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Abstract This paper studies homeomorphismsof surfaces isotopic to the iden-
tity by means of purely topological methods and Brouwer theory. The main
development is a novel theory of orbit forcing using maximal isotopies and
transverse foliations. This allows us to derive new proofs for some known
results as well as some new applications, among which we note the following:
we extend Franks and Handel’s classification of zero entropy maps of S

2 for
non-wandering homeomorphisms; we show that if f is a Hamiltonian home-
omorphism of the annulus, then the rotation set of f is either a singleton or it
contains zero in the interior, proving a conjecture posed by Boyland; we show
that there exist compact convex sets of the plane that are not the rotation set of
some torus homeomorphisms, proving a first case of the Franks–Misiurewicz
conjecture; we extend a bounded deviation result relative to the rotation set to
the general case of torus homeomorphisms.
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620 P. Le Calvez, F. A. Tal

1 Introduction

Let us begin by recalling some facts about Sharkovski’s theorem, which can be
seen as a typical example of an orbit forcing theory in dynamical systems. In
this theorem, an explicit total order� on the set of natural integers is given that
satisfies the following: every continuous transformation f on [0, 1] that con-
tains a periodic orbit of periodm contains a periodic orbit of period n if n � m.
Much more can be said. If f admits a periodic orbit of period different from
a power of 2, one can construct a Markov partition and codes orbits with the
help of the associated finite subshift. In particular one can prove that the topo-
logical entropy of f is positive. There exists a forcing theory about periodic
orbits for surface homeomorphisms related to Nielsen–Thurston classification
of surface homeomorphisms, with many interesting dynamical applications
(see for example [5] or [33] for survey articles). In case of homeomorphisms
isotopic to the identity, this theory deals with the braid types associated to
the periodic orbits. A more subtle theory (homotopic Brouwer theory) was
introduced by Handel for surface homeomorphisms and developed by Franks
and Handel to become a very efficient tool in two-dimensional dynamics.

The goal of the article is to give a new orbit forcing theory for surface
homeomorphisms that are isotopic to the identity, theory that will be expressed
in terms of maximal isotopy, transverse foliations and transverse trajectories.
Note first that the class of surface homeomorphisms isotopic to the identity
contains the time one maps of time dependent vector fields. Consequently,
what is proved in this article can be applied to the dynamical study of a time
dependent vector field on a surface, periodic in time. In what follows, a surface
M is orientable and furnished with an orientation. If f is a homeomorphism
of M isotopic to the identity, the choice of an isotopy I = ( ft )t∈[0,1] from the
identity toM should not be very important, aswe are looking at the iterates of f .
What looks like the trajectory of a point z, thatmeans the path I (z) : t �→ ft (z)
seems useless. It appears that this is not the case: there are isotopies that are
better than the other ones. This is clear if f is the time one map of a complete
time independent vector field ξ . The isotopy ( ft )[0,1] defined by the restriction
of the flow ( ft )t∈R is clearly better than any other choice of an isotopy, in the
sense that it will be useful while studying the dynamics of f . It is easy to see
that in this last case, there is no fixed point of f in the complement of the
singular set of the vector field whose trajectory is contractible relative to this
same singular set. In this situation, the singular points correspond to the fixed
points of I , which means the points whose trajectory is constant.

In general, let us say that an isotopy I = ( ft )t∈[0,1], that joins the identity
to a homeomorphism f , is a maximal isotopy if there is no fixed point of
f whose trajectory is contractible relative to the fixed point set of I . A very
recent result of Béguin et al. [4] asserts that such an isotopy always exists if
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Forcing theory for transverse trajectories 621

f is isotopic to the identity (a slightly weaker result was previously proved
by Jaulent [21]). A fundamental result [27] asserts that a maximal isotopy
always admits a transverse foliation. This is a singular oriented foliation F
whose singular set coincides with the fixed point set of I and such that every
non trivial trajectory is homotopic (relative to the endpoints) to a path that is
transverse to the foliation (which means that it locally crosses every leaf from
the right to the left). This path IF (z), the transverse trajectory, is uniquely
defined up to a natural equivalence relation (meaning that the induced path
in the space of leaves is unique). In the case where f is the time one map
of a complete time independent vector field ξ , it is very easy to construct a
transverse foliation by taking the integral curves of any vector field η that is
transverse to ξ , and in that case the trajectories I (z) are transverse. In a certain
sense, maximal isotopies are isotopies that are as close as possible to isotopies
induced by flows.

Maximal isotopies and transverse foliations are known to be efficient tools
for the dynamical study of surface homeomorphisms (see [9,10,26–29,32,39]
for example). Usually they are used in the following way. Properties of f are
transposed “by duality” to properties of F , then one studies the dynamics of
the foliation and comes back to f . Roughly speaking, the leaves of the foliation
are pushed along the dynamics. This property is cleverly used in the articles
of Dávalos [9,10]. Our original goal was a boundedness displacement result
(Theorem H of this introduction) which needed a formalization of the ideas
of Dávalos. This was nothing but a forcing theory for transverse trajectories.
For every integer n � 1, let us define by concatenation the paths I n(z) =∏

0�k<n I ( f
k(z)) and I nF (z) =∏0�k<n IF ( f k(z)). The basic question can be

formulated as follows: from the knowledge of a finite family (I niF (zi ))1�i�p
of transverse trajectories, can we deduce the existence of other transverse
trajectories I nF (z)? The key result (Proposition 20), which is new and whose
proof is very simple, can be stated as follows: if two paths I n1F (z1) and I n2F (z2)
intersect transversally relative toF (the precise definitionwill be given later in
the article) then one can construct two other paths I n1+n2

F (z3) and I n1+n2
F (z4)

by a natural change of direction at the intersection point. It becomes possible,
in many situations to code transverse trajectories with the help of a Bernouilli
shift or in other situations to construct transverse trajectories that are multiples
of the same loop.

In order to obtain applications of this forcing theory, we need to relate
the information obtained by the knowledge of these new sets of transverse
trajectories to other properties of the dynamics. To do so, one can define the
whole trajectory IZ(z) =∏k∈Z

I ( f k(z)) and the whole transverse trajectory
IZ

F (z) = ∏
k∈Z

IF ( f k(z)) of a point z. The properties of the dynamics are
recovered by three structural results that, togetherwith Proposition 20, form the
core of the theory.Thefirst of these results is a realization result, Proposition26,
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622 P. Le Calvez, F. A. Tal

showing that in many cases, the existence of finite transverse trajectories that
are equivalent to multiples of a given transverse loop implies the existence of
a periodic point whose transverse trajectory for one period is equivalent to the
same transverse loop. The second of these results, Theorem 29, shows that if
there exist two recurrent points z and z′ such that IZ

F (z) and IZ

F (z′) intersect
transversally relative to F (with a self intersection if z = z′) the number of
periodic points of period n for some iterate of f grows exponentially in n. The
third result, Theorem 36, shows that if in the previous result we assume that
the surface is closed, then the topological entropy of f is strictly positive. This
final result presents, to our knowledge, an entirely new mechanism to detect
positive entropy, one that bypasses any requirement of smoothness of the map.
Consequently, our applications are for general homeomorphisms isotopic to
the identity, and include both new entropy theorems for maps of the annulus
and generalizations of results known only forC1-diffeomorphisms (sometimes
forC1+ε-diffeomorphisms, sometimes forC∞-diffeomorphisms). There is no
doubt that they are many similarities with Franks–Handel methods. Looking
more carefully at the links between the two methods should be a project of
high interest.

Let us display nowmore precisely themain applications, beginningwith the
case of annulus homeomorphisms. Here, M( f ) is the set of invariant Borel
probability measures μ of f , the set supp(μ) the support of μ, the rotation
number rot(μ) the integral

∫
A

ϕ dμ, where ϕ : A → R is the map lifted by
π1 ◦ f̌ − π1 (the map π1 : (x, y) �→ x being the first projection), the segment
rot( f̌ ) the set of rotation numbers of invariant measures.

Theorem A Let f be a homeomorphism of A = T
1 × [0, 1] that is isotopic

to the identity and f̌ a lift to R × [0, 1]. Suppose that rot( f̌ ) is a non trivial
segment and that ρ is an endpoint of rot( f̌ ) that is rational. Define

Mρ = {μ ∈ M( f ) , rot(μ) = ρ} , Xρ =
⋃

μ∈Mρ

supp(μ).

Then every invariant measure supported on Xρ belongs to Mρ.

We deduce immediately the following positive answer to a question of Boy-
land:

Corollary B Let f be a homeomorphism of A that is isotopic to the identity
and preserves a probability measure μ with full support. Let us fix a lift f̌ .
Suppose that rot( f̌ ) is a non trivial segment. The rotation number rot(μ)

cannot be an endpoint of rot( f̌ ) if this endpoint is rational.

Let us explain what happens for torus homeomorphisms. Here againM( f )
is the set of invariant Borel probability measures μ of f , the set supp(μ)
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Forcing theory for transverse trajectories 623

the support of μ and the rotation vector rotμ) the integral
∫

T2 ϕ dμ, where
ϕ : T

2 → R
2 is the map lifted by f̌ − Id. The set of rotation vectors of

invariant measures rot( f̌ ) is a compact and convex subset of R
2. Nothing is

known about the plane subsets that can be written as such a rotation set. The
following result gives the first obstruction:

Theorem C Let f be a homeomorphism of T
2 that is isotopic to the identity

and f̌ a lift of f to R
2. The frontier of rot( f̌ ) does not contain a segment with

irrational slope that contains a rational point in its interior.

It was previously conjectured by Franks and Misiurewicz [15] that a line
segment L could not be realized as a rotation set of a torus homeomorphism
in the following conditions: (i) L has irrational slope and a rational point in its
interior, (ii) L has rational slope but no rational points and (iii) L has irrational
slope and no rational points. While Theorem C implies the conjecture for case
(i), Ávila has given a counter-example for case (iii).

The second result is a boundedness result:

Theorem D Let f be a homeomorphism of T
2 that is isotopic to the identity

and f̌ a lift of f to R
2. If rot( f̌ ) has a non empty interior, then there exist a

constant L such that for every z ∈ R
2 and every n � 1, one has d( f̌ n(z) −

z, nrot( f̌ )) � L.

Note that by definition of the rotation set one knows that

lim
n→+∞

1

n

(

max
z∈R2

d( f̌ n(z) − z, nrot( f̌ ))

)

= 0

TheoremD clarifies the speed of convergence. It was already known for home-
omorphisms in the special case of a polygonwith rational vertices (seeDávalos
[10]) and for C1+ε diffeomorphisms (see Addas-Zanata [2]). As already noted
in [2], we can deduce an interesting result about maximizing measures, which
means measure μ ∈ M( f ) whose rotation vector belongs to the frontier of
rot( f̌ ). The rotation number of such a measure belongs to at least one sup-
porting line of rot( f̌ ). Such a line admits the equation ψ(z) = α(ψ) where ψ

is a non trivial linear form on R
2 and

α(ψ) = max
μ∈M( f )

ψ(rot(μ)) = max
μ∈M( f )

∫

T2
ψ ◦ ϕ dμ.

Set

Mψ = {μ ∈ M( f ) , ψ(rot(μ)) = α(ψ)} , Xψ =
⋃

μ∈Mψ

supp(μ).
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624 P. Le Calvez, F. A. Tal

The following result, that can be easily deduced from Theorem 63 and Atkin-
son’s Lemma in Ergodic Theory (see [1]), tells us that the sets Xψ behave like
the Mather sets of the Tonelli Lagrangian systems.

Proposition E Let f be a homeomorphism ofT2 that is isotopic to the identity
and f̌ a lift of f to R

2. Assume that rot( f̌ ) has a non empty interior. Then,
every measure μ supported on Xψ belongs toMψ . Moreover, if z lifts a point
of Xψ , then for every n � 1, one has |ψ( f̌ n(z)) − ψ(z) − nβ(ψ)| � L‖ψ‖,
where L is the constant given by Theorem D.

It admits as an immediate corollary the torus version of Boyland’s question:

Corollary F Let f be a homeomorphism of T
2 that is isotopic to the identity,

preserving a measure μ of full support, and f̌ a lift of f to R
2. Assume that

rot( f̌ ) has a non empty interior. Then rot(μ) belongs to the interior of rot( f̌ ).

This result was known for C1+ε diffeomorphisms (see [2]).
The next resut is due to Llibre and MacKay, see [30]. Its original proof

uses Thurston–Nielsen theory of surface homeomorphisms, more precisely
the authors prove that there exists a finite invariant set X such that f |T2\X
is isotopic to a pseudo-Anosov map. We will give here an alternative proof
by exhibiting (n, ε) separated sets constructed with the help of transverse
trajectories.

Theorem G Let f be a homeomorphism of T
2 that is isotopic to the identity

and f̌ a lift of f to R
2. If rot( f̌ ) has a non empty interior, then the topological

entropy of f is positive.

Our original goal, while writing this article, was to prove the following
boundedness displacement result:

Theorem H We suppose that M is a compact orientable surface furnished
with a Riemannian structure. We endow the universal covering space M̌ with
the lifted structure and denote by d the induced distance. Let f be a homeo-
morphism of M isotopic to the identity and f̌ a lift to M̌ naturally defined by
the isotopy. Assume that there exists an open topological disk U ⊂ M such
that the fixed points set of f̌ projects into U. Then;

– either there exists K > 0 such that d( f̌ n(ž), ž) � K, for all n � 0 and all
bi-recurrent point ž of f̌ ;

– or there exists a nontrivial covering automorphism T and q > 0 such that,
for all r/s ∈ (−1/q, 1/q), themap f̌ q◦T−p has a fixed point. In particular,
f has non-contractible periodic points of arbitrarily large prime period.

TheoremH has an interesting consequence for torus homeomorphisms. Say
a homeomorphism f of T

2 is Hamiltonian if it preserves a measure μ with
full support and it has a lift f̌ (called the Hamiltonian lift of f ) such that the
rotation vector of μ is null.
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Forcing theory for transverse trajectories 625

Corollary I Let f be a Hamiltonian homeomorphism of T
2 such that all its

periodic points are contractible, and such that it fixed point set is contained in
a topological disk. Then there exists K > 0 such that if f̌ is the Hamiltonian
lift of f , then for every z and every n � 1, one has ‖ f̌ n(z) − z‖ � K.

The study of non-contractible periodic orbits for Hamiltonian maps of sym-
pletic manifolds has been receiving increased attention (see for instance [16]).
A natural question in the area, posed by V. Ginzburg, is to determine if the
existence of non-contractible periodic points is generic for smooth Hamilto-
nians. A consequence of Corollary I is an affirmative answer for the case of
the torus:

Proposition J LetHam∞(T2) be the set of Hamiltonian C∞ diffeomorphisms
of T

2 endowed with the Whitney C∞-topology. There exists a residual subset
A of Ham∞(T2) such that every f inA has non-contractible periodic points.

Let us explain now the results related to the entropy. For example we can
give a short proof of the following improvement of a result due to Handel [19].

Theorem K Let f : S
2 → S

2 be an orientation preserving homeomorphism
such that the complement of the fixed point set is not an annulus. If f is
topologically transitive then the number of periodic points of period n for
some iterate of f grows exponentially in n. Moreover, the entropy of f is
positive.

Another entropy result we obtain is related to the existence and continuous
variation of rotation numbers for homeomorphisms of the open annulus. A
stronger version of this result for diffeomorphisms was already proved in an
unpublished paper of Handel [20]. Given a homeomorphism of T

1 × R and a
lift f̌ to R

2, we say that a point z ∈ T
1 × R has a rotation number rot(z) if

the ω-limit of its orbit is not empty, and if for any compact set K ⊂ T
1 × R

and every increasing sequence of integers nk such that f nk (z) ∈ K and any
ž ∈ π−1(z),

lim
k→∞

1

nk

(
π1( f̌

nk (ž) − π1(ž)
)

= rot(z),

where π is the covering projection from R
2 to T

1 × R and π1 : R
2 → R is

the projection on the first coordinate.

Theorem L Let f be a homeomorphism of the open annulus T
1 × R isotopic

to the identity, f̌ a lift of f to the universal covering and fsphere be the natural
extension of f to the sphere obtained by compactifying each endwith a point. If
the topological entropy of fsphere is zero, then each bi-recurrent point (meaning
forward and backward recurrent) has a rotation number, and the function
z �→ rot(z) is continuous on the set of bi-recurrent points.
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626 P. Le Calvez, F. A. Tal

Let us finish with a last application. Franks and Handel recently gave a
classification result for area preserving diffeomorphisms of S

2 with entropy 0
(see [14]). Their proofs are purely topological but theC1 assumption is needed
to use a Thurston–Nielsen type classification result relative to the fixed point
set (existence of a normal form) and theC∞ assumption to use Yomdin results
on arcs whose length growth exponentially by iterates. We will give a new
proof of the fundamental decomposition result (Theorem 1.2 of [14]) which
is the main building block in their structure theorem. In fact we will extend
their result to the case of homeomorphisms and replace the area preserving
assumption by the fact that every point is non wandering.

Theorem M Let f : S
2 → S

2 be an orientation preserving homeomorphism
such that ( f ) = S

2 and h( f ) = 0. Then there exists a family of pairwise
disjoint invariant open sets (Aα)α∈A whose union is dense such that:

i) each Aα is an open annulus;
ii) the sets Aα are the maximal fixed point free invariant open annuli;
iii) the α-limit set of a point z /∈ ⋃α∈A Aα is included in a single connected

component of the fixed point set fix( f ) of f , and the same holds for the
ω-limit set of z;

iv) let C be a connected component of the frontier of Aα in S
2 \ fix( f ),

then the connected components of fix( f ) that contain α(z) and ω(z) are
independent of z ∈ C.

Let us explain now the plan of the article. In the second section we will
introduce the definitions of many mathematical objects, including precise def-
initions of rotation vectors and rotation sets. The third section will be devoted
to the study of transverse paths to a surface foliation. We will introduce the
notion of a pair of equivalent paths, of a recurrent transverse path and of
F-transverse intersection between two transverse paths. An important result,
which will be very useful in the proofs of Theorems K and M is Proposition 2
which asserts that a transverse recurrent path to a singular foliation on S

2 that
has noF-transverse self-intersection is equivalent to the natural lift of a trans-
verse simple loop (i.e. an adapted version of Poincaré-Bendixson theorem).
We will recall the definition of maximal isotopies, transverse foliations and
transverse trajectories in Sect. 4. We will state the fundamental result about
F-transverse intersections of transverse trajectories (Proposition 20) and its
immediate consequences. An important notion that will be introduced is the
notion of linearly admissible transverse loop. To any periodic orbit is naturally
associated such a loop. A realization result (Proposition 26) will give us suf-
ficient conditions for a linearly admissible transverse loop to be associated to
a periodic orbit. Section 5 will be devoted to the proofs of Theorem 29 (about
exponential growth of periodic orbits) and Theorem 36 (about positiveness
of the entropy). We will give the proofs of Theorems H, A and K in Sect. 6
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Forcing theory for transverse trajectories 627

while Sect. 7 will be almost entirely devoted to the proof of Theorem M (we
will prove Theorem L at the end of it).We will begin by stating a “local ver-
sion” relative to a given maximal isotopy (Theorem 53). We will study torus
homeomorphisms in Sect. 8 and will give there the proofs of Theorems C, D
and G.

We would like to thank Frédéric Le Roux for informing us of some impor-
tant gaps in the original proofs of Theorems 29 and 36. We would also like to
thank Andrés Koropecki for his useful comments and for discussions regard-
ing Proposition J, and to Victor Ginzburg for presenting us the question on
the genericity of non-contractible periodic points for Hamiltonian diffeomor-
phisms. Finally, we would like to thank the anonymous referee for the careful
work and suggestions which greatly improved our text.

2 Notations

We will endow R
2 with its usual scalar product 〈 〉 and its usual orientation.

Wewill write ‖ ‖ for the associated norm. For every point z ∈ R
2 and every set

X ⊂ R
2 we write d(z, X) = inf z′∈X ‖z − z′‖. We denote by π1 : (x, y) �→ x

andπ2 : (x, y) �→ y the twoprojections. If z = (x, y), wewrite z⊥ = (−y, x).
The r -dimensional torus R

r/Z
r will be denoted T

r , the 2-dimensional
sphere will be denoted S

2. A subset X of a surface M is called an open disk
if it is homeomorphic to D = {z ∈ R

2 , ‖z‖ < 1} and a closed disk if it
is homeomorphic to D = {z ∈ R

2 , ‖z‖ � 1}. It is called an annulus if it
homeomorphic to T

1 × J , where J is a non trivial interval of R. In case where
J = [0, 1], J = (0, 1), J = [0, 1), we will say that X is a closed annulus, an
open annulus, a semi-closed annulus respectively.

Given a homeomorphism f of a surface M and a point z ∈ M we define the
α-limit set of z by

⋂
n�0

⋃
k�n f −k(z) and we denote it α(z). We also define

the ω-limit set of z by
⋂

n�0
⋃

k�n f k(z) and we denote it ω(z).

2.1 Paths, lines, loops

A path on a surface M is a continuous map γ : J → M defined on an interval
J ⊂ R. In absence of ambiguity its imagewill also be called a path and denoted
by γ . We will denote γ −1 : −J → M the path defined by γ −1(t) = γ (−t). If
X and Y are two disjoint subsets of M , we will say that a path γ : [a, b] → M
joins X to Y if γ (a) ∈ X and γ (b) ∈ Y . A path γ : J → M is proper if
J is open and the preimage of every compact subset of M is compact. A line
is an injective and proper path λ : J → M , it inherits a natural orientation
induced by the usual orientation of R. If M = R

2, the complement of λ has
two connected components, R(λ) which is on the right of λ and L(λ) which
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628 P. Le Calvez, F. A. Tal

Fig. 1 Order of lines
relative to λ0

λ2
λ0

λ1

z2 z2

z1

z1

is on its left. More generally, if M is a non connected surface with connected
components homeomorphic to R

2, and if M ′ is the connected component of
M containing λ, the two connected components of M ′ \ λ will similarly be
denoted R(λ) and L(λ).

Let us suppose that λ0 and λ1 are two disjoint lines of R
2. We will say

that they are comparable if their right components are comparable for the
inclusion. Note that λ0 and λ1 are not comparable if and only if λ0 and (λ1)

−1

are comparable.
Let us consider three lines λ0, λ1, λ2 in R

2. We will say that λ2 is above λ1
relative to λ0 (and λ1 is below λ2 relative to λ0) if:

– the three lines are pairwise disjoint;
– none of the lines separates the two others;
– if γ1, γ2 are two disjoints paths that join z1 = λ0(t1), z2 = λ0(t2) to
z′1 ∈ λ1, z′2 = λ2 respectively, and that do not meet the three lines but at
the ends, then t2 > t1.

This notion does not depend on the orientation of λ1 and λ2 but depends of
the orientation of λ0 (see Fig. 1).1 If λ0 is fixed, note that we get in that way
an anti-symmetric and transitive relation on every set of pairwise disjoint lines
that are disjoint from λ0.

A proper path γ of R
2 induces a dual function δ on its complement, defined

up to an additive constant as follows: for every z and z′ inR
2\γ , the difference

δ(z′) − δ(z) is the algebraic intersection number γ ∧ γ ′ where γ ′ is any path
from z to z′. If γ is a line, there is a unique dual function δγ that is equal to 0
on R(γ ) and to 1 on L(γ ).

1 In all figures in the text, we will represent the plane R
2 as the open disk. The reason being

that in many cases we are dealing with the universal covering space of an a hyperbolic surface.
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Forcing theory for transverse trajectories 629

Consider a unit vectorρ ∈ R
2, ‖ρ‖ = 1. Say that a proper path γ : R → R

2

is directed by ρ if

lim
t→±∞ ‖γ (t)‖ = +∞, lim

t→+∞ γ (t)/‖γ (t)‖ = ρ, lim
t→−∞ γ (t)/‖γ (t)‖ = −ρ.

Observe that if γ is directed by ρ, then γ −1 is directed by−ρ and that for every
z ∈ R

2, the translated path γ + z : t �→ γ (t) + z is directed by ρ. Among the
connected components of R

2 \ γ , two of them R(γ ) and L(γ ) are uniquely
determined by the following: for every z ∈ R

2, one has z − sρ⊥ ∈ R(γ )

and z + sρ⊥ ∈ L(γ ) if s is large enough. In the case where γ is a line, the
definitions agree with the former ones. Note that two disjoint lines directed by
ρ are comparable.

Instead of looking at paths defined on a real interval we can look at paths
defined on an abstract interval J , which means a one dimensional oriented
manifold homeomorphic to a real interval. If γ : J → M and γ ′ : J ′ → M
are two paths, if J has a right end b and J ′ a left end a′ (in the natural sense),
and if γ (b) = γ ′(a′), we can concatenate the two paths and define the path
γ γ ′ defined on the interval J ′′ = J � J ′/b ∼ a′ coinciding with γ on J and
γ ′ on J ′. One can define in a same way the concatenation

∏
l∈L γl of paths

indexed by a finite or infinite interval of Z.
A path γ : R → M such that γ (t + 1) = γ (t) for every t ∈ R lifts a

continuous map � : T
1 → M . We will say that � is a loop and γ its natural

lift. If n � 1, we denote �n the loop lifted by the path t �→ γ (nt). Here again,
if M is oriented and � homologous to zero, one can define a dual function δ

defined up to an additive constant on M \ � as follows: for every z and z′ in
R
2 \�, the difference δ(z′)− δ(z) is the algebraic intersection number � ∧ γ ′

where γ ′ is any path from z to z′.

2.2 Rotations vectors

Let us recall the notion of rotation vector and rotation set for a homeomorphism
of a closedmanifold, introduced by Schwartzman [37] (see also Pollicott [36]).
Let M be an oriented closed connected manifold and I an identity isotopy
on M , which means an isotopy ( ft )t∈[0,1] such that f0 is the identity. The
trajectory of a point z ∈ M is the path I (z) : z �→ ft (z). If ω is a closed 1-
form on M , one can define the integral

∫
I (z) ω on every trajectory I (z). Write

f1 = f and denote M( f ) the set of invariant Borel probability measures.

For every μ ∈ M( f ), the integral
∫
M

(∫
I (z) ω

)
dμ(z) vanishes when ω is

exact. One deduces that ω → ∫
M

(∫
I (z) ω

)
dμ(z) defines a natural linear

form on the first cohomology group H1(M, R), and by duality an element of
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the first homology group H1(M, R), which is called the rotation vector of μ

and denoted rot(μ). The setM( f ), endowed with the weak∗ topology, being
convex and compact and themapμ �→ rot(μ)being affine, onededuces that the
set rot(I ) = {rot(μ) , μ ∈ M( f )} is a convex compact subset of H1(M, R). If
M is a surface of genus greater than 1 and I ′ is a different identity isotopy given
by ( f ′

t )t∈[0,1] such that f ′
1 = f , then for all z ∈ M the trajectories I (z) and

I ′(z) are homotopic with fixed endpoints. Therefore the rotation vectors (and
the rotation set) are independent of the isotopy, depending only on f . If M is a
torus, it depends on a given lift of f . Let us clarify this case (see Misiurewicz
and Zieman [34]). Let f be a homeomorphism of T

2 that is isotopic to the
identity and f̃ a lift of f to the universal covering spaceR

2. The map f̃ − Id is
invariant by the integer translations z �→ z+ p, p ∈ Z

2, and lifts a continuous
map ϕ : T

2 → R. The rotation vector of a Borel probability measure invariant
by f is the integral

∫
T2 ϕ dμ. If μ is ergodic, then for μ-almost every point z,

the Birkhoff means converge to rot(μ). If z̃ ∈ R
2 is a lift of z, one has

lim
n→+∞

f̃ n (̃z) − z̃

n
= lim

n→+∞
1

n

n−1∑

k=0

ϕ( f k(z)) = rot(μ).

Wewill say that z (or z̃) has a rotation vector rot(μ). The rotation set rot( f̃ ) is a
non empty compact convex subset ofR

2. It is easy to prove that every extremal
point of rot( f̃ ) is the rotation vector of an ergodic measure. Indeed the set
of Borel probability measures of rotation vector ρ ∈ rot( f ) is convex and
compact, moreover its extremal points are extremal inM( f ) if ρ is extremal
in rot( f ). Observe also that for every p ∈ Z

2 and every q ∈ Z, the map f̃ q + p
is a lift of f q and one has rot( f̃ q + p) = qrot( f̃ ) + p.

We will also be concerned with annulus homeomorphisms. Let f be a
homeomorphism of A = T

1 ×[0, 1] that is isotopic to the identity and f̃ a lift
of f to the universal covering spaceR×[0, 1]. Themapπ1◦ f −π1 is invariant
by the translation T : z �→ z + (1, 0) and lifts a continuous map ϕ : A → R.
The rotation number rot(μ) of a Borel probabilitymeasure invariant by f is the
integral

∫
A

ϕ dμ. If μ is ergodic, then for μ-almost every point z, the Birkhoff
means converge to rot(μ). If z̃ ∈ R × [0, 1] is a lift of z, one has

lim
n→+∞

π1 ◦ f̃ n (̃z) − π1(̃z)

n
= lim

n→+∞
1

n

n−1∑

k=0

ϕ( f k(z)) = rot(μ).

Here again we will say that z̃ (or z) has a rotation number rot(μ). The rotation
set rot( f̃ ) is a non empty compact real segment and every endpoint of rot( f̃ )
is the rotation number of an ergodic measure. Here again, for every p ∈ Z
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and every q ∈ Z, the map f̃ q ◦ T p is a lift of f q and one has rot( f̃ q ◦ T p) =
qrot( f̃ ) + p.

Note that if J is a real interval, one can also define the rotation number of
an invariant probability measure of a homeomorphism of T

1 × J isotopic to
the identity, for a given lift to R × J , provided the support of the measure is
compact.

3 Transverse paths to surface foliations

3.1 General definitions

Let us begin by introducing some notations that will be used throughout the
whole text.A singular oriented foliationon anoriented surfaceM is an oriented
topological foliation F defined on an open set of M . We will call this set the
domain ofF and denote it dom(F), its complement will be called the singular
set (or set of singularities) and denoted sing(F). If the singular set is empty,
we will say thatF is non singular. A subset of M is saturated if it is the union
of singular points and leaves. A trivialization neighborhood is an open set
W ⊂ dom(F) endowed with a homeomorphism h : W → (0, 1)2 that sends
the restricted foliationF |W onto the vertical foliation. If M̌ is a covering space
of M and π̌ : M̌ → M the covering projection, F can be naturally lifted to
a singular foliation F̌ of M̌ such that dom(F̌) = π̌−1(dom(F)). If Ň is a
covering space of dom(F), then the restriction of F to dom(F) can also be
naturally lifted to a non singular foliation of Ň . We will denote d̃om(F)the
universal covering space of dom(F) and F̃ the foliation lifted fromF |dom(F).
For every z ∈ dom(F) we will write φz for the leaf that contains z, φ+

z for the
positive half-leaf and φ−

z for the negative one. One can define the α-limit and
ω-limit sets of φ as follows:

α(φ) =
⋂

z∈φ

φ−
z , ω(φ) =

⋂

z∈φ

φ+
z .

Suppose that a point z ∈ φ has a trivialization neighborhoodW such that each
leaf of F contains no more than one leaf of F |W . In that case every point of
φ satisfies the same property. If furthermore no closed leaf of F meets W ,
we will say that φ is wandering. Recall the following facts, in the case where
M = R

2 and F is non singular (see Haefliger and Reeb [18]):

– every leaf of F is a wandering line;
– the space of leaves �, furnished with the quotient topology, inherits a
structure of connected and simply connected one-dimensional manifold;
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– � is Hausdorff if and only if F is trivial (which means that it is the image
of the vertical foliation by a plane homeomorphism) or equivalently if all
the leaves are comparable.

A path γ : J → M is positively transverse2 to F if its image does not meet
the singular set and if, for every t0 ∈ J , there exists a (continuous) chart
h : W → (0, 1)2 at γ (t0) compatible with the orientation and sending the
restricted foliationFW onto the vertical foliation oriented downward such that
the map π1 ◦ h ◦ γ is increasing in a neighborhood of t0. Let M̌ be a covering
space of M and π̌ : M̌ → M the covering projection. If γ : J → dom(F)

is positively transverse to F , every lift γ̌ : J → M̌ is transverse to the lifted
foliation F̌ . Moreover, every lift γ̃ : J → d̃om(F) to the universal covering
space d̃om(F) is transverse to the lifted non singular foliation F̃ .

Suppose first thatM = R
2 and thatF is non singular. Say that two transverse

paths γ : J → R
2 and γ ′ : J ′ → R

2 are equivalent for F or F-equivalent if
they satisfy the three following equivalent conditions:

– there exists an increasing homeomorphism h : J → J ′ such thatφγ ′(h(t)) =
φγ (t), for every t ∈ J ;

– the paths γ and γ ′ meet the same leaves;
– the paths γ and γ ′ project onto the same path of �.

Moreover, if J = [a, b] and J ′ = [a′, b′] are two segments, these conditions
are equivalent to this last one:

– one has φγ (a) = φγ ′(a′) and φγ (b) = φγ ′(b′).

In that case, note that the leaves met by γ are the leaves φ such that
R(φγ (a)) ⊂ R(φ) ⊂ R(φγ (b)). If the context is clear, we just say that the
paths are equivalent and omit the dependence on F .

If γ : J → R
2 is a transverse path, then for every a < b in J , the set

L(φγ (a)) ∩ R(φγ (b)) is a topological plane and γ |(a,b) a line of this plane. Let
us say that γ has a leaf on its right if there exists a < b in J and a leaf φ in
L(φγ (a)) ∩ R(φγ (b)) that lies in the right of γ |(a,b). Similarly, one can define
the notion of having a leaf on its left (Fig. 2).

All previous definitions can be naturally extended in case every connected
component of M is a plane and F is not singular. Let us return to the general
case. Two transverse paths γ : J → dom(F) and γ ′ : J ′ → dom(F) are
equivalent forF orF-equivalent if they can be lifted to the universal covering
space d̃om(F) of dom(F) as paths that are equivalent for the lifted foliation
F̃ . This implies that there exists an increasing homeomorphism h : J → J ′
such that, for every t ∈ J , one has φγ ′(h(t)) = φγ (t). Nevertheless these
two conditions are not equivalent. In Fig. 3, such a homeomorphism can be

2 in the whole text “transverse” will mean “positively transverse”.
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Fig. 2 γ : [a, b] → R
2 has

both a leaf on its right (φ0)
and a leaf on its left (φ1).
γ |(a,b) is also a line in
L(φγ (a)) ∩ R(φγ (b))

φ0

φγ(a)

φγ(b)

γ

φ1

L(φγ(a)) ∩ R(φγ(b))

Fig. 3 The paths γ1 and γ2
are not equivalent for F ,
even though they cross the
same leafs

γ1
γ2

p1

p3

p2

constructed but the two loops are not equivalent. Nonetheless, one can show
that γ and γ ′ are equivalent for F if, and only if, there exists a holonomic
homotopy between γ and γ ′, that is, if there exists a continuous transformation
H : J × [0, 1] → dom(F) and an increasing homeomorphism h : J → J ′
satisfying:

– H(t, 0) = γ (t), H(t, 1) = γ ′(h(t));
– for all t ∈ J and s1, s2 ∈ [0, 1], φH(t,s1) = φH(t,s2).

By definition, a transverse path has a leaf on its right if it can be lifted to
d̃om(F) as a path with a leaf of F̃ on its right (in that case every lift has a leaf
on its right) and has a leaf on its left if it can be lifted as a path with a leaf on
its left. Note that if γ and γ ′ have no leaf on their right and γ γ ′ is well defined,
then γ γ ′ has no leaf on its right. Note also that if γ and γ ′ are F-equivalent,
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Fig. 4 The transversal loops
� and �′ are not equivalent
for F , even though they are
freely homotopic

Γ

Γ

p1

and if γ has a leaf on its right, then γ ′ has a leaf on its right. We say that an
F-equivalence class has a leaf on its right (on its left) if some representative
of the class has a leaf on its right (on its left).

