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Abstract We prove the existence and the linear stability of Cantor families of
small amplitude time quasi-periodic standing water wave solutions—namely
periodic and even in the space variable x—of a bi-dimensional ocean with
finite depth under the action of pure gravity. Such a result holds for all the val-
ues of the depth parameter in a Borel set of asymptotically full measure. This
is a small divisor problem. The main difficulties are the fully nonlinear nature
of the gravity water waves equations—the highest order x-derivative appears
in the nonlinear term but not in the linearization at the origin—and the fact that
the linear frequencies grow just in a sublinear way at infinity. We overcome
these problems by first reducing the linearized operators, obtained at each
approximate quasi-periodic solution along a Nash–Moser iterative scheme,
to constant coefficients up to smoothing operators, using pseudo-differential
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changes of variables that are quasi-periodic in time. Then we apply a KAM
reducibility scheme which requires very weak Melnikov non-resonance con-
ditions which lose derivatives both in time and space. Despite the fact that
the depth parameter moves the linear frequencies by just exponentially small
quantities, we are able to verify such non-resonance conditions for most values
of the depth, extending degenerate KAM theory.
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1 Introduction

Weconsider theEuler equations of hydrodynamics for a 2-dimensional perfect,
incompressible, inviscid, irrotational fluid under the action of gravity, filling
an ocean with finite depth h and with space periodic boundary conditions,
namely the fluid occupies the region

Dη :=
{
(x, y) ∈ T× R : −h < y < η(t, x)

}
, T := Tx := R/2πZ.

(1.1)

In this paper we prove the existence and the linear stability of small amplitude
quasi-periodic in time solutions of the pure gravity water waves system

⎧
⎪⎪⎨

⎪⎪⎩

∂t�+ 1
2 |∇�|2 + gη = 0 at y = η(t, x)

�� = 0 in Dη

∂y� = 0 at y = −h
∂tη = ∂y�− ∂xη · ∂x� at y = η(t, x)

(1.2)

where g > 0 is the acceleration of gravity. The unknowns of the problem are
the free surface y = η(t, x) and the velocity potential � : Dη → R, i.e. the
irrotational velocity field v = ∇x,y� of the fluid. The first equation in (1.2) is
the Bernoulli condition stating the continuity of the pressure at the free surface.
The last equation in (1.2) expresses the fact that the fluid particles on the free
surface always remain part of it.

FollowingZakharov [60] andCraig–Sulem [26], the evolution problem (1.2)
may bewritten as an infinite-dimensionalHamiltonian system in the unknowns
(η(t, x), ψ(t, x)) where ψ(t, x) = �(t, x, η(t, x)) is, at each instant t , the
trace at the free boundary of the velocity potential. Given the shape η(t, x)
of the domain top boundary and the Dirichlet value ψ(t, x) of the velocity
potential at the top boundary, there is a unique solution �(t, x, y; h) of the
elliptic problem

⎧
⎪⎨

⎪⎩

�� = 0 in {−h < y < η(t, x)}
∂y� = 0 on y = −h

� = ψ on {y = η(t, x)}.
(1.3)

As proved in [26], system (1.2) is then equivalent to the Craig–Sulem–
Zakharov system
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742 P. Baldi et al.

⎧
⎨

⎩

∂tη = G(η, h)ψ

∂tψ = −gη − ψ2
x

2
+ 1

2(1+ η2x )

(
G(η, h)ψ + ηxψx

)2 (1.4)

where G(η, h) is the Dirichlet–Neumann operator defined as

G(η, h)ψ := (�y − ηx�x
)
|y=η(t,x) (1.5)

(we denote by ηx the space derivative ∂xη). The reason of the name “Dirichlet–
Neumann” is that G(η, h) maps the Dirichlet datum ψ into the (normalized)
normal derivativeG(η, h)ψ at the top boundary (Neumann datum). The opera-
torG(η, h) is linear inψ , self-adjoint with respect to the L2 scalar product and
positive-semidefinite, and its kernel contains only the constant functions. The
Dirichlet–Neumann operator is a pseudo-differential operator with principal
symbol D tanh(hD),with the property thatG(η, h)−D tanh(hD) is inOPS−∞
when η(x) ∈ C∞. This operator has been introduced in Craig–Sulem [26] and
its properties are nowadays well-understood thanks to the works of Lannes
[46,47], Alazard–Métivier [5], Alazard–Burq–Zuily [2], Alazard–Delort [4].
In AppendixAwe provide a self-contained analysis of the Dirichlet–Neumann
operator adapted to our purposes.

Furthermore, equations (1.4) are the Hamiltonian system (see [26,60])

∂tη = ∇ψH(η, ψ), ∂tψ = −∇ηH(η, ψ)

∂t u = J∇uH(u), u :=
(
η

ψ

)
, J :=

(
0 Id
−Id 0

)
,

(1.6)

where ∇ denotes the L2-gradient, and the Hamiltonian

H(η, ψ) := H(η, ψ, h) := 1

2

∫

T

ψ G(η, h)ψ dx + g

2

∫

T

η2 dx (1.7)

is the sum of the kinetic and potential energies expressed in terms of the
variables (η, ψ). The symplectic structure induced by (1.6) is the standard
Darboux 2-form

W(u1, u2) := (u1, Ju2)L2(Tx )
= (η1, ψ2)L2(Tx )

− (ψ1, η2)L2(Tx )
(1.8)

for all u1 = (η1, ψ1), u2 = (η2, ψ2). In the paper we will often write
G(η), H(η, ψ) instead of G(η, h), H(η, ψ, h), omitting for simplicity to
denote the dependence on the depth parameter h.

The phase space of (1.4) is

(η, ψ) ∈ H1
0 (T)× Ḣ1(T) where Ḣ1(T) := H1(T)/∼ (1.9)
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Time quasi-periodic gravity water waves in finite depth 743

is the homogeneous space obtained by the equivalence relationψ1(x) ∼ ψ2(x)
if and only if ψ1(x) − ψ2(x) = c is a constant, and H1

0 (T) is the subspace
of H1(T) of zero average functions. For simplicity of notation we denote the
equivalence class [ψ] byψ . Note that the second equation in (1.4) is in Ḣ1(T),
as it is natural because only the gradient of the velocity potential has a physical
meaning. Since the quotient map induces an isometry of Ḣ1(T) onto H1

0 (T),
it is often convenient to identify ψ with a function with zero average.

The water waves system (1.4)–(1.6) exhibits several symmetries. First of
all, the mass

∫
T
η dx is a first integral of (1.4). In addition, the subspace of

functions that are even in x ,

η(x) = η(−x), ψ(x) = ψ(−x), (1.10)

is invariant under (1.4). In this case also the velocity potential �(x, y) is
even and 2π -periodic in x and so the x-component of the velocity field v =
(�x ,�y) vanishes at x = kπ , for all k ∈ Z. Hence there is no flow of fluid
through the lines x = kπ , k ∈ Z, and a solution of (1.4) satisfying (1.10)
describes the motion of a liquid confined between two vertical walls.

Another important symmetry of the water waves system is reversibility,
namely equations (1.4)–(1.6) are reversible with respect to the involution ρ :
(η, ψ) �→ (η,−ψ), or, equivalently, the Hamiltonian H in (1.7) is even in ψ :

H ◦ ρ = H, H(η, ψ) = H(η,−ψ), ρ : (η, ψ) �→ (η,−ψ). (1.11)

As a consequence it is natural to look for solutions of (1.4) satisfying

u(−t) = ρu(t), i.e. η(−t, x) = η(t, x), ψ(−t, x) = −ψ(t, x) ∀t, x ∈ R,

(1.12)

namely η is even in time and ψ is odd in time. Solutions of the water waves
equations (1.4) satisfying (1.10) and (1.12) are called gravity standing water
waves.

In this paperweprove thefirst existence result of small amplitude timequasi-
periodic standing waves solutions of the pure gravity water waves equations
(1.4), for most values of the depth h, see Theorem 1.1.

The existence of standing water waves is a small divisor problem, which
is particularly difficult because (1.4) is a fully nonlinear system of PDEs,
the nonlinearity contains derivatives of order higher than those present in the
linearized system at the origin, and the linear frequencies grow as∼ j1/2. The
existence of small amplitude time-periodic gravity standing wave solutions
for bi-dimensional fluids has been first proved by Plotinkov and Toland [53]
in finite depth and by Iooss, Plotnikov and Toland in [42] in infinite depth, see
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also [38,39]. More recently, the existence of time periodic gravity-capillary
standingwave solutions in infinite depth has been proved byAlazard and Baldi
[1]. Next, both the existence and the linear stability of time quasi-periodic
gravity-capillary standing wave solutions, in infinite depth, have been proved
by Berti and Montalto in [21], see also the expository paper [20].

We also mention that the bifurcation of small amplitude one-dimensional
traveling gravity water wave solutions (namely traveling waves in bi-
dimensional fluids like (1.4)) dates back to Levi-Civita [48]; note that standing
waves are not traveling because they are even in space, see (1.10). For three-
dimensional fluids, the existence of small amplitude traveling water wave
solutions with space periodic boundary conditions has been proved by Craig
and Nicholls [25] for the gravity-capillary case (which is not a small divisor
problem) and by Iooss and Plotinikov [40,41] in the pure gravity case (which
is a small divisor problem).

From a physical point of view, it is natural to consider the depth h of the
ocean as a fixed physical quantity and to introduce the space wavelength 2πς
as an internal parameter. Rescaling time, space and amplitude of the solution
(η(t, x), ψ(t, x)) of (1.4) as

τ := μt, x̃ := ςx, η̃(τ, x̃) := ςη(μ−1τ, ς−1 x̃) = ςη(t, x),

ψ̃(τ, x̃) := αψ(μ−1τ, ς−1 x̃) = αψ(t, x),

we get that (η̃(τ, x̃), ψ̃(τ, x̃)) satisfies

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂τ η̃ = ς2

αμ
G(η̃, ςh)ψ̃

∂τ ψ̃ = − gα

ςμ
η̃ − ς2ψ̃2

x̃

αμ2
+ ς2

αμ2(1+ η̃2x̃ )

(
G(η̃, ςh)ψ̃ + η̃x̃ ψ̃x̃

)2
.

Choosing the scaling parameters ς,μ, α such that ς2

αμ
= 1, gα

ςμ
= 1 we obtain

system (1.4) where the gravity constant g has been replaced by 1 and the depth
parameter h by

h := ςh. (1.13)

Changing the parameter h can be interpreted as changing the space period
2πς of the solutions and not the depth h of the water, giving results for a fixed
equation (1.4).

In the sequel we shall look for time quasi-periodic solutions of the water
waves system
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Time quasi-periodic gravity water waves in finite depth 745

⎧
⎨

⎩

∂tη = G(η,h)ψ

∂tψ = −η − ψ2
x

2
+ 1

2(1+ η2x )

(
G(η,h)ψ + ηxψx

)2 (1.14)

with η(t) ∈ H1
0 (Tx ) and ψ(t) ∈ Ḣ1(Tx ), actually belonging to more regular

Sobolev spaces.

1.1 Main result

We look for small amplitude solutions of (1.14). Hence a fundamental rôle
is played by the dynamics of the system obtained linearizing (1.14) at the
equilibrium (η, ψ) = (0, 0), namely

{
∂tη = G(0,h)ψ

∂tψ = −η
(1.15)

where G(0,h) = D tanh(hD) is the Dirichlet–Neumann operator at the flat
surface η = 0. In the compact Hamiltonian form as in (1.6), system (1.15)
reads

∂t u = J�u, � :=
(
1 0
0 G(0,h)

)
, (1.16)

which is the Hamiltonian system generated by the quadratic Hamiltonian (see
(1.7))

HL := 1

2
(u, �u)L2 = 1

2

∫

T

ψ G(0,h)ψ dx + 1

2

∫

T

η2 dx . (1.17)

The solutions of the linear system (1.15), i.e. (1.16), even in x , satisfying (1.12)
and (1.9), are

η(t, x) =
∑

j≥1
a j cos(ω j t) cos( j x),

ψ(t, x) = −
∑

j≥1
a jω

−1
j sin(ω j t) cos( j x), (1.18)

with linear frequencies of oscillation

ω j := ω j (h) :=
√
j tanh(h j), j ≥ 1. (1.19)

Note that, since j �→ j tanh(h j) is monotone increasing, all the linear fre-
quencies are simple.
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746 P. Baldi et al.

The main result of the paper proves that most solutions (1.18) of the lin-
ear system (1.15) can be continued to solutions of the nonlinear water waves
equations (1.14) for most values of the parameterh ∈ [h1,h2]. More precisely
we look for quasi-periodic solutions u(ω̃t) = (η, ψ)(ω̃t) of (1.14), with fre-
quency ω̃ ∈ R

ν (to be determined), close to solutions (1.18) of (1.15), in the
Sobolev spaces of functions

Hs(Tν+1,R
2) :=

{
u = (η, ψ) : η,ψ ∈ Hs

}

Hs := Hs(Tν+1,R) =
{
f =

∑

(�, j)∈Zν+1
f�j e

i(�·ϕ+ j x) :

‖ f ‖2s :=
∑

(�, j)∈Zν+1
| f�j |2〈�, j〉2s < ∞

}
, (1.20)

where 〈�, j〉 := max{1, |�|, | j |}. For

s ≥ s0 :=
[ν + 1

2

]
+ 1 ∈ N (1.21)

one has Hs(Tν+1,R) ⊂ L∞(Tν+1,R), and Hs(Tν+1,R) is an algebra.
Fix an arbitrary finite subset S

+ ⊂ N
+ := {1, 2, . . .} (tangential sites) and

consider the solutions of the linear equation (1.15)

η(t, x) =
∑

j∈S+
a j cos

(
ω j (h)t

)
cos( j x),

ψ(t, x) =−
∑

j∈S+

a j

ω j (h)
sin
(
ω j (h)t

)
cos( j x), a j > 0,

(1.22)

which are Fourier supported on S
+. We denote by ν := |S+| the cardinality

of S
+.

Theorem 1.1 (KAM for gravity water waves in finite depth) For every choice

of the tangential sites S
+ ⊂ N\{0}, there exists s̄ >

|S+|+1
2 , ε0 ∈ (0, 1) such

that for every vector �a := (a j ) j∈S+ , with a j > 0 for all j ∈ S
+ and |�a| ≤ ε0,

there exists a Cantor-like set G ⊂ [h1,h2] with asymptotically full measure
as �a → 0, i.e.

lim
�a→0

|G| = h2 − h1,

such that, for any h ∈ G, the gravity water waves system (1.14) has a
time quasi-periodic solution u(ω̃t, x) = (η(ω̃t, x), ψ(ω̃t, x)), with Sobolev
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Time quasi-periodic gravity water waves in finite depth 747

regularity (η, ψ) ∈ Hs̄(Tν × T,R
2), with a Diophantine frequency vector

ω̃ := ω̃(h, �a) := (ω̃ j ) j∈S+ ∈ R
ν , of the form

η(ω̃t, x) =
∑

j∈S+
a j cos(ω̃ j t) cos( j x)+ r1(ω̃t, x),

ψ(ω̃t, x) = −
∑

j∈S+

a j

ω j (h)
sin(ω̃ j t) cos( j x)+ r2(ω̃t, x)

(1.23)

with ω̃(h, �a) → �ω(h) := (ω j (h)) j∈S+ as �a → 0, and the functions
r1(ϕ, x), r2(ϕ, x) are o(|�a|)-small in H s̄(Tν × T,R), i.e. ‖ri‖s̄/|�a| → 0 as
|�a| → 0 for i = 1, 2. The solution (η(ω̃t, x), ψ(ω̃t, x)) is even in x, η is even
in t and ψ is odd in t. In addition these quasi-periodic solutions are linearly
stable, see Theorem 1.2.

Let us make some comments on the result.
No global wellposedness results concerning the initial value problem of the

water waves equations (1.4) under periodic boundary conditions are known so
far. Global existence results have been proved for smooth Cauchy data rapidly
decaying at infinity in R

d , d = 1, 2, exploiting the dispersive properties of the
flow. For three dimensional fluids (i.e. d = 2) it has been proved independently
by Germain–Masmoudi–Shatah [33] and Wu [59]. In the more difficult case
of bi-dimensional fluids (i.e. d = 1) it has been proved by Alazard–Delort [4]
and Ionescu–Pusateri [37].

In the case of periodic boundary conditions, Ifrim–Tataru [36] proved for
small initial data a cubic life span time of existence, which is longer than the
one just provided by the local existence theory, see for example [3]. For longer
times, we mention the almost global existence result in Berti–Delort [19] for
gravity-capillary space periodic water waves.

The Nash–Moser-KAM iterative procedure used to prove Theorem 1.1
selects many values of the parameter h ∈ [h1,h2] that give rise to the quasi-
periodic solutions (1.23), which are defined for all times. By a Fubini-type
argument it also results that, for most values of h ∈ [h1,h2], there exist quasi-
periodic solutions of (1.14) for most values of the amplitudes |�a| ≤ ε0. The
fact that we find quasi-periodic solutions only restricting to a proper subset of
parameters is not a technical issue, because the gravity water waves equations
(1.4) are expected to be not integrable, see [27,28] in the case of infinite depth.

The dynamics of the pure gravity and gravity-capillary water waves equa-
tions is very different:

(i) the pure gravity water waves vector field in (1.14) is a singular pertur-
bation of the linearized vector field at the origin in (1.15), which, after

symmetrization, is |Dx | 12 tanh 1
2 (h|Dx |); in fact, the linearization of the
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748 P. Baldi et al.

nonlinearity gives rise to a transport vector field V ∂x , see (1.43). On the
other hand, the gravity capillary vector field is quasi-linear and contains
derivatives of the same order as the linearized vector field at the origin,

which is ∼ |Dx | 32 . This difference, which is well known in the water
waves literature, requires a very different analysis of the linearized oper-
ator (Sects. 6–12) with respect to the gravity capillary case in [1,21],
see Remark 1.4.

(i i) The linear frequenciesω j in (1.19) of the pure gravity water waves grow

like∼ j
1
2 as j →+∞, while, in presence of surface tension κ , the linear

frequencies are
√
(1+ κ j2) j tanh(h j) ∼ j

3
2 . This makes a substantial

difference for the development ofKAMtheory. In presence of a sublinear
growth of the linear frequencies ∼ jα , α < 1, one may impose only
very weak second order Melnikov non-resonance conditions, see e.g.
(1.36), which lose also space (and not only time) derivatives along the
KAM reducibility scheme. This is not the case of the abstract infinite-
dimensional KAM theorems [44,45,54] where the linear frequencies
grow as jα , α ≥ 1, and the perturbation is bounded. In this paper we

overcome the difficulties posed by the sublinear growth∼ j
1
2 and by the

unboundedness of the water waves vector field thanks to a regularization
procedure performed on the linearized PDE at each approximate quasi-
periodic solution obtained along a Nash–Moser iterative scheme, see
the regularized system (1.41). This regularization strategy is in principle
applicable to a broad class of PDEs where the second order Melnikov
non-resonance conditions lose space derivatives.

(i i i) The linear frequencies (1.19) vary with h only by exponentially small
quantities: they admit the asymptotic expansion

√
j tanh(h j) = √ j + r( j,h)

where
∣∣∂khr( j,h)

∣∣ ≤ Cke
−h j ∀k ∈ N, ∀ j ≥ 1, (1.24)

uniformly in h ∈ [h1,h2], where the constantCk depends only on k and
h1. Neverthelesswe shall be able, extending the degenerateKAM theory
approach in [11,21], to use the finite depth parameter h to impose the
requiredMelnikov non-resonance conditions, see (1.36) and Sects. 3 and
4.2. On the other hand, for the gravity capillary water waves considered
in [21], the surface tension parameter κ moves the linear frequencies√
(1+ κ j2) j tanh(h j) of polynomial quantities O( j3/2).

Linear stability The quasi-periodic solutions u(ω̃t) = (η(ω̃t), ψ(ω̃t)) found
in Theorem 1.1 are linearly stable. Since this is not only a dynamically relevant
information, but also an essential ingredient of the existence proof (it is not
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necessary for time periodic solutions as in [1,38,39,42,53]), we state precisely
the result.

The quasi-periodic solutions (1.23) are mainly supported in Fourier space
on the tangential sites S

+. As a consequence, the dynamics of the water waves
equations (1.4) on the symplectic subspaces

HS+ :=
{
v =
∑

j∈S+

(
η j
ψ j

)
cos( j x)

}
,

H⊥
S+ :=

{
z =

∑

j∈N\S+

(
η j
ψ j

)
cos( j x) ∈ H1

0 (Tx )

}
,

(1.25)

is quite different. We shall call v ∈ HS+ the tangential variable and z ∈ H⊥
S+

the normal one. In the finite dimensional subspace HS+ we shall describe the
dynamics by introducing the action-angle variables (θ, I ) ∈ T

ν ×R
ν in Sect.

4.
The classical normal form formulation of KAM theory for lower dimen-

sional tori, see for instance [13,14,29,43–45,49,54,55,62], provides, when
applicable, existence and linear stability of quasi-periodic solutions at the
same time. On the other hand, existence (without linear stability) of peri-
odic and quasi-periodic solutions of PDEs has been proved by using the
Lyapunov-Schmidt decomposition combined with Nash–Moser implicit func-
tion theorems, see e.g. [1,6,22,24,25,38,39,42,53] and references therein. In
this paper we follow the NashMoser approach to KAM theory outlined in [16]
and implemented in [8,21], which combines ideas of both formulations, see
Sect. 1.2 “Analysis of the linearized operators” and Sect. 5.

We prove that around each torus filled by the quasi-periodic solutions (1.23)
of the Hamiltonian system (1.14) constructed in Theorem 1.1 there exist sym-
plectic coordinates (φ, y, w) = (φ, y, η, ψ) ∈ T

ν × R
ν × H⊥

S+ (see (5.16)
and [16]) in which the water waves Hamiltonian reads

ω̃ · y + 1

2
K20(φ)y · y +

(
K11(φ)y, w

)
L2(Tx )

+ 1

2

(
K02(φ)w,w

)
L2(Tx )

+ K≥3(φ, y, w) (1.26)

where K≥3 collects the terms at least cubic in the variables (y, w) (see (5.18)
and note that, at a solution, one has ∂φK00 = 0, K10 = ω̃, K01 = 0 by Lemma
5.4). The (φ, y) coordinates are modifications of the action-angle variables
and w is a translation of the Cartesian variable z in the normal subspace, see
(5.16). In these coordinates the quasi-periodic solution reads t �→ (ω̃t, 0, 0)
and the corresponding linearized water waves equations are
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⎧
⎪⎨

⎪⎩

φ̇ = K20(ω̃t)[y] + KT
11(ω̃t)[w]

ẏ = 0

ẇ = J K02(ω̃t)[w] + J K11(ω̃t)[y].
(1.27)

The self-adjoint operator K02(ω̃t) is defined in (5.18) and J K02(ω̃t) is the
restriction to H⊥

S+ of the linearized water waves vector field J∂u∇uH(u(ω̃t))
(computed explicitly in (6.8)) up to a finite dimensional remainder, see Lemma
6.1.

We have the following result of linear stability for the quasi-periodic solu-
tions found in Theorem 1.1.

Theorem 1.2 (Linear stability)The quasi-periodic solutions (1.23) of the pure
gravitywaterwaves systemare linearly stable,meaning that for all s belonging

to a suitable interval [s1, s2], for any initial datum y(0) ∈ R
ν ,w(0) ∈ H

s− 1
4

x ×
H

s+ 1
4

x , the solutions y(t), w(t) of system (1.27) satisfy

y(t) = y(0), ‖w(t)‖
H

s− 1
4

x ×H
s+ 1

4
x

≤ C

(
‖w(0)‖

H
s− 1

4
x ×H

s+ 1
4

x

+ |y(0)|
)

∀t ∈ R.

In fact, by (1.27), the actions y(t) = y(0) do not evolve in time and the
third equation reduces to the linear PDE

ẇ = J K02(ω̃t)[w] + J K11(ω̃t)[y(0)]. (1.28)

Sections 6–14 imply the existence of a transformation (Hs
x × Hs

x ) ∩ H⊥
S+ →

(H
s− 1

4
x × H

s+ 1
4

x )∩ H⊥
S+ , bounded and invertible for all s ∈ [s1, s2], such that,

in the new variables w∞, the homogeneous equation ẇ = J K02(ω̃t)[w] trans-
forms into a system of infinitely many uncoupled scalar and time independent
ODEs of the form

∂tw∞, j = −iμ∞j w∞, j , ∀ j ∈ S
c
0, (1.29)

where i is the imaginary unit, Sc
0 := Z\S0, S0 := S

+ ∪ (−S
+) ∪ {0} ⊆ Z, the

eigenvalues μ∞j are (see (4.26), (4.27))

μ∞j := m∞1
2
| j | 12 tanh 1

2 (h| j |)+ r∞j ∈ R, j ∈ S
c
0, r∞j = r∞− j , (1.30)

and m∞1
2
= 1 + O(|�a|c), sup j∈S

c
0
| j | 12 |r∞j | = O(|�a|c) for some c > 0, see

(4.28). Sinceμ∞j are even in j , equations (1.29) can be equivalently written in
the basis (cos( j x)) j∈N\S+ of functions even in x ; in Sect. 14, for convenience,
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we represent even operators in the exponential basis (ei j x ) j∈S
c
0
. The above

result is the reducibility of the linearized quasi-periodically time dependent
equation ẇ = J K02(ω̃t)[w]. The Floquet exponents of the quasi-periodic
solution are the purely imaginary numbers {0, iμ∞j , j ∈ S

c
0} (the null Floquet

exponent comes from the action component ẏ = 0). Since μ∞j are real, the
Sobolev norms of the solutions of (1.29) are constant.

The reducibility of the linear equation ẇ = J K02(ω̃t)[w] is obtained by
two well-separated procedures:

1. First, we perform a reduction of the linearized operator into a constant
coefficient pseudo-differential operator, up to smoothing remainders, via
changes of variables that are quasi-periodic transformations of the phase
space, see (1.41). We perform such a reduction in Sects. 6–13.

2. Then, we implement in Sect. 14 a KAM iterative scheme which completes
the diagonalization of the linearized operator. This scheme uses very weak
second order Melnikov non-resonance conditions which lose derivatives
both in time and in space. This loss is compensated along the KAM scheme
by the smoothing nature of the variable coefficients remainders. Actually,
in Sect. 14 we explicitly state only a result of almost-reducibility (in The-
orems 14.3–14.4 we impose only finitely many Melnikov non-resonance
conditions and there appears a remainderRn of size O(N−a

n ), wherea > 0
is the large parameter fixed in (14.7)), because this is sufficient for the con-
struction of the quasi-periodic solutions. However the frequencies of the
quasi-periodic solutions that we construct in Theorem 1.1 satisfy all the
infinitely many Melnikov non-resonance conditions in (4.29) and Theo-
rems 14.3–14.4 pass to the limit as n →∞, leading to (1.29).

We shall explain these steps in detail in Sect. 1.2. In the pioneering works
of Plotnikov-Toland [53] and Iooss-Plotnikov-Toland [42] dealing with time-
periodic solutions of the water waves equations, as well as in [1], the latter
diagonalization is not required. The key difference is that, in the periodic
problem, a sufficiently regularizing operator in the space variable is also reg-
ularizing in the time variable, on the “characteristic” Fourier indices which
correspond to the small divisors. This is definitely not true for quasi-periodic
solutions.

Literature about KAM for quasilinear PDEs KAM theory for PDEs has
been developed to a large extent for bounded perturbations and for linear
frequencies growing in a superlinear way, as jα , α ≥ 1. The case α = 1, which
corresponds to 1d wave and Klein-Gordon equations, is more delicate. In the
sublinear case α < 1, as far as we know, there are no general KAM results,
since the second order Melnikov conditions lose space derivatives. Since the
eigenvalues of−� onT

d grow, according to theWeyl law, like∼ j2/d , j ∈ N,
one could regard the KAM results for multidimensional Schrödinger and wave
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equations in [15,18,22,29,55], under this perspective. Actually the proof of
these results exploits specific properties of clustering of the eigenvalues of the
Laplacian.

The existenceof quasi-periodic solutions ofPDEswithunbounded perturba-
tions (i.e. the nonlinearity contains derivatives) has been first proved byKuksin
[45] and Kappeler-Pöschel [43] for KdV, then by Liu-Yuan [49], Zhang-
Gao-Yuan [62] for derivative NLS, and by Berti–Biasco–Procesi [13,14] for
derivativewave equation. All these previous results still refer to semilinear per-
turbations, i.e. where the order of the derivatives in the nonlinearity is strictly
lower than the order of the constant coefficient (integrable) linear differential
operator.

For quasi-linear or fully nonlinear PDEs the first KAM results have been
recently proved by Baldi–Berti–Montalto in [7–9] for perturbations of Airy,
KdV and mKdV equations, introducing tools of pseudo-differential calculus
for the spectral analysis of the linearized equations. In particular, [7] concerns
quasi-periodically forced perturbations of the Airy equation

ut + uxxx + ε f (ωt, x, u, ux , uxx , uxxx) = 0 (1.31)

where the forcing frequency ω is an external parameter. The key step is the
reduction of the linearized operator at an approximate solution to constant
coefficients up to a sufficiently smoothing remainder, followed by a KAM
reducibility scheme leading to its complete diagonalization.Once such a reduc-
tion has been achieved, the second order Melnikov nonresonance conditions
required for the diagonalization are easily imposed since the frequencies are
∼ j3 and using ω as external parameters. Because of the purely differen-
tial structure of (1.31), the required tools of pseudo-differential calculus are
mainlymultiplication operators andFouriermultipliers. These techniques have
been extended by Feola-Procesi [31] for quasi-linear forced perturbations of
Schrödinger equations and byMontalto [51] for the forcedKirchhoff equation.

The paper [8] deals with the more difficult case of completely resonant
autonomous Hamiltonian perturbed KdV equations of the form

ut + uxxx − 6uux + f (x, u, ux , uxx , uxxx ) = 0. (1.32)

Since the Airy equation ut + uxxx = 0 possesses only 2π -periodic solutions,
the existence of quasi-periodic solutions of (1.32) is entirely due to the non-
linearity, which determines the modulation of the tangential frequencies of the
solutions with respect to its amplitudes. This is achieved via “weak” Birkhoff
normal form transformations that are close to the identity up to finite rank oper-
ators. The paper [8] implements the general symplectic procedure proposed in
[16] for autonomous PDEs, which reduces the construction of an approximate
inverse of the linearized operator to the construction of an approximate inverse
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of its restriction to the normal directions. This is obtained along the lines of [7],
but with more careful size estimates because (1.32) is a completely resonant
PDE. The symplectic procedure of [16] is also applied in [21] and in Sect. 5
of the present paper. We refer to [23] and [32] for a similar reduction which
applies also to PDEs which are not Hamiltonian, but for example reversible.

By further extending these techniques, the existence of quasi-periodic solu-
tions of gravity capillarywater waves has been recently proved in [21]. In items
(i)–(i i i) after Theorem 1.1 we have described the major differences between
the pure gravity and gravity-capillary water waves equations and we postpone
to Remark 1.4 more comments about the differences regarding the reducibility
of the linearized equations.

1.2 Ideas of the proof

The three major difficulties in proving the existence of time quasi-periodic
solutions of the gravity water waves equations (1.14) are:

(i) The nonlinear water waves system (1.14) is a singular perturbation of
(1.15).

(i i) The dispersion relation (1.19) is sublinear, i.e. ω j ∼ √
j for j →∞.

(i i i) The linear frequencies ω j (h) = j
1
2 tanh

1
2 (h j) vary with h of just expo-

nentially small quantities.

We present below the key ideas to solve these three major problems.

Nash–Moser Theorem 4.1 of hypothetical conjugation In Sect. 4 we rescale
u �→ εu and introduce the action angle variables (θ, I ) ∈ T

ν × R
ν on the

tangential sites (see (1.25))

η j :=
√

2

π
ω

1
2
j

√
ξ j + I j cos(θ j ),

ψ j := −
√

2

π
ω
− 1

2
j

√
ξ j + I j sin(θ j ), j ∈ S

+,
(1.33)

where ξ j > 0, j = 1, . . . , ν, the variables I j satisfy |I j | < ξ j , so that system
(1.14) becomes the Hamiltonian system generated by

Hε = �ω(h) · I + 1

2
(z, �z)L2 + εP, �ω(h) :=

(
j
1
2 tanh

1
2 (h j)

)

j∈S+
,

(1.34)

where P is given in (4.8). The unperturbed actions ξ j in (1.33) and the unper-
turbed amplitudes a j in (1.22) and Theorem 1.1 are related by the identity

a j = ε
√
(2/π) ω

1
2
j

√
ξ j for all j ∈ S

+.
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The expected quasi-periodic solutions of the autonomous Hamiltonian sys-
tem generated by Hε will have shifted frequencies ω̃ j—to be found—close to
the linear frequencies ω j (h) in (1.19). The perturbed frequencies depend on
the nonlinearity and on the amplitudes ξ j . Since the Melnikov non-resonance
conditions are naturally imposed on ω, it is convenient to use the frequencies
ω ∈ R

ν as parameters, introducing “counterterms” α ∈ R
ν (as in [21], in the

spirit of Herman-Féjoz [30]) in the family of Hamiltonians (see (4.9))

Hα := α · I + 1

2
(z, �z)L2 + εP.

Then the first goal (Theorem4.1) is to prove that, for ε small enough, there exist
α∞(ω,h, ε), close to ω, and a ν-dimensional embedded torus i∞(ϕ;ω,h, ε)
of the form

i : T
ν → T

ν × R
ν × H⊥

S+, ϕ �→ i(ϕ) := (θ(ϕ), I (ϕ), z(ϕ)),

close to (ϕ, 0, 0), defined for all (ω,h) ∈ R
ν × [h1,h2], such that, for all

(ω,h) belonging to the set Cγ∞ defined in (4.20), (i∞, α∞)(ω,h, ε) is a zero
of the nonlinear operator (see (4.10))

F(i, α, ω,h, ε) :=
⎛

⎝
ω · ∂ϕθ(ϕ)− α − ε∂I P(i(ϕ))
ω · ∂ϕ I (ϕ)+ ε∂θ P(i(ϕ))

ω · ∂ϕz(ϕ)− J (�z(ϕ)+ ε∇z P(i(ϕ)))

⎞

⎠ . (1.35)

The explicit set Cγ∞ requires ω to satisfy, in addition to the Diophantine prop-
erty

|ω · �| ≥ γ 〈�〉−τ ∀� ∈ Z
ν\{0}, 〈�〉 := max{1, |�|}, |�| := max

i=1,...,ν
|�i |,

the first and second Melnikov non-resonance conditions stated in (4.20), in
particular

|ω · �+ μ∞j (ω,h)− μ∞j ′ (ω,h)| ≥ 4γ j−d j ′−d〈�〉−τ ,

∀� ∈ Z
ν, j, j ′ ∈ N

+\S+, (�, j, j ′) �= (0, j, j), (1.36)

where μ∞j (ω,h) are the “final eigenvalues” in (4.18), defined for all (ω,h) ∈
R

ν × [h1,h2] (we use the abstract Whitney extension theorem in Appendix
B). The torus i∞, the counterterm α∞ and the final eigenvalues μ∞j (ω,h) are

Ck0 differentiable with respect to the parameters (ω,h). The value of k0 is
fixed in Sect. 3, depending only on the unperturbed linear frequencies, so that
transversality conditions like (1.39) hold, see Proposition 3.4. The value of the
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counterterm α := α∞(ω,h, ε) is adjusted along the Nash–Moser iteration in
order to control the average of the first component of the Hamilton equation
(4.10), especially for solving the linearized equation (5.35), in particular (5.39).

Theorem 4.1 follows by the Nash–Moser Theorem 15.1 which relies on
the analysis of the linearized operators di,αF at an approximate solution, per-
formed in Sects. 5–14. The formulation of Theorem 4.1 is convenient as it
completely decouples the Nash–Moser iteration required to prove Theorem
1.1 and the discussion about the measure of the set of parameters Cγ∞ where all
theMelnikov non-resonance conditions are verified. In Sect. 4.2 we are able to
prove positive measure estimates, if the exponent d in (1.36) is large enough
and γ = o(1) as ε → 0. Since such a value of d determines the number of
regularization steps to be performed on the linearized operator, we prefer to
first discuss how we fix it, applying degenerate KAM theory.

Proof of Theorem 1.1: degenerate KAM theory and measure estimates
In order to prove the existence of quasi-periodic solutions of the system with
Hamiltonian Hε in (1.34), thus (1.14), and not only of the systemwithmodified
Hamiltonian Hα with α := α∞(ω,h, ε), we have to prove that the curve of
the unperturbed linear tangential frequencies

[h1,h2] � h �→ �ω(h) := (
√
j tanh(h j)) j∈S+ ∈ R

ν (1.37)

intersects the image α∞(Cγ∞) of the set Cγ∞ under the map α∞, for “most”
values of h ∈ [h1,h2]. Setting

ωε(h) := α−1∞ ( �ω(h),h), (1.38)

whereα−1∞ (·,h) is the inverse of the functionα∞(·,h) at a fixedh ∈ [h1,h2], if
the vector (ωε(h),h) belongs to Cγ∞, then Theorem 4.1 implies the existence of
a quasi-periodic solution of the systemwith Hamiltonian Hε with Diophantine
frequency ωε(h).

In Theorem 4.2 we prove that for all the values of h ∈ [h1,h2] except
a set of small measure O(γ 1/k∗0 ) (where k∗0 is the index of non-degeneracy
appearing below in (1.39)), the vector (ωε(h),h) belongs to Cγ∞. Since the
parameter interval [h1,h2] is fixed, independently of the O(ε)-neighborhood
of the origin where we look for the solutions, the small divisor constant γ in
the definition of Cγ∞ (see e.g. (1.36)) can be taken as γ = εa with a > 0 as
small as needed, see (4.22), so that all the quantities εγ−κ that we encounter
along the proof are� 1.

The first task is to prove a transversality property for the unperturbed
tangential frequencies �ω(h) in (1.37) and the normal ones ��(h) :=
(� j (h)) j∈N+\S+ := (ω j (h)) j∈N+\S+ . Exploiting the fact that the maps
h �→ ω j (h4) are analytic, simple—namely injective in j—in the subspace
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of functions even in x , and they grow asymptotically like
√

j for j → ∞,
we first prove that the linear frequencies ω j (h) are non-degenerate in the
sense of Bambusi–Berti–Magistrelli [11] (i.e. they are not contained in any
hyperplane). This is verified in Lemma 3.2 using a generalized Vandermonde
determinant (see Lemma 3.3). Then in Proposition 3.4 we translate this qual-
itative non-degeneracy condition into quantitative transversality information:
there exist k∗0 > 0, ρ0 > 0 such that, for all h ∈ [h1,h2],

max
0≤k≤k∗0

∣∣∂kh
( �ω(h) · �+� j (h)−� j ′(h)

)∣∣ ≥ ρ0〈�〉, ∀� �= 0, j, j ′∈N
+\S+,

(1.39)

and similarly for the 0th, 1st and 2nd order Melnikov non-resonance condition
with the + sign. We call (following [57]) k∗0 the index of non-degeneracy and
ρ0 the amount of non-degeneracy. Note that the restriction to the subspace of
functions with zero average in x eliminates the zero frequency ω0 = 0, which
is trivially resonant (this is used also in [27]).

The transversality condition (1.39) is stable under perturbations that are
small in Ck0 -norm, where k0 := k∗0 + 2, see Lemma 4.4. Since ωε(h) in
(1.38) and the perturbed Floquet exponentsμ∞j (h) = μ∞j (ωε(h),h) in (4.26)

are small perturbations of the unperturbed linear frequencies
√

j tanh(h j)
in Ck0-norm, the transversality property (1.39) still holds for the perturbed
frequencies. As a consequence, by applying the classical Rüssmann lemma
(Theorem 17.1 in [57]) we prove that, for most h ∈ [h1,h2], the 0th, 1st and
2nd Melnikov conditions on the perturbed frequencies hold if d > 3

4 k
∗
0 , see

Lemma 4.5 and (4.46).
The larger is d, the weaker are the Melnikov conditions (1.36), and the

stronger will be the loss of space derivatives due to the small divisors in the
reducibility scheme of Sect. 14. In order to guarantee the convergence of such
a KAM reducibility scheme, these losses of derivatives will be compensated
by the regularization procedure of Sects. 6–13, where we reduce the linearized
operator to constant coefficients up to very regularizing terms O(|Dx |−M) for
some M := M(d, τ ) large enough, fixed in (14.8), which is large with respect
to d and τ by (14.7). We will explain in detail this procedure below.

Analysis of the linearized operators In order to prove the existence of a
solution of F(i, α) = 0 in (1.35), proving the Nash–Moser Theorem 4.1, the
key step is to show that the linearized operator di,αF obtained at any approxi-
mate solution along the iterative scheme admits an almost approximate inverse
satisfying tame estimates in Sobolev spaces with loss of derivatives, see The-
orem 5.6. Following the terminology of Zehnder [61], an approximate inverse
is an operator which is an exact inverse at a solution (note that the operator
P in (5.49) is zero when F(i, α) = 0). The adjective almost refers to the fact
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that at the n-th step of the Nash–Moser iteration we shall require only finitely
many non-resonance conditions of Diophantine type, therefore there remain
operators (like (5.50)) that are Fourier supported on high frequencies of mag-
nitude larger than O(Nn) and thus they can be estimated as O(N−a

n ) for some
a > 0 (in suitable norms). The tame estimates (5.49)–(5.52) are sufficient for
the convergence of a differentiable Nash–Moser scheme: the remainder (5.49)
produces a quadratic error since it is of order O(F(in, αn)); the remainder
(5.50) arising from the almost-reducibility is small enough by taking a > 0
sufficiently large, as in (14.7); the remainder (5.51) arises by ultraviolet cut-off
truncations and its contribution is small by usual differentiable Nash–Moser
mechanisms, see for instance [17]. These abstract tame estimates imply the
Nash–Moser Theorem 15.1.

In order to find an almost approximate inverse of di,αF we first implement
the strategy of Sect. 5 introduced in Berti–Bolle [16], which is based on the
following simple observation: around an invariant torus there are symplec-
tic coordinates (φ, y, w) in which the Hamiltonian assumes the normal form
(1.26) and therefore the linearized equations at the quasi-periodic solution
assume the triangular form as in (1.27). In these new coordinates it is imme-
diate to solve the equations in the variables φ, y, and it remains to invert an
operator acting on the w component, which is precisely Lω defined in (5.26).
By Lemma 6.1 the operator Lω is a finite rank perturbation (see (6.5)) of the
restriction to the normal subspace H⊥

S+ in (1.25) of

L = ω · ∂ϕ +
(

∂xV + G(η)B −G(η)

(1+ BVx )+ BG(η)B V ∂x − BG(η)

)
(1.40)

where the functions B, V are given in (6.7), which is obtained linearizing
the water waves equations (1.14) at a quasi-periodic approximate solution
(η, ψ)(ωt, x) and changing ∂t into the directional derivative ω · ∂ϕ .

If F(i, α) is not zero but it is small, we say that i is approximately invariant
for XHα , and, following [16], in Sect. 5 we transform di,αF into an approxi-
mately triangular operator, with an error of size O(F(i, α)). In this way, we
have reduced the problem of almost approximately inverting di,αF to the task
of almost inverting the operator Lω. The precise invertibility properties of Lω

are stated in (5.29)–(5.33).

Remark 1.3 Themain advantage of this approach is that the problem of invert-
ing di,αF on thewhole space (i.e. both tangential and normalmodes) is reduced
to invert a PDE on the normal subspace H⊥

S+ only. In this sense this is reminis-
cent of the Lyapunov-Schmidt decomposition, where the complete nonlinear
problem is split into a bifurcation and a range equation on the orthogonal of
the kernel. However, the Lyapunov-Schmidt approach is based on a splitting
of the space Hs(Tν+1) of functions u(ϕ, x) of time and space, whereas the
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approach of [16] splits the phase space (of functions of x only) into HS+⊕H⊥
S+

more similarly to a classical KAM theory formulation.

The procedure of Sect. 5 is a preparation for the reducibility of the linearized
water waves equations in the normal subspace developed in Sects. 6–14, where
we conjugate the operator Lω to a diagonal system of infinitely many decou-
pled, constant coefficients, scalar linear equations, see (1.42) below. First, in
Sects. 6–12, in order to use the tools of pseudo-differential calculus, it is con-
venient to ignore the projection on the normal subspace H⊥

S+ and to perform
a regularization procedure on the operator L acting on the whole space, see
Remark 6.2. Then, in Sect. 13, we project back on H⊥

S+ . Our approach involves
two well separated procedures that we describe in detail:

1. Symmetrization and diagonalization of L up to smoothing operators
The goal of Sects. 6–12 is to conjugate L to an operator of the form

ω · ∂ϕ+im 1
2
|D| 12 tanh 1

2 (h|D|)+ ir(D)+ T8(ϕ) (1.41)

where m 1
2
≈ 1 is a real constant, independent of ϕ, the symbol r(ξ) is

real and independent of (ϕ, x), of order S−1/2, and the remainder T8(ϕ),
as well as ∂

β
ϕ T8 for all |β| ≤ β0 large enough, is a small, still variable

coefficient operator, which is regularizing at a sufficiently high order, and
satisfies tame estimates in Sobolev spaces.

2. KAM reducibility In Sect. 13 we restrict the operator in (1.41) to H⊥
S+ and

in Sect. 14 we implement an iterative diagonalization scheme to reduce
quadratically the size of the perturbation, completing the conjugation of
Lω to a diagonal, constant coefficient system of the form

ω · ∂ϕ + iOp(μ j ) (1.42)

where μ j = m 1
2
| j | 12 tanh 1

2 (h| j |)+ r( j)+ r̃( j) are real and r̃( j) are small.

We underline that all the transformations performed in Sects. 6–14 are quasi-
periodically-time-dependent changes of variables acting in phase spaces of
functions of x (quasi-periodic Floquet operators). Therefore, they preserve the
dynamical system structure of the conjugated linear operators.

All these changes of variables are bounded and satisfy tame estimates
between Sobolev spaces. As a consequence, the estimates that we shall obtain
inverting the final operator (1.42) directly provide good tame estimates for the
inverse of the operator Lω in (6.5).

We also note that the original system L is reversible and even and that all
the transformations that we perform are reversibility preserving and even. The
preservation of these properties ensures that in the final system (1.42) the μ j
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Time quasi-periodic gravity water waves in finite depth 759

are real valued. Under this respect, the linear stability of the quasi-periodic
standing wave solutions proved in Theorem 1.1 is obtained as a consequence
of the reversible nature of the water waves equations. We could also preserve
the Hamiltonian nature of L performing symplectic transformations, but it
would be more complicated.

Remark 1.4 (Comparison with the gravity-capillary linearized PDE) With
respect to the gravity capillary water waves in infinite depth in [1,21], the
reduction in decreasing orders of the linearized operator is completely differ-
ent. The linearized operator in the gravity-capillary case is like

ω · ∂ϕ + i|Dx | 32 + V (ϕ, x)∂x ,

the term V ∂x is a lower order perturbation of |Dx | 32 , and it can be reduced to
constant coefficients by conjugating the operator with a “semi-Fourier Integral

Operator” A of type (12 ,
1
2 ) (like in [1] and [21]): the commutator of |Dx | 32

and A produces a new operator of order 1, and one chooses appropriately the
symbol of A for the reduction of V ∂x . Instead, in the pure gravity case we
have a linearized operator of the type

ω · ∂ϕ + i|Dx | 12 + V (ϕ, x)∂x

where the term V ∂x is a singular perturbation of i|Dx | 12 . The commutator

between |Dx | 12 and any bounded pseudo-differential operator produces oper-
ators of order ≤ 1/2, which do not interact with V ∂x . Hence one uses the
commutator withω ·∂ϕ (which is the leading term of the unperturbed operator)
to produce operators of order 1 that cancel out V ∂x . This is why our first task
is to straighten the first order vector field (1.44), which corresponds to a time
quasi-periodic transport operator. Furthermore, the fact that the unperturbed

linear operator is∼ |D| 12 , unlike∼ |D| 32 , also affects the conjugation analysis
of the lower order operators, where the contribution of the commutator with

ω · ∂ϕ is always of order higher than the commutator with |Dx | 12 . As a conse-
quence, in the procedure of reduction of the symbols to constant coefficients in
Sects. 11–12,we removefirst their dependence onϕ, and then their dependence
on x . We also note that in [21], since the second order Melnikov conditions
do not lose space derivatives, there is no need to perform such reduction steps
at negative orders before starting with the KAM reducibility algorithm. � 

We now explain in detail the steps of the conjugation of the quasi-periodic
linear operator (1.40) described in the items 1 and 2 above. We underline that
all the coefficients of the linearized operator L in (1.40) are C∞ in (ϕ, x)
because each approximate solution (η(ϕ, x), ψ(ϕ, x)) at which we linearize
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along the Nash–Moser iteration is a trigonometric polynomial in (ϕ, x) (at
each step we apply the projector �n defined in (15.1)) and the water waves
vector field is analytic. This allows us to work in the usual framework of C∞
pseudo-differential symbols, as recalled in Sect. 2.3.

1. Linearized good unknown of Alinhac The first step is to introduce in
Sect. 6.1 the linearized good unknown of Alinhac, as in [1] and [21]. This is
indeed the same change of variable introduced by Lannes [46] (see also [47])
for proving energy estimates for the local existence theory. Subsequently, the
nonlinear good unknown of Alinhac has been introduced by Alazard–Métivier
[5], see also [2,4] to perform the paralinearization of the Dirichlet–Neumann
operator. In these new variables, the linearized operator (1.40) becomes the
more symmetric operator (see (6.15))

L0 = ω · ∂ϕ +
(
∂xV −G(η)

a V ∂x

)

= ω · ∂ϕ +
(
V ∂x 0
0 V ∂x

)
+
(
Vx −G(η)

a 0

)
, (1.43)

where the Dirichlet–Neumann operator admits the expansion

G(η) = |D| tanh(h|D|)+RG

and RG is an OPS−∞ smoothing operator. In Appendix A we provide a self-
containedproof of such a representation.Wecannot directly use a result already
existing in the literature (for the Cauchy problem) because we have to provide
tame estimates for the action ofG(η)onSobolev spaces of time-space variables
(ϕ, x) and to control its smooth dependence with respect to the parameters
(ω,h). We can neither directly apply the corresponding result of [21], which
is given in the case h = +∞.

Notice that the first order transport operator V ∂x in (1.43) is a singular
perturbation of L0 evaluated at (η, ψ) = 0, i.e. ω · ∂ϕ +

(
0 −G(0)
1 0

)
.

2. Straightening the first order vector field ω ·∂ϕ+V (ϕ, x)∂x . The next step
is to conjugate the variable coefficients vector field (we regard equivalently a
vector field as a differential operator)

ω · ∂ϕ + V (ϕ, x)∂x (1.44)

to the constant coefficient vector field ω · ∂ϕ on the torus T
ν
ϕ ×Tx for V (ϕ, x)

small. This a perturbative problem of rectification of a close to constant vector
field on a torus, which is a classical small divisor problem. For perturbations of
a Diophantine vector field this problem was solved at the beginning of KAM
theory, we refer e.g. to [61] and references therein. Notice that, despite the fact

123



Time quasi-periodic gravity water waves in finite depth 761

that ω ∈ R
ν is Diophantine, the constant vector field ω · ∂ϕ is resonant on the

higher dimensional torus T
ν
ϕ × Tx . We exploit in a crucial way the symmetry

induced by the reversible structure of the water waves equations, i.e. V (ϕ, x)
is odd in ϕ, to prove that it is possible to conjugate ω · ∂ϕ + V (ϕ, x)∂x to the
constant vector field ω · ∂ϕ without changing the frequency ω.

From a functional point of view we have to solve a linear transport equation
which depends on time in a quasi-periodic way, see equation (7.4). Actually
we solve equation (7.6) for the inverse diffeomorphism. This problem amounts
to prove that all the solutions of the quasi periodically time-dependent scalar
characteristic equation ẋ = V (ωt, x) are quasi-periodic in timewith frequency
ω, see Remark 7.1, [42,53] and [52]. We solve this problem in Sect. 7 using
a Nash–Moser implicit function theorem. Actually, after having inverted the
linearized operator at an approximate solution (Lemma 7.2), we apply the
Nash–Moser–Hörmander TheoremC.1, proved in Baldi-Haus [10].We cannot
directly use already existing results for equation (7.6) because we have to
prove tame estimates and Lipschitz dependence of the solution with respect
to the approximate torus, as well as its smooth dependence with respect to the
parameters (ω,h), see Lemmata 7.4–7.5.

We remark that, when searching for time periodic solutions as in [42,53],
the corresponding transport equation is not a small-divisor problem and has
been solved in [53] by a direct ODE analysis.

In Lemma 7.6 we apply this change of variable to the whole operator L0 in
(1.43), obtaining the new conjugated system (see (7.31))

L1 = ω · ∂ϕ +
(
a1 −a2|D|Th +R1
a3 0

)
, Th := tanh(h|D|),

where the remainderR1 is in OPS−∞.

