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Abstract This paper studies homeomorphisms of surfaces isotopic to the iden-
tity by means of purely topological methods and Brouwer theory. The main
development is a novel theory of orbit forcing using maximal isotopies and
transverse foliations. This allows us to derive new proofs for some known
results as well as some new applications, among which we note the following:
we extend Franks and Handel’s classification of zero entropy maps of S? for
non-wandering homeomorphisms; we show that if f is a Hamiltonian home-
omorphism of the annulus, then the rotation set of f is either a singleton or it
contains zero in the interior, proving a conjecture posed by Boyland; we show
that there exist compact convex sets of the plane that are not the rotation set of
some torus homeomorphisms, proving a first case of the Franks—Misiurewicz
conjecture; we extend a bounded deviation result relative to the rotation set to
the general case of torus homeomorphisms.
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1 Introduction

Let us begin by recalling some facts about Sharkovski’s theorem, which can be
seen as a typical example of an orbit forcing theory in dynamical systems. In
this theorem, an explicit total order < on the set of natural integers is given that
satisfies the following: every continuous transformation f on [0, 1] that con-
tains a periodic orbit of period m contains a periodic orbit of period n if n < m.
Much more can be said. If f admits a periodic orbit of period different from
a power of 2, one can construct a Markov partition and codes orbits with the
help of the associated finite subshift. In particular one can prove that the topo-
logical entropy of f is positive. There exists a forcing theory about periodic
orbits for surface homeomorphisms related to Nielsen—Thurston classification
of surface homeomorphisms, with many interesting dynamical applications
(see for example [5] or [33] for survey articles). In case of homeomorphisms
isotopic to the identity, this theory deals with the braid types associated to
the periodic orbits. A more subtle theory (homotopic Brouwer theory) was
introduced by Handel for surface homeomorphisms and developed by Franks
and Handel to become a very efficient tool in two-dimensional dynamics.

The goal of the article is to give a new orbit forcing theory for surface
homeomorphisms that are isotopic to the identity, theory that will be expressed
in terms of maximal isotopy, transverse foliations and transverse trajectories.
Note first that the class of surface homeomorphisms isotopic to the identity
contains the time one maps of time dependent vector fields. Consequently,
what is proved in this article can be applied to the dynamical study of a time
dependent vector field on a surface, periodic in time. In what follows, a surface
M is orientable and furnished with an orientation. If f is a homeomorphism
of M isotopic to the identity, the choice of an isotopy I = (f7):¢[0,1] from the
identity to M should not be very important, as we are looking at the iterates of f.
What looks like the trajectory of a point z, that means the path I (z) : t — f;(2)
seems useless. It appears that this is not the case: there are isotopies that are
better than the other ones. This is clear if f is the time one map of a complete
time independent vector field &. The isotopy ( f7)[0,1] defined by the restriction
of the flow (f;);eRr is clearly better than any other choice of an isotopy, in the
sense that it will be useful while studying the dynamics of f. It is easy to see
that in this last case, there is no fixed point of f in the complement of the
singular set of the vector field whose trajectory is contractible relative to this
same singular set. In this situation, the singular points correspond to the fixed
points of I, which means the points whose trajectory is constant.

In general, let us say that an isotopy I = (f;)s¢[0.1], that joins the identity
to a homeomorphism f, is a maximal isotopy if there is no fixed point of
f whose trajectory is contractible relative to the fixed point set of 1. A very
recent result of Béguin et al. [4] asserts that such an isotopy always exists if
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Forcing theory for transverse trajectories 621

f is isotopic to the identity (a slightly weaker result was previously proved
by Jaulent [21]). A fundamental result [27] asserts that a maximal isotopy
always admits a transverse foliation. This is a singular oriented foliation F
whose singular set coincides with the fixed point set of / and such that every
non trivial trajectory is homotopic (relative to the endpoints) to a path that is
transverse to the foliation (which means that it locally crosses every leaf from
the right to the left). This path /r(z), the transverse trajectory, is uniquely
defined up to a natural equivalence relation (meaning that the induced path
in the space of leaves is unique). In the case where f is the time one map
of a complete time independent vector field &, it is very easy to construct a
transverse foliation by taking the integral curves of any vector field n that is
transverse to &, and in that case the trajectories I (z) are transverse. In a certain
sense, maximal isotopies are isotopies that are as close as possible to isotopies
induced by flows.

Maximal isotopies and transverse foliations are known to be efficient tools
for the dynamical study of surface homeomorphisms (see [9,10,26-29,32,39]
for example). Usually they are used in the following way. Properties of f are
transposed “by duality” to properties of F, then one studies the dynamics of
the foliation and comes back to f. Roughly speaking, the leaves of the foliation
are pushed along the dynamics. This property is cleverly used in the articles
of Davalos [9,10]. Our original goal was a boundedness displacement result
(Theorem H of this introduction) which needed a formalization of the ideas
of Davalos. This was nothing but a forcing theory for transverse trajectories.
For every integer n > 1, let us define by concatenation the paths /" (z) =
H0<k<n 1(f*(z)) and I'7(z) = n0<k<n I7(f*(2)). The basic question can be
formulated as follows: from the knowledge of a finite family (I;’J zi)i<i<p
of transverse trajectories, can we deduce the existence of other transverse
trajectories 1’+(z)? The key result (Proposition 20), which is new and whose
proof is very simple, can be stated as follows: if two paths /7' (z1) and 177 (z2)
intersect transversally relative to JF (the precise definition will be given later in
the article) then one can construct two other paths /7' M2 (z3) and [ 7 2 (24)
by a natural change of direction at the intersection point. It becomes possible,
in many situations to code transverse trajectories with the help of a Bernouilli
shift or in other situations to construct transverse trajectories that are multiples
of the same loop.

In order to obtain applications of this forcing theory, we need to relate
the information obtained by the knowledge of these new sets of transverse
trajectories to other properties of the dynamics. To do so, one can define the
whole trajectory I%(z) = [Teez ICSf k(2)) and the whole transverse trajectory
I]ZE(z) = [liez I]-'(fk(z)) of a point z. The properties of the dynamics are
recovered by three structural results that, together with Proposition 20, form the
core of the theory. The first of these results is arealization result, Proposition 26,
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showing that in many cases, the existence of finite transverse trajectories that
are equivalent to multiples of a given transverse loop implies the existence of
a periodic point whose transverse trajectory for one period is equivalent to the
same transverse loop. The second of these results, Theorem 29, shows that if
there exist two recurrent points z and z’ such that 7 %—(z) and / %(z’ ) intersect
transversally relative to F (with a self intersection if z = z’) the number of
periodic points of period n for some iterate of f grows exponentially in n. The
third result, Theorem 36, shows that if in the previous result we assume that
the surface is closed, then the topological entropy of f is strictly positive. This
final result presents, to our knowledge, an entirely new mechanism to detect
positive entropy, one that bypasses any requirement of smoothness of the map.
Consequently, our applications are for general homeomorphisms isotopic to
the identity, and include both new entropy theorems for maps of the annulus
and generalizations of results known only for C'-diffeomorphisms (sometimes
for C!*¢-diffeomorphisms, sometimes for C*°-diffeomorphisms). There is no
doubt that they are many similarities with Franks—Handel methods. Looking
more carefully at the links between the two methods should be a project of
high interest.

Let us display now more precisely the main applications, beginning with the
case of annulus homeomorphisms. Here, M(f) is the set of invariant Borel
probability measures p of f, the set supp(u) the support of w, the rotation
number rot(u) the integral [, ¢ du, where ¢ : A — R is the map lifted by

SRS f 1 (the map 7y : (x, y) — x being the first projection), the segment
rot( f ) the set of rotation numbers of invariant measures.

Theorem A Let f be a homeomorphism of A = T! x [0, 1] that is isotopic
to the identity and f a lift to R x [0, 1]. Suppose that rot(f) is a non trivial
segment and that p is an endpoint of rot(f) that is rational. Define

My = (e M(f). rot(u) = p}. Xp= ) supp(o).
HEM,

Then every invariant measure supported on X, belongs to M,,.

We deduce immediately the following positive answer to a question of Boy-
land:

Corollary B Let f be a homeomorphism of A that is isotopic to the identity
and preserves a probability measure | with full support. Let us fix a lift f
Suppose that rot( f ) is a non trivial segment. The rotation number rot(jL)
cannot be an endpoint of rot( f ) if this endpoint is rational.

Let us explain what happens for torus homeomorphisms. Here again M ( f)
is the set of invariant Borel probability measures p of f, the set supp(u)
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the support of © and the rotation vector rotu) the integral ng ¢ du, where

¢ : T? — R? is the map lifted by f — Id. The set of rotation vectors of
invariant measures rot( f ) is a compact and convex subset of R%. Nothing is
known about the plane subsets that can be written as such a rotation set. The
following result gives the first obstruction:

Theorem C Let f be a homeomorphism of T2 that is isotopic to the identity
and f a lift of f to R The frontier of rot( f) does not contain a segment with
irrational slope that contains a rational point in its interior.

It was previously conjectured by Franks and Misiurewicz [15] that a line
segment L could not be realized as a rotation set of a torus homeomorphism
in the following conditions: (i) L has irrational slope and a rational point in its
interior, (ii) L has rational slope but no rational points and (iii) L has irrational
slope and no rational points. While Theorem C implies the conjecture for case
(i), Avila has given a counter-example for case (iii).

The second result is a boundedness result:

Theorem D Let f be a homeomorphism of T2 that is isotopic to the identity
and f a lift of f to R2. If rot( f ) has a non empty interior, then there exist a
constant L such that for every z € R* and every n > 1, one has d(f” (2) —
z,nrot(f)) < L.

Note that by definition of the rotation set one knows that

lim © (maxd(f"(z) —z, nrot(f))) =0

n—-4+oon ZE]RZ

Theorem D clarifies the speed of convergence. It was already known for home-
omorphisms in the special case of a polygon with rational vertices (see Davalos
[10]) and for C I+e diffeomorphisms (see Addas-Zanata [2]). As already noted
in [2], we can deduce an interesting result about maximizing measures, which
means measure @ € M(f) whose rotation vector belongs to the frontier of
rot( f ). The rotation number of such a measure belongs to at least one sup-
porting line of rot( f ). Such a line admits the equation ¥/ (z) = (i) where ¢
is a non trivial linear form on R? and

a(y) = Ménﬂ%) Y (rot(n)) = uén/\ﬁll)((f) /W Vopdu.

Set

My = {n € M(f), Yrot() = @)}, Xy = (] supp(u).
HEMy,
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The following result, that can be easily deduced from Theorem 63 and Atkin-
son’s Lemma in Ergodic Theory (see [1]), tells us that the sets X, behave like
the Mather sets of the Tonelli Lagrangian systems.

Proposition E Let f be a homeomorphism of T? that is isotopic to the identity
and f a lift of f to R%. Assume that rot(f) has a non empty interior. Then,
every measure |1 supported on Xy, belongs to My,. Moreover, if z lifts a point

of Xy, then for every n > 1, one has (" (2)) — ¥(z) — nB()| < Ly,
where L is the constant given by Theorem D.

It admits as an immediate corollary the torus version of Boyland’s question:

Corollary F Let f be a homeomorphism of Tvz that is isotopic to the identity,
preserving a measure [ of full support, and f a lift of f to R?. Assume that
rot( f) has a non empty interior. Then rot(it) belongs to the interior of rot( f).

This result was known for C'*¢ diffeomorphisms (see [2]).

The next resut is due to Llibre and MacKay, see [30]. Its original proof
uses Thurston—Nielsen theory of surface homeomorphisms, more precisely
the authors prove that there exists a finite invariant set X such that f|r2, x
is isotopic to a pseudo-Anosov map. We will give here an alternative proof
by exhibiting (n, &) separated sets constructed with the help of transverse
trajectories.

Theorem G Let f be a homeomorphism of T2 that is isotopic to the identity
and f alift of f to R2. Ifrot(f) has a non empty interior, then the topological
entropy of f is positive.

Our original goal, while writing this article, was to prove the following
boundedness displacement result:

Theorem H We suppose that M is a compact orientable surface furnished
with a Riemannian structure. We endow the universal covering space M with
the lifted structure and denote by d the induced distance. Let f be a homeo-
morphism of M isotopic to the identity and f a lift to M naturally defined by
the isotopy. Assume that there exists an open topological disk U C M such
that the fixed points set of f projects into U. Then;

— either there exists K > 0 such that d(f" (%), %) < K, foralln > 0 and all
bi-recurrent point Z of f;

— or there exists a nontrivial covering automorphism T and g > 0 such that,
forallr/s € (—1/q, 1/q), the map f" oT =P has afixed point. In particular,
f has non-contractible periodic points of arbitrarily large prime period.

Theorem H has an interesting consequence for torus homeomorphisms. Say
a homeomorphism f of T? is Hamiltonian if it preserves a measure y with
full support and it has a lift f (called the Hamiltonian lift of f) such that the
rotation vector of w is null.
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Forcing theory for transverse trajectories 625

Corollary I Let f be a Hamiltonian homeomorphism of T? such that all its
periodic points are contractible, and such that it fixed point set is contained in
a topological disk. Then there exists K > 0 such that if f is the Hamiltonian
lift of f, then for every z and every n > 1, one has ||f"(z) —z|l < K.

The study of non-contractible periodic orbits for Hamiltonian maps of sym-
pletic manifolds has been receiving increased attention (see for instance [16]).
A natural question in the area, posed by V. Ginzburg, is to determine if the
existence of non-contractible periodic points is generic for smooth Hamilto-
nians. A consequence of Corollary I is an affirmative answer for the case of
the torus:

Proposition J Let Hamo, (T?) be the set of Hamiltonian C* diffeomorphisms
of T? endowed with the Whitney C>°-topology. There exists a residual subset
A of Hamo (T?) such that every f in A has non-contractible periodic points.

Let us explain now the results related to the entropy. For example we can
give a short proof of the following improvement of a result due to Handel [19].

Theorem K Ler f : S — S? be an orientation preserving homeomorphism
such that the complement of the fixed point set is not an annulus. If f is
topologically transitive then the number of periodic points of period n for
some iterate of f grows exponentially in n. Moreover, the entropy of f is
positive.

Another entropy result we obtain is related to the existence and continuous
variation of rotation numbers for homeomorphisms of the open annulus. A
stronger version of this result for diffeomorphisms was already proved in an
unpublished paper of Handel [20]. Given a homeomorphism of T!' x Rand a
lift f to R2, we say that a point z € T' x R has a rotation number rot(z) if
the w-limit of its orbit is not empty, and if for any compact set K  T! x R
and every increasing sequence of integers ny such that f"*(z) € K and any
zen (),

lim L (m(f k(z) — ﬂl(Z)) = rot(z),
k

k—oo n

where 7 is the covering projection from R? to T! x R and 71 : R? — R is
the projection on the first coordinate.

Theorem L Let f be a homeomorphism of the open annulus T' x R isotopic
to the identity, f a lift of f to the universal covering and fsphere be the natural
extension of f to the sphere obtained by compactifying each end with a point. If
the topological entropy of fsphere is zero, then each bi-recurrent point (meaning
forward and backward recurrent) has a rotation number, and the function
Z > rot(z) is continuous on the set of bi-recurrent points.
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626 P. Le Calvez, F. A. Tal

Let us finish with a last application. Franks and Handel recently gave a
classification result for area preserving diffeomorphisms of S? with entropy 0
(see [14]). Their proofs are purely topological but the C' assumption is needed
to use a Thurston—Nielsen type classification result relative to the fixed point
set (existence of a normal form) and the C°° assumption to use Yomdin results
on arcs whose length growth exponentially by iterates. We will give a new
proof of the fundamental decomposition result (Theorem 1.2 of [14]) which
is the main building block in their structure theorem. In fact we will extend
their result to the case of homeomorphisms and replace the area preserving
assumption by the fact that every point is non wandering.

Theorem M Let f : S — S? be an orientation preserving homeomorphism
such that Q(f) = S? and h(f) = 0. Then there exists a family of pairwise
disjoint invariant open sets (Ay)qeca Whose union is dense such that:

i) each Ay is an open annulus;
ii) the sets A, are the maximal fixed point free invariant open annuli;

iii) the a-limit set of a point z ¢ | J,c 4 Aa s included in a single connected
component of the fixed point set ix(f) of f, and the same holds for the
w-limit set of z;

iv) let C be a connected component of the frontier of Ay in S* \ fix(f),
then the connected components of ix(f) that contain o(z) and w(z) are
independent of 7 € C.

Let us explain now the plan of the article. In the second section we will
introduce the definitions of many mathematical objects, including precise def-
initions of rotation vectors and rotation sets. The third section will be devoted
to the study of transverse paths to a surface foliation. We will introduce the
notion of a pair of equivalent paths, of a recurrent transverse path and of
JF-transverse intersection between two transverse paths. An important result,
which will be very useful in the proofs of Theorems K and M is Proposition 2
which asserts that a transverse recurrent path to a singular foliation on S? that
has no F-transverse self-intersection is equivalent to the natural lift of a trans-
verse simple loop (i.e. an adapted version of Poincaré-Bendixson theorem).
We will recall the definition of maximal isotopies, transverse foliations and
transverse trajectories in Sect. 4. We will state the fundamental result about
JF-transverse intersections of transverse trajectories (Proposition 20) and its
immediate consequences. An important notion that will be introduced is the
notion of linearly admissible transverse loop. To any periodic orbit is naturally
associated such a loop. A realization result (Proposition 26) will give us suf-
ficient conditions for a linearly admissible transverse loop to be associated to
a periodic orbit. Section 5 will be devoted to the proofs of Theorem 29 (about
exponential growth of periodic orbits) and Theorem 36 (about positiveness
of the entropy). We will give the proofs of Theorems H, A and K in Sect. 6
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Forcing theory for transverse trajectories 627

while Sect. 7 will be almost entirely devoted to the proof of Theorem M (we
will prove Theorem L at the end of it). We will begin by stating a “local ver-
sion” relative to a given maximal isotopy (Theorem 53). We will study torus
homeomorphisms in Sect. 8 and will give there the proofs of Theorems C, D
and G.

We would like to thank Frédéric Le Roux for informing us of some impor-
tant gaps in the original proofs of Theorems 29 and 36. We would also like to
thank Andrés Koropecki for his useful comments and for discussions regard-
ing Proposition J, and to Victor Ginzburg for presenting us the question on
the genericity of non-contractible periodic points for Hamiltonian diffeomor-
phisms. Finally, we would like to thank the anonymous referee for the careful
work and suggestions which greatly improved our text.

2 Notations

We will endow R? with its usual scalar product ( ) and its usual orientation.
We will write || || for the associated norm. For every point z € R2 and every set
X C R? we write d(z, X) = inf,cy ||z — Z’||. We denote by 71 : (x, y) — x
andm : (x, y) — ythetwoprojections.Ifz = (x, y), we write z+ = (—y, x).

The r-dimensional torus R"/Z" will be denoted T", the 2-dimensional
sphere will be denoted S2. A subset X of a surface M is called an open disk
if it is homeomorphic to D = {z € R?, ||lzIl < 1} and a closed disk if it
is homeomorphic to D = {z € R2, |z|| < 1}. It is called an annulus if it
homeomorphic to T! x J, where J is a non trivial interval of R. In case where
J=1[0,11, J = (0, 1), J = [0, 1), we will say that X is a closed annulus, an
open annulus, a semi-closed annulus respectively.

Given a homeomorphism f of a surface M and a point z € M we define the

a-limit set of z by (1,50 Ui=n f~%(z) and we denote it a(z). We also define
the w-limit set of z by ﬂ@O U,@n f*(z) and we denote it w(z).

2.1 Paths, lines, loops

A path on a surface M is a continuous map y : J — M defined on an interval
J C R.Inabsence of ambiguity its image will also be called a path and denoted
by . We will denote y ~! : —J — M the path defined by y ~!(t) = y (—1).If
X and Y are two disjoint subsets of M, we will say thata path y : [a, b] > M
joins X to Y if y(a) € X and y(b) € Y. Apathy : J — M is proper if
J is open and the preimage of every compact subset of M is compact. A line
is an injective and proper path A : J — M, it inherits a natural orientation
induced by the usual orientation of R. If M = R?, the complement of A has
two connected components, R(A) which is on the right of A and L(A) which
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628 P. Le Calvez, F. A. Tal

Fig. 1 Order of lines
relative to X

is on its left. More generally, if M is a non connected surface with connected
components homeomorphic to R?, and if M’ is the connected component of
M containing A, the two connected components of M’ \ A will similarly be
denoted R(A) and L(M).

Let us suppose that Ao and A1 are two disjoint lines of R%. We will say
that they are comparable if their right components are comparable for the
inclusion. Note that Ag and A1 are not comparable if and only if A9 and ()»1)_1
are comparable.

Let us consider three lines Ag, A1, A» in RZ. We will say that A, is above |
relative to Ay (and A1 is below Ay relative to Ay) if:
— the three lines are pairwise disjoint;
— none of the lines separates the two others;
— if y1, y» are two disjoints paths that join z; = Ag(f1), 22 = Ao(f2) to

zy € A1, Zh = Ay respectively, and that do not meet the three lines but at
the ends, then £, > 1.

This notion does not depend on the orientation of A1 and A, but depends of
the orientation of Ao (see Fig. 1.1 If A¢ is fixed, note that we get in that way
an anti-symmetric and transitive relation on every set of pairwise disjoint lines
that are disjoint from Ag.

A proper path y of R? induces a dual function 8 on its complement, defined
up to an additive constant as follows: for every z and z’ in R?\ y, the difference
8(z') — 8(z) is the algebraic intersection number y A 3’ where y’ is any path

from z to . If y is a line, there is a unique dual function §, that is equal to 0
on R(y) andto 1 on L(y).

U n all figures in the text, we will represent the plane R2 as the open disk. The reason being
that in many cases we are dealing with the universal covering space of an a hyperbolic surface.
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Consider a unit vector p € R?, ||p|| = 1.Say thataproperpathy : R — R?
is directed by p if

lim [y =+oco, lim y@®)/lly®l=p, lim y@)/lly®Il=—p.
t—+o00 t—+400 t— —00

Observe that if y is directed by p, then y ~! is directed by — p and that for every

z € R, the translated path y + z : t > (1) + z is directed by p. Among the
connected components of R? \ y, two of them R(y) and L(y) are uniquely
determined by the following: for every z € R?, one has z — sp~ € R(y)
and z + spt € L(y) if s is large enough. In the case where y is a line, the
definitions agree with the former ones. Note that two disjoint lines directed by
p are comparable.

Instead of looking at paths defined on a real interval we can look at paths
defined on an abstract interval J, which means a one dimensional oriented
manifold homeomorphic to a real interval. If y : J — M andy’' : J' — M
are two paths, if J has a right end b and J' a left end @’ (in the natural sense),
and if y(b) = y'(a’), we can concatenate the two paths and define the path
yy’ defined on the interval J” = J U J'/b ~ a’ coinciding with y on J and
y' on J'. One can define in a same way the concatenation [ [, y; of paths
indexed by a finite or infinite interval of 7Z.

A pathy : R — M such that y(t + 1) = y(¢) for every t € R lifts a
continuous map I' : T! — M. We will say that I is a loop and y its natural
lift. If n > 1, we denote I'” the loop lifted by the path ¢ — y (nr). Here again,
if M is oriented and I' homologous to zero, one can define a dual function §
defined up to an additive constant on M \ " as follows: for every z and 7’ in
R2 \ I, the difference §(z') — §(z) is the algebraic intersection number I' Ay’
where y’ is any path from z to 7.

2.2 Rotations vectors

Letusrecall the notion of rotation vector and rotation set for a homeomorphism
of a closed manifold, introduced by Schwartzman [37] (see also Pollicott [36]).
Let M be an oriented closed connected manifold and I an identity isotopy
on M, which means an isotopy (f;)s¢[0,1] such that fy is the identity. The
trajectory of a point z € M is the path I(z) : z — fi(z). If @ is a closed 1-
form on M, one can define the integral [, (;) @ on every trajectory /(z). Write
f1 = f and denote M(f) the set of invariant Borel probability measures.

For every u € M(f), the integral [, ( / 1) w) du(z) vanishes when w is

exact. One deduces that v — f M ( f 1) a)) du(z) defines a natural linear
form on the first cohomology group H'(M, R), and by duality an element of
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630 P. Le Calvez, F. A. Tal

the first homology group H;(M, R), which is called the rotation vector of
and denoted rot(u). The set M( f), endowed with the weak™ topology, being
convex and compact and the map p +— rot(u) being affine, one deduces that the
setrot(/) = {rot(u), u € M(f)}isaconvex compact subset of H; (M, R).If
M is a surface of genus greater than 1 and I’ is a different identity isotopy given
by (f{)ie0,1] such that fl/ = f, then for all z € M the trajectories I (z) and
I'(z) are homotopic with fixed endpoints. Therefore the rotation vectors (and
the rotation set) are independent of the isotopy, depending only on f.If M isa
torus, it depends on a given lift of f. Let us clarify this case (see Misiurewicz
and Zieman [34]). Let f be a homeomorphism of T? that is isotopic to the
identity and f alift of f to the universal covering space R?. The map f —Id is
invariant by the integer translations z — z+ p, p € Z?, and lifts a continuous
map ¢ : T?> — R. The rotation vector of a Borel probability measure invariant
by f is the integral sz @ dp. If p is ergodic, then for p-almost every point z,
the Birkhoff means converge to rot(u). If 7 € R2 is a lift of z, one has

*n > n—1
hmiﬁliznlewﬂ@mmwy
=0

n——+00 n n—-+oon

We will say that z (or7) has a rotation vector rot(u). The rotation set rot(f) isa
non empty compact convex subset of R?. It is easy to prove that every extremal
point of rot(f) is the rotation vector of an ergodic measure. Indeed the set
of Borel probability measures of rotation vector p € rot(f) is convex and
compact, moreover its extremal points are extremal in M (f) if p is extremal
inrot(f). Observe also that for every p € 7% and levery g € Z,themap f e+ P
is a lift of £ and one has rot(fq +p) = qrot(f) + p.

We will also be concerned with annulus homeomorphisms. Let f be a
homeomorphism of A = T! x [0, 1] that is isotopic to the identity and f a lift
of f to the universal covering space R x [0, 1]. The map o f — 1 is invariant
by the translation 7 : z — z + (1, 0) and lifts a continuous map ¢ : A — R.
The rotation number rot(ut) of a Borel probability measure invariant by f is the
integral [, ¢ dpu. If p is ergodic, then for y-almost every point z, the Birkhoff
means converge to rot(u). If 7 € R x [0, 1] is a lift of z, one has

o ffO-m@ _
lim
n——+o00 n n—>+

Zw(f"(z)) = rot(p).

Here again we will say that Z (or z) has a rotation number rot(jt). The rotation
set rot(f) is a non empty compact real segment and every endpoint of rot( f)
is the rotation number of an ergodic measure. Here again, for every p € 7Z
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and every g € Z, the map f‘f o T? is alift of f9 and one has rot(fq oTP) =
grot(f) + p.

Note that if J is a real interval, one can also define the rotation number of
an invariant probability measure of a homeomorphism of T! x J isotopic to
the identity, for a given lift to R x J, provided the support of the measure is
compact.

3 Transverse paths to surface foliations
3.1 General definitions

Let us begin by introducing some notations that will be used throughout the
whole text. A singular oriented foliation on an oriented surface M is an oriented
topological foliation F defined on an open set of M. We will call this set the
domain of F and denote it dom(F), its complement will be called the singular
set (or set of singularities) and denoted sing(F). If the singular set is empty,
we will say that F is non singular. A subset of M is saturated if it is the union
of singular points and leaves. A trivialization neighborhood is an open set
W C dom(F) endowed with a homeomorphism 42 : W — (0, 1)? that sends
the restricted foliation 7w onto the vertical foliation. If Misa covering space
of Mand % : M — M the covering prOJectlon JF can be naturally lifted to
a singular foliation F of M such that dom(}" ) = 7~ (dom(F)). If Nisa
covering space of dom(F), then the restriction of F to dom(F) can also be
naturally lifted to a non singular foliation of N. We will denote Eo?ﬁ(]—" )the
universal covering space of dom(F) and F the foliation lifted from F |qom(F)-
For every z € dom(F) we will write ¢, for the leaf that contains z, ¢Z+ for the
positive half-leaf and ¢ for the negative one. One can define the a-limit and
w-limit sets of ¢ as follows:

a@) =[)o:. o@)={)¢:
z€Q €

Suppose that a point z € ¢ has a trivialization neighborhood W such that each
leaf of F contains no more than one leaf of F|w. In that case every point of
¢ satisfies the same property. If furthermore no closed leaf of F meets W,
we will say that ¢ is wandering. Recall the following facts, in the case where
M = R? and F is non singular (see Haefliger and Reeb [18]):

— every leaf of F is a wandering line;
— the space of leaves X, furnished with the quotient topology, inherits a
structure of connected and simply connected one-dimensional manifold;

@ Springer



632 P. Le Calvez, F. A. Tal

— X is Hausdorff if and only if F is trivial (which means that it is the image
of the vertical foliation by a plane homeomorphism) or equivalently if all
the leaves are comparable.

A path y : J — M is positively transverse® to F if its image does not meet
the singular set and if, for every #9 € J, there exists a (continuous) chart
h:W — (0,12 at y (tp) compatible with the orientation and sending the
restricted foliation Fyy onto the vertical foliation oriented downward such that
the map 7 o h o y is increasing in a neighborhood of #y. Let Mbea covering
space of M and 7 : M — M the covering projection. If y : J — dom(F)
is positively transverse to F, every lift y : J — M is transverse to the lifted
foliation F. Moreover, every lifty : J — HEE(JE ) to the universal covering
space g(;ri(}' ) is transverse to the lifted non singular foliation F.

Suppose first that M = R? and that F is non singular. Say that two transverse
paths y : J — R?and y’ : J' — R? are equivalent for F or F-equivalent if
they satisfy the three following equivalent conditions:

— there exists an increasing homeomorphism/ : J — J'suchthat¢, ) =
¢y ), forevery t € J;

— the paths y and y’ meet the same leaves;

— the paths y and y’ project onto the same path of .

Moreover, if J = [a, b] and J' = [d’, D] are two segments, these conditions
are equivalent to this last one:

— one has ¢y (4) = ¢y/() and ¢y ) = Py 1y)-

In that case, note that the leaves met by y are the leaves ¢ such that
R(¢y@) C R(®) C R(¢,@p)). If the context is clear, we just say that the
paths are equivalent and omit the dependence on F.

If y : J — R?is a transverse path, then for every a < b in J, the set
L(¢y(a)) N R(¢y ) 1s a topological plane and y |4, p) a line of this plane. Let
us say that y has a leaf on its right if there exists a < b in J and a leaf ¢ in
L(¢y(a)) N R($y 1)) that lies in the right of (4, p). Similarly, one can define
the notion of having a leaf on its left (Fig. 2).

