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Abstract The Arnold conjecture states that a Hamiltonian diffeomorphism
of a closed and connected symplectic manifold (M, ω) must have at least as
many fixed points as the minimal number of critical points of a smooth func-
tion on M . It is well known that the Arnold conjecture holds for Hamiltonian
homeomorphisms of closed symplectic surfaces. The goal of this paper is to
provide a counterexample to the Arnold conjecture for Hamiltonian homeo-
morphisms in dimensions four and higher. More precisely, we prove that every
closed and connected symplectic manifold of dimension at least four admits a
Hamiltonian homeomorphism with a single fixed point.
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1 Introduction and main results

1.1 The Arnold conjecture

Let (M, ω) denote a closed and connected symplectic manifold. This paper is
concerned with the celebrated conjecture of Arnold on fixed points of Hamil-
tonian diffeomorphisms.

Conjecture (Arnold). AHamiltonian diffeomorphism of M must have at least
as many fixed points as the minimal number of critical points of a smooth
function on M.

What makes this conjecture so remarkable is the large number of fixed
points predicted by it. This is often interpreted as amanifestation of symplectic
rigidity. In contrast to Arnold’s conjecture, the classical Lefschetz fixed-point
theorem cannot predict the existence of more than one fixed point for a general
diffeomorphism. Ever since its inception, this simple and beautiful conjecture
has been a powerful driving force in the development of symplectic topol-
ogy. The most important breakthrough towards a solution of this conjecture
came with Floer’s invention of what is now called Hamiltonian Floer homol-
ogy which established a variant of the Arnold conjecture on a large class of
symplectic manifolds [9,10,12]. The above version of the Arnold conjecture
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A C0 counterexample to the Arnold conjecture 761

has been established on symplectically aspherical1 manifolds by Rudyak and
Oprea [33] who built on earlier works of Floer [11] and Hofer [20]. We should
mention that prior to the discovery of Floer homology, the Arnold conjec-
ture was proven by Eliashberg [7] on closed surfaces (see also Sikorav [35]),
by Conley and Zehnder [6] on higher dimensional tori, and by Fortune and
Weinstein [13,14] on complex projective spaces.

1.2 The Arnold conjecture and Hamiltonian homeomorphisms

Throughout this paper we will denote by Symp(M, ω) and Ham(M, ω) the
groups of symplectic and Hamiltonian diffeomorphisms of (M, ω), respec-
tively. As is nowadays standard, we call symplectic homeomorphism any
homeomorphism which can be written as a uniform limit of symplectic
diffeomorphisms; the set of all symplectic homeomorphisms is denoted by
Sympeo(M, ω); see Sect. 2.1.

As a first attempt at definingHamiltonian homeomorphisms, wewill say that
a homeomorphismφ ofM is aHamiltonian homeomorphism if it can bewritten
as a uniform limit of Hamiltonian diffeomorphisms. This class of homeomor-
phisms has been studied very extensively, from a dynamical point of view, in
the case of closed surfaces.2 For example, Matsumoto [28], building on an
earlier paper of Franks [15], has proven that Hamiltonian homeomorphisms of
surfaces satisfy the Arnold conjecture. An important development in the study
of Hamiltonian homeomorphisms of surfaces has been Le Calvez’s theory of
transverse foliations [25] which has not only proven the Arnold conjecture but
also the Conley conjecture on periodic points of these homeomorphisms [26].

In striking contrast to the rich theory in dimension two, there are virtually
no results on fixed point theory of Hamiltonian homeomorphisms in higher
dimensions. Indeed, none of the powerful tools of surface dynamics seem
to generalize in an obvious manner to dimensions higher than two. Our first
theorem proves that in fact one can not hope to prove the Arnold conjecture
in higher dimensions.

Theorem 1 Every closed and connected symplectic manifold of dimension at
least 4 admits a Hamiltonian homeomorphism with a single fixed point.

This theoremmight suggest that, in dimensions higher than two, one should
search for a different notion of Hamiltonian homeomorphisms. Indeed, such
notion does exist within the field of continuous, or C0, symplectic topology.

1 M is said to be symplectically aspherical if ω and c1, the first Chern class of M , both vanish
on π2(M).
2 This is precisely the class of area preserving homeomorphisms with vanishing mean rotation
vector.
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Motivated in part by developing a continuous analogue of smooth Hamilto-
nian dynamics, Müller and Oh have suggested an alternative, more restrictive,
definition for Hamiltonian homeomorphisms; see Sect. 2.1 for the precise def-
inition. From this point onward by Hamiltonian homeomorphisms we will
mean those homeomorphisms of M prescribed by Definition 7. We denote the
set of all Hamiltonian homeomorphisms by Hameo(M, ω).

The group Hameo(M, ω) has met some success. Indeed, recent results in
C0-symplectic topology [22–24] have demonstrated that Hamiltonian home-
omorphisms inherit some of the important dynamical properties of smooth
Hamiltonian diffeomorphisms; see Theorem 8. Furthermore, they have played
a key role in the development of C0-symplectic topology over the past sev-
eral years. However, our main theorem proves that the Arnold conjecture is
not true for this notion of Hamiltonian homeomorphisms either. In fact, as
we will explain below, it shows that there is no hope for proving the Arnold
conjecture, as formulated above, for any alternate definition of Hamiltonian
homeomorphisms which satisfies a minimal set of requirements.

Theorem 2 (Main theorem). Let (M, ω) denote a closed and connected sym-
plectic manifold of dimension at least 4. There exists f ∈ Hameo(M, ω) with
a single fixed point. Furthermore, f can be chosen to satisfy either of the
following additional properties.
1. LetH be a normal subgroup ofSympeo(M, ω)which containsHam(M, ω)

as a proper subset. Then, f ∈ H.
2. Let p denote the unique fixed point of f . Then, f is a symplectic diffeo-

morphism of M\{p}.
A few remarks are in order. First, we should point out that every Hamil-

tonian homeomorphism possesses at least one fixed point. This is because a
Hamiltonian homeomorphism is by definition a uniform limit of Hamiltonian
diffeomorphisms and it is a non-trivial fact that a Hamiltonian diffeomorphism
has at least one fixed point3.

With regards to the second property, we point out that it is natural to expect
f to have at least one non-smooth point. Indeed, since Hamiltonian Floer
homology predicts that a Hamiltonian diffeomorphism can never have as few
as one fixed point, our homeomorphism f must necessarily be non-smooth
on any symplectic manifold (M, ω) with the property4 that Hameo(M, ω) ∩
Diff(M) = Ham(M, ω).

Lastly, we remark that it is well known that Ham(M, ω) is a normal sub-
group of Symp(M, ω). Hence, it is reasonable to expect that any alternative

3 This fact is an immediate consequence of Floer’s proof of the Arnold conjecture; see also
[17].
4 It can be shown that this property holds for closed symplectic surfaces, as well as for the
standard CP2 and monotone S2 × S2.
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candidate, sayH, for the group of Hamiltonian homeomorphisms should con-
tain Ham(M, ω) and be a normal subgroup of Sympeo(M, ω). It is indeed the
case that Hameo(M, ω) � Sympeo(M, ω). Therefore, the first property in the
above theorem states that there is no hope of proving the Arnold conjecture
for any alternate definition of Hamiltonian homeomorphisms.

1.3 Does there exist a fixed point theory for Hamiltonian
homeomorphisms?

In Gromov’s view [18], symplectic topology is enriched by a beautiful inter-
play between rigidity and flexibility. Recent results, such as [3,22,31], have
demonstrated that this contrast between rigidity and flexibility permeates, in
a surprising fashion, to C0 symplectic topology as well. Symplectic rigid-
ity manifests itself when symplectic phenomena survive under C0 limits; see
[2,5,8,22,31] for some examples. On the other hand, there exist instances
where passage to C0 limits results in spectacular loss of rigidity and preva-
lence of flexibility; see [3] for an example.

The main theorem of our paper tells us that fixed points of Hamiltonian
diffeomorphisms become completely flexible under C0 limits. It is interesting
to contrast this prevalence of flexibilitywith the strong rigidity results of Franks
[15], Matsumoto [28], and Le Calvez [25,26] in the two-dimensional setting.
Given the main result of this article, one might conclude that there is no hope
of developing a sensible fixed point theory for any notion of Hamiltonian
homeomorphisms in dimensions greater than two. However, there exist some
interesting open questions which remain unanswered.

The most prominent open question is that of the Conley conjecture which
in its simplest form states that a Hamiltonian diffeomorphism on an aspherical
symplectic manifold has infinitely many periodic points. This conjecture was
proven by Hingston [19] on tori and Ginzburg [16] in the more general setting.
As mentioned earlier, the Conley conjecture has been proven for Hamiltonian
homeomorphisms of surfaces by Le Calvez [25,26]. We have not been able to
construct a counterexample to the Conley conjecture in higher dimensions.

The second question relates to the theory of spectral invariants. For the sake
of simplicity, we limit this discussion to the case of symplectically aspherical
manifolds. In that case, the theory of spectral invariants, which was introduced
by Viterbo, Oh and Schwarz [29,34,37], associates to each smooth Hamilto-
nian H , a collection of real numbers {c(a, H) ∈ R : a ∈ H∗(M)\{0}}, where
H∗(M) denotes the singular homology of M . These numbers are referred to
as the spectral invariants of H and they correspond to critical values of the
associated action functional. Hence, the number of distinct spectral invariants
of a Hamiltonian H gives a lower bound for the number of fixed points of the
time-1 map φ1

H .
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Recall that the cup length of M is defined by cl(M) := max{k + 1 :
∃ a1, . . . , ak ∈ H∗(M) : ∀i, deg(ai ) �= 0 and a1 ∪ · · · ∪ ak �= 0}. Combining
techniques from Hamiltonian Floer theory and Lusternik–Shnirelman theory,
Floer [11] and Hofer [20] proved that if a Hamiltonian diffeomorphism, of an
aspherical symplectic manifold M , has fewer spectral invariants than the cup
length of M , then it must have infinitely many fixed points; see also [21].

It is well-known that one can associate spectral invariants to any continuous
Hamiltonian function; see for example [30]. In an interesting twist, it turns out
that the Hamiltonian homeomorphism that we construct in the proof of Theo-
rem 2 is generated by a continuous Hamiltonian which has at least as many
distinct spectral invariants as cl(M). Hence, we see that the correspondence
between spectral invariants and fixed points breaks down in the continuous
setting. See Remark 20. This leads us to the following question:

Question 3 Suppose that H is a continuous Hamiltonian with fewer spectral
invariants than the cup length of M. Does φ1

H , the time-1 map of the flow of
H, have infinitely many fixed points?

A positive answer to this question could be interpreted as a C0 version of
the Arnold conjecture.

We end this section with a brief discussion which will add to the importance
of the above question. This concerns the theory of barcodes, or persistence
modules. As pointed out in [32], Hamiltonian Floer theory allows one to
associate a so-called barcode to any smooth Hamiltonian; see also [1,27,36].
Barcodes can be viewed as generalizations of spectral invariants. The barcode
of a smooth Hamiltonian encodes all the information contained in the filtered
Floer homology of that Hamiltonian. In the same way that one can associate
spectral invariants to a continuous function, one can also associate a barcode
to a continuous Hamiltonian function. In yet another interesting twist, it turns
out that the Hamiltonian homeomorphism of Theorem 2 can be generated by
a continuous Hamiltonian which has the same barcode as a C2-small Morse
function. See Remark 21.

1.4 A brief outline of the construction

Construction of the homeomorphism f , as prescribed in Theorem 2, takes
place in two major steps. The first step, which is the more difficult of the two,
can be summarized in the following theorem.

Theorem 4 Let (M, ω) denote a closed and connected symplectic manifold
of dimension at least 4. There existsψ ∈ Hameo(M, ω) and an embedded tree
T ⊂ M such that
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1. T is invariant under ψ , i.e. ψ(T ) = T ,
2. All of the fixed points of ψ are contained in T ,
3. ψ is smooth in the complement of T .

For the proof ofTheorem2,wewill in fact need a refinedversion of the above
result; see Theorem 13. The proof of this theorem forms the technical heart
of our paper. An important ingredient used in the construction of the invariant
tree T is a quantitative h-principle for curves. Quantitative h-principles have
recently been introduced toC0 symplectic topologybyBuhovsky andOpshtein
and have had numerous fascinating applications; see [3]. We should point out
that M having dimension at least four is used in a crucial way in the proof of
this theorem.

The second major step of our construction consists of “collapsing” the
invariant tree T to a single point which will be the fixed point of our homeo-
morphism f . Here is a brief outline of how this is done. Fix a point p ∈ M .
We construct a sequence ϕi ∈ Symp(M, ω) such that ϕi converges uniformly
to a map ϕ : M → M with the following two properties:

1. ϕ(T ) = p,
2. ϕ is a symplectic diffeomorphism from M\T to M\{p}.
Note that the first property implies that ϕ is not a 1-1 map and hence, the
sequence ϕ−1

i is not convergent. Define f : M → M as follows: f (p) = p
and

∀x ∈ M\{p}, f (x) = ϕ ◦ ψ ◦ ϕ−1(x).

It is not difficult to see that p is the unique fixed point of f . Indeed, on M\{p},
the map f is conjugate to ψ : M\T → M\T which is fixed point free by
construction.

By picking the above sequence of symplectomorphisms ϕi carefully, it is
possible to ensure that the sequence of conjugations ϕiψϕ−1

i converges uni-
formly to f . The uniform convergence of ϕiψϕ−1

i to f relies heavily on the
invariance of the tree T and it occurs despite the fact that the sequence ϕ−1

i
diverges. The details of this are carried out in Sect. 3.1. It follows that f can be
written as the uniform limit of a sequence of Hamiltonian diffeomorphisms.

It is not difficult to see that f is smooth on the complement of its unique
fixed point. However, proving that f is a Hamiltonian homeomorphism and
that it satisfies the first property listed in Theorem 2 requires some more work;
see Sect. 3.1.
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1.5 Organization of the paper

In Sect. 2, we recall some preliminary results from C0 symplectic geometry.
Symplectic and Hamiltonian homeomorphisms are introduced in Sect. 2.1. In
Sect. 2.2, we introduce a quantitative h-principle for curves which plays an
important role in our construction.

In Sect. 3.1, we prove that the existence of a Hamiltonian homeomorphism
with an invariant tree, as described in Theorem 4, implies the main theorem of
the paper. In Sect. 3.2, we prove the existence of a Hamiltonian homeomor-
phism as described in Theorem 4, assuming a technical and important result:
Theorem 25. Section 3.3, which occupies the rest of the paper, is dedicated
to the proof of Theorem 25. This section contains the technical heart of the
paper.

2 Preliminaries from C0-symplectic topology

In this section we introduce some of our notation and recall some of the basic
notions of C0-symplectic geometry. In Sect. 2.1 we give precise definitions
for symplectic and Hamiltonian homeomorphisms. In Sect. 2.2 we state a
quantitative h-principle for curves which will play a crucial role in the proof
of Theorem 2.

2.1 Symplectic and Hamiltonian homeomorphisms

Throughout the rest of this paper, (M, ω) will denote a closed and connected
symplectic manifold whose dimension is at least 4. We equip M with a Rie-
mannian distance d. Given two maps φ, ψ : M → M, we denote

dC0(φ, ψ) = sup
x∈M

d(φ(x), ψ(x)).

We will say that a sequence of maps φi : M → M , converges uniformly, or
C0-converges, to φ, if dC0(φi , φ) → 0 as i → ∞. Of course, the notion of
C0-convergence does not depend on the choice of the Riemannian metric.

Recall that a symplectic diffeomorphism is a diffeomorphism θ : M → M
such that θ∗ω = ω. The set of all symplectic diffeomorphisms of M is denoted
by Symp(M, ω).

Definition 5 A homeomorphism θ : M → M is said to be symplectic if it is
theC0-limit of a sequence of symplectic diffeomorphisms. We will denote the
set of all symplectic homeomorphisms by Sympeo(M, ω).

The Eliashberg–Gromov theorem states that a symplectic homeomorphism
which is smooth is itself a symplectic diffeomorphism. We remark that if θ
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A C0 counterexample to the Arnold conjecture 767

is a symplectic homeomorphism, then so is θ−1. In fact, it is easy to see that
Sympeo(M, ω) forms a group.

Remark 6 More generally, one can define a symplectic homeomorphism to be
a homeomorphismwhich is locally aC0-limit of symplectic diffeomorphisms;
see [3] for further details.

Recall that a smooth Hamiltonian H : [0, 1] × M → R gives rise to a
Hamiltonian flow φt

H . A Hamiltonian diffeomorphism is a diffeomorphism
which arises as the time-one map of a Hamiltonian flow. The set of all Hamil-
tonian diffeomorphisms is denoted by Ham(M, ω); this is a normal subgroup
of Symp(M, ω). We next define Hamiltonian homeomorphisms as introduced
by Müller and Oh [30].