3. Change of the space variable In Sect. 8 we introduce a change of variable
induced by a diffeomorphism of Tx of the form (independent of ϕ)

y = x + α(x) ⇔ x = y + ᾰ(y). (1.45)

Conjugating L1 by the change of variable u(x) �→ u(x + α(x)), we obtain an
operator of the same form

L2 = ω · ∂ϕ +
(
a4 −a5|D|Th +R2
a6 0

)
,

see (8.5), where R2 is in OPS−∞, and the functions a5, a6 are given by

a5 =
[
a2(ϕ, x)(1+ αx (x))

]
|x=y+ᾰ(y), a6 = a3(ϕ, y + ᾰ(y)).
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We shall choose in Sect. 11 the functionα(x) (see (11.23)) in order to eliminate
the dependence on x from the time average 〈a7〉ϕ(x) in (11.17)–(11.18) of the
coefficient of |Dx | 12 . The advantage of introducing the diffeomorphism (1.45)
at this step, rather than in Sect. 11where it is used, is that it is easier to study the
conjugation under this change of variable of differentiation and multiplication
operators, Hilbert transform, and integral operators in OPS−∞, see Sect. 2.4
(on the other hand, performing this transformation in Sect. 11 would require
delicate estimates of the symbols obtained after an Egorov-type analysis).

4. Symmetrization of the order 1/2 In Sect. 9 we apply two simple conju-
gations with a Fourier multiplier and a multiplication operator, whose goal is
to obtain a new operator of the form

L3 = ω · ∂ϕ +
⎛

⎝ ă4 −a7|D| 12 T
1
2
h

a7|D| 12 T
1
2
h 0

⎞

⎠+ · · · ,

see (9.9)–(9.13), up to lower order operators. The function a7 is close to 1 and
ă4 is small in ε, see (9.16). Notice that the off-diagonal operators in L3 are
opposite to each other, unlike inL2. Then, in the complex unknown h = η+iψ ,
the first component of such an operator reads

(h, h̄) �→ ω · ∂ϕh + ia7|D| 12 T
1
2
h h + a8h + P5h + Q5h̄ (1.46)

(which corresponds to (10.1) neglecting the projector i�0) where P5(ϕ) is
a ϕ-dependent families of pseudo-differential operators of order −1/2, and
Q5(ϕ) of order 0. We shall call the former operator “diagonal”, and the latter
“off-diagonal”, with respect to the variables (h, h̄).

In Sects. 10–12weperform the reduction to constant coefficients of (1.46) up
to smoothing operators, dealing separately with the diagonal and off-diagonal
operators.

5. Symmetrization of the lower orders. In Sect. 10we reduce the off-diagonal
term Q5 to a pseudo-differential operator with very negative order, i.e. we
conjugate the above operator to another one of the form (see Lemma 10.3)

(h, h̄) �→ ω · ∂ϕh + ia7(ϕ, x)|D| 12 T
1
2
h h + a8h + P6h + Q6h̄, (1.47)

where P6 is inOPS−
1
2 and Q6 ∈ OPS−M for a constant M large enough fixed

in Sect. 14, in view of the reducibility scheme.
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6. Time and space reduction at the order 1/2 In Sect. 11 we eliminate
the ϕ- and the x-dependence from the coefficient of the leading operator

ia7(ϕ, x)|D| 12 T
1
2
h . We conjugate the operator (1.47) by the time-1 flow of

the pseudo-PDE

∂τu = iβ(ϕ, x)|D| 12 u
where β(ϕ, x) is a small function to be chosen. This kind of transformations—
which are “semi-Fourier integral operators”, namely pseudo-differential
operators of type (12 ,

1
2 ) in Hörmander’s notation—has been introduced in

[1] and studied as flows in [21].
Choosing appropriately the functions β(ϕ, x) and α(x) (introduced in

Sect. 8), see formulas (11.19) and (11.23), the final outcome is a linear operator
of the form, see (11.31),

(h, h̄) �→ ω · ∂ϕh+im 1
2
|D| 12 T

1
2
h h+(a8+a9H)h+P7h+T7(h, h̄), (1.48)

where H is the Hilbert transform. This linear operator has the constant coef-
ficient m 1

2
≈ 1 at the order 1/2, while P7 is in OPS−1/2 and the operator T7 is

small, smoothing and satisfies tame estimates in Sobolev spaces, see (11.39).

7. Reduction of the lower orders In Sect. 12 we further diagonalize the lin-
ear operator in (1.48), reducing it to constant coefficients up to regularizing
smoothing operators of very negative order |D|−M . This step, based on stan-
dard pseudo-differential calculus, is not needed in [21], because the second
order Melnikov conditions in [21] do not lose space derivatives. We apply an
iterative sequence of pseudo-differential transformations that eliminate first
the ϕ- and then the x-dependence of the diagonal symbols. The final system
has the form

(h, h̄) �→ ω · ∂ϕh + im 1
2
|D| 12 T

1
2
h h + ir(D)h + T8(ϕ)(h, h̄) (1.49)

where the constant Fourier multiplier r(ξ) is real, even r(ξ) = r(−ξ), it
satisfies (see (12.78))

sup
j∈Z

| j | 12 |r j |k0,γ �M εγ−(2M+1),

and the variable coefficient operator T8(ϕ) is regularizing and satisfies tame
estimates, see more precisely (12.85). We also remark that the operator (1.49)
is reversible and even, since all the previous transformations that we performed
are reversibility preserving and even.

At this point the procedure of diagonalization ofLup to smoothing operators
is complete. Thus, in Sect. 13, restricting the operator (1.49) to H⊥

S+ , we obtain
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the reduction of Lω up to smoothing remainders. We are now ready to begin
the KAM reduction procedure.

8. KAM reducibility In order to decrease quadratically the size of the result-
ing perturbation R0 (see (14.4)) we apply the KAM diagonalization iterative
scheme of Sect. 14, which converges because the operators

〈D〉m+bR0〈D〉m+b+1, ∂s0+b
ϕi

〈D〉m+bR0〈D〉m+b+1, i=1, . . . , ν, (1.50)

satisfy tame estimates for some b := b(τ, k0) ∈ N and m := m(k0) that
are large enough (independently of s), see Lemma 14.2. Such conditions hold
under the assumption that M (the order of regularization of the remainder) is
chosen large enough as in (14.8) (essentiallyM = O(m+b)). This is the prop-
erty that compensates, along theKAM iteration, the loss of derivatives in ϕ and
x produced by the small divisors in the second order Melnikov non-resonance
conditions. Actually, for the construction of the quasi-periodic solutions, it
is sufficient to prove the almost-reducibility of the linearized operator, in the
sense that the remainder Rn in Theorem 14.4 is not zero but it is of order
O(εγ−2(M+1)N−a

n−1), which can be obtained imposing only the finitely many
Diophantine conditions (14.41), (14.26).

The big difference of the KAM reducibility scheme of Sect. 14 with respect
to the one developed in [21] is that the second order Melnikov non-resonance
conditions that we impose are very weak, see (14.26), in particular they lose
regularity, not only in the ϕ-variable, but also in the space variable x . For this
reason we apply at each iterative step a smoothing procedure also in the space
variable (see the Fourier truncations |�|, | j − j ′| ≤ Nn−1 in (14.26)).

After the above almost-diagonalization of the linearized operatorwe almost-
invert it, by imposing the first order Melnikov non-resonance conditions in
(14.92), see Lemma 14.9. Since all the changes of variables that we performed
in the diagonalization process satisfy tame estimates in Sobolev spaces, we
finally conclude the existence of an almost inverse of Lω which satisfies tame
estimates, see Theorem 14.10.

At this point the proof of the Nash–Moser Theorem 4.1, given in Sect. 15,
follows in a usual way, in the same setting of [21].

Notation Given a function u(ϕ, x) we write that it is even(ϕ)even(x) if it is
even in ϕ for any x and, separately, even in x for any ϕ. With similar meaning
we say that u(ϕ, x) is even(ϕ)odd(x), odd(ϕ)even(x) and odd(ϕ)even(x).

The notation a �s,α,M b means that a ≤ C(s, α,M)b for some constant
C(s, α,M) > 0 depending on the Sobolev index s and the constants α,M .
Sometimes, along the paper, we omit to write the dependence �s0,k0 with
respect to s0, k0, because s0 (defined in (1.21)) and k0 (determined in Sect. 3)
are considered as fixed constants. Similarly, the set S

+ of tangential sites is
considered as fixed along the paper.
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2 Functional setting

2.1 Function spaces

In the paper we will use Sobolev norms for real or complex functions
u(ω,h, ϕ, x), (ϕ, x) ∈ T

ν × T, depending on parameters (ω,h) ∈ F in a
Lipschitz way together with their derivatives in the sense of Whitney, where
F is a closed subset of R

ν+1. We use the compact notation λ := (ω,h) to
collect the frequency ω and the depth h into a parameter vector.

We use the multi-index notation: if k = (k1, . . . , kν+1) ∈ N
ν+1 we denote

|k| := k1 + · · · + kν+1 and k! := k1! · · · kν+1! and if λ = (λ1, . . . , λν+1) ∈
R

ν+1, we denote the derivative ∂kλ := ∂
k1
λ1

. . . ∂
kν+1
λν+1

and λk := λ
k1
1 · · · λkν+1

ν+1 .

Recalling that ‖ ‖s denotes the norm of the Sobolev space Hs(Tν+1,C) =
Hs
(ϕ,x) introduced in (1.20), we now define the “Whitney-Sobolev” norm

‖ · ‖k+1,γ
s,F .

Definition 2.1 (Whitney–Sobolev functions) Let F be a closed subset ofR
ν+1.

Let k ≥ 0 be an integer, γ ∈ (0, 1], and s ≥ s0 > (ν + 1)/2. We say that a
function u : F → Hs

(ϕ,x) belongs to Lip(k+1, F, s, γ ) if there exist functions

u( j) : F → Hs
(ϕ,x), j ∈ N

ν , 0 ≤ | j | ≤ k with u(0) = u, and a constant M > 0

such that, if R j (λ, λ0) := R(u)
j (λ, λ0) is defined by

u( j)(λ) =
∑

�∈Nν+1:| j+�|≤k

1

�! u
( j+�)(λ0) (λ− λ0)

� + R j (λ, λ0), λ, λ0 ∈ F,

(2.1)

then

γ | j |‖u( j)(λ)‖s ≤ M, γ k+1‖R j (λ, λ0)‖s ≤ M |λ− λ0|k+1−| j |

∀λ, λ0 ∈ F, | j | ≤ k. (2.2)

An element of Lip(k+1, F, s, γ ) is in fact the collection {u( j) : | j | ≤ k}. The
norm of u ∈ Lip(k + 1, F, s, γ ) is defined as

‖u‖k+1,γ
s,F := ‖u‖k+1,γ

s := inf{M > 0 : (2.2) holds}. (2.3)

If F = R
ν+1 byLip(k+1,R

ν+1, s, γ )we shallmean the space of the functions
u = u(0) for which there exist u( j) = ∂

j
λu, | j | ≤ k, satisfying (2.2), with the

same norm (2.3).

123



766 P. Baldi et al.

We make some remarks.

1. If F = R
ν+1, and u ∈ Lip(k + 1, F, s, γ ) the u( j), | j | ≥ 1, are uniquely

determined as the partial derivatives u( j) = ∂
j
λu, | j | ≤ k, of u = u(0).

Moreover all the derivatives ∂
j
λu, | j | = k are Lipschitz. Since Hs is

a Hilbert space we have that Lip(k + 1,R
ν+1, s, γ ) coincides with the

Sobolev space Wk+1,∞(Rν+1, Hs).
2. The Whitney–Sobolev norm of u in (2.3) is equivalently given by

‖u‖k+1,γ
s,F := ‖u‖k+1,γ

s

= max| j |≤k

{
γ | j | sup

λ∈F
‖u( j)(λ)‖s, γ k+1 sup

λ�=λ0

‖R j (λ, λ0)‖s
|λ− λ0|k+1−| j |

}
. (2.4)

Theorem B.2 and (B.10) provide an extension operator which asso-
ciates to an element u ∈ Lip(k + 1, F, s, γ ) an extension ũ ∈ Lip(k +
1,R

ν+1, s, γ ). As already observed, the space Lip(k + 1,R
ν+1, s, γ ) coin-

cides with Wk+1,∞(Rν+1, Hs), with equivalence of the norms (see (B.9))

‖u‖k+1,γ
s,F ∼ν,k ‖ũ‖Wk+1,∞,γ (Rν+1,Hs) :=

∑

|α|≤k+1

γ |α|‖∂αλ ũ‖L∞(Rν+1,Hs).

By Lemma B.3, the extension ũ is independent of the Sobolev space Hs .
We can identify any element u ∈ Lip(k + 1, F, s, γ ) (which is a col-

lection u = {u( j) : | j | ≤ k}) with the equivalence class of functions
f ∈ Wk+1,∞(Rν+1, Hs)/∼ with respect to the equivalence relation f ∼ g
when ∂

j
λ f (λ) = ∂

j
λg(λ) for all λ ∈ F , for all | j | ≤ k + 1.

For any N > 0, we introduce the smoothing operators

(�Nu)(ϕ, x) :=
∑

〈�, j〉≤N

u�j e
i(�·ϕ+ j x) �⊥

N := Id −�N . (2.5)

Lemma 2.2 (Smoothing) Consider the space Lip(k + 1, F, s, γ ) defined in
Definition 2.1. The smoothing operators �N ,�

⊥
N satisfy the estimates

‖�Nu‖k+1,γ
s ≤ Nα‖u‖k+1,γ

s−α , 0 ≤ α ≤ s, (2.6)

‖�⊥
Nu‖k+1,γ

s ≤ N−α‖u‖k+1,γ
s+α , α ≥ 0. (2.7)

Proof See Appendix B. � 
Lemma 2.3 (Interpolation) Consider the space Lip(k + 1, F, s, γ ) defined in
Definition 2.1.
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(i) Let s1 < s2. Then for any θ ∈ (0, 1) one has

‖u‖k+1,γ
s ≤ (‖u‖k+1,γ

s1 )θ (‖u‖k+1,γ
s2 )1−θ , s := θs1 + (1− θ)s2. (2.8)

(ii) Let a0, b0 ≥ 0 and p, q > 0. For all ε > 0, there exists a constant
C(ε) := C(ε, p, q) > 0, which satisfies C(1) < 1, such that

‖u‖k+1,γ
a0+p ‖v‖k+1,γ

b0+q ≤ ε‖u‖k+1,γ
a0+p+q‖v‖k+1,γ

b0
+ C(ε)‖u‖k+1,γ

a0 ‖v‖k+1,γ
b0+p+q .

(2.9)

Proof See Appendix B. � 
Lemma 2.4 (Product and composition)Consider the space Lip(k+1, F, s, γ )
defined in Definition 2.1. For all s ≥ s0 > (ν + 1)/2, we have

‖uv‖k+1,γ
s ≤ C(s, k)‖u‖k+1,γ

s ‖v‖k+1,γ
s0 + C(s0, k)‖u‖k+1,γ

s0 ‖v‖k+1,γ
s .

(2.10)

Let ‖β‖k+1,γ
2s0+1 ≤ δ(s0, k) small enough. Then the composition operator

B : u �→ Bu, (Bu)(ϕ, x) := u(ϕ, x + β(ϕ, x)),

satisfies the following tame estimates: for all s ≥ s0,

‖Bu‖k+1,γ
s �s,k ‖u‖k+1,γ

s+k+1 + ‖β‖k+1,γ
s ‖u‖k+1,γ

s0+k+2. (2.11)

Let ‖β‖k+1,γ
2s0+k+2 ≤ δ(s0, k) small enough. The function β̆ defined by the inverse

diffeomorphism y = x + β(ϕ, x) if and only if x = y + β̆(ϕ, y), satisfies

‖β̆‖k+1,γ
s �s,k ‖β‖k+1,γ

s+k+1. (2.12)

Proof See Appendix B. � 
If ω belongs to the set of Diophantine vectors DC(γ, τ ), where

DC(γ, τ ) :=
{
ω ∈ R

ν : |ω · �| ≥ γ

|�|τ ∀� ∈ Z
ν\{0}

}
, (2.13)

the equation ω · ∂ϕv = u, where u(ϕ, x) has zero average with respect to ϕ,
has the periodic solution

(ω · ∂ϕ)−1u :=
∑

�∈Zν\{0}, j∈Z

u�, j
iω · �e

i(�·ϕ+ j x). (2.14)
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For all ω ∈ R
ν we define its extension

(ω · ∂ϕ)−1
extu(ϕ, x) :=

∑

(�, j)∈Zν+1

χ(ω · �γ−1〈�〉τ )
iω · � u�, j e

i(�·ϕ+ j x), (2.15)

where χ ∈ C∞(R,R) is an even and positive cut-off function such that

χ(ξ) =
{
0 if |ξ | ≤ 1

3

1 if |ξ | ≥ 2
3 ,

∂ξχ(ξ) > 0 ∀ξ ∈
(
1

3
,
2

3

)
. (2.16)

Note that (ω · ∂ϕ)−1
extu = (ω · ∂ϕ)−1u for all ω ∈ DC(γ, τ ).

Lemma 2.5 (Diophantine equation) For all u ∈ Wk+1,∞,γ (Rν+1, Hs+μ), we
have

‖(ω · ∂ϕ)−1
extu‖k+1,γ

s,Rν+1 ≤ C(k)γ−1‖u‖k+1,γ
s+μ,Rν+1, μ := k + 1+ τ(k + 2).

(2.17)

Moreover, for F ⊆ DC(γ, τ )× R one has

‖(ω · ∂ϕ)−1u‖k+1,γ
s,F ≤ C(k)γ−1‖u‖k+1,γ

s+μ,F . (2.18)

Proof See Appendix B. � 
We finally state a standard Moser tame estimate for the nonlinear composi-

tion operator

u(ϕ, x) �→ f(u)(ϕ, x) := f (ϕ, x, u(ϕ, x)).

Since the variables (ϕ, x) := y have the same role, we state it for a generic
Sobolev space Hs(Td).

Lemma 2.6 (Composition operator) Let f ∈ C∞(Td × R,C) and C0 >

0. Consider the space Lip(k + 1, F, s, γ ) given in Definition 2.1. If u(λ) ∈
Hs(Td ,R), λ ∈ F is a family of Sobolev functions satisfying ‖u‖k+1,γ

s0,F
≤ C0,

then, for all s ≥ s0 > (d + 1)/2,

‖f(u)‖k+1,γ
s,F ≤ C(s, k, f,C0)

(
1+ ‖u‖k+1,γ

s,F

)
. (2.19)

The constant C(s, k, f,C0) depends on s, k and linearly on ‖ f ‖Cm(Td×B),
where m is an integer larger than s+ k+ 1, and B ⊂ R is a bounded interval
such that u(λ, y) ∈ B for all λ ∈ F, y ∈ T

d , for all ‖u‖k+1,γ
s0,F

≤ C0.

Proof See Appendix B. � 
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2.2 Linear operators

Along the paper we consider ϕ-dependent families of linear operators A :
T
ν �→ L(L2(Tx )), ϕ �→ A(ϕ) acting on functions u(x) of the space variable

x , i.e. on subspaces of L2(Tx ), either real or complex valued. We also regard
A as an operator (which for simplicity we denote by A as well) that acts on
functions u(ϕ, x) of space-time, i.e. we consider the corresponding operator
A ∈ L(L2(Tν × T)) defined by

(Au)(ϕ, x) := (A(ϕ)u(ϕ, ·))(x). (2.20)

We say that an operator A is real if it maps real valued functions into real
valued functions.

We represent a real operator acting on (η, ψ) ∈ L2(Tν+1,R
2) by a matrix

R
(
η

ψ

)
=
(
A B
C D

)(
η

ψ

)
(2.21)

where A, B,C, D are real operators acting on the scalar valued components
η,ψ ∈ L2(Tν+1,R).

The action of an operator A as in (2.20) on a scalar function u := u(ϕ, x) ∈
L2(Tν × T,C), that we expand in Fourier series as

u(ϕ, x) =
∑

j∈Z

u j (ϕ)e
i j x =

∑

�∈Zν , j∈Z

u�, j e
i(�·ϕ+ j x), (2.22)

is

Au(ϕ, x) =
∑

j, j ′∈Z

A j ′
j (ϕ)u j ′(ϕ)e

i j x

=
∑

�∈Zν , j∈Z

∑

�′∈Zν , j ′∈Z

A j ′
j (�− �′)u�′, j ′ei(�·ϕ+ j x). (2.23)

We shall identify an operator A with the matrix
(
A j ′
j (� − �′)

)
j, j ′∈Z,�,�′∈Zν ,

which is Töplitz with respect to the index �. In this paper we always consider
Töplitz operators as in (2.20), (2.23).

The matrix entries A j ′
j (�− �′) of a bounded operator A : Hs → Hs (as in

(2.23)) satisfy

∑

�, j

|A j ′
j (�− �′)|2〈�, j〉2s ≤ ‖A‖2L(Hs)〈�′, j ′〉2s, ∀(�′, j ′) ∈ Z

ν+1,

(2.24)
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where ‖A‖L(Hs) := sup{‖Ah‖s : ‖h‖s = 1} is the operator norm (consider
h = ei(�

′, j ′)·(ϕ,x)).

Definition 2.7 Given a linear operator A as in (2.23) we define the operator

1. |A| (majorant operator) whose matrix elements are |A j ′
j (�− �′)|,

2. �N A, N ∈ N (smoothed operator) whose matrix elements are

(�N A) j
′
j (�− �′) :=

{
A j ′
j (�− �′) if 〈�− �′, j − j ′〉 ≤ N

0 otherwise.
(2.25)

We also denote �⊥
N := Id −�N ,

3. 〈∂ϕ,x 〉b A, b ∈ R, whose matrix elements are 〈�− �′, j − j ′〉b A j ′
j (�− �′).

4. ∂ϕm A(ϕ) = [∂ϕm , A] = ∂ϕm ◦A−A◦∂ϕm (differentiated operator)whose

matrix elements are i(�m − �′m)A
j ′
j (�− �′).

Similarly the commutator [∂x , A] is represented by the matrix with entries

i( j − j ′)A j ′
j (�− �′).

Given linear operators A, B as in (2.23) we have that (see Lemma 2.4 in
[21])

‖ |A + B|u‖s ≤ ‖ |A| ||u|| ‖s + ‖ |B| ||u|| ‖s, ‖ |AB|u‖s ≤ ‖ |A||B| ||u|| ‖s,
(2.26)

where, for a given a function u(ϕ, x) expanded in Fourier series as in (2.22),
we define the majorant function

||u||(ϕ, x) :=
∑

�∈Zν , j∈Z

|u�, j |ei(�·ϕ+ j x). (2.27)

Note that the Sobolev norms of u and ||u|| are the same, i.e.

‖u‖s = ‖||u||‖s . (2.28)

2.3 Pseudo-differential operators

In this sectionwe recall themain properties of pseudo-differential operators on
the torus that we shall use in the paper, similarly to [1,21]. Pseudo-differential
operators on the torus may be seen as a particular case of the theory on R

n , as
developed for example in [35].

Definition 2.8 (�DO)A linear operator A is called a pseudo-differential oper-
ator of order m if its symbol a(x, j) is the restriction to R × Z of a function
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a(x, ξ) which is C∞-smooth on R × R, 2π -periodic in x , and satisfies the
inequalities

∣∣∂αx ∂
β
ξ a(x, ξ)

∣∣ ≤ Cα,β〈ξ 〉m−β, ∀α, β ∈ N. (2.29)

We call a(x, ξ) the symbol of the operator A, which we denote

A = Op(a) = a(x, D), D := Dx := 1

i
∂x .

We denote by Sm the class of all the symbols a(x, ξ) satisfying (2.29), and by
OPSm the associated set of pseudo-differential operators of order m. We set
OPS−∞ := ∩m∈ROPSm .

For a matrix of pseudo differential operators

A =
(
A1 A2
A3 A4

)
, Ai ∈ OPSm, i = 1, . . . , 4 (2.30)

we say that A ∈ OPSm .

When the symbol a(x) is independent of j , the operator A = Op(a) is the
multiplication operator by the function a(x), i.e. A : u(x) �→ a(x)u(x). In
such a case we shall also denote A = Op(a) = a(x).

We underline that we regard any operator Op(a) as an operator acting only
on 2π -periodic functions u(x) =∑ j∈Z

u j ei j x as

(Au)(x) := Op(a)[u](x) :=
∑

j∈Z
a(x, j)u je

i j x .

Along the paper we consider ϕ-dependent pseudo-differential operators
(Au)(ϕ, x) =∑ j∈Z

a(ϕ, x, j)u j (ϕ)ei j x where the symbol a(ϕ, x, ξ) is C∞-
smooth also in ϕ. We still denote A := A(ϕ) = Op(a(ϕ, ·)) = Op(a).

Moreoverwe consider pseudo-differential operators A(λ) := Op(a(λ, ϕ, x,
ξ)) that are k0 times differentiable with respect to a parameter λ := (ω,h) in
an open subset �0 ⊆ R

ν × [h1,h2]. The regularity constant k0 ∈ N is fixed
once and for all in Sect. 3. Note that ∂kλ A = Op(∂kλa), ∀k ∈ N

ν+1.
We shall use the following notation, used also in [1,21]. For anym ∈ R\{0},

we set

|D|m := Op
(
χ(ξ)|ξ |m), (2.31)

where χ is the even, positive C∞ cut-off defined in (2.16). We also identify
the Hilbert transform H, acting on the 2π -periodic functions, defined by

H(ei j x ) := −i sign( j)ei j x , ∀ j �= 0, H(1) := 0, (2.32)
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with theFouriermultiplierOp
(−i sign(ξ)χ(ξ)

)
, i.e.H ≡ Op

(−i sign(ξ)χ(ξ)
)
.

We shall identify the projector π0, defined on the 2π -periodic functions as

π0u := 1

2π

∫

T

u(x) dx, (2.33)

with the Fourier multiplier Op
(
1− χ(ξ)

)
, i.e. π0 ≡ Op

(
1− χ(ξ)

)
, where the

cut-off χ(ξ) is defined in (2.16). We also define the Fourier multiplier 〈D〉m ,
m ∈ R\{0}, as

〈D〉m := π0 + |D|m := Op
(
(1− χ(ξ))+ χ(ξ)|ξ |m), ξ ∈ R. (2.34)

We now recall the pseudo-differential norm introduced in Definition 2.11 in
[21] (inspired by Métivier [50], chapter 5), which controls the regularity in
(ϕ, x), and the decay in ξ , of the symbol a(ϕ, x, ξ) ∈ Sm , together with its
derivatives ∂βξ a ∈ Sm−β , 0 ≤ β ≤ α, in the Sobolev norm ‖ ‖s .
Definition 2.9 (Weighted �DO norm) Let A(λ) := a(λ, ϕ, x, D) ∈ OPSm

be a family of pseudo-differential operators with symbol a(λ, ϕ, x, ξ) ∈ Sm ,
m ∈ R, which are k0 times differentiable with respect to λ ∈ �0 ⊂ R

ν+1. For
γ ∈ (0, 1), α ∈ N, s ≥ 0, we define the weighted norm

||A||k0,γm,s,α :=
∑

|k|≤k0
γ |k| sup

λ∈�0

||∂kλ A(λ)||m,s,α (2.35)

where

||A(λ)||m,s,α := max
0≤β≤α

sup
ξ∈R

‖∂βξ a(λ, ·, ·, ξ)‖s〈ξ 〉−m+β. (2.36)

For a matrix of pseudo differential operators A ∈ OPSm as in (2.30), we define
its pseudo differential norm

||A||k0,γm,s,α := max
i=1,...,4

||Ai ||k0,γm,s,α.

For each k0, γ,m fixed, the norm (2.35) is non-decreasing both in s and α,
namely

∀s ≤ s′, α ≤ α′, || ||k0,γm,s,α ≤ || ||k0,γm,s′,α, || ||k0,γm,s,α ≤ || ||k0,γm,s,α′, (2.37)

and it is non-increasing in m, i.e.

∀m ≤ m′, || ||k0,γm′,s,α ≤ || ||k0,γm,s,α. (2.38)
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Given a function a(λ, ϕ, x) that is C∞ in (ϕ, x) and k0 times differentiable
in λ, the “weighted �DO norm” of the corresponding multiplication operator
Op (a) is

||Op (a)||k0,γ0,s,α =
∑

|k|≤k0
γ |k| sup

λ∈�0

‖∂kλa(λ)‖s

= ‖a‖Wk0,∞,γ (�0,Hs) ∼k0 ‖a‖k0,γs , ∀α ∈ N, (2.39)

see (B.9). For a Fourier multiplier g(λ, D) with symbol g ∈ Sm , we simply
have

||Op(g)||k0,γm,s,α = ||Op(g)||k0,γm,0,α ≤ C(m, α, g, k0), ∀s ≥ 0. (2.40)

Given a symbol a(λ, ϕ, x, ξ) ∈ Sm , we define its averages

〈a〉ϕ(λ, x, ξ) := 1

(2π)ν

∫

Tν

a(λ, ϕ, x, ξ) dϕ,

〈a〉ϕ,x (λ, ξ) := 1

(2π)ν+1

∫

Tν+1
a(λ, ϕ, x, ξ) dϕ dx .

One has that 〈a〉ϕ and 〈a〉ϕ,x are symbols in Sm that satisfy

||Op(〈a〉ϕ)||k0,γm,s,α � ||Op(a)||k0,γm,s,α,

||Op(〈a〉ϕ,x )||k0,γm,s,α � ||Op(a)||k0,γm,0,α, ∀s ≥ 0.
(2.41)

The norm || ||0,s,0 controls the action of a pseudo-differential operator on the
Sobolev spaces Hs , see Lemma 2.28. The norm || ||k0,γm,s,α is closed under com-
position and satisfies tame estimates.

Composition If A = a(x, D) ∈ OPSm , B = b(x, D) ∈ OPSm
′
then the com-

position operator AB := A◦ B = σAB(x, D) is a pseudo-differential operator
in OPSm+m′

whose symbol σAB has the following asymptotic expansion: for
all N ≥ 1,

σAB(x, ξ) =
N−1∑

β=0

1

iββ!∂
β
ξ a(x, ξ) ∂

β
x b(x, ξ)+ rN (x, ξ)

where rN := rN ,AB ∈ Sm+m′−N ,

(2.42)

and the remainder rN has the explicit formula

rN (x, ξ) := rN ,AB(x, ξ)

:= 1

iN (N − 1)!
∫ 1

0
(1− τ)N−1

∑

j∈Z
(∂Nξ a)(x, ξ + τ j)̂

(∂Nx b)( j, ξ)ei j x dτ. (2.43)
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We remind the following composition estimate proved in Lemma 2.13 in [21].

Lemma 2.10 (Composition) Let A = a(λ, ϕ, x, D), B = b(λ, ϕ, x, D) be
pseudo-differential operatorswith symbols a(λ, ϕ, x, ξ) ∈ Sm, b(λ, ϕ, x, ξ) ∈
Sm

′
, m,m′ ∈ R. Then A(λ)◦ B(λ) ∈ OPSm+m′

satisfies, for all α ∈ N, s ≥ s0,

||AB||k0,γm+m′,s,α �m,α,k0 C(s)||A||k0,γm,s,α||B||k0,γm′,s0+α+|m|,α
+ C(s0)||A||k0,γm,s0,α||B||k0,γm′,s+α+|m|,α. (2.44)

Moreover, for any integer N ≥ 1, the remainder RN := Op(rN ) in (2.42)
satisfies

||RN ||k0,γm+m′−N ,s,α �m,N ,α,k0 C(s)||A||k0,γm,s,N+α||B||k0,γm′,s0+2N+|m|+α,α

+ C(s0)||A||k0,γm,s0,N+α||B||k0,γm′,s+2N+|m|+α,α
.

(2.45)

Both (2.44)–(2.45) hold with the constant C(s0) interchanged with C(s).
Analogous estimates hold if A and B arematrix operators of the form (2.30).

For a Fourier multiplier g(λ, D) with symbol g ∈ Sm
′
we have the simpler

estimate

||A ◦ g(D)||k0,γm+m′,s,α �k0,α ||A||k0,γm,s,α||Op(g)||k0,γm′,0,α �k0,α,m′ ||A||k0,γm,s,α. (2.46)

By (2.42) the commutator between two pseudo-differential operators A =
a(x, D) ∈ OPSm and B = b(x, D) ∈ OPSm

′
is a pseudo-differential operator

[A, B] ∈ OPSm+m′−1 with symbol a  b, namely

[A, B] = Op(a  b). (2.47)

By (2.42) the symbol a  b ∈ Sm+m′−1 admits the expansion

a  b = −i{a, b} + r2(a, b)

where {a, b} := ∂ξa ∂xb − ∂xa ∂ξb ∈ Sm+m′−1
(2.48)

is the Poisson bracket between a(x, ξ) and b(x, ξ), and

r2(a, b) := r2,AB − r2,BA ∈ Sm+m′−2. (2.49)

By Lemma 2.10 we deduce the following corollary.
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Lemma 2.11 (Commutator) If A = a(λ, ϕ, x, D) ∈ OPSm and B =
b(λ, ϕ, x, D) ∈ OPSm

′
, m,m′ ∈ R, then the commutator [A, B] := AB −

BA ∈ OPSm+m′−1 satisfies

||[A, B]||k0,γm+m′−1,s,α �m,m′,α,k0 C(s)||A||k0,γm,s+2+|m′|+α,α+1||B||
k0,γ
m′,s0+2+|m|+α,α+1

+ C(s0)||A||k0,γm,s0+2+|m′|+α,α+1||B||
k0,γ
m′,s+2+|m|+α,α+1.

(2.50)

Proof Use the expansion in (2.42) with N = 1 for both AB and BA, then use
(2.45) and (2.37). � 
Given two linear operators A and B, we define inductively the operators
AdnA(B), n ∈ N in the following way: AdA(B) := [A, B] and Adn+1

A (B) :=
[A,AdnA(B)], n ∈ N. Iterating the estimate (2.50), one deduces

||AdnA(B)||k0,γnm+m′−n,s,α �m,m′,s,α,k0 (||A||k0,γm,s0+cn(m,m′,α),α+n)
n ||B||k0,γm′,s+cn(m,m′,α),α+n

+ (||A||k0,γm,s0+cn(m,m′,α),α+n)
n−1||A||k0,γm,s+cn(m,m′,α),α+n ||B||

k0,γ
m′,s0+cn(m,m′,α),α+n

(2.51)

for suitable constants cn(m,m′, α) > 0.
We remind the following estimate for the adjoint operator proved in Lemma

2.16 in [21].

Lemma 2.12 (Adjoint) Let A = a(λ, ϕ, x, D) be a pseudo-differential oper-
ator with symbol a(λ, ϕ, x, ξ) ∈ Sm,m ∈ R. Then the L2-adjoint A∗ ∈ OPSm

satisfies

||A∗||k0,γm,s,0 �m ||A||k0,γm,s+s0+|m|,0.

The same estimate holds if A is a matrix operator of the form (2.30).

Finally we report a lemma about inverse of pseudo-differential operators.

Lemma 2.13 (Invertibility) Let� := Id+ A where A := Op(a(λ, ϕ, x, ξ)) ∈
OPS0. There exist constants C(s0, α, k0), C(s, α, k0) ≥ 1, s ≥ s0, such that,
if

C(s0, α, k0)||A||k0,γ0,s0+α,α ≤ 1/2, (2.52)

then, for all λ, the operator � is invertible, �−1 ∈ OPS0 and, for all s ≥ s0,

||�−1 − Id||k0,γ0,s,α ≤ C(s, α, k0)||A||k0,γ0,s+α,α. (2.53)
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The same estimate holds for amatrix operator� = I2+Awhere I2 =
(
Id 0
0 Id

)

and A has the form (2.30).

Proof By a Neumann series argument. See Lemma 2.17 in [21]. � 

2.4 Integral operators and Hilbert transform

In this section we consider integral operators with a C∞ kernel, which are the
operators inOPS−∞. As in the previous section, they are k0 times differentiable
with respect to λ := (ω,h) in an open set �0 ⊆ R

ν+1.

Lemma 2.14 Let K := K (λ, ·) ∈ C∞(Tν×T×T). Then the integral operator

(Ru)(ϕ, x) :=
∫

T

K (λ, ϕ, x, y)u(ϕ, y) dy (2.54)

is in OPS−∞ and, for all m, s, α ∈ N, ||R||k0,γ−m,s,α ≤ C(m, s, α, k0)‖K‖k0,γCs+m+α .

Proof See Lemma 2.32 in [21]. � 
An integral operator transforms into another integral operator under a

change of variables

Pu(ϕ, x) := u(ϕ, x + p(ϕ, x)). (2.55)

Lemma 2.15 Let K (λ, ·) ∈ C∞(Tν ×T×T) and p(λ, ·) ∈ C∞(Tν ×T,R).
There exists δ := δ(s0, k0) > 0 such that if ‖p‖k0,γ2s0+k0+1 ≤ δ, then the integral

operatorR in (2.54) transforms into the integral operator
(
P−1RP

)
u(ϕ, x) =∫

T
K̆ (λ, ϕ, x, y)u(ϕ, y) dy with a C∞ kernel

K̆ (λ, ϕ, x, z) := (1+ ∂zq(λ, ϕ, z)) K (λ, ϕ, x + q(λ, ϕ, x), z + q(λ, ϕ, z)),

where z �→ z+q(λ, ϕ, z) is the inverse diffeomorphism of x �→ x+ p(λ, ϕ, x).
The function K̆ satisfies

‖K̆‖k0,γs ≤ C(s, k0)
(‖K‖k0,γs+k0

+ ‖p‖k0,γs+k0+1‖K‖k0,γs0+k0+1

) ∀s ≥ s0.

Proof See Lemma 2.34 in [21]. � 
We now recall some properties of the Hilbert transform H defined as a

Fouriermultiplier in (2.32). The commutator betweenH and themultiplication
operator by a smooth function a is a regularizing operator inOPS−∞, as stated
in Lemma 2.35 in [21] (see also Lemma B.5 in [6], Appendices H and I in
[42]).
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Lemma 2.16 Let a(λ, ·, ·) ∈ C∞(Tν ×T,R). Then the commutator [a,H] is
in OPS−∞ and satisfies, for all m, s, α ∈ N,

||[a,H]||k0,γ−m,s,α ≤ C(m, s, α, k0)‖a‖k0,γs+s0+1+m+α.

We also report the following classical lemma, see e.g. Lemma 2.36 in [21]
and Lemma B.5 in [6] (and Appendices H and I in [42] for similar statements).

Lemma 2.17 Let p = p(λ, ·) be in C∞(Tν+1) and P := P(λ, ·) be the
associated change of variable defined in (2.55). There exists δ(s0, k0) > 0
such that, if ‖p‖k0,γ2s0+k0+1 ≤ δ(s0, k0), then the operator P−1HP − H is an
integral operator of the form

(P−1HP −H)u(ϕ, x) =
∫

T

K (λ, ϕ, x, z)u(ϕ, z) dz

where K = K (λ, ·) ∈ C∞(Tν × T × T) is given by K (λ, ϕ, x, z) :=
− 1

π
∂z log(1+ g(λ, ϕ, x, z)) with

g(λ, ϕ, x, z) := cos
(q(λ, ϕ, x)− q(λ, ϕ, z)

2

)
− 1

+ cos
( x − z

2

)sin
(
1
2 (q(λ, ϕ, x)− q(λ, ϕ, z))

)

sin
(1
2 (x − z)

)

where z �→ q(λ, ϕ, z) is the inverse diffeomorphism of x �→ x + p(λ, ϕ, x).
The kernel K satisfies the estimate

‖K‖k0,γs ≤ C(s, k0)‖p‖k0,γs+k0+2, ∀s ≥ s0.

We finally provide a simple estimate for the integral kernel of a family of
Fourier multipliers in OPS−∞.

Lemma 2.18 Let g(λ, ϕ, ξ)bea family ofFouriermultiplierswith ∂kλg(λ, ϕ, ·)
∈ S−∞, for all k ∈ N

ν+1, |k| ≤ k0. Then the operator Op(g) admits the inte-
gral representation

[
Op(g)u

]
(ϕ, x) =

∫

T

Kg(λ, ϕ, x, y)u(ϕ, y) dy,

Kg(λ, ϕ, x, y) := 1

2π

∑

j∈Z

g(λ, ϕ, j)ei j (x−y),
(2.56)
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and the kernel Kg satisfies, for all s ∈ N, the estimate

‖Kg‖k0,γCs � ||Op(g)||k0,γ−1,s+s0,0
+ ||Op(g)||k0,γ−s−s0−1,0,0. (2.57)

Proof The lemma follows by differentiating the explicit expression of the
integral Kernel Kg in (2.56). � 

2.5 Reversible, even, real operators

We introduce now some algebraic properties that have a key role in the proof.

Definition 2.19 (Even operator) A linear operator A := A(ϕ) as in (2.23) is
even if each A(ϕ), ϕ ∈ T

ν , leaves invariant the space of functions even in x .

Since the Fourier coefficients of an even function satisfy u− j = u j for all
j ∈ Z, we have that

A is even⇐⇒
A j ′
j (ϕ)+ A− j ′

j (ϕ) = A j ′
− j (ϕ)+ A− j ′

− j (ϕ), ∀ j, j ′ ∈ Z, ϕ ∈ T
ν.

(2.58)

Definition 2.20 (Reversibility) An operator R as in (2.21) is

1. reversible ifR(−ϕ)◦ρ = −ρ◦R(ϕ) for allϕ ∈ T
ν , where the involution

ρ is defined in (1.11),
2. reversibility preserving if R(−ϕ) ◦ ρ = ρ ◦R(ϕ) for all ϕ ∈ T

ν .

The composition of a reversible operator with a reversibility preserving oper-
ator is reversible. It turns out that an operator R as in (2.21) is

1. reversible if and only if ϕ �→ A(ϕ), D(ϕ) are odd and ϕ �→ B(ϕ),C(ϕ)

are even,
2. reversibility preserving if and only if ϕ �→ A(ϕ), D(ϕ) are even and ϕ �→

B(ϕ),C(ϕ) are odd.

We shall say that a linear operator of the form L := ω · ∂ϕ + A(ϕ) is
reversible, respectively even, if A(ϕ) is reversible, respectively even. Conju-
gating the linear operator L := ω · ∂ϕ + A(ϕ) by a family of invertible linear
maps �(ϕ) we get the transformed operator

L+ := �−1(ϕ)L�(ϕ) = ω · ∂ϕ + A+(ϕ),
A+(ϕ) := �−1(ϕ)(ω · ∂ϕ�(ϕ))+�−1(ϕ)A(ϕ)�(ϕ).

It results that the conjugation of an even and reversible operator with an oper-
ator �(ϕ) that is even and reversibility preserving is even and reversible.
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Lemma 2.21 Let A := Op(a) be a pseudo-differential operator. Then the
following holds:

1. If the symbol a satisfies a(−x,−ξ) = a(x, ξ), then A is even.
2. If A = Op(a) is even, then the pseudo-differential operator Op(ã) with

symbol

ã(x, ξ) := 1

2

(
a(x, ξ)+ a(−x,−ξ)

)
(2.59)

coincides with Op(a) on the subspace E := {u(−x) = u(x)} of the func-
tions even in x, namely Op(ã)|E = Op(a)|E .

3. A is real, i.e. it maps real functions into real functions, if and only if the
symbol a(x,−ξ) = a(x, ξ).

4. Let g(ξ) be a Fourier multiplier satisfying g(ξ) = g(−ξ). If A = Op(a)
is even, then the operator Op(a(x, ξ)g(ξ)) = Op(a) ◦ Op(g) is an even
operator. More generally, the composition of even operators is an even
operator.

We shall use the following remark.

Remark 2.22 By Lemma 2.21, item 2, we can replace an even pseudo-
differential operator Op(a) acting on the subspace of functions even in x ,
with the operator Op(ã) where the symbol ã(x, ξ) defined in (2.59) satisfies
ã(−x,−ξ) = ã(x, ξ). The pseudo-differential norms of Op(a) and Op(ã) are
equivalent. Moreover, the space average

〈ã〉x (ξ) := 1

2π

∫

T

ã(x, ξ) dx satisfies 〈ã〉x (−ξ) = 〈ã〉x (ξ),

and, therefore, the Fourier multiplier 〈ã〉x (D) is even. � 

It is convenient to consider a real operator R =
(
A B
C D

)
as in (2.21),

which acts on the real variables (η, ψ) ∈ R
2, as a linear operator acting on

the complex variables (u, ū) introduced by the linear change of coordinates
(η, ψ) = C(u, ū), where

C := 1

2

(
1 1
−i i

)
, C−1 =

(
1 i
1 −i

)
. (2.60)

We get that the real operator R acting in the complex coordinates (u, ū) =
C−1(η, ψ) takes the form
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R = C−1RC :=
(
R1 R2

R2 R1

)
,

R1 := 1

2

{
(A + D)− i(B − C)

}
, R2 := 1

2

{
(A − D)+ i(B + C)

}
(2.61)

where the conjugate operator A is defined by

A(u) := A(ū). (2.62)

We say that a matrix operator acting on the complex variables (u, ū) is real
if it has the structure in (2.61) and it is even if both R1, R2 are even. The
composition of two real (resp. even) operators is a real (resp. even) operator.

The following properties of the conjugated operator hold:

1. AB = A B.

2. If (A j ′
j ) is the matrix of A, then the matrix entries of A are (A )

j ′
j = A− j ′

− j .
3. If A = Op(a(x, ξ)) is a pseudo-differential operator, then its conjugate is

A = Op(a(x,−ξ)). The pseudo differential norms of A and A are equal,
namely ||A||k0,γm,s,α = ||A||k0,γm,s,α .

In the complex coordinates (u, ū) = C−1(η, ψ) the involution ρ defined in
(1.11) reads as the map u �→ ū.

Lemma 2.23 Let R be a real operator as in (2.61). One has

1. R is reversible if and only if Ri (−ϕ) = −Ri (ϕ) for all ϕ ∈ T
ν , i = 1, 2,

or equivalently

(Ri )
j ′
j (−ϕ) = −(Ri )

− j ′
− j (ϕ) ∀ϕ ∈ T

ν,

i.e. (Ri )
j ′
j (�) = −(Ri )

− j ′
− j (�) ∀� ∈ Z

ν.

(2.63)

2. R is reversibility preserving if and only ifRi (−ϕ) = Ri (ϕ) for all ϕ ∈ T
ν ,

i = 1, 2, or equivalently

(Ri )
j ′
j (−ϕ) = (Ri )

− j ′
− j (ϕ) ∀ϕ ∈ T

ν,

i.e. (Ri )
j ′
j (�) = (Ri )

− j ′
− j (�) ∀� ∈ Z

ν.

(2.64)

2.6 Dk0-tame and modulo-tame operators

In this section we recall the notion and the main properties of Dk0 -tame and
modulo-tame operators that will be used in the paper. For the proofs we refer
to Section 2.2 of [21] where this notion was introduced.
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Let A := A(λ) be a family of linear operators as in (2.23), k0 times differ-
entiable with respect to λ in an open set �0 ⊂ R

ν+1.

Definition 2.24 (Dk0 -σ -tame) Let σ ≥ 0. A linear operator A := A(λ) as
in (2.20) is Dk0-σ -tame if there exists a non-decreasing function [s0, S] →
[0,+∞), s �→ MA(s), possibly with S = +∞, such that for all s0 ≤ s ≤ S,
for all u ∈ Hs+σ

sup
|k|≤k0

sup
λ∈�0

γ |k|‖(∂kλ A(λ))u‖s ≤MA(s0)‖u‖s+σ +MA(s)‖u‖s0+σ . (2.65)

We say that MA(s) is a tame constant of the operator A. The constant
MA(s) := MA(k0, σ, s) may also depend on k0, σ but, since k0, σ are con-
sidered in this paper absolute constants, we shall often omit to write them.

When the “loss of derivatives” σ is zero, we simply writeDk0 -tame instead
of Dk0-0-tame.

For a real matrix operator (as in (2.61))

A =
(
A1 A2

A2 A1

)
, (2.66)

we denote the tame constantMA(s) := max{MA1(s),MA2(s)}.
Note that the tame constantsMA(s) are not uniquely determined.Moreover,

if S < +∞, every linear operator A that is uniformly bounded in λ (together
with its derivatives ∂kλ A) as an operator from Hs+σ to Hs is Dk0-σ -tame.
The relevance of Definition 2.24 is that, for the remainder operators which we
shall obtain along the reducibility of the linearized operator in Sects. 6–14, we
are able to prove bounds of the tame constants MA(s) better than the trivial
operator norm.

Remark 2.25 In Sects. 6–14 we work withDk0-σ -tame operators with a finite
S < +∞, whose tame constants MA(s) may depend also on S, for instance
MA(s) ≤ C(S)(1+ ‖I0‖k0,γs+μ), for all s0 ≤ s ≤ S.

An immediate consequence of (2.65) (with k = 0, s = s0) is that
‖A‖L(Hs0+σ ,Hs0 ) ≤ 2MA(s0).

Also note that representing the operator A by its matrix elements
(
A j ′
j (� − �′)

)
�,�′∈Zν , j, j ′∈Z

as in (2.23) we have, for all |k| ≤ k0, j ′ ∈ Z,

�′ ∈ Z
ν ,

γ 2|k|∑
�, j
〈�, j〉2s |∂kλ A j ′

j (�− �′)|2

≤ 2
(
MA(s0)

)2〈�′, j ′〉2(s+σ) + 2
(
MA(s)

)2〈�′, j ′〉2(s0+σ).

(2.67)
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The class of Dk0-σ -tame operators is closed under composition.

Lemma 2.26 (Composition) Let A, B be respectivelyDk0-σA-tame andDk0-
σB-tame operators with tame constants respectivelyMA(s) andMB(s). Then
the composition A ◦ B isDk0-(σA+σB)-tame with a tame constant satisfying

MAB(s) ≤ C(k0)
(
MA(s)MB(s0 + σA)+MA(s0)MB(s + σA)

)
.

The same estimate holds if A, B are matrix operators as in (2.66).

Proof See Lemma 2.20 in [21]. � 
We now discuss the action of a Dk0-σ -tame operator A(λ) on a family of

Sobolev functions u(λ) ∈ Hs .

Lemma 2.27 (Action on Hs) Let A := A(λ) be aDk0-σ -tame operator. Then,
∀s ≥ s0, for any family of Sobolev functions u := u(λ) ∈ Hs+σ which is k0
times differentiable with respect to λ, we have

‖Au‖k0,γs �k0 MA(s0)‖u‖k0,γs+σ +MA(s)‖u‖k0,γs0+σ .

The same estimate holds if A is a matrix operator as in (2.66).

Proof See Lemma 2.22 in [21]. � 
Pseudo-differential operators are tame operators. We shall use in particular

the following lemma.

Lemma 2.28 Let A = a(λ, ϕ, x, D) ∈ OPS0 be a family of pseudo-
differential operators that are k0 times differentiable with respect to λ. If
||A||k0,γ0,s,0 < +∞, s ≥ s0, then A is Dk0-tame with a tame constant satisfy-
ing

MA(s) ≤ C(s)||A||k0,γ0,s,0. (2.68)

As a consequence

‖Ah‖k0,γs ≤ C(s0, k0)||A||k0,γ0,s0,0
‖h‖k0,γs + C(s, k0)||A||k0,γ0,s,0‖h‖k0,γs0 . (2.69)

The same statement holds if A is a matrix operator of the form (2.66).

Proof See Lemma 2.21 in [21] for the proof of (2.68), then apply Lemma 2.27
to deduce (2.69). � 

In view of the KAM reducibility scheme of Sect. 14, we also consider
the stronger notion of Dk0-modulo-tame operator, which we need only for
operators with loss of derivatives σ = 0.
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Definition 2.29 (Dk0-modulo-tame) A linear operator A := A(λ) as in (2.20)
is Dk0 -modulo-tame if there exists a non-decreasing function [s0, S] →
[0,+∞), s �→ M

!
A(s), such that for all k ∈ N

ν+1, |k| ≤ k0, the majorant
operators |∂kλ A| (Definition 2.7) satisfy the followingweighted tame estimates:
for all s0 ≤ s ≤ S, u ∈ Hs ,

sup
|k|≤k0

sup
λ∈�0

γ |k|‖ |∂kλ A|u‖s ≤M
!
A(s0)‖u‖s +M

!
A(s)‖u‖s0 . (2.70)

The constantM!
A(s) is called amodulo- tame constant of the operator A.

For a matrix operator as in (2.66) we denote the modulo tame constant
M

!
A(s) := max{M!

A1
(s),M!

A2
(s)}.

If A, B are Dk0 -modulo-tame operators, with |A j ′
j (�)| ≤ |B j ′

j (�)|, then
M

!
A(s) ≤M

!
B(s).

Lemma 2.30 An operator A that is Dk0-modulo-tame is also Dk0-tame and
MA(s) ≤M

!
A(s). The same holds if A is a matrix operator as in (2.66).

Proof See Lemma 2.24 in [21]. � 
The class of operators which areDk0 -modulo-tame is closed under sum and

composition.

Lemma 2.31 (Sum and composition) Let A, B be Dk0-modulo-tame opera-
tors with modulo-tame constants respectivelyM!