All previous definitions can be naturally extended in case every connected
component of M is a plane and F is not singular. Let us return to the general
case. Two transverse paths y : J — dom(F) and y’ : J' — dom(F) are
equivalent for F or F-equivalent if they can be lifted to the universal covering
space Eo\rﬁ(]-" ) of dom(F) as paths that are equivalent for the lifted foliation
F. This implies that there exists an increasing homeomorphism 4 : J — J’
such that, for every ¢t € J, one has ¢, ;) = ¢y (). Nevertheless these
two conditions are not equivalent. In Fig. 3, such a homeomorphism can be

2 in the whole text “transverse” will mean “positively transverse”.
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Fig.2 v :[a, b] > R? has JT—
both a leaf on its right (¢q)
and a leaf on its left (¢1). ) .
¥l(a.p) is also a line in F b1
L(¢y(a)) N R(¢y(b)) -

T
>
- |
o ew T
Fig. 3 The paths y| and y» LTI -
are not equivalent for F,
even though they cross the .
same leafs / K

constructed but the two loops are not equivalent. Nonetheless, one can show
that y and y’ are equivalent for F if, and only if, there exists a holonomic
homotopy between y and y’, that is, if there exists a continuous transformation
H :J x [0,1] - dom(F) and an increasing homeomorphism 4 : J — J’
satisfying:

- H@,0)=y(), Ht, 1) =y'(h(1));
— forallr € J and 51, 52 € [0, 1], ¢H(t,s1) = ¢H(t,sz)-

By definition, a transverse path has a leaf on its right if it can be lifted to

E&E(]-' ) as a path with a leaf of Fonits right (in that case every lift has a leaf
on its right) and has a leaf on its left if it can be lifted as a path with a leaf on
its left. Note that if y and y’ have no leaf on their right and y ' is well defined,
then yy’ has no leaf on its right. Note also that if y and y’ are F-equivalent,
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Fig. 4 The transversal loops s
I" and T/ are not equivalent :
for F, even though they are
freely homotopic

and if y has a leaf on its right, then y’ has a leaf on its right. We say that an
F-equivalence class has a leaf on its right (on its left) if some representative
of the class has a leaf on its right (on its left).

Similarly, a loop I' : T! — dom(F) is called positively transverse to F if
it is the case for its natural lift y : R — dom(F). It has a leaf on its right
or its left if it is the case for y. Two transverse loops I" : T! — dom(F) and
I'": T' - dom(F) are equivalent if there exists two lifts y : R — ﬁ(]—" )
and 7' : R — dom(F) of T and "/ respectively, a covering automorphism
T and an orientation preserving homeomorphism # : R — R, such that, for
every ¢t € R, one has

Yye+D)=TH@), y¢+1)=TF @), ht+1)
=h()+1, ¢50am) = P50

Of course I'" and I'"" are equivalent transverse loops, for every n > 1, if it is
the case for I" and I'". A transverse loop I will be called prime if there is no
transverse loop I’ and integer n > 2 such that I' is equivalent to """,

If two transverse loops I' and I'” are equivalent, there exists a holonomic
homotopy between them and therefore they are freely homotopic in dom(F),
but the converse does not need to hold, as Fig. 4 shows.

A transverse path y : R — M will be called F-positively recurrent if for
every segment J C R and every ¢ € R there exists a segment J' C [z, +00)
such that y | is equivalent to y|;. It will be called F-negatively recurrent
if for every segment J/ C R and every 7 € R there exists a segment J' C
(—o0, t] such that y|; is equivalent to y|;. It is F-bi-recurrent if it is both
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F-positively and F-negatively recurrent. Note that, if y : R — M and y’ :
R — M are F-equivalent and if y is F-positively recurrent (or F-negatively
recurrent), then so is y'. We say that an F-equivalence class is positively
recurrent (negatively recurrent, bi-recurrent) if some representative of the class
is F-positively recurrent (resp. F-negatively recurrent, F-bi-recurrent).

We will very often use the following remarks. Suppose that I is a transverse
loop homologous to zero and § a dual function. Then é decreases along each
leaf with a jump at every intersection point. One deduces that every leaf met
by I' is wandering. In particular, I" does not meet any set «(¢) or w(¢), which
implies that for every leaf ¢, there exist z— and z4 on ¢ such that I" does not
meet neither ¢~ nor ¢Zt . Writing 4 and n_ for the value taken by é on ¢~
and d)z‘: respectively, one deduces that ny — n_ is the number of times that
I" intersect ¢. Note that n, — n_ is uniformly bounded. Indeed, the fact that
every leaf that meets I is wandering implies that T! can be covered by open
intervals where I is injective and does not meet any leaf more than once. By
compactness, T! can be covered by finitely many such intervals, which implies
that there exists N such that ' meets each leaf at most N times. We have similar
results for a multi-loop I' = 3, ;. , I'i homologous to zero. In case where

M = R?, we have similar results for a proper transverse path with finite valued
dual function. In case of an infinite valued dual function, everything is true but
the existence of z_, z4, n_, n4 and the finiteness condition about intersection
with a given leaf. In particular a transverse line A meets every leaf at most
once (because the dual function takes only two values) and one can define the
sets r(A) and [()), union of leaves included in R(X) and L(X) respectively.
They do not depend on the choice of X in the equivalence class. Note that if
the diameter of the leaves of F are uniformly bounded, every path equivalent
to A is still a line. We have similar results for directed proper paths. If y is a
proper path directed by a unit vector p, one can define the sets r(y) and [(y),
union of leaves included in R(y) and L(y) respectively. They do not depend
on the choice of y in the equivalence class. Moreover, if the leaves of F are
uniformly bounded, every path equivalent to y is still a path directed by p.

3.2 F-transverse intersection for non singular plane foliations

We suppose here that M = R? and that  is non singular.
Lety, : J1 — R2 and v Jr —> R2 be two transverse paths. The set

X={t1.n) € i x L2 |dy11) = Proin)} »
if not empty, is an interval that projects injectively on J; and J; as does its

closure. Moreover, for every (t1, 1) € X \ X, the leaves ®yi () and ¢y, (1) are
not separated in . To be more precise, suppose that J; and J; are real intervals
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and that ¢y, (1) = @y, (1n)- Set J| = Ji N (=00, f1]and J, = Jo N (=00, 12].
Then either one of the paths y | V2 | i is equivalent to a subpath of the other
one, or there exist a; < t1 and ax < t such that:

— Y1l@;,n1 and ¥2|(as,1,] are equivalent;

= Py C L@p@)s Pra@) C L(Dyian)
— Gy (ay) and @y, (4,) are not separated in .

Observe that the second property (but not the two other ones) is still satisfied
when a1, a; are replaced by smaller parameters. Note also that ¢,, (4,) is either
above or below ¢, (4,) relative to ¢, (1) and that this property remains satisfied
when aj, a are replaced by smaller parameters and #; by any parameter in
(a1, t1]. We have a similar situation on the possible right end of X.

Lety, : J| — R? and vy i Jy — R? be two transverse paths such that
Dyi(11) = Gyr(rn) = ¢. We will say that yy and y, intersect F-transversally and
positively at ¢ (and y, and y intersect F-transversally and negatively at ¢)
if there exist aj, by in J; satisfying a; < t| < by, and a», b> in J; satisfying
a> < ty < by, such that:

— Py (an) 18 below @y, (4)) relative to ¢;
— Py (by) 1S above ¢y, ) relative to @.

See Fig. 5.

Note that, if y; intersects F-transversally y», if y| is equivalent to y; and
¥, is equivalent to y», then y| intersects F-transversally y;, and we say that
the equivalence class of y; intersect transversally the equivalence class of y».

Asnone of the leaves ¢, ¢y, (4), Py, (ar) SEParates the two others, one deduces
that

¢V1(a1) C L(¢Vz(az))’ d’yz(az) C L(¢V1(a1))

Fig. 5 F-transverse IS AR
intersection. The tangency '
point is also a point of '
JF-transverse intersection \
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and similarly that

Gyib1) C R(Dysb2)s Pyabr) C R(Dyyv1))-

As explained above, these properties remain true when ay, as are replaced by
smaller parameters, by, by by larger parameters and ¢ by any other leaf met by
y1 and y». Note that y; and y» have at least one intersection point and that one
can find two transverse paths y|, y; equivalent to yi, y» respectively, such that
y; and y, have a unique intersection point, located on ¢, with a topologically
transverse intersection. Note that, if y; and y» are two paths that meet the same
leaf ¢, then either they intersect F-transversally, or one can find two transverse
paths y{, y; equivalent to y1, y», respectively, with no intersection point.

3.3 F-transverse intersection in the general case

Here again, the notion of F-transverse intersection can be naturally extended
in case every connected component of M is a plane and F is not singular. Let
us return now to the general case of a singular foliation F on a surface M. Let
y1:J1 = M and y» : J», — M be two transverse paths that meet a common
leaf ¢ = ¢y, (1) = Dy (10)- We will say that y; and y; intersect F-transversally
at ¢ if there exist paths y1 : J; — dom(F) and v —> dom(F), lifting
and y», with a common leaf ¢ = ¢3,(1,) = 93 ,) that lifts ¢, and intersecting
F -transversally at a; If ¢ is closed the choices of 7] and > do not need to be
unique, see Fig. 6.

Fig. 6 Given a lift ] of yy,
there are two different lifts of
Y2 intersecting
F-transversally 7}
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Here again, we can give a sign to the intersection. As explained in the last
subsection, there exist #; and ¢ such that y; (t) = y»(t;) and such that y; and
> intersect F-transversally at éy, @) = by, ) In this case we will say that y;
and y» intersect F-transversally at y; (t{) = yz(té). In the case where y; = y»
we will talk of an F-transverse self-intersection. A transverse path y has an
F-transverse self-intersection if for every lift ¥ to the universal covering space
of the domain, there exists a non trivial covering automorphism 7" such that
y and T (¥) have a F-transverse intersection. We will often use the following
fact. Let y; : J1 — M and y, : Jo — M be two transverse paths that meet
a common leaf ¢ = ¢y, ) = Py, 1»)- If J{, J; are two sub-intervals of Ji, J»
that contain ¢, #, respectively and if yq| 7 and y»| 7 intersect F-transversally
at ¢, then y; and y» intersect F-transversally at ¢.

Similarly, let I" be a loop positively transverse to F and y its natural lift. If
y intersects F-transversally a transverse path y’ at a leaf ¢, we will say that
" and y’ intersect F-transversally at ¢. Moreover if 3’ is the natural lift of
a transverse loop I'” we will say that I and I’ intersect F-transversally at ¢.
Here again we can talk of self-intersection.

As a conclusion, note that if two transverse paths have an F-transverse
intersection, they both have a leaf on their right and a leaf on their left.

3.4 Some useful results

In this section, we will state different results that will be useful in the rest
of the article. Observe that the finiteness condition for the next proposition is
satisfied if every leaf of F is wandering, or when M has genus 0.

Proposition 1 Let F be an oriented singular foliation on a surface and
(T'i)1<i<m a family of prime transverse loops that are not pairwise equiv-
alent. We suppose that the leaves met by the loops I'; are never closed and that
there exists an integer N such that no loop T"; meets a leaf more than N times.
Then, for everyi € {1, ..., m}, there exists a transverse loop T, equivalent to
I'; such that:

i) I and F; do not intersect if T'; and " j have no F-transverse intersection;
ii) '/ is simple if T'; has no F-transverse self-intersection.

Proof There is a natural partial order on dom(F) defined as follows: write
z < 7/ if ¢, is not closed and 7' € qﬁj . One can suppose, without loss of
generality, that the loops T'; are included in the same connected component
W of dom(F). One can lift F|w to an oriented foliation F on the universal
covering space W of W. We will parameterize I'; by a copy ']I‘1 of T! and
consider the Til as disjoint circles. We will endow the set T, = U 1<,ngil
with the natural topology generated by the open sets of the Til. We get a
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continuous map I' : T,, — W (a multi-loop) by setting I'(#) = I';;)(¢), where
t e Tl(t) Suppose that r # " and ¢r () = ¢r(). One can lift the loops i)

and I';y) to hnes Yiey : R = W and ¥, RAGKE R — W transverse to F such
that ¢ @ = ¢V,<t NG qb where 7 and 7’ lift ¢ and ¢’ respectively. The
fact that the loops are prime and not equivalent implies that ;¢ |[, +o0) and
Vi) [ +o0) are not equlvalent and similarly that y; ;) I( o071 and Yin |- 00, 7]
are not equivalent. So, ¢>y ) (") is above or below ¢y mu 7" relative to ¢ if
|~7’ | is sufficiently large. Moreover the option does not depend on the choice
of the lifts. We will write ¢ < ¢’ in the case where 5371_ “ (") is above 571.([) @
and 5% “ (—1") is above 5771 o (—1") for 1" sufficiently large. Observe that one
has r < ¢’ ort’ < t in the two following cases:

— i(t) #i(t") and T'j(;) and I'; ;) have no F-transverse intersection;
— () = i(¢") and Tj(;) has no F-transverse self-intersection.

We will say that r € T is a good parameter of T, if for every ¢’ € T, one has
t<t =T <T(@).

To get the proposition it is sufficient to construct, for every i € {1, ..., m},
a transverse loop I/ equivalent to I'; such that the induced multi-loop I'’
has only good parameters. Let us define the order o(¢) of t € T, to be the
number of 7 € T, such that ¢ < ¢’. Note that every parameter of order 0
is a good parameter. We will construct I’ by induction, supposing that every
parameter of order < r is good and constructing I'” such that every parameter
of order < r 4 1 is good. Note that for every s, the set T« of parameters
of order < s is closed and the set Tgooq Of good parameters is open. The
set Thad = T<r41 \ Tgood is closed and disjoint from T, it contains only
parameters of order r 4 1. Let us fix an open neighborhood O of Tp,q disjoint
from T,. By hypothesis, for every ¢ € Tp,g, one can find » 4 1 points 6y (z),

., 0,(t) in T, such that ¢t < 6;(¢) for every i € {0,...,r} and among the
I'(6;(¢)) a smallest one I"(6(¢)) (for the order <). Each 6; (r) belongs to T,
and therefore is disjoint from O. Note that each function 6; can be chosen
continuous in a neighborhood of a point 7, which implies that ¢t — ['(6(¢))
is continuous on Tyaq. It is possible to make a perturbation of I'" supported
on O by sliding continuously each point I'(z) on ¢, o o obtain a transverse
multi-loop I’ such that I’ () < I'(6(¢)). Since the perturbation is a holonomic
homotopy, I’ must be equivalent to I.

Since 6; (1) € T, forevery i € {0, ...,r}, we have ['(6;(¢)) = I''(6;(¢))
andso I''(r) < I'(6(1)). O

Let us continue with the following adapted version of Poincaré-Bendixson
Theorem.
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Proposition 2 Let F be an oriented singular foliation on S*> and y : R — S?
an F-bi-recurrent transverse path. The following properties are equivalent:

i) y has no F-transverse self-intersection;
ii) there exists a transverse simple loop T such that y is equivalent to the
natural lift y' of T';
iii) the set U = |J,cp 9y (1) is an open annulus.
Proof To prove that ii) implies iii), just note that a dual function of '’ takes
only two consecutive values, which implies that every leaf of F meets I'" at
most once.

To prove that iii) implies i) it is sufficient to note that if  J,.g ¢, ) is an
annulus, each connected component of its preimage in the universal covering
space of dom(F) is an open set, union of leaves, where the lifted foliation F
is trivial. This implies that y has no F-transverse self-intersection.

It remains to prove that i) implies ii). The path y being F-bi-recurrent,
one can find a < b such that ¢, ) = ¢, ). Replacing y by an equivalent
transverse path, one can suppose that y (a) = y (b). Let I' be the loop naturally
defined by the closed path y|[4,5]. As explained previously, every leaf that
meets I is wandering and consequently, if # and ¢’ are sufficiently close, one
has ¢ry) # ér(). Moreover, because I' is positively transverse to F, one
cannot find an increasing sequence (a,), >0 and a decreasing sequence (by,),>0,
such that ¢y ) = @y @,)- S0, there exist a < a’ < b’ < b such that ¢
®y (1) is injective on [a’, ') and satisfies ¢y, /) = @, ). Replacing y by
an equivalent transverse path, one can suppose that y (a’) = y(b). The set
U = U cia ) Py () 1s an open annulus and the loop I'” naturally defined by
the closed path y|[ 5/} is a simple loop.

Let us prove now that y is equivalent to the natural lift " of I'". Being F-bi-
recurrent it cannot be equivalent to a strict subpath of 3. So it is sufficient to
prove that it is included in U. We will give a proof by contradiction. We denote
the two connected components of the complement of U as X1, X3. Suppose
that there exists € R such that y(#) ¢ U. The path y being F-bi-recurrent
and the sets X; saturated, there exists ¢’ € R separated from ¢ by [a’, '] such
that y (¢') is in the same component X; than y (¢). More precisely, one can find
real numbers

th<d' <a <b <b' <t

and an integer k > 1, uniquely determined such that

— ¥l{a” b7 1 equivalent to y| %L

= Yl@.a7) and y | 1) are 1ncluded in U but do not meet ¢y, 4/);

— y(t1) and y (#) do not belong to U.
Moreover, if y (f3) does not belong to the same component X; than y (¢1), one
can find real numbers t» < #3 < #4 uniquely determined such that
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X] Xl

Fig. 7 Proof of Proposition 2

y (t4) belongs to the same component X; than y (t1);
— ¥l{1r,14) does not meet this component,

— ¥l(t3,14) 18 included in U;

y (t3) does not belong to U.

Observe now that if y(#1) and y (#2) belong to the same component X;, then
Yin,b71 and Yq 1) intersect F-transversally at ¢y, (o) = ¢, (7). Suppose now
that ¢ (¢1) and y (#2) do not belong to the same component X;. Fix ¢ € (3, t4).
There exists t' € [a’, b'] such that ¢,y = ¢, ). Observe that y|j;, ,) and
¥ l[13,14] intersect F-transversally at ¢,y = ¢y, (1) (See Fig. 7). |

Remark 3 Note that the proof above tells us that if y is F-positively or F-
negatively recurrent, there exists a transverse simple loop I'” such that y is
equivalent to a subpath of the natural lift " of "',

The next result is a slight modification.

Proposition 4 Let F be an oriented singular foliation on R* with leaves of
uniformly bounded diameter and y be a transverse proper path. The following
properties are equivalent:

i) y has no F-transverse self-intersection;
ii) y meets every leaf at most once;
iii) y is a line.

Proof The fact that ii) implies iii) is obvious, as is the fact that iii) implies
i). It remains to prove that (i) implies ii). Let us suppose that ¢y, o) = ¢ ),
where a < b. We will prove that y has a transverse self-intersection. Like in
the proof of the previous proposition, replacing y by an equivalent transverse
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path, one can find a < a’ < b’ < b such that y(a’) = y(b’), such that
U = U, eta'.p)®y ) is an open annulus and such that the loop I'' naturally
defined by the closed path y | [, ;1 is a simple loop. Write X for the unbounded
connected component of R?\ I and X for the bounded one. The path y being
proper, one can find real numbers

th<d' <a <b <b'" <

and an integer k > 1, uniquely determined such that

— ¥l[a”.b7] 1 €quivalent to yl %L
— Yl@.a7y and y e 1) are 1ncluded in U but do not meet ¢, (/)3
— y(t1) and y (#2) do not belong to U'.

As seen in the proof of the previous proposition, if y(¢1) and y (f) belong to
the same component X;, then yy;, »7) and y(4~ ;,] intersect F-transversally at
by @y = by Iy (t1) € Xy and y (12) € X2, using the fact that y is proper,
one can find real numbers #; < 3 < 4 uniquely determined such that

y (t4) belongs to X1;

— ¥lit2,14) does not meet X1,
— ¥l(t3,14) 18 included in U;
y (t3) belongs to X».

As seen in the proof of the previous proposition, ¥ |[;,,,] and ¥ |[z,4,] intersect
JF-transversally. The case where y(t;) € X» and y(f;) € X can be treated
analogously. O

Let us add another result describing paths with no F-transverse self-
intersection:

Proposition 5 Let F be an oriented singular foliation on R?, y a transverse
proper path and § a dual function of y. If y' is a transverse path that does not
intersect F-transversally y, then § takes a constant value on the union of the
leaves met by y' but not by y.

Proof Let us suppose that " meets two leaves ¢ and ¢, disjoint from y and
such that § does not take the same value on ¢y and on ¢;. One can suppose
that ¥’ joins ¢g to ¢1. Let W be the connected component of dom(F) that
contains y. Write W for the universal covering space of W and F for the lifted
fohatlon Every lift of y is a line. Fix a lift ”, it joins a leaf ¢ that lifts ¢ to a
leaf ¢; that lifts ¢;. By hypothesis, there exists a lift ) of y such that the dual
functlon 37 do not take the same value on (/50 and ¢ 1- One can suppose that
(l)o C r(y) and (;5 1 C I(¥) for instance (recall that r(¥) is the union of leaves
included in the connected component of w \ ¥ on the right of y and 1(¥)
the union of leaves included in the other component). The foliation F being
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non singular, the sets () and [(y) are closed. Consequently, there exists a
subpath y” of ¥ that joins a leaf of r(¥) to a leaf of /() and that is contained
but the ends in the open set U, union of leaves met by . Observe now that y
and 9" intersect F-transversally and positively. O

We deduce immediately

Corollary 6 Let F be an oriented singular foliation on R?, y a transverse
path that is either a line or a proper path directed by a unit vector p and y' a
transverse path. If y and y’ do not intersect F-transversally, then y' cannot
meet both sets r(y) and [(y).

Given a transverse loop I" with a F-transverse self-intersection and its natu-
ral lift y, there exists some integer K for which y |0, | also has an F-transverse
self-intersection. Let us continue this section with an estimate of the minimal
such K when I" is homologous to zero.

Proposition 7 Let F be an oriented singular foliation on M and T : T' —
M a transverse loop homologous to zero in M with an F-transverse self-
intersection. If y : R — M is the natural lift of ', then y|[0 2] has an F-
transverse self-intersection.

Proof Write ESIE(}' ) for the universal covering space of dom(F).If y : J —
E(;I;(]: ) is a path and T a covering automorphism, write 7 () : J — g(;rg(]: )
for the path satisfying 7(y)(t) = T (Y (¢)) for every ¢t € J. Choose a lift
y of y to 50\6(]: ) and write T for the covering automorphism such that
Y@ + 1) = TH)(), for every t € R. Since y has an F-transverse self-
intersection and is periodic of period 1, there exist a covering automorphism
S and

ay <t <by, ap <tr < by,

such that

— ¥l(a1.by) 1s equivalent to S(3)|(ay.55);
— Yliay.by1 and S(¥)|(ar.6,] have a F-transverse intersection at y(t;) =

S (1),
— both ay, ap belong to [0, 1).

We will show that by < a; +1and by < ap 41, which implies that y|[o 2 has
an F-transverse self-intersection. Assume for a contradiction that b; > a; +1
(the case where by > ap + 1 is treated similarly). Then we can find a}, a5, b}
with

aj <ay<t,ay<ay <t <b,<b

such that 7|[ai»a’1+1] is equivalent to S(3) a1
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Fig. 8 _(;ontrac}jction fom T (6s)
Proposition 7. ¥ |41 41 111 . T Gy T _
and Sy |[a§,a§+l] must cross .~'\“\‘ 2P K .".'..@’y(s)
the same finite number of . / o
lifts of ¢y, (5 S e +1) 7

Consider first the case where l/2 = a’2 + 1. In that situation there exists
an increasing homeomorphism 4 : [a},a} + 1] — [a}, a5 + 1], such that
h(t;) = t» and (]5}7(;) = (]55()7)(;1(;)). This implies that

-1 -1
T($5@)) = 5@ +1) = Psay+) = STS bp@y) = STS b))

Incase STS™!' = T, one can extend / to a homeomorphism of the real line that
commutes with the translation  — 741 such that ¢y = @55 @)). forevery
t € R.If K is large enough, then [— K, K] contains [ay, b1] and h([—K, K])
contains [az, b>]. This contradicts the fact that ¥4, »,] and S(y)| [a2,by] have
a F-transverse intersection at y(t) = SH) (). In case STS™ 7é T, the leaf
¢7(“i ) Is invariant by the commutator 7'~ 1ST S~ and so projects into a closed
leaf of F that is homological to zero in dom(F), which means that it bounds
a closed surface in this domain. This closed surface, being a subsurface of
dom(F), is naturally foliated by F, a non singular foliation, and one gets a
contradiction by Poincaré-Hopf formula. One also gets a contradiction since
this closed leaf has a non zero intersection number with the loop I'.

Now assume that b, < a) + 1. Let s € (b}, a) + 1) and consider ¢, ().
As noted in the last paragraph of Sect. 3.1, since I" is homologous to zero, it
intersects every given leaf a finite number of times. Let n be the number of times
it intersects ¢, (5). It is equal to the number of times y |[a | +1) O Y |[a2 d)t+1)
intersect ¢y, (5). On the other hand, since y |[a B) is equwalent to Y lia [d] .| +1)* it
must also intersect ¢, (5) exactly n times, and since s € (b5, a2 +1),y |[a2,a2+1)
needs to intersect ¢, (5) at least n + 1 times, a contradiction (see Fig. 8).

Finally, if b, > a} + 1, then V|[a§,a§+1] is equivalent to y |[a£,b/1] for some
b} < a}j + 1 and the same reasoning as above may be applied. O
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We will finish this subsection with a result (Proposition 9) that will be useful
later. Let us begin with this simple lemma.

Lemma 8 Let F be an oriented smgular foliation on M and F the llfted
foliation onthet the universal covering space dom(]—' ) of dom(F). Let y and ¥’ be
two lines of dom(F) transverse to F, invariant by T and T' respectively, where
T and T' are non trivial covering automorphisms. Up to a right composition
by a power of T and a left composition by a power of T' there are finitely many
covering automorphisms S such that y and S(y') intersect F-transversally.

Proof Suppose ¥ : R — E(;IH(}— Yandy' : R — E(;IH(}_ ) parameterized such
that y(t+1) = T(Y(t)) and Y’ (t +1) = T'(¥(¢)), for every t € R. The group
of covering automorphisms acts freely and properly. So there exists L < +o00
automorphisms S such that Y lho. 1] NSH'l0.17) # 9. If ¥ and S(’) intersect
F- transversally, there existz and ¢’ such that (1) = S(¥")(¢). Write [x] for the
integer part of a real number x. One has 7 (t — [¢]) = T~ ST 1) (' = [1]),
which implies that 7~¥1S7"1] is one of the L previous automorphisms. O

Let F be an oriented singular foliation on M and F the lifted foliation on the
universal covering space E(;I_H(}_ ) of dom(F). LetI" be aloop on M transverse
to F and y a lift of T to E(;IH(]: ). Write T for the covering automorphism
such that 7(t + 1) = T(F(t)) forevery t € R.If§ : J — dom(¥) is a
transverse path equivalent to a subpath of  we define its width (relative to
y) to be the largest integer [ (possibly infinite) such that § meets [ translates
of a leaf by a power of T. More precisely, widthy(§) = oo if there exists a
leaf ¢ such that § meets infinitely many translates of ¢ by a power of T', and
width(§) = [ < +oo if there exists a leaf ¢ such that § meets every leaf Tk (9),
0 < k <[, and if [ 4 1 does not satisfy this property. By Lemma 8, up to a
left composition by a power of T there are finitely many lifts S() such that
y and S(y) intersect F-transversally. This number is clearly independent of
the chosen lift y/, we denote it self (I"). Saying that T has a F-transverse self-
intersection means that self (I') # 0. If ¥ and S(¥) intersect F-transversally,
one can consider the maximal subpath of S(y) that is equivalent to a subpath
of y. Note that its width (relative to y) is finite. Looking at all the S(y) that
intersect F-transversally ¥ and taking the supremum, one gets a finite number
because the S() are finite up to a composition by a power of 7. This number
is independent of the choice of ¥, we denote it width(I"). One gets a total order
<4 on the set of leaves met by a lift y/, where

¢ <54 & R(@) CR@.

Note that if  and S() intersect transversally and ¢ is a leaf met by 7, then
there exist at most width(I") translates of ¢ by a power of T that meet S(3).
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Moreover, there exists k € Z such that every leaf ¢ met by ¥ and S(y)
satisfies Tk(d>) <5 ¢ <y TV () and consequently that ¢ and
TWidh+1 (@) are separated by T S(7).

Proposition 9 Let F be an oriented singular foliation on M, let T be a trans-
verse loop with a F-self-transverse intersection and y its natural lift. Write

M(T) = self(T)width(T')(width(T) + 1) + 1.

Consider two points 7 and 7' disjoint from T and look at the set of homotopy
classes, with fixed endpoints, of paths starting at 7 and ending at 7. There are
at most 2M (I') classes which are represented both by a path disjoint from "
and by a (possibly different) transverse path equivalent to a subpath of y.

Proof Fix a lift 7 of z in ﬁ(]—" ) and denote X the set of lifts 7’ of 7/ such
that there exists a path from 7 to 2" disjoint from all lifts of y and such that
there exists a transverse path from Z to 7’ that is F-equivalent to a subpath of
at least one lift of y. The proposition is equivalent to showing that X does not
contain more than 2M (") pomts
By definition, forevery 7’ € X, there exists a transverse path 8~ fromZto7,

unique up to equivalence. Moreover the set X U {Z} is included in a connected

component W of the complement of the union of lifts of y. There is no lift )
of y that separates points of X: for each lift y, the set X is included in R(y)
orin L(y). One can write X = X U X], where 7' € X if there exists a lift
of y satisfying Xc R(y) such that 8~ is a subpath of ¥ (up to equivalence).
One define similarly X[ replacing the condition X C R )by X C L©¥).
We will prove that X, and X; do not contain more than M (I") points. The two
situations being similar, we will study the first one.

Lemma 10 If7| and 7, are two different points in X, then bz # ¢z,

Proof See Fig. 9 for the following construction. Suppose for example that

7] € qﬁ;? and denote by S the covering automorphism such that 7} = S(2)).
"2

There exists a lift 3 of y such that §~/ is a subpath of (up to equivalence).

Note that there exists k € Z such that 7’ 1 € R(Sk(y)) and 7/ 5 € L(S* (¥)). The
lift S¥() separates Z) and 7, we have a contradiction. O

Lemma 11 IfZ| and 7, are two different points in X,, then up to equivalence,
one of the paths 83/1 , 872 is a subpath of the other one.