Similarly, a loop � : T
1 → dom(F) is called positively transverse to F if

it is the case for its natural lift γ : R → dom(F). It has a leaf on its right
or its left if it is the case for γ . Two transverse loops � : T

1 → dom(F) and
�′ : T

1 → dom(F) are equivalent if there exists two lifts γ̃ : R → d̃om(F)

and γ̃ ′ : R → d̃om(F) of � and �′ respectively, a covering automorphism
T and an orientation preserving homeomorphism h : R → R, such that, for
every t ∈ R, one has

γ̃ (t + 1) = T (γ̃ (t)), γ̃ ′(t + 1) = T (γ̃ ′(t)), h(t + 1)

= h(t) + 1, φγ̃ ′(h(t)) = φγ̃ (t).

Of course �n and �′n are equivalent transverse loops, for every n � 1, if it is
the case for � and �′. A transverse loop � will be called prime if there is no
transverse loop �′ and integer n � 2 such that � is equivalent to �′n .

If two transverse loops � and �′ are equivalent, there exists a holonomic
homotopy between them and therefore they are freely homotopic in dom(F),
but the converse does not need to hold, as Fig. 4 shows.

A transverse path γ : R → M will be called F-positively recurrent if for
every segment J ⊂ R and every t ∈ R there exists a segment J ′ ⊂ [t, +∞)

such that γ |J ′ is equivalent to γ |J . It will be called F-negatively recurrent
if for every segment J ⊂ R and every t ∈ R there exists a segment J ′ ⊂
(−∞, t] such that γ |J ′ is equivalent to γ |J . It is F-bi-recurrent if it is both

123



Forcing theory for transverse trajectories 635

F-positively and F-negatively recurrent. Note that, if γ : R → M and γ ′ :
R → M are F-equivalent and if γ is F-positively recurrent (or F-negatively
recurrent), then so is γ ′. We say that an F-equivalence class is positively
recurrent (negatively recurrent, bi-recurrent) if some representative of the class
is F-positively recurrent (resp. F-negatively recurrent, F-bi-recurrent).

We will very often use the following remarks. Suppose that� is a transverse
loop homologous to zero and δ a dual function. Then δ decreases along each
leaf with a jump at every intersection point. One deduces that every leaf met
by � is wandering. In particular, � does not meet any set α(φ) or ω(φ), which
implies that for every leaf φ, there exist z− and z+ on φ such that � does not
meet neither φ−

z− nor φ+
z+ . Writing n+ and n− for the value taken by δ on φ−

z−
and φ+

z+ respectively, one deduces that n+ − n− is the number of times that
� intersect φ. Note that n+ − n− is uniformly bounded. Indeed, the fact that
every leaf that meets � is wandering implies that T

1 can be covered by open
intervals where � is injective and does not meet any leaf more than once. By
compactness,T1 can be covered by finitelymany such intervals, which implies
that there exists N such that�meets each leaf atmost N times.We have similar
results for a multi-loop � = ∑

1�i�p �i homologous to zero. In case where

M = R
2, we have similar results for a proper transverse path with finite valued

dual function. In case of an infinite valued dual function, everything is true but
the existence of z−, z+, n−, n+ and the finiteness condition about intersection
with a given leaf. In particular a transverse line λ meets every leaf at most
once (because the dual function takes only two values) and one can define the
sets r(λ) and l(λ), union of leaves included in R(λ) and L(λ) respectively.
They do not depend on the choice of λ in the equivalence class. Note that if
the diameter of the leaves of F are uniformly bounded, every path equivalent
to λ is still a line. We have similar results for directed proper paths. If γ is a
proper path directed by a unit vector ρ, one can define the sets r(γ ) and l(γ ),
union of leaves included in R(γ ) and L(γ ) respectively. They do not depend
on the choice of γ in the equivalence class. Moreover, if the leaves of F are
uniformly bounded, every path equivalent to γ is still a path directed by ρ.

3.2 F -transverse intersection for non singular plane foliations

We suppose here that M = R
2 and that F is non singular.

Let γ1 : J1 → R
2 and γ2 : J2 → R

2 be two transverse paths. The set

X = {(t1, t2) ∈ J1 × J2 |φγ1(t1) = φγ2(t2)
}
,

if not empty, is an interval that projects injectively on J1 and J2 as does its
closure. Moreover, for every (t1, t2) ∈ X \ X , the leaves φγ1(t1) and φγ2(t2) are
not separated in�. To bemore precise, suppose that J1 and J2 are real intervals
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and that φγ1(t1) = φγ2(t2). Set J
−
1 = J1 ∩ (−∞, t1] and J−

2 = J2 ∩ (−∞, t2].
Then either one of the paths γ1|J−

1
, γ2|J−

2
is equivalent to a subpath of the other

one, or there exist a1 < t1 and a2 < t2 such that:

– γ1|(a1,t1] and γ2|(a2,t2] are equivalent;
– φγ1(a1) ⊂ L(φγ2(a2)), φγ2(a2) ⊂ L(φγ1(a1))

– φγ1(a1) and φγ2(a2) are not separated in �.

Observe that the second property (but not the two other ones) is still satisfied
when a1, a2 are replaced by smaller parameters. Note also that φγ2(a2) is either
above or below φγ1(a1) relative to φγ1(t1) and that this property remains satisfied
when a1, a2 are replaced by smaller parameters and t1 by any parameter in
(a1, t1]. We have a similar situation on the possible right end of X .

Let γ1 : J1 → R
2 and γ2 : J2 → R

2 be two transverse paths such that
φγ1(t1) = φγ2(t2) = φ. We will say that γ1 and γ2 intersectF-transversally and
positively at φ (and γ2 and γ1 intersect F-transversally and negatively at φ)
if there exist a1, b1 in J1 satisfying a1 < t1 < b1, and a2, b2 in J2 satisfying
a2 < t2 < b2, such that:

– φγ2(a2) is below φγ1(a1) relative to φ;
– φγ2(b2) is above φγ1(b1) relative to φ.

See Fig. 5.
Note that, if γ1 intersects F-transversally γ2, if γ ′

1 is equivalent to γ1 and
γ ′
2 is equivalent to γ2, then γ ′

1 intersects F-transversally γ ′
2, and we say that

the equivalence class of γ1 intersect transversally the equivalence class of γ2.
As none of the leavesφ,φγ1(a1),φγ2(a2) separates the two others, one deduces

that

φγ1(a1) ⊂ L(φγ2(a2)), φγ2(a2) ⊂ L(φγ1(a1))

Fig. 5 F -transverse
intersection. The tangency
point is also a point of
F -transverse intersection

φγ2(a2)

φγ1(a1)

φγ1(b1)

φγ2(b2)

γ2

γ1

φ
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and similarly that

φγ1(b1) ⊂ R(φγ2(b2)), φγ2(b2) ⊂ R(φγ1(b1)).

As explained above, these properties remain true when a1, a2 are replaced by
smaller parameters, b1, b2 by larger parameters and φ by any other leaf met by
γ1 and γ2. Note that γ1 and γ2 have at least one intersection point and that one
can find two transverse paths γ ′

1, γ
′
2 equivalent to γ1, γ2 respectively, such that

γ ′
1 and γ ′

2 have a unique intersection point, located on φ, with a topologically
transverse intersection. Note that, if γ1 and γ2 are two paths that meet the same
leaf φ, then either they intersectF-transversally, or one can find two transverse
paths γ ′

1, γ
′
2 equivalent to γ1, γ2, respectively, with no intersection point.

3.3 F -transverse intersection in the general case

Here again, the notion of F-transverse intersection can be naturally extended
in case every connected component of M is a plane and F is not singular. Let
us return now to the general case of a singular foliation F on a surface M . Let
γ1 : J1 → M and γ2 : J2 → M be two transverse paths that meet a common
leaf φ = φγ1(t1) = φγ2(t2). We will say that γ1 and γ2 intersectF-transversally

at φ if there exist paths γ̃1 : J1 → d̃om(F) and γ̃2 : J2 → d̃om(F), lifting γ1
and γ2, with a common leaf φ̃ = φγ̃1(t1) = φγ̃2(t2) that lifts φ, and intersecting
F̃-transversally at φ̃. If φ is closed the choices of γ̃1 and γ̃2 do not need to be
unique, see Fig. 6.

Fig. 6 Given a lift γ̃1 of γ1,
there are two different lifts of
γ2 intersecting
F̃ -transversally γ̃1

γ1

γ2

p1

p3

p2
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Here again, we can give a sign to the intersection. As explained in the last
subsection, there exist t ′1 and t ′2 such that γ1(t ′1) = γ2(t ′2) and such that γ1 and
γ2 intersectF-transversally at φγ1(t ′1) = φγ2(t ′2). In this case we will say that γ1
and γ2 intersect F-transversally at γ1(t ′1) = γ2(t ′2). In the case where γ1 = γ2
we will talk of an F-transverse self-intersection. A transverse path γ has an
F-transverse self-intersection if for every lift γ̃ to the universal covering space
of the domain, there exists a non trivial covering automorphism T such that
γ̃ and T (γ̃ ) have a F̃-transverse intersection. We will often use the following
fact. Let γ1 : J1 → M and γ2 : J2 → M be two transverse paths that meet
a common leaf φ = φγ1(t1) = φγ2(t2). If J

′
1, J

′
2 are two sub-intervals of J1, J2

that contain t1, t2 respectively and if γ1|J ′
1
and γ2|J ′

2
intersect F-transversally

at φ, then γ1 and γ2 intersect F-transversally at φ.
Similarly, let � be a loop positively transverse to F and γ its natural lift. If

γ intersects F-transversally a transverse path γ ′ at a leaf φ, we will say that
� and γ ′ intersect F-transversally at φ. Moreover if γ ′ is the natural lift of
a transverse loop �′ we will say that � and �′ intersect F-transversally at φ.
Here again we can talk of self-intersection.

As a conclusion, note that if two transverse paths have an F-transverse
intersection, they both have a leaf on their right and a leaf on their left.

3.4 Some useful results

In this section, we will state different results that will be useful in the rest
of the article. Observe that the finiteness condition for the next proposition is
satisfied if every leaf of F is wandering, or when M has genus 0.

Proposition 1 Let F be an oriented singular foliation on a surface and
(�i )1�i�m a family of prime transverse loops that are not pairwise equiv-
alent. We suppose that the leaves met by the loops �i are never closed and that
there exists an integer N such that no loop �i meets a leaf more than N times.
Then, for every i ∈ {1, . . . ,m}, there exists a transverse loop �′

i equivalent to
�i such that:

i) �′
i and �′

j do not intersect if �i and � j have noF-transverse intersection;
ii) �′

i is simple if �i has no F-transverse self-intersection.

Proof There is a natural partial order on dom(F) defined as follows: write
z � z′ if φz is not closed and z′ ∈ φ+

z . One can suppose, without loss of
generality, that the loops �i are included in the same connected component
W of dom(F). One can lift F |W to an oriented foliation F̃ on the universal
covering space W̃ of W . We will parameterize �i by a copy T

1
i of T

1 and
consider the T

1
i as disjoint circles. We will endow the set T∗ = �1�i�mT

1
i

with the natural topology generated by the open sets of the T
1
i . We get a
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continuous map � : T∗ → W (a multi-loop) by setting �(t) = �i(t)(t), where
t ∈ T

1
i(t). Suppose that t �= t ′ and φ�(t) = φ�(t ′). One can lift the loops �i(t)

and �i(t ′) to lines γ̃i(t) : R → W̃ and γ̃i(t ′) : R → W̃ transverse to F̃ such
that φ̃γ̃i(t)(̃t) = φ̃γ̃i(t ′)(̃t ′) = φ̃, where t̃ and t̃ ′ lift t and t ′ respectively. The
fact that the loops are prime and not equivalent implies that γ̃i(t)|[̃t,+∞) and
γ̃i(t ′)|[̃t ′,+∞) are not equivalent and similarly that γ̃i(t)|(−∞,̃t] and γ̃i(t ′)|(−∞,̃t ′]
are not equivalent. So, φ̃γ̃i(t ′) (̃t

′′) is above or below φ̃γ̃i(t) (̃t
′′) relative to φ̃ if

∣
∣̃t ′′
∣
∣ is sufficiently large. Moreover the option does not depend on the choice

of the lifts. We will write t ≺ t ′ in the case where φ̃γ̃i(t ′) (̃t
′′) is above φ̃γ̃i(t) (̃t

′′)
and φ̃γ̃i(t ′) (−̃t ′′) is above φ̃γ̃i(t) (−̃t ′′) for t̃ ′′ sufficiently large. Observe that one
has t ≺ t ′ or t ′ ≺ t in the two following cases:

– i(t) �= i(t ′) and �i(t) and �i(t ′) have no F-transverse intersection;
– i(t) = i(t ′) and �i(t) has no F-transverse self-intersection.

We will say that t ∈ T∗ is a good parameter of �, if for every t ′ ∈ T∗, one has

t ≺ t ′ ⇒ �(t) < �(t ′).

To get the proposition it is sufficient to construct, for every i ∈ {1, . . . ,m},
a transverse loop �′

i equivalent to �i such that the induced multi-loop �′
has only good parameters. Let us define the order o(t) of t ∈ T∗ to be the
number of t ′ ∈ T∗ such that t ≺ t ′. Note that every parameter of order 0
is a good parameter. We will construct �′ by induction, supposing that every
parameter of order � r is good and constructing �′ such that every parameter
of order � r + 1 is good. Note that for every s, the set T�s of parameters
of order � s is closed and the set Tgood of good parameters is open. The
set Tbad = T�r+1 \ Tgood is closed and disjoint from T�r : it contains only
parameters of order r + 1. Let us fix an open neighborhood O of Tbad disjoint
from T�r . By hypothesis, for every t ∈ Tbad, one can find r + 1 points θ0(t),
…, θr (t) in T∗ such that t ≺ θi (t) for every i ∈ {0, . . . , r} and among the
�(θi (t)) a smallest one �(θ(t)) (for the order �). Each θi (t) belongs to T�r
and therefore is disjoint from O . Note that each function θi can be chosen
continuous in a neighborhood of a point t , which implies that t �→ �(θ(t))
is continuous on Tbad. It is possible to make a perturbation of � supported
on O by sliding continuously each point �(t) on φ−

�(t) to obtain a transverse
multi-loop�′ such that�′(t) < �(θ(t)). Since the perturbation is a holonomic
homotopy, �′ must be equivalent to �.

Since θi (t) ∈ T�r for every i ∈ {0, . . . , r} , we have �(θi (t)) = �′(θi (t))
and so �′(t) < �′(θ(t)). ��

Let us continue with the following adapted version of Poincaré-Bendixson
Theorem.
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Proposition 2 Let F be an oriented singular foliation on S
2 and γ : R → S

2

an F-bi-recurrent transverse path. The following properties are equivalent:

i) γ has no F-transverse self-intersection;
ii) there exists a transverse simple loop �′ such that γ is equivalent to the

natural lift γ ′ of �′;
iii) the set U =⋃t∈R

φγ (t) is an open annulus.

Proof To prove that ii) implies iii), just note that a dual function of �′ takes
only two consecutive values, which implies that every leaf of F meets �′ at
most once.

To prove that iii) implies i) it is sufficient to note that if
⋃

t∈R
φγ (t) is an

annulus, each connected component of its preimage in the universal covering
space of dom(F) is an open set, union of leaves, where the lifted foliation F̃
is trivial. This implies that γ has no F-transverse self-intersection.

It remains to prove that i) implies ii). The path γ being F-bi-recurrent,
one can find a < b such that φγ (a) = φγ (b). Replacing γ by an equivalent
transverse path, one can suppose that γ (a) = γ (b). Let� be the loop naturally
defined by the closed path γ |[a,b]. As explained previously, every leaf that
meets � is wandering and consequently, if t and t ′ are sufficiently close, one
has φ�(t) �= φ�(t ′). Moreover, because � is positively transverse to F , one
cannot find an increasing sequence (an)n�0 and a decreasing sequence (bn)n�0,
such that φγ (an) = φγ (bn). So, there exist a � a′ < b′ � b such that t �→
φγ (t) is injective on [a′, b′) and satisfies φγ (a′) = φγ (b′). Replacing γ by
an equivalent transverse path, one can suppose that γ (a′) = γ (b′). The set
U = ⋃

t∈[a′,b′] φγ (t) is an open annulus and the loop �′ naturally defined by
the closed path γ |[a′,b′] is a simple loop.

Let us prove now that γ is equivalent to the natural lift γ ′ of �′. BeingF-bi-
recurrent it cannot be equivalent to a strict subpath of γ ′. So it is sufficient to
prove that it is included inU . We will give a proof by contradiction.We denote
the two connected components of the complement of U as X1, X2. Suppose
that there exists t ∈ R such that γ (t) /∈ U . The path γ being F-bi-recurrent
and the sets Xi saturated, there exists t ′ ∈ R separated from t by [a′, b′] such
that γ (t ′) is in the same component Xi than γ (t). More precisely, one can find
real numbers

t1 < a′′ � a′ < b′ � b′′ < t2

and an integer k � 1, uniquely determined such that
– γ |[a′′,b′′] is equivalent to γ |k[a′,b′];
– γ |(t1,a′′) and γ |(b′′,t2) are included in U but do not meet φγ (a′);
– γ (t1) and γ (t2) do not belong to U .
Moreover, if γ (t2) does not belong to the same component Xi than γ (t1), one
can find real numbers t2 � t3 < t4 uniquely determined such that
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φγ(a )
γ(t1)

γ(t2)
γ(a )
γ(b )

X1

X2
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φγ(a )γ(t1)

γ(t2)

γ(a )
γ(b )

X1

X2

U

γ(t4)

γ(t3)

Fig. 7 Proof of Proposition 2

– γ (t4) belongs to the same component Xi than γ (t1);
– γ |[t2,t4) does not meet this component,
– γ |(t3,t4) is included in U ;
– γ (t3) does not belong to U .

Observe now that if γ (t1) and γ (t2) belong to the same component Xi , then
γ[t1,b′′] and γ[a′′,t2] intersect F-transversally at φγ (a′′) = φγ (b′′). Suppose now
that γ (t1) and γ (t2) do not belong to the same component Xi . Fix t ∈ (t3, t4).
There exists t ′ ∈ [a′, b′] such that φγ (t ′) = φγ (t). Observe that γ |[t1,t2] and
γ |[t3,t4] intersect F-transversally at φγ (t ′) = φγ (t) (See Fig. 7). ��
Remark 3 Note that the proof above tells us that if γ is F-positively or F-
negatively recurrent, there exists a transverse simple loop �′ such that γ is
equivalent to a subpath of the natural lift γ ′ of �′.

The next result is a slight modification.

Proposition 4 Let F be an oriented singular foliation on R
2 with leaves of

uniformly bounded diameter and γ be a transverse proper path. The following
properties are equivalent:

i) γ has no F-transverse self-intersection;
ii) γ meets every leaf at most once;
iii) γ is a line.

Proof The fact that ii) implies iii) is obvious, as is the fact that iii) implies
i). It remains to prove that (i) implies ii). Let us suppose that φγ (a) = φγ (b),
where a < b. We will prove that γ has a transverse self-intersection. Like in
the proof of the previous proposition, replacing γ by an equivalent transverse
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path, one can find a � a′ < b′ � b such that γ (a′) = γ (b′), such that
U = ⋃

t∈[a′,b′] φγ (t) is an open annulus and such that the loop �′ naturally
defined by the closed path γ |[a′,b′] is a simple loop.Write X1 for the unbounded
connected component ofR

2\�′ and X2 for the bounded one. The path γ being
proper, one can find real numbers

t1 < a′′ � a′ < b′ � b′′ < t2

and an integer k � 1, uniquely determined such that

– γ |[a′′,b′′] is equivalent to γ |k[a′,b′];
– γ |(t1,a′′) and γ |(b′′,t2) are included in U but do not meet φγ (a′);
– γ (t1) and γ (t2) do not belong to U .

As seen in the proof of the previous proposition, if γ (t1) and γ (t2) belong to
the same component Xi , then γ[t1,b′′] and γ[a′′,t2] intersect F-transversally at
φγ (a′′) = φγ (b′′). If γ (t1) ∈ X1 and γ (t2) ∈ X2, using the fact that γ is proper,
one can find real numbers t2 � t3 < t4 uniquely determined such that

– γ (t4) belongs to X1;
– γ |[t2,t4) does not meet X1,
– γ |(t3,t4) is included in U ;
– γ (t3) belongs to X2.

As seen in the proof of the previous proposition, γ |[t1,t2] and γ |[t3,t4] intersect
F-transversally. The case where γ (t1) ∈ X2 and γ (t2) ∈ X1 can be treated
analogously. ��

Let us add another result describing paths with no F-transverse self-
intersection:

Proposition 5 Let F be an oriented singular foliation on R
2, γ a transverse

proper path and δ a dual function of γ . If γ ′ is a transverse path that does not
intersect F-transversally γ , then δ takes a constant value on the union of the
leaves met by γ ′ but not by γ .

Proof Let us suppose that γ ′ meets two leaves φ0 and φ1, disjoint from γ and
such that δ does not take the same value on φ0 and on φ1. One can suppose
that γ ′ joins φ0 to φ1. Let W be the connected component of dom(F) that
contains γ . Write W̃ for the universal covering space ofW and F̃ for the lifted
foliation. Every lift of γ is a line. Fix a lift γ̃ ′, it joins a leaf φ̃0 that lifts φ0 to a
leaf φ̃1 that lifts φ1. By hypothesis, there exists a lift γ̃ of γ such that the dual
function δγ̃ do not take the same value on φ̃0 and φ̃1. One can suppose that
φ̃0 ⊂ r(γ̃ ) and φ̃1 ⊂ l(γ̃ ) for instance (recall that r(γ̃ ) is the union of leaves
included in the connected component of W̃ \ γ̃ on the right of γ̃ and l(γ̃ )

the union of leaves included in the other component). The foliation F̃ being
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non singular, the sets r(γ̃ ) and l(γ̃ ) are closed. Consequently, there exists a
subpath γ̃ ′′ of γ̃ ′ that joins a leaf of r(γ̃ ) to a leaf of l(γ̃ ) and that is contained
but the ends in the open set Ũ , union of leaves met by γ̃ . Observe now that γ̃
and γ̃ ′′ intersect F̃-transversally and positively. ��

We deduce immediately

Corollary 6 Let F be an oriented singular foliation on R
2, γ a transverse

path that is either a line or a proper path directed by a unit vector ρ and γ ′ a
transverse path. If γ and γ ′ do not intersect F-transversally, then γ ′ cannot
meet both sets r(γ ) and l(γ ).

Given a transverse loop� with aF-transverse self-intersection and its natu-
ral lift γ , there exists some integer K forwhich γ |[0,K ] also has anF-transverse
self-intersection. Let us continue this section with an estimate of the minimal
such K when � is homologous to zero.

Proposition 7 Let F be an oriented singular foliation on M and � : T
1 →

M a transverse loop homologous to zero in M with an F-transverse self-
intersection. If γ : R → M is the natural lift of �, then γ |[0,2] has an F-
transverse self-intersection.

Proof Write d̃om(F) for the universal covering space of dom(F). If γ̃ : J →
d̃om(F) is a path and T a covering automorphism, write T (γ̃ ) : J → d̃om(F)

for the path satisfying T (γ̃ )(t) = T (γ̃ (t)) for every t ∈ J . Choose a lift
γ̃ of γ to d̃om(F) and write T for the covering automorphism such that
γ̃ (t + 1) = T (γ̃ )(t), for every t ∈ R. Since γ has an F-transverse self-
intersection and is periodic of period 1, there exist a covering automorphism
S and

a1 < t1 < b1, a2 < t2 < b2,

such that

– γ̃ |(a1,b1) is equivalent to S(γ̃ )|(a2,b2);
– γ̃ |[a1,b1] and S(γ̃ )|[a2,b2] have a F̃-transverse intersection at γ̃ (t1) =
S(γ̃ )(t2),

– both a1, a2 belong to [0, 1).
We will show that b1 � a1+1 and b2 � a2+1 , which implies that γ |[0,2] has
anF-transverse self-intersection. Assume for a contradiction that b1 > a1+1
(the case where b2 > a2 + 1 is treated similarly). Then we can find a′

1, a
′
2, b

′
2

with

a1 < a′
1 < t1, a2 < a′

2 < t2 < b′
2 < b2

such that γ̃ |[a′
1,a

′
1+1] is equivalent to S(γ̃ )|[a′

2,b
′
2].
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Fig. 8 Contradiction from
Proposition 7. γ̃ |[a′

1,a
′
1+1]

and Sγ̃ |[a′
2,a

′
2+1] must cross

the same finite number of
lifts of φγ (s)

γ1(a1)
γ1(a1 + 1)

Sγ1(a2)
Sγ1(b2)

Sγ1(a2 + 1)

φγ(s)

T1(φγ(s))

T2(φγ(s))

Consider first the case where b′
2 = a′

2 + 1. In that situation there exists
an increasing homeomorphism h : [a′

1, a
′
1 + 1] → [a′

2, a
′
2 + 1], such that

h(t1) = t2 and φγ̃ (t) = φS(γ̃ )(h(t)). This implies that

T (φγ̃ (a′
1)

) = φγ̃ (a′
1+1) = φS(γ̃ )(a′

2+1) = ST S−1φγ̃ (a′
2)

= ST S−1φγ̃ (a′
1)

.

In case ST S−1 = T , one can extend h to a homeomorphism of the real line that
commuteswith the translation t �→ t+1 such thatφγ̃ (t) = φS(γ̃ )(h(t)), for every
t ∈ R. If K is large enough, then [−K , K ] contains [a1, b1] and h([−K , K ])
contains [a2, b2]. This contradicts the fact that γ̃ |[a1,b1] and S(γ̃ )|[a2,b2] have
a F̃-transverse intersection at γ̃ (t1) = S(γ̃ )(t2). In case ST S−1 �= T , the leaf
φγ̃ (a′

1)
is invariant by the commutator T−1ST S−1 and so projects into a closed

leaf of F that is homological to zero in dom(F), which means that it bounds
a closed surface in this domain. This closed surface, being a subsurface of
dom(F), is naturally foliated by F , a non singular foliation, and one gets a
contradiction by Poincaré-Hopf formula. One also gets a contradiction since
this closed leaf has a non zero intersection number with the loop �.

Now assume that b′
2 < a′

2 + 1. Let s ∈ (b′
2, a

′
2 + 1) and consider φγ (s).

As noted in the last paragraph of Sect. 3.1, since � is homologous to zero, it
intersects every given leaf a finite number of times. Letn be the number of times
it intersects φγ (s). It is equal to the number of times γ |[a′

1,a
′
1+1) or γ |[a′

2,a
′
2+1)

intersect φγ (s). On the other hand, since γ |[a′
2,b

′
2)
is equivalent to γ |[a′

1,a
′
1+1), it

must also intersect φγ (s) exactly n times, and since s ∈ (b′
2, a

′
2+1), γ |[a′

2,a
′
2+1)

needs to intersect φγ (s) at least n + 1 times, a contradiction (see Fig. 8).
Finally, if b′

2 > a′
2 + 1, then γ |[a′

2,a
′
2+1] is equivalent to γ |[a′

1,b
′
1] for some

b′
1 < a′

1 + 1 and the same reasoning as above may be applied. ��
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Wewill finish this subsection with a result (Proposition 9) that will be useful
later. Let us begin with this simple lemma.

Lemma 8 Let F be an oriented singular foliation on M and F̃ the lifted
foliation on the universal covering space d̃om(F) of dom(F). Let γ̃ and γ̃ ′ be
two lines of d̃om(F) transverse to F̃ , invariant by T and T ′ respectively, where
T and T ′ are non trivial covering automorphisms. Up to a right composition
by a power of T and a left composition by a power of T ′ there are finitely many
covering automorphisms S such that γ̃ and S(γ̃ ′) intersect F̃-transversally.

Proof Suppose γ̃ : R → d̃om(F) and γ̃ ′ : R → d̃om(F) parameterized such
that γ̃ (t+1) = T (γ̃ (t)) and γ̃ ′(t+1) = T ′(γ̃ (t)), for every t ∈ R. The group
of covering automorphisms acts freely and properly. So there exists L < +∞
automorphisms S such that γ̃ |[0,1] ∩ S(γ̃ ′|[0,1]) �= ∅. If γ̃ and S(γ̃ ′) intersect
F̃-transversally, there exist t and t ′ such that γ̃ (t) = S(γ̃ ′)(t ′).Write [x] for the
integer part of a real number x . One has γ̃ (t−[t]) = T−[t]ST ′[t ′](γ̃ )(t ′−[t ′]),
which implies that T−[s]ST ′[t] is one of the L previous automorphisms. ��

LetF be an oriented singular foliation onM and F̃ the lifted foliation on the
universal covering space d̃om(F) of dom(F). Let� be a loop on M transverse
to F and γ̃ a lift of � to d̃om(F). Write T for the covering automorphism
such that γ̃ (t + 1) = T (γ̃ (t)) for every t ∈ R. If δ : J → d̃om(F) is a
transverse path equivalent to a subpath of γ̃ we define its width (relative to
γ̃ ) to be the largest integer l (possibly infinite) such that δ meets l translates
of a leaf by a power of T . More precisely, widthγ̃ (δ) = ∞ if there exists a
leaf φ such that δ meets infinitely many translates of φ by a power of T , and
width(δ) = l < +∞ if there exists a leaf φ such that δ meets every leaf T k(φ),
0 � k < l, and if l + 1 does not satisfy this property. By Lemma 8, up to a
left composition by a power of T there are finitely many lifts S(γ̃ ) such that
γ̃ and S(γ̃ ) intersect F̃-transversally. This number is clearly independent of
the chosen lift γ̃ , we denote it self(�). Saying that � has a F-transverse self-
intersection means that self(�) �= 0. If γ̃ and S(γ̃ ) intersect F̃-transversally,
one can consider the maximal subpath of S(γ̃ ) that is equivalent to a subpath
of γ̃ . Note that its width (relative to γ̃ ) is finite. Looking at all the S(γ̃ ) that
intersect F̃-transversally γ̃ and taking the supremum, one gets a finite number
because the S(γ̃ ) are finite up to a composition by a power of T . This number
is independent of the choice of γ̃ , we denote it width(�). One gets a total order
�γ̃ on the set of leaves met by a lift γ̃ , where

φ̃ �γ̃ φ̃′ ⇔ R(φ̃) ⊂ R(φ̃′).

Note that if γ̃ and S(γ̃ ) intersect transversally and φ̃ is a leaf met by γ̃ , then
there exist at most width(�) translates of φ̃ by a power of T that meet S(γ̃ ).
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Moreover, there exists k ∈ Z such that every leaf φ̃′ met by γ̃ and S(γ̃ )

satisfies T k(φ̃) ≺γ̃ φ̃′ ≺γ̃ Twidth(�)+1+k(φ̃) and consequently that φ̃ and
Twidth(�)+1(φ̃) are separated by T−k S(γ̃ ).

Proposition 9 Let F be an oriented singular foliation on M, let � be a trans-
verse loop with a F-self-transverse intersection and γ its natural lift. Write

M(�) = self(�)width(�)(width(�) + 1) + 1.

Consider two points z and z′ disjoint from � and look at the set of homotopy
classes, with fixed endpoints, of paths starting at z and ending at z′. There are
at most 2M(�) classes which are represented both by a path disjoint from �

and by a (possibly different) transverse path equivalent to a subpath of γ .

Proof Fix a lift z̃ of z in d̃om(F) and denote X̃ the set of lifts z̃′ of z′ such
that there exists a path from z̃ to z̃′ disjoint from all lifts of γ and such that
there exists a transverse path from z̃ to z̃′ that is F̃-equivalent to a subpath of
at least one lift of γ . The proposition is equivalent to showing that X̃ does not
contain more than 2M(�) points.

By definition, for every z̃′ ∈ X̃ , there exists a transverse path δ̃̃z′ from z̃ to z̃′,
unique up to equivalence. Moreover the set X̃ ∪ {̃z} is included in a connected
component W̃ of the complement of the union of lifts of γ . There is no lift γ̃
of γ that separates points of X̃ : for each lift γ̃ , the set X̃ is included in R(γ̃ )

or in L(γ̃ ). One can write X̃ = X̃r ∪ X̃l , where z̃′ ∈ X̃r if there exists a lift γ̃
of γ satisfying X̃ ⊂ R(γ̃ ) such that δ̃̃z′ is a subpath of γ̃ (up to equivalence).
One define similarly X̃l replacing the condition X̃ ⊂ R(γ̃ ) by X̃ ⊂ L(γ̃ ).
We will prove that X̃r and X̃l do not contain more than M(�) points. The two
situations being similar, we will study the first one.

Lemma 10 If z̃′1 and z̃′2 are two different points in X̃ , then φ̃z′1 �= φ̃z′2 .

Proof See Fig. 9 for the following construction. Suppose for example that
z̃′1 ∈ φ+

z̃′2
and denote by S the covering automorphism such that z̃′1 = S(̃z′2).

There exists a lift γ̃ of γ such that δ̃̃z′1 is a subpath of γ̃ (up to equivalence).

Note that there exists k ∈ Z such that z̃′1 ∈ R(Sk(γ̃ )) and z̃′2 ∈ L(Sk(γ̃ )). The
lift Sk(γ̃ ) separates z̃′1 and z̃′2, we have a contradiction. ��

Lemma 11 If z̃′1 and z̃′2 are two different points in X̃r , then up to equivalence,
one of the paths δ̃̃z′1 , δ̃̃z′2 is a subpath of the other one.

Proof Each path δ̃̃z′i , i ∈ {1, 2}, joins φ̃z to φ̃z′i . We claim that either L(φ̃z′1) ⊂
L(φ̃z′2) or L(φ̃z′2) ⊂ L(φ̃z′1). If this is not the case, one of the leaves φ̃z′1 , φ̃z′2 is

above the other one relative to φ̃z . Suppose that it is φ̃z′1 . By definition of X̃r ,
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z1
Sk(γ)

γ

z2z

z1

z2
z γ

Fig. 9 Cases described in Lemma 10 (left) and Lemma 11 (right)

there exists a lift γ̃ of γ satisfying X̃r ⊂ R(γ̃ ) such that δ̃̃z′1 is a subpath of γ̃

(up to equivalence). Note now that φ̃z′2 ⊂ L(γ̃ ) which contradicts the fact that
z̃′2 ∈ R(γ̃ ).

Since L(φ̃z) contains both L(φ̃z′1) and L(φ̃z′2), and since, by the previous
lemma, φ̃z, φ̃z′1 , and φ̃z′2 are all distinct, either φ̃z′1 separates φ̃z from φ̃z′2 , or

φ̃z′2 separates φ̃z from φ̃z′1 . In the first case, δ̃̃z′1 is equivalent to a subpath of

δ̃̃z′2 , and in the second case δ̃̃z′2 is equivalent to a subpath of δ̃̃z′1 . ��
We will suppose that X̃r has at least K points, and we will show that K �

M(�), which proves the proposition. Using Lemmas 10 and 11, one can find
a family (̃z′i )0�i�K−1 of points of X̃r such that δ̃̃z′i is a strict subpath of δ̃̃z j
(up to equivalence) if i < j . One knows that there exists a lift γ̃ of γ such
that δ̃̃z′M(�)

is equivalent to a subpath of γ̃ . One deduces that every leaf φ̃z′i ,

0 � i � K − 1, is met by γ̃ and that φ̃z′i ≺γ̃ φ̃z′j if i < j . Write z̃′i = Ti (̃z′0)
and note that Ti belongs to stab(W̃ ), the stabilizer of W̃ in the group of covering
automorphisms.