A(s) andM
!
B(s). Then A+ B

is Dk0-modulo-tame with a modulo-tame constant satisfying

M
!
A+B(s) ≤M

!
A(s)+M

!
B(s). (2.71)

The composed operator A ◦ B is Dk0-modulo-tame with a modulo-tame con-
stant satisfying

M
!
AB(s) ≤ C(k0)

(
M

!
A(s)M

!
B(s0)+M

!
A(s0)M

!
B(s)
)
. (2.72)

Assume in addition that 〈∂ϕ,x 〉bA, 〈∂ϕ,x 〉bB (see Definition 2.7) are Dk0-

modulo-tame with a modulo-tame constant respectively M
!

〈∂ϕ,x 〉bA(s) and

M
!

〈∂ϕ,x 〉bB(s). Then 〈∂ϕ,x 〉b(AB) isDk0-modulo-tamewith amodulo-tame con-

stant satisfying

M
!

〈∂ϕ,x 〉b(AB)(s) ≤ C(b)C(k0)
(
M

!

〈∂ϕ,x 〉bA(s)M
!
B(s0)+M

!

〈∂ϕ,x 〉bA(s0)M
!
B(s)
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+M
!
A(s)M

!

〈∂ϕ,x 〉bB(s0)+M
!
A(s0)M

!

〈∂ϕ,x 〉bB(s)
)

(2.73)

for some constants C(k0),C(b) ≥ 1. The same statement holds if A and B
are matrix operators as in (2.66).

Proof The estimates (2.71), (2.72) are proved in Lemma 2.25 of [21]. The
bound (2.73) is proved as the estimate (2.76) of Lemma 2.25 in [21], replacing
〈∂ϕ〉b (cf. Definition 2.3 in [21]) with 〈∂ϕ,x 〉b. � 

Iterating (2.72)–(2.73), one estimates M
!

〈∂ϕ,x 〉bAn (s), and arguing as in
Lemma 2.26 of [21] we deduce the following lemma.

Lemma 2.32 (Invertibility) Let� := Id+ A, where A and 〈∂ϕ,x 〉bA are Dk0-
modulo-tame. Assume the smallness condition

4C(b)C(k0)M
!
A(s0) ≤ 1/2. (2.74)

Then the operator� is invertible, Ǎ := �−1− Id isDk0-modulo-tame, as well
as 〈∂ϕ,x 〉b Ǎ, and they admit modulo-tame constants satisfying

M
!

Ǎ
(s) ≤ 2M!

A(s),

M
!

〈∂ϕ,x 〉b Ǎ(s) ≤ 2M!

〈∂ϕ,x 〉bA(s)+ 8C(b)C(k0)M
!

〈∂ϕ,x 〉bA(s0)M
!
A(s).

The same statement holds if A is a matrix operator of the form (2.66).

Corollary 2.33 Let m ∈ R, � := Id + A where 〈D〉m A〈D〉−m and
〈∂ϕ,x 〉b〈D〉m A〈D〉−m areDk0-modulo-tame. Assume the smallness condition

4C(b)C(k0)M
!

〈D〉m A〈D〉−m (s0) ≤ 1/2. (2.75)

Let Ǎ := �−1−Id. Then theoperators 〈D〉m Ǎ〈D〉−m and 〈∂ϕ,x 〉b〈D〉m Ǎ〈D〉−m

are Dk0-modulo-tame and they admit modulo-tame constants satisfying

M
!

〈D〉m Ǎ〈D〉−m (s) ≤ 2M!

〈D〉m A〈D〉−m (s),

M
!

〈∂ϕ,x 〉b〈D〉m Ǎ〈D〉−m (s) ≤ 2M!

〈∂ϕ,x 〉b〈D〉m A〈D〉−m (s)

+ 8C(b)C(k0)M
!

〈∂ϕ,x 〉b〈D〉m A〈D〉−m (s0)M
!

〈D〉m A〈D〉−m (s).

The same statement holds if A is a matrix operator of the form (2.66).

Proof Let us write �m := 〈D〉m�〈D〉−m = Id + Am with Am :=
〈D〉m A〈D〉−m . The corollary follows by Lemma 2.32, since the smallness
condition (2.75) is (2.74) with A = Am , and �−1

m = Id + 〈D〉m Ǎ〈D〉−m . � 
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Lemma 2.34 (Smoothing) Suppose that 〈∂ϕ,x 〉bA, b ≥ 0, is Dk0-modulo-
tame. Then the operator�⊥

N A (see Definition 2.7) isDk0-modulo-tame with a
modulo-tame constant satisfying

M
!

�⊥
N A

(s) ≤ N−bM
!

〈∂ϕ,x 〉bA(s), M
!

�⊥
N A

(s) ≤M
!
A(s). (2.76)

The same estimate holds when A is a matrix operator of the form (2.66).

Proof As in Lemma 2.27 in [21], replacing 〈∂ϕ〉b (cf. Definition 2.3 in [21])
with 〈∂ϕ,x 〉b. � 

In order to verify that an operator ismodulo-tame, we shall use the following
Lemma.Notice that the right hand side of (2.77) below contains tame constants
(not modulo-tame) of operators which control more space and time derivatives
than 〈∂ϕ,x 〉b〈D〉mA〈D〉m.
Lemma 2.35 Let b,m ≥ 0. Then

M
!

〈∂ϕ,x 〉b〈D〉mA〈D〉m(s) �s0,bM〈D〉m+bA〈D〉m+b+1(s)

+ max
i=1,...,ν

{
M

∂
s0+b
ϕi 〈D〉m+bA〈D〉m+b+1(s)

}
.

(2.77)

Proof We denote by M(s,b) the right hand side in (2.77). For any α, β ∈
N, the matrix elements of the operator ∂αϕi 〈D〉β A〈D〉β+1 are iα(�i −
�′i )α〈 j〉β A j ′

j (�− �′)〈 j ′〉β+1. Then, by (2.67) with σ = 0, applied to the oper-

ators 〈D〉m+bA〈D〉m+b+1 and ∂
s0+b
ϕi 〈D〉m+bA〈D〉m+b+1, we get, using the

inequality 〈�− �′〉2(s0+b) �b 1+maxi=1,...,ν |�i − �′i |2(s0+b), the bound

γ 2|k|∑
�, j
〈�, j〉2s〈�− �′〉2(s0+b)〈 j〉2(m+b)|∂kλ A j ′

j (�− �′)|2〈 j ′〉2(m+b+1)

�b M
2(s0,b)〈�′, j ′〉2s +M

2(s,b)〈�′, j ′〉2s0 . (2.78)

For all |k| ≤ k0, by Cauchy–Schwarz inequality and using that

〈�− �′, j − j ′〉b �b 〈�− �′〉b〈 j − j ′〉b
�b 〈�− �′〉b(〈 j〉b + 〈 j ′〉b) �b 〈�− �′〉b〈 j〉b〈 j ′〉b (2.79)

we get

‖|〈∂ϕ,x 〉b〈D〉m∂kλ A〈D〉m|h‖2s
�b

∑

�, j
〈�, j〉2s

(∑

�′, j ′
|〈�−�′〉b〈 j〉m+b∂kλ A

j ′
j (�−�′)〈 j ′〉m+b||h�′, j ′ |

)2

123



786 P. Baldi et al.

�b

∑

�, j
〈�, j〉2s

(∑

�′, j ′
〈�− �′〉s0+b〈 j〉m+b|∂kλ A j ′

j (�− �′)|

× 〈 j ′〉m+b+1|h�′, j ′ | 1

〈�− �′〉s0〈 j ′〉
)2

�s0,b

∑

�, j
〈�, j〉2s

∑

�′, j ′
〈�− �′〉2(s0+b)〈 j〉2(m+b)|∂kλ A j ′

j (�− �′)|2

× 〈 j ′〉2(m+b+1)|h�′, j ′ |2
�s0,b

∑

�′, j ′
|h�′, j ′ |2

∑

�, j
〈�, j〉2s〈�−�′〉2(s0+b)〈 j〉2(m+b)|∂kλ A j ′

j (�−�′)|2

× 〈 j ′〉2(m+b+1)

(2.78)
�s0,b γ−2|k|∑

�′, j ′
|h�′, j ′ |2

(
M

2(s0,b)〈�′, j ′〉2s +M
2(s,b)〈�′, j ′〉2s0)

�s0,b γ−2|k|(
M

2(s0,b)‖h‖2s +M
2(s,b)‖h‖2s0

)
(2.80)

using (2.28), whence the claimed statement follows. � 
Lemma 2.36 Letπ0 be theprojector defined in (2.33)byπ0u := 1

2π

∫
T
u(x) dx.

Let A, B be ϕ-dependent families of operators as in (2.23) that, together with
their adjoints A∗, B∗ with respect to the L2

x scalar product, are Dk0-σ -tame.
Let m1,m2 ≥ 0, β0 ∈ N. Then for any β ∈ N

ν , |β| ≤ β0, the operator
〈D〉m1

(
∂
β
ϕ (Aπ0B − π0)

)〈D〉m2 is Dk0-tame with a tame constant satisfying,
for all s ≥ s0,

M〈D〉m1 (∂
β
ϕ (Aπ0B−π0))〈D〉m2

(s) �m,s,β0,k0 MA−Id(s + β0 + m1)

× (1+MB∗−Id(s0+m2)
)+MB∗−Id(s+β0+m2)

(
1+MA−Id(s0+m1)

)
.

(2.81)

The same estimate holds if A, B are matrix operators of the form (2.66) and
π0 is replaced by the matrix operator �0 defined in (10.2).

Proof A direct calculation shows that 〈D〉m1
(
Aπ0B − π0

)〈D〉m2[h] =
g1(h, g2)L2

x
+ (h, g3)L2

x
where g1, g2, g3 are the functions defined by

g1 := 1

2π
〈D〉m1(A − Id)[1], g2 := 〈D〉m2B∗[1],

g3 := 1

2π
〈D〉m2(B∗ − Id)[1].

The estimate (2.81) then follows by computing for any β ∈ N
ν , k ∈ N

ν+1

with |β| ≤ β0, |k| ≤ k0, the operator ∂kλ∂
β
ϕ

(〈D〉m1(Aπ0B − π0)〈D〉m2
)
. � 
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2.7 Tame estimates for the flow of pseudo-PDEs

We report in this section several results concerning tame estimates for the flow
�τ of the pseudo-PDE

{
∂τu = ia(ϕ, x)|D| 12 u
u(0, x) = u0(ϕ, x),

ϕ ∈ T
ν, x ∈ T, (2.82)

where a(ϕ, x) = a(λ, ϕ, x) is a real valued function that is C∞ with respect to
the variables (ϕ, x) and k0 times differentiable with respect to the parameters
λ = (ω,h). The function a := a(i) may depend also on the “approximate”
torus i(ϕ). Most of these results have been obtained in the Appendix of [21].

The flow operator �τ := �(τ) := �(λ, ϕ, τ) satisfies the equation
{
∂τ�(τ) = ia(ϕ, x)|D| 12�(τ)

�(0) = Id.
(2.83)

Since the function a(ϕ, x) is real valued, usual energy estimates imply that
the flow �(τ) is a bounded operator mapping Hs

x to Hs
x . In the Appendix of

[21] it is proved that the flow �(τ) satisfies also tame estimates in Hs
ϕ,x , see

Proposition 2.37 below. Moreover, since (2.82) is an autonomous equation, its
flow �(ϕ, τ) satisfies the group property

�(ϕ, τ1 + τ2) = �(ϕ, τ1) ◦�(ϕ, τ2), �(ϕ, τ)−1 = �(ϕ,−τ), (2.84)

and, since a(λ, ·) is k0 times differentiablewith respect to the parameter λ, then
�(λ, ϕ, τ) is k0 times differentiable with respect to λ as well. Also notice that
�−1(τ ) = �(−τ) = �(τ), because these operators solve the same Cauchy
problem. Moreover, if a(ϕ, x) is odd(ϕ)even(x), then, recalling Sect. 2.5, the
real operator

�(ϕ, τ ) :=
(
�(ϕ, τ) 0

0 �(ϕ, τ)

)

is even and reversibility preserving.

The operator ∂kλ∂
β
ϕ� loses |Dx | |β|+|k|2 derivatives, which, in (2.86) below,

are compensated by 〈D〉−m1 on the left hand side and 〈D〉−m2 on the right
hand side, with m1,m2 ∈ R satisfying m1 + m2 = |β|+|k|

2 . The following
proposition provides tame estimates in the Sobolev spaces Hs

ϕ,x .

Proposition 2.37 Let β0, k0 ∈ N. For any β, k ∈ N
ν with |β| ≤ β0, |k| ≤ k0,

for any m1,m2 ∈ R with m1 + m2 = |β|+|k|
2 , for any s ≥ s0, there exist
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constants σ(|β|, |k|,m1,m2) > 0, δ(s,m1) > 0 such that if

‖a‖2s0+|m1|+2 ≤ δ(s,m1), ‖a‖k0,γs0+σ(β0,k0,m1,m2)
≤ 1, (2.85)

then the flow �(τ) := �(λ, ϕ, τ) of (2.82) satisfies

sup
τ∈[0,1]

‖〈D〉−m1∂kλ∂
β
ϕ�(τ)〈D〉−m2h‖s

�s,β0,k0,m1,m2 γ−|k|
(
‖h‖s + ‖a‖k0,γs+σ(|β|,|k|,m1,m2)

‖h‖s0
)
, (2.86)

sup
τ∈[0,1]

‖∂kλ(�(τ)− Id)h‖s

�s γ
−|k|
(
‖a‖k0,γs0 ‖h‖s+|k|+1

2
+ ‖a‖k0,γ

s+s0+k0+ 3
2
‖h‖s0+|k|+1

2

)
. (2.87)

Proof The proof is similar to Propositions A.7, A.10 and A.11 in [21] with, in
addition, the presence of 〈D〉−m1 and 〈D〉−m2 in (2.86). � 

We consider also the dependence of the flow � with respect to the torus
i := i(ϕ) and the estimates for the adjoint operator �∗.

Lemma 2.38 Let s1 > s0, β0 ∈ N. For any β ∈ N
ν , |β| ≤ β0, for any

m1,m2 ∈ R satisfying m1 + m2 = |β|+1
2 there exists a constant σ(|β|) =

σ(|β|,m1,m2) > 0 such that if ‖a‖s1+σ(β0) ≤ δ(s) with δ(s) > 0 small
enough, then the following estimate holds:

sup
τ∈[0,1]

‖〈D〉−m1∂βϕ�12�(τ)〈D〉−m2h‖s1 �s1 ‖�12a‖s1+σ(|β|)‖h‖s1, (2.88)

where�12� := �(i2)−�(i1) and�12a := a(i2)− a(i1). Moreover, for any
k ∈ N

ν+1, |k| ≤ k0, for all s ≥ s0,

‖(∂kλ�∗)h‖s �s γ
−|k|
(
‖h‖s+|k|

2
+ ‖a‖k0,γ

s+s0+|k|+ 3
2
‖h‖s0+|k|

2

)

‖∂kλ(�∗ − Id)h‖s �s γ
−|k|
(
‖a‖k0,γs0 ‖h‖s+|k|+1

2
+ ‖a‖k0,γs+s0+|k|+2‖h‖s0+|k|+1

2

)
.

Finally, for all s ∈ [s0, s1],
‖�12�

∗h‖s �s ‖�12a‖s+s0+ 1
2
‖h‖s+ 1

2
.

Proof The proof is similar to Propositions A.13, A.14, A.17 and A.18 of [21].
� 

123



Time quasi-periodic gravity water waves in finite depth 789

3 Degenerate KAM theory

In this section we extend the degenerate KAM theory approach of [11] and
[21].

Definition 3.1 A function f := ( f1, . . . , fN ) : [h1,h2] → R
N is called

non-degenerate if, for any vector c := (c1, . . . , cN ) ∈ R
N\{0}, the function

f ·c = f1c1+· · ·+ fN cN is not identically zero on the whole interval [h1,h2].
From a geometric point of view, f non-degenerate means that the image

of the curve f ([h1,h2]) ⊂ R
N is not contained in any hyperplane of R

N .
For such a reason a curve f which satisfies the non-degeneracy property of
Definition 3.1 is also referred to as an essentially non-planar curve, or a curve
with full torsion. Given S

+ ⊂ N
+ we denote the unperturbed tangential and

normal frequency vectors by

�ω(h) := (ω j (h)) j∈S+, ��(h) := (� j (h)) j∈N+\S+ := (ω j (h)) j∈N+\S+,
(3.1)

where ω j (h) = √
j tanh(h j) are defined in (1.19).

Lemma 3.2 (Non-degeneracy)The frequency vectors �ω(h) ∈ R
ν , ( �ω(h), 1) ∈

R
ν+1 and

( �ω(h),� j (h)) ∈ R
ν+1, ( �ω(h),� j (h),� j ′(h)) ∈ R

ν+2,

∀ j, j ′ ∈ N
+\S+, j �= j ′,

are non-degenerate.

Proof Wefirst prove that for any N , for anyω j1(h), . . . , ω jN (h)with 1 ≤ j1 <

j2 < · · · < jN the function [h1,h2] � h �→ (ω j1(h), . . . , ω jN (h)) ∈ R
N is

non-degenerate according to Definition 3.1, namely that, for all c ∈ R
N\{0},

the function h �→ c1ω j1(h) + · · · + cNω jN (h) is not identically zero on the
interval [h1,h2]. We shall prove, equivalently, that the function

h �→ c1ω j1(h
4)+ · · · + cNω jN (h

4)

is not identically zero on the interval [h4
1,h

4
2]. The advantage of replacing h

with h4 is that each function

h �→ ω j (h
4) =

√
j tanh(h4 j)

is analytic also in a neighborhood of h = 0, unlike the function ω j (h) =√
j tanh(h j). Clearly, the function g1(h) :=

√
tanh(h4) is analytic in a neigh-

borhood of anyh ∈ R\{0}, because g1 is the composition of analytic functions.
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Let us prove that it has an analytic continuation at h = 0. The Taylor series at
z = 0 of the hyperbolic tangent has the form

tanh(z) =
∞∑

n=0

Tnz
2n+1 = z − z3

3
+ 2

15
z5 + · · · ,

and it is convergent for |z| < π/2 (the poles of tanh z closest to z = 0 are
±iπ/2). Then the power series

tanh(z4) =
∞∑

n=0

Tnz
4(2n+1) = z4

(
1+
∑

n≥1
Tnz

8n
)
= z4 − z12

3
+ 2

15
z20 + · · ·

is convergent in |z| < (π/2)1/4.Moreover |∑n≥1 Tnz8n| < 1 in a ball |z| < δ,
for some positive δ sufficiently small. As a consequence, also the real function

g1(h) := ω1(h
4) =

√
tanh(h4) = h2

⎛

⎝1+
∑

n≥1
Tnh

8n

⎞

⎠

1/2

=
+∞∑

n=0

bn
h8n+2

(8n + 2)! = h2 − h10

6
+ · · · (3.2)

is analytic in the ball |z| < δ. Thus g1 is analytic on the whole real axis. The
Taylor coefficients bn are computable. We expand in Taylor series at h = 0
also each function, for j ≥ 1,

g j (h) :=ω j (h
4)=√ j

√
tanh(h4 j)=√ j g1( j

1/4h)=
+∞∑

n=0
bn j

2n+1 h8n+2

(8n + 2)! , (3.3)

which is analytic on the whole R, similarly as g1.
Now fix N integers 1 ≤ j1 < j2 < · · · < jN . We prove that for all

c ∈ R
N\{0}, the analytic function c1g j1(h)+· · ·+cN g jN (h) is not identically

zero. Suppose, by contradiction, that there exists c ∈ R
N\{0} such that

c1g j1(h)+ · · · + cN g jN (h) = 0 ∀h ∈ R. (3.4)

The real analytic function g1(h) defined in (3.2) is not a polynomial (to see
this, observe its limit as h → ∞). Hence there exist N Taylor coefficients
bn �= 0 of g1, say bn1, . . . , bnN with n1 < n2 < · · · < nN . We differentiate
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with respect to h the identity in (3.4) and we find

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

c1
(
D(8n1+2)
h g j1

)
(h)+ · · · + cN

(
D(8n1+2)
h g jN

)
(h) = 0

c1
(
D(8n2+2)
h g j1

)
(h)+ · · · + cN

(
D(8n2+2)
h g jN

)
(h) = 0

. . . . . . . . .

c1
(
D(8nN+2)
h g j1

)
(h)+ · · · + cN

(
D(8nN+2)
h g jN

)
(h) = 0.

As a consequence the N × N -matrix

A(h) :=

⎛

⎜⎜⎜⎜⎜
⎝

(
D(8n1+2)
h g j1

)
(h) . . .

(
D(8n1+2)
h g jN

)
(h)

(
D(8n2+2)
h g j1

)
(h) . . .

(
D(8n2+2)
h g jN

)
(h)

...
. . .

...
(
D(8nN+2)
h g j1

)
(h) . . .

(
D(8nN+2)
h g jN

)
(h)

⎞

⎟⎟⎟⎟⎟
⎠

(3.5)

is singular for all h ∈ R, and so the analytic function

detA(h) = 0 ∀h ∈ R (3.6)

is identically zero. In particular at h = 0 we have detA(0) = 0. On the other
hand, by (3.3) and the multi-linearity of the determinant we compute

detA(0) := det

⎛

⎜⎜⎜⎜⎜
⎝

bn1 j
2n1+1
1 . . . bn1 j

2n1+1
N

bn2 j
2n2+1
1 . . . bn2 j

2n2+1
N

...
. . .

...

bnN j2nN+1
1 . . . bnN j2nN+1

N

⎞

⎟⎟⎟⎟⎟
⎠

= bn1 . . . bnN det

⎛

⎜⎜⎜⎜⎜
⎝

j2n1+1
1 . . . j2n1+1

N

j2n2+1
1 . . . j2n2+1

N
...

. . .
...

j2nN+1
1 . . . j2nN+1

N

⎞

⎟⎟⎟⎟⎟
⎠

.

This is a generalized Vandermonde determinant. We use the following
result. � 
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Lemma 3.3 Let x1, . . . , xN , α1, . . . , αN be real numbers, with 0 < x1 <

· · · < xN and α1 < · · · < αN . Then

det

⎛

⎜
⎝

xα11 . . . xα1N
...

. . .
...

xαN
1 . . . xαN

N

⎞

⎟
⎠ > 0.

Proof The lemma is proved in [56]. � 
Since 1 ≤ j1 < j2 < · · · < jN and the exponents α j := 2n j + 1 are

increasing α1 < · · · < αN , Lemma 3.3 implies that detA(0) �= 0 (recall that
bn1, . . . , bnN �= 0). This is a contradiction with (3.6).

In order to conclude the proof of Lemma 3.2 we have to prove that, for
any N , for any 1 ≤ j1 < j2 < · · · < jN , the function [h1,h2] � h �→
(1, ω j1(h), . . . , ω jN (h)) ∈ R

N+1 is non-degenerate according to Definition
3.1, namely that, for all c = (c0, c1, . . . , cN ) ∈ R

N+1\{0}, the function
h �→ c0 + c1ω j1(h) + · · · + cNω jN (h) is not identically zero on the inter-
val [h1,h2]. We shall prove, equivalently, that the real analytic function
h �→ c0 + c1ω j1(h

4)+ · · · + cNω jN (h
4) is not identically zero on R.

Suppose, by contradiction, that there exists c = (c0, c1, . . . , cN ) ∈
R

N+1\{0} such that

c0 + c1g j1(h)+ · · · + cN g jN (h) = 0 ∀h ∈ R. (3.7)

As above, we differentiate with respect to h the identity (3.7), and we find that
the (N + 1)× (N + 1)-matrix

B(h) :=

⎛

⎜⎜⎜
⎝

1 g j1(h) . . . g jN (h)

0 (D(8n1+2)
h g j1)(h) . . . (D(8n1+2)

h g jN )(h)

0
...

. . .
...

0 (D(8nN+2)
h g j1)(h) . . . (D

(8nN+2)
h g jN )(h)

⎞

⎟⎟⎟
⎠

(3.8)

is singular for all h ∈ R, and so the analytic function det B(h) = 0 for all
h ∈ R. By expanding the determinant of the matrix in (3.8) along the first
column by Laplace we get det B(h) = detA(h), where the matrix A(h) is
defined in (3.5). We have already proved that detA(0) �= 0, and this gives a
contradiction. � 

In the next proposition we deduce the quantitative bounds (3.9)–(3.12) from
the qualitative non-degeneracy condition of Lemma 3.2, the analyticity of the
linear frequencies ω j in (1.19), and their asymptotics (1.24).
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Proposition 3.4 (Transversality) There exist k∗0 ∈ N, ρ0 > 0 such that, for
any h ∈ [h1,h2],

max
k≤k∗0

|∂kh{ �ω(h) · �}| ≥ ρ0〈�〉, ∀� ∈ Z
ν\{0}, (3.9)

max
k≤k∗0

|∂kh{ �ω(h) · �+� j (h)}| ≥ ρ0〈�〉, ∀� ∈ Z
ν, j ∈ N

+\S+, (3.10)

max
k≤k∗0

|∂kh{ �ω(h) · �+� j (h)−� j ′(h)}| ≥ ρ0〈�〉, ∀� ∈ Z
ν\{0}, j, j ′ ∈ N

+\S+, (3.11)

max
k≤k∗0

|∂kh{ �ω(h) · �+� j (h)+� j ′(h)}| ≥ ρ0〈�〉, ∀� ∈ Z
ν, j, j ′ ∈ N

+\S+ (3.12)

where �ω(h) and � j (h) are defined in (3.1). We recall the notation 〈�〉 :=
max{1, |�|}. We call (following [57]) ρ0 the “amount of non-degeneracy” and
k∗0 the “index of non-degeneracy”.

Note that in (3.11) we exclude the index � = 0. In this case we directly have
that, for all h ∈ [h1,h2]

|� j (h)−� j ′(h)| ≥ c1|
√
j −√ j ′| = c1

| j − j ′|√
j +√ j ′

∀ j, j ′ ∈ N
+, where c1 :=

√
tanh(h1).

(3.13)

Proof All the inequalities (3.9)–(3.12) are proved by contradiction.

Proof of (3.9) Suppose that for all k∗0 ∈ N, for all ρ0 > 0 there exist � ∈
Z
ν\{0}, h ∈ [h1,h2] such that maxk≤k∗0 |∂kh{ �ω(h) · �}| < ρ0〈�〉. This implies

that for all m ∈ N, taking k∗0 = m, ρ0 = 1
1+m , there exist �m ∈ Z

ν\{0},
hm ∈ [h1,h2] such that

max
k≤m |∂

k
h

{
�ω(hm) · �m

}
| < 1

1+ m
〈�m〉

and therefore

∀k ∈ N, ∀m ≥ k,
∣∣∣∂kh �ω(hm) · �m

〈�m〉
∣∣∣ <

1

1+ m
. (3.14)

The sequences (hm)m∈N ⊂ [h1,h2] and (�m/〈�m〉)m∈N ⊂ R
ν\{0} are

bounded. By compactness there exists a sequence mn → +∞ such that
hmn → h̄ ∈ [h1,h2], �mn/〈�mn 〉 → c̄ �= 0. Passing to the limit in (3.14)
formn →+∞we deduce that ∂kh �ω(h̄) · c̄ = 0 for all k ∈ N. We conclude that
the analytic function h �→ �ω(h) · c̄ is identically zero. Since c̄ �= 0, this is in
contradiction with Lemma 3.2. � 
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Proof of (3.10) First of all note that for all h ∈ [h1,h2], we have | �ω(h) ·
� + � j (h)| ≥ � j (h) − |�ω(h) · �| ≥ c1 j1/2 − C |�| ≥ |�| if j1/2 ≥ C0|�|
for some C0 > 0. Therefore in (3.10) we can restrict to the indices (�, j) ∈
Z
ν × (N+\S+) satisfying

j
1
2 < C0|�|. (3.15)

Arguing by contradiction (as for proving (3.9)), we suppose that for allm ∈ N

there exist �m ∈ Z
ν , jm ∈ N

+\S+ and hm ∈ [h1,h2], such that

max
k≤m

∣∣∣∣∂
k
h

{
�ω(hm) · �m

〈�m〉 +
� jm (hm)

〈�m〉
}∣∣∣∣ <

1

1+ m

and therefore

∀k ∈ N, ∀m ≥ k,

∣∣∣∣∂
k
h

{
�ω(hm) · �m

〈�m〉 +
� jm (hm)

〈�m〉
}∣∣∣∣ <

1

1+ m
. (3.16)

Since the sequences (hm)m∈N ⊂ [h1,h2] and (�m/〈�m〉)m∈N ∈ R
ν are

bounded, there exists a sequence mn →+∞ such that

hmn → h̄ ∈ [h1,h2], �mn

〈�mn 〉
→ c̄ ∈ R

ν. (3.17)

We now distinguish two cases.
Case 1: (�mn ) ⊂ Z

ν is bounded. In this case, up to a subsequence, �mn →
�̄ ∈ Z

ν , and since | jm | ≤ C |�m |2 for all m (see (3.15)), we have jmn → j̄ .
Passing to the limit for mn →+∞ in (3.16) we deduce, by (3.17), that

∂kh
{ �ω(h̄) · c̄ +�j̄ (h̄)〈�̄〉−1} = 0, ∀k ∈ N.

Therefore the analytic function h �→ �ω(h) · c̄+〈�̄〉−1
�j̄ (h) is identically zero.

Since (c̄, 〈�̄〉−1) �= 0 this is in contradiction with Lemma 3.2.
Case 2: (�mn ) is unbounded. Up to a subsequence, |�mn | → +∞. In this

case the constant c̄ in (3.17) is nonzero. Moreover, by (3.15), we also have
that, up to a subsequence,

j
1
2
mn 〈�mn 〉−1 → d̄ ∈ R. (3.18)
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By (1.24), (3.17), (3.18), we get

� jmn
(hmn )

〈�mn 〉
= j

1
2
mn

〈�mn 〉
+ r( jmn ,hmn )

〈�mn 〉
→ d̄,

∂kh
� jmn

(hmn )

〈�mn 〉
= ∂kh

r( jmn ,hmn )

〈�mn 〉
→ 0 ∀k ≥ 1

(3.19)

as mn →+∞. Passing to the limit in (3.16), by (3.19), (3.17) we deduce that
∂kh
{ �ω(h̄) · c̄ + d̄

} = 0, for all k ∈ N. Therefore the analytic function h �→
�ω(h) · c̄ + d̄ = 0 is identically zero. Since (c̄, d̄) �= 0 this is in contradiction
with Lemma 3.2. � 
Proof of (3.11) For all h ∈ [h1,h2], by (3.13) and (1.19), we have

| �ω(h) · �+� j (h)−� j ′(h)| ≥ |� j (h)−� j ′(h)| − | �ω(h)||�|
≥ c1| j 12 − j ′

1
2 | − C |�| ≥ 〈�〉

provided | j 12 − j ′ 12 | ≥ C1〈�〉, for some C1 > 0. Therefore in (3.11) we can
restrict to the indices such that

| j 12 − j ′
1
2 | < C1〈�〉. (3.20)

Moreover in (3.11)we can also assume that j �= j ′, otherwise (3.11) reduces to
(3.9), which is already proved. If, by contradiction, (3.11) is false, we deduce,
arguing as in the previous cases, that, for all m ∈ N, there exist �m ∈ Z

ν\{0},
jm, j ′m ∈ N

+\S+, jm �= j ′m , hm ∈ [h1,h2], such that

∀k ∈ N, ∀m ≥ k,

∣∣∣∣∂
k
h

{
�ω(hm) · �m

〈�m〉+
� jm (hm)

〈�m〉 −� j ′m (hm)

〈�m〉
}∣∣∣∣ <

1

1+ m
.

(3.21)

As in the previous cases, since the sequences (hm)m∈N, (�m/〈�m〉)m∈N are
bounded, there exists mn →+∞ such that

hmn → h̄ ∈ [h1,h2], �mn/〈�mn 〉 → c̄ ∈ R
ν\{0}. (3.22)

We distinguish again two cases.
Case 1 : (�mn ) is unbounded. Using (3.20) we deduce that, up to a subse-

quence,

| j
1
2
m − j

′ 12
m |〈�m〉−1 → d̄ ∈ R. (3.23)
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Hence passing to the limit in (3.21) for mn → +∞, we deduce by (3.22),
(3.23), (1.24) that

∂kh{ �ω(h̄) · c̄ + d̄} = 0 ∀k ∈ N.

Therefore the analytic function h �→ �ω(h) · c̄ + d̄ is identically zero. This is
in contradiction with Lemma 3.2.

Case 2 : (�mn ) is bounded. By (3.20), we have that |
√

jm −
√
j ′m | ≤ C and

so, up to a subsequence, only the following two subcases are possible:

(i) jm, j ′m ≤ C . Up to a subsequence, jmn → j̄ , j ′mn
→ j̄ ′, �mn → �̄ �= 0 and

hmn → h̄. Hence passing to the limit in (3.21) we deduce that

∂kh

{
�ω(h̄) · c̄ + �j̄ (h̄)−�j̄ ′(h̄)

〈�̄〉
}
= 0 ∀k ∈ N.

Hence the analytic function h �→ �ω(h̄) · c̄ + (�j̄ (h̄)−�j̄ ′(h̄))〈�̄〉−1
is

identically zero, which is a contradiction with Lemma 3.2.
(i i) jm, j ′m → +∞. By (3.23) and (1.24), we deduce, passing to the limit in

(3.21), that

∂kh
{ �ω(h) · c̄ + d̄

} = 0 ∀k ∈ N.

Hence the analytic function h �→ �ω(h) · c̄ + d̄ is identically zero, which
contradicts Lemma 3.2. � 

Proof of (3.12) The proof is similar to (3.10). First of all note that for all
h ∈ [h1,h2], we have

| �ω(h) · �+� j (h)+� j ′(h)| ≥ � j (h)+� j ′(h)− |�ω(h) · �|
≥ c1
√
j + c1

√
j ′ − C |�| ≥ |�|

if
√

j +√ j ′ ≥ C0|�| for some C0 > 0. Therefore in (3.10) we can restrict the
analysis to the indices (�, j, j ′) ∈ Z

ν × (N+\S+)2 satisfying
√
j +√ j ′ < C0|�|. (3.24)

Arguing by contradiction as above, we suppose that for all m ∈ N there exist
�m ∈ Z

ν , jm ∈ N
+\S+ and hm ∈ [h1,h2] such that

∣∣∣∣∂
k
h

{
�ω(hm) · �m

〈�m〉 +
� jm (hm)

〈�m〉 + � j ′m (hm)

〈�m〉
}∣∣∣∣ <

1

1+ m

∀k ∈ N, ∀m ≥ k.

(3.25)
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Since the sequences (hm)m∈N ⊂ [h1,h2] and (�m/〈�m〉)m∈N ∈ R
ν are

bounded, there exist mn →+∞ such that

hmn → h̄ ∈ [h1,h2], �mn

〈�mn 〉
→ c̄ ∈ R

ν. (3.26)

We now distinguish two cases.
Case 1: (�mn ) ⊂ Z

ν is bounded. Up to a subsequence, �mn → �̄ ∈ Z
ν , and

since, by (3.24), also jm, j ′m ≤ C for all m, we have jmn → j̄ , j ′mn
→ j̄ ′.

Passing to the limit for mn →+∞ in (3.25) we deduce, by (3.26), that

∂kh
{ �ω(h̄) · c̄ +�j̄ (h̄)〈�̄〉−1 +�j̄ ′(h̄)〈�̄〉−1} = 0 ∀k ∈ N.

Therefore the analytic function h �→ �ω(h) · c̄ + 〈�̄〉−1
�j̄ (h) + 〈�̄〉−1�j̄ ′(h)

is identically zero. This is in contradiction with Lemma 3.2.
Case 2: (�mn ) is unbounded. Up to a subsequence, |�mn | → +∞. In this

case the constant c̄ in (3.26) is nonzero. Moreover, by (3.24), we also have
that, up to a subsequence,

(
j
1
2
mn + j

′ 12
mn

)
〈�mn 〉−1 → d̄ ∈ R. (3.27)

By (1.24), (3.26), (3.27), passing to the limit as mn → +∞ in (3.25) we
deduce that ∂kh

{ �ω(h̄) · c̄ + d̄
} = 0 for all k ∈ N. Therefore the analytic

function h �→ �ω(h) · c̄+ d̄ = 0 is identically zero. Since (c̄, d̄) �= 0, this is in
contradiction with Lemma 3.2. � 

4 Nash–Moser theorem and measure estimates

Rescaling u �→ εu, we write (1.14) as the Hamiltonian system generated by
the Hamiltonian

Hε(u) := ε−2H(εu) = HL(u)+ εPε(u)

where H is the water waves Hamiltonian (1.7) (with g = 1 and depth h), HL
is defined in (1.17) and

Pε(u,h) := Pε(u) := 1

2ε

∫

T

ψ
(
G(εη,h)− G(0,h)

)
ψ dx . (4.1)

We decompose the phase space
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H1
0,even :=

{
u := (η, ψ) ∈ H1

0 (Tx )× Ḣ1(Tx ), u(x) = u(−x)
}

= HS+ ⊕ H⊥
S+ (4.2)

as the direct sum of the symplectic subspaces HS+ and H⊥
S+ defined in (1.25),

we introduce action-angle variables on the tangential sites as in (1.33), and
we leave unchanged the normal component z. The symplectic 2-form in (1.8)
reads

W :=
⎛

⎝
∑

j∈S+
dθ j ∧ d I j

⎞

⎠⊕W|H⊥
S+
= d�, (4.3)

where � is the Liouville 1-form

�(θ,I,z)[θ̂ , Î , ẑ] := −
∑

j∈S+
I j θ̂ j − 1

2

(
J z, ẑ

)
L2 . (4.4)

Hence the Hamiltonian system generated by Hε transforms into the one gen-
erated by the Hamiltonian

Hε := Hε ◦ A = ε−2H ◦ εA (4.5)

where

A(θ, I, z) := v(θ, I )+ z

:=
∑

j∈S+

√
2

π

(
ω
1/2
j

√
ξ j + I j cos(θ j )

−ω
−1/2
j

√
ξ j + I j sin(θ j )

)

cos( j x)+ z. (4.6)

We denote by XHε := (∂I Hε,−∂θHε, J∇z Hε) the Hamiltonian vector field in
the variables (θ, I, z) ∈ T

ν ×R
ν × H⊥

S+ . The involution ρ in (1.11) becomes

ρ̃ : (θ, I, z) �→ (−θ, I, ρz). (4.7)

By (1.7) and (4.5) the Hamiltonian Hε reads (up to a constant)

Hε = N + εP, N := HL ◦ A = �ω(h) · I + 1

2
(z, �z)L2, P := Pε ◦ A,

(4.8)

where �ω(h) is defined in (3.1) and � in (1.16). We look for an embedded
invariant torus

i : T
ν → T

ν × R
ν × H⊥

S+, ϕ �→ i(ϕ) := (θ(ϕ), I (ϕ), z(ϕ))
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Time quasi-periodic gravity water waves in finite depth 799

of the Hamiltonian vector field XHε filled by quasi-periodic solutions with
Diophantine frequency ω ∈ R

ν (and which satisfies also first and second
order Melnikov non-resonance conditions as in (4.20)).

4.1 Nash–Moser theorem of hypothetical conjugation

For α ∈ R
ν , we consider the modified Hamiltonian

Hα := Nα + εP, Nα := α · I + 1

2
(z, �z)L2 . (4.9)

We look for zeros of the nonlinear operator

F(i, α) := F(i, α, ω,h, ε) := ω · ∂ϕi(ϕ)− XHα (i(ϕ))

= ω · ∂ϕi(ϕ)− (XNα + εXP)(i(ϕ))

:=
⎛

⎝
ω · ∂ϕθ(ϕ)− α − ε∂I P(i(ϕ))
ω · ∂ϕ I (ϕ)+ ε∂θ P(i(ϕ))

ω · ∂ϕz(ϕ)− J (�z(ϕ)+ ε∇z P(i(ϕ)))

⎞

⎠ (4.10)

where #(ϕ) := θ(ϕ)− ϕ is (2π)ν-periodic. Thus ϕ �→ i(ϕ) is an embedded
torus, invariant for the Hamiltonian vector field XHα and filled by quasi-
periodic solutions with frequency ω.

Each Hamiltonian Hα in (4.9) is reversible, i.e. Hα ◦ ρ̃ = Hα where the
involution ρ̃ is defined in (4.7).We look for reversible solutions ofF(i, α) = 0,
namely satisfying ρ̃i(ϕ) = i(−ϕ) (see (4.7)), i.e.

θ(−ϕ) = −θ(ϕ), I (−ϕ) = I (ϕ), z(−ϕ) = (ρz)(ϕ). (4.11)

The norm of the periodic component of the embedded torus

I(ϕ) := i(ϕ)−(ϕ, 0, 0) :=(#(ϕ), I (ϕ), z(ϕ)), #(ϕ) :=θ(ϕ)−ϕ, (4.12)

is

‖I‖k0,γs := ‖#‖k0,γHs
ϕ
+ ‖I‖k0,γHs

ϕ
+ ‖z‖k0,γs , (4.13)

where ‖z‖k0,γs = ‖η‖k0,γs + ‖ψ‖k0,γs . We define

k0 := k∗0 + 2, (4.14)

where k∗0 is the index of non-degeneracy provided by Proposition 3.4, which
only depends on the linear unperturbed frequencies. Thus k0 is considered as
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an absolute constant, and we will often omit to explicitly write the dependence
of the various constantswith respect to k0.We look for quasi-periodic solutions
with frequency ω belonging to a δ-neighborhood (independent of ε)

Ω :=
{
ω ∈ R

ν : dist(ω, �ω[h1,h2]
)
< δ
}
, δ > 0 (4.15)

of the unperturbed linear frequencies �ω[h1,h2] defined in (3.1).
Theorem 4.1 (Nash–Moser theorem) Fix finitely many tangential sites S

+ ⊂
N
+ and let ν := |S+|. Let τ ≥ 1. There exist positive constants a0, ε0, κ1,C

depending on S
+, k0, τ such that, for all γ = εa, 0 < a < a0, for all ε ∈

(0, ε0), there exist a k0 times differentiable function

α∞ : R
ν × [h1,h2] �→ R

ν,

α∞(ω,h) = ω + rε(ω,h), wi th |rε|k0,γ ≤ Cεγ−1, (4.16)

a family of embedded tori i∞ defined for all (ω,h) ∈ R
ν ×[h1,h2] satisfying

(4.11) and

‖i∞(ϕ)− (ϕ, 0, 0)‖k0,γs0 ≤ Cεγ−1, (4.17)

a sequence of k0 times differentiable functions μ∞j : R
ν × [h1,h2] → R,

j ∈ N
+\S+, of the form

μ∞j (ω,h) = m∞1
2
(ω,h)( j tanh(h j))

1
2 + r∞j (ω,h) (4.18)

satisfying

|m∞1
2
− 1|k0,γ ≤ Cεγ−1, sup

j∈N+\S+
j
1
2 |r∞j |k0,γ ≤ Cεγ−κ1 (4.19)

such that for all (ω,h) in the Cantor like set

Cγ∞ :=
{
(ω,h) ∈ Ω× [h1,h2] : |ω · �| ≥ 8γ 〈�〉−τ , ∀� ∈ Z

ν\{0},
|ω · �+ μ∞j (ω,h)| ≥ 4γ j

1
2 〈�〉−τ , ∀� ∈ Z

ν, j ∈ N
+\S+,

|ω · �+ μ∞j (ω,h)+ μ∞j ′ (ω,h)|
≥ 4γ ( j

1
2 + j ′ 12 )〈�〉−τ , ∀� ∈ Z

ν, j, j ′ ∈ N
+\S+,

|ω · �+ μ∞j (ω,h)− μ∞j ′ (ω,h)|
≥ 4γ j−d j ′−d〈�〉−τ , ∀� ∈ Z

ν, j, j ′ ∈ N
+\S+, (�, j, j ′) �= (0, j, j)

}

(4.20)
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the function i∞(ϕ) := i∞(ω,h, ε)(ϕ) is a solution of F(i∞, α∞(ω,h), ω,h,
ε) = 0. As a consequence the embedded torus ϕ �→ i∞(ϕ) is invariant for the
Hamiltonian vector field XHα∞(ω,h) and it is filled by quasi-periodic solutions
with frequency ω.

Theorem 4.1 is proved in Sect. 15. The very weak second Melnikov non-
resonance conditions in (4.20) can be verified for most parameters if d is large
enough, i.e. d > 3

4 k
∗
0 , see Theorem 4.2 below.

4.2 Measure estimates

The aim is now to deduce Theorem 1.1 from Theorem 4.1.
By (4.16) the functionα∞(·,h) from Ω into the imageα∞(Ω,h) is invertible:

β = α∞(ω,h) = ω + rε(ω,h) ⇐⇒
ω = α−1∞ (β,h) = β + r̆ε(β,h) with |r̆ε|k0,γ ≤ Cεγ−1.

(4.21)

We underline that the function α−1∞ (·,h) is the inverse of α∞(·,h), at any
fixed value of h in [h1,h2]. Then, for any β ∈ α∞(Cγ∞), Theorem 4.1 proves
the existence of an embedded invariant torus filled by quasi-periodic solutions
with Diophantine frequency ω = α−1∞ (β,h) for the Hamiltonian

Hβ = β · I + 1

2
(z, �z)L2 + εP.

Consider the curve of the unperturbed tangential frequencies [h1,h2] � h �→
�ω(h) := (

√
j tanh(h j)) j∈S+ in (1.37). In Theorem 4.2 below we prove that

for “most” values of h ∈ [h1,h2] the vector (α−1∞ ( �ω(h),h),h) is in Cγ∞.
Hence, for such values of hwe have found an embedded invariant torus for the
Hamiltonian Hε in (4.8), filled by quasi-periodic solutions with Diophantine
frequency ω = α−1∞ ( �ω(h),h).

This implies Theorem 1.1 together with the following measure estimate.

Theorem 4.2 (Measure estimates) Let

γ = εa, 0 < a < min{a0, 1/(k0 + κ1)}, τ > k∗0(ν + 4), d >
3k∗0
4

,

(4.22)

where k∗0 is the index of non-degeneracy given by Proposition 3.4 and k0 =
k∗0 + 2. Then the set

Gε :=
{
h ∈ [h1,h2] :

(
α−1∞ ( �ω(h),h),h) ∈ Cγ∞

}
(4.23)
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has a measure satisfying |Gε| → h2 − h1 as ε → 0.

The rest of this section is devoted to the proof of Theorem 4.2. By (4.21)
the vector

ωε(h) := α−1∞ ( �ω(h),h) = �ω(h)+ rε(h), rε(h) := r̆ε( �ω(h),h), (4.24)

satisfies

|∂khrε(h)| ≤ Cεγ−k−1 ∀0 ≤ k ≤ k0. (4.25)

We also denote, with a small abuse of notation, for all j ∈ N
+\S+,

μ∞j (h) := μ∞j (ωε(h),h) := m∞1
2
(h)( j tanh(h j))

1
2 + r∞j (h), (4.26)

where

m∞1
2
(h) := m∞1

2
(ωε(h),h), r∞j (h) := r∞j (ωε(h),h). (4.27)

By (4.19), (4.27) and (4.24)–(4.25), using that εγ−k0−1 ≤ 1 (which by (4.22)
is satisfied for ε small), we get

|∂kh(m∞1
2
(h)− 1)| ≤ Cεγ−1−k,

sup
j∈N+\S+

j
1
2 |∂khr∞j (h)| ≤ Cεγ−κ1−k ∀0 ≤ k ≤ k0.

(4.28)

By (4.20), (4.24), (4.26), the Cantor set Gε in (4.23) becomes

Gε =
{
h ∈ [h1,h2] : |ωε(h) · �| ≥ 8γ 〈�〉−τ , ∀� ∈ Z

ν\{0},
|ωε(h) · �+ μ∞j (h)| ≥ 4γ j

1
2 〈�〉−τ , ∀� ∈ Z

ν, j ∈ N
+\S+,

|ωε(h) · �+ μ∞j (h)+ μ∞j ′ (h)| ≥ 4γ
(
j
1
2 + j ′

1
2

)
〈�〉−τ ,

∀� ∈ Z
ν, j, j ′ ∈ N

+\S+,
|ωε(h) · �+ μ∞j (h)− μ∞j ′ (h)| ≥

4γ 〈�〉−τ

jd j ′d
,

∀� ∈ Z
ν, j, j ′ ∈ N

+\S+, (�, j, j ′) �= (0, j, j)
}
. (4.29)

We estimate the measure of the complementary set

Gc
ε := [h1,h2]\Gε
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:=
⎛

⎝
⋃

� �=0
R(0)
�

⎞

⎠ ∪
⎛

⎝
⋃

�, j

R(I )
�, j

⎞

⎠ ∪
⎛

⎝
⋃

�, j, j ′
Q(I I )
�j j ′

⎞

⎠ ∪
⎛

⎝
⋃

(�, j, j ′) �=(0, j, j)

R(I I )
�j j ′

⎞

⎠ (4.30)

where the “resonant sets” are

R(0)
� := {h ∈ [h1,h2] : |ωε(h) · �| < 8γ 〈�〉−τ

}
(4.31)

R(I )
�j := {h ∈ [h1,h2] : |ωε(h) · �+ μ∞j (h)| < 4γ j

1
2 〈�〉−τ

}
(4.32)

Q(I I )
�j j ′ :=

{
h ∈ [h1,h2] : |ωε(h) · �+ μ∞j (h)+ μ∞j ′ (h)| < 4γ ( j

1
2 + j ′

1
2 )〈�〉−τ

}
(4.33)

R(I I )
�j j ′ :=

{
h ∈ [h1,h2] : |ωε(h) · �+ μ∞j (h)− μ∞j ′ (h)| <

4γ 〈�〉−τ

jd j ′d

}
(4.34)

with j, j ′ ∈ N
+\S+. We first note that some of these sets are empty.

Lemma 4.3 For ε, γ ∈ (0, γ0) small, we have that

1. If R(I )
�j �= ∅ then j

1
2 ≤ C〈�〉.

2. If R(I I )
�j j ′ �= ∅ then | j 12 − j ′ 12 | ≤ C〈�〉. Moreover, R(I I )

0 j j ′ = ∅, for all j �= j ′.
3. If Q(I I )

�j j ′ �= ∅ then j
1
2 + j ′ 12 ≤ C〈�〉.

Proof Let us consider the case of R(I I )
�j j ′ . If R

(I I )
�j j ′ �= ∅ there is h ∈ [h1,h2]

such that

|μ∞j (h)− μ∞j ′ (h)| <
4γ 〈�〉−τ

jd j ′d
+ |ωε(h) · �| ≤ C〈�〉. (4.35)

On the other hand, (4.26), (4.28), and (3.13) imply

|μ∞j (h)− μ∞j ′ (h)| ≥ m∞1
2
c|√ j −√ j ′| − Cεγ−κ1 ≥ c

2
|√ j −√ j ′| − 1.

(4.36)

Combining (4.35) and (4.36) we deduce | j 12 − j ′ 12 | ≤ C〈�〉.
Next we prove that R(I I )

0 j j ′ = ∅, ∀ j �= j ′. Recalling (4.26), (4.28), and the

definition � j (h) = √
j tanh(h j), we have

|μ∞j (h)− μ∞j ′ (h)| ≥ m∞1
2
(h)|� j (h)−� j ′(h)| − Cεγ−κ1

j
1
2

− Cεγ−κ1

( j ′) 12
(3.13)≥ c

2
|√ j −√ j ′| − Cεγ−κ1

j
1
2

− Cεγ−κ1

( j ′) 12
. (4.37)
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Now we observe that, for any fixed j ∈ N
+, the minimum of |√ j − √ j ′|

over all j ′ ∈ N
+\{ j} is attained at j ′ = j + 1. By symmetry, this implies that

|√ j −√ j ′| is greater or equal than both (
√

j + 1+√
j)−1 and (

√
j ′ + 1+√

j ′)−1. Hence, with c0 := 1/(1+√
2), one has

|√ j −√ j ′| ≥ c0 max

{
1√
j
,

1
√
j ′

}
≥ c0

2

(
1√
j
+ 1
√
j ′

)

≥ c0

j
1
4 ( j ′) 14

∀ j, j ′ ∈ N
+, j �= j ′. (4.38)

As a consequence of (4.37) and of the three inequalities in (4.38), for εγ−κ1

small enough, we get for all j �= j ′

|μ∞j (h)− μ∞j ′ (h)| ≥
c

8
|√ j −√ j ′| ≥ 4γ

jd j ′d
,

for γ small, since d ≥ 1/4. This proves that R(I I )
0 j j ′ = ∅, for all j �= j ′.

The statement for R(I )
�j and Q(I I )

�j j ′ is elementary. � 
By Lemma 4.3, the last union in (4.30) becomes

⋃

(�, j, j ′)�=(0, j, j)

R(I I )
�j j ′ =

⋃

��=0

|√ j−√ j ′|≤C〈�〉

R(I I )
�j j ′ . (4.39)

In order to estimate the measure of the sets (4.31)–(4.34) that are nonempty,
the key point is to prove that the perturbed frequencies satisfy estimates similar
to (3.9)–(3.11) in Proposition 3.4.

