e

and

deg(ξ/S)f◦τ (1)+ pdeg(ξ/S)τ (e) ≥ p/e;
– if t = 1, suppose

deg(ξ/S)τ (1)+ pdeg(ξ/S)f−1◦τ (e) ≤ p/e

and

deg(ξ/S)τ (2)+ pdeg(ξ/S)τ (1) ≥ p/e.

Then deg(ζ/S)τ (t + 1)+ pdeg(ζ/S)τ (t) ≥ p/e. In particular, ζ does not lie
in CPR,R-a

K ,p .

Remark This is a generalisation of Lemma 5.3.6 in [20].
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Proof We prove the case 2 ≤ t ≤ e − 1. Since deg(ξ/S)τ (t − 1) cannot be
1/e, t − 1 lies in νRZ,τ (ξ/S). Also since deg(ξ/S)τ (t) cannot be 0, t lies in
γRZ,τ (ξ/S). There are four cases (corresponding exactly to the four cases in
Proposition 4) to deal with:

(I) deg(ξ/S)τ (t − 1) > 0 and deg(ξ/S)τ (t) < 1/e;
(II) deg(ξ/S)τ (t − 1) = 0 and deg(ξ/S)τ (t) < 1/e;
(III) deg(ξ/S)τ (t − 1) > 0 and deg(ξ/S)τ (t) = 1/e;
(IV) deg(ξ/S)τ (t − 1) = 0 and deg(ξ/S)τ (t) = 1/e.

Suppose (I). In this case, deg(ζ/S)τ (t) is computed by the normalised val-
uation of (γ t

τ y
t
τ + ρt

τ z
t−1(p)
τ )(ξ). As it follows from the first inequality in

the assumption ν(ytτ (ξ)) ≤ ν(zt−1(p)τ (ξ)) that deg(ζ/S)τ (t) ≥ deg(ξ/S)τ (t).
On the other hand, deg(ξ/S)τ (t) is not 1/e and it follows from the second
inequality in the assumption that deg(ξ/S)τ (t + 1) > 0, hence t + 1 lies in
γRZ,τ (ξ/S).

If deg(ξ/S)τ (t + 1) = 1/e, combined with deg(ξ/S)τ (t) > 0, Corollary 4,
(III), applies and deg(ζ/S)τ (t + 1) = p(1/e− deg(ξ/S)τ (t)). It then follows
that

deg(ζ/S)τ (t + 1)+ pdeg(ζ/S)τ (t) ≥ p(1/e − deg(ξ/S)τ (t))

+pdeg(ξ/S)τ (t) = p/e.

If, on the other hand, deg(ξ/S)τ (t + 1) < 1/e, Corollary 4, (I),
applies, and deg(ζ/S)τ (t + 1) is computed by the normalise valuation ν of
(γ t+1

τ yt+1τ + ρt
τ z

t (p)
τ )(ξ). The second inequality in the assumption implies

that ν(γ t+1
τ yt+1τ (ξ)) ≥ ν(ρt

τ z
t (p)
τ (ξ)), hence deg(ζ/S)τ (t + 1) ≥ pν(ztτ (ξ)).

It then follows that

deg(ζ/S)τ (t + 1)+ pdeg(ζ/S)τ (t) ≥ pν(ztτ (ξ))+ pν(ytτ (ξ))

= pν(ytτ (ξ)+ ztτ (ξ)) = p/e.

The other cases can be proved similarly. �

Proposition 19 π−1(CPR,R-a

K ) = CPR,R-a
K Iw ∪ DPR,R-a

K Iw .

Proof This can be proved as in Section 5.3 of [20]. Firstly observe that the
proof of Proposition 18 proves that π−1(CPR,R-a

K ) ⊇ CPR,R-a
K Iw ∪ DPR,R-a

K Iw .
Suppose that ξ does not lie in CPR,R-a

K Iw ∪ DPR,R-a
K Iw . Then there exists p such

that ξ does not lie in CPR,R-a
K Iw,p ∪ DPR,R-a

K Iw,p . Because ξ does not lie in DPR,R-a
K Iw,p in

particular, there is a pair of † in Σ̂ = Σ̂p and 1 ≤ l ≤ e = ep such that the
following hold:

deg(ξ/S)†(l)+ pdeg(ξ/S)†(l − 1) ≤ p/e
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if l > 1, or

deg(ξ/S)†(1)+ pdeg(ξ/S)f−1◦†(e) ≤ p/e

when l = 1. We ‘order’ the e f pairs Σ̂ × ([1, e] ∩ Z) by

(†, l), (†, l + 1), . . . , (†, e), (f ◦ †, 1), . . . , (f ◦ †, e),
. . . , (f−1 ◦ †, 1), (f−1 ◦ †, e), (†, 1), . . . , (†, l − 1)

if l > 1 and

(†, 1), . . . , (†, e), (f ◦ †, 1), . . . , (f ◦ †, e), . . . , (f−1 ◦ †, 1), . . . , (f−1 ◦ †, e)
if l = 1. Since ξ does not lie in CPR,R-a

K Iw,p , there exists a pair of τ in Σ̂ and
1 ≤ t ≤ e such that the following hold:

deg(ξ/S)τ (t + 1)+ deg(ξ/S)τ (t) ≥ p/e

if t ≤ e − 1, or

deg(ξ/S)τ (1)+ pdeg(ξ/S)f−1◦τ (e) ≥ p/e

if t = e. We may choose the pair to be ‘minimum’ (i.e. ‘left-most’ in the
arrangement above) amongst those satisfying the condition. By the ‘minimal-
ity’,

deg(ξ/S)τ (t)+ pdeg(ξ/S)τ (t − 1) < p/e

if 1 < t ≤ e − 1,

deg(ξ/S)τ (1)+ pdeg(ξ/S)f−1◦τ (e) < p/e

if t = 1, or

deg(ξ/S)f−1◦τ (e)+ pdeg(ξ/S)f−1◦τ (e − 1) < p/e

if t = e, holds as otherwise deg(ξ/S)†(l) + pdeg(ξ/S)†(l − 1) ≤ p/e if
l > 1, or deg(ξ/S)†(1) + pdeg(ξ/S)f−1◦†(e) ≤ p/e holds. In any case, the
assumptions of the preceding lemma are satisfied, and ξ would not lie in
CPR,R-a
K ,p . �


Theorem 4 An overconvergent Hilbert modular form, which is an eigenform
for Kp with non-zero eigenvalue for all p in SP, extends to C

PR,R-a
K Iw .
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Proof Let ξ is a point over S of CPR,R-a
K Iw , and suppose that it corresponds

to (A,C) over S. Fix a place p above p. It suffices to establish that, for a
Raynaud submodule scheme D of A[p] distinct from C , (A/D, (C + D)/D)

lies in CPR,R-a
K Iw and deg((A/D, (C + D)/D) < deg(A,C). As ξ defines a

point of CPR,R-a
K Iw,p , it follows from the preceding proposition that, if ζ denotes

the point corresponding to (A, D), ζ lies in either CPR,R-a
K Iw or DPR,R-a

K Iw .

