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Abstract We study the holonomy cocycle H of a holomorphic foliation F
by Riemann surfaces defined on a compact complex projective surface X
satisfying the following two conditions:

• its singularities E are all hyperbolic;
• there is no holomorphic non-constant map C→ X such that out of E the
image of C is locally contained in a leaf.

Let T be a harmonic current tangent to F which does not give mass to any
invariant analytic curve. Using the leafwise Poincaré metric, we show that H
is integrable with respect to T . Consequently, we infer the existence of the
Lyapunov exponent function of T .
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1 Introduction

1.1 General settings and main results

The dynamical and geometric theory of holomorphic foliations by curves has
received much attention in the past few years. The holonomy cocycle (or
equivalently, the normal derivative cocycle) of a foliation is a very important
object which reflects dynamical as well as geometric and analytic aspects of
the foliation. Exploring this object allows us to understand more about the
foliation itself. LetF = (X,L , E) be a holomorphic foliation by hyperbolic
Riemann surfaces which is immersed onto an ambient complex manifold X
and which possesses the set of singularities E . On the geometric side, we
have harmonic currents T which are generalizations of the foliations cycles
introduced by Sullivan [29]. On the dynamical side, the sample-path space �

associated to the foliation describes the leafwise Brownianmotionwith respect
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Singular holomorphic foliations by curves 533

to the Poincaré metric on leaves. This motion generates a Markov process on
X.

Assume for the moment that F does not possess any singularities (i.e.
E = ∅). Let T be a harmonic current tangent to F . When X is a surface,
i.e. dim X = 2, we can define the unique Lyapunov exponent function of T,

which is leafwise constant and which measures heuristically the exponential
rate of convergence of leaves toward each other along leafwise Brownian
trajectories (see Candel [3], Deroin [8]). When dim X ≥ 2, our recent work
in [25] provides (dim X − 1) Lyapunov exponent functions whose geometric
characterizations in terms of geodesic rays have been investigated in [26].

Since the main examples of holomorphic foliations by curves are those in
the complex projective space P

k of arbitrary dimension (in which case there
are always singularities) or in algebraic manifolds, the following fundamental
question arises naturally:
Question. Can one define the Lyapunov exponent functions of a harmonic
current T tangent to a singular holomorphic hyperbolic foliation F =
(X,L , E)?

The main purpose of this paper is to give an affirmative answer to this ques-
tion for generic foliations, that is, when the ambient manifold X is a compact
complex projective surface, the foliation enjoys Brody hyperbolicity (see Def-
inition 2.1 below), and E is the set of singularities which are of hyperbolic
type.

Here is our main result. The new terminology and notation appearing in this
theorem will be explained in Sect. 2 below.

Theorem 1.1 LetF = (X,L , E) be a holomorphic Brody hyperbolic folia-
tionwith hyperbolic singularities E inaHermitian compact complex projective
surface X. LetH be the holonomy cocycle of the foliation. Let T be a harmonic
current tangent toF which does not give mass to any invariant analytic curve.
Consider the corresponding harmonic measure μ := T ∧ gP where gP is the
leafwise Poincaré metric. Let � be the sample-path space associated withF .

Let μ̄ be the invariant measure on � associated with μ. Consider the function
I : �→ R

+ defined by

I (ω) := sup
t∈[0,1]

| log ‖H(ω, t)‖|, ω ∈ �.

Then I is μ̄-integrable.

Here is an immediate consequence of this theorem.

Corollary 1.2 Under the hypotheses and notation of Theorem 1.1, assume in
addition that the measure μ is ergodic. Then T admits the (unique) Lyapunov
exponent λ(T ) given by the formula
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λ(T ) :=
∫

�

log ‖H(ω, 1)‖dμ̄(ω).

Moreover, for μ-almost every x ∈ X, we have

lim
t→∞

1

t
log ‖H(ω, t)‖ = λ(T )

for almost every path ω ∈ � with respect to the Wiener measure at x which
lives on the leaf passing through x .

For comprehensive expositions on characterization of Lyapunov exponents
using the Wiener measures, see [3,9,25,26]. In Theorem 2.7 below, we will
see that the measure μ is ergodic when, for example, the current T is an
extremal point in the convex cone of all harmonic currents tangent to F .

Consider a singular foliation by curves F = (P2,L , E) on the complex
projective plane P

2 such that all the singularities of F are hyperbolic and
thatF has no invariant algebraic curve. Combining some results by Glutsyuk
[19] and by Lins Neto [23], and by Brunella [2], we will see in Remark 2.2
and in the discussion after Theorem 2.3 below that F is Brody hyperbolic.
Moreover, the unique ergodicity theorem of Fornæss–Sibony [16] says that the
harmonic current T is unique up to a multiplicative constant. In particular, the
convex cone of all harmonic currents of F is just a real half-line, and hence
all these currents are extremal (see the discussion preceding Theorem 2.7
below). Therefore, the measure T ∧ gP is ergodic by Part 2 of this theorem.
Consequently, Corollary 1.2 applies and gives us the following result. It can
be applied to every generic foliation in P

2 with a given degree d > 1.

Corollary 1.3 Let F = (P2,L , E) be a singular foliation by curves on the
complex projective plane P

2. Assume that all the singularities are hyperbolic
and that F has no invariant algebraic curve. Let T be the unique harmonic
current tangent to F such that μ := T ∧ gP is a probability measure. Let
H, μ̄ and I be as in the statement of Theorem 1.1. Then the conclusion of
this theorem as well as that of Corollary 1.2 hold. In particular, F admits a
unique Lyapunov exponent.

The novelty of the last corollary is that the (unique) Lyapunov exponent of
such a foliationF is intrinsic and canonical.

In fact, we will prove the following more complete version of Theorem 1.1
where we introduce the so-called integrability condition.

Theorem 1.4 LetF = (X,L , E) be a holomorphic Brody hyperbolic folia-
tion with hyperbolic singularities E in a compact complex projective surface
X. Let T be a harmonic current tangent toF which does not give mass to any
invariant analytic curve.
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Singular holomorphic foliations by curves 535

Then we have

(the integrability condition):
∫
X
| log dist(x, E)| · (T ∧ gP)(x) <∞. (1.1)

Using the Poincaré metric of the punctured disc as a local model and
Lemma 2.4 below, we can prove that if the harmonic current T has a pos-
itive mass on an invariant analytic curve, then the integral in (1.1) is infinite,
i.e., the integrability condition breaks down.

The condition of Brody hyperbolicity seems to be indispensable for the
integrability of the holonomy cocycle. Indeed, in a very recent work [21,
Theorem A] Hussenot discovers the following remarkable property for a class
of Ricatti foliations F on P

2. For every x ∈ P
2 outside invariant curves of

every foliation in this class, it holds that

lim sup
t→∞

1

t
log ‖H(ω, t)‖ = ∞

for almost every path ω ∈ �x with respect to the Wiener measure at x which
lives on the leaf passing through x .ByGlutsyuk [19] and Lins Neto [22], these
foliations are hyperbolic since all their singular points have nondegenerate
linear part. Nevertheless, neither of them is Brody hyperbolic because they all
contain integral curves which are some images of P

1 (see Remark 2.2 below).

1.2 Outline of the proofs

Nowwediscuss themethod of the proof of Theorems 1.1 and 1.4.Our approach
consists of two main steps.

In the first main step we show that Theorem 1.1 follows from Theorem 1.4,
i.e., from the integrability condition (1.1). To this end we study the behavior
of the holonomy cocycle near the singularities with respect to the leafwise
Poincaré metric. Let gX be a Hermitian metric on X and let dist denote the
distance on X induced by gX .Roughly speaking, this step quantifies the expan-
sion speed of the hololomy cocycle in terms of the ambient metric gX when
one travels along unit-speed geodesic rays. The main ingredients are in our
joint-works with Dinh and Sibony in [10–12].

The second main step is then devoted to the proof of Theorem 1.4, i.e.,
inequality (1.1). The main difficulty is that known estimates (see, for example,
[10]) on the behavior of T near linearizable singularities, only give a weaker
inequality
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∫
X
| log dist(x, E)|1−δ · (T ∧ gP)(x) <∞, ∀δ > 0. (1.2)

So (1.1) is the limiting case of (1.2). The proof of (1.2) in [10, Proposition 4.2]
relies on the finiteness of the Lelong number of T at every point. Recall from
Skoda [28] that the Lelong number of a harmonic current at a given point is
an important indicator measuring the mass-density of the current at that point.
Moreover, our result in [27] (see also a recent result of Dinh–Sibony [13])
sharpens the last estimate by showing that the Lelong number of T vanishes at
every hyperbolic singular point x ∈ E . Nevertheless, even this better estimate
does not suffice to prove (1.1).

To overcome this obstacle, we use a cohomological idea which exploits
fully the assumption that X is projective. This assumption imposes a stronger
mass-clustering condition on harmonic currents.

Now we explain briefly our proof of the integrability condition (1.1). Our
approach is based on a cohomological invariance (see Proposition 9.3) which
says roughly that if two algebraic curves C andD on X are cohomologous (for
example, if they have the same algebraic degree when X = P

2), then under
suitable assumptions, we can define thewedge-product T ∧[C], T ∧[D]which
are finite positive Borel measures and their masses are equal, i.e,

∫
X
T ∧ [C] =

∫
X
T ∧ [D]. (1.3)

Before going further, let us explain why equality (1.3) could be true. Since
C and D on X are cohomologous on X , the ∂∂-lemma for compact Kähler
manifolds provides us an integrable function u on X such that

[C] − [D] = i∂∂u in the sense of currents.

So we can write
∫
X
T ∧ [C] −

∫
X
T ∧ [D] =

∫
X
T ∧ i∂∂u.

The function u is, in general, not smooth near C andD. However, if we could
consider it like a smooth function, Stokes’ theorem would turn the right hand
side of the last line into the following integral

∫
X
u(i∂∂T ) = 0,

where the last equality holds since the harmonicity of T implies that i∂∂T = 0.
Therefore, we may expect equality (1.3) to hold.
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Resuming the sketchy proof of the integrability condition (1.1), let x0 ∈ E
and fix a coordinate system (z, w) around x0 such that the two separatrices
of the hyperbolic singular point x0 are {z = 0} and {w = 0}. Then we can
show that the vanishing of the Lelong number of T at 0 established in [27] is
equivalent to the following convergence

∫
B(0,r)

T ∧ [z = r ] → 0 as r → 0, (1.4)

where B(0, r) is the ball in X with center x0 = 0 and radius r. And more
importantly, the integrability condition (1.1) is somehow equivalent to the
statement that the convergence (1.4) has, in a certain very weak sense, a speed
of order | log r |−δ as r → 0 for some δ > 0. Note, however, that this speed
does not at all mean that

∫
B(0,r) T ∧ [z = r ] = O(| log r |−δ). For a precise

meaning of this speed, see Remark 6.3 below.
Now suppose for the sake of simplicity that X = P

2 and N ∈ N is large
enough. We choose an algebraic curve C of degree N which looks like the
analytic curve {z = wN } near 0.Wealso choose an algebraic curveD of degree
N which looks like the analytic curve {r = z − wN } near 0. The following
seven observations play a key role in our approach, where 0 < δ < 1 is an
exponent independent of r and N , 0 < r < r0 with r0 > 0 a fixed small
number.

i. Outside a small ball B(0, r0), the analytic curve {z = wN } (and hence
the algebraic curve C) falls into a tubular neighborhood with size O(rρ)

of the analytic curve {r = z − wN } (and hence the algebraic curve D),
where ρ is a real number depending on N with 0 < ρ ≤ 1. So we may
expect

∫
X\B(0,r0)

T ∧ [C] =
∫
X\B(0,r0)

T ∧ [D] + O(rρ).

ii. Outside the ball B(0, r1/N | log r |3/N ) and inside the small ball B(0, r0),
the analytic curve {r = z − wN } (and hence the algebraic curve D)
behaves like the analytic curve {z = wN } (and hence the algebraic curve
C) while intersecting the two curves with a general leaf. Indeed, when
|w| ≥ r1/N | log r |3/N , we have r � |w|N . So we may expect

∫
B(0,r0)\B(0,r1/N | log r |3/N )

T ∧ [C]

=
∫

B(0,r0)\B(0,r1/N | log r |3/N )

T ∧ [D] + O(| log r |−δ).

123



538 V.-A. Nguyên

iii. The corona Ar,N := B(0, r1/N | log r |3/N )\B(0, r1/N | log r |−3/N ) is, in
some sense, small and it may be considered as negligible. So we may
expect

∫
Ar,N

T ∧ [C] = O((log r)−δ) and
∫

Ar,N

T ∧ [D] = O(| log r |−δ).

iv. Our next observation is the following partition of X for 0 < r � 1:

X = (X\B(0, r0)
)∐(

B(0, r0)\B(0, r1/N | log r |3/N )
)

×
∐

Ar,N

∐
B(0, r1/N | log r |−3/N ).

This allows us to decompose both integrals of (1.3) into corresponding
pieces.
Consequently, when the degree N is sufficiently high, by taking into
account the observations (i)–(ii)–(iii)–(iv), and using (1.3), we see that

∫
B(0,r1/N | log r |−3/N )

T ∧ [C] −
∫

B(0,r1/N | log r |−3/N )

T ∧ [D] = O(| log r |−δ).

v. Inside the ball B(0, r1/N | log r |−3/N ), the analytic curve {z = wN } (and
hence the algebraic curve C) clusters around 0, in a certain sense, much
more often than the analytic curve {z = r} (and hence the algebraic curve
D). Indeed, we see in the equation z = wN that both z and w can tend
to 0, whereas in the equation z = r, only w could tend to 0. So we may
expect that in a certain sense,

∫
B(0,r1/N | log r |−3/N )

T ∧ [D] �
∫

B(0,r1/N | log r |−3/N )

T ∧ [C].

This, combined with the estimate obtained just before (v), implies that
both integrals

∫
B(0,r1/N | log r |−3/N )

T ∧ [C] and
∫

B(0,r1/N | log r |−3/N )

T ∧ [D]

admit, in a certain sense, a speed of order | log r |−δ.

vi. Inside the ball B(0, r1/N | log r |−3/N ), the analytic curve {r = z − wN }
(and hence the algebraic curveD) behaves like the analytic curve {z = r}
while intersecting the two curves with a general leaf. Indeed, when |w| ≤
r1/N | log r |−3/N , we have |w|N � r. So we may expect
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∫
B(0,r1/N | log r |−3/N )

T ∧ [D]

−
∫

B(0,r1/N | log r |−3/N )

T ∧ [z = r ] = O(| log r |−δ).

This, together with the estimate just obtained before (vi), yields that
∫

B(0,r1/N | log r |−3/N )

T ∧ [z = r ]

has, in a certain sense, a speed of order | log r |−δ.

vii. Our last observation is that one can show that there is a constant cN > 1
independent of r such that

c−1N
∫

B(0,r1/N )

T ∧ [z = r ] ≤
∫

B(0,r)
T ∧ [z = r ]

≤ cN

∫
B(0,r1/N )

T ∧ [z = r ].

This, together with the estimate just obtained before (vii), implies that
∫

B(0,r)
T ∧ [z = r ]

admits, in a certain sense, a speed of order | log r |−δ. Hence, we get the
convergence with speed of (1.4). This is what we are looking for.

In fact, the factor | log r |3/N appearing in the above observations comes from
the degeneration of the Poincaré metric gP relative to the ambient metric gX
(see formula (2.1)). Moreover, the larger the degree N is, the more evident the
mass-clustering phenomenon in the previous observation becomes.

Our approach underlines several tasks. On the one hand, we need to define
a geometric intersection of a harmonic current with a singular analytic curve
defined on a neighborhood of a singular point of the foliation. On the other
hand, we need to approximate some (local) analytic curves by global algebraic
ones. The assumption of projectivity of X is needed in order to ensure a good
supply of algebraic curves.

1.3 Organization of the article and acknowledgments

The article is organized as follows.
In Sect. 2 below we set up the background and prepare the auxiliary results.

Some basic facts extracted from [10–12] about the behavior of the leafwise
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Poincaré metric near the singularities are recalled here. A quick discussion
on the heat diffusions as well as the measure theory on sample-path spaces
and the holonomy cocycles will also be given in Sect. 2. On the other hand,
Sect. 3 is devoted to an analytic study on the holonomy cocycles. The proofs
of Theorem 1.1 and Corollary 1.2 (modulo the integrability condition (1.1),
i.e., Theorem 1.4) will be provided in Sect. 4.

