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Abstract For almost all Riemannian metrics (in the C∞ Baire sense) on a
closed manifold Mn+1, 3 ≤ (n + 1) ≤ 7, we prove that there is a sequence of
closed, smooth, embedded, connected minimal hypersurfaces that is equidis-
tributed in M . This gives a quantitative version of the main result of Irie et
al. (Ann Math 187(3):963–972, 2018), that established density of minimal
hypersurfaces for generic metrics. As in Irie et al. (2018), the main tool is the
Weyl Law for the Volume Spectrum proven by Liokumovich et al. (Ann Math
187(3):933–961, 2018).

1 Introduction

In 1982, Yau [25] conjectured that every closed Riemannian three-manifold
contains infinitely many smooth, closed, immersed minimal surfaces. In [8],
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422 F. C. Marques

Irie and the first two authors settled Yau’s conjecture in the generic case by
proving a much stronger property holds true:

Theorem (Irie, Marques, and Neves [8]) Let Mn+1 be a closed manifold of
dimension (n+1), with 3 ≤ (n+1) ≤ 7. Then for a C∞-generic Riemannian
metric g on M, the union of all closed, smooth, embedded minimal hypersur-
faces is dense.

In our paper, we use themethods of [8] in a more quantitative way and prove
an even stronger property: there is a sequence of closed, smooth, embedded,
connected minimal hypersurfaces that is equidistributed in M .

Main Theorem Let Mn+1 be a closed manifold of dimension n + 1, with
3 ≤ (n + 1) ≤ 7. Then for a C∞-generic Riemannian metric g on M, there
exists a sequence {� j } j∈N of closed, smooth, embedded, connected minimal
hypersurfaces that is equidistributed in M: for any f ∈ C∞(M) we have

lim
q→∞

1
∑q

j=1 volg(� j )

q∑

j=1

∫

� j

f d� j = 1

volgM

∫

M
f dM. (1)

Even more, for any symmetric (0, 2)-tensor h on M we have:

lim
q→∞

1
∑q

j=1 volg(� j )

q∑

j=1

∫

� j

Tr� j (h) d� j = 1

volgM

∫

M

n TrM h

n + 1
dM.

(2)

Equidistribution theorems have an old history in fields like number theory,
ergodic theory and harmonic analysis. Equidistribution of closed geodesics is
known in some cases, like for compact hyperbolic manifolds (Bowen’ 72 [2]
or Margulis [10], see also [26]). Equidistribution of totally geodesic surfaces
is a well-studied problem for hyperbolic 3-manifolds [3,14,15,17,19]. Our
theorem is the first of its kind for the higher-dimensional setting of minimal
surfaces in general manifolds.

Remark Yau’s Conjecture has been fully resolved by the third author [22]. He
was able to localize the methods initially developed by the first two authors
in [13], and proved that any compact (Mn+1, g), 3 ≤ (n + 1) ≤ 7, contains
infinitely many smooth, embedded, closed minimal hypersurfaces. It would
be interesting to know whether density and equidistribution of minimal hyper-
surfaces hold for all Riemannian metrics.

As in the Irie–Marques–Neves paper [8], the crucial tool in our proof is the
Weyl law for the Volume Spectrum conjectured by Gromov [5] and recently
proven by the first two authors jointly with Liokumovich in [9]:
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Minimal hypersurfaces for generic metrics 423

Weyl law for the volume spectrum (Liokumovich, Marques, and Neves
[9]) There exists a universal constant a(n) > 0 such that for any compact
Riemannian manifold (Mn+1, g) we have:

lim
p→∞ ωp(M, g)p− 1

n+1 = a(n)vol(M, g)
n

n+1 .

The volume spectrum of a compact Riemannian manifold (Mn+1, g) is
a nondecreasing sequence of numbers {ωp(M, g) : p ∈ N} defined vari-
ationally by performing a min-max procedure for the area functional over
multiparameter sweepouts. The first estimates for these numbers were proven
in fundamental papers by Gromov in the late 1980s [4] and by Guth [6] more
recently.

Our proof also uses a transversality argument, based on the Structure The-
orem of White ([23], Theorem 2.1), that allows one to compute the derivative
of the p-width as the derivative of the area of some minimal hypersur-
face. We combine this information with appropriately chosen N -parameter
deformations of the metric, for N large, that generalize the one-parameter
deformations of [7,8]. A key idea in the paper (that can be be deduced
from Lemma (2)) is that metrics which are critical points of the functional

g �→ ωp(M, g)p− 1
n+1 −a(n)vol(M, g)

n
n+1 when restricted to the N -parameter

family of deformations have minimal hypersurfaces that obey some form of
equidistribution. The fact that this functional is only Lipschitz continuous and
thus not differentiable everywhere is a serious technical issue that the authors
had to overcome.

We note that Property (1) is equivalent to saying that

∑q
j=1 μ� j

∑q
j=1 μ� j (M)

→ μ

μ(M)

as measures, whereμ� j = ||� j || is the Radon measureμ� j (U ) = volg(� j ∩
U ), U ⊂ M , and μ = dvg is the Riemannian volume measure of (M, g).
Property (1) follows from Property (2) by choosing h = f · g.

The dimensional restriction in the Main Theorem is due to the fact that in
higher dimensions min–max (even area-minimizing) minimal hypersurfaces
can have singular sets. We use Almgren–Pitts theory [1,16], which together
with Schoen–Simon regularity [18] produces smooth minimal hypersurfaces
when 3 ≤ (n + 1) ≤ 7. We expect that the methods of this paper can be
generalized to handle the higher-dimensional singular case.

The Main Theorem raises many interesting and exciting new questions:
namelywhether equidistribution holds in theGrassmanian bundle, whether the
minimal hypersurfaces realizing the width are the ones that become equidis-
tributed, or whether there are conditions which ensure that the sequence of
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424 F. C. Marques

unit measures μ� j /μ� j (M) converges to the normalized volume measure.
Any progress related with these directions would be highly desirable.

2 Preliminaries

We suppose that M is a closed manifold of dimension 3 ≤ (n + 1) ≤ 7.
For each 2 ≤ q ≤ ∞, we denote by �q the space of all Cq Riemannian
metrics on M , endowed with the Cq topology. Given g ∈ �q , we let V(g)
be the set of stationary integral varifolds in (M, g) whose support is a closed,
C2, embedded, minimal hypersurface. Hence V ∈ V(g) if and only if there
exist a disjoint collection {�1, . . . , �s} of closed, C2, embedded, connected
minimal hypersurfaces in (M, g) and integers {m1, . . . ,ms} ⊂ N such that
V = m1�1 + · · · + ms�s . By elliptic regularity, each �i is in fact of class
Cq . The support of V is denoted by spt(V ) and is equal to ∪s

i=1�i , while ||V ||
denotes the Radon measure induced by V on M .