Lemma 12 The lifts γ̃ and Ti (γ̃ ) intersect transversally for every i ∈
{1, . . . , K − 1}.
Proof Fix i ∈ {1, . . . , K − 1}. One can find a transverse line β̃ invariant by
Ti passing through z̃′0 and z̃′i . Write δ̃ for the maximal subpath of γ̃ that is
equivalent to a subpath of β̃. If γ̃ and β̃ intersect F̃-transversally, then γ̃ sepa-
rates T−k

i (φ̃z′0) and T k
i (φ̃z′0) if k is large enough. So, it separates T

−k
i (̃z′0) and

T k
i (̃z′0). This contradicts the fact that Ti ∈ stab(W̃ ). If δ̃ is unbounded or equiv-

alently if widthβ(γ ) = +∞, then δ̃ is forward or backward invariant by Ti .
Look at the first case. Since γ has aF-transverse self-intersection, there exists
a covering automorphism S such that γ̃ and S(γ̃ ) intersect F̃-transversally.

123



648 P. Le Calvez, F. A. Tal

Fig. 10 Final case of
Lemma 12

φγ(a)

γ

Ti(γ)

β

Ti(φγ(a))

φγ(b)

φβ(a )

φβ(b )

Ti(φβ(a ))

Ti(φβ(b ))

Ti(φ0)

For every integer n, the lines T nS(γ̃ ) and γ̃ intersect F̃-transversally. One
deduces that if n is large enough, then T nS(γ̃ ) and δ̃ intersect F̃-transversally
and consequently T nS(γ̃ ) and β̃ intersect F̃-transversally. So, if k is large
enough, T nS(γ̃ ) separates T−k

i (φ̃z′0) and T k
i (φ̃z′0). This again contradicts the

fact that Ti ∈ stab(W̃ ). The case where δ̃ is backward invariant can be treated
analogously. It remains to study the case where δ is bounded and γ̃ and β̃ do
not intersect F̃-transversally.

See Fig. 10 for the following construction.Write δ̃′ for the maximal subpath
of β̃ that is equivalent to δ̃. There exist a < b such that δ̃ = γ̃ |(a,b) and a′ < b′
such that δ̃′ = β̃|(a′,b′). The sets R(γ̃ (a)) and R(β̃(a′)) are disjoint, as are the
sets L(γ̃ (b)) and L(β̃(b′)). There exists a leafφ0 such that δ̃ and δ̃′ meetφ0 and
Ti (φ0). In particular Ti (φ0) is met by γ̃ |[a,b] and Ti (γ̃ )|[a,b]. By assumption,
γ̃ and β̃ do not intersect F̃-transversally. There is no loss of generality by
supposing that φβ̃(a′) is below φγ̃ (a) and φβ̃(b′) below φγ̃ (b) relative to φ0 or
Ti (φ0). The leaf Ti (φβ̃(a′)) is above Ti (φγ̃ (a)) = φTi (γ̃ )(a) relative to Ti (φ0).
Moreover, since Ti preserves β̃, one has that Ti (φβ̃(a′)) separates φβ̃(a′) and
Ti (φ0), and therefore it is crossed by both δ̃ and δ̃′. This implies that there exists
a transverse path that joins φγ̃ (a) to Ti (φβ̃(a′)). Consequently, φγ̃ (a) belongs to
R(Ti (φβ̃(a′))) and is above φTi (γ̃ )(a) relative to Ti (φ0). Similarly, there exists a
transverse path that joins φβ̃(b′) to φTi (γ̃ )(b). Consequently, φTi (γ̃ )(b) belongs to
L(φβ̃(b′)) and is above φγ̃ (b) relative to Ti (φ0). We have proved that the paths

γ̃[a,b] and Ti (γ̃ )[a,b] intersect F̃-transversally. ��

By the definition of self(�) and Lemma 12, there exists covering auto-
morphisms (Sl)0�l<self(�) such that γ̃ and Sl(γ̃ ) intersect F̃-transversally,
a family (li )1�i�K−1 in {0, . . . , self(�) − 1} and families of relative inte-
gers (ni )1�i�K−1, (mi )1�i�K−1, such that Ti = T ni Sli T

mi . Note that, if

123



Forcing theory for transverse trajectories 649

1 � i, j � K − 1, and i �= j , then Ti �= Tj , and the function that assigns for
each i the triple (ni , li ,mi ) is injective.

Define, for 0 � l < self(�) the set Il = {1 � i � K − 1, li = l} and fix
some l in {1, . . . , self(�)}. If i ∈ Il , each leaf Tmi (φ̃z′0) = S−1

l T−ni (φ̃z′i )

is met both by γ̃ and by S−1
l (γ̃ ), and since γ̃ and S−1

l (γ̃ ) also intersect
F̃-transversally, we deduce that there are at most width(�) possible val-
ues for mi with i ∈ Il . Fix such a value m and consider the set Il,m =
{1 � i � K − 1, li = l, mi = m}. Note that, if i ∈ Il,m , then the leaf
φ̃z′i = T ni SlT m(φ̃z′0) is met by both γ̃ and Sl(γ̃ ). The fact that no line T k Sγ̃ ,
k ∈ Z separates the leaves φ̃z′i , i ∈ Il,m implies, as noted just before Propo-
sition 9, that there at most width(�) + 1 such leaves, that means at most
width(�) + 1 possible values of ni and elements in Il,m . One deduces that

K � self(�)width(�)(width(�) + 1) = M(�),

as desired. ��

3.5 Transverse homology set

For any loop � on M , let us denote [�] ∈ H1(M, Z) its singular homol-
ogy class. The transverse homology set of F is the smallest set THS(F) of
H1(M, Z), that is stable by addition and contains all classes of loops positively
transverse to F . The following result will also be useful:

Proposition 13 Let F be a singular oriented foliation on T
2 and F̃ its lift to

R
2. If one can find finitely many classes κi ∈ THS(F), 1 � i � r , that linearly

generate the whole homology of the torus and satisfy
∑

1�i�r κi = 0, then the
diameters of the leaves of F̃ are uniformly bounded.

Proof Decomposing each class κi and taking out all the loops homologous to
zero, one can suppose (changing r is necessary) that for every i ∈ {1, . . . , r},
there exists a transverse loop �i such that [�i ] = κi . The fact that the κi
linearly generate the whole homology of the torus implies that the multi-loop
� =∑1�i�p �i is connected (as a set) and that the connected components of
its complement are simply connected. Moreover, these components are lifted
in uniformly bounded simply connected domains ofR

2, let us say by a constant
K . The multi-loop � being homologous to zero induces a dual function δ on
its complement. It has been explained before that δ decreases on each leaf of
F and is bounded. Consequently, there exists an integer N such that every leaf
meets at most N components. If one lifts it to R

2, one find a path of diameter
bounded by NK . ��
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4 Maximal isotopies, transverse foliations, admissible paths

4.1 Singular isotopies, maximal isotopies

Let us begin by introducing mathematical objects related to isotopies. Let f
be a homeomorphism of an oriented surface M . An identity isotopy of f is a
path joining the identity to f in the space of homeomorphisms of M , furnished
with the C0 topology (defined by the uniform convergence of maps and their
inverse on every compact set). We will write I for the set of identity isotopies
of f and will say that f is isotopic to the identity if this set is not empty. If
I = ( ft )t∈[0,1] ∈ I is such an isotopy, we can define the trajectory of a point
z ∈ M , which is the path I (z) : t �→ ft (z). More generally, for every n � 1
we define I n(z) = ∏

0�k<n I ( f
k(z)) by concatenation. We will also use the

following notations

IN(z) =
∏

0�k<+∞
I ( f k(z)), I−N(z) =

∏

−∞<k<0

I ( f k(z)),

IZ(z) =
∏

−∞<k<+∞
I ( f k(z)).

The last path will be called the whole trajectory of z.
One can define the fixed point set fix(I ) = ⋂

t∈[0,1] fix( ft ) of I , which is
the set of points with trivial trajectory.

A wider class of isotopies is the class of singular isotopies. Such an object
I is an identity isotopy defined on an open set invariant by f , the domain of
I , whose complement, the singular set, is included in the fixed point set of f .
We will write dom(I ) for the domain and sing(I ) for the singular set. Like
in the case of a global isotopy, one can define the trajectory I (z) of a point
z ∈ dom(I ) and the fixed point set, which is included in the domain. Note
that any isotopy I ∈ I is itself a singular isotopy with empty singular set
and induces by restriction to the complement of the fixed point set a singular
isotopy such that sing(I ) = fix(I ).

If M̌ is a covering space of M and π̌ : M̌ → M the covering projection,
every identity isotopy I can be lifted to M̌ as an identity isotopy Ǐ = ( f̌t )t∈[0,1].
The homeomorphism f̌ = f̌1 is the lift of f associated to I or induced by
I . Similarly, every singular isotopy can be lifted as a singular isotopy Ǐ of f̌
such that dom( Ǐ ) = π̌−1(dom(I )).

Let us recall now some results due to Jaulent [21]. Denote the set of singular
isotopies by Ising. It is not difficult to show that one gets a preorder� on Ising,
writing I � I ′ if:
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i) dom(I ′) ⊂ dom(I );
ii) for every z ∈ dom(I ′), the trajectories I ′(z) and I (z) are homotopic in

dom(I );
iii) for every z ∈ dom(I ) \ dom(I ′), the trajectory I (z) is homotopic to zero

in dom(I ).

We will say that I and I ′ are equivalent if I � I ′ and I ′ � I . We will
say that I is maximal if there is no singular isotopy I ′ such that I � I ′
and dom(I ′) �= dom(I ). If I is a singular isotopy and if there is no point
z ∈ fix( f ) ∩ dom(I ) such that I (z) is homotopic to zero in dom(I ), then I is
maximal by iii). The converse is true. If there is a point z ∈ fix( f ) ∩ dom(I )
such that I (z) is homotopic to zero in dom(I ), one can find an isotopy I ′ on
dom(I ) that is homotopic to I (as a path in the space of homeomorphisms
of M and relative to the ends) and that fixes z. Taking the restriction of I ′ on
dom(I )\{z}, one finds a singular isotopy strictly larger than I . Themain result
of [21] is the fact that every singular isotopy is smaller than amaximal singular
isotopy. In fact, the result is more precise and can be stated for hereditary
singular isotopies (we will explain later the interest of looking at this class
of singular isotopies). By definition, such an isotopy I satisfies the following
condition: for every open setU containing dom(I ), there exists I ′ ∈ Ising such
that I ′ � I and dom(I ′) = U . Writing Iher for the set of hereditary singular
isotopies, we have the following result due to Jaulent [21]:

Theorem 14 For every I ∈ Iher there exists I ′ ∈ Iher, maximal in Iher,
satisfying I � I ′. Such an isotopy I ′ is maximal in Ising and so there is no
point z ∈ fix( f ) ∩ dom(I ′) such that I ′(z) is homotopic to zero in dom(I ′)

Note that if M̌ is a covering space of M and π̌ : M̌ → M the covering pro-
jection, then for every singular isotopies I , I ′ satisfying I � I ′, the respective
lifts Ǐ , Ǐ ′ satisfy Ǐ � Ǐ ′. Note also that a singular isotopy I is maximal if and
only if its lift Ǐ is maximal.

Let us explain the reason why hereditary singular isotopies are important. It
is related to the following problem. If I is a singular isotopy, does there exists
a global isotopy I ′ ∈ I such that fix(I ′) = sing(I ) ∪ fix(I ) and I ′|M\fix(I ′)
equivalent to I ? Such an isotopy I ′ always exists in the case where fix( f ) is
totally disconnected. Indeed, in that case, I naturally extends to an isotopy on
M that fixes the ends of dom(I ) corresponding to points of M . The problem is
much more difficult in the case where fix( f ) is not totally disconnected. The
fact that I is a hereditary singular isotopy is necessary because the restriction of
a global isotopy to the complement of its fixed point set is obviously hereditary.
It appears that this condition is sufficient. This is the purpose of a recentwork by
Béguin et al. [4]. Following [4], Jaulent’s theorem about existence of maximal
isotopies can be stated in the following much more natural form: for every
I ∈ I, there exists I ′ ∈ I such that:
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i) fix(I ) ⊂ fix(I ′);
ii) I ′ is homotopic to I relative to fix(I );
iii) there is no point z ∈ fix( f ) \ fix(I ′) whose trajectory I ′(z) is homotopic

to zero in M \ fix(I ′).
The last condition can be stated in the following equivalent form:
– if Ĩ ′ = ( f̃ ′

t )t∈[0,1] is the identity isotopy that lifts I ′|M\fix(I ′) to the universal
covering space of M \ fix(I ′), then f̃ ′

1 is fixed point free.
The typical example of an isotopy I ∈ I verifying iii) is the restricted family
I = ( ft )t∈[0,1] of a topological flow ( ft )t∈R onM . Indeed, one can lift the flow
( ft |M\fix(I ))t∈R as a flow ( f̃t )t∈R on the universal covering space ofM \fix(I ).
This flow has no fixed point and consequently no periodic point. So f̃1 is fixed
point free, which exactly means that the condition iii) is fulfilled. In particular,
the restriction of f toM \fix(I ) is a hereditarymaximal isotopy. To construct a
maximal singular isotopy that is not hereditary, let us consider the flow ( ft )t∈R

on R
2 defined as follows in polar coordinates

ft (r, θ) = (r, θ + 2π th(r))

where

h(r) =
{
r(1 − r), if r ∈ [0, 1],
r−1(1 − r−1), if r ∈ [1, +∞).

and set f = f1. The fixed point set of the flow is the union of the origin
and the unit circle S

1 and so, the restriction of the isotopy ( ft )t∈[0,1] to the
complement of this fixed point set is a maximal hereditary singular isotopy.
The isotopy I ′ = ( f ′

t )t∈[0,1], whose domain is the complement of {(0, 0)}∪S
1,

that coincides with ( ft )t∈[0,1] on the set of points such that 0 < r < 1 and
defined on the set of points such that r > 1 by:

f ′
t (r, θ) =

{
(r, θ + 4π tr), if t ∈ [0, 1/2],
(r, θ + 4π(t − 1/2)h(r)), if t ∈ [1/2, 1].

is not a hereditary singular isotopy. There is no singular isotopy I ′′ of f whose
domain is the complement of {(0, 0), (1, 0)} such that I ′′ � I ′ for the following
reason. If Ĩ ′′ is the lift of I ′′ to the universal covering of dom(I ′′), and if z is
a lift of (0, −1), and z̃n are lifts of (0, −1− 1/n) such that z̃n converges to z̃,
then the trajectory of Ĩ ′′(̃z) would be a closed loop, but the endpoints of the
trajectories of Ĩ ′′(̃zn) do not converge to z̃, since the trajectories of I ′(zn) and
I ′′(zn) are homotopic in dom(I ).
Since the proof of [4] is not published yet, we will use the formalism of

singular isotopies in the article.

123



Forcing theory for transverse trajectories 653

4.2 Transverse foliations

Let f be an orientation preserving plane homeomorphism. By definition, a
Brouwer line of f is a topological line λ such that f (L(λ)) ⊂ L(λ) (or
equivalently a line λ such that f (λ) ⊂ L(λ) and f −1(λ) ⊂ R(λ)). The
classical Brouwer Plane Translation Theorem asserts that R

2 can be covered
by Brouwer lines in case f is fixed point free (see [7]). Let us recall now
the equivariant foliated version of this theorem (see [28]). Suppose that f is
a homeomorphism isotopic to the identity on an oriented surface M . Let I
be a maximal singular isotopy and write Ĩ = ( f̃t )t∈[0,1] for the lifted identity
defined on the universal covering space d̃om(I ) of dom(I ). Recall that f̃ = f̃1
is fixed point free. Suppose first that dom(I ) is connected. In that case, d̃om(I )
is a plane and we have [28]:

Theorem 15 There exists a non singular topological oriented foliation F̃ on
d̃om(I ), invariant by the covering automorphisms, whose leaves are Brouwer
lines of f̃ .

Consequently, for every point z̃ ∈ d̃om(I ), one has

f̃ (̃z) ∈ L(φ̃z), z̃ ∈ R(φ f̃ (̃z)).

This implies that there exists a path γ̃ positively transverse to F̃ that joins z̃ to
f̃ (̃z). As noted in Sect. 3.1, this path is uniquely defined up to F̃-equivalence,
provided the endpoints remain the same. The leaves of the lifted foliation F̃
met by γ̃ are the leaves φ such that R(φ̃z) ⊂ R(φ) ⊂ R(φ f̃ (̃z)). In particular,

every leaf met by γ̃ is met by Ĩ (̃z). Of course, F̃ lifts a singular foliation F
such that dom(F) = dom(I ). We immediately get the following result, still
true in case dom(I ) is not connected:

Corollary 16 There exists a singular topological oriented foliation F satis-
fying dom(F) = dom(I ) such that for every z ∈ dom(I ) the trajectory I (z)
is homotopic, relative to the endpoints, to a path γ positively transverse to F
and this path is uniquely defined up to equivalence.

We will say that a foliation F satisfying the conclusion of Corollary 16 is
transverse to I . Observe that if M̌ is a covering space of M and π̌ : M̌ → M
the covering projection, a foliationF transverse to a maximal singular isotopy
I lifts to a foliation F̌ transverse to the lifted isotopy Ǐ .
We will write IF (z) for the class of paths that are positively transverse to

F , that join z to f (z) and that homotopic in dom(I ) to I (z), relative to the
endpoints. We will also use the notation IF (z) for every path in this class and
called it the transverse trajectory of z. Similarly, for every n � 1, one can
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define I nF (z) = ∏
0�k<n IF ( f k(z)), that is either a transverse path passing

through the points z, f (z), …, f n(z), or a set of such paths. Similarly we will
define

IN

F (z) =
∏

0�k<+∞
IF ( f k(z)), I−N

F (z) =
∏

−∞<k<0

IF ( f k(z)), IZ

F (z)

=
∏

−∞<k<+∞
IF ( f k(z)).

The last object will be called the whole transverse trajectory of z.
If z is a periodic point of period q, there exists a transverse loop � whose

natural lift γ satisfies γ |[0,1] = I qF (z). By definition a transverse loop is asso-
ciate to z if it is F-equivalent to � (the definition was given in Sect. 3.1). Of
course this does not depend on the choices of the IF ( f k(z)), 0 � k < q.

Let us state two results that will be useful in Sect. 5.2.

Lemma 17 Fix z ∈ dom(I ), n � 1, and parameterize I nF (z) by [0, 1]. For
every 0 < a < b < 1, there exists a neighborhood V of z such that, for every
z′ ∈ V , the path I nF (z)|[a,b] is equivalent to a subpath of I nF (z′). Moreover,
there exists a neighborhood W of z such that, for every z′ and z′′ in W, the
path I nF (z′) is equivalent to a subpath of I n+2

F ( f −1(z′′))

Proof Keep the notations introduced above. Fix a lift z̃ ∈ d̃om(I ) of z and
denote by φ and φ′ the leaves of F̃ containing Ĩ nF̃ (̃z)(a) and Ĩ nF̃ (̃z)(b) respec-
tively. One has

R(φ̃z) ⊂ R(φ) ⊂ R(φ) ⊂ R(φ′) ⊂ R(φ′) ⊂ R(φ f̃ n (̃z)).

If V ⊂ dom(I ) is a topological disk, small neighborhood of z, the lift Ṽ that
contains z̃ satisfies

Ṽ ⊂ R(φ), f̃ n(Ṽ ) ⊂ L(φ′).

Consequently, for every z′ ∈ V , the path I nF (z)|[a,b] is equivalent to a subpath
of I nF (z′).

Let us prove the second assertion. One can find a leaf φ of the lifted foliation
such that

R(φ f̃ −1 (̃z)) ⊂ R(φ) ⊂ R(φ) ⊂ R(φ̃z)

and a leaf φ′ such that

R(φ f̃ n (̃z)) ⊂ R(φ′) ⊂ R(φ′) ⊂ R(φ f̃ n+1 (̃z)).
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Fig. 11 Lemma 18,
construction of Va and Vb
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z0

z1
β0

α0
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If W ⊂ dom(I ) is a topological disk, small neighborhood of z, the lift W̃ that
contains z̃ satisfies

f̃ −1(W̃ ) ⊂ R(φ), W̃ ⊂ L(φ), f̃ n(W̃ ) ⊂ R(φ′), f̃ n+1(W̃ ) ⊂ L(φ′).

Consequently, for every z′ and z′′ in W , the path I nF (z′) is equivalent to a
subpath of I n+2

F ( f −1(z′′)). ��
Say that z ∈ M is positively recurrent if z ∈ ω(z), which means that there is

a subsequence of the sequence ( f n(z))n�0 that converges to z. Say that z ∈ M
is negatively recurrent if z ∈ α(z), which means that there is a subsequence of
the sequence ( f −n(z))n�0 that converges to z. Say that z ∈ M is bi-recurrent
if it is positively and negatively recurrent. An immediate consequence of the
previous lemma is the fact that if z ∈ dom(I ) is positively recurrent, negatively
recurrent or bi-recurrent, then IZ

F (z) is F-positively recurrent, F-negatively
recurrent or F-bi-recurrent respectively.

Lemma 18 Suppose that γ : [a, b] → dom(I ) is a transverse path that
has a leaf on its right and a leaf on its left. Then, there exists a compact set
K ⊂ dom(I ) such that for every n > 0 and for every transverse trajectory
I nF (z) that contains a subpath equivalent to γ , there exists k ∈ {0, . . . , n − 1}
such that f k(z) belongs to K .

Proof Lifting our path to the universal covering space of the domain, it is
sufficient to prove the result in the case where dom(I ) is a plane.

Figure 11 illustrates the following construction. Suppose that φ0 is on the
right of γ and φ1 on its left and write W for the connected component of the
complement of φ0 ∪ φ1 that contains γ . Since φ0 and φ1 are Brouwer lines,
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every orbit that goes from R(φγ (a)) to L(φγ (b)) is contained in W . Let δ be
a simple path that joins a point z0 of φ0 to a point z1 of φ1, that is contained
in W but the endpoints and that does not meet neither R(φγ (a)) nor L(φγ (b)).
Write Vb for the connected component of W \ δ that contains L(φγ (b)). We
will extend δ as a line α0β0δβ1α1 as follows. If W is contained in R(φ0),
set α0 = f 2(φ−

z0) and choose for β0 a simple path that joins f 2(z0) to z0
and is contained in R( f 2(φ0)) ∩ L(φ0) but the endpoints. If W is contained
in L(φ0), set α0 = (φ+

z0)
−1 and β0 = {z0}. Similarly, if W is contained in

R(φ1), choose for β1 a simple path that joins z1 to f 2(z1) and is contained in
L(φ1)∩R( f 2(φ1)) but the endpoints and set α1 = f 2(φ+

z1). Otherwise, ifW is
contained in L(φ1), set β = {z1} and α1 = (φ−

z1)
−1. Note that λ = α0β0δβ1α1

is a line.
The image of β0δβ1 by f −1 is compact and the images of α0 and α1 by

f −1 are disjoint from W . So, one can find a simple path δ′ that joins a point
z′0 of φ0 to a point z′1 of φ1, that is contained in W but the endpoints, that does
not meet Vb and such that the connected component Va of W \ δ that does not
contain Vb (and that meets R(φγ (a))), does not intersect f −1(λ). This implies
that f (Va) and Vb are separated by λ and satisfy f (Va) ∩ Vb = ∅. So, every
orbit that goes from R(φγ (a)) to L(φγ (b)) has to meet both sets Va and Vb
but is not included in the union of these sets. It must meet the compact set
K = W \ (Va ∪ Vb). ��

4.3 Admissible paths

Until the end of the whole section, we suppose given a homeomorphism f
isotopic to the identity on an oriented surfaceM and amaximal singular isotopy
I . We write Ĩ = ( f̃t )t∈[0,1] for the lifted identity defined on the universal
covering space d̃om(I ) of dom(I ) and set f̃ = f̃1 for the lift of f |dom(I )
induced by the isotopy. We suppose that F is a foliation transverse to I and
write F̃ for the lifted foliation on d̃om(I ).

We will say that a path γ : [a, b] → dom(I ), positively transverse to F ,
is admissible of order n if it is equivalent to a path I nF (z), z ∈ dom(I ), in the

sense defined in Sect. 3.1. It means that if γ̃ : [a, b] → d̃om(I ) is a lift of
γ , there exists a point z̃ ∈ d̃om(I ) such that z̃ ∈ φγ̃ (a) and f̃ n (̃z) ∈ φγ̃ (b), or
equivalently, that

f̃ n(φγ̃ (a)) ∩ φγ̃ (b) �= ∅.

Wewill say that γ is admissible of order� n if it is a subpath of an admissible
path of order n. If γ̃ : [a, b] → d̃om(I ) is a lift of γ , this means that
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f̃ n(R(φγ̃ (a))) ∩ L(φγ̃ (b)) �= ∅.

More generally, we will say that a transverse path γ : J → dom(I ) defined
on an interval is admissible if for every segment [a, b] ⊂ J , there exists n � 1
such that γ |[a,b] is admissible of order � n. If γ̃ : J → d̃om(I ) is a lift of γ ,
this means that for every a < b in J , there exists n � 1 such that

f̃ n1 (R(φγ̃ (a))) ∩ L(φγ̃ (b)) �= ∅.

Similarly, we will say that a transverse loop � is admissible if its natural lift is
admissible. If the context is clear, we will say that a path is of order n (order
� n) if it is admissible of order n (resp. admissible of order � n).

Let us finish this subsection with a useful result which says that except in
some particular trivial cases, there is no difference between being of order� n
and being of order n (and so of being of order � n and being of order m for
every m � n).

Proposition 19 Let γ : [a, b] → dom(I ) be a transverse path of order � n
but not of order n, then γ has no leaf on its right and no leaf on its left.

Proof Lifting the path to the universal covering space of the domain, it is
sufficient to prove the result in case where dom(I ) is a plane. By hypothesis,
one has:

f n(φγ (a)) ∩ φγ (b) = ∅, f n(R(φγ (a))) ∩ L(φγ (b)) �= ∅.

This implies that f n(L(φγ (a))) ⊂ L(φγ (b)) and f −n(R(φγ (b))) ⊂ R(φγ (a)).
Suppose that there exists a leaf φ in L(φγ (a))) ∩ R(φγ (b)) that does not meet
γ . Recall that φ is a Brouwer line. One of the sets R(φ) or L(φ) is included
in L(φγ (a))) ∩ R(φγ (b)). It cannot be R(φ), because f −n(R(φ)) would be
contained both in R(φ) and in R(φγ (a)); it cannot be L(φ), because f n(L(φ))

would be contained both in L(φ) and in L(φγ (b)). We have a contradiction.
��

4.4 The fundamental proposition

The next proposition is a new result about maximal isotopies and transverse
foliations. It gives us an operation that permits to construct admissible paths
from a pair of admissible paths and its proof is very simple. Nevertheless, this
fundamental result will have many interesting consequences.

Proposition 20 Suppose that γ1 : [a1, b1] → M and γ2 : [a2, b2] → M
are transverse paths that intersect F-transversally at γ1(t1) = γ2(t2). If γ1 is
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admissible of order n1 and γ2 is admissible of order n2, then γ1|[a1,t1]γ2|[t2,b2]
and γ2|[a2,t2]γ1|[t1,b1] are admissible of order n1+n2. Furthermore, either one
of these paths is admissible of ordermin(n1, n2) or both paths are admissible
of order max(n1, n2).

Proof Please see Fig. 12 for the following construction. By lifting to the uni-
versal covering space of the domain, it is sufficient to prove the result in the
case where M is a plane and F is non singular.

By Proposition 19, each path γ1, γ2, γ1|[a1,t1]γ2|[t2,b2] and γ2|[a2,t2]γ1|[t1,b1],
having a leaf on its right or on its left, will be admissible of order m if it is
admissible of order � m. Note first that for every integers k1, k2 in Z, one has

f k1(R(φγ1(a1))) ∩ f k2(R(φγ2(a2))) = f k1(L(φγ1(b1))) ∩ f k2(L(φγ2(b2))) = ∅.

For every i ∈ {1, 2} define the sets

Xi = f ni (R(φγi (ai ))) ∪ L(φγi (bi )), Yi = f −ni (L(φγi (bi ))) ∪ R(φγi (ai )),

which are connected according to the admissibility hypothesis.
If γ1|[a1,t1]γ2|[t2,b2] is not admissible of order n1, then X1 ∩ L(φγ2(b2)) = ∅

and so X1 separates R(φγ2(a2)) and L(φγ2(b2)). This implies that none of the sets
X1∩X2 and X1∩Y2 is empty. The first property implies that f n2(R(φγi (a2)))∩
L(φγ1(b1)) �= ∅, which means that γ2|[a2,t2]γ1|[t1,b1] is admissible of order n2.
The second one implies that f −n2(L(φγ2(b2))) ∩ f n1(R(φγ1(a1))) �= ∅, which
means that γ1|[a1,t1]γ2|[t2,b2] is admissible of order n1 + n2.

If γ1|[a1,t1]γ2|[t2,b2] is not admissible of order n2, then Y2 ∩ R(φγ1(b1)) = ∅
and so Y2 separates R(φγ1(a1)) and L(φγ1(b1)). This implies that none of the sets
Y2 ∩ Y1 and Y2 ∩ X1 is empty. The first property implies that γ2|[a2,t2]γ1|[t1,b1]

φγ2(a2)

φγ1(a1)

φγ1(b1)

φγ2(b2)

γ2

γ1

fn2(φγ2(a2))

fn1(φγ1(a1))

φγ2(a2) φγ1(b1)

γ1

fn1(φγ1(a1))

X1

f−n2(φγ2(b2))

Y2

Fig. 12 Fundamental lemma, the case where γ1|[a1,t1]γ2|[t2,b2] is not admissible of order n1
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is admissible of order n1. The second one implies that γ1|[a1,t1]γ2|[t2,b2] is
admissible of order n1 + n2.

In conclusion, γ1|[a1,t1]γ2|[t2,b2] is admissible of order n1 + n2 . Moreover,
if it is not admissible of order min(n1, n2) then γ2|[a2,t2]γ1|[t1,b1] is admissible
of order max(n1, n2). The paths γ1 and γ2 playing the same role, we get the
proposition. ��

One deduces immediately the following:

Corollary 21 Let γi : [ai , bi ] → M, 1 � i � r , be a family of r � 2
transverse paths. We suppose that for every i ∈ {1, . . . , r} there exist si ∈
[ai , bi ] and ti ∈ [ai , bi ], such that:
i) γi |[si ,bi ] andγi+1|[ai+1,ti+1] intersectF-transversally atγi (ti )=γi+1(si+1)

if i < r;
ii) one has s1 = a1 < t1 < b1, ar < sr < tr = br and ai < si < ti < bi if

1 < i < r;
iii) γi is admissible of order ni .

Then
∏

1�i�r γi |[si ,ti ] is admissible of order
∑

1�i�r ni .

Proof Here again, it is sufficient to prove the result when M = R
2 and F is

not singular. One must prove by induction on q ∈ {2, . . . , r} that
⎛

⎝
∏

1�i<q

γi |[si ,ti ]
⎞

⎠ γq |[sq ,bq ]

is admissible of order
∑

1�i�q ni . The result for q = 2 is nothing but Propo-
sition 20. Suppose that it is true for q < r and let us prove it for q + 1. The
paths

⎛

⎝
∏

1�i<q

γi |[si ,ti ]
⎞

⎠ γq |[sq ,bq ]

and γq+1 intersect F-transversally at γq(tq) = γq+1(sq+1) because this is the
case for the subpaths γq |[sq ,bq ] and γq+1|[aq+1,tq+1]. One deduces that

⎛

⎝
∏

1�i�q

γi |[si ,ti ]
⎞

⎠ γq+1|[sq+1,bq+1]

is admissible of order
∑

1�i�q+1 ni . ��
The following result is more subtle. The F-transverse intersection property

is stated on the paths γi and not on subpaths but the signs of intersection are
the same.
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Corollary 22 Let γi : [ai , bi ] → M, 1 � i � r , be a family of r � 2
transverse paths. We suppose that for every i ∈ {1, . . . , r} there exist si ∈
[ai , bi ] and ti ∈ [ai , bi ], such that:
i) γi andγi+1 intersectF-transversally and positively at γi(ti ) = γi+1(si+1)

if i < r;
ii) one has s1 = a1 < t1 < b1, ar < sr < tr = br and ai < si < ti < bi if

1 < i < r;
iii) γi is admissible of order ni .

Then
∏

1�i�r γi |[si ,ti ] is admissible of order
∑

1�i�r ni .

Proof Here again, it is sufficient to prove the result when M = R
2 and F is

not singular. Here again, one must prove by induction on q ∈ {2, . . . , r} that
⎛

⎝
∏

1�i<q

γi |[si ,ti ]
⎞

⎠ γq |[sq ,bq ]

is admissible of order
∑

1�i�q ni and here again, the case q = 2 is nothing
but Proposition 20. Supposing that it is true for q < r , one must prove that

⎛

⎝
∏

1�i<q

γi |[si ,ti ]
⎞

⎠ γq |[sq ,bq ]

and γq+1 intersect F-transversally and positively at γq(tq) = γq+1(sq+1).
By hypothesis, one knows that φγq+1(bq+1) is above φγq (bq ) relative to φγq (tq ).
It remains to prove that φγq+1(aq+1) is below φγ1(a1) relative to φγq (tq ). For
every i ∈ {1, . . . , q − 1}, the leaves φγi (ai ) and φγi+1(ai+1) belong to R(φγi (ti ))

and φγi+1(ai+1) is below φγi (ai ) relative to φγi (ti ). So, each φγi (ai ) belongs to
R(φγq (tq )) and φγi+1(ai+1) is below φγi (ai ) relative to φγq (tq ). One deduces that
φγq+1(aq+1) is below φγ1(a1) relative to φγq (tq ). ��

Let us finish by explaining the interest of this result in the case where an
admissible transverse path has an F-transverse self-intersection.

Proposition 23 Suppose that γ : [a, b] → M is a transverse path admissible
of order n and that γ intersects itself F-transversally at γ (s) = γ (t) where
s < t . Then γ |[a,s]γ |[t,b] is admissible of order n and γ |[a,s]

(
γ |[s,t]

)q
γ |[t,b]

is admissible of order qn for every q � 1.

Proof See Fig. 13 illustrating the construction below. Applying Corollary 22
to the family

γi = γ, si = s if 1 < i � q , ti = t if 1 � i < q,
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Fig. 13 Proof of
Proposition 23

γ̃

φγ̃(a )

T (φγ̃(a ))φγ̃(b )

T q(φγ̃(b ))

fn(φγ̃(a ))
fn(T (φγ̃(a )))

α

one knows that

γ |[a,t]
(
γ |[s,t]

)q−2
γ |[s,b] = γ |[a,s]

(
γ |[s,t]

)q
γ |[t,b]

is admissible of order qn for every q � 2. Moreover the induction argument
and the last sentence of Proposition 20 tell us either that γ |[a,s]γ |[t,b] is admis-
sible of order n, or that γ |[a,s]

(
γ |[s,t]

)q
γ |[t,b] is admissible of order n for every

q � 1. To get the proposition, one must prove that the last case is impossible.
We do not lose any generality by supposing that dom(I ) is connected. Fix a

lift γ̃ of γ and denote T the covering automorphism such that γ̃ (t) = T (γ̃ (s)).
The quotient space d̂om(I ) = d̃om(I )/T is an annulus and one gets an identity
isotopy Î = ( f̂t )∈[0,1] on d̂om(I ) by projection, as a homeomorphism f̂ = f̂1
and a transverse foliation F̂ . The path γ̃ projects onto a transverse path γ̂ . The
path γ̃ ′ = ∏

k∈Z
T k(γ̃ |[s,t]) is a line that lifts a loop �̂′ of d̂om(I ) transverse

to F̂ . The union of leaves that meet γ̃ ′ is a plane Ũ that lifts an annulus Û of
d̂om(I ). The fact that γ intersects itselfF-transversally at γ (t) = γ (s)means
that γ̃ and T (γ̃ ) intersect F̃-transversally at γ̃ (t) = T (γ̃ (s)). One deduces
the following:

– the paths γ̃[a,s] and γ̃[t,b] are not contained in Ũ ;
– if a′ ∈ [a, s) is the largest value such that γ̃ (a′) /∈ Ũ and b′ ∈ (t, b] the
smallest value such that γ̃ (b′) /∈ Ũ , then γ̃ (a′) and γ̃ (b′) are in the same
connected component of d̃om(I ) \ γ̃ ′.