The remainder of the article is then devoted to the proof of inequality (1.1).
This can be done in three reduction steps.

Section 5 collects several recent results about the mass-clustering of
harmonic currents and a special parametrization of leaves near hyperbolic
singularities.

The first reduction is carried out in Sect 6. Namely, the proof of the integra-
bility condition (1.1) is reduced to that of Theorem 6.2.

Section 7 lays the background for the geometric intersection of a harmonic
current with an analytic curve defined on an open subset of X. We are inspired
by Fornæss–Sibony’s recent works in [14–16]. Special attention is focused on
the case where the analytic curve is defined on a neighborhood of a singular
point of the foliation. We also introduce the notion of interpretations: a way
which permits us to estimate the mass of a geometric intersection efficiently.

In Sect. 8we introduce test curveswhich consist of algebraic curves and ana-
lytic ones. The former curves are defined globally on X,whereas the latter ones
are only defined on a neighborhood of a singular point of the foliation. Next,
we state the first collection of basic estimates (see Propositions 8.3, 8.4, 8.5)
regarding the mass estimates of the geometric intersection of a harmonic cur-
rent with test curves. This allows us to reduce the proof of Theorem 6.2 to
those of Propositions 8.5 and 8.6 modulo Propositions 8.3, 8.4. This is the
second reduction.

Section 9 states the second collection of basic estimates (seePropositions 9.1
and 9.2). Next, using these estimate we establish a cohomological invariance
result (see Proposition 9.3) which permits us to prove Proposition 8.5. So
modulo Propositions 8.3, 8.4, 9.1, 9.2, the proof of Theorem 6.2 is finally
reduced to that of Proposition 8.6. This is the last reduction.

In Sect. 10 we study how the intersection points of test curves with a general
leaf near singularities distribute. This analysis will be helpful when we want to
estimate the mass of some geometric intersections in terms of interpretations.
Based on this analysis, the remaining sections are then devoted to the proof of
the above basic estimates (Propositions 8.3, 8.4, 9.1, 9.2 and 8.6).

Section 11 establishes Proposition 8.3 and the first half of Proposition 8.6.
Section 12 is devoted to the proof of Proposition 9.1.
Proposition 9.2 which consists of 3 basic estimates is proved in Sect. 13.

The proof of each estimate occupies a whole subsection.
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Singular holomorphic foliations by curves 541

Finally, Sect. 14 completes the proof of the last half part of Proposition 8.6
as well as the proof of Proposition 8.4.

2 Background

Although the main theorems only deal with complex surfaces as the ambient
manifold X, we consider, in this section, the general case where dim X ≥ 2.
Indeed, the section may serve as the background for the ongoing parts of the
article. For a recent account on the theory of foliations, the reader is invited to
consult the survey articles by Fornæss–Sibony [15], Ghys [18], Hurder [20]
and textbooks by Candel-Conlon, Walczak [5,6,30].
Notation. Throughout the article, we denote byD the unit disc inC. For r > 0
we denote by Dr and rD interchangeably the disc in C with center 0 and with
radius r. We use several notions of distances:

• dist denotes the distance on X induced by the Hermitian metric gX .

• distP denotes the Poincaré metric, it will be defined in Sect. 2.1, whereas
a more elaborate variant of this distance will be considered in Sect. 3.
• distC denotes the compatible pseudo-distance, it will be defined in Sect. 10.

The current of integration on an analytic curve C is denoted by [C].
In this work the letters c, c′, c0, c1, c2 etc. denote positive constants, not nec-

essarily the same at each occurrence. The notation� and�means inequalities
up to a multiplicative constant, whereas we write≈when both inequalities are
satisfied. Let O and o denote the usual Landau asymptotic notations.

Let log�(·) := 1+ | log(·)| be a log-type function.

2.1 Foliations, singularities, Poincaré metric and Brody hyperbolicity

Let X be a complex manifold of dimension k. A holomorphic foliation by
curvesF = (X,L ) on X is the data of a foliation atlasL with charts

	p : Up → Bp × Tp.

Here, Tp is a domain in C
k−1, Bp is a domain in C, Up is a domain in X, and

	p is biholomorphic, and all the changes of coordinates 	p ◦	−1q are of the
form

x = (y, t) �→ x ′ = (y′, t ′), y′ = 
(y, t), t ′ = �(t).

The open set Up is called a flow box and the Riemann surface 	−1p {t =
c} in Up with c ∈ Tp is a plaque. The property of the above coordinate
changes insures that the plaques in different flow boxes are compatible in the
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542 V.-A. Nguyên

intersection of the boxes. Two plaques are adjacent if they have non-empty
intersection.

A leaf L is a minimal connected subset of X such that if L intersects a
plaque, it contains that plaque. So a leaf L is a Riemann surface immersed in
X which is a union of plaques. A leaf through a point x of this foliation is
often denoted by Lx . A transversal is a complex submanifold of codimension
1 in X which is transverse to the leaves of F .

A holomorphic foliation by curves with singularities, or equivalently a sin-
gular holomorphic foliation by curves, is the data (X,L , E), where X is a
complex manifold, E a closed subset of X and (X\E,L ) is a holomorphic
foliation by curves. Each point in E is said to be a singular point, and E is said
to be the set of singularities of the foliation.We always assume that X\E = X ,
see e.g. [10,14] for more details. If X is compact, then we say that the foliation
(X,L , E) is compact.

We say that a vector field F on C
k is generic linear if it can be written as

F(z) =
k∑
j=1

λ j z j
∂

∂z j

where λ j are non-zero complex numbers. The integral curves of F define a
foliation onC

k . The condition λ j �= 0 implies that the foliation has an isolated
singularity at 0. Consider a holomorphic foliation by curvesF = (X,L , E)

with a discrete set of singularities E . We say that a singular point x ∈ E is
linearizable if there is a (local) holomorphic coordinate system of M on an
open neighborhoodUx of x onwhich x is identifiedwith 0 ∈ C

k and the leaves
of F are integral curves of a generic linear vector field. Such neighborhood
Ux is called a singular flow box of x . When dim X = k = 2, we say that a
linearizable singular point x ∈ E is hyperbolic if the associated generic linear
vector field F(z) = λ1z1

∂
∂z1
+ λ2z2

∂
∂z2

satisfies λ1/λ2 /∈ R. This property is
independent of the choice of coordinates.

For the sake of simplicity, we adopt the following terminology throughout
the article:Unless otherwise specified, a foliation means exactly aholomorphic
foliation by curvesF = (X,L , E) in a Hermitian complex manifold (X, gX )

with a (eventually empty) set E of singularities.
LetF = (X,L , E) be a foliation. We denote byCF the sheaf of functions

f defined and compactly supported on X\E which are leafwise smooth and
transversally continuous, that is, for each foliation chart 	p : Up → Bp×Tp

and all m, n ∈ N, the derivatives
∂m+n( f ◦	−1p )

∂ym∂ ȳn exist and are continuous in
(y, t).
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Let gP be the Poincaré metric on the unit disc D, defined by

gP(ζ ) := 2

(1− |ζ |2)2 idζ ∧ dζ , ζ ∈ D, where i := √−1.

A leaf L of the foliation is said to be hyperbolic if it is a hyperbolic Riemann
surface, i.e., it is uniformized byD. For a hyperbolic leaf Lx , let φx : D→ Lx
be a universal covering map with φx (0) = x . Note that φx is unique up to a
rotation around 0 ∈ D. Then, by pushing forward the Poincaré metric gP on D

via φx , we obtain the so-called Poincaré metric on Lx which depends only on
the leaf. The latter metric is given by a positive (1, 1)-form on Lx that we also
denote by gP for the sake of simplicity. The foliation is said to be hyperbolic
if its leaves are all hyperbolic.

For simplicity we still denote by gX the Hermitian metric on leaves of the
foliation (X\E,L ) induced by the ambient Hermitian metric gX . Consider
the function η : X\E → [0,∞] defined by

η(x) := sup {‖Dφ(0)‖ : φ : D→ Lx holomorphic such that φ(0) = x} .

Here, for the norm of the differential Dφ we use the Poincaré metric on D and
the Hermitian metric gX on Lx . We record the following relation between gX
and the Poincaré metric gP on leaves

gX = η2gP . (2.1)

Recall from a recent joint-work with Dinh and Sibony [12] the following
notion.

Definition 2.1 A foliation F = (X,L , E) is said to be Brody hyperbolic if
there is a constant c > 0 such that η(x) ≤ c for all x ∈ X\E .

Remark 2.2 It is clear that if the foliation is Brody hyperbolic then it is hyper-
bolic. Moreover, when X is compact, the Brody hyperbolicity is equivalent to
the non-existence of holomorphic non-constant maps C→ X such that out of
E the image of C is locally contained in a leaf, see [15, Theorem 15].

The following result is due to Lins Neto and Soares [24] (we only give the
two-dimensional version although their result is also valid in P

k):

Theorem 2.3 There exists a real Zariski dense open subset S(d) of the set of
foliations with a given degree d > 1 in P

2 such that any F ∈ S(d) satisfies

1. F has only hyperbolic singularities and no other singular points;
2. F has no invariant algebraic curve.
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On the other hand, Brunella [2] has shown that each F ∈ S(d) does not
admit any holomorphic non-constant map C→ P

2 such that out of the singu-
larities of F the image of C is locally contained in a leaf. Consequently, by
Definition 2.1 and Remark 2.2, a generic holomorphic foliation in P

2 with a
given degree d > 1 satisfies the hypotheses of Theorem 1.1, Corollaries 1.2
and 1.3 and Theorem 1.4.

2.2 A local model

For U := D
k and t > 0, let tU := (tD)k, see Notation at the beginning of the

section for the definition of tD.

First we give a description of the local model for linearizable singulari-
ties. Consider the foliation (Dk,L , {0}) which is the restriction to D

k of the
foliation associated to the vector field

F(z) =
k∑
j=1

λ j z j
∂

∂z j

with λ j ∈ C\{0}. The foliation is singular at the origin. We use here the
Euclidean metric on D

k . Write λ j = s j + i t j with s j , t j ∈ R. For x =
(x1, . . . , xk) ∈ D

k\{0}, define the holomorphic map ψx : C→ C
k\{0} by

ψx (ζ ) :=
(
x1e

λ1ζ , . . . , xke
λkζ
)

for ζ ∈ C. (2.2)

It is easy to see thatψx(C) is the integral curve of F which containsψx(0) = x .
Write ζ = u+ iv with u, v ∈ R. The domain �x := ψ−1x (Dk) in C is defined
by the inequalities

s ju − t jv < − log |x j | for j = 1, . . . , k.

So, �x is a convex polygon which is not necessarily bounded. It contains 0
since ψx (0) = x . The leaf of F through x contains the Riemann surface

L̂ x := ψx (�x ) ⊂ Lx . (2.3)

In particular, the leaves in a singular flow box are parametrized using holo-
morphic maps ψx : �x → Lx .

Now let F = (X,L , E) be a Brody hyperbolic foliation on a Hermitian
compact complex manifold (X, gX ). Assume as usual that E is finite and all
points of E are linearizable. Let dist be the distance on X induced by the
ambient metric gX . We only consider flow boxes which are biholomorphic to
D
k . A regular flow box is a flow boxes outside the singularities. Singular flow
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boxes are identified to their models (Dk,L , {0}) as described above. For each
singular point x ∈ E , we fix a singular flow box Ux such that 2Ux ∩2Ux ′ = ∅

if x, x ′ ∈ E with x �= x ′. We also cover X\ ∪x∈E Ux by a finite number of
regular flow boxes (Up)p∈P which are fine enough. In particular, each Up is
contained in a larger regular flow box 2Up with 2Up∩E = ∅. Thus we obtain
a finite cover U of X consisting of regular flow boxes Up and singular ones
(Ux )x∈E . In this section we suppose that the ambient metric gX coincides with
the standard Euclidean metric on each singular flow box 2Ux � 2D

k, x ∈ E .

For x = (x1, . . . , xk) ∈ C
k, let ‖x‖ be the standard Euclidean norm of x .

Recall that log�(·) := 1+ | log(·)|.
We record here the following crucial result which gives a precise estimate

on the function η introduced in (2.1).

Lemma 2.4 We keep the above hypotheses and notation. Then there exists a
constant c > 1 with the following properties.

1. η ≤ c on X, η ≥ c−1 outside the singular flow boxes ∪x∈E 1
4Ux and

c−1 · s log� s ≤ η(x) ≤ c · s log� s

for x ∈ X\E and s := dist(x, E).

2. For every x in a singular box which is identified with D
k, for every ζ ∈

�x ,

c−1 · idζ ∧ d ζ̄

(log�(ψx (ζ )))2
≤ (ψ∗x gP)(ζ ) ≤ c · idζ ∧ d ζ̄

(log�(ψx (ζ )))2
.

Proof Part 1 has been proved in [12, Proposition 3.3].
To prove Part 2, write y = ψx (ζ ) for ζ ∈ �x , and observe that

min{|λ1|, . . . , |λk |} · ‖y‖ ≤ ‖ψ ′x (ζ )‖ ≤ max{|λ1|, . . . , |λk |} · ‖y‖.
On the other hand, recall from (2.1) that

i∂∂‖y‖2 = η2(y)gP(y),

Moreover, we know from Part 1 that η(y) ≈ ‖y‖ log� ‖y‖. Pulling back
both members of the last equality by ψx and using the previous estimates
for ‖ψ ′x (ζ )‖ and for η(y), we obtain the desired estimate for (ψ∗x gP)(ζ ). ��

2.3 Heat diffusions and harmonic currents versus harmonic measures

Let F = (X,L , E) be a hyperbolic foliation. The leafwise Poincaré metric
gP induces the corresponding Laplacian � on leaves such that
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i∂∂u = �u · gP , on X\E for all u ∈ CF . (2.4)

A positive finite Borel measure μ on X is said to be harmonic if
∫
X

�udμ = 0

for all functions u ∈ CF .

For every point x ∈ X\E, consider the heat equation on Lx

∂p(x, y, t)

∂t
= �y p(x, y, t), lim

t→0
p(x, y, t) = δx (y), y ∈ Lx , t ∈ R+.

Here δx denotes the Dirac mass at x, �y denotes the Laplacian � with respect
to the variable y, and the limit is taken in the sense of distribution, that is,

lim
t→0+

∫
Lx

p(x, y, t) f (y)gP(y) = f (x)

for every smooth function f compactly supported in Lx .

The smallest positive solution of the above equation, denoted by p(x, y, t),
is called the heat kernel. Such a solution exists because (Lx , gP) is complete
and of bounded geometry (see, for example, [6,7]). The heat kernel gives rise
to a one parameter family {Dt : t ≥ 0} of diffusion operators defined on
bounded Borel measurable functions on M\E :

Dt f (x) :=
∫
Lx

p(x, y, t) f (y)gP(y), x ∈ X\E . (2.5)

We record here the semi-group property of this family: D0 = id and Dt+s =
Dt ◦ Ds for t, s ≥ 0.
Let C 1

F denote the space of forms h of bidegree (1, 1) defined on leaves of
the foliations such that h is compactly supported on X\E and that h is leafwise
smooth and transversally continuous. A form h ∈ C 1

F is said to be positive
if its restriction to every plaque is a positive (1, 1)-form in the usual sense of
Lelong.

Definition 2.5 A harmonic current T on the foliation F (or equivalently,
directed by F ) is a linear continuous form on C 1

F which verifies ∂∂T = 0 in
the weak sense (namely T (∂∂ f ) = 0 for all f ∈ CF ), and which is positive
(namely, T (h) ≥ 0 for all positive forms h ∈ C 1

F ).

Suppose now that E is a finite set. Then the existence of nonzero harmonic
currents has been established by Berndtsson–Sibony in [1, Theorem 1.4], and
Fornæss–Sibony in [15, Corollary 3]. The extension of T by zero through E,
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still denoted by T, is a positive ∂∂-closed current on X. The total mass of the
positive measure T ∧ gX is always finite.

We have the following decomposition (see [10, Proposition 2.3]).