Proof Each path gg{, i € {l,2},joins ¢z to ¢>. We claim that either L((,bg/l ) C
L(¢>Z~/2) or L(¢’Z/2) C L(¢Zﬁ ). If this is not the case, one of the leaves d)zzl , ¢5/Lis
above the other one relative to ¢. Suppose that it is q&z/l . By definition of X/,
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Fig. 9 Cases described in Lemma 10 (left) and Lemma 11 (right)

there exists a lift ¥ of y satisfying X, C R(¥) such that 8~/ is a subpath of
(up to equivalence). Note now that q’r C L(y) which contradlcts the fact that
» € R().
Since L(¢>) contains both L(qbg/l ) and L(¢z/2), and since, by the previous
lemma, ¢z, ‘152/1 , and ¢5/2 are all distinct, either ¢Z/1 separates ¢z from qbz/z, or

¢Z’2 separates ¢z from ¢>Z~/1 . In the first case, 53/1 is equivalent to a subpath of
:S% , and in the second case 57/ is equivalent to a subpath of :S% . O
2 2 1

We will suppose that X, has at least K points, and we will show that K <
M ("), which proves the proposition. Using Lemmas 10 and 11, one can find
a family (~ Jo<i<k —1 of points of X such that 8~/ is a strict subpath of 8~
(up to equlvalence) if i < j. One knows that there exists a lift y of y such
that 8~;W . is equivalent to a subpath of y. One deduces that every leaf ¢3;,

0 <i < K —1,ismetby ¥ and that ¢ <5 ¢ ifi < j. Write 2, = T;(Z})
i j

and note that 7; belongs to stab(W), the stabilizer of W in the group of covering
automorphisms.

Lemma 12 The lifts ¥ and T;(y) intersect transversally for every i €

(,....,K—1)

Proof Fixi € {1,..., K — 1}. One can find a transverse line E invariant by
T; passing through 7, and 7. Write § for the maximal subpath of 7 that is
equivalent to a subpath of E If ¥ and E intersect - -transversally, then ¥ sepa-
rates Tl._k(gbzro) and Tik (¢56) if k is large enough. So, it separates Ti_k (26) and
Tl.k (Z()- This contradicts the fact that 7; € stab(W). If 3 is unbounded or equiv-
alently if widthg(y) = +o0, then 8 is forward or backward invariant by T;.
Look at the first case. Since y has a F-transverse self-intersection, there exists
a covering automorphism S such that y and S(¥) intersect F-transversally.
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Fig. 10 Final case of
Lemma 12

For every integer n, the lines 7" S(y) and y intersect F- -transversally. One
deduces that if n is large enough, then 7" S (y) and 3 intersect F - transversally
and consequently 7" S(y) and ,3 intersect F- transversally. So, if k is large
enough, T"S(¥) separates T_k (¢~/) and Tk (¢~/) This again contradicts the

factthat 7; € stab(W) The case where § is backward invariant can be treated
analogously. It remains to study the case where § is bounded and ¥ and ,8 do
not intersect F-transversally.

See Fig. 10 for the following construction. Write 8 for the maximal subpath
of ,3 that is equivalent to 8. There exista < b such that s = Vlapy anda’ < b’
such that 8’ = ,8|(a b)- The sets R(Y (a)) and R(B (a/)) are drsjomt as are the
sets L(Y (b)) and L(B (b/ )). There exists a leaf ¢y such that § and ' meet ¢o and
T;(¢o). In particular T;(¢o) is met by ¥|(4,5) and T;(¥)|[a,5). By assumption,
y and B do not intersect F-transversally. There is no loss of generality by
supposing that PEa) is below ¢34 and P54 below ¢3 ) relative to ¢ or
T; (¢9). The leaf T; (¢E(G/)) is above T; (¢7(a)) = &71;(7)(a) relative to T;(do).
Moreover, since 7; preserves ﬂ one has that 7; (qbﬁ(a,)) separates ¢/3(a/) and

T; (¢0), and therefore it is crossed by both §andd’. This implies that there exists
a transverse path that joins ¢y q) to T (¢5(,)). Consequently, ¢7 () belongs to
R(T; (qblg( a,))) and is above ¢7; (7)(q) relative to T; (¢o). Similarly, there exists a
transverse path that joins ¢z, to ¢7, ) ). Consequently, ¢7,5) () belongs to
L(qbg(b/)) and is above ¢3 p) relative to T; (¢p). We have proved that the paths

Via.b) and T; (¥)[4.p] intersect F -transversally. O

By the definition of self(I") and Lemma 12, there exists covering auto-
morphisms (S7)o</<self(r) such that ¥ and S;()) intersect F-transversally,
a family (/;)1<i<k—1 in {0, ..., self(I') — 1} and families of relative inte-
gers (nj)i1<i<k—1, (Mi)1<i<k—1, such that 7; = T" 5, T™ . Note that, if

@ Springer



Forcing theory for transverse trajectories 649

1 <i,j<K-—1,andi # j, then T; # T}, and the function that assigns for
each i the triple (n;, [;, m;) is injective.

Define, for 0 <[ < self(I") theset ; = {1 <i < K —1, [; =1} and fix
some [ in {1,...,self (D)} If i € I;, each leaf T™ (¢z) = S, ' T 7" (¢z)
is met both by ¥ and by Sl_l()7), and since ¥ and Sl_l()7) also intersect
.%—transversally, we deduce that there are at most width(I") possible val-
ues for m; with i € I;. Fix such a value m and consider the set [;,, =
{1 <i< K-1,1; =1, mj = m}. Note that, if i € I;,,, then the leaf
¢Z§ =TS T" (¢Z~6) is met by both 7 and S*(¥). The fact that no line T*S7,
k € Z separates the leaves ¢, i € I, implies, as noted just before Propo-
sition 9, that there at most v&l/idth(f‘) + 1 such leaves, that means at most
width(I") + 1 possible values of n; and elements in /; ;. One deduces that

K <self (IM)width(I') (width(I") + 1) = M(I),

as desired. O

3.5 Transverse homology set

For any loop I" on M, let us denote [['] € H{(M, Z) its singular homol-
ogy class. The transverse homology set of F is the smallest set THS(F) of
H{(M, Z), that is stable by addition and contains all classes of loops positively
transverse to J. The following result will also be useful:

Proposition 13 Let F be a singular oriented foliation on T? and Fits lift to
R2. If one can find finitely many classes k; € THS(F), 1 <i < r, that linearly
generate the whole homology of the torus and satisfy Zlgigr ki = 0, then the
diameters of the leaves of F are uniformly bounded.

Proof Decomposing each class «; and taking out all the loops homologous to
zero, one can suppose (changing r is necessary) that for everyi € {1,...,r},
there exists a transverse loop I'; such that [I';] = ;. The fact that the «;
linearly generate the whole homology of the torus implies that the multi-loop
r=>%, <i<p ['; is connected (as a set) and that the connected components of
its complement are simply connected. Moreover, these components are lifted
in uniformly bounded simply connected domains of R?, let us say by a constant
K. The multi-loop I' being homologous to zero induces a dual function § on
its complement. It has been explained before that § decreases on each leaf of
JF and is bounded. Consequently, there exists an integer N such that every leaf
meets at most N components. If one lifts it to R?, one find a path of diameter
bounded by NK. O
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4 Maximal isotopies, transverse foliations, admissible paths
4.1 Singular isotopies, maximal isotopies

Let us begin by introducing mathematical objects related to isotopies. Let f
be a homeomorphism of an oriented surface M. An identity isotopy of f is a
path joining the identity to f in the space of homeomorphisms of M, furnished
with the C? topology (defined by the uniform convergence of maps and their
inverse on every compact set). We will write Z for the set of identity isotopies
of f and will say that f is isotopic to the identity if this set is not empty. If
I = (f1)ief0,1] € Z is such an isotopy, we can define the trajectory of a point
z € M, which is the path /(z) : t — f;(z). More generally, for every n > 1
we define 1" (z) = ]_[()gk 2 I(f k(z)) by concatenation. We will also use the
following notations

Moo= ] 1@, o= ] 1¢%@,

0<k<+o0 —o00<k<0

o= J[ 1¢%@.

—oo<k<+o00

The last path will be called the whole trajectory of z.

One can define the fixed point set fix(I) = mze[o,l] fix(f;) of I, which is
the set of points with trivial trajectory.

A wider class of isotopies is the class of singular isotopies. Such an object
I is an identity isotopy defined on an open set invariant by f, the domain of
I, whose complement, the singular set, is included in the fixed point set of f.
We will write dom(/) for the domain and sing(/) for the singular set. Like
in the case of a global isotopy, one can define the trajectory /(z) of a point
z € dom(/) and the fixed point set, which is included in the domain. Note
that any isotopy / € Z is itself a singular isotopy with empty singular set
and induces by restriction to the complement of the fixed point set a singular
isotopy such that sing(/) = fix(1).

If M is a covering space of M and n : M — M the covermg prOJectlon
every identity isotopy [ can be lifted to M asan identity isotopy I = ft) 1€[0,1]-
The homeomorphism f f1 is the lift of f associated to I or induced by
1. Similarly, every singular isotopy can be lifted as a singular isotopy I of f
such that dom([) = 77~ (dom(])).

Let us recall now some results due to Jaulent [21]. Denote the set of singular
isotopies by Zging. It is not difficult to show that one gets a preorder < on Zgjyg,
writing [ < I if:
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i) dom(I’) C dom(/);
ii) for every z € dom(/’), the trajectories I'(z) and I (z) are homotopic in
dom(/);
iii) for every z € dom(/) \ dom(/’), the trajectory I (z) is homotopic to zero
in dom([1).

We will say that I and I’ are equivalent if I < I’ and I’ < I. We will
say that I is maximal if there is no singular isotopy I’ such that I < [’
and dom(I’) # dom([I). If I is a singular isotopy and if there is no point
z € fix(f) Ndom(7) such that I (z) is homotopic to zero in dom(/), then [ is
maximal by iii). The converse is true. If there is a point z € fix(f) N dom(/)
such that 7 (z) is homotopic to zero in dom(/), one can find an isotopy I’ on
dom(/) that is homotopic to I (as a path in the space of homeomorphisms
of M and relative to the ends) and that fixes z. Taking the restriction of I’ on
dom(/)\ {z}, one finds a singular isotopy strictly larger than /. The main result
of [21] is the fact that every singular isotopy is smaller than a maximal singular
isotopy. In fact, the result is more precise and can be stated for hereditary
singular isotopies (we will explain later the interest of looking at this class
of singular isotopies). By definition, such an isotopy / satisfies the following
condition: for every open set U containing dom(7), there exists I’ € Zsing such
that I’ < I and dom(/’) = U. Writing Zpe, for the set of hereditary singular
isotopies, we have the following result due to Jaulent [21]:

Theorem 14 For every I € Iy there exists I’ € Ther, maximal in Tper,
satisfying I < I'. Such an isotopy 1" is maximal in Lsne and so there is no
point z € fix(f) Ndom(1I") such that I'(z) is homotopic to zero in dom(I”)

Note that if M is a covering space of M and 7 : M — M the covering pro-
Jection, then for every singular isotopies 7, / " satisfying I < I’, the respective
lifts 7, I’ satisfy I < I’. Note also that a singular isotopy / is maximal if and
only if its lift I is maximal.

Let us explain the reason why hereditary singular isotopies are important. It
is related to the following problem. If I is a singular isotopy, does there exists
a global isotopy I” € Z such that fix(1") = sing(I) U fix(1) and I’|y\fix(1
equivalent to I ? Such an isotopy I’ always exists in the case where fix(f) is
totally disconnected. Indeed, in that case, I naturally extends to an isotopy on
M that fixes the ends of dom (/) corresponding to points of M. The problem is
much more difficult in the case where fix(f) is not totally disconnected. The
fact that / is a hereditary singular isotopy is necessary because the restriction of
a global isotopy to the complement of its fixed point set is obviously hereditary.
Itappears that this condition is sufficient. This is the purpose of a recent work by
Béguin et al. [4]. Following [4], Jaulent’s theorem about existence of maximal
isotopies can be stated in the following much more natural form: for every
I € 7, there exists I’ € Z such that:
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i) fix(1) C fix(1');
ii) 7’ is homotopic to I relative to fix(7);
iii) there is no point z € fix(f) \ fix(I") whose trajectory I’(z) is homotopic
to zero in M \ fix(I').
The last condition can be stated in the following equivalent form:
T = ( ft’ )ie[0,1] is the identity isotopy that lifts | M\fix(1") to the universal
covering space of M \ fix(I’), then fl/ is fixed point free.

The typical example of an isotopy / € Z verifying iii) is the restricted family
I = (fi)ief0,110fa topological flow (f;);cr on M. Indeed, one can lift the flow
(f|m\fix(1))rer as aflow (f;);cr on the universal covering space of M\ fix(7).
This flow has no fixed point and consequently no periodic point. So f7 is fixed
point free, which exactly means that the condition iii) is fulfilled. In particular,
the restriction of f to M \ fix(/) is a hereditary maximal isotopy. To construct a
maximal singular isotopy that is not hereditary, let us consider the flow ( f;);er
on R? defined as follows in polar coordinates

fi(r,0) = (r,0 +2mth(r))

where

{r(l — ), if r € [0, 1],

r—(—=r7), ifr € [1,400).

and set f = f|. The fixed point set of the flow is the union of the origin
and the unit circle S! and so, the restriction of the isotopy (f7)se[0,1] to the
complement of this fixed point set is a maximal hereditary singular isotopy.
The isotopy I’ = (f!)1e[0.1], whose domain is the complement of {(0, 0)}US!,
that coincides with (f7):c[0,1] on the set of points such that 0 < r < 1 and
defined on the set of points such that » > 1 by:

. 6) = (r,0 +4mtr), ift € [0, 1/2],
Jir0) = (r, 6 +4m(t — 1)2)h(r), ift e [1/2,1].
is not a hereditary singular isotopy. There is no singular isotopy I” of f whose
domain is the complement of {(0, 0), (1, 0)} suchthat I’ < I’ for the following
reason. If 7" is the lift of 1" to the universal covering of dom(/”), and if z is
alift of (0, —1), and 7, are lifts of (0, —1 — 1/n) such that zZ, converges to Z,
then the trajectory of /”(Z) would be a closed loop, but the endpoints of the
trajectories of 1”(Z,) do not converge to Z, since the trajectories of 1'(z,) and
1" (z,) are homotopic in dom([).

Since the proof of [4] is not published yet, we will use the formalism of
singular isotopies in the article.
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4.2 Transverse foliations

Let f be an orientation preserving plane homeomorphism. By definition, a
Brouwer line of f is a topological line A such that f (L(A)) C L) (or
equivalently a line A such that f(A) C L(x) and f~'(A) € R()A)). The
classical Brouwer Plane Translation Theorem asserts that R? can be covered
by Brouwer lines in case f is fixed point free (see [7]). Let us recall now
the equivariant foliated version of this theorem (see [28]). Suppose that f is
a homeomorphism isotopic to the identity on an oriented surface M. Let /
be a maximal singular isotopy and write I = ( ft) tefo,1] for the lifted 1dent1ty

defined on the universal covering space dom(I ) of dom(/). Recall that f f 1

is fixed point free. Suppose first that dom (/) is connected. In that case, dom(] )
is a plane and we have [28]:

Theorem 15 There exists a non singular topological oriented foliation Fon
dom([), invariant by the covering automorphisms, whose leaves are Brouwer

lines of f.

Consequently, for every point7 € E(;IE(I ), one has
F® e Lg2), Te R@je).

This implies that there exists a path y positively transverse to f: that joins 7 to
f@). As noted in Sect. 3.1, this path is uniquely defined up to F-equivalence,
provided the endpoints remain the same. The leaves of the lifted foliation F
met by ¥ are the leaves ¢ such that R(¢z) C R(¢p) C R(¢p f@). In particular,

every leaf met by ¥ is met by 1(2). Of course, F lifts a singular foliation 7
such that dom(F) = dom(/). We immediately get the following result, still
true in case dom(/) is not connected:

Corollary 16 There exists a singular topological oriented foliation F satis-
Sfying dom(F) = dom([/) such that for every z € dom([l) the trajectory I(z)
is homotopic, relative to the endpoints, to a path y positively transverse to F
and this path is uniquely defined up to equivalence.

We will say that a foliation F satisfying the conclusion of Corollary 16 is
transverse to I. Observe that if M is a covering space of M and 7 : M—>M
the covering prOJectlon a foliation F transverse to a maximal singular isotopy
1 lifts to a foliation JF transverse to the lifted isotopy I.

We will write I£(z) for the class of paths that are positively transverse to
JF, that join z to f(z) and that homotopic in dom(/) to I(z), relative to the
endpoints. We will also use the notation /r(z) for every path in this class and
called it the transverse trajectory of z. Similarly, for every n > 1, one can
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define I'’2(z) = ]_[0< wen 17(f k(2)), that is either a transverse path passing
through the points z, f(2), ..., f"(z), or a set of such paths. Similarly we will
define

Fo= [ 0@ o= ] (o), Ze
0<k<+o00 —oo<k<0

= [] 1.

—oo<k<+00

The last object will be called the whole transverse trajectory of z.

If z is a periodic point of period ¢, there exists a transverse loop I" whose
natural lift y satisfies y |[0,1] = I;(z). By definition a transverse loop is asso-
ciate to z if it is F-equivalent to I (the definition was given in Sect. 3.1). Of
course this does not depend on the choices of the I7(f*(z)), 0 < k < g.

Let us state two results that will be useful in Sect. 5.2.

Lemma 17 Fix z € dom(/), n > 1, and parameterize I'x(z) by [0, 1]. For
every 0 < a < b < 1, there exists a neighborhood V of z such that, for every
7' €V, the path I’-(2)|a.p) is equivalent to a subpath of I'+(z"). Moreover,
there exists a neighborhood W of 7z such that, for every 7' and 7" in W, the
path I'2(z') is equivalent to a subpath of 1 J’,i_+2( 1"

Proof Keep the notations introduced above. Fix a lift 7 € d;n;(/l) of z and

denote by ¢ and ¢’ the leaves of F containing T ]”?('Z)(a) and T’ ;‘?(2)(19) respec-
tively. One has

R(¢z) C R(¢) C R(@) C R(¢)) C R@) C R(@fucz)-

If V. C dom([/) is a topological disk, small neighborhood of z, the lift V that
contains 7 satisfies

V.CR@), f"(V) C L.
Consequently, for every z" € V, the path I’£(z)|[4,5] is equivalent to a subpath
of I'2(z').

Let us prove the second assertion. One can find a leaf ¢ of the lifted foliation
such that

R(¢7-1) C R($) C R($) C R(¢7)
and a leaf ¢’ such that

R@7ue) C R@) C R@) C R@ 1 z)-
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Fig. 11 Lemma 18,
construction of V, and V,,

If W C dom(/) is a topological disk, small neighborhood of z, the lift W that
contains 7 satisfies

FYW) C R(¢), W C L(p), " (W) C R@), F*™T1 (W) C L(¢).

Consequently, for every z' and z” in W, the path I’4(z’) is equivalent to a
subpath of I22(f~1(z")). O

Say that z € M is positively recurrent if z € w(z), which means that there is
a subsequence of the sequence (/" (z)),>0 that converges to z. Say thatz € M
is negatively recurrent if z € a(z), which means that there is a subsequence of
the sequence (f~"(z))n>0 that converges to z. Say that z € M is bi-recurrent
if it is positively and negatively recurrent. An immediate consequence of the
previous lemma is the fact thatif z € dom([7) is positively recurrent, negatively
recurrent or bi-recurrent, then / Jz_(z) is JF-positively recurrent, F-negatively
recurrent or J-bi-recurrent respectively.

Lemma 18 Suppose that y : [a,b] — dom([l) is a transverse path that
has a leaf on its right and a leaf on its left. Then, there exists a compact set
K C dom([l) such that for every n > 0 and for every transverse trajectory
I’7(z) that contains a subpath equivalent to y, there exists k € {0, ...,n — 1}
such that f*(z) belongs to K.

Proof Lifting our path to the universal covering space of the domain, it is
sufficient to prove the result in the case where dom(/) is a plane.

Figure 11 illustrates the following construction. Suppose that ¢ is on the
right of y and ¢, on its left and write W for the connected component of the
complement of ¢g U ¢ that contains y. Since ¢g and ¢ are Brouwer lines,
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every orbit that goes from R(¢y ()) to L(¢yp)) is contained in W. Let § be
a simple path that joins a point z¢ of ¢ to a point z; of ¢, that is contained
in W but the endpoints and that does not meet neither R(¢y (1)) nor L(¢y ).
Write V), for the connected component of W \ § that contains L (¢, ). We
will extend § as a line agBpdB1c1 as follows. If W is contained in R(¢y),
set g = f? (¢-,) and choose for By a simple path that joins f 2(z0) to 2o
and is contained in R(f2(¢0)) N L(¢o) but the endpoints. If W is contained
in L(¢o), set g = (¢2('))_1 and Bop = {zo}. Similarly, if W is contained in
R(¢1), choose for 81 a simple path that joins z; to f 2(z1) and is contained in
L(¢1)NR(f*(¢1)) but the endpoints and set o] = f2(¢>;q). Otherwise, if W is
contained in L(¢1),set 8 = {z1}and o1 = (qb;l)*l. Note that L = «gB0dB101
is a line.

The image of Bp8B1 by f~! is compact and the images of g and o by
f~! are disjoint from W. So, one can find a simple path &’ that joins a point
2, of ¢ to a point z} of ¢y, that is contained in W but the endpoints, that does
not meet V;, and such that the connected component V,, of W \ § that does not
contain Vj, (and that meets R(¢, (4))), does not intersect f ~1()). This implies
that f(V,) and V}, are separated by A and satisfy f(V,;) NV, = @. So, every
orbit that goes from R(¢, (4)) to L(¢y 1)) has to meet both sets V, and V,
but is not included in the union of these sets. It must meet the compact set
K =W\ (V,UVW). O

4.3 Admissible paths

Until the end of the whole section, we suppose given a homeomorphism f
isotopic to the identity on an oriented surface M and a maximal singular isotopy
I. We write I = ( ft)te[O 17 for the lifted 1dent1ty defined on the universal

covering space dom(I ) of dom(/) and set f = f1 for the lift of f|qom(r)
induced by the isotopy. We suppose that F is a foliation transverse to / and

write F for the lifted foliation on dom([]).
We will say that a path y : [a, b] — dom([), positively transverse to F,
is admissible of order n if it is equivalent to a path I’2(z), z € dom(/), in the

sense defined in Sect. 3.1. It means that if  : [a, b] — a_()\IH(I) is a lift of
v, there exists a point 7 € dom(/) such that 7 € ¢34 and f"(2) € ¢35 ), or
equivalently, that

F D5@) Ny # 9.

We will say that y is admissible of order < n if it is a subpath of an admissible
path of order n. If y : [a, b] — dom([) is a lift of y, this means that
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7" R@5@) N L@y # 0.

More generally, we will say that a transverse path y : J — dom(/) defined
on an interval is admissible if for every segment [a, b] C J, there existsn > 1
such that y|[4 5] is admissible of order < n. If y' : J — 555(1) is a lift of y,
this means that for every a < b in J, there exists n > 1 such that

T R@5a)) N L(dya) # 0.

Similarly, we will say that a transverse loop I" is admissible if its natural lift is
admissible. If the context is clear, we will say that a path is of order n (order
< n) if it is admissible of order n (resp. admissible of order < n).

Let us finish this subsection with a useful result which says that except in
some particular trivial cases, there is no difference between being of order < n
and being of order n (and so of being of order < n and being of order m for
every m > n).

Proposition 19 Let y : [a, b] — dom([) be a transverse path of order < n
but not of order n, then y has no leaf on its right and no leaf on its lefft.

Proof Lifting the path to the universal covering space of the domain, it is
sufficient to prove the result in case where dom(/) is a plane. By hypothesis,
one has:

" (@Dy@) Ny =9, f"(R(@y@)) N L(Dywy) # 9.

This implies that " (L(¢y(@a))) C L(¢yp)) and f7"(R(Py k) C R(Py(a))-
Suppose that there exists a leaf ¢ in L(¢y (1)) N R(¢y ) that does not meet
y. Recall that ¢ is a Brouwer line. One of the sets R(¢) or L(¢) is included
in L(¢ya))) N R(¢yp)). It cannot be R(¢), because f~"(R(¢p)) would be
contained both in R(¢) and in R(¢, (4)); it cannot be L(¢), because " (L(¢))
would be contained both in L(¢) and in L(¢, »)). We have a contradiction.
O

4.4 The fundamental proposition

The next proposition is a new result about maximal isotopies and transverse
foliations. It gives us an operation that permits to construct admissible paths
from a pair of admissible paths and its proof is very simple. Nevertheless, this
fundamental result will have many interesting consequences.

Proposition 20 Suppose that y, : [a1,b)] — M and y, : [az,b)] — M
are transverse paths that intersect F-transversally at y(t1) = y2(t2). If y1 is
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admissible of order n and y, is admissible of order ny, then yi|(a;,111V211,b21
and Y2 |(ay,01V11[1,b1] are admissible of order ny +ny. Furthermore, either one
of these paths is admissible of order min(ny, no) or both paths are admissible
of order max(ny, ny).

Proof Please see Fig. 12 for the following construction. By lifting to the uni-
versal covering space of the domain, it is sufficient to prove the result in the
case where M is a plane and F is non singular.

By Proposition 19, each path y1, y2, ¥il{ay,n1¥2112.621 a0d ¥2l[a2.1¥1 11 5115
having a leaf on its right or on its left, will be admissible of order m if it is
admissible of order < m. Note first that for every integers k1, k2 in Z, one has

FAR@y@)) N RGP @) = X LDy ) N 2L (D)) = 9.

For every i € {1, 2} define the sets

Xi = [ (R(by,a)) U L(byvn)s Yi = f(L(Dy6:)) U Ry, a)

which are connected according to the admissibility hypothesis.

If y1l{ay,m172l112,b-] 1s not admissible of order ny, then X1 N L(¢y, ) = ¥
and so X separates R(¢y, (,)) and L(¢y, ,)). This implies that none of the sets
X 1N X, and X1 NY; is empty. The first property implies that "2 (R(¢y, (,))) N
L($y, b)) # ¥, which means that y2(a,,1,1¥11[1,,5,] 1S admissible of order n;.
The second one implies that f~"2(L(¢y,5,))) N [ (R(Py,(ar))) # D, which
means that y1|(;,,172l[1,b,] 1S admissible of order ny + n;.

If ¥11{a1,11172 (12,61 15 nOt admissible of order ny, then Y2 N R(¢y, ;) = ¥
and so Y; separates R (P, (a;)) and L(¢y, 5,)). This implies that none of the sets
Y> NYj and Y, N X is empty. The first property implies that y2|[ay.51¥11#1.51]

......

Fig. 12 Fundamental lemma, the case where y1|[4;,1,172][1p,b,] 1 NOt admissible of order n{
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is admissible of order nj. The second one implies that yi|[a,.172l[5.5,] 18
admissible of order n| + ns.

In conclusion, ¥1|[a;.11172 (12,5, 15 admissible of order n| + ny . Moreover,
if it is not admissible of order min(#n1, n2) then y2|(4y, 511 1[1,b,] 15 admissible
of order max(n1, ny). The paths y; and y» playing the same role, we get the
proposition. O

One deduces immediately the following:

Corollary 21 Let y; : [a;,bi]] — M, 1 < i < r, be a family of r > 2
transverse paths. We suppose that for every i € {1,...,r} there exist s; €
la;, bi] and t; € |a;, b;], such that:
D) Vilis; by and Viy1lai, 1,1 intersect F-transversally at y; (t;) = yi+1(Si+1)
ifi <r;
ii) one has sy =ay <ty <by,a, <s, <tr =branda; <s; <t <b;if
l<i<r;
iii) y; is admissible of order n;.
Then ngigr Vilis; 5] is admissible of order Zlgigr n;.

Proof Here again, it is sufficient to prove the result when M = R? and F is
not singular. One must prove by induction on g € {2, ..., r} that

1_[ Vi |[Sivti] Yq |[5qsb!1]

I<i<gq

is admissible of order ) _; <i<qMi- The result for ¢ = 2 is nothing but Propo-
sition 20. Suppose that it is true for ¢ < r and let us prove it for ¢ + 1. The
paths

1_[ Yiltsiti1 | Valisg.bgl

1<i<gq

and y, 41 intersect F-transversally at y, (t;) = y4+1(s4+1) because this is the
case for the subpaths vy (5,5, and ¥g+1lia, 4, .4,.,1- One deduces that

l_[ Vi |[Si~ti] Yq+1 |[Sq+1»bq+l]
1<i<q
is admissible of order D ;11 7i- o

The following result is more subtle. The F-transverse intersection property
is stated on the paths y; and not on subpaths but the signs of intersection are
the same.
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Corollary 22 Let y; : [a;,b;] — M, 1 < i < r, be a family of r > 2
transverse paths. We suppose that for every i € {1,...,r} there exist s; €
[a;i, bjland t; € [a;, b;], such that:

i) y; andy; 1 intersect F-transversally and positively at y; (t;) = Vi+1(Si+1)
ifi <r;
ii) one has sy =a; <ty <by,ar <s, <tr=branda; <s; <t <b;if
l<i<r;
iii) y; is admissible of order n;.

Then Hl<i<r Yills;.«;] is admissible of order Zlgigr n;.

Proof Here again, it is sufficient to prove the result when M = R? and F is
not singular. Here again, one must prove by inductionon g € {2, ..., r} that

1_[ Vi|[s;,t,*] Vq|[sq,bq]

1<i<q

is admissible of order ) ;. o Mi and here again, the case ¢ = 2 is nothing
but Proposition 20. Supposing that it is true for ¢ < r, one must prove that

1_[ Yiltsitil | Yalisg.bg)

1<i<q

and y, 4 intersect F-transversally and positively at y,(7;) = V4+1(5¢+1)-
By hprthesis, one knows that ¢y, | (bg+1) is above ¢y, (»,) .relative to @y, (1,)-
It remains to prove that ¢y, (a,,,) 18 below ¢y, (q) relative to ¢y, ). For
everyi € {l,...,q — 1}, the leaves ¢y, 4;) and ¢y, , | (4;,,) belong to R(¢y, )
and ¢y, (q;4) 18 below @y, ;) relative to @y, ). So, each ¢y, ;) belongs to
R(qﬁyq (,q)) and @y, . (a;,) 18 below ¢y, 4;) relative to ¢yq (ty)- One deduces that
Dyyi1(agsr) 18 below @y, q)) relative to ¢y, ). O

Let us finish by explaining the interest of this result in the case where an
admissible transverse path has an F-transverse self-intersection.

Proposition 23 Suppose that y : [a, b] — M is a transverse path admissible
of order n and that y intersects itself F-transversally at y (s) = y (t) where
s < t. Then y|(a,17 |[1.p] is admissible of order n and y |[4, (y|[s,,])q Y]
is admissible of order gn for every g > 1.