The fact that γ |[a,s]
(
γ |[s,t]

)q
γ |[t,b] is admissible of order n implies that

γ̃ |[a,s]
∏

0�k<q

T k(γ̃ |[s,t]) T q−1(γ̃ |[t,b])
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is admissible of order n or equivalently that f̃ n(φγ̃ (a′)) ∩ T q−1(φγ̃ (b′)) �= ∅.
So one must prove that this cannot happen if q is large enough.

There is no loss of generality by supposing that the leaves φγ̃ (a′) and φγ̃ (b′)
are on the right of γ̃ ′. The projected leaves φγ̂ (a′) and φγ̂ (b′) are lines contained

in the boundary of Û . One can compactify the annulus d̂om(I ) with a point
S at the end on the right of �̂′ and a point N at the end on the left of �̂′. We
know that the α-limit and ω-limit sets of φγ̂ (a′) and φγ̂ (b′) are reduced to S. Let
us fix z̃0 ∈ φγ̃ (a′). The sets T k( f̃ n(R(φγ̃ (a′)))), k ∈ Z, are pairwise disjoint
and one can choose a simple path α joining T ( f̃ n (̃z0)) to f̃ n (̃z0) and disjoint
from f̃ n(R(φγ̃ (a′))) and T ( f̃ n(R(φγ̃ (a′)))) but at its ends. One can extend α in
L(φγ̃ (a′)) ∩ T (L(φγ̃ (a′))) to a simple path α′ joining T (̃z0) to z̃0 and disjoint
from R(φγ̃ (a′)) and T (R(φγ̃ (a′))) but at its ends. The path α′′ = T (φ−

z̃0
) α′ φ+

z̃0
is a line and L(α′′) contains T ( f̃ n(φ−

z̃0
)) and f̃ n(φ+

z̃0
). Let us choose a real

parameterization t �→ φγ̃ (b′)(t) of φγ̃ (b′). The fact that the α-limit and ω-limit
sets ofφγ̂ (b′) are reduced to S implies that there exists K > 0 such that for every
q � 0, α′ does not meet neither T q(φγ̃ (b′)|(−∞,−K ]) nor T q(φγ̃ (b′)|[K ,+∞)).
One deduces that there exists q0 such that for every q � q0, α′ does not meet
T q(φγ̃ (b′)). This implies that if q � q0, then T q(φγ̃ (b′)) does not meet α′′ and
so is included in R(α′′). In particular it cannot intersect neither T ( f̃ n(φ−

z̃0
)) nor

f̃ n(φ+
z̃0

). Consequently, this implies that f̃ n(φγ̃ (a′)) does not meet T q(φ̃γ̃ (b′)),
if q � q0. ��

Corollary 24 Let γ : [a, b] → M be a transverse path admissible of order n.
Then, there exists a transverse path of order n, γ ′ : [a, b] → M such that γ ′
has no F-transverse self-intersections, and φγ ′(a) = φγ (a), φγ ′(b) = φγ (b).

Proof Note first that there exists a transverse path γ ′ : [a, b] → M equiva-
lent to γ with finitely many self-intersections (not necessarily F-transverse).
Indeed, choose for every z on γ , a trivialization neighborhood Wz . Divide the
interval in n intervals Ji = [ai , bi ] of equal length and set γi = γJi , so that
γ = ∏1�i�n γi . If n is large enough, then for every i , the union of γi and all
paths γ j that meet γi is contained in a setWz . Let us begin by perturbing each
γi to find an equivalent path γ ′

i , such that γ
′
i (bi ) = γ ′

i+1(ai ), if i < n, and such
that the γ ′

i (bi ) are all distinct. One can also suppose that that for every i , the
union of γ ′

i and all γ ′
j that meet γ ′

i is contained in a set Wz . Suppose that for
every i < i0 and every j �= i , the paths γ ′

i and γ ′
j have finitely many points of

intersection. One can perturb in an equivalent way each γ ′
j on (a j , b j ), j > i0,

such that it intersects γi0 finitely many often, without changing the intersection
points with γi if i < i0 and such that condition concerning the trivialization
neighborhoods is still satisfied. One knows that for every i � i0 and every
j �= i , the new paths γ ′

i and γ ′
j have finitely many points of intersection.
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Let G be the collection of all transverse paths that are admissible of order n
whose initial leaf isφγ (a) andwhosefinal leaf isφγ (b). Letγ ′ : [a, b] → M be a
path in G that is minimal with regards to the number of self-intersections. Then
γ ′ has no F-transverse self-intersections. Indeed, if γ ′ had an F-transverse
self-intersection at γ ′(t) = γ ′(s) where s < t , by the Proposition 23 the path
γ ′ |[a,s] γ ′ |[t,b] would also be also contained in G and it would have a strictly
smaller number of self-intersections. ��

4.5 Realizability of transverse loops

Let � be a transverse loop associated to a periodic point z of period q. Recall
that it means that � is equivalent to a transverse loop �′ whose natural lift
γ ′ is equivalent to the whole transverse trajectory of z. In particular, if γ is
the natural lift of �, there exists t ∈ (−1, 0] such that φγ (t) = φz and such
that for every n � 1, γ[t,t+n] is equivalent to I nqF (z). So, the loop satisfies the
following:

(Pq) : for every n � 1, γ |[0,n−1] is admissible of order � nq.

The following question is natural:
Let � be a transverse loop that satisfies (Pq). Is � associated to a periodic

orbit of period q?
We will see that in many situations, it is the case. In such situations, f will

have infinitely many periodic orbits. More precisely, for every rational number
r/s ∈ (0, 1/q] written in an irreducible way, the loop �r will be associated
to a periodic orbit of period s. In fact the weaker following property will be
sufficient:
(Qq) : there exist two sequences (rk)k�0 and (sk)k�0 of natural integers satis-
fying

lim
k→+∞ rk = lim

k→+∞ sk = +∞, lim sup
k→+∞

rk/sk � 1/q

such that γ |[0,rk ] is admissible of order � sk .
We will say that a transverse loop � is linearly admissible of order q if it

satisfies (Qq) (note that every equivalent loop will satisfy the same condition).
Let us define now the natural covering associated to � (or to its natural lift

γ ) and introduce some useful notations. Fix a lift γ̃ of γ and denote T the
covering automorphism such that γ̃ (t + 1) = T (γ̃ (t)) for every t ∈ R. The
path γ̃ is a line and the union of leaves that it crosses is a topological plane
Ũ . Moreover it projects onto the natural lift of a loop �̂ in the quotient space
d̂om(I ) = d̃om(I )/T . One gets an identity isotopy Î = ( f̂t )∈[0,1] on d̂om(I )
by projection, as a homeomorphism f̂ = f̂1 and a transverse foliation F̂ . The
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loop �̂ is transverse to F̂ and the union of leaves that it crosses is a topological
annulus Û .

Before stating the realization result, let us recall the following lemma (for
example, see [28], Theorem 9.1, for a proof that uses maximal isotopies and
transverse foliations). A loop in an annulus will be called essential if it is not
homotopic to zero.

Lemma 25 Let J be a real interval, f a homeomorphism of T
1 × J isotopic

to the identity and f̃ a lift of f to R × J . We suppose that:

– every essential simple loop � ⊂ T
1 × J meets its image by f ;

– there exist two probability measures μ1 and μ2 with compact support,
invariant by f , such that their rotation numbers (for f̃ ) satisfy rot(μ1) <

rot(μ2).

Then, for every r/s ∈ [rot(μ1), rot(μ2)] written in an irreducible way, there
exists a point z ∈ R × J such that f̃ s(z) = z + (r, 0).

Let us state now the principal result of this subsection.

Proposition 26 Let � be a linearly admissible transverse loop of order q that
satisfies one of the three following conditions. Then for every rational number
r/s ∈ (0, 1/q] written in an irreducible way, �r is associated to a periodic
orbit of period s.

i) The loop � has a leaf on its left and a leaf on its right, and the annulus Û
does not contain a simple loop homotopic to �̂ disjoint from its image by
f̂ .

ii) There exists both an admissible transverse path that intersects � F-
transversally and positively, and an admissible transverse path that
intersects � F-transversally and negatively.

iii) The loop � has an F-transverse self-intersection.

Proof The condition iii) is stronger than ii) because � intersects itself F-
transversally positively and negatively. The condition ii) tells us that there is an
admissible transverse path that intersects �̂ F̂-transversally and positively, and
an admissible transverse path that intersects �̂ F̂-transversally and negatively.
But this implies that i) is satisfied because there exists orbits that cross Û in
both ways. It remains to prove the result under the assumption i).

We do not lose any generality by supposing that dom(I ) is connected, which
means that d̃om(I ) is a plane and d̂om(I ) an annulus. By assumption, we know
that there exists a leaf on the left of γ̃ and a leaf on its right. One can compactify
d̂om(I ) with a point S at the end on the right of �̂ and a point N at the end
on the left of �̂. We will denote by d̂om(I )sph this compactification and still
write f̂ for the extension that fixes the added points. The ω-limit set ω(φ̂) in
d̂om(I )sph of a leaf φ̂ ⊂ Û does not depend on φ̂.
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Lemma 27 The set ω(φ̂) is reduced to S.

Proof If not,ω(φ̂) is either a closed leaf that bounds Û or the union of S and of
leaves homoclinic to S (which means that the two limit sets are reduced to S).
In the first case, the closed leaf that bounds Û is homotopic to �̂ and disjoint
from its image by f̂ . A simple loop included in Û sufficiently close will satisfy
the same properties. This contradicts the assumptions of the proposition.

Let us study now the second case. Choose a point ẑ∗ ∈ ω(φ̂)\{S} and denote
by φ̂∗ the leaf that contains ẑ∗. One can suppose that �̂ is on the right of φ̂∗. This
is independent of the choice of ẑ∗ and in that case, the leaf φ̂ is on the right of
φ̂∗. Let us present two arguments to deal with this situation. The first argument
is the following: As d̂om(I ) has only finitely many ends and F̂ is transversal to
Î , one could adapt the proof of Lemma 3.3 of [29] to show that, given any point
ŷ in d̂om(I ), there exists a neighborhood Vŷ of ŷ such that, if F̂ ′ is an oriented
foliation of d̂om(I ) that is equal to F̂ in the complement of Vŷ , then F̂ ′ is also
transversal to Î . Let V ′ be a neighborhood of ẑ∗ as given by this result, and we
further assume that there exists a homeomorphism h : V ′ → [−1, 1]×[−1, 1]
sending the leafs of F̂ ∩ V ′ onto horizontal line segments oriented from right
to left, and such that h(̂z∗) = (0, 0). Note that h−1([−1, 1]× (0, 1]) ⊂ Û , and
since ẑ∗ ∈ ω(φ̂), there exist t1 < t2 such that φ̂(t1), φ̂(t2) both belong to V ′,
and such that φ̂(s) is disjoint from V ′ if t1 < s < t2. This implies that there
exists x1, x2 in (0, 1) such that h(φ̂(t1)) = (−1, x1) and h(φ̂(t2)) = (1, x2).
One can find then an oriented foliation F̂ ′ of d̂om(I ) that agrees with F̂ in the
complement of h−1([−1, 1] × (0, 1]), and such that, if σ is the line segment
in h(V ′) connecting (−1, x1) to (1, x2), then h−1(σ ) is contained in a single
leaf of the foliation. In particular, the leaf φ̂′ of F̂ ′ that contains h−1(σ ) is a
closed leaf contained in Û . Since F̂ ′ is also transversal to the isotopy Î , one
obtains again a contradiction as in the first case.

Since Lemma 3.3 of [29] is not stated in the form we used above, let us
present a complete argument for the second case:We have the following result;
for every neighborhood V of S, there exists a neighborhood W of ω(φ̂) in

d̂om(I )sph such that f̂ (W \ V ) ∩ Û = ∅. Let us consider a simple path β̂

joining a point ẑ∗∗ ∈ Û to ẑ∗ positively transverse to F̂ , included (but the
end ẑ∗) in Û and sufficiently small that its image by f̂ will be included in
the connected component of d̂om(I ) \ φ̂∗ that is on the left of φ̂∗. The leaf φ̂

meets β̂ in a“monotone” sequence (̂zn)n�0, where limn→+∞ ẑn = ẑ∗. More
precisely, for every real parameterization of φ̂, one has ẑn = φ̂(tn), where
tn+1 > tn , and limn→+∞ tn = +∞. Moreover, ẑn+1 is “closer” to ẑ∗ than
ẑn on β̂. We will prove that if n is large enough, the simple loop �̂n obtained
by concatenating the segment α̂n ⊂ φ̂ joining ẑn to ẑn+1 and the subpath ξ̂n
of β̂−1 joining ẑn+1 to ẑn is disjoint from its image by f̂ , see Fig. 14 for the
following construction. We will begin by extending β̂ in a simple proper path
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Γ

φ∗

z∗

φ

ẑ

z1

z2

β z∗
nz∗

n+1

βnβn+1

zn

zn+1

λn

αn

φ∗
n

φ∗
n+1

ζnζn+1 φ

T−1(φ)

Fig. 14 Construction of γ̃n in Lemma 27

(with the same name) contained in d̂om(I ) \ ω(φ̂) “joining” the end N to ẑ∗.
One can find a neighborhood W ′ of ω(φ̂) in d̂om(I )sph that intersects β̂ only
between ẑ0 and ẑ∗. If n is large enough, α̂n will be contained inW ′ and so will
intersect β̂ only at the points ẑn and ẑn+1. We will suppose n large enough to
satisfy this property. Fix a lift z̃0 of ẑ0, write β̃0 for the lift of β̂ that contains
z̃0, write z̃∗0 for its end and φ̃∗

0 for the lift of φ̂∗ that contains z̃∗0. For every
n � 0 define

z̃∗n = T−n (̃z∗0), β̃n = T−n(β̃0), φ̃∗
n = T−n(φ̃∗

0).

Write z̃n for the lift of ẑn that lies on β̃n , write ζ̃n for the segment of β̃n that joins
z̃n to z̃∗n and α̃n for the lift of α̂n that joins z̃n to z̃n+1. Choose a parameterization

φ̂∗ : R → d̂om(I ) of φ̂∗ sending 0 onto z̃∗ and lift it to parameterize the leaves
φ̃∗
n . We will prove that the line

λ̃n = φ̃∗
n |(−∞,0] ζ̃−1

n α̃n ζ̃n+1 φ̃∗
n+1|[0,+∞]

is a Brouwer line if n is large enough. Observe first that one has

L(φ̃∗
n) ∪ L(φ̃∗

n+1) ⊂ L (̃λn) ⊂ L
(
φ̃∗
n |(−∞,0] β̃−1

n

) ∩ L
(
β̃n+1 φ̃∗

n+1|[0,+∞)

)
,

then note that if K is large enough one has

f̃ −1 (φ̃∗
n |(−∞,−K ]

) ⊂ R
(
φ̃∗
n |(−∞,0] β̃−1

n

)
, f̃ −1 (φ̃∗

n+1|[K ,+∞]
)

⊂ R
(
β̃n+1 φ̃∗

n+1|[0,+∞)

)
.

Let V be a neighborhood of S such that f̂ (V ) ∩ (φ̂∗([−K , K ]) ∪ β̂
) = ∅ and

W a neighborhood of ω(φ̂) such that f (W \V )∩ Û = ∅. If n is large enough,
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then �̂n is included inW . Let us prove that λ̃n is a Brouwer line of f̃ and then
that �̂n is disjoint from its image by f̂ . The leaves φ̃∗

n and φ̃∗
n+1 being Brouwer

lines of f̃ , one has

f̃ (φ̃∗
n |(−∞,0]) ⊂ L(φ̃∗

n) ⊂ L (̃λn), f̃ (φ̃∗
n+1|[0,+∞)) ⊂ L(φ̃∗

n+1) ⊂ L (̃λn).

By hypothesis on β̂, one knows that

f̃ (̃ζn) ⊂ L(φ̃∗
n ) ⊂ L (̃λn), f̃ (̃ζn+1) ⊂ L(φ̃∗

n+1) ⊂ L (̃λn).

The path α̃n being included in a leaf of F̃ and each leaf being a Brouwer line
of f̃ , one knows that

f̃ (̃αn) ∩ α̃n = ∅.

To prove that λ̃n is a Brouwer line, it remains to prove that f̃ (̃αn) does not
meet any of the paths

φ̃∗
n |(−∞,0], φ̃∗

n+1|[0,+∞), ζ̃n, ζ̃n+1.

By hypothesis, one knows that f̂ (̂αn) does not meet neither φ̂∗([−K , K ]), nor
ζ̂0. Moreover, one knows that α̃n does not meet neither f̃ −1(φ̃∗

n |(−∞,K ]), nor
f̃ −1(φ̃∗

n+1|[K ,+∞)). So, we are done.
To prove that �̂n is disjoint from its image by f̂ , one must prove that �̂n is

lifted to a path that is disjoint from its image by f̃ . This path will be included
in the union of the images by the iterates of T of the path ζ̃−1

n α̃n ζ̃n+1. So it is
sufficient to prove that the union of these translates is disjoint from its image
by f̃ . Observe now that every path T k (̃ζ−1

n α̃n ζ̃n+1), k ∈ Z, is disjoint from
L (̃λn), which implies that it is disjoint from f̃ (̃ζ−1

n α̃n ζ̃n+1). ��
Lemma 28 There is no simple loop included in d̂om(I ) homotopic to �̂ that
is disjoint from its image by f̂ .

Proof Suppose that there exists a simple loop �̂0 included in d̂om(I ) that is
homotopic to �̂ and disjoint from its image by f̂ . One can suppose for instance
that f̂ (�̂0) is included in the component of d̂om(I )sph \ �̂0 that contains N ,
and orient �̂0 in such a way that this component, denoted by L(�̂0), is on the
left of �̂0. The loop �̂0 meets finitely many leaves of F̂ homoclinic to S that
are on the frontier of Û . We denote them φ̂i , 1 � i � p. Let us prove first that
�̂ is on the left side of each φ̂i . Indeed, if �̂ is on the right side of φ̂i , writing
�̃0 for the lift of �̂0 and φ̃i for a lift of φ̂i , one finds a non empty compact

subset L(�̃0)) ∩ L(φ̃i ) of d̃om(I ) that is forward invariant by f̃ . But such a
set does not exist because f̃ is fixed point free.
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Fig. 15 Construction of �̂1
in Lemma 28

Γ

φ1
φ2

Γ0

Γ1

S

N

Each loop φ̂i ∪ {S} bounds a Jordan domain L̂i of d̂om(I )sph that contains
N . By a classical result of Kerékjártó [22], one knows that the connected
component of L(�̂0)∩(

⋂
1�i�p L̂i ) that contains N is a Jordan domain whose

boundary �̂1 is a simple loop homotopic to �̂ in d̂om(I ), disjoint from its image

by f̂ , and included in Û∪L(�) (see Fig. 15). By intersecting �̂1 with the leaves
of F̂ homoclinic to N that are on the frontier of Û , one constructs similarly

a simple loop �̂2 included in d̂om(I ) ∩ Û that is homotopic to �̂ in M̂ and
disjoint from its image by f̂ . It remains to approximate �̂2 by a simple loop
included in Û and we get a contradiction since we are assuming condition i)
in Proposition 26. ��

End of the proof of Proposition 26 One must prove that for every rational
number r/s ∈ (0, 1/q] written in an irreducible way, there exists a point
z̃ ∈ d̃om(I ) such that f̃ s (̃z) = T r (̃z). Indeed, the orbit of z̃ should be con-
tained in Ũ , the point z̃ will project in dom(I ) onto a periodic point z of f of
period s, finally the loop �r will be associated to z.

Write φ̃0 for the leaf containing γ̃ (0) and φ̂0 for its projection in d̂om(I ).
Using the analogous of Lemma 27 for α-limit sets, one can suppose that φ̂0
is a line. Let us fix a leaf φ̂N homoclinic to N and a leaf φ̂S homoclinic to
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S, which exists since we are assuming that the loop � has a leaf on its right
and a leaf on its left. Each of them is disjoint from all its images by the (non
trivial) iterates of f̂ . By a result of Béguin, Crovisier, Le Roux (see [29],
Proposition 2.3.3) one knows that there exists a compactification d̂om(I )ann
obtained by blowing up the two ends N and S replaced by circles �̂N and
�̂S such that f̂ extends to a homeomorphism f̂ann that admits fixed points on
each added circle with a rotation number equal to zero for the lift that extends
f̃ . Moreover, one can suppose that each set ω(φ̂N ) and ω(φ̂S) is reduced to a
unique point on �̂N and �̂S respectively. One can join a point of φ̂N to a point
of φ̂S by a segment disjoint from φ̂0. Consequently, one can construct a line
λ̂ in d̂om(I ), disjoint from φ̂0, that admits a limit on each added circle. Write
d̃om(I )ann = d̃om(I )��̃N ��̃S for the universal covering space of d̂om(I )ann
and keep the notation T for the natural covering automorphism. Write λ̃ for
the lift of λ̂ located between φ̃0 and T (φ̃0). One can construct a continuous
real function g̃ on d̃om(I )ann that satisfies g̃(T (̃z)) = g̃(z) + 1 and vanishes
on λ̃. The function h̃ = g̃ ◦ f̃ − g̃ is invariant by T and lifts a continuous
function ĥ : d̂om(I )ann → R. If μ is a Borel probability measure invariant
by f̂ , the quantity

∫
d̂om(I )ann

h dμ is the rotation number of the measure μ

for the lift f̃ann. Let us consider now the real function g̃0 on d̃om(I )ann, that
coincides with g̃ on �̃N ∪ �̃S , that satisfies g̃0(T (̃z)) = g̃0(̃z) + 1 and that
vanishes on φ̃0 and at every point located between φ̃0 and T (φ̃0). Note that
g̃ − g̃0 is uniformly bounded by a certain number K and invariant by T . The
property (Qq) satisfied by � tells us that for every k � 0, one can find a point
z̃k ∈ R(φ̃0) such that f̃ sk (̃zk) ∈ L(T rk (φ̃0)). Write ẑk for its projection in
d̂om(I ). Observe that

g̃0( f
sk (̃zk)) − g̃0(̃zk) � rk .

By taking a subsequence, one can suppose that

lim
k→+∞

1

sk

(
g̃0( f

sk (̃zk)) − g̃0(̃zk)
) = ρ ∈

[
1

q
, +∞

]

and so that

∣
∣
∣
∣
∣

1

sk

sk−1∑

i=0

ĥ( f̂ i (̂zk)) − ρ

∣
∣
∣
∣
∣
=
∣
∣
∣
∣
1

sk
(g̃( f sk (̃zk)) − g̃(̃zk)) − ρ

∣
∣
∣
∣

�
∣
∣
∣
∣
1

sk
(g̃0( f

sk (̃zk)) − g̃0(̃zk)) − ρ

∣
∣
∣
∣+

2K

sk
.
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Write δ̂z for the Dirac measure at a point ẑ ∈ d̂om(I )ann and choose a measure

μ that is the limit of a subsequence of
(

1
sk

∑sk−1
i=0 δ f̂ iann (̂zk)

)

k�0
for the weak∗

topology. One knows that μ is an invariant measure of rotation number ρ.
As the rotation number induced on the boundary circles are equal to 0, one
deduces that the rotation set rot( f̃ann) contains [0, ρ]. The intersection property
supposed in i) implies by Lemma 25 that for every rational number r/s ∈
(0, 1/q] written in an irreducible way, there exists a point z̃ ∈ d̃om(I )ann such
that f̃ sann (̃z) = T r (̃z). But this point does not belong to the boundary circles
because the induced rotation numbers are equal to 0. So its belongs to d̃om(I ).
��

5 Exponential growth of periodic points and entropy

In this section we give a sufficient condition for the exponential growth of
periodic points of a surface homeomorphism. This condition will imply that
the topological entropy is positive in the compact case. We will make use of
these criteria later.

We assume here, as in the previous section, that f is a homeomorphism
isotopic to the identity on an oriented surface M and that I = ( ft )t∈[0,1] is a
maximal hereditary singular isotopy, which implies that f1 = f |dom(I ). We
write Ĩ = ( f̃t )t∈[0,1] for the lifted identity defined on the universal covering
space d̃om(I ) of dom(I ) and set f̃ = f̃1 for the lift of f |dom(I ) induced by
the isotopy. We suppose that F is a foliation transverse to I and write F̃ for
the lifted foliation on d̃om(I ).

5.1 Exponential growth of periodic points

The main result of this section is

Theorem 29 Let γ1, γ2 : R → M be two admissible positively recurrent
transverse paths (possibly equal) with an F-transverse intersection. Then the
number of periodic points of period n for some iterate of f grows exponentially
in n.

Theorem 29 is a direct consequence of Lemma 30 and Proposition 31.

Lemma 30 Let γ1, γ2 be two admissible F-positively recurrent transverse
paths (possibly equal) with an F-transverse intersection, and let I1 and I2 be
two real segments. Then there exists a linearly admissible transverse loop �

with anF-transverse self-intersection, such that γ1|I1 and γ2|I2 are equivalent
to subpaths of the natural lift of �.
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Proof As explained at the end of Sect. 3.3, we can find a1, b1, t1, a2, b2, t2
such that I1 ⊂ [a1, b1], I2 ⊂ [a2, b2] and such that γ1|[a1,b1] intersects F-
transversally γ2|[a2,b2] at γ1(t1) = γ2(t2). Since γ1 is F-positively recurrent,
we can find

b1 < a′
1 < b′

1 < a′′
1 < b′′

1

such that γ1|[a1,b1], γ1|[a′
1,b

′
1] and γ1|[a′′

1 ,b′′
1 ] are equivalent. In particular, there

exists

a′
1 < t ′1 < b′

1 < a′′
1 < t ′′1 < b′′

1

such that

– γ1|[a1,t1], γ1|[a′
1,t

′
1] and γ1|[a′′

1 ,t ′′1 ] are equivalent;
– γ1|[t1,b1], γ1|[t ′1,b′

1] and γ1|[t ′′1 ,b′′
1 ] are equivalent.

Moreover, replacing γ1 by an equivalent path, one can suppose that γ1(t1) =
γ1(t ′1) = γ1(t ′′1 ). Since γ2 is F-positively recurrent, we can also find

b2 < a′
2 < t ′2 < b′

2 < a′′
2 < t ′′2 < b′′

2

and replace γ2 by an equivalent path such that a similar statement holds with
the necessary changes. Note that this implies that γ1 is F-transverse to γ2 at
both γ1(t ′′1 ) = γ2(t2) and γ1(t1) = γ2(t ′′2 ). Suppose that γ1|[a1,b′′

1 ] and γ2|[a2,b′′
2 ]

are admissible of order� q and apply Corollary 21 to the families (γi )1�i�2n ,
(si )1�i�2n , (ti )1�i�2n where

γ2 j+1 = γ1|[a1,b′′
1 ], γ2 j = γ2|[a2,b′′

2 ]

and

s2 j+1 = t1 if j > 0 , s2 j = t2 , t2 j+1 = t ′′1 , t2 j = t ′′2 if j < n.

One deduces that for every n � 1,

γ1|[a1,t1]
(
γ1|[t1,t ′′1 ]γ2|[t2,t ′′2 ]

)n
γ2|[t ′′2 ,b2]

is admissible of order 2nq and consequently that
(
γ1|[t1,t ′′1 ]γ2|[t2,t ′′2 ]

)n
is admis-

sible of order � 2nq. So, the closed path γ ′ = γ1|[t1,t ′′1 ]γ2|[t2,t ′′2 ] defines a loop
that is linearly admissible: it satisfies the condition (Q2q) stated in the previous
section. Furthermore, since both γ1|[a′

1,b
′
1] and γ2|[a′

2,b
′
2] are subpaths of γ

′, the
induced loop has an F-transverse self-intersection. ��
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672 P. Le Calvez, F. A. Tal

Proposition 31 If there exists a linearly admissible transverse loop � with an
F-transverse self-intersection, then the number of periodic points of period n
for some iterate of f grows exponentially in n.

Proof The proof of Proposition 31 will last until the end of this subsection.
Suppose that � satisfies the condition (Qq0) and denote γ its natural lift. By
assumption, there exist s < t such that γ has anF-transverse self-intersection
at γ (s) = γ (t). So, one can apply the realization result (Proposition 26)
and deduce that � is associated to a fixed point of f q0 . Modifying � in its
equivalence class if necessary, one can suppose that for every r � 1, the path
γ |[0,r ] is admissible of order rq0. Adding the same positive integer to both s
and t , one can find a positive integer K such that γ |[0,K ] has an F-transverse
self-intersection at γ (s) = γ (t) and one knows that γ |[0,mK ] is admissible of
order mKq0 for every m � 1. To get our proposition, one needs a preliminary
result. Set

γ1 = γ |[s,t], γ2 = γ[t,K+s].

��
Lemma 32 For every sequence (εi )i∈N ∈ {1, 2}N, every n � 1, and every
m � 1 the path

γ |[0,s]
∏

0�i<n

γεi γ[t,mK ]

is admissible of order (n + m)Kq0.

Proof We will give a proof by induction on n.
Let us begin with the case where n = 1. If ε0 = 1, we must prove that

γ |[0,s]γ |[s,t]γ |[t,mK ] = γ |[0,mK ] is admissible of order (m + 1)Kq0, which is
true by Proposition 19 as it is admissible of order mKq0). If ε0 = 2, we must
prove that

γ |[0,s]γ |[t,s+K ]γ |[t,mK ] = γ |[0,s]γ |[t,s+K ]γ |[t+K ,(m+1)K ]

is admissible of order (m + 1)Kq0. The path γ |[0,(m+1)K ] having an F-
transverse self-intersection at γ (t) = γ (s) and being admissible of order
� (m+1)Kq0, one deduces byProposition 23 that γ |[0,s]γ |[t,(m+1)K ] is admis-
sible of order (m+1)Kq0. This last path has anF-transverse self-intersection
at γ (t + K ) = γ (s + K ). Applying Proposition 23 again, one deduces that
γ |[0,s]γ |[t,s+K ]γ |[t+K ,(m+1)K ] is admissible of order (m + 1)Kq0.

Suppose now the result proved for n. There are three cases to consider.
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The first case is if the sequence (εi )0�i�n is constant equal to 1. We apply
Corollary 22 to the families (γi )1�i�n+1, (si )1�i�n+1, (ti )1�i�n+1, where

γi = γ |[0,K ] if i � n, γn+1 = γ |[0,mK ]

and

si = s if i > 0 , ti = t if i � n

One deduces that

γ |[0,t]
(
γ |[s,t]

)n−1
γ[s,mK ] = γ |[0,s]

(
γ |[s,t]

)n
γ |[t,mK ]

is admissible of order (m+n)Kq0 and so is admissible of order (m+n+1)Kq0.
The second case to consider is if there exists n′ < n such that εn′ = 2

and εi = 1 if i > n′. We apply Corollary 22 to the families (γi )1�i�n−n′+1,
(si )1�i�n−n′+1, (ti )1�i�n−n′+1 where

γ0 = γ |[0,s]
∏

0�i<n′
γεiγ |[t,2K ] ,

γi = γ |[K ,2K ] if 1 < i � n − n′, γn−n′+1 = γ |[K ,(m+1)K ]

and

si = s + K if i > 0 , ti = t + K if i � n − n′

The induction hypothesis tells us that γ0 = γ |[0,s]∏0�i<n′ γεiγ[t,2K ] is admis-
sible of order (n′ + 2)Kq0, so

γ |[0,s]
∏

0�i<n′
γεiγ |[t,s+K ]

(
γ |[s+K ,t+K ]

)n−n′+1
γ |[t+K ,(m+1)K ]

= γ |[0,s]
∏

0�i�n

γεiγ |[t,mK ]

is admissible of order (n′+2)Kq0+(n−n′−1)Kq0+mKq0 = (m+n+1)Kq0.
The final case to consider is if εn = 2. We must prove that

γ |[0,s]
∏

0�i<n

γεiγ |[t,s+K ]γ |[t,mK ] = γ |[0,s]
∏

0�i<n

γεiγ |[t,s+K ]γ |[t+K ,(m+1)K ]

is admissible of order (m + n + 1)Kq0. The path γ |[K ,(m+1)K ] having an F-
transverse self-intersection at γ (t + K ) = γ (s + K ), the same is true when
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we extend this path on the left by adding γ |[0,s]∏0�i<n γεiγ |[t,K ]. Moreover
by induction hypothesis, one knows that

γ |[0,s]
∏

0�i<n

γεiγ |[t,K ]γ |[K ,(m+1)K ]

is admissible of order (m+n+1)Kq0. Applying Proposition 23, one deduces
that

γ |[0,s]
∏

0�i<n

γεiγ |[t,s+K ]γ |[t+K ,(m+1)K ]

is admissible of order (m + n + 1)Kq0. ��
Lemma 33 Let e = (εi )i∈N ∈ {1, 2}N be a periodic word of period q which
is not periodic of period 1. Then the loop �e, defined by the closed path∏

0�i<q γεi , is equivalent to a transverse loop associated to a fixed point of

f qKq0 .

Proof Lemma 32 tells us that, for every n, the path

γ |[0,s]
⎛

⎝
∏

0�i<q

γεi

⎞

⎠

n

γ[t,K ]

is admissible of order (1 + qn)Kq0 and consequently that
(∏

0�i<q γεi

)n
is

admissible of order (1+ qn)Kq0. So �e is linearly admissible: it satisfies the
condition (QqKq0). Note that, since �e is not a constant sequence, it has a
self-intersection. The lema follows by applying the realization result (Propo-
sition 26). ��

Consider now the paths

γ ′
1 = γ1γ2 = γ[s,K+s], γ ′

2 = γ2γ1 = γ |[t,K+t].

Since γ |[0,K ] has a F-transverse self-intersection at z∗ = γ (s) = γ (t),
then for every lift γ̃ of γ , there exists a covering automorphism T such that
γ̃ |[0,K ] and T (γ̃ )|[0,K ] have a F̃-transverse intersection at γ̃ (t) = T (γ̃ )(s).
Consequently, γ̃ |[0,K+t] and T (γ̃ )|[0,K+s] have a F̃-transverse intersection at
γ̃ (t) = T (γ̃ )(s). This implies that among the leaves φγ̃ (K+t) and φT (γ̃ )(K+s),
one is above the other one relative to φγ̃ (t) = φT (γ̃ )(s). This means that if γ̃ ′

1
and γ̃ ′

2 lift γ
′
1 and γ ′

2 respectively and start from the same point z̃∗, then the leaf
containing the ending point of γ̃ ′

1 is either above or below the leaf containing
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Fig. 16 Relative position of
the leafs of the endpoints of
γ̃1 and γ̃2, when both start at
z̃∗ in Lemma 33

φT (γ)(s−K) z∗

φγ(K)

φγ(K+t)

φγ(0)

φγ(t−K)

φT (γ)(0)

φT (γ)(K+s)

φT (γ)(K)

γ2

γ1

T (γ)

γ

the ending point of γ̃ ′
2 (relative to φ̃z), see Fig. 16.We do not loose any general-

ity by supposing it is the former, which means that γ̃ |[0,K ] and T (γ̃ )|[0,K ] have
a positive F̃-transverse intersection at γ (t) = T (γ̃ )(s). In this situation φγ̃ (0)
is above φT (γ̃ )(0) relative to φγ̃ (t), so φγ̃ (t−K ) is above φT (γ̃ )(s−K ) relative to
φγ̃ (t).