Proposition 2.6 LetF = (X,L , E) be a hyperbolic foliation with lineariz-
able singularities E . Let T be a harmonic current on X. Let U � B× T be a
flow box which is relatively compact in X\E . Then, there is a positive Radon
measure ν onT and for ν-almost everyα ∈ T there is a positive harmonic func-
tion hα on B such that if K is compact in B, the integral

∫
T
‖hα‖L1(K )dν(α)

is finite and

〈T, χ〉 =
∫

T

( ∫
B

hα(y)χ(y, α)
)
dν(t)

for every form χ ∈ C 1
F compactly supported in U.

A subset M ⊂ X\E is said to be leafwise saturated if x ∈ M implies the
whole leaf Lx is contained in M. A positive finite measure μ on the σ -algebra
of Borel sets in X is said to be ergodic if for every leafwise saturated Borel
measurable set M ⊂ X, μ(M) is equal to either μ(X) or 0. A harmonic
current T is said to be extremal if it is an extremal point in the convex cone
of all harmonic currents, i.e., if there are harmonic currents T1, T2 such that
T = T1+T2

2 , then T1 and T2 are colinear.

Theorem 2.7 LetF = (X,L , E) be a hyperbolic foliation with linearizable
singularities E .

1. The relation μ = T ∧ gP is a one-to-one correspondence between the
convex cone of harmonic currents T and the convex cone of harmonic
measures μ.

2. If T is extremal, then μ = T ∧ gP is ergodic.
3. Each harmonic measure μ is Dt -invariant, i.e,

∫
X
Dt f dμ =

∫
X
f dμ, f ∈ L1(X, μ).

Proof We start with Part 1. First observe that, for each harmonic current T, the
positive measure μ := T ∧ gP is finite by [10, Proposition 4.2]. Moreover, it
is easy to see that μ is harmonic. Consequently, the map T �→ T ∧ gP is one-
to-one. Therefore, to complete Part 1 it suffices to show that each harmonic
measure μ may be written as μ = T ∧ gP for some harmonic current T . To
do this we proceed as in the proof of [10, Proposition 5.1].

To prove Part 2, suppose in order to get a contradiction thatμ is not ergodic.
So there is a leafwise saturated Borel set A ⊂ X\E such that 0 < μ(A) < 1.
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Let μ1 := 2μ|A and μ2 := 2μ|X\A. So μ = μ1+μ2
2 , and μ1, μ2 are not co-

linear. Using the local description of T on each flow box (see [10, Proposition
2.3]), we can show that both μ1 and μ2 are harmonic measures. By Part 1,
let T1, T2 be harmonic currents such that μ1 := T1 ∧ gP and μ2 := T2 ∧ gP .

This, combined with μ = μ1+μ2
2 , implies that T = T1+T2

2 and T1, T2 are not
co-linear. This contradicts the extremality of T .

Part 3 follows from [10, Theorem 6.4] applied to the positive (1, 1) form
β := gP . ��

2.4 Measure theory on sample-path spaces

In this subsection we follow the expositions given in Sections 2.2, 2.4 and 2.5
in [25] (see also [6]). The σ -algebra generated by a familyS of subsets of �

is, by definition, the smallest σ -algebra containingS .

Let F = (X,L , E) be a hyperbolic foliation endowed with the leafwise
Poincaré metric gP . Let � := �(F ) be the space consisting of all continuous
paths ω : [0,∞) → X with image fully contained in a single leaf. This
space is called the sample-path space associated toF . Observe that � can be
thought of as the set of all possible paths that a Brownian particle, located at
ω(0) at time t = 0, might follow as time progresses. For each x ∈ X\E, let
�x = �x (F ) be the space of all continuous leafwise paths starting at x in
X\E, that is,

�x := {ω ∈ � : ω(0) = x} . (2.6)

Garnett developed in [17] a theory of leafwise Brownianmotion in this context
by constructing a σ -algebra (�, Ã ) togetherwith a family ofWienermeasures
(see also [4,6]). Now recall briefly her construction. A cylinder set (in �) is a
set of the form

C = C({ti , Bi } : 1 ≤ i ≤ m) := {ω ∈ � : ω(ti ) ∈ Bi , 1 ≤ i ≤ m} ,

where m is a positive integer and the Bi are Borel subsets of X\E, and 0 ≤
t1 < t2 < · · · < tm is a set of increasing times. In other words, C consists
of all paths ω ∈ � which can be found within Bi at time ti . For each point
x ∈ X\E, let

Wx (C) :=
(
Dt1(χB1Dt2−t1(χB2 · · ·χBm−1Dtm−tm−1(χBm ) · · · ))

)
(x), (2.7)

whereC := C({ti , Bi } : 1 ≤ i ≤ m) as above,χBi is the characteristic function
of Bi and Dt is the diffusion operator given by (2.5). Let Ã = Ã (F ) be the
σ -algebra generated by all cylinder sets. It can be proved that Wx extends to
a probability measure on (�, Ã ).
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In the recent work [25] we introduce another σ -algebra A on �, which
is bigger than Ã . In fact, A takes into account the holonomy phenomenon,
whereas Ã does not so. Here is our construction in the present context. The
covering foliation F̃ = (X̃ , L̃ ) of a singular foliation F is, in some sense,
its universal cover. We give here its construction. For every leaf L of F and
every point x ∈ L , let π1(L , x) denotes the first fundamental group of all
continuous closed paths γ : [0, 1] → L based at x, i.e. γ (0) = γ (1) = x .

Let [γ ] ∈ π1(L , x) be the class of a closed path γ based at x . Then the pair
(x, [γ ]) represents a point of X̃ . Thus the set of points X̃ of F̃ is well-defined.
The leaf L̃ passing through a given point (x, [γ ]) ∈ X̃ , is by definition, the
set

L̃ := {(y, [δ]) : y ∈ Lx , [δ] ∈ π1(L , y)} ,
which is the universal cover of Lx . We put the following topological structure
on X̃ by describing a basis of open sets. Such a basis consists of all sets
N (U, α), U being an open subset of X\E and α : U × [0, 1] → X being a
continuous function such that αx := α(x, ·) is a closed path in Lx based at x
for each x ∈ U, and

N (U, α) := {(x, [αx ]) : x ∈ U } .
The projection π : X̃ → X\E is defined by π(x, [γ ]) := x . It is clear that π

is locally homeomorphic and is a leafwise map. By pulling-back the foliation
atlas L of F as well as the Poincaré metric gP via π, we obtain a natural
foliation atlas L̃ for the hyperbolic foliation F̃ endowed with the leafwise
metric π∗gP . Denote by �̃ the sample-path space �(F̃ ) associated with the
foliation F̃ .

Let x ∈ X\E and x̃ an arbitrary point in π−1(x) ⊂ X̃ . Similarly as in (2.6),
let �̃x̃ = �x̃ (F̃ ) be the space of all paths in �̃ starting at x̃ .Every pathω ∈ �x
lifts uniquely to a path ω̃ ∈ �̃x̃ in the sense that π ◦ ω̃ = ω. In what follows
this bijective lifting is denoted by π−1x̃ : �x → �̃x̃ . So π ◦ (π−1x̃ (ω)) = ω,

ω ∈ �x .

Definition 2.8 Let A = A (F ) be the σ -algebra generated by all sets of
following family

{
π ◦ Ã : cylinder set Ã in �̃

}
,

where π ◦ Ã := {π ◦ ω̃ : ω̃ ∈ Ã}.
Observe that Ã ⊂ A and that the equality holds if every leaf of the foliation
is homeomorphic to the disc D. Now we construct a family {Wx }x∈M\E of
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probability Wiener measures on (�,A ). Let x ∈ X\E and C an element of
A . Then we define the so-calledWiener measure Wx by the following formula

Wx (C) := Wx̃ (π
−1
x̃ C), (2.8)

where x̃ is an arbitrary point in π−1(x), and

π−1x̃ C :=
{
π−1x̃ ω : ω ∈ C ∩�x

}
,

andWx̃ is the probability measure on (�̃, Ã (F̃ )) which was defined by (2.7).
Given a positive finite Borel measure μ on X\E, consider the measure μ̄ on
(�,A ) defined by

μ̄(A) :=
∫
X

(∫
ω∈A∩�x

dWx

)
dμ(x), A ∈ A . (2.9)

The measure μ̄ is called the Wiener measure with initial distribution μ. Here
are its important properties.

Proposition 2.9 We keep the above hypotheses and notation.

i. The value of Wx (C) defined in (2.8) is independent of the choice of x̃ .

Moreover, Wx is a probability measure on (�,A ).

ii. μ̄ given in (2.9) is a positive finite measure on (�,A ) and μ̄(�) =
μ(X\E).

iii. If μ is harmonic, then μ̄ is time-invariant, that is,
∫

�

F(σt (ω))dμ̄(ω) =
∫

�

F(ω)dμ̄(ω),

for all t ∈ R
+ and F ∈ L1(�, μ̄), where the shift-transformation σt :

�→ � is defined by

σt (ω)(s) := ω(s + t), ω ∈ �, s ∈ R
+. (2.10)

Proof Assertion (i) has been proved in [25, Theorem 2.15]. Assertion (ii) has
been established in [25, Theorem 2.16].

By Part 3 of Theorem 2.7, μ is Dt -invariant for all t ∈ R
+. Consequently,

applying [25, Theorem 2.20] to μ yields that μ̄ is time-invariant. ��

2.5 Holonomy cocycles

Now we define the holonomy cocycle of a hyperbolic foliation F =
(X,L , E) on a Hermitian complex surface X. For each point x ∈ X\E,
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let Tx (X) (resp. Tx (Lx ) ⊂ Tx (X)) be the tangent space of X (resp. Lx ) at
x . For every transversal S at a point x (that is, x ∈ S), let Tx (S) denote the
tangent space of S at x .

Now fix a point x ∈ X\E and a path ω ∈ �x and a time t ∈ R
+, and

let y := ω(t). Fix a transversal Sx at x (resp. Sy at y) such that the complex
line Tx (Sx ) is the orthogonal complement of the complex line Tx (Lx ) in the
Hermitian space (Tx (X), g(x)) (resp. Ty(Sy) is the orthogonal complement
of Ty(Ly) in (Ty(X), g(y))). Let holω,t be the holonomy map along the path
ω|[0,t] from an open neighborhood of x in Sx onto an open neighborhood of
y in Sy . The derivative Dholω,t : Tx (Sx ) → Ty(Sy) induces the so-called
holonomy cocycleH : �× R

+ → R
+ given by

H(ω, t) := ‖Dholω,t (x)‖.

The last map depends only on the path ω|[0,t], in fact, it depends only on the
homotopy class of this path. In particular, it is independent of the choice of
transversals Sx and Sy . We see easily that

H(ω, t) = lim
z→x, z∈Sx

dist(holω,t (z), y)/dist(z, x).

On the other hand, we note the following additive property which is an imme-
diate consequence of the definition ofH(ω, t) (see also [25, Proposition 3.3]):

log ‖H(ω, t + s)‖ = log ‖H(ω, t)‖+log ‖H(σt (ω), s)‖, t, s ∈ R
+, ω ∈ �,

(2.11)
where σt : �→ � is the shift-transformation given by (2.10).

3 Holonomy cocycle versus Poincaré metric

In this section let F = (X,L , E) be a holomorphic Brody hyperbolic folia-
tion with linearizable singularities E in a Hermitian compact complex surface
X. LetH be the holonomy cocycle of the foliation. In order to study the behav-
ior ofH near a (hyperbolic) singular point,we use the localmodel (D2,L , {0})
introduced in Sect. 2.2. This is the restriction to D

2 of the foliation associated
with the vector field

F(z, w) = z
∂

∂z
+ λw

∂

∂w
with some complex number λ �= 0.

Since the main results of the article do not depend on the choice of a Hermitian
metric on X, we can fix a metric which is equal to the Euclidean one in each
singular flow box. This will simplify our presentation.
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For x = (z, w) ∈ D
2\{0}, the holomorphic map ψx : �x → D

2\{0} given
by (2.2) may be rewritten as

ψx (ζ ) :=
(
zeζ , weλζ

)
for ζ ∈ �x . (3.1)

Proposition 3.1 Let D
2 be endowed with the Euclidean metric. For each x =

(z, w) ∈ D
2 and ζ ∈ �x , consider a path ω ∈ � (if it exists) such that

ω(t) = ψx (tζ ) = (zeζ t , weλζ t ) ⊂ D
2

for all t ∈ [0, 1] (see (3.1) above). Then

H(ω, 1) = |eζ ||eλζ |
√|z|2 + |λw|2√|zeζ |2 + |λweλζ |2 .

Proof Let y := ω(1) = (zeζ , weλζ ). Since the vector (z, λw) is tangent to
the leaf Lx at x, the vector Nx := (−λ̄w̄, z̄) is normal to Lx at x, and hence,
the complex normal line Sx to Lx at x is the set

{x + s · Nx : s ∈ C} = {(z − λ̄w̄s, w + z̄s) : s ∈ C}.

Similarly, let Ny := (−λ̄w̄eλ̄ζ̄ , z̄eζ̄ ) be the vector normal to Ly at y, and let
Sy := {y + s · Ny : s ∈ C} be the complex normal line to Ly at y. Since
Nx (resp. Ny) may be regarded, in a sufficiently small open neighborhood
of x (resp. y), as a transversal, we can describe the holonomy map holω,t
using them. Indeed, for each s ∈ C with |s| small enough, we want to find
ξ ∈ C close to ζ such that

(
(z − λ̄w̄s)eξ , (w + z̄s)eλξ

)
belongs to Sy . This is

equivalent to the fact that the following two vectors

Vs :=
(
(z − λ̄w̄s)eξ − zeζ , (w + z̄s)eλξ − weλζ

)
and Ny

are colinear. Write ξ = ζ + as + O(s2). So eξ = eζ (1 + as + O(s2)) and
eλξ = eλζ (1+ λas + O(s2)). In order to determine a, we insert the last two
identities into the expression of Vs and get that

Vs = s ·
(
(za − λ̄w̄)eζ , (z̄ + aλw)eλζ

)
+ O(s2). (3.2)

So the above colinearity condition reduces to the colinearity of the following
two vectors

(
(za − λ̄w̄)eζ , (z̄ + aλw)eλζ

)
and (−λ̄w̄eλ̄ζ̄ , z̄eζ̄ ).
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Solving this equation yields that

a = λ̄z̄w̄(|eζ |2 − |eλζ |2)
|z|2|eζ |2 + |λ|2|w|2|eλζ |2 .

Recall that Tx (Sx ) = Sx is orthogonal to Tx (Lx ) at x = ω(0) and Ty(Sy) = Sy
is orthogonal to Ty(Ly) at y = ω(1). Moreover, x + s · Nx and y + Vs are on
the same leaf for all s ∈ C with |s| small enough. Consequently, a geometric
argument shows that

H(ω, 1) = lim
s→0
‖Vs‖/‖s · Ns‖ =

∥∥∥
(
(za − λ̄w̄)eζ , (z̄ + aλw)eλζ

)∥∥∥
‖(−λ̄w̄, z̄)‖ ,

where the last equality holds by (3.2). Inserting the above value of a into the
last expression, a straightforward calculation gives the desired result. ��

Now we define a new variant of Poincaré “distance” distP which takes
into account the holonomy phenomenon. Let ω ∈ � and 0 ≤ t ≤ s. Put
x := ω(t) and y := ω(s). Let φx : D→ Lx be a universal covering map with
φx (0) = x . The path [0, s− t] � r �→ ω(t + r) is lifted by φx to a continuous
path β : [0, s − t] → D such that β(0) = 0. Let τ := β(s − t) ∈ D. So
φx (τ ) = ω(s) = y. Now we are in the position to define the new Poincaré
function

distP(ω : t, s) := distP(0, τ ) = log

(
1+ |τ |
1− |τ |

)
, (3.3)

where on the right hand side distP is the usual Poincaré distance on D. Note
that distP(ω : t, s) is independent of the choice of φx .Moreover, it is uniquely
determined by x = ω(t), y = ω(s) and the homotopy class (two end-points
being fixed) of the path [0, s − t] � r �→ ω(t + r). There is exactly one
homotopy class for which distP(· : t, s) coincides with distP(x, y).

The following lemma shows us how deep a leaf can go into a singular flow
box before the hyperbolic time R.