Definition 7 (Hamiltonian homeomorphisms). Denote by B an open (pos-
sibly not proper) subset of M . Let (φt )t∈[0,1] be an isotopy of M which is
compactly supported in B. We say that φt is a hameotopy, or a continuous
Hamiltonian flow, of B if there exists a sequence of smooth and compactly
supported Hamiltonians Hi : [0, 1] × B → R such that:

1. The sequence of flows φt
Hi

C0-converges to φt , uniformly in t , i.e.
max
t∈[0,1] dC0(φt

Hi
, φt ) → 0 as i → ∞.

2. The sequence of Hamiltonians Hi converges uniformly to a continuous
function H : [0, 1] × M → R, i.e. ‖Hi − H‖∞ → 0 as i → ∞, where
‖ · ‖∞ denotes the sup norm. Furthermore,

We say that H generates φt , denote φt = φt
H , and call H a continuous Hamil-

tonian.
A homeomorphism is called a Hamiltonian homeomorphism if it is the

time-1 map of a continuous Hamiltonian flow. We will denote the set of all
Hamiltonian homeomorphisms by Hameo(B, ω).

It is not difficult to check that Hameo(M, ω) is a normal subgroup of
Sympeo(M, ω).

A continuous Hamiltonian H generates a unique continuous Hamiltonian
flow; see [30]. Conversely,Viterbo [38] andBuhovsky–Seyfaddini [4] (see also
[23]) proved that a continuous Hamiltonian flow has a unique (up to addition
of a function of time) continuous generator.

One can easily check that generators of continuous Hamiltonian flows sat-
isfy the same composition formulas as their smooth counterparts. Namely, if
φt
H is a continuous Hamiltonian flow, then (φt

H )−1 is a continuous Hamilto-
nian flow generated by H̄(t, x) = −H(t, φt

H (x)); given another continuous
Hamiltonian flow φt

K , the isotopy φt
Hφt

K is also a continuous Hamiltonian
flow, generated by H#K (t, x) := H(t, x) + K (t, (φt

H )−1(x)).
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768 L. Buhovsky et al.

We will finish this section by recalling an important dynamical property of
continuous Hamiltonian flows. Recall that a submanifold C of a symplectic
manifold (M, ω) is called coisotropic if for all p ∈ C , (TpC)ω ⊂ TpC where
(TpC)ω denotes the symplectic orthogonal of TpC . For instance, hypersur-
faces and Lagrangians are coisotropic. A coisotropic submanifold carries a
natural foliation F which integrates the distribution (TC)ω; F is called the
characteristic foliation of C .

Assume that C is a closed and connected coisotropic submanifold of M
and suppose that H is a smooth Hamiltonian. The following is a standard and
important fact which relates Hamiltonian flows to coisotropic submanifolds:
H |C is a function of time if and only if φt

H (preserves C and) flows along the
characteristic foliation of C . By flowing along characteristics we mean that
for any point p ∈ C and any time t � 0, φt

H (p) ∈ F(p), where F(p) stands
for the characteristic leaf through p.

The following theorem, which was proven in [22], establishes the afore-
mentioned property for continuous Hamiltonian flows.

Theorem 8 Denote by C a closed and connected coisotropic submanifold and
suppose that φt

H is a continuous Hamiltonian flow. The restriction of H to C
is a function of time if and only if φt

H preserves C and flows along the leaves
of its characteristic foliation.

The above theorem indicates that continuous Hamiltonian flows inherit
some of the fundamental dynamical properties of their smooth counterparts.
In light of this, it would seem reasonable to expect the Arnold conjecture to
hold for Hamiltonian homeomorphisms. But of course, Theorem 2 tells us that
this is quite far from reality.

2.2 A quantitative h-principle for curves

Quantitative h-principles were introduced in [3], where they were used to
construct interesting examples of symplectic homeomorphisms. We will need
the following quantitative h-principle for curves in the construction of our
counterexample to the Arnold conjecture.

Proposition 9 (Quantitative h-principle for curves).Denote by (M, ω) a sym-
plectic manifold of dimension at least 4. Let ε > 0. Suppose that γ0, γ1 :
[0, 1] → M are two smooth embedded curves such that

(i) γ0 and γ1 coincide near t = 0 and t = 1,
(ii) there exists a homotopy, rel.end points, from γ0 to γ1 under which the

trajectory of any point of γ0 has diameter less than ε, and the symplectic
area of the element of π2(M, γ1
γ0) defined by this homotopy has area 0.
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Then, for any ρ > 0, there exists a compactly supported Hamiltonian F,
generating a Hamiltonian isotopy ϕs : M → M, s ∈ [0, 1] such that
1. F vanishes near γ0(0) and γ0(1) (in particular, ϕs fixes γ0 and γ1 near the

extremities),
2. ϕ1 ◦ γ0 = γ1,
3. dC0(ϕs, I d) < 2ε for each s ∈ [0, 1], and ‖F‖∞ � ρ,
4. F is supported in a 2ε-neighborhood of the image of γ0.

The existence of a Hamiltonian F satisfying only properties 1 and 2 is well
known. The aspect of the above proposition which is non-standard is the fact
that F can be picked such that properties 3 and 4 are satisfied as well. We
should point out that the above proposition is a variation of a (considerably
more difficult) quantitative h-principle for discs which appeared in Theorem
2 of [3]. The proof we will present is an adaptation of the arguments therein
and thus, it will not be a detailed proof.

In the next section of the paper, we will need the following fact, which is
standard, and follows from Proposition 9, and hence will not be proven here.

Lemma 10 Denote by (M, ω) an exact symplectic manifold of dimension at
least 4. Suppose that γ0, γ1 : [0, 1] → M are two curves such that

(i) γ0 and γ1 coincide near t = 0, 1,
(ii)

∫ 1
0 γ ∗

0 λ = ∫ 1
0 γ ∗

1 λ where λ is any 1-form such that ω = dλ,
(iii) there exists a homotopy, rel. end points, from γ0 to γ1.

Then, for any ρ > 0, there exists a compactly supported Hamiltonian F,
generating a Hamiltonian isotopy ϕs : M → M, s ∈ [0, 1] such that
1. F vanishes near the extremities of γ0 and γ1,
2. ϕ1 ◦ γ0 = γ1,
3. ‖F‖∞ < ρ.

Proof of Proposition 9 First, by a slight Hamiltonian perturbation of γ0 via a
Hamiltonian diffeomorphism generated by a C∞-small Hamiltonian function
which vanishes near {γ0(0), γ0(1)}, we can, without loss of generality, assume
that γ0 = γ1 on [0, δ]∪[1−δ, 1], and that the images of γ0|(δ,1−δ) and γ1|(δ,1−δ)

are disjoint, where δ > 0 is a small positive real number. By assumption
there exists a homotopy h : [0, 1] × [0, 1] → M such that h(0, t) = γ0(t),
h(1, t) = γ1(t) and for any fixed t , the path s �→ h(s, t) is of diameter
smaller than ε. Since the dimension of M is at least 4, by the weak Whitney
immersion theorem, we can approximate h by a smooth map h′ : [0, 1] ×
[0, 1] → M such that h′(0, t) = γ0(t) and h′(1, t) = γ1(t) for t ∈ [0, 1],
h′(s, t) = γ0(t) = γ1(t) for (s, t) ∈ [0, 1]× ([0, δ]∪ [1− δ, 1]), and such that
the restriction h′|[0,1]×(δ,1−δ) is a smooth immersion with a finite number of
self-intersection points occuring inside the relative interior h((0, 1) × (δ, 1−
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770 L. Buhovsky et al.

δ)), and whose image h′([0, 1] × (δ, 1 − δ)) does not intersect γ0([0, δ] ∪
[1 − δ, 1]). Furthermore, similarly as was done in Lemma A.1 from [3], one
can find a smooth map h′′ : [0, 1] × [0, 1] → M whose image lies in an
arbitrarily small neighborhood of h′([0, 1] × [0, 1]), such that as before we
have h′′(0, t) = γ0(t) and h′′(1, t) = γ1(t) for t ∈ [0, 1], h′′(s, t) = γ0(t) =
γ1(t) for (s, t) ∈ [0, 1] × ([0, δ] ∪ [1 − δ, 1]), and the image h′′([0, 1] ×
(δ, 1 − δ)) does not intersect γ0([0, δ] ∪ [1 − δ, 1]), but moreover such that
the restriction h′′|[0,1]×(δ,1−δ) is a smooth embedding, and such that for any
fixed t the diameter of the curve s �→ h(s, t) is less than 2ε. Note that by
construction, h, h′ and h′′ give the same element of π2(M, γ1
γ0). Abusing
our notation, we will denote h′′ by h again.

Let m be a sufficiently large positive integer. Then, for each 1 � i <

m − 3, the image h([0, 1] × [ i
m , i+3

m ]) has diameter less than 2ε, for given

0 � i, j � m − 1 we have h([0, 1] × [ i
m , i+1

m ]) ∩ h([0, 1] × [ j
m ,

j+1
m ]) �= ∅

only if j ∈ {i − 1, i, i + 1}, and moreover we can find a neighborhood Ui of
each h([0, 1] × [ i

m , i+1
m ]) such thatUi is diffeomorphic to a ball, such that we

again haveUi ∩Uj �= ∅ only if j ∈ {i −1, i, i +1}, and such that the diameter
of Ui−1 ∪ Ui ∪ Ui+1 is less than 2ε, for every 0 < i < m − 1. Moreover, the
union U = U0 ∪ · · · ∪ Um can be assumed to be diffeomorphic to a ball, as
well asUi ∩Ui+1, for each 0 � i < m−1. Then in particular,ω is exact onU ,
i.e. ω = dλ on U , for some differential 1-form λ on U . By our assumptions,∫ 1
0 γ ∗

0 λ = ∫ 1
0 γ ∗

1 λ.
Step 1: Mapping points to points For each 1 � i � m − 1, we pick a Hamil-
tonian Gi which is supported in Ui−1 ∩Ui

such that

φ1
Gi

(γ0(t)) = γ1(t), ∀t ∈ [ i
m − κ, i

m + κ
]
,

where κ > 0 is sufficiently small. In particular, theGi ’s have mutually disjoint
supports.

We let G := ∑m−1
i=1 Gi and let γ ′

0 = φ1
G ◦ γ0. We also remark that each

Gi can be picked such that ‖Gi‖∞ is as small as one wishes. Hence, we may
assume that ‖G‖∞ � ρ/3.
Step 2: Adjusting the actionsNote that the two curves γ1|[ i

m , i+1
m ] and γ ′

0|[ i
m , i+1

m ]
coincide near their end-points and are both contained in Ui . We would like
to find a Hamiltonian diffeomorphism which is supported in Ui and maps
γ ′
0|[ i

m , i+1
m ] to γ1|[ i

m , i+1
m ]. However, there is an obstruction to finding such a

Hamiltonian diffeomorphism. These two curves do not necessarily have the
same action. The goal of this step is to modify γ ′

0 to remove this obstruction.
��
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A C0 counterexample to the Arnold conjecture 771

Claim 11 There exists a Hamiltonian H with the following properties:

1. The support of H is contained in U, and we have φt
H (Ui ) ⊂ Ui for every

t ∈ [0, 1] and 0 � i � m.
2. The curve γ ′′

0 := (φ1
H ) ◦ γ ′

0 coincides with γ1 near t = i
m , for i =

0, 1, . . . ,m,
3. γ ′′

0 |[ i
m , i+1

m ] has the same action as γ1|[ i
m , i+1

m ], for i = 0, 1, . . . ,m − 1,
4. ‖H‖∞ � ρ/3.
5. For each 0 � i, j � m − 1, the images of γ ′′

0 |
( i
m , i+1

m )
and of γ1|( j

m ,
j+1
m )

intersect only if i = j .

Proof Denote γ ′
0,1 = γ ′

0. We perform (m − 1) steps, where at step i (1 � i �
m − 1) we construct a curve γ ′

0,i+1, and find a Hamiltonian isotopy from γ ′
0,i

to γ ′
0,i+1.
Let us describe the i th step. Let γ ′

0,i be the curve provided by the previous
step. First, perturb the curve γ ′

0,i in an arbitrarily small neighborhood of t =
i
m − κ

2 , so that the perturbed curve γ ′′
0,i satisfies:

• γ ′′
0,i coincides with γ ′

0,i on [0, i
m − 3κ

4 ] ∪ [ i
m − κ

4 , 1],
• we have γ ′′

0,i ([ i
m − 3κ

4 , i
m − κ

4 ]) ⊂ Ui−1 ∩Ui ,

• the λ-actions of the restrictions of γ ′′
0,i and γ1 to [ i−1

m , i
m ] coincide.

Such perturbation can be performed similarly as in the Remark A.13 from [3].
Now,we claim that there exists a smoothHamiltonian function Hi supported

in Ui−1 ∩ Ui , such that γ ′′
0,i = (φ1

Hi
) ◦ γ ′

0,i on [0, i
m + κ], and such that

‖Hi‖∞ � ρ/6. For doing this, roughly speaking, it is sufficient to isotope (via
the Hamiltonian flow) a small segment of γ ′

0,i so that it coincides with γ ′′
0,i ,

near t = i
m , or more precisely, for t ∈ [ i

m − 3κ
4 , i

m + κ]. And notice, that we
are not restricted to keeping the ”right end-point” γ ′′

0,i (
i
m + κ) fixed along the

isotopy. Therefore, for keeping theHofer normof the isotopy small, we can just
”shrink” the curve γ ′

0,i |[ i
m − 7κ

8 , i
m +κ] to the small segment γ ′

0,i |[ i
m − 7κ

8 , i
m − 3κ

4 ] =
γ ′′
0,i |[ i

m − 7κ
8 , i

m − 3κ
4 ] near the left end-point, and then ”expand this segment” to

coincide with γ ′′
0,i |[ i

m − 7κ
8 , i

m +κ].
For a more precise explanation, denote a = i

m − 7κ
8 , b = i

m + κ , choose a
smooth function c : [a, b] → [a, a + κ

8 ] such that c(t) = t for t ∈ [a, a + κ
16 ]

and c′(t) > 0 on [a, b], and consider families of curves αs, βs : [a, b] → M ,
s ∈ [0, 1], where αs(t) = γ ′

0,i (st+(1−s)c(t)), βs(t) = γ ′′
0,i (st+(1−s)c(t)).

Note that α0 ≡ β0. It is easy to see that one can find Hamiltonian functions
H ′
i , H

′′
i , supported in arbitrarily small neighborhood of γ ′

0,i ([a + κ
8 , b]) and

γ ′′
0,i ([a + κ

8 , b]) respectively, such that αs = φs
H ′
i
◦ α0 and βs = φs

H ′′
i

◦ β0

for each s ∈ [0, 1], and such that ‖H ′
i ‖∞, ‖H ′′

i ‖∞ � ρ/12. Now let Hi
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772 L. Buhovsky et al.

be the Hamiltonian function of the Hamiltonian flow (φs
H ′′
i

◦ (φs
H ′
i
)−1)s∈[0,1].

The function Hi is supported in Ui−1 ∩ Ui , satisfies ‖Hi‖∞ � ρ/6, and
γ ′′
0,i = (φ1

Hi
) ◦ γ ′

0,i on [0, i
m + κ]. Now define the curve γ ′

0,i+1 : [0, 1] → M

by γ ′
0,i+1 := φ1

Hi
◦ γ ′

0,i .
After performing all the (m − 1) steps, the λ-actions of γ ′

0,m−1 and γ1 on

[ i−1
m , i

m ] coincide for any 1 � i � m − 1. But since the actions of γ ′
0,m−1 and

γ1 coincide on the whole [0, 1], it also follows that the actions of γ ′
0,m−1 and γ1

coincide on [m−1
m , 1]. Note that since all Hi have disjoint supports (since the

support of Hi is contained inUi−1∩Ui ), if we denote H ′ = H1+· · ·+Hm−1,
then ‖H ′‖∞ � ρ/6 and γ ′

0,m−1 = (φ1
H ′) ◦ γ ′

0,1 = (φ1
H ′) ◦ γ ′

0.
It is possible that for different 0 � i, j � m−1, the images of γ ′

0,m−1|( i
m , i+1

m )

and of γ1|( j
m ,

j+1
m )

intersect. But then, one can easily find a C∞-small Hamil-

tonian function H ′′, supported inside an arbitrarily small neighborhood of⋃m−1
i=0 γ1([ i

m + κ
5 , i+1

m − κ
5 ]), such that in particular we have ‖H ′′‖∞ � ρ/6,

such that γ ′′
0 := φ1

H ′′ ◦γ ′
0,m−1 satisfies the property 5 from the statement of the

Claim, and moreover such that the Hamiltonian function H := H ′′
H ′ that
generates the flow (φt

H ′′ ◦ φt
H ′) satisfies the property 1 from the statement of

the Claim. ��
Step 3: Mapping γ ′′

0 |[ i
m , i+1

m ] to γ1|[ i
m , i+1

m ].