If ζ lay in CPR,R-a
K Iw,p , it follows from Proposition 18 that deg(ξ/S)τ (t) =

deg(ζ/S)τ (t) for every τ and 1 ≤ t ≤ e and C would equal D, which
is a contradiction. Hence ζ lies in DPR,R-a

K Iw,p , as ζ lies in π−1(CPR,R-a
K ) =

CPR,R-a
K Iw ∪ DPR,R-a

K Iw ⊂ CPR,R-a
K Iw,p ∪ DPR,R-a

K Iw,p . Granted, it follows from Propo-
sition 18 that if t ≥ 2, deg(ξ/S)τ (t) = p(1/e − deg(ζ/S)τ (t − 1)), and
deg((A/D, (C + D)/D)/S)τ (t − 1) = deg(ξ/S)τ (t)/p, while if t = 1,
deg(ξ/S)f◦τ (1) = p(1/e − deg(ζ/S)τ (e)), and therefore deg((A/D, (C +
D)/D)/S)τ (e) = deg(ξ/S)f◦τ (1)/p. It is immediate to see that (A/D, (C +
D)/D) lies in CPR,R-a

K Iw,p and deg((A/D, (C + D)/D)/S) = deg(ξ/S)/p <

deg(ξ/S) as desired. �


Remark The proof of the theorem indeed proves thatUp, for every p above p,
acts completely continuously on the space of overconvergent p-adic Hilbert
modular eigenforms in our sense.

6.3 Throwing away loci of ‘large’ co-dimension

In this section, in preparation of proving strong analytic continuation theorems
on the Raynayd generic fibre XPR,R-a

K Iw , we define various admissible open sub-
sets X+K Iw of ‘co-dimension ≤ 1’ (which contains the multiplicative ordinary
locus), based on the observation in Proposition 10. It is an analogue of those
defined in Section 5.2 in [26].

Let OK denote the ring of integers of a finite extension K of L and k be its
residue field. Let S = SpecOK and S = Spec k.

The (standard) Barsotti–Tate p-divisible group of A over S defining an
S-point of Y PR

K is a product of filtered principally polarisable Barsotti–Tate
p-divisible groups Xp (of dimension ep fp and of height 2ep fp) over S where
p ranges over SP; for each p, one can define invariants as in Section 5 for Xp

over S according to which one can stratify moduli spaces of Barsotti–Tate p-
divisible groups. To that end, let Σ = ΣEO (resp. Σ = ΣRZ) be a tuple (Σp)p
where p ranges over SP with each Σp defined as in Section 5; and we shall

let Y
PR
K ,Σ (resp. Y

PR
K Iw,Σ ) denote the closed κ-subscheme of the special fibre

Y
PR
K (resp. Y

PR
K Iw) defined by demanding that the corresponding principally
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polarisable filtered Barsotti–Tate p-divisible group X = Xp lies in the closed
substack of SBT (resp. SBTI ) defined by Σp as in Section 5 for every p in SP.

Let Y
PR,++
K denote the union (over Σ) of subscheme Y

PR
K ,Σ of Y

PR
K where

Σ = ΣEO is defined such that, there exists p in SP such that

[Fp : Qp] − 2 ≥
∑

τ

e − |γEO,τ |,

where τ ranges over Σ̂p, holds. It follows from Propositions 10 and 9 respec-

tively that every such Y
PR
K ,Σ is of co-dimension ≥ 2 in Y

PR
K .

Let

Y
PR,+
K = Y

PR
K − Y

PR,++
K

and let

Y
PR,+
K Iw = π−1

(
Y
PR,+
K

)
.

As it is useful in defining ‘compactifications’ of the admissible open sets
above, if Σ = ΣRZ, and if, for every p in SP, one of the following:

– (St-1) νRZ,τ = {1, . . . , ep} while γRZ,τ = ∅ for every τ in Σ̂p,
– (St-2) νRZ,τ = ∅ while γRZ,τ = {1, . . . , ep} for every τ in Σ̂p,

holds, we say that Σ is semi-stable.
IfΣ is semi-stable, let SP,Σ denote the set of all p in SP such thatΣp satisfies

(St-1). IfΣ is semi-stable, let X
PR
K Iw,Σ denote the Zariski closure of Y

PR
K Iw,Σ in

X
PR
K Iw. Let Z

PR
K Iw,Σ denote the complement in X

PR
K Iw,Σ of the union of Y

PR
K Iw,Σ+

as Σ+ ranges over all Σ+ = (νRZ,τ,+, γRZ,τ,+)τ which are not equal to Σ

such that νRZ,τ,+ contains νRZ,τ and γRZ,τ,+ contains γRZ,τ simultaneously.

Definition Let XPR,+
K Iw denote the union of sp−1(Y PR,+

K Iw ) and sp−1(ZPR
K Iw,Σ) for

all semi-stable Σ . If we let X
PR,+
K denote X

PR
K − Y

PR,++
K and X

PR,+
K Iw denote

π−1(XPR,+
K ), it follows by definition that

XPR,+
K Iw = sp−1(XPR,+

K Iw ).

6.4 Overconvergent eigenforms of weight one

We shall use the notation used in Section 3.
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Theorem 5 Suppose p > 3 and let L be a finite extension of Qp with ring O
of integers and maximal ideal λ. Let

ρ : Gal(F/F)→ GL2(O)

be a continuous representation such that

– ρ is totally odd,
– ρ is ramified at only finitely many primes of F,
– ρ = (ρ mod λ) is of the form as supposed in Section 2, and there exists a
non-Eisenstein maximal ideal m of T ord

Σ (K ) such that ρ ∼ ρm,
– ρ is absolutely irreducible when restricted to Gal(F/F(ζp)),
– if p = 5 and the projective image of ρ is isomorphic to PGL2(F5), the
kernel of the projective representation of ρ does not fix F(ζ5),

– ρ is trivial at every finite place of F above p,
– ρ is unramified at every place p of F above p, and ρ(Frobp), where Frobp

is the arithmetic Frobenius, is equivalent to

(
αp ∗
0 βp

)
.

Let SP,e (‘e’ for ‘equal’) denote the subset of all primes p of F above p such
that αp = βp, and let SP,d (‘d’ for ‘distinct’) for denote the subset all primes p
of F above p such that αp and βp are distinct; SP is the disjoint union of SP,e
and SP,d.