We denote byZn(M;Z2) the space ofmodulo two n-dimensional flat chains
T in M with T = ∂U for some (n + 1)-dimensional modulo two flat chain
U in M , endowed with the flat topology. This space is weakly homotopically
equivalent to RP

∞ (see Section 4 of [12]). We denote by λ the generator of
H1(Zn(M;Z2),Z2) = Z2. The mass (n-dimensional volume) of T is denoted
by M(T ).

Let X be a finite dimensional simplicial complex. A continuous map � :
X → Zn(M;Z2) is called a p-sweepout if

�∗(λ̄p) �= 0 ∈ H p(X;Z2).

We say X is p-admissible if there exists a p-sweepout � : X → Zn(M;Z2)

that has no concentration of mass, meaning

lim
r→0

sup{M(�(x) ∩ Br (p)) : x ∈ X, p ∈ M} = 0.

The set of all p-sweepouts � that have no concentration of mass is denoted
by Pp. Note that two maps in Pp can have different domains.

In [13], the first two authors defined

Definition The p-width of (M, g) is the number

ωp(M, g) = inf
�∈Pp

sup{M(�(x)) : x ∈ dmn(�)},

where dmn(�) is the domain of �.
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Minimal hypersurfaces for generic metrics 425

The next lemma gives that the normalized p-width p− 1
(n+1) ωp(M, g) is a

Lipschitz function of the metric on sets of uniformly equivalent metrics, with
a Lipschitz constant that does not depend on p.

Lemma 1 Let g̃ be aC2 Riemannianmetric on M, and let C1 < C2 be positive
constants. Then there exists K = K (g̃,C1,C2) > 0 such that

|p− 1
(n+1) ωp(M, g) − p− 1

(n+1) ωp(M, g′)| ≤ K · |g − g′|g̃
for any g, g′ ∈ {h ∈ �2;C1g̃ ≤ h ≤ C2g̃} and any p ∈ N.

Proof It follows from the Gromov–Guth bound ([4,6], see Theorem 5.1 of

[13]) that there exists C = C(g̃) such that ωp(M, g̃) ≤ Cp
1

(n+1) for every
p ∈ N.
Given g, g′ ∈ {h ∈ �2;C1g̃ ≤ h ≤ C2g̃}, one can check (see Lemma 2.1

of [8]) that

ωp(M, g′) − ωp(M, g) ≤
⎛

⎝

(

sup
v �=0

g′(v, v)

g(v, v)

) n
2

− 1

⎞

⎠ ωp(M, g)

≤
⎛

⎝

(

1 + sup
v �=0

|g(v, v) − g′(v, v)|
g(v, v)

) n
2

− 1

⎞

⎠ωp(M, g)

≤
((

1 + C−1
1 |g − g′|g̃

) n
2 − 1

)

ωp(M, g)

≤
((

1 + C−1
1 |g − g′|g̃

) n
2 − 1

)

C
n
2
2 ωp(M, g̃)

≤
((

1 + C−1
1 |g − g′|g̃

) n
2 − 1

)

C
n
2
2 Cp

1
n+1 ,

from which the result follows. 
�
The next lemma concerns the differentiability properties of the p-width

restricted to a generic finite-dimensional family of metrics. Let I N = [0, 1]N .

Lemma 2 Let g : I N → �q be a smooth embedding, N ∈ N. If q ≥ N + 3,
then there exists an arbitrarily small perturbation in the C∞ topology g′ :
I N → �q of g such that there is a subset A ⊂ I N of full N-dimensional
Lebesgue measure with the following property: for any p ∈ N and any point t
ofA, the function s �→ ωp(g′(s)) is differentiable at t and there exists a disjoint
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426 F. C. Marques

collection {�1, . . . , �Q} of closed, Cq, embedded, minimal hypersurfaces of
(M, g′(t)) together with integers {m1, . . . ,mQ} ⊂ N so that

ωp(g
′(t)) =

Q∑

j=1

m jvolg′(t)(� j ),

Q∑

j=1

index(� j ) ≤ p,

and

∂

∂v
(ωp ◦ g′)|s=t = ∂

∂v

⎛

⎝
Q∑

j=1

m jvolg′(s)(� j )

⎞

⎠

|s=t

=
Q∑

j=1

m j

∫

� j

1

2
Tr� j ,g′(t)

(
∂g′

∂v |s=t

)

d� j

for every v ∈ R
N .

Proof Let g : I N → �q be a smooth embedding. Consider a sequence {Si }i
that enumerates all the diffeomorphism types of n-dimensional closed mani-
folds, and letM(Si ) be theBanachmanifold of pairs (γ, [u]) as in the Structure
Theorem of White [23] (Theorem 2.1), where γ is a Cq Riemannian metric
and u : Si → M is aC2,α embedding that is minimal with respect to γ . Define
M := ⋃

i M(Si ) and the projection 
 : M → �q which sends (γ, [u]) to γ .
Theorem 2.1 of [23] (see also [24]) gives thatM is a separable Cq−2 Banach
manifold and that 
 is a Cq−2 Fredholm map with Fredholm index zero. The
pair (γ, [u]) is a critical point of 
 if and only if u admits a nontrivial Jacobi
field with respect to the metric γ.

We can perturb g : I N → �q slightly in the C∞ topology to a C∞
embedding g′ : I N → �q that is transversal to 
 : M → �q by
Smale’s Transversality Theorem (Theorem 3.1 of [21]). Transversality implies
Ĩ N = 
−1(g′(I N )) is an N -dimensional submanifold ofM (Theorem 3.3 of
[21]). Let π = (g′)−1 ◦
| Ĩ N , so π : Ĩ N → I N . LetA′ be the subset of points
t ′ ∈ I N which are regular values of π and such that the Lipschitz function
t �→ ωp(t) := ωp(M, g′(t)) is differentiable at t ′ for all p. This subset is of
full Lebesgue measure in I N by Rademacher’s Theorem and Sard’s Theorem.
Note that if t ′ ∈ A′, then g′(t ′) is a regular value of 
.

Consider

S ′
κ,c(p) :=

{
t ∈ I N ; ∃V ∈ V(g′(t)), ||V ||g′(t)(M) = ωp(t),

index(spt(V )) ≤ p, max
spt(V )

|A| ≤ κ,

and V satisfies (
)c,κ,sups∈I N ωp(s)

}
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Minimal hypersurfaces for generic metrics 427

for any κ > 0 and c > 0, where

(
c,κ,a) : every two-sided, connected component of spt V , has varifold dis-
tance (in the metric g′(0)) at least c of any varifold 2�, where � is a
one-sided, embedded, connected minimal hypersurface in g′(s) with
|A| ≤ κ and volg′(s)(�) ≤ a for some s ∈ I N .