Claim 12 There exist Hamiltonians Ki such that

1. Ki is supported in Ui ,
2. the support of Ki intersects the images of γ ′′

0 |[ j
m ,

j+1
m ] and of γ1|[ j

m ,
j+1
m ] only

for j = i ,
3. ‖Ki‖∞ � ρ/6,
4. φ1

Ki
◦ γ ′′

0 |[ i
m , i+1

m ] = γ1|[ i
m , i+1

m ].

Proof Before passing to the proof, let us remark that in general one can apply
directly Lemma A.3 (a) of [3] to our situation, but we would not have obtained
the estimate on ‖ · ‖∞. Therefore the proof is more subtle. Let us roughly
explain the steps of the proof. The first step is to make a very small (C∞)
perturbation of the curve γ ′′

0 (via the Hamiltonian diffeomorphism φ1
K ′
i
below),

in order to put the curves γ ′′
0 |[ i

m , i+1
m ] and γ1|[ i

m , i+1
m ] in general position. Then,

we use the following idea. If two curves which coincide near the endpoints
and with equal actions, are C∞-close, then clearly one can find a very small
(with respect to the Hofer norm) Hamiltonian function that moves the first
curve to the second. However, if such curves are not C∞-close, then we can
use a “conjugation trick”: Instead of moving the first curve to the second via a
Hamiltonian diffeomorphism, we find a third curve which is C∞-close to the
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A C0 counterexample to the Arnold conjecture 773

first curve, and such that the pair “(first curve, second curve)” could bemapped
to the pair “(first curve, third curve)” via a symplectomorphism. After that, it
is clearly enough to move the first curve to the third curve by a Hamiltonian
flow with a very small Hofer’s norm, and then conjugate the flow with the
symplectomorphism. The details of this are carried out below.

The restrictions γ ′′
0 |[ i

m , i+1
m ] and γ1|[ i

m , i+1
m ] both lie in Ui , have the same λ-

actions, and coincide near the endpoints. Let κ > 0 be such that γ ′′
0 (t) = γ1(t)

for t ∈ [ i
m , i

m + κ] ∪ [ i+1
m − κ, i+1

m ] (we use the old notation κ in a new
situation, and in fact it is enough to replace the old κ by κ

5 ). One can slightly
perturb γ ′′

0 via a Hamiltonian diffeomorphism φ1
K ′
i
generated by a C∞-small

Hamiltonian function K ′
i , so that γ ′′

01 := φ1
K ′
i
◦ γ ′′

0 satisfies γ ′′
01(t) = γ1(t)

for t ∈ [ i
m , i

m + κ] ∪ [ i+1
m − κ, i+1

m ], and moreover γ ′′
01((

i
m + κ, i+1

m − κ)) ∩
γ1((

i
m + κ, i+1

m − κ)) = ∅. We may assume that K ′
i is supported in Ui , the

support of K ′
i intersects the image of γ ′′

0 |[ j
m ,

j+1
m ] and of γ1|[ j

m ,
j+1
m ] only for

j = i , and that ‖K ′
i‖∞ � ρ/12.

Now, one can clearly find a C∞-small Hamiltonian function K ′′
i supported

in Ui , so that the support of K ′′
i intersects the image of γ ′′

0 |[ j
m ,

j+1
m ] and of

γ1|[ j
m ,

j+1
m ] only for j = i , and such that the curve γ ′

1 := (φ1
K ′′
i
) ◦ γ1 coincides

with γ ′′
01 on [ i

m , i
m + κ ′] ∪ [ i+1

m − κ ′, i+1
m ], and moreover γ ′

1((
i
m + κ ′, i+1

m −
κ ′)) ∩ γ1((

i
m + κ ′, i+1

m − κ ′)) = ∅, for some κ ′ > κ . We may assume that
‖K ′′

i ‖ � ρ/12.
Denote κ ′′ = (κ+κ ′)/2. The curves γ ′′

01|[ i
m +κ ′′, i+1

m −κ ′′] and γ ′
1|[ i

m +κ ′′, i+1
m −κ ′′]

lie inUi , coincide near the endpoints, have the same λ-action, and their images
do not intersect γ1([0, 1]). By LemmaA.3 (a) of [3], there exists a Hamiltonian
function K ′′′

i supported in Ui and away from the endpoints γ ′′
01(

i
m + κ ′′),

γ ′′
01(

i+1
m − κ ′′), such that γ ′

1 = φ1
K ′′′
i

◦ γ ′′
01 on [ i

m + κ ′′, i+1
m − κ ′′]. By a

general position argument and a cut-off argument, we may further assume that
the support of K ′′′

i does not intersect γ1([0, 1]), as well as γ ′′
0 ([ j

m ,
j+1
m ]) for

j �= i . Denote ψ := φ1
K ′′′
i
.

To finish the proof, let Ki be the Hamiltonian function that generates the
flow (ψ−1 ◦ (φs

K ′′
i
)−1 ◦ψ ◦ φs

K ′
i
)s∈[0,1]. Then Ki has all the desired properties.

For instance, for the property 4 of the statement of the Claim, we first of all
have γ1 = ψ−1 ◦ γ1 since the support of ψ does not intersect the curve γ1,
and then we get

γ1 = ψ−1 ◦ γ1 = ψ−1 ◦
(
φ1
K ′′
i

)−1 ◦ γ ′
1 = ψ−1 ◦

(
φ1
K ′′
i

)−1 ◦ ψ ◦ γ ′′
01

= ψ−1 ◦
(
φ1
K ′′
i

)−1 ◦ ψ ◦ φ1
K ′
i
◦ γ ′′

0 = φ1
Ki

◦ γ ′′
0
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on [ i
m , i+1

m ]. ��
Let Kodd = K1 + K3 + · · · and Keven = K2 + K4 + · · · , where Ki ’s

are provided to us by the above claim. We let K be a Hamiltonian such that
φs
K = φs

Kodd
◦ φs

Keven
.

One can deduce the following facts, without much difficulty, from the above
claim:

1. φs
K (Ui ) ⊂ Ui−1 ∪ Ui ∪ Ui+1 for each 0 � i � m and s ∈ [0, 1] (where

we put U−1 = Um+1 = ∅),
2. φ1

K ◦ γ ′′
0 = γ1,

3. ‖K‖∞ � ρ/3.

We now let F be a Hamiltonian such that φs
F = φs

K ◦ φs
H ◦ φs

G . Examining
the properties of K , H, and G we see that

1. F vanishes near the extremities of γ0 (and hence γ1), in particular φs
F fixes

the extremities,
2. φ1

F ◦ γ0 = γ1,
3. dC0(φs

F , I d) < 2ε for each s ∈ [0, 1], and ‖F‖∞ � ρ,
4. F is supported in a 2ε-neighborhood of γ0.

��

3 Proof of Theorem 2

The most important step towards the proof of Theorem 2 will be to establish
the following result which is a refined version of Theorem 4. Throughout this
section (M, ω)will denote a closed and connected symplectic manifold whose
dimension is at least four.

Theorem 13 Let H be a Morse function on M. If H is sufficiently C2-small,
then for every ε, ρ > 0, there existsψ ∈ Hameo(M, ω) and an embedded tree
T (see Definition 14) such that:

• T is ψ-invariant, i.e. ψ(T ) = T ,
• T contains all the fixed points of ψ ,
• dC0(φ1

H , ψ) < ε and ψ ◦ φ−1
H is generated by a continuous Hamiltonian

F such that ‖F‖∞ < ρ,
• ψ coincides with a Hamiltonian diffeomorphism in the complement of any
neighborhood of T .

The notion of an embedded tree which appears in the above theorem is
defined as follows.

Definition 14 We will say that a compact subset T of a smooth manifold M
is an embedded tree if there exists a finite tree T0 and an injective continuous
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A C0 counterexample to the Arnold conjecture 775

map χ : T0 → M , such that T = χ(T0) and the map χ is a smooth embedding
of the interior of each edge of T0.

Note that we do not ask more than continuity at the vertices of T0. Note also
that the restriction of χ to any compact interval included in the interior of any
edge is a smooth embedding.

In Sect. 3.1 below, we explain why Theorem 13 implies Theorem 2. The
proof of Theorem 13 then occupies Sects. 3.2 and 3.3.

3.1 From an invariant tree to a single fixed point

In this section, we explain how one can build a Hamiltonian homeomorphism
with a single fixed point from a Hamiltonian homeomorphism preserving an
embedded tree (see Definition 14) that contains all of its fixed points; in other
terms, we prove that Theorem 13 implies Theorem 2. This will rely on the
following proposition.

Proposition 15 Let ψ be a symplectic homeomorphism of (M, ω), and T ⊂
M be an embedded tree which is invariant under ψ , that is ψ(T ) = T .
Assume that all the fixed points of ψ are contained in T . Then, there exists
f ∈ Sympeo(M, ω), with only one fixed point p, and such that f ◦ ψ−1 ∈
Hameo(M, ω).

Moreover, if ψ is smooth on M\T , then f can be chosen to be smooth on
M\{p}. If ψ coincides with a Hamiltonian diffeomorphism in the complement
of any neighborhood of T , then f can be chosen in any normal subgroup of
Sympeo(M, ω) which contains Ham(M, ω).

Note that in the last sentence of the above proposition, we do not claim that
f can be chosen to be smooth on M\{p} and simultaneously be contained in
any normal subgroup of Sympeo(M, ω) which contains Ham(M, ω). As will
be clear from the proof, our method of building f in the normal closure of
Ham(M, ω) has the effect of creating a second non-smooth point. We do not
know if both properties can be satisfied at the same time.

Proof of Theorem 2 Theorem 13 provides us with a Hamiltonian homeomor-
phism ψ which satisfies all the requirements of Proposition 15. Thus, there
exists a symplectic homeomorphism f with only one fixed point p and such
that f ◦ ψ−1 ∈ Hameo(M, ω). Since ψ ∈ Hameo(M, ω) we deduce that
f ∈ Hameo(M, ω) as well. Moreover,ψ coincides with a Hamiltonian diffeo-
morphism in the complement of anyneighborhoodofT . This implies that f can
be chosen in any normal subgroup of Sympeo(M, ω) containing Ham(M, ω).
It also implies that ψ is smooth in the complement of T and hence that f can
be chosen to be smooth in the complement of p. ��
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The following lemma will be useful for the proof Proposition 15.

Lemma 16 Let (M, ω) be a symplectic manifold of dimension at least 4 and
let T ⊂ M be an embedded tree. Let d be a Riemannian distance on M. Then,
for every ε > 0 and every open neigborhoodU of T , there exists aHamiltonian
function H supported in U such that diam(φ1

H (T )) � ε and ‖H‖∞ � ε.

Proof Let T0 be a finite tree and χ : T0 → T a map as in Definition 14. Let
U be an open set containing T . Without loss of generality, by replacing U by
a smaller open set if needed, we may assume that U is simply connected. We
first pick a Hamiltonian function H0 supported in U , such that φ1

H0
maps all

the vertices of T inside a ball B included inU and of diameter less than ε. By
continuity of χ , there exist an open neighborhood W of the set of vertices of
T and a closed subinterval Ji ⊂ Int(Ii ), for every edge Ii , i = 1, . . . , r of T0,
such that

• T = (W ∩ T ) ∪ χ(J1) ∪ · · · ∪ χ(Jr ),
• φ1

H0
(W ) ⊂ B.

To achieve the proof, we only need to find a Hamiltonian isotopy which moves
the pieces of curves χ(J1), . . . , χ(Jr ) into B with the endpoints kept in B
along the isotopy. This can be achieved by successively choosing Hamiltonian
functions Hi ’s (for i = 1, . . . , r ) such that for all i , φ1

Hi
(φ1

H0
(χ(Ji ))) ⊂ B and

the support of Hi meets neither φ1
H0

(W ∩T ) nor any of the curves φ1
Hk

(χ(Jk)),
for k = 1, . . . , i − 1 and χ(Jk), for k = i + 1, . . . , r . Then, the Hamiltonian
diffeomorphism h = φ1

Hr
◦· · ·◦φ1

H1
◦φ1

H0
sends T into B, hence diam(h(T )) �

ε.
Moreover, it is a standard fact that the above Hamiltonian functions

H0, . . . , Hr can be chosen arbitrarily small in the ‖ · ‖∞ norm. Thus, h can be
generated by a Hamiltonian H satisfying ‖H‖∞ � ε. ��
Proof of Proposition 15 Letψ and T be as in the statement of the proposition.
We will build the symplectic homeomorphism f as a C0-limit of conjugates
of ψ .

For that purpose, let W0 ⊃ W1 ⊃ · · · ⊃ Wk ⊃ · · · ⊃ T be a sequence of
nested open neighborhoods of T such that

⋂
k�0 Wk = T . ��

Claim 17 There exists a sequence of open sets (Ui )i∈N, a sequence of Hamil-
tonian diffeomorphisms (hi = φ1

Hi
)i∈N and a subsequence (Wki )i∈N with the

following properties: For all i ∈ N,

• Ui = ϕi (Wki ), where ϕi = hi ◦ · · · ◦ h1 ◦ h0,
• Ui+1 ⊂ Ui ,
• Hi+1 is supported in Ui ,
• diam(Ui+1) � 1

3i
,
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• ‖Hi‖∞ � 1
3i
.

Proof We will construct these sequences by induction. First set U0 = W0,
H0 = 0 and k0 = 0. Then, assume that we have constructed sequences
(Ui )i∈{0,..., j}, (Hi )i∈{0,..., j}, (Wki )i∈{0,..., j}, with the desired properties.

According to Lemma 16, applied to the tree ϕ j (T ), we can pick a Hamilto-
nian function Hj+1 supported inUj , such that ‖Hj+1‖∞ � 1

3 j+1 and, denoting

h j+1 = φ1
Hj+1

, h j+1(ϕ j (T )) is included in a ball Bj ⊂ Uj , of diameter less

than 1
3 j . Then pick k j+1 > k j sufficiently large so that

h j+1
(
ϕ j (Wk j+1)

) ⊂ Bj .

Then, diam(h j+1(ϕ j (Wk j+1))) � 1
3 j andwecan setUj+1 = h j+1(ϕ j (Wk j+1)).

Since Bj ⊂ Uj , we haveUj+1 ⊂ Uj and the three sequences (Ui )i∈{0,..., j+1},
(Hi )i∈{0,..., j+1}, (Wki )i∈{0,..., j+1} still have the required properties. By induc-
tion, we obtain the claimed infinite sequences. ��

Since diam(Ui ) converges to 0 when i goes to infinity and since theUi ’s are
nested, the intersection of the closures

⋂
i∈NUi is a single point. Let p denote

this point.
Consider the sequence of maps ϕi = hi ◦ · · · ◦h1. By construction, if x ∈ T

then ϕi (x) ∈ Ui , hence it converges to p. Moreover, for every neighborhood
U of T , the restrictions ϕi |M\U stabilize for i large. For every x /∈ T , denote
by ϕ(x) the point ϕi (x) for i large enough. The map ϕ is a diffeomorphism
from M\T to M\{p}.

We define for all x ∈ M\{p},
f (x) = ϕ ◦ ψ ◦ ϕ−1(x),

and f (p) = p. We see that p is the unique fixed point of f . Indeed, if we
assume that f admits another fixed point q �= p then, ϕ(q) would be a fixed
point of ψ which is not contained in T and this would be a contradiction.

The first part of Proposition 15 thus follows ifwe prove that f is a symplectic
homeomorphism. This will be a consequence of the next claim, which requires
us to introduce additional notations.

Without loss of generality, we may assume that for all i , the function
Hi (t, ·) vanishes for t in the complement of an open subinterval of [0, 1].
Let τ0 = 0 and for every i = 1, 2, . . . , let τi = ∑i

k=1
1
2k
. We consider the

sequence of smooth Hamiltonian functions Ki defined as concatenations of
time-reparametrizations of the Hi ’s as follows:

Ki (t, x) =
{
2k+1Hk

(
2k+1(t − τk), x

)
, ∀x ∈ M, k = 0, 1, . . . , i, t ∈ [τk, τk+1]

0 ∀x ∈ M, t ∈ [τi+1, 1].
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Each Hamiltonian Ki generates the smooth isotopy ϕt
i given by:

ϕt
i =

{
φ
2k+1(t−τk)
Hk

◦ hk−1 ◦ · · · ◦ h0, ∀k = 0, 1, . . . , i, t ∈ [τk, τk+1]
hi ◦ · · · ◦ h0, ∀t ∈ [τi+1, 1].

Note that by construction, for all indices i < j , one has Ki = K j and ϕt
i = ϕt

j

on the time interval [0, τi+1]. Also, note that for t = 1, we have ϕ1
i = ϕi .