Then there exists a family of overconvergent cuspidal Hilbert modular forms
FΣ of parallel weight one and of level K Iw where Σ = Σd × Σe where
Σd ⊂ SP,d and Σe ⊂ SP,e such that

UpFΣ = βpFΣ for every p in Σd,

UpFΣ = αpFΣ for every p in SP,d −Σd,

UpFΣ = αpFΣ + FΣ−{p} for every p in Σe,

UpFΣ = αpFΣ for every p in SP,e −Σe,

UQFΣ = 0 for every Q in T − SP,

TQFΣ = tr ρ(FrobQ)FΣ for every Q not in T,

where αp and βp denote, by slight abuse of notation, the roots of characteristic
polynomial of ρ(Frobp) and where T denotes the (disjoint) union of SP, SR,
SL, and SA, and such that its associated Galois representation is isomorphic
to ρ.

Proof Corollary 1 gives rise to a cuspidal p-adic Hilbert modular eigenform
FΣ such that

– TQFΣ = tr ρ(FrobQ)FΣ for every Q not T ;
– UpFΣ = αp if p lies in SP,d −Σd, while UpFΣ = βp if p lies in Σd;
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– UpFΣ = αpFΣ + FΣ−{p} if p lies in Σe while UpFΣ = αpFΣ if p lies in
SP,e −Σe.

Furthermore, Lemmas 1.6–1.8 in [55] prove that we may increase the level
K at Q if necessary to assume that FΣ maps UQ to 0 for every Q in T − SP.
The proof that FΣ defines overconvergent modular eigenforms is analogous

to Lemma 1 in [9], with a characteristic zero lifting of a sufficiently large power
of the Hasse invariant of parallel weight p − 1 on XPR

K [1/p] in place of the
Eisenstein series E of weight p−1 in the proof. It is necessary to establish that
the Hecke operator at every place of F above p, acts completely continuously
on the space of overconvergent eigenforms (in our sense), but this has been
proved already; see Remark at the end of preceding section. �


In [44], this theorem is extended to the case where not only no assumption is
made on p, but ρ is allowed to be reducible when restricted to Gal(F/F(ζp))

(if it is not induced from a imaginary quadratic field in F(ζp) in which every
prime of F above p splits completely).

6.5 Overconvergent eigenforms of weight one, in companion, are
classical

We shall prove that those overconvergent eigenmforms of weight one con-
structed in the theorem immediately above are indeed classical, which is the
last step of proving the main theorem of this paper. We firstly prove a result
(Proposition 20) of paramount importance, which describes the degrees of a
point in XPR,+

K Iw . Indeed, it is to obtain a result of this kind that we study mod
p/p-adic geometry of XPR

K Iw carefully.
The construction of a weight one form on XPR,+

K Iw and ‘by extension’ over to

XPR,R-a
K Iw is achieved by induction, designed on the observation made in Propo-

sition 20. Proposition 22 is an analogue of Proposition 5.7 in [26]. However, as
in [26], in order to extend the eigenform to the vertex of the valuation hyper-
cube (the [Fp : Qp] copies of the interval [0, 1] for every p) at the ‘furthest
end’, it is also necessary to glue its companion forms to it by q-expansion
calculations (Lemma 30). We also establish an analogue, Proposition 23, of
Lemma 5.9 in [26].

Proposition 20 Let ξ be a non-cuspidal S-point of XPR,+
K Iw and let ζ denote

its image by the forgetful morphism. Suppose that γEO,τ (ζ ), as τ ranges over
Σ̂p for every p, are not simultaneously empty. Then, for every p, there exist
† in Σ̂ = Σ̂p and an integer 1 ≤ l ≤ e = ep such that if we arrange the
deg(ξ/S)τ (t) as

. . . , deg(ξ/S)f−1◦τ (e), deg(ξ/S)τ (1), . . . , deg(ξ/S)τ (e), deg(ξ/S)f◦τ (1), . . . ,
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i.e. a sequence of f = fp blocks of cardinality e, ordered by Σ̂ , with each
block, in itself, being ordered by the index 1 ≤ t ≤ e, the sequence starting
with deg(ξ/S)†(l) takes values 1/e, · · · , 1/e, in [0, 1/e), 0, . . . , 0.

Fix τ in Σ̂ and 1 ≤ t ≤ e such that deg(ξ/S)τ (t) lies in [0, 1/e) above.
In which case, deg(ξ/S)τ (t) is indeed 0, i.e. deg(ξ/S)τ (t) is the first 0 imme-
diately after 1/e, if and only if t − 1 /∈ νRZ,τ (ξ/S) and t /∈ γRZ,τ (ξ/S)

hold. On the other hand, deg(ξ/S)τ (t) lies in (0, 1/e) if and only if t lies in
γRZ,τ (ξ/S) ∩ νRZ,τ (ξ/S).

Proof In this proof, we shall omit our reference to ξ and ζ for the invariants
defined in Sect. 5. We also fix p, and omit our reference where possible.

By assumption, if [Fp : Qp] = ∑
τ e − |γEO,τ |, then γEO,τ = ∅ hold for

every τ , but this is excluded. Hence it follows that there exists † in Σ̂ such
that,

– for every τ in Σ̂ , distinct from †, γEO,τ = ∅;
– for †, γEO,† = {l} for some 1 ≤ l ≤ e.

We then make appeal to Propositions 12 and 13: if t lies in γEO,τ , then

– t ≥ 2 and either the case t − 1 ∈ νRZ,τ while t ∈ γRZ,τ , or the case
t − 1 /∈ νRZ,τ while t /∈ γRZ,τ holds.

– t = 1 and either the case e ∈ νRZ,f−1◦τ while 1 ∈ γRZ,τ , or the case
e /∈ νRZ,f−1◦τ while 1 /∈ γRZ,τ holds,

while t does not lie in γEO,τ if

– t ≥ 2 and either the case t − 1 ∈ νRZ,τ while t /∈ γRZ,τ , or the case
t − 1 /∈ νRZ,τ while t ∈ γRZ,τ holds.

– t = 1 and either the case e ∈ νRZ,f−1◦τ while 1 /∈ γRZ,τ , or the case
e /∈ νRZ,f−1◦τ while 1 ∈ γRZ,τ holds,

and ascertain the tuples {νRZ,τ , γRZ,τ } for all τ in Σ̂ . �

Proposition 21 Let ξ be a non-cuspidal S-point of XPR,R-a

K Iw . Suppose that
deg(ξ/S)τ (t) is of the form in the preceding proposition, except we demand
further that, for every p, deg(ξ/S) is not an integer multiple of 1/ep, or equiv-
alently, if t lies in γRZ,τ (ξ/S) ∩ νRZ,τ (ξ/S), it is assumed that deg(ξ/S)τ (t)
lies in (0, 1/e). Then ξ lies in XPR,+

K Iw .