Each S ′
κ,c(p) is a closed set, by convergence properties of minimal hyper-

surfaces. Proposition 2.2 of [8] (which uses the index estimates of [11]) also
holds for Cq metrics if we allow the minimal hypersurfaces to be C2. This
follows, for instance, by approximating the Cq metric by C∞ metrics, apply-
ing Proposition 2.2 of [8] to these metrics and using Sharp’s Compactness
Theorem [20]. It implies

∪κ,c∈Q+ S ′
κ,c(p) = I N

for every p ∈ N.
For κ > 0 and c > 0, define Sκ,c(p) to be the set of points where

the Lebesgue density of S ′
κ,c(p) is one. By the Lebesgue density theorem,

S ′
κ,c(p)\Sκ,c(p) has measure zero. Finally, define the full Lebesgue measure

set

A := A′ ∩
⋂

p

⋃

κ,c

Sκ,c(p).

Fix p ∈ N, and let t ∈ A. There exist κ > 0 and c > 0 such that t ∈ Sκ,c(p).
Since the Lebesgue density of S ′

κ,c(p) at t is one, we have that for any unit
direction v, there is a sequence {tm(v)}m ⊂ S ′

κ,c(p) converging to t with
tm(v)−t
|tm(v)−t | converging to v, so that

lim
m→∞

ωp(tm(v)) − ωp(t)

|tm(v) − t | = ∂

∂v
ωp(t). (3)

Fix v and a corresponding sequence {tm(v)}m . By construction, for each m
there is a Vm ∈ V(g′(tm(v))) with mass ωp(tm(v)), with index(spt(Vm)) ≤ p,
whose support has second fundamental form bounded by κ (which is indepen-
dent of m) and such that every two-sided, connected component of spt Vm has
varifold distance (in the metric g′(0)) at least c (also independent of m) from
any varifold 2�, where � is a one-sided, connected minimal hypersurface in
g′(s) with |A| ≤ κ and volg′(s)(�) ≤ sups∈I N ωp(s) for some s ∈ I N . This
implies no two-sided component of spt Vm can collapse, after maybe passing
to a subsequence, to a one-sided component with multiplicity two. Choos-
ing a subsequence and renumbering if necessary, Vm converges to a varifold
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428 F. C. Marques

V ∈ V(g′(t)) and the supports spt(Vm) converge inC2 to spt(V ). This conver-
gence is with multiplicity one, because if not one could construct by a standard
argument a nontrivial Jacobi field on one of the components of spt(V ). This
is not possible, since g′(t) is a regular value of 
.

Consider a sequence {�m} of connected components of spt(Vm) that con-
verges in C2 to �. By elliptic regularity, the convergence is also in C2,α . The
corresponding points

z̃m = (g′(tm(v)), [�m]) ∈ Ĩ N ⊂ M

converge to a point z ∈ 
−1(g′(t)) ⊂ Ĩ N , z = (g′(t), [�]). Note that since
t ∈ A, π is a local diffeomorphism from a neighborhood of z in Ĩ N to a
neighborhood of t in I N . We write z̃ = (g′(π(z̃)), [�(π(z̃))]) for any z̃ in this
neighborhood of z. For sufficiently large m, [�m] = [�(tm(v))]. But then

lim
m→∞

volg′(tm(v))(�(tm(v))) − volg′(t)(�(t))

|tm(v) − t | = ∂

∂v
volg′(s)(�(s))|s=t

= 1

2

∫

�

Tr�,g′(t)

(
∂g′

∂v
(t)

)

d�.

Taking into account the multiplicity of each connected component of spt(Vm),
the limit in (3) becomes

∂

∂v
ωp(t) =

∫

V

1

2
TrV,g′(t)

(
∂g′

∂v |s=t

)

d||V ||(M),

where V is of the form
∑Q

i=1mi �̃i , with {�̃1, . . . , �̃Q} a disjoint col-
lection of closed, C2,α , embedded, minimal hypersurfaces in (M, g′(t))
and {m1, . . . ,mQ} ⊂ N, ||V ||(M) = ωp(t),

∑Q
i=1 index(�̃i ) ≤ p,

maxspt(V ) |A| ≤ κ and V satisfies (
κ,c,sups∈I N ωp(s)). By elliptic regularity,

each �̃i is of class Cq . Since t is a regular value of π , every embedded mini-
mal hypersurface of (M, g′(t)) is non-degenerate. Because convergence of the
supports can only happen with multiplicity one, there are only finitely many
V ’s as above, say {V (1), . . . , V (P)}. For any unit direction v ∈ R

N , one has

∂

∂v
ωp(t) =

∫

V (l)

1

2
TrV (l),g′(t)

(
∂g′

∂v |s=t

)

d||V (l)||(M)

for some 1 ≤ l ≤ P . This means that there will be a single 1 ≤ l ≤ P such
that the above formula is true for a linearly independent set {v1, . . . , vN }, and
hence for every v by linearity. This finishes the proof. 
�
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The next lemma concerns the gradient of Lipschitz functions that are almost
constant. The convex hull of a set K ⊂ R

N is denoted by Conv(K ).

Lemma 3 Given δ > 0 and N ∈ N, there exists ε > 0 depending on δ and
N such that the following is true: for any Lipschitz function f : I N → R

satisfying

| f (x) − f (y)| ≤ 2ε

for every x, y ∈ I N , and for any subsetAof I N of fullmeasure, there exist N+1
sequences of points {y1,m}m, . . . , {yN+1,m}m contained in A and converging
to a common limit y ∈ (0, 1)N such that:

• f is differentiable at each yi,m,
• the gradients ∇ f (yi,m) converge to N + 1 vectors v1, . . . , vN+1 with

dRN (0,Conv(v1, . . . , vN+1)) < δ,

Proof Suppose, by contradiction, that the lemma is false. Then there exists a
sequence of Lipschitz functions fk : I N → R satisfying

| fk(x) − fk(y)| ≤ 1/k

for every x, y ∈ I N , and a sequence of setsAk ⊂ I N of full measure, such that
these sequences of points do not exist. Since fk is Lipschitz, the setDk ⊂ I N of
points where fk is differentiable has full measure by Rademacher’s Theorem.
Hence the set A′

k = Ak ∩ Dk has full measure also.
Choose a smooth function g : I N → R such that g is equal to 1 on the

boundary of I N and equal to 0 at (1/2, . . . , 1/2) ∈ I N . Then the Lipschitz
function hk = fk − 2

k g achieves its maximum at an interior point yk ∈ (0, 1)N .
Consider the set Vk ⊂ R

N of vectors v such that there exists a sequence
zm ∈ A′

k with zm → yk and∇hk(zm) → v asm → ∞. The set Vk is bounded
and closed. For almost all directions w in the unit sphere SN−1, the set

