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Abstract We prove the existence and the linear stability of Cantor families of
small amplitude time quasi-periodic standing water wave solutions—namely
periodic and even in the space variable x—of a bi-dimensional ocean with
finite depth under the action of pure gravity. Such a result holds for all the val-
ues of the depth parameter in a Borel set of asymptotically full measure. This
is a small divisor problem. The main difficulties are the fully nonlinear nature
of the gravity water waves equations—the highest order x-derivative appears
in the nonlinear term but not in the linearization at the origin—and the fact that
the linear frequencies grow just in a sublinear way at infinity. We overcome
these problems by first reducing the linearized operators, obtained at each
approximate quasi-periodic solution along a Nash—Moser iterative scheme,
to constant coefficients up to smoothing operators, using pseudo-differential
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changes of variables that are quasi-periodic in time. Then we apply a KAM
reducibility scheme which requires very weak Melnikov non-resonance con-
ditions which lose derivatives both in time and space. Despite the fact that
the depth parameter moves the linear frequencies by just exponentially small
quantities, we are able to verify such non-resonance conditions for most values
of the depth, extending degenerate KAM theory.

Mathematics Subject Classification 76B15 - 37K55 (37C55, 35505)
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1 Introduction

We consider the Euler equations of hydrodynamics for a 2-dimensional perfect,
incompressible, inviscid, irrotational fluid under the action of gravity, filling
an ocean with finite depth 4 and with space periodic boundary conditions,
namely the fluid occupies the region

D, = {(x,y) eTxR: -h<y< n(t,x)}, T:=T, :=R/2nZ.
(1.1)

In this paper we prove the existence and the linear stability of small amplitude
quasi-periodic in time solutions of the pure gravity water waves system

3@+ VD2 +gn=0 aty=rn(tx)
AD =0 in D,

3,® =0 aty=—h

0 = 0y® — 0xn - 0, P aty = n(t, x)

(1.2)

where g > 0 is the acceleration of gravity. The unknowns of the problem are
the free surface y = (¢, x) and the velocity potential ® : D, — R, i.e. the
irrotational velocity field v = V. , ® of the fluid. The first equation in (1.2) is
the Bernoulli condition stating the continuity of the pressure at the free surface.
The last equation in (1.2) expresses the fact that the fluid particles on the free
surface always remain part of it.

Following Zakharov [60] and Craig—Sulem [26], the evolution problem (1.2)
may be written as an infinite-dimensional Hamiltonian system in the unknowns
(n(t, x), ¥(t, x)) where Y (t,x) = (¢, x, n(t, x)) is, at each instant ¢, the
trace at the free boundary of the velocity potential. Given the shape n(z, x)
of the domain top boundary and the Dirichlet value v (¢, x) of the velocity
potential at the top boundary, there is a unique solution ®(z, x, y; k) of the
elliptic problem

AP =0 in{-h<y<n(,x)}
0y®=0 ony=—h (1.3)
®=v¢ on{y=nx}

As proved in [26], system (1.2) is then equivalent to the Craig—Sulem—
Zakharov system
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on =G, My
W2 1 2 (1.4)
Y =—gn——+ ——-(Gn, h
= —gn -3 +2(1+n§)( (M, Y + ncy)
where G (1, h) is the Dirichlet-Neumann operator defined as
G, MY = (D) — 1xPu) (1.5)

(we denote by 1, the space derivative d, 7). The reason of the name “Dirichlet—
Neumann” is that G (5, ) maps the Dirichlet datum v into the (normalized)
normal derivative G (1, k) at the top boundary (Neumann datum). The opera-
tor G (n, h) is linear in v/, self-adjoint with respect to the L? scalar product and
positive-semidefinite, and its kernel contains only the constant functions. The
Dirichlet-Neumann operator is a pseudo-differential operator with principal
symbol D tanh(k D), with the property that G (n, #)— D tanh(h D) isin OPS~°
when n(x) € C*. This operator has been introduced in Craig—Sulem [26] and
its properties are nowadays well-understood thanks to the works of Lannes
[46,47], Alazard—Métivier [5], Alazard—Burq—Zuily [2], Alazard—Delort [4].
In Appendix A we provide a self-contained analysis of the Dirichlet—-Neumann
operator adapted to our purposes.
Furthermore, equations (1.4) are the Hamiltonian system (see [26,60])

n=VyHm,¥), &Y =-=VyH@, ¥)

) Nz _ (01 (1.6)
oru=JV,H(u), u:= (W) J = (—Id 0>’

where V denotes the L?-gradient, and the Hamiltonian

1
Hmww=mem:5Ameme+§Aﬁw (1.7)

is the sum of the kinetic and potential energies expressed in terms of the
variables (1, ¥). The symplectic structure induced by (1.6) is the standard
Darboux 2-form

Wi, uz) == (ui, Ju)2eryy = i, ¥2) 2oy — (U1, 12) 2ty (1.8)

for all u; = (n1, Y1), ua = (2, ¥2). In the paper we will often write
G(n), H(n, ¥) instead of G(n, h), H(n, ¥, h), omitting for simplicity to
denote the dependence on the depth parameter 4.

The phase space of (1.4) is

(n,¥) € HY(T) x H'(T)  where  H'(T) := H'(T)/~  (1.9)
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is the homogeneous space obtained by the equivalence relation ¥y (x) ~ ¥ (x)
if and only if ¥{(x) — ¥»(x) = c is a constant, and HO1 (T) is the subspace
of H'(T) of zero average functions. For simplicity of notation we denote the
equivalence class [¢/] by 1. Note that the second equation in (1.4) is in H! (T),
as it is natural because only the gradient of the velocity potential has a physical
meaning. Since the quotient map induces an isometry of H!(T) onto HO1 (T),
it is often convenient to identify i with a function with zero average.

The water waves system (1.4)—(1.6) exhibits several symmetries. First of
all, the mass fT ndx is a first integral of (1.4). In addition, the subspace of
functions that are even in x,

nx) =n(=x), ¥&)=vy(=x), (1.10)

is invariant under (1.4). In this case also the velocity potential ®(x, y) is
even and 2 -periodic in x and so the x-component of the velocity field v =
(®y, ®y) vanishes at x = km, for all k € Z. Hence there is no flow of fluid
through the lines x = kmw, k € Z, and a solution of (1.4) satisfying (1.10)
describes the motion of a liquid confined between two vertical walls.
Another important symmetry of the water waves system is reversibility,
namely equations (1.4)—(1.6) are reversible with respect to the involution p :
n, ¥) — (n, —), or, equivalently, the Hamiltonian H in (1.7) is even in ¥:

Hop=H, H@mv¥)=Hm =y), p:0.¢%) = 0, =) (L1

As a consequence it is natural to look for solutions of (1.4) satisfying

u(—t) = pu(t), i.e.n(—t,x)=n,x), ¥(—t,x)=—y¥({,x) Vt,x € R,
(1.12)

namely 7 is even in time and v is odd in time. Solutions of the water waves
equations (1.4) satisfying (1.10) and (1.12) are called gravity standing water
waves.

In this paper we prove the first existence result of small amplitude time quasi-
periodic standing waves solutions of the pure gravity water waves equations
(1.4), for most values of the depth &, see Theorem 1.1.

The existence of standing water waves is a small divisor problem, which
is particularly difficult because (1.4) is a fully nonlinear system of PDEs,
the nonlinearity contains derivatives of order higher than those present in the
linearized system at the origin, and the linear frequencies grow as ~ j!/2. The
existence of small amplitude time-periodic gravity standing wave solutions
for bi-dimensional fluids has been first proved by Plotinkov and Toland [53]
in finite depth and by looss, Plotnikov and Toland in [42] in infinite depth, see
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also [38,39]. More recently, the existence of time periodic gravity-capillary
standing wave solutions in infinite depth has been proved by Alazard and Baldi
[1]. Next, both the existence and the linear stability of time quasi-periodic
gravity-capillary standing wave solutions, in infinite depth, have been proved
by Berti and Montalto in [21], see also the expository paper [20].

We also mention that the bifurcation of small amplitude one-dimensional
traveling gravity water wave solutions (namely traveling waves in bi-
dimensional fluids like (1.4)) dates back to Levi-Civita [48]; note that standing
waves are not traveling because they are even in space, see (1.10). For three-
dimensional fluids, the existence of small amplitude traveling water wave
solutions with space periodic boundary conditions has been proved by Craig
and Nicholls [25] for the gravity-capillary case (which is not a small divisor
problem) and by Iooss and Plotinikov [40,41] in the pure gravity case (which
is a small divisor problem).

From a physical point of view, it is natural to consider the depth /4 of the
ocean as a fixed physical quantity and to introduce the space wavelength 27 ¢
as an internal parameter. Rescaling time, space and amplitude of the solution

(n(t,x), ¥ (t,x)) of (1.4) as

=, Xi=cx, i, %) =cn(ulr, ¢7I%) = gn(r, x),

Y(t, %) = ay(u ', ¢ 7R = ay(t, x),

we get that (7(z, X), ¥ (1, X)) satisfies

2 .
0 =—G@, ch)y
au
2.72 2
~ ga 9 1)0)2 < 5 ~ o~ 2
0y =——n— + ~ (G(n,gh)¢+n~ ) .
! s ap2  ap2(l+ i) e

2
Choosing the scaling parameters ¢, i, o such that of—ﬂ =1, % = 1 we obtain
system (1.4) where the gravity constant g has been replaced lgy 1 and the depth
parameter & by

h:= ch. (1.13)

Changing the parameter h can be interpreted as changing the space period
27 ¢ of the solutions and not the depth 4 of the water, giving results for a fixed
equation (1.4).

In the sequel we shall look for time quasi-periodic solutions of the water
waves system
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an =G0,y
v/2

1.14
3tlﬂ_—fl—_+ (1149

2
m(G(ﬂ, Y + ncVx)

with n(¢) € HO1 (Ty) and ¥ (¢) € H LTy, actually belonging to more regular
Sobolev spaces.

1.1 Main result

We look for small amplitude solutions of (1.14). Hence a fundamental rdle
is played by the dynamics of the system obtained linearizing (1.14) at the
equilibrium (n, ¥) = (0, 0), namely

{ 9n =G0, h)y
Y =—n
where G (0, h) = D tanh(hD) is the Dirichlet-Neumann operator at the flat

surface n = 0. In the compact Hamiltonian form as in (1.6), system (1.15)
reads

(1.15)

1 0
u =JQu, Q:= (0 G, h)) , (1.16)

which is the Hamiltonian system generated by the quadratic Hamiltonian (see

(1.7))
1 1/ 1/ >
Hp = -(u,Qu);2 == | ¥YyGO,h)ydx+ = | n-dx. (1.17)
2 2 Jr 2 Jr

The solutions of the linear system (1.15), i.e. (1.16), even in x, satisfying (1.12)
and (1.9), are

n(,x) = Zaj cos(w;jt) cos(jx),

izl

W(t, x) = Zal Usin(w;1) cos(jx), (1.18)

Jj=1
with linear frequencies of oscillation
wj:=wj():=,/jtanh(hj), j=>1. (1.19)

Note that, since j +— jtanh(hj) is monotone increasing, all the linear fre-
quencies are simple.
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746 P. Baldi et al.

The main result of the paper proves that most solutions (1.18) of the lin-
ear system (1.15) can be continued to solutions of the nonlinear water waves
equations (1.14) for most values of the parameter h € [hy, hy]. More precisely
we look for quasi-periodic solutions u(wt) = (n, ¥)(@t) of (1.14), with fre-
quency @ € RY (to be determined), close to solutions (1.18) of (1.15), in the
Sobolev spaces of functions

HY (T R?) = {u =W Y):n ¥ e H‘Y}

H® := HS(T"T'R) = {f = Z foj CeTHiO
(g’j)ezwrl

A= > Ifz,/lz(&j)25<00},(1-20)

(Z‘j)GZU-%J
where (¢, j) := max{1, |£|, |j|}. For

v+ 1

szsozz[ ]+1eN (1.21)
one has H* (Tt R) ¢ L®(T"*!, R), and H*(T"*!, R) is an algebra.

Fix an arbitrary finite subset ST C NT := {1, 2, ...} (tangential sites) and
consider the solutions of the linear equation (1.15)

n(t, x) = Z aj cos (w;(h)r) cos(jx),

jest

a; (1.22)
1, x)=— i (h)t ix), a; >0,
Y(t, x) Z s sin (w;j(h)) cos(jx), aj >
JjeSt
which are Fourier supported on ST. We denote by v := |ST| the cardinality

of ST.

Theorem 1.1 (KAM for gravity water waves in finite depth) For every choice
of the tangential sites ST C N\{0}, there exists § > IS+2‘+1, go € (0, 1) such
that for every vector a = (aj) jest+ withaj > 0 forall j € St and |a| < e,
there exists a Cantor-like set G C [hy, hyo] with asymptotically full measure
asda — 0, i.e.

lim |G| = hy —hy,
a—0

such that, for any h € G, the gravity water waves system (1.14) has a
time quasi-periodic solution u(wt, x) = (n(@t, x), ¥ (wt, x)), with Sobolev
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regularzty (n,¥) € H (T x T, R?), with a Diophantine frequency vector
o :=wh,a):= (@) jes+ € RY, of the form

n(t, x) = Z ajcos(w;t) cos(jx) + ri(at, x),

Jest (1.23)
Y(ot, x) = — Z 4 sin(@;t) cos(jx) + ra(wt, x) ‘
jeSt J(h)
with &(h,a) — &(h) = (w;j(h))jes+ as @ — 0, and the functions

r1(p, x), r2(@, x) are o(|a|)-small in HS(T" x T, R), i.e. lrills/lal — 0 as
|a| — O fori =1, 2. The solution (n(@t, x), ¥ (@t, X)) is even in x, 1 is even
int and \ is odd in t. In addition these quasi-periodic solutions are linearly
stable, see Theorem 1.2.

Let us make some comments on the result.

No global wellposedness results concerning the initial value problem of the
water waves equations (1.4) under periodic boundary conditions are known so
far. Global existence results have been proved for smooth Cauchy data rapidly
decaying at infinity in R?, d = 1, 2, exploiting the dispersive properties of the
flow. For three dimensional fluids (i.e. d = 2) it has been proved independently
by Germain—Masmoudi—Shatah [33] and Wu [59]. In the more difficult case
of bi-dimensional fluids (i.e. d = 1) it has been proved by Alazard—Delort [4]
and Ionescu—Pusateri [37].

In the case of periodic boundary conditions, Ifrim—Tataru [36] proved for
small initial data a cubic life span time of existence, which is longer than the
one just provided by the local existence theory, see for example [3]. For longer
times, we mention the almost global existence result in Berti—Delort [19] for
gravity-capillary space periodic water waves.

The Nash—Moser-KAM iterative procedure used to prove Theorem 1.1
selects many values of the parameter h € [hy, hy] that give rise to the quasi-
periodic solutions (1.23), which are defined for all times. By a Fubini-type
argument it also results that, for most values of h € [hy, h»], there exist quasi-
periodic solutions of (1.14) for most values of the amplitudes |a| < &g. The
fact that we find quasi-periodic solutions only restricting to a proper subset of
parameters is not a technical issue, because the gravity water waves equations
(1.4) are expected to be not integrable, see [27,28] in the case of infinite depth.

The dynamics of the pure gravity and gravity-capillary water waves equa-
tions is very different:

(i) the pure gravity water waves vector field in (1.14) is a singular pertur-
bation of the linearized vector field at the origin in (1.15), which, after

T 1 1 . . .
symmetrization, is |Dy|2tanh2 (h|D,|); in fact, the linearization of the
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748 P. Baldi et al.

nonlinearity gives rise to a transport vector field V d,, see (1.43). On the
other hand, the gravity capillary vector field is quasi-linear and contains
derivatives of the same order as the linearized vector field at the origin,

which is ~ |Dx|%. This difference, which is well known in the water
waves literature, requires a very different analysis of the linearized oper-
ator (Sects. 6—12) with respect to the gravity capillary case in [1,21],
see Remark 1.4.

(ii) The linear frequencies w; in (1.19) of the pure gravity water waves grow

like ~ j2 as j — +o00, while, in presence of surface tension «, the linear

frequencies are \/ (1 4+ «j2)j tanh(hj) ~ j 3. This makes a substantial
difference for the development of KAM theory. In presence of a sublinear
growth of the linear frequencies ~ j%, o < 1, one may impose only
very weak second order Melnikov non-resonance conditions, see e.g.
(1.36), which lose also space (and not only time) derivatives along the
KAM reducibility scheme. This is not the case of the abstract infinite-
dimensional KAM theorems [44,45,54] where the linear frequencies
grow as j%, a > 1, and the perturbation is bounded. In this paper we

overcome the difficulties posed by the sublinear growth ~ j% and by the
unboundedness of the water waves vector field thanks to a regularization
procedure performed on the linearized PDE at each approximate quasi-
periodic solution obtained along a Nash—Moser iterative scheme, see
the regularized system (1.41). This regularization strategy is in principle
applicable to a broad class of PDEs where the second order Melnikov
non-resonance conditions lose space derivatives.

(i77) The linear frequencies (1.19) vary with h only by exponentially small
quantities: they admit the asymptotic expansion

Vjtanh(hj) = /j +r(j, h)

where |3fr(j,h)| < Cre™ VkeN, Vj>1, (124

uniformly inh € [hy, hy], where the constant Cy depends only on k and
hi. Nevertheless we shall be able, extending the degenerate KAM theory
approach in [11,21], to use the finite depth parameter h to impose the
required Melnikov non-resonance conditions, see (1.36) and Sects. 3 and
4.2. On the other hand, for the gravity capillary water waves considered
in [21], the surface tension parameter k moves the linear frequencies
\/ (14 «j2);j tanh(hj) of polynomial quantities O (j3/2).

Linear stability The quasi-periodic solutions u(wt) = (n(@t), ¥ (wt)) found
in Theorem 1.1 are linearly stable. Since this is not only a dynamically relevant
information, but also an essential ingredient of the existence proof (it is not
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Time quasi-periodic gravity water waves in finite depth 749

necessary for time periodic solutions as in [1,38,39,42,53]), we state precisely
the result.

The quasi-periodic solutions (1.23) are mainly supported in Fourier space
on the tangential sites ST. As a consequence, the dynamics of the water waves
equations (1.4) on the symplectic subspaces

Her = {v -y (]’Z/j ) cos(jx)},

jest (1.25)
He = {z =y (%) cos(jx) € Hy (Tx)},
JEN\S+

is quite different. We shall call v € Hgs+ the fangential variable and z € Hgﬁ
the normal one. In the finite dimensional subspace Hs+ we shall describe the
dynamics by introducing the action-angle variables (6, ) € TV x R" in Sect.
4.

The classical normal form formulation of KAM theory for lower dimen-
sional tori, see for instance [13,14,29,43-45,49,54,55,62], provides, when
applicable, existence and linear stability of quasi-periodic solutions at the
same time. On the other hand, existence (without linear stability) of peri-
odic and quasi-periodic solutions of PDEs has been proved by using the
Lyapunov-Schmidt decomposition combined with Nash—-Moser implicit func-
tion theorems, see e.g. [1,6,22,24,25,38,39,42,53] and references therein. In
this paper we follow the Nash Moser approach to KAM theory outlined in [16]
and implemented in [8,21], which combines ideas of both formulations, see
Sect. 1.2 “Analysis of the linearized operators” and Sect. 5.

We prove that around each torus filled by the quasi-periodic solutions (1.23)
of the Hamiltonian system (1.14) constructed in Theorem 1.1 there exist sym-
plectic coordinates (¢, y, w) = (¢, y,n,¥) € TV x R¥ x HS%r (see (5.16)
and [16]) in which the water waves Hamiltonian reads

S 1
®-y+ Ko@)y v+ (K @)y, w) a0, + §(K02(¢)w’ W,

+ K>3(¢, y, w) (1.26)

where K>3 collects the terms at least cubic in the variables (y, w) (see (5.18)
and note that, at a solution, one has 9y Koo = 0, K19 = @, Ko1 = 0 by Lemma
5.4). The (¢, y) coordinates are modifications of the action-angle variables
and w is a translation of the Cartesian variable z in the normal subspace, see
(5.16). In these coordinates the quasi-periodic solution reads ¢ +— (@t, 0, 0)
and the corresponding linearized water waves equations are
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¢ = Ka(@t)[y] + Kl (@0)[w]
y=0 (1.27)
w = JKp(ot)[w] + JK11(@1)[y].

The self-adjoint operator Ko (t) is defined in (5.18) and J Koy (wr) is the
restriction to Hgﬁ of the linearized water waves vector field J9,V, H (u(wt))
(computed explicitly in (6.8)) up to a finite dimensional remainder, see Lemma
6.1.

We have the following result of linear stability for the quasi-periodic solu-
tions found in Theorem 1.1.

Theorem 1.2 (Linear stability) The quasi-periodic solutions (1.23) of the pure
gravity water waves system are linearly stable, meaning that for all s belongmg
Z

to a suitable interval [s1, s3], for any initial datum y(0) € R", w(0) € H X

x+4, the solutions y(t), w(t) of system (1.27) satisfy

y(@) =y, [w®ll IR (IIw(O)II -
X H X

X

H% + |y(0)|> vVt € R.

X

In fact, by (1.27), the actions y(¢#) = y(0) do not evolve in time and the
third equation reduces to the linear PDE

w = JKop(ot)[w] + J K11 (@1)[y(0)]. (1.28)

Sections 6-14 imply the existence of a transformation (H; x H}) N Hgﬁ —

_1 1
(H ; *x H ;+4) N HSﬁ, bounded and invertible for all s € [s1, s2], such that,
in the new variables wyo, the homogeneous equation w = J Ko (@t)[w] trans-
forms into a system of infinitely many uncoupled scalar and time independent

ODE:s of the form
0Woo,j = —iM‘J’-Owoo,j, Vj €Sy, (1.29)

where i is the imaginary unit, S{j := Z\So, Sp := ST U (=S*) U {0} C Z, the
eigenvalues uf" are (see (4.26), (4.27))

u® = n)j|2 anhZ (B]j) +F € R, jeSh v =%, (1.30)
2
and ml =1+ 0(lal%, SUP jesg |j| |t°°| O(|a|®) for some ¢ > 0, see

4. 28) Since u%° are even in j, equations (1.29) can be equivalently written in
the basis (cos(jx)) jen\s+ of functions even in x; in Sect. 14, for convenience,
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we represent even operators in the exponential basis (e/*) jesg- The above
result is the reducibility of the linearized quasi-periodically time dependent
equation w = JKpy(wr)[w]. The Flogquet exponents of the quasi-periodic
solution are the purely imaginary numbers {0, iu?", J € S§} (the null Floquet
exponent comes from the action component y = 0). Since ,u?o are real, the
Sobolev norms of the solutions of (1.29) are constant.

The reducibility of the linear equation w = J Koy (wr)[w] is obtained by
two well-separated procedures:

1. First, we perform a reduction of the linearized operator into a constant
coefficient pseudo-differential operator, up to smoothing remainders, via
changes of variables that are quasi-periodic transformations of the phase
space, see (1.41). We perform such a reduction in Sects. 6—13.

2. Then, we implement in Sect. 14 a KAM iterative scheme which completes
the diagonalization of the linearized operator. This scheme uses very weak
second order Melnikov non-resonance conditions which lose derivatives
both in time and in space. This loss is compensated along the KAM scheme
by the smoothing nature of the variable coefficients remainders. Actually,
in Sect. 14 we explicitly state only a result of almost-reducibility (in The-
orems 14.3—14.4 we impose only finitely many Melnikov non-resonance
conditions and there appears aremainder R, of size O (N, %), wherea > 0
is the large parameter fixed in (14.7)), because this is sufficient for the con-
struction of the quasi-periodic solutions. However the frequencies of the
quasi-periodic solutions that we construct in Theorem 1.1 satisfy all the
infinitely many Melnikov non-resonance conditions in (4.29) and Theo-
rems 14.3-14.4 pass to the limit as n — o0, leading to (1.29).

We shall explain these steps in detail in Sect. 1.2. In the pioneering works
of Plotnikov-Toland [53] and Iooss-Plotnikov-Toland [42] dealing with time-
periodic solutions of the water waves equations, as well as in [1], the latter
diagonalization is not required. The key difference is that, in the periodic
problem, a sufficiently regularizing operator in the space variable is also reg-
ularizing in the time variable, on the “characteristic” Fourier indices which
correspond to the small divisors. This is definitely not true for quasi-periodic
solutions.

Literature about KAM for quasilinear PDEs KAM theory for PDEs has
been developed to a large extent for bounded perturbations and for linear
frequencies growing in a superlinear way, as j%,« > 1. The case @ = 1, which
corresponds to 1d wave and Klein-Gordon equations, is more delicate. In the
sublinear case @ < 1, as far as we know, there are no general KAM results,
since the second order Melnikov conditions lose space derivatives. Since the
eigenvalues of —A on T¢ grow, according to the Weyl law, like ~ j>/4, j € N,
one could regard the KAM results for multidimensional Schrédinger and wave
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equations in [15,18,22,29,55], under this perspective. Actually the proof of
these results exploits specific properties of clustering of the eigenvalues of the
Laplacian.

The existence of quasi-periodic solutions of PDEs with unbounded perturba-
tions (i.e. the nonlinearity contains derivatives) has been first proved by Kuksin
[45] and Kappeler-Poschel [43] for KdV, then by Liu-Yuan [49], Zhang-
Gao-Yuan [62] for derivative NLS, and by Berti—-Biasco—Procesi [13,14] for
derivative wave equation. All these previous results still refer to semilinear per-
turbations, i.e. where the order of the derivatives in the nonlinearity is strictly
lower than the order of the constant coefficient (integrable) linear differential
operator.

For quasi-linear or fully nonlinear PDEs the first KAM results have been
recently proved by Baldi-Berti-Montalto in [7-9] for perturbations of Airy,
KdV and mKdV equations, introducing tools of pseudo-differential calculus
for the spectral analysis of the linearized equations. In particular, [7] concerns
quasi-periodically forced perturbations of the Airy equation

U+ Uyxx +ef (@, X, U, Uy, Uxx, Uxxyx) =0 (1.31)

where the forcing frequency w is an external parameter. The key step is the
reduction of the linearized operator at an approximate solution to constant
coefficients up to a sufficiently smoothing remainder, followed by a KAM
reducibility scheme leading to its complete diagonalization. Once such areduc-
tion has been achieved, the second order Melnikov nonresonance conditions
required for the diagonalization are easily imposed since the frequencies are
~ j3 and using  as external parameters. Because of the purely differen-
tial structure of (1.31), the required tools of pseudo-differential calculus are
mainly multiplication operators and Fourier multipliers. These techniques have
been extended by Feola-Procesi [31] for quasi-linear forced perturbations of
Schrodinger equations and by Montalto [51] for the forced Kirchhoff equation.

The paper [8] deals with the more difficult case of completely resonant
autonomous Hamiltonian perturbed KdV equations of the form

Up + Uyyx — Outy + fO0, U, Uy, Uyy, Uxyy) = 0. (1.32)

Since the Airy equation u; + uy,, = 0 possesses only 27 -periodic solutions,
the existence of quasi-periodic solutions of (1.32) is entirely due to the non-
linearity, which determines the modulation of the tangential frequencies of the
solutions with respect to its amplitudes. This is achieved via “weak” Birkhoff
normal form transformations that are close to the identity up to finite rank oper-
ators. The paper [8] implements the general symplectic procedure proposed in
[16] for autonomous PDEs, which reduces the construction of an approximate
inverse of the linearized operator to the construction of an approximate inverse
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of its restriction to the normal directions. This is obtained along the lines of [7],
but with more careful size estimates because (1.32) is a completely resonant
PDE. The symplectic procedure of [16] is also applied in [21] and in Sect. 5
of the present paper. We refer to [23] and [32] for a similar reduction which
applies also to PDEs which are not Hamiltonian, but for example reversible.

By further extending these techniques, the existence of quasi-periodic solu-
tions of gravity capillary water waves has been recently proved in [21]. In items
(i)—(iii) after Theorem 1.1 we have described the major differences between
the pure gravity and gravity-capillary water waves equations and we postpone
to Remark 1.4 more comments about the differences regarding the reducibility
of the linearized equations.

1.2 Ideas of the proof

The three major difficulties in proving the existence of time quasi-periodic
solutions of the gravity water waves equations (1.14) are:

(i) The nonlinear water waves system (1.14) is a singular perturbation of
1.15).
(ii) El“hf: d)ispersion relation (1.19) is sublinear, i.e. w; ~ Jj for j — oo.
(ii7) The linear frequencies w;(h) = j : tanh% (hj) vary with h of just expo-
nentially small quantities.
We present below the key ideas to solve these three major problems.
Nash-Moser Theorem 4.1 of hypothetical conjugation In Sect. 4 we rescale

u +— eu and introduce the action angle variables (0, I) € T x R on the
tangential sites (see (1.25))

2 1
nj = \/;a)jz.,/f;‘j + 1 cos(0;),

2 1
Vo= w;*JE +1;sin@®;), jeSt,

. 7 i

(1.33)

where §; > 0, j =1, ..., v, the variables /; satisfy |/;| < &;, so that system
(1.14) becomes the Hamiltonian system generated by

. 1 . S
Ho=dM) I+ =(z,Q22)2 +eP, d(h) = (]5 tanh? (h])) :
2 jest

(1.34)

where P is given in (4.8). The unperturbed actions &; in (1.33) and the unper-
turbed amplitudes a; in (1.22) and Theorem 1.1 are related by the identity

1
aj = 8«/(2/71)0);\/57f0r all j € ST.
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The expected quasi-periodic solutions of the autonomous Hamiltonian sys-
tem generated by H, will have shifted frequencies w j—to be found—close to
the linear frequencies w;(h) in (1.19). The perturbed frequencies depend on
the nonlinearity and on the amplitudes &;. Since the Melnikov non-resonance
conditions are naturally imposed on w, it is convenient to use the frequencies
w € RY as parameters, introducing “counterterms” & € R" (as in [21], in the
spirit of Herman-Féjoz [30]) in the family of Hamiltonians (see (4.9))

1
Hy =a- -1+ E(Z’ Q)2 +¢eP.

Then the first goal (Theorem 4.1) is to prove that, for ¢ small enough, there exist
doo(w, h, €), close to w, and a v-dimensional embedded torus i~ (¢; w, h, &)
of the form

i T = T xR" x Hgy, ¢ i(p) = (0(p).1(9), 2(9)).

close to (¢, 0, 0), defined for all (w,h) € RY x [hy, hy], such that, for all
(w, h) belonging to the set CL, defined in (4.20), (iso, ttoo) (@, h, €) is a zero
of the nonlinear operator (see (4.10))

w - 3,0(p) —a — e P(i(p))
F@i,o, w,h,e):= w - 3y (¢) + €09 P(i(p)) . (1.35)
- 0pz(p) — J(Qz(p) + eV P(i(9)))

The explicit set C%, requires w to satisfy, in addition to the Diophantine prop-
erty

lw- L] =y~ VLeZ\{0}, () :=max{l, €]}, [¢]:= max £,

i=l,..., v

the first and second Melnikov non-resonance conditions stated in (4.20), in
particular

@ €+ p5 (@, 1) — uF (@, )| = 4yj 97O
VeeZ' j.j e NT\ST. (L), j) # O, ). ). (1.36)

where Mjo (w, h) are the “final eigenvalues” in (4.18), defined for all (w, h) €
RY x [h1, ha] (we use the abstract Whitney extension theorem in Appendix
B). The torus i, the counterterm o, and the final eigenvalues u,jo (w, h) are

Cko differentiable with respect to the parameters (w, h). The value of kg is
fixed in Sect. 3, depending only on the unperturbed linear frequencies, so that
transversality conditions like (1.39) hold, see Proposition 3.4. The value of the
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counterterm « := ¢ (w, h, ¢) is adjusted along the Nash—Moser iteration in
order to control the average of the first component of the Hamilton equation
(4.10), especially for solving the linearized equation (5.35), in particular (5.39).

Theorem 4.1 follows by the Nash—Moser Theorem 15.1 which relies on
the analysis of the linearized operators d; o F at an approximate solution, per-
formed in Sects. 5—14. The formulation of Theorem 4.1 is convenient as it
completely decouples the Nash—Moser iteration required to prove Theorem
1.1 and the discussion about the measure of the set of parameters C%, where all
the Melnikov non-resonance conditions are verified. In Sect. 4.2 we are able to
prove positive measure estimates, if the exponent d in (1.36) is large enough
and y = o(1) as ¢ — 0. Since such a value of d determines the number of
regularization steps to be performed on the linearized operator, we prefer to
first discuss how we fix it, applying degenerate KAM theory.

Proof of Theorem 1.1: degenerate KAM theory and measure estimates
In order to prove the existence of quasi-periodic solutions of the system with
Hamiltonian H, in (1.34), thus (1.14), and not only of the system with modified
Hamiltonian H, with ¢ := ax(w, h, €), we have to prove that the curve of
the unperturbed linear tangential frequencies

[h1, ha] 3 h > &(h) := (/) tanh(h))) es+ € R (1.37)

intersects the image oo (CL) of the set Ck, under the map oo, for “most”
values of h € [hy, hy]. Setting

we(h) := ag (@(h), h), (1.38)

where ozo_ol (-, h) is the inverse of the function o (-, h) atafixedh € [hy, ho],if
the vector (w, (h), h) belongs to CL,, then Theorem 4.1 implies the existence of
a quasi-periodic solution of the system with Hamiltonian H, with Diophantine
frequency w, (h).

In Theorem 4.2 we prove that for all the values of h € [hy, hy] except
a set of small measure O(y'/ ko) (where kg is the index of non-degeneracy
appearing below in (1.39)), the vector (w.(h), h) belongs to Ck.. Since the
parameter interval [hy, hy] is fixed, independently of the O (¢)-neighborhood
of the origin where we look for the solutions, the small divisor constant y in
the definition of C%, (see e.g. (1.36)) can be taken as y = & with a > 0 as
small as needed, see (4.22), so that all the quantities ey ~* that we encounter
along the proof are < 1.

The first task is to prove a transversality property for the unperturbed
tangential frequencies @(h) in (1.37) and the normal ones Q(h) :=
(€2j(h)jent\s+ = (@j(h)) en+\s+- Exploiting the fact that the maps
h — w; (h*) are analytic, simple—namely injective in j—in the subspace
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of functions even in x, and they grow asymptotically like /j for j — oo,
we first prove that the linear frequencies w;(h) are non-degenerate in the
sense of Bambusi—Berti—-Magistrelli [11] (i.e. they are not contained in any
hyperplane). This is verified in Lemma 3.2 using a generalized Vandermonde
determinant (see Lemma 3.3). Then in Proposition 3.4 we translate this qual-
itative non-degeneracy condition into quantitative transversality information:
there exist k5 > 0, pp > 0 such that, for all h € [hy, h],

 max 0f (B(h) - £4+2; () -2 (M))| = poll), Y€ #0, j, jeNT\ST,
<k<k;

(1.39)

and similarly for the Oth, 1st and 2nd order Melnikov non-resonance condition
with the + sign. We call (following [57]) k; the index of non-degeneracy and
po the amount of non-degeneracy. Note that the restriction to the subspace of
functions with zero average in x eliminates the zero frequency wg = 0, which
is trivially resonant (this is used also in [27]).

The transversality condition (1.39) is stable under perturbations that are
small in CK0-norm, where ko := ky + 2, see Lemma 4.4. Since w¢(h) in
(1.38) and the perturbed Floquet exponents ,u?o (h) = M;’.O (we(h), h) in (4.26)
are small perturbations of the unperturbed linear frequencies +/j tanh(hj)
in Ck0-norm, the transversality property (1.39) still holds for the perturbed
frequencies. As a consequence, by applying the classical Riissmann lemma
(Theorem 17.1 in [57]) we prove that, for most h € [hy, h], the Oth, 1st and
2nd Melnikov conditions on the perturbed frequencies hold if d > % kg, see
Lemma 4.5 and (4.46).

The larger is d, the weaker are the Melnikov conditions (1.36), and the
stronger will be the loss of space derivatives due to the small divisors in the
reducibility scheme of Sect. 14. In order to guarantee the convergence of such
a KAM reducibility scheme, these losses of derivatives will be compensated
by the regularization procedure of Sects. 6—13, where we reduce the linearized
operator to constant coefficients up to very regularizing terms O (| D, |~™) for
some M := M (d, t) large enough, fixed in (14.8), which is large with respect
to d and t by (14.7). We will explain in detail this procedure below.

Analysis of the linearized operators In order to prove the existence of a
solution of F (i, «) = 0 in (1.35), proving the Nash—Moser Theorem 4.1, the
key step is to show that the linearized operator d; ,F obtained at any approxi-
mate solution along the iterative scheme admits an almost approximate inverse
satisfying tame estimates in Sobolev spaces with loss of derivatives, see The-
orem 5.6. Following the terminology of Zehnder [61], an approximate inverse
is an operator which is an exact inverse at a solution (note that the operator
P in (5.49) is zero when F (i, «) = 0). The adjective almost refers to the fact
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that at the n-th step of the Nash—Moser iteration we shall require only finitely
many non-resonance conditions of Diophantine type, therefore there remain
operators (like (5.50)) that are Fourier supported on high frequencies of mag-
nitude larger than O (N,,) and thus they can be estimated as O (N, “) for some
a > 0 (in suitable norms). The tame estimates (5.49)—(5.52) are sufficient for
the convergence of a differentiable Nash—Moser scheme: the remainder (5.49)
produces a quadratic error since it is of order O (F (i, «;)); the remainder
(5.50) arising from the almost-reducibility is small enough by taking a > 0
sufficiently large, as in (14.7); the remainder (5.51) arises by ultraviolet cut-off
truncations and its contribution is small by usual differentiable Nash—Moser
mechanisms, see for instance [17]. These abstract tame estimates imply the
Nash—Moser Theorem 15.1.

In order to find an almost approximate inverse of d; ,F we first implement
the strategy of Sect. 5 introduced in Berti—Bolle [16], which is based on the
following simple observation: around an invariant torus there are symplec-
tic coordinates (¢, y, w) in which the Hamiltonian assumes the normal form
(1.26) and therefore the linearized equations at the quasi-periodic solution
assume the triangular form as in (1.27). In these new coordinates it is imme-
diate to solve the equations in the variables ¢, y, and it remains to invert an
operator acting on the w component, which is precisely £,, defined in (5.26).
By Lemma 6.1 the operator £, is a finite rank perturbation (see (6.5)) of the
restriction to the normal subspace HSJ; in (1.25) of

WV +GmB -G
L=w-d,+ ((1 + BV, +BG(n)B Vo, — BG(n)) (1.40)
where the functions B, V are given in (6.7), which is obtained linearizing
the water waves equations (1.14) at a quasi-periodic approximate solution
(n, ¥)(wt, x) and changing 9; into the directional derivative w - 9.

If (i, ) is not zero but it is small, we say that i is approximately invariant
for Xp,, and, following [16], in Sect. 5 we transform d; ,F into an approxi-
mately triangular operator, with an error of size O(F (i, «)). In this way, we
have reduced the problem of almost approximately inverting d; o F to the task
of almost inverting the operator L. The precise invertibility properties of L,
are stated in (5.29)—(5.33).

Remark 1.3 The main advantage of this approach is that the problem of invert-
ing d; o F onthe whole space (i.e. both tangential and normal modes) is reduced
to invert a PDE on the normal subspace HSﬁ only. In this sense this is reminis-
cent of the Lyapunov-Schmidt decomposition, where the complete nonlinear
problem is split into a bifurcation and a range equation on the orthogonal of
the kernel. However, the Lyapunov-Schmidt approach is based on a splitting
of the space H® (TV+1) of functions u(p, x) of time and space, whereas the
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approach of [16] splits the phase space (of functions of x only) into Hg+ & HS%r
more similarly to a classical KAM theory formulation.

The procedure of Sect. 5 is a preparation for the reducibility of the linearized
water waves equations in the normal subspace developed in Sects. 6—-14, where
we conjugate the operator £,, to a diagonal system of infinitely many decou-
pled, constant coefficients, scalar linear equations, see (1.42) below. First, in
Sects. 612, in order to use the tools of pseudo-differential calculus, it is con-
venient to ignore the projection on the normal subspace HS%r and to perform
a regularization procedure on the operator £ acting on the whole space, see
Remark 6.2. Then, in Sect. 13, we project back on Hsﬁ. Our approach involves
two well separated procedures that we describe in detail:

1. Symmetrization and diagonalization of £ up to smoothing operators
The goal of Sects. 6-12 is to conjugate L to an operator of the form

- 8¢+im%|D|%tanh%(h|D|) +ir(D) + Ts(e) (1.41)

where m 1 ~ 1 is a real constant, independent of ¢, the symbol r(§) is

real and independent of (¢, x), of order $—1/2, and the remainder T3(¢),

as well as 85 Ty for all |B| < By large enough, is a small, still variable
coefficient operator, which is regularizing at a sufficiently high order, and
satisfies tame estimates in Sobolev spaces.

2. KAM reducibility In Sect. 13 we restrict the operator in (1.41) to HS{r and
in Sect. 14 we implement an iterative diagonalization scheme to reduce
quadratically the size of the perturbation, completing the conjugation of
L, to a diagonal, constant coefficient system of the form

® - B, +i0p( ) (1.42)

where p; = m%|j|% tanh%(h|j|) +r(j)+7(j) are real and 7(j) are small.

We underline that all the transformations performed in Sects. 614 are quasi-
periodically-time-dependent changes of variables acting in phase spaces of
functions of x (quasi-periodic Floquet operators). Therefore, they preserve the
dynamical system structure of the conjugated linear operators.

All these changes of variables are bounded and satisfy tame estimates
between Sobolev spaces. As a consequence, the estimates that we shall obtain
inverting the final operator (1.42) directly provide good tame estimates for the
inverse of the operator L, in (6.5).