Proof It suffices to establish |∑τ γEO,τ (ξ)| = 1 as τ ranges over Σ̂p, for every
place p of F above p. Fix p and we shall omit the reference. By assumption,
there is no 1 ≤ t ≤ e such that t − 1 not lying in νRZ,τ (ξ/S) and t not lying in
γRZ,τ (ξ/S). The assertion therefore follows from Propositions 12 and 13. �


Fix a proper subset Γ of SP. Fix, furthermore, a prime P above p (with a
fixed uniformiser π ) which is not in Γ . When convenient, we shall omit our
reference to P (and only for P) from notation.
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Definition For an interval I ⊆ [0, f ] be an interval, we shall let X+,Γ
K Iw I denote

the union of sp−1(ZPR
K Iw,Σ) for semi-stableΣ , such that SP,Σ contains SP−Γ ,

and the set of non-cuspidal points ξ over S in Y PR,+
K Iw such that

– for p in Γ ,

0 ≤ deg(ξ/S)τ (t) ≤ 1/ep

for every τ in Σ̂p and 1 ≤ t ≤ ep;
– for p not in Γ ∪ {P}, deg(ξ/S)τ (t) satisfies that

deg(ξ/S)τ (t)+ pdeg(ξ/S)f−1◦τ (t) < p/ep

for every τ in Σ̂p and 1 ≤ t ≤ ep;
– for p = P, deg(ξ/S) lies in I .

It is an admissible open subset of XPR,+
K Iw by Maximum Modulus Principle.

For brevity, let

r = rP = 1/p + 1/p2 + · · · + 1/p f−1 < 1/(p − 1) < 1

if e = 1.

Proposition 22 If e = eP > 1 and f = fP ≥ 1, a section over X+,Γ
K Iw[0, 1/e)

which is a UP-eigenform with non-zero eigenvalue, extends to X+,Γ
K Iw[0, f ).

If e = 1 and f > 1 (resp. f = 1), a section over X+,Γ
K Iw[0, 1) (resp.

X+,Γ
K Iw[0, p/(p + 1))) which is a UP-eigenform with non-zero eigenvalue,

extends to X+,Γ
K Iw[0, f − r) (resp. X+,Γ

K Iw[0, 1)).
Proof When e = 1, Proposition 20 recovers Lemma 5.3 in [26] and the asser-
tion follows from a straightforward generalisation of the proof of Proposition
5.7 in [26]. Suppose therefore that e > 1. For clarity, we break our proof into
two steps.

Step 1 Extending a U -eigenform, with non-zero eigenvalue, from X+,Γ
K Iw

[0, 1/e) to X+,Γ
K Iw[0, f − 1/e].

Suppose ξ is a non-cuspidal point of X+,Γ
K Iw[0, f − 1/e]. Let (A,C) denote

the corresponding HBAV over S together with a Raynaud vector subspace
scheme C of A.

Suppose that there exists † in Σ̂ such that γEO,†(ξ/S) = {l} for some
1 ≤ l ≤ e. It follows from Proposition 20 that deg(ξ/S)†(l − 1) = 0 if l > 1
or deg(ξ/S)f−1◦†(e) = 0 if l = 1. For brevity, we assume l > 1. It then follows

fromLemma 24 that, if ζ denotes the point of XPR,R-a
K Iw corresponding to (A, D)
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for a Raynaud vector space subscheme D such that D[π ] is distinct fromC[π ],
all deg(ζ/S)†(l), deg(ζ/S)†(l+1), . . . are 1/e except deg(ζ/S)†(l−1)which
satisfies 0 < deg(ζ/S)†(l − 1) < 1/e. Because of Proposition 20 and the
observation that deg((A/D, A[π ])/S)τ (t) = 1/e− deg(ζ/S)τ (t) for every τ

in Σ̂ and 1 ≤ t ≤ e, the point corresponding to (A/D, A[π ]/D) lies in XPR,+
K Iw

and 0 < deg((A/D, A[π ]/D)/S) < 1/e.

Step 2 Extending a U -eigenform, with non-zero eigenvalue, from X+,Γ
K Iw

[0, f − 1/e] to X+,Γ
K Iw[0, f ).

Let ξ be a point of X+,Γ
K Iw[0, f )− X+,Γ

K Iw[0, f −1/e]. As in Step 1, let (A,C)

denote the corresponding HBAV over S = SpecOK (where OK is the ring of
integers of a finite extension K of L) together with a Raynaud vector subspace
scheme C of A, and suppose that γEO,†(ξ/S) = {l} for some † in Σ̂ and
1 ≤ l ≤ e. By assumption, deg(ξ/S)†(l), deg(ξ/S)†(l + 1), . . . , are all 1/e
except the last in the arrangement for which 0 < deg(ξ/S)†(l − 1) < 1/e if
l > 1, or 0 < deg(ξ/S)f−1◦†(e) < 1/e if l = 1, holds. For brevity, suppose
l > 1.

We use the set of notation introduced in Sect. 5.5. Let D be aRaynaud vector
space subscheme which is distinct from C in A[π ] and let ζ denote the point
corresponding to (A, D) as in Step 1. It follows from Lemma 25 that ρt

τ = 0
except when τ is † and t is l−1. It is enough to establish that χD,l−1

† > 0 as it
then follows from Proposition 20 that all deg(ζ/S)†(l), deg(ζ/S)†(l+ 1), . . .
are 1/e, except 0 < deg(ζ/S)†(l − 1) < 1/e, and the assertion of Step 2
follows as concluded in Step 1.

Suppose that deg(ζ/S)†(l − 1) = χ
D,l−1
† = 0. In which case, ρ

D,l−1
† =

eK /e by Lemma 21. It therefore follows from >
l
†,2 with π

ρ
D,l−1
† Ul−1

† = 0

in R that εl†π
χ l−1
† = 0 in OK . On the other hand, Corollary 3, combined

with Proposition 20, establishes, in particular, that χ
D,l
† = eK /e (we know

χ l
† = eK /e and χ

D,l
† > 0 but it takes the knowledge of χ

D,l+1
† = eK /e and

Proposition 20 to conclude this claim). Since eK /e − χ
D,l
† is computed (see

the formula for χ
D,l
† ) by the valuation of Sl†ε

l
† in R (because χ l

† = eK /e), it

follows that the valuation of εl† (and of Sl†) is zero. Combined with the claim

earlier, this would imply that χ l−1
† = eK /e which contradicts the assumption

that χ l−1
† = eK deg(ξ/S)†(l − 1) < eK /e. �


Proposition 23 Let ξ be a point of XPR,+
K Iw which corresponds to (A,C) defined

over S = Spec R for the ring R of integers of a finite extension of L. Fix a
prime P above p with a uniformiser π . Suppose that

123



Integral models of Hilbert modular varieties 253

(I) if eP > 1 and fP ≥ 1, there exists † in Σ̂ = Σ̂P and 1 ≤ t ≤ e such
that deg(ξ/S)τ (t) = 1/e for every τ in Σ̂ and 1 ≤ t ≤ e except for
τ = † and t = l − 1 at which 0 < deg(ξ/S)†(l − 1) < 1/e holds;

(II) if e = 1 and f > 1, there exists † in Σ̂ = Σ̂P such that deg(ξ/S)τ = 1
for every τ in Σ̂ distinct from f−1 ◦†while deg(ξ/S)f−1◦† lies in the open
interval ( f − 1, f − r)

(III) if e = 1 and f = 1, deg(ξ/S) lies in (0, 1)

Then, for any Raynaud submodule scheme D of A[π ] over S that is distinct
from C in A[π ], (A, D)/S defines a S-point ζ of XPR,+

K Iw such that deg(ζ/S)

lying in ( f − 1/e, f ), (resp. ( f − 1, f − r), resp. (0, 1)) if (I) (resp. (II), resp.
(III)) holds.