Proof See Fig. 13 illustrating the construction below. Applying Corollary 22
to the family

vi=vy,si=sifl<i<gqg,p=tif 1<i<gq,
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Fig. 13 Proof of
Proposition 23

one knows that

)
Y la.n] (V|[S,t])q Y lis.6] = Vlla.s] (Vl[s,t])q Y 1.1

is admissible of order gn for every ¢ > 2. Moreover the induction argument
and the last sentence of Proposition 20 tell us either that y [[4 51 |[z,5] 1S admis-
sible of order n, or that y |[4.s] (y | [s,t])q ¥ |(+.5) 1s admissible of order n for every
q = 1. To get the proposition, one must prove that the last case is impossible.

We do not lose any generality by supposing that dom(/) is connected. Fix a
lift  of y and denote T the covering automorphism such that Y (r) = T (Y (s)).
The quotient space @(1 ) = E(Trﬁ(l )/ T is an annulus and one gets an identity
isotopy T= (ﬁ)e[o, 1] on @(l ) by projection, as a homeomorphism f: ﬁ
and a transverse foliation . The path  projects onto a transverse path 3. The
path ¥' = [ iz T*(¥|(5.17) is a line that lifts a loop T ofﬁ(l) transverse
to F. The union of leaves that meet 7’ is a plane U that lifts an annulus U of
ﬁ(l ). The fact that y intersects itself F-transversally at y (f) = y (s) means
that ¥ and T (y) intersect F-transversally at Y (t) = T (¥ (s)). One deduces
the following:

— the paths {,.5) and 7, ) are not contained in U; ~

— if a’ € [a, s) is the largest value such that y(a") ¢ U and b’ € (¢, b] the
smallest value such that y(b) ¢ U, then Y (a’) and Y (b’) are in the same
connected component of &85(1 Y\ y'.

The fact that ¥ |[4,s1 (¥ I1s,1)? ¥ I11,51 is admissible of order n implies that

Vlast [] T"@ls.o) T @l
0<k<g
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is admissible of order n or equivalently that f™ (b5@)) N T N Byw)) # 9.
So one must prove that this cannot happen if ¢ is large enough.

There is no loss of generality by supposing that the leaves ¢3 /) and ¢3 )
are on the right of ). The projected leaves ¢,y and ¢5 ;) are lines contained
in the boundary of U. One can compactify the annulus &)B(I ) with a point
S at the end on the right of I'" and a point N at the end on the left of I'. We
know that the a-limit and w-limit sets of ¢5 ) and @5y are reduced to S. Let
us fix Zg € ®7 (- The sets T"(f" (R(d)y(a/)))) k € Z, are pairwise disjoint
and one can choose a simple path « joining T(f" (Zp)) to f” (Zo) and disjoint
from f” (R(¢5(a))) and T(f" (R(¢3(a)))) but atits ends. One can extend & in
L(¢3) N T (L(¢yy)) to a simple path o’ joining T (Zp) to Zp and disjoint
from R(¢5(a)) and T (R(¢y(.y)) but at its ends. The path " = T(¢3,) o q%
is a line and L(«”) contains T(]T” (qhgo)) and f” ((/5;:)). Let us choose a real
parameterization 7 > ¢y (1) of @3 (). The fact that the a-limit and w-limit
sets of ¢5 ;) are reduced to S implies that there exists K > 0 such that for every
g > 0, ' does not meet neither 77 (¢5 1)l (—o0,— k1) DOT T9 (54 |1k, +00))-
One deduces that there exists go such that for every g > qo, @’ does not meet
T%(¢34)). This implies that if ¢ > go, then T9(¢3r)) does not meet o and
soisincludedin R(«”). In particular it cannot intersect neither 7' ( ]7 n (¢E_o )) nor
f n (q% ). Consequently, this implies that f" (¢7(a’)) does not meet 77 (5)7(;,/)),
if g > qo. m

Corollary 24 Lety : [a, b] — M be a transverse path admissible of order n.
Then, there exists a transverse path of order n, y' : [a, b] — M such that y’
has no F-transverse self-intersections, and ¢, qy = Py(ay» Py'b) = Py (b)-

Proof Note first that there exists a transverse path ¥’ : [a, b] — M equiva-
lent to y with finitely many self-intersections (not necessarily JF-transverse).
Indeed, choose for every z on y, a trivialization neighborhood W,. Divide the
interval in n intervals J; = [a;, b;] of equal length and set y; = y,,, so that
y = ngign y;. If n is large enough, then for every i, the union of y; and all
paths y; that meet y; is contained in a set W;. Let us begin by perturbing each
¥i to find an equivalent path y/, such that y; (b;) = y/, | (@;),ifi < n,and such
that the y/(b;) are all distinct. One can also suppose that that for every 7, the
union of y/ and all yj’. that meet y;/ is contained in a set W,. Suppose that for
every i < ioand every j # i, the paths y/ and y; have finitely many points of
intersection. One can perturb in an equivalent way each y ]’ on(aj,bj),j > io,
such that it intersects y;, finitely many often, without changing the intersection
points with y; if i < ip and such that condition concerning the trivialization
neighborhoods is still satisfied. One knows that for every i < ip and every
J # i, the new paths y/ and y J/ have finitely many points of intersection.
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Let G be the collection of all transverse paths that are admissible of order n
whose initial leaf is ¢, (,) and whose final leaf is ¢, ). Let y" : [a, b] — M bea
path in G that is minimal with regards to the number of self-intersections. Then
y’ has no F-transverse self-intersections. Indeed, if ¥’ had an F-transverse
self-intersection at y'(¢) = y’(s) where s < ¢, by the Proposition 23 the path
¥ lia.s1 7' |j2.p) would also be also contained in G and it would have a strictly
smaller number of self-intersections. O

4.5 Realizability of transverse loops

Let I" be a transverse loop associated to a periodic point z of period g. Recall
that it means that I" is equivalent to a transverse loop I'” whose natural lift
y’ is equivalent to the whole transverse trajectory of z. In particular, if y is
the natural lift of I, there exists r € (—1, 0] such that ¢, ;) = ¢, and such
that for every n > 1, |1 14 1s equivalent to / ;_q (z). So, the loop satisfies the
following:

(Py): for every n > 1, y|j0,n—17 is admissible of order < ng.

The following question is natural:

Let T" be a transverse loop that satisfies (Py). Is I' associated to a periodic
orbit of period q?

We will see that in many situations, it is the case. In such situations, f will
have infinitely many periodic orbits. More precisely, for every rational number
r/s € (0, 1/q] written in an irreducible way, the loop I'” will be associated
to a periodic orbit of period s. In fact the weaker following property will be
sufficient:

(Qyg) : there exist two sequences (rg)r>0 and (si)r>0 of natural integers satis-

fying

lim rp= lim s =400, limsupry/sy = 1/q
k——+o00 k——+o00 k— 400

such that y [0, ,,] is admissible of order < sy.

We will say that a transverse loop I' is linearly admissible of order q if it
satisfies (Q4) (note that every equivalent loop will satisfy the same condition).

Let us define now the natural covering associated to I" (or to its natural lift
y) and introduce some useful notations. Fix a lift y of y and denote T the
covering automorphism such that Y (¢ + 1) = T (¥ (¢)) for every t € R. The
path ¥ is a line and the union of leaves that it crosses is a topological plane
U Moreover it pI‘O]eCtS onto the natural lift of a loop T in the quotlent space
dom(I) = dom(l)/ T. One gets an identity isotopy 1= (f,)e[o’l] on dgm(l)
by projection, as a homeomorphism f: ﬁ and a transverse foliation . The
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loop Tis  transverse to F and the union of leaves that it crosses is a topological
annulus U.

Before stating the realization result, let us recall the following lemma (for
example, see [28], Theorem 9.1, for a proof that uses maximal isotopies and
transverse foliations). A loop in an annulus will be called essential if it is not
homotopic to zero.

Lemma 25 Let J be a real interval, f a homeomorphism of T! x J isotopic
to the identity and f a lift of f to R x J. We suppose that:

— every essential simple loop T C T x J meets its image by f;

— there exist two probability measures w and wa with compact support,
invariant by f, such that their rotation numbers (for f) satisfy rot(u1) <
rot(u2).

Then, for every r/s € [rot(i1), rot(ua)] written in an irreducible way, there
exists a point 7 € R x J such that f*(z) = z + (r, 0).

Let us state now the principal result of this subsection.

Proposition 26 Let I" be a linearly admissible transverse loop of order q that
satisfies one of the three following conditions. Then for every rational number
r/s € (0, 1/q] written in an irreducible way, U'" is associated to a periodic
orbit of period s.

i) The loop ' has a leaf on its left and a leaf on its right, and the annulus U
does not contain a simple loop homotopic to T disjoint from its image by
f-

ii) There exists both an admissible transverse path that intersects I' F-
transversally and positively, and an admissible transverse path that
intersects I F-transversally and negatively.

iii) The loop " has an F-transverse self-intersection.

Proof The condition iii) is stronger than ii) because I' intersects itself F-
transversally positively and negatively. The condition ii) tells us that there is an
admissible transverse path that intersects T F -transversally and positively, and
an admissible transverse path that intersects TF -transversally and negatively.
But this implies that i) is satisfied because there exists orbits that cross U in
both ways. It remains to prove the result under the assumption i).

We do not lose any generality by supposing that dom (/) is connected, which
means that %(1 )isaplane and @(1 ) an annulus. By assumption, we know
that there exists a leaf on the left of 9 and a leaf on its right. One can compactify
&)E(I ) with a point § at the end on the right of T anda point N at the end
on the left of T'. We will denote by ﬁ([ )sph this compactification and still
write ffor the extension that fixes the added points. The w-limit set a)(a;) in
&)E(I )sph Of a leaf a c U does not depend on a
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Lemma 27 The set a)(a) is reduced to S.

Proof Ifnot, (a) is either a closed leaf that bounds U or the union of S and of
leaves homoclinic to § (which means that the two limit sets are reduced to ).
In the first case, the closed leaf that bounds U is homotopic to I" and disjoint
fromits image by f. A simple loop included in U sufficiently close will satisfy
the same properties. This contradicts the assumptlons of the proposition.

Let us study now the second case. Choose a point Z* I Eew (qb) \{S} and denote
by d)* the leaf that contains 7*. One can suppose that Tison the right of d)* This
is independent of the choice of Z* and in that case, the leaf qb is on the right of
;/; *. Letus present two arguments to deal with this situation. The first argument
is the following: As @(1 ) has only finitely many ends and F is transversal to
T, one could adapt the proof of Lemma 3.3 of [29] to show that, glven any point

yin ﬁ(l ), there exists a neighborhood V5 of y such that, if 7 7’ is an oriented

foliation of @(1 ) that is equal to Finthe complement of V5, then F'is also
transversal to /. Let V' be a neighborhood of Z* as given by this result, and we
further assume that th/ere exists ahomeomorphism#h : V' — [—1, 1] x[—1, 1]
sending the leafs of 7 N V' onto horizontal line segments oriented from right
to left, and suc/llthath('z*) = (0, 0). Note that h:l([—i, 11x(0,1]) C U, and
since 7* € w(¢), there exist t; < tp such that ¢(¢1), ¢(72) both belong to v/,
and such that ¢(s) is disjoint frornAV’ ift1 <s < . This iglplies that there
exists x1, xz in (0, 1) such that h(¢(#1)) = (—1, x1) and h(¢(2)) = (1, x2).
One can find then an oriented foliation 7' of dm) that agrees with Fin the
complement of ! ([—1, 1] x (0, 1]), and such that, if o is the line segment
in £(V’) connecting (—1, x1) to (1, x7), then h~ 1(a) is contained in a single
leaf of the foliation. In partleular the leaf qb of 7 that contains h~ 1(0) s a
closed leaf contained in U. Since F” is also transversal to the isotopy 1, one
obtains again a contradiction as in the first case.

Since Lemma 3.3 of [29] is not stated in the form we used above, let us
present a complete argument for the second case: We have the following result;
for for every nelghborhood V of S, there exists a neighborhood W' of w(g) in
dom([ )sph such that f (W \V)n U = (). Let us consider a simple path /3
joining a pglnt 7 ¢ U to 2* positively transverse to f , included (but the
end Z7*) in U and sufficiently small that its image by f will be included in
the connected component of ﬁ(l )\ ¢* that is on the left of $*. The leaf ¢
meets B in a“monotone” sequence (Z,)n>0, where lim, 1o ?HA: Z*. More
precisely, for every real parameterization of ¢, one has Z,, = ¢(t,1), where
tn+1 > In, and lim,_, 1o 1, = +00. Moreover, Z,,+1 is closer to Z* than
Zn on ,3 We will prove that if n is lmge enough the snnple loop T, obtained
by Concatenatlng the segment o, C ¢ joining 7, to zn+1 and the subpath Sn
of ,3 joining Z,,41 to Z,, is disjoint from its image by f see Fig. 14 for the
following construction. We will begin by extending ,3 in a simple proper path
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a1

Fig. 14 Construction of };, in Lemma 27

(with the same name) contained in ﬁ([ )\ a)(a) “joining” the end N to Z*.
One can find a neighborhood W’ of a)(a) in @(1 )sph that intersects Eonly
between 7 20 andZ*. If n is large enough, @, will be contained in W’ and so will
intersect ,3 only at the points Z, and Z,,+1. We - will suppose n large enough to
satlsfy this property Fix a lift 7o of Zo, write ,80 for the lift of ;3 that contains
Zo, write Zj; for its end and ¢0 for the lift of qb* that contains Z;. For every
n > 0 define

T=T7"G), Ba=T"Bo) &, =T"&).

Write Z,, for the lift of Z,, that lies on En, write E,, for the segment of En that joins
Zn t0 7} and @, for the lift of &), that joins Z,, t0 Z,41. Choose a parameterization

(E* R — ﬁ(l ) of a* sending 0 onto Z7* and lift it to parameterize the leaves
¢,i. We will prove that the line

Ap = ‘p;:l(—oo,O] é‘n_l &n §n+1 ¢:+1 |[0,+oo]
is a Brouwer line if n is large enough. Observe first that one has
L@ U L@, 1) C L0 C L (D001 By ') N L (Burt bysilio+00))

then note that if K is large enough one has

F (@nlcoo—k1) € R(Bil oo By ') T (B 11k +o01)
C R (But1 b 1110.4+00)) -

Let V be a neighborhood of S such that f(V) N (a*([—K, KU B) =@ and
W aneighborhood of a)(a) such that f(W\ V)N U=0.1fnis large enough,
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then T T, is included in W. Let us prove that T isa Brouwer line of f and then
that T, is dlS_]Olnt from its image by f The leaves ¢* and ¢* being Brouwer

lines of f , one has

n+1

F@F (00D C L@ C L), F@iili0,400) C L)) C L)
By hypothesis on ,B\, one knows that
f@) C L@)) C LOw), f@Cur1) C L@ ) C LGuw).

The path @, being included in a leaf of F and each leaf being a Brouwer line
of f, one knows that

f@)Na, =0.

To prove that 3:,1 is a Brouwer line, it remains to prove that f (a,) does not
meet any of the paths

Orl(—00,01s Pri1l[0.400)s Cns Cntl-

By hypothesis, one knows that f (a,) does not meet neither ¢ ([ K, K1), nor
{0 Moreover one knows that &,, does not meet neither f (qb |(—00,K7), DOT
f (qanr1 K. +oo)) So, we are done.

To prove that T, is disjoint from its image by f one must prove that T, is
lifted to a path that is disjoint from its image by f This path will be included
in the union of the images by the iterates of T of the path En_l oy En+1 Soitis
sufficient to prove that the union of these translates is disjoint from its image
by f Observe now that every path Tk(g“n ozn §n+1) k € Z, is disjoint from
L(An) which implies that it is disjoint from f ({n ay, §n+ 1) |

Lemma 28 There is no simple loop included in dom(l ) homotopic to T that
is disjoint from its image by f.

Proof Suppose that there exists a simple loop I T included in dom(I ) that is
homotoplc toT and disjoint from its image by f One can suppose for instance
that f (Fo) is included in the component of &)E(l )sph \ Fo that contains N,
and orient Toin such a way that this component, denoted by L(Ty), is on the
left of FO The loop I‘o meets finitely many leaves of F homoclinic to S that
are on the frontier of U. We denote them ¢>,, 1 <i < p. Letus prove first that
F is on the left side of each ¢, Indeed, if T T is on the right side of d),, writing
Ty for the lift of FO and ¢, for a lift of ¢,, one finds a non empty compact

subset L(Fo)) N L(¢,) of (E)m(l ) that is forward invariant by f . But such a
set does not exist because f is fixed point free.
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Fig. 15 Construction of T’y . N
in Lemma 28

Each loop 5, U {S} bounds a Jordan domain f,- of &)E(I )sph that contains
N. By a classicaLI\ result of Ker/é\kjérté [22], one knows that the connected
component of L(I'g) N ([, <i<p L;) that contains N is a Jordan domain whose
boundary Tisa simple loop homotopic to Tin ﬁ(l ), disjoint from its image
by Z, and included in U UL(T) (see Fig. 15). By intgrsecting T‘\l with the leaves
of F homoclinic to N that are on the frontier of U, one constructs similarly
a simple loop T, included in ﬁ(l ) N U that is homotopic to T in M and
disjoint from its image by f. It remains to approximate I by a simple loop

included in U and we get a contradiction since we are assuming condition i)
in Proposition 26. O

End of the proof of Proposition 26 One must prove that for every rational
number r/s € (0, 1/g] written in an irreducible way, there exists a point
7 € HSH(NI ) such that f () = T" (7). Indeed, the orbit of 7 should be con-
tained in U, the point 7 will project in dom(/) onto a periodic point z of f of
period s, finally the loop I'" will be associated to z.

Write 50 for the leaf containing ¥ (0) and 250 for its projection in ﬁ(l ).
Using the analogous of Lemma 27 for «-limit sets, one can suppose that $0
is a line. Let us fix a leaf ZEN homoclinic to N and a leaf ZES homoclinic to
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S, which exists since we are assuming that the loop I" has a leaf on its right
and a leaf on its left. Each of them is disjoint from all its images by the (non
trivial) iterates of f. By a result of Béguin, Crovisier, Le Roux (see [29],
Proposition 2.3.3) one knows that there exists a compactification @(l )ann
obtained by blowing up the two ends N and § replaced by circles Xy and
s s such that fextends to a homeomorphism ]/C;nn that admits fixed points on
each added circle with a rotation number equal to zero for the lift that extends
f Moreover, one can suppose that each set a)(qu) and a)(d)s) is reduced toa
unique point on Sy and Tg respectively. One can join a point of ¢N to a point
of ¢s by a segment disjoint from ¢o. Consequently, one can construct a line
X in ﬁ([ ), disjoint from ao, that admits a limit on each added circle. Write
Eo\rﬁ(l Yann = E(;n;(l yu ) N U f)s for the universal covering space ofﬁ(i ann
and keep the notation T for the natural covering automorphism. Write A for
the lift of A located between ¢g and T (¢9). One can construct a continuous
real function g on dom(I )ann that satisfies (T (Z)) = g(z) + 1 and vanishes
on . The function /1 = go f — ¢ is invariant by T and lifts a continuous
functron h: ﬁ(l )ann — R. If u is a Borel probability measure invariant
by f the quantity [-— dom (D h du is the rotation number of the measure p

for the lift fann. Let us consider now the real function gy on dom([ )ann, that

coincides with g on Xy U Xg, that satisfies go(7'(Z)) = go(Z) + 1 and that

vanishes on ¢ and at every point located between ¢y and 7 (¢p). Note that

2 — 2o is uniformly bounded by a certain number K and invariant by 7. The

property (Qg) satisfied by T" tells us that for every k > 0, one can find a point

zk € R(¢o) such that f*k(Zx) € L(T"* (¢0)). Write 2 for its projection in
om(I ). Observe that

So(f* @) — 80@i) = rk

By taking a subsequence, one can suppose that

lim (go(fsk(wk)) —20@0) = [%1 +OO}

k——+00

and so that

sp—1

Z h(F' Gr) —

i=0

| ~
‘;(g(fsk(z‘k)) —2@r) — p‘

| -~ 2K
< |_(80(fsk(5k)) - 20(Zx)) — ,0‘ + —.
Sk Sk
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—_—
Write &z for the Dirac measure at a pointz € dom(/)ann and choose a measure
sp—1

w that is the limit of a subsequence of (i ity 8 fam(k)> for the weak*

topology. One knows that p is an invariant measure of rotatlon number p.
As the rotation number induced on the boundary circles are equal to 0, one
deduces that the rotation set rot( fann ) contains [0, p]. The intersection property
supposed in i) implies by Lemma 25 that for every rational number r/s €
0, 1/91 written in an irreducible way, there exists a pointZ € HZ)E([ Yann Such
that 5 (Z) = T"(2). But this point does not belong to the boundary circles
because the induced rotation numbers are equal to 0. So its belongs to E(;rr/l(l ).
O

5 Exponential growth of periodic points and entropy

In this section we give a sufficient condition for the exponential growth of
periodic points of a surface homeomorphism. This condition will imply that
the topological entropy is positive in the compact case. We will make use of
these criteria later.

We assume here, as in the previous section, that f is a homeomorphism
isotopic to the identity on an oriented surface M and that I = (f):e[0,1]1s a
maximal hereditary singular isotopy, which implies that fi = f|dom(1). We
write ] = ( f,),e[o 1) for the lifted 1dent1ty defined on the universal covering
space dom(l ) of dom(/) and set f = f1 for the lift of f|qom(s) induced by
the isotopy. We suppose that F is a foliation transverse to I and write F for
the lifted foliation on dom([).

5.1 Exponential growth of periodic points

The main result of this section is

Theorem 29 Let y1,y> : R — M be two admissible positively recurrent
transverse paths (possibly equal) with an F-transverse intersection. Then the
number of periodic points of period n for some iterate of f grows exponentially
inn.

Theorem 29 is a direct consequence of Lemma 30 and Proposition 31.

Lemma 30 Let y1, y» be two admissible F-positively recurrent transverse
paths (possibly equal) with an JF-transverse intersection, and let 11 and I, be
two real segments. Then there exists a linearly admissible transverse loop T’
with an F-transverse self-intersection, such that y1 |, and y»|1, are equivalent
to subpaths of the natural lift of T.
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Proof As explained at the end of Sect. 3.3, we can find a1, b1, t1, a2, b2,
such that Iy C [ay, b1], I» C [az, bz] and such that yi|[4, 5, intersects F-
transversally y2[4,,0,] at ¥1(t1) = y2(t2). Since yy is F-positively recurrent,
we can find
by <ay <b| <af <b]

such that y1|(4,.b,]> 71 |[ai A and y; Iw, py) are equivalent. In particular, there
exists

a; <ty <by <af <t/ <bf
such that

= Vilfar.nl> V1lia].¢y and y1lar o are equivalent;
= Vil ,bu1s V1l o7y and yi gy ) are equivalent.

Moreover, replacing y; by an equivalent path, one can suppose that y () =
y1(t)) = y1(t{). Since y, is F-positively recurrent, we can also find

by <ah<th<by<a) <t] <bj

and replace y» by an equivalent path such that a similar statement holds with
the necessary changes. Note that this implies that y; is F-transverse to y» at
both y1(#{') = y2(t2) and y1 (1) = y2(z}). Suppose that y; ltar.571 20 V2|1, 7]

are admissible of order < ¢ and apply Corollary 21 to the families (y;)1<i<2n,
(si)1<i<2n, (fi)1<i<2n Where

V2j+1 = Vil o1 V2j = V2lay.6)1
and

e 1" T
S2j+1 =11 lf]>0,Szj:t2,t2j+1:t1,t2j:l‘2 if j <n.

One deduces that for every n > 1,
n
Yiliar.n <V1|[;1,;;’]V2|[zz,zé’]> V2|[zé’,b2]

n
is admissible of order 2ng and consequently that ()/1 It Y2 | [,2’,5]) is admis-

sible of order < 2nq. So, the closed path y’ = yily;, 17172l(1,.15) defines a loop
that is linearly admissible: it satisfies the condition (02, ) stated in the previous
section. Furthermore, since both y |,/ b1 and | [d) b} AT€ subpaths of y’, the
induced loop has an F-transverse self-intersection. O
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Proposition 31 [fthere exists a linearly admissible transverse loop I" with an
F-transverse self-intersection, then the number of periodic points of period n
for some iterate of f grows exponentially in n.

Proof The proof of Proposition 31 will last until the end of this subsection.
Suppose that I" satisfies the condition (Qg,) and denote y its natural lift. By
assumption, there exist s < ¢ such that y has an F-transverse self-intersection
at y(s) = y(t). So, one can apply the realization result (Proposition 26)
and deduce that I" is associated to a fixed point of 9. Modifying I" in its
equivalence class if necessary, one can suppose that for every r > 1, the path
v1[0,] 1s admissible of order rgo. Adding the same positive integer to both s
and 7, one can find a positive integer K such that y ||, ] has an F-transverse
self-intersection at y (s) = y(¢) and one knows that y [0, k] is admissible of
order m K g for every m > 1. To get our proposition, one needs a preliminary
result. Set

Y1 = Vsl Y2 = Vit K+s1-
o

Lemma 32 For every sequence (&;)ieNn € {1, Z}N, every n = 1, and every
m = 1 the path

Y 110,51 1_[ Yei Vit.mK]

0<i<n
is admissible of order (n + m)K qo.

Proof We will give a proof by induction on 7.

Let us begin with the case where n = 1. If &9 = 1, we must prove that
Y10.517 lis..17 l[t.mk] = ¥ |[0.mk 1s admissible of order (m + 1) K g¢, which is
true by Proposition 19 as it is admissible of order m K qo). If &9 = 2, we must
prove that

Y1V lies+k1Y lie.mk) = V00,517 |[t.s+ K1V 14K, (m+ 1)K ]

is admissible of order (m + 1)Kgqo. The path y|j0,;n+1)k] having an F-
transverse self-intersection at y(#) = y(s) and being admissible of order
< (m+1) K go, one deduces by Proposition 23 that y [[0,s1¥ |1z, (n+1) k] 15 admis-
sible of order (m + 1) K go. This last path has an F-transverse self-intersection
at y(t + K) = y(s + K). Applying Proposition 23 again, one deduces that
V|[0,s]y|[t,s+K]V|[t+K,(m+1)K] is admissible of order (m + 1)Kq0.

Suppose now the result proved for n. There are three cases to consider.
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The first case is if the sequence (g;)o<;<n 1S constant equal to 1. We apply
Corollary 22 to the families (yg)1<i<n+1, (Si)1<i<n+l, ([i)1<i<n+l, where

vi = vk if i <n, Yat1 = Ylomk)
and
si=sifi>0,;, =tif i <n
One deduces that

n—1 n
vho.a (Vlisa)' ™ Vsmkr = Y1ost (Vlsa) ¥iemk)

is admissible of order (m—+n) K gg and so is admissible of order (m+n—+1) K qg.

The second case to consider is if there exists n’ < n such that ¢,, = 2
and & = 1if i > n’. We apply Corollary 22 to the families (y;)1<i<n—n'+1>
(si)1<i<n—n'+1, (i) 1<i<n—n'+1 Where

vo = vlo.s] l_[ YerVie,2K1

0<i<n’

vi=vlk2k1if 1 <i<n—n", Yu—ws1 = VIK.on+DK]
and
si=s+Kifi>0,t,=t+Kifi<n—n

The induction hypothesis tells us that yo = y |j0,s] [ [o<; <’ ¥e: Vir.2k7 is admis-
sible of order (n" + 2)K g, so

n—n'+1
4I085! l_[ Ve ¥ lits+K1 (¥ ls+K.4K1) Yli+K, m+1)K]
0<i<n’

= Y li0.s] l—[ Ye: ¥V le.mK

o<isn

is admissible of order (n'+2)K go+(n—n'—1)K go+mK gy = (m+n+1)K qo.
The final case to consider is if €, = 2. We must prove that

Y110,s] 1_[ Yei ¥ lit,s+K1Y l12,mk1 = Y 1[0,5] 1_[ Yei ¥ l1t,s+K1Y |l++K, m+D K]

0<i<n 0<i<n

is admissible of order (m + n + 1)K qo. The path y |k n+1)k] having an F-
transverse self-intersection at y (t + K) = y (s + K), the same is true when
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we extend this path on the left by adding y |j0.s] [ [o<; <, ¥e: ¥ l17.k]- Moreover
by induction hypothesis, one knows that

V110,51 1_[ Ye ¥ iK1V I[K (m+ D K]

0<i<n

is admissible of order (m +n + 1) K qo. Applying Proposition 23, one deduces
that

Y1051 l_[ VeV lit.s+ K1Y i+ K. m4+DK]

0<i<n
is admissible of order (m 4+ n + 1)K qo. O

Lemma 33 Lere = (&;)jen € {1,2)N be a periodic word of period q which
is not periodic of period 1. Then the loop Te, defined by the closed path
]_[Ogl- <q Veir is equivalent to a transverse loop associated to a fixed point of
fakao,

Proof Lemma 32 tells us that, for every n, the path

n

V110,51 1_[ Yei | YitK]
0<i<gq

n
is admissible of order (1 4 gn)K g and consequently that (Hogi - ygi> is
admissible of order (1 + gn)Kqo. So I'e is linearly admissible: it satisfies the
condition (Q4kq,). Note that, since I'e is not a constant sequence, it has a
self-intersection. The lema follows by applying the realization result (Propo-
sition 26). O

Consider now the paths

Y =V1V2 = Vis.K4s1s V2 = V2V1 = Ve K +1]-

Since y|jo,x7 has a F-transverse self-intersection at z* = y(s) = y(1),
then for every lift y of y, there exists a covering automorphism 7 such that
Vl0.x1 and T (¥)[0,x] have a F-transverse intersection at y'(t) = T (¥)(s).
Consequently, ¥|j0.x +¢ and T'(¥)|[0. k +s] have a F-transverse intersection at
Y () = T(¥)(s). This implies that among the leaves ¢ x+s) and @7 5)(k +s),
one is above the other one relative to ¢3() = ¢71(7)(s)- This means that if )71/
and ¥, lift y{ and y, respectively and start from the same point ¥, then the leaf
containing the ending point of 7 is either above or below the leaf containing
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Fig. 16 Relative position of
the leafs of the endpoints of
1 and Y, when both start at
Z* in Lemma 33

the ending point of ¥ (relative to ¢z), see Fig. 16. We do not loose any general-
ity by supposing it is the former, which means that y|[0, k] and T (¥) |0,k have
a positive F-transverse intersection at y (1) = T'()/)(s). In this situation ¢ o)
is above ¢r(7)(0) relative to ¢y (), SO ¢y (k) 1s above @77 (s—k) relative to
P7)-

This means that, if ] and ¥} lift y; and y> respectively and end at the same
point Z¥, then the leaf containing the starting point of | is below the leaf
containing the ending point of ; (relatively to ¢z).