{t ∈ [0, dRN (yk, ∂ I
N )] : yk + tw ∈ A′

k}

has full measure in [0, dRN (yk, ∂ I N )]. For any such w, because hk has a
maximum point at yk , there exists v ∈ Vk with 〈v, w〉 ≤ 0. This implies
that for any w ∈ R

N , there exists v ∈ Vk with 〈v, w〉 ≤ 0. By the Hahn-
Banach Theorem, 0 ∈ Conv(Vk). Caratheodory’s Theorem gives vectors
{ṽ1, . . . , ṽN+1} ⊂ Vk such that 0 ∈ Conv({ṽ1, . . . , ṽN+1}). Hence there exist
N + 1 sequences of points {y(k)

1,m}m, . . . , {y(k)
N+1,m}m contained inA′

k and con-

verging to yk ∈ (0, 1)N such that:
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430 F. C. Marques

• fk is differentiable at each y(k)
i,m ,

• the gradients ∇ fk(y
(k)
i,m) converge to N + 1 vectors v1, . . . , vN+1 with

dRN (0,Conv(v1, . . . , vN+1)) ≤ 2

k
sup
I N

|∇g|.
If k is sufficiently large, 2

k supI N |∇g| < δ. Contradiction. 
�
The last lemma shows that one can make finitely many closed, embed-

ded, minimal hypersurfaces nondegenerate by an arbitrarily small conformal
change of the metric. This generalizes Proposition 2.3 of [8].

Lemma 4 Suppose g ∈ �q , q ≥ 2. Let {�1, . . . , �L} be a finite collection
of closed, embedded, connected, C2 minimal hypersurfaces in (M, g). Then
there exists a sequence of metrics gi ∈ �q , i ∈ N, converging to g in the Cq

topology such that� j is a nondegenerate minimal hypersurface in (M, gi ) for
all j = 1, . . . , L and i ∈ N.

Proof Each �i is Cq by elliptic regularity. We can suppose � j �= �k when
j �= k. Choose δ > 0 such that Br (q)∩� j is connected for every j = 1, . . . , L ,
0 < r ≤ δ and q ∈ � j . We claim that there exists a point p ∈ �1 \ (�2 ∪
· · · ∪ �L).

Pick x1 ∈ �1 arbitrary. If x1 /∈ �2, set x2 = x1. Suppose x1 ∈ �2.
If Bδ(x1) ∩ �1 ⊂ �2, then �1 = �2 by unique continuation. This is not
possible, hence there exists x2 ∈ Bδ(x1) ∩ �1 but x2 /∈ �2. In any case, we
have found x2 ∈ �1 \ �2. Suppose we have x j ∈ �1 \ (�2 ∪ · · · ∪ � j ),
2 ≤ j ≤ L − 1. If x j /∈ � j+1, set x j+1 = x j . Assume x j ∈ � j+1, and
define δ j = min{δ, 1

2d(x j , �2 ∪ · · · ∪ � j )} > 0. If Bδ j (x j ) ∩ �1 ⊂ � j+1,
then �1 = � j+1 by unique continuation. This is impossible, hence there
exists x j+1 ∈ Bδ j (x j ) ∩ �1 but x j+1 /∈ � j+1. In any case, we have found
x j+1 ∈ �1\(�2∪· · ·∪� j+1). By induction,we find xL ∈ �1\(�2∪· · ·∪�L).

For similar reasons, there exist pl ∈ �l \ (∪k �=l�k) for every l = 1, . . . , L .
Choose η > 0 sufficiently small so that η is smaller than the injectivity radius
of the manifold and such that η < 1

4dg(pl , ∪k �=l�k) for every l. By decreasing
η if necessary, we can choose for each l = 1, . . . , L , a Cq function fl :
Bη(pl) → R such that fl = 0 and 〈∇ fl, Nl〉 > 0 on �l ∩ Bη(pl), where Nl is
a local choice of unit normal to �l . We also choose, for each l = 1, . . . , L , a
smooth nonnegative function ϕl : M → R such that ϕl = 1 on Bη/2(pl) and
ϕl = 0 outside B2η/3(pl).

Let gi = exp(2φi )g, whereφi = −1
i (ϕ1 f 21 +· · ·+ϕL f 2L ). By the arguments

of [8, Proposition 2.3], one can check that at anypoint y on�l ,φi = 0,∇φi = 0
and Hessg φi (N , N ) = −2

i ϕl(y)〈∇ fl, N 〉2(y), where N is a unit normal to
�l at y with respect to the metric g (or gi ). This implies �l remains minimal
with respect to gi for every l, and at points of �l we have:
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Minimal hypersurfaces for generic metrics 431

Ricgi (N , N ) + |A�l ,gi |2gi = Ricg(N , N ) + |A�l ,g|2g + 2n

i
ϕl〈∇ fl, N 〉2,

where |A�l ,g| is the norm of the second fundamental form of �l with respect
to g.

The Jacobi operator of �l acting on normal vector fields is given by

L�l ,g(X) = �⊥
�l ,g X + (Ricg(N , N ) + |A�l ,g|2g)X.

Since gi and g coincide on �, �⊥
�l ,g

= �⊥
�l ,gi

and hence

L�l ,gi (X) = L�l ,g(X) + 2n

i
ϕl〈∇ fl, N 〉2X. (4)

Fix l, and define L̃ t (X) = L�l ,g(X) + tϕl〈∇ fl, N 〉2X on �l , for t ∈ R.
It is known that the eigenvalues of L̃ t depend continuously on the parameter
t . Suppose that �l is a degenerate minimal hypersurface in (M, g), and let Q
be the unique integer such that 0 = λQ(L̃0) < λQ+1(L̃0). If t is sufficiently
small, then λQ+1(L̃ t ) > 0.

Let X be in the zero eigenspace E of L̃0, X �= 0. Then

d

dt |t=0

(

−
∫
�l

〈L̃ t (X), X〉
∫
�l

|X |2
)

= d

dt |t=0

(− ∫
�l

〈L̃0(X), X〉 − t
∫
�l

ϕl〈∇ fl, N 〉2|X |2
∫
�l

|X |2
)

= −
∫
�l

ϕl〈∇ fl, N 〉2|X |2
∫
�l

|X |2

≤ −
∫
Bη/2(pl )∩�l

〈∇ fl, N 〉2|X |2
∫
�l

|X |2 .