Proof The case (III) is proved in [43] while the case (II) is dealt with in [26].
The case (I) follows from the preceding proposition . �

Remark This is a generalisation of Kassaei’s ‘saturation’ (see Lemma 5.9 in
[26]).

Definition LetΣ+
K Iw be the admissible open subset of points ξ over S in XPR,+

K Iw
such that, for every p, deg(ξ/S) lies in ( fp−1/ep, fp) (resp. ( fp−1, fp−rp),
resp. (0, 1)) when (I) (resp. (II), resp. (III)) of Proposition 23 holds.

Lemma 29 For every representative �, if f > 1 (resp. f = 1), the pull-back
X+,Γ
K Iw,�[0, f ) of X+,Γ

K Iw[0, f ) ↪→ XPR,R-a
K Iw (resp. the pull-back X+,Γ

K Iw,�[0, 1) of
X+,Γ
K Iw[0, 1) ↪→ XPR,R-a

K Iw ) along XPR,R-a
K Iw,� ↪→ XPR,R-a

K Iw is connected.

Proof This can be proved as in Lemma 6.3 in [26]. We sketch our proof for
the case f > 1. Firstly, we show X+,Γ

K Iw,�[0, f − 1+ (e − 1)/e] is connected.
The connectedness of X+,Γ

K Iw,�[0, f − 1 + (e − 1)/e]: In the special fibre

XK Iw,�, the irreducible components are parameterised as X
Σ

where Σ =
ΣRZ = (γRZ,τ , νRZ,τ ) (see Sect. 5.4) satisfies the conditions that hold for
every p: every 1 ≤ t ≤ ep lies either γRZ,τ or νRZ,τ , but it does not lie
simultaneously in γRZ,τ and νRZ,τ for every τ in Σ̂p.

To attain some clarity in our exposition,wemay andwill henceforth suppose
that |SP| = 1, and we omit our reference to P when convenient.

For 0 ≤ N ≤ d − 1 which is of the form N = e(χ − 1) + t for some
1 ≤ χ ≤ f and 0 ≤ t ≤ e − 1, let ΣN denote ΣRZ,N defined by

– γRZ,† = · · · = γRZ,f−(χ+1)◦† = ∅,
– γRZ,f−χ◦† = {e − (t − 1), . . . , e − 1, e} (in particular, |γRZ,f−χ◦†| = t),
– γRZ,f−(χ−1)◦† = · · · = γRZ,f−1◦† = {1, . . . , e}
– νRZ,τ = {1, . . . , e} − γRZ,τ for every τ in Σ̂ .
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For example, when N = d − 1 in which case χ = f and t = e − 1, then
γRZ,f−1◦† = {e}while γRZ,τ = ∅ for every τ in Σ̂ distinct from f−1 ◦†. At the
other end of the spectrum, if N = 0 (χ = 1 and t = 0), thenγRZ,τ = {1, . . . , e}
for every τ in Σ̂ .

When N = 0, let XΣN denote X
Σ − (X

Σ ∩ X
Σ∅

) where Σ = ΣRZ is
defined by γRZ,τ = {1, . . . e} for every τ in Σ̂ and where Σ∅ differes from Σ

by the corresponding γ ∅

RZ,τ = ∅ for every τ in Σ̂ . For N ≥ 1, let XΣN denote

the union of X
ΣJ as J ranges over 0 ≤ J ≤ N − 1.

Let X
+
ΣN

denote XΣN ∩ X
PR,+
K Iw . As X+,Γ

K Iw,�[0, f − 1 + (e − 1)/e] =
sp−1(X+Σd−1), it suffices to prove that X

+
ΣN

is connected when N = d − 1.

We prove the connectedness by induction. One checks firstly that X
+
ΣN

is con-
nected when N = 0 by the density and the connectedness of the multiplicative

ordinary locus of X
PR
K Iw. Secondly, we assume the connectedness of X

+
ΣN−1 to

prove the connectedness of X
+
ΣN

. Let ξ be a point of X
+
ΣN
− X

+
ΣN−1 . Write Σ

for ΣRZ(ξ), which is ΣRZ,N as above.
Let Σ+ be exactly the same as Σ except at f−χ ◦ † at which we demand

γRZ,f−χ◦† = {e − t, . . . , e} = γRZ,f−χ◦† ∪ {e − t}. One observes that Σ+ is

nothing other than ΣRZ,N−1, and X
Σ+

is a member of the union XΣN−1 . We
then conclude our argument by showing, if X is an irreducible component of

X
Σ
passing through ξ , that X∩X+K Iw,� is connected and (X∩X+K Iw,�)∩XΣ+ �=

∅.
The connectedness of X+,Γ

K Iw,�[0, f ): It suffices to prove the connectedness

of X+,Γ
K Iw,�[0, f − 1 + (e − 1 + γ )/e] for some γ ∈ (0, 1) ∩ Q. Suppose

that X+,Γ
K Iw,�[0, f − 1 + (e − 1 + γ )/e] is not connected. Then there exists a

connected component X of X+,Γ
K Iw,�[0, f − 1+ (e− 1+ γ )/e] which does not

intersect X+,Γ
K Iw,�[0, f − 1+ (e− 1)/e]. By the quasi-compactness of X , there

exists ν < γ/e such that X+,Γ
K Iw,�[0, f − 1+ (e − 1+ ν)/e] ∩ X = ∅.

Let ξ be a point of X . Inwhich case, ν(ξ) = f −1+(e−1)/e+ν(ξ)f−1◦†(e),
where ν(ξ)f−1◦†(e) denotes the valuation of ye

f−1◦†(ξ) as defined in Sect. 6.1,
while it follows from the definition of ν that ν(ξ) > f − 1+ (e − 1)/e + ν.
Combining, one deduces that ν(ξ)f−1◦†(e) > ν. In fact, for any point ζ in
X ∩ sp−1(ξ), the strict inequality ν(ζ )f−1◦†(e) > ν holds.
On the other hand, the admissible open subset sp−1(ξ)[0, f − 1+ (e− 1+

γ )/e] of points ζ in sp−1(ξ), such that 0 ≤ deg(ζ ) ≤ f − 1+ (e− 1+ γ )/e
holds, is evidently connected and is contained in X . As for any point ζ in
sp−1(ξ)[0, f − 1+ (e − 1+ γ )/e], deg(ζ ) is given by f − 1+ (e − 1)/e +
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ν(ζ )f−1◦†(e), one may therefore deduce ν(ζ )f−1◦†(e) ≤ γ /e holds. This is a
contradiction. �


Suppose that the level K of overconvergent modular forms is K as in The-
orem 5. In particular, let T denote the disjoint union of SP, SR, SL, SA.