We say that a finite word e = (&;)o<i<2n € {1, 2}2” is a palindromic word of
length 2n if it satisfies €,4; = €,—j—1, 0 < j < n. Let us fix a base point 7*
projecting on z*. To each palindromic word e of length 27, we associate the loop
I naturally defined by the closed path [[o<; 5, v/, and the lift ¥y = Yo~ ¥+
of [To<i<an Vi,» where 3. is the lift of [],;_, v/, ending at 7* and y;* the
lift of [ [,,<; =2, _1 Ve, Starting at Z*. The ending point of  is the image of its
starting point by a covering automorphism that we denote 7,. We define the
path 72 = P!Te()) and the line ¥’ = [,z TX (1), which is a lift of T,.

Lemma 34 If e # € are two palindromic words of the same length, then the
paths yg and y,, intersect F-transversally at 7.

Proof If e # €/, there exists k € {0,...,n — 1} such that g, ; = 8;l+j if
0<j < kand g4 # 8’/1+k. Let us suppose for example that g4 = 1
/ _ / /
and &, = 2. The paths [o<;; ¥;,,, and [To< ;< Ver,, € equal, as are
the lifts starting from Z*. Let us write 7 for the ending point of the common
lift. Tile leaf containing the ending point of the lift of ]_[0g <k Ve/,,ﬂ starting
from Z* is above (relative to ¢ but also relative to ¢z« ) the leaf containing the
ending point of the lift of [ [, i<k )/8/, starting from Z*. So, we have a similar
S n+j

result replacing [T« ;<4 72 ., With the extension Yol and [« i<k vy with
</ =< n NS ”+J
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the extension )73. One proves similarly that the leaf containing the starting
point of , is below (relative to ¢z+) the leaf containing the starting point of
Yo - |

By Lemma 33, for every palindromic word e of length 2n, there exists a
fixed point z, of f 4nKqo guch that I, is associated to z.

Lemma 35 There exists a constant L > 0 such that, given a palindromic word
e of length 2n, there are at most Ln? different palindromic words € of length
2n such that Ty and T, are equivalent.

Proof Let y{ and 7, be two respective lifts of y{ and y, to dom(7). The group of
covering automorphisms acts freely and properly. So there exists a constant L’
such that there are at most L automorphisms S such that NS (y{) # ¥, atmost
L’ automorphisms S such that 3, N S(¥;) # ¥ and at most L’ automorphisms
S such that y{ N S(3;) # @. Of course, L’ is independent of the choices of
¥ and y;. We deduce that for every palindromic word e of length 2n, there
are at most 8L'n? automorphisms S such that 77 N S('2) # @. This implies
that there are at most 8L’ n? automorphisms S such that ¥/ and S(7'2) have a
J-transverse intersection.

Suppose that e and e’ are two palindromic words of length 2n such that I,
and Fé , are equivalent. There exists a covering automorphism Se’ such that ” o
is equivalent to Se/(¥'2°) and such that Se/ o T o Sg,] = Te. Composing S’ on
the left by a power of Ty if necessary, one can suppose that )7é, is equivalent to
a subpath of Se/ (3 2). By Lemma 34, one deduces that 7/ and Se (7'2) intersect
F-transversally. It remains to prove that S¢ # Se if € # €. But if this the
case, then Fé, aBd Fé,, are equivalent, which is impossible because this two

paths intersect F-transversally at Z. O

Since there exists 2" different palindromic words of length 2n, one con-
cludes by Lemmas 33 and 35 that f4"K40 has at least ﬁ distinct fixed points,
proving Proposition 31.

5.2 Topological entropy

By the previous result, it is natural to believe that the topological entropy is
positive, in case M is compact. The next result asserts that this is the case:

Theorem 36 Let M be a compact surface, yy, y2 : R — M be two admissible
F-positively recurrent transverse paths (possibly equal) with an F-transverse
intersection. Then the topological entropy of f is positive.

Remark 37 As we will see in the proof, Theorem 36 will be stated even in case
where M is not compact by proving that its Alexandrov extension has positive
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entropy. More precisely, write dom ([ )1ex for the Alexandrov compactification
of dom([/) if it is not compact, and fiex for the extension of f|qom(s) that fixes
the point at infinity (otherwise set dom(/)aex = dom(/) and faex = fldom(1)
in what follows). Of course, fyex 1S a factor of f and so h(f) = h( faex) it M
is compact.

Theorem 36 will be the direct consequence of Lemma 30 and the following
result:

Proposition 38 Let T be a transverse loop with an F-transverse self-
intersection, and 'y its natural lift. Assume that there exists integers K, r such
that y|jo0,k] has an F-transverse self-intersection, and such that y|[0,mk] is
admissible of order mr for every m > 1. Then the topological entropy of falex
is at least equal to log2/(4r).

Before proving the proposition, we will need the following lemma:

Lemma 39 There exists a covering (V) cdom(1) of dom(I) satisfying the fol-
lowing properties:

i) V, is an open disk that contains z;

ii) for every zi1, zo in dom([l), for every integer p > 1 and for every z €
Vz, N f7P(V,) there exists a transverse path joining z1 to zo equivalent
to a subpath of 1 £+2( F~Y2)), that is homotopic, with endpoints fixed, to
the path ozllf’(z)otz_l, where «y is a path in V, that joins z1 to z and o
is a path in V,, that joins z2 to f?(z);

iii) in the previous assertion, if p = 1, the homotopy class of the path that
joins z1 to zp does not depend on z € V;, N f~1(V,,).

Proof One can construct an increasing sequence (K;);>1 of compact sets of
dom(I) that cover dom(I) and such K; is a neighborhood of K; U f(K;) U
f~Y(K;),adistance on dom(l ), denoted by d, thatis invariant under the action
of the group of covering transformations, and an equivariant family of leaves
(¢~)Ze dom(l)’ where ¢ separates 7 Zand f O and consequently is met by / f(“)
(equivariant means that ¢7. @ = T(¢’f) for every covering transformation 7).
Then one can construct an equlvarlant family of relatively compact open sets
(W)~ Scdom(I)’ where Wz contains Z, projects onto an open disk of dom(/) and
satlsﬁes

Frovn cr(e,), Fova cL(92),

Note that, given Z, ¢% and Wz as above, if 7' is sufficiently close to Z, then
one could choose d)%‘, to be equal to ¢Z and also Wz = W5. Therefore we may

assume that the family (Wz )~E dom(I) is locally finite.
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Set K; = if i < 0. One knows that f(K; \ K;—1) C int(K;4+1 \ Ki—2).
By a compactness argument, there exists a positive and decreasing sequence
(i)i>1 such that for every 7 € 7 Y (K; \ K;_1), the open ball B, n;) is
included in Wz N n_l(int(KiH \ K;_»)) and its image f(B(Z, n;)) included
in rr_l(int(K,-H \ K;_2)), the ball B(Z, n;) being defined with respect to d.
Then, one considers a decreasing and positive sequence (,);>1 satisfying
n; < ni+4/4 and such that for every 7 € thl(Ki \ K;_1), one has

~

F(B(E 1)) C BUFR). ni41/2).

Finally, one constructs an equivariant family of open sets (Vz)g where

edom(1)’
Vz contains Z, is included in B(Z, n}) if 7 € 7~ (K; \ K;_1) and projects onto
an open disk of dom(7/). Note that Vz C Wx.

By projection on dom(/), one gets a family (V) cdom(s) satisfying i). To
prove that it satisfies ii), one must prove that if there exists a point 7 € Vz,
such that f7(Z) € V4,, then there exists a transverse path from 7 to Z» that
is equivalent to a subpath of I }Q_H(]’F_] (2)). As V5, C Wz, i € {1, 2}, by the

properties of the chosen family (W5) Sedom()’

R(6716)) € R(651c)) © R(67) € R(#3) € R (¢7¢))

and
R(#716)) R (651c,)) € R (¢2) C R(8%) C R (7015 -

One deduces that 1’ ;Jrz( f ~1(@)) meets ¢z, and ¢7,. It remains to prove that
R(¢z) C R(¢z,) to ensure that ¢z, is met before ¢z, and to prove the existence
of a transverse path from 7| to Z,. The case where p > 2 is easy because

R(¢z) C R@7e) C R@7pi1i) C Rgz).

To prove the result in the case where p = 1 it is sufficient to prove that Vz, is
includ§d in W./f(z“u) because every'poi'nt. ir} Wren l?elt?ngs to L(q&%‘l ). Moref)\{er
one will get iii) because W7, is disjoint from its images by the non trivial
covering transformations. Set n; = 7y and n;. = n}if j < 0, and let i be
sgch that z; € K; \ K;_1. One knows that 7 € n_l(int(KiH \ K;_2)), so
f@) € n7 1 (int(Ki42 \ Ki—3)) and 2> € 7! (int(K 43 \ K;_4)). One also
knows that f(Z1) € 71_1(int(KiH\K,-_z)).Using the fact that 771/'—3 < Nit+1/4,
thatd(f(Z), f(Zl)) < nit+1/2,and thatd(f@,'z}) < 1;_5, one deduces that
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Vs, C B (22,1} _3) € B(F G, ni1) € Wi,
O

Proof of Proposition 38 We keep the notations of Proposition 31. Since, by
Lemma 34 appliedton = 1, the paths (;/1’)2 and (;/2’)2 intersect F-transversally,
one deduces that y’ % has a leaf on its right and a leaf on its left, which implies
that y| satisfies the same property. One proves similarly that y; has a leaf on
its right and a leaf on its left. By Lemma 18, there exists a compact set K such
that for every n > 1 and every z € dom(/) \ U0<k<n f*k(K), none of the
paths | and y; is equivalent to a subpath of I’2(z). We can find a compact
set K’ larger than K such that for all z € dom(/) \ K’, the trajectory I(z)
is disjoint from y; and y;, as is every open set V. given by Lemma 39 that
contains z. Adding oo to dom(/) \ K’, one gets a neighborhood V4, of oo
in dom(/),1ex. Define Voo p = ﬂl KI<p f K (V) and consider the covering
V), of dom([)4lex that consists of Vi, , added to the covering (V;);edom(r) of
dom(I) given by Lemma 39. Write I'” for the loop naturally defined by the
closed path (y{)*(y5)? and y’ for its natural lift. Recall that M (T") has been
defined in Proposition 9 . Proposition 38 is an immediate consequence of the
following: O

Lemma 40 The entropy of faex relative to the covering V), is at least equal
tolog?2/(4r) —log M(I'")/2p.

Proof As seen in the proof of Theorem 29, to every palindromic word e =
(ei)o<i<2n of length 2n is associated a fixed point ze of f 4nr and an associate
F-transverse loop defined by ]_[0< i<2n ye/i. Moreover, by Lemma 35, there
exists L > 0, independent of n, such that there are at least 2"/ Ln? different
equivalent classes among the associated loops. We will prove that every open
set of the covering \/O< k<dnr | —k(VP) contains at most LnM (I")2"/P points
ze. We deduce that every finite sub-covering of \/o<; _4,,, f ~K(VP) has at least
2" /Ln> M (I'")?™/P open sets and so

1
h(faes Vp) > lim  ——log(2" /Ln*M(I'y"/7)
n—+oo 4nr

= log2/(4r) — log M(I")/2p.

Let us consider an element W = (o< _4, f7/(V7) of V,,. We suppose that
it contains at least one point z¢. Denote J, the setof j € {0, ..., 4nr — 1} such
that there exists j' € {0, ..., 4nr} satisfying |j — j'| < p and Vi = Voo, p
and denote J_o the complement of J,. Note that f/(ze) € Voo if j € Joo.
By Lemma 18, one knows that the orbit of z, cannot be contained in V4. So

J<oo # @
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Let us begin with the case where 0 € J_ and write Jo = {Jjo, - .., Ji*},
where jo =0 < ji --- < ji+, and add jj«,1 = 4nr. Every open set V7! can be
written V /I = V., - For every [, choose a path §; in V, from zjtof 71(ze). By
Lemma 39, there exists a F-transverse path B from - z ji 0 zj,,, equivalent to

a subpath of IJ’+1 J’+2(ffl !(ze)) and homotopic to & I/i+1=Ji (£ (ze))(Sl_H

In the case where Ji+1 — ji = 1, the homotopy class of 8; (with endpoints
zi; and z;;,, fixed) is uniquely determined. Let us explain now why there are
at most M (") possible homotopy classes if Ji+1 — Ji = 2. Note first that
Ji+1 — Jji = 2p in that case, and that all pomts fl (ze) Ji—1<j<jim1+1
belong to Vio. This implies that neither y{ nor y; are equivalent to subpaths

of I ]JE’“_”JFZ( f7~1(ze)). Note that the latter is equivalent to a subpath of
I3 (z¢), which is equivalent to [To<j<2n 7s;- We remark that, if o is any
transverse path that is equivalent to a subpath of [ ] j<on yg/i, but that does
not contain a subpath that is equivalent to either y| or y,, then o must be
equivalent to a subpath of one the six possible following paths:

Vi Y2 YIVI> YiVas VaVis VaVa

and therefore o (and thus /"' T2 f171(ze))) must equivalent to a subpath
of y’. Furthermore B; = & 1/+1=Ji (f (ze))él;l1 is disjoint from I'” by defini-
tion of Vi because it is the case for I/1+17Ji ( £/ (z,)) and for the disks szz and
V. I One can apply Proposition 9 and obtain that 8; must belong to one of
the at most M (I'") different homotopy classes of paths connecting z;, and z;, ,,
as claimed before. The path HO<1<Z* B is a closed path based at zg. Noting
that there exist at most 4nr/2p = 2nr/p integers [ such that ji1 1 — j; # 1, we
deduce that there exist at most M (I'")>""/? homotopy classes (with fixed base
point) possible. The loop defined by [ [o<;<;+ A is freely homotopic to I'g. So
there exist at most M (I'")2""/P free homotopy classes defined by the loops I,
such that ze € W. By Lemma 35, to prove that there is at most Ln?2M ()2 /p
points ze in W, it is sufficient to prove the following stronger result: there exist
at most M (I'")2""/P classes defined by the loops I, that are equivalent as trans-
verse paths and such that ze € W. Suppose that ze and z belong to W and that
the paths 8;, 0 < [ < [*, constructed with z, and ze are all homotopic. Fix a
lift V%, of V, and note Ze and Z' the respective lifts of ze and z, that belongs
to Vz,. The whole F-transverse trajectories of Z, and Ze are invariant by the
same non trivial covering automorphism 7', which is naturally defined by the
lift [Jocps By of [To<i<i* Bi- Moreover, Bo is F-equivalent to a subpath of
I (N ¢) and to a subpath of [ f(v e’) So these two lines meet a common leaf
(1) One deduces that they meet 7% (qb) for every k € Z and consequently that
they meet the same leaves. So there are equivalent.
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The case where 0 € J5 can be reduced to the case where 0 € J_. after a
C)gclic permutation on {0, ..., 4nr — 1} because the points z, are all fixed by
f nr . m|

As adirect application of Proposition 38 we can obtain the following result,
which is connected to the study of the minimal entropy of pure braids in S2.
There are sharper results with a larger lower bound for the entropy (see [38]),
but they use very different techniques.

Theorem 41 Let f be an orientation preserving homeomorphism on S*
and 1 a maximal hereditary singular isotopy. Assume that there exists 7 €
dom(Z) Nfix(f) such that the loop naturally defined by the trajectory I (2) is
not homotopic in dom([l) to a multiple of a simple loop. Then the entropy of
f is at least equal to log(2)/(4).

Proof Let F be a foliation transverse to the isotopy. By hypothesis, the
transverse loop I' associated to z is not a multiple of a simple loop, so by
Proposition 2, it has an F-transverse self-intersection. If y is the natural lift of
I", then for all integers K, y|[0,x] is admissible of order K. Furthermore, by
Proposition 7, y|[0,2] has an F-transverse self-intersection. The theorem then
follows directly from Proposition 38. O

5.3 Associated subshifts

Let us give a natural application of Corollaries 21, 22 and the results of this
section. We keep the assumptions and notations given at the beginning of
the section. Consider a transverse path y : [a, b] — dom(F) with finitely
many double points, none of them corresponding to an end of the path and
no triple points (by a slight modification of the argument given in the proof
of Corollary 24 one can show that every transverse path is equivalent to such
a path). There exists real numbers a < t; < --- < t < b and a fixed
point free involution o on {1, ..., 2r} such that y(#;) = y(t5(;)), for every
i € {1,...,2r}andsuch that y is injective on the complement of {z{, ..., t2}.
Set to = a and f,+1 = b and define for every i € {0,...,2r} the path
Yi = Vlit.1511- Consider the incidence matrix P € Mp,11(Z) (indexed by
{0,...,2r})suchthat P; ; = 1if j =i+ 1or j =o(i + 1) and O otherwise
(in particular if i = 2r). Note that the first column and the last row only contain
0. For every P-admissible word (i5)1<s<s,» Which means that P;_; , = 1 if
s < so, the path [ ;< <y, ¥, is transverse to F. Note that every transverse
path y : [d’, b'] — dom(F) whose image is contained in the image of y is a
subpath of such a path [T, <<, %,

Suppose now that y is admissible of order n. Can we decide when a path
[Ti<s<s, 7is is admissible and what is its order? More precisely, do there exist
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other incidence matrices P’ smaller than P (which means that Pi/, i = 0 if
P; ; = 0) such that ]_[ngso vi, is admissible if (i5)1<s<s, i P’-admissible?

Corollaries 21 and 22 imply that the following three matrices satisfy this
property:

— the matrix PS"" where Plsmmg = lifand only if j = i + 1, or if

J =0 +1)and y;¥;41 and y;_y; have an F-transverse intersection at
Y (tiv1) = y());
— the matrix P'*!', where Plejft = lifandonlyif j =i+ 1,0orif j =0 (i+1)
and y has an JF-transverse positive self-intersection at y (#;+1) = y(;);

— the matrix P"ght where Prlght = lifandonlyif j = i+1,orif j = o (i+1)
and y has an F- transverse negative self-intersection at y (f;+1) = y (¢;).

More precisely, if P’ is one of the three previous matrices, then for every P’-
admissible word (is)1<s<s, the path Hl@éso vi, 1s admissible of order kn,
where k is the number of s < sg such thati;y| = o (iy + 1). As explained in
Proposition 23, its order can be less. One can adapt the proof of Theorem 36
to give a lower bound to the topological entropy of fy1ex. For example it is at
least equal to 1/n times the logarithm of the spectral radius of P’ if the paths
y; have a leaf on their right and a leaf on their left, otherwise one has to replace
these paths by finite admissible words. One can adapt the proof of Theorem 29
to show that for every P’-admissible word (i5)1<s<s, such that i; = iy, the
loop naturally defined by [, so Vis 18 associated to a periodic orbit (except
for some exceptional cases).

Let us illustrate this procedure with four examples, where we start with an
admissible path of order 1:

For the first example, see Fig. 17, the admissibility matrices are

0100 0
00100
=10 00 1 0],
000 0 1
0000 0
0 1 0 1 0) 01000
00100 . 00 1 0 1
PEt=10 0 0 1 o, P™=]0 1 0 1 0
001 01 000 0 1
0000 0) 0000 O

The matrix PlS "% Joes not tell us anything, the only admissible paths are
subpaths of y = yp...y4. The only interesting informations got from Plleft

and Plﬁ eht respectively are the facts that the loops naturally defined by y»y3 and
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Fig. 17 Example 1: Leafs of T
the foliation are represented

as dashed lines, while
transverse paths are solid

y1y2 are linearly admissible of order 2. Nevertheless the first loop has no leaf
on its left while the second one has no leaf on its right. So, one cannot apply
Proposition 26 and deduce that the loops are equivalent to transverse loops
associated to periodic points of period 2. Note also that the spectral radius of
P}Eﬁ and Plr e e equal to 1. In this example, one cannot deduce neither the
positivity of entropy, nor the existence of periodic orbits.

For the second example, see Fig. 18, the admissibility matrices are

0100 0
00100
=10 00 1 0],
0000 1
0000 0
01 00 0 0100 1
00 1 0 0 , 001 10
PEt=10 0 1 1 0|, P =]0 00 1 0
0100 1 0000 1
\0 0 0 0 0) 00000

The matrix P;trong does not tell us anything. The matrix P;ght is nilpotent and
the only admissible paths are ypy4, Y0y173y4 and y, all of them admissible
of order 1 by Proposition 23. The matrix leeft is much more interesting: its
spectral radius, the real root of the polynomial X3 — X? — 1, is larger than
1. The loop naturally defined by y» is linearly admissible of order 1 but has
no leaf on its left: one cannot deduce that it is equivalent to a transverse loop
associated to a fixed point. If p > 1, the loop naturally defined by y; yzp Y3 1S
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Fig. 18 Example 2: Leafs of e
the foliation are represented

as dashed lines, while
transverse paths are solid

70

linearly admissible of order p and has leaf on its right and a leaf on its left. More
precisely, it has a transverse self-intersection, so one can apply Proposition 26
and deduce that it is equivalent to a transverse loop associated to a periodic
point of period p. In particular, the loop defined by y1y»y3 is equivalent to
a transverse loop associated to a fixed point: one can apply Theorem 41 and
deduce that the entropy of f is at least log2/4.

In third example, see Fig. 19, the trajectory is the same as in the first example
but the foliation is different. The admissibility matrices are

01010
00101
=10 10 1 0],
00101
0000 0
0 1 0 1 0) 01000
00100 . 0010 1
Pet=10 0 0 1 o], P =0 1 0 1 0
001 01 000 0 1
0000 0) 0000 O

The matrices P;ght and P;eft are the same as in the first example. Nevertheless,
one can say more. Indeed the loops defined by y»y3 and y 3>, which are linearly
admissible of order 2, now have a leaf on their left and a leaf on their right. They
intersect F-transversally and negatively the paths ypy1 and y3y4 respectively
but they do not interest F-transversally and positively a path drawn on y. So,
one cannot apply the second item of Proposition 26. However, by the first item
of the same proposition, if they are not equivalent to transverse loops associated
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Fig. 19 Example 3: Leafs of e
the foliation are represented

as dashed lines, while
transverse paths are solid

Fig. 20 Example 4: Leafs of L
the foliation are represented

as dashed lines, while
transverse paths are solid

to periodic points of period 2, they are homotopic in the domain to a simple
loop that does not meet its image by f. In particular, if Q(f) = S?, they
must be equivalent to transverse loops associated to periodic points of period
2. The matrix P;tmng is much more interesting: its spectral radius is equal to
V2. Every path defined by a word of length  in the alphabet {y;y>, y3y2} is
admissible of order 2n and intersect y transversally. The proofs of Theorems 36
and 29 tell us that the topological entropy of f is at least equal to log2/2, and
that the number of fixed point of f?” in the domain is at least equal to " if
Q(f) =S~

In the fourth example, see Fig. 20, the foliation is the same as in the first
example but the trajectory is different. In particular, there are three points of
self-intersection of y, and all are F-transverse. The admissibility matrices are:

@ Springer



686 P. Le Calvez, F. A. Tal

01 00000
0010000
0001000

P =10 00 0 1 0 0,
000O0O0T1O0
0000001
0000000
01 000T10
0011000
0001000

pt=10 0 0 0 1 0 0],
000O0O0T1O0
00001 01
\0 0 0 0 0 0 0)
0100000
0010000

A 0011000

P =0 000 1 01
01 000O0T10
0000001
0000000

By inspection of Plleft one assures the existence of a single admissible loop

v4ys5, while inspection of Plright we see that both loops y» and y»y3y4y1 are
admissible and that the entropy of f must be positive.

6 First applications

In this section we give two applications for homeomorphisms of compact
oriented surfaces. The first one is a new proof of Handel’s result on transitive
homeomorphisms of the sphere. The second application provides sufficient
conditions for the existence of non-contractible periodic orbits, and has as a
consequence a positive answer to a problem posed by Boyland for the annulus.

6.1 Transitive maps of surfaces of genus 0
In [19], Handel prove that a transitive orientation preserving homeomorphism

f of S? with at least three fixed points, but finitely many, has infinitely many
periodic orbits: more precisely the number of periodic points of period n for
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some iterate of f grows exponentially in n. We will improve this result as
follows, with Theorem K of the introduction:

Theorem 42 Let f : S> — S? be an orientation preserving homeomorphism
such that the complement of the fixed point set is not an annulus. If f is
topologically transitive then the number of periodic points of period n for
some iterate of f grows exponentially in n. Moreover, the entropy of f is
positive.

Proof Recall that, in our case, the transitivity implies the existence of a point
z whose w-limit and «-limit sets are the whole sphere. One knows that every
connected component of S2 \ fix(f) is invariant(see Brown and Kister [8]).
Since f has a dense orbit, this complement must be connected. Moreover
it cannot be a disk because f has a dense orbit. Indeed the Brouwer Plane
Translation Theorem implies that every fixed point free orientation preserving
homeomorphism of the plane has only wandering points. One deduces that the
fixed point set has at least three connected components. Choose three fixed
points in different connected components and an isotopy I’ from identity to
f that fixes these three fixed points (this is always possible). The restriction
of I’ to the complement of these three points is a hereditary singular isotopy.
Using Theorem 14 one can find a maximal hereditary singular isotopy / larger
than I’. Let F be a foliation transverse to this isotopy. It has the same domain
as I, and this domain is not an annulus because [ is larger than I’. The fact
that w(z) = a(z) = S? implies that I ]Z_-(z) is an admissible JF-bi-recurrent
transverse path that contains as a subpath (up to equivalence) every admissi-
ble segment and consequently that crosses all leaves of F. Since dom(/) is
not a topological annulus, this implies that / ]Z_-(z) has an F-transverse self-
intersection by Proposition 2. The result follows from Theorems 29 and 36.

0O

6.2 Existence of non-contractible periodic orbits

Let f be a homeomorphism isotopic to identity on an oriented connected
surface M and I’ an identity isotopy of f. A periodic point z € M of period ¢
is said to have a contractible orbit if 1'?(z) naturally defines a homotopically
trivial loop, otherwise it is said to be non-contractible. In this subsection we
examine some conditions that ensure the existence of non-contractible periodic
orbits of arbitrarily high period. Through this subsection we assume that M
is the universal covering space of M and write 7 : M — M for the covering
projection. Write I for the lifted identity isotopy and f for the associated lift
of f.One can find a maximal hereditary singular isotopy / larger than I’. It can
be lifted to an identity isotopy I on dc;m(l ) = 7~ 1(dom([I)). This isotopy is
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a maximal singular isotopy of f larger than I". Let F be a foliation transverse
to I, its lift to dom(/), denoted by F is transverse to /.
The main technical result is the following proposition:

Proposition 43 Suppose that there exist an admissible F-bi-recurrent path y
for f a leaf ) of F and three distinct covering automorphisms T;, 1 <1 <3,
such that y crosses each T,(qﬁ). Then there exists g > 0 and a non trivial
covering automorphism T = T; o Tj_l such that for all r/s € (0, 1/q], the

maps fs o T and fs o T" have fixed points. In particular, f has non-
contractible periodic points of arbitrarily large prime period.

Proof By assumptions, there are non trivial covering automorphisms. So M
is not simply connected and M is a topological plane. For every loop I' in M,
we will denote §y. the dual function that vanishes on the unbounded connected

component of M \I". Itis usually called the winding number of I. O

Sub-lemma 44 [f Iisa loop positively transverse to F, the set of singular
points Z of F such that 8 i(2) # 0 is a non empty compact subset L. of M.

Furthermore ¥ = Xy, lf I and 1" are equivalent transverse loops.

Proof The fact that X = Xy, if I" and I” are equivalent transverse loops is
obvious as is the fact that X compact. To prove that this set is not empty, let
us consider a leaf qvb that meets I". As recalled in the first section, at least one
the two following assertions is true:

— the set a(¢) is a non empty compact set and . takes a constant positive
value on it;

— the set w(¢) is a non empty compact set and - takes a constant negative
value on it.

Suppose for instance that we are in the first situation. If o (@) contains a singular
point, we are done. If not, it is a closed leaf disjoint from I". More precisely,
a(¢) is contained in a bounded connected component of M \ I" where §y takes
a constant positive value. This component contains the bounded component
of the complement of a(¢) and so contains a singular point. O

Let us prove first that there exists an admissible loop I" that crosses each
T,~(q§). Suppose first that y has a F-transverse self-intersection and choose
ai, by, t1, az, b, tp be such that y |4, p,] intersects F -transversally 12 [a,,b,]
at y1(t1) = y2(t2) and such that i |(4, »,] crosses each T; (qvb). The construction
done in the proof of Lemma 30 gives us such a loop r. Suppose now that
¥ has no F-transverse self-intersection. By Proposition 2, one knows that y
is equivalent to the natural lift of a simple loop I" and this loop satisfies the
desired property.
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Let us prove now that one can find at least two distinct loops among the
Ti_l(f) that have a F-transverse intersection. If not, by Proposition 1, one
can find forevery i € {1, 2, 3} a transverse loop f~l{ equivalent to Tl._l (f‘) such
that the Iv‘lf are pairwise disjoint. The three functions Sf; are decreasing on the

leaf qvﬁ For each i, either §j, is not null in oz(dv)) or §z, is not null in a)(qvﬁ),

and therefore either there exists two different indices i and J such that for all
points in a(¢), 8 # 0 and &y, # 0, or there exists two different indices i
i j

and j such that for all points in cb(qvb), 3y # 0and éy, # 0. In any case, there
i J

exists a point 7 € (/5 and two different indices i and j such that 6x (2) # 0
and 8 () # 0. The fact that there exists a point where the two dual functions
J

do not vanish tells us that one of the loops, let us say f‘l/ , 1s included in a
bounded connected component of the complement of the other one lv“;, and

that I’ ; is included in the unbounded connected component of the complement
of f‘lf. One deduces that Xy, C Xy, . Setting T = T o (T)~ L, one gets the
i J

inclusion T'(¥y) C X, where X is anon empty compact set. We have found
a contradiction because 7 is a non trivial covering automorphism.