By unique continuation of solutions of linear elliptic equations and the finite-
dimensionality of E , we can find a constant c > 0 such that

d

dt |t=0

(

−
∫
�l

〈L̃ t (X), X〉
∫
�l

|X |2
)

≤ −c (5)

for every X ∈ E \ {0}.
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Recall the min-max characterization of the eigenvalue λQ(L̃ t ):

λQ(L̃ t ) = inf
W

max
X∈W\{0}

− ∫
�l

〈L̃ t (X), X〉
∫
�l

|X |2 , (6)

where the infimum is taken over all the Q-dimensional subspaces W of the
space of smooth, normal vector fields on �l . If W̃ is the subspace spanned by
the eigensections of L̃0 corresponding to eigenvalues λ ≤ 0, then dim(W ) =
Q. By combining (5) and (6), we have

λQ(L̃ t ) ≤ max
X∈W̃\{0}

− ∫
�l

〈L̃ t (X), X〉
∫
�l

|X |2 ≤ −c

2
t

for sufficiently small t ≥ 0. Therefore for sufficiently large i we have both
λQ(L�l ,gi ) < 0 and λQ+1(L�l ,gi ) > 0. This implies �l is nondegenerate
with respect to (M, gi ) for sufficiently large i . Since this is true for every
l = 1, . . . , L , the Lemma is proved. 
�

3 Proof of the main theorem

Let g be a smooth Riemannian metric on M , K be an integer and ε1 > 0 be
a positive constant smaller than the injectivity radius of g. Let B̂1, . . . , B̂K be
disjoint domains in M , with piecewise smooth boundary, such that the union
of their closures covers M .

Let Bk be some neighborhood of B̂k . We suppose that each Bk is contained
in a geodesic ball of radius ε1. Choose also a smooth function 0 ≤ φk ≤ 1
that is equal to 1 on B̂k and with spt(φk) ⊂ Bk , and a point qk ∈ B̂k for each
k. We can also suppose that qk /∈ Bl if l �= k. Define the partition of unity
ψk = φk∑

q φq
. Hence ψk(qk) = 1 and ψk(ql) = 0 for l �= k.

For a fixed k, let e be a unit vector in the tangent space of M at qk . It
determines by parallel transport along geodesics starting at qk a unit vector
field in Bk still denoted by e. We define a nonnegative symmetric (0, 2)-tensor
h(e) on Bk as follows: h(e)(v, w) = 〈v, e〉g〈w, e〉g.

Now consider the spaceBk of orthonormal bases at qk ; theseBk are endowed
with a natural metric determined by g and of course are isometric to each
other. For each k, pick L points xk1 , . . . , x

k
L ∈ Bk such that any point in Bk

is at distance less than ε1 to one of the xkl . Each xkl is an orthonormal basis
(xkl,1, . . . , x

k
l,n+1) at qk and so we can consider the family of symmetric (0, 2)-

tensors hkl, j = h(xkl, j ). Note that by construction, in Bk , for any l the sum
∑n+1

j=1 h
k
l, j is the metric g.
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We denote by Cg,K̃ ,ε1
the set of all possible choices

(K , {B̂k}, {Bk}, {φk}, {qk}, {xkl })

as above, with K ≥ K̃ . The set Cg,K̃ ,ε1
is non-empty, as can be seen by taking

a sufficiently fine triangulation of M .
Recall that V(g) denotes the set of stationary integral varifolds in (M, g)

whose support is an embedded minimal hypersurface. We claim that in order
to show the main theorem, it suffices to prove the following property.

(P): for any metric g, for every ε1 > 0, K̃ > 0 and any choice of

S = (K , {B̂k}, {Bk}, {φk}, {qk}, {xkl }) ∈ Cg,K̃ ,ε1
,

there is a metric g̃ arbitrarily close to g in the C∞ topology such that there are
varifolds V1, . . . , VJ of V(g̃) whose support spt(Vj ) are nondegenerate, and
coefficients α1, . . . , αJ ∈ [0, 1] with ∑

i αi = 1 satisfying

∀k, l, j
∣
∣
∣
∑

i

αi
Vi (ψkhkl, j )

||Vi ||(M)
− 1

(n + 1)

1

volg̃(M)

∫

M
ψkdvg̃

∣
∣
∣ < ε1/K , (7)

where the terms of the sum are computed for the metric g̃. Here

V (h) =
∫

Gn(M)

h(ν, ν)dV (p, π),

where Gn(M) denotes the Grassmannian of n-dimensional planes of M and
ν is a unit normal to the n-plane π ⊂ TpM .

Indeed, let us explainwhyProperty (P) implies themain theorem.Wedenote
by M(g, ε1, K̃ , S), with

S = (K , {B̂k}, {Bk}, {φk}, {qk}, {xkl }) ∈ Cg,K̃ ,ε1
,

the family of metrics g̃ ∈ �∞ at distance less than ε1/K to g (computed with
respect to g) in the CK topology such that there are {V1, . . . , VJ } ⊂ V(g̃)
whose supports are nondegenerate, α1, . . . , αJ ∈ [0, 1] with

∑
i αi = 1,

which satisfy (7) for all k, l, j . If g′ ∈ M(g, ε1, K̃ , S), and {�′
1, . . . , �

′
Q} is

any finite collection of nondegenerate minimal hypersurfaces in (M, g′), then
for every metric g̃ that is sufficiently close to g′, there is a unique collection
{�̃1, . . . , �̃Q} of nondegenerate minimal hypersurfaces in (M, g̃) such that
�̃i is close to �′

i , i = 1, . . . , Q. Moreover, �̃i converges smoothly to �′
i as g̃

converges to g′. This implies thatM(g, ε1, K̃ , S) is open in the C∞ topology.
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Define

M(ε1, K̃ ) :=
⋃

g∈�∞

⋃

S∈Cg,K̃ ,ε1

M(g, ε1, K̃ , S).

It is clearly open. Given an arbitrary metric g ∈ �∞, we can choose
S ∈ Cg,K̃ ,ε1

. Property (P) implies that the metric g is a limit of metrics in

M(g, ε1, K̃ , S). This shows thatM(ε1, K̃ ) is also dense.
Define

M :=
⋂

m∈N
M(1/m,m).

Since each M(1/m,m) is open and dense, the intersection M is a residual
subset (in the Baire sense) of the set of metrics. We will show that for any
metric in M, one can find sequences of minimal hypersurfaces like in the
Main Theorem. For any metric, a symmetric (0, 2)-tensor h is diagonalizable
at every point. The idea is to find a fine subdivision of M in domains Bk where
h is approximately diagonal when expressed in the basis xkl(k) for a certain
l(k) ∈ {1, . . . , L}.

Let g̃ ∈ M. Then g̃ ∈ M(1/m,m) for every m ∈ N. Fix m. Then by
construction there exists a metric g such that g̃ ∈ M(g, 1/m,m, S) for some
choice of

S = (K , {B̂k}, {Bk}, {φk}, {qk}, {xkl }) ∈ Cg,m,1/m .