Claim 18 The isotopies ϕt
i ◦ψ ◦ (ϕt

i )
−1 C0-converges to an isotopy of homeo-

morphisms f t as i → ∞, satisfying f 1 = f . In particular, f is a symplectic
homeomorphism.

Proof of Claim 18 We denote f ti = ϕt
i ◦ ψ ◦ (ϕt

i )
−1 and let, for t ∈ [0, 1) f t

be the homeomorphism defined by f t = f ti for any i ∈ N such that τi+1 � t .
We set f 1 = f .

First, note that by construction f is a bijection. Note also that on any time
interval, of the form [0, 1 − δ], with δ > 0, f t coincides with f ti for i large
enough. We will prove that the sequences f ti and ( f ti )

−1 respectively C0-
converge to f t and ( f t )−1. This will imply that f t is a homeomorphism for
all t (including t = 1) and prove the claim.

Let B be a ball around p. For i large enough, Ui ⊂ B, hence ϕt
j (Wki ) ⊂ B

for all j � i and t ∈ [τ j+1, 1]. The uniform continuity ofψ and the invariance
of T implies that for j � i large enough, ψ(Wk j ) ⊂ Wki . Thus,

f tj (Uj ) = ϕt
j ◦ ψ ◦

(
ϕt
j

)−1
(Uj ) ⊂ B (1)

for j large enough and t ∈ [τ j+1, 1]. Let j0 be such a large j .
For all j , it can be easily checked that

f tj+1 = ρt
j ◦ f tj ◦

(
ρt
j

)−1
,

where

ρt
j =

⎧
⎪⎪⎨

⎪⎪⎩

Id, ∀t ∈ [0, τ j+1]
φ
2 j+2(t−τ j+1)

Hj+1
, ∀t ∈ [τ j+1, τ j+2]

h j+1, ∀t ∈ [τ j+2, 1].

It follows that if t ∈ [0, τ j+1], then ( f tj+1)
−1(x) = ( f tj )

−1(x) for all x ∈ M .
If t ∈ [τ j+1, 1], then for all j � j0, ρt

j is supported inUj ⊂ Uj0 ⊂ B, thus for

all x /∈ B, (1) yields ( f tj )
−1 ◦ (ρt

j )
−1(x) = ( f tj )

−1(x) /∈ Uj . This implies that
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( f tj+1)
−1(x) = ( f tj )

−1(x) for all x /∈ B. Thus, the sequence ( f ti )
−1 stabilizes

in the complement of B, independently of t . Moreover, by construction the
limit point of ( f ti )

−1(x) for x /∈ B is nothing but ( f t )−1(x).
It follows that for j large enough, f tj ◦ ( f t )−1 is supported in B, hence is

C0-close to Id. This shows that f ti C0-converges to f t . The same argument
shows that ( f tj )

−1 converges to ( f t )−1. ��
We will now prove that the homeomorphism f ◦ ψ−1 is a Hamiltonian

homeomorphism.
The homeomorphism f ◦ ψ−1 is the time one map of the isotopy f t ◦

ψ−1. According to Claim 18, this isotopy is the C0-limit of the isotopies
ϕt
i ◦ ψ ◦ (ϕt

i )
−1 ◦ ψ−1. Since these isotopies are generated by the continuous

Hamiltonians

Fi (t, x) = Ki (t, x) − Ki

(
t, ϕt

i ◦ ψ−1 ◦ (
ϕt
i

)−1
(x)

)
,

the following claim implies that f t ◦ ψ−1 is a hameotopy and hence that
f ◦ ψ−1 is a Hamiltonian homeomorphism.

Claim 19 The continuous Hamiltonians Fi converge uniformly as i → ∞.

Proof The condition ‖Hi‖∞ � 1
3i

implies that the sequence of Hamiltonians
Ki converges uniformly to the continuous function K given for all x ∈ M and
all t ∈ [0, 1) by K (t, x) = 2k+1Hk(2k+1(t − τk), x) with k ∈ N such that
t ∈ [τk, τk+1], and K (1, x) = 0. Now according to Claim 18, ϕt

i ◦ψ−1◦(ϕt
i )

−1

converges uniformly to ( f t )−1. Therefore, Fi (t, x) converges uniformly to
K (t, x) − K (t, ( f t )−1(x)).
We now pursue the proof of Proposition 15. Since ϕ is a smooth from M\T

to M\{p}, it is obvious that if ψ is smooth in the complement of T , then the
above construction provides a symplectic homeomorphism f which is smooth
in the complement of p.

Let us now assume that ψ coincides with a Hamiltonian diffeomorphism
on the complement of any neighborhood of T . Let f be constructed as above.
We will modify f to define a new symplectic homeomorphism f̃ which is in
any normal subgroup of Sympeo(M, ω) containing Ham(M, ω).

Let K be a smooth Hamiltonian whose time-one map does not fix the point
p. Then φ1

K (p) �= f ◦ φ1
K (p) and we can find a small enough ball B around

p, such that φ1
K (B) ∩ f ◦ φ1

K (B) = ∅.
For i large enough, f coincideswithϕi ◦ψ◦ϕ−1

i onM\B. Since by assump-
tion ψ coincides with some Hamiltonian diffeomorphism on M\ϕ−1

i (B), we
deduce that we can write f = h ◦g, where h is a Hamiltonian diffeomorphism
and g is a symplectic homeomorphismwhich is the identity on the complement
of B. Now set
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f̃ = h ◦ g ◦ φ1
K ◦ g−1 ◦ (

φ1
K

)−1
.

We see that f̃ belongs to any normal subgroup of Sympeo(M, ω) containing
Ham(M, ω). We claim that p is the only fixed point of f̃ . To see this, first note
that φ1

K ◦ g−1 ◦ (φ1
K )−1 is the identity on the complement of φ1

K (B). It follows
in particular that f = h ◦ g and f̃ coincide on M\φ1

K (B), hence that p is the
only fixed point of f̃ in M\φ1

K (B). But if x ∈ φ1
K (B), then f̃ (x) belongs to

f ◦ φ1
K (B), hence is distinct from x .

We point out that since g has only one non-smooth point, we see that f̃ has
two non-smooth points, p and φ1

K (p). ��
Remark 20 We can now justify what we claimed in the discussion of Sect. 1.3,
namely the fact that our Hamiltonian homeomorphism f with a unique fixed
point can be generated by a continuous Hamiltonian admiting cl(M) distinct
spectral invariants. As in Sect. 1.3, we restrict our discussion to the case of an
aspherical symplectic manifold.

We begin by recalling that spectral invariants of a smooth Hamiltonian
depend on the Hamiltonian Lipschitz continuously; see [34]. It follows that
one can define spectral invariants for any continuous function.

The argument showing that f can be generated by a continuousHamiltonian
with, at least, cl(M) distinct spectral invariants requires four steps:

(i) The initial Hamiltonian H of the construction (see Theorem 13) is a C2-
small Morse function. For such a Hamiltonian, Floer theory is nothing
butMorse theory and it follows from the classical Lusternik–Schnirelman
theory that H must have at least cl(M) distinct spectral invariants.

(ii) The Hamiltonian homeomorphism ψ obtained in Theorem 13 can be
chosen so that ψ ◦ φ−1

H is generated by a Hamiltonian arbitrarily small
in ‖ · ‖∞ norm. By continuity of spectral invariants, this implies that ψ

can be generated by a (continuous) Hamiltonian, which will be denoted
by G, with spectral invariants close to those of H .

(iii) In the above proof of Proposition 15, the Hamiltonian homeomorphisms
fi = ϕi ◦ ψ ◦ ϕ−1

i are conjugate to ψ . Hence, they can be generated by
the Hamiltonians G ◦ ϕ−1

i which have the same spectral invariants as G.
(iv) Our Hamiltonian homeomorphism f is constructed so that for i large,

f −1
i ◦ f is generated by a uniformly small Hamiltonian function F̃i .

Thus, f is generated by the Hamiltonian (G ◦ ϕ−1
i )# F̃i whose spectral

invariants are close to those of G ◦ ϕ−1
i and hence to those of H . By

choosing small enough perturbations, we can ensure that at least cl(M)

of these spectral invariants are distinct.

Remark 21 We should point out the argument presented in the above remark
can be modified to prove the following (stronger) statement on closed sym-
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A C0 counterexample to the Arnold conjecture 781

plectic manifolds which are not necessarily aspherical: the Hamiltonian
homeomorphism f can be generated by a continuous Hamiltonian, say G,
whose spectral invariants are exactly the same as the spectral invariants of the
initial C2-small Morse function H .

In fact, one could go even further: it is possible to show that the continuous
Hamiltonian G has the exact same barcode as the initial C2-small Morse
function H . Hence, despite the fact that the time-1 map of G has only one
fixed point, from a Floer theoretic point of view G can not be distinguished
from H . For further information on the theory of barcodes see [1,27,32,36].

Although these claims, and their proofs, are very interesting, in the interest
of not lengthening the paper we do not present them here.

3.2 Building the tree from a Morse function

In this section we begin the proof of Theorem 13. Our first step will be to
perturb our initial C2-small Morse function H so that it satisfies a number of
additional properties. This is the content of the following lemma. In order to
simplify our presentation, throughout the rest of this section, we will refer to
local maxima/minima of a function as maxima/minima. An extremum point of
a function will be a point which is either a local maximum or a local minimum.

Lemma 22 On every closed symplectic manifold (M, ω) and for every Morse
function H̃ on M, there exists a Morse function H on M, arbitrarily C1-close
to H̃ , with the following set of properties:

1. The function H takes distinct values at distinct critical points,
2. Every critical point p of H which is an extremum admits a neighborhood

with Darboux coordinates (x1, . . . , xn, y1, . . . , yn) in which H is of the
form H(p) + c

∑
(x2i + y2i ), where c ∈ R\{0} is a constant which can be

chosen to have arbitrarily small magnitude,
3. For every critical point of H which is not extremal, there exist localDarboux

coordinates (x1, . . . , xn, y1, . . . , yn) in which H = c(x21 − y21)+Q, where
c is some non-zero constant, and Q is a quadratic form in the variables
(x2, . . . , xn, y2, . . . , yn).

The relevant consequence of the third condition is that locally near
p, the Hamiltonian flow of H preserves the symplectic 2-plane P =
{(x1, 0, . . . , 0, y1, 0, . . . , 0)} and acts as a linear hyperbolic flow on it. Indeed,
XH = Xc(x21−y21 ) + XQ , where XH , Xc(x21−y21 ), XQ denote the associated
Hamiltonian vector fields. It can easily be checked that XQ |P = 0. Hence,
the restriction of the Hamiltonian flow of H to the plane P coincides with the
Hamiltonian flow of c(x21 − y21).
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Proof We can assume without loss of generality that H̃ is a Morse function on
M which has pairwise distinct critical values. We then modify H̃ near every
critical point as follows. Let p be a critical point of H̃ . Up to addition of a
constant, we may assume that H̃(p) = 0.

Assume that p is a local minimum and let (x1, . . . , xn, y1, . . . , yn) be Dar-
boux coordinates near p. We first make aC2-small perturbation of H̃ so that in
a small neighborhood of p, it coincides with its Hessian near p. Then, note that
given two positive definite quadratic forms Q1 � Q2 and two open subsets
U, V such that 0 ∈ U ⊂ U ⊂ V , there always exists a smooth function h
which coincides with Q1 onU and with Q2 on the complement of V , and hav-
ing 0 as its only critical point. Now define H by replacing H̃ by such a function
h obtained in a neighborhood of p from the quadratic forms Q1 = c

∑
x2i + y2i

for some small c > 0 and for Q2 the Hessian of H . This perturbation can be
made arbitrarily C1-small by using a small neighborhood of p. Local maxima
are worked out similarly.

Now assume that p is not an extremum. By the Morse lemma, and since
p is not an extremum, there exists a local chart on a neighborhood of p,
parametrised via coordinates (v1, . . . , vn, w1, . . . , wn) by a small open ballW
centered at the origin in the Euclidean space R2n , such that p = (0, 0, . . . , 0)
in these coordinates, and moreover H̃ has the form H̃ = H̃(p) + v21 − w2

1 +∑n
i=2 ±v2i ±w2

i . Now, let (x1, . . . , xn, y1, . . . , yn) be Darboux coordinates in
a neighborhood of p, such that p = (0, 0, . . . , 0) in these coordinates as well.
Then, choose a diffeomorphism φ of M , supported in a very small ball around
p, such that near p, φ carries the coordinate system (v1, . . . , vn, w1, . . . , wn)

to the coordinate system (x1, . . . , xn, y1, . . . , yn). Consider its “rescalings”
φλ : M → M , for λ ∈ (0, 1), defined by

φλ(v1, . . . , vn, w1, . . . , wn) = λφ
(v1

λ
, . . . ,

vn

λ
,
w1

λ
, . . . ,

wn

λ

)
,

for (v1, . . . , vn, w1, . . . , wn) ∈ λW ⊂ R
2n , and by the identity on the com-

plement of λW . Now, replacing H̃ by the pushforward H := (φλ)∗ H̃ =
H̃ ◦(φλ)

−1, we get that for small enough λ, H is a smooth function onM which
isC1-close to H̃ , andwhichhas the form H = H(p)+x21−y21+

∑n
i=2 ±x2i ±y2i

in a small neighborhood of p. ��
In the above lemma, the fact that H and H̃ are C1-close implies that

dC0(φ1
H̃

, φ1
H ) is small and φ1

H ◦φ−1
H̃

is generated by a uniformly small Hamil-
tonian. Hence, Theorem 13 now amounts to the following proposition.

Proposition 23 Let H be a Morse function on M satisfying the properties of
Lemma 22. If H is sufficiently C2-small, then for every ε, ρ > 0, there exists
ψ ∈ Hameo(M, ω) and an embedded tree T (see Definition 14) such that:
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A C0 counterexample to the Arnold conjecture 783

Fig. 1 The Reeb graph of a
height function H on a
2-torus, the bi-degrees of the
different vertices (Note that
the bi-degree (1, 1) cannot
happen on a surface) and an
example of an edge ep,q
with the corresponding open
set Up,q

H (0, 1)
(0, 1)

(2, 1)

(1, 2)

(2, 1)

(1, 0)

p

q

Up,q
ep,q

• T is ψ-invariant, i.e. ψ(T ) = T ,
• T contains all the fixed points of ψ ,
• dC0(φ1

H , ψ) < ε and ψ ◦ φ−1
H is generated by a continuous Hamiltonian

F such that ‖F‖∞ < ρ,
• ψ coincides with a Hamiltonian diffeomorphism in the complement of any
neighborhood of T .

Our proof of Proposition 23 will make use of the notion of Reeb graph
whose definition we now recall.

Definition 24 We assume that a function H : M → R is given. For every
point x ∈ M we define C(x) as the connected component of x in the level set
H−1(H(x)). For a subset X ⊂ M , we define C(X) = ⋃

x∈X C(x).
TheReebgraph is the quotient spaceR = M/ ∼,where∼ is the equivalence

relation given by x ∼ y if and only if C(x) = C(y).

It follows from basic Morse theory that if H is a Morse function whose crit-
ical values are pairwise distinct, then the spaceR actually carries the structure
of a graph whose vertices correspond to the critical points of H and such that
an edge ep,q between two critical points p and q corresponds to a connected
open subset Up,q ⊂ M such that:

• Up,q contains no critical point of H ,
• The canonical projection Up,q → Up,q/ ∼ is a fibration onto an interval
(this interval can be seen as parametrizing the edge),

• The closureUp,q has two boundary components, one containing p and the
other containing q.

By construction, H descends to a well defined function onR, which we still
denote H . This function is monotone on each edge. We assign orientations to
the edges so that H is decreasing on each of them. As for any oriented graph,
any vertex p admits a bi-degree which is a couple (d−(p), d+(p)), where
d−(p) is the number of edges with head end at p and d+(p) is the number
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of edges with tail end at p. This bi-degree is related to the Morse index of
p. Indeed, local maxima have bi-degree (0, 1), local minima have bi-degree
(1, 0), and all the other points have bi-degree (1, 1), (2, 1) or (1, 2) (but (2, 1)
is only possible for points of Morse index dim(M) − 1 and (1, 2) is only
possible for points of Morse index 1).

Proof of Proposition 23 Let ε, ρ > 0. Since M is connected, so is the Reeb
graphR of H , and there exists a subgraph T ofRwhich is a tree and contains
all the vertices of R. To each vertex of T we associate the corresponding
critical point of H . This gives an embedding of the vertices of T into M . The
complicated part of the proof will be to embed the edges.