We have proved that there exist i # j such that Tl._l (f‘) and Tj_1 (f‘) inter-
sect F- -transversally. This implies that I" and T(I") intersect F -transversally,
where T = Tj o (T;))~'. Write y for the natural lift of I" and choose an inte-
ger L sufficiently large, so that y|jo..] has a F-transverse intersection with
T(P)lo.L1aty(t) = T(y)(s), with s < ¢. The loop I being admissible, there
exists ¢ > 0 such that y|[_p 2] is admissible of order g. It follows from
Corollary 22 and Proposition 19 that, for any n > 1, the paths

n—1 . n—1 .
1_[ T (Vlis—L.1+11) » l_[ T~ (Pli—r.s+0)
i=0 i=0

are admissible of order ng, and both have F-transverse self-intersections.
Therefore the paths y|js—r ;+1] and y|;—r s+1] project onto closed paths of
M and the two loops naturally defined have F-transverse self-intersection and
are linearly admissible. So, one can deduce Proposition 43 from Proposition 26.
O

Let us state a first application of Proposition 43. In [39] conditions are
given for a homeomorphism f, isotopic to the identity, of a compact surface
M to have only contractible periodic points. There it is shown, using Nielsen—
Thurston theory, that for such f, under a suitable condition on the size of its
fixed point set, there exists an uniform bound on the diameter of the orbits
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of periodic points. The next theorem improves the main result of that note,
by extending the uniform bound on the diameter of orbits from f periodic
points to f recurrent points. Note that the hypothesis that the fixed point set
of f project in a disk cannot be removed. There exists an example of a C*°
diffeomorphism f of T? preserving the Lebesgue measure and ergodic such
that every periodic orbit of f is contractible, and such that almost all points in
the lift have orbits unbounded in every direction (see [25]). The following is
Theorem H of the introduction:

Theorem 45 We suppose that M is compact and furnished with a Riemannian
structure. We endow the universal covering space M with the lifted structure
and denote by d the induced distance. Let f be a homeomorphism of M isotopic
to the identity and f a lift to M naturally defined by the isotopy. Assume that
there exists an open topological disk U C M such that the fixed point set of f
projects into U. Then;

— either there exists K > 0 such that d(f” (2),2) < K, foralln > 0and all
bi-recurrent point % of f;

— or there exists a nontrivial covering automorphism T and g > 0 such that,
forallr/s € (—1/q, 1/q), the map fs oT ™" has a fixed point. In particular,
f has non-contractible periodic points of arbitrarily large prime period.

Proof Let I be a maximal hereditary singular isotopy larger than the given
isotopy and F a foliation transverse to /. Denote M the universal covering
space of M and 7 : M — M the covering projection. Write I for the lifted
identity isotopy on d(;m(I ) = 7%~ (dom([)) and F for the lifted foliation. The
theorem follows directly from the next lemma and Proposition 43. O

Lemrya 46 There exists K > 0 such that, fog all 3 in M and all n > 0,
if d(f"(2),2) = K, then there exists a leaf ¢ and three distinct covering
automorphisms T;, 1 < i < 3, such that 1 ;v_ (2) crosses each T; ().

Proof One can find aneighborhood V' C U of sing(/) such that for every point
2 e V), the points Z and f (2) belong to the same connected component
of 7~ 1(U). For reasons explained in the proof of Lemma 18, one knows that
for every z € M \ V, there exists a small open disk O, C dom(F) containing
z such that I2(f~1(2)) crosses ¢. if 2 € O.. By compactness of M \ V,
one can cover this set by a finite family (O, )1<;<,. One constructs easily a
partition (X, )1<;<, of M\ V such that X, C O,. We have a unique partition
()v( o)aea Of M such that, either )?a is contained in a connected component of
7~ (U) and projects onto V, or there exists i € {1, ..., r} such that )V(a is
contained in a connected component of 77 ! (Og,) and projects onto X ;.. Write
a(?) = a if 7 € X,. Let us define

Ko = maxd(f(%),%), K = maxdiam(Xy).
ieM acA
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Fix z € M n > 1 and define a sequence ng < n; < - - - < ny in the following
inductive way:

no=0, njt1 =1+suplk € {nj,....,n — 1} a(f53@) = a(f @)},

ng = n.

Notethatd(f”/ %), fnm(z)) Ko+K1,if j < s.Notealso that, if X a (" (%))

projects on V, then f"/+17 1(z) also belongs to V and by the choice of V both
f"f+1 '(2) and f"f+1 (2) belong to the same connected component of 77~ L.
As a(f”f (2) # ot(f”f“(z)) one gets that X w(FH @) do not project on V.

Fix K > (6r + 1)(Kg + K1). Ifd(f”(z), Z) > K, thens > 6r + 1 and there
exist at least 3r sets )v(a(];nj )’ 0 < j < s, that do not project on V. This
implies that there exist three points f"/ ((z)) that belong to the same X,
and therefore one finds that there exist a point z; € 7~ Y(z;) and two distinct
nontrivial covering automorphisms 77, 7> such that the orbit of 7 intersects
the three distinct connected components of n_l(OZi) that contain z;, T1(Z;)
and 7>(Z;), respectively. By the choice of O, this implies that / ]"E (2) intersect

¢z, Ti(¢z,) and To(¢z,). o

Proposition 43 is also fundamental in solving the following conjecture posed
by Boyland (see, for instance, [3] where the conjecture is shown to be true
generically for sufficiently smooth diffeomorphisms): Let f be a homeomor-
phism of the closed annulus preserving a probability measure pu with full
support, and let f be a lift of f to the universal covering space of the annulus.
If the rotation set of f is a non trivial segment and the rotation number of  is
null, is it true that rot(x) belongs to the interior of the rotation set?

We recall first Atkinson’s Lemma on ergodic theory, that will be very useful
in this paper (see [1]).

Proposition 47 Let (X, B, i) be a probability space, and let T : X — X
be an ergodic automorphism. If ¢ : X — R is an integrable map such that
[ @du =0, then for every B € B and every ¢ > 0, one has

< 8}) = u(B).

We have the following, Theorem A of the introduction:

n—1

D e ()

" ({x €B,In >0, T"(x) € B and
k=0

Theorem 48 Let f be a homeomorphism of A = T' x [0, 1] that is isotopic
to the identity and f a lift to R x [0, 1]. Suppose that rot( f) is a non trivial
segment and that one of its endpoint p is rational. Define
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My ={ e M(f), rot(u) = p}, X, = | supp().

HeEM,

Then every invariant measure supported on X , belongs to M.

Proof Replacing f by a power 7 and f by a lift f‘f o T?, one can assume
that p = 0 and rot(f) = [0, a], where a > 0. The fact that 0 is extremal
implies that for every u € My, each ergodic measure y' that appears in the
ergodic decomposition of p also belongs to M. Atkinson’s Lemma, with
T = f and ¢ the map lifted by ¢ : z > 71 (f (%) — %), tells us that u’-almost
every point of A is lifted to a recurrent point of f The union of the supports of
such ergodic measures being dense in supp(u), one deduces that the recurrent
set of f is dense in 71 (Xp). Writing f = (f1, f2), one can extend f to a
homeomorphism of T! x R such that f(x,y) = (fi(x,1),y) if y > 1 and
f(x,y) = (fi(x,0), y)if y < 0 and still denote by f the lift that extends the
initial lift. Let I be an identity isotopy of f that is lifted to an identity isotopy
I’ of f . Let I be a maximal hereditary singular isotopy larger than /" and F a
foliation transverse to /. Consider the lift / of I and the lifted foliation F. If
there exists an invariant measure supported on Xo whose rotation number is
positive, there exists a recurrent point z of rotation number strictly larger than
0. Let us fix a lift 7. As % is not fixed by £, it belongs to the domain of / and the
path IJ% (2) meets infinitely many translates of ¢;. But Z can be approximated

by a recurrent point z’ of f because we have seen that the recurrent set of
f was dense in 7 ~1(Xp). So we can suppose that I?_(E/ ) meets at least three
translates of ¢z. The result now follows from Proposition 43. Indeed, one finds
some power n of T such that for any pair of integers r, s with s > 0 and such
that |r/s| is sufficiently small, there exists a fixed point Z, ; of f "o T . The
points Z, s project to periodic points z, s in A such that the rotation number
of z,5 is r/ns. In particular both 1/sn and —1/sn belong to the rotation set
of f if s is sufficiently large, in contradiction with the fact that O is an end of

rot(f). |

We deduce immediately the positive answer to Boyland’s question, Corol-
lary B of the introduction:

Corollary 49 Let f be a homeomorphism of A that is isotopic to the identity
and preserves a probability measure | with full support. Let us fix a lift f .
Suppose that rot(f) is a non trivial segment. The rotation number rot(u)
cannot be an endpoint of rot( f) if this endpoint is rational.

Proof 1f rot(f) is an endpoint of rot(f) and this endpoint is a rational p, by
Theorem 48 we get that, if X, = supp(u) is the whole annulus A, then every
invariant measure supported on A has rotation vector p, which implies that

rot(f) = {p}. O
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7 Entropy zero conservative homeomorphisms of the sphere

We will prove in this section the improvement of Franks—Handel’s result about
area preserving diffeomorphisms of S with entropy zero, stated in the intro-
duction as Theorem M. Let us begin by introducing an important notion due
to Franks and Handel: let f : S> — S? be an orientation preserving homeo-
morphism, a point z is free disk recurrent if there exist an integern > 1 and a
topological open disk D containing z and f"(z) such that f(D)ND = . We
will also need the notion of heteroclinic point, which means that its «-limit
and w-limit sets are included in connected subsets of fix(f).

Let us state first some easy but useful facts. By definition if f is a homeo-
morphism of a topological space X, a subset Y is free if f(Y)NY = 0.

Proposition 50 One has the following results:

i) the set of free disk recurrent points is an invariant open set fdrec( f);
ii) it contains every positively or negatively recurrent point outside fix(f);
iii) every point in S? \ fdrec( f) is heteroclinic;
iv) every periodic connected component of fdrec( f) is fixed.

Proof If D is a free disk that contains z and f"(z), it contains z’ and f"(Z’) if
7' is close to z. Moreover fX(D) is a free disk that contains f¥(z) and f¥"(z),
for every k € Z. So i) is true.

For every z € S? \ fix(f), one can choose a free disk D that contains z.
If z is positively recurrent, there exists n > 1 such that f"(z) € D. If z is
negatively recurrent, there exist n > 1 such that f~"(z) € D, which implies
that f"*(D) is a free disk that contains z and f"(z). In both cases, z belongs
to fdrec( f), which means that ii) is true.

It is sufficient to prove iii) for the w-limit set, the proof for the a-limit
set being similar. Let us prove first that w(z) C fix(f) if z ¢ fdrec(f).
Indeed, if 7/ € w(z) \ fix(f), one can choose a free disk D containing z" and
two integers n’ > n such that f"(z) and f "(2) belong to D. It implies that
f7™(D) is a free disk that contains z and f ”/_"(z). This contradicts the fact
that z ¢ fdrec(f). To prove that w(z) is included in a connected component of
fix(f), it is sufficient to prove that it is contained in a connected component
of O, for every neighborhood O of fix(f). If O is such a neighborhood,there
exists a neighborhood O’ C O of fix(f) such that forevery z € 0'N f~1(0"),
the points z and f(z) belong to the same connected component of O. There
exists N such that f"(z) € O’ for every n > N. This implies that the " (z),
n = N, belong to the same connected component of O.

It remains to prove iv). If W is a connected component of fdrec( f) of period
q > 1, it is not a connected component of S? \ fix(f) (see Brown and Kister
[8]) and so one can find a path & in S? \ fix( f) joining a point z € W to a point
7' ¢ W. Taking a subpath if necessary, one can suppose that y is included in
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W but the endpoint 7 (which is in the frontier of W and not fixed). Let us
choose a path 8 in W joining z to f7(z). It is a classical fact that there exists
a simple path y joining z’ to f4(z") whose image is included in the image of
a~'Bf4(a). The point z’ is not periodic because it is neither in fix(f) nor in
fdrec( f) and so the points z/, f(z'), f4(z) and f9+1(z’) are distinct (recall
that ¢ > 1). More precisely, since y C W and W is free, the path y is free
and so one can find a free disk that contains it, which contradicts the fact that
Z is not in fdrec(f). O

Suppose now that the set of positively recurrent points is dense. It is equiv-
alent to say that Q(f) = S? and in that case the set of positively recurrent
points is a dense G set, as is the set of bi-recurrent points (these conditions are
satisfied in the particular case of an area preserving homeomorphism). Note
that, in this case, every connected component of fdrec(f) is periodic and so
is fixed. Write (Wy)qe Af for the family of connected components of fdrec( f)

and define A,, to be the interior in S? \ fix(f) of the closure of W,. Note that

Ae =S\ | AwUfix(f)
a’'eAp\{a}

because the recurrent points are dense in S? and contained in fdrec( ) if not
fixed.

We will prove the following result, which implies Theorem M of the intro-
duction, and that extends Theorem 1.2 of [14].

Theorem 51 Let f : S* — S? be an orientation preserving homeomorphism
such that Q(f) = S* and h(f) = 0. Then one has the following results:

i) each A, is an open annulus;
ii) the sets Ay are the maximal fixed point free invariant open annuli;
iii) every point that is not in a Ay is heteroclinic;
iii) let C be a connected component of the frontier of Aq in S* \ fix(f),
then the connected components of ix(f) that contain «(z) and w(z) are
independent of z € C.

We will begin by stating a local version of this result, which means a version
relative to a given maximal hereditary singular isotopy /. We denote I the lifted
identity isotopy to the universal covering space ESB([ ) of dom(/) and f the
induced lift of f|qom(s). Say that a point z € dom([/) is free disk recurrent
relative to I or I free disk recurrent if there exists an integer n > 0 and a
topologlcal open disk D C dom([/) contammg zand f"(z), such that each lift
to dom(l ) is disjoint from its image by f (we will say that D is I-free). Let
us state the local version of Proposition 50.

@ Springer



Forcing theory for transverse trajectories 695

Proposition 52 One has the following results:

i) the set of I-free disk recurrent points is an invariant open set fdrec(l);
ii) it contains every positively or negatively recurrent point in dom([);
iii) every point in S? \ fdrec(I) is heteroclinic and its a-limit and w-limit sets
are included in connected subsets of sing(1);
iv) every periodic connected component of fdrec(1) is fixed and lifted to fixed
subsets of fv .

Proof Replacing free disks by I-free disks, one proves the three first assertions
exactly like in the global situation. Similarly, one can prove that every periodic
connected component of fdrec(/) is fixed. Writing 7 : E(;IE(I ) — dom(/)
for the universal covering projection, it remains to prove that the connected
components of 7 ! (W) are fixed by f if W is a fixed connected component of
fdrec(7). If they are not fixed, they are not connected components of dom(I ),
which means that W is not a connected component of dom(/). So one can
find a simple path « joining a point z € Wtoapoint 7/ € 9W Ndom(/) and
included in W but the endpoint z’, and then construct a simple path y joining
7 to f2(z) included in W but the two endpoints. It will lift to a f free simple
path and so one can find a /-free disk that contains y. This contradicts the fact
that 7’ is not in fdrec(7). O

Suppose now that Q(f) = S2. Write (Wg)pep, for the family of connected
components of fdrec(/) and define Ag to be the interior in dom(/) of the
closure of E/,g. One knows that the sets Wy, Ag are fixed and lifted to fixed
subsets of f. Here again, one has

Ap=dom(D\ | Ap.
B'eBI\(B)

The local version of Theorem 51 is the following:

Theorem 53 Let f : S* — S? be an orientation preserving homeomorphism
such that Q(f) = S? and h(f) = 0, and I a hereditary singular maximal
isotopy. Then one has the following results:

i) each Ag is an open annulus;
ii) the sets Ag are the maximal invariant open annuli contained in dom(I);
iii) every point that is not in a Ag is heteroclinic and its a-limit and w-limit
sets are included in connected subsets of sing(l);
iv) let C be connected component of the frontier of Ag in dom([), then the
connected components of sing(l) that contain a(z) and w(z) are inde-
pendent of 7 € C.
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Let us explain first why the local theorem implies the global one. If A is
a topological annulus, an open set will be called essential if it contains an
essential loop and inessential otherwise. A closed set will be called inessential
if there exists a connected component of its complement that is a neighborhood
of the two ends in the case where A is open, that meets the two boundary circle
in the case where A is closed, and that is a neighborhood of the unique end
and meets the boundary circle in the remaining case. Otherwise, we will say
that this set is essential.

Proof of Theorem 51, first part, proof of assertions (i), (ii), and (iii) Let us
explain first why every fixed point free invariant open annulus A is contained
inan Ay, o € Ay. It is sufficient to prove that fdrec(f) N A is connected.
Indeed fdrec( ) N A will be contained in a W, @ € Ay, and consequently A
will be contained in A,. Let W be a connected component of fdrec(f) N A.
Applying Proposition 50 to the end compactification of A, one knows that W
is fixed. If it is inessential, one gets an invariant open disk D C A by filling
W, which means adding the inessential components of its complement. By
Brouwer’s plane translation Theorem, since the restriction of f to D has non
wandering points, there must exist a fixed point in this disk, which is impossi-
ble. So, every connected component of fdrec( f) N A is essential. Suppose now
that fdrec(f) N A has at least two connected components. The complement
in A of the union of two such components has a unique compact connected
component. It is located “between” these components. This last set is invariant
(by uniqueness) and contains points that are not free disk recurrent. But one
knows that the «-limit and w-limit sets of such points contain fixed points and
A is fixed point free. We have a contradiction.

Let us prove now that each Ay, @ € Ay, is an annulus. It is sufficient
to prove that it is contained in a fixed point free invariant annulus. Let us
consider a sequence (z;);>0 dense in fix(f), sequence which will be finite
if there are finitely many fixed points. Let us fix A,. Let Ip be a maximal
hereditary singular isotopy whose singular set contains zg, z1, z2. The set
W, 1s connected and included in fdrec(/y) so it is contained in a connected
component Wpg,, Bo € Bj,. One deduces that A, C Ag,. If Ag, is fixed point
free, we stop the process. If not, we consider the first z;, that belongs to Ag,
and consider a maximal hereditary singular isotopy /1 of f|4, whose singular
set contains zx,. Similarly, there exists 81 € By, such that A, C Ag,. If Ag,
is fixed point free, we stop the process. If not, we consider the first z;, that
belongs to Ag, and we continue. If the process stops, the last annulus will be
fixed point free. If the process does not stop, A, is contained in the interior
of (V;>0 Ap;- The connected component W' of the interior of (1), Ag, that
contains A, is invariant. Moreover, it is fixed point free because it is open
and because the sequence (z;);>¢ is dense in fix(f) and away from W. Let
us prove that for i large enough, Ag,, is essential in Ag, and that W is an
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annulus. Let us suppose that Ag,, is inessential in Ag; for infinitely many
i. Consider a simple loop I'" in W. It bounds a disk (uniquely determined)
included in Ag,, every time Apg, " is inessential in Ag,, which implies that it
bounds a disk included in ﬂi>0 Ag,, and so included in W. This means that
W is a disk, which contradicts the fact it is fixed point free. Suppose now that
Ag,., is essential in Ag, for every i > ip. By the same reasoning, if ' C W
is a simple loop such that I" is inessential in the Ag,;, i > io, then I" bounds a
disk in W. This implies that W is an open annulus, that is essential in the Ag,,
i>ip.

The assertion iii) is obvious because every free disk recurrent point is con-
tained in a W, and so in an A,. We will postpone the proof of iv) to the end
of this section because we need a little bit more than what is stated in the local
theorem. m|

Before proving Theorem 53, we will state a result relative to a couple (1, F),
where F is a foliation transverse to /. By Theorem 36 and the density of
the set of recurrent points, one knows that two transverse trajectories never
intersect F-transversally. In particular, there is no transverse trajectory with
JF-transverse self-intersection and by Proposition 2 every whole transverse
trajectory of an F-bi-recurrent point is equivalent to the natural lift of a trans-
verse simple loop I'. We denote by G, = the set of such loops (well defined
up to equivalence) and rec(f)r the set of bi-recurrent points whose whole
transverse trajectory is equivalent to the natural lift of I". Consider a point
z € dom(/). For any given segment of / ;Z_; (z) there exists a neighborhood of z
such that this segment is equivalent to a subpath of / th (z') if Z’ belongs to this
neighborhood. Suppose now that this segment meets a leaf more than once.
The transverse simple loop I' associate to z’ does not depend on Z/, if 7 is
chosen bi-recurrent (remind that the set of bi-recurrent points is dense). Sum-
marizing, we have stated that any segment of / %— (z) is equivalent to a subpath
of the natural lift of a transverse simple loop, but this loop is uniquely defined
(up to equivalence) if this segment meets a leaf more than once. Consequently,
if 1 % (z) meets a leaf more than once, it is equivalent to a subpath of the natural
lift of a uniquely defined transverse simple loop. One deduces that the set of
points whose whole transverse trajectory meets a leaf more than once, admits
a partition |_|F G 5 Wr in disjoint invariant open sets, where z € Wr if [ %—(Z)
meets a leaf at least twice and is a subpath of the natural lift of I". Define
Ar = int(Wr). Note that

Ap = int@rec(f)r) =dom()\ | J Ar.
I'eGy F\(T}

Recall that Ut is the union of leaves that meet I'.
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Proposition 54 One has the following results:

i) the set Ar is an essential open annulus of Ur;
ii) every point in dom([) \ UFeg;,p Ar is heteroclinic and its a-limit and
w-limit sets are included in connected subsets of sing(1);
iii) let C be a connected component of the frontier of Ar in dom([l), then
the connected components of sing(l) that contain «(z) and w(z) are
independent of z € C.

7.1 Proof of Proposition 54

This subsection is devoted entirely to the proof of Proposition 54.

The assertion ii) is an immediate consequence of the following: if 7’ €
dom([/) belongs to the a-limit or w-limit set of z € dom(/), then the whole
transverse trajectory of z meets infinitely often the leaf ¢, and so z belongs
to UFGQL]: Wr.

Letus prove i). One can always suppose that dom(/) is connected, otherwise
one must replace dom(/) by its connected component that contains I" in what
follows. Fix a lift ¥ of " in 886(1 ), write T for the covering automorphism
such that §(t + 1) = T(¥(t)), write dom(I) = dom([)/T for the annular
covering space associated to I'. Denote by T &)E(!\ ) — dom(/) the covering
projection, by I the induced identity isotopy, by f the induced lift of f, by
J the induced foliation. The line y projects onto the natural lift of a loop I'.
The union of leaves that meet I', denoted by Ug, is the annular component Qf

7~ 1(Ur). We note that there cannot be an essential simple closed curve I'’
contained in UF whose image by f is disjoint from itself, otherwise the region
bounded by 7 (F ) and 7 ( f (F )) would be wandering for any f. In particular,
by the same reasoning as in Lemma 27, one gets that the o and w limit of any
given leaf of F that is contained in Ur must be different ends of ﬁ(l ), and
every leaf of F that does not intersect UF disconnects ﬁ([ ). One gets a

sphere dom([ )sph by adding the end N of dom(I ) at the left of I" and the end S
at the rlght The complement of Ug has two connected components / (F) U{N}
and r(T) U {S}. Note that T is the unique simple loop (up to equivalence)
that is transverse to . Like in dom(/), transverse trajectories do not intersect
F- transversally. The set of points that lift a bi-recurrent point of )%18 dense.
If the trajectory of such a point z meets a leaf at least twice, then /2 2@ is the

natural lift of T". Denote rec( f)7 the set of such points. Otherwise / /Z(z) meets
either /( F) orr (F) the two situations being excluded, because / 7(2) does not

intersect T' F- transversally. Denote rec( f)y and rec( f)s the set. of pomts z
that lift a bi-recurrent point of f and such that /% ]__(z) meets [ (F) and r(F)
respectively. Note that the intersection of the complete transverse trajectory of
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z e rec(f)n and U, when not empty is equivalent to fl J where J is an open
interval of T!, and a similar statement holds ifz € rec()f )s. In partlcular there
exists 7 > 0 such that TX(f"(z)) C {(T) and T2"(f " (2)) € I(T). Write

Wr for the set of points such that / 7(z) meets a leaf at least twice, write Wy
for the set of points z € dom(I ) such that / AZ(z) meets / (F) write Wy for the

set of points such that 7% (z) meets r(F). We get three disjoint invariant open
sets, that contain rec( f)g, rec(f)n, rec(f)s respectively and whose union is
dense. Note that the «-limit and w-limit sets of a point z ¢ Wg are reduced to
one of the ends. These ends are both equal to N if z € rec(f)y and both equal
to S if z € rec(f)s. We will see later that they are both equal to N if z € Wy
and both equal to S if z € Ws. Note also that

wy =] ramy, ws=Jr*eay.

keZ keZ

Indeed, every leaf ¢ that is not in Up bounds a disk disjoint from Ug. So, if
If(z) meets ¢ and ¢ C [(I"), then one | of the point z or f(z) isin /(I"), and if
¢ C r(I'), then one of the point z or f(z) isin r(I).

Observe that Wy projects homeomorphically on Wr and that Ap =
int(Wp) = dom(1 )sph \ Wn U W projects homeomorphically on Ar. We
want to prove that A is an annulus.

Lemma 55 There exists a leaf ¢s in Ug that does not meet Wy.

Proof Recall that the intersection of the whole transverse trajectory of z €
rec(f)n and Up, when not empty is equivalent to I'|; where J is an open
interval of T'. Consider the set 7 of such intervals. The fact that there are
no transverse intersection tells us that these intervals do not overlap: if two
intervals intersect, one of them contains the other one. One deduces that there
exists7 € T'! that does notbelong to any J . Indeed, by a compactness argument,
if T! can be covered by the intervals of 7, there exists » > 2 such that it can
be covered by r such intervals but not less. By connectedness, at least two of
the intervals intersect and one can lower the number 7. Set ¢s = ¢p,y. The set

rec(f)n being dense in Wy, the leaf ¢p5 does not meet the whole transverse
trajectories of points in Wy . In particular, it does not meet Wy . O

Lemma 56 The set Og of points whose whole transverse trajectory meets ¢g
is a connected essential open set.

Proof Fix a lift $ of ¢g in 885(1 ). The set O of points whose trajectory
meets q~§ isequal to | J kel f*k (L (5) N R( f (5))), it its connected and simply
connected. So its projection Oy is connected. Every lift of a point in rec( )
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belongs to all the translates Tk(5), k € Z. So the union of the translates is
connected, which means that Og is essential. O

Lemma 57 The set Wy does not contains S and for every z € Wy, one has
a(z) = w(z) = {N}

Proof The set Wy is connected because it can be written

Wy = ramuny.

keZ

It does not contain S because it is connected and does not intersect the essential
open set Os. Moreover, one knows that the «-limit and w-limit sets of points
in Wy are reduced to one of the ends. They both are equal to N, because
S ¢ Wy. O

Similarly, there exists a leaf ¢ in Uy that does not meet Wy and the set On
of points whose whole transverse trajectory meets ¢y is a connected essential
open set. Moreover, N ¢ WS and for every z € Wy, one has a(z) = w(z) =
{S}. Consequently WN and Wy do not intersect. Two points in OgN Oy are not
separated neither by WN nor by Wg, because Og and Oy are connected and
disjoint from WN and Wy respectively. So they are not separated by Wy U Wy
because Wg N Wy = . One deduces that 05 N Oy is contained in a connected
component O of the complement of Wg U Wy, which is nothing but Agp. So
we have

Wp C OsN Oy C O C Ap C Wr.

We deduce that the sets appearing in the inclusions have the same closure
and that Ap is connected because O C A C O. To conclude that Ag is an
essential annulus, it is sufficient to use the connectedness of Wy and W, they
are the two connected components of the complement of Ap.

It remains to prove iii). Note first that every leaf of F is met by a transverse
simple loop and so is wandering. It implies that the -limit and w-limit sets
of a leaf are included in two different connected components of sing(/). Let
us fix I' € G; 7. The complement of Ar has two connected components.
One of them contains all singularities at the left of I and all leaves in I(I"),
denote it by L(Ar). One defines similarly R(Ar). Write E for the union of
intervals J € J defined in the proof of Lemma 55. A point r € T! belongs
o Z if and only if there exists z € rec(f) N L(Ar) whose whole transverse
trajectory meets ¢r(,) or equivalently, if there exists z € L(Ar) whose whole
transverse trajectory meets ¢r ;). Note that if C is a connected component of
(@Ar \ sing()) N L(Ar), then the set

Je={teT', CN¢ru # 0}
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is an interval contained in E. Denote by (¢_, 7;.) the connected component of
E that contains this interval. The assertion iii) is an immediate consequence
of the following:

Lemma 58 The interval Jc is equal to (t—, t1.). Moreover, for every z € C,
the connected components of sing(l) that contain o (z) and w(z) coincide with
the connected components of sing(I) that contain w(¢r(_)) and w(¢r.,))
respectively.

Proof Fix z € C. Every point fk (z) belongs to a leaf ¢r(,), where 1, €
T'. By definition of Z, one knows that the whole transverse trajectory of
z never meets a leaf ¢r¢), t ¢ E, and sot € (1, 14) if ¢r() meets this
trajectory. In particular, the sequence (#x)ixez iS an increasing sequence in
(t—,ty). We set 1/ = limy_, oo tx and #, = limy_, ;o . We write F/_ for
the connected component of sing(/) that contains w(q&r(ﬂr)). We will prove
first that the connected component of sing(/) that contains w(z) is F and
then that #/. = ¢,.. We can do the same for the «-limit set. One knows that
w(z) is contained in L(Ar) Nsing(7). So, there exists a sequence (Z,’c)kgo such
that z; € ¢~ (zx) for every k > 0, that “converges to F” in the following
sense: every neighborhood of F’ contains z; for k sufficiently large. Let us
prove now that every neighborhood of F/ contains the segment y; of ¢r )
between z; and z, for k sufficiently large. If not, there exists a subsequence
of (yx)k>0 that converges for the Hausdorff topology to a set that contains
a point z ¢ sing(/). This point belongs to /(I") and the leaf ¢, is met by a
loop I'" € G;, 7. For convenience choose the loop passing through z, so that
we know that z; belongs to L(I'’), for infinitely many k. One deduces that
the connected component of sing(/) that contains w(z) belongs to L(I'). But
this implies that it also belongs to L(Ar). This connected component being
included in the open disk Apr U L(A), every point zx belongs to this disk for
k large enough. This contradicts the fact that z € 0Ar, because Ar» U L(Ay/)
is in the interior of L(Ar). It remains to prove that t| = . If 1} < 14,
then br,) is met by a loop I'" € G; £ such that Ap» C L(Ar) and we prove
similarly that for k large enough z; belongs to the open disk Apr U L(Ar)
getting the same contradiction. O

7.2 Proofs of Theorems 53 and 51

Proof of Theorem 53 Note that if I" and I'’ are two distinct elements of G;_r,
then T is not freely homotopic to I'” in dom(7). Indeed, there exists a leaf
¢ € Ur \ Ur. The two sets a(¢) and w(¢) are separated by I" but not by I'’
which implies that these two loops are not freely homotopic. Let us explain
now why the families (rec(f )F)Fegl’ #and (Ar)reg, » are independent of F
(up to reindexation), they depend only on . In particular, if ' is another
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foliation transverse to /, then every I' € Gy # is freely homotopic to a unique
I € Gy 7 and one has rec(f)r = rec(f)r. Let z be a recurrent point and
D C dom(/) an open disk containing z. For every couple of points (z’, z”)
in D, choose a path y,/ .» in D joining z’ to z”. Let (nx)r>0 be an increasing
sequence of integers such that limg_, { f"*(z) = z. For k large enough, the
path 1"%(2)y fne(;),, defines a loop whose homotopy class is independent of
the choices of D and y pu () .. If z belongs to rec(f)r, this class is a multiple
of the class of I'. This means that the family of classes of loops I" € G; = does
not depend on F. It implies that the family of sets rec( f)r does not depend on
F either. We will denote (Ay)rexc; and (rec(f)«)cek, our families indexed
by homotopy classes.