We also note that the original system L is reversible and even and that all
the transformations that we perform are reversibility preserving and even. The
preservation of these properties ensures that in the final system (1.42) the u;
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are real valued. Under this respect, the linear stability of the quasi-periodic
standing wave solutions proved in Theorem 1.1 is obtained as a consequence
of the reversible nature of the water waves equations. We could also preserve
the Hamiltonian nature of £ performing symplectic transformations, but it
would be more complicated.

Remark 1.4 (Comparison with the gravity-capillary linearized PDE) With
respect to the gravity capillary water waves in infinite depth in [1,21], the
reduction in decreasing orders of the linearized operator is completely differ-
ent. The linearized operator in the gravity-capillary case is like

3
w -9y +1|Dx[? + V (@, )0y,

the term V0, is a lower order perturbation of | Dy | 3 , and it can be reduced to
constant coefficients by conjugating the operator with a “semi-Fourier Integral
Operator” A of type (3, 3) (like in [1] and [21]): the commutator of D, |3
and A produces a new operator of order 1, and one chooses appropriately the
symbol of A for the reduction of Vd,. Instead, in the pure gravity case we
have a linearized operator of the type

|
-3y +1|Dx|2 + V(p, x)0x

. . . . 1
where the term Vd, is a singular perturbation of i|D,|2. The commutator

between | D, |% and any bounded pseudo-differential operator produces oper-
ators of order < 1/2, which do not interact with Vd,. Hence one uses the
commutator with @ - d, (which is the leading term of the unperturbed operator)
to produce operators of order 1 that cancel out V d,.. This is why our first task
is to straighten the first order vector field (1.44), which corresponds to a time
quasi-periodic transport operator. Furthermore, the fact that the unperturbed

. . 1 . 3 . . .
linear operator is ~ | D|2, unlike ~ | D|2, also affects the conjugation analysis
of the lower order operators, where the contribution of the commutator with

w - dy is always of order higher than the commutator with | D, | >. As a conse-
quence, in the procedure of reduction of the symbols to constant coefficients in
Sects. 11-12, we remove first their dependence on ¢, and then their dependence
on x. We also note that in [21], since the second order Melnikov conditions
do not lose space derivatives, there is no need to perform such reduction steps
at negative orders before starting with the KAM reducibility algorithm. O

We now explain in detail the steps of the conjugation of the quasi-periodic
linear operator (1.40) described in the items 1 and 2 above. We underline that
all the coefficients of the linearized operator £ in (1.40) are C* in (¢, x)
because each approximate solution (n(¢, x), ¥ (¢, x)) at which we linearize
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along the Nash—Moser iteration is a trigonometric polynomial in (¢, x) (at
each step we apply the projector I, defined in (15.1)) and the water waves
vector field is analytic. This allows us to work in the usual framework of C*
pseudo-differential symbols, as recalled in Sect. 2.3.

1. Linearized good unknown of Alinhac The first step is to introduce in
Sect. 6.1 the linearized good unknown of Alinhac, as in [1] and [21]. This is
indeed the same change of variable introduced by Lannes [46] (see also [47])
for proving energy estimates for the local existence theory. Subsequently, the
nonlinear good unknown of Alinhac has been introduced by Alazard—Métivier
[5], see also [2,4] to perform the paralinearization of the Dirichlet-Neumann
operator. In these new variables, the linearized operator (1.40) becomes the
more symmetric operator (see (6.15))

Comw-d, + (a);v _\?a(n))

coa (B0) (5 G 0w

where the Dirichlet—-Neumann operator admits the expansion
G(n) = |D|tanh(h|D[) + R¢

and R is an OPS~ > smoothing operator. In Appendix A we provide a self-
contained proof of such arepresentation. We cannot directly use aresult already
existing in the literature (for the Cauchy problem) because we have to provide
tame estimates for the action of G (1) on Sobolev spaces of time-space variables
(¢, x) and to control its smooth dependence with respect to the parameters
(w, h). We can neither directly apply the corresponding result of [21], which
is given in the case h = +o0.

Notice that the first order transport operator Vd, in (1.43) is a singular

perturbation of £ evaluated at (1, ) = 0,1.e. @ - 9y + ((1) _GO(O) )

2. Straightening the first order vector field w -9, + V (¢, x)d,. The next step
is to conjugate the variable coefficients vector field (we regard equivalently a
vector field as a differential operator)

-0y + V(p,x)0yx (1.44)

to the constant coefficient vector field w - d, on the torus ’]I‘(‘;, x T, for V (g, x)
small. This a perturbative problem of rectification of a close to constant vector
field on a torus, which is a classical small divisor problem. For perturbations of
a Diophantine vector field this problem was solved at the beginning of KAM
theory, we refer e.g. to [61] and references therein. Notice that, despite the fact
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that w € RY is Diophantine, the constant vector field w - 9, is resonant on the
higher dimensional torus ’]1‘(‘; x T,. We exploit in a crucial way the symmetry
induced by the reversible structure of the water waves equations, i.e. V (¢, x)
is odd in ¢, to prove that it is possible to conjugate w - 9, + V (¢, x)0y to the
constant vector field w - 9, without changing the frequency w.

From a functional point of view we have to solve a linear transport equation
which depends on time in a quasi-periodic way, see equation (7.4). Actually
we solve equation (7.6) for the inverse diffeomorphism. This problem amounts
to prove that all the solutions of the quasi periodically time-dependent scalar
characteristic equation X = V (wt, x) are quasi-periodic in time with frequency
w, see Remark 7.1, [42,53] and [52]. We solve this problem in Sect. 7 using
a Nash—Moser implicit function theorem. Actually, after having inverted the
linearized operator at an approximate solution (Lemma 7.2), we apply the
Nash—-Moser—-Hormander Theorem C.1, proved in Baldi-Haus [10]. We cannot
directly use already existing results for equation (7.6) because we have to
prove tame estimates and Lipschitz dependence of the solution with respect
to the approximate torus, as well as its smooth dependence with respect to the
parameters (w, h), see Lemmata 7.4-7.5.

We remark that, when searching for time periodic solutions as in [42,53],
the corresponding transport equation is not a small-divisor problem and has
been solved in [53] by a direct ODE analysis.

In Lemma 7.6 we apply this change of variable to the whole operator £ in
(1.43), obtaining the new conjugated system (see (7.31))

ar —a|D|Ty + Ry

) , Ty, :=tanh(h|D]),

where the remainder R is in OPS™°.

3. Change of the space variable In Sect. 8 we introduce a change of variable
induced by a diffeomorphism of T, of the form (independent of ¢)

y=x4ax) & x=y+a(y). (1.45)

Conjugating £ by the change of variable u(x) — u(x 4+ «(x)), we obtain an
operator of the same form

£2=w.a¢+("4 —a5|D|Th—|—7€2>’

ag 0
see (8.5), where R is in OPS~—°, and the functions as, ag are given by

as = [az(g, x)(1 4 ax (x))] as = az(@, y + a(y)).

[x=y+a(y)’
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We shall choose in Sect. 11 the function & (x) (see (11.23)) in order to eliminate
the dependence on x from the time average (a7),(x) in (11.17)—(11.18) of the

coefficient of | Dy | 2. The advantage of introducing the diffeomorphism (1.45)
at this step, rather than in Sect. 11 where itis used, is that it is easier to study the
conjugation under this change of variable of differentiation and multiplication
operators, Hilbert transform, and integral operators in OPS™°, see Sect. 2.4
(on the other hand, performing this transformation in Sect. 11 would require
delicate estimates of the symbols obtained after an Egorov-type analysis).

4. Symmetrization of the order 1/2 In Sect. 9 we apply two simple conju-
gations with a Fourier multiplier and a multiplication operator, whose goal is
to obtain a new operator of the form

L
7 —a7|D|2T.?
Ly=w 0,+ 0141 . a7|D|2T;
a7|D|2 Thz 0
see (9.9)—(9.13), up to lower order operators. The function a7 is close to 1 and
aq is small in ¢, see (9.16). Notice that the off-diagonal operators in L3 are

opposite to each other, unlike in £;. Then, in the complex unknown & = n+iys,
the first component of such an operator reads

_ 1 -
(h. i) > - d,h +ia7| D|2 T2 h + agh + Psh+ Qsh  (1.46)

(which corresponds to (10.1) neglecting the projector i[ly) where Ps(¢) is
a ¢-dependent families of pseudo-differential operators of order —1/2, and
0O5(¢) of order 0. We shall call the former operator “diagonal”, and the latter
“off-diagonal”, with respect to the variables (/, /).

In Sects. 10—12 we perform the reduction to constant coefficients of (1.46) up
to smoothing operators, dealing separately with the diagonal and off-diagonal
operators.

5.Symmetrization of the lower orders. In Sect. 10 we reduce the off-diagonal
term Qs to a pseudo-differential operator with very negative order, i.e. we
conjugate the above operator to another one of the form (see Lemma 10.3)

_ 1 _
(h.hi) > @ - d,h +iar(e, x)|D|2 T2 h + agh + Peh + Qgh, (1.47)

where Pg is in OPS =3 and Q¢ € OPS~M for a constant M large enough fixed
in Sect. 14, in view of the reducibility scheme.
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6. Time and space reduction at the order 1/2 In Sect. 11 we eliminate
the ¢- and the x-dependence from the coefficient of the leading operator

1
ia7 (g, x)|D|%ThZ. We conjugate the operator (1.47) by the time-1 flow of
the pseudo-PDE

deu = iB(p. x)|D|2u

where (¢, x) is a small function to be chosen. This kind of transformations—
which are “semi-Fourier integral operators”, namely pseudo-differential
operators of type (%, %) in Hormander’s notation—has been introduced in
[1] and studied as flows in [21].

Choosing appropriately the functions (¢, x) and «(x) (introduced in
Sect. 8), see formulas (11.19) and (11.23), the final outcome is a linear operator
of the form, see (11.31),

_ 1 _
(h,h) —> - 8¢h—|—im%|D|%Th2h+(ag+a9H)h+P7h+T7(h, h), (1.48)

where H is the Hilbert transform. This linear operator has the constant coef-
ficientm; ~ 1 at the order 1/2, while Py is in OPS~'/2 and the operator 77 is

2
small, smoothing and satisfies tame estimates in Sobolev spaces, see (11.39).

7. Reduction of the lower orders In Sect. 12 we further diagonalize the lin-
ear operator in (1.48), reducing it to constant coefficients up to regularizing
smoothing operators of very negative order | D|~™ . This step, based on stan-
dard pseudo-differential calculus, is not needed in [21], because the second
order Melnikov conditions in [21] do not lose space derivatives. We apply an
iterative sequence of pseudo-differential transformations that eliminate first
the ¢- and then the x-dependence of the diagonal symbols. The final system
has the form

_ 1 _
(h,h) = @ d,h + im%|D|%Thzh +ir(D)h + T3(p)(h, h)  (1.49)

where the constant Fourier multiplier 7(§) is real, even r(§) = r(=§), it
satisfies (see (12.78))

sup 12 1rj 107 Spp ey =MD,
JEZ

and the variable coefficient operator 7g(¢) is regularizing and satisfies tame
estimates, see more precisely (12.85). We also remark that the operator (1.49)
isreversible and even, since all the previous transformations that we performed
are reversibility preserving and even.

Atthis point the procedure of diagonalization of £ up to smoothing operators
is complete. Thus, in Sect. 13, restricting the operator (1.49) to HSJ; , we obtain
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the reduction of £, up to smoothing remainders. We are now ready to begin
the KAM reduction procedure.

8. KAM reducibility In order to decrease quadratically the size of the result-
ing perturbation Ry (see (14.4)) we apply the KAM diagonalization iterative
scheme of Sect. 14, which converges because the operators

(D)™ PR (D)™ 9 ED) PR (D)™ i1, v, (1.50)

satisfy tame estimates for some b := b(t, kg) € N and m := m(kp) that
are large enough (independently of s), see Lemma 14.2. Such conditions hold
under the assumption that M (the order of regularization of the remainder) is
chosen large enough as in (14.8) (essentially M = O (m+Db)). This is the prop-
erty that compensates, along the KAM iteration, the loss of derivatives in ¢ and
x produced by the small divisors in the second order Melnikov non-resonance
conditions. Actually, for the construction of the quasi-periodic solutions, it
is sufficient to prove the almost-reducibility of the linearized operator, in the
sense that the remainder R,, in Theorem 14.4 is not zero but it is of order
O(sy—2M H)Nn__a‘l), which can be obtained imposing only the finitely many
Diophantine conditions (14.41), (14.26).

The big difference of the KAM reducibility scheme of Sect. 14 with respect
to the one developed in [21] is that the second order Melnikov non-resonance
conditions that we impose are very weak, see (14.26), in particular they lose
regularity, not only in the ¢-variable, but also in the space variable x. For this
reason we apply at each iterative step a smoothing procedure also in the space
variable (see the Fourier truncations |£|, |j — j'| < Nn_1 in (14.26)).

After the above almost-diagonalization of the linearized operator we almost-
invert it, by imposing the first order Melnikov non-resonance conditions in
(14.92), see Lemma 14.9. Since all the changes of variables that we performed
in the diagonalization process satisfy tame estimates in Sobolev spaces, we
finally conclude the existence of an almost inverse of £, which satisfies tame
estimates, see Theorem 14.10.

At this point the proof of the Nash—-Moser Theorem 4.1, given in Sect. 15,
follows in a usual way, in the same setting of [21].

Notation Given a function u(¢, x) we write that it is even(g)even(x) if it is
even in ¢ for any x and, separately, even in x for any ¢. With similar meaning
we say that u(¢, x) is even(p)odd(x), odd(p)even(x) and odd(p)even(x).

The notation a S o p b means that a < C(s, o, M)b for some constant
C(s,a, M) > 0 depending on the Sobolev index s and the constants «, M.
Sometimes, along the paper, we omit to write the dependence <y, x, With
respect to sg, ko, because so (defined in (1.21)) and ko (determined in Sect. 3)
are considered as fixed constants. Similarly, the set ST of tangential sites is
considered as fixed along the paper.
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2 Functional setting
2.1 Function spaces
In the paper we will use Sobolev norms for real or complex functions

u(w, h, ¢, x), (p,x) € T x T, depending on parameters (w,h) € F in a
Lipschitz way together with their derivatives in the sense of Whitney, where

F is a closed subset of R"*!. We use the compact notation A := (w, h) to
collect the frequency w and the depth h into a parameter vector.

We use the multi-index notation: if k = (k, ..., ky+1) € N'*! we denote
k| ;= k1 4+ -+ kyyyand k! := ky!---kypland if A = (Aq, ... v—|—1) €

RV, we denote the derivative ¥ := Bfi Bf“ﬂ and Ak .= 2% Avfll

Recalling that || ||; denotes the norm of the Sobolev space H* (T‘”‘l, C) =
H(s 0.x) introduced in (1.20), we now define the “Whitney-Sobolev”’ norm
(IRt

Definition 2.1 (Whitney—Sobolev functions) Let F be a closed subset of RV*1.
Let k > 0 be an integer, y € (0, 1], and s > so > (v + 1)/2. We say that a
functionu : F — H °*  belongsto Lip(k+1, F, s, y) if there exist functions

(¢.x)
uld F — H(swx),] e NV, 0 < |J] < k with u® = u, and a constant M > 0

such that, if R;(A, Ag) = R;")(A, Ap) is defined by

. 1 i
WDoy= Y Sult000) (= h0) + RiGu k), o € F,
LeNV+L| o<k
2.1)
then
YD W)l < M, YR Ao)lly < Mx — agl 1]
Vi o€ F. |jl <k. (2.2)

An element of Lip(k + 1, F, s, y) is in fact the collection (' |j| < k}.The
norm of u € Lip(k + 1, F, s, y) is defined as

lull 5 = 7 = inf(M > 01 (2.2) holds). 2.3)
If F = R" by Lip(k+1, R¥*!, 5, y) we shall mean the space of the functions

u = u® for which there exist u/) = 8{u, |7l < k, satisfying (2.2), with the
same norm (2.3).

@ Springer



766 P. Baldi et al.

We make some remarks.

L If F=R"" andu € Lip(k + 1, F, 5, y) the u'/), | j| > 1, are uniquely
determined as the partial derivatives ul = 8{u, ljl < k,of u = u®,
Moreover all the derivatives Biu, |j| = k are Lipschitz. Since H® is
a Hilbert space we have that Lip(k + 1, RVt 5, y) coincides with the
Sobolev space WKLo RV f5),

2. The Whitney—Sobolev norm of « in (2.3) is equivalently given by

k+1, k+1,
lully o = lulls™7
— 1l ) k+1 IR; (X, Xo)lls
= max sup [lu’ (A |5, sup — L2 L (2.4)
e | AR TSR

Theorem B.2 and (B.10) provide an extension operator which asso-
ciates to an element u € Lip(k + 1, F, s, y) an extension u € Lip(k +
1,R"*! s, y). As already observed, the space Lip(k + 1, R"*!, s, ) coin-
cides with Wr+1.o0(RY*+1 | H9) with equivalence of the norms (see (B.9))

k+1,y ~ . ~
laelly " ~vke Nl wasroon @ost sy = > Y05l oo ot prsy-

le|<k+1

By Lemma B.3, the extension # is independent of the Sobolev space H*.

We can identify any element u € Lip(k + 1, F, s, y) (which is a col-
lection u = {u") : | jI < k}) with the equivalence class of functions
f e WkthooRv+l [5) /~ with respect to the equivalence relation f ~ g
when 9; f(1) = 3] g(%) forall » € F, forall |j| <k + 1.

For any N > 0, we introduce the smoothing operators

(Myw) (g, x) = > w9 My =Id—My. (25
(6.} <N

Lemma 2.2 (Smoothing) Consider the space Lip(k + 1, F, s, y) defined in
Definition 2.1. The smoothing operators Iy, Hﬁ satisfy the estimates

k+1, k+1,
ITyuls™" < N*ul ", 0<a<s, (2.6)
k+1, _ k+1,
ITyulls ™7 < N~|lullsfy”, «>0. (2.7)
Proof See Appendix B. O

Lemma 2.3 (Interpolation) Consider the space Lip(k + 1, F, s, y) defined in
Definition 2.1.
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(i) Let s1 < s2. Then for any 0 € (0, 1) one has
k+1, k+1, k+1,y.1—
leells ™ < Al ) el )0 s =051+ (1= 0)s2. (2.8)

(ii) Let ag,bo > 0 and p,q > 0. For all ¢ > 0, there exists a constant
C(e) :=C(e, p,q) > 0, which satisfies C(1) < 1, such that

k+1,y k+1,y k+1,y k+1,y k+1,y k+1,y
aotp Wlpyry = €llullagipygllvllyy * + CENullag " N0llpy4ptq-

(2.9)

[[uell

Proof See Appendix B. O

Lemma 2.4 (Product and composition) Consider the space Lip(k+1, F, s, y)
defined in Definition 2.1. For all s > so > (v + 1)/2, we have

k+1,y k+1,y k+1,y k+1,y k+1,y
luvlls = C(s, Dlulls” " lvllsy ** + Clso, O llullsy " llvlls ™.
(2.10)

Let || B ||§;Z::71/ < 6(sg, k) small enough. Then the composition operator

B:ur> Bu, (Bu)(p,x):=u(p,x+ p(g,x)),
satisfies the following tame estimates: for all s > sy,

k+1,y k+1,y k+1,y k+1,y
1Bl Sl Ee + 1BIE Y S5 2.11)

Let || B IIIE;)IJ;Z = 8(so, k) small enough. The function ,B defined by the inverse

diffeomorphism y = x + B(g, x) ifand only if x = y + B(¢, y), satisfies
k1, k+1,
B Sor 1B (2.12)
Proof See Appendix B. O

If w belongs to the set of Diophantine vectors DC(y, t), where
DC(y, 1) := {a) eER:|lw-£| > ﬁ Vil e Z”\{O}}, (2.13)

the equation w - d,v = u, where u (¢, x) has zero average with respect to ¢,
has the periodic solution

(- 3,) u = Z Mei(e"/’ﬂx). (2.14)
tez\(0), jez '?”
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For all w € RY we define its extension

_ x(@- Ly~ 1)) ot i
(@ - )yt (@, X) 1= Z — ug,j T (2.15)

(¢, ez !

where x € C*°(R, R) is an even and positive cut-off function such that

o =10 ﬂ

12
Lo e e x(€) >0 V$e<3 3). (2.16)

=
=

’

1
3
2
3
Note that (@ - 9,) 1 = ( - 8,)~'u for all @ € DC(y, 7).

Lemma 2.5 (Diophantine equation) For all u € W*+1:00v (Rv+1 HSF1t) e

have
k+1, — k+1,
”(w aw)extu” 4]1_%“11 = C(k))/ IHMHSI;L,)]I%”“’ n = k + 1 + ‘L'(k -+ 2).
(2.17)
Moreover, for F C DC(y, ) x R one has
=1 k+1 - k+1,
(@ 3)~Mull " < Cloy Ml 7 2.18)
Proof See Appendix B. |

We finally state a standard Moser tame estimate for the nonlinear composi-
tion operator

u(p, x) = £u)(p, x) := f(p, x, u(p, x)).
Since the variables (¢, x) := y have the same role, we state it for a generic
Sobolev space H* (T¢).

Lemma 2.6 (Composition operator) Let [ € C®(T? x R,C) and Cy >
0. Consider the space Lip(k + 1, F, s, y) given in Definition 2.1. If u(A) €

HS (T4, R), A € F is a family of Sobolev functions satisfying ||u||y:};y < Co,
then, forall s > so > (d +1)/2,

IE@ISEY < €.k, £.Co) (14l 5 7). (2.19)
The constant C(s, k, f, Co) depends on s, k and linearly on ||f||cm(Td><B),

where m is an integer larger than s +k + 1, and B C R is a bounded interval
such that u(h, y) € B forall » € F, y € T, for all ||u||s)+}ﬂ < Cy.

Proof See Appendix B. O
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2.2 Linear operators

Along the paper we consider g-dependent families of linear operators A :
TV — L(L*(T,)), ¢ — A(p) acting on functions u(x) of the space variable
x, i.e. on subspaces of L?(T,), either real or complex valued. We also regard
A as an operator (which for simplicity we denote by A as well) that acts on
functions u (g, x) of space-time, i.e. we consider the corresponding operator
A € L(L*(T" x T)) defined by

(Au)(p, x) := (A(@u(yp, ))(x). (2.20)

We say that an operator A is real if it maps real valued functions into real
valued functions.
We represent a real operator acting on (17, ¥) € L>(T"*!, R?) by a matrix

K (:D - (é g) (3) (2.21)

where A, B, C, D are real operators acting on the scalar valued components
n, € L>(T"T1 R).

The action of an operator A as in (2.20) on a scalar function u := u(p, x) €
L%(T" x T, C), that we expand in Fourier series as

u(p.x) = uj(@)e’* = Y uy o), (2.22)
JEZ eV, jel

is
Aulg,x) =Y AL @y (@el

JJ'€Z

S S AT~ g p e (2.23)

LelV,JeZ el j €T

o . . j’
We shall identify an operator A with the matrix (A A4 ))j,j’eZ, eoezy

which is Toplitz with respect to the index . In this paper we always consider
Toplitz operators as in (2.20), (2.23).

The matrix entries Aj:/(IZ — ¢') of a bounded operator A : H® — H* (as in
(2.23)) satisfy

YIAT@ =P < WAz L 0, V) e 2,

€
(2.24)
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where ||A|lzusy = sup{[|Ahlls : ||hlls = 1} is the operator norm (consider
h — ei(e/hi,)'((psx))‘

Definition 2.7 Given a linear operator A as in (2.23) we define the operator

1. |A| (majorant operator) whose matrix elements are |A§/(£ — )],
2. lIyA, N € N (smoothed operator) whose matrix elements are

_afe—ey it w—ei-jh=N

My A, (¢~ €) : =N (225

0 otherwise.
We also denote Hﬁ =1d — Iy,

3. (3y.x)P A, b € R, whose matrix elements are (¢ — €/, j — j/)bAj/(e — 0.
4. 9y, A(p) = [0y, , Al = 0y, 0A—Ao0d,, (differentiated operator) whose

matrix elements are i(C,, — €,,) A% (€ — ¢).

Similarly the commutator [d,, A] is represented by the matrix with entries

i(j — AT (=)
Given linear operators A, B as in (2.23) we have that (see Lemma 2.4 in

[21])

1A+ Blulls < || Al |ul ls + [ | Bl |ul lls, W1ABlulls < I |A[IB] [u] |ls,
(2.26)

where, for a given a function u (¢, x) expanded in Fourier series as in (2.22),
we define the majorant function

lul(p. x) := Y ug @Ot (227)
LeZV,jeL

Note that the Sobolev norms of u and |u| are the same, i.e.

lllls = el lls- (2.28)

2.3 Pseudo-differential operators

In this section we recall the main properties of pseudo-differential operators on
the torus that we shall use in the paper, similarly to [1,21]. Pseudo-differential
operators on the torus may be seen as a particular case of the theory on R”, as
developed for example in [35].

Definition 2.8 (WDO) A linear operator A is called a pseudo-differential oper-
ator of order m if its symbol a(x, j) is the restriction to R x Z of a function
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a(x, &) which is C°°-smooth on R x R, 2m-periodic in x, and satisfies the
inequalities

|a;fa§a(x, £)] < Copl&)" P, Va,peN. (2.29)

We call a(x, &) the symbol of the operator A, which we denote
1
A =0p(a) =a(x,D), D := Dy := -0,.
i

We denote by S the class of all the symbols a(x, &) satisfying (2.29), and by
OPS™ the associated set of pseudo-differential operators of order m. We set
OPS™™ := Ny,crOPS™.

For a matrix of pseudo differential operators

_ (A1 A2 . mo
A_<A3A4), A €OPS™, i=1,....4 (2.30)

we say that A € OPS™.

When the symbol a(x) is independent of j, the operator A = Op(a) is the
multiplication operator by the function a(x), i.e. A : u(x) — a(x)u(x). In
such a case we shall also denote A = Op(a) = a(x).

We underline that we regard any operator Op(a) as an operator acting only
on 2 -periodic functions u(x) = ) jez U jeij * as

(A () = Op(@ul(x) =} | alx, hujel’".

Along the paper we consider ¢-dependent pseudo-differential operators
(Au) (@, x) = ZjeZ a(e, x, j)uj(go)eijx where the symbol a (g, x, &) is C*°-
smooth also in ¢. We still denote A := A(p) = Op(a(gp, -)) = Op(a).

Moreover we consider pseudo-differential operators A(A) := Op(a(X, ¢, x,
£)) that are k¢ times differentiable with respect to a parameter A := (w, h) in
an open subset Ag C RY x [hy, hy]. The regularity constant ky € N is fixed
once and for all in Sect. 3. Note that 3* A = Op(8Xa), Vk € NV+1.

We shall use the following notation, used also in [1,21]. For any m € R\{0},
we set

D" := Op(x &) IE]"), (2.31)

where x is the even, positive C* cut-off defined in (2.16). We also identify
the Hilbert transform H, acting on the 27 -periodic functions, defined by

H(eV¥) := —isign(j)e/*, Vj #£0, H(1):=0, (2.32)
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with the Fourier multiplier Op(—isign(&) x (§)).i.e. H = Op(—isign(§) x (£)).
We shall identify the projector 7, defined on the 27 -periodic functions as

1
ToU 1= —/ u(x)dx, (2.33)
2w T

with the Fourier multiplier Op(1 — x (§)), i.e. mo = Op(1 — x (§)), where the
cut-off x (¢) is defined in (2.16). We also define the Fourier multiplier (D)™,
m € R\{0}, as

(D)" =m0+ |D|" :=Op ((1 — x (&) + x©)E]"), &€R. (2.34)

We now recall the pseudo-differential norm introduced in Definition 2.11 in
[21] (inspired by Métivier [50], chapter 5), which controls the regularity in
(¢, x), and the decay in &, of the symbol a(¢p, x, &) € S™, together with its
derivatives E)?a e §" B 0 < B < «, in the Sobolev norm || ||s.

Definition 2.9 (Weighted VD O norm) Let A(A) := a(r, ¢, x, D) € OPS™
be a family of pseudo-differential operators with symbol a(X, ¢, x, &) € S™,
m € R, which are kg times differentiable with respect to A € A9 € R"*!. For
y € (0,1),x € N, s > 0, we define the weighted norm

ko,
Al o = Z y ¥ sup 195 AW I 5.0 (2.35)
k| <ko rEAQ
where
IA(A) s, := max sup ||a a(h, - - E)|ls(g) ™, (2.36)
0<B<a £cR

For a matrix of pseudo differential operators A € OPS™ as in (2.30), we define
its pseudo differential norm

ko,y . ko,y
||A||n$,s,a = ; IIllaX "A ||n(l) s,a

.....

For each kg, y, m fixed, the norm (2.35) is non-decreasing both in s and «,
namely

/ / ko,y ko,y ko,y ko,y
Vs<s,a=a, |lnse=<Illye Tlnsa=I1l,5q., @37
and it is non-increasing in m, i.e.
Vm < m’ ko.y oY 2.38
m=m, ||,/ 5q=1lnsq (2.38)
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Given a function a(X, ¢, x) that is C* in (¢, x) and ko times differentiable
in A, the “weighted WDO norm” of the corresponding multiplication operator
Op (a) is

ko,
10p @1y = > ™ sup [95a()]ls
k| <ko X

ko,
= ||a||Wk0=00$V(A0,Hs) ~ko lalls’ y’ Va € N, (2.39)

see (B.9). For a Fourier multiplier g(A, D) with symbol g € S™, we simply
have

10P(®) 1Yo = 10P( 00 o < Clm. . g ko), Vs =0.  (2.40)

m,0,a

Given a symbol a(A, ¢, x, £) € §™, we define its averages

(@) O, x, E) = fw““’ 0. x.8)do,

1
(2m)Y
1
a>(p,x()\.,§) = W /;TV+1 a()\., (D,x, S)d(pdx

One has that (a), and (a),, ; are symbols in §™ that satisfy

k ko,
I0p((@)p) 5. S 10P(@) e
k ko,
I0p((@)g, )5 S 1OP@]y 4 Vs = 0.

~ m 0,0[’

(2.41)

The norm | |o,s,0 controls the action of a pseudo- differential operator on the
Sobolev spaces H®, see Lemma 2.28. The norm | || e is closed under com-
position and satlsﬁes tame estimates.

Composition If A = a(x, D) € OPS™, B =b(x, D) € OPS™ then the com-
position operator AB := Ao B = o4p(x, D) is a pseudo-differential operator
in OPS™™™ whose symbol o4 has the following asymptotic expansion: for
all N > 1,

oap(x, &) = Z ﬂﬁ‘aga(x E)Pb(x, &) +ry(x,8) (2.42)

/
where N '=TFN,AB € gmm _N,

and the remainder ry has the explicit formula

ry(x,§) = VN,AB(X &)

/ A=V @ a, £+ 1)@V D). D) dr. (2.43)

iN |
(N ! i
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We remind the following composition estimate proved in Lemma 2.13 in [21].

Lemma 2.10 (Composition) Let A = a(A, ¢, x, D), B = b(:, ¢, x, D) be
pseudo-differential operators with symbolsa(k, ¢, x, &) € 8™, b(A, ¢, x, &) €
S™ . m,m’ € R. Then A(L)o B(L) € OPS™™ satisfies, foralla € N, s > s,

ko Y kOsV kOvy
LABIY S COIALTGIBIST Lo

ko, ko,
+ C(s0) A3l Bl . (2.44)

m',s+a+|m|,«a

Moreover, for any integer N > 1, the remainder Ry := Op(ry) in (2.42)
satisfies

ko,y ko,y ko,y
IRV s Sk COTALY o IBISY i

(2.45)

ko,y ko.y
+ C(SO)“A"m,so,N—i-a "B"m/,s+2N+|m|+a,a'

Both (2.44)—(2.45) hold with the constant C (sq) interchanged with C(s).
Analogous estimates hold if A and B are matrix operators of the form (2.30).

For a Fourier multiplier g(x, D) with symbol g € 5™ we have the simpler
estimate

k ko,

140 gDV o Shoe LALSTlOP@Ih o Sko o 1AL o (2.46)
By (2.42) the commutator between two pseudo-differential operators A =
a(x, D) € OPS™ and B = b(x, D) € OPS™ is a pseudo-differential operator
[A, B] € OPS"™+™ ~1 with symbol a » b, namely

[A, B] = Op(a x b). (2.47)

By (2.42) the symbol a x b € S+~ admits the expansion

axb=—i{a,b} + ry(a,b)

- (2.48)
where  {a, b} := dza dyb — dya dgb € "
is the Poisson bracket between a(x, &) and b(x, &), and
ro(a,b) :=ryap —raga € S"T 2. (2.49)

By Lemma 2.10 we deduce the following corollary.
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Lemma 2.11 (Commutator) If A = a(h,¢,x,D) € OPS™ and B =
b(h,@,x,D) € OPS™, m,m’ € R, then the commutator [A, B] := AB —
BA € OPS™™ =1 satisfies

ko,y < ko,y ko,y
ItA, B]|m+n1’—l,s,a ~m.,m’,a.ko C(S)IAlm,s+2+\m’|+a,a+l|B|m’,so+2+|m|+a,ot+l (2 50)

ko, ko,
+ C(SO)|A|n;),s)(/)+2+|m/\+a,a+l IBIrr?’,);+2+|m\+a,ot+l ‘
Proof Use the expansion in (2.42) with N = 1 for both AB and BA, then use
(2.45) and (2.37). O

Given two linear operators A and B, we define inductively the operators
Ad" (B), n € N in the following way: Ada(B) := [A, B] and Ad’;"'(B) :=
[A, Ad’,(B)], n € N. Iterating the estimate (2.50), one deduces

ko, ko, ko,
|Ad" (B O < (ALY ) 1BI%Y

nm+m'—n,s,a ~m,m',s,a,ko m,so+cp(m,m’,a),o+n m',s+c,(m,m’,a),a+n
ko,y n—1, 4 ko, ko,y
+ (IAlm,So-l-cn(m,m’,a),oc—kn) |A|m,‘v+cn(m,M’,a),oz+nIB|m’,‘vo+cn(m,rn’,a),a+n

2.51)

for suitable constants ¢, (m, m’, o) > 0.
We remind the following estimate for the adjoint operator proved in Lemma
2.16in [21].

Lemma 2.12 (Adjoint) Let A = a(A, ¢, x, D) be a pseudo-differential oper-
ator with symbola(, ¢, x, &) € S, m € R. Then the Lz-adjoint A* € OPS™
satisfies

[A* LY <, ALY

m,s,0 ~m m,s+so+|m|,0°
The same estimate holds if A is a matrix operator of the form (2.30).
Finally we report a lemma about inverse of pseudo-differential operators.

Lemma 2.13 (Invertibility) Let & := Id+ A where A := Op(a(A, ¢, x,&)) €
OPSY. There exist constants C(sg, o, ko), C(s, a, ko) > 1, s > 50, such that,

if

Cs0, o, ko) |ALY L < 1/2, (2.52)

0,s04+o,a0 —

then, for all ), the operator ® is invertible, o1 e oPS° and, forall s > s,

_ ko, ko,
[o~" —1d1g, < Cls, o, ko)Al g o (2.53)
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The same estimate holds for a matrix operator ® = [p+ A wherell; = (I(;l I%)
and A has the form (2.30).

Proof By a Neumann series argument. See Lemma 2.17 in [21]. |

2.4 Integral operators and Hilbert transform

In this section we consider integral operators with a C* kernel, which are the
operators in OPS~°. As in the previous section, they are kg times differentiable
with respect to A := (w, h) in an open set Ay C RVFL,

Lemma 2.14 LetK := K (), -) € C®°(TY x TxT). Then the integral operator
Ru,5) = [ Kiupx,yutp ) dy (2.54)

is in OPS™ and, forallm, s, € N, |RI"S) o < C(m, s, @, ko) | K |07 10

—m,s,o —
Proof See Lemma 2.32 in [21]. o

An integral operator transforms into another integral operator under a
change of variables

Pu(p, x) :=u(p, x + p(p, x)). (2.55)

Lemma 2.15 Let K(X, ) € C®°(T" x T x T) and p(r, -) € C®°(T" x T, R).
There exists § := 5(sg, ko) > 0 such that if||p||§2é'y+k0+1
operator'R in (2.54) transforms into the integral operator (P_lRP )u(go, X) =

fT k(k, o, x, Nu(p, y)dy with a C* kernel

< 4§, then the integral

KO, o,x,2) = (14890, 0,2) KO, ¢, x + gk, 9, X), 2+ g, 9, 2)),

where z = z+q (A, ¢, 2) is the inverse diffeomorphism of x +— x+p(%, ¢, x).
The function K satisfies

> 11ko,y ko,y ko,y ko,y
KIS < Cls ko) (1K I E + 1P IK o) Vs = so.

Proof See Lemma 2.34 in [21]. O

We now recall some properties of the Hilbert transform H defined as a
Fourier multiplier in (2.32). The commutator between ‘H and the multiplication
operator by a smooth function a is a regularizing operator in OPS~°°, as stated
in Lemma 2.35 in [21] (see also Lemma B.5 in [6], Appendices H and I in
[42]).
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Lemma 2.16 Leta(), -, -) € C*°(TY x T, R). Then the commutator [a, H] is
in OPS™%° and satisfies, for allm, s, « € N,

ko,y ko,y
" [a7 H] ||_Om’s,a S C(mv s, , kO)“a”S(-)FS()—Fl-Fm—FOl

We also report the following classical lemma, see e.g. Lemma 2.36 in [21]
and Lemma B.5 in [6] (and Appendices H and I in [42] for similar statements).

Lemma 2.17 Let p = p(A,-) be in C°(T't) and P := P(A,-) be the
associated change of variable defined in (2.55). There exists §(so, ko) > 0
such that, if ||p||§‘;(’)};ko+1 < 8(s0, ko), then the operator P~VHP — H is an
integral operator of the form

(P~'HP — Hyu(p, x) =/ K 0. x, Dulp, ) dz
T

where K = K(A,:) € C®(TV x T x T) is given by K(A, ¢, x,2) =
—19:log(1 + g(X. @, x, 2)) with

gk, ¢, x) —q(k,w,z)) _q
2
X —2Z Sin <%(q()"v (pvx) - CI()h @, Z)))
—I—cos( ) 1
2 sin (Q(x —z))

g(A,p,x,27) :=cos (

where z — q (A, @, 2) is the inverse diffeomorphism of x — x + p(A, ¢, X).
The kernel K satisfies the estimate

ko, ko,
1Kl < C(s, ko)l pll

0¥
s+ko+2? Vs > s50.

We finally provide a simple estimate for the integral kernel of a family of
Fourier multipliers in OPS™°.

Lemma 2.18 Letg(A, ¢, &) be afamily of Fourier multipliers with Bi‘g()», ©, )
€ S7, forall k € N1, |k| < ko. Then the operator Op(g) admits the inte-
gral representation

[Op(g)u](@. x) = fT KO 0. x, Vu(g, ) dy,

1 . (2.56)
Kg(h, 0, x,y) = 7 %g(k, ¥, je ,
J
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and the kernel K satisfies, for all s € N, the estimate

ko, ko, ko,
1K S10p@I 0 + 10D 100 (257)

Proof The lemma follows by differentiating the explicit expression of the
integral Kernel K in (2.56). a

2.5 Reversible, even, real operators

We introduce now some algebraic properties that have a key role in the proof.

Definition 2.19 (Even operator) A linear operator A := A(g) as in (2.23) is
EVEN if each A(¢), ¢ € TV, leaves invariant the space of functions even in x.

Since the Fourier coefficients of an even function satisfy u_; = u; for all
J € Z, we have that

A is even <

J iy i _y . L (258
A; @)+ A (@) =A" () +A_j (), Vj,j €l ¢eT.

Definition 2.20 (Reversibility) An operator R as in (2.21) is

1. REVERSIBLEIf R(—¢)op = —poR(p) forall ¢ € T", where the involution
o is defined in (1.11),
2. REVERSIBILITY PRESERVING if R(—¢) o p = p o R(p) forall ¢ € T".

The composition of a reversible operator with a reversibility preserving oper-
ator is reversible. It turns out that an operator R as in (2.21) is

1. reversible if and only if ¢ > A(p), D(p) are odd and ¢ — B(p), C(p)
are even,

2. reversibility preserving if and only if ¢ — A(p), D(¢) are even and ¢ +—
B(p), C(p) are odd.

We shall say that a linear operator of the form £ := -9, + A(gp) is
reversible, respectively even, if A(g) is reversible, respectively even. Conju-
gating the linear operator £ := w - 9, + A(¢) by a family of invertible linear
maps ® () we get the transformed operator

Li=0 " (@)LP(p) =w- d,+ As(p),
Ar(@) == 0 () (- 3,P(p) + O (P)A(p) D ().

It results that the conjugation of an even and reversible operator with an oper-
ator @ (¢) that is even and reversibility preserving is even and reversible.
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Lemma 2.21 Let A := Op(a) be a pseudo-differential operator. Then the
following holds:

1. If the symbol a satisfies a(—x, —&) = a(x, ), then A is even.
2. If A = Op(a) is even, then the pseudo-differential operator Op(a) with
symbol

1
a(x,§) = E(a(x,5)+a(—x,—5)) (2.59)

coincides with Op(a) on the subspace E := {u(—x) = u(x)} of the func-
tions even in x, namely Op(a)|g = Op(a) k.

3. A is real, i.e. it maps real functions into real functions, if and only if the
symbol a(x, —&) = a(x, &).

4. Let g(&) be a Fourier multiplier satisfying g(§) = g(—£&). If A = Op(a)
is even, then the operator Op(a(x, £)g(€)) = Op(a) o Op(g) is an even
operator. More generally, the composition of even operators is an even
operator.

We shall use the following remark.