By assumption, near every critical point p of H which is not extremal, there
exist Darboux coordinates (x1, . . . , xn, y1, . . . , yn) such that H = c(x21 −
y21)+Q′, where c �= 0 and Q′ is a quadratic formwhose kernel is the plane P =
{(x1, 0, . . . , 0, y1, 0, . . . , 0)}. As mentioned after the statement of Lemma 22,
this implies in particular that locally near p, the flow of H preserves P and acts
on it as the flow of the quadratic form c(x21 − y21), which is linear hyperbolic.
Thus the flow of H admits in P two orbits converging to p when time goes
to +∞ and two orbits converging to p when time goes to −∞. Moreover, in
the plane P and still locally near the point p, these four orbits are the frontiers
of four regions; two of them correspond to H < H(p) and the two others to
H > H(p).
To each edge ep,q with tail end at p, we associate one of the two orbits

converging to p in the past. The local picture above shows that this orbit belongs
to the closure Up,q . Whenever there are two such edges (i.e. d+(p) = 2) we
demand that the two associated orbits are distinct. Again, the local picture
shows that this is possible. We let xp,q be a point located near p on the orbit
associated to ep,q . To summarize the situation, we have:

Up,q � φt
H (xp,q)

t→−∞−→ p.

We associate in a similar way to each edge eq,p with head end at p a point
yq,p such that:

Uq,p � φt
H (yq,p)

t→+∞−→ p.

For each oriented edge ep,q we now choose a path γp,q : [0, 1] → M
satisfying the following properties (Fig. 2):

• For all t ∈ [0, 1], d
dt (H ◦ γp,q(t)) < 0,

• γp,q(0) = p if p is a local maximum and γp,q(0) = xp,q otherwise,
• γp,q(1) = q if q is a local minimum and γp,q(1) = yp,q otherwise.

Note that it follows from the above properties that Up,q = C(γ ((0, 1))).
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H

T

Fig. 2 The right-hand side represents the tree T obtained from the Reeb graph of Fig. 1. On
the left hand side, the arrows correspond to the four orbits converging to non extremal points,
and the blue curves represent possible choices for the curves γp,q

For each non extremal critical point p, and for each piece of orbit β which is
either of the form {φt

H (xp,q) : t ∈ (−∞, 1]} or {φt
H (yq,p) : t ∈ [−1, +∞)},

we choose some open sets Vp(β), such that

image(β) ⊂ Vp(β) ⊂ M\{p}.

We choose these open sets sufficiently small such that all the Vp(β)’s, for p
ranging over all non-extremal critical points of H and β over all pieces of
orbits as above, are pairwise disjoint.

We are now ready to construct the perturbation of H and the embedding
of T . We will proceed by induction on the edges of T . For that purpose we
number the edges e1, e2, . . . , eN , and for each index i , we let pi and qi be
respectively the tail end and head end of ei . With the previous notations, this
means that ei = epi ,qi . We also rename the points xi = xpi ,qi and yi = ypi ,qi ,
when they are defined and the paths γi = γpi ,qi . For the sake of brevity,we omit
the piece of orbit from the notation and denote Vpi and Vqi the corresponding
open subsets of the form Vp(β) when they are defined; it will always be clear
from the context which orbit is considered. If pi is a local maximum, we set
Vpi = ∅; if qi is a local minimum, we set Vqi = ∅.

Assume that for some j � 0, we have realized the edges e1, . . . , e j in M ,
i.e, we have built smooth embeddings α1, . . . , α j : R → M and Hamiltonian
homeomorphisms θ1, . . . , θ j , such that the following holds:

1. limt→−∞ αi (t) = pi and limt→+∞ αi (t) = qi ,
2. For all i ∈ {1, . . . , j} and all t ∈ R, θi ◦ φ1

H (αi (t)) = αi (t + 1),
3. θi ◦ φ1

H has the same fixed points as φ1
H ,
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4. For all i ∈ {1, . . . , j}, αi takes values in Vpi ∪ C(γi ((0, 1))) ∪ Vqi , and the
images of the αi ’s are pairwise disjoint,

5. For all i ∈ {1, . . . , j}, θi is generated by a continuous Hamiltonian Fi
supported in {pi } ∪ Vpi ∪ C(γi ((0, 1))) ∪ Vqi ∪ {qi }, and the interiors of
the supports of the θi ’s are pairwise disjoint,

6. dC0(θi , Id) < ε and ‖Fi‖∞ < ρ.
7. For any neighborhoods of pi , qi , the homeomorphism θi coincides with

a Hamiltonian diffeomorphism in the complement of the union of those
neighborhoods.

Wewant to show that it is possible to buildα j+1 and θ j+1 such that the above
Properties 1–7 still hold. After shrinking the open sets Vpj+1 , Vq j+1 if needed
so that they intersect neither the supports of F1, . . . , Fj nor the images of
the curves α1, . . . , α j , we construct α j+1 and θ j+1 by applying Theorem 25
below to the critical points p j+1, q j+1, to the curve γ j+1 and to the open
subsets Vpj+1 , Vq j+1 .

Following this process by induction, we get curves α1, . . . , αN and Hamil-
tonian homeomorphisms θ1, . . . , θN satisfying Properties 1–7. The union of
the images αi , denoted by T , is an embedding of the tree T in M in the sense
of Definition 14. Moreover, it is easy to check that the Hamiltonian homeo-
morphism ψ = θN ◦ · · · ◦ θ1 ◦ φ1

H meets the requirements of Proposition 23.
��

3.3 Connecting two critical points

The goal of this section is to explain the construction of the individual edges
of the invariant tree of Proposition 23. This is achieved in Theorem 25.

3.3.1 Statement of the result

Theorem 25 Let H be aMorse function as described in Lemma 22 and denote
by p, q two critical points of H, at most one of them being an extremum. We
assume that there exists a smooth embedded curve γ : [0, 1] → M such that

• γ (0) = p if p is a maximum of H, and φt
H (γ (0)) → p when t goes to

−∞ if p is not a maximum,
• γ (1) = q if q is a minimum of H, and φt

H (γ (1)) → q when t goes to +∞
if q is not a minimum,

• for all t ∈ [0, 1], d
dt (H(γ (t))) < 0.

Let ε, ρ > 0 be positive real numbers, let Vp, Vq be open sets such that

{
Vp = ∅, if p is a maximum,

Vp ⊃ {φt
H (γ (0)) : −∞ < t � 1}, if p is not a maximum,
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and
{
Vq = ∅, if q is a minimum,

Vq ⊃ {
φt
H (γ (1)) : −1 � t < +∞}

, if q is not a minimum.

Then, there exist θ ∈ Hameo(M, ω) and a smooth embedded curve α : R →
M, with the following properties:

1. limt→−∞ α(t) = p and limt→+∞ α(t) = q,
2. θ ◦ φ1

H (α(t)) = α(t + 1) for all t ∈ R,
3. θ ◦ φ1

H has the same set of fixed points as φ1
H ,

4. Fot all t ∈ R, α(t) belongs to the open set Vp ∪ C(γ ((0, 1))) ∪ Vq,
5. θ is generated by a continuous Hamiltonian F which is supported in {p}∪

Vp ∪ C(γ ((0, 1))) ∪ Vq ∪ {q}.
6. dC0(Id, θ) < ε and ‖F‖∞ < ρ.
7. For any neighborhoods of p, q, the homeomorphism θ coincides with a

Hamiltonian diffeomorphism in the complement of the union of those neigh-
borhoods.

One of the main difficulties we will have to face in proving Theorem 25 is
to perform perturbations of φ1

H without creating new fixed points. Away from
the fixed points of φ1

H , i.e. critical points of H , a C0-small perturbation will
not create such fixed points. However, a C0-small perturbation near a critical
point can create new fixed points, and for this reason neighborhoods of critical
points will require special treatment. In order to surmount these difficulties, we
will build the perturbation and the invariant curve of Theorem 25 in three steps:
First, we build one end of the curve near one of the two critical points (this con-
struction is achieved in Sect. 3.3.2 in the case of a local minimum/maximum).
We then extend the invariant curve such that it reaches a sufficiently small
neighborhood of the second critical point (Sect. 3.3.3). Finally, we finish the
construction of the invariant curve in the neighborhood of the second critical
point (Sect. 3.3.4).

3.3.2 Connecting a max/min to a nearby point

We denote by R
2n the Euclidean space of dimension 2n equipped with the

standard symplectic structureω0 = ∑n
i=1 dxi ∧dyi . In the following theorem,

‖x‖ denotes the Euclidean norm of a point x ∈ R
2n .

Theorem 26 Let H : R
2n → R be a Hamiltonian of the form H =

c
∑n

i=1(x
2
i + y2i ), where c is a non-zero constant. There exists A > 0 such

that if |c| < A, then the following statement holds for any point x ∈ R
2n and

any ε, δ > 0.
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Denote by B ⊂ R
2n an open ball which is centered at the origin and contains

the point x. There exists a Hamiltonian homeomorphism θ , whose support is
compactly contained in B, and a smooth injective immersion α : [−1, ∞) →
B\{0} with the following properties:
1. α(t) = φt

H (x) for t ∈ [−1, 0] and α(t) → 0 as t → ∞, where 0 denotes
the origin,

2. θ ◦ φ1
H (α(t)) = α(t + 1) for all t ∈ [−1, ∞),

3. θ ◦ φ1
H has only one fixed point and that is the origin,

4. The support of θ intersects the complement of the ball B(0, ‖x‖) of radius
‖x‖ only in an ε-neighborhood of {φt

H (x) : t ∈ [1, 2]},
5. dC0(I d, θ) < ε and ‖F‖∞ � δ, where F denotes a continuous Hamilto-

nian such that φ1
F = θ ,

6. For any neighborhood of 0, there exists a compactly supportedHamiltonian
diffeomorphism of B which coincides with θ in the complement of that
neighborhood.

Proof of Theorem 26 Without loss of generality wemay assume that ‖x‖ = 1.
We remark here that throughout the proof we will use the fact that φt

H , for each
t , is a linear isometry ofR2n , without explicitly mentioning it. We will assume
that ε > 0 is very small in comparison to ‖φ1

H (x) − x‖.
We will now pick a sequence of curves α0, α1, . . . , which will be joined

together, at a later stage, to form the invariant curve α. Let x0 = x and define
α0 : [0, 1] → B, t �→ φt

H (x0). Let 0 < ρ < 1 be a constant such that 1 − ρ

is very small in comparison to ε. Now, let x1 = ρ φ1
H (x0) and more generally,

for each i � 1, xi = ρiφi
H (x0) and let αi : [i, i + 1] → B denote the curve

αi (t) = ρiφt
H (x0) for each t ∈ [i, i + 1]. Denote yi := φ1

H (xi ). Note that αi
satisfies the following identity:

αi (t) = φt−i
H (xi ) = φt−i−1

H (yi ), ∀t ∈ [i, i + 1]. (2)

Step 1: Preliminary preparations for the construction of the invariant curve.
For each non-negative integer i , let ai : [0, 1] → B be the curve ai (t) :=
(1 − t)yi + t xi+1. Observe that, the length of ai is ρi − ρi+1. Note that
ρi − ρi+1 < ρiε. Furthermore, the image of ai is disjoint from the remaining
a j ’s and is contained in the shell {z ∈ R

2n : ρi+1 � ‖z‖ � ρi }. See Fig. 3.
We will now introduce some of the notation which will be used throughout

the proof. Let U0 be a shell which is a slight enlargement of the shell {z ∈
R
2n : ρ � ‖z‖ � 1}. For i > 0, we set Ui := ρiU0. Note that Ui is a shell

which is a slight enlargement of the shell {z ∈ R
2n : ρi+1 � ‖z‖ � ρi } and

furthermore, Ui ∩Uj = ∅ if j /∈ {i − 1, i, i + 1}.
Next, let W0 be a small neighborhood of the image of the curve a0 which

is contained inU0 and has the following properties: the diameter of W0 is less
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x0 = x

x1

y0

y1

y3

y2

x2

x3 α0

α1

α2

α3

a0

a1

a2

Fig. 3 Settings for the beginning of the proof of Theorem 26

than ε,W0 is convex,W0∪ρW0 is also convex, and there exists a small positive
number κ such that φt

H (y0), φt
H (x1) ∈ W0 if and only if t ∈ (−2κ, 2κ). Lastly,

we require that W0 ∩ ρφ1
H (W0) = ∅. Observe that, for this last requirement

it is sufficient to take A < π . For i > 0, we define Wi := ρiφi
H (W0), or

equivalently, Wi = ρφ1
H (Wi−1). What is important to observe about the sets

Wi is that they have the following properties: Wi is a small neighborhood of
the image of ai which is contained in Ui and the diameter of Wi is less than
ρiε. The setsWi are convex and so are φ1

H (Wi )∪Wi+1. TheWi ’s are pairwise
disjoint and furthermore Wj ∩ φ1

H (Wi ) �= ∅ only if j = i + 1. Also, note that
for t ∈ [−1, 1] we have φt

H (yi ), φt
H (xi+1) ∈ Wi if and only if t ∈ (−2κ, 2κ).

Finally, we remark that among the sets Wj the only one which intersects the
image of φ1

H ◦ αi is Wi . Our set up is summarized in Fig. 3.
Next, we find Hamiltonians, say Gi , such that Gi is supported in Wi , and

φ1
Gi

(
φt
H (yi )

) = φt
H (xi+1), ∀ t ∈ [−κ, κ]. (3)

Let G := ∑∞
i=0 Gi ; we remark that by Lemma 10, we can pick Gi such

that ‖Gi‖∞ is arbitrarily small. Note that theGi ’s are supported inWi ’s which
are pairwise disjoint. Therefore, G is well-defined and in fact ‖G‖∞ can be
made arbitrarily small. Furthermore, G generates a hameotopy whose flow is
the (infinite) composition �∞

i=1φ
t
Gi
: to see this observe that the flows φt

Gi
are

supported in Wi ’s which are disjoint and whose diameters are smaller than
ρiε. We point out that φ1

G coincides with a Hamiltonian diffeomorphism of B
in the complement of any neighborhood of 0.
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α′

ψ1(α′)

Wi+1

Wi

Ui

xi+1

yi

yi+1

xi+2

Fig. 4 The curve α′ in blue and its image by ψ1 in green

Let ψ1 denote the Hamiltonian homeomorphism φ1
G ◦ φ1

H .
Step 2: A first approximation to the invariant curve α. Consider the smooth
curve α′(t) : [−1, ∞) → B given by the following formula:

α′(t) :=
{

φt
H (x) t ∈ [−1, 0],

φ1
Gi

◦ αi (t) t ∈ [i, i + 1], ∀i � 0.

To see that the above formula defines a smooth curve one can check, using
Eqs. (2) and (3), α′(t) = φt−i

H (xi ) for t ∈ [i−κ, i+κ] for each i � 1. One can
ensure that α′ is injective, by perturbing the HamiltoniansGi , if necessary, and
by picking the constant A, from the statement of the theorem, to be sufficiently
small5; we leave it to the reader to check the details of this. The curve α′ and
its image under ψ1 are drawn in Fig. 4.

It is evident that ψ1(α
′(t)) �= α′(t + 1) for t > 0. In Steps 3 and 4, we

will be modifying α′ and ψ1 to establish the invariance stated in the second
property from the statement of the theorem. The next few claims record some
properties of these two curves which will be used later in Steps 3 and 4. ��
Claim 27 For A sufficiently small, ψ1(α

′(t)) = α′(t + 1) for t ∈ [−1, 0].
Proof If t ∈ [−1, 0], then one can easily conclude from the definition of α′
that we have ψ1(α

′(t)) = φ1
G0

φ1
Hφt

H (x) = φ1
G0

φt+1
H (x) = α′(t + 1). ��

Claim 28 For each i � 0, the two curves ψ1(α
′|[i,i+1]) and α′|[i+1,i+2]

coincide near their endpoints. More precisely, ψ1(α
′(t)) = α′(t + 1) for

t ∈ [i, i + κ] ∪ [i + 1 − κ, i + 1].
5 A � π

2 is sufficiently small for our purposes.
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Proof We will check that if t ∈ [i − κ, i + κ], then ψ1 ◦ α′(t) = α′(t + 1).
To see this write t = i + s, where s ∈ [−κ, κ], and note that ψ1 ◦ α′(t) =
φ1
Gφ1

Hφs
H (xi ) = φ1

Gφs
H (yi ) = φ1

Gi
φs
H (yi ) = φs

H (xi+1) = α′(t + 1). The last

equality follows from the fact that for i � 1, we have α′(t) = φt−i
H (xi ) when

t ∈ [i − κ, i + κ]. ��
For each i � 0, let Vi be the shell Ui ∪ Ui+1. Note that Vi ∩ Vj = ∅ if

j /∈ {i − 2, i − 1, i, i + 1, i + 2}.
Claim 29 For each i � 0, there exists a homotopy, which is constant near
endpoints, from ψ1 ◦ α′|[i,i+1] to α′|[i+1,i+2] which is supported in Vi and
furthermore, under this homotopy the trajectory of any point of ψ1 ◦ α′|[i,i+1]
has diameter less than 2ρiε.