Lemma 4.4 (Perturbed transversality) For ε small enough, for all h ∈
[h1,h2],

max
k≤k∗0

|∂kh{ωε(h) · �}| ≥ ρ0

2
〈�〉 ∀� ∈ Z

ν\{0}, (4.40)

max
k≤k∗0

|∂kh{ωε(h) · �+ μ∞j (h)}| ≥ ρ0

2
〈�〉 ∀� ∈ Z

ν, j ∈ N
+\S+ : j 12 ≤ C〈�〉,

(4.41)

max
k≤k∗0

|∂kh{ωε(h) · �+ μ∞j (h)− μ∞j ′ (h)}| ≥
ρ0

2
〈�〉

∀� ∈ Z
ν\{0}, j, j ′ ∈ N

+\S+ : | j 12 − j ′
1
2 | ≤ C〈�〉, (4.42)
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max
k≤k∗0

|∂kh{ωε(h) · �+ μ∞j (h)+ μ∞j ′ (h)}| ≥
ρ0

2
〈�〉

∀� ∈ Z
ν, j, j ′ ∈ N

+\S+ : j 12 + j ′
1
2 ≤ C〈�〉, (4.43)

where k∗0 is the index of non-degeneracy given by Proposition 3.4.

Proof The most delicate estimate is (4.42). We split

μ∞j (h) = � j (h)+ (μ∞j −� j )(h)

where � j (h) := j
1
2 (tanh( jh))

1
2 . A direct calculation using (1.24) and (4.38)

shows that, for h ∈ [h1,h2],

|∂kh{� j (h)−� j ′(h)}| ≤ Ck | j 12 − j ′
1
2 | ∀ k ≥ 0. (4.44)

Then, using (4.28), one has, for all 0 ≤ k ≤ k0,

|∂kh
{
(μ∞j − μ∞j ′ )(h)− (� j −� j ′)(h)

}
|

≤ |∂kh
{
(m∞1

2
(h)− 1)(� j (h)−� j ′(h))

}
| + |∂khr∞j (h)| + |∂khr∞j ′ (h)|

(4.44)≤ Ck0

{
εγ−1−k | j 12 − j ′

1
2 | + εγ−κ1−k( j−

1
2 + ( j ′)−

1
2 )
}

(4.38)≤ C ′
k0εγ

−κ1−k | j 12 − j ′
1
2 |. (4.45)

Recall that k0 = k∗0 + 2 (see (4.14)). By (4.25) and (4.45), using | j 12 − j ′ 12 | ≤
C〈�〉, we get

max
k≤k∗0

|∂kh{ωε(h) · �+ μ∞j (h)− μ∞j ′ (h)}|

≥ max
k≤k∗0

|∂kh{ �ω(h) · �+� j (h)−� j ′(h)}| − Cεγ−(1+k∗0 )|�|

−Cεγ−(k∗0+κ1)| j 12 − j ′
1
2 |

≥ max
k≤k∗0

|∂kh{ �ω(h) · �+� j (h)−� j ′(h)}| − Cεγ−(k∗0+κ1)〈�〉
(3.11)≥ ρ0〈�〉 − Cεγ−(k∗0+κ1)〈�〉 ≥ ρ0〈�〉/2

provided εγ−(k∗0+κ1) ≤ ρ0/(2C), which, by (4.22), is satisfied for ε small
enough. � 
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As an application of Rüssmann Theorem 17.1 in [57] we deduce the fol-
lowing

Lemma 4.5 (Estimates of the resonant sets) The measure of the sets in (4.31)–
(4.34) satisfies

|R(0)
� | � (γ 〈�〉−(τ+1))

1
k∗0 ∀� �= 0, |R(I )

�j | �
(
γ j

1
2 〈�〉−(τ+1))

1
k∗0 ,

|R(I I )
�j j ′ | �

(
γ
〈�〉−(τ+1)

jd j ′d
) 1

k∗0 ∀� �= 0, |Q(I I )
�j j ′ | �

(
γ ( j

1
2 + j ′

1
2 )〈�〉−(τ+1))

1
k∗0 .

Proof We prove the estimate of R(I I )
�j j ′ in (4.34). The other cases are simpler.

We write

R(I I )
�j j ′ =

{
h ∈ [h1,h2] : | f�j j ′(h)| < 4γ

〈�〉τ+1 jd j ′d

}

where f�j j ′(h) := (ωε(h) · �+μ∞j (h)−μ∞j ′ (h))〈�〉−1. By (4.39), we restrict

to the case | j 12 − j ′ 12 | ≤ C〈�〉 and � �= 0. By (4.42),

max
k≤k∗0

|∂kh f�j j ′(h)| ≥ ρ0/2, ∀h ∈ [h1,h2].

In addition, (4.24)–(4.28) andLemma4.3 imply thatmaxk≤k0 |∂kh f�j j ′(h)| ≤ C
for all h ∈ [h1,h2], provided εγ−(k0+κ1) is small enough, namely, by (4.22), ε
is small enough. In particular, f�j j ′ is of class Ck0−1 = Ck∗0+1. Thus Theorem
17.1 in [57] applies, whence the lemma follows. � 

Proof of Theorem 4.2 completed By Lemma 4.3 (in particular, recalling that
R(I I )
�j j ′ is empty for � = 0 and j �= j ′, see (4.39)) and Lemma 4.5, the measure

of the set Gc
ε in (4.30) is estimated by

|Gc
ε | ≤
∑

��=0

|R(0)
� | +

∑

�, j

|R(I )
�j | +

∑

(�, j, j ′)�=(0, j, j)

|R(I I )
�j j ′ | +

∑

�, j, j ′
|Q(I I )

�j j ′ |

≤
∑

��=0

|R(0)
� | +

∑

j≤C〈�〉2
|R(I )

�j | +
∑

��=0

|√ j−√ j ′|≤C〈�〉

|R(I I )
�j j ′ | +

∑

j, j ′≤C〈�〉2
|Q(I I )

�j j ′ |

�
∑

�

(
γ

〈�〉τ+1

) 1
k∗0 +

∑

j≤C〈�〉2

(
γ j

1
2

〈�〉τ+1

) 1
k∗0
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+
∑

|√ j−√ j ′|≤C〈�〉

(
γ

〈�〉τ+1 jd j ′d

) 1
k∗0 +

∑

j, j ′≤C〈�〉2

(
γ ( j

1
2 + j ′ 12 )
〈�〉τ+1

) 1
k∗0

≤ Cγ
1
k∗0

⎧
⎪⎨

⎪⎩

∑

�∈Zν

1

〈�〉
τ

k∗0
−4

+
∑

|√ j−√ j ′|≤C〈�〉

1

〈�〉
τ+1
k∗0 j

d
k∗0 j

′ d
k∗0

⎫
⎪⎬

⎪⎭
. (4.46)

The first series in (4.46) converges because τ
k∗0
−4 > ν by (4.22). For the second

series in (4.46), we observe that the sum is symmetric in ( j, j ′) and, for j ≤ j ′,
the bound |√ j −√ j ′| ≤ C〈�〉 implies that j ≤ j ′ ≤ j +C2〈�〉2+ 2C

√
j〈�〉.

Since

∀�, j,
j+p∑

j ′= j

1

j
′ d
k∗0
≤

j+p∑

j ′= j

1

j
d
k∗0
= p + 1

j
d
k∗0

, p := C2〈�〉2 + 2C
√
j〈�〉,

the second series in (4.46) converges because τ+1
k∗0

− 2 > ν and 2 d
k∗0
− 1

2 > 1
by (4.22). By (4.46) we get

|Gc
ε | ≤ Cγ

1
k∗0 .

In conclusion, for γ = εa , we find |Gε| ≥ h2 − h1 − Cεa/k
∗
0 and the proof of

Theorem 4.2 is concluded. � 

5 Approximate inverse

In order to implement a convergentNash–Moser scheme that leads to a solution
ofF(i, α) = 0we construct analmost-approximate right inverse (seeTheorem
5.6) of the linearized operator

di,αF(i0, α0)[̂ı, α̂] = ω · ∂ϕ̂ı − di XHα (i0(ϕ))[̂ı] − (̂α, 0, 0). (5.1)

Note that di,αF(i0, α0) = di,αF(i0) is independent of α0, see (4.10) and recall
that the perturbation P does not depend on α.

Since the linearized operator di XHα (i0(ϕ)) has the (θ, I, z)-components
which are all coupled, it is particularly intricate to invert the operator (5.1).
Then we implement the approach in [8,16,21] to reduce it, approximately, to
a triangular form. We outline the steps of this strategy. The first observation
is that, close to an invariant torus, there exist symplectic coordinates in which
the linearized equations are a triangular system as in (1.27). We implement
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808 P. Baldi et al.

quantitatively this observation for any torus, which, in general, is non invariant.
Thus we define the “error function”

Z(ϕ) := (Z1, Z2, Z3)(ϕ) := F(i0, α0)(ϕ) = ω · ∂ϕi0(ϕ)− XHα0
(i0(ϕ)).

(5.2)

If Z = 0 then the torus i0 is invariant for XHα0
; in general, we say that

i0 is “approximately invariant”, up to order O(Z). Given a torus i0(ϕ) =
(θ0(ϕ), I0(ϕ), z0(ϕ)) satisfying (5.6) (condition which is satisfied by the
approximate solutions obtained by the Nash–Moser iteration of Sect. 15), we
first construct an isotropic torus iδ(ϕ) = (θ0(ϕ), Iδ(ϕ), z0(ϕ)) which is close
to i0, see Lemma 5.3. Note that, by (5.14), F(iδ, α0) is also O(Z). Since iδ
is isotropic, the diffeomorphism (φ, y, w) �→ Gδ(φ, y, w) defined in (5.16)
is symplectic. In these coordinates, the torus iδ reads (φ, 0, 0), and the trans-
formed Hamiltonian system becomes (5.19), where, by Lemma 5.4, the terms
∂φK00, K10 − ω, K01 are O(Z). Thus, neglecting such terms, the problem
of finding an approximate inverse of the linearized operator di,αF(i0, α0) is
reduced to the task of inverting the operator D in (5.34). We solve system
(5.35) in a triangular way. First we solve the equation for the y-component of
system (5.35), simply by inverting the differential operator ω · ∂ϕ , see (5.37)
and recall that ω is Diophantine. Then in (5.38) we solve the equation for the
w-component, thanks to the almost invertibility of the operator Lω in (5.26),
which is proved in Theorem 14.10 and stated in this section as assumption
(5.29)–(5.33). Finally the equation (5.39) for the φ-component is solved in
(5.44), by modifying the counterterms according to (5.43) and by inverting
ω · ∂ϕ . In conclusion, in Theorem 5.6 we estimate quantitatively how the con-
jugation of D with the differential of Gδ (see (5.46)) is an almost approximate
inverse of the linearized operator di,αF(i0, α0).

First of all, we state somepreliminary estimates for the composition operator
induced by the Hamiltonian vector field XP = (∂I P,−∂θ P, J∇z P) in (4.10).

Lemma 5.1 (Estimates of the perturbation P) Let I(ϕ) in (4.12) satisfy
‖I‖k0,γ3s0+2k0+5 ≤ 1. Then the following estimates hold:

‖XP(i)‖k0,γs �s 1+ ‖I‖k0,γs+2s0+2k0+3, (5.3)

and for all ı̂ := (θ̂ , Î , ẑ)

‖di XP(i)[̂ı]‖k0,γs �s ‖̂ı‖k0,γs+1 + ‖I‖k0,γs+2s0+2k0+4‖̂ı‖k0,γs0+1, (5.4)

‖d2i X P(i)[̂ı, ı̂]‖k0,γs �s ‖̂ı‖k0,γs+1 ‖̂ı‖k0,γs0+1 + ‖I‖k0,γs+2s0+2k0+5(‖̂ı‖k0,γs0+1)
2. (5.5)
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Proof The proof is the same as the one of Lemma 5.1 in [21], using also the
estimates on the Dirichlet Neumann operator in Proposition A.1. � 

Along this section we assume the following hypothesis, which is verified by
the approximate solutions obtained at each step of the Nash–Moser Theorem
15.1.

• Ansatz. The map (ω,h) �→ I0(ω,h) := i0(ϕ;ω,h) − (ϕ, 0, 0) is k0
times differentiable with respect to the parameters (ω,h) ∈ R

ν×[h1,h2],
and for some μ := μ(τ, ν) > 0, γ ∈ (0, 1),

‖I0‖k0,γs0+μ + |α0 − ω|k0,γ ≤ Cεγ−1. (5.6)

For some κ := κ(τ, ν) > 0, we shall always assume the smallness condi-
tion εγ−κ � 1.

We now implement the symplectic procedure to reduce di,αF(i0, α0)
approximately to a triangular form. An invariant torus i0 with Diophantine
flow is isotropic (see [16,30]), namely the pull-back 1-form i∗0� is closed,
where � is the 1-form in (4.4). This is equivalent to say that the 2-form
i∗0W = i∗0d� = di∗0� = 0. For an approximately invariant torus i0 the
1-form i∗0� is only “approximately closed”: we consider

i∗0� =
∑ν

k=1
ak(ϕ)dϕk,

ak(ϕ) := −([∂ϕθ0(ϕ)]T I0(ϕ)
)
k −

1

2
(∂ϕk z0(ϕ), J z0(ϕ))L2(Tx )

(5.7)

and we show that

i∗0W = d i∗0� =
∑

1≤k< j≤ν
Akj (ϕ)dϕk ∧ dϕ j ,

Akj (ϕ) := ∂ϕk a j (ϕ)− ∂ϕ j ak(ϕ),
(5.8)

is of order O(Z), see Lemma 5.2. By (4.10), (5.3), (5.6), the error function Z
defined in (5.2) is estimated in terms of the approximate torus as

‖Z‖k0,γs �s εγ
−1 + ‖I0‖k0,γs+2 . (5.9)

Lemma 5.2 Assume that ω belongs to DC(γ, τ ) defined in (2.13). Then the
coefficients Akj in (5.8) satisfy

‖Akj‖k0,γs �s γ
−1
(
‖Z‖k0,γs+τ(k0+1)+k0+1 + ‖Z‖k0,γs0+1‖I0‖k0,γs+τ(k0+1)+k0+1

)
.

(5.10)
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Proof The Akj satisfy the identity ω · ∂ϕAkj = W
(
∂ϕZ(ϕ)ek, ∂ϕi0(ϕ)e j

)+
W
(
∂ϕi0(ϕ)ek, ∂ϕZ(ϕ)e j

)
where ek denotes the k-th versor of R

ν , see [16],
Lemma 5. Then (5.10) follows by (5.6) and Lemma 2.5. � 

As in [8,16] we first modify the approximate torus i0 to obtain an isotropic
torus iδ which is still approximately invariant. We denote the Laplacian�ϕ :=∑ν

k=1 ∂
2
ϕk
.

Lemma 5.3 (Isotropic torus)The torus iδ(ϕ) := (θ0(ϕ), Iδ(ϕ), z0(ϕ)) defined
by

Iδ := I0 + [∂ϕθ0(ϕ)]−Tρ(ϕ), ρ j (ϕ) := �−1
ϕ

∑ν

k=1
∂ϕ j Ak j (ϕ) (5.11)

is isotropic. There is σ := σ(ν, τ, k0) such that

‖Iδ − I0‖k0,γs ≤ ‖I0‖k0,γs+1 (5.12)

‖Iδ − I0‖k0,γs �s γ
−1(‖Z‖k0,γs+σ + ‖Z‖k0,γs0+σ‖I0‖k0,γs+σ

)
, (5.13)

‖F(iδ, α0)‖k0,γs �s ‖Z‖k0,γs+σ + ‖Z‖k0,γs0+σ‖I0‖k0,γs+σ (5.14)

‖di [iδ][̂ı]‖k0,γs �s ‖̂ı‖k0,γs + ‖I0‖k0,γs+σ ‖̂ı‖k0,γs0 . (5.15)

We denote by σ := σ(ν, τ, k0) possibly different (larger) “loss of derivatives”
constants.

Proof The Lemma follows as in [8] by (5.4) and (5.7)–(5.10). � 
In order to find an approximate inverse of the linearized operator di,αF(iδ),

we introduce the symplectic diffeomorpshim Gδ : (φ, y, w) → (θ, I, z) of
the phase space T

ν × R
ν × H⊥

S+ defined by
⎛

⎝
θ

I
z

⎞

⎠ := Gδ

⎛

⎝
φ

y
w

⎞

⎠ :=
⎛

⎝
θ0(φ)

Iδ(φ)+ [∂φθ0(φ)]−T y − [(∂θ z̃0)(θ0(φ))
]T

Jw
z0(φ)+ w

⎞

⎠

(5.16)

where z̃0(θ) := z0(θ
−1
0 (θ)). It is proved in [16] that Gδ is symplectic, because

the torus iδ is isotropic (Lemma 5.3). In the new coordinates, iδ is the trivial
embedded torus (φ, y, w) = (φ, 0, 0). Under the symplectic change of vari-
ables Gδ the Hamiltonian vector field XHα (the Hamiltonian Hα is defined in
(4.9)) changes into

XKα = (DGδ)
−1XHα ◦ Gδ where Kα := Hα ◦ Gδ. (5.17)

By (4.11) the transformation Gδ is also reversibility preserving and so Kα is
reversible, Kα ◦ ρ̃ = Kα .
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The Taylor expansion of Kα at the trivial torus (φ, 0, 0) is

Kα(φ, y, w) = K00(φ, α)+ K10(φ, α) · y + (K01(φ, α),w)L2(Tx )

+ 1

2
K20(φ)y · y +

(
K11(φ)y, w

)
L2(Tx )

+ 1

2

(
K02(φ)w,w

)
L2(Tx )

+ K≥3(φ, y, w) (5.18)

where K≥3 collects the terms at least cubic in the variables (y, w). The Taylor
coefficient K00(φ, α) ∈ R, K10(φ, α) ∈ R

ν , K01(φ, α) ∈ H⊥
S+ , K20(φ) is a

ν×ν real matrix, K02(φ) is a linear self-adjoint operator of H⊥
S+ and K11(φ) ∈

L(Rν, H⊥
S+). Note that, by (4.9) and (5.16), the only Taylor coefficients that

depend on α are K00, K10, K01.
The Hamilton equations associated to (5.18) are

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

φ̇ = K10(φ, α)+K20(φ)y+KT
11(φ)w+∂y K≥3(φ, y, w)

ẏ = ∂φK00(φ, α)−[∂φK10(φ, α)]T y−[∂φK01(φ, α)]Tw−∂φ
( 1
2K20(φ)y · y

+(K11(φ)y, w)L2(Tx )
+ 1

2 (K02(φ)w,w)L2(Tx )
+K≥3(φ, y, w)

)

ẇ = J
(
K01(φ, α)+ K11(φ)y + K02(φ)w +∇wK≥3(φ, y, w)

)
(5.19)

where ∂φKT
10 is the ν × ν transposed matrix and ∂φKT

01, K
T
11 : H⊥

S+ → R
ν

are defined by the duality relation (∂φK01[φ̂], w)L2
x
= φ̂ · [∂φK01]Tw, ∀φ̂ ∈

R
ν, w ∈ H⊥

S+ , and similarly for K11. Explicitly, for allw ∈ H⊥
S+ , and denoting

by ek the k-th versor of R
ν ,

KT
11(φ)w =

ν∑

k=1

(
KT
11(φ)w · ek

)
ek =

ν∑

k=1

(
w, K11(φ)ek

)
L2(Tx )

ek ∈ R
ν.

(5.20)

The coefficients K00, K10, K01 in the Taylor expansion (5.18) vanish on an
exact solution (i.e. Z = 0).

Lemma 5.4 We have

‖∂φK00(·, α0)‖k0,γs + ‖K10(·, α0)− ω‖k0,γs + ‖K01(·, α0)‖k0,γs

�s ‖Z‖k0,γs+σ + ‖Z‖k0,γs0+σ‖I0‖k0,γs+σ .

‖∂αK00‖k0,γs + ‖∂αK10 − Id‖k0,γs + ‖∂αK01‖k0,γs �s ‖I0‖k0,γs+σ ,

‖K20‖k0,γs �s ε
(
1+ ‖I0‖k0,γs+σ

)
,

‖K11y‖k0,γs �s ε
(‖y‖k0,γs + ‖I0‖k0,γs+σ ‖y‖k0,γs0

)
,

‖KT
11w‖k0,γs �s ε

(‖w‖k0,γs+2 + ‖I0‖k0,γs+σ ‖w‖k0,γs0+2

)
.

(5.21)
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Proof The lemma follows as in [8,16,21] by (5.3), (5.6), (5.12), (5.13), (5.14),
(5.20). � 

Under the linear change of variables

DGδ(ϕ, 0, 0)

⎛

⎝
φ̂

ŷ
ŵ

⎞

⎠ :=
⎛

⎝
∂φθ0(ϕ) 0 0
∂φ Iδ(ϕ) [∂φθ0(ϕ)]−T −[(∂θ z̃0)(θ0(ϕ))]T J
∂φz0(ϕ) 0 I

⎞

⎠

⎛

⎝
φ̂

ŷ
ŵ

⎞

⎠

(5.22)

the linearized operator di,αF(iδ) is approximately transformed (see the proof
of Theorem 5.6) into the one obtained when one linearizes the Hamiltonian
system (5.19) at (φ, y, w) = (ϕ, 0, 0), differentiating also in α at α0, and
changing ∂t � ω · ∂ϕ , namely

⎛

⎜⎜
⎝

φ̂

ŷ
ŵ

α̂

⎞

⎟⎟
⎠ �→

⎛

⎝
ω · ∂ϕφ̂ − ∂φK10(ϕ)[φ̂ ] − ∂αK10(ϕ)[̂α] − K20(ϕ)ŷ − KT

11(ϕ)ŵ

ω · ∂ϕ ŷ + ∂φφK00(ϕ)[φ̂] + ∂φ∂αK00(ϕ)[̂α] + [∂φK10(ϕ)]T ŷ + [∂φK01(ϕ)]T ŵ
ω · ∂ϕŵ − J {∂φK01(ϕ)[φ̂] + ∂αK01(ϕ)[̂α] + K11(ϕ)ŷ + K02(ϕ)ŵ}

⎞

⎠ .

(5.23)

As in [8], by (5.22), (5.6), (5.12), the induced composition operator satisfies:
for all ı̂ := (φ̂, ŷ, ŵ)

‖DGδ(ϕ, 0, 0)[̂ı]‖k0,γs + ‖DGδ(ϕ, 0, 0)
−1[̂ı]‖k0,γs

�s ‖̂ı‖k0,γs + ‖I0‖k0,γs+σ ‖̂ı‖k0,γs0 , (5.24)

‖D2Gδ(ϕ, 0, 0)[̂ı1, ı̂2]‖k0,γs �s ‖̂ı1‖k0,γs ‖̂ı2‖k0,γs0 + ‖̂ı1‖k0,γs0 ‖̂ı2‖k0,γs

+‖I0‖k0,γs+σ ‖̂ı1‖k0,γs0 ‖̂ı2‖k0,γs0 . (5.25)

In order to construct an “almost-approximate” inverse of (5.23) we need that

Lω := �⊥
S+
(
ω · ∂ϕ − J K02(ϕ)

)
|H⊥

S+
(5.26)

is “almost-invertible” up to remainders of size O(N−a
n−1) (see precisely (5.30))

where

Nn := K p
n , ∀n ≥ 0, (5.27)

and

Kn := K χn

0 , χ := 3/2 (5.28)
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are the scales used in the nonlinear Nash–Moser iteration in Sect. 15. The
almost invertibility of Lω is proved in Theorem 14.10 as the conclusion of
the analysis of Sects. 6–14, and it is stated here as an assumption (to avoid
the involved definition of the set Λo). Let Hs⊥(Tν+1) := Hs(Tν+1)∩ H⊥

S+ and
recall that the phase space contains only functions even in x , see (4.2).

• Almost-invertibility ofLω There exists a subset Λo ⊂ DC(γ, τ )×[h1,h2]
such that, for all (ω,h) ∈ Λo the operatorLω in (5.26) may be decomposed
as

Lω = L<
ω +Rω +R⊥

ω (5.29)

whereL<
ω is invertible.Moreprecisely, there exist constants K0,M, σ, μ(b),

a, p > 0 such that for any s0 ≤ s ≤ S, the operators Rω, R⊥
ω satisfy the

estimates

‖Rωh‖k0,γs �S εγ−2(M+1)N−a
n−1

(‖h‖k0,γs+σ + ‖I0‖k0,γs+μ(b)+σ‖h‖k0,γs0+σ

)
,

(5.30)

‖R⊥
ωh‖k0,γs0 �SK

−b
n

(‖h‖k0,γs0+b+σ + ‖I0‖k0,γs0+μ(b)+σ+b‖h‖k0,γs0+σ

)
, ∀b>0,

(5.31)

‖R⊥
ωh‖k0,γs �S ‖h‖k0,γs+σ + ‖I0‖k0,γs+μ(b)+σ‖h‖k0,γs0+σ . (5.32)

Moreover, for every function g ∈ Hs+σ
⊥ (Tν+1,R

2) and such that g(−ϕ) =
−ρg(ϕ), for every (ω,h) ∈ �o, there is a solution h := (L<

ω )
−1g ∈

Hs⊥(Tν+1,R
2) such that h(−ϕ) = ρh(ϕ), of the linear equationL<

ωh = g.
The operator (L<

ω )
−1 satisfies for all s0 ≤ s ≤ S the tame estimate

‖(L<
ω )

−1g‖k0,γs �S γ−1
(
‖g‖k0,γs+σ + ‖I0‖k0,γs+μ(b)+σ‖g‖k0,γs0+σ

)
. (5.33)

In order to find an almost-approximate inverse of the linear operator in
(5.23) (and so of di,αF(iδ)), it is sufficient to invert the operator

D[φ̂, ŷ, ŵ, α̂] :=
⎛

⎝
ω · ∂ϕφ̂ − ∂αK10(ϕ)[̂α] − K20(ϕ)ŷ − KT

11(ϕ)ŵ

ω · ∂ϕ ŷ + ∂φ∂αK00(ϕ)[̂α]
(L<

ω )ŵ − J∂αK01(ϕ)[̂α] − J K11(ϕ)ŷ

⎞

⎠

(5.34)

obtained by neglecting in (5.23) the terms ∂φK10, ∂φφK00, ∂φK00, ∂φK01,
which are O(Z) by Lemma 5.4, and the small remaindersRω,R⊥

ω appearing
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in (5.29). We look for an inverse of D by solving the system

D[φ̂, ŷ, ŵ, α̂] =
⎛

⎝
g1
g2
g3

⎞

⎠ (5.35)

where (g1, g2, g3) satisfy the reversibility property

g1(ϕ) = g1(−ϕ), g2(ϕ) = −g2(−ϕ), g3(ϕ) = −(ρg3)(−ϕ). (5.36)

We first consider the second equation in (5.35), namely ω · ∂ϕ ŷ = g2 −
∂α∂φK00(ϕ)[̂α]. By reversibility, the ϕ-average of the right hand side of this
equation is zero, and so its solution is

ŷ := (ω · ∂ϕ)−1(g2 − ∂α∂φK00(ϕ)[̂α]
)
. (5.37)

Thenweconsider the third equation (L<
ω)ŵ = g3+J K11(ϕ)ŷ+J∂αK01(ϕ)[̂α],

which, by the inversion assumption (5.33), has a solution

ŵ := (L<
ω )

−1(g3 + J K11(ϕ)ŷ + J∂αK01(ϕ)[̂α]
)
. (5.38)

Finally, we solve the first equation in (5.35), which, substituting (5.37), (5.38),
becomes

ω · ∂ϕφ̂ = g1 + M1(ϕ)[̂α] + M2(ϕ)g2 + M3(ϕ)g3, (5.39)

where

M1(ϕ) := ∂αK10(ϕ)− M2(ϕ)∂α∂φK00(ϕ)+ M3(ϕ)J∂αK01(ϕ), (5.40)

M2(ϕ) := K20(ϕ)[ω · ∂ϕ]−1 + KT
11(ϕ)(L<

ω )
−1 J K11(ϕ)[ω · ∂ϕ]−1, (5.41)

M3(ϕ) := KT
11(ϕ)(L<

ω )
−1. (5.42)

In order to solve equation (5.39) we have to choose α̂ such that the right
hand side has zero average. By Lemma 5.4, (5.6), the ϕ-averaged matrix is
〈M1〉 = Id+ O(εγ−1). Therefore, for εγ−1 small enough, 〈M1〉 is invertible
and 〈M1〉−1 = Id + O(εγ−1). Thus we define

α̂ := −〈M1〉−1(〈g1〉 + 〈M2g2〉 + 〈M3g3〉). (5.43)

With this choice of α̂, equation (5.39) has the solution

φ̂ := (ω · ∂ϕ)−1(g1 + M1(ϕ)[̂α] + M2(ϕ)g2 + M3(ϕ)g3
)
. (5.44)
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In conclusion, we have obtained a solution (φ̂, ŷ, ŵ, α̂) of the linear system
(5.35).

Proposition 5.5 Assume (5.6) (with μ = μ(b)+ σ ) and (5.33). Then, for all
(ω,h) ∈ Λo, for all g := (g1, g2, g3) even in x and satisfying (5.36), system
(5.35) has a solution D

−1g := (φ̂, ŷ, ŵ, α̂), where (φ̂, ŷ, ŵ, α̂) are defined in
(5.44), (5.37), (5.38), (5.43), which satisfies (4.11) and for any s0 ≤ s ≤ S

‖D−1g‖k0,γs �S γ−1
(
‖g‖k0,γs+σ + ‖I0‖k0,γs+μ(b)+σ‖g‖k0,γs0+σ

)
. (5.45)

Proof The lemma follows by (5.38), (5.40), (5.41) (5.42), (5.43), (5.44),
Lemma 5.4, (5.33), (5.6). � 
Finally we prove that the operator

T0 := T0(i0) := (DG̃δ)(ϕ, 0, 0) ◦ D
−1 ◦ (DGδ)(ϕ, 0, 0)

−1 (5.46)

is an almost-approximate right inverse for di,αF(i0)where G̃δ(φ, y, w, α) :=(
Gδ(φ, y, w), α

)
is the identity on the α-component. We denote the norm

‖(φ, y, w, α)‖k0,γs := max{‖(φ, y, w)‖k0,γs , |α|k0,γ }.
Theorem 5.6 (Almost-approximate inverse) Assume the inversion assump-
tion (5.29)–(5.33). Then, there exists σ̄ := σ̄ (τ, ν, k0) > 0 such that, if (5.6)
holds with μ = μ(b) + σ̄ , then for all (ω,h) ∈ Λo, for all g := (g1, g2, g3)
even in x and satisfying (5.36), the operator T0 defined in (5.46) satisfies, for
all s0 ≤ s ≤ S,

‖T0g‖k0,γs �S γ−1
(
‖g‖k0,γs+σ̄ + ‖I0‖k0,γs+μ(b)+σ̄‖g‖k0,γs0+σ̄

)
. (5.47)

Moreover T0 is an almost-approximate inverse of di,αF(i0), namely

di,αF(i0) ◦ T0 − Id = P(i0)+ Pω(i0)+ P⊥
ω (i0) (5.48)

where, for all s0 ≤ s ≤ S,

‖Pg‖k0,γs �S γ−1
(
‖F(i0, α0)‖k0,γs0+σ̄ ‖g‖k0,γs+σ̄

+ {‖F(i0, α0)‖k0,γs+σ̄ + ‖F(i0, α0)‖k0,γs0+σ̄ ‖I0‖k0,γs+μ(b)+σ̄

}‖g‖k0,γs0+σ̄

)
, (5.49)

‖Pωg‖k0,γs �S εγ−2M−3N−a
n−1
(‖g‖k0,γs+σ̄ + ‖I0‖k0,γs+μ(b)+σ̄ ‖g‖k0,γs0+σ̄

)
, (5.50)

‖P⊥
ω g‖k0,γs0 �S,b γ−1K−b

n

(‖g‖k0,γs0+σ̄+b + ‖I0‖k0,γs0+μ(b)+σ̄+b
∥∥g‖k0,γs0+σ̄

)
, ∀b > 0, (5.51)

‖P⊥
ω g‖k0,γs �S γ−1

(‖g‖k0,γs+σ̄ + ‖I0‖k0,γs+μ(b)+σ̄ ‖g‖k0,γs0+σ̄

)
. (5.52)
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Proof Bound (5.47) follows from (5.46), (5.45), (5.24). By (4.10), since XN
does not depend on I , and iδ differs by i0 only in the I component (see (5.11)),
we have

E0 := di,αF(i0)− di,αF(iδ)

= ε

∫ 1

0
∂I di X P(θ0, Iδ + s(I0 − Iδ), z0)[I0 − Iδ,�[ · ] ]ds (5.53)

where� is the projection (̂ı, α̂) �→ ı̂ . Denote by u := (φ, y, w) the symplec-
tic coordinates induced by Gδ in (5.16). Under the symplectic map Gδ , the
nonlinear operator F in (4.10) is transformed into

F(Gδ(u(ϕ)), α) = DGδ(u(ϕ))
(
Dωu(ϕ)− XKα (u(ϕ), α)

)
(5.54)

where Kα = Hα ◦Gδ , see (5.17) and (5.19). Differentiating (5.54) at the trivial
torus uδ(ϕ) = G−1

δ (iδ)(ϕ) = (ϕ, 0, 0), at α = α0, we get

di,αF(iδ) = DGδ(uδ)
(
ω · ∂ϕ − du,αXKα (uδ, α0)

)
DG̃δ(uδ)

−1 + E1,
(5.55)

E1 := D2Gδ(uδ)
[
DGδ(uδ)

−1F(iδ, α0), DGδ(uδ)
−1�[ · ] ]. (5.56)

In expanded form ω · ∂ϕ − du,αXKα (uδ, α0) is provided by (5.23). By (5.34),
(5.26), (5.29) and Lemma 5.4 we split

ω·∂ϕ − du,αXK (uδ, α0) = D+ RZ + Rω + R
⊥
ω (5.57)

where

RZ [φ̂, ŷ, ŵ, α̂]

:=
⎛

⎝
−∂φK10(ϕ, α0)[φ̂]

∂φφK00(ϕ, α0)[φ̂] + [∂φK10(ϕ, α0)]T ŷ + [∂φK01(ϕ, α0)]T ŵ
−J {∂φK01(ϕ, α0)[φ̂]}

⎞

⎠ ,

and

Rω[φ̂, ŷ, ŵ, α̂] :=
⎛

⎝
0
0

Rω[ŵ]

⎞

⎠ , R
⊥
ω [φ̂, ŷ, ŵ, α̂] :=

⎛

⎝
0
0

R⊥
ω [ŵ]

⎞

⎠ .

By (5.53), (5.55), (5.56), (5.57) we get the decomposition

di,αF(i0) = DGδ(uδ) ◦ D ◦ DG̃δ(uδ)
−1 + E + Eω + E⊥ω (5.58)
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where

E := E0 + E1 + DGδ(uδ)RZ DG̃δ(uδ)
−1,

Eω := DGδ(uδ)RωDG̃δ(uδ)
−1,

E⊥ω := DGδ(uδ)R
⊥
ω DG̃δ(uδ)

−1.

Applying T0 defined in (5.46) to the right hand side in (5.58) (recall that
uδ(ϕ) := (ϕ, 0, 0)), since D ◦ D

−1 = Id (Proposition 5.5), we get

di,αF(i0) ◦ T0 − Id = P + Pω + P⊥
ω ,

P := E ◦ T0, Pω := Eω ◦ T0, P⊥
ω := E⊥ω ◦ T0.

By (5.6), (5.21), (5.12), (5.13), (5.14), (5.24)–(5.25) we get the estimate

‖E[ ı̂, α̂ ]‖k0,γs �s ‖Z‖k0,γs0+σ ‖̂ı‖k0,γs+σ + ‖Z‖k0,γs+σ ‖̂ı‖k0,γs0+σ

+ ‖Z‖k0,γs0+σ ‖̂ı‖k0,γs0+σ‖I0‖k0,γs+σ , (5.59)

where Z := F(i0, α0), recall (5.2). Then (5.49) follows from (5.47), (5.59),
(5.6). Estimates (5.50), (5.51), (5.52) follow by (5.30)–(5.32), (5.47), (5.24),
(5.12), (5.6). � 

6 The linearized operator in the normal directions

In order to write an explicit expression of the linear operator Lω defined in
(5.26) we have to express the operator K02(φ) in terms of the original water
waves Hamiltonian vector field.

Lemma 6.1 The operator K02(φ) is

K02(φ) = �⊥
S+∂u∇uH(Tδ(φ))+ εR(φ) (6.1)

where H is thewater wavesHamiltonian defined in (1.7) (with gravity constant
g = 1 and depth h replaced by h), evaluated at the torus

Tδ(φ) :=εA(iδ(φ))=εA(θ0(φ), Iδ(φ), z0(φ))= vεv(θ0(φ), Iδ(φ))+εz0(φ)

(6.2)

with A(θ, I, z), v(θ, I ) defined in (4.6). The operator K02(φ) is even and
reversible. The remainder R(φ) has the “finite dimensional” form

R(φ)[h] =
∑

j∈S+
(
h, g j

)
L2
x
χ j , ∀h ∈ H⊥

S+, (6.3)
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for functions g j , χ j ∈ H⊥
S+ which satisfy the tame estimates: for some σ :=

σ(τ, ν) > 0, ∀s ≥ s0,

‖g j‖k0,γs + ‖χ j‖k0,γs �s 1+ ‖Iδ‖k0,γs+σ ,

‖di g j [̂ı]‖s+‖diχ j [̂ı]‖s �s ‖̂ı‖s+σ + ‖Iδ‖s+σ ‖̂ı‖s0+σ .
(6.4)

Proof The lemma follows as in Lemma 6.1 in [21]. � 
By Lemma 6.1 the linear operator Lω defined in (5.26) has the form

Lω = �⊥
S+(L+ εR)|H⊥

S+
where L := ω · ∂ϕ − J∂u∇uH(Tδ(ϕ))

(6.5)

is obtained linearizing the original water waves system (1.14), (1.6) at the
torus u = (η, ψ) = Tδ(ϕ) defined in (6.2), changing ∂t � ω · ∂ϕ . The
function η(ϕ, x) is even(ϕ)even(x) and ψ(ϕ, x) is odd(ϕ)even(x).

In order to compute the linearization of the Dirichlet–Neumann operator,
we recall the “shape derivative” formula, given for instance in [46,47],

G ′(η)[η̂]ψ= lim
ε→0

1

ε
{G(η+εη̂)ψ − G(η)ψ}=−G(η)(Bη̂)−∂x(V η̂) (6.6)

where

B := B(η, ψ) := ηxψx + G(η)ψ

1+ η2x
, V := V (η, ψ) := ψx − Bηx . (6.7)

It turns out that (V, B) = ∇x,y� is the velocity field evaluated at the free
surface (x, η(x)). Using (6.6), the linearized operator of (1.14) is represented
by the 2× 2 operator matrix

L := ω · ∂ϕ +
(

∂xV + G(η)B −G(η)

(1+ BVx )+ BG(η)B V ∂x − BG(η)

)
. (6.8)

Since the operator G(η) is even according to Definition 2.19, the function B
is odd(ϕ)even(x) and V is odd(ϕ)odd(x). The operator L acts on H1(T) ×
H1(T).
The operators Lω and L are real, even and reversible. We are going to make

several transformations, whose aim is to conjugate the linearized operator to
a constant coefficients operator, up to a remainder that is small in size and
regularizing at a conveniently high order.

Remark 6.2 It is convenient to first ignore the projection�⊥
S+ and consider the

linearized operator L acting on the whole space H1(T)× H1(T). At the end
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of the conjugation procedure, we shall restrict ourselves to the phase space
H1
0 (T)× Ḣ1(T) and perform the projection on the normal subspace H⊥

S+ , see
Sect. 13. The finite dimensional remainder εR transforms under conjugation
into an operator of the same form and therefore it will be dealt with only once
at the end of Sect. 13.

For the sequel we will always assume the following ansatz (satisfied by the
approximate solutions obtained along the nonlinear Nash–Moser iteration of
Sect. 15): for some constant μ0 := μ0(τ, ν) > 0, γ ∈ (0, 1),

‖I0‖k0,γs0+μ0
≤ 1 and so, by (5.12), ‖Iδ‖k0,γs0+μ0

≤ 2. (6.9)

In order to estimate the variation of the eigenvalues with respect to the approx-
imate invariant torus, we need also to estimate the derivatives (or the variation)
with respect to the torus i(ϕ) in another low norm ‖ ‖s1 , for all the Sobolev
indices s1 such that

s1 + σ0 ≤ s0 + μ0, for some σ0 := σ0(τ, ν) > 0. (6.10)

Thus by (6.9) we have

‖I0‖k0,γs1+σ0
≤ 1 and so, by (5.12), ‖Iδ‖k0,γs1+σ0

≤ 2. (6.11)

The constants μ0 and σ0 represent the loss of derivatives accumulated along
the reduction procedure of Sects. 7–12. What is important is that they are
independent of the Sobolev index s. Along Sects. 6–12, we shall denote by
σ := σ(k0, τ, ν) > 0 a constant (which possibly increases from lemma to
lemma) representing the loss of derivatives along the finitely many steps of
the reduction procedure.

As a consequence of Moser composition Lemma 2.6, the Sobolev norm of
the function u = Tδ defined in (6.2) satisfies, ∀s ≥ s0,

‖u‖k0,γs = ‖η‖k0,γs + ‖ψ‖k0,γs ≤ εC(s)
(
1+ ‖I0‖k0,γs

)
(6.12)

(the function A defined in (4.6) is smooth). Similarly

‖�12u‖s1 �s1 ε‖i2 − i1‖s1 (6.13)

where we denote �12u := u(i2) − u(i1); we will systematically use this
notation.

In the next sections we shall also assume that, for some κ := κ(τ, ν) > 0,
we have

εγ−κ ≤ δ(S),
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where δ(S) > 0 is a constant small enough and S will be fixed in (15.4). We
recall that I0 := I0(ω,h) is defined for all (ω,h) ∈ R

ν × [h1,h2] and that
the functions B, V appearing inL in (6.8) are C∞ in (ϕ, x) as the approximate
torus u = (η, ψ) = Tδ(ϕ). This enables to use directly pseudo-differential
operator theory as reminded in Sect. 2.3.

Starting from here, until the end of Sect. 13, our goal is to prove Proposition
13.3.

6.1 Linearized good unknown of Alinhac

Following [1,21] we conjugate the linearized operator L in (6.8) by the mul-
tiplication operator

Z :=
(
1 0
B 1

)
, Z−1 =

(
1 0
−B 1

)
, (6.14)

where B = B(ϕ, x) is the function defined in (6.7), obtaining

L0 := Z−1LZ = ω · ∂ϕ +
(
∂xV −G(η)

a V ∂x

)
(6.15)

where a is the function

a := a(ϕ, x) := 1+ (ω · ∂ϕB)+ V Bx . (6.16)

Alla, B, V are real valuedperiodic functions of (ϕ, x)—variable coefficients—
and satisfy

B = odd(ϕ)even(x), V = odd(ϕ)odd(x), a = even(ϕ)even(x).

ThematrixZ in (6.14) amounts to introduce, as in Lannes [46,47], a linearized
version of the good unknown of Alinhac, workingwith the variables (η, ς)with
ς := ψ − Bη, instead of (η, ψ).

Lemma 6.3 The maps Z±1 − Id are even, reversibility preserving and Dk0-
tame with tame constants satisfying, for all s ≥ s0,

MZ±1−Id(s), M(Z±1−Id)∗(s) �s ε
(
1+ ‖I0‖k0,γs+σ

)
. (6.17)

The operator L0 is even and reversible. There is σ := σ(τ, ν) > 0 such that
the functions

‖a − 1‖k0,γs + ‖V ‖k0,γs + ‖B‖k0,γs �s ε
(
1+ ‖I0‖k0,γs+σ

)
. (6.18)
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Moreover

‖�12a‖s1 + ‖�12V ‖s1 + ‖�12B‖s1 �s1 ε‖i1 − i2‖s1+σ (6.19)

‖�12(Z±1)h‖s1, ‖�12(Z±1)∗h‖s1 �s1 ε‖i1 − i2‖s1+σ‖h‖s1 . (6.20)

Proof The proof is the same as the one of Lemma 6.3 in [21]. � 
We expand L0 in (6.15) as

L0 = ω · ∂ϕ +
(
V ∂x 0
0 V ∂x

)
+
(
Vx −G(η)

a 0

)
. (6.21)

In the next section we deal with the first order operator ω · ∂ϕ + V ∂x .

7 Straightening the first order vector field

The aim of this section is to conjugate the variable coefficients operator ω ·
∂ϕ + V (ϕ, x)∂x to the constant coefficients vector field ω · ∂ϕ , namely to find
a change of variable B such that

B−1(ω · ∂ϕ + V (ϕ, x)∂x
)
B = ω · ∂ϕ. (7.1)

Quasi-periodic transport equation We consider a ϕ-dependent family of
diffeomorphisms of Tx of the space variable y = x + β(ϕ, x) where the
function β : T

ν
ϕ × Tx → R is odd in x , even in ϕ, and ‖βx‖L∞ < 1/2. We

denote by B the corresponding composition operator, namely (Bh)(ϕ, x) :=
h(ϕ, x + β(ϕ, x)). The conjugated operator in the left hand side in (7.1) is

B−1(ω · ∂ϕ + V (ϕ, x)∂x
)
B = ω · ∂ϕ + c(ϕ, y) ∂y (7.2)

where

c(ϕ, y) := B−1(ω · ∂ϕβ + V (1+ βx )
)
(ϕ, y). (7.3)

In view of (7.2)–(7.3) we obtain (7.1) if β(ϕ, x) solves the equation

ω · ∂ϕβ(ϕ, x)+ V (ϕ, x)(1+ βx (ϕ, x)) = 0, (7.4)

which can be interpreted as a quasi-periodic transport equation.

Quasi-periodic characteristic equation Instead of solving directly (7.4) we
solve the equation satisfied by the inverse diffeomorphism

x+β(ϕ, x)= y ⇐⇒ x= y+β̆(ϕ, y), ∀x, y∈R, ϕ∈T
ν. (7.5)
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It turns out that equation (7.4) for β(ϕ, x) is equivalent to the following equa-
tion for β̆(ϕ, y):

ω · ∂ϕβ̆(ϕ, y) = V (ϕ, y + β̆(ϕ, y)) (7.6)

which is a quasi-periodic version of the characteristic equation ẋ = V (ωt, x).

Remark 7.1 We can give a geometric interpretation of equation (7.6) in terms
of conjugation of vector fields on the torus T

ν×T. Under the diffeomorphism
of T

ν × T defined by

(
ϕ

x

)
=
(

ψ

y + β̆(ψ, y)

)
, the system

d

dt

(
ϕ

x

)
=
(

ω

V (ϕ, x)

)

transforms into

d

dt

(
ψ

y

)
=
(

ω
{− ω · ∂ϕβ̆(ψ, y)+ V (ϕ, y + β̆(ψ, y))

}(
1+ β̆y(ψ, y)

)−1

)
.

The vector field in the new coordinates reduces to (ω, 0) if and only if (7.6)
holds. In the new variables the solutions are simply given by y(t) = c, c ∈ R,
andall the solutions of the scalar quasi-periodically forceddifferential equation
ẋ = V (ωt, x) are time quasi-periodic of the form x(t) = c + β̆(ωt, c). � 

In Theorem 7.3 we solve equation (7.6), for V (ϕ, x) small and ω Diophan-
tine, by applying the Nash–Moser–Hörmander implicit function theorem in
Appendix C. Rename β̆ → u, y → x , and write (7.6) as

F(u)(ϕ, x) := ω · ∂ϕu(ϕ, x)− V (ϕ, x + u(ϕ, x)) = 0. (7.7)

The linearized operator at a given function u(ϕ, x) is

F ′(u)h := ω · ∂ϕh − q(ϕ, x)h, q(ϕ, x) := Vx (ϕ, x + u(ϕ, x)). (7.8)

In the next lemma we solve the linear problem F ′(u)h = f .

Lemma 7.2 (Linearized quasi-periodic characteristic equation) Let ς :=
3k0 + 2τ(k0 + 1) + 2 = 2μ + k0 + 2, where μ is the loss in (2.18) (with
k + 1 = k0), and let ω ∈ DC(2γ, τ ). Assume that the periodic function u is
even(ϕ)odd(x), that V is odd(ϕ)odd(x), and

‖u‖k0,γs0+ς + γ−1‖V ‖k0,γs0+ς ≤ δ0 (7.9)
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Time quasi-periodic gravity water waves in finite depth 823

with δ0 small enough.Then, givenaperiodic function f which is odd(ϕ)odd(x),
the linearized equation

F ′(u)h = f (7.10)

has a unique periodic solution h(ϕ, x) which is even(ϕ)odd(x) having zero
average in ϕ, i.e.

〈h〉ϕ(x) := 1

(2π)ν

∫

Tν

h(ϕ, x) dϕ = 0 ∀x ∈ T. (7.11)

This defines a right inverse of the linearized operator F ′(u), which we denote
by h = F ′(u)−1 f . It satisfies

‖F ′(u)−1 f ‖k0,γs

�s γ
−1
(
‖ f ‖k0,γs+ς + γ−1

(
‖V ‖k0,γs+ς + ‖u‖k0,γs+ς ‖V ‖k0,γs0+ς

)
‖ f ‖k0,γs0

)
(7.12)

for all s ≥ s0, where ‖ · ‖k0,γs denotes the norm of Lip(k0,DC(2γ, τ ), s, γ ).

Proof Given f , we have to solve the linear equation ω · ∂ϕh− qh = f , where
q is the function defined in (7.8). From the parity of u, V it follows that q is
odd(ϕ)even(x). By variation of constants, we look for solutions of the form
h = wev , and we find (recalling (2.14))

v := (ω · ∂ϕ)−1q, w := w0 + g, w0 := (ω · ∂ϕ)−1(e−v f ),

g = g(x) := −〈w0ev〉ϕ
〈ev〉ϕ .

This choice of g, and hence of w, is the only one matching the zero aver-
age requirement (7.11); this gives uniqueness of the solution. Moreover
v = even(ϕ)even(x), w0 = even(ϕ)odd(x), g = odd(x), whence h is
even(ϕ)odd(x). Using (2.10), (2.11), (2.18), (2.19), (7.9), and (2.9) the proof
of (7.12) is complete. � 

We now prove the existence of a solution of equation (7.7).

Theorem 7.3 (Solution of the quasi-periodic characteristic equation (7.7))Let
ς be the constant defined in Lemma 7.2, and let s2 := 2s0+3ς+1, p := 3ς+2.
Assume that V is odd(ϕ)odd(x). There exist δ ∈ (0, 1),C > 0 depending on
ς, s0 such that, for all ω ∈ DC(2γ, τ ), if V ∈ Lip(k0,DC(2γ, τ ), s2 + p, γ )
satisfies

γ−1‖V ‖k0,γs2+p ≤ δ, (7.13)
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then there exists a solution u ∈ Lip(k0,DC(2γ, τ ), s2, γ ) of F(u) = 0. The
solution u is even(ϕ)odd(x), it has zero average in ϕ, and satisfies

‖u‖k0,γs2 ≤ Cγ−1‖V ‖k0,γs2+p. (7.14)

If, in addition, V ∈ Lip(k0,DC(2γ, τ ), s + p, γ ) for s > s2, then u ∈
Lip(k0,DC(2γ, τ ), s, γ ), with

‖u‖k0,γs ≤ Csγ
−1‖V ‖k0,γs+p (7.15)

for some constant Cs depending on s, ς, s0, independent of V, γ .

Proof We apply Theorem C.1 of Appendix C. For a, b ≥ 0, we define

Ea :=
{
u ∈ Lip(k0,DC(2γ, τ ), 2s0 + a, γ ) : u = even(ϕ)odd(x),

〈u〉ϕ(x) = 0
}
, ‖u‖Ea := ‖u‖k0,γ2s0+a, (7.16)

Fb :=
{
g ∈ Lip(k0,DC(2γ, τ ), 2s0 + b, γ ) : g = odd(ϕ)odd(x)

}
,

‖g‖Fb := ‖g‖k0,γ2s0+b (7.17)

(s0 is in the last term of (7.12), while 2s0 appears in the composition estimate
(2.11)).We consider Fourier truncations at powers of 2 as smoothing operators,
namely

Sn : u(ϕ, x) =
∑

(�, j)∈Zν+1

u�j e
i(�·ϕ+ j x)

�→ (Snu)(ϕ, x) :=
∑

〈�, j〉≤2n
u�j e

i(�·ϕ+ j x) (7.18)

on both spaces Ea and Fb. Hence both Ea and Fb satisfy (C.1)–(C.5), and the
operators Rn defined in (C.6) give the dyadic decomposition 2n < 〈�, j〉 ≤
2n+1. Since Sn in (7.18) are “crude” Fourier truncations, (C.7) holds with “=”
instead of “≤” and C = 1. As a consequence, every g ∈ Fβ satisfies the
first inequality in (C.11) with A = 1 (it becomes, in fact, an equality), and,
similarly, if g ∈ Fβ+c then (C.14) holds with Ac = 1 (and “=”).