In particular, g belongs to a 1/(mK )-neighborhood of g̃ in the CK topology.
We also have {V1, . . . , VJ } ⊂ V(g̃), α1, . . . , αJ ∈ [0, 1] with ∑

i αi = 1,
which satisfy

∀k, l, j
∣
∣
∣
∑

i

αi
Vi (ψkhkl, j )

||Vi ||(M)
− 1

(n + 1)

1

volg̃(M)

∫

M
ψkdvg̃

∣
∣
∣ < 1/(mK ). (8)

Note that g, S, J, {Vj }, {α j } all depend on m.
Let h be a symmetric (0, 2)-tensor on M . The following computations are

done with respect to the metric g̃, unless otherwise specified. We start by
writing

∫

M
Tr(h) =

∑

k

∫

Bk
ψk Tr(h),

and

∑

i

αi
Vi (h)

||Vi ||(M)
=

∑

k

∑

i

αi
Vi (ψkh)

||Vi ||(M)
.
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At each qk ∈ B̂k , h is diagonalizable for the metric g in a g-orthonormal
basis

uk = (uk1, . . . , u
k
n+1) ∈ Bk

with eigenvalues λ1(k), . . . , λn+1(k) and we note that
∑

j λ j (k) is the trace

of h at qk for the metric g. Let l(k) be such that xkl(k) is at distance less than

1/m from uk in Bk . We get on Bk (which are contained in balls of radius 1/m)
the following estimates with the metric g̃:

∣
∣
∣
∣
∣
∣
h −

n+1∑

j=1

λ j (k)h(ukj )

∣
∣
∣
∣
∣
∣
g̃

<
C

m
, (9)

∣
∣
∣
∑n+1

j=1 λ j (k)h(ukj ) − ∑n+1
j=1 λ j (k)hkl(k), j

∣
∣
∣
g̃

< C
m . (10)

Here C depends only on g̃ and h, and might be different from line to line.
We have, by (8), that

∀k
∣
∣
∣
∑

i

∑

j

αi

Vi (ψkλ j (k)hkl(k), j )

||Vi ||(M)
− 1

(n + 1)

1

vol(M)

∫

M
(
∑

j

λ j (k)ψk)

∣
∣
∣

< C/(mK ).

Hence

∑

k

∣
∣
∣
∑

i

∑

j

αi

Vi (ψkλ j (k)hkl(k), j )

||Vi ||(M)
− 1

(n + 1)

1

vol(M)

∫

M
(
∑

j

λ j (k)ψk)

∣
∣
∣

< C/m,

and since |Trg h − Trg̃ h| < C/m, we obtain readily

∑

k

∣
∣
∣
∑

i

∑

j

αi

Vi (ψkλ j (k)hkl(k), j )

||Vi ||(M)
− 1

(n + 1)

1

vol(M)

∫

M
ψk Tr h

∣
∣
∣ < C/m.

Therefore

∣
∣
∣
∑

k

∑

i

∑

j

αi

Vi (ψkλ j (k)hkl(k), j )

||Vi ||(M)
−

∫
M Tr h

(n + 1)vol(M)

∣
∣
∣ < C/m.
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But we also have by (9) and (10) that

∣
∣
∣
∑

k

∑

i

∑

j

αi

Vi (ψkλ j (k)hkl(k), j )

||Vi ||(M)
−

∑

k

∑

i

∑

j

αi
Vi (ψkλ j (k)h(ukj ))

||Vi ||(M)

∣
∣
∣ < C/m,

and

∣
∣
∣
∑

k

∑

i

∑

j

αi
Vi (ψkλ j (k)h(ukj ))

||Vi ||(M)
−

∑

i

αi
Vi (h)

||Vi ||(M)

∣
∣
∣ < C/m,

so we conclude

∣
∣
∣
∑

i

αi
Vi (h)

||Vi ||(M)
−

∫
M Tr h

(n + 1)vol(M)

∣
∣
∣ < C/m.

In the paragraph that follows, all the integrals, traces and varifold values are
computed with g̃. Each Vi = Vm,i , i = 1, . . . , Jm = J , is of the form

Vi =
Rm,i∑

q=1

�m,i,q ,

with Rm,i ∈ N,�m,i,q a connected, closed, smooth, embedded,minimal hyper-
surface of (M, g̃). Choose integers cm,i , dm ∈ N such that αi = αm,i satisfies

| αm,i

||Vm,i ||(M)
− cm,i

dm
| <

1

mJm ||Vm,i ||(M)
.

In particular, |1 − ∑Jm
i=1

cm,i ||Vm,i ||(M)

dm
| < 1/m and

∣
∣
∣
∑

i

cm,i

dm
Vm,i (h) −

∫
M Tr h

(n + 1)vol(M)

∣
∣
∣ < C/m.

Hence

lim
m→∞

∑Jm
i=1 cm,i Vm,i (h)

∑Jm
i=1 cm,i ||Vm,i ||(M)

=
∫
M Tr h

(n + 1)vol(M)
(11)

for any symmetric (0, 2)-tensor h. If we choose h = f · g̃, with f ∈ C∞(M),
we get

lim
m→∞

∑Jm
i=1

∑Rm,i
q=1 cm,i

∫
�m,i,q

f
∑Jm

i=1

∑Rm,i
q=1 cm,ivol(�m,i,q)

=
∫
M f

vol(M)
. (12)
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Because

Vm,i (h) =
Rm,i∑

q=1

∫

�m,i,q

h(ν, ν) =
Rm,i∑

q=1

∫

�m,i,q

(Tr h − Tr�m,i,q h),

we can combine (11) with (12) to conclude

lim
m→∞

∑Jm
i=1

∑Rm,i
q=1 cm,i

∫
�m,i,q

Tr�m,i,q h
∑Jm

i=1

∑Rm,i
q=1 cm,ivol(�m,i,q)

= n
∫
M Tr h

(n + 1)vol(M)
.

In other words, we just proved that, assuming Property (P), one can find for
a generic metric a sequence of finite lists of closed, embedded, connected
minimal hypersurfaces

{
�N ,1, . . . , �N ,PN

}
N∈N such that the following is true:

ifwe denote
∫
�N ,i

Tr�N ,i (h) d�N ,i (resp. vol(�N ,i )) by XN ,i (resp. X̄ N ,i ), then

∣
∣
∣
∣
∣

∑PN
i=1 XN ,i

∑PN
i=1 X̄ N ,i

− α

∣
∣
∣
∣
∣
≤ εN , (13)

where α = 1
vol(M)

∫
M

n TrM h
n+1 dM and limN→∞ εN = 0. From the numbers

XN ,i , X̄ N ,i , we want to construct two sequences {Y j } j∈N and {Ȳ j } j∈N such
that

• for all j , there exist integers N ( j), i( j) (chosen independently of h) with
Y j = XN ( j),i( j) and Ȳ j = X̄ N ( j),i( j),

• moreover

lim
q→∞

∑q
j=1 Y j

∑q
j=1 Ȳ j

= α.