The fact that every invariant annulus contained in dom(/) is contained in
an Ag, B € By, can be proven exactly like in the global case. So, to prove
Theorem 53, particularly the fact that every Ag is an annulus, it is sufficient
to prove that it is equal to an A,, k € K;. Note that an A, is an invariant
annulus contained in dom(/) and so is contained in an Ag. If we prove that
every I-free disk recurrent point is contained in an A,, we will deduce that
each Ag is a union of A, which implies that it is equal to one A, because it
is connected. We will prove in fact that for every /-free disk recurrent point
Z, there exists a transverse foliation JF such that z belongs to a Wr, I' € Gy r.
Let us give the reason. In the construction of transverse foliations we have the
following: if X is a finite set included in an /-free disk D, one can construct a
transverse foliation such that X is included in a leaf (see Proposition 59 at the
next subsection). Consequently, if D contains two points z and f"(z), n > 0,
one can construct a transverse foliation such that z and f”(z) are on the same
leaf, which implies that z belongs to a Wr. O

Proof of Theorem 51, second part, proof of assertion iv). Fix ag € Ay. The
assertion iv) is obviously true if the complement of A, is the union of two
fixed points. Let us prove it in case exactly one the connected components
of the complement of Ay, is a fixed point zo. By assertion iii) there exists at
least one connected component X; # {zo} of fix(f) that meets the frontier
of Ag. If {zo} and X are the only connected components of fix(f), the
result is also obviously true. If not, choose a third component X», then choose
z1 € X1 N09(Ag) and zo € X» and finally a maximal hereditary singular
isotopy I whose singular set contains zg, z1 and zo. We will prove that the
connected component Ag,, By € B, that contains A, is reduced to Ag,. This
will imply iv). Suppose that Ag, is not reduced to Ag,. In that case it contains
other Ay, @ € Ay, and the union of such sets is dense in Ag, and contain
all the recurrent points. The two ends of Ag, are adjacent to Ay, because
z1 € sing([/). It implies that Ay, is the unique A, that is essential in Ag,. So,
if Ay is included in Ag, and o # ), the union of A, and of the connected
component of its complement that are included in A g, is an invariant open disk
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D, C Ag, disjoint from Ag,. Let us consider a foliation F transverse to I and
the loop I' € G; 7 such that Ar = Ag. We will work in the annular covering
space, where A is homeomorphic to Ar and will write Dz C Ag for the disk
corresponding to D, and Ag, for the annulus correspondlng t0 Agy.

The fact that {zg} is a connected component of S?\ Ag «o and that the singular
set of I contains zo and two other points in different components of the fixed
point set of f, implies that one of the sets r(T") or /(T") is empty and the other
one is not. We will assume for instance that »(I') = ¢ and I[(I") # . We
have seen in the proof of Proposition 26 that there exists a compactification
&)E(I )ann Obtained by blowing up the end N at the left of r by a circle =N
such that fextends to a homeomorphism f;nn that admits fixed points on the
added circle with a rotation number equal to zero for the lift famn that extends
f Note now that every recurrent point of f that belongs to a Dg has a rotation
number (for the lift f ) and that this number is a positive integer because Dg
is fixed and included in Ag. So, every periodic orbit whose rotation number is
not an integer belongs to Ag,

There are different ways to get a contradiction. Let us begin by the following
one. The closure of Aﬁo in ﬁ([ )ann 1S an invariant essential closed set that
contains Ag, and meets X . In particular it contains fixed points of rotation
number 0 on Xy. Denote by K the complement of Ag, in the closure of Az

in dom(l )ann- It contains the fixed points located on X and all the Dg, which
means that it contains fixed points of positive rotation number. It is an essential
compact set because Ag, is an essential annulus which is a neighborhood of

the end of dom(I )ann- All points in K being non wandering, one can apply a
result of S. Matsumoto [32] saying that K contains a periodic orbit of period ¢
and rotation number p/q for every p/q € (0, 1). But one knows that all such
periodic points must belong to Ag,. We have a contradiction.

Let us give another explanation. We will need the following intersection
property: every essential simple loop in ﬁ(] )ann Meets its image by ﬁnn.
The reason is very simple. Perturbing our loop, it is sufficient to prove that
every essential simple loop in @(1 ) meets its image by f Such a loop meets
A %o because the two ends of @(I ) are adjacent to Aﬁo and so contains a non
wandering point (every point of Az is non wandering). This implies that the

loop meets its image by f

Using the fact that the entropy of f? is zero, one can consider the family of
annuli (Ag') ge 4( £2)> and denote by Ag’ the annulus of Az that corresponds to
anannulus A, contained in Ag,. Every periodic point z of period 3 and rotation
number 1/3 or 2/3 belongs to an annulus Ag and this annulus is f -invariant.
It must be essential in Az Bo’ otherwise the rotation number of z should be a

multiple of 1/2. Butif itis essential, it must be f invariant, its f -period cannot
be 2. It is included in Ag,, otherwise it would be included in a non essential
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Ag. Being given such an essential annulus, note that the set of periodic points
of period 3 and rotation 1/3 or 2/3 strictly above (which means on the same
side as Xy) is compact. Indeed, the rotation number induced on the added
circle is 0. One deduces that there are finitely many annuli Ag that contains
periodic points of period 3 and rotation number 1/3 or 2/3 above a given
one and so there exists an highest essential annulus A4 that contains periodic
points of period 3 and rotation number 1/3 or 2/3. If one adds the connected
component of @(1 Jann \ A&(r) containing ) N to A&(r), one gets an invariant

semi-open annulus A that contains ) n and all disks Dg. The restriction f;nn [A
satisfies the intersection property stated in Lemma 25 because A is essential
in ﬁ([ )ann. The annulus A contains a fixed point of rotation number 0 and
a fixed point of positive rotation number, so, by Lemma 25, it contains at least
one periodic orbit of period 3 and rotation number 1/3 and one periodic orbit
of period 3 and rotation number 2 /3. These two orbits must be included in Aa(/)

by definition of this set. But ﬂ A, satisfies the intersection property because
“0

A&(/ is essential in &)E(I )ann- S0 Az contains a periodic point of period 2 and
rotation number 1/2, which is impossible.

In the case where none of the connected components of the complement of
Ag, 1s a fixed point, one can crush one of these components to a point and
used what has been done in the new sphere. O

Let us add some comments on the boundary of the annuli A.

Let f : S* — S? be an orientation preserving homeomorphism such that
Q(f) = S?and h(f) = 0. Suppose moreover than the fixed point set is totally
disconnected. Every annulus Ay, @ € Ay, admits accessible fixed points on
its boundary. More precisely, if X is a connected component of S? \ Ay, there
exists a simple path y joining a point z € A to a point z’ € sing(f) N X and
contained in A, but the end z’. Indeed, one can always suppose that the other
connected component of S? \ A, is reduced to a point zo and that f has least
three fixed points (otherwise the result is obvious). What has been done in the
previous proof tells us that there exists a maximal hereditary singular isotopy
I, a transverse foliation 7 and I' € Gy _r such that A, = Ar. There exists a
leaf ¢ C Ur that is not met by any transverse trajectory that intersects X. This
leaf (or the inverse of the leaf) joins zg to a fixed point z € X and is contained
in Ar.

Let f : S2 — S? be an orientation preserving homeomorphism such that
Q(f) = S?and h(f) = 0. Let I be a maximal hereditary singular isotopy and
F a transverse foliation. Every annulus Ar, I' € Gy, that meets ¢ is such
that the connected components of Fix(/) that contains «(¢) and w(¢) are
separated by Ar. One deduces immediately that a point z € dom(/) belongs
to the frontier of at most two annuli Ar, I' € G; #. Of course this means that
a point z € dom(/) belongs to the frontier of at most two annuli Ag, 8 € By,
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but it also implies that a point z ¢ fix( f) belongs to the frontier of at most two
annuli Ay, o € Ay. Indeed, suppose that z ¢ fix(f) belongs to the frontier
of Ay, 0 < i < 2.1If X; is the connected component of S\ Ag; that does
not contain z, then the three sets X; are disjoint. Choose a fixed point z; in
each X; (such a fixed point exists because X; U Ay, is an invariant disk and
Ay, has no fixed points). Choose a maximal hereditary singular isotopy / that
fixes the z; and denote Ag,, B; € B, the annulus that contains A, . Note that
the three annuli Ag; are distinct and that z belongs to their frontier. We have a
contradiction. O

7.3 Transverse foliation and free disks

We conclude this section by justifying a point used above in the proof of
Theorem 53.

Proposition 59 Let f : M — M be a homeomorphism isotopic to the identity
onasurface M and I a maximal singular isotopy. Let X be a finite set contained
in an I-free disk. Then, there exists a transverse foliation F such that X is
contained in a leaf of F.

Proof The proof can be deduced immediately from the construction of trans-
verse foliations, that we recall now (see [28]). A brick decomposition D =
(V, E, B) onasurface is given by a one dimensional stratified set, the skeleton
% (D), with a zero-dimensional submanifold V such that any vertex v € V
is locally the extremity of exactly three edges e € E. A brick b € B is the
closure of a connected component of the complement of X (D). Say that a
brick decomposition D = (V, E, B) on dom(/) is I- free if every brick is
[ -free, or equlvalently, if its lifts to a brick decomposmon D= (V E, B) on
the universal covering dom(I ), whose bricks are f free, where f is the lift
associated to 1. Say that D is minimal if there is no /-free brick decomposition
whose skeleton is strictly included in the skeleton of D. Such a decomposition
always exists.

Write G for the group of automorphisms of the universal covering space.
Using the classical Eranks’ lemma on free disk chains [11], one constructs a
natural order < on B that satisfies the following:

— it is G-invariant;
— if f(B) meets B, then ' < B;

— two adjacent bricks are comparable.

One can define an orientation on 2(5) (inducing an orientation on (D))
such that the brick on the left of an edge ¢ € E is smaller than the brick on the
right. Moreover, every vertex v € V is the ending point of at least one oriented
edge and the starting point of at least one oriented edge. In other words there
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is no sink and no source on the oriented skeleton. We have three possibilities
for the bricks of B:

— it can be a closed disk with a sink and a source on the boundary (seen from
inside);

— it can be homeomorphic to [0, +oo[ xR with a sink on the boundary and a
source at infinity;

— it can be homeomorphic to [0, +00[ xR with a source on the boundary and
a sink at infinity;

— it can be homeomorphic to [0, 1] x R with a sink and a source at infinity
(in this case it can project onto a closed annulus).

Let us state now the fundamental result, easy to prove in the case where G is
abelian and much more difficult in the case it is not (see Proposition 3.2 of
[28]): one can cover E(D) with a G-invariant family of Brouwer lines of f
such that two lines never intersect transversally in the following sense: if A
and A" are two lines in this family, either they do not intersect, or one of the
sets R(1), R(X') contains the other one.

Such family of lines inherits a natural order <, where

A< )M & R(L) C RO).

One can “complete” this family to get a larger family, with the same properties,
that possesses the topological properties of alamination (in particular every line
admits a compact and totally ordered neighborhood). Then one can arbitrarily
foliate each brick b € B such that, when lifted to a foliation on a brick b € B,
every leaves goes from the source to the sink. We obtain then, in a natural
way, a decomposition of H_O\IE(I ) by a G-invariant family of Brouwer lines
that do not intersect transversally, and that possesses the topological structure
of a plane foliation (it is a non Hausdorff one dimensional manifold).

It remains to blow up each vertex, by a desingularization process (see [27])
to obtained a G-invariant foliation by Brouwer lines. O

7.4 Zero entropy annulus homeomorphisms

In this subsection we prove some results for a general open annulus homeo-
morphism whose extension to the ends compactification has zero topological
entropy. A stronger version of the first result for diffeomorphisms was already
proved in an unpublished paper of Handel [20].

As noted in the introduction, given a homeomorphism of an open annulus
T! x R and a lift f to R?, denote by 7 : R> — T! x R the covering
projection, and by 771 : R> — R the projection in the first coordinate. For any
point z € T! x R such that its w-limit set is not empty, we say that z has a

@ Springer



Forcing theory for transverse trajectories 707

rotation number rot(z) if, for any compact set K C T! x R, any increasing
sequence of integers ny such that £ (z) € K and any Z € 7~ !(2),

.1 Ny v y

lim — (m(f”k ) — 711(z)) = rot(z).
k—o00 ng

In general it is not expected that every point will have a rotation number,

but if we assume that f has zero entropy this must be the case, at least for

recurrent points, as shown by the following theorem, which is a restatement
of Theorem L

Theorem 60 Let f be a homeomorphism of T' x R isotopic to the identity,
f a lift of f to the universal covering space, and let fsphere be the natural
extension of f to the sphere obtained by compactifying each end with a point.
If the topological entropy of fsphere is zero, then each bi-recurrent point has a
rotation number rot(z). Moreover, the function z + rot(z) is continuous on
the set of bi-recurrent points.

Proof For every compact set K of T! x R define the set rot 7 k(@ CRU
{—00, 00} as following: p belongs to rot 7 x (z) if there exists an increasing

sequence of integers 74 such that " (z) € K and such thatforany z € 7 ~!(2),
one has

. 1 YA .
lim — (7 (/™) — 1 (®) = p.
k—o0 nj

Writing T : (x, ¥) — (x + 1, y) for the fundamental covering automorphism,
one immediately gets rot FoTr K (z) = rot FK (z) + p forevery p € Z. One can
prove quite easily that rot .k, (z) = grot F x (2), for every g > 1, where

K, = U0§k<q f~%(K). Finally, note that rotfﬁK(z) = rot
where O(f, z) is the f-orbit of z.

Now, recall why every positively recurrent point z of f is a positively
recurrent point of f9, for every ¢ > 1. The set R of integers r such that
there exists a subsequence of (f"?(z)),>0 that converges to f”(z) or equiv-
alently a subsequence of (f"?7"(z)),>0 that converges to z, is non empty
because z is positively recurrent. Note that R is stable by addition. Indeed
if r and r’ belong to R, one can approximate f’+’/ (z) = f’(f’/ (z)) by a
point f7(f"4(z)) = f"t"'4(z) as close as we want, and then approximate
frima(z) = fM9(f7(2)) by a point f79(f(z)) = f@+19(z) as close as
we want. One deduces that gr belongs to R if it is the case for », which implies
that z is a positively recurrent point of 7. Similarly, every bi-recurrent point
z of f is a bi-recurrent point of f4, for every g > 1.

For every couple (p, g) of integers relatively prime (¢ > 1), one can choose
an identity isotopy /; g of f4 thatis lifted to an identity isotopy of floTP,

£.0(f.2NK (2),
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then a maximal hereditary singular isotopy /, , such that / ;,, g = Ipg,and
finally a singular foliation F, , transverse to I, ,. The singular points of
I, 4 are periodic points of period ¢ and rotation number p/q. Let z be a
bi-recurrent point of f that is not a singular point of /, ,. By Theorem 36
and Proposition 2, the whole trajectory (/ P”I)%-‘p,q (z) is the natural lift of a
simple loop I', ;(z) (uniquely defined up to equivalence). In particular, one
has I'p 4(z) = T'pq(f7(2)). Write Ur, () for the open annulus, union of
leaves met by I'), ,(z). Every leaf containing a point of O(f4, z) is met by
(Ipﬂ)%# (z). It implies that O (f4, z) C Ur,, oV sing(/, 4). Note also that
the function z — I', ;4(z) is locally constant on the set of bi-recurrent points.
Indeed if z is a bi-recurrent point and y : [0, 1] — dom(/, ;) a non simple
transverse subpath of the natural lift of I", ;(z), then y is a subpath of the
whole trajectory of 7/, if z/ is a bi-recurrent point sufficiently close to z, which
implies that "), ;(z') =T 4 (2).

One can lift the 1sotopy Ipgtoa smgular maximal 1sotopy I p.q Of f Yo0TP
and the foliation ) , to a foliation F p,q transverse to I p ¢- Fix alift Z € R?
of z. In the case where I', 4 (2) is not essential, then (I . q) (z) is the natural

lift of a transverse simple loop I", ,(2) that lifts I', ; (2). The f F4 o T~P-orbit
of Z stays in the annulus Ur,,¢> union of leaves met by I', (). In the

case where I'), ;(2) is essentlal and the upper end of T! x R is on the left
of I'y 4(z), then (i p,q)?_ (2) is the natural lift of a transverse line y, ,(2)
p.q

that lifts I, 4 (z). The fq o T~ P-orbit of Z stays in the strip Uy, , (3> union

of leaves met by y, ,(Z). Fix a parameterization y, ,(2) : R — dom(va,q)
such that y,, 4 (2)(t + 1) = T (yp,4(2)(1)). Forevery 7’ € Uy, , () there exista
unique real number, denoted by 7, (5 (Z') such that Z’ and y) 4 (2)(¢) are on
the same leaf. One gets a map Ty, ) Uy, ) = R, such that the sequence
(nym @) (fq oT~PYK(D))rez is increasing. In the case where I', ; () is essential
and the upper end of T! x R is on the right of I p.q(2), one proves by the same
argument that the sequence (1, _(z)( f 9 0 T™P)X(2))kez is decreasing.

Let z be a periodic point that is not a singular point of 7, ;. If I, ;(2) is not
essential, then the rotation number of z (defined for the lift f7 0T~ of f9)is
equal to zero, which implies thatrot(z) = p/q.If "), 4(2) is essential and if the
upper end of ’ T! x R is on the left of I p.q(2), the rotation number of z (defined
for the lift f9 o T™? of f7) is positive, which implies that rot(z) > p/q. If
I".4(2) is essential and if the upper end of T! x R is on the right of [pq(2),
then rot(z) < p/q.

Let us prove now that if z is bi-recurrent, the periodic points that belong to
the closure of O( f, z) have the same rotation number. Otherwise, one can find
a couple (p, q) of integers relatively prime (¢ > 1), and two periodic points
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Z1, 22 in the closure of O(f4, z) such that rot(z;) < p/qg < rot(zz). One
deduces that I', ,(z1) = ') 4(z2) = I' 4(z), which is impossible because
the upper end of T! x R is on the right of T',, ; (z1) and on the left of ' ;(22).

Let K be a compact subset of T! x R and z a bi-recurrent point. Let us
suppose first that the closure of O ( f, z) has no periodic points. For every couple
(p, q) of integers relatively prime (g > 1), the set O(f, z) N K, is a compact
subset of the annulus Ur, , (;). In the case where I'j, 4 (z) is not essential, one
deduces that IOt 7 o7, K, (z) 1s reduced to {0} and so rot 7K (z) is reduced to

{p/q}. In the case where I'}, ;(z) is essential and the upper end of T!' x Ris
on the left of I'j, , (z), there exits a real number M such that for every point Z’

that lifts a point of (O (f, z) N Ky) U {z}, one has |71 (Z") — Ty e ZH < M.
Using this property and the fact that the sequence (7, (5)( f10TPY))iez
is increasing, one deduces that rot FoT-r.K, (z) C [0, 4+o0] and consequently
that rot k@ Clp /g, +oc]. Similarly, in the case where I',  (2) is essential

and the upper end of T! x R is on the right of I'p.q(2), one gets rot 7 (z) C
[—o0, p/q]. ‘

One immediately concludes that rot 7K (z) is reduced to a number in R U
{—o00, oo} if not empty. Of course, this number is independent of K, we denote
itrot(z). Suppose now that the closure of O (f, z) contains periodic points. As
said before, they have the same rotation number pg/qo. The argument above is
still valid if p/q # po/qo and permit us to concluded that rot 7K (z) isreduced
to a number in R U {—o0, oo} independent of K. Of course the number is
nothing but pg/qo. Note that in both situations rot(z) is uniquely defined by
the following property:

— if p/q < rot(z), then I'}, 4 (2) is essential and the upper end of T! x R is
on the right of I'(2),

— if p/q > rot(z), then I'}, 4(2) is essential and the upper end of T! x Ris
on the left of I'(z).

Using the fact that each function z — I'}, ;(z) is locally constant on the set of
bi-recurrent points, one deduces immediately that the function z + rot(z) is
continuous on the set of bi-recurrent points.

It remains to prove that rot(z) is finite. Of course one can suppose that the
closure of O(f, z) does not contain a periodic orbit (otherwise as said before
rot(z) is rational). By assumption, z is not periodic, so let us choose a free
disk D containing z. There exists an integer s > 0 such that f*(z) € D and
an integer r € Z such that f5(%) € T"(D), if D C R? is a lift of D and ¥ is
the lift of z contained in D. Let us consider the singular isotopy I 1, where
k > r/s. As explained above the two points z and f*(z) belong to the free
disk D. So, by Proposition 59 one can choose the foliation F% 1 such that z
and f*(z) belong to the same leaf ¢. This implies that I 1 (z) is essential and
the upper end of T! x R is on the right of I'; 1 (z). Consequently, one deduces
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that rot(z) < k. One proves similarly that rot(z) > k' if k" is an integer smaller
than r/s. O

An interesting consequence is:

Proposition 61 Let f be an orientation preserving homeomorphism of S>.
Suppose that there exists a bi-recurrent point z such that the closure of its
orbit contains periodic points of minimal period q| < qa, where q| does not
divide q3. Then the entropy of f is positive.

Proof We suppose that the closure of the f-orbit O(f, z) of z contains a
periodic point z; of period ¢g; and a periodic point z,> of period g;. One can
choose z1 and z» in O(f4%2, 7). Writing r for the remainder of the Euclidean
division of g> by g1, one knows that f92(z;) = f"(z1). Since g2 is not a
multiple of gy, it is larger than 2 and f92 must have at least three distinct
fixed points. Choose a maximal hereditary identity isotopy / of f92 whose
singular set contains z», f"(z2) and at least a third fixed point of f92, then
consider a singular foliation F transverse to /. Since f has zero topological
entropy, f92 has zero topological entropy, and the path / % (z1) is equivalent to
the natural lift of a simple transverse loop I'. Using the fact that there exist at
least there singular points, one can find two singular points z), and z/ of I that
are separated by I" and such that {z/z, z’z/ } # {z2, f"(z2)}. The isotopy [ defines
anatural lift of £ .20} and for this lift, the rotation number of every point
of the f92-orbit of z; is a non vanishing number, while the rotation number of
every singular point different from 25 and z) is zero. As seen in the previous
proposition, the points z and f” (z) are bi-recurrent points of f92. In the case
where z5 ¢ {25, 2}, the closure of O (9, z) contains two periodic points z;
and z with different rotation numbers. In the case where f"(z2) ¢ {25, 25},
the closure of O(f92, f"(z)) contains two periodic points f"(z1) = f9(z1)
and f”(zp) with different rotation numbers. We have seen in the proof of the
previous proposition that in both cases, the entropy of f is positive. O

8 Applications to torus homeomorphims

In this section an element of Z? will be called an integer and an element of
Q? a rational. If K is a convex compact subset of R2, a supporting line is an
affine line that meets K but does not separate two points of K, a vertex is a
point that belongs to infinitely many supporting lines.

Let us begin by stating the main results of this section, that are nothing but
Theorems C, D and G from the introduction.

Theorem 62 Let | be a homeomorphism of T? that is isotopic to the identity
and f alift of f to R?. The frontier of rot(f) does not contain a segment with
irrational slope that contains a rational point in its interior.
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Theorem 63 Let f be a homeomorphism of T? that is isotopic to the identity
and f alift of f to R2. Ifrot( f) has anon empty interior, then there exists L > 0
such that for every z € R? and everyn > 1, one has d(f"(z) — z, nrot(f)) <
L.

Theorem 64 Let f be a homeomorphism of T? that is isotopic to the identity
and f alift of f to R?. Ifrot(f) has a non empty interior, then the topological
entropy of f is positive.

Recall that Theorem 64 has been known for a long time and is due to Llibre
and MacKay, see [30] and that Theorem 63 was known for homeomorphisms
in the special case of a polygon with rational vertices, see Davalos [10], and
for C!*€ diffeomorphisms, see Addas-Zanata [2].

Let us state first some consequences of these results. Let f be a homeomor-
phism of T? that is isotopic to the identity and f a lift of f to R2. We suppose
that rot( f ) has non empty interior. For every non trivial linear form v on R2,
define

a(y) = max{y (rot(w)) , € M(f)}.

The affine line of equation ¥ (z) = a(¥) is a supporting line of rot( f ). Set

My ={ e M(f), Yrot(w) = a¥)}, Xy = [ supp().
HEMy,

As already noted in [2], we can deduce from Theorem 63 and Proposition 47
(Atkinson’s Lemma) the following result, Proposition E of the introduction.

Proposition 65 Everymeasure p supported on Xy, belongs to My,. Moreover,

if z lifts a point of Xy, then for every n > 1, one has |1/f(f”(z)) —v¥(z) —
no(Y)| < Ly ||, where L is the constant given by Theorem 63.

Proof We will prove the second statement, it obviously implies the first one.
Note first that the ergodic components of a measure u© € My also belong
to My Furthermore, the set of points A’ having a lift z satisfying that
|1p(f”(z)) — Y (z2) —na(y)| < L)y for every n > 1 is a closed set. It
is then sufficient to prove that for every ergodic measure € My, there exists
aset A C A’ of full measure. As seen before, since u € My, the function
lifted by ¥ o f — ¢ —a(y¥) has null mean, and we can apply Atkinson’s lemma
to obtain that there exists a set A of full measure such that, for every point z
lifting a point of A, there exists a subsequence (7;);<n such that

l_l)iinooz//(f”’(z)) —VY(2) —ma(y) =0.
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By Theorem 63, one knows that for every z € R? and every n > 1, one has

¥ (f"(2) — ¥(2) — na(¥) < L|ll. It remains to prove that ¥ (f"(2)) —
Y (z) —na(¥) = —L||y| if z lifts a point of A. If n; is greater than n one can
write

V(@) = ¥ @) —na()
= (V" @) = v @ = ma)) = (V@) = v (@) = = maw)).
> W (@) = ¥ (@) — ma) — LIy

Letting [ tend to +00, one gets our inequality. O

Let us state two corollaries. The first one, Corollary F of the introduction,
as already noted in [2], follows immediately from the previous proposition.

Corollary 66 Let f be a homeomorphism of 'le that is isotopic to the identity,
preserving a measure [ of full support, and f a lift of f to R?. Assume that
rot( f) has a non empty interior. Then rot(it) belongs to the interior of rot( f).

Boyland had conjectured that, for a given f and f in the hypotheses of
Corollary 66, if rot () was an integer then it belonged to the interior of rot( f ).
The previous result shows that the conjecture is true, and that the hypothesis
on the rationality of the rotation vector of u is superfluous.

The second corollary shows that, for points in the lift of the support of mea-
sures with rotation vector in a vertex, the displacement from the corresponding
rigid rotation is uniformly bounded.

Corollary 67 Let p be a vertex of rot( f ), and set

My ={ e M(f), rot(uw) = p}, X, = | supp(w).

HeEM,

There exists a constant L, such that if z lifts a point of X, then for every
n > 1, one has d(f”(z)) —z—np) < L.

Proof One can find two forms v and ¥, linearly independent such that p
belongs to the supporting lines defined by these forms. Note that X, = X N
Xy and apply Proposition 65. O

We remark that the conclusion from Corollary 67 does not hold if instead

of requiring that p is a vertex of rot( f ) we assume that p is an extremal point
of rot(f), see Boyland et al. [6].
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Write 0 (rot( f )) for the frontier of rot( f ). Let us define now

My =i e M(f). oo € 9 (rot(H) . Xo = supp) = [ Xy
HEMy ¥ #0

Similarly, we have:

Proposition 68 Every ergodic measure [ supported on Xy belongs to
M. Moreover, if z lifts a point of X, then for every n > 1, one has
d (f”(z) —z,nd (rot(f))) < L, where L is the constant given by Theo-
rem 63.

Proof Here again, it is sufficient to prove the second statement. To do so, let

us choose a non trivial linear form i and let us prove that for every n > 1,
and for every point z lifting a point of Xy, one has

d (f"(z) —z,nd (rot(f))) < L.
The fact that, by Proposition 65,

1Y (f"(2)) — ¥ (z) —nB)| < LIV ||

implies that d(f"(z) — z, A) < L where A is the affine line of equation
¥ (z) = na(z). So, if f(z) — z does not belong to nrot( f), one has

d(f"@ =28 (ro1(/))) = d(F"@) — 2. nro() < L,
and if f" (z) — z belongs to n rot(f), one has

d (@ = 2.nd (ro0(/))) <d(f"@) —2,8) < L.

O

Another application is a classification result about Hamiltonian home-
omorphisms. In our setting, a Hamiltonian homeomorphism is a torus
homeomorphism preserving a probability measure p« which has a lift f (the
Hamiltonian lift) such that that rot(u) = (0, 0). An illustrative example is
given by the time one map of a time dependent Hamiltonian flow, 1 periodic
in time, and its natural lift.

We will need the following result, which can be found in [26]:

Proposition 69 Let f be a homeomorphism of T? isotopic to the identity and
faliftof f.If(0,0) is a vertex of rot(f) then, for any measure p € M(f)
such that rot(n) = (0, 0), almost every point lifts to a recurrent point of f .
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We have:

Theorem 70 Let f be a Hamiltonian homeomorphism of T2 such that its fixed
point set is contained in a topological disk, and let [ be its Hamiltonian lift.
Then one of the following three conditions holds:

— The set rot( f ) does not have empty interior: in that case the origin lies in
its interior.

— The set rot( f ) is a non trivial segment: in that case rot( f ) generates a line
with rational slope, the origin is not an end of rot( f ), furthermore, there
exists an invariant essential open annulus in T?.

— The set rot( f ) is reduced to the origin: in that case, there exists K > 0
such that, for every 7 € R? and every k € 7, one has ||fk (z) —zll £ K.

Proof Suppose first that rot( f ) 1s reduced to the origin. The origin being a
vertex, one knows by Proposition 69 that the recurrent set of f is dense in R2.
So the assertion comes from Theorem 45.

Suppose now that rot( f ) is a non trivial segment. If the origin was an end
of rot( f ) its would be a vertex and we would have a contradiction, still from
from Proposition 69 and Theorem 45. The fact that rot( f ) generates a line with
rational slope is a consequence of Theorem 62. The existence of an essential
open annulus which is left invariant by the dynamics whenever rot( f ) is anon
trivial segment that generates a line with rational slope is the main result of
[17].

The case where rot( f ) has non empty interior is nothing but Corollary 66.