We denote byV the composition operatorV(u)(ϕ, x) := V (ϕ, x+u(ϕ, x)),
and define�(u) := ω · ∂ϕu −V(u), namely we take the nonlinear operator F

in (7.7) as the operator� of Theorem C.1. By Lemma 2.4, if ‖u‖k0,γ2s0+1 ≤ δ2.4
(where we denote by δ2.4 the constant δ of Lemma 2.4), then V(u) satisfies
(2.11), namely for all s ≥ s0

‖V(u)‖k0,γs �s ‖V ‖k0,γs+k0
+ ‖u‖k0,γs ‖V ‖k0,γs0+k0+1, (7.19)
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and its second derivative V ′′(u)[v,w] = Vxx (ϕ, x + u(ϕ, x))vw satisfies

‖V ′′(u)[v,w]‖k0,γs �s ‖V ‖k0,γs0+k0+3

(
‖v‖k0,γs ‖w‖k0,γs0 + ‖v‖k0,γs0 ‖w‖k0,γs

)

+
{
‖V ‖k0,γs0+k0+3‖u‖k0,γs + ‖V ‖k0,γs+k0+2

}
‖v‖k0,γs0 ‖w‖k0,γs0 .

(7.20)

We fix μ,U of Theorem C.1 as μ := 1, U := {u ∈ E1 : ‖u‖E1 ≤ δ2.4}.
Thus�mapsU → F0 andU ∩ Ea+μ → Fa for all a ∈ [0, a2− 1], provided
that ‖V ‖k0,γ2s0+a2−1+k0

< ∞ (a2 will be fixed below in (7.24)). Moreover, for

all a ∈ [0, a2 − 1],� is of class C2(U ∩ Ea+μ, Fa) and it satisfies (C.9) with
a0 := 0,

M1(a) := C(a)‖V ‖k0,γs0+k0+3, M2(a) := M1(a),

M3(a) := C(a)‖V ‖k0,γ2s0+k0+2+a. (7.21)

We fix a1, δ1 of Theorem C.1 as a1 := ς , where ς = 3k0 + 2τ(k0 + 1) + 2
is the constant appearing in Lemma 7.2, and δ1 := 1

2δ7.2, where δ7.2 is the

constant δ0 of Lemma 7.2. If γ−1‖V ‖k0,γs0+ς ≤ δ1 and ‖v‖Ea1
≤ δ1, then, by

Lemma 7.2, the right inverse�(v) := F ′(v)−1 is well defined, and it satisfies

‖�(v)g‖Ea ≤ L1(a)‖g‖Fa+ς + (L2(a)‖v‖Ea+ς + L3(a))‖g‖F0 (7.22)

where

L1(a) := C(a)γ−1, L2(a) := C(a)γ−2‖V ‖k0,γs0+ς ,

L3(a) := C(a)γ−2‖V ‖k0,γ2s0+a+ς . (7.23)

We fix α, β, a2 of Theorem C.1 as

β := 4ς + 1, α := 3ς + 1, a2 := 5ς + 3, (7.24)

so that (C.8) is satisfied. Bound (7.22) implies (C.10) for all a ∈ [a1, a2]
provided that ‖V ‖k0,γ2s0+a2+ς < ∞.

All the hypotheses of the first part of Theorem C.1 are satisfied. As a con-
sequence, there exists a constant δC.13 (given by (C.13) with A = 1) such
that, if ‖g‖Fβ ≤ δC.13, then the equation �(u) = �(0) + g has a solution
u ∈ Eα , with bound (C.12). In particular, the result applies to g = V , in
which case the equation �(u) = �(0) + g becomes �(u) = 0. We have to
verify the smallness condition ‖g‖Fβ ≤ δC.13. Using (7.21), (7.23), (7.13),
we verify that δC.13 ≥ Cγ . Thus, the smallness condition ‖g‖Fβ ≤ δC.13 is
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satisfied if ‖V ‖k0,γ2s0+a2+ςγ
−1 is smaller than some δ depending on ς, s0. This

is assumption (7.13), since 2s0 + a2 + ς = s2 + p. Then (C.12), recalling
(7.24), gives ‖u‖k0,γs2 ≤ Cγ−1‖V ‖k0,γs2+ς , which implies (7.14) since p ≥ ς .

Wefinally prove estimate (7.15).Let c > 0. If, in addition,‖V ‖k0,γ2s0+a2+c+ς <

∞, then all the assumptions of the second part of TheoremC.1 are satisfied. By
(7.21), (7.23) and (7.13), we estimate the constants defined in (C.16)–(C.17)
as

G1 ≤ Ccγ
−2‖V ‖k0,γ2s0+a2+c+ς , G2 ≤ Ccγ

−1, z ≤ Cc

for some constant Cc depending on c. Bound (C.15) implies (7.15) with s =
s2+ c (the highest norm of V in (7.15) does not come from the term ‖V ‖Fβ+c

of (C.15), but from the factor G1). The proof is complete. � 
The next lemma deals with the dependence of the solution u of (7.7) on V

(actually it would be enough to estimate this Lipschitz dependence only in the
“low” norm s1 introduced in (6.10)).

Lemma 7.4 (Lipschitz dependence of u on V ) Let ς, s2, p be as defined in
Theorem 7.3. Let V1, V2 satisfy (7.13), and let u1, u2 be the solutions of

ω · ∂ϕui − Vi (ϕ, x + ui (ϕ, x)) = 0, i = 1, 2,

given by Theorem 7.3. Then for all s ≥ s2−μ (whereμ is the constant defined
in (2.18))

‖u1 − u2‖k0,γs �s γ
−1‖V1 − V2‖k0,γs+μ+k0

+γ−2 max
i=1,2

‖Vi‖k0,γs+2μ+p‖V1 − V2‖k0,γs2+k0
. (7.25)

Proof The difference h := u1− u2 is even(ϕ)odd(x), it has zero average in ϕ

and it solves ω · ∂ϕh − ah = b, where

a(ϕ, x) :=
∫ 1

0
(∂xV1)(ϕ, x + tu1 + (1− t)u2) dt,

b(ϕ, x) := (V1 − V2)(ϕ, x + u2).

The function a is odd(ϕ)even(x) and b is odd(ϕ)odd(x). Then, by variation
of constants and uniqueness, h = wev , where (as in Lemma 7.2)

v := (ω · ∂ϕ)−1a, w := w0 + g, w0 := (ω · ∂ϕ)−1(e−vb),

g = g(x) := −〈w0ev〉ϕ
〈ev〉ϕ .
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Then (7.25) follows by (2.11), (7.13), (7.14), (7.15), (2.18) and (2.19). � 
In Theorem 7.3, for any λ = (ω,h) ∈ DC(2γ, τ ) × [h1,h2] we have

constructed a periodic function u = β̆ that solves (7.7), namely the quasi-
periodic characteristic equation (7.6), so that the periodic function β, defined
by the inverse diffeomorphism in (7.5), solves the quasi-periodic transport
equation (7.4).

By Theorem B.2 we define an extension Ek(u) = Ek(β̆) =: β̆ext (with
k + 1 = k0) to the whole parameter space R

ν × [h1,h2]. By the linearity of
the extension operator Ek and by the norm equivalence (B.6), the difference of
the extended functions Ek(u1)− Ek(u2) also satisfies the same estimate (7.25)
as u1 − u2.

We define an extension βext of β to the whole space λ ∈ R
ν × [h1,h2] by

y = x + βext (ϕ, x) ⇔ x = y + β̆ext (ϕ, y) ∀x, y ∈ T, ϕ ∈ T
ν

(note that, in general, βext and Ek(β) are two different extensions of β outside
DC(γ, τ )× [h1,h2]). The extended functions βext , β̆ext induce the operators
Bext ,B−1

ext by

(Bext h)(ϕ, x) := h(ϕ, x + βext (ϕ, x)),

(B−1
ext h)(ϕ, y) := h(ϕ, y + β̆ext (ϕ, y)), Bext ◦ B−1

ext = Id,

and they are defined for λ ∈ R
ν × [h1,h2].

Notation: for simplicity, in the sequel we will drop the subscript “ext” and
we rename

βext := β, β̆ext := β̆, Bext := B, B−1
ext := B−1. (7.26)

We have the following estimates on the transformations B and B−1.

Lemma 7.5 Let β, β̆ be defined in (7.26). There exists σ := σ(τ, ν, k0) such
that, if (6.9) holds with μ0 ≥ σ , then for any s ≥ s2,

‖β‖k0,γs , ‖β̆‖k0,γs �s εγ
−1(1+ ‖I0‖k0,γs+σ

)
. (7.27)

The operators A = B±1 − Id, (B±1 − Id)∗ satisfy the estimates

‖Ah‖k0,γs �s εγ
−1
(
‖h‖k0,γs+k0+1 + ‖I0‖k0,γs+σ ‖h‖k0,γs0+k0+2

)
∀s ≥ s2. (7.28)

Let i1, i2 be two given embedded tori. Then, denoting �12β = β(i2)− β(i1)
and similarly for the other quantities, we have

‖�12β‖s1, ‖�12β̆‖s1 �s1 εγ−1‖i1 − i2‖s1+σ , (7.29)
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‖(�12A)[h]‖s1 �s1 εγ−1‖i1 − i2‖s1+σ‖h‖s1+1, A ∈
{
B±1, (B±1)∗

}
,

(7.30)

where s1 is introduced in (6.10).

Proof Bound (7.27) for β̆ follows, recalling that β̆ = u, by (7.15) and (6.18).
Estimate (7.27) for β follows by that for β̆, applying (2.12). We now prove
estimate (7.28) for B − Id. We have

(B − Id)h = β

∫ 1

0
Bτ [hx ] dτ, Bτ [ f ](ϕ, x) := f (ϕ, x + τβ(ϕ, x)).

Then (7.28) follows by applying (2.11) to the operator Bτ , using the estimates
on β, ansatz (6.9) and (2.10). The estimate for B−1− Id is obtained similarly.
The estimate on the adjoint operators follows because

B∗h(ϕ, y) = (1+ β̆(ϕ, y))h(ϕ, y + β̆(ϕ, y)),

(B−1)∗h(ϕ, x) = (1+ β(ϕ, x))h(ϕ, x + β(ϕ, x)).

Estimates (7.29), (7.30) follow by Lemma 7.4, and by (6.18)–(6.19). � 
We now conjugate the whole operator L0 in (6.15) by the diffeomorphism

B.

Lemma 7.6 Let β, β̆,B,B−1 be defined in (7.26). For all λ ∈ DC(γ, τ ) ×
[h1,h2], the transformation B conjugates the operator L0 defined in (6.15) to

L1 := B−1L0B = ω · ∂ϕ +
(
a1 −a2∂yHTh +R1
a3 0

)
, (7.31)

Th := tanh(h|Dy|) := Op
(
tanh(hχ(ξ)|ξ |)), (7.32)

where a1, a2, a3 are the functions

a1(ϕ, y) := (B−1Vx )(ϕ, y), a2(ϕ, y) := 1+ (B−1βx )(ϕ, y),

a3(ϕ, y) := (B−1a)(ϕ, y), (7.33)

and R1 is a pseudo-differential operator of order OPS−∞. Formula (7.33)
defines the functions a1, a2, a3 on the whole parameter space R

ν × [h1,h2].
The operatorR1 admits an extension to R

ν × [h1,h2] as well, which we also
denote by R1. The real valued functions β, a1, a2, a3 have parity

β = even(ϕ)odd(x); a1 = odd(ϕ)even(y); a2, a3 = even(ϕ)even(y).

(7.34)
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There exists σ = σ(τ, ν, k0) > 0 such that for any m, α ≥ 0, assuming (6.9)
withμ0 ≥ σ +m+α, for any s ≥ s0, onR

ν×[h1,h2] the following estimates
hold:

‖a1‖k0,γs + ‖a2 − 1‖k0,γs + ‖a3 − 1‖k0,γs �s εγ
−1(1+ ‖I0‖k0,γs+σ

)
, (7.35)

||R1||k0,γ−m,s,α �m,s,α εγ−1(1+ ‖I0‖k0,γs+σ+m+α

)
. (7.36)

Finally, given two tori i1, i2, we have

‖�12a1‖s1 + ‖�12a2‖s1 + ‖�12a3‖s1 �s1 εγ−1‖�12i‖s1+σ , (7.37)

||�12R1||−m,s1,α �m,s1,α εγ−1‖�12i‖s1+σ+m+α. (7.38)

Proof By (6.21) and (7.2)–(7.4) we have that

L1 := B−1L0B = ω · ∂ϕ +
(
a1 −B−1G(η)B
a3 0

)
(7.39)

where the functions a1 and a3 are defined in (7.33). We now conjugate the
Dirichlet–Neumann operator G(η) under the diffeomorphism B. Following
Proposition A.1, we write

G(η) = |Dx | tanh(h|Dx |)+RG = ∂xHTh +RG, Th := tanh(h|Dx |),
(7.40)

where RG is an integral operator in OPS−∞. We decompose

tanh(h|Dx |) = Id + Op(rh), rh(ξ) := − 2

1+ e2h|ξ |χ(ξ)
∈ S−∞, (7.41)

and, since B−1 ∂x B = a2∂y where the function a2 is defined in (7.33), we
have

B−1∂xHThB = (B−1∂xB)(B−1HB)(B−1ThB)
= a2∂y{H+ (B−1HB −H)}(B−1ThB)
= a2∂yHTh + a2∂yH[B−1Op(rh)B − Op(rh)]
+ a2∂y(B−1HB −H)(B−1ThB). (7.42)

Therefore by (7.40)–(7.42) we get

− B−1G(η)B = −a2∂yHTh +R1, (7.43)
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where R1 is the operator in OPS−∞ defined by

R1 :=R(1)
1 +R(2)

1 +R(3)
1 R(1)

1 :=− B−1RGB,

R(2)
1 :=−a2∂yH[B−1Op(rh)B−Op(rh)], R(3)

1 := − a2∂y(B−1HB −H)B−1ThB.
(7.44)

Notice that B−1RGB and B−1Op(rh)B are in OPS−∞ sinceRG and Op(rh),
defined in (7.40) and in (7.41), are in OPS−∞. The operator B−1HB −H is
in OPS−∞ by Lemma 2.17.

In conclusion, (7.39) and (7.43) imply (7.31)–(7.33), for all λ in the Can-
tor set DC(γ, τ ) × [h1,h2]. By formulas (7.44), R1 is defined on the whole
parameter space R

ν × [h1,h2].
Estimates (7.35), (7.37) for a1, a2, a3 on R

ν × [h1,h2] follow by (6.18),
(6.19) and Lemma 7.5. Estimates (7.36), (7.38) follow applying Lemmata 2.15
and 2.17 and Proposition A.1, and by using Lemma 7.5. � 
Remark 7.7 We stress that the conjugation identity (7.31) holds only on the
Cantor set DC(γ, τ ) × [h1,h2]. It is technically convenient to consider the
extension of a1, a2, a3,R1 to the whole parameter space R

ν × [h1,h2], in
order to directly use the results of Sect. 2.3 expressed by means of classical
derivatives with respect to the parameter λ. Formulas (7.33) and (7.44) define
a1, a2, a3,R1 on the whole parameter space R

ν × [h1,h2]. Note that the
resulting extended operator L1 in the right hand side of (7.31) is defined on
R

ν × [h1,h2], and in general it is different from B−1L0B outside DC(γ, τ )×
[h1,h2].

In the sequel we rename in (7.31)–(7.34) the space variable y by x .

8 Change of the space variable

We consider a ϕ-independent diffeomorphism of the torus T of the form

y = x + α(x) with inverse x = y + ᾰ(y) (8.1)

where α is a C∞(Tx ) real valued function, independent of ϕ, satisfying
‖αx‖L∞ ≤ 1/2. We also make the following ansatz on α that will be ver-
ified when we choose it in Sect. 11, see formula (11.23): the function α is
odd(x) and α = α(λ) = α(λ, i0(λ)), λ ∈ R

ν+1 is k0 times differentiable with
respect to the parameter λ ∈ R

ν+1 with ∂kλα ∈ C∞(T) for any k ∈ N
ν+1,

|k| ≤ k0, and it satisfies the estimate

‖α‖k0,γs �s εγ
−1(1+ ‖I0‖k0,γs+σ

)
, ∀s ≥ s0,

‖�12α‖s1 �s1 εγ−1‖�12i‖s1+σ ,
(8.2)
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for some σ = σ(k0, τ, ν) > 0. By (8.2) and Lemma 2.4, arguing as in the
proof of Lemma 7.5, one gets

‖ᾰ‖k0,γs �s εγ
−1(1+ ‖I0‖k0,γs+σ

)
, ∀s ≥ s0,

‖�12ᾰ‖s1 �s1 εγ−1‖�12i‖s1+σ ,
(8.3)

for some σ = σ(k0, τ, ν) > 0. Furthermore, the function ᾰ(y) is odd(y).
We conjugate the operator L1 in (7.31) by the composition operator

(Au)(ϕ, x) := u(ϕ, x + α(x)), (A−1u)(ϕ, y) := u(ϕ, y + ᾰ(y)). (8.4)

By (7.31), using that the operator A is ϕ-independent, recalling expansion
(7.41) and arguing as in (7.42) to compute the conjugationA−1

(−a2∂xHTh
)
A,

one has

L2 := A−1L1A = ω · ∂ϕ +
(
a4 −a5∂yHTh +R2
a6 0

)
, (8.5)

where a4, a5, a6 are the functions

a4(ϕ, y) := (A−1a1)(ϕ, y) = a1(ϕ, y + ᾰ(y)), (8.6)

a5(ϕ, y) :=
(
A−1(a2(1+ αx ))

)
(ϕ, y) = {a2(ϕ, x)(1+ αx (x))}|x=y+ᾰ(y)

(8.7)

a6(ϕ, y) := (A−1a3)(ϕ, y) = a3(ϕ, y + ᾰ(y)) (8.8)

and R2 is the operator in OPS−∞ given by

R2 := −a5∂yH
[
A−1Op(rh)A− Op(rh)

]

−a5∂y(A−1HA−H)(A−1ThA)+A−1R1A. (8.9)

Lemma 8.1 There exists a constant σ = σ(k0, τ, ν) > 0 such that, if (6.9)
holds with μ0 ≥ σ , then the following holds: the operators A ∈ {A±1 −
Id, (A±1 − Id)∗} are even and reversibility preserving and satisfy

‖Ah‖k0,γs �s εγ
−1(‖h‖k0,γs+k0+1 + ‖I0‖k0,γs+σ ‖h‖k0,γs0+k0+2

)
, ∀s ≥ s0,

‖(�12A)h‖s1 �s1 εγ−1‖�12i‖s1+σ‖h‖s1+1.
(8.10)

The real valued functions a4, a5, a6 in (8.6)–(8.8) satisfy

a4 = odd(ϕ)even(y), a5, a6 = even(ϕ)even(y), (8.11)
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and

‖a4‖k0,γs , ‖a5 − 1‖k0,γs , ‖a6 − 1‖k0,γs �s εγ
−1(1+ ‖I0‖k0,γs+σ

)
,

‖�12a4‖s1, ‖�12a5‖s1, ‖�12a6‖s1 �s1 εγ−1‖�12i‖s1+σ .
(8.12)

The remainderR2 defined in (8.9) is an even and reversible pseudo-differential
operator in OPS−∞. Moreover, for any m, α ≥ 0, and assuming (6.9) with
σ + m + α ≤ μ0, the following estimates hold:

||R2||k0,γ−m,s,α �m,s,α εγ−1(1+ ‖I0‖k0,γs+σ+m+α

)
, ∀s ≥ s0

||�12R2||−m,s1,α �m,s1,α εγ−1‖�12i‖s1+σ+m+α.
(8.13)

Proof The transformations A±1 − Id, (A±1 − Id)∗ are even and reversibility
preserving because α and ᾰ are odd functions. Estimate (8.10) can be proved
by using (8.2), (8.3), arguing as in the proof of Lemma 7.5.

Estimate (8.12) follows by definitions (8.6)–(8.8), by estimates (8.2), (8.3),
(8.10), (7.35), (7.37), and by applying Lemma 2.4. Estimates (8.13) of the
remainder R2 follow by using the same arguments we used in Lemma 7.6 to
get estimates (7.36), (7.38) for the remainderR1. � 

In the sequel we rename in (8.5)–(8.9) the space variable y by x .

9 Symmetrization of the order 1/2

The aim of this section is to conjugate the operatorL2 defined in (8.5) to a new
operator L4 in which the highest order derivatives appear in the off-diagonal
entries with the same order and opposite coefficients (see (9.9)–(9.13)). In the
complex variables (u, ū) that we will introduce in Sect. 10, this amounts to the
symmetrization of the linear operator at the highest order, see (10.1)–(10.3).

We first conjugate L2 by the real, even and reversibility preserving trans-
formation

M2 :=
(
�h 0
0 �−1

h

)
, (9.1)

where �h is the Fourier multiplier, acting on the periodic functions,

�h := π0 + |D| 14 T
1
4
h , with inverse �−1

h = π0 + |D|− 1
4 T

− 1
4

h , (9.2)

with Th = tanh(h|D|) and π0 defined in (2.33). The conjugated operator is

L3 :=M−1
2 L2M2 = ω · ∂ϕ +

(
�−1

h a4�h �−1
h (−a5∂xHTh +R2)�

−1
h

�ha6�h 0

)
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=: ω · ∂ϕ +
(
A3 B3
C3 0

)
. (9.3)

We develop the operators in (9.3) up to order −1/2. First we write

A3 = �−1
h a4�h = a4 +RA3 where RA3 := [�−1

h , a4]�h ∈ OPS−1

(9.4)

by Lemma 2.11. Using that |D|mπ0 = π0|D|m = 0 for any m ∈ R and that
π2
0 = π0 on the periodic functions, one has

C3 = �ha6�h = a6�
2
h + [�h, a6]�h = a6(π0 + |D| 14 T

1
4
h )2 + [�h, a6]�h

= a6|D| 12 T
1
2
h + π0 +RC3 where RC3 := (a6 − 1)π0 + [�h, a6]�h.

(9.5)

Using that |D| = H∂x , (9.2) and |D|π0 = 0 on the periodic functions, we
write B3 in (9.3) as

B3 = �−1
h (−a5∂xHTh +R2)�

−1
h

= −a5|D|Th�−2
h − [�−1

h , a5]|D|Th�−1
h +�−1

h R2�
−1
h

= −a5|D|Th
(
π0 + |D|− 1

4 T
− 1

4
h

)2 − [�−1
h , a5]|D|Th�−1

h +�−1
h R2�

−1
h

= −a5|D| 12 T
1
2
h +RB3

where RB3 := −[�−1
h , a5]|D|Th�−1

h +�−1
h R2�

−1
h . (9.6)

Lemma 9.1 Theoperators�h ∈ OPS
1
4 ,�−1

h ∈ OPS− 1
4 andRA3,RB3,RC3 ∈

OPS− 1
2 . Furthermore, there exists σ(k0, τ, ν) > 0 such that for any α > 0,

assuming (6.9) with μ0 ≥ σ + α, then for all s ≥ s0,

||�h||k0,γ1
4 ,s,α

, ||�−1
h ||k0,γ− 1

4 ,s,α
�α 1, (9.7)

||R||k0,γ− 1
2 ,s,α

�s,α εγ−1(1+ ‖I0‖k0,γs+σ+α

)
,

||�12R||− 1
2 ,s1,α

�s1,α εγ−1‖�12i‖s1+σ+α

for all R ∈ {RA3,RB3,RC3}. The operator L3 in (9.3) is real, even and
reversible.

Proof The lemma follows by the definitions ofRA3 ,RB3 ,RC3 in (9.4), (9.6),
(9.5), by Lemmata 2.10 and 2.11, recalling (2.39) and using (8.12), (8.13). � 
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Consider now a transformationM3 of the form

M3 :=
(
p 0
0 1

)
, M−1

3 =
(
p−1 0
0 1

)
, (9.8)

where p(ϕ, x) is a real-valued periodic function, with p−1 small (see (9.13)).
The conjugated operator is

L4 :=M−1
3 L3M3 = ω · ∂ϕ +

(
p−1(ω · ∂ϕ p)+ p−1A3 p p−1B3

C3 p 0

)

= ω · ∂ϕ +
(
A4 B4
C4 0

)
(9.9)

where, recalling (9.4), (9.6), (9.5), one has

A4 = ă4 +RA4 , ă4 := a4 + p−1(ω · ∂ϕ p), RA4 := p−1RA3 p (9.10)

B4 = −p−1a5|D| 12 T
1
2
h +RB4 , RB4 := p−1RB3 (9.11)

C4 = a6 p|D| 12 T
1
2
h +π0+RC4 , RC4 := a6[|D| 12 T

1
2
h , p]+π0(p − 1)+RC3 p (9.12)

and thereforeRA4,RB4,RC4 ∈ OPS− 1
2 . The coefficients of the highest order

term in B4 in (9.11) and C4 in (9.12) are opposite if a6 p = p−1a5. Therefore
we fix the real valued function

p :=
√
a5
a6

, a6 p = p−1a5 = √
a5a6 =: a7. (9.13)

Lemma 9.2 There exists σ := σ(τ, ν, k0) > 0 such that for any α > 0,
assuming (6.9) with μ0 ≥ σ +α, then for any s ≥ s0 the following holds. The
transformation M3 defined in (9.8) is real, even and reversibility preserving
and satisfies

||M±1
3 − Id||k0,γ0,s,0 �s εγ

−1(1+ ‖I0‖k0,γs+σ

)
. (9.14)

The real valued functions ă4, a7 defined in (9.10), (9.13) satisfy

ă4 = odd(ϕ)even(x), a7 = even(ϕ)even(x), (9.15)

and, for any s ≥ s0,

‖ă4‖k0,γs , ‖a7 − 1‖k0,γs �s εγ
−1(1+ ‖I0‖k0,γs+σ

)
. (9.16)
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The remaindersRA4,RB4,RC4 ∈ OPS− 1
2 defined in (9.10)–(9.12) satisfy

||R||k0,γ− 1
2 ,s,α

�s,α εγ−1(1+ ‖I0‖k0,γs+σ+α

)
, R ∈ {RA4,RB4,RC4}. (9.17)

Let i1, i2 be given embedded tori. Then

||�12M±1
3 ||0,s1,0 �s1 εγ−1‖�12i‖s1+σ , (9.18)

‖�12ă4‖s1, ‖�12a7‖s1 �s1 εγ−1‖�12i‖s1+σ , (9.19)

||�12R||− 1
2 ,s1,α

�s1,α εγ−1‖�12i‖s1+σ+α, R ∈ {RA4,RB4,RC4}.
(9.20)

The operator L4 in (9.9) is real, even and reversible.

Proof By (8.11), the functions a5, a6 are even(ϕ)even(x), and therefore p
is even(ϕ)even(x). Moreover, since a4 is odd(ϕ)even(x), we deduce (9.15).
Since p is even(ϕ)even(x), the transformationM3 is real, even and reversibil-
ity preserving.

Bydefinition (9.13), Lemma2.6, the interpolation estimate (2.10) and apply-
ing estimates (8.12) on a5 and a6, one gets that p satisfies the estimates

‖p±1−1‖k0,γs �s εγ
−1(1+‖I0‖k0,γs+σ

)
, ‖�12 p

±1‖s1 �s1 εγ−1‖�12i‖s1+σ

(9.21)

for some σ = σ(τ, ν, k0) > 0. Hence estimates (9.14), (9.18) forM±1
3 follow

by definition (9.8), using estimates (2.39), (9.21). Estimates (9.16), (9.19) for
ă4, a7 follow by definitions (9.10), (9.13) and applying estimates (8.12) on a4,
a5 and a6, estimates (9.21) on p, Lemma 2.6 and the interpolation estimate
(2.10). Estimates (9.17), (9.20) follow by definitions (9.10)–(9.12), estimate
(2.39), Lemmata 2.10 and 2.11, bounds (8.12) on a4, a5, a6, (9.21) on p, and
Lemma 9.1. � 

10 Symmetrization of the lower orders

To symmetrize the linear operator L4 in (9.9), with p fixed in (9.13), at
lower orders, it is convenient to introduce the complex coordinates (u, ū) :=
C−1(η, ψ), with C defined in (2.60), namely u = η+ iψ , ū = η− iψ . In these
complex coordinates the linear operator L4 becomes, using (2.61) and (9.13),

L5 := C−1L4C = ω · ∂ϕ + ia7|D| 12 T
1
2
h $

+a8I2 + i�0 + P5 +Q5, a8 := ă4
2
, (10.1)
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where the real valued functions a7, ă4 are defined in (9.13), (9.10) and satisfy
(9.15),

$ :=
(
1 0
0 −1

)
, �0 := 1

2

(
π0 π0
−π0 −π0

)
, I2 :=

(
1 0
0 1

)
, (10.2)

π0 is defined in (2.33), and

P5 :=
(
P5 0
0 P5

)
, Q5 :=

(
0 Q5

Q5 0

)
,

P5 := 1

2

{
RA4+i(RC4 −RB4)

}
, Q5 := a8 + 1

2

{
RA4+i(RC4 +RB4)

}
.

(10.3)

By the estimates of Lemma 9.2 we have

‖a7 − 1‖k0,γs �s εγ
−1(1+ ‖I0‖k0,γs+σ

)
, ‖�12a7‖s1 �s1 εγ−1‖�12i‖s1+σ ,

(10.4)

‖a8‖k0,γs �s εγ
−1(1+ ‖I0‖k0,γs+σ

)
, ‖�12a8‖s1 �s1 εγ−1‖�12i‖s1+σ ,

(10.5)

||P5||k0,γ− 1
2 ,s,α

, ||Q5||k0,γ0,s,α �s,α εγ−1(1+ ‖I0‖k0,γs+σ+α

)
, (10.6)

||�12P5||− 1
2 ,s1,α

, ||�12Q5||0,s1,α �s1,α εγ−1‖�12i‖s1+σ+α. (10.7)

Now we define inductively a finite number of transformations to remove all
the terms of orders ≥ −M from the off-diagonal operator Q5. The constant
M will be fixed in (14.8).
Let L(0)

5 := L5, P
(0)
5 := P5 and Q(0)

5 := Q5. In the rest of the section we
prove the following inductive claim:

• Symmetrization of L(0)
5 in decreasing orders. For m ≥ 0, there is

a real, even and reversible operator of the form

L(m)
5 := ω · ∂ϕ + ia7|D| 12 T

1
2
h $ + a8I2 + i�0 + P(m)

5 +Q(m)
5 , (10.8)

where

P(m)
5 =

(
P(m)
5 0

0 P
(m)

5

)

, Q(m)
5 =

(
0 Q(m)

5

Q
(m)

5 0

)

,

P(m)
5 = Op(pm) ∈ OPS−

1
2 , Q(m)

5 = Op(qm) ∈ OPS−
m
2 .

(10.9)
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For any α ∈ N, assuming (6.9) with μ0 ≥ ℵ4(m, α) + σ , where the
increasing constants ℵ4(m, α) are defined inductively by

ℵ4(0, α) :=α, ℵ4(m+1, α) :=ℵ4(m, α+1)+m

2
+2α+4, (10.10)

we have

||P(m)
5 ||k0,γ− 1

2 ,s,α
, ||Q(m)

5 ||−m
2 ,s,α

�m,s,α εγ−1
(
1+ ‖I0‖k0,γs+ℵ4(m,α)+σ

)
,

(10.11)

||�12P(m)
5 ||− 1

2 ,s1,α
, ||�12Q(m)

5 ||−m
2 ,s1,α

�m,s1,α εγ−1‖�12i‖s1+ℵ4(m,α)+σ .

(10.12)

For m ≥ 1, there exist real, even, reversibility preserving, invertible maps
�m−1 of the form

�m−1 := I2 +�m−1, �m−1 :=
(

0 ψm−1(ϕ, x, D)

ψm−1(ϕ, x, D) 0

)
, (10.13)

with ψm−1(ϕ, x, D) in OPS−m−1
2 − 1

2 , such that

L(m)
5 = �−1

m−1L
(m−1)
5 �m−1. (10.14)

Initialization The real, even and reversible operator L(0)
5 = L5 in (10.1)

satisfies the assumptions (10.8)–(10.12) for m = 0 by (10.6)–(10.7).

Inductive stepWe conjugateL(m)
5 in (10.8) by a real operator of the form (see

(10.13))

�m := I2 +�m, �m :=
(

0 ψm(ϕ, x, D)

ψm(ϕ, x, D) 0

)
,

ψm(ϕ, x, D) := Op(ψm) ∈ OPS−
m
2 − 1

2 .

(10.15)

We compute

L(m)
5 �m = �m

(
ω · ∂ϕ + ia7|D| 12 T

1
2
h $ + a8I2 + i�0 + P(m)

5

)

+ [ia7|D| 12 T
1
2
h $ + a8I2 + i�0 + P(m)

5 , �m
]+ (ω · ∂ϕ�m)

+Q(m)
5 +Q(m)

5 �m . (10.16)

In the next lemma we choose �m to decrease the order of the off-diagonal
operator Q(m)

5 .
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Lemma 10.1 Let

ψm(ϕ, x, ξ)

:=
⎧
⎨

⎩
− χ(ξ)qm(ϕ, x, ξ)

2ia7(ϕ, x)|ξ | 12 tanh 1
2 (h|ξ |)

if |ξ | > 1
3 ,

0 if |ξ | ≤ 1
3 ,

ψm ∈ S−
m
2 − 1

2 ,

(10.17)

where the cut-off function χ is defined in (2.16). Then the operator �m in
(10.15) solves

i
[
a7|D| 12 T

1
2
h $,�m

]+Q(m)
5 = Qψm (10.18)

where

Qψm :=
(

0 qψm (ϕ, x, D)

qψm (ϕ, x, D)

)
, qψm ∈ S−

m
2 −1. (10.19)

Moreover, there exists σ(k0, τ, ν) > 0 such that, for any α > 0, if (6.9) holds
with μ0 ≥ ℵ4(m, α + 1)+ α + m

2 + σ + 4, then

||qψm (ϕ, x, D)||k0,γ−m
2 −1,s,α �s,α εγ−1

(
1+‖I0‖k0,γs+ℵ4(m,α+1)+m

2 +α+σ+4

)
. (10.20)

The map �m is real, even, reversibility preserving and

||ψm(ϕ, x, D)||k0,γ−m
2 − 1

2 ,s,α
�m,s,α εγ−1(1+ ‖I0‖k0,γs+σ+ℵ4(m,α)

)
, (10.21)

||�12ψm(ϕ, x, D)||−m
2 − 1

2 ,s1,α
�m,s1,α εγ−1‖�12i‖s1+σ+ℵ4(m,α), (10.22)

||�12qψm (ϕ, x, D)||−m
2 −1,s1,α �m,s1,α εγ−1‖�12i‖s1+ℵ4(m,α+1)+m

2 +α+σ+4.

(10.23)

Proof We first note that in (10.17) the denominator a7|ξ | 12 tanh(h|ξ |) 12 ≥
c|ξ | 12 with c > 0 for all |ξ | ≥ 1/3, since a7 − 1 = O(εγ−1) by (9.16) and
(6.9). Thus the symbol ψm is well defined and estimate (10.21) follows by
(10.17), (2.46) and (10.11), (9.16), Lemma 2.6, (6.9). Recalling the definition

(10.2) of $, the vector valued commutator i[a7|D| 12 T
1
2
h $,�m] is

i

[
a7|D| 12 T

1
2
h $,�m

]
=
(
0 A
Ā 0

)
,

A := i

(
a7|D| 12 T

1
2
h Op(ψm)+ Op(ψm)a7|D| 12 T

1
2
h

)
.

(10.24)
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By (10.24), in order to solve (10.18) with a remainderQψm ∈ OPS−m
2 −1 as in

(10.19), we have to solve

ia7|D| 12 T
1
2
h Op(ψm)+ iOp(ψm)a7|D| 12 T

1
2
h + Op(qm)

= Op(qψm ) ∈ OPS−
m
2 −1. (10.25)

By (2.42), applied with N = 1, A = a7|D| 12 T
1
2
h , B = Op(ψm), and (2.31),

we have the expansion

a7|D| 12 T
1
2
h Op(ψm)+ Op(ψm)a7|D| 12 T

1
2
h

= Op
(
2a7|ξ | 12 tanh 1

2 (h|ξ |)ψm
)+ Op(qψm ) (10.26)

where, using that a7χ(ξ)|ξ | 12 tanh 1
2 (hχ(ξ)|ξ |) ∈ S

1
2 and ψm ∈ S−m

2 − 1
2 , the

symbol

qψm = r1,AB + r1,BA + 2a7|ξ | 12
(
tanh

1
2 (hχ(ξ)|ξ |)χ(ξ)

− tanh
1
2 (h|ξ |))ψm ∈ S−

m
2 −1, (10.27)

recalling that 1 − χ(ξ) ∈ S−∞ by (2.16). The symbol ψm in (10.17) is the
solution of

2ia7|ξ | 12 tanh 1
2 (h|ξ |)ψm + χ(ξ)qm = 0, (10.28)

and therefore, by (10.26)–(10.28), the remainder qψm in (10.25) is

qψm = iqψm + (1− χ(ξ))qm ∈ S−
m
2 −1. (10.29)

This proves (10.18)–(10.19). We now prove (10.20). We first estimate (10.27).

By (2.45) (applied with N = 1, A = a7|D| 12 T
1
2
h , B = Op(ψm), m = 1/2,

m′ = −m
2 − 1

2 and also by inverting the role of A and B), and the esti-

mates (10.21), (10.4), (6.9)wehave ||qψm (ϕ, x, D)||k0,γ−m
2 −1,s,α �m,s,α εγ−1

(
1+

‖I0‖k0,γs+σ+ℵ4(m,α+1)+m
2 +α+4

)
and the estimate (10.20) for qψm (ϕ, x, D) fol-

lows by (10.29) using (10.11), recalling that 1−χ(ξ) ∈ S−∞ and by applying
(2.46) with g(D) = 1−χ(D) and A = qm(ϕ, x, D). Bounds (10.22)–(10.23)
follow by similar arguments and by a repeated use of the triangular inequality.

Finally, themap�m defined by (10.15), (10.17) is real, even and reversibility
preserving becauseQ(m)

5 is real, even, reversible and a7 is even(ϕ)even(x) (see
(9.15)). � 
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For εγ−1 small enough, by (10.21) and (6.9) the operator �m is invertible,
and, by Lemma 2.13,

||�−1
m − I2||k0,γ0,s,α �s,α ||�m ||k0,γ0,s,α �s,α εγ−1(1+ ‖I0‖k0,γs+σ+ℵ4(m,α)

)
.

(10.30)

By (10.16) and (10.18), the conjugated operator is

L(m+1)
5 := �−1

m L(m)
5 �m = ω · ∂ϕ + ia7|D| 12 T

1
2
h $ + a8I2 + i�0

+P(m)
5 + P̆m+1 (10.31)

where P̆m+1 := �−1
m P∗

m+1 and

P∗
m+1 := Qψm +

[
i�0, �m

]+[a8I2 + P(m)
5 , �m

]+ (ω · ∂ϕ�m)+Q(m)
5 �m .

(10.32)

Thus (10.14) at order m + 1 is proved. Note that P̆m+1 and �0 are the only
operators in (10.31) containing off-diagonal terms.

Lemma 10.2 The operator P̆m+1 ∈ OPS−m
2 − 1

2 . Furthermore, for any α > 0,
assuming (6.9) with μ0 ≥ σ + ℵ4(m + 1, α), the following estimates hold:

||P̆m+1||k0,γ−m
2 − 1

2 ,s,α
�m,s,α εγ−1(1+ ‖I0‖k0,γs+σ+ℵ4(m+1,α)

)
, ∀s ≥ s0,

(10.33)

||�12P̆m+1||−m
2 − 1

2 ,s1,α
�m,s1,α εγ−1‖�12i‖s1+σ+ℵ4(m+1,α) (10.34)

where the constant ℵ4(m + 1, α) is defined in (10.10).

Proof UseLemma10.1, (10.9), (10.15), (2.44), (10.5), (10.11), (10.12), (2.38),
(10.32), (10.30). � 

The operator L(m+1)
5 in (10.31) has the same form (10.8) as L(m)

5 with

diagonal operators P(m+1)
5 and off-diagonal operators Q(m+1)

5 like in (10.9),

with P(m+1)
5 +Q(m+1)

5 = P(m)
5 + P̆m+1, satisfying (10.11)–(10.12) at the step

m+1 thanks to (10.33)–(10.34) and (10.11)–(10.12) at the stepm. This proves
the inductive claim. Applying it 2M times (the constant M will be fixed in
(14.8)), we derive the following lemma.

Lemma 10.3 For any α > 0, assuming (6.9) with μ0 ≥ ℵ5(M, α)+ σ where
the constant ℵ5(M, α) := ℵ4(2M, α) is defined recursively by (10.10), the
following holds. The real, even, reversibility preserving, invertible map
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Time quasi-periodic gravity water waves in finite depth 841

�M := �0 ◦ · · · ◦�2M−1 (10.35)

where �m, m = 0, . . . , 2M − 1, are defined in (10.15), satisfies

||�±1
M − I2||k0,γ0,s,0, ||(�±1

M − I2)
∗||k0,γ0,s,0 �s,M εγ−1(1+ ‖I0‖k0,γs+σ+ℵ5(M,0)

)
, ∀s ≥ s0,

(10.36)

||�12�
±1
M ||0,s1,0, ||�12(�

±1
M )∗||0,s1,0 �M,s1 εγ−1‖�12i‖s1+σ+ℵ5(M,0). (10.37)

The map �M conjugates L5 to the real, even and reversible operator

L6 :=�−1
M L5�M=ω · ∂ϕ+ia7|D| 12 T

1
2
h $+a8I2+i�0+P6+Q6 (10.38)

where the functions a7, a8 are defined in (9.13), (10.1), and

P6 :=
(
P6 0
0 P6

)
∈ OPS−

1
2 , Q6 :=

(
0 Q6

Q6 0

)
∈ OPS−M (10.39)

given by P6 := P(2M)
5 , Q6 := Q(2M)

5 in (10.8)–(10.9) for m = 2M, satisfy

||P6||k0,γ− 1
2 ,s,α

+ ||Q6||k0,γ−M,s,α �M,s,α εγ−1(1+ ‖I0‖k0,γs+σ+ℵ5(M,α)

)
, ∀s ≥ s0,

(10.40)

||�12P6||− 1
2 ,s1,α

+ ||�12Q6||−M,s1,α �M,s1,α εγ−1‖�12i‖s1+σ+ℵ5(M,α).

(10.41)

Proof We use (10.11), (10.12), (10.15), (10.21), (2.44), (10.30) and Lemma
2.12. � 

11 Reduction of the order 1/2

We have obtained the operator L6 in (10.38), where P6 is in OPS− 1
2 and the

off-diagonal term Q6 is in OPS−M . The goal of this section is to reduce to

constant coefficient the leading term ia7(ϕ, x)|D| 12 T
1
2
h $. To this end, we study

how the operator L6 transforms under the action of the flow�(τ) := �(τ, ϕ)

{
∂τ�(τ) = iA(ϕ)�(τ)

�(0) = Id,
A(ϕ) := β(ϕ, x)|D| 12 (11.1)

where the function β(ϕ, x) is a real valued smooth function, which will be
defined in (11.19). Since β(ϕ, x) is real valued, usual energy estimates imply
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that the flow�(τ, ϕ) is a bounded operator on Sobolev spaces satisfying tame
estimates, see Sect. 2.7.

Let � := �(ϕ) := �(1, ϕ). Note that �−1 = � (see Sect. 2.7) and

�π0 = π0 = �−1π0. (11.2)

We write the operator L6 in (10.38) as

L6 = ω · ∂ϕ + i�0 +
(
P(0)
6 Q6

Q6 P
(0)
6

)

where �0 is defined in (10.2), Q6 in (10.39), and

P(0)
6 := P(0)

6 (ϕ, x, D) := ia7|D| 12 T
1
2
h + a8 + P6 (11.3)

with P6 defined in (10.39). Conjugating L6 with the real operator

� :=
(
� 0
0 �

)
(11.4)

we get, since �−1�0� = �0� by (11.2),

L7 := �−1L6� = ω · ∂ϕ +�−1(ω · ∂ϕ�
)+ i�0�

+
(
�−1P(0)

6 � �−1Q6�

�
−1

Q6� �
−1

P
(0)
6 �

)

. (11.5)

Let us study the operator

L7 := ω · ∂ϕ +�−1(ω · ∂ϕ�
)+�−1P(0)

6 �. (11.6)

Analysis of the term�−1P(0)
6 �. Recalling (11.1), the operator P(τ, ϕ) :=

�(τ, ϕ)−1P(0)
6 �(τ, ϕ) satisfies the equation

∂τ P(τ, ϕ) = −i�(τ, ϕ)−1[A(ϕ), P(0)
6

]
�(τ, ϕ).

Iterating this formula, and using the notation AdA(ϕ)P
(0)
6 := [A(ϕ), P(0)

6

]
, we

obtain the following Lie series expansion of the conjugated operator

�(1, ϕ)−1P(0)
6 �(1, ϕ)
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Time quasi-periodic gravity water waves in finite depth 843

= P(0)
6 − i[A, P(0)

6 ] +
2M∑

n=2

(−i)n

n! AdnA(ϕ)P
(0)
6

+ (−i)2M+1

(2M)!
∫ 1

0
(1− τ)2M�(τ, ϕ)−1Ad2M+1

A(ϕ) P(0)
6 �(τ, ϕ) dτ. (11.7)

The order M of the expansion will be fixed in (14.8). We remark that (11.7)
is an expansion in operators with decreasing orders (and size) because each

commutator with A(ϕ) = β(ϕ, x)|D| 12 gains 1
2 order (and it has the size of

β). By (11.1) and (11.3),

−i
[
A, P(0)

6

] = [β|D| 12 , a7|D| 12
]+ [β|D| 12 , a7|D| 12 (T

1
2
h − Id)

]

− i
[
β|D| 12 , a8 + P6

]
. (11.8)

Moreover, by (2.47), (2.48) one has

[β|D| 12 , a7|D| 12 ]
= Op

(
− i{βχ(ξ)|ξ | 12 , a7χ(ξ)|ξ | 12 } + r2(βχ(ξ)|ξ | 12 , a7χ(ξ)|ξ | 12 )

)

= i
(
(∂xβ)a7 − β(∂xa7)

)
Op
(1
2
χ2(ξ)sign(ξ)+ χ(ξ)∂ξχ(ξ)|ξ |

)

+ Op
(
r2(βχ(ξ)|ξ | 12 , a7χ(ξ)|ξ | 12 )

)
(11.9)

where the symbol r2(βχ(ξ)|ξ | 12 , a7χ(ξ)|ξ | 12 ) ∈ S−1 is defined according to
(2.49). Therefore (11.8), (11.9) imply the expansion

−i
[
A, P(0)

6

] = −1

2

(
(∂xβ)a7 − β(∂xa7)

)
H+ R

A,P(0)
6

(11.10)

where the remainder

R
A,P(0)

6
:= i
(
(∂xβ)a7 − β(∂xa7)

)
Op
(
χ(ξ)∂ξχ(ξ)|ξ | + 1

2
(χ2(ξ)

− χ(ξ))sign(ξ)
)

+ Op
(
r2(βχ(ξ)|ξ | 12 , a7χ(ξ)|ξ | 12 )

)+ [β|D| 12 , a7|D| 12 (T
1
2
h − Id)

]

− i
[
β|D| 12 , a8 + P6

]
(11.11)

is an operator of order −1
2 (because of the term [β|D| 12 , a8]).
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Analysis of the term ω · ∂ϕ + �−1{ω · ∂ϕ�} = �−1 ◦ ω · ∂ϕ ◦ �. We
argue as above, differentiating

∂τ
{
�(τ, ϕ)−1 ◦ ω · ∂ϕ ◦�(τ, ϕ)

} = −i�(τ, ϕ)−1[A(ϕ), ω · ∂ϕ
]
�(τ, ϕ)

= −i�(τ, ϕ)−1(AdA(ϕ)ω · ∂ϕ
)
�(τ, ϕ).

Therefore, by iteration, we get the Lie series expansion

�(1, ϕ)−1 ◦ ω · ∂ϕ ◦�(1, ϕ)

= ω · ∂ϕ − iAdA(ϕ)ω · ∂ϕ + (−i)2

2
Ad2A(ϕ)ω · ∂ϕ+

2M+1∑

n=3

(−i)n

n! AdnA(ϕ)ω · ∂ϕ

+ (−i)2M+2

(2M + 1)!
∫ 1

0
(1− τ)2M+1�(τ, ϕ)−1(Ad2M+2

A(ϕ) ω · ∂ϕ
)
�(τ, ϕ) dτ.

(11.12)

We compute the commutator

AdA(ϕ)ω · ∂ϕ =
[
A(ϕ), ω · ∂ϕ

]

= −(ω · ∂ϕA(ϕ)) (11.1)= −(ω · ∂ϕβ(ϕ, x))|D|1/2(11.13)

and, using (2.47), (2.48),

Ad2A(ϕ)ω · ∂ϕ =
[
(ω · ∂ϕA(ϕ)), A(ϕ)

] = [(ω · ∂ϕβ)|D| 12 , β|D| 12
]

= Op
(
− i
{
(ω · ∂ϕβ)χ(ξ)|ξ | 12 , βχ(ξ)|ξ | 12

}

+ r2((ω · ∂ϕβ)χ(ξ)|ξ | 12 , βχ(ξ)|ξ | 12 )
)
.

According to (2.48) the term with the Poisson bracket is

− i
{
(ω · ∂ϕβ)χ(ξ)|ξ | 12 , βχ(ξ)|ξ | 12

}

= i
(
β ω · ∂ϕβx − βx ω · ∂ϕβ

)(1
2
χ(ξ)2sign(ξ)+ χ(ξ)∂ξχ(ξ)|ξ |

)

and therefore

(−i)2

2
Ad2A(ϕ)ω · ∂ϕ = 1

4

(
β ω · ∂ϕβx − βx ω · ∂ϕβ

)
H+ RA,ω·∂ϕ (11.14)
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where

RA,ω·∂ϕ := − i

4

(
β ω · ∂ϕβx − βx ω · ∂ϕβ

)
Op
(
(χ(ξ)2

− χ(ξ))sign(ξ)+ 2χ(ξ)∂ξχ(ξ)|ξ |
)

− 1

2
Op
(
r2
(
(ω · ∂ϕβ)χ(ξ)|ξ | 12 , βχ(ξ)|ξ | 12

))
(11.15)

is an operator in OPS−1 (the first line of (11.15) reduces to the zero operator
when acting on the periodic functions, because χ2−χ and ∂ξχ vanish on Z).

Finally, by (11.12), (11.13) and (11.14), we get

�(1, ϕ)−1 ◦ ω · ∂ϕ ◦�(1, ϕ) = ω · ∂ϕ + i(ω · ∂ϕβ)(ϕ, x)|D| 12

+ 1

4

(
β(ω · ∂ϕβx )− βx (ω · ∂ϕβ)

)H+ RA,ω·∂ϕ −
2M+1∑

n=3

(−i)n

n! Adn−1A(ϕ)

(
ω · ∂ϕ A(ϕ)

)

− (−i)2M+2

(2M + 1)!
∫ 1

0
(1− τ)2M+1�(τ, ϕ)−1

(
Ad2M+1

A(ϕ)

(
ω · ∂ϕ A(ϕ)

))
�(τ, ϕ) dτ.

(11.16)

This is an expansion in operators with decreasing orders (and size).
In conclusion, by (11.6), (11.7), (11.3), (11.10), (11.16), the term of order

|D| 12 in L7 in (11.6) is

i

(
(ω · ∂ϕβ)+ a7T

1
2
h

)
|D| 12 . (11.17)

Choice of the functions β(ϕ, x) and α(x). We choose the function β(ϕ, x)
such that

(ω · ∂ϕβ)(ϕ, x)+a7(ϕ, x)=〈a7〉ϕ(x), 〈a7〉ϕ(x) := 1

(2π)ν

∫

Tν

a7(ϕ, x) dϕ.

(11.18)

For all ω ∈ DC(γ, τ ), the solution of (11.18) is the periodic function

β(ϕ, x) := −(ω · ∂ϕ)−1(a7(ϕ, x)− 〈a7〉ϕ(x)
)
, (11.19)

whichwe extend to thewhole parameter spaceR
ν×[h1,h2] by settingβext :=

−(ω · ∂ϕ)−1
ext (a7 − 〈a7〉ϕ) via the operator (ω · ∂ϕ)−1

ext defined in Lemma 2.5.
For simplicity we still denote by β this extension.
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846 P. Baldi et al.

Lemma 11.1 The real valued function β defined in (11.19) is odd(ϕ)even(x).
Moreover there exists σ(k0, τ, ν) > 0 such that, if (6.9) holds with μ0 ≥ σ ,
then β satisfies the following estimates:

‖β‖k0,γs �s εγ
−2(1+ ‖I0‖k0,γs+σ

)
, ‖ω · ∂ϕβ‖k0,γs �s εγ

−1(1+ ‖I0‖k0,γs+σ

)
,

(11.20)

‖�12β‖s1 �s1 εγ−2‖�12i‖s1+σ , ‖ω · ∂ϕ�12β‖s1 �s1 εγ−1‖�12i‖s1+σ .

(11.21)

Proof The function a7 is even(ϕ)even(x) (see (9.15)), and therefore, by
(11.19), β is odd(ϕ)even(x). Estimates (11.20)–(11.21) follow by (11.18),
(11.19), (10.4) and Lemma 2.5. � 

By (9.13), (8.7), (8.8) one has

a7 = √
a5a6 =

√
A−1(a2)A−1(a3)A−1(1+ αx )

= A−1(
√
a2a3)A−1(√1+ αx

)
.