Note first that all the X̄ N ,i are bounded below by a uniform positive constant
v, according to the monotonicity formula, and that |XN ,i | ≤ C(h)X̄ N ,i where
C(h) is the maximum value that the absolute value of the trace of h can take
over the Grassmannian Gn(M).

Let {QN }N∈N be a sequence of positive integers that will be chosen in
the following order: Q1 is chosen depending on {�1,i } and {�2,i }, Q2 is
chosen depending on Q1, {�1,i }, {�2,i }, {�3,i }, and similarly QN0 is chosen
depending on {Q1, . . . , QN0−1}, {�1,i }, {�2,i }, . . . {�N0+1,i }.

If 1 ≤ j ≤ Q1P1, write j = kP1 + l where k ∈ {0, . . . , Q1 − 1} and
l ∈ {1, . . . , P1}. Then define Y j = X1,l and Ȳ j = X̄1,l accordingly. Notice
that
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∣
∣
∣
∣
∣

∑kP1+l
j=1 Y j

∑kP1+l
j=1 Y j

− α

∣
∣
∣
∣
∣

≤
∣
∣
∣
∣
∣

k(
∑P1

i=1 X1,i − α
∑P1

i=1 X1,i ) + (
∑l

i=1 X1,i − α
∑l

i=1 X1,i )

k
∑P1

i=1 X1,i + ∑l
i=1 X1,i

∣
∣
∣
∣
∣

≤ ε1 + C(h) + |α|,
while

∣
∣
∣
∣
∣

∑Q1P1
j=1 Y j

∑Q1P1
j=1 Y j

− α

∣
∣
∣
∣
∣
≤ ε1.

If Q1P1 + 1 ≤ j ≤ Q1P1 + Q2P2, we write j = Q1P1 + kP2 + l where
k ∈ {0, . . . , Q2−1} and l ∈ {1, . . . , P2}. Then defineY j = X2,l and Ȳ j = X̄2,l
accordingly. Now

∣
∣
∣
∣
∣

∑Q1P1+kP2+l
j=1 Y j

∑Q1P1+kP2+l
j=1 Y j

− α

∣
∣
∣
∣
∣

≤
∣
∣
∣
∣
∣

(

Q1

(
P1∑

i=1

X1,i − α

P1∑

i=1

X1,i

)

+ k

(
P2∑

i=1

X2,i − α

P2∑

i=1

X2,i

)

+
(

l∑

i=1

X2,i − α

l∑

i=1

X2,i

))∣
∣
∣
∣
∣

· 1

(Q1
∑P1

i=1 X1,i + k
∑P2

i=1 X2,i + ∑l
i=1 X2,i

)

≤ ε1 + ε2 + C(h) + |α|
Q1P1v

P2∑

i=1

X2,i

≤ ε1 + ε2 + (C(h) + |α|)ε2,
if Q1 is sufficiently large depending on {�1,i } and {�2,i }, while

∣
∣
∣
∣
∣

∑Q1P1+Q2P2
j=1 Y j

∑Q1P1+Q2P2
j=1 Y j

− α

∣
∣
∣
∣
∣
≤ 2ε2,

if Q2 is sufficiently large depending on Q1, {�1,i } and {�2,i }.
Proceeding this way we get a sequence {QN } and a sequence {Y j }

defined so that if 1 + ∑N=N0
N=1 QN PN ≤ j ≤ ∑N=N0+1

N=1 QN PN , we write
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j = ∑N=N0
N=1 QN PN + kPN0+1 + l, where k ∈ {0, . . . , QN0+1 − 1} and

l ∈ {1, . . . , PN0+1}, and set Y j = �N0+1,l , Ȳ j = X̄ N0+1,l . We will have

∣
∣
∣
∣
∣
∣
∣

∑∑N=N0
N=1 QN PN+kPN0+1+l

j=1 Y j

∑∑N=N0
N=1 QN PN+kPN0+1+l

j=1 Y j

− α

∣
∣
∣
∣
∣
∣
∣
≤ 2εN0 + εN0+1 + (C(h) + |α|)εN0+1,

and
∣
∣
∣
∣
∣
∣
∣

∑∑N=N0+1
N=1 QN PN

j=1 Y j

∑∑N=N0+1
N=1 QN PN

j=1 Y j

− α

∣
∣
∣
∣
∣
∣
∣
≤ 2εN0+1.

This implies

lim
q→∞

∑q
j=1 Y j

∑q
j=1 Y j

= α

for any h, and we are done.
Proof of the Property (P): Let g be a smooth Riemannian metric, ε1 > 0

and K̃ > 0 be constants, and choose

S = (K , {B̂k}, {Bk}, {φk}, {qk}, {xkl }) ∈ Cg,K̃ ,ε1
.

Let U be a C∞ neighborhood of g. Let N = K L(n + 1). Choose ε′ > 0
sufficiently small and q ≥ N + 3 sufficiently large so that if g′ ∈ �∞ satisfies
||g − g′||Cq < ε′, then g′ ∈ U . For each k, l, j we associate a variable
tk,l, j ∈ [0, 1] and we order them by lexicographical order on the indices. We
can find a smooth (0, 2)-tensor h̄kl, j so that ||h̄kl, j − hkl, j ||Cq < ε′ and such that
{h̄kl, j }l, j is linearly independent in a neighborhood of qk where φk is equal to
1 and φk′ is zero for k′ �= k.

Consider the following N -parameter family of metrics. For a t = (tk,l, j ) ∈
[0, 1]N , we define

ĝ(t) = g + 2
∑

k,l, j

ψktk,l, j h̄
k
l, j .

As t goes to zero, we have the following expansion

vol(M, ĝ(t))
n

n+1 = volg(M)
n

n+1

+ n

(n + 1)
volg(M)−

1
n+1

∑

k,l, j

tk,l, j

∫

M
ψkdvg + o(||t ||1) + O(ε′||t ||1), (14)
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where ||t ||1 = ∑
k,l, j |tk,l, j |. Also

∂

∂tk,l, j
vol(M, ĝ(t))=

∫

M
ψk Trĝ(t)(h̄

k
l, j )dvĝ(t) =

∫

M
ψkdvg + o(1) + O(ε′).

We will say that a function f : [0, δ]N → R is ε′-close to another function
g : [0, δ]N → R if, when appropriately rescaled to be functions defined on
[0, 1]N , they are at distance less than ε′ in the L∞ norm, i.e.

||1
δ
fδ − 1

δ
gδ||∞ < ε′

with fδ(s) = f (δs) and gδ(s) = g(δs). By (14), the function

f0(t) := vol(M, ĝ(t))n/(n+1)

volg(M)n/(n+1)
− n

(n + 1)

1

volg(M)

∑

k,l, j

tk,l, j

∫

M
ψkdvg

is Cε′-close to the constant function equal to 1 on [0, δ]N , where C = C(g)
depends only on g and might differ from line to line, if δ is sufficiently small.