Remark 2.22 By Lemma 2.21, item 2, we can replace an even pseudo-
differential operator Op(a) acting on the subspace of functions even in x,
with the operator Op(a) where the symbol a(x, &) defined in (2.59) satisfies
a(—x, —&) = a(x, &). The pseudo-differential norms of Op(a) and Op(a) are
equivalent. Moreover, the space average

1
(&>x(é‘):=—2 /&(x,é)dx satisfies  (a),(—=§) = (a)x (&),
TJT

and, therefore, the Fourier multiplier (a), (D) is even. O

It is convenient to consider a real operator R = (2 g) as in (2.21),

which acts on the real variables (17, ¥/) € R?, as a linear operator acting on
the complex variables (u, u) introduced by the linear change of coordinates
(n, ¥) = C(u, u), where

11 (1
() () ew

We get that the real operator R acting in the complex coordinates (u, u) =
C~'(n, ¥) takes the form
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R=CIRC:= (El RZ)

Ra R (2.61)

Ry = %{(A +D)—i(B-C)}, Ry:= %{(A —D)+i(B+0O)}

where the conjugate operator A is defined by
Au) = A). (2.62)

We say that a matrix operator acting on the complex variables (u, i) is REAL

if it has the structure in (2.61) and it is EVEN if both R, R, are even. The

composition of two real (resp. even) operators is a real (resp. even) operator.
The following properties of the conjugated operator hold:

1. AB= A B.
2. If (AJ ) is the matrix of A, then the matrix entries of A are (A )’ =A j )

3. If A = Op(a(x, &)) is a pseudo-differential operator, then its conjugate is
= Op(a (x —£&)). The pseudo differential norms of A and A are equal,

namely IAL e = 1AL Y.

In the complex coordinates (u, u) = C -1 (n, ¥) the involution p defined in
(1.11) reads as the map u +— u.

Lemma 2.23 Let R be a real operator as in (2.61). One has

1. Ris reversible if and only if Ri(—¢) = —R;(¢) forallp € T", i = 1,2,
or equivalently

R () = ~R) 1 (9) Vg €T,

i - (2.63)
ie. (Ri)j. &) = —(R,-)jj. ) YeLeZ.

2. Ris reversibility preserving if and only if R; (—¢) = R; (@) forall ¢ € T",
i = 1,2, or equivalently

R (—¢) = R0 (@) Yo eT,

i — (2.64)
ie. (R,-)j. ) = (R,-):j. (&) VLeZ.

2.6 DX -tame and modulo-tame operators
In this section we recall the notion and the main properties of D*°-tame and

modulo-tame operators that will be used in the paper. For the proofs we refer
to Section 2.2 of [21] where this notion was introduced.
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Let A := A(A) be a family of linear operators as in (2.23), ko times differ-
entiable with respect to A in an open set Ag C R"F1.

Definition 2.24 (D"-g-tame) Let o > 0. A linear operator A := A(}) as
in (2.20) is D o-g -tame if there exists a non-decreasing function [sg, S] —
[0, +00), s > M4 (s), possibly with § = +o0, such that for all s < 5 < S,
forallu e HS1°

sup sup ¥y M @FAG) ulls < MaGo) lullsro + Ma(s) ullspro-  (2.65)
|k|<ko AeAg

We say that 9T4(s) is a TAME CONSTANT of the operator A. The constant
Ma(s) := Ma(ko, 0, s) may also depend on kg, o but, since kg, o are con-
sidered in this paper absolute constants, we shall often omit to write them.
When the “loss of derivatives” o is zero, we simply write DX0-tame instead
of DX0-0-tame.
For a real matrix operator (as in (2.61))

(A1 Az
_<Z2 Zl)’ (2.66)

we denote the tame constant M4 (s) := max{M4, (s), M4, (s)}.

Note that the tame constants 97 4 (s) are not uniquely determined. Moreover,
if § < 400, every linear operator A that is uniformly bounded in A (together
with its derivatives 8§ A) as an operator from H*t to H* is D*-o-tame.
The relevance of Definition 2.24 is that, for the remainder operators which we
shall obtain along the reducibility of the linearized operator in Sects. 6—14, we
are able to prove bounds of the tame constants 974 (s) better than the trivial
operator norm.

Remark 2.25 In Sects. 6-14 we work with D*0-¢ -tame operators with a finite
S < +o00, whose tame constants 24 (s) may depend also on §, for instance

Mals) = CSHA + IIJOIIfS;Z), forallso <s <.

An immediate consequence of (2.65) (with k = 0, s = sp) is that
I All z¢so+o msoy < 29Ma(s0)-

Also note that representing the operator A by its matrix elements
(Aj:/(ﬁ — as in (2.23) we have, for all |k| < ko, j' € Z,
ez,

/
¢ ))Z,é’ezv,j,j’eZ

2|k\z Z ] Zsla)LAJ (z )|2

(E)JTA(SO)) ( / )2(S+U)+2(mA(S)) ( VA >2(SO+0')

(2.67)
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The class of DX0-¢ -tame operators is closed under composition.

Lemma 2.26 (Composition) Let A, B be respectively DX0-o 4-tame and D*-
o g-tame operators with tame constants respectively M 4 (s) and Mp (s). Then
the composition Ao B is Dko-(UA + op)-tame with a tame constant satisfying

Map(s) < Clko) (Ma()Mp(s0 + 04) + Ma(s0)Mp(s + 04)).

The same estimate holds if A, B are matrix operators as in (2.606).
Proof See Lemma 2.20 in [21]. O

We now discuss the action of a D¥0-g-tame operator A(%) on a family of
Sobolev functions u(A) € H®.

Lemma 2.27 (Actionon H®) Let A := A(}) be a DX0-o -tame operator. Then,
Vs > s, for any family of Sobolev functions u := u(A) € H**° which is kg
times differentiable with respect to A, we have

ko.y ko,y ko,y
I Aulls” Sko MaCso)llullsye + Mals)llullg s -

The same estimate holds if A is a matrix operator as in (2.66).
Proof See Lemma 2.22 in [21]. O

Pseudo-differential operators are tame operators. We shall use in particular
the following lemma.

Lemma2.28 Let A = a(h,¢,x,D) € OPS? be a family of pseudo-
differential operators that are kg times differentiable with respect to A. If
||A||15°;y0 < 400, s > S0, then A is D*-tame with a tame constant satisfy-
ing

ko,
Mals) < C)IAl- (2.68)
Asa consequence
ko,y ko,y ko,y ko,y ko,y
IARI"" < Clso, k) IALGS, oIBIs"T + C (s, ko)Al olinllg” . (2.69)

The same statement holds if A is a matrix operator of the form (2.66).

Proof See Lemma 2.21 in [21] for the proof of (2.68), then apply Lemma 2.27
to deduce (2.69). |

In view of the KAM reducibility scheme of Sect. 14, we also consider
the stronger notion of D*-modulo-tame operator, which we need only for
operators with loss of derivatives o = 0.
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Definition 2.29 (D*-modulo-tame) A linear operator A := A()) asin (2.20)
is D¥-modulo-tame if there exists a non-decreasing function [sg, S| —
[0, +00), s Sﬁi(s), such that for all k € NV*1, |k| < ko, the majorant
operators | o f A| (Definition 2.7) satisfy the following weighted tame estimates:
forallso <s < S,u € HS,

sup sup ¥ K 10X Alully < O (so) ully + I () ully.  (2.70)
|k|<ko A€o

The constant Dﬁi (s) is called a MODULO- TAME CONSTANT of the operator A.
For a matrix operator as in (2.66) we denote the modulo tame constant

M, (5) = max{D, (s), M, (5)}.
If A, B are D*-modulo-tame operators, with |A§,(£)| < |B;/(£)|, then
M (5) < 5 (s).

Lemma 2.30 An operator A that is DX-modulo-tame is also DX-tame and
Ma(s) < E)ﬁﬁA (s). The same holds if A is a matrix operator as in (2.66).

Proof See Lemma 2.24 in [21]. O

The class of operators which are D¥0-modulo-tame is closed under sum and
composition.

Lemma 2.31 (Sum and composition) Let A, B be D*-modulo-tame opera-
tors with modulo-tame constants respectively smi (s) and ZJJT% (s). Then A+ B
is D*-modulo-tame with a modulo-tame constant satisfying

M, 5 (5) < I (5) + My (s). 2.71)

The composed operator A o B is DX-modulo-tame with a modulo-tame con-
stant satisfying

M, 5 () < C ko) (M ()M (s0) + M (s0) M (). (2.72)

Assume in addition that (GWC)bA, (B(p,x)bB (see Definition 2.7) are DFo-
modulo-tame with a modulo-tame constant respectively 93153 b A(s) and
P, X

im?a )5 B (). Then {0y x Y°(AB) is DX0-modulo-tame with a modulo-tame con-
¢,x
stant satisfying

My oiasy @) = COCUK) (M, 1o M (50) + 9, (0)M ()
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O ()M, (50) + I )M, (5)) (2.73)

for some constants C(ko), C(b) > 1. The same statement holds if A and B
are matrix operators as in (2.66).

Proof The estimates (2.71), (2.72) are proved in Lemma 2.25 of [21]. The
bound (2.73) is proved as the estimate (2.76) of Lemma 2.25 in [21], replacing
{0y )P (cf. Definition 2.3 in [21]) with (0, P, O

Iterating (2.72)—(2.73), one estimates EUZ )P A
Lemma 2.26 of [21] we deduce the following lemma

Lemma 2.32 (Invertibility) Let ®:=1d + A, where A and (0, PA are Dko.
modulo-tame. Assume the smallness condition

(s), and arguing as in

4C(b)C(k())9ﬁi(so) <1/2. (2.74)

Then the operator @ is invertible, A= &1 —1dis Dko -modulo-tame, as well
as (0, )P A, and they admit modulo-tame constants satisfying
M () < 290 (s),

M i@ =2y 0, () +BCOCUDMG, s, (50) M ().

The same statement holds if A is a matrix operator of the form (2.66).

Corollary 2.33 Let m € R, ® := Id + A where (D)"A(D)™™ and
(a(p,x)b(D)mA (D)™™ are D} modulo-tame. Assume the smallness condition

4CO)C (k)M 1 4 - (50) < 1/2. (2.75)

Let A := &1 —Id. Then the operators (D)mfi(D)_m and (ag,,,x)bw)m,i (D)™
are DX -modulo-tame and they admit modulo-tame constants satisfying

m L)< 293?ﬁ ym

f Dy i Ay ():
:
(

3p.)P(D >'"A<D>—m(s) = <a¢,x> (pym a(py-m ()

f

The same statement holds if A is a matrix operator of the form (2.66).

Proof Let us write ®,, = (D)"®(D)™™ = Id + A,, with A, =
(DY"A(D)™"™. The corollary follows by Lemma 2.32, since tf}e smallness
condition (2.75) is (2.74) with A = A,,, and CID;1 =Id+ (D)"A(D)™™. 0O
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Lemma 2.34 (Smoothing) Suppose that (0, PA, b > 0, is D*-modulo-
tame. Then the operator HﬁA (see Definition 2.7) is DX -modulo-tame with a
modulo-tame constant satisfying

E)th_% A SNTP, (), Smfjw(s)gimi(s). (2.76)

The same estimate holds when A is a matrix operator of the form (2.66).

Proof As in Lemma 2.27 in [21], replacing (9 ) (cf. Definition 2.3 in [21])
with (9 ). o

In order to verify that an operator is modulo-tame, we shall use the following
Lemma. Notice that the right hand side of (2.77) below contains tame constants
(not modulo-tame) of operators which control more space and time derivatives
than (3, )°(D)™A(D)™.

Lemma 2.35 Letb, m > 0. Then

zm%awb(mm 0 (8) Sso.0 D pymeo g (pymins (5)

2.77)

+ max {mag}.’+b(p)m+bA<D)m+b+l(s)}'

Proof We denote by M(s, b) the right hand side in (2.77). For any o, 8 €
N, the matrix elements of the operator 8"‘ (DYPA(DYPF! are i%(¢; —

€)% (] >ﬁA’ (€ — £ (j")P*1. Then, by (2.67) with ¢ = 0, applied to the oper-

ators <D>m+bA< D)™t and 90t (D)™ P A(D)™ P+ we get, using the
inequality (¢ — €/)2¢0TP) <01 + max;—,_y [€; — €[>0 the bound

2|k|Z K ] 2S _ £/>2(50+b) <]>2(m+b)|akAJ,(£ Z )| < >2(m+b+1)

<o M2<so, R, ) + M (s, b)(E, ). (2.78)
For all |k| < kg, by Cauchy—Schwarz inequality and using that

(€=, j—j"° Sp o= —j)°
Sp (€= V)P + () So (€= PPN (2.79)

we get
11(3g.)> (D)™ 35 A (D)™ ||}
2
So ), A ZS(ZW A=) NPk AT (=) ()™ e ,|)
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o D, M6 0) ’“(Zy, A= ORGP R AT (€= )

2
1
- 1
X (J/>m+b+ |hz,,_//|—<€ — £/>S0 <],>>

NSO b Z 0, j ZSZE/’J-/M . 5/)2(s0+b)(j)z(m+b)|3)lfA§ = 5/)|2

% (] )2(m+b+l)|h£/’j/|2

SRS S L ) DR O G e il U A A

X (j/>2(m+b+l)
(2 ¥ —2|/<|Z Ih M2 b)Y, V2 + M2(s. b 250
Ns()b 14 o, v, ]/I ( (SOa )< .] ) + (S )< > )
Ssob ¥ 2""(Mz(so, o) |11I7 + M (s, b)I|A1Z) (2.80)
using (2.28), whence the claimed statement follows. O

Lemma 2.36 Let g be the projector definedin (2.33) by mou := % fT u(x)dx.
Let A, B be ¢-dependent families of operators as in (2.23) that, together with

their adjoints A*, B* with respect to the L)% scalar product, are Do -tame.

Let my,my > 0, Bo € N. Then for any B € N", |B] < Po, the operator

(D)™ (85 (AmogB — JT())) (DY"2 js DK0_tame with a tame constant satisfying,

forall s > sy,

m( >m1(a(p (AT[()B 770)) m2 (S) ~n,s, /30 k() 9:TIA Id(s + ,BO + ml)
x (14Mps_1a(s0+m2)) +Mp=_1a (s + Po+m2) (1+Ma_1a(so+m1)).
(2.81)

The same estimate holds if A, B are matrix operators of the form (2.66) and
1o is replaced by the matrix operator I defined in (10.2).

Proof A direct calculation shows that (D)"!(AmgB — mo)(D)"™[h] =
g1(h, g) L2 + (h, g3) L2 where g1, g2, g3 are the functions defined by

1
g1 = o (D)™ (A —ID[1], g2 := (D)™ B1],
T

1
83 1= o~ (D)y™(B* — 1d)[1].
T

The estimate (2.81) then follows by computing for any 8 € NY, k € N'*!
with | 8| < Bo, |k| < ko, the operator Bfag((D)ml(Am)B — no)(D)mZ). |

@ Springer



Time quasi-periodic gravity water waves in finite depth 787

2.7 Tame estimates for the flow of pseudo-PDEs

We report in this section several results concerning tame estimates for the flow

@7 of the pseudo-PDE

. 1

Ocu =l1a(p, X)|D|>u 0eT’, xeT, (2.82)
u(0, x) = up(e, x),

where a(g, x) = a(X, ¢, x) is areal valued function that is C* with respect to
the variables (¢, x) and k¢ times differentiable with respect to the parameters
A = (w, h). The function a := a(i) may depend also on the “approximate”
torus i (¢). Most of these results have been obtained in the Appendix of [21].
The flow operator ®° := ®(7) := P (X, ¢, 7) satisfies the equation
{afcbm = ia(p, )| D1 ®(7) 283
®(0) =1d.

Since the function a (g, x) is real valued, usual energy estimates imply that
the flow ®(7) is a bounded operator mapping H; to H;. In the Appendix of
[21] it is proved that the flow & (1) satisfies also tame estimates in H;L > See
Proposition 2.37 below. Moreover, since (2.82) is an autonomous equation, its

flow @ (¢, 7) satisfies the group property
(g, 11+ 1) = P(p, 1) 0 P(p, 1), P, 7T) " = D(p, —7), (2.84)

and, since a (A, -) is kg times differentiable with respect to the parameter X, then
D (A, @, T) is ko times differentiable with respect to A as well. Also notice that
& 1(r) = &(—1) = P(1), because these operators solve the same Cauchy
problem. Moreover, if a(¢, x) is odd(¢p)even(x), then, recalling Sect. 2.5, the
real operator

(P, ) O
<I>(<o,r)-—< 0 5(¢’T)>

is even and reversibility preserving.
|Bl+1k| . . . .
The operator 31‘ 85 ® loses | Dy | > derivatives, which, in (2.86) below,

are compensated by (D)~ on the left hand side and (D)~"*2 on the right
hand side, with m, my € R satisfying m; + my = Iﬂllekl The following
proposition provides tame estimates in the Sobolev spaces Hy ..

Proposition 2.37 Let By, ko € N. For any 8, k € NV with |B| < Bo, k| < ko,
for any my,mr € R withm|; + my = M, for any s > sg, there exist
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constants o (|8, k|, my, ma) > 0, §(s, my) > 0 such that if

k
lallasprimi+2 < 8G.m). 1@l o rommy <1 (285)

then the flow ®(t) := ® (A, ¢, T) of (2.82) satisfies

sup [|(D) "9 05 @ ()(D) " hl

7€[0,1]
_ ko,
Sesotomms ¥ (Vs 4118 G kg o) (2:86)
sup |05 (®(7) — Id)A | s
7€[0,1]

< .=kl 0.7 ko,y
S (g L IR P

(Al |) (2.87)
Proof The proof is similar to Propositions A.7, A.10 and A.11 in [21] with, in
addition, the presence of (D)~™! and (D)2 in (2.86). O

We consider also the dependence of the flow & with respect to the torus
i := i(p) and the estimates for the adjoint operator ®*.

Lemma 2.38 Ler s1 > so, fo € N. For any 8 € N, |B| < Bo, for any
my,my € R satisfying m| + my = % there exists a constant o (|B]) =
o(|Bl,mi,mz) > 0 such that if ||a|s,+oy) =< 6(s) with §(s) > 0 small
enough, then the following estimate holds:

sup I|(D)’””85A124>(f)(D>’m2hlls, Ssi 1Aalls+oqpplinlls, (2.88)
t€[0,1]

where A1 ® := & (ip) — O (i) and Aza := a(iz) — a(iy). Moreover, for any
k e N"*1 |k| < ko, for all s > so,
k —k
1@5 ™Al S5 v~ '(nhn W+ el s llhlls0+g)

* — k| ko,y ko,y
185 (@* — 1d)hlls <y v (llall ||h||s+@ + ||“||s+s0+|k+2||h||so+’<|2+'>-

Finally, for all s € [so, s1],

[AL®*Rlls Ss 1A 12al Al

s +S0+

Proof The proof is similar to Propositions A.13, A.14, A.17 and A.18 of [21].
O
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3 Degenerate KAM theory

In this section we extend the degenerate KAM theory approach of [11] and
[21].

Definition 3.1 A function f := (f1,..., fy) : [h1,hy] — RY is called
non-degenerate if, for any vector ¢ := (c1,...,cnN) € RN \{0}, the function
f-c = fic1+-- -+ fncn is notidentically zero on the whole interval [hy, h»].

From a geometric point of view, f non-degenerate means that the image
of the curve f([hi, hy]) € RY is not contained in any hyperplane of RV,
For such a reason a curve f which satisfies the non-degeneracy property of
Definition 3.1 is also referred to as an essentially non-planar curve, or a curve
with full torsion. Given ST C Nt we denote the unperturbed tangential and
normal frequency vectors by

B(h) = (@; (M) jes+ LM = () jenns+ = (@ (1)) jenns+s
3.1

where w;(h) = 4/j tanh(h) are defined in (1.19).

Lemma 3.2 (Non-degeneracy) The frequencyvectors w(h) € R”, (o(h), 1) €
Rt and

(@(h), () e R, (@(h), ;(h), 2;:(h) € R,
Vi, j e NT\ST, j #j,
are non-degenerate.

Proof We first prove thatforany N, forany w;, (h), ..., wj,(h) with1 < j; <
ja < -+ < jn the function [hy, ha] 3 h > (@), (h), ..., w;,(h) € RV is
non-degenerate according to Definition 3.1, namely that, for all ¢ € RV\{0},
the function h — ciwj (h) + --- + cywjy (h) is not identically zero on the
interval [hy, hy]. We shall prove, equivalently, that the function

h— cla)jl(h4) + - +CNCUjN(h4)

is not identically zero on the interval [h?, h‘z‘]. The advantage of replacing h
with h* is that each function

hi— w;h*) = \/m

is analytic also in a neighborhood of h = 0, unlike the function w;(h) =

j tanh(hj). Clearly, the function g1 (h) := y/tanh(h®) 1s analytic in a neigh-
tanh(h.j). Clearly, the function g; (h) h(h?) is analytic in a neigh

borhood of any h € R\ {0}, because g is the composition of analytic functions.
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Let us prove that it has an analytic continuation at h = 0. The Taylor series at
z = 0 of the hyperbolic tangent has the form

}: 2n+1 Z3 2 5
tanh(z) = T,z7" =z7——4+ =4+,
2 =0 " 3 15

and it is convergent for |z| < /2 (the poles of tanh z closest to z = 0 are
+im/2). Then the power series

1

00 2
2
tanh(z%) = T A+ _ 4y T 80 _ At 200,
anh(z™) E nZ Z +E wZ z 3 +152 +

n=0 n>1

is convergentin |z| < (1r/2)!/*. Moreover | ) T,z < linaball |z| < 8,
for some positive § sufficiently small. As a consequence, also the real function

172
g1(0) = wi(h") = Vianh(h*) =h* [ 1+ ) T,n%"
n>1
400 h8n+2 ) 1’1]0
=Y b——— =hP—— ... 3.2
r; (8n +2)! 6 * (3-2)

is analytic in the ball |z| < §. Thus g; is analytic on the whole real axis. The
Taylor coefficients b, are computable. We expand in Taylor series at h = 0
also each function, for j > 1,

+00 8n+2
h
Y N Y V7S 20+l

gj(n)i=w;mh=/j/tanh(n* /) =/} g1(j h)—;)bnj & G
which is analytic on the whole R, similarly as g7.

Now fix N integers 1 < j; < j» < --- < jy. We prove that for all
c € RVN\{0}, the analytic function c; g, (h) +- - - +cngjy (h) is not identically
zero. Suppose, by contradiction, that there exists ¢ € R\ {0} such that

Clgjl(h)-i-'---i-CNng(h):O Vh € R. 3.4)
The real analytic function g (h) defined in (3.2) is not a polynomial (to see
this, observe its limit as h — 00). Hence there exist N Taylor coefficients

b, # 0 of g1, say b,,, ..., by, withn; < np < --- < ny. We differentiate
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with respect to h the identity in (3.4) and we find

et (DY g ) () + -+ en (DF Vg5 ) () = 0
CI(D}(l8n2+2)gjl)(h) + o foey (D§18n2+2)ng)(h) -0
01 '('D'f;g.”'N'“)g.,-l)(h) +oten (DT N (h) = 0.
As a consequence the N x N-matrix
( D}(18n1+2)gjl) (h) ( D(8n1+2) ) (M)
Ah) = (D}(18”2+2)gj1)(h) (D(8"2+2) )(h) (3.5
(D}(ISnN+.2)gjl)(h) (D(SnN+2) )(h)
is singular for all h € R, and so the analytic function
detA(h) =0 VheR (3.6)

is identically zero. In particular at h = 0 we have det . A(0) = 0. On the other
hand, by (3.3) and the multi-linearity of the determinant we compute

2n1+1 2n1+1
bu, Ji coo buyjy
2ny+1 2ny+1
b, Ji ceo buyjy
det A(0) := det
.2nN+l .2nN+l
buy J ceo buyjy
2n1+1 2n1+1
J1 JN
2ny+1 2ny+1
J JN
= by, ... by, det
.ZnN—H .ZnN—H
J JN

This is a generalized Vandermonde determinant.

result.

We use the following
O
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Lemma 3.3 Let x1,...,xN,a1, ...,ay be real numbers, with 0 < x1 <
-<xyanda; < --- < on. Then
x)! Xy
det| : .. : |>o0.
N xf\[,N
Proof The lemma is proved in [56]. O
Since 1 < ji < jo» < --- < jn and the exponents «; := 2n; + 1 are
increasing @y < --- < ay, Lemma 3.3 implies that det A(0) £ O (recall that
bu,, ..., byy # 0). This is a contradiction with (3.6).

In order to conclude the proof of Lemma 3.2 we have to prove that, for
any N, forany 1 < j; < j» < --- < jn, the function [h{,hy] 2 h
(I, wj(h),...,0jy()) € RN+ g non-degenerate according to Definition
3.1, namely that, for all ¢ = (cg,c1,...,cN) € RN“\{O}, the function
h = ¢o + ciwj (h) + --- + cywjy (h) is not identically zero on the inter-
val [hi, hy]. We shall prove, equivalently, that the real analytic function
ht co + clwj, hH+---+ CNWjy (h*) is not identically zero on R.

Suppose, by contradiction, that there exists ¢ = (co,c1,...,CN) €
RN*+1\{0} such that

co+cigj(h)+---+cngjy(h) =0 VheR. (3.7

As above, we differentiate with respect to h the identity (3.7), and we find that
the (N + 1) x (N + 1)-matrix

1 gj(h) gjy(h)

8 2 8 2
0 (DE" g ) ... (DE" g, Y(h)

B(h) := (3.8)

0 (D}(ISnN—FZ)gjl)(h) (D}(ISnN_FZ)ng)(h)

is singular for all h € R, and so the analytic function det B(h) = O for all
h € R. By expanding the determinant of the matrix in (3.8) along the first
column by Laplace we get det B(h) = det A(h), where the matrix A(h) is
defined in (3.5). We have already proved that det A(0) # 0, and this gives a
contradiction. O

In the next proposition we deduce the quantitative bounds (3.9)—(3.12) from
the qualitative non-degeneracy condition of Lemma 3.2, the analyticity of the
linear frequencies w; in (1.19), and their asymptotics (1.24).

@ Springer



Time quasi-periodic gravity water waves in finite depth 793

Proposition 3.4 (Transversality) There exist k; € N, po > 0 such that, for
any h € [hy, ha],

max [3f {@(b) - £)] = po(6), Ve € Z'\(0}, (3.9)

<kj

max [0} {@(h) - £+ Q;W)| = pol6), VEeZ', jeNT\SY, (3.10)
<kj

max Bk (&M - £+ Qj(h) — QWY = po(l), VL€ Z'\(0}, j.j/ e NT\ST, (3.11)
<k

max (@) - €+ Q) + QM) = poll), YeeZ', j.j e N\sT (3.12)
<k

where @ (h) and Q j(h) are defined in (3.1). We recall the notation (£) :=
max{l1, |£|}. We call (following [57]) po the “amount of non-degeneracy” and
kg the “index of non-degeneracy ”.

Note thatin (3.11) we exclude the index £ = 0. In this case we directly have
that, for all h € [hy, hy]

. . lj—Jl
Qi(h) — Q)| > —Sil=aq L=
€2 (h) Fm = clyj J'l Clﬁ+ﬁ a13)

Vj,j e Nt,  where¢; := /tanh(h)).

Proof All the inequalities (3.9)—(3.12) are proved by contradiction.

Proof of (3.9) Suppose that for all kj € N, for all pg > 0 there exist £ €
Z"\{0}, h € [hy, hy] such that max; |38 {@(h) - £}] < po(€). This implies

that for all m € N, taking k()k =m, pp = L there exist Ly € ZP\{0},

14+m>
h,, € [hi, ha] such that

k -
Ikngan)flah{w(hm)-@m}l < T ten
and therefore
VkeN, Vm >k ‘ach)(h)-E—m|<— (3.14)
’ IR e Y (e ‘

The sequences (hm)meN C [hi, h2] and (Em/wm))meN - Rv\{O} are
bounded. By compactness there exists a sequence m, — -4o0o such that
hy, — h € [hy, ho], L, /{(€m,) — ¢ # 0. Passing to the limit in (3.14)
for m, — +oo we deduce that 8{‘15)(}_1) -¢ = O for all k € N. We conclude that
the analytic function h — @(h) - ¢ is identically zero. Since ¢ # 0, this is in
contradiction with Lemma 3.2. O
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Proof of (3.10) First of all note that for all h € [hy, hy], we have |©(h) -
4+ Q;(h)] > Qj(h) — |oh) - €] > c1j? = Cle] > 1] if j1/? > Cole]
for some Cy > 0. Therefore in (3.10) we can restrict to the indices (¢, j) €
7" x (NT\S™T) satisfying

i < Colel. (3.15)

Arguing by contradiction (as for proving (3.9)), we suppose that for all m € N
there exist £,, € Z", j,, € N'\S* and h,, € [hy, hy], such that

k)= Em Q]m(hm) 1
i ah{”(h’”)'m+ (Cm) H< T+m
and therefore
- L Q; (hy) 1
Vk e N, Vm >k, Bk{a)(hm)- + Zm H < . (3.16)
n (€m) (€m) 1+m

Since the sequences (h;)men C [hi, ha] and (€, /{€m))men € RY are
bounded, there exists a sequence m, — +00 such that

Emn
(€m,, )

h,,, — h € [hy, hy], —ceR". (3.17)

We now distinguish two cases.

Case 1: ({;,,) C Z" is bounded. In this case, up to a subsequence, £,,, —
¢ € 7V, and since | jm| < C|€,,|? for all m (see (3.15)), we have Jm, — J.
Passing to the limit for m, — +o0 in (3.16) we deduce, by (3.17), that

d{om -+ Qj@m0) ') =0, Ykel.

Therefore the analytic function h — @(h)-¢+ (£) 1o 7(h) is identically zero.
Since (¢, (£)~1) # 0 this is in contradiction with Lemma 3.2.

Case 2: (£y,,) is unbounded. Up to a subsequence, |{,, | — +o0. In this
case the constant ¢ in (3.17) is nonzero. Moreover, by (3.15), we also have
that, up to a subsequence,

1 -

o b))t = d e R. (3.18)
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By (1.24), (3.17), (3.18), we get

1
Qjmn (hmn) ]n21n r(jmna hmﬂ) 3
= —d

’

(Cm,) (Cm,) ' (m,) (3.19)
lﬁQfmn Bom,) agr(f’”"’h’”") 0 Vk>1
m,) Cm,)

as my — +00. Passing to the limit in (3.16), by (3.19), (3.17) we deduce that
aﬁ{c?)(h) -c+d } = 0, for all k € N. Therefore the analytic function h

o) -¢+d=0is identically zero. Since (c, d) # 0 this is in contradiction
with Lemma 3.2. O

Proof of (3.11) For allh € [hy, ha], by (3.13) and (1.19), we have

Bh) - €+ QM) — ;M) = 192;(0) — QM) — (B0
> ci]j2 — j2 = Cle| = (6)

provided |j% - j/%| > C1(€), for some C; > 0. Therefore in (3.11) we can
restrict to the indices such that

j2 = J"21 < Cie). (3.20)

Moreoverin (3.11) we can also assume that j # j’, otherwise (3.11) reduces to
(3.9), which is already proved. If, by contradiction, (3.11) is false, we deduce,
arguing as in the previous cases, that, for all m € N, there exist £, € Z"\{0},
Jms j, € NT\ST, j, # jI hy € [hy, hal, such that

VkeN, Vm >k,

k)~ . o Qjm(hm)_Qj,/n(hm)H 1
ah{w(h’”) TR e Jl T Trm
(3.21)

As in the previous cases, since the sequences (hy,)meN, Cm/m))meN are
bounded, there exists m, — 400 such that

hp, — h € [hr, hal, €, /() — ¢ € R"\{0}. (3.22)

We distinguish again two cases.
Case 1 : ({,,) is unbounded. Using (3.20) we deduce that, up to a subse-
quence,

1 1 _

2 = 2 |(bm) " — d € R. (3.23)
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Hence passing to the limit in (3.21) for m, — 400, we deduce by (3.22),
(3.23), (1.24) that

@dm)-¢+dy=0 VkeN.

Therefore the analytic function h — @(h) - ¢ + d is identically zero. This is
in contradiction with Lemma 3.2.

Case 2 : (L) is bounded. By (3.20), we have that |/, — /j},| < C and
S0, up to a subsequence, only the following two subcases are possible:

(i) Jjm» jm < C.Upto asubsequence, jm, = J» jpm, —> J'» m, —> ¢ # 0and
hy, — h. Hence passing to the limit in (3.21) we deduce that
Qj(h) — Qj(h)

k)= = — v
ah{w(h) c+ 0 } 0 Vk eN.

Hence the analytic function h — @(h) - ¢ + (Q5(h) — Qy (15))(12)‘1 is
identically zero, which is a contradiction with Lemma 3.2.

(i1) jm, j,, — —+oo. By (3.23) and (1.24), we deduce, passing to the limit in
(3.21), that

{om)-c+d} =0 VkeN.

Hence the analytic function h — @(h) - ¢ + d is identically zero, which
contradicts Lemma 3.2. O

Proof of (3.12) The proof is similar to (3.10). First of all note that for all
h € [hy, hy], we have

lB(h) - £+ Qj(h) + Q)] > Qj(h) + Q) — |[Bh) - £
> 1+ ey j = Clel = |e

if /j + ﬁ > Cyp|£] for some Cp > 0. Therefore in (3.10) we can restrict the
analysis to the indices (¢, j, j') € Z¥ x (NT\S1)? satisfying

Vi++J < Colel. (3.24)

Arguing by contradiction as above, we suppose that for all m € N there exist
by €7V, jm € NT\ST and h,, € [hy, hy] such that

(€m) () o) l+m (325

Vk e N, Vm>k.

. Qi (h,
aﬁ{&(hm)- bn_y Rin ) 2, O )}' 13
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Since the sequences (h;)men C [hi, ha] and (€, /{€m))men € RY are
bounded, there exist m, — 400 such that

hy,, — b € [hy, hyl, —~ceR". (3.26)

We now distinguish two cases.

Case 1: ({y,,) C Z" is bounded. Up to a subsequence, £,,, — ¢ eZ' and
since, by (3.24), also ji, j,, < C for all m, we have j,, — J, jr/n,, — J.
Passing to the limit for m,, — +o0 in (3.25) we deduce, by (3.26), that

oM ¢+ QMmO + QM) '} =0 VkeN.

Therefore the analytic function h > @(h) - & + () ' Q 7)) + (07125 (h)
is identically zero. This is in contradiction with Lemma 3.2.

Case 2: (L, is unbounded. Up to a subsequence, |{,,,| — —+oc. In this
case the constant ¢ in (3.26) is nonzero. Moreover, by (3.24), we also have
that, up to a subsequence,

1 1 _

(jr?ln + jﬁ%)wmn)‘l —~deR. (3.27)
By (1.24), (3.26), (_3.27), passing to the limit as m, — +o0 in (3.25) we
deduce that 8ﬁ{5)(h) - C + d} = 0 for all k € N. Therefore the analytic

functionh > @(h)-é+d = 0is identically zero. Since (c, d) # 0, this is in
contradiction with Lemma 3.2. O

4 Nash—-Moser theorem and measure estimates

Rescaling u +— eu, we write (1.14) as the Hamiltonian system generated by
the Hamiltonian

He(u) == 2H(su) = Hp(u) + £ P ()

where H is the water waves Hamiltonian (1.7) (with ¢ = 1 and depth h), Hf
is defined in (1.17) and

1
P.(u,h) := P.(u) := Z/’];‘lﬂ (Gen.h) — GO, )y dx.  (4.1)

We decompose the phase space
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Hi gven 3= {1 = (0, 9) € HY(To) x AT, u(x) = u(-x)}
= Hg+ @ HSﬁ 4.2)
as the direct sum of the symplectic subspaces Hs+ and Hsﬁ defined in (1.25),
we introduce action-angle variables on the tangential sites as in (1.33), and

we leave unchanged the normal component z. The symplectic 2-form in (1.8)
reads

D Ao ndlj | ©@Wye =dA, (4.3)
jest
where A is the Liouville 1-form

ANerolB. 1.2:= = ) 1;6; ——Jz %), (4.4)
jest

Hence the Hamiltonian system generated by H, transforms into the one gen-
erated by the Hamiltonian

H,-=H.0A=¢*HocA (4.5)

where

A, I1,z) =v@,1)+z

1/2
=3 /2 V51+1 €SO Y cos(in) +2. (46)
jes+ T\— ,/Sj—i-l sin(6;)

We denote by Xy, := (0; Hg, —09 H¢, JV, H,) the Hamiltonian vector field in
the variables (0, I, z) € T" x RY x H§+. The involution p in (1.11) becomes

By (1.7) and (4.5) the Hamiltonian H, reads (up to a constant)

R 1
H,=N +¢P, N::HLOA:w(h)-1+§(z,9z)Lz, P:= P, oA,
(4.8)

where w(h) is defined in (3.1) and € in (1.16). We look for an embedded
invariant torus

i T — T xR x Hyi, ¢ > i(p) = (0(p), (). 2(p))
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of the Hamiltonian vector field X, filled by quasi-periodic solutions with
Diophantine frequency w € R (and which satisfies also first and second
order Melnikov non-resonance conditions as in (4.20)).

4.1 Nash—Moser theorem of hypothetical conjugation

For a € RY, we consider the modified Hamiltonian
1
Hy =N, +eP, N, ::a-l—i—i(z, Qz);2. 4.9)

We look for zeros of the nonlinear operator

Fli,a) :=F@,a,w,h,e) :=w- dyi(p) — Xn, (i)
= - pi(p) — (Xn;, +eXp)(i(9))

w - 0y0(p) —a —edr P(i(p))
= w - 0,1 (9) + 05 P (i (9)) (4.10)
w - 9,2(9) — J(Qz(p) + eV, P(i(p)))

where @ (¢) := 6(¢) — ¢ is (2m)V-periodic. Thus ¢ — i(p) is an embedded
torus, invariant for the Hamiltonian vector field Xy, and filled by quasi-
periodic solutions with frequency w.

Each Hamiltonian H, in (4.9) is reversible, i.e. H, o p = H, where the
involution p is defined in (4.7). We look for reversible solutions of 7 (i, o) = 0,
namely satisfying pi(¢) = i(—¢) (see (4.7)), i.e.

0(—p) = —0(p), 1(—=¢)=1(p), z(—¢) = (p2)(9). (4.11)
The norm of the periodic component of the embedded torus
J(@):=i(p)—(9,0,0):=(O(p), I(¢), 2(¢)), Op):=0(p)—p, (4.12)
is
13157 = 1O + M7 + 1217 (4.13)
where [lz[|" = [Ils” + ¥ ]I"7 . We define
ko ==k + 2, (4.14)

where k is the index of non-degeneracy provided by Proposition 3.4, which
only depends on the linear unperturbed frequencies. Thus kg is considered as

@ Springer



800 P. Baldi et al.

an absolute constant, and we will often omit to explicitly write the dependence
of the various constants with respect to k9. We look for quasi-periodic solutions
with frequency w belonging to a §-neighborhood (independent of ¢)

0= {weR" : dist(w, Blhy, hal) <8}, §>0 (4.15)

of the unperturbed linear frequencies w[h, hy] defined in (3.1).

Theorem 4.1 (Nash—Moser theorem) Fix finitely many tangential sites ST C
N* and let v := |ST|. Let T > 1. There exist positive constants ay, g, k1, C
depending on S, ko, T such that, for all y = €%, 0 < a < ag, forall ¢ €
(0, 9), there exist a kg times differentiable function

Oso : RY x [h1,ha] = RY,
do(w,h) =w+r.(w,h), with |r8|k°’y < Csy_l, (4.16)

a family of embedded tori i~ defined for all (w, h) € RY x [hy, hy] satisfying
4.11) and

liso(@) — (9.0, 0) %07 < Cep!, 4.17)

a sequence of ko times differentiable functions M?O : RY x [h;,ha] — R,
j € NT\S™, of the form

1 (@, h) = m (@, h)(j tanh(8)))? + (@, h) (4.18)
2
satisfying
m® — 1007 <Cey™!, sup JIRFROV < Cey M (4.19)
2 jeN+\S+

such that for all (w, h) in the Cantor like set

cl = {(w, h) € Q x [hy, hyl © |- £] > 8y (£)~7, V£ € Z¥\{0},
- €+ uF (@ 0)] = 4yj2(0) T, VL€ 2, j e NT\SY,
o€+ pu5 (@, 1) + uF (@, h)|

1 1
>4y (j2 4+ 20077, veez’, j,j e NT\sT,
o€+ 15 (@, ) — uF (@ h)|

> 4y~ Ve e 2V, . e NTASTL (6 ) # 0. D)
(4.20)
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the function i (¢) := iso(w, h, €)(¢) is a solution of F (ixo, ¥eo(w, ), w, h,
&) = 0. As a consequence the embedded torus ¢ +— i~ (@) is invariant for the
Hamiltonian vector field X p, and it is filled by quasi-periodic solutions
with frequency w.

oo (w,h)

Theorem 4.1 is proved in Sect. 15. The very weak second Melnikov non-
resonance conditions in (4.20) can be verified for most parameters if d is large
enough, i.e. d > % k(’)", see Theorem 4.2 below.

4.2 Measure estimates

The aim is now to deduce Theorem 1.1 from Theorem 4.1.
By (4.16) the function as (-, h) from @ into the image o+, (2, h) is invertible:

B =t h)=w+r(w,h) <<—

1 . ) .k 1 (4.21)

w=o0y(B,h)=pB+7F(B,h) with [F|"7" <Cey™.
We underline that the function agol (-, h) is the inverse of ax (-, h), at any
fixed value of h in [hy, hy]. Then, for any 8 € o (CL), Theorem 4.1 proves
the existence of an embedded invariant torus filled by quasi-periodic solutions
with Diophantine frequency @ = a2 (8, h) for the Hamiltonian

1
Hg=p-1+ E(Z’ Q)72 +¢P.

Consider the curve of the unperturbed tangential frequencies [hy, hy] > h —
o(h) = (Vj tanh(hj)) jes+ in (1.37). In Theorem 4.2 below we prove that
for “most” values of h € [hy, hp] the vector (ozgo1 (w(h), h), h) is in C%.
Hence, for such values of h we have found an embedded invariant torus for the
Hamiltonian H, in (4.8), filled by quasi-periodic solutions with Diophantine
frequency w = a ! (@(h), h).