We now choose the 2π -periodic function α(x) (introduced as a free parameter
in (8.1)) so that

〈a7〉ϕ(x) = m 1
2

(11.22)

is independent of x , for some real constant m 1
2
. This is equivalent to solve the

equation

〈√a2a3 〉ϕ(x)
√
1+ αx (x) = m 1

2

whose solution is

m 1
2
:=
(

1

2π

∫

T

dx

〈√a2a3 〉2ϕ(x)
)− 1

2

, α(x) := ∂−1
x

( m2
1
2

〈√a2a3 〉2ϕ(x)
− 1

)
.

(11.23)

Lemma 11.2 The real valued function α(x) defined in (11.23) is odd(x) and
(8.2) holds. Moreover

|m 1
2
− 1|k0,γ � εγ−1, |�12m 1

2
| � εγ−1‖�12i‖s1 . (11.24)

Proof Since a2, a3 are even(x) by (7.34), the function α(x) defined in (11.23)
is odd(x). Estimates (11.24) follow by the definition of m 1

2
in (11.23) and
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(7.35), (7.37), (6.9), applying also Lemma 2.6 and (2.10). Similarly α satisfies
(8.2) by (7.35), (7.37), (11.24), Lemma 2.6 and (2.10). � 

By (11.18) and (11.22) the term in (11.17) reduces to

i

(
ω · ∂ϕβ(ϕ, x)+ a7(ϕ, x)T

1
2
h

)
|D| 12 = im 1

2
T

1
2
h |D|

1
2 + Rβ (11.25)

where Rβ is the OPS−∞ operator defined by

Rβ := i(ω · ∂ϕβ)(Id − T
1
2
h )|D| 12 . (11.26)

Finally, the operator L7 in (11.6) is, in view of (11.7), (11.3), (11.10), (11.16),
(11.25),

L7 = ω · ∂ϕ + im 1
2
T

1
2
h |D|

1
2 + a8 + a9H+ P7 + T7 (11.27)

where a9 is the real valued function

a9 := a9(ϕ, x) := −1

2

(
βx a7 − β(∂xa7)

)− 1

4

(
βx ω · ∂ϕβ − β ω · ∂ϕβx

)
,

(11.28)

P7 is the operator in OPS−1/2 given by

P7 := R
A,P(0)

6
+ RA,ω·∂ϕ −

2M+1∑

n=3

(−i)n

n! Adn−1
A(ϕ)

(
ω · ∂ϕA(ϕ)

)

+
2M∑

n=2

(−i)n

n! AdnA(ϕ)P
(0)
6 + P6 + Rβ (11.29)

(the operators R
A,P(0)

6
, RA,ω·∂ϕ , P6,Rβ are defined respectively in (11.11),

(11.15), (10.39), (11.26)), and

T7 := − (−i)2M+2

(2M + 1)!
∫ 1

0
(1− τ)2M+1

×�(τ, ϕ)−1(Ad2M+1
A(ϕ)

(
ω · ∂ϕA(ϕ)

))
�(τ, ϕ) dτ

+ (−i)2M+1

(2M)!
∫ 1

0
(1− τ)2M�(τ, ϕ)−1Ad2M+1

A(ϕ) P(0)
6 �(τ, ϕ) dτ

(11.30)
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(T7 stands for “tame remainders”, namely remainders satisfying tame estimates
together with their derivatives, see (11.39), without controlling their pseudo-
differential structure). In conclusion, we have the following lemma.

Lemma 11.3 Let β(ϕ, x) and α(x) be the functions defined in (11.19) and
(11.23). Then L7 := �−1L6� in (11.5) is the real, even and reversible oper-
ator

L7 = ω · ∂ϕ + im 1
2
T

1
2
h |D|

1
2$ + i�0 + (a8 + a9H)I2 + P7 + T7

(11.31)

where m 1
2
is the real constant defined in (11.23), a8, a9 are the real valued

functions in (10.1), (11.28),

a8 = odd(ϕ)even(x), a9 = odd(ϕ)odd(x), (11.32)

and P7, T7 are the real operators

P7 :=
(
P7 0
0 P7

)
∈ OPS−

1
2 ,

T7 := i�0(�− I2)+�−1Q6�+
(
T7 0
0 T 7

)
,

(11.33)

where P7 is defined in (11.29) and T7 in (11.30).

Proof Formula (11.31) follows by (11.5) and (11.27). By Lemma 11.1 the
real function β is odd(ϕ)even(x). Thus, by Sects. 2.5 and 2.7, the flow map
� in (11.4) is real, even and reversibility preserving and therefore the con-
jugated operator L7 is real, even and reversible. Moreover the function a7 is
even(ϕ)even(x) by (9.15) and a9 defined in (11.28) is odd(ϕ)odd(x). � 

Note that formulas (11.28) and (11.33) (via (11.29), (11.30)) define a9 and
P7, T7 on the whole parameter space R

ν × [h1,h2] by means of the extended
function β and the corresponding flow �. Thus the right hand side of (11.31)
defines an extended operator on R

ν × [h1,h2], which we still denote by L7.
In the next lemma we provide some estimates on the operators P7 and T7.

Lemma 11.4 There exists σ(k0, τ, ν) > 0 such that, if (6.9) holds with μ0 ≥
σ , then

‖a9‖k0,γs �s εγ
−2(1+ ‖I0‖k0,γs+σ ), ∀s ≥ s0,

‖�12a9‖s1 �s1 εγ−2‖�12i‖s1+σ .
(11.34)
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For any s ≥ s0 there exists δ(s) > 0 small enough such that if εγ−2 ≤ δ(s),
then

‖(�±1−Id)h‖k0,γs , ‖(�∗−Id)h‖k0,γs �s εγ
−2(‖h‖k0,γs+σ + ‖I0‖k0,γs+σ ‖h‖k0,γs0+σ

)
,

(11.35)

‖�12�
±1h‖s1 �s1 εγ−2‖�12i‖s1+σ‖h‖s1+ 1

2
. (11.36)

The pseudo-differential operatorP7 defined in (11.33) is in OPS−
1
2 . Moreover

for any M, α > 0, there exists a constant ℵ6(M, α) > 0 such that assuming
(6.9) with μ0 ≥ ℵ6(M, α)+ σ , the following estimates hold:

||P7||k0,γ− 1
2 ,s,α

�M,s,α εγ−2(1+ ‖I0‖k0,γs+ℵ6(M,α)+σ

)
, (11.37)

||�12P7||− 1
2 ,s1,α

�M,s1,α εγ−2‖�12i‖s1+ℵ6(M,α)+σ . (11.38)

Let S > s0,β0 ∈ N, and M > 1
2 (β0+k0). There exists a constantℵ′6(M, β0) >

0 such that, assuming (6.9) with μ0 ≥ ℵ′6(M, β0) + σ , for any m1,m2 ≥ 0,
with m1 + m2 ≤ M − 1

2 (β0 + k0), for any β ∈ N
ν , |β| ≤ β0, the operators

〈D〉m1∂
β
ϕ T7〈D〉m2 , 〈D〉m1∂

β
ϕ�12T7〈D〉m2 are Dk0-tame with tame constants

satisfying

M〈D〉m1∂
β
ϕ T7〈D〉m2

(s) �M,S εγ−2(1+ ‖I0‖s+ℵ′6(M,β0)+σ

)
, ∀s0 ≤ s ≤ S

(11.39)

‖〈D〉m1�12∂
β
ϕ T7〈D〉m2‖L(Hs1 ) �M,S εγ−2‖�12i‖s1+ℵ′6(M,β0)+σ . (11.40)

Proof Estimates (11.34) for a9 defined in (11.28) follow by (10.4), (11.20),
(11.21), (2.10) and (6.9).
Proof of (11.35)–(11.36) It follows by applying Proposition 2.37, Lemma
2.38, estimates (11.20)–(11.21) and using formula ∂kλ

(
(�±1 − Id)h

) =
∑

k1+k2=k C(k1, k2)∂
k1
λ (�±1 − Id)∂k2λ h, for any k ∈ N

ν+1, |k| ≤ k0.

Proof of (11.37)–(11.38) First we prove (11.37), estimating each term in the

definition (11.29) of P7. The operator A = β(ϕ, x)|D| 12 in (11.1) satisfies, by
(2.46) and (11.20),

||A||k0,γ1
2 ,s,α

�s,α ‖β‖k0,γs �s,α εγ−2(1+ ‖I0‖k0,γs+σ

)
. (11.41)
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The operator P(0)
6 in (11.3) satisfies, by (10.4), (10.5), (2.46), (10.40),

||P(0)
6 ||k0,γ1

2 ,s,α
�M,s,α 1+ ‖I0‖k0,γs+ℵ5(M,α)+σ . (11.42)

The estimate of the term −∑2M+1
n=3

(−i)n

n! Adn−1
A(ϕ)

(
ω · ∂ϕA(ϕ)

) +∑2M
n=2

(−i)n

n!
AdnA(ϕ)P

(0)
6 in (11.29) then follows by (11.41), (11.42) and by applyingLemma

2.10 and the estimate (2.51). The term Rβ ∈ OPS−∞ defined in (11.26) can

be estimated by (2.46) (applied with A := ω · ∂ϕβ, g(D) := (T
1
2
h − Id)|D| 12 ∈

OPS−∞) and using (11.20), (7.41). The estimate of the terms R
A,P(0)

6
, RA,ω·∂ϕ

in (11.29) follows by their definition given in (11.11), (11.15) and by estimates
(10.4), (10.5), (10.40), (11.20), (2.10), (2.46), and Lemmata 2.10, 2.11. Since
P6 satisfies (10.40), estimate (11.37) is proved. Estimate (11.38) can be proved
by similar arguments.

Proof of (11.39), (11.40) We estimate the term �−1Q6� in (11.33). For any
k ∈ N

ν+1, β ∈ N
ν , |k| ≤ k0, |β| ≤ β0, λ = (ω,h), one has

∂kλ∂
β
ϕ (�

−1Q6�)

=
∑

β1+β2+β3=β

k1+k2+k3=k

C(β1, β2, β3, k1, k2, k3)(∂
k1
λ ∂β1ϕ �−1)(∂

k2
λ ∂β2ϕ Q6)(∂

k3
λ ∂β3ϕ �).

(11.43)

For anym1,m2 ≥ 0 satisfyingm1+m2 ≤ M− 1
2 (β0+k0), we have to provide

an estimate for the operator

〈D〉m1(∂
k1
λ ∂β1ϕ �−1)(∂

k2
λ ∂β2ϕ Q6)(∂

k3
λ ∂β3ϕ �)〈D〉m2 . (11.44)

We write

(11.44) =
(
〈D〉m1∂

k1
λ ∂β1ϕ �−1〈D〉− |β1|+|k1|

2 −m1
)

(11.45)

◦
(
〈D〉 |β1|+|k1|2 +m1∂

k2
λ ∂β2ϕ Q6〈D〉

|β3|+|k3|
2 +m2

)
(11.46)

◦
(
〈D〉−m2−|β3|+|k3|

2 ∂
k3
λ ∂β3ϕ �〈D〉m2

)
. (11.47)

The terms (11.45)–(11.47) can be estimated separately. To estimate the terms
(11.45) and (11.47),we apply (2.86) ofProposition2.37, (2.88) ofLemma2.38,
and (11.20)–(11.21). The pseudo-differential operator in (11.46) is estimated
in || ||0,s,0 norm by using (2.40), (2.44), (2.46), bounds (10.40), (10.41) onQ6,
and the fact that |β1|+|k1|

2 + m1 + |β3|+|k3|
2 + m2 − M ≤ 0. Then its action
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on Sobolev functions is deduced by Lemma 2.28. As a consequence, each
operator in (11.44), and hence the whole operator (11.43), satisfies (11.39).

The estimates of the terms in (11.30) can be done arguing similarly, using
also the estimates (2.51), (11.41)–(11.42). The term 〈D〉m1∂

β
ϕ�0(�−I2)〈D〉m2

can be estimated by applying Lemma 2.36 (with A = I2, B = �) and (11.35),
(11.20), (11.21). � 

12 Reduction of the lower orders

In this section we complete the reduction of the operator L7 in (11.31) to
constant coefficients, up to a regularizing remainder of order |D|−M . Wewrite

L7 =
(
L7 0
0 L7

)
+ i�0 + T7, (12.1)

where

L7 := ω · ∂ϕ + im 1
2
T

1
2
h |D|

1
2 + a8 + a9H+ P7, (12.2)

the real valued functions a8, a9 are introduced in (10.1), (11.28), satisfy

(11.32), and the operator P7 ∈ OPS− 1
2 in (11.29) is even and reversible.

We first conjugate the operator L7.

12.1 Reduction of the order 0

In this subsectionwe reduce to constant coefficients the term a8+a9H of order
zero of L7 in (12.2). We begin with removing the dependence of a8+ a9H on
ϕ. It turns out that, since a8, a9 are odd functions in ϕ by (11.32), thus with
zero average, this step removes completely the terms of order zero. Consider
the transformation

W0 := Id + f0(ϕ, x)+ g0(ϕ, x)H, (12.3)

where f0, g0 are real valued functions to be determined. SinceH2 = −Id+π0
on the periodic functions where π0 is defined in (2.33), one has

L7W0 = W0

(
ω · ∂ϕ + im 1

2
T

1
2
h |D|

1
2

)
+ (ω · ∂ϕ f0 + a8 + a8 f0 − a9g0)

+ (ω · ∂ϕg0 + a9 + a8g0 + a9 f0)H+ P̆7 (12.4)
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where P̆7 ∈ OPS− 1
2 is the operator

P̆7 := a9[H, f0] + a9[H, g0]H+
[
im 1

2
T

1
2
h |D|

1
2 ,W0

]
+ P7W0 + a9g0π0.

(12.5)

In order to eliminate the zero order terms in (12.4) we choose the functions
f0, g0 such that

{
ω · ∂ϕ f0 + a8 + a8 f0 − a9g0 = 0

ω · ∂ϕg0 + a9 + a8g0 + a9 f0 = 0.
(12.6)

Writing z0 = 1+ f0+ ig0, the real system (12.6) is equivalent to the complex
scalar equation

ω · ∂ϕz0 + (a8 + ia9)z0 = 0. (12.7)

Since a8, a9 are odd functions in ϕ, we choose, for all ω ∈ DC(γ, τ ), the
periodic function

z0 := exp(p0), p0 := −(ω · ∂ϕ)−1(a8 + ia9), (12.8)

which solves (12.7). Thus the real functions

f0 := Re(z0)− 1 = exp(−(ω · ∂ϕ)−1a8) cos((ω · ∂ϕ)−1a9)− 1,

g0 := Im(z0) = − exp(−(ω · ∂ϕ)−1a8) sin((ω · ∂ϕ)−1a9)
(12.9)

solve (12.6), and, for ω ∈ DC(γ, τ ), equation (12.4) reduces to

L7W0 = W0(ω · ∂ϕ + im 1
2
T

1
2
h |D|

1
2 )+ P̆7, P̆7 ∈ OPS−

1
2 . (12.10)

We extend the function p0 in (12.8) to thewhole parameter spaceR
ν×[h1,h2]

by using (ω · ∂ϕ)−1
ext introduced in Lemma 2.5. Thus the functions z0, f0, g0 in

(12.8), (12.9) are defined on R
ν × [h1,h2] as well.

Lemma 12.1 The real valued functions f0, g0 in (12.9) satisfy

f0 = even(ϕ)even(x), g0 = even(ϕ)odd(x). (12.11)

Moreover, there exists σ(k0, τ, ν) > 0 such that, if (6.9) holds with μ0 ≥ σ ,
then

‖ f0‖k0,γs , ‖g0‖k0,γs �s εγ
−3(1+ ‖I0‖k0,γs+σ

)
,
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‖�12 f0‖s1, ‖�12g0‖s1 �s1 εγ−3‖�12i‖s1+σ . (12.12)

The operator W0 defined in (12.3) is even, reversibility preserving, invertible
and for any α > 0, assuming (6.9) with μ0 ≥ α + σ , the following estimates
hold:

||W±1
0 − Id||k0,γ0,s,α �s,α εγ−3(1+ ‖I0‖k0,γs+α+σ

)
,

||�12W
±1
0 ||0,s1,α �s1,α εγ−3‖�12i‖s1+α+σ .

(12.13)

Proof The parities in (12.11) follow by (12.9) and (11.32). Therefore W0 in
(12.3) is even and reversibility preserving. Estimates (12.12) follow by (12.9),
(10.5), (11.34), (2.10), (2.17), (2.19). The operator W0 defined in (12.3) is
invertible by Lemma 2.13, (12.12), (6.9), for εγ−3 small enough. Estimates
(12.13) then follow by (12.12), using (2.39), (2.46) and Lemma 2.13. � 

For ω ∈ DC(γ, τ ), by (12.10) we obtain the even and reversible operator

L(1)
7 := W−1

0 L7W0 = ω · ∂ϕ + im 1
2
T

1
2
h |D|

1
2 + P(1)

7 , P(1)
7 := W−1

0 P̆7,

(12.14)

where P̆7 is the operator in OPS−
1
2 defined in (12.5).

Since the functions f0, g0 are defined on R
ν × [h1,h2], the operator P̆7 in

(12.5) is defined on R
ν × [h1,h2], and ω · ∂ϕ + im 1

2
T

1
2
h |D|

1
2 + P(1)

7 in (12.14)

is an extension of L(1)
7 to R

ν × [h1,h2], still denoted L(1)
7 .

Lemma 12.2 For any M, α > 0, there exists a constant ℵ(1)
7 (M, α) > 0

such that if (6.9) holds with μ0 ≥ ℵ(1)
7 (M, α), the remainder P(1)

7 ∈ OPS− 1
2 ,

defined in (12.14), satisfies

||P(1)
7 ||k0,γ− 1

2 ,s,α
�M,s,α εγ−3

(
1+ ‖I0‖k0,γ

s+ℵ(1)
7 (M,α)

)
,

||�12P
(1)
7 ||− 1

2 ,s1,α
�M,s1,α εγ−3‖�12i‖s1+ℵ(1)

7 (M,α)
.

(12.15)

Proof Estimates (12.15) follow by the definition of P(1)
7 given in (12.14),

by estimates (12.12), (12.13), (11.24), (11.34), (11.37), (11.38), by applying
(2.39), (2.44), (2.46), (2.50) and using also Lemma 2.16. The fact that P(1)

7

has size εγ−3 is due to the term [im 1
2
T

1
2
h |D|

1
2 ,W0] = [im 1

2
T

1
2
h |D|

1
2 ,W0− Id],

because m 1
2
= 1+ O(εγ−1) and W0 − Id = O(εγ−3). � 

We underline that the operator L(1)
7 in (12.14) does not contain terms of

order zero.
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12.2 Reduction at negative orders

In this subsection we define inductively a finite number of transformations to
the aim of reducing to constant coefficients all the symbols of orders > −M
of the operator L(1)

7 in (12.14). The constant M will be fixed in (14.8). In the
rest of the section we prove the following inductive claim:

• Diagonalization of L(1)
7 in decreasing orders For any m ∈ {1, . . . , 2M},

we have an even and reversible operator of the form

L(m)
7 := ω · ∂ϕ +�m(D)+ P(m)

7 , P(m)
7 ∈ OPS−

m
2 , (12.16)

where

�m(D) := im 1
2
T

1
2
h |D|

1
2 + rm(D), rm(D) ∈ OPS−

1
2 . (12.17)

The operator rm(D) is an even and reversible Fourier multiplier, indepen-
dent of (ϕ, x). Also the operator P(m)

7 is even and reversible.

For any M, α > 0, there exists a constant ℵ(m)
7 (M, α) > 0 (depending

also on τ, k0, ν) such that, if (6.9) holds with μ0 ≥ ℵ(m)
7 (M, α), then the

following estimates hold:

||rm(D)||k0,γ− 1
2 ,s,α

�M,α εγ−(m+1),

||�12rm(D)||− 1
2 ,s1,α

�M,α εγ−(m+1)‖�12i‖s1+ℵ(m)
7 (M,α)

,
(12.18)

||P(m)
7 ||k0,γ−m

2 ,s,α
�M,s,α εγ−(m+2)

(
1+ ‖I0‖k0,γ

s+ℵ(m)
7 (M,α)

)
, (12.19)

||�12P
(m)
7 ||−m

2 ,s1,α
�M,s1,α εγ−(m+2)‖�12i‖s1+ℵ(m)

7 (M,α)
. (12.20)

Note that by (12.17), using (11.24), (12.18) and (2.40) (applied for g(D) =
T

1
2
h |D|

1
2 ) one gets

||�m(D)||k0,γ1
2 ,s,α

�M,α 1,

||�12�m(D)|| 1
2 ,s1,α

�M,α εγ−(m+1)‖�12i‖s1+ℵ(m)
7 (M,α)

.
(12.21)

123



Time quasi-periodic gravity water waves in finite depth 855

For m ≥ 2 there exist real, even, reversibility preserving, invertible maps
W (0)

m−1, W
(1)
m−1 of the form

W (0)
m−1 := Id + w

(0)
m−1(ϕ, x, D) with w

(0)
m−1(ϕ, x, ξ) ∈ S−

m−1
2 ,

W (1)
m−1 := Id + w

(1)
m−1(x, D) with w

(1)
m−1(x, ξ) ∈ S−

m−1
2 + 1

2

(12.22)

such that, for all ω ∈ DC(γ, τ ),

L(m)
7 = (W (1)

m−1)
−1(W (0)

m−1)
−1L(m−1)

7 W (0)
m−1W

(1)
m−1. (12.23)

Initialization For m = 1, the even and reversible operator L(1)
7 in (12.14) has

the form (12.16)–(12.17) with

r1(D) = 0, �1(D) = im 1
2
T

1
2
h |D|

1
2 . (12.24)

Since�1(D) is even and reversible, by difference, the operator P(1)
7 is even and

reversible as well. At m = 1, estimate (12.18) is trivial and (12.19)–(12.20)
are (12.15).

Inductive step In the next two subsections, we prove the above inductive
claim, see (12.60)–(12.62) and Lemma 12.6. We perform this reduction in two
steps:

1. First we look for a transformation W (0)
m to remove the dependence on ϕ of

the terms of order −m/2 of the operator L(m)
7 in (12.16), see (12.27). The

resulting conjugated operator is L(m,1)
7 in (12.34).

2. Then we look for a transformationW (1)
m to remove the dependence on x of

the terms of order−m/2 of the operator L(m,1)
7 in (12.34), see (12.48) and

(12.52).

12.2.1 Elimination of the dependence on ϕ

In this subsection we eliminate the dependence on ϕ from the terms of order
−m/2 in P(m)

7 in (12.16). We conjugate the operator L(m)
7 in (12.16) by a

transformation of the form (see (12.22))

W (0)
m := Id + w(0)

m (ϕ, x, D), with w(0)
m (ϕ, x, ξ) ∈ S−

m
2 , (12.25)

which we shall fix in (12.29). We compute

L(m)
7 W (0)

m = W (0)
m

(
ω · ∂ϕ +�m(D)

)+ (ω · ∂ϕw(0)
m )(ϕ, x, D)+ P(m)

7
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+ [�m(D), w(0)
m (ϕ, x, D)

]+ P(m)
7 w(0)

m (ϕ, x, D). (12.26)

Since �m(D) ∈ OPS
1
2 and the operators P(m)

7 , w(0)
m (ϕ, x, D) are in OPS−m

2 ,

with m ≥ 1, we have that the commutator [�m(D), w
(0)
m (ϕ, x, D)] is in

OPS−m
2 − 1

2 and P(m)
7 w

(0)
m (ϕ, x, D) is in OPS−m ⊆ OPS−m

2 − 1
2 . Thus the term

of order −m/2 in (12.26) is (ω · ∂ϕw(0)
m )(ϕ, x, D)+ P(m)

7 .

Let p(m)
7 (ϕ, x, ξ) ∈ S−m

2 be the symbol of P(m)
7 . We look for w(0)

m (ϕ, x, ξ)
such that

ω · ∂ϕw(0)
m (ϕ, x, ξ)+ p(m)

7 (ϕ, x, ξ) = 〈p(m)
7 〉ϕ(x, ξ) (12.27)

where

〈p(m)
7 〉ϕ(x, ξ) := 1

(2π)ν

∫

Tν

p(m)
7 (ϕ, x, ξ) dϕ. (12.28)

For all ω ∈ DC(γ, τ ), we choose the solution of (12.27) given by the periodic
function

w(0)
m (ϕ, x, ξ) := (ω · ∂ϕ)−1

(
〈p(m)

7 〉ϕ(x, ξ)− p(m)
7 (ϕ, x, ξ)

)
. (12.29)

We extend the symbol w(0)
m in (12.29) to the whole parameter space R

ν ×
[h1,h2] by using the extended operator (ω · ∂ϕ)−1

ext introduced in Lemma 2.5.

As a consequence, the operator W (0)
m in (12.25) is extended accordingly. We

still denote by w
(0)
m ,W (0)

m these extensions.

Lemma 12.3 The operator W (0)
m defined in (12.25), (12.29) is even and

reversibility preserving. For anyα,M > 0 there exists a constantℵ(m,1)
7 (M, α)

> 0 (depending also on k0, τ, ν), larger than the constantℵ(m)
7 (M, α) appear-

ing in (12.18)–(12.21) such that, if (6.9) holds with μ0 ≥ ℵ(m,1)
7 (M, α), then

for any s ≥ s0

||Op(w(0)
m )||k0,γ−m

2 ,s,α
�M,s,α εγ−(m+3)

(
1+ ‖I0‖k0,γ

s+ℵ(m,1)
7 (M,α)

)
(12.30)

||�12Op(w
(0)
m )||−m

2 ,s1,α
�M,s1,α εγ−(m+3)‖�12i‖s1+ℵ(m,1)

7 (M,α)
. (12.31)

As a consequence, the transformationW (0)
m defined in (12.25), (12.29) is invert-

ible and

||(W (0)
m )±1 − Id||k0,γ0,s,α �M,s,α εγ−(m+3)

(
1+ ‖I0‖k0,γ

s+ℵ(m,1)
7 (M,α)

)
, (12.32)
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||�12(W
(0)
m )±1||0,s1,α �M,s1,α εγ−(m+3)‖�12i‖s1+ℵ(m,1)

7 (M,α)
. (12.33)

Proof We begin with proving (12.30). By (2.35)–(2.36) one has

||Op(w(0)
m )||k0,γ−m

2 ,s, α
�k0,ν max

β∈[0,α] supξ∈R

〈ξ 〉m2 +β
∥∥∂βξ w

(0)
m (·, ·, ·, ξ)∥∥k0,γs .

By (12.29) and (2.17), for each ξ ∈ R one has

‖∂βξ w(0)
m (·, ·, ·, ξ)‖k0,γs �k0,ν γ−1

∥∥∂βξ
(〈p(m)

7 〉ϕ(·, ξ)− p(m)
7 (·, ·, ξ))∥∥k0,γs+μ

where μ is defined in (2.18) with k + 1 = k0. Hence ||Op(w(0)
m )||k0,γ−m

2 ,s, α
�k0,ν

γ−1||P(m)
7 ||k0,γ−m

2 ,s+μ,α
and (12.30) follows by (12.19). The other bounds are

proved similarly, using the explicit formula (12.29), estimates (12.19)–(12.20)
and (2.17), (2.44), and Lemma 2.13. � 

By (12.26) and (12.27) we get the even and reversible operator

L(m,1)
7 := (W (0)

m )−1L(m)
7 W (0)

m = ω · ∂ϕ +�m(D)+ 〈p(m)
7 〉ϕ(x, D)+ P(m,1)

7

(12.34)

where

P(m,1)
7 := (W (0)

m )−1
([
�m(D), w(0)

m (ϕ, x, D)
]+ P(m)

7 w(0)
m (ϕ, x, D)

−w(0)
m (ϕ, x, D)〈p(m)

7 〉ϕ(x, D)
)

(12.35)

is in OPS−m
2 − 1

2 , as we prove in Lemma 12.4 below. Thus the term of order
−m

2 in (12.34) is 〈p(m)
7 〉ϕ(x, D), which does not depend on ϕ any more.

Lemma 12.4 Theoperators 〈p(m)
7 〉ϕ(x, D)and P(m,1)

7 are evenand reversible.

The operator P(m,1)
7 in (12.35) is in OPS−m

2 − 1
2 . For any α,M > 0 there exists

a constant ℵ(m,2)
7 (M, α) > 0 (depending also on k0, τ, ν), larger than the

constant ℵ(m,1)
7 (M, α) appearing in Lemma 12.3, such that, if (6.9) holds with

μ0 ≥ ℵ(m,2)
7 (M, α), then for any s ≥ s0

||P(m,1)
7 ||k0,γ−m

2 − 1
2 ,s,α

�M,s,α εγ−(m+3)
(
1+ ‖I0‖k0,γ

s+ℵ(m,2)
7 (M,α)

)
, (12.36)

||�12P
(m,1)
7 ||−m

2 − 1
2 ,s1,α

�M,s1,α εγ−(m+3)‖�12i‖s1+ℵ(m,2)
7 (M,α)

. (12.37)
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Proof Since P(m)
7 (x, D) is even and reversible by the inductive claim, its ϕ-

average 〈p(m)
7 〉ϕ(x, D) defined in (12.28) is even and reversible as well. Since

�m(D) is reversible andW (0)
m is reversibility preserving we obtain that P(m,1)

7
in (12.35) is even and reversible.

Let us prove that P(m,1)
7 is in OPS−m

2 − 1
2 . Since �m(D) ∈ OPS

1
2

and the operators P(m)
7 , w

(0)
m (ϕ, x, D) are in OPS−m

2 , with m ≥ 1, we

have that [�m(D), w
(0)
m (ϕ, x, D)] is in OPS−m

2 − 1
2 and P(m)

7 w
(0)
m (ϕ, x, D)

is in OPS−m ⊆ OPS−m
2 − 1

2 . Moreover also w
(0)
m (ϕ, x, D)〈p(m)

7 〉ϕ(x, D) ∈
OPS−m ⊆ OPS−m

2 − 1
2 , sincem ≥ 1. Since (W (0)

m )−1 is inOPS0, the remainder
P(m,1)
7 is inOPS−m

2 − 1
2 . Bounds (12.36)–(12.37) follow by the explicit expres-

sion in (12.35), Lemma 12.3, estimates (12.18)–(12.21), and (2.41), (2.44),
(2.50). � 

12.2.2 Elimination of the dependence on x

In this subsection we eliminate the dependence on x from 〈p(m)
7 〉ϕ(x, D),

which is the only term of order −m/2 in (12.34). To this aim we conjugate
L(m,1)
7 in (12.34) by a transformation of the form

W (1)
m := Id + w(1)

m (x, D), where w(1)
m (x, ξ) ∈ S−

m
2 + 1

2 (12.38)

is a ϕ-independent symbol, which we shall fix in (12.50) (for m = 1) and
(12.54) (form ≥ 2).We denote the space average of the function 〈p(m)

7 〉ϕ(x, ξ)
defined in (12.28) by

〈p(m)
7 〉ϕ,x (ξ) := 1

2π

∫

T

〈p(m)
7 〉ϕ(x, ξ) dx

= 1

(2π)ν+1

∫

Tν+1
p(m)
7 (ϕ, x, ξ) dϕ dx . (12.39)

By (12.34), we compute

L(m,1)
7 W (1)

m = W (1)
m

(
ω · ∂ϕ +�m(D)+ 〈p(m)

7 〉ϕ,x
)

+ [�m(D), w(1)
m (x, D)

]+ 〈p(m)
7 〉ϕ(x, D)− 〈p(m)

7 〉ϕ,x (D)

+ 〈p(m)
7 〉ϕ(x, D)w(1)

m (x, D)

− w(1)
m (x, D)〈p(m)

7 〉ϕ,x (D)+ P(m,1)
7 W (1)

m . (12.40)
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By formulas (2.42), (2.43) (with N = 1) and (2.47), (2.48),

〈p(m)
7 〉ϕ(x, D)w(1)

m (x, D) = Op
(
〈p(m)

7 〉ϕ(x, ξ)w(1)
m (x, ξ)

)

+ r〈p(m)
7 〉ϕ,w(1)

m
(x, D), (12.41)

w(1)
m (x, D)〈p(m)

7 〉ϕ,x (D) = Op
(
w(1)
m (x, ξ)〈p(m)

7 〉ϕ,x (ξ)
)

+ r
w

(1)
m ,〈p(m)

7 〉ϕ,x (x, D), (12.42)

[
�m(D), w(1)

m (x, D)
] = Op

(
− i∂ξ�m(ξ)∂xw

(1)
m (x, ξ)

)

+ r2(�m, w
(1)
m )(x, D) (12.43)

where r〈p(m)
7 〉ϕ,w(1)

m
, r

w
(1)
m ,〈p(m)

7 〉ϕ,x ∈ S−m− 1
2 ⊂ S−m

2 − 1
2 , r2(�m, w

(1)
m )(x, D) ∈

S−m
2 −1 ⊂ S−m

2 − 1
2 . Let χ0 ∈ C∞(R,R) be a cut-off function satisfying

χ0(ξ) = χ0(−ξ) ∀ξ ∈ R, χ0(ξ) = 0 ∀|ξ | ≤ 4

5
, χ0(ξ) = 1 ∀|ξ | ≥ 7

8
.

(12.44)

By (12.40)–(12.43), one has

L(m,1)
7 W (1)

m = W (1)
m

(
ω · ∂ϕ +�m(D)+ 〈p(m)

7 〉ϕ,x (D)
)

+ Op
(
− i∂ξ�m(ξ)∂xw

(1)
m (x, ξ)+ χ0(ξ)

(〈p(m)
7 〉ϕ(x, ξ)− 〈p(m)

7 〉ϕ,x (ξ)
)

(12.45)

+ χ0(ξ)
(〈p(m)

7 〉ϕ(x, ξ)− 〈p(m)
7 〉ϕ,x (ξ)

)
w(1)
m (x, ξ)

)
(12.46)

+ Op
((
1− χ0(ξ)

)(〈p(m)
7 〉ϕ(x, ξ)− 〈p(m)

7 〉ϕ,x (ξ)
)(
1+ w(1)

m (x, ξ)
))

+ r2(�m, w
(1)
m )(x, D)+ r〈p(m)

7 〉ϕ,w(1)
m
(x, D)

− r
w

(1)
m ,〈p(m)

7 〉ϕ,x (x, D)+ P(m,1)
7 W (1)

m . (12.47)

The terms containing 1 − χ0(ξ) are in S−∞, by definition (12.44). The term
in (12.45) is of order −m

2 and the term in (12.46) is of order −m + 1
2 , which

equals −m
2 for m = 1, and is strictly less than −m

2 for m ≥ 2. Hence we split
the two cases m = 1 and m ≥ 2.

First case: m = 1. We look for w(1)
m (x, ξ) = w

(1)
1 (x, ξ) such that

−i∂ξ�1(ξ)∂xw
(1)
1 (x, ξ)
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+χ0(ξ)
(
〈p(1)7 〉ϕ(x, ξ)− 〈p(1)7 〉ϕ,x (ξ)

)
(1+ w

(1)
1 (x, ξ)) = 0.

(12.48)

By (12.24) and recalling (2.31), (2.16), for |ξ | ≥ 4/5 one has �1(ξ) =
im 1

2
tanh

1
2 (h|ξ |)|ξ | 12 . Since, by (11.24), |m 1

2
| ≥ 1/2 for εγ−1 small enough,

we have

inf
|ξ |≥ 4

5

|ξ | 12 |∂ξ�1(ξ)| ≥ δ > 0, (12.49)

where δ depends only on h1. Using that 〈p(1)7 〉ϕ − 〈p(1)7 〉ϕ,x has zero average
in x , we choose the solution of (12.48) given by the periodic function

w
(1)
1 (x, ξ) := exp

(
g1(x, ξ)

)− 1,

g1(x, ξ) :=

⎧
⎪⎨

⎪⎩

χ0(ξ)∂
−1
x

(〈p(1)7 〉ϕ(x, ξ)− 〈p(1)7 〉ϕ,x (ξ)
)

i∂ξ�1(ξ)
if |ξ | ≥ 4

5

0 if |ξ | ≤ 4
5 .

(12.50)

Note that, by the definition of the cut-off functionχ0 given in (12.44), recalling
(12.24), (12.49) and applying estimates (2.40), (11.24), the Fourier multiplier
χ0(ξ)

∂ξ�1(ξ)
is a symbol in S

1
2 and satisfies

∣∣∣
∣∣∣Op
( χ0(ξ)

∂ξ�1(ξ)

)∣∣∣
∣∣∣
k0,γ

1
2 ,s,α

�α 1,
∣∣∣
∣∣∣�12Op

( χ0(ξ)

∂ξ�1(ξ)

)∣∣∣
∣∣∣ 1
2 ,s1,α

�α εγ−1‖�12i‖s1 .
(12.51)

Therefore the function g1(x, ξ) is a well-defined symbol in S0.
Second case: m ≥ 2. We look for w(1)

m (x, ξ) such that

− i∂ξ�m(ξ)∂xw
(1)
m (x, ξ)+ χ0(ξ)

(〈p(m)
7 〉ϕ(x, ξ)− 〈p(m)

7 〉ϕ,x (ξ)
) = 0.

(12.52)

Recalling (12.17)–(12.18) and (12.49), one has that

inf
|ξ |≥ 4

5

|ξ | 12 |∂ξ�m(ξ)| ≥ inf
|ξ |≥ 4

5

|ξ | 12 |∂ξ�1(ξ)| − sup
ξ∈R

|ξ | 12 |∂ξrm(ξ)|

≥ δ − ||rm(D)||− 1
2 ,0,1

≥ δ − Cεγ−(m+1) ≥ δ/2 (12.53)
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for εγ−(m+1) small enough. Since 〈p(m)
7 〉ϕ(x, ξ)−〈p(m)

7 〉ϕ,x (ξ) has zero aver-
age in x , we choose the solution of (12.52) given by the periodic function

w(1)
m (x, ξ) :=

⎧
⎪⎨

⎪⎩

χ0(ξ)∂
−1
x

(〈p(m)
7 〉ϕ(x, ξ)− 〈p(m)

7 〉ϕ,x (ξ)
)

i∂ξ�m(ξ)
if |ξ | ≥ 4

5

0 if |ξ | ≤ 4
5 .

(12.54)

By thedefinitionof the cut-off functionχ0 in (12.44), recalling (12.24), (12.17),
(12.53), and applying estimates (2.40), (11.24), (12.18), the Fourier multiplier
χ0(ξ)

∂ξ�m(ξ)
is a symbol in S

1
2 and satisfies

∣∣∣
∣∣∣Op
( χ0(ξ)

∂ξ�m(ξ)

)∣∣∣
∣∣∣
k0,γ

1
2 ,s,α

�M,α 1,

∣∣∣
∣∣∣�12Op

( χ0(ξ)

∂ξ�m(ξ)

)∣∣∣
∣∣∣ 1
2 ,s1,α

�M,α εγ−(m+1)‖�12i‖s1+ℵ(m)
7 (M,α)

. (12.55)

By (12.53), the function w
(1)
m (x, ξ) is a well-defined symbol in S−m

2 + 1
2 .

In both cases m = 1 and m ≥ 2, we have eliminated the terms of order−m
2

from the right hand side of (12.47).

Lemma 12.5 The operators W (1)
m defined in (12.38), (12.50) for m = 1, and

(12.54) for m ≥ 2, are even and reversibility preserving. For any M, α > 0
there exists a constant ℵ(m,3)

7 (M, α) > 0 (depending also on k0, τ, ν), larger

than the constant ℵ(m,2)
7 (M, α) appearing in Lemma 12.4, such that, if (6.9)

holds with μ0 ≥ ℵ(m,3)
7 (M, α), then for any s ≥ s0

||Op(w(1)
m )||k0,γ−m

2 + 1
2 ,s,α

�M,s,α εγ−(m+3)
(
1+ ‖I0‖k0,γ

s+ℵ(m,3)
7 (M,α)

)
, (12.56)

||�12Op(w
(1)
m )||−m

2 + 1
2 ,s1,α

�M,s1,α εγ−(m+3)‖�12i‖s1+ℵ(m,3)
7 (M,α)

. (12.57)

As a consequence, the transformation W (1)
m is invertible and

||(W (1)
m )±1 − Id||k0,γ0,s,α �M,s,α εγ−(m+3)

(
1+ ‖I0‖k0,γ

s+ℵ(m,3)
7 (M,α)

)
, (12.58)

||�12(W
(1)
m )±1||0,s1,α �M,s1,α εγ−(m+3)‖�12i‖s1+ℵ(m,3)

7 (M,α)
. (12.59)

Proof The lemma follows by the explicit expressions in (12.38), (12.50),
(12.54), (12.39), by estimates (2.40), (2.41), (2.46), Lemmata 2.10, 2.11, 2.13
and estimates (12.19), (12.20), (12.51), (12.55). � 
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In conclusion, by (12.47), (12.48) and (12.52), we obtain the even and
reversible operator

L(m+1)
7 := (W (1)

m )−1L(m,1)
7 W (1)

m = ω · ∂ϕ +�m+1(D)+ P(m+1)
7 (12.60)

where

�m+1(D) := �m(D)+ 〈p(m)
7 〉ϕ,x (D) = im 1

2
T

1
2
h |D|

1
2 + rm+1(D),

rm+1(D) := rm(D)+ 〈p(m)
7 〉ϕ,x (D),

(12.61)

and

P(m+1)
7 := (W (1)

m )−1
{
r2(�m, w

(1)
m )(x, D)+ r〈p(m)

7 〉ϕ,w(1)
m
(x, D)

− r
w

(1)
m ,〈p(m)

7 〉ϕ,x (x, D)+ P(m,1)
7 W (1)

m

+ χ(m≥2)Op
(
χ0(ξ)

(〈p(m)
7 〉ϕ(x, ξ)− 〈p(m)

7 〉ϕ,x (ξ)
)
w(1)
m (x, ξ)

)

+ Op
(
(1−χ0(ξ))

(〈p(m)
7 〉ϕ(x, ξ)−〈p(m)

7 〉ϕ,x (ξ)
)(
1+w(1)

m (x, ξ)
))}

(12.62)

with χ(m≥2) equal to 1 if m ≥ 2, and zero otherwise.

Lemma 12.6 The operators �m+1(D), rm+1(D), P(m+1)
7 are even and

reversible. For any M, α > 0 there exists a constant ℵ(m+1)
7 (M, α) > 0

(depending also on k0, τ, ν), larger than the constant ℵ(m,3)
7 (M, α) appearing

in Lemma 12.5, such that, if (6.9) holds withμ0 ≥ ℵ(m+1)
7 (M, α), then for any

s ≥ s0

||rm+1(D)||k0,γ− 1
2 ,s,α

�M,α εγ−(m+2),

||�12rm+1(D)||− 1
2 ,s1,α

�M,α εγ−(m+2)‖�12i‖s1+ℵ(m+1)
7 (M,α)

,
(12.63)

||P(m+1)
7 ||k0,γ−m

2 − 1
2 ,s,α

�M,s,α εγ−(m+3)(1+ ‖I0‖k0,γ
s+ℵ(m+1)

7 (M,α)

)
, (12.64)

||�12P
(m+1)
7 ||−m

2 − 1
2 ,s1,α

�M,s1,α εγ−(m+3)‖�12i‖s1+ℵ(m+1)
7 (M,α)

. (12.65)

Proof Since the operator 〈p(m)
7 〉ϕ(x, D) is even and reversible by Lemma

12.4, the average 〈p(m)
7 〉ϕ,x (D) defined in (12.39) is even and reversible as

well (we use Remark 2.22). Since rm(D), �m(D) are even and reversible by
the inductive claim, then also rm+1(D),�m+1(D) defined in (12.61) are even
and reversible.

123



Time quasi-periodic gravity water waves in finite depth 863

Estimates (12.63)–(12.65) for rm+1(D) and P(m+1)
7 defined respectively

in (12.61) and (12.62) follow by the explicit expressions of 〈p(m)
7 〉ϕ,x (ξ) in

(12.39) and w
(1)
m in (12.50) and (12.54) (for m = 1 and m ≥ 2 respectively),

by applying (2.41), (2.40), (12.58)–(12.59), (12.36)–(12.37), (2.46), Lemmata
2.10, 2.11, and the inductive estimates (12.18)–(12.21). � 

Thus, the proof of the inductive claims (12.18)–(12.23) is complete.

12.2.3 Conclusion of the reduction of L(1)
7

Composing all the previous transformations, we obtain the even and reversibil-
ity preserving map

W := W0 ◦W (0)
1 ◦W (1)

1 ◦ · · · ◦W (0)
2M−1 ◦W (1)

2M−1, (12.66)

where W0 is defined in (12.3) and for m = 1, . . . , 2M − 1, W (0)
m ,W (1)

m are
defined in (12.25), (12.38). The order M will be fixed in (14.8). By (12.16),
(12.17), (12.23) at m = 2M , the operator L7 in (12.2) is conjugated, for all
ω ∈ DC(γ, τ ), to the even and reversible operator

L8 := L(2M)
7 = W−1L7W = ω · ∂ϕ +�2M(D)+ P2M (12.67)

where P2M := P(2M)
7 ∈ OPS−M and

�2M(D) = im 1
2
T

1
2
h |D|

1
2 + r2M(D), r2M(D) ∈ OPS−

1
2 . (12.68)

Lemma 12.7 Assume (6.9) with μ0 ≥ ℵ(2M)
7 (M, 0). Then, for any s ≥ s0, the

following estimates hold:

||r2M(D)||k0,γ− 1
2 ,s,0

�M εγ−(2M+1),

||�12r2M(D)||− 1
2 ,s1,0

�M εγ−(2M+1)‖�12i‖s1+ℵ(2M)
7 (M,0)

,
(12.69)

||P2M ||k0,γ−M,s,0 �M,s εγ
−2(M+1)

(
1+ ‖I0‖k0,γ

s+ℵ(2M)
7 (M,0)

)
, (12.70)

||�12P2M ||−M,s1,0 �M,s1 εγ−2(M+1)‖�12i‖s1+ℵ(2M)
7 (M,0)

, (12.71)

||W±1 − Id||k0,γ0,s,0 �M,s εγ
−2(M+1)

(
1+ ‖I0‖k0,γ

s+ℵ(2M)
7 (M,0)

)
, (12.72)

||�12W
±1||0,s1,0 �M,s1 εγ−2(M+1)‖�12i‖s1+ℵ(2M)

7 (M,0)
. (12.73)
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Proof Estimates (12.69), (12.70), (12.71) follow by (12.18), (12.19), (12.20)
applied for m = 2M . Estimates (12.72)–(12.73) for the map W defined in
(12.66), and its inverse W−1, follow by (12.13), (12.32), (12.33), (12.58),
(12.59), applying the composition estimate (2.44) (with m = m′ = α = 0). � 

Since �2M(D) is even and reversible, we have that

�2M(ξ), r2M(ξ)∈iR and �2M(ξ) = �2M(−ξ), r2M(ξ) = r2M(−ξ).

(12.74)

In conclusion, we write the even and reversible operator L8 in (12.67) as

L8 = ω · ∂ϕ + iD8 + P2M (12.75)

where D8 is the diagonal operator

D8 := −i�2M(D) := diag j∈Z(μ j ),

μ j := m 1
2
| j | 12 tanh(h| j |) 12 + r j , r j := −i r2M( j),

(12.76)

μ j , r j ∈ R, μ j = μ− j , r j = r− j , ∀ j ∈ Z, (12.77)

with r j ∈ R satisfying, by (12.69),

sup
j∈Z

| j | 12 |r j |k0,γ �M εγ−(2M+1),

sup
j∈Z

| j | 12 |�12r j | �M εγ−(2M+1)‖�12i‖s1+ℵ(2M)
7 (M,0)

(12.78)

and P2M ∈ OPS−M satisfies (12.70)–(12.71).
From now on, we do not need to expand further the operators in decreasing

orders and we will only estimate the tame constants of the operators acting on
periodic functions (see Definitions 2.24 and 2.29).

Remark 12.8 In view of Lemma 2.28, the tame constants of P2M can
be deduced by estimates (12.70)–(12.71) of the pseudo-differential norm
||P2M ||−M,s,α with α = 0. The iterative reduction in decreasing orders per-
formed in the previous sections cannot be set in || ||−M,s,0 norms, because each
step of the procedure requires some derivatives of symbols with respect to ξ

(in the remainder of commutators, in the Poisson brackets of symbols, and also
in (12.54)), and α keeps track of the regularity of symbols with respect to ξ .
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12.3 Conjugation of L7

In the previous Sects. 12.1–12.2 we have conjugated the operator L7 defined
in (12.2) to L8 in (12.67), whose symbol is constant in (ϕ, x), up to smoothing
remainders of order −M . Now we conjugate the whole operator L7 in (12.1)
by the real, even and reversibility preserving map

W :=
(
W 0
0 W

)
(12.79)

where W is defined in (12.66). By (12.67), (12.75) we obtain, for all ω ∈
DC(γ, τ ), the real, even and reversible operator

L8 :=W−1L7W = ω · ∂ϕ + iD8 + i�0 + T8 (12.80)

where D8 is the diagonal operator

D8 :=
(
D8 0
0 −D8

)
, (12.81)

with D8 defined in (12.76), and the remainder T8 is

T8 := iW−1�0W − i�0 +W−1T7W + P2M , P2M :=
(
P2M 0
0 P2M

)

(12.82)

with P2M defined in (12.67). Note that T8 is defined on the whole parameter
space R

ν × [h1,h2]. Therefore the operator in the right hand side in (12.80)
is defined on R

ν × [h1,h2] as well. This defines the extended operator L8 on
R

ν × [h1,h2].
Lemma 12.9 For any M > 0, there exists a constant ℵ8(M) > 0 (depending
also on τ, ν, k0) such that, if (6.9) holds withμ0 ≥ ℵ8(M), then for any s ≥ s0

||W±1 − Id||k0,γ0,s,0, ||W∗ − Id||k0,γ0,s,0 �M,s εγ
−2(M+1)

(
1+ ‖I0‖k0,γs+ℵ8(M)

)
,

(12.83)

||�12W±1||0,s1,0, ||�12W∗||0,s1,0 �M,s1 εγ−2(M+1)‖�12i‖s1+ℵ8(M).

(12.84)

Let S > s0, β0 ∈ N, and M > 1
2 (β0 + k0). There exists a constant

ℵ′8(M, β0) > 0 such that, assuming (6.9) with μ0 ≥ ℵ′8(M, β0), for any
m1,m2 ≥ 0, with m1 + m2 ≤ M − 1

2 (β0 + k0), for any β ∈ N
ν , |β| ≤ β0,
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the operators 〈D〉m1(∂
β
ϕ T8)〈D〉m2 , 〈D〉m1�12(∂

β
ϕ T8)〈D〉m2 areDk0-tame with

tame constants satisfying

M〈D〉m1 (∂
β
ϕ T8)〈D〉m2

(s) �M,S εγ−2(M+1)(1+ ‖I0‖s+ℵ′8(M,β0)

)
, ∀s0≤s≤S

(12.85)

‖〈D〉m1�12(∂
β
ϕ T8)〈D〉m2‖L(Hs1 ) �M,S εγ−2(M+1)‖�12i‖s1+ℵ′8(M,β0)

.

(12.86)

Proof Estimates (12.83), (12.84) follow by definition (12.79), by estimates
(12.72), (12.73) andusing alsoLemma2.12 to estimate the adjoint operator. Let
us prove (12.85) (the proof of (12.86) follows by similar arguments). First we
analyze the termW−1T7W . Letm1,m2 ≥ 0, withm1+m2 ≤ M− 1

2 (β0+k0)
and β ∈ N

ν with |β| ≤ β0. Arguing as in the proof of Lemma 11.4, we have
to analyze, for any β1, β2, β3 ∈ N

ν with β1 + β2 + β3 = β, the operator
(∂

β1
ϕ W−1)(∂

β2
ϕ T7)(∂β3ϕ W). We write

〈D〉m1(∂β1ϕ W−1)(∂β2ϕ T7)(∂β3ϕ W)〈D〉m2

=
(
〈D〉m1∂β1ϕ W〈D〉−m1

)
◦
(
〈D〉m1∂β2ϕ T7〈D〉m2

)
◦
(
〈D〉−m2∂β3ϕ W〈D〉m2

)
.

(12.87)

For any m ≥ 0, β ∈ N
ν , |β| ≤ β0, by (2.68), (2.40), (2.46), (2.44), one has

M〈D〉m(∂βϕW±1)〈D〉−m (s) �s ||〈D〉m(∂βϕW±1)〈D〉−m ||k0,γ0,s,0

�s ||∂βϕW±1||k0,γ0,s+m,0 �s ||W±1||k0,γ0,s+β0+m,0

and ||W±1||k0,γ0,s+β0+m,0 can be estimated by using (12.83). The estimate of
(12.87) then follows by (11.39) and Lemma 2.26. The tame estimate of
〈D〉m1∂

β
ϕP2M 〈D〉m2 follows by (2.68), (12.70), (12.71). The tame estimate of

the term i〈D〉m1∂
β
ϕ

(
W−1�0W −�0

)〈D〉m2 follows by Lemma 2.36 (applied
with A =W−1 and B =W) and (2.68), (12.83), (12.84). � 

13 Conclusion: reduction of Lω up to smoothing operators

By Sects. 6–12, for all λ = (ω,h) ∈ DC(γ, τ ) × [h1,h2] the real, even and
reversible operator L in (6.8) is conjugated to the real, even and reversible
operator L8 defined in (12.80), namely

P−1LP = L8 = ω · ∂ϕ + iD8 + i�0 + T8, (13.1)
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where P is the real, even and reversibility preserving map

P := ZBAM2M3C�M�W. (13.2)

Moreover, as already noticed below (12.82), the operator L8 is defined on the
whole parameter space R

ν × [h1,h2].
Now we deduce a similar conjugation result for the projected linearized

operator Lω defined in (5.26), which acts on the normal subspace H⊥
S+ , whose

relation with L is stated in (6.5). The operator Lω is even and reversible as
stated in Lemma 6.1.