Lemma 3.2 There is a constant c > 0 with the following property. Let ω ∈ �

be such that ω[0, 1] ⊂ (1/2D)2 and that ω[0, 1] is (locally) geodesic with
respect to the leafwise Poincaré metric gP . Write (z, w) := x = ω(0) and
R := distP(ω : 0, 1). Then there exists ζ ∈ �x (see (3.1) above) such that
ω(1) = (zeζ , weλζ ) and that

|ζ | ≤ ecR| log ‖x‖|.
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Proof First we show that there is r > 0 such that if R = distP(ω : 0, 1) ≤ r
then there exists ζ ∈ �x such that ω(1) = (zeζ , weλζ ) and that

|ζ | ≤ | log ‖x‖|
2|λ| . (3.4)

Indeed, let ω ∈ � be a path such that

• ω[0, 1] is locally geodesic;
• for all t ∈ [0, 1], ω(t) := (zeζ(t), weλζ(t)) ∈ (1/2D)2;
• ζ(0) = 0 and |ζ(t)| ≤ | log ‖x‖|2|λ| for all t ∈ [0, 1] and |ζ(1)| = | log ‖x‖|2|λ| .

We only need to show that R = distP(ω : 0, 1) ≤ r for some r > 0
independent of ω. Indeed, it follows from the second and third • above that
| log ‖ω(t)‖| ≈ | log ‖x‖| for t ∈ [0, 1]. Therefore, by integrating along the
path [0, 1] � t �→ ζ(t) and using the first • above, and applying Part 2 of
Lemma 2.4, we get that

distP(ω : 0, 1) =
∫

ω[0,1]

√
gP(z) =

∫ 1

0
ζ ∗t (ψ∗x (

√
gP))

≥ c1

∫ | log ‖x‖|
2|λ|

0
| log ‖x‖|−1ds = c1

2λ
=: r,

where c1 > 0 is a constant. This proves (3.4).
Next, we prove the lemma for a general R > 0. Suppose without loss of

generality that r = 1. Let 0 = t0 < · · · < tn = 1 be a subdivision of [0, 1]
such that distP(ω : t j , t j+1) ≤ 1 for each 0 ≤ j ≤ n − 1 and that n is as
smallest as possible. So n is the smallest integer≥ R.Let x j := ω(t j ).So x0 =
ω(0) = x = (z, w).Applying (3.4) repeatedly, we obtain, for each 0 ≤ j ≤ n,

ζ j ∈ C and x j = (z j , w j ) ∈ (1/2D)2 such that x j+1 = (z j eζ j , w j eλζ j ) for
0 ≤ j < n and that |ζ j | ≤ c2| log ‖x j‖|. So | log ‖x j+1‖| ≤ c3| log ‖x j‖| for
some constant c3 > 1 which depends only on c2 and λ. Thus,

| log ‖x j‖| ≤ c j3 | log ‖x‖| and |ζ j | ≤ c2c
j
3 | log ‖x‖|.

Writingω(1) = xn = (z0eζ , w0eλζ ) = (zeζ , weλζ )with ζ := ζ1+· · ·+ζn−1
and using the last estimate, the desired conclusion of the lemma follows. ��

The following result gives an estimate on the expansion rate of H(ω, ·) in
terms of the Poincaré function distP(ω : ·, ·) and the distance dist(ω(0), E).

Proposition 3.3 There is a constant c > 0 such that
∣∣ log ‖H(ω, t)‖∣∣ ≤ c log� dist(ω(0), E) · exp

(
c distP (ω : 0, t)

)
, ω ∈ �, t ∈ R

+.
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Proof We may suppose without loss of generality that t = 1. Let ω ∈ �, and
put x := ω(0) and y := ω(1). Since H(ω, 1) depends only on the homotopy
class of the path ω|[0,1], we may assume without loss of generality that the
segment ω[0, 1] is (locally) geodesic with respect to the Poincaré metric on
Lx . Let U be the finite cover of M by regular and singular flow boxes given
in Sect. 2.2. We consider three steps.
Step 1: If there is a singular flow box U which contains the whole segment
ω([0, 1]), then the proposition is true for c = c1, where c1 > 0 is a constant
large enough.

Write x = (z, w) and y := ω(1). Let R := distP(ω : 0, 1). By Lemma 3.2,
we may write y = (zeζ , weλζ ) for some ζ ∈ C such that

|ζ | ≤ ec2R .

Inserting this into the expression for the holonomy map given in Proposi-
tion 3.1, a straightforward computation shows that

∣∣ log ‖H(ω, 1)‖∣∣ ≤ c3| log ‖x‖|ec3R

for a constant c3 > 0 independent of ω. Choosing c1 > c3 large enough, Step
1 follows from the last estimate.
Step 2: If the whole segmentω([0, 1]) is contained in a single regular flow box
U ∈ U , then

∣∣ log ‖H(ω, 1)‖∣∣ ≤ c4, where c4 > 0 is a constant independent
ofω. In particular, the proposition is true in this case for c = c1,where c1 > 0
is a constant large enough.

Observe that the geodesic segmentω[0, 1] is contained in the unique plaque
of U which passes through x . This, combined with the description of the
holonomy map on U, implies that ‖H(ω, 1)‖ ≤ ec4 for a constant c4 > 0
independent of ω.Hence,

∣∣ log ‖H(ω, 1)‖∣∣ ≤ c4. Therefore, choosing c1 > c4
large enough, we have that

c1 log
� dist(ω(0), E) ≥ c4 ≥

∣∣ log ‖H(ω, 1)‖∣∣.
This proves the proposition in Step 2.
Step 3: Proof of the proposition in the general case.

Consider the family of all finite subdivisions of [0, 1] into intervals [t j−1, t j ]
with 1 ≤ j ≤ n such that t0 = 0, tn = 1 and that each segment ω([t j−1, t j ])
is contained in a single (regular or singular) flow box U j for each j . Fix a
member of this family such that the number n is smallest possible. We may
assume without loss of generality that n > 1 since the case n = 1 follows
either from Step 1 (if U1 is singular) or from Step 2 (if U1 is regular). The
minimality of n implies that all ω(t1), . . . ω(tn−1) belong to the union of all
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regular flow boxes ofU . Therefore, there is a constant r0 > 0 independent of
ω such that

distP(ω : t j , t j+1) ≥ r0, 1 ≤ j ≤ n − 1.

Thus
n ≤ 1+ r−10 distP(ω : 0, 1). (3.5)

Moreover, there is a constant c5 > 1 independent of ω such that

1 ≤ log� dist(ω(t j ), E) ≤ c5, 1 ≤ j ≤ n − 1.

Using this and applying Step 1 to each singular box in the family (U j )
n
j=1 and

applying Step 2 to each regular flow box in the above family, we obtain that

∣∣ log ‖H(ω, t1)‖
∣∣ ≤ c1 log

� dist(ω(t0), E) · exp
(
c1distP (ω : t0, t1)

)
,

∣∣ log ‖H(σt j−1(ω), t j − t j−1)
∣∣ ≤ c1c5 exp

(
c1distP (ω : t j−1, t j )

)
, 2 ≤ j ≤ n.

Summing up the above estimates, we get that

n∑
j=1

∣∣ log ‖H(σt j−1(ω), t j − t j−1)‖
∣∣

≤ c1 log
� dist(ω(t0), E) · exp

(
c1distP(ω : t0, t1)

)

+
n∑
j=2

c1c5 exp
(
c1distP(ω : t j−1, t j )

)
.

On the other hand, we infer from (2.11) that

∣∣ log ‖H(ω, 1)‖∣∣ =
n∑
j=1

∣∣ log ‖H(σt j−1(ω), t j − t j−1)‖
∣∣.

This, coupled with the previous estimate, gives that

∣∣ log ‖H(ω, 1)‖∣∣ ≤ c1 log
� dist(ω(t0), E) · exp

(
c0distP(ω : t0, t1)

)

+
n∑
j=2

c1c5 exp
(
c1distP(ω : t j−1, t j )

)
. (3.6)
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Since log� dist(x, E) ≥ 1 for all x ∈ M\E, the right hand side of the last line
is dominated by a constant times log� dist(ω(t0), E) times

n∑
j=1

exp
(
c1distP(ω : t j−1, t j )

)
≤ n · exp

(
c1distP(ω : 0, 1)

)
,

where the last inequality holds because of the identity

distP(ω : 0, 1) =
n∑
j=1

distP(ω : t j−1, t j ).

Inserting (3.5) into the right hand side of the last inequality and choos-
ing c > c1 large enough, we find that its left hand side is bounded by

c exp
(
c distP(ω : 0, 1)

)
. So the right hand side of (3.6) is also bounded by

a constant times log� dist(ω(t0), E) · exp
(
c distP(ω : 0, 1)

)
, and the proof is

thereby completed. ��

4 Proof of the main results modulo the integrability condition

This section is devoted to the proofs of Theorem 1.1 and Corollary 1.2 mod-
ulo the integrability condition (1.1), i.e., modulo Theorem 1.4. We need the
following result.

Lemma 4.1 There is a constant c > 1 such that for all x ∈ M\E and all
s ≥ 1,

Wx

{
ω ∈ � : sup

t∈[0,1]
distP(ω : 0, t) > s

}
< ce−c−1s2 .

Proof Let φx : D → Lx be a universal covering map with φx (0) = x . We
have to show that

W0

{
ω ∈ �(D) : sup

t∈[0,1]
distP(ω(0), ω(t)) > s

}
< ce−c−1s2

where W0 is the Wiener measure at 0 of the unit disc D endowed with the
Poincaré metric gP , and distP(·, ·) is the Poincaré distance. Since the Poincaré
metric is complete and of bounded geometry, the last estimate holds by com-
bining [4, Lemma 8.16 and Corollary 8.8]. ��
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Now we arrive at the
End of the proof of Theorem 1.1 modulo the integrability condition (1.1).
By Proposition 3.3, we get a constant c1 > 0 such that

I (ω) ≤ c1G(ω),

where the function G : �→ R
+ is given by

G(ω) := log� dist(ω(0), E) · exp
(
c1 · sup

t∈[0,1]
distP(ω : 0, t)

)
, ω ∈ �.

Consequently, we only need to show that G is μ̄-integrable.
To do this we write using formula (2.9)

∫
�

G(ω)dμ̄(ω) =
∫
X
log� dist(x, E)

·
( ∫

�x

exp
(
c1 · sup

t∈[0,1]
distP(ω : 0, 1)

)
dWx (ω)

)
dμ(x). (4.1)

Next, we will show that the inner integral is uniformly bounded by a constant
c2 > 0 independent of x, that is,

∫
�x

exp
(
c1 · sup

t∈[0,1]
distP(ω : 0, 1)

)
dWx (ω) < c2. (4.2)

To this end we focus on a single leaf L of F passing through a given point
x ∈ X\E . Observe that

∫
�x

exp
(
c1 · sup

t∈[0,1]
distP(ω : 0, 1)

)
dWx (ω)

=
∫ ∞
0

Wx

{
ω ∈ �x : exp

(
c1 · sup

t∈[0,1]
distP(ω : 0, 1)

)
> s

}
ds.

The integrand on the right-hand side is equal to

Wx

{
ω ∈ �x : sup

t∈[0,1]
distP(ω : 0, 1) > log s/c1

}
.

For 0 ≤ s ≤ ec1, this quantity is clearly ≤ 1 since Wx is a probability
measure by Proposition 2.9 (i). For s ≥ ec1, this quantity is dominated, thanks

123



Singular holomorphic foliations by curves 559

to Lemma 4.1, by c3 exp
(
− c−13

( log s
c1

)2) for some constant c3 > 0. Since∫∞
ec1 exp

(
− c−13

( log s
c1

)2)
ds <∞, we have established (4.2).

We infer from (4.1) and (4.2) that

∫
�

G(ω)dμ̄(ω) ≤ c2

∫
X
log� dist(x, E)dμ(x).

By assumption (1.1), the integral on the right hand is is finite. Hence, the proof
of the theorem is complete. ��
End of the proof of Corollary 1.2 modulo the integrability condition (1.1).
Using Theorem 1.1, we may apply [25, Theorem 3.7] to the holonomy cocycle
H of rank 1. Consequently, we obtain a unique Lyapunov exponent function
λ(T ) : X → R which is measurable and leafwise constant and which, for
μ-almost every x ∈ X, satisfies

lim
t→∞

1

t
log ‖H(ω, t)‖ = λ(T )(x)

forWx -almost every path ω ∈ �x . Since μ is ergodic and the function λ(T ) is
leafwise constant and measurable, it follows that for all a, b ∈ R with a ≤ b,
the μ-measure of the leafwise saturated set {x ∈ X : a ≤ λ(T )(x) ≤ b} is
either 0 or μ(X). Consequently, λ(T ) is constant μ-almost everywhere. The
proof is thereby completed. ��

5 Harmonic currents on the local model

We collect in this section several known results about the mass-clustering
of harmonic measures near hyperbolic singularities. More concretely, we first
recall a special parametrization of leaveswhich is due to Fornæss–Sibony [16].
Next, using this parametrization, we state a mass-clustering result of harmonic
measures near hyperbolic singularities which is also due to Fornæss–Sibony
[16]. Finally, we recall our recent estimate about the behaviour of some integral
operators of “Poisson kernel” type near hyperbolic singularities. These results
will thoroughly be used in the subsequent sections when we prove the basic
estimates stated in Sect. 6.

Following [16, Section 2], consider the foliation associated to the vector
field F(z, w) = z ∂

∂z + λw ∂
∂w

with some complex number λ = a+ ib, b �= 0.
Note that if we flip z and w, we replace λ by 1/λ = λ̄/|λ|2 = a/(a2 +
b2)− ib/(a2+ b2). Therefore, we may assume without loss of generality that
b > 0. We now describe the portion of a general leaf inside D

2. There are
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two separatrices, (w = 0), (z = 0). Other than that the Riemann surface L̂α

defined in (2.3) can be reparametrized by

(z, w) = ψα(ζ ), z = ei(ζ+(log |α|)/b), ζ = u + iv, w = αeiλ(ζ+(log |α|)/b).
(5.1)

The reader is invited to compare this special parametrization with the ones
given in (2.3) and (3.1). Consider the new variable

t := bu + av. (5.2)

So we have
|z| = e−v, |w| = e−bu−av = e−t . (5.3)

Observe that as we follow z once counterclockwise around the origin, u
increases by 2π , so the absolute value of |w| decreases by the multiplicative
factor of e−2πb. Hence, we cover all leaves when α ranges over T, where

T := {α ∈ C : e−2πb ≤ |α| ≤ 1}. (5.4)

We notice that with the above parametrization, the intersection with the unit
bidisc D

2 of the leaf is given by the domain {(u, v) ∈ R
2 : v > 0, u >

−av/b}. The main point of this special parametrization is that the above
domain is independent of α. In the (u, v)-plane this domain corresponds to
a sector Sλ with corner at 0 and given by 0 < θ < arctan(−b/a) where the
arctan is chosen to have values in (0, π), that is,

Sλ :=
{
τ = reiθ ∈ C : r > 0 and 0 < θ < arctan(−b/a)

}
. (5.5)

Let γ := π
arctan(−b/a)

. Then the map

φ : τ = u + iv �→ τγ = (u + iv)γ =: U + iV (5.6)

maps this sector to the upper half plane with coordinates (U, V ). The fact that
γ > 1 will be crucial, this is where the hyperbolicity of singularities is used.

The local leaf clusters on both separatrices. To investigate the clustering
on the z-axis, we use a transversal Tz0 := {(z0, w) : e−2πb ≤ |w| ≤ 1}
for some z0 with |z0| = 1. We can normalize so that hα(z0, w) = 1 for
(z0, w) ∈ Tz0 . Solving the equation (z0, w) = ψα(ζ0) = ψα(u0 + iv0) with
unknown variables (u, v, α) yields the unique solution u0 = −b−1 ln |w|,
v0 = 0 and α = w. Consequently, by identifying α ∈ T with (z0, α) ∈ Tz0,

we may identify T with Tz0, and hence T can be regarded as a transversal. We
call T the distinguished transversal. Let T be a harmonic current of mass 1
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directed by F . Let U be a flow box which admits Tz0 as a transversal. Then
by Proposition 2.6, we can write in U

T =
∫

hα[Vα]dν(α), (5.7)

where, for each α ∈ T, hα denotes the harmonic function associated to the
current T on the plaque Vα which is contained in the leaf Lα. We still denote
by hα its harmonic continuation along Lα. Define

h̃α(ζ ) := hα

(
ei(ζ+(log |α|)/b), αeiλ(ζ+(log |α|)/b)) on Sλ.