This means that, if γ̃ ′
1 and γ̃ ′

2 lift γ̃1 and γ̃2 respectively and end at the same
point z̃∗, then the leaf containing the starting point of γ̃ ′

1 is below the leaf
containing the ending point of γ̃ ′

2 (relatively to φ̃z).
We say that a finite word e = (εi )0�i<2n ∈ {1, 2}2n is a palindromic word of

length 2n if it satisfies εn+ j = εn− j−1, 0 � j < n. Let us fix a base point z̃∗
projectingon z∗. To eachpalindromicword e of length 2n,we associate the loop
�′
e naturally defined by the closed path

∏
0�i<2n γ ′

εi
and the lift γ̃ ′

e = γ̃ ′
e
−γ̃ ′

e
+

of
∏

0�i<2n γ ′
εi
, where γ̃ ′

e
− is the lift of

∏
0�i<n γ ′

εi
ending at z̃∗ and γ̃ ′

e
+ the

lift of
∏

n�i<2n−1 γ ′
εi
starting at z̃∗. The ending point of γ̃ ′

e is the image of its
starting point by a covering automorphism that we denote Te. We define the
path γ̃ ′2

e = γ̃ ′
eTe(γ̃

′
e) and the line γ̃ ′∞

e =∏k∈Z
T k
e (γ̃ ′

e), which is a lift of �′
e.

Lemma 34 If e �= e′ are two palindromic words of the same length, then the
paths γ̃ ′

e and γ̃ ′
e′ intersect F̃-transversally at z̃.

Proof If e �= e′, there exists k ∈ {0, . . . , n − 1} such that εn+ j = ε′
n+ j if

0 � j < k and εn+k �= ε′
n+k . Let us suppose for example that εn+k = 1

and ε′
n+k = 2. The paths

∏
0� j<k γ ′

εn+ j
and

∏
0� j<k γ ′

ε′
n+ j

are equal, as are

the lifts starting from z̃∗. Let us write z̃ for the ending point of the common
lift. The leaf containing the ending point of the lift of

∏
0� j�k γ ′

εn+ j
starting

from z̃∗ is above (relative to φ̃z but also relative to φ̃z∗) the leaf containing the
ending point of the lift of

∏
0� j�k γ ′

ε′
n+ j

starting from z̃∗. So, we have a similar

result replacing
∏

0� j�k γ ′
εn+ j

with the extension γ̃ +
e and

∏
0� j�k γ ′

ε′
n+ j

with
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the extension γ̃ +
e′ . One proves similarly that the leaf containing the starting

point of γ̃ −
e is below (relative to φ̃z∗) the leaf containing the starting point of

γ̃ −
e′ . ��
By Lemma 33, for every palindromic word e of length 2n, there exists a

fixed point ze of f 4nKq0 such that �′
e is associated to ze.

Lemma 35 There exists a constant L > 0 such that, given a palindromic word
e of length 2n, there are at most Ln2 different palindromic words e′ of length
2n such that �′

e and �′
e′ are equivalent.

Proof Let γ̃ ′
1 and γ̃ ′

2 be two respective lifts of γ
′
1 and γ ′

2 to d̃om(I ). The group of
covering automorphisms acts freely and properly. So there exists a constant L ′
such that there are atmost L ′ automorphisms S such that γ̃ ′

1∩S(γ̃ ′
1) �= ∅, atmost

L ′ automorphisms S such that γ̃ ′
2 ∩ S(γ̃ ′

2) �= ∅ and at most L ′ automorphisms
S such that γ̃ ′

1 ∩ S(γ̃ ′
2) �= ∅. Of course, L ′ is independent of the choices of

γ̃ ′
1 and γ̃ ′

2. We deduce that for every palindromic word e of length 2n, there
are at most 8L ′n2 automorphisms S such that γ̃ ′

e ∩ S(γ̃ ′2
e) �= ∅. This implies

that there are at most 8L ′n2 automorphisms S such that γ̃ ′
e and S(γ̃ ′2

e) have a
F̃-transverse intersection.

Suppose that e and e′ are two palindromic words of length 2n such that �′
e

and�′
e′ are equivalent. There exists a covering automorphism Se′ such that γ̃ ′∞

e′
is equivalent to Se′(γ̃ ′∞

e ) and such that Se′ ◦Te ◦ S−1
e′ = Te′ . Composing Se′ on

the left by a power of Te′ if necessary, one can suppose that γ̃ ′
e′ is equivalent to

a subpath of Se′(γ̃ ′2
e). By Lemma 34, one deduces that γ̃ ′

e and Se′(γ̃ ′2
e) intersect

F̃-transversally. It remains to prove that Se′ �= Se′′ if e′ �= e′′. But if this the
case, then �̃′

e′ and �̃′
e′′ are equivalent, which is impossible because this two

paths intersect F̃-transversally at z̃. ��
Since there exists 2n different palindromic words of length 2n, one con-

cludes by Lemmas 33 and 35 that f 4nKq0 has at least 2n

Ln2
distinct fixed points,

proving Proposition 31.

5.2 Topological entropy

By the previous result, it is natural to believe that the topological entropy is
positive, in case M is compact. The next result asserts that this is the case:

Theorem 36 Let M be a compact surface, γ1, γ2 : R → M be two admissible
F-positively recurrent transverse paths (possibly equal) with anF-transverse
intersection. Then the topological entropy of f is positive.

Remark 37 Aswewill see in the proof, Theorem 36 will be stated even in case
where M is not compact by proving that its Alexandrov extension has positive
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entropy.More precisely, write dom(I )alex for the Alexandrov compactification
of dom(I ) if it is not compact, and falex for the extension of f |dom(I ) that fixes
the point at infinity (otherwise set dom(I )alex = dom(I ) and falex = f |dom(I )
in what follows). Of course, falex is a factor of f and so h( f ) � h( falex) if M
is compact.

Theorem 36 will be the direct consequence of Lemma 30 and the following
result:

Proposition 38 Let � be a transverse loop with an F-transverse self-
intersection, and γ its natural lift. Assume that there exists integers K , r such
that γ |[0,K ] has an F-transverse self-intersection, and such that γ |[0,mK ] is
admissible of order mr for every m � 1. Then the topological entropy of falex
is at least equal to log 2/(4r).

Before proving the proposition, we will need the following lemma:

Lemma 39 There exists a covering (Vz)z∈dom(I ) of dom(I ) satisfying the fol-
lowing properties:

i) Vz is an open disk that contains z;
ii) for every z1, z2 in dom(I ), for every integer p � 1 and for every z ∈

Vz1 ∩ f −p(Vz2) there exists a transverse path joining z1 to z2 equivalent

to a subpath of I p+2
F ( f −1(z)), that is homotopic, with endpoints fixed, to

the path α1 I p(z)α
−1
2 , where α1 is a path in Vz1 that joins z1 to z and α2

is a path in Vz2 that joins z2 to f p(z);
iii) in the previous assertion, if p = 1, the homotopy class of the path that

joins z1 to z2 does not depend on z ∈ Vz1 ∩ f −1(Vz2).

Proof One can construct an increasing sequence (Ki )i�1 of compact sets of
dom(I ) that cover dom(I ) and such Ki+1 is a neighborhood of Ki ∪ f (Ki ) ∪
f −1(Ki ), a distance on d̃om(I ), denoted by d, that is invariant under the action
of the group of covering transformations, and an equivariant family of leaves
(φ∗̃

z )̃z∈d̃om(I ), where φ∗̃
z separates z̃ and f̃ (̃z) and consequently is met by ĨF̃ (̃z)

(equivariant means that φ∗
T (̃z) = T (φ∗̃

z ) for every covering transformation T ).
Then one can construct an equivariant family of relatively compact open sets
(Wz̃ )̃z∈d̃om(I ), where Wz̃ contains z̃, projects onto an open disk of dom(I ) and
satisfies

f̃ −1(Wz̃) ⊂ R
(
φ∗̃
f −1(z)

)
, f̃ (Wz̃) ⊂ L

(
φ∗̃
z

)
.

Note that, given z̃, φ∗̃
z and Wz̃ as above, if z̃′ is sufficiently close to z̃, then

one could choose φ∗
z̃′ to be equal to φ∗̃

z and also Wz̃′ = Wz̃ . Therefore we may
assume that the family (Wz̃ )̃z∈d̃om(I ) is locally finite.
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Set Ki = ∅ if i � 0. One knows that f (Ki \ Ki−1) ⊂ int(Ki+1 \ Ki−2).
By a compactness argument, there exists a positive and decreasing sequence
(ηi )i�1 such that for every z̃ ∈ π−1(Ki \ Ki−1), the open ball B(̃z, ηi ) is
included in Wz̃ ∩ π−1(int(Ki+1 \ Ki−2)) and its image f̃ (B(̃z, ηi )) included
in π−1(int(Ki+1 \ Ki−2)), the ball B(̃z, ηi ) being defined with respect to d.
Then, one considers a decreasing and positive sequence (η′

i )i�1 satisfying
η′
i < ηi+4/4 and such that for every z̃ ∈ π−1(Ki \ Ki−1), one has

f̃
(
B
(
z̃, η′

i

)) ⊂ B( f̃ (̃z), ηi+1/2).

Finally, one constructs an equivariant family of open sets (Ṽz )̃z∈d̃om(I ), where

Ṽz contains z̃, is included in B(̃z, η′
i ) if z̃ ∈ π−1(Ki \ Ki−1) and projects onto

an open disk of dom(I ). Note that Ṽz ⊂ Wz̃ .
By projection on dom(I ), one gets a family (Vz)z∈dom(I ) satisfying i). To

prove that it satisfies ii), one must prove that if there exists a point z̃ ∈ Ṽz1
such that f̃ p (̃z) ∈ Ṽz2 , then there exists a transverse path from z̃1 to z̃2 that
is equivalent to a subpath of Ĩ p+2

F̃ ( f̃ −1(̃z)). As Ṽzi ⊂ Wz̃i , i ∈ {1, 2}, by the
properties of the chosen family (Wỹ)ỹ∈d̃om(I ),

R
(
φ f̃ −1 (̃z)

)
⊂ R

(
φ∗̃
f −1 (̃z1)

)
⊂ R

(
φ̃z1

) ⊂ R
(
φ∗̃
z1

) ⊂ R
(
φ f̃ (̃z)

)

and

R
(
φ f̃ p−1 (̃z)

)
⊂ R

(
φ∗̃
f −1 (̃z2)

)
⊂ R

(
φ̃z2

) ⊂ R
(
φ∗̃
z2

) ⊂ R
(
φ f̃ p+1 (̃z)

)
.

One deduces that Ĩ p+2
F̃ ( f̃ −1(̃z)) meets φ̃z1 and φ̃z2 . It remains to prove that

R(φ̃z1) ⊂ R(φ̃z2) to ensure that φ̃z1 is met before φ̃z2 and to prove the existence
of a transverse path from z̃1 to z̃2. The case where p � 2 is easy because

R(φ̃z1) ⊂ R(φ f̃ (̃z))) ⊂ R(φ f̃ p−1 (̃z)) ⊂ R(φ̃z2).

To prove the result in the case where p = 1 it is sufficient to prove that Ṽz2 is
included inW f̃ (̃z1) because every point inW f̃ (̃z1) belongs to L(φ∗̃

z1
). Moreover

one will get iii) because W f̃ (̃z1) is disjoint from its images by the non trivial
covering transformations. Set η j = η1 and η′

j = η′
1 if j � 0, and let i be

such that z1 ∈ Ki \ Ki−1. One knows that z̃ ∈ π−1(int(Ki+1 \ Ki−2)), so
f̃ (̃z) ∈ π−1(int(Ki+2 \ Ki−3)) and z̃2 ∈ π−1(int(Ki+3 \ Ki−4)). One also
knows that f̃ (̃z1) ∈ π−1(int(Ki+1\Ki−2)). Using the fact that η′

i−3 < ηi+1/4,
that d( f̃ (̃z), f̃ (̃z1)) < ηi+1/2, and that d( f̃ (̃z), z̃2) < η′

i−3, one deduces that
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Ṽz2 ⊂ B
(
z̃2, η

′
i−3

) ⊂ B( f̃ (̃z1), ηi+1) ⊂ W f̃ (̃z1).

��
Proof of Proposition 38 We keep the notations of Proposition 31. Since, by
Lemma34applied ton = 1, the paths (γ ′

1)
2 and (γ ′

2)
2 intersectF-transversally,

one deduces that γ ′2
1 has a leaf on its right and a leaf on its left, which implies

that γ ′
1 satisfies the same property. One proves similarly that γ ′

2 has a leaf on
its right and a leaf on its left. By Lemma 18, there exists a compact set K such
that for every n � 1 and every z ∈ dom(I ) \⋃0�k<n f −k(K ), none of the
paths γ ′

1 and γ ′
2 is equivalent to a subpath of I nF (z). We can find a compact

set K ′ larger than K such that for all z ∈ dom(I ) \ K ′, the trajectory I (z)
is disjoint from γ ′

1 and γ ′
2, as is every open set Vz′ given by Lemma 39 that

contains z. Adding ∞ to dom(I ) \ K ′, one gets a neighborhood V∞ of ∞
in dom(I )alex. Define V∞,p = ⋂

|k|�p f −k(V∞) and consider the covering
Vp of dom(I )alex that consists of V∞,p added to the covering (Vz)z∈dom(I ) of
dom(I ) given by Lemma 39. Write �′ for the loop naturally defined by the
closed path (γ ′

1)
2(γ ′

2)
2 and γ ′ for its natural lift. Recall that M(�′) has been

defined in Proposition 9 . Proposition 38 is an immediate consequence of the
following: ��
Lemma 40 The entropy of falex relative to the covering Vp is at least equal
to log 2/(4r) − logM(�′)/2p.

Proof As seen in the proof of Theorem 29, to every palindromic word e =
(εi )0�i<2n of length 2n is associated a fixed point ze of f 4nr and an associate
F-transverse loop defined by

∏
0� j<2n γ ′

εi
. Moreover, by Lemma 35, there

exists L > 0, independent of n, such that there are at least 2n/Ln2 different
equivalent classes among the associated loops. We will prove that every open
set of the covering

∨
0�k<4nr f −k(V p) contains atmost Ln2M(�′)2nr/p points

ze.We deduce that every finite sub-covering of
∨

0�k<4nr f −k(V p) has at least
2n/Ln2M(�′)2nr/p open sets and so

h( falex,Vp) � lim
n→+∞

1

4nr
log(2n/Ln2M(�′)2nr/p)

= log 2/(4r) − logM(�′)/2p.

Let us consider an element W =⋂0� j<4nr f − j (V j ) of Vp. We suppose that
it contains at least one point ze. Denote J∞ the set of j ∈ {0, . . . , 4nr−1} such
that there exists j ′ ∈ {0, . . . , 4nr} satisfying | j − j ′| < p and V j ′ = V∞,p
and denote J<∞ the complement of J∞. Note that f j (ze) ∈ V∞ if j ∈ J∞.
By Lemma 18, one knows that the orbit of ze cannot be contained in V∞. So
J<∞ �= ∅.
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Let us begin with the case where 0 ∈ J<∞ and write J<∞ = { j0, . . . , jl∗},
where j0 = 0 < j1 · · · < jl∗ , and add jl∗+1 = 4nr . Every open set V jl can be
written V jl = Vz jl . For every l, choose a path δl in Vz jl from z jl to f jl (ze). By
Lemma 39, there exists a F-transverse path βl from z jl to z jl+1 equivalent to

a subpath of I jl+1− jl+2
F ( f jl−1(ze)) and homotopic to δl I jl+1− j j ( f jl (ze))δ

−1
l+1.

In the case where jl+1 − jl = 1, the homotopy class of βi (with endpoints
zil and zil+1 fixed) is uniquely determined. Let us explain now why there are
at most M(�′) possible homotopy classes if jl+1 − jl � 2. Note first that
jl+1 − jl � 2p in that case, and that all points f j (ze), jl − 1 � j � jl+1 + 1
belong to V∞. This implies that neither γ ′

1 nor γ ′
2 are equivalent to subpaths

of I jl+1− jl+2
F ( f jl−1(ze)). Note that the latter is equivalent to a subpath of

I 4nrF (ze), which is equivalent to
∏

0� j<2n γ ′
εi
. We remark that, if σ is any

transverse path that is equivalent to a subpath of
∏

0� j<2n γ ′
εi
, but that does

not contain a subpath that is equivalent to either γ ′
1 or γ ′

2, then σ must be
equivalent to a subpath of one the six possible following paths:

γ ′
1, γ ′

2, γ ′
1γ

′
1, γ ′

1γ
′
2, γ ′

2γ
′
1, γ ′

2γ
′
2

and therefore σ (and thus I jl+1− jl+2
F ( f jl−1(ze))) must equivalent to a subpath

of γ ′. Furthermore βi = δl I jl+1− j j ( f jl (ze))δ
−1
l+1 is disjoint from �′ by defini-

tion of V∞ because it is the case for I jl+1− j j ( f jl (ze)) and for the disks Vz jl and
Vz jl+1

. One can apply Proposition 9 and obtain that βi must belong to one of
the at most M(�′) different homotopy classes of paths connecting zil and zil+1 ,
as claimed before. The path

∏
0�l�l∗ βl is a closed path based at z0. Noting

that there exist at most 4nr/2p = 2nr/p integers l such that jl+1− jl �= 1, we
deduce that there exist at most M(�′)2nr/p homotopy classes (with fixed base
point) possible. The loop defined by

∏
0�l�l∗ βl is freely homotopic to �′

e. So
there exist at most M(�′)2nr/p free homotopy classes defined by the loops �′

e
such that ze ∈ W . By Lemma 35, to prove that there is at most Ln2M(�′)2nr/p
points ze inW , it is sufficient to prove the following stronger result: there exist
at mostM(�′)2nr/p classes defined by the loops�′

e that are equivalent as trans-
verse paths and such that ze ∈ W . Suppose that ze and ze′ belong toW and that
the paths βl , 0 � l � l∗, constructed with ze and ze′ are all homotopic. Fix a
lift Ṽz0 of Vz0 and note z̃e and z̃e′ the respective lifts of ze and ze′ that belongs
to Ṽz0 . The whole F̃-transverse trajectories of z̃e and z̃e′ are invariant by the
same non trivial covering automorphism T , which is naturally defined by the
lift
∏

0�l�l∗ β̃l of
∏

0�l�l∗ βl . Moreover, β̃0 is F̃-equivalent to a subpath of
ĨF̃ (̃ze) and to a subpath of ĨF̃ (̃ze′). So these two lines meet a common leaf
φ̃. One deduces that they meet T k(φ̃), for every k ∈ Z and consequently that
they meet the same leaves. So there are equivalent.
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The case where 0 ∈ J∞ can be reduced to the case where 0 ∈ J<∞ after a
cyclic permutation on {0, . . . , 4nr − 1} because the points ze are all fixed by
f 4nr . ��
As a direct application of Proposition 38 we can obtain the following result,

which is connected to the study of the minimal entropy of pure braids in S
2.

There are sharper results with a larger lower bound for the entropy (see [38]),
but they use very different techniques.

Theorem 41 Let f be an orientation preserving homeomorphism on S
2

and I a maximal hereditary singular isotopy. Assume that there exists z ∈
dom(I ) ∩ fix( f ) such that the loop naturally defined by the trajectory I (z) is
not homotopic in dom(I ) to a multiple of a simple loop. Then the entropy of
f is at least equal to log(2)/(4).

Proof Let F be a foliation transverse to the isotopy. By hypothesis, the
transverse loop � associated to z is not a multiple of a simple loop, so by
Proposition 2, it has anF-transverse self-intersection. If γ is the natural lift of
�, then for all integers K , γ |[0,K ] is admissible of order K . Furthermore, by
Proposition 7, γ |[0,2] has an F-transverse self-intersection. The theorem then
follows directly from Proposition 38. ��

5.3 Associated subshifts

Let us give a natural application of Corollaries 21, 22 and the results of this
section. We keep the assumptions and notations given at the beginning of
the section. Consider a transverse path γ : [a, b] → dom(F) with finitely
many double points, none of them corresponding to an end of the path and
no triple points (by a slight modification of the argument given in the proof
of Corollary 24 one can show that every transverse path is equivalent to such
a path). There exists real numbers a < t1 < · · · < t2r < b and a fixed
point free involution σ on {1, . . . , 2r} such that γ (ti ) = γ (tσ(i)), for every
i ∈ {1, . . . , 2r} and such that γ is injective on the complement of {t1, . . . , t2r }.
Set t0 = a and t2r+1 = b and define for every i ∈ {0, . . . , 2r} the path
γi = γ |[ti ,ti+1]. Consider the incidence matrix P ∈ M2r+1(Z) (indexed by
{0, . . . , 2r}) such that Pi, j = 1 if j = i + 1 or j = σ(i + 1) and 0 otherwise
(in particular if i = 2r ). Note that the first column and the last row only contain
0. For every P-admissible word (is)1�s�s0 , which means that Pis ,is+1 = 1 if
s < s0, the path

∏
1�s�s0 γis is transverse to F . Note that every transverse

path γ : [a′, b′] → dom(F) whose image is contained in the image of γ is a
subpath of such a path

∏
1�s�s0 γis .

Suppose now that γ is admissible of order n. Can we decide when a path∏
1�s�s0 γis is admissible and what is its order? More precisely, do there exist
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other incidence matrices P ′ smaller than P (which means that P ′
i, j = 0 if

Pi, j = 0) such that
∏

1�s�s0 γis is admissible if (is)1�s�s0 is P
′-admissible?

Corollaries 21 and 22 imply that the following three matrices satisfy this
property:

– the matrix Pstrong, where Pstrong
i, j = 1 if and only if j = i + 1, or if

j = σ(i + 1) and γiγi+1 and γ j−1γ j have an F-transverse intersection at
γ (ti+1) = γ (t j );

– the matrix P left, where P left
i, j = 1 if and only if j = i+1, or if j = σ(i+1)

and γ has an F-transverse positive self-intersection at γ (ti+1) = γ (t j );

– thematrix P right, where P right
i, j = 1 if and only if j = i+1, or if j = σ(i+1)

and γ has an F-transverse negative self-intersection at γ (ti+1) = γ (t j ).

More precisely, if P ′ is one of the three previous matrices, then for every P ′-
admissible word (is)1�s�s0 , the path

∏
1�s�s0 γis is admissible of order kn,

where k is the number of s < s0 such that is+1 = σ(is + 1). As explained in
Proposition 23, its order can be less. One can adapt the proof of Theorem 36
to give a lower bound to the topological entropy of falex. For example it is at
least equal to 1/n times the logarithm of the spectral radius of P ′ if the paths
γi have a leaf on their right and a leaf on their left, otherwise one has to replace
these paths by finite admissible words. One can adapt the proof of Theorem 29
to show that for every P ′-admissible word (is)1�s�s0 such that i1 = is0 , the
loop naturally defined by

∏
1�s<s0 γis is associated to a periodic orbit (except

for some exceptional cases).
Let us illustrate this procedure with four examples, where we start with an

admissible path of order 1:
For the first example, see Fig. 17, the admissibility matrices are

Pstrong
1 =

⎛

⎜
⎜
⎜
⎜
⎝

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎠

,

P left
1 =

⎛

⎜
⎜
⎜
⎜
⎝

0 1 0 1 0
0 0 1 0 0
0 0 0 1 0
0 0 1 0 1
0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎠

, P right
1 =

⎛

⎜
⎜
⎜
⎜
⎝

0 1 0 0 0
0 0 1 0 1
0 1 0 1 0
0 0 0 0 1
0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎠

.

The matrix Pstrong
1 does not tell us anything, the only admissible paths are

subpaths of γ = γ0 . . . γ4. The only interesting informations got from P left
1

and P right
1 respectively are the facts that the loops naturally defined by γ2γ3 and

123



Forcing theory for transverse trajectories 683

Fig. 17 Example 1: Leafs of
the foliation are represented
as dashed lines, while
transverse paths are solid

γ0

γ1

γ2
γ3

γ4

γ1γ2 are linearly admissible of order 2. Nevertheless the first loop has no leaf
on its left while the second one has no leaf on its right. So, one cannot apply
Proposition 26 and deduce that the loops are equivalent to transverse loops
associated to periodic points of period 2. Note also that the spectral radius of
P left
1 and P right

1 are equal to 1. In this example, one cannot deduce neither the
positivity of entropy, nor the existence of periodic orbits.

For the second example, see Fig. 18, the admissibility matrices are

Pstrong
2 =

⎛

⎜
⎜
⎜
⎜
⎝

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎠

,

P left
2 =

⎛

⎜
⎜
⎜
⎜
⎝

0 1 0 0 0
0 0 1 0 0
0 0 1 1 0
0 1 0 0 1
0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎠

, P right
2 =

⎛

⎜
⎜
⎜
⎜
⎝

0 1 0 0 1
0 0 1 1 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎠

.

The matrix Pstrong
2 does not tell us anything. The matrix P right

2 is nilpotent and
the only admissible paths are γ0γ4, γ0γ1γ3γ4 and γ , all of them admissible
of order 1 by Proposition 23. The matrix P left

2 is much more interesting: its
spectral radius, the real root of the polynomial X3 − X2 − 1, is larger than
1. The loop naturally defined by γ2 is linearly admissible of order 1 but has
no leaf on its left: one cannot deduce that it is equivalent to a transverse loop
associated to a fixed point. If p � 1, the loop naturally defined by γ1γ

p
2 γ3 is
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Fig. 18 Example 2: Leafs of
the foliation are represented
as dashed lines, while
transverse paths are solid

γ0

γ1

γ2

γ3

γ4

linearly admissible of order p and has leaf on its right and a leaf on its left.More
precisely, it has a transverse self-intersection, so one can apply Proposition 26
and deduce that it is equivalent to a transverse loop associated to a periodic
point of period p. In particular, the loop defined by γ1γ2γ3 is equivalent to
a transverse loop associated to a fixed point: one can apply Theorem 41 and
deduce that the entropy of f is at least log 2/4.

In third example, see Fig. 19, the trajectory is the same as in the first example
but the foliation is different. The admissibility matrices are

Pstrong
3 =

⎛

⎜
⎜
⎜
⎜
⎝

0 1 0 1 0
0 0 1 0 1
0 1 0 1 0
0 0 1 0 1
0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎠

,

P left
3 =

⎛

⎜
⎜
⎜
⎜
⎝

0 1 0 1 0
0 0 1 0 0
0 0 0 1 0
0 0 1 0 1
0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎠

, P right
3 =

⎛

⎜
⎜
⎜
⎜
⎝

0 1 0 0 0
0 0 1 0 1
0 1 0 1 0
0 0 0 0 1
0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎠

.

Thematrices P right
3 and P left

3 are the same as in the first example. Nevertheless,
one can saymore. Indeed the loops defined by γ2γ3 and γ1γ2,which are linearly
admissible of order 2, nowhave a leaf on their left and a leaf on their right. They
intersect F-transversally and negatively the paths γ0γ1 and γ3γ4 respectively
but they do not interest F-transversally and positively a path drawn on γ . So,
one cannot apply the second item of Proposition 26. However, by the first item
of the sameproposition, if they are not equivalent to transverse loops associated
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Fig. 19 Example 3: Leafs of
the foliation are represented
as dashed lines, while
transverse paths are solid

γ0

γ1

γ2
γ3

γ4

Fig. 20 Example 4: Leafs of
the foliation are represented
as dashed lines, while
transverse paths are solid

γ0

γ1 γ2

γ3
γ4

γ5 γ6

γ7

γ8

to periodic points of period 2, they are homotopic in the domain to a simple
loop that does not meet its image by f . In particular, if ( f ) = S

2, they
must be equivalent to transverse loops associated to periodic points of period
2. The matrix Pstrong

3 is much more interesting: its spectral radius is equal to√
2. Every path defined by a word of length n in the alphabet {γ1γ2, γ3γ2} is

admissible of order 2n and intersectγ transversally. The proofs ofTheorems 36
and 29 tell us that the topological entropy of f is at least equal to log 2/2, and
that the number of fixed point of f 2n in the domain is at least equal to en if
( f ) = S

2.
In the fourth example, see Fig. 20, the foliation is the same as in the first

example but the trajectory is different. In particular, there are three points of
self-intersection of γ , and all areF-transverse. The admissibilitymatrices are:

123



686 P. Le Calvez, F. A. Tal

Pstrong
1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

P left
1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 1 0 0 0 1 0
0 0 1 1 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 1 0 1
0 0 0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

P right
1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 1 1 0 0 0
0 0 0 0 1 0 1
0 1 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

By inspection of P left
1 one assures the existence of a single admissible loop

γ4γ5, while inspection of P right
1 we see that both loops γ2 and γ2γ3γ4γ1 are

admissible and that the entropy of f must be positive.

6 First applications

In this section we give two applications for homeomorphisms of compact
oriented surfaces. The first one is a new proof of Handel’s result on transitive
homeomorphisms of the sphere. The second application provides sufficient
conditions for the existence of non-contractible periodic orbits, and has as a
consequence a positive answer to a problem posed by Boyland for the annulus.

6.1 Transitive maps of surfaces of genus 0

In [19], Handel prove that a transitive orientation preserving homeomorphism
f of S

2 with at least three fixed points, but finitely many, has infinitely many
periodic orbits: more precisely the number of periodic points of period n for
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some iterate of f grows exponentially in n. We will improve this result as
follows, with Theorem K of the introduction:

Theorem 42 Let f : S
2 → S

2 be an orientation preserving homeomorphism
such that the complement of the fixed point set is not an annulus. If f is
topologically transitive then the number of periodic points of period n for
some iterate of f grows exponentially in n. Moreover, the entropy of f is
positive.

Proof Recall that, in our case, the transitivity implies the existence of a point
z whose ω-limit and α-limit sets are the whole sphere. One knows that every
connected component of S

2 \ fix( f ) is invariant(see Brown and Kister [8]).
Since f has a dense orbit, this complement must be connected. Moreover
it cannot be a disk because f has a dense orbit. Indeed the Brouwer Plane
Translation Theorem implies that every fixed point free orientation preserving
homeomorphism of the plane has only wandering points. One deduces that the
fixed point set has at least three connected components. Choose three fixed
points in different connected components and an isotopy I ′ from identity to
f that fixes these three fixed points (this is always possible). The restriction
of I ′ to the complement of these three points is a hereditary singular isotopy.
Using Theorem 14 one can find a maximal hereditary singular isotopy I larger
than I ′. Let F be a foliation transverse to this isotopy. It has the same domain
as I , and this domain is not an annulus because I is larger than I ′. The fact
that ω(z) = α(z) = S

2 implies that IZ

F (z) is an admissible F-bi-recurrent
transverse path that contains as a subpath (up to equivalence) every admissi-
ble segment and consequently that crosses all leaves of F . Since dom(I ) is
not a topological annulus, this implies that IZ

F (z) has an F-transverse self-
intersection by Proposition 2. The result follows from Theorems 29 and 36.

��

6.2 Existence of non-contractible periodic orbits

Let f be a homeomorphism isotopic to identity on an oriented connected
surface M and I ′ an identity isotopy of f . A periodic point z ∈ M of period q
is said to have a contractible orbit if I ′q(z) naturally defines a homotopically
trivial loop, otherwise it is said to be non-contractible. In this subsection we
examine some conditions that ensure the existence of non-contractible periodic
orbits of arbitrarily high period. Through this subsection we assume that M̌
is the universal covering space of M and write π̌ : M̌ → M for the covering
projection. Write Ǐ ′ for the lifted identity isotopy and f̌ for the associated lift
of f . One can find amaximal hereditary singular isotopy I larger than I ′. It can
be lifted to an identity isotopy Ǐ on ˇdom(I ) = π̌−1(dom(I )). This isotopy is
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a maximal singular isotopy of f̌ larger than Ǐ ′. Let F be a foliation transverse
to I , its lift to ˇdom(I ), denoted by F̌ is transverse to Ǐ .

The main technical result is the following proposition:

Proposition 43 Suppose that there exist an admissible F̌-bi-recurrent path γ̌

for f̌ , a leaf φ̌ of F̌ and three distinct covering automorphisms Ti , 1 � i � 3,
such that γ̌ crosses each Ti (φ̌). Then there exists q > 0 and a non trivial
covering automorphism T = Ti ◦ T−1

j such that for all r/s ∈ (0, 1/q], the
maps f̌ s ◦ T−r and f̌ s ◦ T r have fixed points. In particular, f has non-
contractible periodic points of arbitrarily large prime period.

Proof By assumptions, there are non trivial covering automorphisms. So M
is not simply connected and M̌ is a topological plane. For every loop �̌ in M̌ ,
we will denote δ

�̌
the dual function that vanishes on the unbounded connected

component of M̌ \ �̌. It is usually called the winding number of �̌. ��
Sub-lemma 44 If �̌ is a loop positively transverse to F̌ , the set of singular
points ž of F̌ such that δ

�̌
(ž) �= 0 is a non empty compact subset �

�̌
of M̌.

Furthermore �
�̌

= �
�̌′ if �̌ and �̌′ are equivalent transverse loops.

Proof The fact that �
�̌

= �
�̌′ if �̌ and �̌′ are equivalent transverse loops is

obvious as is the fact that �
�̌
compact. To prove that this set is not empty, let

us consider a leaf φ̌ that meets �̌. As recalled in the first section, at least one
the two following assertions is true:

– the set α(φ̌) is a non empty compact set and δ
�̌
takes a constant positive

value on it;
– the set ω(φ̌) is a non empty compact set and δ

�̌
takes a constant negative

value on it.

Suppose for instance thatwe are in the first situation. Ifα(φ̌) contains a singular
point, we are done. If not, it is a closed leaf disjoint from �̌. More precisely,
α(φ̌) is contained in a bounded connected component of M̌ \ �̌ where δ

�̌
takes

a constant positive value. This component contains the bounded component
of the complement of α(φ̌) and so contains a singular point. ��

Let us prove first that there exists an admissible loop �̌ that crosses each
Ti (φ̌). Suppose first that γ̌ has a F̌-transverse self-intersection and choose
a1, b1, t1, a2, b2, t2 be such that γ̌1|[a1,b1] intersects F̌-transversally γ̌2|[a2,b2]
at γ̌1(t1) = γ̌2(t2) and such that γ̌1|[a1,b1] crosses each Ti (φ̌). The construction
done in the proof of Lemma 30 gives us such a loop �̌. Suppose now that
γ̌ has no F̌-transverse self-intersection. By Proposition 2, one knows that γ̌

is equivalent to the natural lift of a simple loop �̌ and this loop satisfies the
desired property.
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Let us prove now that one can find at least two distinct loops among the
T−1
i (�̌) that have a F̌-transverse intersection. If not, by Proposition 1, one

can find for every i ∈ {1, 2, 3} a transverse loop �̌′
i equivalent to T

−1
i (�̌) such

that the �̌′
i are pairwise disjoint. The three functions δ

�̌′
i
are decreasing on the

leaf φ̌. For each i , either δ
�̌′
i
is not null in α(φ̌) or δ

�̌′
i
is not null in ω(φ̌),

and therefore either there exists two different indices i and j such that for all
points in α(φ̌), δ

�̌′
i

�= 0 and δ
�̌′
j

�= 0, or there exists two different indices i

and j such that for all points in ω(φ̌), δ
�̌′
i
�= 0 and δ

�̌′
j
�= 0. In any case, there

exists a point ž ∈ φ̌ and two different indices i and j such that δ
�̌′
i
(ž) �= 0

and δ
�̌′
j
(ž) �= 0. The fact that there exists a point where the two dual functions

do not vanish tells us that one of the loops, let us say �̌′
i , is included in a

bounded connected component of the complement of the other one �̌′
j , and

that �̌′
j is included in the unbounded connected component of the complement

of �̌′
i . One deduces that �

�̌′
i

⊂ �
�̌′
j
. Setting T = Tj ◦ (Ti )−1, one gets the

inclusion T (�
�̌
) ⊂ �

�̌
, where�

�̌
is a non empty compact set. We have found

a contradiction because T is a non trivial covering automorphism.
We have proved that there exist i �= j such that T−1

i (�̌) and T−1
j (�̌) inter-

sect F̌-transversally. This implies that �̌ and T (�̌) intersect F̌-transversally,
where T = Tj ◦ (Ti )−1. Write γ̌ for the natural lift of �̌ and choose an inte-
ger L sufficiently large, so that γ̌ |[0,L] has a F̌-transverse intersection with
T (γ̌ )|[0,L] at γ̌ (t) = T (γ̌ )(s), with s < t . The loop �̌ being admissible, there
exists q > 0 such that γ̌ |[−L ,2L] is admissible of order q. It follows from
Corollary 22 and Proposition 19 that, for any n > 1, the paths

n−1∏

i=0

T i (γ̌ |[s−L ,t+L]
)
,

n−1∏

i=0

T−i (γ̌ |[t−L ,s+l]
)

are admissible of order nq, and both have F̌-transverse self-intersections.
Therefore the paths γ̌ |[s−L ,t+L] and γ̌ |[t−L ,s+l] project onto closed paths of
M and the two loops naturally defined haveF-transverse self-intersection and
are linearly admissible. So, one candeduceProposition 43 fromProposition 26.