This implies Theorem 1.1 together with the following measure estimate.

Theorem 4.2 (Measure estimates) Let

*

_ .a . " 3k;
y =¢", 0<a<minfag, 1/(ko +k1)}, T>ky(v+4), d> 7

(4.22)

where ki is the index of non-degeneracy given by Proposition 3.4 and ko =
ks + 2. Then the set

Ge :={h € [hy, ] : (a3 (@(h), h), h) € CL} (4.23)
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has a measure satisfying |G.| = hp —hj ase — 0.

The rest of this section is devoted to the proof of Theorem 4.2. By (4.21)
the vector

w:(h) := oy (@(h), h) = &(h) + re(h), re(h) :=Fc(@(h), h), (4.24)
satisfies
10k re ()] < Cey ™1 VO <k < ko. (4.25)
We also denote, with a small abuse of notation, for all j € NT\S™,
HP ) = i @s(), b) = mP(R)( tanh(n))? + ¥ (1), (4.26)
where

m‘?(h) :=m (we(h), h), t?o(h) = t?o(a)g(h), h). 4.27)

1
2

By (4.19), (4.27) and (4.24)—(4.25), using that ey ~%0~1 < 1 (which by (4.22)
is satisfied for ¢ small), we get

10k @) — 1| < Cey 17K,
2

4.28
swp  HEE M < CeyF Vo<k<ky )
jeNT\S+

By (4.20), (4.24), (4.26), the Cantor set G, in (4.23) becomes
Ge = | € [h1 Dl oo (1) - €] = 8y (6)7", Ve € Z*\(0),
jwe(h) - £+ 1P ()] = 4yj2{0) 7, Ve Z', j e NH\ST,

1 1 _
lwe () - £+ p77 () + uf ()| = 4y (jf + j’f) -,
Ve eZ' j,j e NI\St,

4y(6)"

@h) £+ 157 () = T O] 2 =

veeZ', j,j e NSt (¢, j, j) # (O, ], j)}. (4.29)
We estimate the measure of the complementary set
Gg = [h1, ho\Ge
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. (0) ) an urn
= (U R, ) U (U Re,j) ( U Qz/, ) ( U R[J.J.,) (4.30)
£#0 L, j L.’ (,j.jN#0,.J)

where the “resonant sets” are

RY = {ne[h hal: |wp(h) - €] < 8y(6)~7} (4.31)

R = {h € [h1, bl < o (h) - €+ uP ()] < dyj2(0) 77} (4.32)

ngl), {hehi hl: |we(h)- €+ pP(h) + 15 ()] <4V(]2 1 2) T} (4.33)
4y (0)~T

RU = {he [, ho] : Jeop (B) - €4 i3 (B) — ()] < ?flj)d } (4.34)

with j, j/ € NT\S™T. We first note that some of these sets are empty.
Lemma 4.3 Fore, y € (0, yo) small, we have that

1 IfR # B then j* < C(0).
2.1 fR(”) £ @ then|jz — j'2| < C(€). Moreover, RM) = @, forall j # j'.

4jj’ 1 | 0jj’
3. IFQU) # 0 then j2 + 2 < C(0).
: (1) 1) :
Proof Let us consider the case of joj, If Rejj’ # () there is h € [hy, hy]
such that
dy(€)~*
1P () — uF )] < o e () 6] < C{E).  (435)

On the other hand, (4.26), (4.28), and (3.13) imply

. . —K c . .
RGM) = pF M = mFelV =/ j'I = Cey™ = SV =i = 1.

(4.36)

Combining (4.35) and (4.36) we deduce | jZ — j'2| < C(£).

Next we prove that Ry} =, ¥j # j'. Recalling (4.26), (4.28), and the

definition 2 (h) = 4/j tanh(hj), we have

Cey™  Cey™™
1 () — uF ()] = M ()| (h) — @ ()] — —— —
: j? ("
3. 13) c ng KI CgyH
SWVi=Vi- ———. (437
j? ()2
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Now we observe that, for any fixed j € NT, the minimum of |/j — \/7 |
over all j/ € NT\{j} is attained at j/ = j + 1. By symmetry, this implies that
Wi — ﬁ| is greater or equal than both (/7 + 1+ +/j) "' and (\/j + 1 +
Vi)~ ! Hence, with co := 1/(1 4 +/2), one has

Iﬂ—fl>60maX{f \}} §<L+\%>

o .. . ./
Vj,j eNt, j# ] (4.38)

IALOAY

As a consequence of (4.37) and of the three inequalities in (4.38), for ey !
small enough, we get for all j # ;'

c . 4y
1P @) — u¥ M| = <V — Vil = A

for y small, since d > 1/4. This proves that R(”) @, forall j # /.

The statement for Ry; () and Q(”) is elementary O

By Lemma 4.3, the last union in (4.30) becomes

1) (1)
U Ry = U Ry (4.39)
(£.7.j)#0,j.)) ££0
IWT—+/7'I=Cte)

In order to estimate the measure of the sets (4.31)—(4.34) that are nonempty,
the key point is to prove that the perturbed frequencies satisfy estimates similar
to (3.9)—(3.11) in Proposition 3.4.

Lemma 4.4 (Perturbed transversality) For & small enough, for all h €

[hi, hal,
max e (1) - = 57 (0) Ve € 2\, (4.40)
max 0 0. () - €+ W) = T ) VEEZ', JeNNST:jE <,
(4.41)
max 0 () £+ 15700 — uF @11 = 0
Ve e Z\(0), j.j e NI\ST: 12 = j3| = Clo), (4.42)
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£0
max |3 (s () - € + 1P () + pSF )] = 22 (0
=Ko
Voo ot . L gL
YeeZ", j,j e NT\ST: j2 4+ j2 <C¥), (4.43)

where kg is the index of non-degeneracy given by Proposition 3.4.

Proof The most delicate estimate is (4.42). We split
pP M) = Q;(h) + (1 — 2))({)

where Q;(h) := j% (tanh( jh))%. A direct calculation using (1.24) and (4.38)
shows that, for h € [hy, hy],

1 1
0592,(0) — @) < Culj? = 2 VE=0.  (444)
Then, using (4.28), one has, for all 0 < k < ko,
o {5 = 1) 0) — (@) — 2w}
= 10 { () = D@y () — 2y | 1+ [0k )] + 13fe ()

“4.44) TS B ek, L g1
< Cko{ey PRz — 2 ey 7RG T2 4 () 2)}

4.38)

/ —Kl—k
= Ckogy

1 —j'11. (4.45)

Recall that ko = K7\ + 2 (see (4.14)). By (4.25) and (4.45), using |j 2 — j'2| <
C(l), we get

max |9 {we () - £ + u5(h) — uF ()]
k<kg :
> max 10 (D) - €+ Qj(h) — Qjr(h)}| — Cey =TT g
< *
=0

—Cey =Wt j3 — 13|
> max [0 {@(h) - €+ () — R ()] — Cey =)
<t

A3.11) e
> po(l) — Cey~® a0 0y > po(e)/2

provided ey ~*0t%1) < po/(2C), which, by (4.22), is satisfied for & small
enough. m|
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As an application of Riissmann Theorem 17.1 in [57] we deduce the fol-
lowing

Lemma 4.5 (Estimates of the resonant sets) The measure of the sets in (4.31)—
(4.34) satisfies

€ 1
RO1S (r @) ve£0, RS (viTe)" )R,

any < (0T D < (b 1 b — (D) i
'Rm/h(y—jdj,d )5 ve£0, 10001 S (v + DO~

Proof We prove the estimate of R (”) in (4.34). The other cases are simpler.
We write

4

(In 14

Ry = {h € [hy, ho] o [ fe;r(R)| < W}

where fy;;/(h) := (we(h) - £+ ,u;?o (h) — M;’,O (h))(£)~!'. By (4.39), we restrict
to the case | jZ — j'2| < C(£) and € # 0. By (4.42),

?g}glaﬁfejy(h)l > po/2, Vh e [hy, hyl.
—="0

In addition, (4.24)—(4.28) and Lemma 4.3 imply that max; <, | 8{‘1 feji)| < C
forallh € [hy, hy], provided ey —(kotx1) j5 small enough, namely, by (4.22), ¢
is small enough. In particular, fy;; is of class cko—1 = cko+1 Thus Theorem
17.1 in [57] applies, whence the lemma follows. O

Proof of Theorem 4.2 completed By Lemma 4.3 (in particular, recalling that
RZ.;/) is empty for £ = 0 and j # j/, see (4.39)) and Lemma 4.5, the measure
of the set G¢ in (4.30) is estimated by

¢ ) (1) 1) (11)
1= D IR, I+Z|R 2 IRyIE D 104

L#£0 (E,j,j/);é(O,j,J) &, j.J'
0 1 11 11
<> IROI+ Z RO+ Y R+ Y el
££0 j=c)? £#0 JoJ'<C(£)?
Wi—+/J'1=C(8)
1 1 1
viz \%
()" T ()

J=C0)?

@ Springer



Time quasi-periodic gravity water waves in finite depth 807

1 1 1 &
y i y(iz+j7)\%
+ Z (<g>t+1jdj/d) + Z ( (g)r+1 )

NENAIE ) jj'=cw?

i 1 1
ez (0% g Tisce () LRk

The first series in (4.46) converges because —4 > v by (4.22). For the second

series in (4.46), we observe that the sum is symmetrlc in(j, j')and, for j < j/,
the bound |/7 — /j/| < C(¢) implies that j < j' < j+ C2(€)> +2C /(L)
Since

J+p 1 J+p 1

. p+1 .
Vei Qg E) e =T pim OtV
j=ij*t  j=jjk jto
the second series in (4.46) converges becaus k — % > 1
0

by (4.22). By (4.46) we get

€
E3
0

IG¢| < Cy*

In conclusion, for y = &%, we find |G| > hy —h| — Ce?’*% and the proof of
Theorem 4.2 is concluded. |

5 Approximate inverse

In order to implement a convergent Nash—Moser scheme that leads to a solution
of (i, «) = 0 we construct an almost-approximate right inverse (see Theorem
5.6) of the linearized operator

di o F (i0, @)1, @] = w - 3yt — d; X, (i0(9))[1] — (@, 0,0).  (5.1)

Note that d; o F (i, a0) = d; .o F (ip) is independent of «g, see (4.10) and recall
that the perturbation P does not depend on «.

Since the linearized operator d; X g, (io(¢)) has the (0, I, z)-components
which are all coupled, it is particularly intricate to invert the operator (5.1).
Then we implement the approach in [8,16,21] to reduce it, approximately, to
a triangular form. We outline the steps of this strategy. The first observation
is that, close to an invariant torus, there exist symplectic coordinates in which
the linearized equations are a triangular system as in (1.27). We implement
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quantitatively this observation for any torus, which, in general, is non invariant.
Thus we define the “error function”

Z(@) = (Z1, Z2, Z3)(¢) = F(io, 20)(¢) = @ - dyio(®) — X, (i0(¢))-
(5.2)

If Z = 0 then the torus io is invariant for Xp, ; in general, we say that
ip 1s “approximately invariant”, up to order O(Z). Given a torus ip(p) =
Bo(p), Io(¢), zo(p)) satisfying (5.6) (condition which is satisfied by the
approximate solutions obtained by the Nash—Moser iteration of Sect. 15), we
first construct an isotropic torus is(¢) = (6Bo(@), I5(¢), zo(¢)) which is close
to ip, see Lemma 5.3. Note that, by (5.14), F(is, ag) is also O(Z). Since is
is isotropic, the diffeomorphism (¢, y, w) +— Gs(¢, y, w) defined in (5.16)
is symplectic. In these coordinates, the torus is reads (¢, 0, 0), and the trans-
formed Hamiltonian system becomes (5.19), where, by Lemma 5.4, the terms
dp Koo, K10 — w, Ko1 are O(Z). Thus, neglecting such terms, the problem
of finding an approximate inverse of the linearized operator d; o F (io, o) is
reduced to the task of inverting the operator D in (5.34). We solve system
(5.35) in a triangular way. First we solve the equation for the y-component of
system (5.35), simply by inverting the differential operator w - 9, see (5.37)
and recall that w is Diophantine. Then in (5.38) we solve the equation for the
w-component, thanks to the almost invertibility of the operator L, in (5.26),
which is proved in Theorem 14.10 and stated in this section as assumption
(5.29)—(5.33). Finally the equation (5.39) for the ¢-component is solved in
(5.44), by modifying the counterterms according to (5.43) and by inverting
@ - 0y. In conclusion, in Theorem 5.6 we estimate quantitatively how the con-
jugation of D with the differential of G5 (see (5.46)) is an almost approximate
inverse of the linearized operator d; o F (io, o).

First of all, we state some preliminary estimates for the composition operator
induced by the Hamiltonian vector field Xp = (0; P, —0g P, JV;P) in (4.10).

Lemma 5.1 (Estimates of the perturbation P) Let J(¢) in (4.12) satisfy

|18 ||]§(s’07;2k0 45 = 1. Then the following estimates hold:
Xp(i ko,y <1 ~11ko.y 5.3
IXpDIls™" s 1+ ”J”s+2s0+2k0+3’ (5.3)

o~

and for allT := (0, T?)

. ko,y ko,y ~nko,y ki
1 X p O S 1T+ 1919, sor T2, (5.4)

2 . ko,y ko,y ko,y ~1ko,y k y
Id: X p (D" Ss TG TG + ”J||S(_)|_2SO+2](0+5(|H|S§+] (5.5)
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Proof The proof is the same as the one of Lemma 5.1 in [21], using also the
estimates on the Dirichlet Neumann operator in Proposition A.1. O

Along this section we assume the following hypothesis, which is verified by
the approximate solutions obtained at each step of the Nash—Moser Theorem
15.1.

e ANSATZ. The map (w,h) — Jo(w,h) = ig(p; ®w,h) — (¢, 0,0) is ko
times differentiable with respect to the parameters (w, h) € R" x [hy, ho],
and for some u := u(r,v) >0,y € (0, 1),

~ ko, ki -1
1T0llsgye + loto — @7 < Cey ™. (5.6)

For some k := « (7, v) > 0, we shall always assume the smallness condi-
tioney —* K 1.

We now implement the symplectic procedure to reduce d; ,F (ip, o)
approximately to a triangular form. An invariant torus iy with Diophantine
flow is isotropic (see [16,30]), namely the pull-back 1-form ijA is closed,
where A is the 1-form in (4.4). This is equivalent to say that the 2-form
igW = ijdA = dijA = 0. For an approximately invariant torus io the
I-form i A is only “approximately closed”: we consider

ifA =" alp)dg,
) | (5.7)
ar(@) == —([9,00(@)]" Io(@)), — 5(3%20((9), Jzo(@)) 12(T,)

and we show that

oW =digA = Zl§k<j§vAkj(§0)d(Pk Ndyj,

Akj (@) := 0gaj(p) — 0y, ar(p),

(5.8)

is of order O(Z), see Lemma 5.2. By (4.10), (5.3), (5.6), the error function Z
defined in (5.2) is estimated in terms of the approximate torus as

ko, — ~ ko,
1ZI"" Ss ey~ + 130ll53 (5.9)

Lemma 5.2 Assume that o belongs to DC(y, t) defined in (2.13). Then the
coefficients Ay; in (5.8) satisfy

1ko.y -1 ko,y ko,v \y~ jiko.v
”Akj ”A SS Y <||Z||S+T(k0+l)+k0+l + I|Z||S()+1I|J0||s+r(k0+l)+k0+l)'

(5.10)

@ Springer



810 P. Baldi et al.

Proof The Ay; satisfy the identity @ - 9,Az; = W(0,Z(p)ey, dyio(p)e )+
W(0gio(@)ey. 8(/,Z(<p)gj) where ¢, denotes the k-th versor of R”, see [16],
Lemma 5. Then (5.10) follows by (5.6) and Lemma 2.5. O

As in [8,16] we first modify the approximate torus ip to obtain an isotropic
torus is which is still approximately invariant. We denote the Laplacian A, :=

ZZ:I argk :
Lemma 5.3 (Isotropic torus) The torusis(¢) := (0o(@), I5(¢), zo(p)) defined
by

Is :=Io + [3,00(@)] T 0(9),  pj(9) = A;IZZZI%Amm (5.11)

is isotropic. There is o := o (v, T, ko) such that

s — Lolls” < 1olI%%Y (5.12)
s — Lol < v~ IZISKE + 1ZIS L 1T0l5%E), (5.13)
1F s, a0l 57 s IZISKE + 1Z182, 1T0l% Y (5.14)
I s S ITIS0Y + 1T l% 2 715 (5.15)

We denote by o := o (v, t, ko) possibly different (larger) “loss of derivatives”
constants.

Proof The Lemma follows as in [8] by (5.4) and (5.7)—(5.10). ]

In order to find an approximate inverse of the linearized operator d; o F (is),
we introduce the symplectic diffeomorpshim Gs : (¢, vy, w) — (0,1, z) of
the phase space T" x R" x Hg; defined by

6 ¢ o(9)
L :=Gs |y |:=| I5(¢) + 860D "y - [(8920)(90(¢))]wa
Z w z0(¢) +w

(5.16)

where zo(0) := z0(0, ! (0)). Itis proved in [16] that G5 is symplectic, because
the torus is is isotropic (Lemma 5.3). In the new coordinates, is is the trivial
embedded torus (¢, y, w) = (¢, 0, 0). Under the symplectic change of vari-
ables G the Hamiltonian vector field X g, (the Hamiltonian H, is defined in
(4.9)) changes into

Xk, = (DGs) 'Xpg, 0Gs  where K, :=Hyo0G;.  (5.17)

By (4.11) the transformation G5 is also reversibility preserving and so K, is
reversible, K, o p = K.
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The Taylor expansion of K at the trivial torus (¢, 0, 0) is
Ko(d,y, w) = Koo(¢, @) + Kio(¢p, @) - y + (Ko1 (P, &), w) 2T,

1
+ 51(20(</>)y v+ (K11(¢)Y» w)LZ(TX)

45 (Ko@), w) iy, + K23, v, 0) (5.18)
where K>3 collects the terms at least cubic in the variables (y, w). The Taylor
coefficient Koo(¢. @) € R, Kig(¢, @) € R”, Ko1(¢. @) € Hg:, Kxo(¢) is a
v x v real matrix, Ko (¢) is a linear self-adjoint operator of Hgﬁ and K11(¢) €
L(RY, HSﬁ). Note that, by (4.9) and (5.16), the only Taylor coefficients that
depend on « are Kog, K10, Ko1-

The Hamilton equations associated to (5.18) are

¢ = Kio(p. )+ K@) y+K{| (9)w+03,K=3(¢, y, w)

¥ = 3y Koo(¢. &) —[35 K10(, )17y — [y Ko1 (¢, &)1 w—g (5 K20(@)y - ¥
+(K11(9)y, w) 21,y + 5 (Ko (@) w, w) 27, +K=3(6, y, w))

w = J(Koi (¢, @) + K11(9)y + Koa(p)w + Vi K=3(¢, y, w))

(5.19)

where 93 K[ is the v x v transposed matrix and 9,K[;, K], : H§+ — R
are defined by the duality relation (g Ko [¢A>], w)L% = ¢A> - [9g Koi1" w, VqAS €
RY, we Hgﬁ, and similarly for K. Explicitly, forall w € Hgﬁ, and denoting
by ¢, the k-th versor of R”,

v v

K1T1 (P)w = Z (K1T1(¢)w 'ék)ék = Z (w, Kll(d’)é/()Lz(Tx)ék e R".
k=1 k=1
(5.20)

The coefficients Koo, K10, Ko1 in the Taylor expansion (5.18) vanish on an
exact solution (i.e. Z = 0).

Lemma 5.4 We have

195 Koo -, @) 157 + 1K 10(-» @) — wlls” + [ Koi -, o) 157
< 1Z18%Y + 12107 130187

190 Kool157 + 119 K10 — 1157 + 1100 Kor 157 <, 1900197,

1K20lE7 <, e(1+ 13015%Y),

Kyl S5 (v 187 + 130192 1y 1507),

T . ko ko,y ~ 1koy ko,y
1K wls"" s 8(|lels12 + 1105 %o ||w||s§+2)-

(5.21)
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Proof The lemma follows as in [8,16,21] by (5.3), (5.6), (5.12), (5.13), (5.14),
(5.20). O

Under the linear change of variables

-~

¢ 9p00() 0 0 é
DGs(9,0,0) | 3 | := | 3p15(9) [3p00(@)1™ T —[(30Z0) @o(@N1T T | | 3
w dp20(p) 0 1

g) <

(5.22)

the linearized operator d; o F (i5) is approximately transformed (see the proof
of Theorem 5.6) into the one obtained when one linearizes the Hamiltonian
system (5.19) at (¢, y, w) = (¢, 0, 0), differentiating also in « at «g, and
changing 0, ~~ - 9y, namely

g w-dpp — 8¢Kl£’(90)[$] — 3 K10(@)[@] — K20(9)y — KT (9)
17 e 39y + 999 Koo (@) [@] + 9 Koo (@) [@] + [9p K10(@)17y + [0 Ko1 (@17 W | .
a - 3, W — J {3y Ko1(@)[@] + 9o Ko1 (@) [] + K11(9)Y + Ko2 (@)W}

(5.23)

As in [8], by 15.22), (5.6), (5.12), the induced composition operator satisfies:
forall7 := (¢, y, w)

ko, — ko,
IDGs(p, 0, 0)[T1Is"Y + IDGs(p, 0,0)" " [1]1;""

ko,y ~ nko,y ko,y
Ss 0”7 + 130lli5 o Mllse (5.24)
2 —~ ko, ko, ko, ko, ko,
ID*Gs(p, 0, O, 211" So T ls” 2llsy” + ITillsy” 122115
~ nko,y ko,y ko,y
+H1Tollsyo 1llse” 21l (5.25)

In order to construct an “almost-approximate” inverse of (5.23) we need that

Lo =Tz (w- 3y — JKo2()) (5.26)

1
[

is “almost-invertible” up to remainders of size O (Nn__al) (see precisely (5.30))
where

N, =K', VYn=>0, (5.27)
and

K,:=KJ, x:=3/2 (5.28)
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Time quasi-periodic gravity water waves in finite depth 813

are the scales used in the nonlinear Nash—Moser iteration in Sect. 15. The
almost invertibility of £, is proved in Theorem 14.10 as the conclusion of
the analysis of Sects. 6-14, and it is stated here as an assumption (to avoid
the involved definition of the set A,). Let H{ (TV*1) := H*(T"*!)n HS{ and
recall that the phase space contains only functions even in x, see (4.2).

e Almost-invertibility of £, There exists a subset A, C DC(y, 7) X [h1, h3]
such that, for all (w, h) € A, the operator £, in (5.26) may be decomposed
as

Lo=LS+Ro+Ry (5.29)

where L is invertible. More precisely, there exist constants Ko, M, o, u(b),
a, p > 0 such that for any so < s < S, the operators R, Ral) satisfy the
estimates

ko,y —2(M+1) ny— ko,y ~ nko,v ko,y
IR Ss ey MEONTE (IB1ED + 13018 )40 17 15040)

(5.30)

ko, _ ko, ~ 11ko, ko,
IRGAIS Y SsKy (Ml g + 130050 oy 4o il ), ¥B=>0,
(5.31)

1 ko, ko, ~ ko, ko,
IRGAIY Ss lhlly + IIJollslﬁ(bmllhllsfjfg. (5.32)

Moreover, for every function g € Hf”“ (T*!, R?) and such that g(—¢) =
—pg(p), for every (w,h) € A,, there is a solution i := (L(j)_lg €
Hi (T*!, R?) such that h(—¢) = ph(g), of the linear equation Loh=g.
The operator (,ch)_1 satisfies for all so < s < § the tame estimate

1 ko, _ ko, ~ ko, ko,
1L gl <s v l(ngnsiz+||Jo||siﬁ(b)+g||g||S§I(,). (5.33)

In order to find an almost-approximate inverse of the linear operator in
(5.23) (and so of d; o F (is)), it is sufficient to invert the operator

- @ - 3y — 0 Kio()[@] — K20(9)T — K} (9)
D[¢,y, w,a] := w - 3,y + 350« Koo (@) [@]
(Ls)w — Jdu Koi(p)[a] — JK11(9)y
(5.34)

obtained by neglecting in (5.23) the terms 0y K10, 999 K00, 9 K00, 9pKo1,
which are O(Z) by Lemma 5.4, and the small remainders R, Ri appearing
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814 P. Baldi et al.

in (5.29). We look for an inverse of D by solving the system

R 81
D¢, y, w,a] = | g2 (5.35)
83

where (g1, g2, g3) satisfy the reversibility property

g1(p) = g1(=9), &(¢p) = —g2(=¢), g&3(¢p) = —(pg3)(—9). (5.36)

We first consider the second equation in (5.35), namely w - 9,y = g» —
300y Koo (@) [a@]. By reversibility, the g-average of the right hand side of this
equation is zero, and so its solution is

Y= (- 3,)" (g2 — dudpKoo(@)[@l). (5.37)

Then we consider the third equation (L)W = g3+J K11(¢)y+J 3, Ko1 (¢)[a],
which, by the inversion assumption (5.33), has a solution

W= (L) (g3 + TK1 (@)Y + J0u Ko (9)[@]). (5.38)

Finally, we solve the first equation in (5.35), which, substituting (5.37), (5.38),
becomes

w - 0,$ = g1 + Mi(@)[@] + Ma(9) g2 + M3(9) g3, (5.39)

where

M () := 8, K10(¢) — Ma ()03 Koo(9) + M3(9)J 8, Ko1(9),  (5.40)
My(9) = K0 (@)[w- 3,17 + K1 (o) (L) TK 1 (@)w- 3,17, (5.41)
M3(p) == KL (o)(L£5) ™" (5.42)

In order to solve equation (5.39) we have to choose & such that the right
hand side has zero average. By Lemma 5.4, (5.6), the p-averaged matrix is
(M) = Id + O(ey~"). Therefore, for ¢y ~! small enough, (M) is invertible
and (M)~! =1d + O(ey~"). Thus we define

@ = —(M)7 (g1) + (Maga) + (M3g3)). (5.43)
With this choice of @, equation (5.39) has the solution

¢ = (@-3,) " (g1 + M)A + Ma(p)gr + M3(9)g3).  (5.44)

@ Springer



Time quasi-periodic gravity water waves in finite depth 815

In conclusion, we have obtained a solution (d) v, w, @) of the linear system
(5.39).

Proposition 5.5 Assume (5.6) (with u = w(o) + o) and (5.33). Then, for all
(w,h) € b, forall g := (g1, &2, g3) even in x and satzsfylng (5.36), system
(5.35) has a solution D~ 1g = (¢ Y, w, @), where (qb v, w, Q) are defined in
(5.44), (5.37), (5.38), (5.43), which satisfies (4.11) and for any so <s < S

k ko, ko,
D~ gk < (ngum+||Jo||si,i(b)+g||g||sg+t,). (5.45)

Proof The lemma follows by (5.38), (5.40), (5.41) (5.42), (5.43), (5.44),
Lemma 5.4, (5.33), (5.6). O

Finally we prove that the operator
To := To(io) := (DG5)(@,0,0) oD 0 (DG5)(9,0,0)”"  (5.46)

is an almost-approximate right inverse for d; o F (ip) where 55 (¢, y, w,a) =
(Gs(¢, y, w), ) is the identity on the a-component. We denote the norm

ko, ko,
1@, v, w, @)l == max{[[(¢, y, w)[s"7, ll®o7}.

Theorem 5.6 (Almost-approximate inverse) Assume the inversion assump-
tion (5.29)—(5.33). Then, there exists 6 := o (t, v, kg) > 0 such that, if (5.6)
holds with u = u(o) + o, then for all (w,h) € A, forall g := (g1, g2, £3)
even in x and satisfying (5.36), the operator T defined in (5.46) satisfies, for
allsg < s < S,

ko, — ko, ~ ko, ko,
ITogl” <s v l(ugnsig + ||Jo||;’+,i(b)+5||g||s3+y5). (5.47)

Moreover Ty is an almost-approximate inverse of d; o F (i), hamely
d; o F(io) o To — Id = P(io) + Puio) + P (i) (5.48)
where, for all so < s < S,

ko,y -1 . ko,y ko,y
IPgl"" <s v (||f(zo,ao)nsﬁg,ngnw

. ki ~ 1k ko,
+ {I1F Go. a0) %7 + 1 F Gio. o) 105 ||Jo||éi,i(b)+5}||g||sg+2), (5.49)

ko, -2 k ~ ko, ko,
1Pugls™” Ss ey M N2 (Ig15%Y + 130135 )5 181505 ), (5.50)
_ _ ki
IPEele” Sso v Ky (1810 Ty + 1301007 oy sa4s |€I0l5). VB >0, (5.51)
s k ki
PSS Ss v (I8IA5E + 1301557, )5 18105 (5.52)
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Proof Bound (5.47) follows from (5.46), (5.45), (5.24). By (4.10), since X »r
does not depend on 7, and i differs by ip only in the / component (see (5.11)),
we have

& = d; o F(io) — di o F(is)

1
— / 01di X p (00, Is + s(To — Iy, 20)lIo — I5, TI[ - 11ds (5.53)
0

where IT is the projection (7, @) — 7. Denote by u := (¢, y, w) the symplec-
tic coordinates induced by G in (5.16). Under the symplectic map G, the
nonlinear operator F in (4.10) is transformed into

F(Gs(u(@)), @) = DG (u(@))(Dou(p) — Xk, (u(@), @)  (5.54)

where K, = H,0Gj,see(5.17) and (5.19). Differentiating (5.54) at the trivial
torus us(¢) = Gy ' (i5) (¢) = (.0, 0), at @ = ag, we get

di o F (is) = DGs(us) (e - 9y — du,aXk, (us, Oto))Déa(ug)_] + &1,
(5.55)

€1 1= D*G;(up)[DGs(us) ™ Fis, ), DGs(up) ' M[-1]. (5.56)

In expanded form w - 9y — dy,« Xk, (U5, o) is provided by (5.23). By (5.34),
(5.26), (5.29) and Lemma 5.4 we split

w8y — dy o Xk (us,20) =D+ Rz + R, + R (5.57)

where

o~

Rz[$. 3. 0. @] ~
—0pK10(p, Oto)[¢]
= 3¢¢Koo(¢,a0)[¢] [0 K10(@, ap)] y+[3¢K01(<P,010) ,
—J{0sKo1 (g, ap) [P}

and
0 0
ol 3, W, a] : 0 . Rli[g,y w,a]:= 0
Re[w] RE1W]

By (5.53), (5.55), (5.56), (5.57) we get the decomposition

di o F(io) = DGs(us) oD o DGs(us) ™' + & + &y + EF (5.58)
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Time quasi-periodic gravity water waves in finite depth 817

where

E:=E + & + DGs(us)RzDGs(us) ",
Ew = DGs(us)R,DGs(us) ™',
£ = DGs(us)RSDGs(us) ™.

Applying Ty defined in (5.46) to the right hand side in (5.58) (recall that
us(p) := (¢, 0,0)), since D o D! =1d (Proposition 5.5), we get

di o F(ip)oTo—1d =P + P, + P2,
P:=Eo0Ty, Py:=EyoTy, Pr:=EroTy.

By (5.6), (5.21), (5.12), (5.13), (5.14), (5.24)—(5.25) we get the estimate

~ ~111ko,y ko,y ko,y ko,y p~ikosv
1€ allls™" Ss 12 175 e + 1215 s 117

so+o so+o
ko,y ko,y y~ nko,v
+ ||Z||s0+o'|m|so+g”~jo||s+gv (559)

where Z := F(ip, ag), recall (5.2). Then (5.49) follows from (5.47), (5.59),
(5.6). Estimates (5.50), (5.51), (5.52) follow by (5.30)—(5.32), (5.47), (5.24),
(5.12), (5.6). O

6 The linearized operator in the normal directions

In order to write an explicit expression of the linear operator £, defined in
(5.26) we have to express the operator Ko (¢) in terms of the original water
waves Hamiltonian vector field.

Lemma 6.1 The operator Koy () is

Koa(¢) = Mg, 8,V H(T5($)) + e R() (6.1)

where H is the water waves Hamiltonian defined in (1.7) (with gravity constant
g = 1 and depth h replaced by h), evaluated at the torus

Ts5(¢):=eA(is(9)) = A(O0(@), Is(h). 20(P)) = vev(Oo (), I5(¢)) +£20()
(6.2)

with A0, I, z), v(@, I) defined in (4.6). The operator Ky (¢) is even and
reversible. The remainder R(¢) has the “finite dimensional” form

R(p)[h] = Zjeg+(h, gj)L%Xj, Vh e H:, (6.3)
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for functions g, x; € HS%r which satisfy the tame estimates: for some o =
o(t,v) >0, Vs > s,

ko,y ko,y ~ nko.y
lgills " +lxills™" Ss 14+ 1Tslliy g

- (6.4)
||digjm||s+”di)(jm”s Ss Mlls4o + ||J8||s+a|m|so+n-

Proof The lemma follows as in Lemma 6.1 in [21]. O

By Lemma 6.1 the linear operator L, defined in (5.26) has the form

Lo =g, (L + eR) s, where  Li= -0y = JOuVuH (Ty(@))
(6.5)

is obtained linearizing the original water waves system (1.14), (1.6) at the
torus u = (n,¥) = Ts(¢p) defined in (6.2), changing o; ~ w - d,. The
function 1 (¢, x) is even(p)even(x) and ¥ (¢, x) is odd(p)even(x).

In order to compute the linearization of the Dirichlet-Neumann operator,
we recall the “shape derivative” formula, given for instance in [46,47],

1
G/(n)[ﬁllﬁ:gii% ;{G(n+€ﬁ)1/f = GY}=—Gm BN —d(Vi) (6.6)

where

nxYx + Gy

B:=B =
m, V) T+

) V=V, ¥) =Yy — Bne. (6.7)

It turns out that (V, B) = V, ,® is the velocity field evaluated at the free
surface (x, n(x)). Using (6.6), the linearized operator of (1.14) is represented
by the 2 x 2 operator matrix

(6.8)

3 39,V +G(mB —G(n)
L:=w- a¢, + <(1 + BVy) +BG(n)B Vo, — BG(”)) ‘

Since the operator G (1) is even according to Definition 2.19, the function B
is odd(¢p)even(x) and V is odd(¢)odd(x). The operator L acts on H I(T) x
H(T).

The operators L, and £ are real, even and reversible. We are going to make
several transformations, whose aim is to conjugate the linearized operator to
a constant coefficients operator, up to a remainder that is small in size and
regularizing at a conveniently high order.

Remark 6.2 It is convenient to first ignore the projection H§+ and consider the
linearized operator £ acting on the whole space H I(T) x HY(T). At the end
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of the conjugation procedure, we shall restrict ourselves to the phase space
HO1 (T) x H(T) and perform the projection on the normal subspace H§J~ see
Sect. 13. The finite dimensional remainder ¢ R transforms under conjugation
into an operator of the same form and therefore it will be dealt with only once
at the end of Sect. 13.

For the sequel we will always assume the following ansatz (satisfied by the
approximate solutions obtained along the nonlinear Nash—Moser iteration of
Sect. 15): for some constant g := uo(t, v) >0,y € (0, 1),

~ ko, ~ ko,
190187, <1 andso, by (5.12), 13517, < 2. (6.9)

In order to estimate the variation of the eigenvalues with respect to the approx-
imate invariant torus, we need also to estimate the derivatives (or the variation)
with respect to the torus i(¢) in another low norm || ||5,, for all the Sobolev
indices s; such that

s1 + oo < so + (o, forsome og:= og(r,v) > 0. (6.10)
Thus by (6.9) we have
~ ko, ~ ko,
1T0lls4e, <1 andso, by (5.12), Tl < 2. (6.11)

The constants pg and og represent the loss of derivatives accumulated along
the reduction procedure of Sects. 7-12. What is important is that they are
independent of the Sobolev index s. Along Sects. 612, we shall denote by
o := o(ko, t,v) > 0 a constant (which possibly increases from lemma to
lemma) representing the loss of derivatives along the finitely many steps of
the reduction procedure.

As a consequence of Moser composition Lemma 2.6, the Sobolev norm of
the function u = Ty defined in (6.2) satisfies, Vs > s,

el = Wl + w57 < eCo(1+13005°7)  (612)
(the function A defined in (4.6) is smooth). Similarly
[Anulls, Ssi elliz —itlls, (6.13)
where we denote Ajpu = u(ir) — u(iy); we will systematically use this
notation.

In the next sections we shall also assume that, for some « := « (7, v) > 0,
we have

ey * <8(S),
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where §(S) > 0 is a constant small enough and S will be fixed in (15.4). We
recall that Jy := Jo(w, h) is defined for all (w, h) € R” x [h}, hy] and that
the functions B, V appearing in £ in (6.8) are C*° in (¢, x) as the approximate
torus u = (n, ) = Ts(p). This enables to use directly pseudo-differential
operator theory as reminded in Sect. 2.3.

Starting from here, until the end of Sect. 13, our goal is to prove Proposition
13.3.

6.1 Linearized good unknown of Alinhac

Following [1,21] we conjugate the linearized operator £ in (6.8) by the mul-
tiplication operator

(10 (10
z._(Bl), Z _(_Bl), (6.14)

where B = B(g, x) is the function defined in (6.7), obtaining

o1 o iV —G(n)
Lo=2""LZ=0w a¢+( v, ) (6.15)

where a is the function
a:=a(p,x) =1+ (w-0yB) + VBy. (6.16)

Alla, B, V arereal valued periodic functions of (¢, x)—variable coefficients—
and satisfy

B = odd(¢p)even(x), V = odd(p)odd(x), a = even(p)even(x).

The matrix Z in (6.14) amounts to introduce, as in Lannes [46,47], a linearized
version of the good unknown of Alinhac, working with the variables (n, ¢) with
¢ := ¥ — Bn, instead of (n, ¥).

Lemma 6.3 The maps Z*' — Id are even, reversibility preserving and DX0-
tame with tame constants satisfying, for all s > s,

~ k 5
Mx1_1q(5), Mzx1_1gye(8) S (1 + 1Tollsye)- (6.17)

The operator L is even and reversible. There is 0 := o (t,v) > 0 such that
the functions

ko ko ko ~ ko,
la =117 + VI + 1B Sse(T+130l55).  (6.18)
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Moreover

[Avzalls, + 1AV s, + 1A 12Bls; Ssy €llit — i2lsy+0 (6.19)
IAL(ZED R, 1A1ZEY Rl Sy ellit — ialls 4o lllls, - (6.20)

Proof The proof is the same as the one of Lemma 6.3 in [21]. O

We expand Ly in (6.15) as

Vo, 0 Ve -G
Lo :w-8¢+( 0 V8x> + (a 0(’7)>. (6.21)

In the next section we deal with the first order operator w - 9, + V 0.

7 Straightening the first order vector field

The aim of this section is to conjugate the variable coefficients operator w -
dy + V (¢, x)3, to the constant coefficients vector field w - 9, namely to find
a change of variable B such that

B~ w3y + Vg, x)d)B=w-dy. (7.1)

Quasi-periodic transport equation We consider a ¢-dependent family of
diffeomorphisms of T, of the space variable y = x + B(¢, x) where the
function 8 : ']I‘; x Ty — Ris odd in x, even in ¢, and || By|p~ < 1/2. We
denote by B the corresponding composition operator, namely (Bh) (g, x) :=
h(p, x + B(¢, x)). The conjugated operator in the left hand side in (7.1) is

B w8, + Vg, )d)B=w- 3y + c(p,y) dy (7.2)
where
c(p,y) =B (00,8 + V(I +B0)@, ). (7.3)
In view of (7.2)—(7.3) we obtain (7.1) if (¢, x) solves the equation
@ - 9 B(¢, %) + Vg, X)(1 + Br(p, X)) = 0, (74)

which can be interpreted as a quasi-periodic transport equation.

Quasi-periodic characteristic equation Instead of solving directly (7.4) we
solve the equation satisfied by the inverse diffeomorphism

x+B(p,x)=y <= x=y+B(p,y), Vx,yeR, geT". (7.5
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It turns out that equation (7.4) for B (¢, x) is equivalent to the following equa-
tion for (¢, y):

w- 9B, y) = V(p,y + Blg, ) (7.6)

which is a quasi-periodic version of the characteristic equation x = V (wt, x).

Remark 7.1 We can give a geometric interpretation of equation (7.6) in terms
of conjugation of vector fields on the torus TV x T. Under the diffeomorphism
of TV x T defined by

e\ _ v d (o) _ w
(x) N (y + B, y))’ the system 5 (x) - (V«o,x))

transforms into

alh)=( ’ )
dt\y) " \{=w- 0,80 )+ Ve, y+ @y} + B, ) ')

The vector field in the new coordinates reduces to (w, 0) if and only if (7.6)
holds. In the new variables the solutions are simply given by y(¢) = ¢, c € R,
and all the solutions of the scalar quasi-periodically forced differential equation
x = V(wt, x) are time quasi-periodic of the form x(¢) = ¢ + ,é(wt, c). |

In Theorem 7.3 we solve equation (7.6), for V (¢, x) small and w Diophan-
tine, by applying the Nash-Moser-Hormander implicit function theorem in
Appendix C. Rename 8 — u, y — x, and write (7.6) as

Fu) (g, x) :=w-dpu(p,x) — V(p,x +u(p,x)) =0. (7.7)
The linearized operator at a given function u (¢, x) is
F'wh == o - 3,h — q(@, )h, q(p,x) = Vi(p,x +u(p, x)). (7.8)
In the next lemma we solve the linear problem F'(u)h = f.
Lemma 7.2 (Linearized quasi-periodic characteristic equation) Let ¢ :=
3ko + 2t(ko + 1) +2 = 2u + ko + 2, where 1 is the loss in (2.18) (with

k 4+ 1 = ko), and let € DC(2y, t). Assume that the periodic function u is
even(p)odd(x), that V is odd(¢)odd(x), and

ko, - ko,
lullgos + v VI, < 8o (7.9)
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Time quasi-periodic gravity water waves in finite depth 823

with 8o small enough. Then, given a periodic function f which is odd(¢)odd(x),
the linearized equation

F'(wh = f (7.10)

has a unique periodic solution h(p, x) which is even(¢)odd(x) having zero
average in @, i.e.