Proof We point out that, as a consequence of Claim 28, the above two curves
coincide near their endpoints. The idea of the proof of this claim is very simple:
the straight-line homotopy F(s, t) = (1 − s)ψ1 ◦ α′|[i,i+1] + sα′|[i+1,i+2]
satisfies all the required properties. The fact that Wi ∪ ρWi is convex, and of
diameter less that 2ρiε, is used here to ensure that the trajectories of the points
ψ1 ◦α′|[i,i+1](t) for t near i, i +1 are of diameter less than 2ρiε. Checking the
proof of this claim in detail, although quite straight forward, is rather tedious.
Hence, we will omit the proof. ��
Step 3: Constructing the curve α Let λ be the 1-form

∑n
i=1 xidyi . We define

the action of any curve a : [0, 1] → R
2n to be the integral

∫ 1
0 a∗λ. We will

now finish the construction of the curve α.
We begin by defining α|[−1,1] = α′|[−1,1] and proceed to inductively con-

struct the curveα such that it satisfies the followingproperties: for each i � −1,
the two curves ψ1 ◦ α|[i,i+1] and α|[i+1,i+2] have the same action, and α coin-
cides with α′ for all values of t except near t = i + 1

2 , where i � 1. Suppose
that, for some k � 1, we have constructed such α : [−1, k] → R

2n . Next, we
make a C0 small perturbation of the curve α′|[k,k+1], in an arbitrarily small
neighborhood of the point α′(k + 1

2 ) to obtain a new curve, which we will
call α|[k,k+1], such that ψ1 ◦ α|[k−1,k] and α|[k,k+1] have the same action. It
is evident from the construction that α coincides with α′ for all t except for
values of t near i + 1

2 , where i � 1. It is also clear that α be can be picked to
be arbitrarily C0 close to α′. We should add that it is a well-known fact that
one can make an arbitrary adjustment to the action of a curve by performing
a C0-small perturbation; see for example Remark A.13 of [3].

We finish this step by pointing out that the curve α satisfies the first of the
four properties listed in the statement of Theorem 26.
Step 4: Turning α into an invariant curve In this final step of the proof, we will
perturbψ1 to a Hamiltonian diffeomorphismψ such thatψ ◦α(t) = α(t +1).
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Claim 30 For each i � 0, there exists a Hamiltonian Ki supported in Vi =
Ui ∪Ui+1 such that

1. φ1
Ki

◦ ψ1 ◦ α(t) = α(t + 1) for each t ∈ [i, i + 1],
2. dC0(I d, φ1

Ki
) < 4ρiε and Ki can be picked such that ‖Ki‖∞ is as small

as one wishes,
3. supp(Ki ) is contained within the 4ε neighborhood of α([i + 1, i + 2]),
4. α([ j, j + 1]) ∩ supp(Ki ) = ∅ if j �= i + 1. Similarly, ψ1 ◦ α([ j, j + 1]) ∩

supp(Ki ) = ∅ for j �= i .

Proof In the previous step we constructed α such that ψ1 ◦ α|[i,i+1] and
α|[i+1,i+2] have the same action. Furthermore, since we obtained α|[i,i+1]
from α′|[i,i+1] by making a C0-small perturbation of α′|[i,i+1] near t = i + 1

2
we conclude, by Claim 29, that there exists a homotopy, which is constant
near endpoints, from ψ1 ◦ α|[i,i+1] to α|[i+1,i+2] which is supported in Vi and
furthermore, under this homotopy the trajectory of any point of ψ1 ◦ α|[i,i+1]
has diameter less than 2ρiε. The first three properties of the claim then follow
immediately from Proposition 9. As for the fourth property, since the dimen-
sion of M is at least four, by making a small perturbation of the homotopy
from ψ1 ◦ α|[i,i+1] to α|[i+1,i+2], we may assume the image of the homotopy
does not intersect α([ j, j +1]), for j �= i +1, or ψ1 ◦α([ j, j +1]), for j �= i .
Fix small κi > 0 such that the homotopy is constant onψ1 ◦α|[i,i+κi ]∪[i+1−κi ].
Let W be a small neighborhood of the image of the restricted homotopy from
ψ1 ◦ α|[i+κi ,i+1−κi ] to α|[i+1+κi ,i+2−κi ] such that α([ j, j + 1]) ∩ W = ∅, if
j �= i +1 and ψ1 ◦α([ j, j +1])∩W = ∅ for j �= i . Now, it is easy to see that
Ki can be picked to have its support contained in W . This implies the fourth
property of the claim. ��

Note that for each i , Vi ∩ Vj �= ∅ only if j ∈ {i − 2, i − 1, i, i + 1, i + 2}.
Hence, we see that the sets V0, V3, V6, . . . are mutually disjoint and therefore
the supports of K0, K3, K6, . . . are mutually disjoint as well. This combined
with the fact that ‖Ki‖∞ can be picked to be as small as we wish, implies that
the sum F0 := K0+K3+K6+· · · defines a continuous function. Furthermore,
as a consequence of the disjointness of the supports of these functions, we see
that F0 is a continuous Hamiltonian whose flow is φt

F0
= φt

K0
◦φt

K3
◦φt

K6
· · · .

Similarly, we define F1 = K1+K4+K7+· · · and F2 = K2+K5+K8+· · · .
These functions generate the hameotopies φt

F1
= φt

K1
◦ φt

K4
◦ φt

K7
· · · and

φt
F2

= φt
K2

◦ φt
K5

◦ φt
K8

· · · , respectively. Observe that, as a consequence of
the second item in Claim 30, F0, F1, F2 can be picked such that their norms
are as small as one wishes.

We define θ := φ1
F2

◦φ1
F1

◦φ1
F0

◦φ1
G andψ := θ ◦φ1

H = φ1
F2

◦φ1
F1

◦φ1
F0

◦ψ1.
Clearly, θ is a Hamiltonian homeomorphism which is compactly supported in
B.
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We will now check that θ and the curve α satisfy the properties listed in
the statement of Theorem 26. We have already checked the fact that the first
property is satisfied.

First, we will show that ψ(α(t)) = α(t + 1), for all t ∈ [−1, ∞). If
t ∈ [−1, 0], then this follows from Claim 27. Indeed, for t ∈ [−1, 1] we have
α(t) = α′(t). Moreover, for t ∈ [−1, 0] we have ψ(α′(t)) = φ1

F2
◦ φ1

F1
◦

φ1
F0

(ψ1(α
′(t))) = φ1

F2
◦ φ1

F1
◦ φ1

F0
(α′(t + 1)) = α′(t + 1). The reason the last

equality holds is that, by the 4th item of Claim 30, α′(t + 1) = α(t + 1) is not
contained in the support of any of F0, F1, F2. Next, consider t ∈ [0, ∞). Fix
i and t ∈ [i, i + 1]. According to Claim 30, α(t + 1), ψ(α(t)) /∈ supp(K j )

for any j other than j = i . Hence, ψ(α(t)) = φ1
F2

◦ φ1
F1

◦ φ1
F0

◦ ψ1(α(t)) =
φ1
Ki

◦ ψ1(α(t)) = α(t + 1).
To establish the remaining properties we will need the following claim. We

define a nested sequence of balls Bi ⊃ Bi+1 as follows: For i � 0 we set
Bi = {0} ∪ (∪k�i Vk). Note that B0 is a slight enlargement of the unit ball and
furthermore B0 contains the supports of all F0, F1, F2, and G.

Claim 31 Suppose that p ∈ B0 − {0}. Let i denote the smallest integer such
that p ∈ Ui . Then, for each j ∈ {0, 1, 2},
• if i > 0, then φ1

Fj
(p) ∈ Bi−1 and ‖φ1

Fj
(p) − p‖ � 4ρi−1ε .

• if i = 0, then φ1
Fj

(p) ∈ B0 and ‖φ1
Fj

(p) − p‖ � 4ε.

• φ1
G(p) ∈ Bi−1 and ‖φ1

G(p) − p‖ � ρi−1ε.

Proof We begin with the statement about φ1
Fj

(p). We will only prove this
for j = 0, i > 0 and leave the remaining cases to the reader. Recall that
F0 = K0 + K3 + K6 + · · · and that supp(Km) ⊂ Vm = Um ∪ Um+1 for all
m. Hence, the point p can only be in the support of Ki−1, Ki , Ki+1. Now,
only one of these three Hamiltonians enters the definition of F0 and so we
see that φ1

F0
(p) ∈ {φ1

Ki−1
(p), φ1

Ki
(p), φ1

Ki+1
(p)}. The result then follows from

Claim 30. The statement about φ1
G(p) is proven similarly. ��

We will now prove that ψ has no fixed points other than 0. Recall that
ψ = θ ◦φ1

H .Using the above claim, and the fact that θ = φ1
F2

◦φ1
F1

◦φ1
F0

◦φ1
G ,

we see that

1. ‖θ ◦ φ1
H (p) − φ1

H (p)‖ � 13ρi−4ε, when p ∈ Bi and i � 4
2. ‖θ ◦ φ1

H (p) − φ1
H (p)‖ � 13ε, when p ∈ Bi and i � 3.

Suppose that p ∈ Ui where i � 4. We will show that p can not be a fixed
point of θ ◦ φ1

H . First, note that since Ui is a slight enlargement of the shell
{z : ρi+1 � ‖z‖ � ρi }, we can assume that |p| � ρi+2.Recall that, we picked
ε to be very small in comparison to the number C = ‖φ1

H (z) − z‖, where z is
any point such that ‖z‖ = 1. It follows that ‖φ1

H (p)− p‖ � Cρi+2. Hence, we
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see that if Cρi+2 > 13ρi−4ε, then θ ◦ φ1
H (p) �= p. Of course, by picking ε to

be sufficiently small we can make sure that the inequality Cρi+2 > 13ρi−4ε

holds. (Recall that we picked ρ such that 1 − ρ is small in comparison to ε.)
We leave the case where p ∈ Ui and i � 3 to the reader.

Next, we will show that the support of θ satisfies the fourth property from
the statement of the theorem. Indeed, examining the proof we can see that
the Hamiltonians Gi , Ki were all picked to be supported within at most a 4ε
neighborhood of α([i + 1, i + 2]). Of these Hamiltonians it is only G0, K0
whose supports intersect the complement of B(0, ‖x‖). This implies that the
support of θ intersects the complement of B(0, ‖x‖) only in a 4ε-neighborhood
of α([1, 2]). Now, we leave it to the reader to check that α([1, 2]) is contained
within an ε-neighborhood of {φt

H (x) : t ∈ [1, 2]}. Replacing ε by ε
5 throughout

the proof yields the result.
We now check the 5th property from the statement of the theorem. Since

θ = φ1
F2

◦ φ1
F1

◦ φ1
F0

◦ φ1
G , it is an immediate consequence of Claim 31 that

dC0(θ, I d) � 13ε. Hence, ifwe replace ε by ε
13 thenweobtaindC0(I d, θ) � ε.

Next, let F denote the generating Hamiltonian of the continuous Hamiltonian
flow φt

F2
◦φt

F1
◦φt

F0
◦φt

G . It follows from the composition formulas mentioned
in Sect. 2.1 that ‖F‖∞ � ‖F0‖∞ + ‖F1‖∞ + ‖F2‖∞ + ‖G‖∞. As we have
already mentioned, F0, F1, F2,G can be picked to have norms as small one
wishes. Hence, the same is true for ‖F‖∞.

Finally, we check the 6th and final property. Recall the nested sequence of
balls Bi ⊃ Bi+1 introduced before Claim 31. Let Bc

i denote the complement of
Bi . Observe that in Bc

i , for any i , each of φ
1
F0

, φ1
F1

, φ1
F2
, and φ1

G coincides with
a Hamiltonian diffeomorphism. Furthermore, using Claim 31, it can easily be
checked that each of these homeomorphisms maps Bc

i into Bc
i+1. Combining

these facts togetherwe see that θ coincideswith aHamiltonian diffeomorphism
in the complement of each Bi . ��

3.3.3 Connecting two non critical points by an invariant curve

The main goal of this section is to prove the following technical result which
is needed for the construction of the invariant curve of Theorem 25.

Theorem 32 Denote by H : M → R a smooth autonomous Hamiltonian on
a closed symplectic manifold (M, ω) of dimension at least 4. Let z, w be two
points in M. Suppose that there exists a smooth embedded curve γ : [0, 1] →
M such that γ (0) = z, γ (1) = w, such that H is not constant on γ , and
the map � : [0, 1] × R → M defined by �(s, t) = φt

H (γ (s)) is a smooth
embedding on ({0} × [−2, 1]) ∪ ((0, 1) × [0, 1]) ∪ ({1} × [−1, 2]).

Then, for any constants ε, ρ > 0 and any neighborhood U of �([0, 1] ×
[0, 1]), there exist
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• a Hamiltonian diffeomorphism ψ : M → M,
• and a smooth embedded curve α : [0, k + 1] → M, where k ∈ N,

such that:

1. ψ(α(s)) = α(s + 1) for any s ∈ [0, k],
2. There exists t0 ∈ (1, 2) such that for all s ∈ [0, t0], α(s) = φs−2

H (z), and
α([t0, k + 1]) ⊂ U ∪ C(γ ((0, 1))),

3. Let V be any neighborhood of the point φ
1
2
H (w). Then, α can be chosen to

satisfy the following property:

α(k + s)

{
= φs

H (w), s ∈ [
0, 1

2 − b
] ∪ [1

2 + b, 1
]

∈ V, s ∈ [1
2 − b, 1

2 + b
]
,

for some small b > 0. Furthermore, ψ ◦ α(k + s) = φs+1
H (w) for s ∈

[0, 1
2 − b] ∪ [12 + b, 1],

4. dC0(ψ, φ1
H ) < ε and the Hamiltonian diffeomorphism θ := ψ ◦ φ−1

H is
generated by a Hamiltonian, say F, such that ‖F‖∞ < ρ. Furthermore,
F is supported inside U ∪ C(γ ((0, 1))),

5. ψ has the same set of fixed points as φ1
H .

Proof of Theorem 32 By replacing U with a smaller open subset we can
assume that there exists a diffeomorphism � : U → (−c, 1 + c) × (−c, 1 +
c) × (−c, c) × · · · × (−c, c) ⊂ R

2n , where c > 0 is sufficiently small. By
slightly decreasing c, if necessary, we may assume that � is a bi-Lipschitz
map, where we consider the metric g on M and the standard euclidean met-
ric on (−c, 1 + c) × (−c, 1 + c) × (−c, c) × · · · × (−c, c). We can further
suppose that this diffeomorphism identifies �(s, t) with (s, t, 0, . . . , 0) for all
s, t ∈ [0, 1]. Note that here we are relying on the fact that � is an embedding
on [0, 1] × [0, 1].
Step 1: Preliminary preparations for the construction of the invariant curve
We begin by picking δ > 0 such that δ < ε

2 and ∀x, y ∈ M

if d(x, y) < δ, then ∀t ∈ [0, 1], d
(
φt
H (x), φt

H (y)
)

<
ε

2
. (4)

Pick m ∈ N large enough such that d(γ ( i
m ), γ ( i+1

m )) < δ
2 . For each 0 � i <

m, we define small neighborhoods Ui of �([ i
m , i+1

m ] × [0, 1]) by

Ui := �−1 (( i
m − a, i+1

m + a
) × (−c, 1 + c) × (−c, c) × · · · × (−c, c)

)
,

where a > 0 is taken to be so small thatUi∩Uj �= ∅ only if j ∈ {i−1, i, i+1}.
Clearly, Ui ⊂ U for all i .
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Fig. 5 Settings from Step 1

Take r > 0 satisfying the following two criteria: r is small in comparison to δ

and the r -neighborhoodofγ ( i
m ) is contained inUi . For each 0 < i < m choose

a ball Bi in the r -neighborhood of γ ( i
m ) such that Bi ⊂ Ui ∩ C(γ ((0, 1))),

such that H(Bi )∩H(Bj ) = ∅ for any 0 < i < j < m, and such that moreover
H(x0), H(xm) /∈ H(Bi ) for each 0 < i < m. It is not hard to show that such a
choice of Bi is always possible; here it is important to remember that, because
� is an embedding, γ does not pass through any of the critical points of H .
Note that we may also assume that Bi+1 ⊂ Ui for 0 � i < m − 1.

We can ensure that for each x ∈ Bi ∪ Bi+1 the image of the curve t �→
φt
H (x), t ∈ [0, 1] is contained in Ui ; this will be used in Step 4.
By the Poincaré recurrence theorem,we can find points xi ∈ Bi , 0 < i < m,

and integers ki � 2 with the property that φ
ki
H (xi ) ∈ Bi . Let yi := φ

ki
H (xi ).