LetS := S
+∪(−S

+) andS0 := S∪{0}.Wedenote by�S0 the corresponding
L2-orthogonal projection and �⊥

S0
:= Id − �S0 . We also denote H⊥

S0
:=

�⊥
S0
L2(T) and Hs⊥ := Hs(Tν+1) ∩ H⊥

S0
.

Lemma 13.1 (Restriction of the conjugation map to H⊥
S0
) Let M > 0. There

exists a constant σM > 0 (depending also on k0, τ, ν) such that, assuming
(6.9) withμ0 ≥ σM, the following holds: for any s > s0 there exists a constant
δ(s) > 0 such that, if εγ−2(M+1) ≤ δ(s), then the operator

P⊥ := �⊥
S0
P�⊥

S0
(13.3)

is invertible and for each family of functions h := h(λ) ∈ Hs+σM⊥ × Hs+σM⊥ it
satisfies

‖P±1
⊥ h‖k0,γs �M,s ‖h‖k0,γs+σM

+ ‖I0‖k0,γs+σM
‖h‖k0,γs0+σM

, (13.4)

‖(�12P±1
⊥ )h‖s1 �M,s1 εγ−2(M+1)‖�12i‖s1+σM‖h‖s1+1. (13.5)

The operator P⊥ is real, even and reversibility preserving. The operators
P,P−1 also satisfy (13.4), (13.5).

Proof Applying (2.69) and (6.17), (7.28), (8.10), (9.7), (9.14), (2.60), (10.36),
(11.35), (12.83) we get

‖Ah‖k0,γs �s ‖h‖k0,γs+μM
+ ‖I0‖k0,γs+μM

‖h‖k0,γs0+μM
,

A ∈
{
Z±1,B±1,A±1,M±1

2 ,M±1
3 , C±1,�±1

M ,�±1,W±1
}
,

for some μM > 0. Then by the definition (13.2) of P , by composition, one
gets that ‖P±1h‖k0,γs �M,s ‖h‖k0,γs+σM

+‖I0‖k0,γs+σM
‖h‖k0,γs0+σM

for some constant
σM > 0 larger than μM > 0, thus P±1 satisfy (13.4). In order to prove
that P⊥ is invertible, it is sufficient to prove that �S0P�S0 is invertible, and
argue as in the proof of Lemma 9.4 in [1], or Section 8.1 of [8]. This follows
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by a perturbative argument, for εγ−2(M+1) small, using that �S0 is a finite
dimensional projector. The proof of (13.5) follows similarly by using (6.20),
(7.30), (8.10), (9.18), (10.37), (11.36), (12.84). � 

Finally, for all λ = (ω,h) ∈ DC(γ, τ )× [h1,h2], the operator Lω defined
in (5.26) is conjugated to

L⊥ := P−1
⊥ LωP⊥ = �⊥

S0
L8�

⊥
S0
+ RM (13.6)

where

RM := P−1
⊥ �⊥

S0

(
P�S0L8�

⊥
S0
− L�S0P�⊥

S0
+ εRP⊥

)
(13.7)

= P−1
⊥ �⊥

S0
P�S0T8�⊥

S0
+ P−1

⊥ �⊥
S0
J∂u∇uH(Tδ(ϕ))�S0P�⊥

S0

+ εP−1
⊥ �⊥

S0
RP⊥ (13.8)

is a finite dimensional operator. To prove (13.6)–(13.7) we first use (6.5) and
(13.3) to get LωP⊥ = �⊥

S0
(L + εR)�⊥

S0
P�⊥

S0
, then we use (13.1) to get

�⊥
S0
LP�⊥

S0
= �⊥

S0
PL8�

⊥
S0
, and we also use the decomposition I2 = �S0 +

�⊥
S0
. To get (13.8), we use (13.1), (6.5), and we note that�S0 ω · ∂ϕ �⊥

S0
= 0,

�⊥
S0

ω · ∂ϕ �S0 = 0, and �S0 iD8�
⊥
S0
= 0, by (12.81) and (12.76).

Lemma 13.2 The operator RM in (13.7) has the finite dimensional form (6.3).
Moreover, let S > s0 and M > 1

2 (β0 + k0). For any β ∈ N
ν , |β| ≤ β0,

there exists a constant ℵ9(M, β0) > 0 (depending also on k0, τ, ν) such
that, if (6.9) holds with μ0 ≥ ℵ9(M, β0), then for any m1,m2 ≥ 0, with
m1 + m2 ≤ M − 1

2 (β0 + k0), one has that the operators 〈D〉m1∂
β
ϕ RM 〈D〉m2 ,

〈D〉m1∂
β
ϕ�12RM 〈D〉m2 are Dk0-tame with tame constants

M〈D〉m1∂
β
ϕ RM 〈D〉m2

(s) �M,S εγ−2(M+1)
(
1+ ‖I0‖k0,γs+ℵ9(M,β0)

)
, ∀s0≤s≤S

(13.9)

‖〈D〉m1�12∂
β
ϕ RM 〈D〉m2‖L(Hs1 ) �M,S εγ−2(M+1)‖�12i‖s1+ℵ9(M,β0).

(13.10)

Proof To prove that the operator RM has the finite dimensional form (6.3),
notice that in the first two terms in (13.8) there is the finite dimensional pro-
jector�S0 , that the operator R in the third term in (13.8) already has the finite
dimensional form (6.3), and use the property that P⊥(a(ϕ)h) = a(ϕ)P⊥h for
all h = h(ϕ, x) and all a(ϕ) independent of x , see also the proof of Lemma
2.36 (and Lemma 6.30 in [21] and Lemma 8.3 in [8]). To estimate RM , use
(13.4), (13.5) for P , (12.85), (12.86) for T8, (6.5), (6.8), (6.18), (6.19), (A.3)
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for J∂u∇uH(Tδ(ϕ)), (6.3), (6.4) for R. The term �⊥
S0
J∂u∇uH(Tδ(ϕ))�S0 is

small because �⊥
S0

(
0 −D tanh(hD)
1 0

)
�S0 is zero. � 

By (13.6) and (12.80) we get

L⊥ = ω · ∂ϕI⊥ + iD⊥ +R⊥ (13.11)

where I⊥ denotes the identity map of H⊥
S0

(acting on scalar functions u, as
well as on pairs (u, ū) in a diagonal manner),

D⊥ :=
(
D⊥ 0
0 −D⊥

)
, D⊥ := �⊥

S0
D8�

⊥
S0
, (13.12)

and R⊥ is the operator

R⊥ := �⊥
S0
T8�⊥

S0
+ RM , R⊥ =

(
R⊥,1 R⊥,2

R⊥,2 R⊥,1

)
. (13.13)

The operator R⊥ in (13.13) is defined for all λ = (ω,h) ∈ R
ν × [h1,h2],

because T8 in (12.82) and the operator in the right hand side of (13.8) are
defined on the whole parameter space. As a consequence, the right hand side
of (13.11) extends the definition of L⊥ to R

ν × [h1,h2]. We still denote the
extended operator by L⊥.

In conclusion, we have obtained the following proposition.

Proposition 13.3 (Reduction of Lω up to smoothing remainders) For all λ =
(ω,h) ∈ DC(γ, τ ) × [h1,h2], the operator Lω in (6.5) is conjugated by the
mapP⊥ defined in (13.3) to the real, even and reversible operatorL⊥ in (13.6).
For all λ ∈ R

ν×[h1,h2], the extended operator L⊥ defined by the right hand
side of (13.11) has the form

L⊥ = ω · ∂ϕI⊥ + iD⊥ +R⊥ (13.14)

where D⊥ is the diagonal operator

D⊥ :=
(
D⊥ 0
0 −D⊥

)
, D⊥ = diag j∈S

c
0
μ j , μ− j = μ j , (13.15)

with eigenvalues μ j , defined in (12.76), given by

μ j = m 1
2
| j | 12 tanh 1

2 (h| j |)+ r j ∈ R, r− j = r j , (13.16)

where m 1
2
, r j ∈ R satisfy (11.24), (12.78). The operatorR⊥ defined in (13.13)

is real, even and reversible.
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Let S > s0, β0 ∈ N, and M > 1
2 (β0 + k0). There exists a constant

ℵ(M, β0) > 0 (depending also on k0, τ, ν) such that, assuming (6.9) with
μ0 ≥ ℵ(M, β0), for any m1,m2 ≥ 0, with m1+m2 ≤ M− 1

2 (β0+k0), for any

β ∈ N
ν , |β| ≤ β0, the operators 〈D〉m1∂

β
ϕR⊥〈D〉m2 , 〈D〉m1∂

β
ϕ�12R⊥〈D〉m2

are Dk0-tame with tame constants satisfying

M〈D〉m1∂
β
ϕR⊥〈D〉m2

(s) �M,S εγ−2(M+1)(1+ ‖I0‖k0,γs+ℵ(M,β0)

)
, ∀s0 ≤ s ≤ S

(13.17)

‖〈D〉m1�12∂
β
ϕR⊥〈D〉m2‖L(Hs1 ) �M,S εγ−2(M+1)‖�12i‖s1+ℵ(M,β0).

(13.18)

Proof Estimates (13.17)–(13.18) for the term �⊥
S0
T8�⊥

S0
in (13.13) follow

directly by (12.85), (12.86). Estimates (13.17)–(13.18) for RM are (13.9)–
(13.10). � 

14 Almost-diagonalization and invertibility of Lω

In Proposition 13.3 we obtained the operator L⊥ = L⊥(ϕ) in (13.14) which
is diagonal up to the smoothing operator R⊥. In this section we implement a
diagonalization KAM iterative scheme to reduce the size of the non-diagonal
term R⊥.

We first replace the operator L⊥ in (13.14) with the operator Lsym
⊥ defined

in (14.1) below, which coincides with L⊥ on the subspace of functions even
in x , see Lemma 14.1. This trick enables to reduce an even operator using
its matrix representation in the exponential basis (ei j x ) j∈Z and exploiting the
fact that on the subspace of functions even(x) its eigenvalues are simple. We
define the linear operator Lsym

⊥ , acting on H⊥
S0
, as

Lsym
⊥ := ω · ∂ϕI⊥ + iD⊥ +Rsym

⊥ , Rsym
⊥ :=

(
Rsym
⊥,1 Rsym

⊥,2

Rsym
⊥,2 Rsym

⊥,1

)

, (14.1)

where Rsym
⊥,i , i = 1, 2, are defined by their matrix entries

(Rsym
⊥,i )

j ′
j (�) :=

{
(R⊥,i )

j ′
j (�)+ (R⊥,i )

− j ′
j (�) if j j ′ > 0,

0 if j j ′ < 0,
j, j ′ ∈ S

c
0, i = 1, 2,

(14.2)

and R⊥,i , i = 1, 2 are introduced in (13.13). Note that, in particular,

(Rsym
⊥,i )

j ′
j = 0, i = 1, 2 on the anti-diagonal j ′ = − j . Using definition

(14.2), one has the following lemma.
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Lemma 14.1 The operatorRsym
⊥ coincides withR⊥ on the subspace of func-

tions even(x) in H⊥
S0
× H⊥

S0
, namely

R⊥h = Rsym
⊥ h, ∀h ∈ H⊥

S0
× H⊥

S0
, h = h(ϕ, x) = even(x). (14.3)

Rsym
⊥ is real, even and reversible, and it satisfies the same bounds (13.17),

(13.18) as R⊥.

As a starting point of the recursive scheme, we consider the real, even,
reversible linear operatorLsym

⊥ in (14.1), acting on H⊥
S0
, defined for all (ω,h) ∈

R
ν × [h1,h2], which we rename

L0 :=Lsym
⊥ :=ω · ∂ϕI⊥+iD0+R0, D0 :=D⊥, R0 :=Rsym

⊥ , (14.4)

with

D0 :=
(
D0 0
0 −D0

)
,

D0 := diag j∈S
c
0
μ0

j , μ0
j := m 1

2
| j | 12 tanh 1

2 (h| j |)+ r j , (14.5)

where m 1
2
:= m 1

2
(ω,h) ∈ R satisfies (11.24), r j := r j (ω,h) ∈ R, r j = r− j

satisfy (12.78), and

R0 :=
(
R(0)
1 R(0)

2

R
(0)
2 R

(0)
1

)

, R(0)
i : H⊥

S0
→ H⊥

S0
, i = 1, 2. (14.6)

Notation. In this section we use the following notation: given an operator R,
we denote by ∂sϕi 〈D〉mR〈D〉m the operator 〈D〉m ◦ (∂sϕi R(ϕ)

) ◦ 〈D〉m. Simi-
larly 〈∂ϕ,x 〉b〈D〉mR〈D〉m denotes 〈D〉m ◦ (〈∂ϕ,x 〉bR

) ◦ 〈D〉m where 〈∂ϕ,x 〉b is
introduced in Definition 2.7.

The operatorR0 in (14.6) satisfies the tame estimates of Lemma 14.2 below.
Define the constants

b := [a] + 2 ∈ N, a := max{3τ1, χ(τ + 1)(4d+ 1)+ 1}, χ := 3/2,

τ1 := τ(k0 + 1)+ k0 +m, m := d(k0 + 1)+ k0
2
,

(14.7)

where d > 3
4k

∗
0 , by (4.22). The condition a ≥ χ(τ + 1)(4d + 1) + 1 in

(14.7) will be used in Sect. 15 in order to verify inequality (15.5). Proposition
13.3 implies thatR0 satisfies the tame estimates of Lemma 14.2 by fixing the
constant M large enough (which means that one has to perform a sufficiently
large number of regularizing steps in Sects. 10 and 12), namely
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M :=
[
2m+ 2b+ 1+ b+ s0 + k0

2

]
+ 1 ∈ N (14.8)

where [ · ] denotes the integer part, andm and b are defined in (14.7). We also
set

μ(b) := ℵ(M, s0 + b), (14.9)

where the constant ℵ(M, s0 + b) is given in Proposition 13.3.

Lemma 14.2 (Tame estimates ofR0 := Rsym
⊥ )Assume (6.9)withμ0 ≥ μ(b).

Then R0 in (14.4) satisfies the following property: the operators

〈D〉mR0〈D〉m+1, ∂s0ϕi 〈D〉mR0〈D〉m+1, ∀i = 1, . . . , ν, (14.10)

〈D〉m+bR0〈D〉m+b+1, ∂s0+b
ϕi

〈D〉m+bR0〈D〉m+b+1, (14.11)

where m,b are defined in (14.7), are Dk0-tame with tame constants

M0(s) := max
i=1,...,ν

{
M〈D〉mR0〈D〉m+1(s),M∂

s0
ϕi 〈D〉mR0〈D〉m+1(s)

}
, (14.12)

M0(s,b) := max
i=1,...,ν

{
M〈D〉m+bR0〈D〉m+b+1(s),M

∂
s0+b
ϕi 〈D〉m+bR0〈D〉m+b+1(s)

}

(14.13)

satisfying, for all s0 ≤ s ≤ S,

M0(s,b) := max{M0(s),M0(s,b)} �S εγ−2(M+1)(1+ ‖I0‖k0,γs+μ(b)

)
.

(14.14)

In particular we have

M0(s0,b) ≤ C(S)εγ−2(M+1). (14.15)

Moreover, for all i = 1, . . . , ν, β ∈ N, β ≤ s0 + b, we have

‖∂βϕi 〈D〉m�12R0〈D〉m+1‖L(Hs0 ), ‖∂βϕi 〈D〉m+b�12R0〈D〉m+b+1‖L(Hs0 )

�S εγ−2(M+1)‖�12i‖s0+μ(b). (14.16)

Proof Estimate (14.14) follows by Lemma 14.1, by (13.17) with m1 = m,
m2 = m + 1 for M0(s), with m1 = m + b, m2 = m + b + 1 for M0(s,b),
and by definitions (14.7), (14.8), (14.9). Estimates (14.16) follow similarly,
applying (13.18) with the same choices of m1,m2 and with s1 = s0. � 
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We perform the almost-reducibility of L0 along the scale

N−1 := 1, Nn := Nχn

0 ∀n ≥ 0, χ = 3/2, (14.17)

requiring inductively at each step the second order Melnikov non-resonance
conditions in (14.26). Note that the non-diagonal remainder Rn in (14.19) is
small according to the first inequality in (14.25).

Theorem 14.3 (Almost-reducibility ofL0 : KAM iteration)There exists τ2 :=
τ2(τ, ν) > τ1+a (where τ1,a are defined in (14.7)) such that, for all S > s0,
there are N0 := N0(S,b) ∈ N, δ0 := δ0(S,b) ∈ (0, 1) such that, if

εγ−2(M+1) ≤ δ0, N τ2
0 M0(s0,b)γ

−1 ≤ 1 (14.18)

(see (14.15)), then, for all n ∈ N, n = 0, 1, . . . , n:

(S1)n There exists a real, even and reversible operator

Ln := ω · ∂ϕI⊥ + iDn +Rn, Dn :=
(
Dn 0
0 −Dn

)
,

Dn := diag j∈S
c
0
μn

j , (14.19)

defined for all (ω,h) in R
ν × [h1,h2] where μn

j are k0 times differen-
tiable functions of the form

μn
j (ω,h) := μ0

j (ω,h)+ rnj (ω,h) ∈ R (14.20)

where μ0
j are defined in (14.5), satisfying

μn
j = μn− j , i.e. rnj = rn− j ,

|rnj |k0,γ ≤ C(S,b)εγ−2(M+1)| j |−2m, ∀ j ∈ S
c
0 (14.21)

and, for n ≥ 1,

|μn
j − μn−1

j |k0,γ ≤ C | j |−2mM
!
〈D〉mRn−1〈D〉m(s0)

≤ C(S,b)εγ−2(M+1)| j |−2mN−a
n−2. (14.22)

The remainder

Rn :=
(
R(n)
1 R(n)

2

R
(n)
2 R

(n)
1

)

(14.23)
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satisfies

(R(n)
1 )

j ′
j (�) = (R(n)

2 )
j ′
j (�) = 0 ∀(�, j, j ′), j j ′ < 0, (14.24)

and it isDk0-modulo-tame:more precisely, the operators 〈D〉mRn〈D〉m
and 〈∂ϕ,x 〉b〈D〉mRn〈D〉m areDk0-modulo-tame and there exists a con-
stant C∗ := C∗(s0,b) > 0 such that, for any s ∈ [s0, S],

M
!
〈D〉mRn〈D〉m(s) ≤

C∗M0(s,b)

Na
n−1

,

M
!

〈∂ϕ,x 〉b〈D〉mRn〈D〉m(s) ≤ C∗M0(s,b)Nn−1. (14.25)

Define the sets Λγn by Λγ0 := DC(2γ, τ )× [h1,h2], and, for all n ≥ 1,

Λγn := Λγn(i) :=
{
λ = (ω,h) ∈ Λ

γ
n−1 :

|ω · �+ μn−1
j − μn−1

j ′ | ≥ γ j−d j ′−d〈�〉−τ

∀|�|, | j − j ′| ≤ Nn−1, j, j ′ ∈ N
+\S+, (�, j, j ′) �= (0, j, j),

|ω · �+ μn−1
j + μn−1

j ′ | ≥ γ (
√
j +√ j ′)〈�〉−τ

∀|�|, | j − j ′| ≤ Nn−1, j, j ′ ∈ N
+\S+

}
. (14.26)

For n ≥ 1, there exists a real, even and reversibility preserving map,
defined for all (ω,h) in R

ν × [h1,h2], of the form

�n−1 := I⊥ +�n−1, �n−1 :=
(
�n−1,1 �n−1,2

�n−1,2 �n−1,1

)
(14.27)

such that for all λ = (ω,h) ∈ Λ
γ
n the following conjugation formula

holds:

Ln = �−1
n−1Ln−1�n−1. (14.28)

The operators 〈D〉±m�n−1〈D〉∓m and 〈∂ϕ,x 〉b〈D〉±m�n−1〈D〉∓m are
Dk0-modulo-tame on R

ν × [h1,h2] with modulo-tame constants satis-
fying, for all s ∈ [s0, S], (τ1,a are defined in (14.7))

M
!

〈D〉±m�n−1〈D〉∓m(s) ≤ C(s0,b)γ
−1N τ1

n−1N
−a
n−2M0(s,b), (14.29)

M
!

〈∂ϕ,x 〉b〈D〉±m�n−1〈D〉∓m(s) ≤ C(s0,b)γ
−1N τ1

n−1Nn−2M0(s,b), (14.30)

M
!
�n−1

(s) ≤ C(s0,b)γ
−1N τ1

n−1N
−a
n−2M0(s,b). (14.31)
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(S2)n Let i1(ω,h), i2(ω,h) be such thatR0(i1),R0(i2) satisfy (14.15). Then
for all (ω,h) ∈ Λ

γ1
n (i1)∩Λ

γ2
n (i2)with γ1, γ2 ∈ [γ /2, 2γ ], the following

estimates hold

‖|〈D〉m�12Rn〈D〉m|‖L(Hs0 )

�S,b εγ−2(M+1)N−a
n−1‖i1 − i2‖s0+μ(b), (14.32)

‖|〈∂ϕ,x 〉b〈D〉m�12Rn〈D〉m|‖L(Hs0 )

�S,b εγ−2(M+1)Nn−1‖i1 − i2‖s0+μ(b). (14.33)

Moreover for n ≥ 1, for all j ∈ S
c
0,

∣∣�12(r
n
j − rn−1

j )
∣∣ �S,b εγ−2(M+1)| j |−2mN−a

n−2‖i1 − i2‖s0+μ(b),

(14.34)

|�12r
n
j | �S,b εγ−2(M+1)| j |−2m‖i1 − i2‖s0+μ(b). (14.35)

(S3)n Let i1, i2 be like in (S2)n and 0 < ρ ≤ γ /2. Then

C(S)N (τ+1)(4d+1)
n−1 γ−4d‖i2 − i1‖s0+μ(b) ≤ ρ

.⇒ Λγn(i1) ⊆ Λγ−ρ
n (i2). (14.36)

We make some comments:

1. Note that in (14.34)–(14.35) we do not need norms | |k0,γ . This is the
reason why we did not estimate the derivatives with respect to (ω,h) of
the operators �12R in the previous sections.

2. Since the second Melnikov conditions |ω · � + μn−1
j − μn−1

j ′ | ≥
γ | j |−d| j ′|−d〈�〉−τ lose regularity both in ϕ and in x , for the convergence
of the reducibility scheme we use the smoothing operators�N , defined in
(2.25), which regularize in both ϕ and x . As a consequence, the natural
smallness condition to impose at the zero step of the recursion is (14.25) at
n = 0 that we verify in the step (S1)0 thanks to Lemma 2.35 and (14.14).

3. An important point of Theorem 14.3 is to require bound (14.18) for
M0(s0,b) only in low norm, which is verified in Lemma 14.2. On the
other hand, Theorem 14.3 provides the smallness (14.25) of the tame con-
stantsM!

〈D〉mRn〈D〉m(s) and proves thatM
!

〈∂ϕ,x 〉b〈D〉mRn〈D〉m(s,b), n ≥ 0,
do not diverge too much.

Theorem 14.3 implies that the invertible operator

Un := �0 ◦ · · · ◦�n−1, n ≥ 1, (14.37)
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has almost-diagonalizedL0, i.e. (14.42) belowholds.As a corollary,we deduce
the following theorem.

Theorem 14.4 (Almost-reducibility of L0) Assume (6.9) with μ0 ≥ μ(b).
Let R0 = Rsym

⊥ , L0 = Lsym
⊥ in (14.1)–(14.2). For all S > s0 there exists

N0 := N0(S,b) > 0, δ0 := δ0(S) > 0 such that, if the smallness condition

N τ2
0 εγ−(2M+3) ≤ δ0 (14.38)

holds, where the constant τ2 := τ2(τ, ν) is defined in Theorem 14.3 and M
is defined in (14.8), then, for all n ∈ N, for all λ = (ω,h) ∈ R

ν × [h1,h2],
the operator Un in (14.37) and its inverse U−1

n are real, even, reversibility
preserving, and Dk0-modulo-tame, with

M
!

U±1
n −I⊥

(s) �S εγ−(2M+3)N τ1
0

(
1+ ‖I0‖k0,γs+μ(b)

) ∀s0 ≤ s ≤ S,

(14.39)

where τ1 is defined in (14.7).
The operator Ln = ω · ∂ϕI⊥ + iDn +Rn defined in (14.19) (with n = n)

is real, even and reversible. The operator 〈D〉mRn〈D〉m isDk0-modulo-tame,
with

M
!
〈D〉mRn〈D〉m(s) �S εγ−2(M+1)N−a

n−1

(
1+ ‖I0‖k0,γs+μ(b)

) ∀s0 ≤ s ≤ S.

(14.40)

Moreover, for all λ = (ω,h) in the set

Λ
γ
n =

n⋂

n=0

Λγn (14.41)

defined in (14.26), the following conjugation formula holds:

Ln = U−1
n L0Un. (14.42)

Proof Assumption (14.18) of Theorem 14.3 holds by (14.14), (6.9) withμ0 ≥
μ(b), and (14.38). Estimate (14.40) follows by (14.25) (forn = n) and (14.14).
It remains to prove (14.39). The estimates ofM!

�±1
n −I⊥

(s), n = 0, . . . , n − 1,

are obtained by using (14.31), (14.18) and Lemma 2.32. Then the estimate of
U±1
n − I⊥ follows as in the proof of Theorem 7.5 in [21], using Lemma 2.31.

� 
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14.1 Proof of Theorem 14.3

Initialization
Proof of (S1)0 The real, even and reversible operator L0 defined in (14.4)–
(14.6) has the form (14.19)–(14.20) for n = 0 with r0j (ω,h) = 0, and (14.21)
holds trivially. Moreover (14.24) is satisfied for n = 0 by the definition of
R0 := Rsym

⊥ in (14.2). The estimate (14.25) for n = 0 follows by applying

Lemma 2.35 to A ∈ {R(0)
1 , R(0)

2 } and by recalling definition of M0(s,b) in
(14.14). � 
Proof of (S2)0 The proof of (14.32), (14.33) for n = 0 follows similarly using
Lemma 2.35 and (14.16). � 
Proof of (S3)0 It is trivial because, by definition, Λ

γ
0 = DC(2γ, τ )×[h1,h2] ⊆

DC(2γ − 2ρ, τ)× [h1,h2] = Λ
γ−ρ
0 . � 

14.1.1 Reducibility step

In this section we describe the inductive step and show how to define Ln+1
(and �n, �n, etc). To simplify the notation we drop the index n and write +
instead of n + 1, so that we write L := Ln, D := Dn, D := Dn, μ j = μn

j ,

R := Rn, R1 := R(n)
1 , R2 := R(n)

2 , and L+ := Ln+1, D+ := Dn+1, and so
on.

We conjugate the operatorL in (14.19) by a transformation of the form (see
(14.27))

� := I⊥ +�, � :=
(
�1 �2

�2 �1

)
. (14.43)

We have

L� = �(ω · ∂ϕI⊥ + iD)+ (ω · ∂ϕ� + i[D, �] +�NR)+�⊥
NR+R�

(14.44)

where the projector �N is defined in (2.25), �⊥
N := I2 −�N , and ω · ∂ϕ� is

the commutator [ω · ∂ϕ,�]. We want to solve the homological equation

ω · ∂ϕ� + i[D, �] +�NR = [R] (14.45)

where

[R] :=
([R1] 0

0 [R1]
)
, [R1] := diag j∈S

c
0
(R1)

j
j (0). (14.46)
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By (14.19), (14.23), (14.43), equation (14.45) is equivalent to the two scalar
homological equations

ω · ∂ϕ�1 + i[D, �1] +�N R1 = [R1],
ω · ∂ϕ�2 + i(D�2 +�2D)+�N R2 = 0

(14.47)

(note that [R1] = [�N R1]). We choose the solution of (14.47) given by

(�1)
j ′
j (�) :=

⎧
⎪⎪⎨

⎪⎪⎩

−
(R1)

j ′
j (�)

i(ω · �+ μ j − μ j ′)
∀(�, j, j ′) �= (0, j,± j), |�|, | j − j ′| ≤ N ,

0 otherwise;

(14.48)

(�2)
j ′
j (�) :=

⎧
⎪⎪⎨

⎪⎪⎩

−
(R2)

j ′
j (�)

i(ω · �+ μ j + μ j ′)
∀(�, j, j ′) ∈ Z

ν × S
c
0 × S

c
0, |�|, | j − j ′| ≤ N ,

0 otherwise.

(14.49)

Note that, since μ j = μ− j for all j ∈ S
c
0 (see (14.21)), the denominators in

(14.48), (14.49) are different from zero for (ω,h) ∈ Λ
γ
n+1 (see (14.26) with

n � n + 1) and the maps �1, �2 are well defined on Λ
γ
n+1. Also note that

the term [R1] in (14.46) (which is the term we are not able to remove by
conjugation with�1 in (14.47)) contains only the diagonal entries j ′ = j and
not the anti-diagonal ones j ′ = − j , becauseR is zero on j ′ = − j by (14.24).
Thus, by construction,

(�1)
j ′
j (�) = (�2)

j ′
j (�) = 0 ∀(�, j, j ′), j j ′ < 0. (14.50)

Lemma 14.5 (Homological equations) The operators �1, �2 defined in
(14.48), (14.49) (which, for all λ ∈ Λ

γ
n+1, solve the homological equations

(14.47)) admit an extension to the whole parameter space R
ν×[h1,h2]. Such

extended operators are Dk0-modulo-tame with modulo-tame constants satis-
fying

M
!

〈D〉±m�〈D〉∓m(s) �k0 N τ1γ−1M
!
〈D〉mR〈D〉m(s), (14.51)

M
!

〈∂ϕ,x 〉b〈D〉±m�〈D〉∓m(s) �k0 N τ1γ−1M
!

〈∂ϕ,x 〉b〈D〉mR〈D〉m(s) (14.52)

M
!
�(s) �k0 N τ1γ−1M

!
R(s) (14.53)

where τ1,b,m are defined in (14.7).
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Time quasi-periodic gravity water waves in finite depth 879

Given i1, i2, let �12� := �(i2) − �(i1). If γ1, γ2 ∈ [γ /2, 2γ ], then, for
all (ω,h) ∈ Λ

γ1
n+1(i1) ∩ Λ

γ2
n+1(i2),

‖ |〈D〉±m�12�〈D〉∓m| ‖L(Hs0 )

� N 2τ+2d+ 1
2 γ−1(‖ |〈D〉mR(i2)〈D〉m| ‖L(Hs0 )‖i1 − i2‖s0+μ(b)

+ ‖ |〈D〉m�12R〈D〉m| ‖L(Hs0 )

)
, (14.54)

‖ |〈∂ϕ,x 〉b〈D〉±m�12�〈D〉∓m| ‖L(Hs0 )

� N 2τ+2d+ 1
2 γ−1(‖ |〈∂ϕ,x 〉b〈D〉mR(i2)〈D〉m| ‖L(Hs0 )‖i1 − i2‖s0+μ(b)

+ ‖ |〈∂ϕ,x 〉b〈D〉m�12R〈D〉m| ‖L(Hs0 )

)
. (14.55)

Moreover � is real, even and reversibility preserving.

Proof For all λ ∈ Λ
γ
n+1, (�, j, j

′) �= (0, j,± j), j, j ′ ∈ S
c
0 |�|, | j − j ′| ≤ N ,

we have the small divisor estimate

|ω · �+ μ j − μ j ′ | = |ω · �+ μ| j | − μ| j ′|| ≥ γ | j |−d| j ′|−d〈�〉−τ

by (14.26), because || j | − | j ′|| ≤ | j − j ′| ≤ N . As in Lemma B.4, we extend
the restriction to F = Λ

γ
n+1 of the function (ω · �+μ j −μ j ′)−1 to the whole

parameter space R
ν × [h1,h2] by setting

g�, j, j ′(λ) :=
χ
(
f (λ)ρ−1

)

f (λ)
, f (λ) := ω · �+ μ j − μ j ′,

ρ := γ 〈�〉−τ | j |−d| j ′|−d,

where χ is the cut-off function in (2.16). We now estimate the corresponding
constant M in (B.14). For n ≥ 1, x > 0, the n-th derivative of the function
tanh

1
2 (x) is Pn(tanh(x)) tanh

1
2−n(x)(1− tanh2(x)), where Pn is a polynomial

of degree ≤ 2n − 2. Hence |∂nh{tanh
1
2 (h| j |)}| ≤ C for all n = 0, . . . , k0,

for all h ∈ [h1,h2], for all j ∈ Z, for some C = C(k0,h1) independent of
n,h, j . By (14.20), (14.21), (14.5), (11.24), (12.78) (and recalling thatμ j here
denotes μn

j ), since εγ
−2(M+1) ≤ γ , we deduce that

γ |α||∂αλ μ j | � γ | j | 12 ∀α ∈ N
ν+1, 1 ≤ |α| ≤ k0. (14.56)

Since γ |α||∂αλ (ω · �)| ≤ γ |�| for all |α| ≥ 1, we conclude that

γ |α||∂αλ (ω · �+ μ j − μ j ′)| � γ (|�| + | j | 12 + | j ′| 12 )
� γ 〈�〉| j | 12 | j ′| 12 , ∀ 1 ≤ |α| ≤ k0. (14.57)
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Thus (B.14) holds with M = Cγ 〈�〉| j | 12 | j ′| 12 (which is ≥ ρ) and (B.15)
implies that

|g�, j, j ′ |k0,γ � γ−1〈�〉τ(k0+1)+k0 | j |m| j ′|m with m = (k0 + 1)d+ k0
2

(14.58)

defined in (14.7). Formula (14.48) with (ω · � + μ j − μ j ′)−1 replaced by
g�, j, j ′(λ) defines the extended operator �1 to R

ν × [h1,h2]. Analogously,
we construct an extension of the function (ω · � + μ j + μ j ′)−1 to the whole
R

ν × [h1,h2], and we obtain an extension of the operator �2 in (14.49).
Proof of (14.51), (14.52), (14.53) We prove (14.52) for �1, then the estimate
for �2 follows in the same way, as well as (14.51), (14.53). Furthermore,
we analyze 〈D〉m∂kλ�1〈D〉−m, since 〈D〉−m∂kλ�1〈D〉m can be treated in the

same way. Differentiating (�1)
j ′
j (�) = g�, j, j ′(R1)

j ′
j (�), one has that, for any|k| ≤ k0,

|∂kλ(�1)
j ′
j (�)| �

∑

k1+k2=k

|∂k1λ g�, j, j ′ ||∂k2λ (R1)
j ′
j (�)|

�
∑

k1+k2=k

γ−|k1||g�, j, j ′ |k0,γ |∂k2λ (R1)
j ′
j (�)|

(14.58)
� 〈�〉τ(k0+1)+k0 | j |m| j ′|mγ−1−|k| ∑

|k2|≤|k|
γ |k2||∂k2λ (R1)

j ′
j (�)|. (14.59)

For | j − j ′| ≤ N , j, j ′ �= 0, one has

| j |2m � | j |m(| j ′|m + | j − j ′|m) � | j |m(| j ′|m + Nm) � | j |m| j ′|mNm.

(14.60)

Hence, by (14.59) and (14.60), for all |k| ≤ k0, j, j ′ ∈ S
c
0, � ∈ Z

ν , |�| ≤ N ,
| j − j ′| ≤ N , one has

| j |m|∂kλ(�1)
j ′
j (�)|| j ′|−m � N τ1γ−1−|k| ∑

|k2|≤|k|
γ |k2|| j |m|∂k2λ (R1)

j ′
j (�)|| j ′|m

(14.61)

where τ1 = τ(k0 + 1) + k0 + m is defined in (14.7). Therefore, for all 0 ≤
|k| ≤ k0, we get
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‖ |〈∂ϕ,x 〉b〈D〉m∂kλ�1〈D〉−m| h‖2s

≤
∑

�, j

〈�, j〉2s
⎛

⎝
∑

|�′−�|,| j ′− j |≤N

〈�− �′, j − j ′〉b〈 j〉m

|∂kλ(�1)
j ′
j (�− �′)|〈 j ′〉−m|h�′, j ′ |

⎞

⎠

2

(14.61)
�k0 N 2τ1γ−2(1+|k|) ∑

|k2|≤|k|
γ 2|k2|∑

�, j

〈�, j〉2s

(∑

�′, j ′
|〈�− �′, j − j ′〉b〈 j〉m∂k2λ (R1)

j ′
j (�− �′)〈 j ′〉m||h�′, j ′ |

)2

�k0 N 2τ1γ−2(1+|k|) ∑

|k2|≤|k|
γ 2|k2|∥∥ |〈∂ϕ,x 〉b〈D〉m∂k2λ (R1)〈D〉m| [ ||h|| ]

∥∥2
s

(2.70),(2.28)
�k0 N 2τ1γ−2(1+|k|)(M!

〈∂ϕ,x 〉b〈D〉mR1〈D〉m(s)‖h‖s0
+M

!

〈∂ϕ,x 〉b〈D〉mR1〈D〉m(s0)‖h‖s
)2

(14.62)

and, recallingDefinition 2.29, inequality (14.52) follows.Theproof of (14.54)–
(14.55) follow similarly. � 

If�, with�1, �2 defined in (14.48)–(14.49), satisfies the smallness condi-
tion

4C(b)C(k0)M
!
�(s0) ≤ 1/2, (14.63)

then, by Lemma 2.32, � is invertible, and (14.44), (14.45) imply that, for all
λ ∈ Λ

γ
n+1,

L+ = �−1L� = ω · ∂ϕI⊥ + iD+ +R+ (14.64)

which proves (14.28) and (14.19) at the step n+ 1, with

iD+ := iD + [R], R+ := �−1(�⊥
NR+R� −�[R]). (14.65)
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We note thatR+ satisfies

R+ =
(
(R+)1 (R+)2
(R+)2 (R+)1

)
,

[(R+)1] j
′
j (�) = [(R+)2] j

′
j (�) = 0 ∀(�, j, j ′), j j ′ < 0,

(14.66)

similarly asRn in (14.24), because the property of having zero matrix entries
for j j ′ < 0 is preserved by matrix product, and R, �, [R] satisfy such a
property (see (14.24), (14.50), (14.46)), and therefore, by Neumann series,
also �−1 does.

The right hand sides of (14.64)–(14.65) define an extension of L+ to the
whole parameter space R

ν × [h1,h2], since R and � are defined on R
ν ×

[h1,h2].
The new operator L+ in (14.64) has the same form as L in (14.19), with the

non-diagonal remainderR+ defined in (14.65) which is the sum of a quadratic
function of �, R and a term �⊥

NR supported on high frequencies. The new
normal form D+ in (14.65) is diagonal:

Lemma 14.6 (New diagonal part) For all (ω,h) ∈ R
ν × [h1,h2] we have

iD+ = iD + [R] = i

(
D+ 0
0 −D+

)
,

D+ := diag j∈S
c
0
μ+j , μ+j := μ j + r j ∈ R,

(14.67)

with r j = r− j , μ
+
j = μ+− j for all j ∈ S

c
0, and, on R

ν × [h1,h2],

|r j |k0,γ = |μ+j − μ j |k0,γ � | j |−2mM
!
〈D〉mR〈D〉m(s0). (14.68)

Moreover, given tori i1(ω,h), i2(ω,h), the difference

|r j (i1)− r j (i2)| � | j |−2m‖|〈D〉m�12R〈D〉m|‖L(Hs0 ). (14.69)

Proof Identity (14.67) follows by (14.19) and (14.46) with r j := −i(R1)
j
j (0).

Since R1 satisfies (14.24) and it is even, we deduce, by (2.58), that r− j = r j .

SinceR is reversible, (2.63) implies thatr j := −i(R1)
j
j (0) satisfiesr j = r− j .

Therefore r j = r− j = r j and each r j ∈ R.
Recalling Definition 2.29, we have ‖|∂kλ(〈D〉mR1〈D〉m)|h‖s0 ≤ 2γ−|k|

M
!
〈D〉mR1〈D〉m(s0)‖h‖s0 , for all λ = (ω,h), 0 ≤ |k| ≤ k0, and therefore

(see (2.67))

|∂kλ(R1)
j
j (0)| � | j |−2mγ−|k|M!

〈D〉mR1〈D〉m(s0) � | j |−2mγ−|k|M!
〈D〉mR〈D〉m(s0)
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which implies (14.68). Estimate (14.69) follows by |�12(R1)
j
j (0)| �

| j |−2m‖|〈D〉m�12R〈D〉m|‖L(Hs0 ). � 

14.1.2 Reducibility iteration

Letn ≥ 0 and suppose that (S1)n–(S3)n are true for alln = 0, . . . , n.Weprove
(S1)n+1-(S3)n+1. For simplicity of notation we omit to write the dependence
on k0 which is considered as a fixed constant.
Proof of (S1)n+1 By (14.51)–(14.53), (14.25), and using that M!

Rn
(s) �

M
!
〈D〉mRn〈D〉m(s), the operator �n defined in Lemma 14.5 satisfies estimates

(14.29)–(14.31) with n = n + 1. In particular at s = s0 we have

M
!

〈D〉±m�n〈D〉∓m(s0), M
!
�n

(s0) ≤ C(s0,b)N
τ1
n N−a

n−1γ
−1M0(s0,b).

(14.70)

Therefore, by (14.70), (14.7), (14.18), choosing τ2 > τ1, the smallness condi-
tion (14.63) holds for N0 := N0(S,b) large enough (for any n ≥ 0), and the
map �n = I⊥ +�n is invertible, with inverse

�−1
n = I⊥ + �̌n, �̌n :=

(
�̌n,1 �̌n,2

�̌n,2 �̌n,1

)

. (14.71)

Moreover also the smallness condition (2.75) (ofCorollary 2.33)with A = �n ,
holds, and Lemma 2.32, Corollary 2.33 and Lemma 14.5 imply that the maps
�̌n , 〈D〉±m�̌n〈D〉∓m and 〈∂ϕ,x 〉b〈D〉±m�̌n〈D〉∓m areDk0 -modulo-tame with
modulo-tame constants satisfying

M
!

�̌n
(s), M

!

〈D〉±m�̌n〈D〉∓m
(s) �s0,b N τ1

n γ−1M
!
〈D〉mRn〈D〉m(s) (14.72)

(14.25)|n
�s0,b N τ1

n N−a
n−1γ

−1M0(s,b), (14.73)

and

M
!

〈∂ϕ,x 〉b〈D〉±m�̌n〈D〉∓m(s) �s0,b N τ1
n γ−1M!

〈∂ϕ,x 〉b〈D〉mRn〈D〉m(s)

+ N 2τ1
n γ−2M!

〈∂ϕ,x 〉b〈D〉mRn〈D〉m(s0)M
!
〈D〉mRn〈D〉m(s)

(14.74)
(14.25)|n ,(14.7),(14.18)

�s0,b N τ1
n Nn−1γ−1M0(s,b). (14.75)
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Conjugating Ln by �n , we obtain, by (14.64)–(14.65), for all λ ∈ Λ
γ
n+1,

Ln+1 = �−1
n Ln�n = ω · ∂ϕI⊥ + iDn+1 +Rn+1, (14.76)

namely (14.28) at n = n + 1, where

iDn+1 := iDn + [Rn], Rn+1 := �−1
n

(
�⊥

Nn
Rn +Rn�n −�n[Rn]

)
.

(14.77)

The operator Ln+1 is real, even and reversible because �n is real, even and
reversibility preserving (Lemma 14.5) andLn is real, even and reversible. Note
that the operators Dn+1,Rn+1 are defined on R

ν × [h1,h2], and the identity
(14.76) holds on Λ

γ
n+1.

By Lemma 14.6 the operator Dn+1 is diagonal and, by (14.15), (14.25),
(14.14), its eigenvalues μn+1

j : R
ν × [h1,h2] → R satisfy

|rn
j |k0,γ = |μn+1

j − μn
j |k0,γ � | j |−2mM

!
〈D〉mRn〈D〉m(s0)

≤ C(S,b)εγ−2(M+1)| j |−2mN−a
n−1,

which is (14.22) with n = n + 1. Thus also (14.21) at n = n + 1 holds, by
a telescoping sum. In addition, by (14.66) the operatorRn+1 satisfies (14.24)
with n = n + 1. In order to prove that (14.25) holds with n = n + 1, we first
provide the following inductive estimates on the new remainderRn+1. � 
Lemma 14.7 The operators 〈D〉mRn+1〈D〉m and 〈∂ϕ,x 〉b〈D〉mRn+1〈D〉m
are Dk0-modulo-tame, with

M
!
〈D〉mRn+1〈D〉m(s) �s0,b N−b

n M
!

〈∂ϕ,x 〉b〈D〉mRn〈D〉m(s)

+ N τ1
n

γ
M

!
〈D〉mRn〈D〉m(s)M

!
〈D〉mRn〈D〉m(s0), (14.78)

M
!

〈∂ϕ,x 〉b〈D〉mRn+1〈D〉m(s) �s0,b M
!

〈∂ϕ,x 〉b〈D〉mRn〈D〉m(s)

+ N τ1
n γ−1M

!

〈∂ϕ,x 〉b〈D〉mRn〈D〉m(s0)M
!
〈D〉mRn〈D〉m(s). (14.79)

Proof By (14.77) and (14.71), we write

〈D〉mRn+1〈D〉m
= 〈D〉m�⊥

Nn
Rn〈D〉m + (〈D〉m�̌n〈D〉−m)(〈D〉m�⊥

Nn
Rn〈D〉m)

+
(
I⊥ + 〈D〉m�̌n〈D〉−m

)(
(〈D〉mRn〈D〉m)(〈D〉−m�n〈D〉m)

)
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−
(
I⊥ + 〈D〉m�̌n〈D〉−m

)(
(〈D〉m�n〈D〉−m)(〈D〉m[Rn]〈D〉m)

)
.

(14.80)

The proof of (14.78) follows by estimating separately all the terms in (14.80),
applying Lemmata 2.34, 2.31, and (14.51), (14.72), (14.25)|n , (14.7), (14.18).
The proof of (14.79) follows by formula (14.80), Lemmata 2.31, 2.34 and
estimates (14.51), (14.52), (14.72), (14.25)|n , (14.7), (14.18). � 

In the next lemma we prove that (14.25) holds at n = n+1, concluding the
proof of (S1)n+1.

Lemma 14.8 For N0 = N0(S,b) > 0 large enough we have

M
!
〈D〉mRn+1〈D〉m(s) ≤ C∗(s0,b)N−a

n M0(s,b),

M
!

〈∂ϕ,x 〉b〈D〉mRn+1〈D〉m(s) ≤ C∗(s0,b)NnM0(s,b).

Proof By (14.78) and (14.25) we get

M
!
〈D〉mRn+1〈D〉m(s)

�s0,b N−b
n Nn−1M0(s,b)+ N τ1

n γ−1M0(s,b)M0(s0,b)N
−2a
n−1

≤ C∗(s0,b)N−a
n M0(s,b)

by (14.7), (14.18), taking N0(S,b) > 0 large enough and τ2 > τ1 + a. Then
by (14.79), (14.25) we get that

M
!

〈∂ϕ,x 〉b〈D〉mRn+1〈D〉m(s)

�s0,b Nn−1M0(s,b)+ N τ1
n N 1−a

n−1 γ
−1M0(s,b)M0(s0,b)

≤ C∗(s0,b)NnM0(s,b)

by (14.7), (14.18) and taking N0(S,b) > 0 large enough. � 
Proof of (S2)n+1 The proof of the estimates (14.32), (14.33) for n = n+1 for
the term �12Rn+1 (where Rn+1 is defined in (14.77)) follow as above. The
proof of (14.34) for n = n + 1 follows estimating �12(r

n+1
j − rnj ) = �12r

n
j

by (14.69) of Lemma 14.6 and by (14.32) for n = n. Estimate (14.35) for
n = n + 1 follows by a telescoping argument using (14.34) and (14.32). � 
Proof of (S3)n+1 First we note that the non-resonance conditions imposed in
(14.26) are actually finitely many. We prove the following

• Claim: Let ω ∈ DC(2γ, τ ) and εγ−2(M+1) ≤ 1. Then there exists C0 > 0
such that, for anyn = 0, . . . , n, for all |�|, | j− j ′| ≤ Nn, j, j ′ ∈ N

+\S+, if

123



886 P. Baldi et al.

min{ j, j ′} ≥ C0N
2(τ+1)
n γ−2, (14.81)

then |ω · �+ μn
j − μn

j ′ | ≥ γ 〈�〉−τ . � 

Proof of the Claim By (14.20), (14.21) and recalling also (12.78), one has

μn
j = m 1

2
j
1
2 tanh

1
2 (h j)+ rnj , rnj := r j + rnj ,

sup
j∈Sc

j
1
2 |rnj |k0,γ �S εγ−2(M+1). (14.82)

For all j, j ′ ∈ N\{0}, one has

|√ j tanh(h j)−√ j ′ tanh(h j ′)| ≤ C(h)

min{√ j,
√
j ′} | j − j ′|. (14.83)

Then, using (14.83) and that ω ∈ DC(2γ, τ ), we have, for | j − j ′| ≤ Nn,
|�| ≤ Nn,

|ω · �+ μn
j − μn

j ′ | ≥ |ω · �| − |m 1
2
| C(h)

min{√ j,
√
j ′} | j − j ′| − |rnj | − |rnj ′ |

(11.24),(14.82)≥ 2γ

〈�〉τ −
2C(h)Nn

min{√ j,
√
j ′} −

C(S)εγ−2(M+1)

min{√ j,
√
j ′}

(14.81)≥ γ

〈�〉τ ,

where the last inequality holds for C0 large enough. This proves the claim.
Now we prove (S3)n+1, namely that

C(S)N (τ+1)(4d+1)
n γ−4d‖i2 − i1‖s0+μ(b) ≤ ρ .⇒ Λ

γ
n+1(i1) ⊆ Λ

γ−ρ
n+1 (i2).

(14.84)

Let λ ∈ Λ
γ
n+1(i1). Definition (14.26) and (14.36) with n = n (i.e. (S3)n)

imply that Λ
γ
n+1(i1) ⊆ Λ

γ
n (i1) ⊆ Λ

γ−ρ
n (i2). Moreover λ ∈ Λ

γ−ρ
n (i2) ⊆

Λ
γ /2
n (i2) because ρ ≤ γ /2. Thus Λ

γ
n+1(i1) ⊆ Λ

γ−ρ
n (i2) ⊆ Λ

γ /2
n (i2).

Hence Λ
γ
n+1(i1) ⊆ Λ

γ
n (i1) ∩ Λ

γ /2
n (i2), and estimate (14.35) on |�12rnj | =

|rnj (λ, i2(λ)) − rnj (λ, i1(λ))| holds for any λ ∈ Λ
γ
n+1(i1). By the previous

claim, since ω ∈ DC(2γ, τ ), for all |�|, | j − j ′| ≤ Nn satisfying (14.81) with
n = n we have

|ω · �+ μn
j (λ, i2(λ))− μn

j ′(λ, i2(λ))| ≥
γ

〈�〉τ ≥
γ

〈�〉τ jd j ′d ≥ γ − ρ

〈�〉τ jd j ′d .