Proposition 24 Fix a subset Γ of SP such that |Γ | ≤ |SP| − 1. Suppose that
SP is a disjoint union of two subsets SP,e and SP,d. Let Γe (resp. Γd) denote
Γ ∩ SP,e (resp. Γ ∩ SP,d).

For every Σ = Σd ×Σe ⊂ SP − Γ = (SP,d − Γd)× (SP,e − Γe), suppose
that FΣ is a section over X+,Γ

K Iw[0, f − r) if f = fP > 1 and X+,Γ
K Iw[0, 1) if

f = 1 satisfying

UpF
Γ
Σ = αpF

Γ
Σ for every p in (SP,d − Γd)−Σd,

UpF
Γ
Σ = βpF

Γ
Σ for every p in Σd,

UpF
Γ
Σ = αpF

Γ
Σ for every p in (SP,e − Γe)−Σe

UpF
Γ
Σ = αpF

Γ
Σ + FΓ

Σ−{p} for every p in Σe

UQF
Γ
Σ = 0 for every Q in T − SP,

TQF
Γ
Σ = γQF

Γ
Σ for every Q not in T

where α’s and β’s are all assumed non-zero. Then, forP in SP −Γ which we
fix, the family {FΣ }Σ of eigenforms define a family of eigenforms {FΓ∪{P}

Σ }Σ
defined over X+,Γ

K Iw[0, f ] with Σ = Σd ×Σe ranging amongst the subsets of
SP − (Γ ∪ {P}) such that, if P is in SP,d − Γd,

UpF
Γ∪{P}
Σ = αpF

Γ∪{P}
Σ for every p in

(SP,d − Γd − {P})−Σd,

UpF
Γ∪{p}
Σ = βpF

Γ∪{P}
Σ for every p in Σd,

(UpF
Γ∪{P}
Σ − αp)F

Γ∪{P}
Σ = 0 for every p in (SP,e − Γe)−Σe

UpF
Γ∪{P}
Σ = αpF

Γ∪{P}
Σ + FΓ∪{P}

Σ−{p} for every p in Σe

UQF
Γ∪{P}
Σ = 0 for every Q in T − SP,

TQF
Γ∪{P}
Σ = γQF

Γ
Σ for every Q not in T,

or if P is in SP,e − Γe

UpF
Γ∪{P}
Σ = αpF

Γ∪{P}
Σ for every p in (SP,d − Γd)−Σd,

UpF
Γ∪{P}
Σ = βpF

Γ∪{P}
Σ for every p in Σd,

UpF
Γ∪{P}
Σ = αpF

Γ∪{P}
Σ for every p in (SP,e − Γe − {P})−Σe
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UpF
Γ∪{P}
Σ = αpF

Γ∪{P}
Σ + FS∪{P}

Σ−{p} for every p in Σe

UQF
Γ∪{P}
Σ = 0 for every Q in T − SP,

TQF
Γ∪{P}
Σ = γQF

Γ∪{P}
Σ for every Q not in T .

Furthermore, when f > 1 (resp. f = 1), if the equality

FΓ
Σ ((A,C)) = FΓ

Σ ((A, D))

holds for any pair of points (A,C) and (A, D) of Σ+
K Iw ∩ X+,Γ

K Iw[0, f ) (resp.

Σ+
K Iw ∩ X+,Γ

K Iw[(e − 1)/e, 1)) satisfying C[p] �= D[p] for all p in Γ , then

FΓ∪{P}
Σ ((A,C)) = FΓ∪{P}

Σ ((A, D))

holds for any pair of points (A,C) and (A, D) ofΣ+
K Iw∩X+,Γ

K Iw[0, f ) satisfying
C[p] �= D[p] for every p in Γ ∪ {P}.
Proof We shall prove the case e > 1 and f > 1. The case f = 1 follows
similarly. Fix Σ ⊂ SP − (Γ ∪ {P}).

Suppose firstly that P is in SP,d − Γd. By definition, the sections FΓ
Σ and

FΓ
Σ∪{P} are both thought of as being defined over X+,Γ

K Iw[0, f ) ⊂ X+,Γ
K Iw[0, f ]

and are eigenforms with the same eigenvalues except at P. For brevity, let
UPFΓ

Σ = αFΓ
Σ and UPFΓ

Σ∪{P} = βFΓ
Σ∪{P}; we shall also let FΓ∪{P}

Σ =
αFΓ

Σ −βFΓ
Σ∪{P} and HΓ∪{P}

Σ = −(FΓ
Σ∪{P} − FΓ

Σ ), both of which are defined

over X+,Γ
K Iw[0, f ) but are no longerUP-eigenforms. We shall think of HΓ∪{P}

Σ

as a section over X+,Γ
K Iw[0, 1/e) ⊂ X+,Γ

K Iw[0, f ) (since f > 1 is assumed).
Suppose thatP is in SP,e−Γe. The sections FΓ

Σ and FΓ
Σ∪{P} are eigenforms

with the same eigenvalues for Hecke operators away from SP and for Up

for p in SP − Γ ; furthermore, FΓ
Σ is an UP-eigenform with eigenvalue α

(which we may assume to be 1 but continues to write α) while FΓ
Σ∪{P} is a

multiplicity 2 generalisedUP-eigenvector andUPFΓ
Σ∪{P} = αFΓ

Σ∪{P} + FΓ
Σ .

We let FΓ∪{P}
Σ = FΓ

Σ∪{P} and HΓ∪{P}
Σ = αFΓ

Σ∪{P} + FΓ
Σ .

Let w = wP denote the map of sections defined as above. We shall glue

w(HΓ∪{P}
Σ ) defined overw(X+,Γ

K Iw[0, 1/e)) = X+,Γ
K Iw( f −1/e, f ] and FΓ∪{P}

Σ

at the intersection

X+,Γ
K Iw( f − 1/e, f ) = X+,Γ

K Iw[0, f ) ∩ X+,Γ
K Iw( f − 1/e, f ]

to construct a section over X+,Γ
K Iw[0, f ) ∪ X+,Γ

K Iw( f − 1/e, f ] = X+,Γ
K Iw[0, f ].

123



Integral models of Hilbert modular varieties 257

For the fractional ideal J = �−1 for some fixed representative � , let
TateJ (q) = G ⊗Z D−1/q J denote the algebrified (rigid analytic) quotient
over a [F : Q]-dimensional polydisc over L by the OF -linear morphism
q : J → G⊗Z D−1.