By an arbitrarily C2-small perturbation of H inside the open setU away from
the curves (φt

H (x0))t∈[−2,0] and (φt
H (xm))t∈[0,2], if needed, we may assume

that the curve (φt
H (xi ))t∈[−1,ki+1] is embedded, for each i . If i is 0 or m, we

set x0 = φ−2
H (z), y0 = z, k0 = 2 and xm = w, ym = φ1

H (xm), km = 1. We
remark that for each 0 � i < m, the points xi and xi+1 do not belong to the
same level set of H ; this will be used in the next step of the proof. Figure 5,
below, describes the settings from Step 1.
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A C0 counterexample to the Arnold conjecture 797

Step 2: Turning the sequence x0, . . . , xm into a genuine orbit For each 0 �
i � m − 1 pick smooth embedded curves ai : [0, 1] → M such that

• ai (0) = yi and ai (1) = xi+1,
• the diameter of ai is smaller than δ [note that d(yi , xi+1) < δ],
• the image of ai is disjoint from the image of a j , for j �= i , and it is contained
in the open set Ui ,

• for each i the image of ai does not intersect any of the curves t �→
φt
H (x j ), t ∈ [−1, k j + 1], for any value of j , except at the two points

yi = φ
ki
H (xi ) and xi+1 = φ0

H (xi+1). Moreover, for each i the image of ai
does not intersect the curves (φt

H (x0))t∈[−2,0] and (φt
H (xm))t∈[0,2], except

at the point x0 and xm , respectively.

The above conditions, combined with the fact that the points xi were picked
such that yi and xi+1 are not on the same trajectory of φt

H , guarantee that for
each0 � i � m−1wecanfindW (ai ), a small neighborhoodof the imageofai ,
with the following properties:W (ai ) ⊂ Ui , the diameter ofW (ai ) is less than
δ, these neighborhoods are disjoint, and each of the curves (φt

H (yi ))t∈[−1,1]
and (φt

H (xi+1))t∈[−1,1] takes values in W (ai ) if and only if t ∈ (−2κi , 2κi )
where κi > 0 is small. Now, let κ = min{κ1, . . . , κm−1}. By shrinking the
neighborhoods W (ai ) we may assume the following:
If t ∈ [−1, 1], then for 0 � i � m − 1 we have

φt
H (yi ) ∈ W (ai ) ⇐⇒ φt

H (xi+1) ∈ W (ai ) ⇐⇒ t ∈ (−2κ, 2κ). (5)

If t ∈ [−2, 1], then
φt
H (y0) ∈ W (a0) ⇐⇒ t ∈ (−2κ, 2κ). (6)

If t ∈ [−1, 2], then
φt
H (xm) ∈ W (am) ⇐⇒ t ∈ (−2κ, 2κ). (7)

Next, we find a Hamiltonian, say G1, the time-1 map of whose flow we will
denote by τ , such that G1 is supported in the union of W (ai )’s, and

τ
(
φt
H (yi )

) = φt
H (xi+1), ∀ t ∈ [−κ, κ]. (8)

Letψ1 := τφ1
H ; observe thatψ

ki
1 (xi ) = xi+1 for each 0 � i � m−1. Also,

note that dC0(τ, I d) < δ and thus dC0(ψ1, φ
1
H ) < δ < ε. Lastly, we remark

that G1 can be picked such that ‖G1‖∞ is as small as desired.

Step 3: A first approximation to the invariant curve α Let k = k0 + k1 +
· · · + km−1 and consider the smooth curve α1 : [0, k + 1] → M given by the
following formula: For 0 � i � m, let Ki = ∑i

j=0 k j and define
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α1(t) :=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

φt
H (x0) t ∈ [0, 1]

τ ◦ φt
H (x0) t ∈ [1, K0]

φ
t−Ki
H (xi+1) t ∈ [

Ki , Ki+1 − 1
]
, 0 � i � m − 2

τ ◦ φ
t−Ki
H (xi+1) t ∈ [

Ki+1 − 1, Ki+1
]
, 0 � i � m − 2

φt−k
H (xm) t ∈ [k, k + 1]

The fact that the above formula yields a smooth curve is an immediate
consequence of Eq. (8). Since the xi ’s belong to different level sets of H , by
slightly perturbing Hamiltonian diffeomorphism τ if needed we can guarantee
that this curve is embedded. ��
Remark 33 In this remark, we will prove that the curve α1 satisfies the second
property from the statement of the theorem.

We take t0 = K0 −2κ = 2−2κ . Then, it follows from the definitions of α1
and τ , and the fact that x0 = φ−2

H (z), that α1(t) = φt−2
H (z) for t ∈ [0, t0]. We

remark that α1([t0, k + 1]) ⊂ U ∪ C(γ ((0, 1))). This can easily be checked
from the definition of α1 and noting the following facts: τ is supported in U ,
and {xi : 1 � i � m} ⊂ U ∩ C(γ ((0, 1)). In Step 4 we will have to modify
α1 to obtain α. However, we will never change α1 on [0, t0] and all of the
modifications will take place inside U . Hence, the second property from the
statement of the theorem will continue to hold for α as well.

Remark 34 Note that α1(k+s) = φs
H (w), for s ∈ [0, 1], andψ1 ◦α1(k+s) =

φs+1
H (w) for s ∈ [0, 1]. So at this stage the third property is also satisfied for any

choice of V and any sufficiently small value of b. Throughout the remainder
of the proof we will have to modify the curve α1. However, the modifications
on [k, k + 1] will be such that the the formula given in the third property will
remain true. Furthermore, we will also modify ψ1 to a different map ψ . Now,
ψ will be constructed such that the support of θ := ψ ◦ φ−1

H will not intersect
the curve φ1

H ◦ α([k, k + 1]). It will then follow that ψ ◦ α(k + s) = φs+1
H (w)

for s ∈ [0, 1
2 − b] ∪ [12 + b, 1]. This establishes the third property from the

statement of the theorem.

Remark 35 For 0 � l � k, we let α1|[l,l+1] : [0, 1] → M denote the curve
α1|[l,l+1](t) := α1(l + t), ∀t ∈ [0, 1]. Note that ψ1 ◦ α1|[l−1,l] = α1|[l,l+1]
for l /∈ {Ki : 0 � i � m − 1}. For the remaining values of l the two curves
ψ1 ◦ α1|[l−1,l] and α1|[l,l+1] only coincide near their endpoints. Indeed, it can
easily be checked, using Eqs. (5) and (8), that both of the above curves coincide
with the curve t �→ φt

H (xi+1) on [0, κ] ∪ [1 − κ, 1].
Remark 36 Let l = Ki , 0 � i � m − 1. The two curves ψ1 ◦ α1|[l−1,l] and
α1|[l,l+1] are both contained in Ui . This follows from the construction of τ
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and the fact that the curves t �→ φt
H (xi ) and t �→ φt

H (yi ), t ∈ [0, 1], are both
contained in Ui . We leave the details of this to the reader.

We will next check that for each l ∈ {Ki : 0 � i � m − 1} the C0 distance
between the two curves ψ1 ◦ α1|[l−1,l] and α1|[l,l+1] is small. More precisely,
we will prove:

Claim 37 d(ψ1 ◦ α1(l − 1 + t), α1(l + t)) < ε, for each t ∈ [0, 1], and for
each l ∈ {Ki : 0 � i � m − 1}.
Proof of Claim Using the definition ofα1, it can easily be checked thatα1(Ki+
t) = φt

H (xi+1) and α1(Ki − 1+ t) = τφ
ki−1+t
H (xi ) = τφ−1+t

H (yi ). It follows
that ψ1 ◦ α1(Ki − 1 + t) = τφ1

Hτφ−1+t
H (yi ).

Now, recall that the curves t �→ φt
H (yi ) and t �→ φt

H (xi ) intersect the
support of τ only for t ∈ (−2κ, 2κ). Using this fact it can be checked that

τφ1
Hτφ−1+t

H (yi ) =

⎧
⎪⎨

⎪⎩

τφt
H (yi ), t ∈ [0, 2κ],

φt
H (yi ), t ∈ [2κ, 1 − 2κ],

τφ1
H

(
τφ−1+t

H (yi )
)

, t ∈ [1 − 2κ, 1].

If t ∈ [0, 2κ] then τφt
H (yi ), φt

H (xi+1) ∈ W (ai ) and the set W (ai ) has
diameter less than δ, thus d(τφt

H (yi ), φt
H (xi+1)) < δ < ε.

If t ∈ [2κ, 1−2κ], then wemust prove that d(φt
H (yi ), φt

H (xi+1)) < ε. This
follows immediately from Eq. (4) and the fact that d(yi , xi+1) < δ.

Finally, we consider the case t ∈ [1 − 2κ, 1]: Write φt
H (xi ) =

φ1
H (φ−1+t

H (xi )). Note that in this case τφ−1+t
H (yi ) and φ−1+t

H (xi+1) are both
contained in the setW (ai ) which has diameter less than δ. We see, via Eq. (4),
that

d
(
τφ1

H

(
τφ−1+t

H (yi )
)

, φt
H (xi+1)

)
� dC0(τ, I d)

+ d
(
φ1
H

(
τφ−1+t

H (yi )
)

, φ1
H

(
φ−1+t
H (xi+1)

))
< δ + ε

2
< ε,

which proves our claim. ��
Step 4: Constructing the curve α Let V denote a contractible open subset of
M . Since V is contractible there exists a 1-form λ such that ω = dλ inside V .
Using the 1-form λ we can define the action of any curve a : [0, 1] → V to be
the integral

∫ 1
0 a∗λ. Of course, the action of a curve depends on λ, however

the difference of action between two curves with the same endpoints does not
depend on the choice of λ or V .

For any 0 � l � k, the two curves α1|[l,l+1] and ψ1 ◦ α1|[l−1,l] coincide
near their endpoints. Furthermore, one can find a contractible neighborhood of
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γ

Ui

xi

xi+1

yi

yi+1

φ1
H(xi)

φ1
H(xi+1)

φki−1
H (xi)

α1

ψ1(α1)

Fig. 6 A portion of the curve α1 in blue, its image by ψ1 in green, and the curve α obtained
from α1 by local perturbations which are represented in red

α1|[l,l+1] which containsψ1 ◦α1|[l−1,l]: Indeed, as mentioned in Remark 35, if
l /∈ {Ki : 0 � i � m−1}, thenψ1 ◦α1|[l−1,l] = α1|[l,l+1]. Hence, we can take
any sufficiently small neighborhood of α1|[l,l+1]. If l = Ki , 0 � i � m − 1,
then by Remark 36 both curves are contained in Ui which is contractible.

If l = 1 the two curves α1|[l,l+1] and ψ1 ◦ α1|[l−1,l] coincide. Beginning
with l = 2, for each 2 � l � k we successively make C0-small perturbations
of α1|[l,l+1] near t = l + 1

2 to obtain an embedded curve α with the property
that the two curves α|[l,l+1] and ψ1 ◦ α|[l−1,l] have the same action and are
still contained in the same contractible open set mentioned in the previous
paragraph. Here, we are again using the fact that one can make an arbitrary
adjustment to the action of a curve by performing aC0-small perturbation; see
Remark A.13 of [3]. See Fig. 6.

Wewill ensure that the perturbations made in the previous paragraph satisfy
the following properties. In the case where l ∈ {Ki : 0 � i � m − 1}, we
require the C0 distance between α|[l,l+1] and ψ1 ◦ α|[l−1,l] to be less than
ε. The fact that this can be achieved follows from Claim 37 and by taking
the perturbations from the previous paragraph to be sufficiently small. Next
consider the case where l /∈ {Ki : 0 � i � m − 1}. In the previous paragraph,
we obtained α from α1 by making a C0 small perturbation of α1 in the interior
of a small closed interval which contains the point t = l + 1

2 ; let Il ⊂ [l, l +1]
denote this interval. Since the intervals Il canbe taken to be arbitrarily small and
the action-adjusting perturbations from the previous step can be taken to have
arbitrarily small support, we can pick contractible neighborhoods Vl of α|Il
such that these neighborhoods are pairwise disjoint and the image ofψ1◦α|Il−1

is contained in Vl for each l. Furthermore, we require that φ1
H (Vl) ∩ Vl = ∅

and that α(t) ∈ Vl only if t ∈ (l, l + 1). For l = Ki we of course can assume
that ψ1 ◦ α|[l−1,l] and α|[l,l+1] are contained in Ui . We remark that by taking
Vk and Ik to be sufficiently small we can ensure that the formula for α from
the third property of the statement of the theorem continues to hold.
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A C0 counterexample to the Arnold conjecture 801

Lastly, we point out that since α1([2, k+1]) is contained inU∪C(γ ((0, 1)))
(see Remark 33), by picking the sets Vl to be small enough, we may assume
that each Vl is contained in U ∪ C(γ ((0, 1))).

Step 5: Turning α into an invariant curve In this final step of the proof, we
will perturb ψ1 to a Hamiltonian diffeomorphism ψ such that ψ ◦ α|[l−1,l] =
α|[l,l+1]. Recall that in Step 4 we arranged that the two curves ψ1 ◦ α|[l−1,l]
and α|[l,l+1] have the same action.

First assume that l /∈ {Ki : 0 � i � m−1}. Then, we can find aHamiltonian
diffeomorphism ηl , generated by a Hamiltonian which is compactly supported
in Vl , such that ηl ◦ ψ1 ◦ α|Il−1 = α|Il . Now, let η be the composition of the
ηl’s for l /∈ {Ki : 0 � i � m − 1} and write ψ2 = η ◦ ψ1 and observe that

ψ2 ◦ α|[l−1,l] = α|[l,l+1]. (9)

Since the supports of ηl’s are disjoint and can be taken to be as small as one
wishes, we obtain the following inequalities

dC0
(
ψ2, φ

1
H

) = dC0
(
η ◦ ψ1, φ

1
H

)
� dC0(η, I d) + dC0

(
ψ1, φ

1
H

)
< δ < ε.

We remark that we can assume that η is the time-1 map of a Hamiltonian,
say G2, whose norm ‖G2‖∞ can be made as small as one wishes. Existence
of such Hamiltonian G2 follows from Lemma 10.

We will now deal with the case l ∈ {Ki : 0 � i � m − 1}. Fix i and to
simplify our notation denote γ0(t) := ψ2◦α|[Ki−1,Ki ](t) = ψ2◦α(Ki −1+ t)
and γ1(t) := α|[Ki ,Ki+1](t) = α(Ki + t). The curves γ0, γ1 coincide for
t ∈ [0, κ] ∪ [1 − κ, 1]: by Remark 35 this was true for α1, and α differs from
α1 only for t near Ki + 1

2 . Recall from Step 4 that the C0 distance between γ0
and γ1 is less than ε and that both of these curves are contained in Ui .

Claim 38 There exists a homotopy Fi (s, t) : [0, 1]×[κ, 1−κ] → Ui rel. end
points from γ0|[κ,1−κ] to γ1|[κ,1−κ] such that under this homotopy the trajectory
of any point of γ0|[κ,1−κ] has diameter less than Cε for some constant C > 0
that only depends on U, the diffeomorphism � introduced before Step 1 and
the Riemannian metric.

Proof The existence of the homotopy Fi follows from the fact that the dif-
feomorphism � picked at the beginning of the proof identifies Ui with the
box ( i

m − a, i+1
m + a) × (−c, 1 + c) × (−c, c) × · · · × (−c, c). We can

take Fi to be the straight-line homotopy in these coordinates. The statement
about diameter of trajectories of points on γ0|[κ,1−κ] follows from the fact
that the C0 distance between γ0 and γ1 is less than ε. The constant C is
given by the ratio of the pull back, via �, of the Riemannian metric d to
(−c, 1+ c) × (−c, 1+ c) × (−c, c) × · · · × (−c, c) and the usual Euclidean
metric. ��
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The dimension of M is at least 4 and thus we can perturb the homotopy Fi ,
provided to us by the above claim, to ensure that its image intersects the image
ofα only for t ∈ (Ki , Ki +1) and the image ofψ2◦α only for t ∈ (Ki −1, Ki ).
Let Wi ⊂ Ui be a small neighborhood of the image of the homotopy Fi
which intersects the images of α and ψ2 ◦ α only for t ∈ (Ki , Ki + 1) and
t ∈ (Ki − 1, Ki ), respectively. Lastly, recall that we picked the setsUi in Step
1 such thatUi can only intersectUi−1 andUi+1. Hence,Wi can only intersect
Wi−1 and Wi+1.

Now, we apply the h-principle of Proposition 9 to obtain a Hamiltonian, say
G ′

i , generating a Hamiltonian isotopy ϕt
i , t ∈ [0, 1], such that

1. G ′
i is supported in Wi and ‖G ′

i‖∞ is as small as one wishes,
2. ϕ1

i (ψ2 ◦ α|[Ki−1,Ki ]) = α|[Ki ,Ki+1],
3. dC0(I d, ϕ1

i ) < 2Cε.