(h)(x) := /‘h@“wd¢=o Vx e T. (7.11)
'JI‘V

1
(2m)Y
This defines a right inverse of the linearized operator F'(u), which we denote
by h = F'(u)~' f. It satisfies

1 g ko.y

IF @)™ s

_ k — ko, ko, ko, ki
Sy 1<||f||s°+§ +y (IVIRSE + ISV I 1A V) (7.12)

forall s > so, where || - ||]S€°’y denotes the norm of Lip(kg, DC2y, 1), S, ).

Proof Given f, we have to solve the linear equation @ - d,h — gh = f, where
q is the function defined in (7.8). From the parity of u, V it follows that ¢ is
odd(p)even(x). By variation of constants, we look for solutions of the form
h = we", and we find (recalling (2.14))

vi=(w- aw)—lq, wi=wy+g, wo:=(w- aw)_l(e_”f),
<wOeU><p

(ev><p ’

This choice of g, and hence of w, is the only one matching the zero aver-
age requirement (7.11); this gives uniqueness of the solution. Moreover

g =g :=—

v = even(p)even(x), wg = even(g)odd(x),g = odd(x), whence h is
even(p)odd(x). Using (2.10), (2.11), (2.18), (2.19), (7.9), and (2.9) the proof
of (7.12) is complete. O

We now prove the existence of a solution of equation (7.7).

Theorem 7.3 (Solution of the quasi-periodic characteristic equation (7.7)) Let
¢ be the constant defined in Lemma 7.2, and let s3 := 2s0+3¢+1, p := 3¢c+2.
Assume that V is odd(¢)odd(x). There exist 5 € (0, 1), C > 0 depending on
G, So such that, for all w € DCQ2y, 1), if V € Lip(ko, DC(2y, T), 52 + p,¥)
satisfies

— k
y VI, <6, (7.13)
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824 P. Baldi et al.

then there exists a solution u € Lip(kg, DC(2y, ), s2,y) of F(u) = 0. The
solution u is even(p)odd(x), it has zero average in ¢, and satisfies

ko, - ko,
Il < Cy~ VLY, (7.14)

If, in addition, V € Lip(ko, DC2y,t),s + p,y) for s > s, then u €
Lip(ko, DC(2y, T), s, ¥), with

ko, — ko,
lulls® < Coy MIVIEYD (7.15)

for some constant Cy depending on s, ¢, so, independent of V, y.

Proof We apply Theorem C.1 of Appendix C. For a, b > 0, we define

E, = {u € Lip(ko, DC(2y, 1), 250 + a, y) : u = even(p)odd(x),

ko,
()p(x) =0}, lullg, = luly) 4 (7.16)

Fy = {g € Lip(ko, DC(2y, 7), 250 + b, y) : g = odd(p)odd(x)},
lgls, = g5, (7.17)

(so is in the last term of (7.12), while 2sg appears in the composition estimate
(2.11)). We consider Fourier truncations at powers of 2 as smoothing operators,
namely

Sp ot u(p,x) = Z wgjeCorIo
(g’j)ezv—kl

> (Su) (@, x) 1= Y ugge e (7.18)
(€,jy<2r

on both spaces E, and Fj,. Hence both E, and F}, satisfy (C.1)—(C.5), and the
operators R, defined in (C.6) give the dyadic decomposition 2" < (€, j) <
2"+1 Since S, in (7.18) are “crude” Fourier truncations, (C.7) holds with “="
instead of “<” and C = 1. As a consequence, every g € Fj satisfies the
first inequality in (C.11) with A = 1 (it becomes, in fact, an equality), and,
similarly, if g € Fg. then (C.14) holds with A, = 1 (and “=").

We denote by V the composition operator V(u) (¢, x) := V (¢, x +u(p, x)),
and define ® (u) := w - dyu — V(u), namely we take the nonlinear operator F'

in (7.7) as the operator ® of Theorem C.1. By Lemma 2.4, if ||u ||2SO+1 34
(where we denote by 65 4 the constant § of Lemma 2.4), then V(u) satisfies
(2.11), namely for all s > s9

ko,y ko,y ko,y ko,v
IVE)IIs*" S 1V 1l + lells? ||V|IS§+,<O+1, (7.19)
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Time quasi-periodic gravity water waves in finite depth 825

and its second derivative V" (u)[v, w] = Vi (@, x + u(¢p, x))vw satisfies
ko,y ko,y ko,y ko,y ko,y ko,y
V" (u)[v, wllls Ss ||V||SO+k0+3(||U||s lwllsy” + Ivllsy ™ lwlls )

ko,y ko,y ko,y ko,y ko,y
IV IS T a7+ IVISST o | oS Ty
(7.20)

We fix @, U of Theorem C.1 as u := 1, U = {u € Ey : |lullg, < )4}
Thus ® maps U — Fpand U N E,4, — F,foralla € [0, a; — 1], provided

that || V||]§(S)(’)7_/F wr—1+ky < P (ap will be fixed below in (7.24)). Moreover, for

alla € [0, ay — 1], @ is of class C2(U N Eqy,., Fy) and it satisfies (C.9) with
ap =0,

ko,
Mi(@) = C@IVI 130 Ma(a) == Mi(a),
ko,
M3(a) := C@IVI5 4420 (7.21)

We fix ay, 81 of Theorem C.1 as a; := ¢, where ¢ = 3kg + 2t(kg + 1) + 2
is the constant appearing in Lemma 7.2, and 6; := %87‘2, where 67 5 is the
k

ste < 81and [lv]lg, < &1, then, by

Lemma 7.2, the right inverse W (v) := F’ (v)~!is well defined, and it satisfies

constant §o of Lemma 7.2. If y‘l VI

Wglle, = Li@lgllrye + (L2(@ vl + L3(@)lglr (7.22)

where
Li(@ = C@y™", L@ :=C@y 2 IVI&y,
Li(a) := C@y VI - (7.23)
We fix «, B, ap of Theorem C.1 as
B=d4c+1, a:=3¢c+1, a:=5¢+3, (7.24)
so that (C.8) is satisfied. Bound (7.22) implies (C.10) for all a € [ay, a>]
provided that ||V||]§g(’))jr wrte < OO

All the hypotheses of the first part of Theorem C.1 are satisfied. As a con-
sequence, there exists a constant 5~ 13 (given by (C.13) with A = 1) such
that, if || g|| Fp < 3¢ .13 then the equation ®(u) = ®(0) + g has a solution
u € E,, with bound (C.12). In particular, the result applies to g = V, in
which case the equation ®(#) = ®(0) + g becomes ®(u#) = 0. We have to
verify the smallness condition ||g||p[g < 8c.13- Using (7.21), (7.23), (7.13),
we verify that §~ 13 > Cy. Thus, the smallness condition ||g||pfj <dc.131s
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satisfied if |V ||],§(s’(’)7_/F it gy_l is smaller than some § depending on ¢, sg. This
is assumption (7.13), since 2sg + a2 + ¢ = s2 + p. Then (C.12), recalling

(7.24), gives [lully>” < Cy~"|VI[\/.. which implies (7.14) since p > .
. . . ko,y
We finally prove estlrpate (7.15).Letc > 0.If, in addition, ||V ||2(s’0 rartere <
00, then all the assumptions of the second part of Theorem C.1 are satisfied. By
(7.21), (7.23) and (7.13), we estimate the constants defined in (C.16)—(C.17)

as

-2 ko,y -1
G1 < Cey 2NV gl eser G2 =Ceyv™! z=Ce

for some constant C. depending on c. Bound (C.15) implies (7.15) with s =
s2 + ¢ (the highest norm of V in (7.15) does not come from the term || V|| 7,
of (C.15), but from the factor G;). The proof is complete. O

The next lemma deals with the dependence of the solution « of (7.7) on V
(actually it would be enough to estimate this Lipschitz dependence only in the
“low” norm s; introduced in (6.10)).

Lemma 7.4 (Lipschitz dependence of u on V) Let ¢, 52, p be as defined in
Theorem 7.3. Let V1, V> satisfy (7.13), and let uy, up be the solutions of

- dpu; — Vi(p,x +ui(p,x)) =0, i=1,2,

given by Theorem7.3. Then for all s > sy — i (where  is the constant defined
in (2.18))

Ko,y -1 ko,y
lur — u2lls™ Ss v IV = Vallsy s

-2 ko.y . ko,y
772 max Vil Vi = Vallg, (725)

Proof The difference h := u; — uy is even(gp)odd(x), it has zero average in ¢
and it solves w - d,h — ah = b, where

1
a(p, x) := / O VD) (@, x +tuy + (1 — tHuy) dt,
0
b(p,x) := (Vi — V2)(p, x +u).

The function a is odd(¢)even(x) and b is odd(¢)odd(x). Then, by variation
of constants and uniqueness, 4 = we", where (as in Lemma 7.2)

vi= (- 8¢)_1a, wi=wo+g, wo:=(w- 8¢)_1(e_”b),
<wOeU><p
(€v>w

g =gx):=—
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Time quasi-periodic gravity water waves in finite depth 827

Then (7.25) follows by (2.11), (7.13), (7.14), (7.15), (2.18) and (2.19). O

In Theorem 7.3, for any A = (w,h) € DC(2y, t) x [hy, hp] we have
constructed a periodic function u = B that solves (7.7), namely the quasi-
periodic characteristic equation (7.6), so that the periodic function g, defined
by the inverse diffeomorphism in (7.5), solves the quasi-periodic transport
equation (7.4).

By Theorem B.2 we define an extension & (1) = Sk(,é) =: Eem (with
k + 1 = ko) to the whole parameter space R” x [hi, hy]. By the linearity of
the extension operator & and by the norm equivalence (B.6), the difference of
the extended functions & (u1) — Ex(uy) also satisfies the same estimate (7.25)
as up —uj.

We define an extension SB.y; of 8 to the whole space A € R" x [hy, hy] by

y=x+Bext(p,x) & x=y+Pext(p,y) Vx,yeT, geT

(note that, in general, 8.,; and & (B) are two different extensions of 8 outside
DC(y, t) X [hy, ha]). The extended functions Bey;, Bexs induce the operators
Bext, B;xlz by

(Bexth) (@, x) 1= h(@, x + Bexi (@, X)),
BoLr) (@, y) = (@, y + Bexi (9, ), Bexi 0By} =1d,

and they are defined for L € R” x [hy, ha].
Notation: for simplicity, in the sequel we will drop the subscript “ext” and
we rename

Bext == B, Bext = B’ Bex: 1= B, Be_xlt = B_l- (7.26)

We have the following estimates on the transformations B and B~.

Lemma 7.5 Let 8, ,é be defined in (7.26). There exists 0 := o (T, v, ko) such
that, if (6.9) holds with (g > o, then for any s > 52,
ko, 5 11ko, — ~ ko,
IBISY MBI <s ey 1(1 + 130lls%e)- (7.27)

The operators A = BT! —Id, (B! — Id)* satisfy the estimates

ko, -1 ko, ~ nko, ko,
IARILY < ey (nhnsi,ro+1 + ||Jo||s°+Z||h||S§:ko+2> Vs = 5. (7.28)

Let iy, iy be two given embedded tori. Then, denoting A28 = B(i2) — B(i1)
and similarly for the other quantities, we have

IA12Bs> 1A12B1ls S ¥ i1 — 211540 (7.29)
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IARAML Sa ey~ i = i2ltollbll s, 4 € {BE )],
(7.30)

where s1 is introduced in (6.10).

Proof Bound (7.27) for B follows, recalling that ,é = u, by (7.15) and (6.18).
Estimate (7.27) for B follows by that for §, applying (2.12). We now prove
estimate (7.28) for B — Id. We have

1
(B—1dh =p /0 Belhyldr,  Be[fl(,x) = f(e,x +1B(p, x)).

Then (7.28) follows by applying (2.11) to the operator By, using the estimates
on B, ansatz (6.9) and (2.10). The estimate for B~! —1d is obtained similarly.
The estimate on the adjoint operators follows because

B*h(g, y) = (1 + B, y)h(p, y + Blg, ¥)),
B~H*h(p, x) = (1 + Blg, X)h(p, x + B(g, X)).

Estimates (7.29), (7.30) follow by Lemma 7.4, and by (6.18)—(6.19). O

We now conjugate the whole operator Ly in (6.15) by the diffeomorphism
B.

Lemma 7.6 Let B, B, B, B~ be defined in (7.26). For all . € DC(y, 7) X
[hi, hol, the transformation B conjugates the operator Ly defined in (6.15) to

L :=B'"LoB=w-d,+ (‘“ —a20y il + Rl) : (7.31)
as 0
Ty := tanh(h|D,|) := Op (tanh(ny (§)[€])), (7.32)
where ay, a>, a3 are the functions
air(@,y) == B~V (@, y), axg,y) =1+ B 8@, y),
az(g, y) == B~ la) (g, y). (7.33)

and Ry is a pseudo-differential operator of order OPS™%°. Formula (7.33)
defines the functions ay, az, az on the whole parameter space R’ x [hi, hp].
The operator R admits an extension to R¥ x [h1, hy] as well, which we also
denote by R 1. The real valued functions B, a1, aa, a3 have parity

B = even(p)odd(x); a; = odd(p)even(y); az, az = even(p)even(y).
(7.34)
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Time quasi-periodic gravity water waves in finite depth 829

There exists 0 = o (1, v, ko) > 0 such that for any m, « > 0, assuming (6.9)
with ;o > o +m+«, forany s > so, on R” x [hy, ha] the following estimates
hold:

ko, ko, ko, — ~ ko,

lar s> + llaz — LI5™7 + llaz — 1Y <o ey (1 + 13005%0),  (7.35)
ki ~ ko,

IRIZY o Smusie €7 (L4 130155 Y 4ma)- (7.36)

Finally, given two tori i1, ia, we have

|Azarlls, + 1A 12az2lls, + 1A 12035, Ss 8)/_1||A12i||s1+a, (7.37)
AR —msio Smosya €7 I1A120 sy 4o tmeta- (7.38)

Proof By (6.21) and (7.2)—(7.4) we have that

1
Ly:=B""LoB=w-0,+ (“; OG(”)B> (7.39)

where the functions a; and as are defined in (7.33). We now conjugate the
Dirichlet-Neumann operator G (n) under the diffeomorphism B. Following
Proposition A.1, we write

G(n) = [Dx|tanh(h|Dy|) + Rg = xHTh + Rg,  Tn := tanh(h|Dy]),
(7.40)

where R ¢ is an integral operator in OPS™°°. We decompose

tanh(h|Dy|) =1d + Op(rn), m(§) := §7°, (741)

11 eEN® ©

and, since B9, B = a0y where the function a; is defined in (7.33), we
have

B9, HTwB = (B~'9,B)(B~"HB)(B~'T,B)
= wdy(H+ (B~'"HB — H)}(B~ ' TuB)
= adyH T, + a2dyH[B~'Op(r)B — Op(ry)]
+ a2d,(B~"HB — H) (B~ ' T,.B). (7.42)

Therefore by (7.40)—(7.42) we get

~B'Gn)B = —ardyHTy + R, (7.43)
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where R is the operator in OPS~%° defined by

Ri=R{"+RP+R} R\ :=— B7'RgB, (7.44)
RY = —ay0, HIB'Op(ra) B—Op(r)], R = — a0, (B'"HB - H)B~'T,B.
Notice that B~'RsB and B~'Op(r) B are in OPS~ since R and Op(ry,),
defined in (7.40) and in (7.41), are in OPS~°. The operator B~'HB — H is
in OPS~*° by Lemma 2.17.

In conclusion, (7.39) and (7.43) imply (7.31)—(7.33), for all A in the Can-
tor set DC(y, 7) X [hi, ha]. By formulas (7.44), R is defined on the whole
parameter space RV x [hy, hy].

Estimates (7.35), (7.37) for ay, a», az on R¥ x [hy, hy] follow by (6.18),
(6.19) and Lemma 7.5. Estimates (7.36), (7.38) follow applying Lemmata 2.15
and 2.17 and Proposition A.1, and by using Lemma 7.5. O

Remark 7.7 We stress that the conjugation identity (7.31) holds only on the
Cantor set DC(y, ) x [hy, hy]. It is technically convenient to consider the
extension of ay, az, a3, R to the whole parameter space R x [hy, hy], in
order to directly use the results of Sect. 2.3 expressed by means of classical
derivatives with respect to the parameter A. Formulas (7.33) and (7.44) define
ai, az,as, Ry on the whole parameter space R” x [hy, hy]. Note that the
resulting extended operator £; in the right hand side of (7.31) is defined on
RY x [h1, hy], and in general it is different from B~1£oB outside DC(y, T) X
[hi, ho].

In the sequel we rename in (7.31)—(7.34) the space variable y by x.

8 Change of the space variable
We consider a gp-independent diffeomorphism of the torus T of the form
y=x+oa(x) withinverse x=y+ a(y) 8.1

where « is a C*°(T,) real valued function, independent of ¢, satisfying
lox Lo < 1/2. We also make the following ansatz on « that will be ver-
ified when we choose it in Sect. 11, see formula (11.23): the function « is
odd(x) and @ = @ (X) = a (X, igp(X)), A € RV is ko times differentiable with
respect to the parameter A € R'*! with 9fa € C*°(T) for any k € N1,
|k| < kg, and it satisfies the estimate

kO,V < —1 ~ kOvV
o g 147 , Vs > 50,
leells™” Ss ey~ (1 + 11Tolls%y) 0 82)

1 .
[Apalls Ssiey™ ARl 10,
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for some 0 = o(kg, 7,v) > 0. By (8.2) and Lemma 2.4, arguing as in the
proof of Lemma 7.5, one gets

v ko, _ ~ ko,
a1l <5 ey~ 11+ 130l5%Y), Vs = so, 53)

o —1 .
ARl Ssiev™ ARl 40

for some o = o (kg, 7, v) > 0. Furthermore, the function &(y) is odd(y).
We conjugate the operator £; in (7.31) by the composition operator

(Au) (@, x) = u(p, x +a(x)), (A7'w)(p,y) =ulp,y+a(y). (84

By (7.31), using that the operator A is g-independent, recalling expansion
(7.41) and arguing as in (7.42) to compute the conjugation A~ (—az 8xHTh)A,
one has

L= AL A= w8, + (Zz oty RZ) , (8.5)

where ay, as, ae are the functions
as(g, y) == (A~ a))(g, y) = ar(p, y + &(y)), (8.6)
as(p.y) = (A" (@(1 + ax))) (¢, y) = {az(p. x)(1 +ax<x))}|x:y+&(<§?7)
as(p. y) = (A"'a3)(g. y) = a3(p. y + &(y)) (8.8)

and R is the operator in OPS~%° given by

R = —asdyH[A™'Op(rn).A — Op(r)]
—asdy (AT "HA - H)(AT T A) + AR A (8.9)
Lemma 8.1 There exists a constant o = o (ko, T, v) > 0 such that, if (6.9)

holds with o > o, then the following holds: the operators A € {A*! —
Id, (A*! — 1d)*} are even and reversibility preserving and satisfy

ko,y —1 ko,y ~ kosy ko,y
IARISY Sy ey~ I 1 + 10T IR T p2). ¥ 20, oo

1AL Soi ey~ ARl 40 17 llsy41-
The real valued functions as, as, ae in (8.6)—(8.8) satisfy

aq = odd(p)even(y), as, ag = even(p)even(y), (8.11)

@ Springer



832 P. Baldi et al.

and

ko, ko, ko, -1 ~ ko,
laslls”, llas — 1I5°7, llag — 115" Ss ey~ (1 + 113055,
1 (8.12)
|

| Av2aalls,, | Ar2aslls,, | Ar2aslls, Ssi v 1A120 |5y +o-

The remainder R, definedin (8.9) is an even and reversible pseudo-differential
operator in OPS™%. Moreover, for any m, o > 0, and assuming (6.9) with
o +m+ a < o, the following estimates hold:

ko.y -1 ~ ko.y
"RZH—Om,s,oc gm,s,a gy (1 + ||J0||sig+m+a), Vs > 59

(8.13)
AR -msio Smosra € 1Al +otmta-

Proof The transformations At —1d, (AT — Id)* are even and reversibility

preserving because « and & are odd functions. Estimate (8.10) can be proved

by using (8.2), (8.3), arguing as in the proof of Lemma 7.5.

Estimate (8.12) follows by definitions (8.6)—(8.8), by estimates (8.2), (8.3),
(8.10), (7.35), (7.37), and by applying Lemma 2.4. Estimates (8.13) of the
remainder R, follow by using the same arguments we used in Lemma 7.6 to
get estimates (7.36), (7.38) for the remainder R . |

In the sequel we rename in (8.5)—(8.9) the space variable y by x.

9 Symmetrization of the order 1/2

The aim of this section is to conjugate the operator £, defined in (8.5) to a new
operator L4 in which the highest order derivatives appear in the off-diagonal
entries with the same order and opposite coefficients (see (9.9)—(9.13)). In the
complex variables (u, u) that we will introduce in Sect. 10, this amounts to the
symmetrization of the linear operator at the highest order, see (10.1)—(10.3).
We first conjugate £, by the real, even and reversibility preserving trans-

formation
An O
My = ( 0 Afll)’ O.1)
where Ay, is the Fourier multiplier, acting on the periodic functions,
1 _1
Ani=mo+|DI3T,}, withinverse A;' =mo+|D| 73T, *, (9.2)
with T, = tanh(h|D|) and g defined in (2.33). The conjugated operator is

-1 -1 -1
L3:= M2_1£2M2 =w- 0, + (Ah ashn Ay (—asdyHTh +Ra) Ay, )

Aha6Ah 0

@ Springer



Time quasi-periodic gravity water waves in finite depth 833

A3 B
= w-0,+ (cj 03) : (9.3)

We develop the operators in (9.3) up to order —1/2. First we write

Ay = Aj'agAn =as+Ra, where Ry, :=[A;', as]An € OPS™!
(9.4)

by Lemma 2.11. Using that |D|"mg = mo|D|"™ = 0 for any m € R and that
ng = 1o on the periodic functions, one has

11
C3 = AnasAn = agAf + [An, aglAn = ag(m0 + | DI* T;))? + [An, alAn

11
= 616|D|7Th2 + 7o + Rc; where Rey = (ag — 1)mo + [An, aglAn.
9.5)

Using that |[D| = Hd,, (9.2) and |D|mg = 0 on the periodic functions, we
write B3 in (9.3) as

By = Ay (—asdy HTy + Ro) AL
= —as|D|TuA; > — [ALY, as]IDITuAL " + AL ' RoAL!
= —asIDITu(mo + D14 T, ) — (A7 aslIDITAT! + AT RoAT!
— —as|DI*T + R,
where  Rp, = —[A;', asl|DITuAL " + AL RoAL (9.6)

Lemma 9.1 The operators Ay, € OPS%, A}_l1 € OPS_% andR a5, R, Ry €

OPS_%. Furthermore, there exists o (kg, T, v) > 0 such that for any o > 0,
assuming (6.9) with wg > o + «, then for all s > s,

ko,y —1ko,y
IARL”” ALY Sa 9.7

7.5, 75

kO,V < —1 ~ kOvy

"R"_l s NS ey (1 + ”‘JO”s-i—a-i—a)’

7.5,

—1 .

[ALRRI_L o Ssio €77 1812l 4040

for all R € {Ra,, Rp;, Rcs}. The operator L3 in (9.3) is real, even and
reversible.

Proof The lemma follows by the definitions of R 45, R;, Rc; in (9.4), (9.6),
(9.5), by Lemmata 2.10 and 2.11, recalling (2.39) and using (8.12), (8.13). O
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Consider now a transformation M3 of the form

(PO -1 (p7to
ST NTALY o

where p(¢, x) is areal-valued periodic function, with p — 1 small (see (9.13)).
The conjugated operator is

~1(g . —1 1
Ly:=M]'"LsMs=w-d,+ (p (@ awé’;p‘f‘l’ Asp p 033)

_ A4 By
_a).a(p+<c40) (9.9)
where, recalling (9.4), (9.6), (9.5), one has
Ay =ads+Ra,, a4:=as+ p_l(a) “0pp), Ra, = p_l'RA3p (9.10)

1

By=—p lasIDI*T; + Ry, Ra, = p 'Ra, .11
11 1 L

Cs = asp|D|2 T +m0+Re,, Rc, :=asl|DI2T,], pl4+mo(p — D+Reyp (9.12)

and therefore R 4,, Rp,, Rc, € OPS™ 2. The coefficients of the highest order

term in By in (9.11) and C4 in (9.12) are opposite if agp = p_1a5. Therefore
we fix the real valued function

as _
p = /a—6, agp = p 1a5 = Jasag =: ay. (9.13)
Lemma 9.2 There exists o0 := o(t,v, ko) > 0 such that for any o« > 0,

assuming (6.9) with uy > o + «, then for any s > sg the following holds. The
transformation M3 defined in (9.8) is real, even and reversibility preserving
and satisfies

IME — 11T < ey N1+ 150018%Y). (9.14)
The real valued functions dy4, a7 defined in (9.10), (9.13) satisfy
a4 = odd(p)even(x), a7 = even(p)even(x), (9.15)
and, for any s > sy,
sl llag — TI°7 S5 27~ (14 13015%5)- (9.16)
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The remainders Ra,, Rp,, Rc, € OPS_% defined in (9.10)—(9.12) satisfy

~

ko, — ~ ko,
RIYY | Sew v (LI035 1) R € (Rag Rpy. R 017

Let i1, ir be given embedded tori. Then

A ME 0,500 Ss1 €7 ARl 40 (9.18)

1A 1dallsys |1 A12a7]s Ssi €7 ARl 1o (9.19)

"AIZR",%’SI’O{ S_,S],O( 83/_1 ||A12i||sl+0+0h R € {RA4’ RB4a RC4}-
(9.20)

The operator L4 in (9.9) is real, even and reversible.

Proof By (8.11), the functions as, ag are even(¢)even(x), and therefore p
is even(¢)even(x). Moreover, since a4 is odd(¢)even(x), we deduce (9.15).
Since p is even(g)even(x), the transformation M3 is real, even and reversibil-
ity preserving.

By definition (9.13), Lemma 2.6, the interpolation estimate (2.10) and apply-
ing estimates (8.12) on as and ag, one gets that p satisfies the estimates

ko, - S TNILCE - ]
1P =1 S5 ey ™ (14 1301655). 1812p* s Sor e 181205140
(9.21)

forsome o = o (7, v, kg) > 0. Hence estimates (9.14), (9.18) for Mgﬁl follow
by definition (9.8), using estimates (2.39), (9.21). Estimates (9.16), (9.19) for
dy, a7 follow by definitions (9.10), (9.13) and applying estimates (8.12) on aq,
as and ag, estimates (9.21) on p, Lemma 2.6 and the interpolation estimate
(2.10). Estimates (9.17), (9.20) follow by definitions (9.10)—(9.12), estimate
(2.39), Lemmata 2.10 and 2.11, bounds (8.12) on aq4, as, ag, (9.21) on p, and
Lemma 9.1. a

10 Symmetrization of the lower orders

To symmetrize the linear operator £4 in (9.9), with p fixed in (9.13), at
lower orders, it is convenient to introduce the complex coordinates (u, u) :=
C~'(n, ¥), with C defined in (2.60), namely u = n+ iy, i = n —iy. In these
complex coordinates the linear operator £4 becomes, using (2.61) and (9.13),

1
Ls:=C"'L4C=w-d,+iar|D|2 T3
. i
+agl + i + Ps + s, ag::%, (10.1)
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where the real valued functions a7, d4 are defined in (9.13), (9.10) and satisfy

(9.15),
2= <(1) (1)) , (10.2)

(10 . I (g mo
X = (O —1> o o= 2 (—ﬂo —770) '
7o is defined in (2.33), and
Ps O 0
| > > (10.3)
Ps = 5{RA4+1(RC4 ~Rp)},  Qs:=ag+ = {RA4+1(RC4 + Rsy)}.
By the estimates of Lemma 9.2 we have

ko,v -1 ~ koY 1 .
la7 — 11”7 Ss ey~ (L + 1Tolls%e)s  ARarlls, S ey~ ARy 40

(10.4)
ko, _ ~ ko, _ .
laglls™” Ss ey N1+ 1T05Y),  IAnasls, So ey ARy 4o,
(10.5)
ko,y ko,y ~ nko,y
||7>5||_ o 195107 S ey (14 130050 40 (10.6)
||A127>5||_%,S1,a, 18129510510 Ssr.a €7 1AL lls) 4o ta- (10.7)

Now we define inductively a finite number of transformations to remove all
the terms of orders > —M from the off-diagonal operator Qs. The constant
M will be fixed in (14.8).

Let Ego) = Ls, PS(O) := Ps and ng) := Qs. In the rest of the section we
prove the following inductive claim:

e SYMMETRIZATION OF Ego) IN DECREASING ORDERS. For m > 0, there is
a real, even and reversible operator of the form

1
LM = w3, +ia7| DIP TS + aglh + illg + P + Q™ (10.8)
where
pim (s S om _ (0 of"
—(m) 5 — \=m) ’
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For any o € N, assuming (6.9) with ug > R4(m, a) + o, where the

increasing constants 84 (m, o) are defined inductively by
R0, 0) =0, Ng(m+1, a) :=R4(m, a+1)+%+2o¢+4, (10.10)

we have

ko, -1 ~ 1iko,
P o 1957 g v Smsa Y (14 13015010 )
(10.11)
18P 11 o 18129571 51 o Smsia €7 7 1 Av2i 48y,

(10.12)

For m > 1, there exist real, even, reversibility preserving, invertible maps
®,,_1 of the form

0 l//mfl((p’ x, D)
1= ety Yy =—-o--— , A
Bt =Ty + Wy, Wy (wmil(w’m ¢ ) (10.13)

with ¥m_1 (¢, x, D) in OPS~"T =3 such that
— —1
" =ao-t " Ve, | (10.14)

Initialization The real, even and reversible operator £§0) = L5 in (10.1)
satisfies the assumptions (10.8)—(10.12) for m = 0 by (10.6)—(10.7).

Inductive step We conjugate £§m) in (10.8) by a real operator of the form (see
(10.13))

0 YUm (@, x, D))
VUm(@, x, D) 0 T (10.15)

Yn(9, x, D) := Op(¥) € OPS™ 573,

O, =h+V¥,, V¥, = (

We compute

1 1
Ly = Oy (- 8, +ia7| D2 T S + asl + illo + P™)

11
+ [ia7| DI T2 S + aglla + iTlg + P, W] + (@ - 0, ¥)
+oM + oM, (10.16)

In the next lemma we choose W, to decrease the order of the off-diagonal
operator ng).
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Lemma 10.1 Let

Um (@, x, )
_ X(f)Qm(I(/%x,?) lf |S| = %’ m 1
=1 2iar(p, x)|€]? tanh? (&) Ym €872,
0 it |5 <4,
(10.17)

where the cut-off function x is defined in (2.16). Then the operator V,, in
(10.15) solves

1
i[a7 DI T2 2, W, ] + Q) = Qy, (10.18)

where

0 qlﬂ ((p,X, D) —-m_1
Q = (— m , c S 2 ‘ 1019
¥n =\ 0. %, D) G (10.19)

Moreover, there exists o (kg, T, v) > 0 such that, for any a > 0, if (6.9) holds
with o > Rq(m, o + 1) +a + 5 + 0 + 4, then

— ~ ko,
090 005 DIy S o™ (1901 5 ) (1020
The map W, is real, even, reversibility preserving and

k -1 ~ ko,
[ (@ %, DIy Snsa €7 (L 130050 1m0 (10.21)
| A12Ym (@, x, D>||_%_%,Sl,a Smsra 7 1ALy +otwgomays  (10.22)
-1 .
||A12‘]1//m (¢, x, D)"—%—l,sl,a Sm,sl,oe ey A ||51+N4(m,a+1)+%+01+6+4-

(10.23)

Proof We first note that in (10.17) the denominator a7|£|? tanh(h|£[)Z >
c|§|% with ¢ > 0 for all |£] > 1/3, since a7 — 1 = O(ey~") by (9.16) and
(6.9). Thus the symbol 1, is well defined and estimate (10.21) follows by
(10.17), (2.46) and (10.11), (9.16), Lemma 2.6, (6. 9) Recalhng the definition

(10.2) of X, the vector valued commutator i[a7|D)| 7 T 2, ¥,,]1s

1
i[aﬂDliT}f s, wm} - (2 /3) ,

1 1 (10.24)
1 5 1 £
A= i(a7|D|2T§0p(wm) + Op<vfm)a7|D|2Thz>.
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By (10.24), in order to solve (10.18) with a remainder Qy,, € oPS~ 7 lasin
(10.19), we have to solve

. 13 . 1.4
ia7|D|2 T, Op(Ym) +i0p(Ym)a7| D12 T,; + Op(gm)
= Op(gy,,) € OPS™ 37, (10.25)

By (2.42), applied with N = 1, A = a7|D|2T2 B = Op(y¥,), and (2.31),
we have the expansion

a71D|2 T, Op(Yim) + Op(m)ar| DI Ty}
— Op(2a7[£|? tanh? ([E DY) + Op(ay,)  (10.26)

where, using that a7 (£)|€] tanh? (hy (£)|€]) € SZ and Yn € S~7 72, the
symbol

Qun = 1,48 + 1.8 + 2a7]€]? (tanh? (hy (£) £ ) x (€)
— tanh? (h|€])) Y € S™F 7, (10.27)

recalling that 1 — x (§) € ST by (2.16). The symbol v, in (10.17) is the
solution of

2ia7||2 tanh? (B[E]) Y + X (E)gm = O, (10.28)

and therefore, by (10.26)—(10.28), the remainder gy, in (10.25) is

Gy = iy, + (1= x(E)gm € S72 7. (10.29)

This proves (10.18)—(10.19). We now prove (10. 20) We first estimate (10.27).
By (2.45) (applied with N = 1, A = a7|D|2ThZ, B = Op({ry), m = 1/2,

m = -7 — 1 and also by inverting the role of A and B), and the esti-

mates (10.21), (10.4), (6.9) we have |qy,, (¢, X, D)||’i>g_l o Smsa gy (14
2 )y
~ nko, .

”‘JO||s2r<}f/+x4(m,a+1)+%+a+4) and the estimate (10.20) for gy, (¢, x, D) fol-
lows by (10.29) using (10.11), recalling that 1 — x (§) € S~°° and by applying
(2.46) with g(D) = 1 — x(D) and A = g, (¢, x, D). Bounds (10.22)—(10.23)
follow by similar arguments and by a repeated use of the triangular inequality.

Finally, the map W,, defined by (10.15), (10.17) is real, even and reversibility
preserving because Q5 is real, even, reversible and a7 is even(¢)even(x) (see
(9.15)). O
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For 8)/_1 small enough, by (10.21) and (6.9) the operator ®,, is invertible,

and, by Lemma 2.13,

-1 ko,y ko,y -1 ~ koY
|®,, — HZ"()OS o Ssaa Wi ||00s o Ss.a EY (1 + ||J0||s()+g+g4(m,a))-

(10.30)
By (10.16) and (10.18), the conjugated operator is
£ = o 1M, = w- 9, +1a7|D|2T ® + agly + iy
+PM 4 Pt (10.31)

where 75m+1 =0 173*+1 and

Prst = Qy,, + [iTo, W]+ [asly + 5™, W] + (@ - 0, W) + Q5" 0.
(10.32)

Thus (10.14) at order m + 1 is proved. Note that 75m+1 and I1p are the only
operators in (10.31) containing off-diagonal terms.

Lemma 10.2 The operator 75m+1 € OPS™5"2.F urthermore, for any a > 0,
assuming (6.9) with ug > o + Ra(m + 1, ), the following estimates hold:

>, ko,y -1 ~ nko,y
“,Pm-i—lu_%_%’s’a Sm,s,a &y (1 + ||J0||s+a+&4(m+l,a))’ Vs > s0,
(10.33)

“Alme-i-l“ 3.81,0 Sm s1,0 8)/ ||A12i”sl+0+N4(m+1,a) (10'34)

where the constant R4(m + 1, «) is defined in (10.10).

Proof UseLemma 10.1,(10.9), (10.15), (2.44), (10.5),(10.11),(10.12), (2.38),
(10.32), (10.30). O

The operator Cgmﬂ) in (10.31) has the same form (10 8) as E(m) with
diagonal operators Ps(m+1) and off-diagonal operators Q "+ fike in (10.9),
with 775(”’“) + ng“”) = Ps(m) + P 1, satisfying (10.11)—(10.12) at the step
m + 1 thanks to (10.33)—(10.34) and (10.11)—(10.12) at the step m. This proves
the inductive claim. Applying it 2M times (the constant M will be fixed in
(14.8)), we derive the following lemma.

Lemma 10.3 For any o > 0, assuming (6.9) with ug > Rs(M, @) + o where
the constant Xs(M, o) := R4(2M, ) is defined recursively by (10.10), the
following holds. The real, even, reversibility preserving, invertible map
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Dy =Dgo---0Dyyg (10.35)

where @, m =0, ...,2M — 1, are defined in (10.15), satisfies

+1 ko, +1
|<I>M - HZI()(’)S?/() I(<I> - Iy* |()0 };) Ss MEY (1 + ||J0||S+O-+RS(M 0)) Vs > so,

(10.36)
IAlz‘I’ﬁlo,s..o, IAlz(q’ﬁl)*lo.sl,o Sust &7 A1 sy 40435 (1,0 - (10.37)

The map @y conjugates Ls to the real, even and reversible operator

1
Lo:=®;) Ls®y=w - dy+iar|D|2 T2 S+agl+illg+Pe+ Qs (10.38)

where the functions a7, ag are defined in (9.13), (10.1), and

(P O 1 (0 Qs -M
P = (0 F6) € OPS™5, Qp:= (66 . ) € OPS™  (10.39)

given by Ps := P, Qs := Q8™ in (10.8)=(10.9) for m = 2M, satisfy

ko, k
||776||7°%y& + 196125 o SMsw 8y~ (14 IIJOIIHHNS(M o) VS =50,
(10.40)

[212P6l _1 g, o T 1812Q61 051,00 SMs1.0 ey A2l vorns(M.a)-
(10.41)

Proof We use (10.11), (10.12), (10.15), (10.21), (2.44), (10.30) and Lemma
2.12. O

11 Reduction of the order 1/2

We have obtained the operator L¢ in (10.38), where Pg is in OPS_% and the
off-diagonal term Qg is in OPS™™ . The goal of this section is to reduce to

1
constant coefficient the leading term ia7 (¢, x)|D| 3 T;; X. To this end, we study
how the operator Lg transforms under the action of the flow ®(7) := ®(z, @)

3 (1) =1A(p)P(7)

1
®(0) = 1d, A(p) := B(p, x)|D| (11.1)

where the function (¢, x) is a real valued smooth function, which will be
defined in (11.19). Since (¢, x) is real valued, usual energy estimates imply
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that the flow @ (7, ¢) is a bounded operator on Sobolev spaces satisfying tame
estimates, see Sect. 2.7. -
Let ® := ®(¢) := ®(1, ¢). Note that ! = @ (see Sect. 2.7) and
Oy = 79 = O . (11.2)

We write the operator L¢ in (10.38) as

0)
. P
£6=w-8¢+1l'[0+ il _Q(g)
Q¢ Pg

where Il is defined in (10.2), Q¢ in (10.39), and
1
P = PO (g, x, D) = ia7| D|2T;? + ag + Ps (11.3)

with Pg defined in (10.39). Conjugating L with the real operator

®0
- (0 5) (11.4)

we get, since & d = [1d by (11.2),
L7:=0 '"Le®=0w 3+ ® (0 3®)+illg®
_ 0 _ =
+<c1> PO o 10sd )

coe ™ T Rer ). (11.5)
300 o 'PVD

Let us study the operator
. -1 ~1p0)
L7:=w-0y+ P (0 3,P) + P P &. (11.6)

ANALYSIS OF THE TERM QD_IP(EO)QD.Recalling(l1.1), the operator P(t, ) :=
P(r, <,0)_1 P6(0)<I>(r, @) satisfies the equation

3 P(t, ) = —i®(t, 9) ' [A(p), PV]D(z, 9).

Iterating this formula, and using the notation Ad 4 ) Péo) = [ A(p), Péo) ], we
obtain the following Lie series expansion of the conjugated operator

(1,9 PV, 9)
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L (—i)"
o . 0) — )
= Py —ilA, P14 ) ——Ad ) Py
n=2 :
(Vi 2M I A 2M+1 p(0)
oM, /(1_’) @ (v, ) AdY T P @ (T, ) dT. (117)
: 0

The order M of the expansion will be fixed in (14.8). We remark that (11.7)
is an expansion in operators with decreasing orders (and size) because each

commutator with A(p) = B(p, x)|D|% gains % order (and it has the size of
B).By (11.1) and (11.3),

1 1 1 1 1
—i[A, P"] = [BIDI?, 7| DIZ] + [BID|?, a7| D|* (T;} — 1d)]
—i[BIDI?, ag + Ps]. (11.8)
Moreover, by (2.47), (2.48) one has
[BIDI?, a7|D|?]
= Op( —ilBX(©)I&12, arx ©)1&1%) + r2(Bx @181, arx ©)I&]D))
1
= i((0.B)a7 — ﬁ(axm))Op(Exz(E)sign(S) + X ©)% X ©)l8])
+Op(r2(BX(©)E]?, arx () [E])) (11.9)

where the symbol 2 (B (£)I€]2, arx (§)|€]2) € S~ is defined according to
(2.49). Therefore (11.8), (11.9) imply the expansion

1
—i[A, P"] = _5((ax5)a7 — B(0ca7))H + R, po (11.10)
where the remainder
1
R, po = i((@:B)ar — B(3xan)Op (x(©)dex ©)I&] + 5 (@)
~ X()sign(®))

+0p(r2(BX (®)IEI2, arx (€)IE]D) + [BIDI?, a7| D|* (T, — 1d)]
—i[BID|?, ag + Ps) (11.11)

is an operator of order —% (because of the term [B| D] %, ag)).
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ANALYSIS OF THE TERM @ - 9y + ® Hw - 3,®} = @1 ow - 3, o . We
argue as above, differentiating

I {P(r,0) ow-dy0P(1,9)} = —id(r, 0) ' [Alp), w - | D (T, 9)
= —i® (1, 9) " (Ada@ - 3,) D (7, 9).