If δ > 0 is sufficiently small, we also have that ĝ : [0, δ]N → �q is
an embedding and ||ĝ(t) − g||Cq < ε′/2 for every t ∈ [0, δ]N . We can
slightly perturb ĝ in the C∞ topology into a C∞ map g′ : [0, δ]N → �q
so that the conclusion of Lemma 2 is satisfied. In particular, we can assume
||g′(t) − ĝ(t)||Cq < ε′/4 and || ∂g′

∂v
(t) − ∂ ĝ

∂v
(t)||Cq < ε′/4 for any t ∈ [0, δ]N

and v ∈ R
N , |v| = 1, and the function

f1(t) := vol(M, g′(t))n/(n+1)

volg(M)n/(n+1)
− n

(n + 1)

1

volg(M)

∑

k,l, j

tk,l, j

∫

M
ψkdvg

is Cε′-close to the constant function equal to 1 on [0, δ]N .
The normalized widths p− 1

n+1ωp(g′(t)) of g′(t) (t ∈ [0, δ]N ) are uniformly
Lipschitz continuous on [0, δ]N by Lemma 1. Hence, by the Weyl Law for the

Volume Spectrum [9], the functions t �→ p− 1
n+1ωp(g′(t)) converge uniformly

to the function t �→ a(n)Vol(M, g′(t))
n

n+1 . Hence if p is sufficiently large,

|p− 1
n+1ωp(g′(t)) − a(n)Vol(M, g′(t))

n
n+1 | < δε′ and the function

f2(t) := ωp(g′(t))
a(n)volg(M)n/(n+1) p1/(n+1)

− n

(n + 1)

1

volg(M)

∑

k,l, j

tk,l, j

∫

M
ψkdvg

is Cε′-close to the constant function equal to 1 on [0, δ]N .
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Then at each t ∈ A (where A is given by Lemma 2), there is a varifold
V ∈ V(g′(t)) with support a minimal hypersurface � such that

∂

∂tk,l, j
p− 1

n+1 ωp(g
′(t)) = p− 1

n+1
∂

∂tk,l, j
||V ||(M, g′(t))

= p− 1
n+1 ||V ||(ψk Tr�(h̄kl, j )) + O(ε′)

= p− 1
n+1

(||V ||(ψk TrM,g′(t) h̄
k
l, j ) − V (ψk h̄

k
l, j )

) + O(ε′)

= p− 1
n+1

(||V ||(ψk) − V (ψkh
k
l, j )

) + O(ε′),

(15)

where ||V ||(.), V (.) and the traces are computed with respect to g′(t).
Given η > 0, we can choose 0 < ε′ < η sufficiently small compared to

C = C(g) so that we can apply Lemma 3 to f2 and toA. We get sequences of
points {y1,m}m, . . . , {yN+1,m} inA converging to a common limit y ∈ (0, δ)N

such that the gradients ∇ f2(yi,m) converge to N + 1 vectors v1, . . . , vN+1
with

dRN (0,Conv(v1, . . . , vN+1)) < η.

Let {α1, . . . , αN+1} ⊂ [0, 1] with ∑N+1
i=1 αi = 1 such that |α1v1 + · · · +

αN+1vN+1| < η. Then for sufficiently large m, we have

|α1∇ f2(y1,m) + · · · + αN+1∇ f2(yN+1,m)| < η,

and hence

|α1
∂ f2

∂tk,l, j
(y1,m) + · · · + αN+1

∂ f2
∂tk,l, j

(yN+1,m)| < η (16)

for all k, l, j .
According to Lemma 2, each gradient based at yi,m corresponds to a varifold

ofmassωp(g′(yi,m))whose support is aminimal hypersurface in (M, g′(yi,m))

of index bounded by p. Hence for all i , by Sharp’s Compactness Theorem [20]
a subsequence inm of these varifolds converges to a varifold ofV(g′(y))whose
mass is ωp(g′(y)). By (15) and (16), we have N + 1 varifolds Vi in V(g′(y))
such that

∣
∣
∣
∣
∣

∑

i

αi
||Vi ||(ψk) − Vi (ψkhkl, j )

a(n)volg(M)n/(n+1) p1/(n+1)
− n

(n + 1)

1

volg(M)

∫

M
ψkdvg

∣
∣
∣
∣
∣
< Cη

for all k, l, j , where ||Vi ||(.) and Vi (.) are computed with respect to g′(y).
This implies

∀k, l, j
∣
∣
∣
∣
∣

∑

i

αi
||Vi ||(ψk) − Vi (ψkhkl, j )

||Vi ||(M)
− n

(n + 1)

1

volg(M)

∫

M
ψkdvg

∣
∣
∣
∣
∣
< Cη.
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We also have that for all i , k, l, one has

∣
∣
∣
∣
∣
∣

n+1∑

j=1

Vi (ψkh
k
l, j ) − ||Vi ||(ψk)

∣
∣
∣
∣
∣
∣
= |Vi (ψkg) − ||Vi ||(ψk)| < Cη||Vi ||(M),

and

∣
∣
∣
∣

1

(n + 1)

1

volg(M)

∫

M
ψkdvg − 1

(n + 1)

1

volg′(y)(M)

∫

M
ψkdvg′(y)

∣
∣
∣
∣ < Cη.

We deduce the following:

∀k, l, j
∣
∣
∣
∣
∣

∑

i

αi
Vi (ψkhkl, j )

||Vi ||(M)
− 1

(n + 1)

1

volg′(y)(M)

∫

M
ψkdvg′(y)

∣
∣
∣
∣
∣
< Cη.

(17)
The metric g′(y) ∈ �q satisfies ||g′(y) − g||Cq < 3ε′/4. We apply Lemma

4 to
⋃N+1

i=1 spt(Vi ) and find a Cq metric g such that ||g − g||Cq < 4ε′/5,
each spt(Vi ) is nondegenerate minimal with respect to g and (17) is still valid
with g′(y) replaced by g. If g̃ is a C∞ metric that is sufficiently close to g in
the Cq topology, then g̃ ∈ U . Because of the nondegeneracy of spt Vi with
respect to g and the Implicit Function Theorem, we can also assure that there
are varifolds V1, . . . , VJ of V(g̃) whose support spt(Vj ) are nondegenerate,
and coefficients α1, . . . , αJ ∈ [0, 1] with ∑

i αi = 1 satisfying

∀k, l, j
∣
∣
∣
∣
∣

∑

i

αi
Vi (ψkhkl, j )

||Vi ||(M)
− 1

(n + 1)

1

volg̃(M)

∫

M
ψkdvg̃

∣
∣
∣
∣
∣
< Cη, (18)

where the terms of the sum are computed for the metric g̃. Since η is arbitrarily
small, we have proved Property (P).
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