Let φodd denote the composition of the diffeomorphisms ϕ1
i for odd i . Note

that φodd is the time-1 map of the Hamiltonian Godd which is the sum of all
G ′

i for odd i . Define φeven and Geven similarly. Let ψ := φevenφoddψ2.
We remark that Wm−1 is disjoint from φ1

H ◦ α([k, k + 1]). As pointed out
in Remark 34, this ensures that the third property from the statement of the
theorem holds.

We will now check that it is indeed true that ψ ◦ α(t) = α(t + 1) for
t ∈ [0, k]. If l /∈ {Ki : 0 � i � m − 1}, then ψ ◦α|[l−1,l] = ψ2 ◦α|[l−1,l]: this
is because we picked the sets Wi , whose union contains the supports of φeven
and φodd, such that they do not intersect the image of ψ2 ◦ α|[l−1,l]. We have
already checked, in Eq. (9), thatψ2◦α(t) = α(t+1) for t ∈ [l−1, l].Wemust
next check that ψ ◦ α|[l−1,l] = α|[l,l+1] for l ∈ {Ki : 0 � i � m − 1}. Fix i
and let l = Ki . Then, φevenφoddψ2 ◦α|[Ki−1,Ki ] = ϕ1

i ψ2 ◦α|[Ki−1,Ki ] because
we picked the sets Wi such that the image of ψ2 ◦ α|[Ki−1,Ki ] only intersects
Wi . Now, ϕ1

i was picked such that ϕ1
i (ψ2 ◦ α|[Ki−1,Ki ]) = α|[Ki ,Ki+1].

The rest of the proof is dedicated to verifying the fourth and the fifth proper-
ties from the statement of the theorem. We will first check that dC0(ψ, φ1

H ) <

(4C + 1)ε. First, note that dC0(φodd, I d) < 2Cε because φodd is the compo-
sition of the diffeomorphisms ϕ1

i , for odd i , which have disjoint supports and
each of which satisfies dC0(ϕ1

i , I d) < 2Cε. Similarly, dC0(φeven, I d) < 2Cε.
It follows that dC0(ψ, φ1

H ) = dC0(φevenφoddψ2, φ
1
H ) � dC0(φevenφodd, I d) +

dC0(ψ2, φ
1
H ) < 4Cε + ε; recall that we proved earlier that dC0(ψ2, φ

1
H ) < ε.

By going back to Step 1 and replacing ε with ε
4C+1 we obtain dC0(ψ, φ1

H ) < ε.
It is fairly easy to see that we obtained ψ from φ1

H by composing it, on
the left, with the Hamiltonian diffeomorphism θ := φeven ◦ φodd ◦ η ◦ τ ;
we denote by F the generating Hamiltonian of θ . Now, the supports of the
diffeomorphisms τ, η, φodd , φeven are all contained in the union of U and the
open sets Vl, l /∈ {Ki : 0 � i � m − 1}. Recall that, as was mentioned at the
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end of Step 4, each of the sets Vl is contained inU ∪C(γ ((0, 1))). This proves
the claim about the support of F .

As was remarked throughout the proof, the generating Hamiltonians of
τ, η, φodd , φeven , which we denoted by G1,G2,Godd,Geven, respectively,
were picked to have norms as small as one wishes. This proves the claim
about ‖F‖∞; we have established the fourth property in the statement of the
theorem.

To finish the proof of the theorem, it remains to show that ψ has the same
set of fixed points as φ1

H . Now, ψ = θ ◦ φ1
H and θ is supported in the union of

U and the open sets Vl . Since U and the Vl’s do not contain any of the fixed
points of φ1

H we conclude that the fixed points of φ1
H are all fixed points of ψ

as well. Now, to show that ψ has no additional fixed points we will check that
any point x in the support of θ cannot be a fixed point of ψ . First, suppose that
x ∈ U . SinceU is a small neighborhood of the compact set �([0, 1]× [0, 1]),
which contains no fixed points of φ1

H , there exists a positive number, say �,
such that d(x, φ1

H (x)) > � for all x ∈ U . Since dC0(I d, θ) < ε, picking ε

to be smaller than � guarantees that θφ1
H (x) �= x . Next, suppose that x /∈ U .

Hence, it must be the case that x is contained in one of the Vl’s. We leave it to
the reader to check, using the condition φ1

H (Vl) ∩ Vl = ∅, that x can not be a
fixed point of ψ . This completes the proof of Theorem 32. ��
3.3.4 Proof of Theorem 25

In this section, we prove Theorem 25 with the help of Theorems 26 and 32.
Let H be a Morse function as described in Lemma 22, and let ε > 0. Let

p, q be critical points of H , at least one of the two being non-extremal and let
γ : [0, 1] → M be a curve as in the statement of Theorem 25. We will give
the proof under the assumption that q is not a minimum. The proof in the case
where q is a minimum (hence p is not a maximum), can be easily adapted
from this case.

Let ε, ρ > 0, let Vp be either the empty set if p is a maximum or an open
set containing {φt

H (γ (0)) : −∞ < t � 1} is p is not a maximum, and let Vq
be an open set containing {φt

H (γ (1)) : −1 � t < +∞}.
Our construction will be carried out in three steps: first in the neighbor-

hood of p, then from the neighborhood of p to that of q, and finally in the
neighborhood of q. Figure 7 below might help to grasp the construction.

Step 1: Construction in the neighborhood of pWe need to consider two cases.
The simpler case is where p is not a maximum. In this case, we set z = γ (0)

and α1(t) = φt−2
H (z) for all t ∈ (−∞, 1]. At this point there is no need for a

perturbation of φ1
H , thus we set θ1 = Id. It is clear that, α1 and θ1 satisfy the

requirements of Theorem 25 for α and θ .
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w = yp,q

Γ

α1

α2

α3
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w = yp,q
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α2
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γ̃
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Fig. 7 The case “p not a maximum” is on the left, and the case “p a maximum” is on the right.
The curves α1, α2 and α3 are respectively in green, blue and red. The supports of the successive
perturbations on φ1

H are included in the grey regions

Now consider the case when p is a maximum. In this case, γ (0) = p and
it is our assumption that in some Darboux coordinates around p, H is of the
form c

∑n
i=1(x

2
i + y2i ) where c is a small negative constant. We denote by

‖ · ‖ the standard euclidean norm in these coordinates, and by B(0, r) the
euclidean ball centered at 0 and of radius r . Let z be a point on the image of γ ,
distinct from p, but close enough to p so that we may apply Theorem 26 to the
Hamiltonian H ′ = −H and to the point x = φ−2

H (z) = φ2
H ′(z). Given a ball

B centered at p and containing x , and given ε > 0, Theorem 26 provides us
with a curve α′ : [−1, +∞) → B\{p} and a Hamiltonian homeomorphism
θ ′ satisfying :
• α′(t) = φt

H ′(x) for t ∈ [−1, 0] and α′(t) → p as t → +∞,
• θ ′ ◦ φ1

H ′(α′(t)) = α′(t + 1) for all t ∈ [−1, ∞),
• θ ′(p) = p and θ ′ ◦ φ1

H ′ has the same fixed points as φ1
H ′ ,

• The support of θ ′ is contained in the union of the open ball B(0, ‖x‖) and
the ε-neighborhood of {φt

H ′(x) : t ∈ [1, 2]},
• dC0(I d, θ ′) < ε′ and ‖F ′‖∞ � ρ, where F ′ denotes a continuous Hamil-
tonian such that φ1

F ′ = θ ′,
• For any neighborhood of p, there exists a compactly supportedHamiltonian
diffeomorphism of B which coincides with θ ′ in the complement of that
neighborhood.

Now define α1(t) = θ ′−1(α′(−t)) for all t ∈ (−∞, 1] and θ1 = θ ′−1. We
deduce the following from the above properties:

1. α1(t) = φt−2
H (z) for t ∈ [0, 1] and α1(t) → p as t → −∞,

2. θ1 ◦ φ1
H (α1(t)) = α1(t + 1) for all t ∈ (−∞, 0],

3. θ1 ◦ φ1
H has the same fixed points as φ1

H ,
4. α1 takes values in the closed punctured ball centered at p and having z on

its boundary, which is contained in C(γ ((0, 1))).
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5. The support of θ1 is contained in the union of the open ball B(0, ‖x‖) and
the ε-neighborhood of {φt

H (x) : t ∈ [−2, −1]},
6. dC0(I d, θ1) < ε and ‖F1‖∞ < ρ, where F1 denotes a continuous Hamil-

tonian such that φ1
F1

= θ1,
7. For any neighborhood of p, there exists a compactly supportedHamiltonian

diffeomorphism of B which coincides with θ1 in the complement of that
neighborhood.

We see that α1 and θ1 are compatible with the requirements of Theorem 25.

Step 2: From a neighborhood of p to a neighborhood of q In both cases
above we have set z = γ (a) with 0 � a < 1 (a > 0 if p is a maximum,
a = 0 otherwise), and let us now set w = γ (1) and γ̃ (t) = γ (a + (1 −
a)t) for t ∈ [0, 1]. The curve γ̃ satisfies γ̃ (0) = z and γ̃ (1) = w. It also
satisfies that d

dt H ◦ γ̃ (t) < 0, which implies in particular that if H is C2-small
enough then the map � : (s, t) �→ φt

H (γ̃ (s)) is a smooth embedding of the
set ({0} × [−2, 1]) ∪ ((0, 1) × [0, 1]) ∪ ({1} × [−1, 2]). In the case where p
is a maximum, note that since the flow of H preserves level sets, the compact
set �([0, 1] × [0, 1]) does not intersect the open ball B(0, ‖x‖) = B(0, ‖z‖).
Moreover, if ε and c are small enough, �([0, 1]× [0, 1]) does not intersect the
ε-neighborhood of {φt

H (x) : t ∈ [−2, −1]} either. Hence, �([0, 1] × [0, 1])
does not intersect the support of θ1.

We are now in the situation to apply Theorem 32: LetU ⊃ �([0, 1]×[0, 1])
be an open set chosen so small that:

• If p is not a maximum,

U ∪ C(γ̃ ((0, 1))) = U ∪ C(γ ((0, 1))) ⊂ Vp ∪ C(γ ((0, 1))) ∪ Vq , (10)

• If p is a maximum, U does not intersect the support of θ1 and

U ∪ C(γ̃ ((0, 1))) = U ∪ C(γ ((a, 1))) ⊂ C(γ ((0, 1))) ∪ Vq . (11)

• U does not intersect the piece of orbit {φt
H (w) : t ∈ [1 + 1

3 , +∞)}.
Then, for every ε, ρ > 0, we can find a curve α̃2 : [0, k + 1] → M , with

α2(0) = x = φ−2
H (z) and α2(k) = w, and a Hamiltonian diffeomorphism

ψ which is C0-close to φ1
H and satisfies a certain list of properties. We set

θ2 = ψ ◦ φ−1
H . The properties of α2 and ψ = θ2 ◦ φ1

H listed in Theorem 32
have the following consequences:

1. α2(t) = α1(t) = φt−2
H (z) for all t ∈ [0, 1],

2. θ2 ◦ φ1
H (α2(t)) = α2(t + 1) for all t ∈ [0, k],

3. θ2 ◦ φ1
H has the same set of fixed points as φ1

H ,
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4. There exists t0 ∈ (1, 2) such that α2(t) = φt
H (x) for all t ∈ [0, t0] and

α2([t0, k + 1]) ⊂ U ∪ C(γ̃ ((0, 1))). If p is not a maximum then {φt
H (x) :

t ∈ [0, t0]} ⊂ Vp by definition of Vp; if p is a maximum, then {φt
H (x) :

t ∈ [0, t0]} is contained in the boundary of the ball B(0, ‖x‖), hence in
C(γ ((0, 1))). Using the inclusions (10) and (11), we thus get that α2 takes
values in Vp ∪ C(γ ((0, 1))) ∪ Vq .

5. θ2 is generated by a Hamiltonian F2 which is supported in the open set
U ∪ C(γ̃ ((0, 1))), which does not intersect the support of θ1,

6. dC0(θ2, Id) < ε and ‖F2‖∞ < ρ,
7. θ2 is a smooth Hamiltonian diffeomorphism.

All the points above follow immediately from Theorem 32. Note that it also

follows from Theorem 32 that for any neighborhood V of φ
1
2
H (w), the curve

α2 can be chosen so that for some b > 0, and all t ∈ [k, k + 1],

α2(t)

{
= φt−k

H (w), t ∈ [
k, k + 1

2 − b
] ∪ [

k + 1
2 + b, k + 1

]

∈ V, t ∈ [
k + 1

2 − b, k + 1
2 + b

]
.

(12)

Step 3: Construction in the neighborhood of q By assumption, φt
H (w) =

φt
H (γ (1)) → q when t → +∞. Let α̃3 : [k, +∞) → M be the smooth curve

defined by

α̃3(t) =
{

α2(t), t ∈ [k, k + 1)

φt−k
H (w), t ∈ [k + 1, +∞).

It has the following properties:

• α̃3(t) → q when t → +∞,
• For some small κ > 0, the image of α̃3|[k+1+κ,+∞) does not intersect the
supports of θ1 nor θ2,

• For all t ∈ [k, +∞)\(k + 1
2 − b, k + 1

2 + b),

θ2 ◦ θ1 ◦ φ1
H (α̃3(t)) = φ1

H (α̃3(t)) = α̃3(t + 1),

• According to (12), for t ∈ [k+ 1
2 −b, k+ 1

2 +b], θ2◦θ1◦φ1
H (α̃3(t)) belongs

to φ1
H (V ) which is an arbitrarily small neighborhood of α̃3(k + 1 + 1

2 ).

For every integer l ∈ {k+1, k+2, . . .}, we let Bl be a small ball centered at
α̃3(l + 1

2 ) and included in the open set Vq . We may assume V is small enough
so that V ⊂ U and φ1

H (V ) ⊂ Bk+1. We also assume that the balls Bl are all
disjoint, and that they do not intersect the supports of θ1 nor θ2. Similarly as in
Step 4 of the proof of Theorem 32, we successively make C0-small perturba-
tions of α̃3|[l,l+1] in Bl , for l ∈ {k+1, k+2, . . .}, to obtain an embedded curve
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α3, such that the curves φ1
H (α3|[l−1,l]) and α3|[l,l+1] have the same action for

all l. We can choose those perturbations so that, for each l, these two curves
coincide in the complement of a very small interval Jl centered at l + 1

2 , and
they both send Jl into Bl . Using Lemma 10 (as in Step 5 in the proof of Theo-
rem 32), this property implies that we can find Hamiltonian diffeomorphisms
ηl , generated byHamiltonians which are compactly supported in the Bl’s, such
that ηl(φ

1
H (α3(t))) = α3(t + 1) for all t ∈ [l − 1, l]. Moreover, Lemma 10

tells us that these generating Hamiltonians can be chosen with arbitrary small
‖ · ‖∞ norm.

Let θ3 be the composition of all the ηl’s for l ∈ {k + 1, k + 2, . . .}. By
construction, θ3 is generated by a Hamiltonian F3 whose support does not
intersect the support of θ1 nor that of θ2.

Moreover, the ηl’s can be chosenC0-close to Id by shrinking the balls Bk+1,
Bk+2, . . . . If we shrink each ball Bl so that diamBl < inf z∈Bl d(z, φ1

H (z)),
then θ3 ◦φ1

H has no fixed point in Bl . Indeed, the triangle inequality yields for
all z ∈ Bl :

d
(
θ3 ◦ φ1

H (z), z
)

� d
(
z, φ1

H (z)
) − d

(
θ3 ◦ φ1

H (z), φ1
H (z)

)
> 0.

Therefore, the following list of properties is satisfied:

1. α3(t) → q when t → +∞,
2. θ3 ◦ φ1

H (α3(t)) = α3(t + 1) for all t ∈ [k, +∞),
3. θ3 ◦ φ1

H has the same set of fixed points as φ1
H ,

4. For all t ∈ [k, +∞), α3(t) ∈ Vq ,
5. supp(F3) ⊂ Vq ∪ {q},
6. dC0(Id, θ3) < ε and ‖F3‖∞ < ρ.
7. For any neighborhood of q, θ3 coincides with a Hamiltonian diffeomor-

phism in the complement of that neighborhood.

End of the proof Let θ be the Hamiltonian homeomorphism θ = θ1 ◦ θ2 ◦ θ3
and let α be the smooth curve which coincides with α1 on (−∞, 1], with α2 on
[0, k + 1], and with α3 on [k, +∞). The respective Properties 1–7 established
for each θ1, θ2 and θ3 in the previous steps, together with the fact that their
supports are all disjoint, imply the corresponding Properties 1–7 inTheorem25
whose proof in now achieved. ��
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