Therefore, by iteration, we get the Lie series expansion

d(1,9) ow-d,0@(1, @)
2M+1( 1)”
2
AL Bt Y A0 0,
n=3

(—i)?

=a)-8¢,—iAdA((p)a)-8¢,+ >

( —j)2M+2 | — )Ml ~1 (Ad2M+2 ® J
(2M + 1)! ( (T, ) (AdS 0 - 9,) D (T, @) d.
(11.12)

We compute the commutator

Adago -, = [A(p). @ 3]

= (- 3,A) LD

—(@ - 0,B(p, )| D|'/*(11.13)
and, using (2.47), (2.48),
A% 0 3y = [(@- 3,A(9)). A@)] = [(@ - 3,8)ID|2, BIDIZ]
= 0p( —i{(@- 8,Hx®IE1%. Bx®)lgI7)
2@ 0B X @I, B E)IE)).

According to (2.48) the term with the Poisson bracket is

—i{(w- 0,8 X ©)IE]2, Bx(©)IE]2)
1
=i(Bo By — Bro- ,B) (Ex@)zsign@ + x@)agx(sm)

and therefore

(—i)?

Ay = (ﬂw-agaﬁx—ﬂxw-awﬂ)HJrRA,w.aw (11.14)
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where
Raws, = =5 (Bo - pPx = B 9,8) Op((1(6)?
— X(&)sign(®) + 2x(§) X €)¢])
1 | i
—30p (z2((@- 3P ®IE17 px®)IT))  (L1S)

is an operator in OPS~! (the first line of (11.15) reduces to the zero operator
when acting on the periodic functions, because 2 — x and g x vanish on Z).
Finally, by (11.12), (11.13) and (11.14), we get

1
(L, p) " ow-d,0P(1,9) = 3y +i(w- d,B)(p, x)|D|?

1 2M+1 (—i)"
+ 1 (B@-0,B) = Be(@ - 0B)H + Rawa, — Y ——AdYe) (0 3,A(9)
n=3
(=)Mol 2M+1 1( A g2M+1
- m/o (1 =" o, o) (AdET (@ - 3,A()) @ (7, @) dr.

(11.16)

This is an expansion in operators with decreasing orders (and size).
In conclusion, by (11.6), (11.7), (11.3), (11.10), (11.16), the term of order

ID|2 in L7 in (11.6) is

i((w-a¢ﬂ)+a7Tf) D2 (11.17)

Choice of the functions (¢, x) and «(x). We choose the function B(¢p, x)
such that

1
(@ - 3y B) (@, x)Fa7(p, x)=(a7)y(x), (a7)<p(X):=—/Tv a7(p, x) dg.

(2m)Y
(11.18)
For all w € DC(y, ), the solution of (11.18) is the periodic function
B, x) = —(w-d,) " (a7(p, x) — (a7)y(x)), (11.19)

which we extend to the whole parameter space R” x [h1, hy] by setting B, :=
—(w - 890)(;1, (a7 — {a7)y) via the operator (w - 8(/,)6}1, defined in Lemma 2.5.
For simplicity we still denote by B this extension.
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Lemma 11.1 The real valued function B defined in (11.19) is odd(¢)even(x).
Moreover there exists o (ko, T, v) > 0 such that, if (6.9) holds with uy > o,
then B satisfies the following estimates:

ko, — ~ ko, ko, — ~ ko,
18157 < ey 2(L+130l,%7), Nlw - 3,815"7 S ey~ (1 +130ll,%7),
(11.20)

1A By So ev Al vor o dpA1nBly Ssi ey~ 1Al 1o
(11.21)

Proof The function a7 is even(p)even(x) (see (9.15)), and therefore, by
(11.19), B is odd(¢)even(x). Estimates (11.20)—(11.21) follow by (11.18),
(11.19), (10.4) and Lemma 2.5. m|

By (9.13), (8.7), (8.8) one has

a7 = Jasag = v A~ (az) A=V (a3) A1 (1 + ay)
= A (Vaa) A7 (V1 + ax).

We now choose the 27 -periodic function o (x) (introduced as a free parameter
in (8.1)) so that

(a7)p(x) = my (11.22)

is independent of x, for some real constant m; . This is equivalent to solve the
2
equation

(Va2az )p(x) /1 + oy (x) = my

whose solution is

m}

Bl

, = —=—— —1).
00 =0 <<~/aza3>§(x) )
(11.23)

N (L/‘ dx )_
27\ e (Va2 ()

Lemma 11.2 The real valued function a(x) defined in (11.23) is odd(x) and
(8.2) holds. Moreover
my — 1157 ey~ |Apmy| S ey 1 Anilly. (11.24)

Proof Since ay, a3 are even(x) by (7.34), the function «(x) defined in (11.23)
is odd(x). Estimates (11.24) follow by the definition of m 1 in (11.23) and
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Time quasi-periodic gravity water waves in finite depth 847

(7.35), (7.37), (6.9), applying also Lemma 2.6 and (2.10). Similarly « satisfies
(8.2) by (7.35), (7.37), (11.24), Lemma 2.6 and (2.10). O

By (11.18) and (11.22) the term in (11.17) reduces to
1 1
i(w 3B, x) +ar(p, x)T;)wﬁ =imy 7,7 D|? + Ry (1125)
where Rg is the OPS™ operator defined by

Rg 1= i(a)-a(p,B)(Id—Th%)|D|%. (11.26)

Finally, the operator L7 in (11.6) is, in view of (11.7), (11.3), (11.10), (11.16),
(11.25),

1
L7=a)-8¢+im%Thz|D|%+ag—|—a9’H+P7+T7 (11.27)

where ag is the real valued function

1 1
ag = ag(@, x) := _E(ﬁx a7 — B(dcar)) — Z(,Bx w0 — Bw-0ypx),

(11.28)
P; is the operator in OPS~!/? given by
2M+1 (—iy
. 1
Py = RA,PéO) + RA.w9, — Z - Ad'}_‘(@(w -0, A(9))
n=3
(0)
+Z _ Ad’}w)P + Ps+Rg (11.29)

(the operators R WG RA w-5,, Po, Rp are defined respectively in (11.11),
6
(11.15), (10.39), (11.26)), and

T — (=i)*M+2 f (1 — 7)2M+1
= (2M—|—1)'
x ©(t, )" (AR (0 9,A())) @(x, @) dT  (11.30)
Jr—(_i)ZM+1 /1(1 — )M (r, ) TAPMH PO o (1, ) dr
QM) Jo ’ A(p) ’
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(T7 stands for “tame remainders”’, namely remainders satisfying tame estimates
together with their derivatives, see (11.39), without controlling their pseudo-
differential structure). In conclusion, we have the following lemma.

Lemma 11.3 Let B(p, x) and a(x) be the functions defined in (11.19) and
(11.23). Then L7 := ® ' L® in (11.5) is the real, even and reversible oper-
ator

1
L7 =w-dy+imy T} |DITS +illg + (as + asH) + Pr + T
(11.31)

where m 1 is the real constant defined in (11.23), ag, ag are the real valued
Sfunctions in (10.1), (11.28),

ag = odd(p)even(x), a9 = odd(p)odd(x), (11.32)

and P7, T7 are the real operators

Pro= (272 copst,
0 P;
(11.33)

. _ 77 0
T =illg(® — ) + @ 'Q¢@ + '/ = ),
0 T4

where P; is defined in (11.29) and T7 in (11.30).

Proof Formula (11.31) follows by (11.5) and (11.27). By Lemma 11.1 the
real function B is odd(¢p)even(x). Thus, by Sects. 2.5 and 2.7, the flow map
® in (11.4) is real, even and reversibility preserving and therefore the con-

jugated operator L7 is real, even and reversible. Moreover the function a7 is
even(g)even(x) by (9.15) and ag defined in (11.28) is odd(p)odd(x). |

Note that formulas (11.28) and (11.33) (via (11.29), (11.30)) define a9 and
P7, I7 on the whole parameter space R” x [hi, hy] by means of the extended
function B and the corresponding flow ®. Thus the right hand side of (11.31)
defines an extended operator on R" x [hy, hy], which we still denote by L.

In the next lemma we provide some estimates on the operators P7 and 77.

Lemma 11.4 There exists o (kg, T, v) > 0 such that, if (6.9) holds with g >
o, then

ko,y « -2 ~ 11ko,y
a L& 1 =+ |[J s Vs > 50,
llaolls™" <s ey (1 + [[Tolly4s) 0 (11.34)

-2 .
IAaslls; Ssi ey "I AR5 40-
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For any s > sq there exists 5(s) > 0 small enough such that ifey_2 < 4(s),
then

ko, ko, ko, ko,
H(@F =1y, [(@* —Td)R [ <5 ey (RIS + 1301551 1A1E2),

so+o

(11.35)

AL Al sy ey 21 AR5 40 1A (11.36)

S1+%'

The pseudo-differential operator P7 defined in (11.33) is in OPS_%. Moreover
forany M, a > 0, there exists a constant R¢(M, o) > 0 such that assuming
(6.9) with ug = Re(M, @) + o, the following estimates hold:

k ~ ko,
1P, Sitsa ey (113005 ur.0040): (11.37)

[ARPII_L o SMsra €7 1AL ls+3601.0) 4o (11.38)

LetS > 59, B0 € N,and M > 2(,Bo—l—ko) There exists a constant R, (M, Bo) >
0 such that, assuming (6.9) with o > R/ ¢(M, Bo) + o, for any my, my > 0,

withmy +my < M — 2(,80 + ko), for any B € N, |B] < Po, the operators
(D)m18£7'7(D)m2, (D)m185A127'7(D)m2 are DX0-tame with tame constants
satisfying

m, y1 9 75 (D2 () Sms ey (1 + |I30||s+x/6(M,ﬂo)+a), Vsop <s <SS
(11.39)

1(DY™ ABETHDY"™ | sty Sas €7 21 An2i g sy oy (1140)

Proof Estimates (11.34) for ag defined in (11.28) follow by (10.4), (11.20),
(11.21), (2.10) and (6.9).

Proof of (11.35)—(11.36) It follows by applying Proposition 2.37, Lemma
2.38, estimates (11.20)~(11.21) and using formula 3} ((®*! — Id)n) =

> trkak C k1, k2)3} (®F —1d)d)2h, for any k € N+, |k| < ko.

Proof of (11.37)—(11.38) First we prove (11.37), estimating each term in the

definition (11.29) of P;. The operator A = B(¢, x)lDl% in (11.1) satisfies, by
(2.46) and (11.20),

ki k ~ nko,
||A||” Ssa 1BI"7 S ey 2 (14 1130115%Y). (11.41)
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The operator PG(O) in (11.3) satisfies, by (10.4), (10.5), (2.46), (10.40),

0) ki ~ 11ko,
1P S+ ||J0||s°+§5<M,a)+a- (11.42)

The estimate of the term — ZZMH dr,f‘(;) (0 - 9,A(@)) + ZZM |

Ad';‘( )P(O) in (11.29) then follows by (1 l 41),(11.42) and by applying Lemma
2.10 and the estimate (2.51). The term Rg € OPS™*° defined in (11.26) can
1
be estimated by (2.46) (applied with A := w- 9,8, g(D) := (T, — Id)|D|% €
OPS~°°) and using (11.20), (7.41). The estimate of the terms RA PO R4 w3,
)
in (11.29) follows by their definition given in (11.11), (11.15) and by estimates
(10.4), (10.5), (10.40), (11.20), (2.10), (2.46), and Lemmata 2.10, 2.11. Since

Pg satisfies (10.40), estimate (11.37) is proved. Estimate (11.38) can be proved
by similar arguments.

Proof of (11.39), (11.40) We estimate the term & 'Q¢® in (11.33). For any
k e N"t1 B e N, [k| < ko, |B| < o, » = (, h), one has

0,0, (@7 Qo ®)

= Y CBi P B ki ko k3) (01 95 @71 (952012 Q6) (00 05 ).

Bi1+p2+B3=p
ki+ko+k3=k

(11.43)

Forany my, my > Osatisfyingm+my < M — %(,Bo +kg), we have to provide
an estimate for the operator

(D)™ (8 951 @) (8,292 Q6) (3,7 812 @) (D). (11.44)
We write
(11.44) = ((D)mlaklaﬂld)_l(D)_w_ml) (11.45)
o (105 g og(p) ) (1146)
o<<D>—’"2 'ﬁ"ﬂk“a’@aﬁww) ) (11.47)

The terms (11.45)—(11.47) can be estimated separately. To estimate the terms
(11.45)and (11.47), we apply (2.86) of Proposition 2.37, (2.88) of Lemma 2.38,
and (11.20)—(11.21). The pseudo-differential operator in (11.46) is estimated
in | Jo,s,0 norm by using (2.40), (2.44), (2.46), bounds (10.40), (10.41) on Qe,
and the fact that w +my + w + my — M < 0. Then its action
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Time quasi-periodic gravity water waves in finite depth 851

on Sobolev functions is deduced by Lemma 2.28. As a consequence, each
operator in (11.44), and hence the whole operator (11.43), satisfies (11.39).
The estimates of the terms in (11.30) can be done arguing similarly, using
alsothe estimates (2.51), (11.41)—(11.42). The term (D)1 85 [Ty(P—1) (D)™
can be estimated by applying Lemma 2.36 (with A = I, B = ®) and (11.35),
(11.20), (11.21). O

12 Reduction of the lower orders

In this section we complete the reduction of the operator £7 in (11.31) to
constant coefficients, up to a regularizing remainder of order | D| =" . We write

L7 0\ .
Lr=("7=)+illy+ T3, (12.1)
0 Ly
where
1
Ly = -0, +imy T2 D[ +ag + asH + Py, (12.2)

the real valued functions ag, ag are introduced in (10.1), (11.28), satisfy

(11.32), and the operator P; € OPSf% in (11.29) is even and reversible.
We first conjugate the operator L7.

12.1 Reduction of the order 0

In this subsection we reduce to constant coefficients the term ag +agH of order
zero of L7 in (12.2). We begin with removing the dependence of ag + a9’H on
@. It turns out that, since ag, ag are odd functions in ¢ by (11.32), thus with
zero average, this step removes completely the terms of order zero. Consider
the transformation

Wo :=1d + fo(e, x) + golp, x)H, (12.3)

where fp, go are real valued functions to be determined. Since H?2 = —Id+mo
on the periodic functions where g is defined in (2.33), one has

1 1
LiWo = Wo(w - 8y +imy T2 [DI?) + (@ 8y fo + as + as fo — asg0)
+ (@ - 3,80 + a9 + aggo + ag foyH + P; (12.4)

@ Springer



852 P. Baldi et al.

where P; € OPS~7 is the operator

y 1 1
P7 :=a9[H, fol + ao[H, golH + |:imé T,2|D|2, WO] + P; Wy + aggomo.
(12.5)
In order to eliminate the zero order terms in (12.4) we choose the functions

fo, go such that

[w-8¢f0+as +ag fo —aggo =0 (12.6)

- dyp80 + ag + aggo + ag fo = 0.

Writing zo = 1 + fp 4 igo, the real system (12.6) is equivalent to the complex
scalar equation

w - 0,20 + (ag +iag)zo = 0. (12.7)

Since ag, ag are odd functions in ¢, we choose, for all @ € DC(y, 1), the
periodic function

20 :=exp(po),  po = —(@- dy) " (ag + iay), (12.8)
which solves (12.7). Thus the real functions

Jo:=Re(zp) — 1 = exp(—(w - aw)_lag) cos((w - 8(p)_1a9) —1

SR 0 " (12.9)
80 :=Im(z0) = —exp(—(w - dp) ™ "ag) sin((w - dp) ™" a9)

solve (12.6), and, for w € DC(y, 1), equation (12.4) reduces to
1 . .
LyWo = Wo( - d, +imy T2 ID|?) + By, Py e OPS™2. (12.10)
We extend the function pg in (12.8) to the whole parameter space R” x [hy, hj]

by using (w - 8¢)e_x1, introduced in Lemma 2.5. Thus the functions zg, fo, go in
(12.8), (12.9) are defined on R x [hy, hy] as well.

Lemma 12.1 The real valued functions fo, go in (12.9) satisfy
fo = even(p)even(x), go = even(p)odd(x). (12.11)

Moreover, there exists o (kg, T, v) > 0 such that, if (6.9) holds with g > o,
then

ko,y ko,y -3 ~ nko.y
I Aolls® ", 1lgolls”” Ss ey (1 + 1Tolls%e)-
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1A follss 1 A1280lls S € A2l 4o (12.12)

The operator Wy defined in (12.3) is even, reversibility preserving, invertible
and for any a > 0, assuming (6.9) with o > o + o, the following estimates
hold:

+1 k -3 ~ ko,
IWo Id"Oona S €7 (14 190ll5%040)

(12.13)
||A12W0 ||0,sl,oz ,Ssl,a gy 3||A12i||s1+a+0-

Proof The parities in (12.11) follow by (12.9) and (11.32). Therefore Wy in
(12.3) is even and reversibility preserving. Estimates (12.12) follow by (12.9),
(10.5), (11.34), (2.10), (2.17), (2.19). The operator Wy defined in (12.3) is
invertible by Lemma 2.13, (12.12), (6.9), for ey ~> small enough. Estimates
(12.13) then follow by (12.12), using (2.39), (2.46) and Lemma 2.13. O

For w € DC(y, 1), by (12.10) we obtain the even and reversible operator

1 1
Ly =Wy ' LiWo = w0, +imy T2 D2 + P, Py = Wy P,
(12.14)

where 157 is the operator in OPS_% defined in (12.5). 5
Since the functions fj, go are defined on R” x [hy, hy], the operator P; in

1
(12.5) is defined on R” x [hy, hal, and o - 9 + im; 7;; D]z + PV in (12.14)
is an extension of Lgl) to RY x [hi, hy], still denoted Lgl).

Lemma 12.2 For any M,a > 0, there exists a constant Ngl)(M o) > 0

such that if (6.9) holds with 1o > Ngl)(M, o), the remainder P7(1) € OPS_%,
defined in (12.14), satisfies

(D) ko, ko,y
1PV S ey (14130157, ),
> s he) (12.15)

(1) < -3
[A12P7 711 ) o SMsto €Y IARET 504y o)

Proof Estimates (12.15) follow by the definition of P7(1) given in (12.14),
by estimates (12.12), (12.13), (11.24), (11.34), (11.37), (11.38), by applying

(2.39), (2.44), (2.46), (2.50) and using also Lemma 2.16. The fact that P\"
1 1

has size e~ is due to the term [im, 7;? ID|2, Wo] = [im, 7;? D2, W — 1d],

because m% =1+ 0(8)/_1) and Wy — Id = 0(8)/_3). O

We underline that the operator Lgl) in (12.14) does not contain terms of
order zero.
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12.2 Reduction at negative orders

In this subsection we define inductively a finite number of transformations to
the aim of reducing to constant coefficients all the symbols of orders > —M

of the operator Lgl) in (12.14). The constant M will be fixed in (14.8). In the
rest of the section we prove the following inductive claim:

e Diagonalization of Lgl) in decreasing orders For any m € {1, ...,2M},
we have an even and reversible operator of the form

LY = w-3,+ Au(D) + P\, P cOPS™E,  (12.16)
where
1
An(D) 1= imy T} ID|? +rn(D),  rm(D) € OPS™7. (12.17)

The operator r,,, (D) is an even and reversible Fourier multiplier, indepen-
dent of (¢, x). Also the operator P7(m) is even and reversible.

For any M, o > 0, there exists a constant N;m)(M ,a) > 0 (depending

also on 7, ko, v) such that, if (6.9) holds with ;9 > 8" (M, «), then the
following estimates hold:

ko, — 1
I (D) Sy ey~ D,
77,5,(1

i) (12.18)
[A12rm DIy 0 St &y T NAREL im0
(m) ko 4 —(m+2) ~ jiko.y
Py < 1 12.1
127712 o SMos0 €Y ( + IIJollwgm)(M’a)), (12.19)
||A12P7(m) |- 10 SMs1,0 8y*(m+2)||A12i||sl+xgm)(M’a). (12.20)

Note that by (12.17), using (11.24), (12.18) and (2.40) (applied for g(D) =
T |D|2) one gets

1A D) S 1.
’ (12.21)

1812 AmDIy g, o St & ™" TVNALENL o 0
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For m > 2 there exist real, even, reversibility preserving, invertible maps
w©® W,gllll of the form

m—1°

m—1
Wn(loll =1d + w,(no)_l(gp, x, D)  with w® (o, x,6)e S 7,

m—1

—_

W,f,lll =1Id + w'! (x, D) with wf,}i](x, &) e S_mT_lJF*

m—1
(12.22)
such that, for all w € DC(y, 1),
1) =1 (m—1)11,(0
L =w )t wP oL Pw? wil o (1223)

Initialization For m = 1, the even and reversible operator Lgl) in (12.14) has
the form (12.16)—(12.17) with

1
(D) =0, A(D)= im%Thz|D|%. (12.24)

Since A1(D) is even and reversible, by difference, the operator P7(l) iseven and
reversible as well. At m = 1, estimate (12.18) is trivial and (12.19)—(12.20)
are (12.15).

Inductive step In the next two subsections, we prove the above inductive
claim, see (12.60)—(12.62) and Lemma 12.6. We perform this reduction in two
steps:

1. First we look for a transformation Wn(10) to remove the dependence on ¢ of
the terms of order —m /2 of the operator Lgm) in (12.16), see (12.27). The
resulting conjugated operator is L%m’ Din (12.34).

2. Then we look for a transformation Wn(f) to remove the dependence on x of

the terms of order —m /2 of the operator Lgm’l) in (12.34), see (12.48) and
(12.52).

12.2.1 Elimination of the dependence on ¢
In this subsection we eliminate the dependence on ¢ from the terms of order

—m/2 in P7(m) in (12.16). We conjugate the operator Lgm) in (12.16) by a
transformation of the form (see (12.22))

WO = 1d+ wP(p, x, D), with wP(p, x, &) €577, (12.25)
which we shall fix in (12.29). We compute

LYW = w(w- 8, + An(D)) + (@- d,wP) (@, x, D) + P\"™
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+[An(D), wQ (@, x, D)] + P\ w9, x, D). (12.26)

Since A,,(D) € OPS% and the operators P(m) (O) (¢, x, D) are in OPS_%,
with m > 1, we have that the commutator [A,,(D), w(o)((p,x D)] is in
OPS~32 and P"™wY (g, x, D) is 1n OPS™ C OPS~%~%. Thus the term
of order —m/2 in (12.26) is (@ - d,wy) (@, x, D) + P\"™.

Let p7 )(cp, x,&)e S 7 be the symbol of P7( ™) We look for wm)(go,x &)
such that

w - 3,wP (0, x, 8) + p" (0, x, &) = (PY),(x, &) (1227)

where

(PI")y(x, €) = : fp“”)( x,&)d (12.28)
@y Jp 702048 '

For all w € DC(y, t), we choose the solution of (12.27) given by the periodic
function

w0, x,6) 1= @ 0,) 7 (") e, ) = (g, %, 6)). (1229)

We extend the symbol w(o) in (12.29) to the whole parameter space R" x
[h1, hy] by using the extended operator (w - 8(/));61, introduced in Lemma 2.5.

As a consequence, the operator W(O) in (12.25) is extended accordingly. We

still denote by w(o) W(O) these extensions.

Lemma 12.3 The operator W,g, ) defined in (12.25), (12.29) is even and
reversibility preserving. For any o, M > QO there exists a constant N%m D (M, @)
> 0 (depending also on ko, T, v), larger than the constant Ngm) (M, @) appear-

ing in (12.18)~(12.21) such that, if (6.9) holds with j1o > RY""(M, &), then
forany s > sg

k k
10p(wy %y | Ssa £y <’"+3>(1+||J I e, )) (12.30)

||A120p<w<°>)||_7 o Mot €Y A (12.31)

148D (M)

As a consequence, the transformation W,E,O) definedin (12.25), (12.29) is invert-
ible and

k — k
IWH™ =11, S ey (m+3>(1+|u [N )), (12.32)
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IA LWV o0 Sarsyo €7~V A ||

~

wN e (1233)

Proof We begin with proving (12.30). By (2.35)—(2.36) one has

k m ko.
IOp(wH 2 < ﬁmax sup (£)2 17| afw,(,?)(-, SN e .

—z ~ko,v
.5, 0, [ a]geR

By (12.29) and (2.17), for each £ € R one has

10w ¢, O Skow ¥ (DY 8) = I )1

where 4 is defined in (2.18) with k + 1 = k¢. Hence ||Op(w(0))||k° o Skow

y= 1PN, VA 1 and (12.30) follows by (12.19). The other bounds are

proved 51mllarly, using the explicit formula (12.29), estimates (12.19)—(12.20)
and (2.17), (2.44), and Lemma 2.13. O

By (12.26) and (12.27) we get the even and reversible operator

LYY = WY TLIWD = w8, + A (D) + (pY")(x, D) + PV
(12.34)

where
P(m 1) (W(O)) 1([A (D) w(O)(w X, D)]+P(m) (0)((p’x D)

—w (g, x. D)(p™), (x,D)) (12.35)

is in OPS_%_%, as we prove in Lemma 12.4 below. Thus the term of order
—Zin (12.34)is (p (m)) (x, D), which does not depend on ¢ any more.

Lemma 12.4 The operators pém) o (x, D)and P7(m’ D are even andreversible.
The operator P7(m’1) in (12.35) is in OPS_%_%. Forany a, M > 0 there exists
a constant Ngm’Z)(M, a) > 0 (depending also on kg, t,v), larger than the
constant Ngm’l) (M, a) appearing in Lemma 12.3, such that, if (6.9) holds with
no > Rflm’z)(M, «), then for any s > sq

,1) ko,
[P D

m_ 1
7_275‘,05

k
SMosa €V —(m+3) (l -+ | Toll j_:(m 2, )> (12.36)

1 -
1802P" 1y 1 o Sisia e ™" AL (12.37)

S1 +N§m’2) (M,a)’
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Proof Since P(m)(x, D) is even and reversible by the inductive claim, its ¢-

average ( pg m) )o(x, D) defined in (12.28) is even and reversible as well. Since

A (D) isreversible and W,fi ) is reversibility preserving we obtain that P(m D

in (12.35) is even and reversible.

Let us prove that P7(m’1) is in OPS~%-12. Since A, (D) € OPS?
and the operators P(m), ,S?)(w,x, D) are in OPSf%, with m > 1, we
have that [A,(D), w(O)((p,x D)] is in OPS~%~2 and P\ wY (g, x, D)
is in OPS™ < OPS™ 2 =2, Moreover also Wy, )((p,x D)(p (m))(p(x,D) €
OPS™™ C OPS~%~2,sincem > 1.Since (W)~ is in OPS°, the remainder
P{™ Y isin OPS~% =2, Bounds (12.36)~(12.37) follow by the explicit expres-

sion in (12.35), Lemma 12.3, estimates (12.18)—(12.21), and (2.41), (2.44),
(2.50). O

12.2.2 Elimination of the dependence on x
In this subsection we eliminate the dependence on x from ( p;m))w(x, D),

which is the only term of order —m /2 in (12.34). To this aim we conjugate
L(m Din (12.34) by a transformation of the form

W = 1d+wD(x, D), where wD(x,&)e S 22 (12.38)
is a p-independent symbol, which we shall fix in (12.50) (for m = 1) and

(12.54) (for m > 2). We denote the space average of the function ( pgm) Yo(x,8)
defined in (12.28) by

m 1 m
(PI") 1 (8) = nf< )y (x, &) dx

1
- wal pgm)(%%é)dgodx. (12.39)

By (12.34), we compute

L&V = W(l)(a) 3y + Am(D) + (p (m)>g0,x)

+ [An(D), wiD(x, D)] + (pS") o (x, D) = (P41 (D)
+ (P, (x, DYw'V (x, D)
wiP (x, DY) (D) + P D WD, (12.40)
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By formulas (2.42), (2.43) (with N = 1) and (2.47), (2.48),

Py, Dyl (x, D) = Op((p")y (x, w0 (x, 6))

+r P, (1)(x,D), (12.41)
wly) (¥, D)(py™) . (D) = O ( WP ) ()

10 oy, (D). (12.42)
[An (D). wip (v, D)] = Op( = it An ()0 (2. £)

+ 12 (Am, wy)(x, D) (12.43)

L _m_1 )
where r ,F eSS 2 C ST 272, (A, w x, D) e
(P> T, () C 2(Ap, wp, ") (x, D)

@.x

s—2-1 ¢ S_%_%. Let xo € C°(R, R) be a cut-off function satisfying

4 7
x0(&) = xo(=§) V6 e R, xo(§) =0 V|§| < 3 x0) =1 V[§[ = e
(12.44)

By (12.40)—(12.43), one has

LPWD = WD (w3, + Ap(D) + (pI™)y £ (D))

+0p( = 0 A ()0 (x, €) + 0@ (P (6, ) = (P11 (8)
(12.45)

+ x0@® (P, €) = (P )y ©)wiP (x, 6)) (12.46)

+0p((1= 20®) (P (6. 6) = (") 1 ®) (1 + 0 (. 6))

+ 12(Am. wiy)) (x, D) + T, w0 (X, D)

— 7y o (6. D)+ P7<’" ”W,Ej). (12.47)
The terms containing 1 — xo (&) are in S~°°, by definition (12.44). The term
in (12.45) is of order —% and the term in (12.46) is of order —m + % which

equals —7 for m = 1, and is strictly less than —7 for m > 2. Hence we split
the two cases m = 1 and m > 2.

First case: m = 1. We look for w(l)(x, &) = wll)(x &) such that

—ide A1(E)w!" (x, &)
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+20E) (P ) (. ©) = (P (®) (1 + i, £)) = 0.
(12.48)

By (12. 24) and recalhng (2.31), (2.16), for |&] > 4/5 one has A((§) =
1m% tanhz(h|$|)|§|2. Since, by (11.24), |m%| > 1/2 for sy‘l small enough,
we have

1nf |§| [0: A1(§)] =8 >0, (12.49)
HEH

where § depends only on hj. Using that (p (1)) — pgl))% + has zero average

in x, we choose the solution of (12.48) given by the periodic function

wi” (x, &) = exp (g1(x. §)) —
xo®)d;7 ((p <”> @6 = (P )oa®) o
g1(x,8) = i0: A1 (§) =5 (12.50)
0 if g < 4

Note that, by the definition of the cut-off function yq given in (12.44), recalling

(12.24), (12.49) and applying estimates (2.40), (11.24), the Fourier multiplier

x0&)
9 A1 (8)

lor 525

is a symbol in §2 and satisfies

ko.y x0(&)
5581,0

<, v AR,
zsa 351\1(5) Se €y A ||s1

(12.51)

Therefore the function g1 (x, &) is a well-defined symbol in SO,
Second case: m > 2. We look for wm)(x &) such that

— 10 A () w D (x, £) + x0E) (P (x, &) — (P4 £ (6)) = 0.

(12.52)
Recalling (12.17)—(12.18) and (12.49), one has that
|1|n>f7 1€12106 A ()] = ‘1|n>f7 €12106 A1 (5)] — sup €12 19 7 5)]
=8 = lrm(D)_1 0,
>8—Cey "D > 5,2 (12.53)
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for ey =+ small enough. Since (p (m)) (x,&)—(p (m))w,x(é) has zero aver-
age in x, we choose the solution of (12.52) given by the periodic function

X067 (P (x, &) — (p™) 1 (6))
wy, (x, €) = 10: A (5)
0 if £ <

(

By the definition of the cut-off function xgin (12.44), recalling (12.24), (12.17),

(12.53), and applying estimates (2.40), (11.24), (12.18), the Fourier multiplier
x0&)

if [§] =

_ s Uk~

2.54)

. .ol .
is a symbol in S2 and satisfies

aEAm(S)
x0(&) \[ko-r
[op (5 Ay S
0s A (6)/ 11 5.0
x0(§) —(m+1) .
“AIZOp(aSAm(g)) oo M 8y RNARE oy g (12:55)

By (12.53), the function wy, )(x &) is a well-defined symbol in §™ B+,
In both cases m = 1 and m > 2, we have eliminated the terms of order —%
from the right hand side of (12.47).

Lemma 12.5 The operators W\ defined in (12.38), (12.50) for m = 1, and
(12.54) for m > 2, are even and reversibility preserving. For any M,a > 0

there exists a constant N;mﬁ) (M, @) > 0 (depending also on ko, T, v), larger
than the constant Ngm,Z) (M, @) appearing in Lemma 12.4, such that, if (6.9)
holds with py > Ngm’3)(M, o), then for any s > sg

(1) ko, ¥ < —(m+3) ~ tko.y
0PIy, SHsa Y (1 + 1300l o (M,a)), (12.56)

18120pW ) i1 o Shsia €T NAWI o)y (1257)

As a consequence, the transformation W,Ell) is invertible and

DyE1 ko,y —(m+3 ~ ko,y
|(W)*! =11, Swtsa e ™" )(1+||Jo|| ;;ms)(w), (12.58)

(12.59)

~

1AW o s Susia €7 ™" P NARIL ooy )

Proof The lemma follows by the explicit expressions in (12.38), (12.50),
(12.54), (12.39), by estimates (2.40), (2.41), (2.46), Lemmata 2.10, 2.11, 2.13
and estimates (12.19), (12.20), (12.51), (12.55). O
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In conclusion, by (12.47), (12.48) and (12.52), we obtain the even and
reversible operator

LD = (WD) LD WD = 5, + Ay (D) + P (12.60)

where

As1(D) i= (D) + (5 )gx(D) = imy T DI s (D).
Fn+1(D) = r(D) + (") gx (D),

and
PMHD = (D)~ {rz(Am,w(l))(x D)+r, ), W, D)

+ X200 (10@® () (5. ©) = (pY ) ®) P x, 6))

+0p((1=x0@E) ((PY" )y x, s>—<p§’”)>¢,x<s>)(1+w,5}><x, 9))]|
(12.62)

with x(n>2) equal to 1 if m > 2, and zero otherwise.

Lemma 12.6 The operators A,+1(D), rm+1(D), P7(m+1) are even and
reversible. For any M,a > 0 there exists a constant RgmH)(M o) > 0
(depending also on kg, t, v), larger than the constant N;mj) (M, o) appearing

in Lemma 12.5, such that, if (6.9) holds with uy > R%m“) (M, a), then for any
S =50

ko, _
[rms1(D)] OK Sma ey "2,
e (12.63)
18 127m 1 (DI o St €7 72N AN oy 4.
(m+1) ko,y < —(m+3) ko Y
1P | Sisa ey (1 + 130l o, o) (1264

+1 -
|A Py )ll,%,%,w SMsra 7" ARl N g (12:65)

Proof Since the operator ( pém) )o(x, D) is even and reversible by Lemma
12.4, the average (p (m))%x(D) defined in (12.39) is even and reversible as
well (we use Remark 2.22). Since r,, (D), A, (D) are even and reversible by
the inductive claim, then also r;,,4+1(D), A;;4+1(D) defined in (12.61) are even

and reversible.
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Estimates (12.63)—(12.65) for ry,+1(D) and P7(m+1) defined respectively
in (12.61) and (12.62) follow by the explicit expressions of ( p;m))w’ +(&) in

(12.39) and w,(nl) in (12.50) and (12.54) (for m = 1 and m > 2 respectively),
by applying (2.41), (2.40), (12.58)—(12.59), (12.36)—(12.37), (2.46), Lemmata
2.10, 2.11, and the inductive estimates (12.18)—(12.21). O

Thus, the proof of the inductive claims (12.18)—(12.23) is complete.
12.2.3 Conclusion of the reduction of Lgl)

Composing all the previous transformations, we obtain the even and reversibil-
ity preserving map

Wi=WooWP oW o oW owl) | (12.66)
where Wy is defined in (12.3) and form = 1,...,2M — 1, Wn(,,o), W,;“ are
defined in (12.25), (12.38). The order M will be fixed in (14.8). By (12.16),

(12.17), (12.23) at m = 2M, the operator L7 in (12.2) is conjugated, for all
w € DC(y, 1), to the even and reversible operator

Ly :=LY™ =W 'LyW = w3, + Aoy (D) + Payr  (12.67)
where Py = P7(2M) € OPS™ and
1
Aop(D) = imy T ID|2 + ray(D), ray(D) € OPS™2.  (12.68)

Lemma 12.7 Assume (6.9) with 1o > N§2M)(M , 0). Then, for any s > s, the
following estimates hold:

ko, _
||r2M(D)||_°lyS o Sm ey CM+1)

- _omen (12.69)
[A12ram (D)1, 0 Sm €Y [ENEL NGRS

ko,y —2(M+1 ko,y
1Pam 55y 5.0 Sms €Y ( )<1 + 1Tl HNOM (41, 0)> (12.70)
[A 12 Povtl-ps,0 Sas €7 MDAl SRCTIRY (12.71)
+1 ko,y —2(M+1 ko,y

IW="—1dlgso Sm.s €V ( )(1 + 11 Joll 20 0)) (12.72)
1AW o500 Sasy ey > MDA (12.73)

1488 (b1,0)°
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Proof Estimates (12.69), (12.70), (12.71) follow by (12.18), (12.19), (12.20)
applied for m = 2M. Estimates (12.72)—(12.73) for the map W defined in
(12.66), and its inverse W1, follow by (12.13), (12.32), (12.33), (12.58),
(12.59), applying the composition estimate (2.44) (withm = m' =« = 0). O

Since A (D) is even and reversible, we have that

Aoy (§),rom(E)€iR  and Az (§) = Aom(=§), rom(§) = rom (=§).
(12.74)

In conclusion, we write the even and reversible operator Lg in (12.67) as
Ly =w- 0y, +1Dg + Pry (12.75)
where Dg is the diagonal operator

Dg := —iAoy(D) := diag ez (1),

1 ik . _ (12.76)
pji=miljl? tanh(aljD2 +rj, 1= —irau()),
wi,rj R, wj=p_j, ri=r_j, Vjel, (12.77)
with r; € R satisfying, by (12.69),
1 _

sup 121 1507 Sap ey =MD,

e vt (12.78)

sup |j12|Awarjl Sum ey 1A, 520040,

JEL

and Pry; € OPS™M satisfies (12.70)—(12.71).

From now on, we do not need to expand further the operators in decreasing
orders and we will only estimate the tame constants of the operators acting on
periodic functions (see Definitions 2.24 and 2.29).

Remark 12.8 In view of Lemma 2.28, the tame constants of Ppj; can
be deduced by estimates (12.70)—(12.71) of the pseudo-differential norm
| Popl—m.s,« With o = 0. The iterative reduction in decreasing orders per-
formed in the previous sections cannot be setin | |-z .0 norms, because each
step of the procedure requires some derivatives of symbols with respect to &
(in the remainder of commutators, in the Poisson brackets of symbols, and also
in (12.54)), and « keeps track of the regularity of symbols with respect to £.
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12.3 Conjugation of £
In the previous Sects. 12.1-12.2 we have conjugated the operator L7 defined
in (12.2) to Lg in (12.67), whose symbol is constant in (¢, x), up to smoothing

remainders of order —M. Now we conjugate the whole operator £7 in (12.1)
by the real, even and reversibility preserving map

(WO
W = (0 W) (12.79)

where W is defined in (12.66). By (12.67), (12.75) we obtain, for all w €
DC(y, 1), the real, even and reversible operator

Ly :=WLW=0w- 8, +iDs +illy + T (12.80)

where Dy is the diagonal operator

_(Ds O
Dy := ( 0 _D8> , (12.81)

with Dg defined in (12.76), and the remainder 7g is

0 Py
(12.82)

Tg := iW 'TIgW — illg + W' oW + Payr, Pam = (PZM 3 >

with Pyjs defined in (12.67). Note that 7g is defined on the whole parameter
space RY x [hi, hy]. Therefore the operator in the right hand side in (12.80)
is defined on RY x [h1, hy] as well. This defines the extended operator L£g on
RY x [hy, hy].