The (semi)abelian variety TateJ (q) comes naturally equipped with real
multiplication and is naturally J−1-polarisable. We suppose that TateJ (q) is
equipped with a n-level structure η and (when appropriate) with choices of
isomorphisms:

– OF/p � (G⊗Z D−1)[p]
– and OF/p � p−1 J/J (and let qp

−1
denote a lifting in qp

−1
of the generator

of qp
−1 J/J defined by this isomorphism)

for every p above p, and these define cusps of XPR
K Iw and XPR

K Iw,Iwp
.

For an overconvergent cuspidal modular form F of weight λ = (1, w)

and of level K Iw, let FJ denote the restriction of F over XPR,R-a
K Iw,� and let∑

ν∈J+ cJ (ν, F)qν denote the q-expansion obtained by evaluating F (or FJ )
at TateJ (q). By slight abuse of notation, by

(G⊗Z D−1)[P]/q J ⊂ (G⊗Z D−1)[p]/q J

we shall also mean the ‘full’ multiplicative Raynaud vector subspace of
TateJ (q) (as only theP-part is relevant to the calculations that follow). Then,
fixing J = �−1 as above,

(UPF)(TateJ (q), G⊗Z D−1[P]/pJ ) =
∑

ν∈J+
cJP(rν, F)qν

where r is a totally positive element satisfyingPJ−1 = r J−1P with J−1P = �P

a member of the fixed representative for the class of the fractional idealPJ−1.
More generally, for any non-zero integer λ, let JPλ denote a member of

the fixed set of representatives satisfying Pλ J−1 = rλ JPλ for some totally
positive element rλ = r J

Pλ . We often write r for r1.

Lemma 30 Over X+,Γ
K Iw( f − 1/e, f ) if e > 1, over X+,Γ

K Iw( f − 1, f − r) if

e = 1 and f > 1 and over X+,Γ
K Iw( f − 1, f − r) if e = 1 and f = 1,

FΓ∪{P}
Σ = w(HΓ∪{P}

Σ ).

Proof Firstly we prove the case whenP is in SP,d−Γd. As in Proposition 6.9,
[26], it suffices to prove the equality

π∗1,PFΓ∪{P}
Σ = π∗π∗2,PHΓ∪{P}

Σ
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of sections over the admissible open subset π−11,P(X+,Γ
K Iw[0, f )) in the generic

fibre XPR
K Iw,IwP

, where π is the map of invertible sheaves π∗2,PAλ,R-a →
π∗1,PAλ,R-a where λ = (1, 1).

We may and will normalise Fourier q-expansions to assume αcJ (ν, FΓ
Σ ) =

cJP(rν, FΓ
Σ ) and βcJ (ν, FΓ

Σ∪{P}) = cJP(rν, FΓ
Σ∪{P}), for r in F+ such that

PJ−1 = r J−1P , hold for all ν in J+. On one hand,

π∗1,PFΓ∪{P}
Σ (G⊗Z D−1/q J , G⊗Z D−1[P]/q J , qP

−1
)

= (αFΓ
Σ − βFΓ

Σ∪{P})(G⊗Z D−1/q J )

=
∑

ν∈J+
(αcJ (ν, FΓ

Σ )− βcJ (ν, FΓ
Σ∪{P}))q

ν

=
∑

ν∈J+
(cJP(rν, FΓ

Σ )− cJP(rν, FΓ
Σ∪{P}))q

ν.

On the other hand,

π∗π∗2,PHΓ ∪{P}
Σ (G⊗Z D−1/q J , G⊗Z D−1[P]/q J , qP

−1
)

= −(FΓ
Σ∪{P} − FΓ

Σ )(G⊗Z D−1/qP−1 J )
= (FΓ

Σ − FΓ
Σ∪{P})(G⊗Z D−1/q JP)

=
∑

ν∈J+
(cJP(rν, FΓ

Σ )− cJP(rν, FΓ
Σ∪{P}))q

ν

Weshall prove the casewhenP is in SP,e−Γe.Wemaynormalise the Fourier
q-expansion to assume, for every ν in J+, that αcJ (ν, FΓ

Σ ) = cJP(rν, FΓ
Σ )

holds.
Since

UP(FΓ
Σ∪{P} − cFΓ

Σ ) = αFΓ
Σ∪{P} + FΓ

Σ − cαFΓ
Σ = α(FΓ

Σ∪{P} − cFΓ
Σ )+ FΓ

Σ

for a constant c, one may subtract a constant multiple of FΓ
Σ,J from FΓ

Σ∪{P},J
if necessary to assume, for every J that

cJ (1, F
Γ
Σ∪{P},J ) = 0

from now onwards. Since FΓ
Σ∪{P} is an eigenform for all Hecke operator TQ

for Q not in T , we may therefore further assume that

cJ (ν, FΓ
Σ∪{P},J ) = 0
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for every J and ν in J+ such that ν J−1 is coprime to the primes of T , or indeed
to p by making the tame level K sufficiently smaller, if necessary.

Sublemma 1 For λ ≥ 1, cJPλ (rλν, FΓ
Σ∪{P}) = λαλ−1cJ (ν, FΓ

Σ ) for ν J−1
coprime to p.

Proof Evaluating UPFΓ
Σ∪{P} = αFΓ

Σ∪{P} + FΓ
Σ at (TateJ (q), G ⊗Z D−1)

[P]/q J ), we have

∑

ν∈J+
cJP(rν, FΓ

Σ∪{P})q
ν =

∑

ν∈J+
αcJ (ν, FΓ

Σ∪{P})q
ν +

∑

ν∈J+
cJ (ν, FΓ

Σ )qν

i.e.,

cJP(rν, FΓ
Σ∪{P}) = αcJ (ν, FΓ

Σ∪{P})+ cJ (ν, FΓ
Σ ).

Similarly, since Uλ
PFΓ

Σ∪{P} = αλFΓ
Σ∪{P} + λαλ−1FΓ

Σ , evaluating at

(TateJ (q), G⊗Z D−1)[P]/q J ), we have

∑

ν∈J+
cJPλ (rλν, FΓ

Σ∪{P})q
ν =

∑

ν∈J+
αλcJ (ν, FΓ

Σ∪{P})q
ν

+λαλ−1 ∑

ν∈J+
cJ (ν, FΓ

Σ )qν,

which proves the assertion, as cJ (ν, FΓ
Σ∪{P}) = 0. �


As α is a unit, we may and will explicitly assume α = 1.

Sublemma 2 For λ ≥ 1, cJPλ (rλν, FΓ
Σ∪{P}) = λcJ (ν, FΓ

Σ ) for ν in J+.

Proof Clear. �

We now prove the assertion of the lemma, by comparing q-expansions at

(TateJ (q), G⊗Z D−1[P]/q J ). On one hand,

FΓ∪{P}
Σ (G⊗Z D−1/q J , G⊗Z D−1[P]/q J )

=
∑

ν∈J+
cJ (ν, FΓ

Σ∪{P})q
ν.