123



Time quasi-periodic gravity water waves in finite depth 887

It remains to prove that the second Melnikov conditions in (14.26) with n =
n + 1 also hold for j, j ′ violating (14.81)|n=n , namely that

∣∣∣ω · �+ μn
j (λ, i2(λ))− μn

j ′(λ, i2(λ))
∣∣∣ ≥ γ − ρ

〈�〉τ jd j ′d ,
∀|�|, | j − j ′| ≤ Nn, min{ j, j ′} ≤ C0N

2(τ+1)
n γ−2. (14.85)

The conditions on j, j ′ in (14.85) imply that

max{ j, j ′} = min{ j, j ′} + ∣∣ j − j ′
∣∣ ≤ C0N

2(τ+1)
n γ−2 + Nn

≤ 2C0N
2(τ+1)
n γ−2. (14.86)

Now by (14.20), (14.21), (14.83), recalling (11.24), (12.78), (14.35) and the
bound εγ−2(M+1) ≤ 1, we get

|(μn
j − μn

j ′)(λ, i2(λ))− (μn
j − μn

j ′)(λ, i1(λ))|
≤ |(μ0

j − μ0
j ′)(λ, i2(λ))− (μ0

j − μ0
j ′)(λ, i1(λ))|

+ |rnj (λ, i2(λ))− rnj (λ, i1(λ))| + |rnj ′(λ, i2(λ))− rnj ′(λ, i1(λ))|
≤ C(S)Nn

min{√ j,
√
j ′}‖i2 − i1‖s0+μ(b). (14.87)

Since λ ∈ Λ
γ
n+1(i1), by (14.87) we have, for all |�| ≤ Nn , | j − j ′| ≤ Nn ,

|ω · �+ μn
j (i2)− μn

j ′(i2)|
≥ |ω · �+ μn

j (i1)− μn
j ′(i1)| − |(μn

j − μn
j ′)(i2)− (μn

j − μn
j ′)(i1)|

≥ γ

〈�〉τ jd j ′d −
C(S)Nn

min{√ j,
√
j ′}‖i2 − i1‖s0+μ(b)

≥ γ

〈�〉τ jd j ′d − C(S)Nn‖i2 − i1‖s0+μ(b) ≥ γ − ρ

〈�〉τ jd j ′d

provided C(S)Nn〈�〉τ jd j ′d‖i2 − i1‖s0+μ(b) ≤ ρ. Using that |�| ≤ Nn and
(14.86), the above inequality is implied by the inequality assumed in (14.84).
The proof for the second Melnikov conditions for ω · � + μn

j + μn
j ′ can be

carried out similarly (in fact, it is simpler). This completes the proof of (14.36)
with n = n + 1. � 
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14.2 Almost-invertibility of Lω

By (13.6),Lω = P⊥L⊥P−1
⊥ , whereP⊥ is defined in (13.2), (13.3). By (14.42),

for any λ ∈ Λ
γ
n , we have that L0 = UnLnU−1

n , where Un is defined in (14.37),
L0 = Lsym

⊥ , and Lsym
⊥ = L⊥ on the subspace of functions even in x (see

(14.3)). Thus

Lω = VnLnV−1
n , Vn := P⊥Un. (14.88)

By Lemmata 2.27, 2.30, by estimate (14.39), using the smallness condition
(14.38) and τ2 > τ1 (see Theorem 14.3), the operators U±1

n satisfy, for all

s0 ≤ s ≤ S, ‖U±1
n h‖k0,γs �S ‖h‖k0,γs + ‖I0‖k0,γs+μ(b)‖h‖k0,γs0 . Therefore, by

definition (14.88) and recalling (13.4), (14.8), (14.9), the operatorsV±1
n satisfy,

for all s0 ≤ s ≤ S,

‖V±1
n h‖k0,γs �S ‖h‖k0,γs+σ + ‖I0‖k0,γs+μ(b)‖h‖k0,γs0+σ , (14.89)

for some σ = σ(k0, τ, ν) > 0.
In order to verify the inversion assumption (5.29)–(5.33) we decompose the

operator Ln in (14.42) as

Ln = L<
n +Rn +R⊥

n (14.90)

where

L<
n :=�Kn

(
ω · ∂ϕI⊥ + iDn

)
�Kn +�⊥

Kn
,

R⊥
n :=�⊥

Kn

(
ω · ∂ϕI⊥ + iDn

)
�⊥

Kn
−�⊥

Kn
,

(14.91)

the diagonal operator Dn is defined in (14.19) (with n = n), and Kn := K χn

0
is the scale of the nonlinear Nash–Moser iterative scheme.

Lemma 14.9 (First order Melnikov non-resonance conditions) For all λ =
(ω,h) in

Λ
γ,I
n+1 := Λ

γ,I
n+1(i) :=

{
λ ∈ R

ν × [h1,h2] :
|ω · �+ μn

j | ≥ 2γ j
1
2 〈�〉−τ , ∀|�| ≤ Kn, j ∈ N

+\S+}, (14.92)

the operator L<
n in (14.91) is invertible and there is an extension of the inverse

operator (that we denote in the sameway) to the wholeR
ν×[h1,h2] satisfying

the estimate

‖(L<
n )

−1g‖k0,γs �k0 γ−1‖g‖k0,γs+μ, (14.93)
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where μ = k0 + τ(k0 + 1) is the constant in (2.18) with k0 = k + 1.

Proof By (14.56), similarly as in (14.57) one has γ |α||∂αλ (ω · � + μn
j )| �

γ 〈�〉| j | 12 for all 1 ≤ |α| ≤ k0. Hence Lemma B.4 can be applied to f (λ) =
ω · �+μn

j (λ) with M = Cγ 〈�〉| j | 12 and ρ = 2γ j
1
2 〈�〉−τ . Thus, following the

proof of Lemma 2.5 with ω · �+ μn
j (λ) instead of ω · �, we obtain (14.93). � 

Standard smoothing properties imply that the operatorR⊥
n defined in (14.91)

satisfies, for all b > 0,

‖R⊥
n h‖k0,γs0 � K−b

n ‖h‖k0,γs0+b+1, ‖R⊥
n h‖k0,γs � ‖h‖k0,γs+1 . (14.94)

By (14.88), (14.90), Theorem 14.4, Proposition 13.3, and estimates (14.93),
(14.94), (14.89), we deduce the following theorem.

Theorem 14.10 (Almost-invertibility of Lω) Assume (5.6). Let a,b as in
(14.7) and M as in (14.8). Let S > s0, and assume the smallness condition
(14.38). Then for all

(ω,h) ∈ �
γ
n+1 := �

γ
n+1(i) := Λ

γ
n+1 ∩ Λ

γ,I
n+1 (14.95)

(see (14.41), (14.92)) the operator Lω defined in (5.26) (see also (6.5)) can be
decomposed as (cf. (5.29))

Lω = L<
ω +Rω +R⊥

ω , L<
ω := VnL

<
n V−1

n , Rω := VnRnV−1
n ,

R⊥
ω := VnR⊥

n V−1
n (14.96)

where L<
ω is invertible and there is an extension of the inverse operator (that

we denote in the same way) to the whole R
ν × [h1,h2] satisfying, for some

σ := σ(k0, τ, ν) > 0 and for all s0 ≤ s ≤ S, estimates (5.30)–(5.33), with
μ(b) defined in (14.9). Notice that these latter estimates hold on the whole
R

ν × [h1,h2].
This result allows to deduce Theorem 5.6, which is the key step for a Nash–

Moser iterative scheme.

15 Proof of Theorem 4.1

We consider the finite-dimensional subspaces

En :=
{
I(ϕ) = (#, I, z)(ϕ), # = �n#, I = �n I, z = �nz

}
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where �n is the projector

�n := �Kn : z(ϕ, x) =
∑

�∈Zν , j∈S
c
0

z�, j e
i(�·ϕ+ j x)

�→ �nz(ϕ, x) :=
∑

|(�, j)|≤Kn

z�, j e
i(�·ϕ+ j x) (15.1)

with Kn = K χn

0 (see (5.28)) and we denote with the same symbol�n p(ϕ) :=∑
|�|≤Kn

p�ei�·ϕ . We define �⊥
n := Id − �n . The projectors �n , �⊥

n satisfy
the smoothing properties (2.6), (2.7) for the weighted Whitney-Sobolev norm
‖ · ‖k0,γs defined in (2.3).

In view of the Nash–Moser Theorem 15.1 we introduce the following con-
stants:

a1 := max{6σ1 + 13, χp(τ + 1)(4d+ 1)+ χ(μ(b)+ 2σ1)+ 1},
a2 := χ−1a1 − μ(b)− 2σ1,

(15.2)

μ1 := 3(μ(b)+ 2σ1)+ 1,

b1 := a1 + μ(b)+ 3σ1 + 3+ χ−1μ1, χ = 3/2,
(15.3)

σ1 := max{σ̄ , s0 + 2k0 + 5}, S := s0 + b1 (15.4)

where σ̄ := σ̄ (τ, ν, k0) > 0 is defined in Theorem 5.6, s0 + 2k0 + 5 is the
largest loss of regularity in the estimates of the Hamiltonian vector field XP in
Lemma 5.1,μ(b) is defined in (14.9),b is the constantb := [a]+2 ∈ Nwhere
a is defined in (14.7). The constants b1, μ1 appear in (P3)n of Theorem 15.1
below: b1 gives the maximal Sobolev regularity S = s0 + b1 which has to be
controlled along the Nash Moser iteration and μ1 gives the rate of divergence
of the high norms ‖W̃n‖k0,γs0+b1

. The constant a1 appears in (15.10) and gives

the rate of convergence of F(Ũn) in low norm.
The exponent p in (5.27) which links the scale (Nn)n≥0 of the reducibility

scheme (Theorem 14.4) and the scale (Kn)n≥0 of the Nash–Moser iteration
(Nn = K p

n ) is required to satisfy

pa > (χ − 1)a1 + χσ1 = 1

2
a1 + 3

2
σ1. (15.5)

By (14.7), a ≥ χ(τ + 1)(4d + 1) + 1. Hence, by the definition of a1 in
(15.2), there exists p := p(τ, ν, k0) such that (15.5) holds. For example we
fix p := 3(μ(b)+ 3σ1 + 1)/a.

123



Time quasi-periodic gravity water waves in finite depth 891

Given W = (I, β) where I = I(λ) is the periodic component of a torus as
in (4.12), and β = β(λ) ∈ R

ν we denote ‖W‖k0,γs := max{‖I‖k0,γs , |β|k0,γ },
where ‖I‖k0,γs is defined in (4.13).

Theorem 15.1 (Nash–Moser) There exist δ0, C∗ > 0, such that, if

K τ3
0 εγ−2M−3 < δ0, τ3 := max{pτ2, 2σ1 + a1 + 4},

K0 := γ−1, γ := εa, 0 < a <
1

τ3 + 2M + 3
,

(15.6)

where the constant M is defined in (14.8) and τ2 := τ2(τ, ν) is defined in
Theorem 14.3, then, for all n ≥ 0:

(P1)n there exists a k0 times differentiable function W̃n : R
ν × [h1,h2] →

En−1 × R
ν , λ = (ω,h) �→ W̃n(λ) := (Ĩn, α̃n − ω), for n ≥ 1, and

W̃0 := 0, satisfying

‖W̃n‖k0,γs0+μ(b)+σ1
≤ C∗εγ−1. (15.7)

Let Ũn := U0 + W̃n where U0 := (ϕ, 0, 0, ω). The difference H̃n :=
Ũn − Ũn−1, n ≥ 1, satisfies

‖H̃1‖k0,γs0+μ(b)+σ1
≤ C∗εγ−1,

‖H̃n‖k0,γs0+μ(b)+σ1
≤ C∗εγ−1K−a2

n−1 , ∀n ≥ 2.
(15.8)

(P2)n Setting ı̃n := (ϕ, 0, 0)+ Ĩn, we define

G0 := Ω× [h1,h2], Gn+1 := Gn ∩�
γ
n+1(ı̃n), n ≥ 0, (15.9)

where �
γ
n+1(ı̃n) is defined in (14.95). Then, for all λ ∈ Gn, setting

K−1 := 1, we have

‖F(Ũn)‖k0,γs0 ≤ C∗εK−a1
n−1 . (15.10)

(P3)n (High norms). ‖W̃n‖k0,γs0+b1
≤ C∗εγ−1Kμ1

n−1 for all λ ∈ Gn.

Proof The proof is the same as Theorem 8.2 in [21]. It is based on an iter-
ative Nash–Moser scheme and uses the almost-approximate inverse at each
approximate quasi-periodic solution provided by Theorem 5.6. � 

We now complete the proof of Theorem 4.1. Let γ = εa with a ∈ (0, a0)
and a0 := 1/(2M + 3+ τ3) where τ3 is defined in (15.6). Then the smallness
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condition given by the first inequality in (15.6) holds for 0 < ε < ε0 small
enough and Theorem 15.1 applies. By (15.8) the sequence of functions

W̃n = Ũn − (ϕ, 0, 0, ω) := (Ĩn, α̃n − ω) = (ı̃n − (ϕ, 0, 0), α̃n − ω
)

is a Cauchy sequence in ‖ ‖k0,γs0 and then it converges to a function W∞ :=
limn→+∞ W̃n . We define

U∞ := (i∞, α∞) = (ϕ, 0, 0, ω)+W∞,

W∞ : R
ν × [h1,h2] → Hs0

ϕ × Hs0
ϕ × Hs0

ϕ,x × R
ν.

By (15.7) and (15.8) we also deduce that

‖U∞ −U0‖k0,γs0+μ(b)+σ1
≤ C∗εγ−1,

‖U∞ − Ũn‖k0,γs0+μ(b)+σ1
≤ Cεγ−1K−a2

n , n ≥ 1.
(15.11)

Moreover by Theorem 15.1-(P2)n , we deduce that F(λ,U∞(λ)) = 0 for all
λ belonging to

⋂

n≥0
Gn = G0 ∩

⋂

n≥1
�

γ
n (ı̃n−1)

(14.95)= G0 ∩
[⋂

n≥1
Λγn (ı̃n−1)

]
∩
[⋂

n≥1
Λγ,In (ı̃n−1)

]
,

(15.12)

where G0 = Ω× [h1,h2] is defined in (15.9). By the first inequality in (15.11)
we deduce (4.16) and (4.17).

It remains to prove that the Cantor set Cγ∞ in (4.20) is contained in
⋂

n≥0 Gn .
We first consider the set

G∞ := G0 ∩
[⋂

n≥1
Λ
2γ
n (i∞)

]
∩
[⋂

n≥1
Λ
2γ,I
n (i∞)

]
. (15.13)

Lemma 15.2 G∞ ⊆⋂n≥0 Gn, where Gn is defined in (15.9).
Proof See Lemma 8.6 of [21]. � 

Then we define the “final eigenvalues”

μ∞j := μ0
j (i∞)+ r∞j , j ∈ N

+\S+, (15.14)

where μ0
j (i∞) are defined in (14.5) (with m 1

2
, r j depending on i∞) and

r∞j := lim
n→+∞ rnj (i∞), j ∈ N

+\S+, (15.15)
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with rnj given in Theorem 14.3-(S1)n . Note that the sequence (rnj (i∞))n∈N is

a Cauchy sequence in | |k0,γ by (14.22). As a consequence its limit function
r∞j (ω,h) is well defined, it is k0 times differentiable and satisfies

|r∞j − rnj (i∞)|k0,γ ≤ Cεγ−2(M+1)| j |−2mN−a
n−1, n ≥ 0. (15.16)

In particular, since r0j (i∞) = 0, we get |r∞j |k0,γ ≤ Cεγ−2(M+1)| j |−2m (here
C := C(S, k0), with S fixed in (15.4)). The latter estimate, (15.14), (14.5) and
(12.78) imply (4.18)–(4.19) with r∞j := r j + r∞j and m∞1

2
:= m 1

2
(i∞).

Lemma 15.3 The final Cantor set Cγ∞ in (4.20) satisfies Cγ∞ ⊆ G∞, where G∞
is defined in (15.13).

Proof By (15.13), we have to prove that Cγ∞ ⊆ Λ
2γ
n (i∞), ∀n ∈ N. We argue by

induction. For n = 0 the inclusion is trivial, since Λ2γ0 (i∞) = Ω× [h1,h2] =
G0. Now assume that Cγ∞ ⊆ Λ

2γ
n (i∞) for some n ≥ 0. For all λ ∈ Cγ∞ ⊆

Λ
2γ
n (i∞), by (14.20), (15.14), (15.16), we get
∣∣∣(μn

j − μn
j ′)(i∞)− (μ∞j − μ∞j ′ )

∣∣∣ ≤ Cεγ−2(M+1)N−a
n−1

(
j−2m + j ′−2m)

Therefore, for any |�|, | j − j ′| ≤ Nn with (�, j, j ′) �= (0, j, j) (recall (4.20))
we have

∣∣∣ω · �+ μn
j (i∞)− μn

j ′(i∞)

∣∣∣

≥
∣∣∣ω · �+ μ∞j − μ∞j ′

∣∣∣− Cεγ−2(M+1)N−a
n−1

(
j−2m + j ′−2m)

≥ 4γ 〈�〉−τ j−d j ′−d − Cεγ−2(M+1)N−a
n−1

(
j−2m + j ′−2m)

≥ 2γ 〈�〉−τ j−d j ′−d

provided Cεγ−2M−3N−a
n−1N

τ
n

(
j−2m + j ′−2m

)
jd j ′d ≤ 1. Since m > d (see

(14.7)), one has ( j+Nn)
d jd−2m �d Nd

n for all j ≥ 1. Hence, using | j− j ′| ≤
Nn ,

(
j−2m + j ′−2m) jd j ′d = j ′d

j2m−d
+ jd

j ′2m−d

≤ ( j + Nn)
d

j2m−d
+ ( j ′ + Nn)

d

j ′2m−d
�d Nd

n .

Therefore, for some C1 > 0, one has, for any n ≥ 0,

Cεγ−2M−3N−a
n−1N

τ
n

(
j−2m + j ′−2m) jd j ′d ≤ C1εγ

−2M−3N−a
n−1N

τ+d
n ≤ 1
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for ε small enough, by (14.7), (15.6) and because τ3 > p(τ +d) (that follows
since τ2 > τ1 + a where τ2 has been fixed in Theorem 14.3). In conclusion
Cγ∞ ⊆ Λ

2γ
n+1(i∞) (for the secondMelnikov conditionswith the+ sign in (14.26)

we apply the same argument). Similarly we prove that Cγ∞ ⊆ Λ
2γ,I
n (i∞) for all

n ∈ N. � 
Lemmata 15.2, 15.3 imply Cγ∞ ⊆ ⋂n≥0 Gn , where Gn is defined in (15.9).

This concludes the proof of Theorem 4.1.
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Appendix A: Dirichlet–Neumann operator

Let η ∈ C∞(T). It is well-known (see e.g. [5,40,47]) that the Dirichlet–
Neumann operator is a pseudo-differential operator of the form

G(η) = G(0)+RG(η), where G(0) = |D| tanh(h|D|) (A.1)

is the Dirichlet–Neumann operator at the flat surface η(x) = 0 and the
remainder RG(η) is in OPS−∞ and it is O(η)-small. Note that the profile
η(x) := η(ω,h, ϕ, x), as well as the velocity potential at the free surface
ψ(x) := ψ(ω,h, ϕ, x), may depend on the angles ϕ ∈ T

ν and the parameters
λ := (ω,h) ∈ R

ν × [h1,h2]. For simplicity of notation we sometimes omit
to write the dependence with respect to ϕ and λ.

In the sequel we use the following notation. Let X and Y be Banach spaces
and B ⊂ X be a bounded open set. We denote by C1b(B, Y ) the space of the
C1 functions B → Y bounded and with bounded derivatives.

Proposition A.1 (Dirichlet–Neumann) Assume that ∂kλη(λ, ·, ·) is C∞ for all
|k| ≤ k0. There exists δ(s0, k0) > 0 such that, if

‖η‖k0,γ2s0+2k0+1 ≤ δ(s0, k0), (A.2)

then the Dirichlet–Neumann operator G(η) may be written as in (A.1) where
RG(η) is an integral operator with C∞ kernel KG (see (2.54)) which satisfies,
for all m, s, α ∈ N, the estimate

||RG(η)||k0,γ−m,s,α ≤ C(s,m, α, k0)‖KG‖k0,γCs+m+α

≤ C(s,m, α, k0)‖η‖k0,γs+2s0+2k0+m+α+3. (A.3)
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Time quasi-periodic gravity water waves in finite depth 895

Let s1 ≥ 2s0 + 1. There exists δ(s1) > 0 such that the map {‖η‖s1+6 <

δ(s1)} → Hs1(Tν × T× T), η �→ KG(η), is C1b .

The rest of this section is devoted to the proof of Proposition A.1.
In order to analyze the Dirichlet–Neumann operator G(η) it is convenient

to transform the boundary value problem (1.3) (with h = h) defined in the
closure of the free domain Dη = {(x, y) : −h < y < η(x)} into an elliptic
problem in a flat lower strip

{
(X, Y ) : −h− c ≤ Y ≤ 0

}
, (A.4)

via a conformal diffeomorphism (close to the identity for η small) of the form

x = U (X, Y ) = X + p(X, Y ), y = V (X, Y ) = Y + q(X, Y ). (A.5)

Remark A.2 If (A.5) is a conformal map then the system obtained transform-
ing (1.3) is simply (A.32) (the Laplace operator and the Neumann boundary
conditions are transformed into themselves).

We require that q(X, Y ) and p(X, Y ) are 2π -periodic in X , so that (A.5)
defines a diffeomorphism between the cylinder T× [−h− c, 0] and Dη. The
bottom {Y = −h− c} is transformed in the bottom {y = −h} if

V (X,−h− c) = −h ⇔ q(X,−h− c) = c, ∀X ∈ R, (A.6)

and the boundary {Y = 0} is transformed in the free surface {y = η(x)} if

V (X, 0) = η(U (X, 0)) ⇔ q(X, 0) = η(X + p(X, 0)). (A.7)

The diffeomorphism (A.5) is conformal if and only if the map U (X, Y ) +
iV (X, Y ) is analytic, which amounts to the Cauchy-Riemann equationsUX =
VY , UY = −VX , namely pX = qY , pY = −qX . The functions (U, V ), i.e.
(p, q), are harmonic conjugate. Moreover, (A.6) and the Cauchy-Riemann
equations imply that

UY (X,−h− c) = pY (X,−h− c) = 0. (A.8)

Given any periodic function

p(X) = p0 +
∑

k �=0

pke
ikX , (A.9)
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the unique function p(X, Y ) that is 2π -periodic in X and solves �p = 0,
p(X, 0) = p(X), pY (X,−h− c) = 0 is

p(X, Y ) =
∑

k∈Z

pk
cosh(|k|(Y + h+ c))

cosh(|k|(h+ c))
eikX . (A.10)

The unique function q(X, Y ) that is 2π -periodic in X and solves �q = 0,
(A.6) and pX = qY , pY = −qX is

q(X, Y )=c+
∑

k �=0

ipk
sign(k)

cosh(|k|(h+c))
sinh(|k|(Y+h+c))eikX . (A.11)

We still have to impose (A.7). By (A.11) we have

q(X, 0) = c +
∑

k �=0

i sign(k) tanh(|k|(h+ c))pke
ikX

= c −H tanh((h+ c)|D|)p(X) (A.12)

where p(X) is defined in (A.9) and H is the Hilbert transform defined as the
Fourier multiplier in (2.32). By (A.12), since p(X, 0) = p(X), condition (A.7)
amounts to solve

c −H tanh((h+ c)|D|)p(X) = η(X + p(X)). (A.13)

Remark A.3 If we had required c = 0 (fixing the strip of the straight domain
(A.4)), equation (A.13) would, in general, have no solution. For example, if
η(x) = η0 �= 0, then −H tanh(h|D|)p(X) = η0 has no solutions because the
left hand side has zero average while the right hand side has average η0 �= 0.

Since the range of H are the functions with zero average, equation (A.13)
is equivalent to

c = 〈η(X + p(X))〉, −H tanh((h+ c)|D|)p(X) = π⊥0 η(X + p(X))

(A.14)

where 〈 f 〉 = f0 = π0 f is the average in X of any function f , π0 is defined
in (2.33), and π⊥0 := Id − π0. We look for a solution (c(ϕ),p(ϕ, X)), where
p has zero average in X , of the system

c = 〈η(X + p(X))〉, p(X) = H
tanh((h+ c)|D|) [η(X + p(X))].

(A.15)
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SinceH2 = −π⊥0 , if p solves the second equation in (A.15), thenp also solves
the second equation in (A.14).

Lemma A.4 Let η(λ, ϕ, x) satisfy ∂kλη(λ, ·, ·) ∈ C∞(Tν+1) for all |k| ≤ k0.

There exists δ(s0, k0) > 0 such that, if ‖η‖k0,γ2s0+k0+2 ≤ δ(s0, k0), then there
exists a unique C∞ solution (c(η),p(η)) of system (A.15) satisfying

‖p‖k0,γs , ‖c‖k0,γs �s,k0 ‖η‖k0,γs+k0
, ∀s ≥ s0. (A.16)

Moreover, let s1 ≥ 2s0+1. There exists δ(s1) > 0 such that themap {‖η‖s1+2 <

δ(s1)} → Hs1
ϕ × Hs1 , η �→ (c(η),p(η)) is C1b .

Proof We look for a fixed point of the map

�(p) := Hf
(
(h+ c)|D|)[η(· + p(·))], where f(ξ) := 1

tanh(ξ)
, ξ �= 0,

(A.17)

and c := 〈η(X + p(X))〉. We are going to prove that � is a contraction in a
ball B2s0+1(r) := {‖p‖k0,γ2s0+1 ≤ r , 〈p〉 = 0} with radius r small enough. We
begin by proving some preliminary estimates.

The operatorHf
(
(h+c)|D|) is the Fouriermultiplier, acting on the periodic

functions, with symbol

−i sign(ξ)χ(ξ)f
(
(h+ c(λ, ϕ))|ξ |) =: g(h+ c(λ, ϕ), ξ),

where g(y, ξ) := −i sign(ξ)χ(ξ)f(y|ξ |) ∀y > 0,

where the cut-off χ(ξ) is defined in (2.16). For all n ∈ N, there is a constant
Cn(h1) > 0 such that |∂ny g(y, ξ)| ≤ Cn(h1) for all y ≥ h1/2, ξ ∈ R. We
consider a smooth extension g̃(y, ξ) of g(y, ξ), defined for any (y, ξ) ∈ R×R,
satisfying the same bound as g. Now |c(λ, ϕ)| ≤ ‖η‖L∞ ≤ C‖η‖s0 , and
therefore h+ c(λ, ϕ) ≥ h1/2 for all λ, ϕ if ‖η‖s0 is sufficiently small. Then,
by Lemma 2.6, the composition g̃(h+ c(λ, ϕ), ξ) satisfies

‖g̃(h+ c, ξ)‖k0,γs �s,k0,h1,h2 1+ ‖c‖k0,γs

uniformly in ξ ∈ R (the dependence on h1,h2 is omitted in the sequel). As a
consequence, we have the following estimates for pseudo-differential norms
(recall Definition 2.9) of the Fourier multiplier in (A.17): for all s ≥ s0,

||Hf
(
(h+ c)|D|)||k0,γ0,s,0, ||H|D|f′

(
(h+ c)|D|)||k0,γ0,s,0 �s,k0 1+ ‖c‖k0,γs .

(A.18)
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Estimate (2.11) with k + 1 = k0 implies that, for ‖p‖k0,γ2s0+1 ≤ δ(s0, k0), the
function c ≡ c(η,p) = 〈η(X + p(X))〉 satisfies, for all s ≥ s0,

‖c‖k0,γs �s,k0 ‖η‖k0,γs+k0
+ ‖p‖k0,γs ‖η‖k0,γs0+k0+1. (A.19)

Therefore by (A.18), (A.19) we get, for all s ≥ s0,

||Hf
(
(h+ c)|D|)||k0,γ0,s,0, ||H|D|f′

(
(h+ c)|D|)||k0,γ0,s,0

�s,k0 1+ ‖η‖k0,γs+k0
+ ‖p‖k0,γs ‖η‖k0,γs0+k0+1. (A.20)

Now we prove that� is a contraction in the ball B2s0+1(r) := {‖p‖k0,γ2s0+1 ≤ r ,
〈p〉 = 0}.
Step 1: Contraction in low norm. For any ‖p‖k0,γ2s0+1 ≤ r ≤ δ(s0, k0),

by (2.69), (A.20), (2.11), and using the bound ‖η‖k0,γs0+k0+1 ≤ 1, we have,
∀s ≥ s0,

‖�(p)‖k0,γs �s,k0 ‖η‖k0,γs+k0
+ ‖η‖k0,γs0+k0+1‖p‖k0,γs . (A.21)

We fix r := 2C(s0, k0)‖η‖k0,γ2s0+k0+1 and we assume that r ≤ 1. Then, using
(A.21) with s = 2s0 + 1, one deduces that � maps the ball B2s0+1(r) into
itself. To prove that � is a contraction in this ball, we estimate its differential
at any p ∈ B2s0+1(r) in the direction p̃, which is

�′(p)[p̃] = A(m p̃), (A.22)

where the operator A and the function m are

A(h) := 〈h〉Hf′((h+ c)|D|)|D|[η(X + p(X))]
+Hf((h+ c)|D|)[h], m := ηx (X + p(X)). (A.23)

To obtain (A.22)–(A.23), note that ∂pc[p̃] = 〈mp̃〉. By (2.11), for all s ≥ s0,

‖m‖k0,γs �s,k0 ‖η‖k0,γs+k0+1 + ‖p‖k0,γs ‖η‖k0,γs0+k0+2. (A.24)

By (2.69), (A.20), (2.11), using the bounds ‖η‖k0,γs0+k0+1 ≤ 1 and ‖p‖k0,γs0 ≤ 1,
we get, for all s ≥ s0,

||A||k0,γ0,s,0 �s,k0 1+ ‖η‖k0,γs+k0
+ ‖p‖k0,γs ‖η‖k0,γs0+k0+1. (A.25)
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By (A.22), (2.44), (A.24), (A.25) we deduce that, for all s ≥ s0,

||�′(p)||k0,γ0,s,0 �s,k0 ‖η‖k0,γs+k0+1 + ‖p‖k0,γs ‖η‖k0,γs0+k0+2. (A.26)

In particular, by (A.26) at s = 2s0 + 1, and (2.69), we get

‖�′(p)[p̃] ‖k0,γ2s0+1 ≤ C(s0, k0)‖η‖k0,γ2s0+k0+2‖p̃‖k0,γ2s0+1 ≤
1

2
‖p̃‖k0,γ2s0+1

(A.27)

provided C(s0, k0)‖η‖k0,γ2s0+k0+2 ≤ 1/2. Thus � is a contraction in the ball
B2s0+1(r) and, by the contraction mapping theorem, there exists a unique
fixed point p = �(p) in B2s0+1(r). Moreover, by (A.21), using that p =
�(p) there is C(s0, k0) > 0 such that if C(s0, k0)‖η‖k0,γs0+k0+1 ≤ 1/2 for all

s ∈ [s0, 2s0 + 1], one has ‖p‖k0,γs �s,k0 ‖η‖k0,γs+k0
. Using also (A.19) one

deduces ‖c‖k0,γs �s,k0 ‖η‖k0,γs+k0
for all s ∈ [s0, 2s0 + 1]. Thus we have proved

(A.16) for all s ∈ [s0, 2s0 + 1].
Step 2: regularity. Now we prove that p is C∞ in (ϕ, x) and we estimate
the norm ‖p‖k0,γs as in (A.16) arguing by induction on s. Assume that, for a
given s ≥ 2s0 + 1, we have already proved that

‖p‖k0,γs , ‖c‖k0,γs �s,k0 ‖η‖k0,γs+k0
. (A.28)

We want to prove that (A.28) holds for s + 1. We have to estimate ‖p‖k0,γs+1 /
max{‖p‖k0,γs , ‖∂Xp‖k0,γs , ‖∂ϕip‖k0,γs , i = 1, . . . , ν}. Using the definition
(A.17) of�, we derive explicit formulas for the derivatives ∂Xp, ∂ϕip in terms
of p, η, ∂xη, ∂ϕiη. Differentiating the identity p = �(p) with respect to X we
get

pX = Hf
(
(h+ c)|D|)[ηx (X + p(X))(1+ pX )] = �′(p)[pX ] +A(m)

(A.29)

where the operator �′(p) is given by (A.22) and A,m are defined in (A.23)
(note that 〈ηx (X + p(X))(1 + pX (X))〉 = 0). By (A.26) at s = s0, for
‖η‖k0,γs0+k0+2 ≤ δ(s0, k0) small enough, condition (2.52) for A = −�′(p) (with
α = 0) holds. Therefore the operator Id − �′(p) is invertible and, by (2.53)
(with α = 0), (A.28) and (2.69), its inverse satisfies, for all s ≥ s0,

‖(Id−�′(p))−1h‖k0,γs �s,k0 ‖h‖k0,γs + ‖η‖k0,γs+k0+1‖h‖k0,γs0 . (A.30)
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By (A.29), we deduce that pX = (Id − �′(p))−1A(m). By (2.69), (A.24)–
(A.25) and (A.28), we get ‖A(m)‖k0,γs �s ‖η‖k0,γs+k0+1. Hence, by (A.30), using

‖η‖k0,γs0+k0+2 ≤ 1, we get

‖pX‖k0,γs �s,k0 ‖η‖k0,γs+k0+1. (A.31)

We similar arguments we get ‖∂ϕip‖k0,γs �s,k0 ‖η‖k0,γs+k0+1, i = 1, . . . , ν, and
using (A.28), (A.31), we deduce (A.28) at s + 1 for p. By (A.19), the same
estimate holds for c, and the induction step is proved. This completes the proof
of (A.16).

The fact that the map {‖η‖s1+2 < δ(s1)} → Hs1
ϕ × Hs1 defined by η �→

(c(η),p(η)) is C1b follows by the implicit function theorem. � 
Notice that (A.2) implies the smallness condition of Lemma A.4. Now we

transform (1.3) via the conformal diffeomorphism

U (X, Y ) := X +
∑

k �=0

pk
cosh(|k|(Y + h+ c))

cosh(|k|(h+ c))
eikX

V (X, Y ) := Y + c +
∑

k �=0

ipk
sign(k)

cosh(|k|(h+ c))
sinh(|k|(Y + h+ c))eikX

where c and p are the solutions of (A.15) provided by Lemma A.4.
Denote (Pu)(X) := u(X + p(X)). The velocity potential φ(X, Y ) :=
�(U (X, Y ), V (X, Y )) satisfies, using the Cauchy-Riemann equations UX =
VY , UY = −VX (or equivalently pX = qY , pY = −qX ) and (A.6)–(A.8),

�φ = 0 in {−h− c < Y < 0}, φ(X, 0) = (Pψ)(X),

φY (X,−h− c) = 0. (A.32)

We calculate explicitly the solution φ of (A.32), which is (see (A.10))

φ(X, Y ) =
∑

k∈Z

(̂Pψ)k
cosh(|k|(Y + h+ c))

cosh(|k|(h+ c))
eikX ,

where (̂Pψ)k denotes the k-th Fourier coefficient of the periodic function Pψ .
Therefore the Dirichlet–Neumann operator in the domain {−h− c ≤ Y ≤ 0}
at the flat surface Y = 0 is given by

φY (X, 0) =
∑

k �=0

(̂Pψ)k tanh(|k|(h+ c))|k|eikX
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= |D| tanh((h+ c)|D|)(Pψ)(X). (A.33)

Lemma A.5 G(η) = ∂x P−1H tanh((h+ c)|D|) P.
Proof The proof is the same as the one of Lemma 2.40 in [21]. The only
difference is that formula (A.33) in the case of infinite depth is given by
φY (X, 0) = |D|(Pψ)(X). � 

Proof of Proposition A.1 concluded By Lemma A.5 we write the Dirichlet–
Neumann operator as

G(η) = ∂x P
−1H tanh((h+ c)|D|)P = |D| tanh(h|D|)+RG(η),

RG(η) := R(1)
G (η)+R(2)

G (η),

where, using the decomposition (7.41),

R(1)
G (η) := ∂x

(
P−1H tanh((h+ c)|D|)P −H tanh((h+ c)|D|))

= ∂x (P
−1HP −H)+ ∂x (P

−1HOp(rh+c)P −HOp(rh+c)).

(A.34)

The second term R(2)
G (η) is

R(2)
G (η) := ∂xH

(
tanh((h+ c)|D|)− tanh(h|D|)) = ∂xHOp(rh+c − rh)

= c ∂xHOp(r̆h,c) ∈ OPS−∞, (A.35)

where

rh+c(ξ)− rh(ξ) = r̆h,c(ξ) c,

r̆h,c(ξ) := 2|ξ |χ(ξ)
∫ 1

0

2 exp{2(h+ tc)|ξ |χ(ξ)}
(1+ exp{2(h+ tc)|ξ |χ(ξ)})2 dt ∈ S−∞.

Estimate (A.3) directly follows estimating (A.34) and (A.35) by Lemmata
2.17, 2.18, and using LemmaA.4. The differentiablility of themap {‖η‖s1+6 <

δ(s1)} → Hs1(Tν×T×T), η �→ KG(η) follows by the differentiability of the
map {‖η‖s1+2 < δ(s1)} → Hs1

ϕ × Hs1 , η �→ (c(η),p(η)) proved in Lemma
A.4. � 

Appendix B: Whitney differentiable functions

The following definition is the one in Section 2.3, Chapter VI of [58], for
Banach-valued functions.
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Definition B.1 (Whitney differentiable functions) Let F be a closed subset of
R
n ,n ≥ 1. LetY be aBanach space. Let k ≥ 0 be an integer, and k < ρ ≤ k+1.

We say that a function f : F → Y belongs to Lip(ρ, F, Y ) if there exist
functions f ( j) : F → Y , j ∈ N

n , 0 ≤ | j | ≤ k, with f (0) = f , and a constant
M > 0 such that if R j (x, y) is defined by

f ( j)(x) =
∑

�∈Nn :| j+�|≤k

1

�! f
( j+�)(y) (x − y)� + R j (x, y), x, y ∈ F,

(B.1)

then

‖ f ( j)(x)‖Y ≤ M, ‖R j (x, y)‖Y ≤ M |x − y|ρ−| j |, ∀x, y ∈ F, | j | ≤ k.

(B.2)

An element of Lip(ρ, F, Y ) is in fact the collection { f ( j) : | j | ≤ k}. The norm
of f ∈ Lip(ρ, F, Y ) is defined as the smallestM for which the inequality (B.2)
holds, namely

‖ f ‖Lip(ρ,F,Y ) := inf{M > 0 : (B.2) holds}. (B.3)

If F = R
n by Lip(ρ,R

n, Y ) we shall mean the linear space of the functions
f = f (0) for which there exist f ( j) = ∂

j
x f , | j | ≤ k, satisfying (B.2).

Notice that, if F = R
n , the f ( j), | j | ≥ 1, are uniquely determined by f (0)

(which is not the case for a general F with for example isolated points).
In the case F = R

n , ρ = k + 1 and Y is a Hilbert space, the space
Lip(k + 1,R

n, Y ) is isomorphic to the Sobolev space Wk+1,∞(Rn, Y ), with
equivalent norms

C1‖ f ‖Wk+1,∞(Rn,Y ) ≤ ‖ f ‖Lip(k+1,Rn,Y ) ≤ C2‖ f ‖Wk+1,∞(Rn,Y ) (B.4)

where C1,C2 depend only on k, n. For Y = C this isomorphism is classical,
see e.g. [58], and it is based on the Rademacher theorem concerning the a.e.
differentiability of Lipschitz functions, and the fundamental theorem of cal-
culus for the Lebesgue integral. Such a property may fail for a Banach valued
function, but it holds for a Hilbert space, see Chapter 5 of [12] (more in general
it holds if Y is reflexive or it satisfies the Radon-Nykodim property).

The following key result provides an extension of a Whitney differentiable
function f defined on a closed subset F of R

n to the whole domain R
n , with

equivalent norm.
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Theorem B.2 (Whitney extension Theorem) Let F be a closed subset of R
n,

n ≥ 1, Y a Banach space, k ≥ 0 an integer, and k < ρ ≤ k + 1. There exists
a linear continuous extension operator Ek : Lip(ρ, F, Y ) → Lip(ρ,R

n, Y )
which gives an extension Ek f ∈ Lip(ρ,R

n, Y ) to any f ∈ Lip(ρ, F, Y ). The
norm of Ek has a bound independent of F,

‖Ek f ‖Lip(ρ,Rn,Y ) ≤ C‖ f ‖Lip(ρ,F,Y ), ∀ f ∈ Lip(ρ, F, Y ), (B.5)

where C depends only on n, k (and not on F, Y ).

Proof This is Theorem 4 in Section 2.3, Chapter VI of [58]. The proof in [58]
is written for real-valued functions f : F → R, but it also holds for functions
f : F → Y for any (real or complex) Banach space Y , with no change. The
extension operator Ek is defined in formula (18) in Section 2.3, Chapter VI of
[58], and it is linear by construction. � 

Clearly, since Ek f is an extension of f , one has

‖ f ‖Lip(ρ,F,Y ) ≤ ‖Ek f ‖Lip(ρ,Rn,Y ) ≤ C‖ f ‖Lip(ρ,F,Y ). (B.6)

In order to extend a function defined on a closed set F ⊂ R
n with values

in scales of Banach spaces (like Hs(Tν+1)), we observe that the extension
provided by Theorem B.2 does not depend on the index of the space (namely
s).

Lemma B.3 Let F be a closed subset of R
n, n ≥ 1, let k ≥ 0 be

an integer, and k < ρ ≤ k + 1. Let Y ⊆ Z be two Banach spaces.
Then Lip(ρ, F, Y ) ⊆ Lip(ρ, F, Z). The two extension operators E (Z)

k :
Lip(ρ, F, Z) → Lip(ρ,R

n, Z) and E (Y )
k : Lip(ρ, F, Y ) → Lip(ρ,R

n, Y )
provided by Theorem B.2 satisfy

E (Z)
k f = E (Y )

k f ∀ f ∈ Lip(ρ, F, Y ).

As a consequence, we simply denote Ek the extension operator.

Proof The lemma follows directly by the construction of the extension oper-
ator Ek in formula (18) in Section 2.3, Chapter VI of [58], which relies on a
nontrivial decomposition in cubes of the domain R

n only. � 
Thanks to the equivalence (B.6), Lemma B.3, and (B.4) which holds for

functions valued in Hs , classical interpolation and tame estimates for products,
projections, and composition of Sobolev functions can be easily extended to
Whitney differentiable functions.

The difference between theWhitney-Sobolev norm introduced inDefinition
2.1 and the norm in Definition B.1 (for ρ = k+1, n = ν+1, and target space

123



904 P. Baldi et al.

Y = Hs(Tν+1,C)) is the weight γ ∈ (0, 1]. Observe that the introduction
of this weight simply amounts to the following rescaling Rγ : given u =
(u( j))| j |≤k , we defineRγ u = U = (U ( j))| j |≤k as

λ = γμ, γ | j |u( j)(λ) = γ | j |u( j)(γμ) =: U ( j)(μ) = U ( j)(γ−1λ),

U := Rγ u. (B.7)

Thus u ∈ Lip(k + 1, F, s, γ ) if and only ifU ∈ Lip(k + 1, γ−1F, s, 1), with

‖u‖k+1,γ
s,F = ‖U‖k+1,1

s,γ−1F
. (B.8)

Under the rescalingRγ , (B.4) gives the equivalence of the two norms

‖ f ‖Wk+1,∞,γ (Rν+1,Hs) :=
∑

|α|≤k+1

γ |α|‖∂αλ f ‖L∞(Rν+1,Hs) ∼ν,k ‖ f ‖k+1,γ
s,Rν+1 .

(B.9)

Moreover, given u ∈ Lip(k + 1, F, s, γ ), its extension

ũ := R−1
γ EkRγ u ∈ Lip(k + 1,R

ν+1, s, γ ) satisfies

‖u‖k+1,γ
s,F ∼ν,k ‖ũ‖k+1,γ

s,Rν+1 . (B.10)

Proof of Lemma 2.2 Inequalities (2.6)–(2.7) follow by

(�Nu)
( j)(λ) = �N [u( j)(λ)], R(�Nu)

j (λ, λ0) = �N [R(u)
j (λ, λ0)],

for all 0 ≤ | j | ≤ k, λ, λ0 ∈ F , and the usual smoothing estimates ‖�N f ‖s ≤
Nα‖ f ‖s−α and ‖�⊥

N f ‖s ≤ N−α‖ f ‖s+α for Sobolev functions. � 
Proof of Lemma 2.3 Inequality (2.8) follows from the classical interpolation
inequality ‖u‖s ≤ ‖u‖θs0‖u‖1−θ

s1 , s = θs0 + (1− θ)s1 for Sobolev functions,
and from the Definition 2.1 of Whitney-Sobolev norms, since

γ | j |‖u( j)(λ)‖s ≤ (γ | j |‖u( j)(λ)‖s0)θ (γ | j |‖u( j)(λ)‖s1)1−θ

≤ (‖u‖k+1,γ
s0,F

)θ (‖u‖k+1,γ
s1,F

)1−θ ,

γ k+1‖R j (λ, λ0)‖s ≤ (γ k+1‖R j (λ, λ0)‖s0)θ (γ k+1‖R j (λ, λ0)‖s1)1−θ

≤ (‖u‖k+1,γ
s0,F

)θ (‖u‖k+1,γ
s1,F

)1−θ |λ− λ0|k+1−| j |.

Inequality (2.9) follows from (2.8) by using the asymmetric Young inequality
(like in Lemma 2.2 in [21]). � 
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Proof of Lemma 2.4 By (B.9)–(B.10), the lemma follows from the corre-
sponding inequalities for functions in Wk+1,∞,γ (Rν+1, Hs), which are
proved, for instance, in [21] (formula (2.72), Lemma 2.30). � 

For any ρ > 0, we define the C∞ function hρ : R → R,

hρ(y) := χρ(y)

y
= χ(yρ−1)

y
, ∀y ∈ R\{0}, hρ(0) := 0, (B.11)

where χ is the cut-off function introduced in (2.16), and χρ(y) := χ(y/ρ).
Notice that the function hρ is of class C∞ because hρ(y) = 0 for |y| ≤ ρ/3.
Moreover by the properties of χ in (2.16) we have

hρ(y) = 1

y
, ∀|y| ≥ 2ρ

3
, |hρ(y)| ≤ 3

ρ
, ∀y ∈ R. (B.12)

To prove Lemma 2.5, we use the following preliminary lemma.

Lemma B.4 Let f : R
ν+1 → R and ρ > 0. Then the function

g(λ) := hρ( f (λ)), ∀λ ∈ R
ν+1, (B.13)

where hρ is defined in (B.11), coincides with 1/ f (λ) on the set F := {λ ∈
R

ν+1 : | f (λ)| ≥ ρ}.
If the function f is in Wk+1,∞(Rν+1,R), with estimates

γ |α||∂αλ f (λ)| ≤ M, ∀α ∈ N
ν+1, 1 ≤ |α| ≤ k + 1, (B.14)

for some M ≥ ρ, then the function g is in Wk+1,∞(Rν+1,R) and

γ |α||∂αλ g(λ)| ≤ Ck
Mk+1

ρk+2 , ∀α ∈ N
ν+1, 0 ≤ |α| ≤ k + 1. (B.15)

Proof Formula (B.15) for α = 0 holds by (B.12). For |α| ≥ 1, we use the Faà
di Bruno formula and (B.14). � 
Proof of Lemma 2.5 The function (ω · ∂ϕ)−1

extu defined in (2.15) is

(
(ω · ∂ϕ)−1

extu
)
(λ, ϕ, x) = −i

∑

(�, j)∈Zν+1

g�(λ)u�, j (λ) e
i(�·ϕ+ j x),

where g�(λ) = hρ(ω · �) in (B.13) with ρ = γ 〈�〉−τ and f (λ) = ω · �. The
function f (λ) satisfies (B.14) with M = γ |�|. Hence g�(λ) satisfies (B.15),
namely

123



906 P. Baldi et al.

γ |α||∂αλ g�(λ)| ≤ Ckγ
−1〈�〉μ ∀α ∈ N

ν+1, 0 ≤ |α| ≤ k + 1, (B.16)

where μ = k + 1 + (k + 2)τ is defined in (2.18). By the product rule and
using (B.16), we deduce γ |α|‖∂αλ ((ω · ∂ϕ)−1

extu)(λ)‖s ≤ Ckγ
−1‖u‖k+1,γ

s+μ,Rν+1

and therefore (2.17). The proof is concluded by observing that the restriction
of (ω · ∂ϕ)−1

extu to F gives (ω · ∂ϕ)−1u as defined in (2.14), and (2.18) follows
by (B.10). � 
Proof of Lemma 2.6 Given u ∈ Lip(k+ 1, F, s, γ ), we consider its extension
ũ ∈ Lip(k + 1,R

ν+1, s, γ ) provided by (B.10). Then we observe that the
composition f(ũ) is an extension of f(u), and therefore one has the inequal-
ity ‖f(u)‖k+1,γ

s,F ≤ ‖f(ũ)‖k+1,γ
s,Rν+1 ∼ ‖f(ũ)‖Wk+1,∞,γ (Rν+1,Hs) by (B.9). Then

(2.19) follows by the Moser composition estimates for ‖ ‖k+1,γ
s,Rν+1 (see for

instance Lemma 2.31 in [21]), together with the equivalence of the norms
in (B.9)–(B.10). � 

Appendix C: A Nash–Moser–Hörmander implicit function theorem

Let (Ea)a≥0 be a decreasing family of Banach spaces with continuous injec-
tions Eb ↪→ Ea ,

‖u‖Ea ≤ ‖u‖Eb for a ≤ b. (C.1)

Set E∞ = ∩a≥0Ea with the weakest topology making the injections E∞ ↪→
Ea continuous. Assume that there exist linear smoothing operators S j : E0 →
E∞ for j = 0, 1, . . ., satisfying the following inequalities, with constants C
bounded when a and b are bounded, and independent of j ,

‖S ju‖Ea ≤ C‖u‖Ea for all a; (C.2)

‖S ju‖Eb ≤ C2 j (b−a)‖S ju‖Ea if a < b; (C.3)

‖u − S ju‖Eb ≤ C2− j (a−b)‖u − S ju‖Ea if a > b; (C.4)

‖(S j+1 − S j )u‖Eb ≤ C2 j (b−a)‖(S j+1 − S j )u‖Ea for all a, b. (C.5)

Set

R0u := S1u, R ju := (S j+1 − S j )u, j ≥ 1. (C.6)

We also assume that

‖u‖2Ea
≤ C

∞∑

j=0

‖R ju‖2Ea
∀a ≥ 0, (C.7)
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with C bounded for a bounded (a sort of “orthogonality property” of the
smoothing operators).

Suppose that we have another family Fa of decreasing Banach spaces with
smoothing operators having the same properties as above. We use the same
notation also for the smoothing operators.

Theorem C.1 ([10]) (Existence) Let a1, a2, α, β, a0, μ be real numbers with

0 ≤ a0 ≤ μ ≤ a1, a1 + β

2
< α < a1 + β, 2α < a1 + a2. (C.8)

Let U be a convex neighborhood of 0 in Eμ. Let � be a map from U to F0
such that � : U ∩ Ea+μ → Fa is of class C2 for all a ∈ [0, a2 − μ], with

‖�′′(u)[v,w]‖Fa ≤ M1(a)
(‖v‖Ea+μ‖w‖Ea0

+ ‖v‖Ea0
‖w‖Ea+μ

)

+ {M2(a)‖u‖Ea+μ + M3(a)}‖v‖Ea0
‖w‖Ea0

(C.9)

for all u ∈ U ∩ Ea+μ, v,w ∈ Ea+μ, where Mi : [0, a2 − μ] → R, i =
1, 2, 3, are positive, increasing functions. Assume that�′(v), for v ∈ E∞∩U
belonging to some ball ‖v‖Ea1

≤ δ1, has a right inverse�(v) mapping F∞ to
Ea2 , and that

‖�(v)g‖Ea ≤ L1(a)‖g‖Fa+β−α + {L2(a)‖v‖Ea+β + L3(a)}‖g‖F0 ∀a ∈ [a1, a2],
(C.10)

where Li : [a1, a2] → R, i = 1, 2, 3, are positive, increasing functions.
Then for all A > 0 there exists δ > 0 such that, for every g ∈ Fβ satisfying

∞∑

j=0

‖R j g‖2Fβ ≤ A2‖g‖2Fβ , ‖g‖Fβ ≤ δ, (C.11)

there exists u ∈ Eα solving �(u) = �(0)+ g. The solution u satisfies

‖u‖Eα ≤ CL123(a2)(1+ A)‖g‖Fβ , (C.12)

where L123 = L1 + L2 + L3 and C is a constant depending on a1, a2, α, β.
The constant δ is

δ = 1/B, B = C ′L123(a2)max
{
1/δ1, 1+A, (1+ A)L123(a2)M123(a2 − μ)

}

(C.13)

where M123 = M1+M2+M3 and C ′ is a constant depending on a1, a2, α, β.
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(Higher regularity) Moreover, let c > 0 and assume that (C.9) holds for all
a ∈ [0, a2 + c − μ], �(v) maps F∞ to Ea2+c, and (C.10) holds for all
a ∈ [a1, a2 + c]. If g satisfies (C.11) and, in addition, g ∈ Fβ+c with

∞∑

j=0

‖R j g‖2Fβ+c
≤ A2

c‖g‖2Fβ+c
(C.14)

for some Ac, then the solution u belongs to Eα+c, with

‖u‖Eα+c ≤ Cc
{
G1(1+ A)‖g‖Fβ + G2(1+ Ac)‖g‖Fβ+c

}
(C.15)

where

G1 := L̃3 + L̃12(L̃3M̃12 + L123(a2)M̃3)(1+ zN ), G2 := L̃12(1+ zN ),
(C.16)

z := L123(a1)M123(0)+ L̃12M̃12, (C.17)

L̃12 := L̃1 + L̃2, L̃ i := Li (a2 + c), i = 1, 2, 3; M̃12 := M̃1 + M̃2, M̃i :=
Mi (a2 + c−μ), i = 1, 2, 3; N is a positive integer depending on c, a1, α, β;
and Cc depends on a1, a2, α, β, c.

This theorem is proved in [10] using an iterative scheme similar to [34]. The
main advantage with respect to the Nash–Moser implicit function theorems as
presented in [17,61] is the optimal regularity of the solution u in terms of the
datum g (see (C.12), (C.15)). TheoremC.1has the advantageofmaking explicit
all the constants (unlike [34]), which is necessary to deduce the quantitative
Theorem 7.3.
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