O

Here again, as in Theorem 45, the requirement that the fixed point set is
contained in a topological disk cannot be removed. As a consequence, we
obtain the following boundedness result for area preserving homeomorphisms
of the torus with restriction on its rotational behaviour, Corollary I of the
introduction:

Corollary 71 Let f be a Hamiltonian homeomorphism of T> such that all its
periodic points are contractible, and such that its fixed point set is contained
in a topological disk. Then there exists K > 0 such that if f is the Hamiltonian
lift of f, then for every z € R* and every k € Z, one has ||fk(z) -zl < K.

Proof By Theorem 70, f must belong to one of the three described possi-
bilities. If f is a homeomorphism of T? such that all its periodic points are
contractible, then by the main result of [12] the rotation set of any lift of f
must have empty interior (see also Remark 74 later in the paper), and so the
first possibility in Theorem 70 is excluded. Furthermore, it was shown in [13]
that, if g is an area preserving homeomorphism with lift ¢ and the rotation set
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of g is a line segment, then for every point in rot(¢) with bi-rational coordi-
nates there exists a periodic point for f with the same rotation vector. Since f
has no periodic points that are not contractible, the second possibility is also
excluded. O

As a consequence we obtain the Proposition J:

Proposition 72 Let Hamyo(T?) be the set of Hamiltonian C* diffeomor-
phisms of T? endowed with the Whitney C*°-topology. There exists a residual
subset A of Hamuo (T?) such that f has non-contractible periodic points if
feA

Proof We will prove that f has non contractible periodic points if the following
properties are satisfied:

e if f9(z) = z, then 1 is not an eigenvalue of Df9(z);

e if zisanelliptic periodic point of period ¢ (which means that the eigenvalues
of Df4(z) are on the unit circle), then z is Moser stable (which means that
z is surrounded by f?-invariant curves arbitrarily close to z);

e if z, 7/ are hyperbolic periodic points of period ¢, ¢’ respectively (which
means that the eigenvalues of Df7(z) and Df4 ,(z’ ) are real), then the
stable and unstable manifolds of z and 7’ are either disjoint or they intersect
transversally.

The first property implies that the fixed point set of f is finite and so included
in a topological disk. By Corollary 71, to get our result it remains to prove
that there is no K > 0 such that if f is the Hamiltonian lift of f, then for
every z € R? and every k € Z, one has ||fk(z) — z|| € K. If such K exists,
choose a bounded open set W containing the fundamental domain [0, 1]°.
The set (7 FX(W) is an invariant bounded open set. One finds an invariant
bounded open disk V containing [0, 1]? by looking at the complement of the
unbounded component of the complement of W. Let us show first that 3V
has no periodic points. Since V is bounded, we may take a sufficiently large
integer L such that, if T = R?/(LZ)? is the torus that finitely covers T2, f is
the induced homeomorphism and 7 : R?> — T2 is the projection, then 7 (V) is
contained in a topological disk. The diffeomorphism f satisfies the following
properties:

o if f‘f (z) = z, then 1 is not an eigenvalue of Df‘f (2);

e every elliptic periodic point of f is Moser stable;

e the stable and unstable manifolds of hyperbolic periodic points of f are
either disjoint or they intersect transversally.

By a theorem of Mather (see [31]), one knows that the prime-end rotation
number of 77 (V) is irrational. The main result from [24] shows that the frontier
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977 (V) has no periodic point because the prime-end rotation number of 77 (V)
is irrational. This implies that dV has no periodic points.

In fact it is not necessary to use [24]. Indeed, working directly with V and
f , the boundedness condition implies that the stable and unstable manifolds
of every hyperbolic periodic point z are bounded. Mather’s arguments implies
that, under our generic conditions, the branches of z have all the same closure.
By a result of Pixton [35], every stable branch of z intersect every unstable
branch and one can find surrounding curves arbitrarily close to z contained in
the union of the stable and unstable manifolds. By Mather’s argument again,
one knows that such a point z cannot be contained in 9 V. Moreover there is
no elliptic periodic point on V.

The fact that V contains [0, 1]% implies that U pez? (0V + p) is connected.
Moreover, the interior of | J pez2(@V + p) is empty. This set projects onto a

compact subset of T? whose interior is empty, which is totally essential (the
connected components of its complement are open disks) and which does not
contain periodic points of f. This contradicts a result of A. Koropecki (see
[23]) that states the following: if K is an invariant closed connected subset
of a homeomorphism defined on a closed orientable surface and having no
wandering points, and if K has no periodic point, then either M is a torus and
K coincides with M, or K is a decreasing sequence of compact annuli. O

Before proving our three theorems, let us state some introductory results.
In what follows (Proposition 73 and Proposition 75) f is a homeomorphism
of T? that is isotopic to the identity and f a lift of f to R We consider an
identity isotopy I’ of f that is lifted to an identity isotopy I [ of f . We consider
a maximal hereditary singular isotopy I larger than I’ and its lift I to R2. We
consider a foliation F transverse to / an its lift F to R2.

Proposition 73 If (0, 0) belongs to the interior of rot( f ) or to the interior of
a segment with irrational slope included in 90 (rot( f )), then the leaves of F
are uniformly bounded.

Proof Suppose first that (0, 0) belongs to the interior of rot( f ). One can find

finitely many extremal points p; of rot(f), 1 < i < r, that linearly generate
the plane and positive numbers #;, 1 < i < r, such that:

doti=1 ) e =0,0).

1<i<r 1<i<r

Each p; is the rotation number of an ergodic measure p; € M(f). Applying
Poincaré Recurrence Theorem and Birkhoff Ergodic Theorem, one can find
a positively recurrent point z; of f having p; as a rotation number. Fix a lift
Z; of z; and a small neighborhood Wi of Z; that trivializes F. One can find a
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subsequence (f”’ (zi))i>0 of f” (zi)n>1 and a sequence (p;);>o0 of integers
such that f”l(Z,-) € W,- + pi and such that lim;—, yo pi;/n; = pi. One
deduces that the transverse homological space THS(F) contains p; ;. If [ is
large enough, the p; ; generate the plane and (0, 0) is contained in the interior
of the polygonal defined by these points. By Proposition 13, we deduce that
the leaves of F are uniformly bounded.

Suppose now that (0, 0) belongs to the interior of a segment with irrational

slope included in d <r0t( f )). If this segment [p1, p2] is chosen maximal, then

p1 and pj are extremal points of rot( f ) and respectively equal to the rotation
number of ergodic measures w1 and py in M(f). Let W; C T?bea trivializing
box of F such that u;(W;) # 0 and W,- C R? a lift of W;. The first return
map ®; : W; — Wi,z — f5(z) (where t; : W; — N) is defined u;-
almost everywhere on W; as the displacement function &; : W; — 72, where
fvfi @(z) e Wi +&i (), if Z is the lift of z that belongs to Wi. Lety : R2 — Rbe
anon trivial linear form that vanishes on our segment. Using Birkhoff Ergodic
Theorem, one knows that u;-almost every point z has a rotation number p;,
and so

e ke Osz(cbf(z)) _
n=too 30T (DF(2)

By Kac’s theorem, one knows that 7; is u;-integrable and satisfies f w Ti dui =
1

wi(Urez F¥(W;)) € (0, 1]. One can note that &; /7; is bounded, which implies
that &; is u;-integrable. Consequently, one has

o im0 (@) _ Jw, & di
ntoe YT g (0K (), Tdmi]

which implies that

idpi = idupi ) pi #0
fw,-é Iz <~/W,'T M)p#
WO&‘CMMZ‘//(/ éid/«w)zo-
Wi i

Note that ¥ 0 &;(z) # 0if &;(z) # 0, because &;(z) is an integer and the kernel
of 1 is generated by a segment with irrational slope. We deduce that there

and
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exists z1, 2 in Wy such that

Yo&i(z1) <0 <yoki(z).

Consequently, one can find z{ € Wy, zj € W, and integers ny, ns such that
(0, 0) is in the interior of the quadrilateral determined by

S E (K () X & (9h(22)
Yo T (P (2)) T T (@ (25))

because the last two points may be chosen arbitrarily close to p; and p>. The
set THS(F) containing the integers

£1(z1). &1 (2h).

g1z, & (21) ”12:151 <<I>k(21> ”22_:152 <<I>]§(Z2)),
k=0

one can apply Proposition 13 to conclude that the leaves of F are uniformly
bounded. O

Remark 74 As a corollary, one deduces that F is singular and that f is not
fixed point free. Applying this to f 7 — p, for every rational p/q € int(rot( f ),

one deduces that there exists a point z € R? such that f 9(z) = z 4+ q. This
result was already well known, due to Franks [12].

Proposition 75 We suppose that the leaves of F are uniformly bounded. If
there exists an admissible transverse path y :la,b] — dom(]: ) of order q
and an integer p € 7? such that y and y + p intersect F- transversally at

5y = P+p)(s), Where s < 1, then p/q belongs to rot(f).

Proof By Corollary 22 one deduces that for every k > 2 the path

Va0 ( [] o+ ip)l[s,t]) v + (k= Dp)lis,p)

O<i<k—1

is admissible of order kg. This implies that there exists a point Zx € ¢y ()
such that fX4(%y) € P+k—ypb) = Pyw) + (k — 1)p. The fact that the
leaves of F are uniformly bounded tells us that there exists K such that for
every k > 1, one has ||fk‘1 (Zx) — 2k — (k — D p|| < K. Denote z; the pro-
jection of Z in T2. Choose a measure y that is the limit of a subsequence of

(é Zfial ) fi(Zk)>k>2 for the weak™ topology. It is an invariant measure of

f of rotation number p/q for f . O

@ Springer



Forcing theory for transverse trajectories 719

Let us state the following improved version of Atkinson’s Lemma:

Proposition 76 Let (X, B, 1) be a probability space and T : X — X an
ergodic automorphism. If ¢ : X — R is an integrable map such that f pdu =
0, then for every B € B and every ¢ > 0, one has

n—1
m ({x €B, >0, T"(x) € Band 0 < Y _o(T*(x)) < e}> = u(B).

k=0

Proof Let us consider B € B and set

n—1
A =B\ {x €B, An>0, T"(x) € B and 0 < Z(p(Tk(x)) < 8}}.
k=0

Atkinson’s result directly implies that there exists a set A’ C A with u(A’) =
w(A) such that, for every x € A’, there exists a subsequence (1n;);en such that
T" (x) € A and lim;_ ZZ’: _01 (p(Tk (x)) = 0. Assume, for a contradiction,
that ;£ (A) > 0. There exists some x € A" and nyp > 0 such that y = T"0(x) €
Aand a = ZZ(’:B] <p(Tk(x)) € (—e&,¢), and since x € A we know that
a < 0. Since x € A’ there exists some n1 > ng such that 7" (x) € A and
a < ZZIZBI @(T*¥(x)) < & + a. This implies that 717"0(y) € A and that
0 <Y _0"0_1 @(T*(y)) < &, which is a contradiction since y € A proving
the claim. O

Proof of Theorem 62 We will give a proof by contradiction. Replacing f by
f9 and f by f4 — p, where ¢ € N and p € Z2, we can suppose that the
frontier of rot( f ) contains a segment [ g, p1] with irrational slope, that (0, 0)
is in its interior and that pg and p; are extremal points of rot( f ). We can
suppose moreover than for every p € rot(f), one has (,Od‘, p) <0< (/Oll, o).
We consider two ergodic measures i and 1 in M( f) whose rotation vectors
are po and p; respectively. We know that there exists a point zg € R? such that
rot(zo) = pp and that projects onto a bi-recurrent point of f. By Proposition 76,
we have a stronger result: O

Lemma 77 There exists a point zg, projecting to a bi-recurrent point and
with rot(z9) = po, such that for every ¢ € {—1, 1} one can find a sequence
(1> g0 in 72 x N satisfying:

lim ¢ = +oo, lim f9(z9) —z0 — p1 =0,
[—+00 [—+00

lim (pol, pz) =0, S(pol, pz) >0

[—+400
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and a sequence (p;, q))i>0 in 7% x N satisfying:

lim g/ =400, lim 79 (z0) —z0 — pj =0,
— [—+00

[—+400

lim <,od‘, P1/> =0, 8<,Od', P1/> > 0.
[—+00
Proof Let Wy be a small disk such that p1g(Wp) # 0and WO alift of Wy. Define

the maps 7y and &q like in Proposition 73. The measure 1o being ergodic, one
knows that |, wo T0d o = 1 and that | wo S0 d1to = po- Let us define on Wy the

first return map T : z — f™@(z) and the function ¢ : z > s(,od-, &0(2)).
For each integer i > 1, let (B, j)1< <k be a covering of Wy by open sets
with diameter smaller than 1/, and define

n—1
Cij=1x€BijNWo, 3n >0, T"(x) € Bi;j N Wy and 0 < Y o(TH(x)) < l/i}
k=0
Set C; = U/;’ZI Ci,j and C = ();5; C;. By Proposition 76, one knows that
wo(Ci) = no(C) = up(Wy), and if C’ is the subset of the bi-recurrent points
of C with rotation vector pg, then uo(C’) = uy(C).. If zo belongs to C’, one
can find an increasing integer sequence (1m;);>¢ such that

m;—1
Hm T™(z0) = 20, li <l, Tk >=0,
Jim T (20) = 2o ZJngg o0 0(Tx(z0)
my—1
> oo 60T o)) > 0.
k=0

Setting p; = Zﬁgl £0(T*(z0)) and q; = Zﬁgl 70(T*(z0)), one gets the first
assertion of the lemma, with a large inequality instead of a strict one. Noting

that lim;_, ;o || p1ll = +o0 and that the line generated by pg has irrational
slope, one deduces that the inequality is strict. The second assertion can be
proved analogously. O

We note that, by Proposition 73, the leaves of F are uniformly bounded. Let
us choose zg as in the yrevious lemma. The fact that rot(zg) = po tells us that
the whole trajectory / Z(zo) is a proper path directed by pg. The fact that the
leaves of F are uniformly bounded and that every leaf met by I ;Z:_ (zo) is also

met by 1%(z0) implies that I J% (zo) is a transverse proper path directed by pg.
We parameterize Ivj%(z()) in such a way that IV]ZQ(ZO)|[1,1+1] = vﬁ(fvl (z0)). We
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consider sequences (p;, g;);>0 and ( pl’ , ql’ )i>0 given by the previous lemma
(the sign ¢ has no importance at the beginning).

Lemma 78 For every closed segment [a,b] C R and every positive real
numbers L, ¢, there exists p € 77 and a segment [a',b'] C R sansfymg
a —b > L such that |(,00 p)| < € and such that the paths iz (Zo)|[a bl

and (Ifj(zo) + P)lia’ 1) are equivalent. One has a similar result replacmg the
inequalitya’ —b > L bya —b' > L.

Proof Letus choose integers ¢ and ¢’ such that [a, b] C (g, q¢'). As zo projects
to a bi- recurrent point, one can find /, using Lemma 77, sufficiently large, such
thatg; > ¢ ' —q+ L and such that qu(fq (z0)) — pi s so close to fq (zo0)
that we can affirm that /% (z()) l[a.p] 18 €quivalent to a path (I (z0) = PO i’

where [a’, b'] C (g —I—ql, q' + q1). Note that |(,00 Lo < e 1fl is sufficiently
large. The version with the inequality @ — b’ > L can be proven similarly by
using the sequences (p;);>0 and (g;);>0. O

Lemma 79 Thereisno p € Z? \ {0} such that I ?_(z()) and I %; (zo) + p intersect

F- transversally.

Proof Write I ?: (zo) = yo for convenience. Suppose that yp and yg + p inter-

sect F-transversally at ¢ = Dyot) = P(yo+p)(s)- The leaves being uniformly
bounded, one knows that ¢, ;) # ¢y,) + p and so ¢ # s. Replacing p
with —p if necessary, one can suppose that s < ¢. By Proposition 75, there
exists ¢ = 1 such that p/q € rot( f ). Consequently, one has (pOL, p) < 0.
By assumption, the segment [0, po] has irrational slope and p # 0, so one
deduces that (pol, p) <0.

We know that there exists a sufficiently large N such that yp|[—ny ] and
(Yo+p)|[—n,n] intersect F -transversally at ¢. By Lemma 78, we can find some
p’ € 77 such that |(,03-, p')| is sufficiently small as to get (,ool, p+p) <D0,
and such that there exists some a’, b’ with N < a’ < b’, where (Yo + p") [’ 1]
is equivalent to yp|(—n, n1. This implies that (yo + p + p’)|[a.1] is equivalent
to (yo + p)lj—~.~N7» and so yp and yp + p + p’ intersect F -transversally at
Do) = Plyo+p+p)(s) Where s” > t. So, one knows that yo and yy — p — p’
intersect F -transversally at ¢, ;) = - p—p/)(r)- We deduce as before, by

Proposition 75, that for some ¢’ > 1 the vector =22~ ¢ rot( fv ), acontradiction

since (pg-, —p — p') < 0. |
Lemma 80 The path I ?(ZQ) is a line

Proof Here again, write I %_ (zo) = yo.If yp is anot aline, by Proposition 4 one
knows that there exist two segments [ag, bo] and [a1, b1] such that ypl[4g, b0
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and yol[q,,»,] intersect F-transversally. By Lemma 78, one deduces that there
exist p € Z?*\ {0} and a segment [a}, b} ] such that y|[a,,5,] and (yo+ Pt b))

intersect F -transversally. This contradicts Lemma 79. O

Similarly, we can find a point z; of rotation number p; that projects onto a
recurrent point of f and such that / ;Z:_ (z1) is a line directed by p; that does not
meet transversally its integer translated.

Lemma 81 The line I ]‘7{5 (z1) intersects F -transversally one of the translates

of I%(z0).

Proof Let us prove by contradiction that y; = I ?_(zl) intersects -

transversally one of the translates of 1y = I ;Z__'(Zo). If not, let us denote by
Up the union of leaves that are met by yp. Its complement can be written
R(Up) U L(Up) where R(Ug) = R(yp) \ Uy is the union of r(yp) and of the
set of singularities at the right of yg and L(Ug) = L(y9) \ Uy is the union of
[ (y0) and of the set of singularities at the left of yy. If 1 and yy do not intersect
F -transversally, then by Corollary 6, one knows that either y; N R(Up) = ¥ or
y1NL(Uy) = B. As yp is directed by ”Zﬁ and y is directed by the opposite vec-
tor ”2—1” = —”g—g”, one knows that if yy "R (Uy) = @, then R(y1) N R(Up) = 0,
and if y; N L(Up) = @, then L(y1) N L(Uy) = @. Consequently, yo and y;
cannot meet a common leaf. Indeed if ¢ is such a leaf, one knows by Propo-
sition 4 that it is met once by yg and y;. So, the a-limit set of ¢ is contained
in L(Up) N L(yy) and the w-limit set is included in R(Up) N R(yy), which is
impossible.

So, if the conclusion of our lemma is not true, there exists a partition 7% =
A~ U AT, where

peA & (r(yo)UUo) +p Cliy),
peAT & (r) Ulo)+p Crin).
Also, by Lemma 79 and the fact that yy is directed by pg, one knows that

[(yo+p) Cl(y)if 0 < (pol, p) and one deduces this partition is a cut of the
order on Z? defined as follows

p=<p & (p&,p> < <poL,p'>-

Let us fix a leaf ¢ that intersects y;. By Lemma 78, one knows that there exists
po # (0, 0) such that ¢ intersects y; + po. One deduces that A~ + pg = A~
and AT + po = AT, which of course is impossible. i
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End of the proof of Theorem 62 Replacing yq by a translate if necessary, we
can always suppose that 3 and yj intersect F -transversally at yp(#p) = y1(t1)
and we define ¥y = Y0l[—c0,1]V1l[11,+00] Which is an admissible transverse
proper path. There exist two segments [ag, bg] and [aj, b1] containing £y
and #; respectively in their interior, such that yy|i4,5) and y1liq,,p,] inter-
sect transversally at yo(f9) = y1(#1). Using Lemma 78, one can find pg and p
in Z? distinct, and segments lag, byl C (=00, 19) and [a}, b}] C (t1, +00)
such that (yy + p0)|[067b6] is equivalent to 0|45, and (y1 + pl)l[“ﬁv”ﬂ]
is equivalent to yi|,,»,]. We deduce that there exists 7, € (a(, b,) and
1y € (ay + 19 — 11, b} + 10 — 11) such that y + pg and y + p; intersect
F-transversally at ¢ = ¢(V+P0)(f6) = ¢(y+p1)(t{)' So y and y 4+ p1 — po
intersect - transversally at ¢ — pg = ¢y(t0) =P 4p— PO ()" Observing that
ty < t;, one deduces, by Proposition 75, that there exists ¢ > 1 such that
(p1 — po)/q € rot(f) and thus (po , P1 — po) < 0. But Lemma 77 tells us
that pg and p can be chosen so that (pOL, po) < 0and (,ool, p1) > 0. We have
found a contradiction. O

Proof of Theorem 63 In the proof, we will use the sup norm || ||oc Where
[(x1,x2)lcc = max(]x], |x2]) which will be more convenient that the
Euclidean norm and will write doo(z, X) = inf,ex ||z — 7/||co- Replacing
f by f9 and f by fq — p, where g € Nand p € 7?2, we can suppose that
(0, 0) is in the interior of rot( f ). Here again, we consider an identity isotopy
I’ of f that is lifted to an identity isotopy [ of f We consider a maximal
hereditary singular isotopy I larger than I’ and its lift I to R2. We consider a
foliation JF transverse to / an its lift  to R2. One knows by Proposition 73
that the leaves of F are uniformly bounded. In the remainder of the proof we
will usually work in the universal covering space of T2, with paths transversal
to the lifted foliation . The theorem is an immediate consequence of the
following, where the direction D(y) of a path y : [a, b] — R? is defined as
D(y) =y () —y(a):

Proposition 82 There exists a constant L such that for every transverse admis-
sible path y of order n, one has doo (D(y), nrot(f)) < L.

We will begin by proving:

Lemma 83 There exist a transverse admissible path y* : [0, 3] — R2, a real
number K* and an integer p* € 72 such that:

— every transverse path y whose diameter is larger than K* intersects F-
transversally an integer translate of V|T1,2] ;

- yf[kz 3) and yl’fo i p* intersect F -transversally.
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Proof Letus choose N large enough such (1/N, 0) and (0, 1/N) belong to the
interior of rot(f). As previously noted in Remark 74, there exists a point zg
satisfying fN(z()) = Z0+(1,v0) andapoigtzl satisfying fN (z1) = z1+(0, 1).
The transverse trajectories / J%(zg) and [ ?_ (z1) are parameterized, such that
1%(z0)(t +1) = T2(z0) (1) + (1,0) and IZ(z0) (1 + 1) = [Z(zD () + (O, b

Sub-lemma 84 There exists a real number K suchthat if y is a transverse path
that does not intersect F-transversally 1 ?E (z0), then either my(y (t)) > —K or

m(y(t)) < K and if it does not intersect ]}-transversally IV]Z}(zl), then either
iy () > —K ormi(y(t)) < K.

Proof There exists Ko > 0 such that the diameter of each leaf of ' is bounded
by K and there exists K, > 0 such that Ié_(zo) C R x (=K, K. Setting
K =Ky+ K 6, note that every leaf that intersects R x (—oo, — K] belongs to
r(IV]Zi_(zO)) and every leaf that intersects R x [K, +00) belongs to l(IV;Zé(zO)). It

remains to apply Corollary 6. We have a similar argument for I ?(Zl)- O

Setting K* = 2K + 1, one deduces immediately:

Corollary 85 If y is a transverse path and if the diameter of 7y o y is larger
than K*, there exists py € Z? such that y intersects F- transversally 1 Z(Zo) +

po and if the diameter of 7wy o y is larger than K*, there exists p1 € Zz such
that y intersects F- transversally 1 Z(Zl) + p1-

In particular yy = I ]Z__(Zo) intersects y; = I ]%(21) F- transversally at a point
yo(to) = y1(t1). One can find an integer r > 0 such that yo|y—r s+r] and

V1l —rt+r] intersect - transversally at 1 (f9) = y1(t1). Lety™ : [0, 3] — R?
be a path such that

~ Yjo.1) 18 a reparameterization of yo|(s—4r+2),1—2r+2)1
- Vf'i,z] is a reparameterization of yol(,—2r+2).101 V1 l[t1.01+2r +2)15
- )/[373] is a reparameterization of Y1 | +2r+2),1+@r+2)]-

Let us prove that y * satisfies the proposition. Observe first that y * is admissible
of order (87 + 4)N by Corollary 21 and that the paths y*[[0.2] and y*|[1.3]
are admissible of order (6r + 2)N. Note first that y"[km] and foo,l] + @r +

2, 3r 4+ 2) intersect F -transversally. One can set p* = (3r + 2, 3r + 2). Let
y be a transverse path such that the diameter of 7, o y is larger than K*. By
Sub-lemma 84 one knows that there exists pg € R? such that y intersects
F -transversally o + po. This means that there exist two real segments J and
Jo such that
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— y|; intersects F -transversally ol s, + po;

— ¥ lints and yolines, + po are equivalent.
If the length of Jy is smaller than 2r + 1, then Jp is included in an interval
[to — 2r + 2) + o, to + lo]. This implies that y intersects F -transversally
Y*li1.21 + po + (o, 0). If the length is at least equal to 2r + 1, then J
contains an interval [t — r + o, to + r + lo]. This implies that y intersects
F- transversally v (s —r.n+r] + Po + (lo, 0) and so intersects F- transversally

¥ *r1.21+ po+ (lo, —r). We get the same conclusion for a transverse path such
that the diameter of 77 o y is larger than K*. m|

Proof of the Proposition 82 We denote by K** the diameter of y* and by
K*** the diameter of rot(f). Let y : [a,b] — R? be a transverse path
such that ||D(y)|| > 2K*. One can find ¢, d in (a, b) with ¢ < d such that
1D lia.c)ll = ID(yla.p)) |l = K*. Note that, if ¢ is chosen to be minimal
with this property, and d is chosen to be maximal, then the diameter of both
¥l{a.c) and y |(4.p) are at most 2K *. There exist p and p’ in Z? such that

— ¥lla.c) and y*|[1,2] + p intersect f—transversally aty(t) = y*(s) + p;
— ¥lia.p) and y*|[1,2] + p’ intersect F-transversally at y (t') = y*(s") + p’.

If y is admissible of order n, then the path
= (v*lio.s1 + PV i1 ¥l 31 + P

is admissible of order n 4+ (12r + 4) N by Corollary 21 and one has
ID(y) = D(y)| < 4K* +2K™.

Recall that y[’g 3] intersects F -transversally y[”(‘) T p*. One deduces that

(y*|s7.3) + p') intersects f—transversally (¥*lo.s1 + p) + p”, where p” =
p' — p+ p* and so that y’ intersects F -transversally y' + p”. Proposition 75
tells us that p”/(n + (12r + 4) N) belongs to rot( ), which implies

d(p”, nrot(f)) < (12r + 4)NK***.

Observe now that || p” —D(y")|| < 2K**andso || p”—D(y)|l < 4K* +4K**.
So, one gets

d(D(y), nrot(f)) < 4K* + 4K** + (12r + 4)N K***.

O

Proof of Theorem 64 Here again, using the fact that for every ¢ > 1 and every
p € 72, one has rot(fq +p) = qrot(f) + p, itis easy to see that it is sufficient

@ Springer



726 P. Le Calvez, F. A. Tal

to prove the result in the case where (0, 0) belongs to the interior of rot( f ).
Here again, we consider an identity isotopy I’ of f that is lifted to an identity
isotopy I of f . We consider a maximal hereditary singular isotopy / larger
than 7 " and its lift / to R2. We consider a foliation F transverse to I an its
lift F to RZ. We know that the leaves of F are uniformly bounded. We can
immediately deduce the theorem from what has been done in the previous
proof and Theorem 36. Indeed, we know that there are two transverse loops
associated to periodic points that have a transverse intersection. We will give
a proof that does not use Theorem 36 by exhibiting separated sets. O

Let us begin with the following lemma:

Lemma 86 There exists a constant K such that for every point 7 € dom(f )
and any 7' for which ¢ intersects 1z(z), one has d(z,z') < K.

Proof There exists K’ > 0 such that the diameter of each leaf of F is bounded
by K'. Moreover, the set Ute[O,l],ze[O,l]z 1 (z), being compact, is included in

[—K”, K" + 1]%,for some K” > 0. The leaves that Ivﬁ(z) intersects, are also

intersected by I (z) (see the beginning of Sect. 3). One deduces that K =
K’ 4+ K" satisfies the conclusion of the lemma. O

We consider the paths yy = I #(z0) and y; = I %_ (z1) defined in the proof

of Theorem 63. We keep the same notations and set z* = (fg) = y;(t1). Let
us define

K" = max (diam()/0|[to,lo+r])’ diam(y, |[t1,t1+r]))

and choose an integer m > 1 such that mr > K" + 2Ky + K + 1. Set

Yo = Yollwo.to+mrls V1 = Villt.o+mrl-

Fix n and for every e = (eq, ..., &,) € {0, 1}"* define

Ve = 1_[ (Ve, + pi-1),

1<i<n

where the sequence (p;)o<i<n satisfies kg = 0 and is defined inductively by
the relation:

pi + (mr,0) ifg =0,

P = O, mr) ife = 1.

The path y, is admissible of order [ = nmr N. More precisely, there exists a
point ze € ¢, such that fl (ze) € ¢z + ky, and such that y, = f;(ze).
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Lemma 87 If e and €' are two different sequences in {0, 1}", there exists
J€{0,...,1 — 1} such that || f7 (ze) — f/(ze)|| = 1.

Proof Consider the integer i* such that &;+ # ¢, and ¢; = ¢ if i < i*. The
leaf ¢« + p;= is intersected by y, but not by yé/. More precisely d (¢, +
Di*, yé,) > mr — K’ — K. Using Lemma 86, one deduces that there exists

Jj EV{O, ..., 1} such that d(fj (Zw), ¢z + pix) < K. Moreover, one knows that
d(f/(ze), vo) < Ko because y, intersects ¢ Fien) One deduces that

1/ ze) = 7 el = mr — K" —2Ko — K > 1.

To finish the proof of the proposition, let us define on T? the distance

d(z2,7" = inf lz —2'l,
n(z)=Z,7n(z)=2'

where
7:R? ”]I‘z,
> 7+ 77

is the projection. Note that for every Z € T2, one has

n Bz, 1/49) = | | BG:.1/4)

n(2)=Z

and every map 7| g(,1/4) is an isometry from B(z, 1/4) onto B(Z, 1/4).
Fix & € (0, 1/4) such that for every z, z’ in R?, one has

lz =2 <e=If@)— FE@)Il < 1/4.

One deduces that two points Z and Z’ such that d( f I(2), f i(2)) < e, for
every j € {0, ...l — 1} are lifted by points z, z’ such that ||fj(z)—fj @I < e,
forevery j € {0,...] — 1}.

Consequently, the points z, project on a (nmr N, €)-separated set of cardi-
nality 2". One deduces that h(f) > log2/mrN. O
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