In particular, the coefficient of r
JP−λ

λ ν-power of q, where ν lies in J+, is

cJ (r
JP−λ

λ ν, FΓ
Σ∪{P}) = λcJP−λ (ν, FΓ

Σ )

by the lemma.
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On the other hand,

w(HΓ∪{P}
Σ )(G⊗Z D−1/q J , G⊗Z D−1[P]/q J )

=
∑

ν∈J+
cJP−1 ((r

JP−1 )−1ν, FΓ
Σ∪{P})q

ν +
∑

ν∈J+
cJP−1 ((r

JP−1 )−1ν, FΓ
Σ )qν.

Because r JP−1 = r
JP−λ

λ /r
JP−λ

λ−1 by definition, the coefficient of the r
JP−λ

λ ν-
power of q, where ν lies in J+, is

cJP−1 ((r
JP−λ

λ /r
JP−λ

λ−1 )−1r
JP−λ

λ ν, FΓ
Σ∪{P})

+cJP−1 ((r
JP−λ

λ /r
JP−λ

λ−1 )−1r
JP−λ

λ ν, FΓ
Σ )

= cJP−1 (r
JP−λ

λ−1 ν, FΓ
Σ∪{P})+ cJP−1 (r

JP−λ

λ−1 ν, FΓ
Σ )

= (λ− 1)cJP−λ (ν, FΓ
Σ )+ cJP−λ (ν, FΓ

Σ )

= λcJP−λ (ν, FΓ
Σ )

by the sub-lemma. The coefficients of the rλν-power of q for all λ ≥ 1 on both
sides coincide, and therefore the lemma follows. �


It remains to establish the last assertion of Proposition 24. Suppose that
(A,C) is a point of Σ+

K Iw ∩ X+,Γ
K Iw[0, f ], and D is a Raynaud submodule

scheme of A[p] such that C[p] �= D[p] for every prime p in Γ ∪ {P}. By the
assumptions, it is only necessary to deal with the case at P. To this end, let
G be a Raynaud submodule scheme of A[P] distinct from C[P] and D[P].
In which case, (A,C,G) (resp. (A, D,G)) defines a point π−11,P(X+,Γ

K Iw[0, f ))
lying above (A,C) (resp. (A, D)) alongπ1,P respectively. It then follows from
the identity of sheaves over π−11,P(X+,Γ

K Iw[0, f )), established in Lemma 30 that

FΓ∪{P}
Σ ((A,C)) = π∗1,PFΓ∪{P}

Σ ((A,C,G)) = π∗HΓ∪{P}
Σ ((A/G, A[P]/G))

= wP(HΓ ∪{P}
Σ )((A,G)).

On the other hand, one can similarly deduce the equality FΓ∪{P}
Σ ((A, D)) =

wP(HΓ∪{P}
Σ )((A,G)), we then deduce FΓ∪{P}

Σ ((A,C)) = FΓ∪{P}
Σ ((A, D)).

�

Corollary 5 FΓ∪{P}

Σ extends to a section over X+,Γ
K Iw[0, f ].

Proof of the main theorem ByTheorem5,we have a family of overconvergent
eigenforms {FΣ }, one for every Σ ⊆ SP. Inductively apply Proposition 24
on Γ to construct a section F+ = F∅ over XPR,+

K Iw which is an eigenform
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for all Hecke operators corresponding to the ideals not in T . Indeed, F+
descends to the level K and write F− for π∗F+ where π is the forgetful
morphism π : XPR,+

K Iw → XPR,+
K which is finite flat of degree 1 + p

∑
p fp .

Hence π∗F− = π∗π∗F+ = (p
∑

p fp + 1)F+. Since F− is a section over
XPR,+
K , it follows from the Riemann extension theorem (Proposition 2.10 in

[26] for example) that it extends to a section over XPR,R-a
K . It then follows that

the equality (p
∑

p fp + 1)F+ = π∗F− of sections over XPR,R-a
K Iw holds. To see

this, it suffices to observe that the equality (p
∑

p fp + 1)F+ = π∗F− holds at
the admissible open subset Σ+

K Iw. This, in turn, follows from the last assertion
in Proposition 24 that, if (A,C)/S is a (non-cuspidal) S-point of the set, the
equality

(π∗F−)((A,C)/S) = F−(A/S) = (π∗F+)(A/S) =
∑

D

F+((A, D)/S)

= (p
∑

p fp + 1)F+((A,C)/S)

holds, where the sum ranges over all Raynaud submodule schemes D ⊂ A[p]
such that (A, D)/S is in the pre-image by π of π(A,C). Hence F+ is a
section over XPR,R-a

K Iw which is a classical cuspidal Hilbert modular eigenform
of weight 1 of level old at p. �


6.6 Modularity of Artin representations and the strong Atrin conjecture

Proposition 25 Let F be a totally real field. Let

ρ : Gal(F/F)→ GL2(F5)

be a continuous representation of the absolute Galois group Gal(F/F) of F
satisfying the following conditions.

– ρ is totally odd.
– The projective image of ρ is A5.

Then there exists a finite soluble totally real field extension K of F such that
ρ, when restricted to Gal(F/K ), is of the form in Sect. 2.1. Furthermore, the
restriction is modular in the sense of Sect. [2.4].

Proof This canbeproved as inSection 2 in [43]. Indeed, as the projective image
of ρ is A5, one firstly replaces F by its finite soluble totally real extension to
assume that ρ takes values in GL2(F5) with mod 5 cyclotomic determinant.
We may and will choose a finite soluble totally real field extension K ⊂ F of
F such that the restriction of ρ to Gal(F/K ) is unramified at every place of K
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above 3.We thenfind an elliptic curve E over K whose 5-torsion representation
of Gal(F/K ) is isomorphic to the restriction of ρ to Gal(F/K ), whose 3-
torsion representation of Gal(F/K ) is absolutely irreducible when restricted
to K (

√−3), and whose 3-adic Tate module representation T3E of Gal(F/K )

is ordinary at every place of K above 3. We use the degree 24 cover of the
ρ|Gal(F/K )-twisted ‘modular curve’ of X5 over K constructed by Shepherd-
Barron-Taylor in Section 1 of [46], and make appeal to Ekedahl’s Hilbert
irreducibility theorem (Theorem 1.3 in [16]) to find a K -point of the twisted
curve.

By the Langlands-Tunnell theorem and a result of Kisin [31] (the weight
two specialisation of the Hida family passing though the weight one cusp
eigenform corresponding to E[3] renders T3E strongly residually modular in
the sense of [31]), one deduces T3E is modular, hence E and, by extension
the restriction of ρ to Gal(F/K ), is modular. Finally, apply the main theorem
of [2]. �


As a corollary,

Corollary 6 The strong Artin conjecture for two-dimensional, totally odd,
continuous representations ρ : Gal(F/F) → GL2(C) of the absolute Galois
group Gal(F/F) of a totally real field F holds.

Proof This follows from Proposition 24 and the preceding proposition. �
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