Lemma 12.9 For any M > 0, there exists a constant Rg(M) > 0 (depending
alsoon t, v, ko) such that, if (6.9) holds with g > Rg(M), then for any s > sg

k ’ k , _ ~ ki 5
||Wi1 — Id||0?s?/0y IW* — Idllo(,)s?/o SMs €Y 2D (1 + ||JO”S(-)|—£8(M))’
(12.83)

AWV 05100 1AW 0510 Sars €7 2 MDA i [l 150
(12.84)

Let S > so, fo € N, and M > %(,Bo + ko). There exists a constant
Rg(M, Bo) > O such that, assuming (6.9) with o > Rg(M, Bo), for any
mi,my > 0, withmi +my < M — 1(Bo + ko), for any B € N, |B| < Bo,
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the operators (D)™ (85’]@) (D)™, (D)™ A]g(é)g’lé) (D)™ gre DX -tame with
tame constants satisfying

M+ -
mw)ml(agmw)mz (s) Sm.s €y (L4 1T0llyrsyar.p0))s  VS0=s=<S
(12.85)

I(DY™ A2 Te) (DY | ey Sas &7 > MV A g, a1, 0)-
(12.86)

Proof Estimates (12.83), (12.84) follow by definition (12.79), by estimates
(12.72),(12.73) and using also Lemma 2.12 to estimate the adjoint operator. Let
us prove (12.85) (the proof of (12.86) follows by similar arguments). First we
analyze the term WLTW . Letmy, my > 0, withm+my < M — %(,80 +ko)
and 8 € N with |8] < Bo. Arguing as in the proof of Lemma 11.4, we have
to analyze, for any B1, B2, f3 € NV with 81 + B> + B3 = B, the operator

O W08 T7) 05*W). We write

(D)™ 5 W 0T (08 W) (D)™
— ((D)mlaglyv(D)—MI)o((D)ml35277<D>’"2>o(<D>—mzag3W(D>m2).
(12.87)

Forany m > 0, 8 € NY, |B] < Bo, by (2.68), (2.40), (2.46), (2.44), one has

m oy 8) S5 DY @PWE (D)1

<D>m(3£W:H)
ByarE1 ko.y +1,ko,y
S W0 Ss VI om0

and "Wil“](()?‘;iﬂo 4m.o can be estimated by using (12.83). The estimate of

(12.87) then follows by (11.39) and Lemma 2.26. The tame estimate of
(D)™ 8£P2M<D)m2 follows by (2.68), (12.70), (12.71). The tame estimate of
the term i{D)™! 85 (V\/_1 [ToW — 1'[0) (D)™ follows by Lemma 2.36 (applied
with A = W~ and B = W) and (2.68), (12.83), (12.84). O

13 Conclusion: reduction of £, up to smoothing operators
By Sects. 6-12, for all A = (@, h) € DC(y, t) X [h1, h] the real, even and

reversible operator £ in (6.8) is conjugated to the real, even and reversible
operator Lg defined in (12.80), namely

PILP =Ly = w- 8, +iDg +illy + T, (13.1)
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where P is the real, even and reversibility preserving map
P = ZBAMoM3C® y WV . (13.2)

Moreover, as already noticed below (12.82), the operator Lg is defined on the
whole parameter space R” x [hy, ho].

Now we deduce a similar conjugation result for the projected linearized
operator L, defined in (5.26), which acts on the normal subspace H; 5> Whose
relation with £ is stated in (6.5). The operator L, is even and rever31ble as
stated in Lemma 6.1.

LetS := STU(—S™) and Sy := SU{0}. We denote by ITs, the corresponding

2_orthogonal projection and H§0 = Id — ITg,. We also denote HSl0 =
ngoﬁ(ﬁr) and H} := H*(T"*!) N Hs-

Lemma 13.1 (Restriction of the conjugation map to HSJ(-)) Let M > 0. There
exists a constant oy > 0 (depending also on ko, T, v) such that, assuming
(6.9) with Lo > oy, the following holds: for any s > s there exists a constant
8(s) > 0 such that, if ey >M+D < §(s), then the operator

Py = Mg PIlg, (13.3)

is invertible and for each family of functions h := h(L) € H | stom Hi+6M it
satisfies

k ~ ko, ko,
IPE RIS Sars 1RISSL + 130557 101507 (13.4)
IALRPTD RIS Sars & 2PN ALillsy 1oy 1 llsy41- (13.5)

The operator P] is real, even and reversibility preserving. The operators
P, P! also satisfy (13.4), (13.5).

Proof Applying (2.69) and (6.17), (7.28), (8.10), (9.7), (9.14), (2.60), (10.36),
(11.35), (12.83) we get

ko,y ko,y ~ nko.y ko,y
LARIEY <o MBI+ 130l IR,

Ae {Zil Bil Ail M:I:l M:I:l Cj:l (I):H (Dil Wil}

for some wy; > 0. Then by the definition (13.2) of P, by composition, one

+1 Y ko,y
gets that | P h|[& SM.s IIhIIs+UM+ IIJollsinglhllsoJrgM

oy > 0 larger than py > 0, thus P*! satisfy (13.4). In order to prove
that P, is invertible, it is sufficient to prove that Ilg,PIlg, is invertible, and
argue as in the proof of Lemma 9.4 in [1], or Section 8.1 of [8]. This follows

for some constant
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by a perturbative argument, for ¢y ~2M+1 small, using that Is, is a finite
dimensional projector. The proof of (13.5) follows similarly by using (6.20),
(7.30), (8.10), (9.18), (10.37), (11.36), (12.84). O

Finally, for all A = (w, h) € DC(y, ) X [hy, hj], the operator L, defined
in (5.26) is conjugated to

Ly =P 'L,PL =T LsTIg + Ry (13.6)
where
. —1lqlL 1 1
Ry =P Mg (PMs, L5, — LT, Pl + ¢RP ) (13.7)
= PN PHs, Mg + P TE, 78,V H (Ts(9) s, PTIE,
+ &P Mg, RP.L (13.8)

is a finite dimensional operator. To prove (13.6)—(13.7) we first use (6.5) and
(13.3) to get £,P1 = Mg (£ + eR)Mg PTg , then we use (13.1) to get
HéOEPHéO = Hgopﬁg HLO, and we also use the decomposition I, = Ils, +
Mg, . To get (13.8), we use (13.1), (6.5), and we note that s, @ - 3, Mg, = 0,

n§0 w -9, g, =0, and HgOiDgné‘o =0, by (12.81) and (12.76).

Lemma 13.2 The operator Ryy in (13.7) has the finite dimensional form (6.3).
Moreover, let S > sy and M > %(,80 + ko). For any B € NY, |B| < Bo,
there exists a constant Rg(M, Bo) > 0 (depending also on ko, T,v) such
that, if (6.9) holds with pug > No(M, Bo), then for any m,my > 0, with
my+my <M — %(,30 + ko), one has that the operators {D)™! 85 Ry (D)™,

(D)™ 8£A12RM (D)™ are DX -tame with tame constants

—2(M+1) ~ qko.y
m(D)"718£RM(D)m2 (S) SJM,S 8)/ (1 + ||J0||S+N9(M,,30)>’ VSOESSS
(13.9)

(D)™ A129) Rar (D)™ || sty Sas €7 > MTVNA 1 5y 430,80
(13.10)

Proof To prove that the operator Rjs has the finite dimensional form (6.3),
notice that in the first two terms in (13.8) there is the finite dimensional pro-
jector ITg,, that the operator R in the third term in (13.8) already has the finite
dimensional form (6.3), and use the property that P, (a(¢)h) = a(p)PLh for
all h = h(p, x) and all a(¢) independent of x, see also the proof of Lemma
2.36 (and Lemma 6.30 in [21] and Lemma 8.3 in [8]). To estimate R, use
(13.4), (13.5) for P, (12.85), (12.86) for 7g, (6.5), (6.8), (6.18), (6.19), (A.3)
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for J0,V,H(Ts(¢)), (6.3), (6.4) for R. The term HéojauVMH(Tg (p)IIg, is

small because Mg, ({ ~P“P®P)) Mg, is zero. O
By (13.6) and (12.80) we get
[,J_=a)~a¢]h_+iDJ_+RJ_ (13.11)

where | denotes the identity map of HSLO (acting on scalar functions u, as
well as on pairs (u, #) in a diagonal manner),

_ (b1 O —l 1
D, = ( 0 —DJ_> , D, = HSngnSo’ (13.12)

and R is the operator

(13.13)

Ri1R
RL;:H§%H§O+RM, Rl:( 1,1 L,2>

Ri2Ri1)

The operator R in (13.13) is defined for all A = (w,h) € RY x [hy, ho],
because 73 in (12.82) and the operator in the right hand side of (13.8) are
defined on the whole parameter space. As a consequence, the right hand side
of (13.11) extends the definition of £, to R” x [hy, hp]. We still denote the
extended operator by £ .

In conclusion, we have obtained the following proposition.

Proposition 13.3 (Reduction of £, up to smoothing remainders) For all A =
(w,h) € DC(y, 1) X [hi, hyl, the operator L, in (6.5) is conjugated by the
map P, definedin (13.3) to the real, even and reversible operator L in(13.6).
Forall & € RY x [hy, hy), the extended operator L | defined by the right hand
side of (13.11) has the form

EJ_Za)-aw]IJ_-i-iDJ_-i-RJ_ (13.14)

where D is the diagonal operator
D, 0 .
DJ_ = ( OJ- _DL> , DJ_ = dlagjegg /J,j, M—j = /J'j’ (1315)
with eigenvalues i j, defined in (12.76), given by
pj=my|j|> anhZ(nlj) +r; €R, 1oy =rj, (13.16)

where mi, rj € R satisfy (11.24), (12.78). The operator R | defined in (13.13)

is real, even and reversible.
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Let S > so, Bo € N, and M > %(ﬂo + kg). There exists a constant
R(M, Bo) > 0 (depending also on kg, T, v) such that, assuming (6.9) with
1o = (M, Bo), for anymy, my = 0, withmy+my < M —5(Bo+ko), for any
B € N, |B| < Po, the operators (D)™ 9)R 1 (D)"2, (D)"13] AR 1 (D)">
are DX -tame with tame constants satisfying

—2(M+1) ~ qkoy
(13.17)

(D)™ A1 R (DY Nl 2oy Sms € > MDA llsy 1. p0)-
(13.18)

Proof Estimates (13.17)—(13.18) for the term nsio7'8n§0 in (13.13) follow
directly by (12.85), (12.86). Estimates (13.17)—(13.18) for Ry, are (13.9)-
(13.10). O

14 Almost-diagonalization and invertibility of £,

In Proposition 13.3 we obtained the operator £ = £ (¢) in (13.14) which
is diagonal up to the smoothing operator R | . In this section we implement a
diagonalization KAM iterative scheme to reduce the size of the non-diagonal
term R | .

We first replace the operator £ in (13.14) with the operator £i_ym defined
in (14.1) below, which coincides with £ on the subspace of functions even
in x, see Lemma 14.1. This trick enables to reduce an even operator using
its matrix representation in the exponential basis (¢'/¥) jez and exploiting the
fact that on the subspace of functions even(x) its eigenvalues are simple. We
define the linear operator Clym, acting on H, lo , as

Esym L . sym sym | Rj_ynf j_y,;
T"i= e dpl+iDL+RY, RY™ = | o | (141
1,2 V1,1

where Riyrl" i =1, 2, are defined by their matrix entries

RS @+ @R @ it jj >0,
0

(R () = ji'esy, i=12

if jj’ <0,
(14.2)
and R, ;, i = 1,2 are introduced in (13.13). Note that, in particular,
(Rj_yrl")j = 0, i = 1,2 on the anti-diagonal j* = —j. Using definition

(14.2), one has the following lemma.
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Lemma 14.1 The operator Rj_ym coincides with R | on the subspace of func-
tions even(x) in HSLO X HSLO, namely

Rih=RY"h, VheHs x Hs., h=h(p,x)=even(x). (14.3)

Rj_ym is real, even and reversible, and it satisfies the same bounds (13.17),
(13.18)as R ;.

As a starting point of the recursive scheme, we consider the real, even,
reversible linear operator Dlym in(14.1), acting on H, LO, defined forall (w, h) €
RY x [hy, hp], which we rename

EoZZKSﬁ)mizw-a(pHJ_+iD0+Ro, Do:=D,, 'Ro::Rj_ym, (14.4)

with

(Do 0
Dy ._(O _DO),
. 1 1 .
Dy ::dlagjegapc(])-, iy i=my[j]2 tanh2 (Bl j) 47y, (14.5)

where mp 1= m%(a), h) € R satisfies (11.24), rj :=rj(w,h) e R, r; =r_;
satisfy (12.78), and

R RY” ©) . 7L 1
RO = E(O) E(O) s Ri . HSO — HSO’ 1 = 1, 2. (146)
2 1

Notation. In this section we use the following notation: given an operator R,
we denote by 95 (D)™R(D)™ the operator (D)™ o (E);iR((p)) o (D)™. Simi-
larly (3, )°(D)™R(D)™ denotes (D)™ o ((dy,x)°R) o (D)™ where (9, )" is
introduced in Definition 2.7.

The operator R in (14.6) satisfies the tame estimates of Lemma 14.2 below.
Define the constants

b:=la]l+2€N, a:=max{3t,x(t+DHU@d+1)+1}, x:=3/2,

ko (14.7)
11 :=7t(ko+ 1) +ko+m, m:=dko+ 1)+37

where d > 3kg, by (4.22). The condition a > x(r + 1)(4d + 1) + 1 in
(14.7) will be used in Sect. 15 in order to verify inequality (15.5). Proposition
13.3 implies that Ry satisfies the tame estimates of Lemma 14.2 by fixing the

constant M large enough (which means that one has to perform a sufficiently
large number of regularizing steps in Sects. 10 and 12), namely
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b + so + ko

M::[2m+2b+1+ ;

] +1eN (14.8)

where [ - | denotes the integer part, and m and b are defined in (14.7). We also
set

ud) = R(M, so + b), (14.9)

where the constant X(M, sg + b) is given in Proposition 13.3.

Lemma 14.2 (Tame estimates of R := Riym)Assume (6.9)with ;1o > u(b).
Then Ry in (14.4) satisfies the following property: the operators

(D)"Ro(D)™!, DY"Ro(D)™!, Wi=1,...,v, (14.10)

where m, b are defined in (14.7), are DXo-tame with tame constants

M() (S) = i_IIllaX ) {m(D>mRO(D)m+1 (S), 93?8;0 (D)™ Ro(D)m+! (S)}, (1412)
Mo(s, b) := iznll,?.l.).(,v {9ﬁ<D)‘"“+b730(D)'“erJrl (5), ma;?+b(D)m+bRo<D)m+b+1 (S)}
(14.13)

satisfying, for all so < s < S,

_ ~ nko,
Mo(s, b) := max{Mo(s), Mo (s, )} S ey > MV (1 + 130l1,57 1))

(14.14)
In particular we have
Mo (50, b) < C(S)ey 2M+D, (14.15)
Moreover, foralli =1,...,v, B €N, B <s9+ b, we have

12 (D)™ A Ro (D)™ g0y 185 (D)™ A1 Ro(DY™ 2+ | £ g0,
Ss 87_2(M+1)”A12i||so+u(b)- (14.16)
Proof Estimate (14.14) follows by Lemma 14.1, by (13.17) with m; = m,
my = m —+ 1 for My(s), withm; = m + b, mp = m + b + 1 for My(s, b),

and by definitions (14.7), (14.8), (14.9). Estimates (14.16) follow similarly,
applying (13.18) with the same choices of m, my and with s; = sp. m|
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We perform the almost-reducibility of Ly along the scale
Nop:=1, Ny:=N{ V¥n>0, x=3/2 (14.17)

requiring inductively at each step the second order Melnikov non-resonance
conditions in (14.26). Note that the non-diagonal remainder R in (14.19) is
small according to the first inequality in (14.25).

Theorem 14.3 (Almost-reducibility of Lo : KAM iteration) There exists Ty 1=
(T, v) > 11 + a (where 11, a are defined in (14.7)) such that, for all S > s,
there are No := No(S,Db) € N, 69 := 80(S, b) € (0, 1) such that, if

sy PMED <8, Ny*Mo(so, D)y ' < 1 (14.18)
(see (14.15)), then, foralln e NNn=0,1,...,n:

(S1), There exists a real, even and reversible operator

, Dy 0
ﬁnizw'a(pHL+1Dn+Rna DH:Z(OH_D)’
n

defined for all (w, h) in R x [hy, hy] where ,u;’ are ko times differen-
tiable functions of the form

1 (@, h) = M‘}(w, h) + r(w,h) € R (14.20)
where ,uf} are defined in (14.5), satisfying

n__ . n . n__ .n
Wi =p_;, ler;=r;

PR < C(S, D)ey XMED I v e s (14.21)

and, forn > 1,

—1,ko, =2 ft
|l/‘1}1 - ,Uv_r/'l [0V < Cljl mm<D)mRn_l<D>m(SO)
< C(S,p)ey MV j|=2mN—a - (14.22)

The remainder

R gn) R én)

Rni=—=tn = 14.23
n (Rén) R(ln)> ( )
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satisfies
(RI, @) = (RS, @) =0 v, j. /). ji' <0,  (14.24)
and it is DX -modulo-tame: more precisely, the operators (D)™ R, (D)™

and (0, x Y (DYPR (D)™ are D*-modulo-tame and there exists a con-
stant C := Cy (50, b) > 0 such that, for any s € [sg, S],

CMo(s, b)
it 0
Moy oy (5) <~
n—1
m’ () < CuMo(s, D)Na-1. (14.25)

(9g,x)P (D)™ Rn (D

Define the sets 4 by Ag :=DCQy, 1) X [h1, hy], and, foralln > 1,

n—1 -

A = Y (i) = {x = (w,h) € A
R I i S 7 i A
Ve 1j = j'l < Na—1, joj e NI\ST, (6, ), ) # (0, j, j),
o 415+ = v (VT VIO

VIEL 1 = 1 < Noot, J,J' € N+\S+}. (14.26)

For n > 1, there exists a real, even and reversibility preserving map,
defined for all (w, h) in RY x [hy, hy), of the form

W1 Wao
Oy i=1, + Wy, W, ;= (En 11; Eﬂ 11?) (14.27)
n—I, n—I,

such that for all . = (w,h) € AL the following conjugation formula
holds:

Ln=0 " Lo ®ny. (14.28)
The operators (D)™, (D)T™ and (3, )P (D)™ W,,_1 (D)T™ are
Dk -modulo-tame on RY x [hi, hy] with modulo-tame constants satis-

fying, for all s € [so, S], (11, a are defined in (14.7))

mﬁ(jD)im\I-‘n,I(D);m(s) < C(SO, b)y_lN;LlN;fzmo(S, b)v (1429)
M, oipyim, (pyn®) = Cls0. D)y T NI NamaMo(s, b), (14.30)

M, (5) < Cls0. D)y NI N2 Mo (s, b). (14.31)
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(S2)n, Letij(w,h), iz(a) h) be such that Ro(i1), Ro(i2) satisfy (14.15). Then
forall (w,h) € AL (i1) NAR (in) with y1, v» € [y /2, 2y], the following
estimates hold

(D)™ A12Ra (D)™l (%)

Sso ey PMIONT2 i = iallsg 4o (14.32)
11{3g.x)>(DY™ A 1R (D)™l £(sr50)
Ssp ey 2MIONL it = iollsgc)- (14.33)

Moreover forn > 1, forall j € S,

2(M+1)|J |72mN

1 .
A =r77h| Ssp ey S llin = i2llsg4 1005

(14.34)
1A1rT] Sso ey 2T — i g w)- (14.35)
(S3), Let iy, ip be like in (S2), and 0 < p < y /2. Then
C(S)NTAPEID =4 i gy < 0
= AL(>i1) S AL (). (14.36)

We make some comments:

1. Note that in (14.34)—(14.35) we do not need norms | [K0-¥. This is the
reason why we did not estimate the derivatives with respect to (w, h) of
the operators AR in the previous sections.

2. Since the second Melnikov conditions |w - £ + un - u;.l,_ll >

Y1179 179€) " lose regularity both in ¢ and in x, for the convergence
of the reducibility scheme we use the smoothing operators I1y, defined in
(2.25), which regularize in both ¢ and x. As a consequence, the natural
smallness condition to impose at the zero step of the recursion is (14.25) at
n = 0 that we verify in the step (S1)( thanks to Lemma 2.35 and (14.14).
3. An important point of Theorem 14.3 is to require bound (14.18) for
Mo(so, b) only in low norm, which is verified in Lemma 14.2. On the
other hand, Theorem 14.3 provides the smallness (14.25) of the tame con-

# f
stants i)ﬁ(mmRH(D)m(s) and proves that m(awx)b(D)mRn(D)m(s’ b),n >0,

do not diverge too much.

Theorem 14.3 implies that the invertible operator

U, .= dbgo---0od,_1, n>1, (14.37)
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has almost-diagonalized Ly, i.e. (14.42) below holds. As a corollary, we deduce
the following theorem.

Theorem 14.4 (Almost-reducibility of Lg) Assume (6.9) with pug > n(b).
Let Ry = Rsym Lo = L'sym in (14.1)—-(14.2). For all S > sq there exists
No := No(S, b) >0, §p := SO(S) > 0 such that, if the smallness condition

Ny @M+ < 5 (14.38)

holds, where the constant T» := 1o(7, v) is defined in Theorem 14.3 and M
is defined in (14.8), then, for alln € N, for all . = (v, h) € R x [hy, hy],
the operator U, in (14.37) and its inverse Z/{n_l are real, even, reversibility
preserving, and Dko_modulo-tame, with

—(2M+3 ~ ko,
M sy () Ss ey CTING (L4 130113 y) Vo0 <5 < S,

(14.39)

where 11 is defined in (14.7).

The operator L, = w - 3yl| + 1D, + R, defined in (14.19) (withn = n)
is real, even and reversible. The operator (D)™R,, (D)™ is DX0-modulo-tame,
with

M e, oy () Ss 8y 2MFDN 2 (14 30)1157 ) Vso < s < 8.
(14.40)
Moreover, for all . = (w, h) in the set
n
N =) 8% (14.41)
defined in (14.26), the following conjugation formula holds:
L, =U " Lolk,. (14.42)

Proof Assumption (14.18) of Theorem 14.3 holds by (14.14), (6.9) with ug >
w(b), and (14.38). Estimate (14.40) follows by (14 25) (forn = n)and (14 14).
It remains to prove (14.39). The estimates of M o 1, (5),n=0,. —1,
are obtained by using (14.31), (14.18) and Lemma 2. 32 Then the estimate of
Z/{fl — I, follows as in the proof of Theorem 7.5 in [21], using Lemma 2.31.
O
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14.1 Proof of Theorem 14.3

Initialization

Proof of (S1), The real, even and reversible operator L defined in (14.4)—
(14.6) has the form (14.19)—(14.20) for n = 0 with r})(a), h) =0, and (14.21)
holds trivially. Moreover (14.24) is satisfied for n = 0 by the definition of
Ro := R™ in (14.2). The estimate (14.25) for n = 0 follows by applying

Lemma 2.35t0 A € {R§0)’ Réo)} and by recalling definition of 91y (s, b) in

(14.14). O
Proof of (S2), The proof of (14.32), (14.33) for n = 0 follows similarly using
Lemma 2.35 and (14.16). O
Proofof (S3)o Itis trivial because, by definition, &) = DC(2y, 7) x [h, ha] €
DC(2y —2p,7) x [h1, ha]l = Af 7. i

14.1.1 Reducibility step

In this section we describe the inductive step and show how to define £, 1
(and Wy, dy, etc). To simplify the notation we drop the index n and write +
instead of n + 1, so that we write £ := Ly, D := Dy, D := Dy, puj = ,u;.l,
R =R, R = Rgn), Ry = Rén), and £, = Lny1, Dy := Dpy1, and so
on.

We conjugate the operator £ in (14.19) by a transformation of the form (see
(14.27))

o AR
O =1, +V, V= <$2 El) . (14.43)

We have

LO =Pl +iD) + (- ¥ +i[D, W] + [Ty R) + [Ty R + RV
(14.44)

where the projector 1y is defined in (2.25), HJA-, =1 —Ily,and w - 9,V is
the commutator [ - 9y, W]. We want to solve the homological equation

-0V +i[D, V] + TIyR = [R] (14.45)
where
R 0 ) i
[R] := ([ 01] [E]) , [R]:= dlangS(C)(R])j-(O). (14.46)
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By (14.19), (14.23), (14.43), equation (14.45) is equivalent to the two scalar
homological equations

- 0,¥ +i[D, V1] + Ty Ry = [Ry],

. (14.47)
- 0,¥2 +1(DYy + WD) +TIyR, =0

(note that [R{] = [T1x R;]). We choose the solution of (14.47) given by

5 (RD} (©) o . o,
(‘I"l)]- ) := —m V&, j, j) # O, j, x5, €, 1j—Jj1 <N,
J ) J TRy
0 otherwise;
(14.48)
) (R2)} (&) e e o,
(‘I’Z)j- () = —m Y, j,J') € ZY x4 xSy, 1], 1j —J'1 <N,
0 otherwise.

(14.49)

Note that, since u; = p—; forall j € SC (see (14.21)), the denominators in
(14.48), (14.49) are different from zero for (w,h) € A/ na (see (14.26) with
n ~» n + 1) and the maps W, ¥, are well defined on Ag . Also note that
the term [R;] in (14.46) (which is the term we are not able to remove by
conjugation with W; in (14.47)) contains only the diagonal entries j/ = j and
not the anti-diagonal ones j/ = — j, because R is zero on j' = —j by (14.24).
Thus, by construction,

W0 = W)l O =0 V@) jj <0 (1450)

Lemma 14.5 (Homological equations) The operators Vi, WV, defined in
(14.48), (14.49) (which, for all A € AIl Iy solve the homological equations
(14.47)) admit an extension to the whole parameter space R” x [hi, hy]. Such
extended operators are DX0-modulo-tame with modulo-tame constants satis-

fying

mz ):tmq;( D)Fm (S) ~ko er)/ m?D)‘"'R(D)“‘ (S), (1451)
g —lgpt
(9 L )P(D)EMp(D)Fm (S) ~ko er]/ m(aw,ﬁb(D)m'R(D)m (S) (1452)
MY, (5) Sgy N7y 1905, (s) (14.53)

where 11, b, m are defined in (14.7).

@ Springer



Time quasi-periodic gravity water waves in finite depth 879

Given iy, ip, let AW := W(iz) — VY (i1). If 1,2 € [y/2,2y], then, for
all (w,h) € Al' (i) N A2, (i),

I {D)E™ AW (D) F™| || £,

1
< NP2 L DY R (i) (D)™l cersoy llin — i2llso-t100)
+ 1 (DY™A 2 RADY™ | Nl (%0 (14.54)
(3. )° (DY E™ AW (DYF™| || £ (250

1
< NP2 1) (3 )P (DY R (1) (D)™ |l £ty it — 82l sp4100)
+ 1118y )P (D)Y™ A2 R(DY™ |l 210y ) - (14.55)

Moreover V is real, even and reversibility preserving.

Proof Forall » € Al |, (€, . j) # (0. j. %)), j, j € S§ 1l 1j — j'| <N,

we have the small divisor estimate

-7

- €+ pj =yl =l €4 i) — | = v 1170 1790)

by (14.26), because ||j| — |j'|| < |j — j'| < N. Asin Lemma B.4, we extend
the restriction to F = Ag 41 of the function (w - €+ pu; — p jr)_l to the whole
parameter space R" x [hy, hy] by setting

x(fp™h
foy
p =y ()19,

ge,j,jr(A) == fQ)=w-+pu;—pj,

where y is the cut-off function in (2.16). We now estimate the corresponding
constant M in (B.14). For n > 1, x > 0, the n-th derivative of the function
tanh? (x) is P, (tanh(x)) tanhz " (x)(1 — tanh?(x)), where P, is a polynomial
of degree < 2n — 2. Hence |8ﬁ{tanh%(h|j|)}| < Cforalln = 0,...,ko,
for all h € [hy, hy], for all j € Z, for some C = C (ko, h1) independent of
n,h, j. By (14.20), (14.21), (14.5), (11.24), (12.78) (and recalling that 1 ; here
denotes ,u?), since ey ~2M+D < 3 we deduce that

ylofuil Svljl? Ve e N 1<lal <k  (14.56)
Since y‘“||8§‘(w -£)| < y|£] forall || > 1, we conclude that

1 gL
YN8 (@ €+ i — i)l Sy A+ 112 +1712)
S y(O121712, Y1 <ol <ko. (14.57)
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Thus (B.14) holds with M = Cy(£)|j|2]j'|7 (which is > p) and (B.15)
implies that

k
|g€,j,j’|k0’y S, y—l(£>r(k()+1)+k0|j|m|j/|m Wlth m= (kO 4 l)d + ?0
(14.58)

defined in (14.7). Formula (14.48) with (w - £ + u; — uj/)_l replaced by
ge,j, i/ (1) defines the extended operator Wy to R” x [hy, hy]. Analogously,
we construct an extension of the function (w - £ + u; + p j/)_l to the whole
RY x [hi, hy], and we obtain an extension of the operator W5 in (14.49).
Proof of (14.51), (14.52), (14.53) We prove (14.52) for W, then the estimate
for W, follows in the same way, as well as (14.51), (14.53). Furthermore,
we analyze <D>ma§\y1 (D)™™, since <D>—ma§xp1 (D)™ can be treated in the
same way. Differentiating (\Ill)j./(ﬁ) = ggﬁj’j/(Rl)j-/(E), one has that, for any
k| < ko,

DT @IS Y 19 e 102 (RDT (0]

ki1+ky=k
_ k i’
< D v Mg 12 (R ()]
k1+ko=k
(14.58) e (ko) ko my <y —1—[K] ko k2 i
0 1™ ™y > yRaz R, @) (14.59)

|ko| <|k|
For |j — j'| < N, j, j/ # 0, one has

P S I ™ 4+ 1= 3™ S ™A™ + N™ S ™G N,
(14.60)

Hence, by (14.59) and (14.60), for all |k| < ko, j, j' € S{, £ € Z', |£| < N,
|j — j'| < N, one has

185 DE @111 S NPy RSy R e Ry @11
k2| <[]
(14.61)

where 71 = t(kg + 1) 4+ ko + m is defined in (14.7). Therefore, for all 0 <
k| < ko, we get
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1143, ) (D)™ 05 Wy (D) ™| hI7

Dy R SR

[&'—L].1j'—jI=N

A
0
=

2
|95 (W)} (€ = ) e, ]
(14.61) 5 (1l ok )
Sy Ny 2D N 2l Yy

k2| <lkl|

2
(Z (€= 2 = P82 (R (€ = ) ()™ lhe ,-/|)

k 2
kg N27y 720D R 2000 45, ) P(DY™ 92 (RO)(DY™ [ -] 1]
[k2|<|k]|
2.70),2.28) 5 214D 4
Tl .,—
’SkO N 14 <D:n(3¢,x)b(D)mR|(D)m(s)”h”SO

2
T m?i)(p,x)b(D)mR](D)m (SO)”h”s) (14.62)

and, recalling Definition 2.29, inequality (14.52) follows. The proof of (14.54)—
(14.55) follow similarly. O

If ¥, with ¥, W, defined in (14.48)—(14.49), satisfies the smallness condi-
tion

4C () C (ko) (s0) < 1/2, (14.63)

then, by Lemma 2.32, ® is invertible, and (14.44), (14.45) imply that, for all

14
AE Apiys

Li=0"L&=w 3,]; +iDi + Ry (14.64)
which proves (14.28) and (14.19) at the step n + 1, with

D, :=iD+[R], Ry:=® '(IyR+R¥ — Y[R]). (14.65)
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We note that R satisfies

R <(§+)1 (§+)2>
TR R )

(RO @) = (Rl () =0 V(. j. ). ji' <0,

(14.66)

similarly as Ry, in (14.24), because the property of having zero matrix entries
for jj' < 0 is preserved by matrix product, and R, W, [R] satisfy such a
property (see (14.24), (14.50), (14.46)), and therefore, by Neumann series,
also ®~! does.

The right hand sides of (14.64)—(14.65) define an extension of £ to the
whole parameter space R" x [hy, hj], since R and W are defined on R" x
[hi, hy].

The new operator £ in (14.64) has the same form as £ in (14.19), with the
non-diagonal remainder R 4 defined in (14.65) which is the sum of a quadratic
function of W, R and a term H*,R supported on high frequencies. The new
normal form Dy in (14.65) is diagonal:

Lemma 14.6 (New diagonal part) For all (w, h) € R" x [hy, hy] we have

iD+:iD+[R]:i(D+ 0 )

0 —-Dy (14.67)
Dy :=diagjegep). nj=n;+r;€eR,
withrj =1r_j, ;L;L = ,uirj forall j € S§, and, on R* x [hy, hy],
2907 = |t — 07 S 2O g pym (S0). (14.68)

Moreover, given tori i1 (w, h), i2(w, h), the difference
;G — )] S 1T IDY A R(DY™ l cersoy.  (14.69)

Proof ldentity (14.67) follows by (14.19) and (14.46) withr; := —i(Rl)j.(O).
Since R satisfies (14.24) and it is even, we deduce, by (2.58), thatr _; = r ;.
Since R isreversible, (2.63) implies thatr ; := —i(Rl)j.(O) satisfiesr; =1_;.
Therefore r; =T¥_; =T ; andeachr; € R.

Recalling Definition 2.29, we have [|[3X((D)™R{(D)™)|hlly, < 2y~
m?D)mRMD)m(SO)“h”S()’ for all A = (w,h), 0 < |k| < ko, and therefore

(see (2.67))
|05 (RSO S 1172y MM, oy (50) S 17172y 7ROy oy (50)
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which implies (14.68). Estimate (14.69) follows by |A12(R1)§(0)| S
72 (D)™ A 1 R(D) ™|l £ 1150) - O

14.1.2 Reducibility iteration

Letn > 0and suppose that (S1),—(S3), are true foralln = 0, ..., n. We prove
(S1)+1-(S3),,+1. For simplicity of notation we omit to write the dependence
on kg which is considered as a fixed constant.

Proof of (S1),4+1 By (14.51)—(14.53), (14.25), and using that Emsz,, (s) <

sme)mRn (Dym (s), the operator W, defined in Lemma 14.5 satisfies estimates
(14.29)-(14.31) with n = n + 1. In particular at s = sg we have

M g, pye (50), MG, (50) < Cls0, LIN; N, %y ™' Mo (50, b).
(14.70)

Therefore, by (14.70), (14.7), (14.18), choosing 72 > 71, the smallness condi-
tion (14.63) holds for Ny := No(S, b) large enough (for any n > 0), and the
map &, =1 + W, is invertible, with inverse

. y B, U
ol =T, + 8, ¥,:= (" (14.71)
\pn 2 lI’n 1

Moreover also the smallness condition (2.75) (of Corollary 2.33) with A = W,,,
holds, and Lemma 2.32, Corollary 2.33 and Lemma 14.5 imply that the maps
W, (D)F™,, (D)F™ and (3, )° (D)™ W, (D) F™ are D¥-modulo-tame with
modulo-tame constants satisfymg

M, () M o) Ssob Ny y T My oy () (1472)

(14.25),,
Swob NN 2y 'Do(s,b),  (14.73)

~

and
ft < 7., —lami
m(%,,v)b(DF'“‘i’n(DF'“ (5) Zsoo No'v qu).x)b(m m (5)
2 —2aqmi
+Nnr]y m(a OP(D)M R, ( m(So)f).n >m(S)
(14.74)
(14.25),,,(14.7),(14.18)
Sso.b NI N, 1y~ 'M(s.b).  (14.75)
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Conjugating £, by ®,, we obtain, by (14.64)—(14.65), forall » € o) |,

Lyp1 =@, 'L,y = @ 9yl +iDpp1 + R, (14.76)

namely (14.28) atn = n + 1, where

iDyyq :=1D; + [Ral, Ryt := qD;l(HJj\_[an + R, — an[Rn]>
(14.77)

The operator £, is real, even and reversible because ®,, is real, even and
reversibility preserving (Lemma 14.5) and £, is real, even and reversible. Note
that the operators D, 11, R, +1 are defined on RY x [hy, ho], and the identity

Y
(14.76) holds on 4, _ ;.

By Lemma 14.6 the operator D, 41 is diagonal and, by (14.15), (14.25),
(14.14), its eigenvalues ,u?“ :RY x [hy, hp] — R satisfy

ko, 1 ko, =2
R0 = | — oY T ey (50)

< C(S,b)ey 2MHD|j|=2my -2

which is (14.22) with n = n + 1. Thus also (14.21) at n = n + 1 holds, by
a telescoping sum. In addition, by (14.66) the operator R, satisfies (14.24)
with n = n + 1. In order to prove that (14.25) holds withn = n + 1, we first
provide the following inductive estimates on the new remainder R, 1. O

Lemma 14.7 The operators (D)™ R,41(D)™ and (3 x)?(D)"Ry+1(D)™
are D -modulo-tame, with

i —bami
M pymr,,y (pym () Ssoo N "My o pymg, (pym (5)

Ng' g
+ = M, oim (DM Dy, (pym ($0): (14.78)

g g
M, oDy, ) Ssop My oy, (pym ()
g ;
TN YT My, oy, 0y (O T pym oy (5): (14.79)

Proof By (14.77) and (14.71), we write

(D)™ Rps1({D)™
= (D)™ Iy, Ry (D)™ + ((D)™W,(D)"™)((D)" Ty, Ry (D)™

+ (I + (D)™, (D)™™ (D)™ R (D)™ (D)™™ W, (D)™))
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= (I + (D)™ 0, (D)) (D)™ (D)™™ (D) [RA (D)™ ).
(14.80)
The proof of (14.78) follows by estimating separately all the terms in (14.80),
applying Lemmata 2.34, 2.31, and (14.51), (14.72), (14.25),, (14.7), (14.18).

The proof of (14.79) follows by formula (14.80), Lemmata 2.31, 2.34 and
estimates (14.51), (14.52), (14.72), (14.25),, (14.7), (14.18). O

In the next lemma we prove that (14.25) holds at n = n + 1, concluding the
proof of (S1),,41.

Lemma 14.8 For No = No(S, b) > 0 large enough we have

My mre, . (pym () < Clso, YN, Do (s, b),

i
m(3¢,x>b(D>mRn+1(D)m(s) < C*(S()v b)Nnm()(s’ b)

Proof By (14.78) and (14.25) we get

f

M Dy, 1 (D) (5)
Zoo.b Ny PNas1Mo(s, b) + NIy~ ' 9o (s, b)Mo(s0, )N, 2
S C*(SO, b)Nn_amO(si b)

by (14.7), (14.18), taking No(S, b) > 0 large enough and 7> > 71 + a. Then
by (14.79), (14.25) we get that

8
MY 912 (D) ™ R (D) ()
Sso.p Nam1Do(s, b) + NITN =2y 71900 (5, )Mo (50, b)

5 C*(S()a b)Nnmo(S» b)

by (14.7), (14.18) and taking No(S, b) > 0 large enough. O

Proof of (S2),4+1 The proof of the estimates (14.32), (14.33) forn = n+ 1 for
the term A12R,,+1 (Where R, is defined in (14.77)) follow as above. The
proof of (14.34) for n = n + 1 follows estimating A" — 1y = Apr”
by (14.69) of Lemma 14.6 and by (14.32) for n = n. Estimate (14.35) for
n = n + 1 follows by a telescoping argument using (14.34) and (14.32). O

Proof of (83),,4+1 First we note that the non-resonance conditions imposed in
(14.26) are actually finitely many. We prove the following

e CLAIM: Let w € DC(2y, 7) and ey ~>M+D < 1. Then there exists Coy > 0
suchthat, foranyn =0, ..., n,forall |€|, |j —j/| < Np, j, j’ € NT\ST,if
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min{j, j'} = CoN2TDy =2, (14.81)

then |w-£+u§l—,u?/| >y £)7". O

Proof of the Claim By (14.20), (14.21) and recalling also (12.78), one has

T =m '%tanh%(h')+tn = +r

pj=miJ J) v, =T ;

sup j2 |t Koy <g gy T2MAD) (14.82)
JjEeSe

For all j, j/ € N\{0}, one has

C(h) .
A .
min{\/7, v/j } -

Then, using (14.83) and that w € DC(2y, t), we have, for |j — j/| < Ny,
|€| < Nn,

|v/j tanh(hj) — /j/ tanh(h,")| < (14.83)

C(n) o

o €+ pd = uB = o ) — my | ——————|j — j'| = (7] = [
o Smin(y7. /T

(11.24),>(14.82) 2y 2C(h)Ny C(S)ey 2M+D (14581) y
N ©7  min{J7,\/j’}  min{J7./j) T (O

where the last inequality holds for Cyp large enough. This proves the claim.
Now we prove (S3),,, 1, namely that

C(SNFHVETD Yy =iy — iy lgpwy <0 = AL, G1) S AL T ().
(14.84)

Let A € AZH(il). Definition (14.26) and (14.36) with n = n (i.e. (S3),)
imply that A7 (i) € Ay(i1) € A} “(i2). Moreover A € A “(ia) €
£} (i2) because p < y/2. Thus A/, (1) € &) PG < A%,
Hence A/, (i) € A} (i1) N A}/%(i2). and estimate (14.35) on [A1pr| =
|r”(k ir(A) — r"(k i1(A))| holds for any A € An—H(ll)‘ By the previous
clalm since w € DC(2)/, 1), for all |£|,|j — j'| < N, satisfying (14.81) with
n = n we have

" . _ 14 14 Yy —p
|a)'£+ﬂj()h12()‘)) ()u i2(A)] = )" = (@fjdj ks (g)rjdj/d
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It remains to prove that the second Melnikov conditions in (14.26) with n =
n + 1 also hold for j, j’ violating (14.81)|,—,, namely that

n . n . )/ - p
60’5+Mj()»,12()»))—Mj/()»,lz()»)) zZ W,
V||, 1j — j'| < N, min{j, j'} < CoN>T+Dy =2, (14.85)

The conditions on j, j" in (14.85) imply that

max(j, j'} = min{j, j'} +|j = j'| < CoN;TF Dy + N,
< 2CoN2TtDy =2, (14.86)

Now by (14.20), (14.21), (14.83), recalling (11.24), (12.78), (14.35) and the
bound ey 2M+D < 1 we get

(1) = i) s i) = W) = @) O i1 (W)
< 11§ = )G, 200) = (1 = ud) G, 11 0)))
+ 1P O, i2(0) = G O]+ 170, 12 (0) = 7 G, 11 (0)]
C(S)N,

< ————li2 —itllso+nw®)- (14.87)
min{/7, v/j’} ’

Since A € AZH(il)’ by (14.87) we have, for all [£| < Ny, |j — j'| < Ny,

@ €+ W(i) = (i)
> o £+ WG = WG] = 12— 1)) — (2 = ) )]

> SOy
= ()T jdjd min{/J \/7} 2 Llso+p(b)

14 . . Yy —p
=z (@tjdj/d — C(S)Nylliz — ll“SOJrlL(b) = W

provided C(S)N, (€)7 j9j"%liz — i1llso+pm) < p. Using that [¢] < N, and
(14.86), the above inequality is implied by the inequality assumed in (14.84).
The proof for the second Melnikov conditions for w - £ + u” + ©”, can be
carried out similarly (in fact, it is simpler). This completes the proof of (14.36)
withn =n + 1. ]
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14.2 Almost-invertibility of L,

By (13.6), L, = P, L PT, where P, isdefinedin (13.2), (13.3). By (14.42),
for any A € A}, we have that £y = unﬁ,,un—l, where U,, is defined in (14.37),
Lo = Eiym, and £iym = L, on the subspace of functions even in x (see
(14.3)). Thus

Lo=VuLyVy ', Vyi=PLlU,. (14.88)

By Lemmata 2.27, 2.30, by estimate (14.39), using the smallness condition
(14.38) and 75 > 71 (see Theorem 14.3), the operators Z/{fl satisfy, for all

ko, ko, ~ ko, ko,
so <5 < S, U RIST Ss IRIST + 130l ) o) 1R lisg” - Therefore, by

definition (14.88) and recalling (13.4), (14.8), (14.9), the operators Vnil satisfy,
forall s < s < S,

ko, ko, ~ ko, ko,
IV Rl Ss IRIEY 4+ 130l T ) 1l L (14.89)

for some o = o (kg, T, v) > 0.
In order to verify the inversion assumption (5.29)—(5.33) we decompose the
operator L, in (14.42) as

Ln=2L"4+Ry+ Ry (14.90)
where

E; ::HK,, (a) . 8¢]IJ_ + iDn)HK,, + HLn,

, (14.91)
R: ::Hkn (w011 + IDn)Hk,, — Hkﬂ,

the diagonal operator D,, is defined in (14.19) (withn = n), and K, := Kgn
is the scale of the nonlinear Nash—Moser iterative scheme.