Consider the harmonic function

H̃α := h̃α ◦ φ−1 defined on the upper half plane {U + iV : V > 0}.
The following mass-clustering estimate of Fornaess–Sibony [16] is needed.

Lemma 5.1 1. The harmonic function H̃α is the Poisson integral of its
boundary values. So in the upper half plane {U + iV : V > 0},

H̃α(U + iV ) = 1

π

∫ ∞
−∞

H̃α(y)
V

V 2 + (y −U )2
dy

for ν-almost every α. Moreover,

∫
α∈T

∫ ∞
−∞

H̃α(y)(1+ |y|)1/γ−1dydν(α) <∞.

2. If, moreover, T gives no mass to every invariant analytic curve, then ν is
diffuse, that is, ν(α) = 0 for every α.

Proof The first part is proved in [16, Proposition 1].
When F has no invariant analytic curve, the second part is proved in [16,

Corollary 2]. But that proof still works in the more general context of Part 2
making the obviously necessary changes. ��

6 Proof of the integrability condition: First reduction

In this section we reduce Theorem 1.4 to Theorem 6.2. Let F = (X,L , E)

be a holomorphic hyperbolic foliation with hyperbolic singularities E in a
compact complex projective surface X such that the foliation is Brody hyper-
bolic. Let T be a harmonic current tangent to F . Fix x0 ∈ E . Since x0 is
a hyperbolic singular point, there is a holomorphic coordinate system (z, w)
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near x0 in which x0 is identified with 0 and the foliationF is associated with
the vector field F(z, w) = z ∂

∂z + λw ∂
∂w

on D
2 with some complex number

λ = a + ib, b > 0. So two analytic curves {z = 0} and {w = 0} describe two
separatrices ofF at x0 = 0. Let T be the distinguished transversal defined in
(5.4). Consider the function G : E × (0, 1)→ R

+ given by

G(x, r) := 1

2πr2

∫
B(x,r)

T ∧ i∂∂‖y‖2, (6.1)

where B(x, r) is the ball of center x and radius r in X. By Skoda [28], G(x, r)
is increasing in r and limr→0 G(x, r) is equal to the Lelong number of T at
x . By our recent work [27], this number is 0, that is,

lim
r→0

G(x, r) = 0. (6.2)

When x = x0,we write G(r) instead of G(x0, r).Using the above map
,we
are reduced to the local model considered in the previous section. For every
s > 0, consider the function Ks : R→ R

+ given by

Ks(y) :=
{
s1−γ , if s ≥ (1+ |y|)1/γ ;
(1+ |y|)1/γ−1, if s ≤ (1+ |y|)1/γ .

(6.3)

The following result gives a precise estimate of G(r) in terms of the function
Ks .

Lemma 6.1 There is a constant c > 0 such that for every 0 < r < 1, we
have

c−1G(r) ≤
∫

α∈T

( ∫ ∞
−∞

K− log r (y)H̃α(y)dy
)
dν(α) ≤ cG(r).

Proof It follows from combining [27, Proposition 3.5] and [27, Lemma 3.2].
��

We are in the position to state the main estimate of this article.

Theorem 6.2 There are constants c0, κ > 1 such that for every x ∈ E and
0 < r < 1/2,

G(x, r) ≤ c0| log(− log r)|| log r |−1

+c0
∫

α∈T

( ∫
(1+|y|)1/γ≤−κ log r

K− log r (y)H̃α(y)dy
)
dν(α).

The proof of Theorem 6.2 will be given at the end of Sect. 8.
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Remark 6.3 Using Proposition 8.3 below (for δ = 1), Theorem 6.2 is equiva-
lent to the assertion that

∫
B(0,r)

T ∧ [z = r ] ≤ c0| log(− log r)|| log r |−1

+c0
∫

α∈T

( ∫
(1+|y|)1/γ≤−κ log r

K− log r (y)H̃α(y)dy
)
dν(α).

This is the precise meaning of the speed that we mention in Sect. 1.2 (see
the discussion following (1.4)). The integral on the right hand side of the last
line decays, in some sense, very quickly as r → 0. Indeed, it is, up to a
multiplicative constant, equal to

∫
α∈T

(∫
(1+|y|)1/γ≤−κ log r

(− log r)1−γ H̃α(y)dy

)
dν(α).

Rewrite the last line as follows:

∫
α∈T

(∫
(1+|y|)1/γ≤−κ log r

(1+ |y|)1−1/γ
(− log r)γ−1

(1+ |y|)1/γ−1 H̃α(y)dy

)
dν(α).

Since for every y ∈ R,
(1+|y|)1−1/γ
(− log r)γ−1 → 0 as r → 0, it follows from Lemma 5.1

and the dominated convergence that the last integral tends to 0 as r → 0 (see
[27] for details).

Taking for granted this result, we arrive at the

End of the proof of Theorem 1.4. Fix a point x0 ∈ E and a holomorphic
coordinate system x = (z, w) as at the beginning of this section. So x0 is
identified with 0 ∈ D

2. Since the two Hermitian metrics gX and i∂∂‖x‖2 are
equivalent on D

2, that is, gX ≈ i∂∂‖x‖2, we may regard i∂∂‖x‖2 as gX .

Moreover, in the remainder of the proof, we will write Br (resp. G(r)) instead
of B(x0, r) (resp. G(x0, r)) for 0 < r < 1. Next, recall from (2.1) that

i∂∂‖x‖2 = η2(x)gP(x),

where we know from Part 1 of Lemma 2.4 that η(x) ≈ ‖x‖ log ‖x‖ for 0 <

‖x‖ < 1/2. Therefore, we infer that

μ := T ∧ gP ≈ T ∧ i∂∂‖x‖2
‖x‖2(log ‖x‖)2 on B1/2.

123



564 V.-A. Nguyên

Moreover,we infer from (6.1) that for every smooth functionh : [0, 1] → R
+,

∫
B1/2

T ∧ i∂∂‖x‖2
h(‖x‖) =

∫ 1/2

0

d(r2G(r))

h(r)
.

Consequently,

∫
B1/2

| log� dist(x, E)| · dμ(x) ≈
∫

B1/2

T ∧ i∂∂‖x‖2
‖x‖2(log ‖x‖) =

∫ 1/2

0

d(r2G(r))

−r2 log r .

Performing an integration by part to the last expression yields that

∫ 1/2

0

d(r2G(r))

−r2 log r =
[

G(r)

− log r

]1/2
0

−2
∫ 1/2

0

G(r)dr

r log r
−
∫ 1/2

0

G(r)dr

r(log r)2
.

Since G(r) tends to the Lelong number of T at 0 as t → 0, the expression
in brackets is finite. Therefore, in order to show that

∫
B1/2
| log� dist(x, E)| ·

dμ(x) <∞, it suffices to prove that

∫ 1/2

0

G(r)dr

−r log r <∞. (6.4)

The remaining part is devoted to the proof of (6.4). ByTheorem6.2, the integral
in (6.4) is bounded by a constant times (I )+ (I I ), where

I :=
∫ 1/2

0

| log(− log r)|dr
r | log r |2 <∞,

and by Fubini’s theorem,

I I :=
∫

α∈T

(∫ ∞
y=−∞

(∫
(1+|y|)1/γ≤−κ log r

K− log r (y)dr

−r log r
)
H̃α(y)dy

)
dν(α).

On the other hand, we infer from (6.3) the existence of a constant c > 0 such
that for all y ∈ R,

∫
s≥κ−1(1+|y|)1/γ

s−1Ks(y)ds ≤ c(1+ |y|)1/γ−1.
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Performing the change of variable s := − log r in the last line, the most inner
integral of (I I ) is dominated by a constant times (1+|y|)1/γ−1.Consequently,
(I I ) is bounded by

∫
α∈T

∫ ∞
−∞

H̃α(y)(1+ |y|)1/γ−1dydν(α),

which is finite by Part 1 of Lemma 5.1. This completes the proof of (6.4), and
hence the proof of the theorem. ��
Remark 6.4 As remarked in the Introduction, the method employed in Dinh–
Nguyen–Sibony [10] seems to only give a weaker inequality

∫
| log� dist(x, E)|1−δ · (T ∧ gP)(x) <∞, δ > 0.

Indeed, arguing as in the proof of Theorem 1.4 and using the weight
| log� dist(x, E)|1−δ instead of | log� dist(x, E)|, the above inequality is
reduced to the following one

∫ 1/2

0

G(r)dr

−r(log r)1+δ
<∞.

In [10] G(r) is replaced by a positive constant, and hence the above integral
is finite if and only if δ > 0.

7 Geometric intersection and interpretations

Let F = (X,L , E) be a holomorphic hyperbolic foliation with hyperbolic
singularities E in a compact complex surface X. Let T be a harmonic current
tangent to F , and let C be an analytic curve on an open subset U ⊂ X. The
main purpose of the section is to give a reasonable meaning to the intersection
measure T ∧ [C], and to obtain a procedure in order to estimate the mass of
the last measure. We are inspired by the recent works in [14–16].

Let U � B × T be a flow box which is relatively compact in X\E . Let C
be an analytic curve on U such that for every α ∈ T, C intersects the plaque
Vα at at most one point (which is possibly a multiple point). We say that C is
transversal in U. We define the geometric intersection of T and [C] as the
positive Radon measure on U given by:

〈T ∧ [C], φ〉 = 〈T ∧ [C], φ〉|U :=
∫

α∈T: ξα �=∅

h(ξα)φ(ξα)dν(α), (7.1)

where φ is a continuous test function compactly supported in U, and
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566 V.-A. Nguyên

• ξα := Vα ∩ C if this intersection is non empty and ξα = ∅ otherwise;
• the decomposition consisting of the positive Radon measure ν on T, and
the positive harmonic function hα on B for ν-almost every α ∈ T is given
by Proposition 2.6.

The reader can easily check the following result.

Proposition 7.1 T ∧ [C] is a well-defined positive Radon measure on U. It
is independent of the choice of a decomposition given by Proposition 2.6. Its
mass is

‖T ∧ [C]‖ = ‖T ∧ [C]‖U =
∫

α∈T: ξα �=∅

h(ξα)dν(α) <∞.

Now let U be an an arbitrarily open subset of X and C an analytic curve on
U. We say that C is almost transversal in U if C intersects with each plaque in
every regular flow box in U transversally at at most finite points. We leave the
reader to verify the following result.

Lemma 7.2 C is almost transversal if and only if C is locally transversal in
U, that is, for every x ∈ C∩U, there is a flow box Ux ⊂ U containing x such
that C is transversal in Ux .

Assume that C is almost transversal. By Lemma 7.2, there is an at most count-
able cover U := (U j ) j∈J of U\E by its open subsets such that U is locally
finite and that each U j ( j ∈ J ) is a flow box which is relatively compact in
U\E and that C is transversal in U j . Let � := (θ j ) j∈J be a partition of unity
subordinate to U .

The mass of the intersection T ∧ [C] is

‖T ∧ [C]‖ =
∑
j∈J
〈T ∧ [C], θ j 〉|U j ∈ [0,∞].

Apparently, the mass ‖T ∧ [C]‖ depends on the choice of a cover U and a
partition of unity �. However, it turns out that this mass is independent of
such a choice. More precisely, we can show the following properties.

Proposition 7.3 i. The mass ‖T ∧ [C]‖ does not depend on any choice we
made.

ii. If U ∩ E = ∅, then ‖T ∧ [C]‖ <∞.

iii. When ‖T ∧ [C]‖ < ∞, we define the geometric intersection of T and
[C] as the positive Radon measure on U given by:

〈T ∧ [C], φ〉 :=
∑
j∈J
〈T ∧ [C], θ jφ〉U j , (7.2)

where φ is a continuous test function compactly supported in U,
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iv. When ‖T ∧ [C]‖ < ∞, the measure T ∧ [C] defined by (7.2) does not
depend on any choice of U and � we made.

Next, we prove a cohomological invariant property.

Proposition 7.4 Let C and D be two algebraic curves on X which are coho-
mologous (in the cohomology group H1,1(X, R)). Suppose that C ∩ E =
D∩E = ∅ and that both C andD are almost transversal. Then ‖T ∧[C]‖X =
‖T ∧ [D]‖X .

Proof Since C ∩ E = D ∩ E = ∅ and both C and D are almost transversal,
we may find a finite cover U := (U j ) j∈J of X by its open subsets such that

• if U j ∩ E �= ∅, then this intersection is a single point and C ∩ U j =
D ∩ U j = ∅;
• each U j withUj ∩ E = ∅ is a regular flow box such that both C andD are
transversal in U j . Let (θ j ) j∈J be a partition of unity subordinate to U .

Consider a smooth Hermitian metric ‖ · ‖ on the line bundle generated by the
divisor [C] (resp. [D]) on X. Let σ (resp. σ ′) be a holomorphic section having
[C] (resp. [D]) as its divisor. Then

φ := log ‖σ‖ and ψ := log ‖σ ′‖

are quasi-plurisubharmonic functions on X. Recall here that a quasi-
plurisubharmonic function is locally the sum of a plurisubharmonic function
and a smooth one. Lelong-Poincaré formula says that

[C] = i∂∂φ +� and [D] = i∂∂ψ +�′, (7.3)

where� and�′ are some closed smooth real (1, 1)-forms on X. Since [C] and
[D] are cohomologous, it follows that so are � and �′. So by the ∂∂-lemma
for compact Kähler manifolds, there is a smooth real function u on X such
that �′ −� = i∂∂u. Therefore, replacing the metric ‖ · ‖ on the line bundle
associated with [C] by ‖ · ‖e−2u, we may assume without loss of generality
that �′ = �.

Observe that φ (resp. ψ) is smooth outside the curve C (resp. D). Since
C∩E = D∩E = ∅,we infer that both φ andψ are smooth in a neighborhood
of E .

Fix the followingdecreasing sequence (as ε ↘ 0) of quasi-plurisubharmonic
smooth functions (φε)0<ε<1 (resp. (ψε)0<ε<1) on X :

φε := 1

2
log(‖σ‖2 + ε) and ψ := 1

2
log(‖σ ′‖2 + ε).
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Observe that

lim
ε→0+φε = φ and lim

ε→0+ψε = ψ

and that there is a closed smooth real (1, 1)-form � on X such that

i∂∂φε ≥ � and i∂∂ψε ≥ �

in the sense of currents and independent of ε.

If U j ∩ E �= ∅, we deduce from the first • above as well as the properties
of φ and ψ discussed above that φε (resp. ψε) converges uniformly to φ (resp.
ψ) as ε ↘ 0 on U j . ��

If U j ∩ E �= ∅, we need the following result whose proof will be given
later on.

Lemma 7.5 For every U j � B j × T j ∈ U with U j ∩ E = ∅, we have that

lim
ε→0

sup
α∈T
‖φε − φ‖L1(Vα) = 0 and lim

ε→0
sup
α∈T
‖ψε − ψ‖L1(Vα) = 0. (7.4)

Resuming the proof of Proposition 7.4, let χ be a continuous test function
on X. In what follows we drop the index j for simplicity, e.g. we will write
U � B× T, θ instead of U j � B j × T j , θ j respectively. Let U ∈ U be such
that U∩ E = ∅. Write U � B×T. Using (7.3) and noting that �′ = �, and
applying Lelong-Poincaré formula on each plaque Vα, α ∈ T of U, we get
that

h(ξα)(θχ)(ξα) = 〈�|Vα + i∂∂φ|Vα , hθχ〉|Vα

= 〈�|Vαhθχ〉|Vα + 〈i∂∂φ|Vα , hθχ〉|Vα

= 〈�|Vαhθχ〉|Vα + lim
ε→0
〈i∂∂φε |Vα , hθχ〉|Vα

= 〈�|Vαhθχ〉|Vα + lim
ε→0
〈φε |Vα , i∂∂(hθχ)〉|Vα ,

where the third equality holds since φε → φ weakly on Vα, and the last
equality is obtained by Stokes’ theorem. Since (7.4) says that the last limit is
uniform in α,we can integrate both extreme sides of the last chain of equalities
with respect to the measure dν and obtain that

〈T ∧ [C], θχ〉U =
∫

α∈T
h(ξα)(θχ)(ξα)dν(α)

=
∫

α∈T
〈�|Vα , hθχ〉|Vαdν(α)
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+
∫

α∈T
lim
ε→0
〈φε, i∂∂(hθχ)〉|Vαdν(α)

= 〈T ∧�, θχ〉 + lim
ε→0

∫
α∈T
〈i∂∂φε, hθχ〉|Vαdν(α)

= 〈T ∧�, θχ〉 + lim
ε→0
〈T ∧ i∂∂φε, θχ〉.