��
Let us state a first application of Proposition 43. In [39] conditions are

given for a homeomorphism f , isotopic to the identity, of a compact surface
M to have only contractible periodic points. There it is shown, using Nielsen–
Thurston theory, that for such f , under a suitable condition on the size of its
fixed point set, there exists an uniform bound on the diameter of the orbits
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of periodic points. The next theorem improves the main result of that note,
by extending the uniform bound on the diameter of orbits from f̌ periodic
points to f̌ recurrent points. Note that the hypothesis that the fixed point set
of f̌ project in a disk cannot be removed. There exists an example of a C∞
diffeomorphism f of T

2 preserving the Lebesgue measure and ergodic such
that every periodic orbit of f is contractible, and such that almost all points in
the lift have orbits unbounded in every direction (see [25]). The following is
Theorem H of the introduction:

Theorem 45 We suppose that M is compact and furnished with a Riemannian
structure. We endow the universal covering space M̌ with the lifted structure
and denote by d the induced distance. Let f be a homeomorphismof M isotopic
to the identity and f̌ a lift to M̌ naturally defined by the isotopy. Assume that
there exists an open topological disk U ⊂ M such that the fixed point set of f̌
projects into U. Then;

– either there exists K > 0 such that d( f̌ n(ž), ž) � K, for all n � 0 and all
bi-recurrent point ž of f̌ ;

– or there exists a nontrivial covering automorphism T and q > 0 such that,
for all r/s ∈ (−1/q, 1/q), themap f̌ s◦T−r has a fixed point. In particular,
f has non-contractible periodic points of arbitrarily large prime period.

Proof Let I be a maximal hereditary singular isotopy larger than the given
isotopy and F a foliation transverse to I . Denote M̌ the universal covering
space of M and π̌ : M̌ → M the covering projection. Write Ǐ ′ for the lifted
identity isotopy on ˇdom(I ) = π̌−1(dom(I )) and F̌ for the lifted foliation. The
theorem follows directly from the next lemma and Proposition 43. ��
Lemma 46 There exists K > 0 such that, for all ž in M̌ and all n � 0,
if d( f̌ n(ž), ž) � K, then there exists a leaf φ̌ and three distinct covering
automorphisms Ti , 1 � i � 3, such that I nF̌ (ž) crosses each Ti (φ̌).

Proof One can find a neighborhood V ⊂ U of sing(I ) such that for every point
ž ∈ π−1(V ), the points ž and f̌ (ž) belong to the same connected component
of π−1(U ). For reasons explained in the proof of Lemma 18, one knows that
for every z ∈ M \ V , there exists a small open disk Oz ⊂ dom(F) containing
z such that I 2F ( f −1(z′)) crosses φz if z′ ∈ Oz . By compactness of M \ V ,
one can cover this set by a finite family (Ozi )1�i�r . One constructs easily a
partition (Xzi )1�i�r of M \V such that Xzi ⊂ Ozi . We have a unique partition
(X̌α)α∈A of M̌ such that, either X̌α is contained in a connected component of
π−1(U ) and projects onto V , or there exists i ∈ {1, . . . , r} such that X̌α is
contained in a connected component of π−1(Ozi ) and projects onto Xzi . Write
α(ž) = α if ž ∈ X̌α . Let us define

K0 = max
ž∈M̌

d( f̌ (ž), ž)), K1 = max
α∈A diam(X̌α).
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Fix ž ∈ M̌ , n � 1 and define a sequence n0 < n1 < · · · < ns in the following
inductive way:

n0 = 0, n j+1 = 1 + sup{k ∈ {n j , . . . , n − 1} | α( f̌ k(ž)) = α( f̌ n j (ž))},
ns = n.

Note thatd( f̌ n j (ž), f̌ n j+1(ž)) � K0+K1, if j < s. Note also that, if X̌
α( f̌ n j (ž))

projects on V , then f n j+1−1(z) also belongs to V and by the choice of V both
f̌ n j+1−1(ž) and f̌ n j+1(ž) belong to the same connected component ofπ−1(U ).
As α( f̌ n j (ž)) �= α( f̌ n j+1(ž)), one gets that X̌

α( f̌ n j+1
(ž))

do not project on V .

Fix K > (6r + 1)(K0 + K1). If d( f̌ n(ž), ž) � K , then s � 6r + 1 and there
exist at least 3r sets X̌

α( f̌ n j (ž)), 0 < j < s, that do not project on V . This
implies that there exist three points f n jl (π(z)) that belong to the same Xzi ,
and therefore one finds that there exist a point ži ∈ π−1(zi ) and two distinct
nontrivial covering automorphisms T1, T2 such that the orbit of ž intersects
the three distinct connected components of π−1(Ozi ) that contain ži , T1(ži )
and T2(ži ), respectively. By the choice of Ozi , this implies that I nF̌ (ž) intersect
φži , T1(φži ) and T2(φži ). ��

Proposition 43 is also fundamental in solving the following conjecture posed
by Boyland (see, for instance, [3] where the conjecture is shown to be true
generically for sufficiently smooth diffeomorphisms): Let f be a homeomor-
phism of the closed annulus preserving a probability measure μ with full
support, and let f̌ be a lift of f to the universal covering space of the annulus.
If the rotation set of f is a non trivial segment and the rotation number of μ is
null, is it true that rot(μ) belongs to the interior of the rotation set?

We recall first Atkinson’s Lemma on ergodic theory, that will be very useful
in this paper (see [1]).

Proposition 47 Let (X,B, μ) be a probability space, and let T : X → X
be an ergodic automorphism. If ϕ : X → R is an integrable map such that∫

ϕ dμ = 0, then for every B ∈ B and every ε > 0, one has

μ

({

x ∈ B, ∃n � 0, T n(x) ∈ B and

∣
∣
∣
∣
∣

n−1∑

k=0

ϕ(T k(x))

∣
∣
∣
∣
∣
< ε

})

= μ(B).

We have the following, Theorem A of the introduction:

Theorem 48 Let f be a homeomorphism of A = T
1 × [0, 1] that is isotopic

to the identity and f̌ a lift to R × [0, 1]. Suppose that rot( f ) is a non trivial
segment and that one of its endpoint ρ is rational. Define
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Mρ = {μ ∈ M( f ) , rot(μ) = ρ} , Xρ =
⋃

μ∈Mρ

supp(μ).

Then every invariant measure supported on Xρ belongs to Mρ .

Proof Replacing f by a power f q and f̌ by a lift f̌ q ◦ T p, one can assume
that ρ = 0 and rot( f ) = [0, a], where a > 0. The fact that 0 is extremal
implies that for every μ ∈ M0, each ergodic measure μ′ that appears in the
ergodic decomposition of μ also belongs to M0. Atkinson’s Lemma, with
T = f and ϕ the map lifted by ϕ̌ : z �→ π1( f̌ (ž) − ž), tells us that μ′-almost
every point of A is lifted to a recurrent point of f̌ . The union of the supports of
such ergodic measures being dense in supp(μ), one deduces that the recurrent
set of f̌ is dense in π−1(X0). Writing f = ( f1, f2), one can extend f to a
homeomorphism of T

1 × R such that f (x, y) = ( f1(x, 1), y) if y � 1 and
f (x, y) = ( f1(x, 0), y) if y � 0 and still denote by f̌ the lift that extends the
initial lift. Let I ′ be an identity isotopy of f that is lifted to an identity isotopy
Ǐ ′ of f̌ . Let I be a maximal hereditary singular isotopy larger than I ′ and F a
foliation transverse to I . Consider the lift Ǐ of I and the lifted foliation F̌ . If
there exists an invariant measure supported on X0 whose rotation number is
positive, there exists a recurrent point z of rotation number strictly larger than
0. Let us fix a lift ž. As ž is not fixed by f̌ , it belongs to the domain of Ǐ and the
path IZ

F̌ (ž) meets infinitely many translates of φž . But ž can be approximated

by a recurrent point ž′ of f̌ because we have seen that the recurrent set of
f̌ was dense in π−1(X0). So we can suppose that IZ

F̌ (ž′) meets at least three
translates of φž . The result now follows from Proposition 43. Indeed, one finds
some power n of T such that for any pair of integers r, s with s > 0 and such
that |r/s| is sufficiently small, there exists a fixed point žr,s of f̌ r ◦ T−ns . The
points žr,s project to periodic points zr,s in A such that the rotation number
of zr,s is r/ns. In particular both 1/sn and −1/sn belong to the rotation set
of f̌ if s is sufficiently large, in contradiction with the fact that 0 is an end of
rot( f ). ��

We deduce immediately the positive answer to Boyland’s question, Corol-
lary B of the introduction:

Corollary 49 Let f be a homeomorphism of A that is isotopic to the identity
and preserves a probability measure μ with full support. Let us fix a lift f̌ .
Suppose that rot( f ) is a non trivial segment. The rotation number rot(μ)

cannot be an endpoint of rot( f ) if this endpoint is rational.

Proof If rot( f ) is an endpoint of rot( f ) and this endpoint is a rational ρ, by
Theorem 48 we get that, if Xρ = supp(μ) is the whole annulus A, then every
invariant measure supported on A has rotation vector ρ, which implies that
rot( f ) = {ρ}. ��
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7 Entropy zero conservative homeomorphisms of the sphere

Wewill prove in this section the improvement of Franks–Handel’s result about
area preserving diffeomorphisms of S

2 with entropy zero, stated in the intro-
duction as Theorem M. Let us begin by introducing an important notion due
to Franks and Handel: let f : S

2 → S
2 be an orientation preserving homeo-

morphism, a point z is free disk recurrent if there exist an integer n > 1 and a
topological open disk D containing z and f n(z) such that f (D)∩ D = ∅. We
will also need the notion of heteroclinic point, which means that its α-limit
and ω-limit sets are included in connected subsets of fix( f ).

Let us state first some easy but useful facts. By definition if f is a homeo-
morphism of a topological space X , a subset Y is free if f (Y ) ∩ Y = ∅.
Proposition 50 One has the following results:

i) the set of free disk recurrent points is an invariant open set fdrec( f );
ii) it contains every positively or negatively recurrent point outside fix( f );
iii) every point in S

2 \ fdrec( f ) is heteroclinic;
iv) every periodic connected component of fdrec( f ) is fixed.

Proof If D is a free disk that contains z and f n(z), it contains z′ and f n(z′) if
z′ is close to z. Moreover f k(D) is a free disk that contains f k(z) and f k+n(z),
for every k ∈ Z. So i) is true.

For every z ∈ S
2 \ fix( f ), one can choose a free disk D that contains z.

If z is positively recurrent, there exists n > 1 such that f n(z) ∈ D. If z is
negatively recurrent, there exist n > 1 such that f −n(z) ∈ D, which implies
that f n(D) is a free disk that contains z and f n(z). In both cases, z belongs
to fdrec( f ), which means that ii) is true.

It is sufficient to prove iii) for the ω-limit set, the proof for the α-limit
set being similar. Let us prove first that ω(z) ⊂ fix( f ) if z /∈ fdrec( f ).
Indeed, if z′ ∈ ω(z) \ fix( f ), one can choose a free disk D containing z′ and
two integers n′ > n such that f n(z) and f n

′
(z) belong to D. It implies that

f −n(D) is a free disk that contains z and f n
′−n(z). This contradicts the fact

that z /∈ fdrec( f ). To prove that ω(z) is included in a connected component of
fix( f ), it is sufficient to prove that it is contained in a connected component
of O , for every neighborhood O of fix( f ). If O is such a neighborhood,there
exists a neighborhood O ′ ⊂ O of fix( f ) such that for every z ∈ O ′∩ f −1(O ′),
the points z and f (z) belong to the same connected component of O . There
exists N such that f n(z) ∈ O ′ for every n � N . This implies that the f n(z),
n � N , belong to the same connected component of O .

It remains to prove iv). IfW is a connected component of fdrec( f ) of period
q > 1, it is not a connected component of S

2 \ fix( f ) (see Brown and Kister
[8]) and so one can find a path α in S

2 \fix( f ) joining a point z ∈ W to a point
z′ /∈ W . Taking a subpath if necessary, one can suppose that γ is included in
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W but the endpoint z′ (which is in the frontier of W and not fixed). Let us
choose a path β in W joining z to f q(z). It is a classical fact that there exists
a simple path γ joining z′ to f q(z′) whose image is included in the image of
α−1β f q(α). The point z′ is not periodic because it is neither in fix( f ) nor in
fdrec( f ) and so the points z′, f (z′), f q(z′) and f q+1(z′) are distinct (recall
that q > 1). More precisely, since γ ⊂ W and W is free, the path γ is free
and so one can find a free disk that contains it, which contradicts the fact that
z′ is not in fdrec( f ). ��

Suppose now that the set of positively recurrent points is dense. It is equiv-
alent to say that ( f ) = S

2 and in that case the set of positively recurrent
points is a denseGδ set, as is the set of bi-recurrent points (these conditions are
satisfied in the particular case of an area preserving homeomorphism). Note
that, in this case, every connected component of fdrec( f ) is periodic and so
is fixed. Write (Wα)α∈A f for the family of connected components of fdrec( f )
and define Aα to be the interior in S

2 \ fix( f ) of the closure of Wα . Note that

Aα = S
2 \

⋃

α′∈A f \{α}
Aα′ ∪ fix( f )

because the recurrent points are dense in S
2 and contained in fdrec( f ) if not

fixed.
We will prove the following result, which implies Theorem M of the intro-

duction, and that extends Theorem 1.2 of [14].

Theorem 51 Let f : S
2 → S

2 be an orientation preserving homeomorphism
such that ( f ) = S

2 and h( f ) = 0. Then one has the following results:

i) each Aα is an open annulus;
ii) the sets Aα are the maximal fixed point free invariant open annuli;
iii) every point that is not in a Aα is heteroclinic;
iii) let C be a connected component of the frontier of Aα in S

2 \ fix( f ),
then the connected components of fix( f ) that contain α(z) and ω(z) are
independent of z ∈ C.

Wewill begin by stating a local version of this result, whichmeans a version
relative to a givenmaximal hereditary singular isotopy I .We denote Ĩ the lifted
identity isotopy to the universal covering space d̃om(I ) of dom(I ) and f̃ the
induced lift of f |dom(I ). Say that a point z ∈ dom(I ) is free disk recurrent
relative to I or I free disk recurrent if there exists an integer n > 0 and a
topological open disk D ⊂ dom(I ) containing z and f n(z), such that each lift
to d̃om(I ) is disjoint from its image by f̃ (we will say that D is I -free). Let
us state the local version of Proposition 50.
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Forcing theory for transverse trajectories 695

Proposition 52 One has the following results:

i) the set of I -free disk recurrent points is an invariant open set fdrec(I );
ii) it contains every positively or negatively recurrent point in dom(I );
iii) every point in S

2 \ fdrec(I ) is heteroclinic and its α-limit and ω-limit sets
are included in connected subsets of sing(I );

iv) every periodic connected component of fdrec(I ) is fixed and lifted to fixed
subsets of f̌ .

Proof Replacing free disks by I -free disks, one proves the three first assertions
exactly like in the global situation. Similarly, one can prove that every periodic
connected component of fdrec(I ) is fixed. Writing π : d̃om(I ) → dom(I )
for the universal covering projection, it remains to prove that the connected
components ofπ−1(W ) are fixed by f̃ , ifW is a fixed connected component of
fdrec(I ). If they are not fixed, they are not connected components of d̃om(I ),
which means that W is not a connected component of dom(I ). So one can
find a simple path α joining a point z ∈ W to a point z′ ∈ ∂W ∩ dom(I ) and
included in W but the endpoint z′, and then construct a simple path γ joining
z′ to f 2(z′) included inW but the two endpoints. It will lift to a f̃ -free simple
path and so one can find a I -free disk that contains γ . This contradicts the fact
that z′ is not in fdrec(I ). ��

Suppose now that ( f ) = S
2. Write (Wβ)β∈BI for the family of connected

components of fdrec(I ) and define Aβ to be the interior in dom(I ) of the
closure of Wβ . One knows that the sets Wβ , Aβ are fixed and lifted to fixed
subsets of f̃ . Here again, one has

Aβ = dom(I ) \
⋃

β ′∈BI \{β}
Aβ ′ .

The local version of Theorem 51 is the following:

Theorem 53 Let f : S
2 → S

2 be an orientation preserving homeomorphism
such that ( f ) = S

2 and h( f ) = 0, and I a hereditary singular maximal
isotopy. Then one has the following results:

i) each Aβ is an open annulus;
ii) the sets Aβ are the maximal invariant open annuli contained in dom(I );
iii) every point that is not in a Aβ is heteroclinic and its α-limit and ω-limit

sets are included in connected subsets of sing(I );
iv) let C be connected component of the frontier of Aβ in dom(I ), then the

connected components of sing(I ) that contain α(z) and ω(z) are inde-
pendent of z ∈ C.
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Let us explain first why the local theorem implies the global one. If A is
a topological annulus, an open set will be called essential if it contains an
essential loop and inessential otherwise. A closed set will be called inessential
if there exists a connected component of its complement that is a neighborhood
of the two ends in the case where A is open, that meets the two boundary circle
in the case where A is closed, and that is a neighborhood of the unique end
and meets the boundary circle in the remaining case. Otherwise, we will say
that this set is essential.

Proof of Theorem 51, first part, proof of assertions (i), (ii), and (iii) Let us
explain first why every fixed point free invariant open annulus A is contained
in an Aα , α ∈ A f . It is sufficient to prove that fdrec( f ) ∩ A is connected.
Indeed fdrec( f ) ∩ A will be contained in a Wα , α ∈ A f , and consequently A
will be contained in Aα . Let W be a connected component of fdrec( f ) ∩ A.
Applying Proposition 50 to the end compactification of A, one knows that W
is fixed. If it is inessential, one gets an invariant open disk D ⊂ A by filling
W , which means adding the inessential components of its complement. By
Brouwer’s plane translation Theorem, since the restriction of f to D has non
wandering points, there must exist a fixed point in this disk, which is impossi-
ble. So, every connected component of fdrec( f )∩ A is essential. Suppose now
that fdrec( f ) ∩ A has at least two connected components. The complement
in A of the union of two such components has a unique compact connected
component. It is located “between” these components. This last set is invariant
(by uniqueness) and contains points that are not free disk recurrent. But one
knows that the α-limit and ω-limit sets of such points contain fixed points and
A is fixed point free. We have a contradiction.
Let us prove now that each Aα , α ∈ A f , is an annulus. It is sufficient

to prove that it is contained in a fixed point free invariant annulus. Let us
consider a sequence (zi )i�0 dense in fix( f ), sequence which will be finite
if there are finitely many fixed points. Let us fix Aα . Let I0 be a maximal
hereditary singular isotopy whose singular set contains z0, z1, z2. The set
Wα is connected and included in fdrec(I0) so it is contained in a connected
component Wβ0 , β0 ∈ BI0 . One deduces that Aα ⊂ Aβ0 . If Aβ0 is fixed point
free, we stop the process. If not, we consider the first zk1 that belongs to Aβ0

and consider a maximal hereditary singular isotopy I1 of f |Aβ0
whose singular

set contains zk1 . Similarly, there exists β1 ∈ BI1 such that Aα ⊂ Aβ1 . If Aβ1

is fixed point free, we stop the process. If not, we consider the first zk2 that
belongs to Aβ1 and we continue. If the process stops, the last annulus will be
fixed point free. If the process does not stop, Aα is contained in the interior
of
⋂

i�0 Aβi . The connected component W of the interior of
⋂

i�0 Aβi that
contains Aα is invariant. Moreover, it is fixed point free because it is open
and because the sequence (zi )i�0 is dense in fix( f ) and away from W . Let
us prove that for i large enough, Aβi+1 is essential in Aβi and that W is an
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annulus. Let us suppose that Aβi+1 is inessential in Aβi for infinitely many
i . Consider a simple loop � in W . It bounds a disk (uniquely determined)
included in Aβi , every time Aβi+1 is inessential in Aβi , which implies that it
bounds a disk included in

⋂
i�0 Aβi , and so included in W . This means that

W is a disk, which contradicts the fact it is fixed point free. Suppose now that
Aβi+1 is essential in Aβi for every i � i0. By the same reasoning, if � ⊂ W
is a simple loop such that � is inessential in the Aβi , i � i0, then � bounds a
disk in W . This implies that W is an open annulus, that is essential in the Aβi ,
i � i0.

The assertion iii) is obvious because every free disk recurrent point is con-
tained in a Wα and so in an Aα . We will postpone the proof of iv) to the end
of this section because we need a little bit more than what is stated in the local
theorem. ��

Before proving Theorem 53, wewill state a result relative to a couple (I,F),
where F is a foliation transverse to I . By Theorem 36 and the density of
the set of recurrent points, one knows that two transverse trajectories never
intersect F-transversally. In particular, there is no transverse trajectory with
F-transverse self-intersection and by Proposition 2 every whole transverse
trajectory of an F-bi-recurrent point is equivalent to the natural lift of a trans-
verse simple loop �. We denote by GI,F the set of such loops (well defined
up to equivalence) and rec( f )� the set of bi-recurrent points whose whole
transverse trajectory is equivalent to the natural lift of �. Consider a point
z ∈ dom(I ). For any given segment of IZ

F (z) there exists a neighborhood of z
such that this segment is equivalent to a subpath of IZ

F (z′) if z′ belongs to this
neighborhood. Suppose now that this segment meets a leaf more than once.
The transverse simple loop � associate to z′ does not depend on z′, if z′ is
chosen bi-recurrent (remind that the set of bi-recurrent points is dense). Sum-
marizing, we have stated that any segment of IZ

F (z) is equivalent to a subpath
of the natural lift of a transverse simple loop, but this loop is uniquely defined
(up to equivalence) if this segment meets a leaf more than once. Consequently,
if IZ

F (z)meets a leaf more than once, it is equivalent to a subpath of the natural
lift of a uniquely defined transverse simple loop. One deduces that the set of
points whose whole transverse trajectory meets a leaf more than once, admits
a partition

⊔
�∈GI,F W� in disjoint invariant open sets, where z ∈ W� if IZ

F (z)
meets a leaf at least twice and is a subpath of the natural lift of �. Define
A� = int(W�). Note that

A� = int(rec( f )�) = dom(I ) \
⋃

�′∈GI,F\{�}
A�′ .

Recall that U� is the union of leaves that meet �.
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Proposition 54 One has the following results:

i) the set A� is an essential open annulus of U�;
ii) every point in dom(I ) \⋃�∈GI,F

A� is heteroclinic and its α-limit and
ω-limit sets are included in connected subsets of sing(I );

iii) let C be a connected component of the frontier of A� in dom(I ), then
the connected components of sing(I ) that contain α(z) and ω(z) are
independent of z ∈ C.

7.1 Proof of Proposition 54

This subsection is devoted entirely to the proof of Proposition 54.
The assertion ii) is an immediate consequence of the following: if z′ ∈

dom(I ) belongs to the α-limit or ω-limit set of z ∈ dom(I ), then the whole
transverse trajectory of z meets infinitely often the leaf φz′ and so z belongs
to
⋃

�∈GI,F W� .
Let us prove i). One can always suppose that dom(I ) is connected, otherwise

one must replace dom(I ) by its connected component that contains � in what
follows. Fix a lift γ̃ of � in d̃om(I ), write T for the covering automorphism
such that γ̃ (t + 1) = T (γ̃ (t)), write d̂om(I ) = d̃om(I )/T for the annular
covering space associated to�. Denote by π̂ : d̂om(I ) → dom(I ) the covering
projection, by Î the induced identity isotopy, by f̂ the induced lift of f , by
F̂ the induced foliation. The line γ̃ projects onto the natural lift of a loop �̂.
The union of leaves that meet �̂, denoted by U�̂ , is the annular component of
π̂−1(U�). We note that there cannot be an essential simple closed curve �̂′
contained inU�̂ whose image by f̂ is disjoint from itself, otherwise the region
bounded by π̂(�̂′) and π̂( f̂ (�̂′)) would be wandering for any f . In particular,
by the same reasoning as in Lemma 27, one gets that the α and ω limit of any
given leaf of F̂ that is contained in U�̂ must be different ends of d̂om(I ), and

every leaf of F̂ that does not intersect U�̂ disconnects d̂om(I ). One gets a

sphere d̂om(I )sph by adding the end N of d̂om(I ) at the left of � and the end S
at the right. The complement ofU�̂ has two connected components l(�̂)∪{N }
and r(�̂) ∪ {S}. Note that �̂ is the unique simple loop (up to equivalence)
that is transverse to F̂ . Like in dom(I ), transverse trajectories do not intersect
F̂-transversally. The set of points that lift a bi-recurrent point of f is dense.
If the trajectory of such a point z meets a leaf at least twice, then ÎZ

F̂ (z) is the

natural lift of �̂. Denote rec( f )�̂ the set of such points. Otherwise ÎZ

F̂ (z)meets

either l(�̂) or r(�̂), the two situations being excluded, because ÎZ

F̂ (z) does not

intersect �̂ F̂-transversally. Denote rec( f )N and rec( f )S the set of points z
that lift a bi-recurrent point of f and such that ÎZ

F̂ (z) meets l(�̂) and r(�̂)

respectively. Note that the intersection of the complete transverse trajectory of
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z ∈ rec( f )N andU�̂ , when not empty is equivalent to �̂|J where J is an open
interval of T

1, and a similar statement holds if z ∈ rec( f )S . In particular there
exists n � 0 such that ÎN

F̂ ( f̂ n(z)) ⊂ l(�̂) and Î−N

F̂ ( f̂ −n(z)) ⊂ l(�̂). Write

W�̂ for the set of points such that ÎZ

F̂ (z) meets a leaf at least twice, write WN

for the set of points z ∈ d̂om(I ) such that ÎZ

F̂ (z) meets l(�̂), write WS for the

set of points such that ÎZ

F̂ (z) meets r(�̂). We get three disjoint invariant open
sets, that contain rec( f )�̂ , rec( f )N , rec( f )S respectively and whose union is
dense. Note that the α-limit and ω-limit sets of a point z /∈ W�̂ are reduced to
one of the ends. These ends are both equal to N if z ∈ rec( f )N and both equal
to S if z ∈ rec( f )S . We will see later that they are both equal to N if z ∈ WN
and both equal to S if z ∈ WS . Note also that

WN =
⋃

k∈Z

f −k (l(�)) , WS =
⋃

k∈Z

f −k (r(�)) .

Indeed, every leaf φ that is not in U�̂ bounds a disk disjoint from U�̂ . So, if
ÎF̂ (z) meets φ and φ ⊂ l(�), then one of the point z or f̂ (z) is in l(�), and if
φ ⊂ r(�), then one of the point z or f̂ (z) is in r(�).

Observe that W�̂ projects homeomorphically on W� and that A�̂ =
int(W�̂) = d̂om(I )sph \ WN ∪ WS projects homeomorphically on A� . We
want to prove that A�̂ is an annulus.

Lemma 55 There exists a leaf φS in U�̂ that does not meet WN .

Proof Recall that the intersection of the whole transverse trajectory of z ∈
rec( f )N and U�̂ , when not empty is equivalent to �̂|J where J is an open
interval of T

1. Consider the set J of such intervals. The fact that there are
no transverse intersection tells us that these intervals do not overlap: if two
intervals intersect, one of them contains the other one. One deduces that there
exists t ∈ T

1 that does not belong to any J . Indeed, by a compactness argument,
if T

1 can be covered by the intervals of J , there exists r � 2 such that it can
be covered by r such intervals but not less. By connectedness, at least two of
the intervals intersect and one can lower the number r . Set φS = φ�̂(t). The set

rec( f )N being dense in WN , the leaf φS does not meet the whole transverse
trajectories of points in WN . In particular, it does not meet WN . ��
Lemma 56 The set OS of points whose whole transverse trajectory meets φS
is a connected essential open set.

Proof Fix a lift φ̃ of φS in d̃om(I ). The set Õ of points whose trajectory

meets φ̃ is equal to
⋃

k∈Z
f̃ −k

(
L(φ̃) ∩ R( f̃ (φ̃))

)
, it its connected and simply

connected. So its projection OS is connected. Every lift of a point in rec( f )�̂
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belongs to all the translates T k(Õ), k ∈ Z. So the union of the translates is
connected, which means that OS is essential. ��
Lemma 57 The set WN does not contains S and for every z ∈ WN, one has
α(z) = ω(z) = {N }.
Proof The set WN is connected because it can be written

WN =
⋃

k∈Z

f −k (l(�) ∪ {N }).

It does not contain S because it is connected and does not intersect the essential
open set OS . Moreover, one knows that the α-limit and ω-limit sets of points
in WN are reduced to one of the ends. They both are equal to N , because
S /∈ WN . ��
Similarly, there exists a leaf φN inU�̂ that does not meetWS and the set ON

of points whose whole transverse trajectory meets φN is a connected essential
open set. Moreover, N /∈ WS and for every z ∈ WS , one has α(z) = ω(z) =
{S}. ConsequentlyWN andWS do not intersect. Two points in OS∩ON are not
separated neither by WN nor by WS , because OS and ON are connected and
disjoint fromWN andWS respectively. So they are not separated byWS ∪WN
becauseWS∩WN = ∅. One deduces that OS∩ON is contained in a connected
component O of the complement of WS ∪ WN , which is nothing but A�̂ . So
we have

W�̂ ⊂ OS ∩ ON ⊂ O ⊂ A�̂ ⊂ W�̂.

We deduce that the sets appearing in the inclusions have the same closure
and that A�̂ is connected because O ⊂ A�̂ ⊂ O . To conclude that A�̂ is an
essential annulus, it is sufficient to use the connectedness ofWN andWS , they
are the two connected components of the complement of A�̂ .

It remains to prove iii). Note first that every leaf of F is met by a transverse
simple loop and so is wandering. It implies that the α-limit and ω-limit sets
of a leaf are included in two different connected components of sing(I ). Let
us fix � ∈ GI,F . The complement of A� has two connected components.
One of them contains all singularities at the left of � and all leaves in l(�),
denote it by L(A�). One defines similarly R(A�). Write � for the union of
intervals J ∈ J defined in the proof of Lemma 55. A point t ∈ T

1 belongs
to � if and only if there exists z ∈ rec( f ) ∩ L(A�) whose whole transverse
trajectory meets φ�(t) or equivalently, if there exists z ∈ L(A�) whose whole
transverse trajectory meets φ�(t). Note that if C is a connected component of
(∂A� \ sing(I )) ∩ L(A�), then the set

JC = {t ∈ T
1, C ∩ φ�(t) �= ∅}
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is an interval contained in �. Denote by (t−, t+) the connected component of
� that contains this interval. The assertion iii) is an immediate consequence
of the following:

Lemma 58 The interval JC is equal to (t−, t+). Moreover, for every z ∈ C,
the connected components of sing(I ) that contain α(z) andω(z) coincide with
the connected components of sing(I ) that contain ω(φ�(t−)) and ω(φ�(t+))

respectively.

Proof Fix z ∈ C . Every point f k(z) belongs to a leaf φ�(tk), where tk ∈
T
1. By definition of �, one knows that the whole transverse trajectory of

z never meets a leaf φ�(t), t /∈ �, and so t ∈ (t−, t+) if φ�(t) meets this
trajectory. In particular, the sequence (tk)k∈Z is an increasing sequence in
(t−, t+). We set t ′− = limk→−∞ tk and t ′+ = limk→+∞ tk . We write F ′+ for
the connected component of sing(I ) that contains ω(φ�(t ′+)). We will prove
first that the connected component of sing(I ) that contains ω(z) is F ′+ and
then that t ′+ = t+. We can do the same for the α-limit set. One knows that
ω(z) is contained in L(A�)∩sing(I ). So, there exists a sequence (z′k)k�0 such
that z′k ∈ φ−(zk) for every k � 0, that “converges to F ′+” in the following
sense: every neighborhood of F ′+ contains z′k for k sufficiently large. Let us
prove now that every neighborhood of F ′+ contains the segment γk of φ�(tk)
between z′k and zk , for k sufficiently large. If not, there exists a subsequence
of (γk)k�0 that converges for the Hausdorff topology to a set that contains
a point z /∈ sing(I ). This point belongs to l(�) and the leaf φz is met by a
loop �′ ∈ GI,F . For convenience choose the loop passing through z, so that
we know that zk belongs to L(�′), for infinitely many k. One deduces that
the connected component of sing(I ) that contains ω(z) belongs to L(�′). But
this implies that it also belongs to L(A�′). This connected component being
included in the open disk A�′ ∪ L(A�′), every point zk belongs to this disk for
k large enough. This contradicts the fact that z ∈ ∂A� , because A�′ ∪ L(A�′)
is in the interior of L(A�). It remains to prove that t ′+ = t+. If t ′+ < t+,
then φ�(t ′+) is met by a loop �′ ∈ GI,F such that A�′ ⊂ L(A�) and we prove
similarly that for k large enough zk belongs to the open disk A�′ ∪ L(A�′)
getting the same contradiction. ��

7.2 Proofs of Theorems 53 and 51

Proof of Theorem 53 Note that if � and �′ are two distinct elements of GI,F ,
then � is not freely homotopic to �′ in dom(I ). Indeed, there exists a leaf
φ ∈ U� \ U�′ . The two sets α(φ) and ω(φ) are separated by � but not by �′
which implies that these two loops are not freely homotopic. Let us explain
now why the families (rec( f )�)�∈GI,F and (A�)�∈GI,F are independent of F
(up to reindexation), they depend only on I . In particular, if F ′ is another
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foliation transverse to I , then every � ∈ GI,F is freely homotopic to a unique
�′ ∈ GI,F ′ and one has rec( f )� = rec( f )�′ . Let z be a recurrent point and
D ⊂ dom(I ) an open disk containing z. For every couple of points (z′, z′′)
in D, choose a path γz′,z′′ in D joining z′ to z′′. Let (nk)k�0 be an increasing
sequence of integers such that limk→+∞ f nk (z) = z. For k large enough, the
path I nk (z)γ f nk (z),z defines a loop whose homotopy class is independent of
the choices of D and γ f nk (z),z . If z belongs to rec( f )� , this class is a multiple
of the class of �. This means that the family of classes of loops � ∈ GI,F does
not depend onF . It implies that the family of sets rec( f )� does not depend on
F either. We will denote (Aκ)κ∈KI and (rec( f )κ)κ∈KI our families indexed
by homotopy classes.