Lemma 14.9 (First order Melnikov non-resonance conditions) For all A =
(w,h) in

AZ;LII = Azil(i) = {A € R’ x [hy, hy] :
- €+ p}l > 2Vj%<£)_r, V€| < Kn, j € NJr\SjL}, (14.92)

the operator £, in (14.91) is invertible and there is an extension of the inverse
operator (that we denote in the same way) to the whole RV x [h1, hs] satisfying
the estimate

_ ko, - ko,
1)~ els™ Sho v gl L (14.93)
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where u = ko + t(ko + 1) is the constant in (2.18) with kg = k + 1.

~

Proof By (14.56), similarly as in (14.57) one has y'”"la)‘i‘(a) -4+ [L?)| <

y(£)|j|% for all 1 < || < ko. Hence Lemma B.4 can be applied to f(A) =
- €+ () with M = Cy(€)|j12 and p = 2y (¢)"". Thus, following the
proof of Lemma 2.5 with w - £ + M? (A) instead of w - £, we obtain (14.93). O

Standard smoothing properties imply that the operator R,f defined in (14.91)
satisfies, for all b > 0,

14 ko, —b ko, 14 ko, ko,
IR hllsy” < K, IIhllsf;erbH, IRy A" S AN, (14.94)

By (14.88), (14.90), Theorem 14.4, Proposition 13.3, and estimates (14.93),
(14.94), (14.89), we deduce the following theorem.

Theorem 14.10 (Almost-invertibility of L) Assume (5.6). Let a,b as in
(14.7) and M as in (14.8). Let S > so, and assume the smallness condition
(14.38). Then for all

. v
(0,h) € AV :=A) ()= Nna (14.95)

(see (14.41), (14.92)) the operator L, defined in (5.26) (see also (6.5)) can be
decomposed as (cf. (5.29))

Lo=L54+Ro+RE LZ:=V,2V1 Ry :=V,R,V,

RE =V, RrV,! (14.96)
where L is invertible and there is an extension of the inverse operator (that
we denote in the same way) to the whole R¥ x [hy, hy] satisfying, for some
o = ol(kg,t,v) > 0and forall so <s < S, estimates (5.30)—(5.33), with
w(b) defined in (14.9). Notice that these latter estimates hold on the whole
RY x [hy, hs].

This result allows to deduce Theorem 5.6, which is the key step for a Nash—
Moser iterative scheme.

15 Proof of Theorem 4.1

We consider the finite-dimensional subspaces
E, = {3p)= @, L0, 0=T1,0, I =TI, =T,
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where [T, is the projector

I, =g, : 2(p, x) = Z zg,je'CoTIY
LeZV, jeSq
> az(p,x) = Y ze;e@H9 (15.0)
[, ))<Kn

with K,, = K())(n (see (5.28)) and we denote with the same symbol I, p(¢) :=
ZIEISKn peet?. We define I'I,f := Id — I1,. The projectors IT,, H,f satisfy
the smoothing properties (2.6), (2.7) for the weighted Whitney-Sobolev norm
| 157 defined in (2.3).

In view of the Nash—-Moser Theorem 15.1 we introduce the following con-
stants:

ar = max{60] + 13, xp(r + @A + 1) + x (u(®) + 207) + 1},

B (15.2)
az:=x a;— ) — 20y,
w1 = 3(u(b) + 201) + 1,

» (15.3)
by:=a;+u® +301+34+x n1,  x =3/2,
o1 := max{c, so + 2ko + 5}, S =150+ by (15.4)

where 6 := o (t, v, kg) > 0 is defined in Theorem 5.6, sg + 2kg + 5 is the
largest loss of regularity in the estimates of the Hamiltonian vector field X p in
Lemma5.1, u(b) is defined in (14.9), bis the constantb := [a]4+2 € N where
a is defined in (14.7). The constants by, ©| appear in (P3), of Theorem 15.1
below: b; gives the maximal Sobolev regularity S = s¢ + b; which has to be
controlled along the Nash Moser iteration and 11 gives the rate of divergence

of the high norms || W, ||];(?be. The constant a; appears in (15.10) and gives

the rate of convergence of F (17 ») in low norm.

The exponent p in (5.27) which links the scale (N,),>¢ of the reducibility
scheme (Theorem 14.4) and the scale (K,),>0 of the Nash—-Moser iteration
(N, = K} ) is required to satisfy

1 3
pa>(x — a1+ xo1 = Ea] + 50’1. (15.5)
By (14.7), a > x(r + 1)(4d + 1) + 1. Hence, by the definition of a; in
(15.2), there exists p := p(t, v, ko) such that (15.5) holds. For example we
fix p :=3(u) + 301 +1)/a.

@ Springer



Time quasi-periodic gravity water waves in finite depth 891

Given W = (7, B) where J = J(A) is the periodic component of a torus as
in (4.12), and B = B(1) € R” we denote |W[[X7 := max{||J|57, |g|ko-7},
where ||TJ||]§°’V is defined in (4.13).

Theorem 15.1 (Nash—Moser) There exist 8o, Csx > 0, such that, if

K(§38)/—2M_3 < 89, T3 :=max{pn,20 +aj+ 4},
1 (15.6)

34+2M+3°

1 a

Ko:=y ", y==¢" 0O<acx<

where the constant M is defined in (14.8) and 12 := t(7, V) is defined in
Theorem 14.3, then, for alln > 0:

(P1), there exists a ko times dlﬁerentlable Junction Wn RY x [h1, hp] —
Ep—1 xRY, A = (0, h) Wo(L) = G, @y — @), forn > 1, and
Wo :=0, satisfying

7 ko, _
||Wn||sgfu(b)+(,1 < Ciey L (15.7)

Let Un~:= Uy + Wn where Uy := (¢, 0,0, w). The difference H, =
U, — U,—1, n > 1, satisfies

koY -1

I oy roy = CxEV s

7 nko.v -1
1l syt poy+on = CxeY Ky

(15.8)
1, Vn > 2.

n—
(P2), Setting i, := (¢,0,0) + T, we define
Go :=ax [hy,h2], Gui1: =G, N AZ+1(l~n)» n>0, (159

where AZH(?”) is defined in (14.95). Then, for all » € G,, setting
K_{:=1, we have

IF@)I" < CueK, (15.10)

(P3), (High norms). ||VI/,1||I;(‘));Zbl < C*e)/_lK,lf_'lfor all » € G,.

Proof The proof is the same as Theorem 8.2 in [21]. It is based on an iter-
ative Nash—Moser scheme and uses the almost-approximate inverse at each
approximate quasi-periodic solution provided by Theorem 5.6. O

We now complete the proof of Theorem 4.1. Let y = ¢ with a € (0, ap)
and ag := 1/(2M + 3 4+ t3) where 13 is defined in (15.6). Then the smallness
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condition given by the first inequality in (15.6) holds for 0 < & < gg small
enough and Theorem 15.1 applies. By (15.8) the sequence of functions

Wo=U, — (9,0,0,0) := 3y, 0 — ©) = (in — (¢,0,0), & — )

. . ko, . .
is a Cauchy sequence in || || Sg ¥ and then it converges to a function Wy, :=
lim,,— y oo W,,. We define

UOO = (lOO’ aOO) - ((03 0’ O’ C()) + WOO’

Weo : RY x [h1, hy] — Hg;" X Hg;" X H;?x x R".

By (15.7) and (15.8) we also deduce that

ko, —
1Uso = Vol p)oy < Cxev ™, -
~ k , _ _ .
1Uso = Unll2y spyiey < Cov K%, n= 1.

Moreover by Theorem 15.1-(P2),,, we deduce that F(A, U (1)) = O for all
A belonging to

NG =%n AL "=V G [ al (inq)} n [ N AZ*’(fnfl)],

n>0 n>1 n>1 n>1

(15.12)

where Gy = Q x [h1, hy] is defined in (15.9). By the first inequality in (15.11)
we deduce (4.16) and (4.17).

It remains to prove that the Cantor set CY in (4.20) is contained in (>0 Gn-
We first consider the set -

Goo 1= Go N [ﬂ 8 (ioo>] N [ﬂ A,%V”(z‘oo)] (15.13)

n>1 n>1

Lemma 15.2 G, C ﬂnzo Gy, where G, is defined in (15.9).
Proof See Lemma 8.6 of [21]. O

Then we define the “final eigenvalues”
uS = pYico) + 150, j e NT\ST, (15.14)
where /,L? (iso) are defined in (14.5) (with m 17 depending on i) and

%= lim_ rf(ic), Jj € NT\ST, (15.15)

J n——+00
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with r;‘ given in Theorem 14.3-(S1),. Note that the sequence (r;‘(ioo))neN is

a Cauchy sequence in | [¥-7 by (14.22). As a consequence its limit function
r;?o (w, h) 1s well defined, it is kg times differentiable and satisfies

r5° = (i) 7 < Coy MV 12N 8 0 > 0. (15.16)

In particular, since %(in) = 0, we get [r°[k07 < Cey=2M+D|j|=2™ (here
C := C(S, ko), with S fixed in (15.4)). The latter estimate, (15.14), (14.5) and
(12.78) imply (4.18)—(4.19) with t‘J?o =rj+ r}’o and m® = m (iso).

2

Lemma 15.3 The final Cantor set C%, in (4.20) satisfies Cky € Goo, Where Goo
is defined in (15.13).

Proof By (15.13), we have to prove that C%, C A%y (iso), Y1 € N. We argue by
induction. For n = 0 the inclusion is trivial, since Agy (i) = @ X [h,hy] =
Go. Now assume that Cl, < A,%V (ino) for some n > 0. For all » € C% C
A%V (i), by (14.20), (15.14), (15.16), we get

< CSV—Z(M+1)N’1—_<‘:11(J-—2m+j/—2m)

[ = ) o) = (5 = )

Therefore, for any |€], |j — j'| < N, with (¢, j, j') # (0, j, j) (recall (4.20))
we have

0 €+ o) — 1 Gico)|
—2(M+1) nr—a (=2 =2
z]w-Hu?"—ufj?’—Csy MHEDN e (724 )

>4y ()77 j7j 7Y — Coy T HMIDN "2 (j7Am 4 M)
> 2y ()74

provided Cey "M =3N "2 NF (j=2™ + j'=2)j¢j’4 < 1. Since m > d (see
(14.7)), one has (j + N,,)¢j972™ <4 N%forall j > 1.Hence, using |j — j/| <
~a Vp g
N}’l’
) :d
. om g—omy\ .dad . J J
; +7m) N = j2m=d + j/2m—d
(+N)* G+ N

- j2m—d

Therefore, for some C; > 0, one has, for any n > 0,

n—
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for ¢ small enough, by (14.7), (15.6) and because 73 > p(t + d) (that follows
since 7o > 1] + a where 1, has been fixed in Theorem 14.3). In conclusion

cl c Aiil (ico) (for the second Melnikov conditions with the 4 sign in (14.26)

we apply the same argument). Similarly we prove that clL c A,%y’[ (o) for all
neN. O

Lemmata 15.2, 15.3 imply C%, C ﬂnzo G, where G, is defined in (15.9).
This concludes the proof of Theorem 4.1.
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Appendix A: Dirichlet-Neumann operator

Let n € C°°(T). It is well-known (see e.g. [5,40,47]) that the Dirichlet—
Neumann operator is a pseudo-differential operator of the form

G(n) =G@O)+Rg(n), where G(0) = |D|tanh(h|D|) (A.1)

is the Dirichlet-Neumann operator at the flat surface n(x) = 0 and the
remainder Rg(n) is in OPS~™ and it is O(n)-small. Note that the profile
n(x) = n(w, h, ¢, x), as well as the velocity potential at the free surface
¥ (x) := ¥ (w, h, ¢, x), may depend on the angles ¢ € T" and the parameters
A = (w,h) € RY x [hy, hy]. For simplicity of notation we sometimes omit
to write the dependence with respect to ¢ and A.

In the sequel we use the following notation. Let X and Y be Banach spaces
and B C X be a bounded open set. We denote by Cg (B, Y) the space of the
C! functions B — Y bounded and with bounded derivatives.

Proposition A.1 (Dirichlet-Neumann) Assume that ai‘n()\, ., +) is C*™ for all
|k| < ko. There exists &(sg, ko) > O such that, if

ko,
11507 2041 = 8(s0. ko). (A2)

then the Dirichlet—~Neumann operator G (n) may be written as in (A.1) where
Ra(n) is an integral operator with C* kernel K g (see (2.54)) which satisfies,
forallm,s,a €N, the estimate

ko, ko,
||RG(U)|| 0 = C(S, m, o, k0)||KG||C(1+):n+a

—m,s, 0 —

ko,y
< C(s,m,a, ko) ||77||s+250+2k0+m+0,+3- (A.3)

@ Springer



Time quasi-periodic gravity water waves in finite depth 895

Let s1 > 2so + 1. There exists 5(s1) > 0 such that the map {|[nlls,+6 <
8(s1)} = H*(T" x T x T), n > Kg(n), is C}.

The rest of this section is devoted to the proof of Proposition A.1.
In order to analyze the Dirichlet—-Neumann operator G(n) it is convenient
to transform the boundary value problem (1.3) (with 2 = h) defined in the

closure of the free domain D, = {(x,y) : —h < y < n(x)} into an elliptic
problem in a flat lower strip

{X,Y):-h—c=<Y =0}, (A.4)

via a conformal diffeomorphism (close to the identity for n small) of the form
x=UX,Y)=X+pX,Y), y=VX,Y)=Y+q(X,Y). (AS)
Remark A.2 1f (A.5) is a conformal map then the system obtained transform-

ing (1.3) is simply (A.32) (the Laplace operator and the Neumann boundary
conditions are transformed into themselves).

We require that ¢(X, Y) and p(X, Y) are 2m-periodic in X, so that (A.5)

defines a diffeomorphism between the cylinder T x [~h — ¢, 0] and D,,. The
bottom {Y = —h — ¢} is transformed in the bottom {y = —h} if

V(X,-h—c¢)=-h & g(X,-h—c)=c, VX eR, (A6
and the boundary {Y = 0} is transformed in the free surface {y = n(x)} if

VX,00=nUX,0) <« qX0=nX+pX0). (AT
The diffeomorphism (A.5) is conformal if and only if the map U (X, Y) +
1V (X, Y) is analytic, which amounts to the Cauchy-Riemann equations Uy =
Vy, Uy = —Vx, namely px = gy, py = —qx. The functions (U, V), i.e.
(p, q), are harmonic conjugate. Moreover, (A.6) and the Cauchy-Riemann
equations imply that

Uy(X,-h—c¢) =py(X,-h—c¢) =0. (A.8)

Given any periodic function

p(X) =po+ Y _pre’™, (A.9)
k#0
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the unique function p(X, Y) that is 27 -periodic in X and solves Ap = 0,
p(X,0) =p(X), py(X,~h—c) =0is

_ cosh(lk|(Y +h+0¢)) ux
p(X,Y)—épk AT e (A.10)

The unique function ¢ (X, Y) that is 2w -periodic in X and solves Ag = 0,
(A.6) and px = qv, py = —qx is

sign(k)

— i ik X
cosh(kl(tcy) SmnUkIY +hta)et™. (A1D)

q(X,Y)=c+) ip
k#0

We still have to impose (A.7). By (A.11) we have

q(X.0)=c+ Y _isign(k) tanh(|k|(h + c))pre’™
k#0
= ¢ — Htanh((h + ¢)|D])p(X) (A.12)

where p(X) is defined in (A.9) and H is the Hilbert transform defined as the
Fourier multiplier in (2.32). By (A.12), since p(X, 0) = p(X), condition (A.7)
amounts to solve

¢ — Htanh((h 4 ¢)|D])p(X) = n(X + p(X)). (A.13)

Remark A.3 1f we had required ¢ = 0 (fixing the strip of the straight domain
(A.4)), equation (A.13) would, in general, have no solution. For example, if
n(x) = no # 0, then —H tanh(h|D|)p(X) = no has no solutions because the
left hand side has zero average while the right hand side has average no # 0.

Since the range of H are the functions with zero average, equation (A.13)
is equivalent to

¢ =X +p(X)), —Htanh((h+ c)|D)p(X) =75 n(X + p(X))
(A.14)

where (f) = fo = mo f is the average in X of any function f, g is defined
in (2.33), and ﬂd‘ := Id — mg. We look for a solution (c(¢), p(¢, X)), where
p has zero average in X, of the system

H
c= X +pX)), pX)= tanh((thC”DD[n(X+p(X))]-
(A.15)
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Since H2 = —JTd‘, if p solves the second equation in (A.15), then p also solves
the second equation in (A.14).

Lemma A4 Let (1, ¢, x) satisfy 3k n(x, -, -) € C°(TV*Y) for all |k| < ko.
There exists §(sg, ko) > 0 such that, if ||77||§(S)0V+k0 4o = 8(s0, ko), then there
exists a unique C* solution (c(n), p(n)) of system (A.15) satisfying

ko,y Y ko,y
RIS [lels Ssko M5 Vs = so. (A.16)

Moreover, lets) > 2so+1. There exists §(s1) > Osuch that the map {||n|ls,+2 <
8(s1)} — Hy' x H, 1= (c(n), p(1) is C}.

Proof We look for a fixed point of the map

1
®(p) := HE((h + o)|D])[n(- + ()], where £(§) := tanh(¢)’ §#0,
(A.17)

and ¢ := (n(X +p(X ))) We are going to prove that @ is a contraction in a

ball Bos,41(r) = {||p||2SOJrl < r, (p) = 0} with radius  small enough. We
begin by proving some preliminary estimates.

The operator H £ ((h+c)| D|) is the Fourier multiplier, acting on the periodic
functions, with symbol

—isign(§) x ©)£((h+c(h, )IE]) =: g+ c(R, 9), §),
where g(y, §) := —isign(§)x (§)£(yl§)) Yy >0,

where the cut-off x (§) is defined in (2.16). For all n € N, there is a constant
C,(hy) > 0 such that |8;’g(y, &) < Cy(hy) forall y > h1/2, & € R. We
consider a smooth extension g(y, &) of g(y, &), defined forany (y, £) € RxR,
satisfying the same bound as g. Now [c(A, @)| < [nllL= =< Clinlls,, and
therefore h + c(X, ¢) > hy/2 for all A, ¢ if ||n||y, is sufficiently small. Then,
by Lemma 2.6, the composition g(h + c(A, ¢), ) satisfies

~ k
12(h + ¢, )7 Sekonrn 1+ llells””
uniformly in & € R (the dependence on hy, hj is omitted in the sequel). As a

consequence, we have the following estimates for pseudo-differential norms
(recall Definition 2.9) of the Fourier multiplier in (A.17): for all s > s0,

ko, k
IHE((h + C)IDI)IIO?S?/O, IH|D| £ ((h + C)IDI)IIOOAVO Ssiko 1+ el
(A.18)
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Estimate (2.11) with £k + 1 = k¢ implies that, for ||p||2s b = < §(so, ko), the
function ¢ = ¢(n, p) = (N(X + p(X))) satisfies, for all s > s,

v ko,y ko,y ko,y
IS oo IMIEST + 117 1S T (A.19)

Therefore by (A.18), (A.19) we get, for all s > 59,

ko, ko,
IHE((h + D)oy IHIDIE ((+ o)D)l

ko, ko, ko,
Seko 1+ 10157 + RIS 1017 4 (A.20)

Now we prove that ® is a contraction in the ball Bag,+1(r) := {||p||2(s’oz_1 <r,
(p) =0} .
STEP 1: CONTRACTION IN LOW NORM. For any ||p||2(s”)jrl <r < 6(so, ko),

by (2.69), (A.20), (2.11), and using the bound ||n||
Vs > 50,

P +k0+1 < 1, we have,

ko, ko, k
1@ Soo 171557 + 101207 oy IS (A21)

We fix r := 2C (s, ko)||77||250+k0+1 and we assume that » < 1. Then, using
(A.21) with s = 2s¢ + 1, one deduces that ® maps the ball B, 4+1(r) into
itself. To prove that ® is a contraction in this ball, we estimate its differential
atany p € Bag,+1(r) in the direction p, which is

@' (p)[p] = Amp), (A.22)
where the operator A and the function m are

A(h) := (hYHE'((n + )| DDIDI[(X + p(X))]
+HE((h+o)[DD[A], m:=n (X +p(X)). (A23)

To obtain (A.22)—(A.23), note that d,c[p] = (mp). By (2.11), for all s > s,

Y ko,y ko,y ko,y
Il ok IMIEST 4+ IIE Y 1010 4 (A.24)

By (2.69), (A.20), (2.11), using the bounds ||77|| < 1and ||p||s° V<,

we get, for all s > s,

KY +k0+1

ko,y ko,y ko,v ko,y
LAIT) Ssko L+ IIST + 10157 Il T, - (A.25)
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By (A.22), (2.44), (A.24), (A.25) we deduce that, for all s > s,

ko,y ko,y ko,y ko,y
12" ©)gs00 Ssko IS 51 + RIS M0l F o (A.20)

In particular, by (A.26) at s = 2s¢ 4 1, and (2.69), we get

ki ko,
”(D (©)[P] ||250+1 < C(so, kO)||7]||250+k0+2||p||2(;0)_/|_1 =5 ||p||2(;0)_/i_1

(A.27)

provided C(so, ko)||77||2so+k() +» < 1/2. Thus ® is a contraction in the ball
Basy+1(r) and, by the contraction mapping theorem, there exists a unique
fixed point p = ®(p) in Bygy+1(r). Moreover, by (A.21), using that p =

®(p) there is C(so, ko) > O such that if C (s, ko)||n||’;gfk0 L1 < 1/2 for all

s € [so,2s0 + 1], one has ||p||ls<°’ S ko ”77”s+k( Using also (A.19) one

deduces ||c||30 y Ss.ko ||77||S+k for all s € [sg, 259 + 1]. Thus we have proved
(A.16) for all s € [sg, 250 + 1]

STEP 2: REGULARITY. Now we prove that p is C*° in (¢, x) and we estimate
the norm ||p||f°’y as in (A.16) arguing by induction on s. Assume that, for a

given s > 2so + 1, we have already proved that

ko,y ko,y ko,v
ol lells™” Sk IIUIISikO. (A.28)

We want to prove that (A 28) holds for s + 1. We have to estimate ||p|| s +1 ~
max{||p||s , ||8xp||s ||8¢,p||k° Yoi=1,...,v}. Using the definition
(A.17) of ®, we derive exphclt formulas for the derivatives dxp, dy, p in terms
of p, n, 9xn, dy, n. Differentiating the identity p = ®(p) with respect to X we
get

px = HE((h 4 )| DI) (X +p(X))(1 +px)] = &' (0)[px] + Am)
(A.29)

where the operator ®'(p) is given by (A.22) and A, m are defined in (A.23)
(note that (nx(X + p(X))(1 + px(X))) = 0). By (A.26) at s = s9, for
||n|| 5 +k0 1 = < 8(s0, ko) small enough, condition (2.52) for A = —®'(p) (with
a = 0) holds. Therefore the operator Id — ®’(p) is invertible and, by (2.53)
(with o = 0), (A.28) and (2.69), its inverse satisfies, for all s > s,

_ ko, ko, k
10d — @' () AT Koo 1A + Il gy R lls ™ (A30)
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By (A.29), we deduce that pxy = (Id — @' (p) ' A(m). By (2.69), (A.24)—
(A.25) and (A.28), we get ||.A(m) ||§°’y <s |l nllko’y Hence, by (A.30), using

s+ko+1°
ko,y
||n||50+k0+2 S 1’ we get
ko,y ko,y
IPx s Ssko 111155 kg1 1- (A.31)
We similar arguments we get ||8(pip||]§°’y Ssko ||n||f(jr’,7€/0+l, i=1,...,v,and

using (A.28), (A.31), we deduce (A.28) at s + 1 for p. By (A.19), the same
estimate holds for ¢, and the induction step is proved. This completes the proof
of (A.16).

The fact that the map {||nls,+2 < 8(s1)} — Hél x H®! defined by n —
(c(n), p(n)) is Cg follows by the implicit function theorem. ]

Notice that (A.2) implies the smallness condition of Lemma A.4. Now we
transform (1.3) via the conformal diffeomorphism

cosh([k|(Y +h +¢)) kX
cosh(|k|(h + ¢))

UX.Y):=X+) p&
k£0

V(X,Y):=Y +c+ Zipk
k0

sign(k)

i kX
cosh(|k|(h + ¢)) sinh(Jk|(Y +h +¢))e

where ¢ and p are the solutions of (A.15) provided by Lemma A.4.
Denote (Pu)(X) := u(X + p(X)). The velocity potential ¢(X,Y) :=
PWUX,Y), V(X,Y)) satisfies, using the Cauchy-Riemann equations Uy =
Vy, Uy = —Vx (or equivalently px = gy, py = —qx) and (A.6)—(A.8),

Ap=0in{—h—c <Y <0}, ¢(X,0) = (Py)(X),
¢y(X,—h —c) =0. (A.32)

We calculate explicitly the solution ¢ of (A.32), which is (see (A.10))

cosh(|k|(Y +h +¢)) kX

X, Y) =Y (PY); cosh (KB T o) ,

keZ

where (?\W) « denotes the k-th Fourier coefficient of the periodic function P.
Therefore the Dirichlet—-Neumann operator in the domain {—h — ¢ <Y < 0}
at the flat surface ¥ = 0 is given by

Py (X, 0) = Y (PY); tanh(k|(h + o))kl
k0
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= |D|tanh((h + ¢)| D) (PY¥)(X). (A.33)

Lemma A.5 G(n) = 3, P~'"H tanh((h + ¢)|D|) P.

Proof The proof is the same as the one of Lemma 2.40 in [21]. The only
difference is that formula (A.33) in the case of infinite depth is given by
¢y (X, 0) = [D[(PY)(X). O

Proof of Proposition A.1 concluded By Lemma A.5 we write the Dirichlet—
Neumann operator as
G(n) = 3y P~"H tanh((h + ¢)|D|)P = |D|tanh(h|D|) + Rg(n),
1 2
Ra(n) =Ry’ () + R (),

where, using the decomposition (7.41),

RY () := 8, (P~ "H tanh((h + )| D|) P — H tanh((h + ¢)| D|))

= 3 (P""HP —H) + 8, (P~ "HOp(rntc) P — HOp(rutc)).-
(A.34)

The second term Rg) (n) is

R& (1) 1= 9, H(tanh((h + ¢)| D|) — tanh(n| D|)) = 8y HOP(rate — )
= ¢ 3yHOp(in,c) € OPS™, (A.35)

where

Mate() — () = i) c,

. L 2exp(2(h + r0)[€] x (6))
c =2
e(5) |g|X(€)/o (1 + exp(2(h + 10)[E| X (E)})2

Estimate (A.3) directly follows estimating (A.34) and (A.35) by Lemmata
2.17,2.18, and using Lemma A 4. The differentiablility of the map {[|7]ls,+6 <
8(s1)} = H' (T xTxT),n+— Kg(n) follows by the differentiability of the
map {[[7ls,12 < 8(s1)} = Hy' x H*', n > (c(n), p(n)) proved in Lemma
Ad4. O

dt € S™%°.

Appendix B: Whitney differentiable functions

The following definition is the one in Section 2.3, Chapter VI of [58], for
Banach-valued functions.
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Definition B.1 (Whitney differentiable functions) Let F be a closed subset of
R",n > 1.LetY be aBanachspace.Letk > Obe aninteger,andk < p < k+1.
We say that a function f : F — Y belongs to Lip(p, F, Y) if there exist
functions f): F — Y, j e N*, 0 < |j| <k, with f© = £, and a constant
M > 0 such that if R;(x, y) is defined by

. 1 .
o= 3 SO Ry, xyeF,
LeNm:|j+e<k
(B.1)

then

IF PNy <M, [IRj(x, »lly <Mlx —y|P7 VUl Vx,yeF, |jl| <k
(B.2)

An element of Lip(p, F, Y) is in fact the collection { /) : | j| < k}. The norm
of f € Lip(p, F, Y) is defined as the smallest M for which the inequality (B.2)
holds, namely

I flliLip(p, F,y) := inf{M > 0 : (B.2) holds}. (B.3)

If F = R" by Lip(p, R", Y) we shall mean the linear space of the functions
f = O for which there exist f) = 3 f, | j| < k, satisfying (B.2).

Notice that, if F = R", the £, |j| > I, are uniquely determined by f©
(which is not the case for a general F with for example isolated points).

In the case F = R", p = k4 1 and Y is a Hilbert space, the space
Lip(k 4+ 1, R", Y) is isomorphic to the Sobolev space wktlooRr y), with
equivalent norms

Cill fllwk+roo@n vy < I fILipk+1,R7,7) < Coll fllwh+too@nyy (B4

where C1, C, depend only on k, n. For ¥ = C this isomorphism is classical,
see e.g. [58], and it is based on the Rademacher theorem concerning the a.e.
differentiability of Lipschitz functions, and the fundamental theorem of cal-
culus for the Lebesgue integral. Such a property may fail for a Banach valued
function, but it holds for a Hilbert space, see Chapter 5 of [12] (more in general
it holds if Y is reflexive or it satisfies the Radon-Nykodim property).

The following key result provides an extension of a Whitney differentiable
function f defined on a closed subset F' of R” to the whole domain R”, with
equivalent norm.
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Theorem B.2 (Whitney extension Theorem) Let F be a closed subset of R",
n > 1, Y a Banach space, k > 0 an integer, and k < p < k + 1. There exists
a linear continuous extension operator &, : Lip(p, F,Y) — Lip(p,R",Y)
which gives an extension & f € Lip(p, R",Y) to any f € Lip(p, F,Y). The
norm of & has a bound independent of F,

& fllLipo.Rr vy < Cll fllLipo,F,v), Yf € Lip(p, F,Y), (B.5)

where C depends only on n, k (and not on F, Y ).

Proof This is Theorem 4 in Section 2.3, Chapter VI of [58]. The proof in [58]
is written for real-valued functions f : FF — R, but it also holds for functions
f + F — Y for any (real or complex) Banach space Y, with no change. The
extension operator & is defined in formula (18) in Section 2.3, Chapter VI of
[58], and it is linear by construction. O

Clearly, since & f is an extension of f, one has

I fliLipo, 7.v) < €k flILip(o. R, vy < Cll fliLip(p.F,Y)- (B.6)

In order to extend a function defined on a closed set F C R with values
in scales of Banach spaces (like H S(TV*+1)), we observe that the extension
provided by Theorem B.2 does not depend on the index of the space (namely

s).

Lemma B.3 Let F be a closed subset of R", n > 1, let k > 0 be
an integer, and k < p < k+ 1. Let Y < Z be two Banach spaces.

Then Lip(p, F,Y) < Lip(p, F, Z). The two extension operators 5,52)
Lip(p, F, Z) — Lip(p,R", Z) and £ : Lip(p, F,Y) — Lip(p,R",Y)
provided by Theorem B.2 satisfy

EPf=Mf YfelLipp,F,Y).

As a consequence, we simply denote &y the extension operator.

Proof The lemma follows directly by the construction of the extension oper-
ator & in formula (18) in Section 2.3, Chapter VI of [58], which relies on a
nontrivial decomposition in cubes of the domain R” only. m|

Thanks to the equivalence (B.6), Lemma B.3, and (B.4) which holds for
functions valued in H*, classical interpolation and tame estimates for products,
projections, and composition of Sobolev functions can be easily extended to
Whitney differentiable functions.

The difference between the Whitney-Sobolev norm introduced in Definition
2.1 and the norm in Definition B.1 (for p = k+ 1, n = v 4 1, and target space
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Y = H*(T'*!, ©)) is the weight ¥ € (0, 1]. Observe that the introduction
of this weight simply amounts to the following rescaling R, : given u =
(u(j))|j|5k, we define Ryu = U = (U(</))|j|5k as
r=yue PP =y ) = 0P = UV,
U= Ryu. (B.7)

Thus u € Lip(k + 1, F, s, y) ifand only if U € Lip(k + 1, )/_IF, s, 1), with

k+1,y k+1,1
lully 57 = U (B.8)

Under the rescaling R, (B.4) gives the equivalence of the two norms

k+1,
1 Twkstoor @t g = Y VIS8 Fllzso@est sy ~vk 11 it

or| <k+1
(B.9)

Moreover, given u € Lip(k + 1, F, s, y), its extension

0= R;IEkRVu € Lip(k + 1, RV s, y) satisfies

k+1,y ~k+1y
bl ~u e (B.10)

Proof of Lemma 2.2 Inequalities (2.6)—(2.7) follow by
My (3) = Oy @)1, R (4, 20) = TN IR (1, 20)],

forall 0 < |j| <k, A, Ao € F, and the usual smoothing estimates || [Ty f||s <
N%|| f|ls—« and IIHﬁfIIS < N7%|| f|ls-+e for Sobolev functions. O

Proof of Lemma 2.3 Inequality (2.8) follows from the classical interpolation
inequality |lu]ls < ||u||?0||u||§]*0, s = Osg + (1 — 6)s; for Sobolev functions,
and from the Definition 2.1 of Whitney-Sobolev norms, since
Y P Wl < G W) 1P 0o l15)
k+1, k+1,y\1—
< (lully =" Al 7,
Y UIR; (20 lls < FTHIR; G 20) ) PR G 2o) 1)

k+1, k+1, — —1j
< (lully w0 Al 700 = a1
Inequality (2.9) follows from (2.8) by using the asymmetric Young inequality
(like in Lemma 2.2 in [21]). |
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Proof of Lemma 2.4 By (B.9)—(B.10), the lemma follows from the corre-
sponding inequalities for functions in W*+1.o%.¥ RV H%)  which are
proved, for instance, in [21] (formula (2.72), Lemma 2.30). O

For any p > 0, we define the C* function hy :R— R,

~1
ho(y) i= Xpy(y) _XOPT) Ry, hy(0):=0, (B.11)

y

where x is the cut-off function introduced in (2.16), and x,(y) := x(y/p).
Notice that the function £, is of class C* because &, (y) = 0 for |y| < p/3.
Moreover by the properties of x in (2.16) we have

1 2p 3
hp(y) = 3’ Viyl = 3 lhp (V)] < > Vy e R. (B.12)

To prove Lemma 2.5, we use the following preliminary lemma.
LemmaB.4 Let f : R"! — Rand p > 0. Then the function

g) :=h,(f(X), VYre R"F (B.13)
where h, is defined in (B.11), coincides with 1/f (1) on the set F := {A €

R f ()] = o).
If the function f is in WKTL® RV R), with estimates

yRlae fFo)l < M, Va e Nl I <al<k+1,  (B.14)

for some M > p, then the function g is in Wkt1-°(RY ! R) and

k+1
y0e (Il < Gy Ya e N O <lal <k +1. (B9

Proof Formula (B.15) for « = 0 holds by (B.12). For |«| > 1, we use the Faa
di Bruno formula and (B.14). O
Proof of Lemma 2.5 The function (@ - 3,),,u defined in (2.15) is
(@ 0)5u) 00, 0) =—=i Y ge@ug j(h) o1,
(E,j)eZ‘”’l

where g¢(A) = h,(w - £) in (B.13) with p = y(£)"" and f(A) = w - £. The
function f(A) satisfies (B.14) with M = y|£|. Hence g,(A) satisfies (B.15),
namely
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yINa% g, < Cry N O* VYa e N 0 <ol <k+1, (B.16)

where © = k + 1 4+ (k + 2)t is defined in (2.18). By the product rule and

. - _ k+1,

using (B.16), we deduce y|0% (@ - 8,),,u)(W) s < Cry 1||u||sjujWl
and therefore (2.17). The proof is concluded by observing that the restriction
of (w - aw);}tu to F gives (w - 8¢)_1u as defined in (2.14), and (2.18) follows

by (B.10). O

Proof of Lemma 2.6 Givenu € Lip(k+ 1, F, s, y), we consider its extension
i € Lip(k + 1,R"*! s, ) provided by (B.10). Then we observe that the
composition f (i) is an extension of £ (u), and therefore one has the inequal-
. k+1, - ik, -

ity I£@)ll 77 < IE@N, ot ~ 1£G@ wksroon @1 gs) by (B.9). Then

s,R”‘H
(2.19) follows by the Moser composition estimates for || ||f,41r[{1v,+;/1 (see for

instance Lemma 2.31 in [21]), together with the equivalence of the norms
in (B.9)—(B.10). O

Appendix C: A Nash—-Moser—-Hormander implicit function theorem

Let (E,)q>0 be a decreasing family of Banach spaces with continuous injec-
tions Ep — E,,

lulle, < lullg, fora <b. (C.1)

Set Eoo = Ng>0E, with the weakest topology making the injections Eo, —
E, continuous. Assume that there exist linear smoothing operators S; : Ep —
Es for j = 0,1, ..., satisfying the following inequalities, with constants C
bounded when a and b are bounded, and independent of j,

IS;ullg, < Cllullg, for all a; (C.2)
IS;ullg, < C2/O=D|S;u|g, ifa < b; (C.3)
lu — Sjullg, < C277D |y — Sullg, ifa > b: (C.4)

I(Sj1 = Spulle, < C27P~VN(Sjp1 = Spullg,  foralla,b. (C5)
Set
Rou := S1u, Rju = (Sjy1 —Sju, j=1 (C.6)

We also assume that

o0
lullz, <C Y IIRjully, Ya=0, (C.7)
j=0

@ Springer



Time quasi-periodic gravity water waves in finite depth 907

with C bounded for @ bounded (a sort of “orthogonality property” of the
smoothing operators).

Suppose that we have another family F, of decreasing Banach spaces with
smoothing operators having the same properties as above. We use the same
notation also for the smoothing operators.

Theorem C.1 ([10]) (Existence) Let ay, ay, a, B, ag, 1 be real numbers with
0<ap < pu=<a, a1+§<a<a1+,3, 20 < ay +ay. (C.8)

Let U be a convex neighborhood of 0 in E,. Let ® be a map from U to Fy
suchthat ® : U N Eqy, — Fyis of class szor all a € 10, ap — ], with

12" ) [v, wllir, < Mi@(IlvllE,., wllE, + 1vllE, lwlE,,,)
+{Mx(@)ullg,y, + M3@}VlE,lwlEg,  (C9)
forallu €e UNEqipy, vyw € Eqyy, where M; @ [0,a2 — n] — R, i =
1, 2, 3, are positive, increasing functions. Assume that ®' (v), forv € Exoc NU

belonging to some ball ||v ||Ea1 < 81, has a right inverse V¥ (v) mapping F to
E,,, and that

W Weglle, < Li@llglFyp-o T {L2@lvlE,s + L3@}iglr Va € lar, azl,
(C.10)

where L; : [a;, a2] — R, i = 1,2, 3, are positive, increasing functions.
Then for all A > O there exists 6 > 0 such that, for every g € Fg satisfying

o0
> IRjgl, < A%lgl,. lglr, <6, C.11)
j=0

there exists u € Ey solving ®(u) = ®(0) + g. The solution u satisfies

lullg, = CLi23(a2)(1 + A)llgll . (C.12)

where L123 = L1 + Lo + L3 and C is a constant depending on ay, az, o, B.
The constant § is

§=1/B, B=C'Lip(a)max{1/81, 1+A, (1 + A)L123(a)M123(az — )}
(C.13)

where M1y3 = My + My + M3 and C’ is a constant depending on ay, ay, o, B.
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(Higher regularity) Moreover, let ¢ > 0 and assume that (C.9) holds for all
a € [0,a2 + ¢ — pnl, W(v) maps Fx to Eqyie, and (C.10) holds for all
a € lay, ay + cl. If g satisfies (C.11) and, in addition, g € Fg. with

o
S IRl < A2lgll, .. C.14)
=0

for some A, then the solution u belongs to Ey 4., with

lull gy, < CGI + AliglE, + G20 + ADlglry,.}  (C15)

where

Gi:= L3+ Lip(L3Mia + Lias(a)M3)(1 +2V), Go := Lia(1 +2Y),
(C.16)

7 1= L13(a1)M123(0) + L12 M2, (C.17)

Lip:=1Li+ Ly L :=Li(ax +¢), i =1,2,3; My := My + M, M; :=
Mi(ay +c—npn),i =1,2,3; N is a positive integer depending on c, ay, o, B;
and C. depends on a1, az, o, B, c.

This theorem is proved in [10] using an iterative scheme similar to [34]. The
main advantage with respect to the Nash—Moser implicit function theorems as
presented in [17,61] is the optimal regularity of the solution « in terms of the
datum g (see (C.12), (C.15)). Theorem C.1 has the advantage of making explicit
all the constants (unlike [34]), which is necessary to deduce the quantitative
Theorem 7.3.
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