On the other hand, for U ∈ U with U ∩ E �= ∅, we have that

〈T ∧ [C], θχ〉U = 0 = 〈T ∧�, θχ〉 + lim
ε→0
〈T ∧ i∂∂φε, θχ〉,

where we use the first • above and the fact that φ is smooth on a neighborhood
of the support of θχ.

Summing up the above equalities over allU ∈ U and usingDefinition (7.2),
we infer that

〈T ∧ [C], χ〉 = 〈T ∧�, χ〉 + lim
ε→0
〈T ∧ i∂∂φε, χ〉.

When χ ≡ 1, the last equality becomes

‖T ∧ [C]‖X = 〈T, �〉 + lim
ε→0
〈T, i∂∂φε〉 = 〈T, �〉,

where the last equality is obtained since 〈T, i∂∂φε〉 = 0 as T is harmonic and
φε is smooth on X. Hence, ‖T ∧ [C]‖X = 〈T, �〉. Similarly, we also get that
‖T ∧ [D]‖X = 〈T, �〉. The proof is thereby completed. ��
End of the proof of Lemma 7.5. We only need to show that

lim
ε→0

sup
α∈T
‖φε − φ‖L1(Vα) = 0 (7.5)

since the other assertion can be proved similarly. Since U j ∩ E = ∅, the
second • above says that C is transversal in U j . Therefore, we are reduced to
the following model where U j � B j × T j � (1/2D)2 and

C ∩ U j = {(w, f (w)) : w ∈ 1/2D} ,
where f : 1/2D→ 1/2D is a holomorphic function.

In this model, we see easily that modulo a smooth function φε(z, w) =
1
2 log(|z − f (w)|2 + ε) for (z, w) ∈ (1/2D)2. So (7.5) becomes

sup
w∈1/2D

∫
z∈1/2D

(
1

2
log(|z − f (w)|2 + ε)− log |z − f (w)|

)
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×idz ∧ dz̄→ 0 as ε ↘ 0.

Since the right hand side is bounded from above by

∫
z∈D

1

2

(
log(|z|2 + ε)− log |z|)idz ∧ dz̄

and that this integral converges to 0 as ε ↘ 0, the desired estimate follows.
��

The rest of the section is devoted to the casewhen the foliationF on the open
set U is holomorphically equivalent to the foliation associated with the vector
field F in D

2 introduced in Sect. 5. So we are in the local model considered
in Sect. 5 and 0 ∈ U = D

2. We keep the notation introduced in Sect. 5. Recall
that T � {α ∈ C : e−2πb ≤ |α| ≤ 1}. Let C be an analytic curve on D

2

which is locally transversal in D
2. For every α ∈ T, let {ξα j : j ∈ Jα} be

the set of all intersections of C with the Riemann surface L̃α. We make the
following convention Jα := {0, 1, . . . , nα} with nα ∈ N ∪ {∞}. Continuing
Proposition 7.3 we can prove the following result.

Proposition 7.6 i. The following equality holds

‖T ∧ [C]‖ =
∫

α∈T

∑
j∈Jα

hα(ξα, j )dν(α).

ii. If ‖T ∧[C]‖ <∞, then the measure T ∧[C] can be extended to a contin-
uous linear form on the space C b(D2) of uniformly bounded continuous
functions on D

2 as follows:

〈T ∧ [C], φ〉 =
∫

α∈T

∑
j∈Jα

hα(ξα, j )φ(ξα, j )dν(α), φ ∈ C b(D2).

For every α ∈ T and j ∈ Jα, write, using (5.1) and (5.6),

ξα, j = ψα(ζα, j ), ζα, j = uα, j + ivα, j ,

Uα, j + iVα, j := (uα, j + ivα, j )
γ .

(7.6)

Recall from Sect. 5 that the harmonic function h̃α(ζ ) := hα (ψα(ζ )) is defined
on Sλ and that the harmonic function H̃α := h̃α ◦ φ−1 is defined in the upper
half plane {U + iV : V > 0}. Applying the Poisson representation formula
the upper half plane yields that
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hα(ξα, j ) = h̃α(ζα, j ) = H̃α(Uα, j + iVα, j )

= 1

π

∫ ∞
−∞

H̃α(y)
Vα, j

V 2
α, j + (y −Uα, j )2

dy. (7.7)

For ν-almost every α ∈ T, write

‖T ∧ [C]‖α := 1

π

∫ ∞
−∞

H̃α(y)
∑
j∈Jα

Vα, j

V 2
α, j + (y −Uα, j )2

dy. (7.8)

We obtain the following formula

‖T ∧ [C]‖ =
∫

α∈T
‖T ∧ [C]‖αdν(α). (7.9)

Recall from (5.5) the sector Sλ in the upper-half plane.

Proposition 7.7 Let c, ρ > 1 and m > 0 be three constants. For ν-almost
every α ∈ T assume that

• there is a C 1-map χα : Dα → Sλ be defined on a closed interval Dα ⊂ R

such that c−1 ≤ |(χα)′(t)| ≤ c;
• there is a sequence of points (tα, j ) j∈Jα ⊂ Dα such that the intervals
[tα, j − ρ−1m, tα, j + ρ−1m] for j ∈ Jα are pairwise disjoint and that

⋃
j∈Jα
[tα, j − ρ−1m, tα, j + ρ−1m] ⊂ Dα ⊂

⋃
j∈Jα
[tα, j − ρm, tα, j + ρm].

Write, using (5.1) and (5.6), for t ∈ Dα,

ξα(t) = ψα(χα(t)), χα(t) = uα(t)+ ivα(t),

Uα(t)+ iVα(t) := (uα(t)+ ivα(t))γ .
(7.10)

This is the continuous version of (7.6). Consider the function K α : R→ R
+

and the real number κ ∈ R
+ defined by

K α(y) := 1

m

∫
Dα

Vα(t)

Vα(t)2 + (y −Uα(t))2
, y ∈ R;

κ := 1

π

∫ ∞
−∞

H̃α(y)K α(y)dy.
(7.11)

1. If, moreover, c−1hα(ξα, j ) ≤ hα(ξα(t)) ≤ chα(ξα, j ) for all j ∈ Jα,

t ∈ [tα, j − ρm, tα, j + ρm], then

c−2ρ−1κ ≤ ‖T ∧ [C]‖ ≤ c2ρκ.
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2. If, moreover,

c−1
Vα, j

V 2
α, j + (y −Uα, j )2

≤ Vα(t)

Vα(t)2 + (y −Uα(t))2
≤ c

Vα, j

V 2
α, j + (y −Uα, j )2

for all j ∈ Jα, t ∈ [tα, j − ρm, tα, j + ρm] and y ∈ R, then

c−2ρ−1K α(y) ≤
∑
j∈Jα

Vα, j

V 2
α, j + (y −Uα, j )2

≤ c2ρK α(y), y ∈ R.

In particular, the concluding estimate of Part 1 holds.

Proof The idea is to approximate a Riemann sum of a function by its integral.
The proof follows easily from Proposition 7.6 and (7.6)–(7.9). ��
Definition 7.8 If the assumption of Part 1 of Proposition 7.7 holds, thenwe say
that (K α)α∈T given by (7.11) is an interpretation of the geometric intersection
T ∧[C] onUwith parametrization (χα)α∈T and with size (c, ρ,m).Moreover,
m is said to be the mesh of the interpretation.

If the assumption of Part 2 of Proposition 7.7 holds, then we say that
(K α)α∈T is a coherent interpretation of the geometric intersection T ∧ [C]
on U.

The following result studies the behavior of the Poisson kernel V
V 2+(y−U )2

in
terms of u and v.

Lemma 7.9 (Nguyên [27, Lemma 3.3]) There are constants c1, c2, c3 > 1
large enough with c3 > c2 such that the following properties hold for all
(u, v) ∈ R

2 with min{v, bu + av} ≥ 1.

1.

1

c1
≤ (max{v, bu + av})γ√

V 2 +U 2
≤ c1 and

1

c1
≤ (max{v, bu + av})γ−1 min{v, bu + av}

V
≤ c1.

2. If max{v, bu + av} ≥ c2(1+ |y|)1/γ , then

1

c1

min{v, bu + av}
(max{v, bu + av})γ+1 ≤

V

V 2 + (y −U )2

≤ c1
min{v, bu + av}

(max{v, bu + av})γ+1 .
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3. If max{v, bu + av} ≤ c−12 (1+ |y|)1/γ , then

1

c1

V

(1+ |y|)2 ≤
V

V 2 + (y −U )2
≤ c1

V

(1+ |y|)2 .

4. If c−12 (1+ |y|)1/γ ≤ v, bu + av ≤ c2(1+ |y|)1/γ , then

1

c1

1

(1+ |y|) ≤
V

V 2 + (y −U )2
≤ c1

1

(1+ |y|) .

5. Ifmin{v, bu+av} ≤ c−13 (1+|y|)1/γ and c−12 (1+|y|)1/γ ≤ max{v, bu+
av} ≤ c2(1+ |y|)1/γ , then

1

c1
≤ V

V 2 + (y −U )2
: (1+ |y|)1/γ−1 min{v, bu + av}

(min{v, bu + av})2 + (max{v, bu + av} − ρ)2
≤ c1,

whereρ is a real numberwhichdepends only on y andon t := min{v, bu+
av} which satisfies c−12 (1+ |y|)1/γ ≤ ρ ≤ c2(1+ |y|)1/γ .

In fact, ρ(y, t) is defined as follows. When c3 > 1 is large enough, then for
every 1 ≤ t ≤ c−13 (1 + |y|)1/γ , there exists a solution u := u(y, t), v :=
v(y, t) of the following equation

U = y, where U + iV = (u + iv)γ

which satisfies c−12 (1+|y|)1/γ ≤ max{v(y, t), bu(y, t)+ av(y, t)} ≤ c2(1+
|y|)1/γ . So we define

ρ(y, t) := bu(y, t)+ av(y, t).

8 Test curves Cr, Cr,N . . . and second reduction

We first introduce some families of algebraic curves on X and a family of
analytic curves on an open neighborhood of a given singular point ofF .Next,
we state basic estimates and deduce the main estimate from the former ones.
The proof of the basic estimates will be developed in subsequent sections.

Since X is projective, we may find a finite family of surjective holomorphic
maps 
 j : X → P

2, 1 ≤ j ≤ s, such that for every point x ∈ X, there is
at least one map 
 j which is locally biholomorphic at x . Indeed, it suffices
to embed X into P

N with N large enough, and choose a family of central
projections from X onto P

2.

Now fix x0 ∈ E and assume that
 := 
 j0 : X → P
2 is locally biholomor-

phic at x0. Moreover, suppose without loss of generality that 
 maps an open
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neighborhood V of x0 biholomorphically onto the bidisc D
2 ↪→ P

2 and that

(x0) = 0 with 0 := (0, 0) ∈ C

2. Let (Z ,W ) be the canonical coordinates of
the canonical injection C

2 ↪→ P
2, i.e. C

2 � {[Z : W : 1] : (Z ,W ) ∈ C
2} ⊂

P
2.

Since x0 is a hyperbolic singular point, we may assume without loss of
generality that there are holomorphic coordinates (z, w) defined on D

2 such
that (z(0), w(0)) = (0, 0) = 0 and that the the foliation (
|V)∗F is associated
with the vector field

F(z, w) = z
∂

∂z
+ λw

∂

∂w
with some complex number λ = a + ib, b �= 0.

So two analytic curves {z = 0} and {w = 0} describe two separatrices
(
|V)∗F at 0.By performing a linear change of coordinates, we may suppose
without loss of generality that the complex line {Z = 0} (resp. {W = 0}) is
tangent to the separatrice {z = 0} (resp. {w = 0}) at 0. By dilating the coordi-
nates (Z ,W ) if necessary, we may assume without loss of generality that the
Jacobian matrix of (Z ,W ) over (z, w) at (0, 0) is the identity matrix, i.e.,

( ∂Z
∂z (0, 0) ∂Z

∂w
(0, 0)

∂W
∂z (0, 0) ∂W

∂w
(0, 0)

)
=
(
1 0
0 1

)
. (8.1)

In this work we use both systems of coordinates (Z ,W ) and (z, w). Each
system has its own advantages and drawbacks. Indeed, the coordinates (Z ,W )

appears to be very useful in our cohomological argument, but this argument
is only of global nature. On the opposite side, although the coordinates (z, w)

are not appropriate for a global argument as the cohomological one, they seem
to be very convenient for doing a local analysis near singular points.

Recall that 
 maps V biholomorphically onto D
2. By shrinking D

2 if nec-
essary, the holomorphic implicit function theorem, applied to {z = 0}, allows
us to write for (Z ,W ) ∈ D

2,

z = θ(Z ,W )z∞(Z ,W ), (8.2)

where θ(Z ,W ), z∞(Z ,W ) are holomorphic functions on D
2 with

z∞(Z ,W ) = Z −
∞∑
j=2

a jW
j , a j ∈ C,

and
1/2 < |θ(Z ,W )| < 2 on D

2 and θ(0, 0) = 1. (8.3)
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• Analytic curves Cr : For every r ≥ 0 small enough, let Cr be the complex
analytic curve in V given by

{x ∈ V : z(
(x)) = r} . (8.4)

Clearly, Cr ∩ E = ∅ for r �= 0.
• Analytic curves Cd

N : For every N ∈ N with N > 2 and d ∈ C\{0}, let Cd
N

be the complex analytic curve in V given by

{
x ∈ V : z(
(x)) = d(w(
(x)))N

}
. (8.5)

Clearly, Cd
N ∩ E = {x0}.

• Algebraic curves C′r,N , Cr,N : Given r ≥ 0 and N ∈ N with N > 2,
define C′r,N to be the algebraic curve in P

2 which is the closure in P
2 of the

following affine curve

{
(Z ,W ) ∈ C

2 : zN (Z ,W ) = r
} ⊂ C

2, (8.6)

where zN (Z ,W ) is the Taylor expansion of order N of z(Z ,W ), i.e.,

zN (Z ,W ) := Z −
N−1∑
j=2

a jW
j , (Z ,W ) ∈ D

2. (8.7)

Let Cr,N be the algebraic curve in X given by

Cr,N := (
|V)∗(C′r,N ). (8.8)

Basic geometric properties of these algebraic curves are collected in the
following.

Proposition 8.1 For every N ∈ N with N > 2, there exists 0 ≤ rN < 1/2
such that

i. C0,N ∩ E = {x0};
ii. Cr,N ∩ E = ∅ for every 0 < r ≤ rN ;
iii. [Cr,N ] is cohomologous to [C0,N ] in X for every 0 ≤ r ≤ rN .

Proof First, recall the equation Cr,N := (
|V)∗(C′r,N ).Consequently, observe
that x0 ∈ C0,N as 0 ∈ C′0,N and that x0 /∈ Cr,N for r > 0 as 0 /∈ C′r,N for
r �= 0. This discussion, combined with the fact that E is a finite set, implies
that for rN > 0 small enough, both properties (i) and (ii) are satisfied. Finally,
property (iii) follows from (8.8) and the fact that two algebraic curves C′r,N
and C′0,N of the same degree N are cohomologous in P

2. ��
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Let ρa :=
(
lim sup j→∞ |a j |1/j

)−1 ∈ (0,∞]. So ρa is the radius of conver-
gence of the analytic function zN (Z ,W ) defined in (8.7). Clearly, ρa �= ∞,

otherwise the non-constant holomorphicmapC � W �→ (
∑∞

j=2 a jW j ,W ) ⊂
{z = 0} contradicts our assumption.