The fact that every invariant annulus contained in dom(I ) is contained in
an Aβ , β ∈ BI , can be proven exactly like in the global case. So, to prove
Theorem 53, particularly the fact that every Aβ is an annulus, it is sufficient
to prove that it is equal to an Aκ , κ ∈ KI . Note that an Aκ is an invariant
annulus contained in dom(I ) and so is contained in an Aβ . If we prove that
every I -free disk recurrent point is contained in an Aκ , we will deduce that
each Aβ is a union of Aκ , which implies that it is equal to one Aκ because it
is connected. We will prove in fact that for every I -free disk recurrent point
z, there exists a transverse foliation F such that z belongs to a W� , � ∈ GI,F .
Let us give the reason. In the construction of transverse foliations we have the
following: if X is a finite set included in an I -free disk D, one can construct a
transverse foliation such that X is included in a leaf (see Proposition 59 at the
next subsection). Consequently, if D contains two points z and f n(z), n > 0,
one can construct a transverse foliation such that z and f n(z) are on the same
leaf, which implies that z belongs to a W� . ��
Proof of Theorem 51, second part, proof of assertion iv). Fix α0 ∈ A f . The
assertion iv) is obviously true if the complement of Aα0 is the union of two
fixed points. Let us prove it in case exactly one the connected components
of the complement of Aα0 is a fixed point z0. By assertion iii) there exists at
least one connected component X1 �= {z0} of fix( f ) that meets the frontier
of Aα0 . If {z0} and X1 are the only connected components of fix( f ), the
result is also obviously true. If not, choose a third component X2, then choose
z1 ∈ X1 ∩ ∂(Aα0) and z2 ∈ X2 and finally a maximal hereditary singular
isotopy I whose singular set contains z0, z1 and z2. We will prove that the
connected component Aβ0 , β0 ∈ BI , that contains Aα0 is reduced to Aα0 . This
will imply iv). Suppose that Aβ0 is not reduced to Aα0 . In that case it contains
other Aα , α ∈ A f , and the union of such sets is dense in Aβ0 and contain
all the recurrent points. The two ends of Aβ0 are adjacent to Aα0 because
z1 ∈ sing(I ). It implies that Aα0 is the unique Aα that is essential in Aβ0 . So,
if Aα is included in Aβ0 and α �= α0, the union of Aα and of the connected
component of its complement that are included in Aβ0 is an invariant open disk
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Dα ⊂ Aβ0 disjoint from Aα0 . Let us consider a foliationF transverse to I and
the loop � ∈ GI,F such that A� = Aβ . We will work in the annular covering
space, where A�̂ is homeomorphic to A� and will write Dα̂ ⊂ A�̂ for the disk
corresponding to Dα and Aα̂0 for the annulus corresponding to Aα0 .

The fact that {z0} is a connected component of S
2 \ Aα0 and that the singular

set of I contains z0 and two other points in different components of the fixed
point set of f , implies that one of the sets r(�̂) or l(�̂) is empty and the other
one is not. We will assume for instance that r(�̂) = ∅ and l(�̂) �= ∅. We
have seen in the proof of Proposition 26 that there exists a compactification
d̂om(I )ann obtained by blowing up the end N at the left of �̂ by a circle �̂N
such that f̂ extends to a homeomorphism f̂ann that admits fixed points on the
added circle with a rotation number equal to zero for the lift f̃ann that extends
f̃ . Note now that every recurrent point of f̂ that belongs to a Dα̂ has a rotation
number (for the lift f̃ ) and that this number is a positive integer because Dα̂

is fixed and included in A�̂ . So, every periodic orbit whose rotation number is
not an integer belongs to Aα̂0 .

There are different ways to get a contradiction. Let us begin by the following
one. The closure of Aβ̂0

in d̂om(I )ann is an invariant essential closed set that
contains Aα̂0 and meets �N . In particular it contains fixed points of rotation
number 0 on �N . Denote by K the complement of Aα̂0 in the closure of Aβ̂0

in d̂om(I )ann. It contains the fixed points located on�N and all the Dα̂ , which
means that it contains fixed points of positive rotation number. It is an essential
compact set, because Aα̂0 is an essential annulus which is a neighborhood of
the end of d̂om(I )ann. All points in K being non wandering, one can apply a
result of S. Matsumoto [32] saying that K contains a periodic orbit of period q
and rotation number p/q for every p/q ∈ (0, 1). But one knows that all such
periodic points must belong to Aα̂0 . We have a contradiction.

Let us give another explanation. We will need the following intersection
property: every essential simple loop in d̂om(I )ann meets its image by f̂ann.
The reason is very simple. Perturbing our loop, it is sufficient to prove that
every essential simple loop in d̂om(I )meets its image by f̂ . Such a loopmeets
Aβ̂0

because the two ends of d̂om(I ) are adjacent to Aβ̂0
and so contains a non

wandering point (every point of Aβ̂0
is non wandering). This implies that the

loop meets its image by f̂ .
Using the fact that the entropy of f 2 is zero, one can consider the family of

annuli (Aα′)α′∈A( f 2), and denote by Aα̂′ the annulus of Aβ̂0
that corresponds to

an annulus Aα′ contained in Aβ0 . Every periodic point z of period 3 and rotation
number 1/3 or 2/3 belongs to an annulus Aα̂′ and this annulus is f̂ 2-invariant.
It must be essential in Aβ̂0

, otherwise the rotation number of z should be a
multiple of 1/2. But if it is essential, it must be f̂ -invariant, its f̂ -period cannot
be 2. It is included in Aα̂0 , otherwise it would be included in a non essential
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Aα̂ . Being given such an essential annulus, note that the set of periodic points
of period 3 and rotation 1/3 or 2/3 strictly above (which means on the same
side as �̂N ) is compact. Indeed, the rotation number induced on the added
circle is 0. One deduces that there are finitely many annuli Aα̂′ that contains
periodic points of period 3 and rotation number 1/3 or 2/3 above a given
one and so there exists an highest essential annulus Aα̂′

0
that contains periodic

points of period 3 and rotation number 1/3 or 2/3. If one adds the connected
component of d̂om(I )ann \ Aα̂′

0
containing �̂N to Aα̂′

0
, one gets an invariant

semi-open annulus A that contains �̂N and all disks Dα̂ . The restriction f̂ann|A
satisfies the intersection property stated in Lemma 25 because A is essential
in d̂om(I )ann. The annulus A contains a fixed point of rotation number 0 and
a fixed point of positive rotation number, so, by Lemma 25, it contains at least
one periodic orbit of period 3 and rotation number 1/3 and one periodic orbit
of period 3 and rotation number 2/3. These two orbits must be included in Aα̂′

0

by definition of this set. But f̂ |Aα̂′
0
satisfies the intersection property because

Aα̂′
0
is essential in d̂om(I )ann. So Aα̂′

0
contains a periodic point of period 2 and

rotation number 1/2, which is impossible.
In the case where none of the connected components of the complement of

Aα0 is a fixed point, one can crush one of these components to a point and
used what has been done in the new sphere. ��

Let us add some comments on the boundary of the annuli Aα .
Let f : S

2 → S
2 be an orientation preserving homeomorphism such that

( f ) = S
2 and h( f ) = 0. Suppose moreover than the fixed point set is totally

disconnected. Every annulus Aα , α ∈ A f , admits accessible fixed points on
its boundary. More precisely, if X is a connected component of S

2 \ Aα , there
exists a simple path γ joining a point z ∈ Aα to a point z′ ∈ sing( f ) ∩ X and
contained in Aα but the end z′. Indeed, one can always suppose that the other
connected component of S

2 \ Aα is reduced to a point z0 and that f has least
three fixed points (otherwise the result is obvious). What has been done in the
previous proof tells us that there exists a maximal hereditary singular isotopy
I , a transverse foliation F and � ∈ GI,F such that Aα = A� . There exists a
leaf φ ⊂ U� that is not met by any transverse trajectory that intersects X . This
leaf (or the inverse of the leaf) joins z0 to a fixed point z ∈ X and is contained
in A� .

Let f : S
2 → S

2 be an orientation preserving homeomorphism such that
( f ) = S

2 and h( f ) = 0. Let I be a maximal hereditary singular isotopy and
F a transverse foliation. Every annulus A� , � ∈ GI,F , that meets φ is such
that the connected components of Fix(I ) that contains α(φ) and ω(φ) are
separated by A� . One deduces immediately that a point z ∈ dom(I ) belongs
to the frontier of at most two annuli A� , � ∈ GI,F . Of course this means that
a point z ∈ dom(I ) belongs to the frontier of at most two annuli Aβ , β ∈ BI ,
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but it also implies that a point z /∈ fix( f ) belongs to the frontier of at most two
annuli Aα , α ∈ A f . Indeed, suppose that z /∈ fix( f ) belongs to the frontier
of Aαi , 0 � i � 2. If Xi is the connected component of S

2 \ Aαi that does
not contain z, then the three sets Xi are disjoint. Choose a fixed point zi in
each Xi (such a fixed point exists because Xi ∪ Aαi is an invariant disk and
Aαi has no fixed points). Choose a maximal hereditary singular isotopy I that
fixes the zi and denote Aβi , βi ∈ BI , the annulus that contains Aαi . Note that
the three annuli Aβi are distinct and that z belongs to their frontier. We have a
contradiction. ��

7.3 Transverse foliation and free disks

We conclude this section by justifying a point used above in the proof of
Theorem 53.

Proposition 59 Let f : M → M be a homeomorphism isotopic to the identity
on a surface M and I amaximal singular isotopy. Let X be a finite set contained
in an I -free disk. Then, there exists a transverse foliation F such that X is
contained in a leaf of F .

Proof The proof can be deduced immediately from the construction of trans-
verse foliations, that we recall now (see [28]). A brick decomposition D =
(V, E, B) on a surface is given by a one dimensional stratified set, the skeleton
�(D), with a zero-dimensional submanifold V such that any vertex v ∈ V
is locally the extremity of exactly three edges e ∈ E . A brick b ∈ B is the
closure of a connected component of the complement of �(D). Say that a
brick decomposition D = (V, E, B) on dom(I ) is I -free, if every brick is
I -free, or equivalently, if its lifts to a brick decomposition D̃ = (Ṽ , Ẽ, B̃) on
the universal covering d̃om(I ), whose bricks are f̃ -free, where f̃ is the lift
associated to Ĩ . Say thatD is minimal if there is no I -free brick decomposition
whose skeleton is strictly included in the skeleton ofD. Such a decomposition
always exists.

Write G for the group of automorphisms of the universal covering space.
Using the classical Franks’ lemma on free disk chains [11], one constructs a
natural order � on B̃ that satisfies the following:

– it is G-invariant;
– if f̃ (β̃) meets β ′, then β ′ � β;
– two adjacent bricks are comparable.

One can define an orientation on �(D̃) (inducing an orientation on �(D))
such that the brick on the left of an edge ẽ ∈ Ẽ is smaller than the brick on the
right. Moreover, every vertex ṽ ∈ Ṽ is the ending point of at least one oriented
edge and the starting point of at least one oriented edge. In other words there
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is no sink and no source on the oriented skeleton. We have three possibilities
for the bricks of B̃:

– it can be a closed disk with a sink and a source on the boundary (seen from
inside);

– it can be homeomorphic to [0, +∞[×R with a sink on the boundary and a
source at infinity;

– it can be homeomorphic to [0, +∞[×R with a source on the boundary and
a sink at infinity;

– it can be homeomorphic to [0, 1] × R with a sink and a source at infinity
(in this case it can project onto a closed annulus).

Let us state now the fundamental result, easy to prove in the case where G is
abelian and much more difficult in the case it is not (see Proposition 3.2 of
[28]): one can cover �(D̃) with a G-invariant family of Brouwer lines of f̃ ,
such that two lines never intersect transversally in the following sense: if λ

and λ′ are two lines in this family, either they do not intersect, or one of the
sets R(λ), R(λ′) contains the other one.

Such family of lines inherits a natural order �, where

λ � λ′ ⇔ R(λ) ⊂ R(λ′).

One can “complete” this family to get a larger family, with the same properties,
that possesses the topological properties of a lamination (in particular every line
admits a compact and totally ordered neighborhood). Then one can arbitrarily
foliate each brick b ∈ B such that, when lifted to a foliation on a brick b̃ ∈ B̃,
every leaves goes from the source to the sink. We obtain then, in a natural
way, a decomposition of d̃om(I ) by a G-invariant family of Brouwer lines
that do not intersect transversally, and that possesses the topological structure
of a plane foliation (it is a non Hausdorff one dimensional manifold).

It remains to blow up each vertex, by a desingularization process (see [27])
to obtained a G-invariant foliation by Brouwer lines. ��

7.4 Zero entropy annulus homeomorphisms

In this subsection we prove some results for a general open annulus homeo-
morphism whose extension to the ends compactification has zero topological
entropy. A stronger version of the first result for diffeomorphisms was already
proved in an unpublished paper of Handel [20].

As noted in the introduction, given a homeomorphism of an open annulus
T
1 × R and a lift f̌ to R

2, denote by π : R
2 → T

1 × R the covering
projection, and by π1 : R

2 → R the projection in the first coordinate. For any
point z ∈ T

1 × R such that its ω-limit set is not empty, we say that z has a
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rotation number rot(z) if, for any compact set K ⊂ T
1 × R, any increasing

sequence of integers nk such that f nk (z) ∈ K and any ž ∈ π−1(z),

lim
k→∞

1

nk

(
π1( f̌

nk (ž) − π1(ž)
)

= rot(z).

In general it is not expected that every point will have a rotation number,
but if we assume that f has zero entropy this must be the case, at least for
recurrent points, as shown by the following theorem, which is a restatement
of Theorem L

Theorem 60 Let f be a homeomorphism of T
1 × R isotopic to the identity,

f̌ a lift of f to the universal covering space, and let fsphere be the natural
extension of f to the sphere obtained by compactifying each end with a point.
If the topological entropy of fsphere is zero, then each bi-recurrent point has a
rotation number rot(z). Moreover, the function z �→ rot(z) is continuous on
the set of bi-recurrent points.

Proof For every compact set K of T
1 × R define the set rot f̌ ,K (z) ⊂ R ∪

{−∞, ∞} as following: ρ belongs to rot f̃ ,K (z) if there exists an increasing

sequence of integers nk such that f nk (z) ∈ K and such that for any ž ∈ π−1(z),
one has

lim
k→∞

1

nk

(
π1( f̌

nk (ž) − π1(ž)
)

= ρ.

Writing T : (x, y) �→ (x +1, y) for the fundamental covering automorphism,
one immediately gets rot f̌ ◦T p,K (z) = rot f̌ ,K (z)+ p for every p ∈ Z. One can
prove quite easily that rot f̌ q ,Kq

(z) = qrot f̌ ,K (z), for every q � 1, where

Kq = ⋃
0�k<q f −k(K ). Finally, note that rot f̌ ,K (z) = rot f̌ ,O( f,z)∩K (z),

where O( f, z) is the f -orbit of z.
Now, recall why every positively recurrent point z of f is a positively

recurrent point of f q , for every q � 1. The set R of integers r such that
there exists a subsequence of ( f nq(z))n�0 that converges to f r (z) or equiv-
alently a subsequence of ( f nq−r (z))n�0 that converges to z, is non empty
because z is positively recurrent. Note that R is stable by addition. Indeed
if r and r ′ belong to R, one can approximate f r+r ′

(z) = f r ( f r
′
(z)) by a

point f r ( f n
′q(z)) = f r+n′q(z) as close as we want, and then approximate

f r+n′q(z) = f n
′q( f r (z)) by a point f n

′q( f nq(z)) = f (n+n′)q(z) as close as
we want. One deduces that qr belongs to R if it is the case for r , which implies
that z is a positively recurrent point of f q . Similarly, every bi-recurrent point
z of f is a bi-recurrent point of f q , for every q � 1.

For every couple (p, q) of integers relatively prime (q � 1), one can choose
an identity isotopy I ∗

p,q of f q that is lifted to an identity isotopy of f̌ q ◦ T−p,
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then a maximal hereditary singular isotopy Ip,q such that I ′
p,q � Ip,q , and

finally a singular foliation Fp,q transverse to Ip,q . The singular points of
Ip,q are periodic points of period q and rotation number p/q. Let z be a
bi-recurrent point of f that is not a singular point of Ip,q . By Theorem 36
and Proposition 2, the whole trajectory (Ip,q)Z

Fp,q
(z) is the natural lift of a

simple loop �p,q(z) (uniquely defined up to equivalence). In particular, one
has �p,q(z) = �p,q( f q(z)). Write U�p,q (z) for the open annulus, union of

leaves met by �p,q(z). Every leaf containing a point of O( f q , z) is met by
(Ip,q)Z

Fp,q
(z). It implies that O( f q , z) ⊂ U�p,q (z) ∪ sing(Ip,q). Note also that

the function z �→ �p,q(z) is locally constant on the set of bi-recurrent points.
Indeed if z is a bi-recurrent point and γ : [0, 1] → dom(Ip,q) a non simple
transverse subpath of the natural lift of �p,q(z), then γ is a subpath of the
whole trajectory of z′, if z′ is a bi-recurrent point sufficiently close to z, which
implies that �p,q(z′) = �p,q(z).

One can lift the isotopy Ip,q to a singular maximal isotopy Ǐ p,q of f̌ q ◦T−p

and the foliation Fp,q to a foliation F̌p,q transverse to Ǐ p,q . Fix a lift ž ∈ R
2

of z. In the case where �p,q(z) is not essential, then ( Ǐ p,q)Z

F̌p,q
(ž) is the natural

lift of a transverse simple loop �p,q(ž) that lifts �p,q(z). The f̃ q ◦ T−p-orbit
of ž stays in the annulus U�p,q (ž), union of leaves met by �p,q(ž). In the
case where �p,q(z) is essential and the upper end of T

1 × R is on the left
of �p,q(z), then ( Ǐ p,q)Z

F̌p,q
(ž) is the natural lift of a transverse line γp,q(ž)

that lifts �p,q(z). The f̃ q ◦ T−p-orbit of ž stays in the strip Uγp,q (ž), union

of leaves met by γp,q(ž). Fix a parameterization γp,q(ž) : R → dom( Ǐ p,q)
such that γp,q(ž)(t + 1) = T (γp,q(ž)(t)). For every ž′ ∈ Uγp,q (ž) there exist a
unique real number, denoted by πγp,q (ž)(ž

′) such that ž′ and γp,q(ž)(t) are on
the same leaf. One gets a map πγp,q (ž) : Uγp,q (ž) → R, such that the sequence

(πγp,q (ž)( f̌
q◦T−p)k(ž))k∈Z is increasing. In the casewhere�p,q(z) is essential

and the upper end of T
1 ×R is on the right of �p,q(z), one proves by the same

argument that the sequence (πγp,q (ž)( f̌
q ◦ T−p)k(ž))k∈Z is decreasing.

Let z be a periodic point that is not a singular point of Ip,q . If �p,q(z) is not
essential, then the rotation number of z (defined for the lift f̃ q ◦ T−p of f q ) is
equal to zero, which implies that rot(z) = p/q. If�p,q(z) is essential and if the
upper end of T

1×R is on the left of �p,q(z), the rotation number of z (defined
for the lift f̃ q ◦ T−p of f q ) is positive, which implies that rot(z) > p/q. If
�p,q(z) is essential and if the upper end of T

1 × R is on the right of �p,q(z),
then rot(z) < p/q.

Let us prove now that if z is bi-recurrent, the periodic points that belong to
the closure of O( f, z) have the same rotation number. Otherwise, one can find
a couple (p, q) of integers relatively prime (q � 1), and two periodic points
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z1, z2 in the closure of O( f q , z) such that rot(z1) < p/q < rot(z2). One
deduces that �p,q(z1) = �p,q(z2) = �p,q(z), which is impossible because
the upper end of T

1 ×R is on the right of �p,q(z1) and on the left of �p,q(z2).
Let K be a compact subset of T

1 × R and z a bi-recurrent point. Let us
supposefirst that the closure ofO( f, z)has no periodic points. For every couple
(p, q) of integers relatively prime (q � 1), the set O( f, z) ∩ Kq is a compact
subset of the annulus U�p,q (z). In the case where �p,q(z) is not essential, one
deduces that rot f̃ q◦T−p,Kq

(z) is reduced to {0} and so rot f̃ ,K (z) is reduced to

{p/q}. In the case where �p,q(z) is essential and the upper end of T
1 × R is

on the left of �p,q(z), there exits a real number M such that for every point z̃′
that lifts a point of (O( f, z) ∩ Kq) ∪ {z}, one has |π1(ž′) − πγp,q (ž)(ž

′)| � M .

Using this property and the fact that the sequence (πγp,q (ž)( f̌
q ◦T−p)k(ž))k∈Z

is increasing, one deduces that rot f̃ ◦T−p,Kq
(z) ⊂ [0, +∞] and consequently

that rot f̃ ,K (z) ⊂ [p/q, +∞]. Similarly, in the case where �p,q(z) is essential

and the upper end of T
1 × R is on the right of �p,q(z), one gets rot f̃ ,K (z) ⊂

[−∞, p/q].
One immediately concludes that rot f̃ ,K (z) is reduced to a number in R ∪

{−∞, ∞} if not empty. Of course, this number is independent of K , we denote
it rot(z). Suppose now that the closure of O( f, z) contains periodic points. As
said before, they have the same rotation number p0/q0. The argument above is
still valid if p/q �= p0/q0 and permit us to concluded that rot f̃ ,K (z) is reduced
to a number in R ∪ {−∞, ∞} independent of K . Of course the number is
nothing but p0/q0. Note that in both situations rot(z) is uniquely defined by
the following property:

– if p/q < rot(z), then �p,q(z) is essential and the upper end of T
1 × R is

on the right of �(z),
– if p/q > rot(z), then �p,q(z) is essential and the upper end of T

1 × R is
on the left of �(z).

Using the fact that each function z �→ �p,q(z) is locally constant on the set of
bi-recurrent points, one deduces immediately that the function z �→ rot(z) is
continuous on the set of bi-recurrent points.

It remains to prove that rot(z) is finite. Of course one can suppose that the
closure of O( f, z) does not contain a periodic orbit (otherwise as said before
rot(z) is rational). By assumption, z is not periodic, so let us choose a free
disk D containing z. There exists an integer s > 0 such that f s(z) ∈ D and
an integer r ∈ Z such that f̌ s(ž) ∈ T r (Ď), if Ď ⊂ R

2 is a lift of D and ž is
the lift of z contained in Ď. Let us consider the singular isotopy Ik,1, where
k > r/s. As explained above the two points z and f s(z) belong to the free
disk D. So, by Proposition 59 one can choose the foliation Fk,1 such that z
and f s(z) belong to the same leaf φ. This implies that �k,1(z) is essential and
the upper end of T

1 × R is on the right of �k,1(z). Consequently, one deduces
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that rot(z) � k. One proves similarly that rot(z) � k′ if k′ is an integer smaller
than r/s. ��

An interesting consequence is:

Proposition 61 Let f be an orientation preserving homeomorphism of S2.
Suppose that there exists a bi-recurrent point z such that the closure of its
orbit contains periodic points of minimal period q1 < q2, where q1 does not
divide q2. Then the entropy of f is positive.

Proof We suppose that the closure of the f -orbit O( f, z) of z contains a
periodic point z1 of period q1 and a periodic point z2 of period q2. One can
choose z1 and z2 in O( f q2, z). Writing r for the remainder of the Euclidean
division of q2 by q1, one knows that f q2(z1) = f r (z1). Since q2 is not a
multiple of q1, it is larger than 2 and f q2 must have at least three distinct
fixed points. Choose a maximal hereditary identity isotopy I of f q2 whose
singular set contains z2, f r (z2) and at least a third fixed point of f q2 , then
consider a singular foliation F transverse to I . Since f has zero topological
entropy, f q2 has zero topological entropy, and the path IZ

F (z1) is equivalent to
the natural lift of a simple transverse loop �. Using the fact that there exist at
least there singular points, one can find two singular points z′2 and z′′2 of I that
are separated by� and such that {z′2, z′′2} �= {z2, f r (z2)}. The isotopy I defines
a natural lift of f q |S2\{z′2,z′′2} and for this lift, the rotation number of every point
of the f q2-orbit of z1 is a non vanishing number, while the rotation number of
every singular point different from z′2 and z′′2 is zero. As seen in the previous
proposition, the points z and f r (z) are bi-recurrent points of f q2 . In the case
where z2 /∈ {z′2, z′′2}, the closure of O( f q2, z) contains two periodic points z1
and z2 with different rotation numbers. In the case where f r (z2) /∈ {z′2, z′′2},
the closure of O( f q2, f r (z)) contains two periodic points f r (z1) = f q2(z1)
and f r (z2) with different rotation numbers. We have seen in the proof of the
previous proposition that in both cases, the entropy of f is positive. ��

8 Applications to torus homeomorphims

In this section an element of Z
2 will be called an integer and an element of

Q
2 a rational. If K is a convex compact subset of R

2, a supporting line is an
affine line that meets K but does not separate two points of K , a vertex is a
point that belongs to infinitely many supporting lines.

Let us begin by stating the main results of this section, that are nothing but
Theorems C, D and G from the introduction.

Theorem 62 Let f be a homeomorphism of T
2 that is isotopic to the identity

and f̌ a lift of f to R
2. The frontier of rot( f̌ ) does not contain a segment with

irrational slope that contains a rational point in its interior.
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Theorem 63 Let f be a homeomorphism of T
2 that is isotopic to the identity

and f̌ a lift of f toR
2. If rot( f̌ )has a non empty interior, then there exists L � 0

such that for every z ∈ R
2 and every n � 1, one has d( f̌ n(z) − z, nrot( f̌ )) �

L.

Theorem 64 Let f be a homeomorphism of T
2 that is isotopic to the identity

and f̌ a lift of f to R
2. If rot( f̌ ) has a non empty interior, then the topological

entropy of f is positive.

Recall that Theorem 64 has been known for a long time and is due to Llibre
and MacKay, see [30] and that Theorem 63 was known for homeomorphisms
in the special case of a polygon with rational vertices, see Davalos [10], and
for C1+ε diffeomorphisms, see Addas-Zanata [2].

Let us state first some consequences of these results. Let f be a homeomor-
phism of T

2 that is isotopic to the identity and f̌ a lift of f to R
2. We suppose

that rot( f̌ ) has non empty interior. For every non trivial linear form ψ on R
2,

define

α(ψ) = max{ψ(rot(μ)) , μ ∈ M( f )}.
The affine line of equation ψ(z) = α(ψ) is a supporting line of rot( f̌ ). Set

Mψ = {μ ∈ M( f ) , ψ(rot(μ)) = α(ψ)} , Xψ =
⋃

μ∈Mψ

supp(μ).

As already noted in [2], we can deduce from Theorem 63 and Proposition 47
(Atkinson’s Lemma) the following result, Proposition E of the introduction.

Proposition 65 Everymeasureμ supported on Xψ belongs toMψ .Moreover,
if z lifts a point of Xψ , then for every n � 1, one has |ψ( f̌ n(z)) − ψ(z) −
nα(ψ)| � L‖ψ‖, where L is the constant given by Theorem 63.

Proof We will prove the second statement, it obviously implies the first one.
Note first that the ergodic components of a measure μ ∈ Mψ also belong
to Mψ . Furthermore, the set of points A′ having a lift z satisfying that
|ψ( f̌ n(z)) − ψ(z) − nα(ψ)| � L‖ψ‖ for every n � 1 is a closed set. It
is then sufficient to prove that for every ergodic measure μ ∈ Mψ there exists
a set A ⊂ A′ of full measure. As seen before, since μ ∈ Mψ , the function
lifted byψ ◦ f̌ −ψ −α(ψ) has null mean, and we can apply Atkinson’s lemma
to obtain that there exists a set A of full measure such that, for every point z
lifting a point of A, there exists a subsequence (nl)l∈N such that

lim
l→+∞ ψ( f̌ nl (z)) − ψ(z) − nlα(ψ) = 0.
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By Theorem 63, one knows that for every z ∈ R
2 and every n � 1, one has

ψ( f̌ n(z)) − ψ(z) − nα(ψ) � L‖ψ‖. It remains to prove that ψ( f̌ n(z)) −
ψ(z) − nα(ψ) � −L‖ψ‖ if z lifts a point of A. If nl is greater than n one can
write

ψ( f̌ n(z)) − ψ(z) − nα(ψ)

=
(
ψ( f̌ nl (z)) − ψ(z) − nlα(ψ)

)
−
(
ψ( f̌ nl (z)) − ψ( f̌ n(z)) − (nl − n)α(ψ)

)

� ψ( f̌ nl (z)) − ψ(z) − nlα(ψ) − L‖ψ‖
.

Letting l tend to +∞, one gets our inequality. ��
Let us state two corollaries. The first one, Corollary F of the introduction,

as already noted in [2], follows immediately from the previous proposition.

Corollary 66 Let f be a homeomorphism ofT2 that is isotopic to the identity,
preserving a measure μ of full support, and f̌ a lift of f to R

2. Assume that
rot( f̌ ) has a non empty interior. Then rot(μ) belongs to the interior of rot( f̌ ).

Boyland had conjectured that, for a given f and f̌ in the hypotheses of
Corollary 66, if rot(μ)was an integer then it belonged to the interior of rot( f̌ ).
The previous result shows that the conjecture is true, and that the hypothesis
on the rationality of the rotation vector of μ is superfluous.

The second corollary shows that, for points in the lift of the support of mea-
sures with rotation vector in a vertex, the displacement from the corresponding
rigid rotation is uniformly bounded.

Corollary 67 Let ρ be a vertex of rot( f̌ ), and set

Mρ = {μ ∈ M( f ) , rot(μ) = ρ} , Xρ =
⋃

μ∈Mρ

supp(μ).

There exists a constant Lρ such that if z lifts a point of Xρ , then for every
n � 1, one has d( f̌ n(z)) − z − nρ) � Lρ .

Proof One can find two forms ψ and ψ ′, linearly independent such that ρ

belongs to the supporting lines defined by these forms. Note that Xρ = Xψ ∩
Xψ ′ and apply Proposition 65. ��
We remark that the conclusion from Corollary 67 does not hold if instead

of requiring that ρ is a vertex of rot( f̌ ) we assume that ρ is an extremal point
of rot( f̌ ), see Boyland et al. [6].
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Write ∂
(
rot( f̌ )

)
for the frontier of rot( f̌ ). Let us define now

M∂ =
{
μ ∈ M( f ) , rot(μ) ∈ ∂

(
rot( f̌ )

)}
, X∂ =

⋃

μ∈M∂

supp(μ) =
⋃

ψ �=0

Xψ.

Similarly, we have:

Proposition 68 Every ergodic measure μ supported on X∂ belongs to
M∂ . Moreover, if z lifts a point of X∂ , then for every n � 1, one has

d
(
f̌ n(z) − z, n ∂

(
rot( f̌ )

))
� L, where L is the constant given by Theo-

rem 63.

Proof Here again, it is sufficient to prove the second statement. To do so, let
us choose a non trivial linear form ψ and let us prove that for every n � 1,
and for every point z lifting a point of Xψ , one has

d
(
f̌ n(z) − z, n ∂

(
rot( f̌ )

))
� L .

The fact that, by Proposition 65,

|ψ( f̌ n(z)) − ψ(z) − nβ(ψ)| � L‖ψ‖
implies that d( f̌ n(z) − z, �) � L where � is the affine line of equation
ψ(z) = nα(z). So, if f n(z) − z does not belong to n rot( f̌ ), one has

d
(
f̌ n(z) − z, n ∂

(
rot( f̌ )

))
= d( f̌ n(z) − z, n rot( f̌ )) � L ,

and if f̌ n(z) − z belongs to n rot( f̌ ), one has

d
(
f̌ n(z) − z, n ∂

(
rot( f̌ )

))
� d( f̌ n(z) − z, �) � L .

��
Another application is a classification result about Hamiltonian home-

omorphisms. In our setting, a Hamiltonian homeomorphism is a torus
homeomorphism preserving a probability measure μ which has a lift f̌ (the
Hamiltonian lift) such that that rot(μ) = (0, 0). An illustrative example is
given by the time one map of a time dependent Hamiltonian flow, 1 periodic
in time, and its natural lift.

We will need the following result, which can be found in [26]:

Proposition 69 Let f be a homeomorphism of T
2 isotopic to the identity and

f̌ a lift of f . If (0, 0) is a vertex of rot( f̌ ) then, for any measure μ ∈ M( f )
such that rot(μ) = (0, 0), almost every point lifts to a recurrent point of f̌ .
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We have:

Theorem 70 Let f be a Hamiltonian homeomorphism ofT2 such that its fixed
point set is contained in a topological disk, and let f̌ be its Hamiltonian lift.
Then one of the following three conditions holds:

– The set rot( f̌ ) does not have empty interior: in that case the origin lies in
its interior.

– The set rot( f̌ ) is a non trivial segment: in that case rot( f̌ ) generates a line
with rational slope, the origin is not an end of rot( f̌ ), furthermore, there
exists an invariant essential open annulus in T

2.
– The set rot( f̌ ) is reduced to the origin: in that case, there exists K > 0
such that, for every z ∈ R

2 and every k ∈ Z, one has ‖ f̌ k(z) − z‖ � K .

Proof Suppose first that rot( f̌ ) is reduced to the origin. The origin being a
vertex, one knows by Proposition 69 that the recurrent set of f̌ is dense in R

2.
So the assertion comes from Theorem 45.

Suppose now that rot( f̌ ) is a non trivial segment. If the origin was an end
of rot( f̌ ) its would be a vertex and we would have a contradiction, still from
from Proposition 69 and Theorem 45. The fact that rot( f̌ ) generates a line with
rational slope is a consequence of Theorem 62. The existence of an essential
open annulus which is left invariant by the dynamics whenever rot( f̌ ) is a non
trivial segment that generates a line with rational slope is the main result of
[17].

The case where rot( f̌ ) has non empty interior is nothing but Corollary 66.
��

Here again, as in Theorem 45, the requirement that the fixed point set is
contained in a topological disk cannot be removed. As a consequence, we
obtain the following boundedness result for area preserving homeomorphisms
of the torus with restriction on its rotational behaviour, Corollary I of the
introduction:

Corollary 71 Let f be a Hamiltonian homeomorphism of T
2 such that all its

periodic points are contractible, and such that its fixed point set is contained
in a topological disk. Then there exists K > 0 such that if f̌ is the Hamiltonian
lift of f , then for every z ∈ R

2 and every k ∈ Z, one has ‖ f̌ k(z) − z‖ � K.

Proof By Theorem 70, f must belong to one of the three described possi-
bilities. If f is a homeomorphism of T

2 such that all its periodic points are
contractible, then by the main result of [12] the rotation set of any lift of f
must have empty interior (see also Remark 74 later in the paper), and so the
first possibility in Theorem 70 is excluded. Furthermore, it was shown in [13]
that, if g is an area preserving homeomorphism with lift ǧ and the rotation set
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of ǧ is a line segment, then for every point in rot(ǧ) with bi-rational coordi-
nates there exists a periodic point for f with the same rotation vector. Since f
has no periodic points that are not contractible, the second possibility is also
excluded. ��

As a consequence we obtain the Proposition J:

Proposition 72 Let Ham∞(T2) be the set of Hamiltonian C∞ diffeomor-
phisms of T

2 endowed with the Whitney C∞-topology. There exists a residual
subset A of Ham∞(T2) such that f has non-contractible periodic points if
f ∈ A.

Proof Wewill prove that f has non contractible periodic points if the following
properties are satisfied:

• if f q(z) = z, then 1 is not an eigenvalue of Df q(z);
• if z is an elliptic periodic point of periodq (whichmeans that the eigenvalues
of Df q(z) are on the unit circle), then z is Moser stable (which means that
z is surrounded by f q -invariant curves arbitrarily close to z);

• if z, z′ are hyperbolic periodic points of period q, q ′ respectively (which
means that the eigenvalues of Df q(z) and Df q

′
(z′) are real), then the

stable and unstable manifolds of z and z′ are either disjoint or they intersect
transversally.