Remark 8.2 TogetherwithLemma2.4, this is the placewhere theBrody hyper-
bolic assumption has fully been used (see also Remark 2.2).

For the sake of clarity, we may assume without loss of generality that ρa = 1.
In the sequel we fix a sequence N j ↗∞ such that

lim
j→∞ |aN j |1/N j = lim sup

j→∞
|a j |1/j = ρ−1a = 1, (8.9)

and we always choose N = N j for some j large enough.
For r > 0, recall that Br denotes the ball centered at 0 with radius r in

D
2 ↪→ X. The basic estimates which are the main ingredients for the proof of

Theorem 6.2 are stated in the following four propositions. Their proofs will
be established in the subsequent four sections.

Proposition 8.3 For every 0 < δ < 1, there is cδ > 1 such that for every
harmonic current T,

c−1δ G(x0, r) ≤ ‖T ∧ [Cr ]‖Brδ
≤ cδG(x0, r), 0 < r < 1/2.

Here G(x0, r) is defined by (6.1).

Proposition 8.4 For every N large enough in the sequence (N j )
∞
j=1 given in

(8.9), there is a constant c = cN > 1 such that for every harmonic current T,

‖T ∧ [C0,N ]‖Br ≤ cG(x0, r), 0 < r < 1/2.

Proposition 8.5 For every N large enough in the sequence (N j )
∞
j=1 given in

(8.9), there are constants c = cN > 1 and 0 < rN < 1/2 such that for every
0 < r < rN ,
∣∣∣‖T ∧ [C0,N ]‖Br1/N | log r |−3/N − ‖T ∧ [Cr ]‖Br1/N | log r |−3/N

∣∣∣ ≤ c| log(− log r)|| log r |−1.

Proposition 8.6 Let N = N j be large enough in the sequence (N j )
∞
j=1

given in (8.9). Then the geometric intersection T ∧ [Cr ] (resp. T ∧ [C0,N ])
on Br1/N | log r |−3/N admits a coherent interpretation (K α)α∈T of the form
K α := K− log r,N (resp. a coherent interpretation (K ∗α)α∈T of the form
K ∗α := K ∗− log r,N ). Here

R � y �→ K− log r,N (y) and R � y �→ K ∗− log r,N (y)
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Singular holomorphic foliations by curves 577

are functions such that there are constants c, κ > 1 independent of N and a
constant cN > 1 with the following properties:

i. for (1+ |y|)1/γ ≤ κ−1s, we have K ∗s,N (y) ≤ cs1−γ and

c−1 ≤ Ks,N (y)

N γ−1s1−γ
≤ c;

ii. for (1+ |y|)1/γ ≥ κs, we have

c−1 ≤ K ∗s,N (y)

N (1+ |y|)1/γ−1 ≤ c and c−1 ≤ Ks,N (y)

(1+ |y|)1/γ−1 ≤ c;

iii. for κ−1s ≤ (1+ |y|)1/γ ≤ κs, we have

c−1N ≤
K ∗s,N (y)

(1+ |y|)1/γ−1 ≤ cN and c−1N ≤
Ks,N (y)

(1+ |y|)1/γ−1 ≤ cN .

Now we are in the position to reduce the proof of Theorem 6.2 to those
of Propositions 8.5 and 8.6 modulo Propositions 8.3, 8.4. This is the second
reduction.

End of the proof of Theorem 6.2. Let N ≥ 1 be large enough. By Proposi-
tion 8.5, there are constants cN and rN such that for every 0 < r < rN ,

‖T ∧ [C0,N ]‖Br1/N (− log r)−1/N − ‖T ∧ [Cr ]‖Br1/N (− log r)−1/N ≤ c| log(− log r)|| log r |−1.

By Proposition 8.6, the geometric intersections T ∧ [Cr ] and T ∧ [C0,N ] on
Br1/N | log r |−3/N admit coherent interpretations K− log r,N and K ∗− log r,N respec-

tively. Consequently, there are two functions ϑ, ϑ∗ : R→ [c′−1, c′] for some
constant c′ > 1 such that the above inequality can be rewritten as follows:

∫
α∈T

( ∫ ∞
−∞

(ϑ∗(y)K ∗− log r,N (y)− ϑ(y)K− log r,N (y))H̃α(y)dy
)
dν(α)

≤ c| log(− log r)|| log r |−1.
This implies that

I2 ≤ I1 + I3 + c| log(− log r)|| log r |−1, (8.10)

where

Ik :=
∣∣∣
∫

α∈T

( ∫
Dk

(ϑ∗(y)K ∗− log r,N (y)−ϑ(y)K− log r,N (y))H̃α(y)dy
)
dν(α)

∣∣∣,
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with D1 := {y ∈ R : κ(1 + |y|)1/γ ≤ − log r}, and D2 := {y ∈ R :
(1+ |y|)1/γ ≥ −κ log r}, and D3 := {y ∈ R : κ−1(1+ |y|)1/γ ≤ − log r ≤
κ(1+ |y|)1/γ }.

Now we apply Proposition 8.6 (i)–(ii)–(iii) to I1, I2 and I3 respectively. Let
N be large enough in the sequence (8.9) which also satisfies Nmin{1,γ−1} ≥
2c2. So we have that

I1 ≤ (c−1N γ−1 − c)
∫

α∈T

( ∫
D1

(− log r)1−γ H̃α(y)dy
)
dν(α),

I2 ≥ (c−1N − c)
∫

α∈T

( ∫
D2

(1+ |y|)1/γ−1 H̃α(y)dy
)
dν(α),

I3 ≤ (c′cN − c′−1c−1N )

∫
α∈T

( ∫
D3

(1+ |y|)1/γ−1 H̃α(y)dy
)
dν(α).

This, combined with (8.10) and (6.3), implies that

∫
α∈T

( ∫
D2

K− log r (y)H̃α(y)dy
)
dν(α) � | log(− log r)|| log r |−1

+
∫

α∈T

( ∫
D1

K− log r (y)H̃α(y)dy
)
dν(α)

+
∫

α∈T

( ∫
D3

K− log r (y)H̃α(y)dy
)
dν(α).

Hence,

∫
α∈T

( ∫
D1∪D2∪D3

K− log r (y)H̃α(y)dy
)
dν(α) � | log(− log r)|| log r |−1

+
∫

α∈T

( ∫
D1∪D3

K− log r (y)H̃α(y)dy
)
dν(α).

SinceweknowbyLemma6.1 that the left-hand side of the last line is equivalent
to G(r), the desired conclusion of the theorem follows when the constant c0
is large enough. ��

9 Cohomological relation and third reduction

We first state several basic estimates. Next, using these estimate we estab-
lish a cohomological invariance result (see Proposition 9.3). Finally, we
deduce from this result Proposition 8.5. Consequently, modulo Proposi-
tions 8.3, 8.4, 9.1, 9.2, the proof of Theorem 6.2 is reduced to that of
Proposition 8.6. This is the last reduction.

123



Singular holomorphic foliations by curves 579

Proposition 9.1 For every N large enough in the sequence (N j )
∞
j=1 given in

(8.9), there exist constants c = cN > 1, δ = δN > 0 and a constant rN
satisfying the conclusion of Proposition 8.1 with the following properties. For
every 0 < r < rN and for every harmonic current T tangent toF of mass 1,
the following mass estimates hold:

∣∣∣‖T ∧ [Cr,N ]‖X\D2 − ‖T ∧ [C0,N ]‖X\D2

∣∣∣ ≤ cr δ, (9.1)∣∣∣‖T ∧ [Cr,N ]‖D2\Br1/N | log r |3/N
− ‖T ∧ [C0,N ]‖D2\Br1/N | log r |3/N

∣∣∣ ≤ c| log r |−1,
(9.2)∣∣∣‖T ∧ [Cr,N ]‖Br1/N | log r |−3/N − ‖T ∧ [Cr ]‖Br1/N | log r |−3/N

∣∣∣ ≤ c| log r |−1.
(9.3)

We postpone the proof of Proposition 9.1 to Sect. 12.
For 0 < r < 1/2 and N ≥ 2, consider the corona

Ar,N := Br1/N | log r |3/N \Br1/N | log r |−3/N .

So we obtain the following partition of X :

X = (X\D2)
∐

(D2\Br1/N | log r |3/N )
∐

Ar,N

∐
Br1/N | log r |−3/N . (9.4)

Proposition 9.2 For every N large enough in the sequence (N j )
∞
j=1 given in

(8.9), there are constants 0 < rN � 1 and c = cN > 1 such that for every
0 < r < rN ,

‖T ∧ [Cr ]‖Ar,N ≤ c| log(− log r)|| log r |−1, (9.5)

‖T ∧ [C0,N ]‖Ar,N ≤ c| log(− log r)|| log r |−1, (9.6)

‖T ∧ [Cr,N ]‖Ar,N ≤ c| log(− log r)|| log r |−1. (9.7)

The proof of Propostion 9.2 will occupy Sect. 13.
Taking for granted these estimates, we want to prove the following coho-

mological invariance result.

Proposition 9.3 Let rN be given by Proposition 8.1 for every N ∈ N with
N > 2. Then for every 0 < r < rN and for every harmonic current T, we
have that ‖[Cr,N ] ∧ T ‖X = ‖[C0,N ] ∧ T ‖X .

This result does not follow from Proposition 7.4 since C0,N ∩ E �= ∅. We
need the following auxiliary result.

Lemma 9.4 We have limr→0+ ‖T ∧ [Cr,N ]‖X = ‖T ∧ [C0,N ]‖X .
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Proof Combining estimates (9.1)–(9.2), we get that

∣∣∣‖T ∧ [Cr,N ]‖X − ‖T ∧ [C0,N ]‖X
∣∣∣ ≤ c| log r |−1

+‖T ∧ [Cr,N ]‖Br1/N | log r |3/N + ‖T ∧ [C0,N ]‖Br1/N | log r |3/N .

In the remainder of the proof we will that the two terms in the last line tend to
0 as r → 0+ . This will imply the lemma.

Applying (9.7) yields that

‖T ∧ [Cr,N ]‖Br1/N | log r |3/N ≤ c| log(− log r)|| log r |−1
+‖T ∧ [Cr ]‖Br1/N | log r |−3/N .

Consequently, we infer that

lim
r→0+ ‖T ∧ [Cr,N ]‖Br1/N | log r |3/N ≤ lim

r→0+ ‖T ∧ [Cr ]‖Br1/N | log r |−3/N

≤ lim
r→0+ ‖T ∧ [Cr ]‖Br1/2N

= 0,

where the last limit holds by Proposition 8.3 applied to δ = 1/(2N ). Hence,
limr→0+ ‖T ∧ [Cr,N ]‖Br1/N | log r |3/N = 0.

On the other hand, applying (9.6) yields that

‖T ∧ [C0,N ]‖Br1/N | log r |3/N ≤ c| log(− log r)|| log r |−1
+‖T ∧ [C0,N ]‖Br1/N | log r |−3/N .

Therefore, we deduce that

lim
r→0+ ‖T ∧ [C0,N ]‖Br1/N | log r |3/N ≤ lim

r→0+ ‖T ∧ [C0,N ]‖Br1/N | log r |−3/N

≤ lim
r→0+ ‖T ∧ [C0,N ]‖Br1/N | = 0,

where the last limit holds by Proposition 8.4 applied to δ = 1/N . Hence,
limr→0+ ‖T ∧ [C0,N ]‖Br1/N | log r |3/N = 0. ��
End of the proof of Proposition 9.3. By Lemma 9.4, we have that

‖T ∧ [C0,N ]‖X = lim
s→0+ ‖T ∧ [Cs,N ]‖X .

On the other hand, by Proposition 8.1 (ii)–(iii), Cr,N ∩ E = ∅, Cs,N ∩ E = ∅,

and both [Cr,N ] and [Cs,N ] are cohomologous. Consequently, by Proposi-
tion 9.3, the right hand side of the last limit is equal to ‖T ∧ [Cr,N ]‖X . ��
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End of the proof of Proposition 8.5. Fix N ∈ N with N > 2 and let rN
be given by Propositions 9.1 and 8.1. So by Proposition 9.3, we have, for
0 < r < rN , that

T ∧ [C0,N ] = T ∧ [Cr,N ].

This, combined with estimates (9.1)–(9.2) and the partition (9.4), implies that

∣∣∣‖T ∧ [Cr,N ]‖Br1/N | log r |3/N − ‖T ∧ [C0,N ]‖Br1/N | log r |3/N

∣∣∣
≤ c| log(− log r)|| log r |−1.

Putting this together with estimates (9.6) and (9.7) yields that

∣∣∣‖T ∧ [Cr,N ]‖Br1/N | log r |−3/N − ‖T ∧ [C0,N ]‖Br1/N | log r |−3/N

∣∣∣
≤ c| log(− log r)|| log r |−1.

This, coupled with (9.3), gives that

∣∣∣‖T ∧ [C0,N ]‖Br1/N | log r |−3/N − ‖T ∧ [Cr ]‖Br1/N | log r |−3/N

∣∣∣
≤ c| log(− log r)|| log r |−1.

This completes the proof. ��

10 Intersection of test curves with a leaf

In Sect. 8 we introduce the analytic curves Cr , Cd
N which are defined on a

neighborhood of a singular point of the foliation, and the algebraic curves
Cr,N which are defined on the whole X. The main purpose of this section is
to study the distributions of these test curves with the leaves of the foliations
near singularities. Therefore, in what follows, we restrict ourselves to the local
model of Sects. 8 and 5, and we keep the notation introduced therein. More
specifically, we may assume without loss of generality that x0 ≡ 0 ∈ D

2

and that there are holomorphic coordinates (z, w) defined on D
2 such that

(z(0), w(0)) = (0, 0) = 0 and that the the foliation (
|V)∗F is associated
with the vector field F(z, w) = z ∂

∂z + λw ∂
∂w

with some complex number
λ = a+ib, b �= 0.Note that two analytic curves {z = 0} and {w = 0} describe
two separatrices (
|V)∗F at 0. Recall that T � {α ∈ C : e−2πb ≤ |α| ≤ 1}.

The distribution of the intersection points of Cr with a leaf in the bidisc D
2

is quite simple as the following result shows.
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Lemma 10.1 For each 0 < r < 1 and each α ∈ T, the intersection of Cr with
the Riemann surface L̂α can be parametrized, via (5.1), by

ξr,α,k = ψα(τr,α,k), where

τr,α,k = uα,k + ivr := 2kπ − (log |α|)/b + i(− log r), k ∈ Z. (10.1)

Proof Let (z, w) = ψα(τ) with τ = u + iv be an intersection point of Cr
with the Riemann surface L̂α. Then τ is a solution of the equation r = z =
ei(τ+(log |α|)/b). Solving this equation gives all the solutions (10.1). ��
Lemma 10.2 Let N ∈ N\{0} and d ∈ C\{0}.For eachα ∈ T, the intersection
of Cd

N = {z = dwN } with the Riemann surface L̂α can be parametrized, via
(5.1), by

ξN ,α,k = ψα(τN ,α,k), where τN ,α,k = uN ,α,k + ivN ,α,k, k ∈ N, (10.2)

and (uN ,α,k, vN ,α,k) is the unique solution of the following system of linear
equations:

{
−(Na − 1)u + Nbv = 2πk + arg d + N argα + b−1(Na − 1) log |α|
Nbu + (Na − 1)v = log |d|.

(10.3)
Moreover, let

tN ,α,k := buN ,α,k + avN ,α,k, k ∈ N. (10.4)

Then there are constants vN , tN such that

vN ,α,k+1 − vN ,α,k = vN and tN ,α,k+1 − tN ,α,k = tN for k ∈ N (10.5)

and that
vN ≈ N−1 and tN ≈ N−2. (10.6)

Proof Let (z, w) = ψα(τ)with τ = u+ iv be an intersection point of Cc
N with

the Riemann surface L̂α. Then we deduce from z = dwN that τ is a solution
of the equation

ei(τ+(log |α|)/b) = dαNeiNλ(τ+(log |α|)/b).

So there is k ∈ Z such that

i(τ + (log |α|)/b) = 2iπk + log |d| + i arg d + N log |α|
+ i N argα + i N (a + ib)(τ + (log |α|)/b).
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Equating the imaginary and the real parts of both sides, we obtain system
(10.3).