The first property implies that the fixed point set of f is finite and so included
in a topological disk. By Corollary 71, to get our result it remains to prove
that there is no K > 0 such that if f̌ is the Hamiltonian lift of f , then for
every z ∈ R

2 and every k ∈ Z, one has ‖ f̌ k(z) − z‖ � K . If such K exists,
choose a bounded open set W containing the fundamental domain [0, 1]2.
The set

⋃
k∈Z

f̌ k(W ) is an invariant bounded open set. One finds an invariant
bounded open disk V containing [0, 1]2 by looking at the complement of the
unbounded component of the complement of W . Let us show first that ∂V
has no periodic points. Since V is bounded, we may take a sufficiently large
integer L such that, if T̂ = R

2/(LZ)2 is the torus that finitely covers T
2, f̂ is

the induced homeomorphism and π̂ : R
2 → T̂

2 is the projection, then π̂(V ) is
contained in a topological disk. The diffeomorphism f̂ satisfies the following
properties:

• if f̂ q(z) = z, then 1 is not an eigenvalue of D f̂ q(z);
• every elliptic periodic point of f̂ is Moser stable;
• the stable and unstable manifolds of hyperbolic periodic points of f̂ are
either disjoint or they intersect transversally.

By a theorem of Mather (see [31]), one knows that the prime-end rotation
number of π̂(V ) is irrational. The main result from [24] shows that the frontier
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∂π̂(V ) has no periodic point because the prime-end rotation number of π̂(V )

is irrational. This implies that ∂V has no periodic points.
In fact it is not necessary to use [24]. Indeed, working directly with V and

f̌ , the boundedness condition implies that the stable and unstable manifolds
of every hyperbolic periodic point z are bounded. Mather’s arguments implies
that, under our generic conditions, the branches of z have all the same closure.
By a result of Pixton [35], every stable branch of z intersect every unstable
branch and one can find surrounding curves arbitrarily close to z contained in
the union of the stable and unstable manifolds. By Mather’s argument again,
one knows that such a point z cannot be contained in ∂V . Moreover there is
no elliptic periodic point on ∂V .

The fact that V contains [0, 1]2 implies that
⋃

p∈Z2(∂V + p) is connected.
Moreover, the interior of

⋃
p∈Z2(∂V + p) is empty. This set projects onto a

compact subset of T
2 whose interior is empty, which is totally essential (the

connected components of its complement are open disks) and which does not
contain periodic points of f . This contradicts a result of A. Koropecki (see
[23]) that states the following: if K is an invariant closed connected subset
of a homeomorphism defined on a closed orientable surface and having no
wandering points, and if K has no periodic point, then either M is a torus and
K coincides with M , or K is a decreasing sequence of compact annuli. ��
Before proving our three theorems, let us state some introductory results.

In what follows (Proposition 73 and Proposition 75) f is a homeomorphism
of T

2 that is isotopic to the identity and f̌ a lift of f to R
2. We consider an

identity isotopy I ′ of f that is lifted to an identity isotopy Ǐ ′ of f̌ . We consider
a maximal hereditary singular isotopy I larger than I ′ and its lift Ǐ to R

2. We
consider a foliation F transverse to I an its lift F̌ to R

2.

Proposition 73 If (0, 0) belongs to the interior of rot( f̌ ) or to the interior of

a segment with irrational slope included in ∂
(
rot( f̌ )

)
, then the leaves of F̌

are uniformly bounded.

Proof Suppose first that (0, 0) belongs to the interior of rot( f̌ ). One can find
finitely many extremal points ρi of rot( f̌ ), 1 � i � r , that linearly generate
the plane and positive numbers ti , 1 � i � r , such that:

∑

1�i�r

ti = 1,
∑

1�i�r

tiρi = (0, 0).

Each ρi is the rotation number of an ergodic measure μi ∈ M( f ). Applying
Poincaré Recurrence Theorem and Birkhoff Ergodic Theorem, one can find
a positively recurrent point zi of f having ρi as a rotation number. Fix a lift
ži of zi and a small neighborhood W̌i of ži that trivializes F̌ . One can find a
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subsequence ( f̌ nl (zi ))l�0 of f̌ n(zi )n�1 and a sequence (pi,l)l�0 of integers
such that f̌ nl (ži ) ∈ W̌i + pi,l and such that liml→+∞ pi,l/nl = ρi . One
deduces that the transverse homological space THS(F) contains pi,l . If l is
large enough, the pi,l generate the plane and (0, 0) is contained in the interior
of the polygonal defined by these points. By Proposition 13, we deduce that
the leaves of F̌ are uniformly bounded.

Suppose now that (0, 0) belongs to the interior of a segment with irrational

slope included in ∂
(
rot( f̌ )

)
. If this segment [ρ1, ρ2] is chosen maximal, then

ρ1 and ρ2 are extremal points of rot( f̌ ) and respectively equal to the rotation
number of ergodicmeasuresμ1 andμ2 inM( f ). LetWi ⊂ T

2 be a trivializing
box of F such that μi (Wi ) �= 0 and W̌i ⊂ R

2 a lift of Wi . The first return
map �i : Wi → Wi , z �→ f τi (z) (where τi : Wi → N) is defined μi -
almost everywhere on Wi as the displacement function ξi : Wi → Z

2, where
f̌ τi (z)(ž) ∈ W̌i+ξi (z), if ž is the lift of z that belongs to W̌i . Letψ : R

2 → R be
a non trivial linear form that vanishes on our segment. Using Birkhoff Ergodic
Theorem, one knows that μi -almost every point z has a rotation number ρi ,
and so

lim
n→+∞

∑n−1
k=0 ξi (�

k
i (z))

∑n−1
k=0 τi (�

k
i (z))

= ρi .

ByKac’s theorem, one knows that τi isμi -integrable and satisfies
∫
Wi

τi dμi =
μi (
⋃

k∈Z
f k(Wi )) ∈ (0, 1]. One can note that ξi/τi is bounded, which implies

that ξi is μi -integrable. Consequently, one has

lim
n→+∞

∑n−1
k=0 ξi (�

k
i (z))

∑n−1
k=0 τi (�

k
i (z))

=
∫
Wi

ξi dμi
∫
Wi

τi dμi
,

which implies that

∫

Wi

ξi dμi =
(∫

Wi

τi dμi

)

ρi �= 0

and

∫

Wi

ψ ◦ ξi dμi = ψ

(∫

Wi

ξi dμi

)

= 0.

Note that ψ ◦ ξi (z) �= 0 if ξi (z) �= 0, because ξi (z) is an integer and the kernel
of ψ is generated by a segment with irrational slope. We deduce that there
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718 P. Le Calvez, F. A. Tal

exists z1, z′1 in W1 such that

ψ ◦ ξ1(z1) < 0 < ψ ◦ ξ1
(
z′1
)
.

Consequently, one can find z′′1 ∈ W1, z′′2 ∈ W2 and integers n1, n2 such that
(0, 0) is in the interior of the quadrilateral determined by

ξ1(z1), ξ1
(
z′1
)
,

∑n1−1
k=0 ξ1

(
�k

1

(
z′′1
))

∑n1−1
k=0 τ1

(
�k

1

(
z′′1
)) ,

∑n2−1
k=0 ξ2

(
�k

2(z2)
)

∑n2−1
k=0 τ2

(
�k

2

(
z′′2
)) ,

because the last two points may be chosen arbitrarily close to ρ1 and ρ2. The
set THS(F) containing the integers

ξ1(z1), ξ1
(
z′1
)
,

n1−1∑

k=0

ξ1

(
�k

1(z
′′
1)
)

,

n2−1∑

k=0

ξ2

(
�k

2(z2)
)

,

one can apply Proposition 13 to conclude that the leaves of F̌ are uniformly
bounded. ��
Remark 74 As a corollary, one deduces that F is singular and that f̌ is not
fixed point free. Applying this to f̌ q − p, for every rational p/q ∈ int(rot( f̌ )),
one deduces that there exists a point z ∈ R

2 such that f̌ q(z) = z + q. This
result was already well known, due to Franks [12].

Proposition 75 We suppose that the leaves of F̌ are uniformly bounded. If
there exists an admissible transverse path γ̌ : [a, b] → dom(F̌) of order q
and an integer p ∈ Z

2 such that γ̌ and γ̌ + p intersect F̌-transversally at
φγ̌ (t) = φ(γ̌+p)(s), where s < t , then p/q belongs to rot( f̌ ).

Proof By Corollary 22 one deduces that for every k � 2 the path

γ̌ |[a,t]

(
∏

0<i<k−1

(γ̌ + i p)|[s,t]
)

(γ̌ + (k − 1)p)|[s,b]

is admissible of order kq. This implies that there exists a point žk ∈ φγ̌ (a)

such that f̌ kq(žk) ∈ φ(γ̌+(k−1)p)(b) = φγ̌ (b) + (k − 1)p. The fact that the

leaves of F̌ are uniformly bounded tells us that there exists K such that for
every k � 1, one has ‖ f̌ kq(žk) − žk − (k − 1)p‖ � K . Denote zk the pro-
jection of žk in T

2. Choose a measure μ that is the limit of a subsequence of(
1
kq

∑kq−1
i=0 δ f i (zk)

)

k�2
for the weak∗ topology. It is an invariant measure of

f of rotation number p/q for f̌ . ��
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Let us state the following improved version of Atkinson’s Lemma:

Proposition 76 Let (X,B, μ) be a probability space and T : X → X an
ergodic automorphism. If ϕ : X → R is an integrable map such that

∫
ϕ dμ =

0, then for every B ∈ B and every ε > 0, one has

μ

({

x ∈ B, ∃n � 0, T n(x) ∈ B and 0 �
n−1∑

k=0

ϕ(T k(x)) < ε

})

= μ(B).

Proof Let us consider B ∈ B and set

A = B \
{

x ∈ B, ∃n � 0, T n(x) ∈ B and 0 �
n−1∑

k=0

ϕ(T k(x)) < ε

}

}.

Atkinson’s result directly implies that there exists a set A′ ⊂ A with μ(A′) =
μ(A) such that, for every x ∈ A′, there exists a subsequence (nl)l∈N such that
T nl (x) ∈ A and liml→∞

∑nl−1
k=0 ϕ(T k(x)) = 0. Assume, for a contradiction,

that μ(A) > 0. There exists some x ∈ A′ and n0 > 0 such that y = T n0(x) ∈
A and a = ∑n0−1

k=0 ϕ(T k(x)) ∈ (−ε, ε), and since x ∈ A we know that
a < 0. Since x ∈ A′ there exists some n1 > n0 such that T n1(x) ∈ A and
a <

∑n1−1
k=0 ϕ(T k(x)) < ε + a. This implies that T n1−n0(y) ∈ A and that

0 <
∑nl−n0−1

k=0 ϕ(T k(y)) < ε, which is a contradiction since y ∈ A proving
the claim. ��
Proof of Theorem 62 We will give a proof by contradiction. Replacing f by
f q and f̌ by f̌ q − p, where q ∈ N and p ∈ Z

2, we can suppose that the
frontier of rot( f̌ ) contains a segment [ρ0, ρ1] with irrational slope, that (0, 0)
is in its interior and that ρ0 and ρ1 are extremal points of rot( f̌ ). We can
suppose moreover than for every ρ ∈ rot( f̌ ), one has 〈ρ⊥

0 , ρ〉 � 0 � 〈ρ⊥
1 , ρ〉.

We consider two ergodic measuresμ0 andμ1 inM( f )whose rotation vectors
are ρ0 and ρ1 respectively. We know that there exists a point z0 ∈ R

2 such that
rot(z0) = ρ0 and that projects onto a bi-recurrent point of f . ByProposition 76,
we have a stronger result: ��
Lemma 77 There exists a point z0, projecting to a bi-recurrent point and
with rot(z0) = ρ0, such that for every ε ∈ {−1, 1} one can find a sequence
(pl , ql)l�0 in Z

2 × N satisfying:

lim
l→+∞ ql = +∞, lim

l→+∞ f̌ ql (z0) − z0 − pl = 0,

lim
l→+∞

〈
ρ⊥
0 , pl

〉
= 0, ε

〈
ρ⊥
0 , pl

〉
> 0
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and a sequence (p′
l , q

′
l )l�0 in Z

2 × N satisfying:

lim
l→+∞ q ′

l = +∞, lim
l→+∞ f̌ −q ′

l (z0) − z0 − p′
l = 0,

lim
l→+∞

〈
ρ⊥
0 , p′

l

〉
= 0, ε

〈
ρ⊥
0 , p′

l

〉
> 0.

Proof LetW0 be a small disk such thatμ0(W0) �= 0 and W̌0 a lift ofW0. Define
the maps τ0 and ξ0 like in Proposition 73. The measure μ0 being ergodic, one
knows that

∫
W0

τ0 dμ0 = 1 and that
∫
W0

ξ0 dμ0 = ρ0. Let us define onW0 the

first return map T : z �→ f τ0(z)(z) and the function ϕ : z �→ ε〈ρ⊥
0 , ξ0(z)〉.

For each integer i � 1, let (Bi, j )1� j�ki be a covering of W0 by open sets
with diameter smaller than 1/ i , and define

Ci, j =
{

x ∈ Bi, j ∩ W0, ∃n � 0, T n(x) ∈ Bi, j ∩ W0 and 0 �
n−1∑

k=0

ϕ(T k(x)) < 1/ i

}

Set Ci = ⋃ki
j=1 Ci, j and C = ⋂

i�1 Ci . By Proposition 76, one knows that
μ0(Ci ) = μ0(C) = μ0(W0), and if C ′ is the subset of the bi-recurrent points
of C with rotation vector ρ0, then μ0(C ′) = μ)(C).. If z0 belongs to C ′, one
can find an increasing integer sequence (ml)l�0 such that

lim
l→+∞ Tml (z0) = z0, lim

l→+∞

ml−1∑

k=0

ε
〈
ρ⊥
0 , ξ0(T

k(z0)
〉
= 0,

ml−1∑

k=0

ε
〈
ρ⊥
0 , ξ0(T

k(z0)
〉
� 0.

Setting pl =∑ml−1
k=0 ξ0(T k(z0)) and ql =∑ml−1

k=0 τ0(T k(z0)), one gets the first
assertion of the lemma, with a large inequality instead of a strict one. Noting
that liml→+∞ ‖pl‖ = +∞ and that the line generated by ρ0 has irrational
slope, one deduces that the inequality is strict. The second assertion can be
proved analogously. ��

We note that, by Proposition 73, the leaves of F̌ are uniformly bounded. Let
us choose z0 as in the previous lemma. The fact that rot(z0) = ρ0 tells us that
the whole trajectory ǏZ(z0) is a proper path directed by ρ0. The fact that the
leaves of F̌ are uniformly bounded and that every leaf met by ǏZ

F̌ (z0) is also

met by ǏZ(z0) implies that ǏZ

F̌ (z0) is a transverse proper path directed by ρ0.

We parameterize ǏZ

F̌ (z0) in such a way that ǏZ

F̌ (z0)|[l,l+1] = ǏF̌ ( f̌ l(z0)). We
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consider sequences (pl , ql)l�0 and (p′
l , q

′
l )l�0 given by the previous lemma

(the sign ε has no importance at the beginning).

Lemma 78 For every closed segment [a, b] ⊂ R and every positive real
numbers L, ε, there exists p ∈ Z

2 and a segment [a′, b′] ⊂ R satisfying
a′ − b > L such that |〈ρ⊥

0 , p〉| < ε and such that the paths ǏZ

F̌ (z0)|[a,b]
and ( ǏZ

F̌ (z0) + p)|[a′,b′] are equivalent. One has a similar result replacing the
inequality a′ − b > L by a − b′ > L.

Proof Let us choose integers q and q ′ such that [a, b] ⊂ (q, q ′). As z0 projects
to a bi-recurrent point, one can find l, using Lemma 77, sufficiently large, such
that ql > q ′ − q + L and such that f̌ ql ( f̌ q(z0)) − pl is so close to f̌ q(z0)
that we can affirm that ǏZ

F̌ (z0)|[a,b] is equivalent to a path ( ǏZ

F̌ (z0)− pl)|[a′,b′],
where [a′, b′] ⊂ (q + ql, q ′ + ql). Note that |〈ρ⊥

0 , pl〉| < ε if l is sufficiently
large. The version with the inequality a − b′ > L can be proven similarly by
using the sequences (p′

l)l�0 and (q ′
l )l�0. ��

Lemma 79 There is no p ∈ Z
2\{0} such that ǏZ

F̌ (z0) and ǏZ

F̌ (z0)+ p intersect

F̌-transversally.

Proof Write ǏZ

F̌ (z0) = γ0 for convenience. Suppose that γ0 and γ0 + p inter-

sect F̌-transversally at φ = φγ0(t) = φ(γ0+p)(s). The leaves being uniformly
bounded, one knows that φγ0(t) �= φγ0(t) + p and so t �= s. Replacing p
with −p if necessary, one can suppose that s < t . By Proposition 75, there
exists q � 1 such that p/q ∈ rot( f̌ ). Consequently, one has 〈ρ⊥

0 , p〉 � 0.
By assumption, the segment [0, ρ0] has irrational slope and p �= 0, so one
deduces that 〈ρ⊥

0 , p〉 < 0.
We know that there exists a sufficiently large N such that γ0|[−N ,N ] and

(γ0+p)|[−N ,N ] intersect F̌-transversally atφ. ByLemma78,we can find some
p′ ∈ Z

2 such that |〈ρ⊥
0 , p′〉| is sufficiently small as to get 〈ρ⊥

0 , p + p′〉 < 0,
and such that there exists some a′, b′ with N < a′ < b′, where (γ0 + p′)|[a′,b′]
is equivalent to γ0|[−N ,N ]. This implies that (γ0 + p + p′)|[a′,b′] is equivalent
to (γ0 + p)|[−N ,N ], and so γ0 and γ0 + p + p′ intersect F̌-transversally at
φγ0(t) = φ(γ0+p+p′)(s′) where s′ > t . So, one knows that γ0 and γ0 − p − p′
intersect F̌-transversally at φγ0(s′) = φ(γ0−p−p′)(t). We deduce as before, by

Proposition 75, that for someq ′ > 1 the vector −p−p′
q ′ ∈ rot( f̌ ), a contradiction

since 〈ρ⊥
0 , −p − p′〉 < 0. ��

Lemma 80 The path ǏZ

F̌ (z0) is a line

Proof Here again, write ǏZ

F̌ (z0) = γ0. If γ0 is a not a line, by Proposition 4 one
knows that there exist two segments [a0, b0] and [a1, b1] such that γ0|[a0,b0]
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and γ0|[a1,b1] intersect F̌-transversally. By Lemma 78, one deduces that there
exist p ∈ Z

2\{0} and a segment [a′
1, b

′
1] such that γ0|[a0,b0] and (γ0+ p)|[a′

1,b
′
1]

intersect F̌-transversally. This contradicts Lemma 79. ��
Similarly, we can find a point z1 of rotation number ρ1 that projects onto a

recurrent point of f and such that ǏZ

F̌ (z1) is a line directed by ρ1 that does not
meet transversally its integer translated.

Lemma 81 The line ǏZ

F̌ (z1) intersects F̌-transversally one of the translates

of ǏZ

F̌ (z0).

Proof Let us prove by contradiction that γ1 = ǏZ

F̌ (z1) intersects F̌-

transversally one of the translates of γ0 = ǏZ

F̌ (z0). If not, let us denote by
U0 the union of leaves that are met by γ0. Its complement can be written
R(U0) � L(U0) where R(U0) = R(γ0) \ U0 is the union of r(γ0) and of the
set of singularities at the right of γ0 and L(U0) = L(γ0) \ U0 is the union of
l(γ0) and of the set of singularities at the left of γ0. If γ1 and γ0 do not intersect
F̌-transversally, then by Corollary 6, one knows that either γ1∩ R(U0) = ∅ or
γ1∩L(U0) = ∅. As γ0 is directed by

ρ0‖ρ0‖ and γ1 is directed by the opposite vec-
tor ρ1‖ρ1‖ = − ρ0‖ρ0‖ , one knows that if γ1∩R(U0) = ∅, then R(γ1)∩R(U0) = ∅,
and if γ1 ∩ L(U0) = ∅, then L(γ1) ∩ L(U0) = ∅. Consequently, γ0 and γ1
cannot meet a common leaf. Indeed if φ is such a leaf, one knows by Propo-
sition 4 that it is met once by γ0 and γ1. So, the α-limit set of φ is contained
in L(U0) ∩ L(γ1) and the ω-limit set is included in R(U0) ∩ R(γ1), which is
impossible.

So, if the conclusion of our lemma is not true, there exists a partition Z
2 =

A− � A+, where

p ∈ A− ⇔ (r(γ0) ∪U0) + p ⊂ l(γ1),

p ∈ A+ ⇔ (l(γ0) ∪U0) + p ⊂ r(γ1).

Also, by Lemma 79 and the fact that γ0 is directed by ρ0, one knows that
l(γ0 + p) ⊂ l(γ0) if 0 � 〈ρ⊥

0 , p〉 and one deduces this partition is a cut of the
order on Z

2 defined as follows

p � p′ ⇔
〈
ρ⊥
0 , p

〉
�
〈
ρ⊥
0 , p′〉 .

Let us fix a leaf φ that intersects γ1. By Lemma 78, one knows that there exists
p0 �= (0, 0) such that φ intersects γ1 + p0. One deduces that A− + p0 = A−
and A+ + p0 = A+, which of course is impossible. ��
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End of the proof of Theorem 62 Replacing γ0 by a translate if necessary, we
can always suppose that γ0 and γ1 intersect F̌-transversally at γ0(t0) = γ1(t1)
and we define γ = γ0|[−∞,t0]γ1|[t1,+∞] which is an admissible transverse
proper path. There exist two segments [a0, b0] and [a1, b1] containing t0
and t1 respectively in their interior, such that γ0|[a0,b0] and γ1|[a1,b1] inter-
sect transversally at γ0(t0) = γ1(t1). Using Lemma 78, one can find p0 and p1
in Z

2 distinct, and segments [a′
0, b

′
0] ⊂ (−∞, t0) and [a′

1, b
′
1] ⊂ (t1, +∞)

such that (γ0 + p0)|[a′
0,b

′
0] is equivalent to γ0|[a0,b0] and (γ1 + p1)|[a′

1,b
′
1]

is equivalent to γ1|[a1,b1]. We deduce that there exists t ′0 ∈ (a′
0, b

′
0) and

t ′1 ∈ (a′
1 + t0 − t1, b′

1 + t0 − t1) such that γ + p0 and γ + p1 intersect
F̌-transversally at φ = φ(γ+p0)(t ′0) = φ(γ+p1)(t ′1). So γ and γ + p1 − p0

intersect F̌-transversally at φ − p0 = φγ (t ′0) = φ(γ+p1−p0)(t ′1). Observing that
t ′0 < t ′1, one deduces, by Proposition 75, that there exists q � 1 such that
(p1 − p0)/q ∈ rot( f̌ ) and thus 〈ρ⊥

0 , p1 − p0〉 < 0. But Lemma 77 tells us
that p0 and p1 can be chosen so that 〈ρ⊥

0 , p0〉 < 0 and 〈ρ⊥
0 , p1〉 > 0. We have

found a contradiction. ��
Proof of Theorem 63 In the proof, we will use the sup norm ‖ ‖∞ where
‖(x1, x2)‖∞ = max(|x1|, |x2|) which will be more convenient that the
Euclidean norm and will write d∞(z, X) = inf z′∈X ‖z − z′‖∞. Replacing
f by f q and f̌ by f̌ q − p, where q ∈ N and p ∈ Z

2, we can suppose that
(0, 0) is in the interior of rot( f̌ ). Here again, we consider an identity isotopy
I ′ of f that is lifted to an identity isotopy Ǐ ′ of f̌ . We consider a maximal
hereditary singular isotopy I larger than I ′ and its lift Ǐ to R

2. We consider a
foliation F transverse to I an its lift F̌ to R

2. One knows by Proposition 73
that the leaves of F̌ are uniformly bounded. In the remainder of the proof we
will usually work in the universal covering space of T

2, with paths transversal
to the lifted foliation F̌ . The theorem is an immediate consequence of the
following, where the direction D(γ ) of a path γ : [a, b] → R

2 is defined as
D(γ ) = γ (b) − γ (a):

Proposition 82 There exists a constant L such that for every transverse admis-
sible path γ of order n, one has d∞(D(γ ), n rot( f )) � L.

We will begin by proving:

Lemma 83 There exist a transverse admissible path γ ∗ : [0, 3] → R
2, a real

number K ∗ and an integer p∗ ∈ Z
2 such that:

– every transverse path γ whose diameter is larger than K ∗ intersects F̌-
transversally an integer translate of γ ∗|[1,2];

– γ ∗|[2,3] and γ ∗|[0,1] + p∗ intersect F̌-transversally.
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Proof Let us choose N large enough such (1/N , 0) and (0, 1/N ) belong to the
interior of rot( f̌ ). As previously noted in Remark 74, there exists a point z0
satisfying f̌ N (z0) = z0+(1, 0) and a point z1 satisfying f̌ N (z1) = z1+(0, 1).
The transverse trajectories ǏZ

F̌ (z0) and ǏZ

F̌ (z1) are parameterized, such that

ǏZ

F̌ (z0)(t + 1) = ǏZ

F̌ (z0)(t) + (1, 0) and ǏZ

F̌ (z1)(t + 1) = ǏZ

F̌ (z1)(t) + (0, 1).
��

Sub-lemma 84 There exists a real number K such that if γ is a transverse path
that does not intersect F̌-transversally ǏZ

F̌ (z0) , then either π2(γ (t)) > −K or

π2(γ (t)) < K and if it does not intersect F̌-transversally ǏZ

F̌ (z1), then either
π1(γ (t)) > −K or π1(γ (t)) < K.

Proof There exists K0 > 0 such that the diameter of each leaf ofF is bounded
by K0 and there exists K ′

0 > 0 such that ǏZ

F̌ (z0) ⊂ R × (−K ′
0, K

′
0). Setting

K = K0 + K ′
0, note that every leaf that intersects R × (−∞, −K ] belongs to

r( ǏZ

F̌ (z0)) and every leaf that intersects R × [K , +∞) belongs to l( ǏZ

F̌ (z0)). It

remains to apply Corollary 6. We have a similar argument for ǏZ

F̌ (z1). ��
Setting K ∗ = 2K + 1, one deduces immediately:

Corollary 85 If γ is a transverse path and if the diameter of π2 ◦ γ is larger
than K ∗, there exists p0 ∈ Z

2 such that γ intersects F̌-transversally ǏZ

F̌ (z0)+
p0 and if the diameter of π1 ◦ γ is larger than K ∗, there exists p1 ∈ Z

2 such
that γ intersects F̌-transversally ǏZ

F̌ (z1) + p1.

In particular γ0 = ǏZ

F̌ (z0) intersects γ1 = ǏZ

F̌ (z1) F̌-transversally at a point
γ0(t0) = γ1(t1). One can find an integer r > 0 such that γ0|[t0−r,t0+r ] and
γ1|[t1−r,t1+r ] intersect F̌-transversally atγ0(t0) = γ1(t1). Letγ ∗ : [0, 3] → R

2

be a path such that

– γ ∗[0,1] is a reparameterization of γ0|[t0−(4r+2),t0−(2r+2)];
– γ ∗[1,2] is a reparameterization of γ0|[t0−(2r+2),t0]γ1|[t1,t1+(2r+2)];
– γ ∗[2,3] is a reparameterization of γ1|[t1+(2r+2),t1+(4r+2)].

Let us prove that γ ∗ satisfies the proposition.Observe first that γ ∗ is admissible
of order (8r + 4)N by Corollary 21 and that the paths γ ∗|[0,2] and γ ∗|[1,3]
are admissible of order (6r + 2)N . Note first that γ ∗|[2,3] and γ ∗|[0,1] + (3r +
2, 3r + 2) intersect F̌-transversally. One can set p∗ = (3r + 2, 3r + 2). Let
γ be a transverse path such that the diameter of π2 ◦ γ is larger than K ∗. By
Sub-lemma 84 one knows that there exists p0 ∈ R

2 such that γ intersects
F̌-transversally γ0 + p0. This means that there exist two real segments J and
J0 such that
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– γ |J intersects F̌-transversally γ0|J0 + p0;
– γ |intJ and γ0|intJ0 + p0 are equivalent.

If the length of J0 is smaller than 2r + 1, then J0 is included in an interval
[t0 − (2r + 2) + l0, t0 + l0]. This implies that γ intersects F̌-transversally
γ ∗|[1,2] + p0 + (l0, 0). If the length is at least equal to 2r + 1, then J0
contains an interval [t0 − r + l0, t0 + r + l0]. This implies that γ intersects
F̌-transversally γ1|[t1−r,t1+r ] + p0 + (l0, 0) and so intersects F̌-transversally
γ ∗|[1,2] + p0+ (l0, −r). We get the same conclusion for a transverse path such
that the diameter of π1 ◦ γ is larger than K ∗. ��
Proof of the Proposition 82 We denote by K ∗∗ the diameter of γ ∗ and by
K ∗∗∗ the diameter of rot( f ). Let γ : [a, b] → R

2 be a transverse path
such that ‖D(γ )‖ > 2K ∗. One can find c, d in (a, b) with c < d such that
‖D(γ |[a,c])‖ = ‖D(γ |[d,b])‖ = K ∗. Note that, if c is chosen to be minimal
with this property, and d is chosen to be maximal, then the diameter of both
γ |[a,c] and γ |[d,b] are at most 2K ∗. There exist p and p′ in Z

2 such that

– γ |[a,c] and γ ∗|[1,2] + p intersect F̌-transversally at γ (t) = γ ∗(s) + p;
– γ |[d,b] and γ ∗|[1,2] + p′ intersect F̌-transversally at γ (t ′) = γ ∗(s′) + p′.
If γ is admissible of order n, then the path

γ ′ = (γ ∗|[0,s] + p)γ |[t,t ′](γ ∗|[s′,3] + p′)

is admissible of order n + (12r + 4)N by Corollary 21 and one has

‖D(γ ′) − D(γ )‖ � 4K ∗ + 2K ∗∗.

Recall that γ ∗[2,3] intersects F̌-transversally γ ∗[0,1] + p∗. One deduces that

(γ ∗|[s′,3] + p′) intersects F̌-transversally (γ ∗|[0,s] + p) + p′′, where p′′ =
p′ − p + p∗ and so that γ ′ intersects F̌-transversally γ ′ + p′′. Proposition 75
tells us that p′′/(n + (12r + 4)N ) belongs to rot( f̌ ), which implies

d(p′′, n rot( f̌ )) � (12r + 4)NK ∗∗∗.

Observe now that ‖p′′−D(γ ′)‖ � 2K ∗∗ and so ‖p′′−D(γ )‖ � 4K ∗ + 4K ∗∗.
So, one gets

d(D(γ ), n rot( f̌ )) � 4K ∗ + 4K ∗∗ + (12r + 4)NK ∗∗∗.

��
Proof of Theorem 64 Here again, using the fact that for every q � 1 and every
p ∈ Z

2, one has rot( f̌ q + p) = qrot( f̌ )+ p, it is easy to see that it is sufficient
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to prove the result in the case where (0, 0) belongs to the interior of rot( f̌ ).
Here again, we consider an identity isotopy I ′ of f that is lifted to an identity
isotopy Ǐ ′ of f̌ . We consider a maximal hereditary singular isotopy I larger
than I ′ and its lift Ǐ to R

2. We consider a foliation F transverse to I an its
lift F̌ to R

2. We know that the leaves of F̌ are uniformly bounded. We can
immediately deduce the theorem from what has been done in the previous
proof and Theorem 36. Indeed, we know that there are two transverse loops
associated to periodic points that have a transverse intersection. We will give
a proof that does not use Theorem 36 by exhibiting separated sets. ��

Let us begin with the following lemma:

Lemma 86 There exists a constant K such that for every point z ∈ dom(F̌)

and any z′ for which φz′ intersects IF̌ (z), one has d(z, z′) � K.

Proof There exists K ′ > 0 such that the diameter of each leaf of F̌ is bounded
by K ′. Moreover, the set

⋃
t∈[0,1],z∈[0,1]2 I (z), being compact, is included in

[−K ′′, K ′′ + 1]2,for some K ′′ > 0. The leaves that ǏF̌ (z) intersects, are also

intersected by Ǐ (z) (see the beginning of Sect. 3). One deduces that K =
K ′ + K ′′ satisfies the conclusion of the lemma. ��
We consider the paths γ0 = ǏF̌ (z0) and γ1 = ǏZ

F̌ (z1) defined in the proof
of Theorem 63. We keep the same notations and set z∗ = γ0(t0) = γ1(t1). Let
us define

K ′′′ = max
(
diam(γ0|[t0,t0+r ]), diam(γ1|[t1,t1+r ])

)

and choose an integer m � 1 such that mr � K ′′′ + 2K0 + K + 1. Set

γ ′
0 = γ0|[t0,t0+mr ], γ ′

1 = γ1|[t1,t1+mr ].

Fix n and for every e = (ε1, . . . , εn) ∈ {0, 1}n define

γ ′
e =

∏

1�i�n

(γ ′
εi

+ pi−1),

where the sequence (pi )0�i�n satisfies k0 = 0 and is defined inductively by
the relation:

pi+1 =
{
pi + (mr, 0) if εi = 0,

pi + (0,mr) if εi = 1.

The path γ ′
ω is admissible of order l = nmrN . More precisely, there exists a

point ze ∈ φz∗ such that f̌ l(ze) ∈ φz∗ + kn , and such that γ ′
e = Ǐ lF̌ (ze).
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Lemma 87 If e and e′ are two different sequences in {0, 1}n, there exists
j ∈ {0, . . . , l − 1} such that ‖ f̌ j (ze) − f̌ j (ze′)‖ � 1.

Proof Consider the integer i∗ such that εi∗ �= ε′
i∗ and εi = ε′

i if i < i∗. The
leaf φz∗ + pi∗ is intersected by γ ′

e but not by γ ′
e′ . More precisely d(φz∗ +

pi∗, γ ′
e′) � mr − K ′ − K0. Using Lemma 86, one deduces that there exists

j ∈ {0, . . . , l} such that d( f̌ j (zω), φz∗ + pi∗) � K . Moreover, one knows that
d( f̌ j (ze′), γ ′

e′) � K0 because γ ′
e intersects φ f̌ j (ze′ )

. One deduces that

‖ f̌ j (ze) − f̌ j (ze′)‖ � mr − K ′ − 2K0 − K � 1.

��
To finish the proof of the proposition, let us define on T

2 the distance

d(Z , Z ′) = inf
π(z)=Z , π(z′)=Z ′ ‖z − z′‖,

where

π : R
2 → T

2,

z �→ z + Z
2

is the projection. Note that for every Z ∈ T
2, one has

π−1(B(Z , 1/4)) =
⊔

π(z)=Z

B(z, 1/4)

and every map π |B(z,1/4) is an isometry from B(z, 1/4) onto B(Z , 1/4).
Fix ε ∈ (0, 1/4) such that for every z, z′ in R

2, one has

‖z − z′‖ < ε ⇒ ‖ f̌ (z) − f̌ (z′)‖ < 1/4.

One deduces that two points Z and Z ′ such that d( f j (Z), f j (Z)) < ε, for
every j ∈ {0, . . . l−1} are lifted by points z, z′ such that ‖ f̌ j (z)− f̌ j (z)‖ < ε,
for every j ∈ {0, . . . l − 1}.

Consequently, the points ze project on a (nmrN , ε)-separated set of cardi-
nality 2n . One deduces that h( f ) > log 2/mrN . ��
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