Writing uN := uN ,α,k+1 − uN ,α,k, we infer from (10.5) and system (10.3)
that (uN , vN ) is a solution of the following system

{
−(Na − 1)u + Nbv = 2π

Nbu + (Na − 1)v = 0.

So we get that

uN = −2π(Na − 1)

(Na − 1)2 + (Nb)2
, vN = 2πNb

(Na − 1)2 + (Nb)2
,

tN = 2πb

(Na − 1)2 + (Nb)2
.

This proves (10.5) and (10.6). ��
The following result plays a vital role in this section. It allows us to approx-

imate the function zN defined (8.7) efficiently. Consequently, we infer from
this result a good picture of the distributions of the intersection of Cr,N with a
general leaf near singularities.

Proposition 10.3 Let N � N �→ MN ∈ N be a sequence such that
limN→∞ MN = ∞. Then, for every N ∈ N large enough in the sequence
(N j )

∞
j=1 given in (8.9), there is a constant 0 < s = rN ,M < 1 such that the

analytic functions

z∞(z, w) := z∞(Z(z, w),W (z, w)) and

zN (z, w) := zN (Z(z, w),W (z, w)),

z∞(Z ,W ) (resp. zN (Z ,W )) being the analytic function given in (8.2) (resp.
(8.7)), are well-defined on D

2 (resp. D2
s ) and that the following two properties

hold:

i. For every w ∈ Ds and every 0 ≤ r ≤ |w|/2, the equation zN (z, w) = r
with |z| ≤ |w| admits a unique solution.

ii. For every point (z, w) ∈ D
2
s with zN (z, w) = r for some 0 ≤ r < 1, at

least one of the following two items holds:
ii-a |z − r | ≤ 4r2 and |w| ≤ r
ii-b |zN (z, w)− (z∞(z, w)+ aNwN )| ≤ M−1N |aN ||w|N .

Proof As in Sect. 8, we may suppose without loss of generality that the com-
plex line {Z = 0} (resp. {W = 0}) in P

2 is tangent to the separatrice {z = 0}
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(resp. {w = 0}) at 0. Therefore, arguing as in the proof of (8.2), we obtain the
following equation for W :

W = W (z, w) = ϑ(z, w)

⎛
⎝w +

∞∑
j=2

b j z
j

⎞
⎠ , b j ∈ C, (10.7)

where ϑ is a holomorphic function on D
2 such that

1/2 < |ϑ(z, w)| < 2 on D
2 and ϑ(0, 0) = 1. (10.8)

Let ρ ∈ R
+ be such that lim sup j→∞ |b j |1/j < ρ. This together with (8.9)

gives an integer N with N > N0 and a constant c > 1 such that

|aN | > 2−N , |a j | < 2 j for j ≥ N , |bk | < cρk for k ≥ N . (10.9)

Inserting (8.2) and (10.7) into (8.7), we get that

zN (z, w) = z∞(z, w)+
∞∑
j=N

a jW
j = z∞(z, w)

+
∞∑
j=N

a jϑ
j (z, w)(w +

∞∑
k=2

bkz
k) j . (10.10)

Now we prove assertion (i). We infer from (10.10) and (10.9) and (10.8) that
for s small enough and |z| ≤ |w| ≤ s,

|zN (z, w)− z∞(z, w)| ≤
∞∑
j=N
|a j ||ϑ(z, w)| j (|w| +

∞∑
k=2
|bk ||w|k) j

= O(|w|2)� |w|.

This, combined with r ≤ |w|/2, implies that

|zN (z, w)− z∞(z, w)| < |z∞(z, w)− r | for z ∈ ∂D|w|. (10.11)

Now let 0 < s < 1 be small enough, and fix w ∈ Ds, and fix 0 ≤ r < |w|/2.
Using (8.2)–(8.3) and applying Rouché’s theorem to the functions z �→ z −
rθ
(
Z(z, w),W (z, w)

)
and z �→ z onD|w|,we see easily that the function z �→

z∞(z, w)− r admits a unique solution on D|w|. Next, using (10.11) we apply
Rouché’s theorem to the functions z �→ zN (z, w)− r and z �→ z∞(z, w)− r
on D|w|. Consequently, assertion (i) follows.
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In the remainder of the proof, we write M instead of MN for the sake of
simplicity. To prove assertion (ii) we take for granted the following
Fact. When s > 0 is small enough and (z, w) ∈ (Ds)

2 with zN (z, w) = r
does not satisfies property (ii-a), we have that |w| ≥ 8MN |∑∞k=2 bkzk |.

Using (10.7) and then the above fact, we see that

∣∣∣ϑ−N (z, w)WN − wN
∣∣∣ ≤

N∑
p=1

(
N

p

)
|w|N−p

∣∣∣∣∣
∞∑
k=2

bkz
k

∣∣∣∣∣
p

≤
⎛
⎝ N∑

p=1

(
N

p

)
(8MN )−p

⎞
⎠ |w|N

≤
((
1+ 8−1M−1N−1

)N − 1
)
|wN |

≤
(
e8
−1K−1 − 1

) ∣∣∣wN
∣∣∣ ≤ 6−1M−1

∣∣∣wN
∣∣∣ .
(10.12)

Moreover, for s = rN ,M > 0 small enough, we infer from (10.7)–(10.8) and
the continuity of ϑ that for (z, w) ∈ D

2
s ,

∣∣∣ϑ−N (z, w)WN −WN
∣∣∣ < 12−1M−1

∣∣∣WN
∣∣∣ < 4−1M−1

∣∣∣wN
∣∣∣ , (10.13)

where the last estimate follows from (10.12). On the other hand, using the
second inequality in (10.9), (10.7), (10.8) and then the above fact, we see that

∣∣∣∣∣∣
∞∑

j=N+1
a jW

j

∣∣∣∣∣∣ ≤
∞∑

j=N+1
4 j

(
|w| +

∣∣∣∣∣
∞∑
k=2

bkz
k

∣∣∣∣∣
) j

≤
∞∑

j=N+1
4 j (1+ 8−1M−1N−1

) j |w| j

≤ 2−N−1M−1|w|N
≤ 2−1

∣∣∣aNwN
∣∣∣ ,

where the third inequality holds when s = rN ,M > 0 is small enough, and
the last one follows from the first inequality in (10.9). This, combined with
(10.12) and (10.13), yields that

∣∣∣∣∣∣

⎛
⎝z∞(z, w)+

∞∑
j=N

a jW
j

⎞
⎠− (z∞(z, w)+ aNwN

)∣∣∣∣∣∣
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≤
∣∣∣aNϑ(z, w)−NW N − aNwN

∣∣∣+
∣∣∣aNϑ(z, w)−NW N − aNW

N
∣∣∣

+
∣∣∣∣∣∣
∞∑

j=N+1
a jW

j

∣∣∣∣∣∣
≤ M−1

∣∣∣aNwN
∣∣∣ .

Since we know by (8.2) and (8.7) that the left hand side of the last line is equal
to |zN (z, w)−(z∞(z, w)+aNwN )|, assertion (ii-b) and hence the proposition
follow modulo the above fact.

Now we turn to the proof of this fact. Suppose in order to reach a contra-
diction that

|w| ≤ 8MN |
∞∑
k=2

bkz
k |. (10.14)

This, coupled with (10.10) and (10.7), implies that

|z∞(z, w)− zN (z, w)| ≤
∞∑
j=N
|a j ||ϑ j (z, w)|

(
|w| +

∣∣∣∣∣
∞∑
k=2

bkz
k

∣∣∣∣∣
) j

≤
∞∑
j=N

4 j (1+ 8MN ) j

∣∣∣∣∣
∞∑
k=2

bkz
k

∣∣∣∣∣
j

≤
∞∑
j=N

4 j (1+ 8MN ) j c j |z|2 j
( ∞∑
k=2

ρk |z|k−2
) j

,

where the second inequality holds by the second inequality in (10.9), (10.8)
and (10.14), the last one by the third inequality in (10.9). Hence, we infer that
for 0 < s < 1 small enough,

|z∞(z, w)− zN (z, w)| � |z|2. (10.15)

Suppose now that the point (z, w) ∈ (Ds)
2 satisfies the assumption of assertion

(ii). We infer from (10.15) that r = |zN (z, w)| ≥ |z∞(z, w)| − |z|2. Since
s is small enough, we infer from (8.2)–(8.3) that z∞(z, w)/z is close to 1.
So |z| ≤ 2r. Hence, (10.15) implies that |z∞(z, w) − r | ≤ 4r2. Moreover,
(10.14), combined with |z| ≤ 2r, implies that |w| � |z|2 � r. Hence, we
obtain property (ii-a) which is the desired contradiction. The proof of assertion
(ii) is thereby completed. ��
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In what follows by shrinking D
2 if necessary, we may assume without loss

of generality that the vector field F at the beginning of the section is defined
on the bidisc (eD)× (e|λ|D).

Definition 10.4 Two points x1 = (z1, w1) and x2 = (z2, w2) ∈ (D\{0})2
are said to be quasi-compatible if there is t ∈ C such that z2 = z1et and
w2 = w1eλt . Clearly, x1 and x2 are on the same leaf. If, moreover, we can
choose t with |t | < 1, then we say that x1 and x2 are compatible.

Given two quasi-compatible points x1 = (z1, w1) and x2 = (z2, w2) ∈ D
2,

the compatible pseudo-distance between them, denoted by distC(x1, x2), is
defined by

distC (x1, x2) := max

{ |z1 − z2|
|z1| ,

|z1 − z2|
|z2| ,

|w1 − w2|
|w1| ,

|w1 − w2|
|w2|

}
.

Lemma 10.5 Let x, x ′ ∈ (D\{0})2 be two compatible points. Let t ∈ C such
that z2 = z1et and w2 = w1eλt with |t | smallest possible. Then
i. |z| ≈ |z′|, |w| ≈ |w′|, ‖x‖ ≈ ‖x ′‖, and

distC(x1, x2) ≈ |z − z′|
|z| ≈ |w − w′|

|w| ≈ ‖x − x ′‖
‖x‖ ≈ |t |;

ii. there is a constant c > 1 such that

c−1 ‖x − x ′‖
−‖x‖ log∗ ‖x‖ ≤ distP(x, x ′) ≤ c

‖x − x ′‖
−‖x‖ log∗ ‖x‖ .

Proof Assertion (i) is an immediate consequence of Definition 10.4.
To prove assertion (ii), let ω ∈ � be a path such that there is a differentiable

function s � [0, 1] �→ ζ(s) ∈ D satisfying

ω(s) := (zeζ(s), weλζ(s)) ∈ (e1D)× (e|λ|D) for s ∈ [0, 1].

and ζ(0) = 0 and ζ(1) = t.Hence, ω(0) = x and ω(1) = x ′. By Lemma 10.5
(i), we get | log∗ ‖ω(s)‖| ≈ | log∗ ‖x‖| for s ∈ [0, 1].Therefore, by integrating
along the path [0, 1] � s �→ ζ(s) and applying Part 2 of Lemma 2.4, we get
that

distP(ω : 0, 1) =
∫

ω[0,1]

√
gP(z)

=
∫ 1

0
ζ ∗(ψ∗x (

√
gP)) =

∫
ζ [0,1]

(log∗ ‖x‖)−1ds
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� |t |
− log∗ ‖x | ≈

‖x − x ′‖
−‖x‖ log∗ ‖x‖ .

When ζ(s) := st for s ∈ [0, 1], � above becomes ≈ . This implies assertion
(ii). ��

In the remainder of this section we consider the function

MN := 8N , N ∈ N. (10.16)

By the first inequality in (10.9), this choice ensures that M−1N � |aN |. More-
over, we take N so large in the sequence (N j )

∞
j=1 given in (8.9) that N

and the constant M = MN satisfy the conclusion of Proposition 10.3. Let
0 < rN := rN ,M < 1 be given by this proposition.

Lemma 10.6 Let N ∈ N be as above, let d := −aN , where aN is introduced
in (8.7) and α ∈ T. Let ξN ,α,k (k ∈ N) be the intersection of Cd

N = {z = dwN }
with the Riemann surface L̂α described by (10.2). Then the intersection of the
curve C0,N with L̂α can be enumerated as ξ0,N ,α,k (k ∈ N) such that ξN ,α,k
and ξ0,N ,α,k are compatible and that

distC(ξN ,α,k, ξ0,N ,α,k) ≤ cN−1 for k ∈ N.

Here c > 1 is a constant independent of N , α and k.

Proof We need to prove that for every point ξ1 ∈ Cd
N ∩ L̂α (resp. ξ1 ∈ C0,N ∩

L̂α), there is exactly one point ξ2 ∈ C0,N ∩ L̂α (resp. ξ2 ∈ Cd
N ∩ L̂α) such that

ξ1 and ξ2 are compatible and that

distC(ξ1, ξ2) � N−1. (10.17)

We will only show that for every point ξ1 ∈ Cd
N ∩ L̂α, there is exactly one

point ξ2 ∈ C0,N ∩ L̂α satisfying (10.17) since the other assertion can be proved
similarly. Let s0 := rN .

Write ξ1 = (z1, w1). So z1 = −aNwN
1 . We need to find ξ2 = (z2, w2) ∈

C0,N which is compatible with ξ1 in the sens of Definition 10.4. By (8.6) and
(8.8), the membership ξ2 = (z2, w2) ∈ C0,N is equivalent to zN (z, w) = 0.
Therefore, applying Proposition 10.3 (i) to r = 0, we may find a unique z =
f (w) such that |z| ≤ |w| and that zN (z, w) = 0. Clearly, Ds � w �→ f (w) is
a holomorphic function. Using the function θ given in (8.2), we introduce the
following holomorphic function

θN (w) := θ
(
Z( f (w), w),W ( f (w), w)

)
, for w ∈ Ds0 .
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By (8.3), we get that

1/2 < |θN (w)| < 2 and lim
w→0

θN (w) = θN (0) = 1, (10.18)

the limit being uniform in N . By Proposition 10.3 (ii) with r = 0 and (8.2),
we may write

f (w) = θN (w)(−aNwN + g(w)) for w ∈ Ds0, (10.19)

where g is a holomorphic function on Ds0 which satisfies |g(w)| ≤
M−1|aNwN |, w ∈ Ds0 .

In order to find ξ2 = (z2, w2) ∈ C0,N which is compatible with ξ1,wewrite
z2 = et z1, w2 = eλtw1 for some 0 < |t | � 1. We deduce from this and from
(z2, w2) ∈ C0,N that f (eλtw1) = et z1. Since z1 = −aNwN

1 , it follows that
t is a root of the following holomorphic function on the disc Ds, s ∈ (0, s0)
being a number whose exact value will be determined later on:

F(t) := −aNeλNtwN
1 + g(eλtw1)+ aNe

twN
1 θ−1N (eλtw1), t ∈ Ds .

(10.20)
Consider the holomorphic function

H(t) := −aNeλNtwN
1 + aNe

twN
1 , t ∈ Ds .

Observe that H(t) = 0 if and only if t = 2iπk
λN−1 for k ∈ Z. So we choose the

constant s as follows:

s = c′ π

|λN − 1| for c′ > 0 a constant independent of N , r.

Hence H has the unique root t = 0 on Ds . On the other hand, observe that

H(t) = aNwN
1 ((−λN + 1)t + O(t2)), where O(t2) depends on N .

Consequently, when the constant c′ (being independent of N , r ) is small
enough,

|H(t)| ≈ |aNwN
1 | and |aNwN

1 | < |H(t)| for t ∈ ∂Ds .

Using this, we can show that for N large enough and t ∈ ∂Ds,

|F(t)− H(t)| ≤ |g(eλtw1)| + |aNetwN
1 ||θ−1N (eλtw1)− 1|

� |aNwN
1 | < |H(t)|,
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where the first inequality holds by the uniform limit (with respect to N ) in
(10.18) and the estimate |g(eλtw1)| ≤ M−1|aNeλNtwN

1 |.
So |G(t)−H(t)| < H(t) on ∂Ds, and hence by Rouché’s theorem, G has a

unique root on Ds . Consequently, there is a unique t ∈ Ds such that F(t) = 0,
i.e., there is a unique ξ2 = (et z1, eλtw1) ∈ C0,N with |t | ≤ s. Since s ≈ N−1,
(10.17) follows from Lemma 10.5. ��
Lemma 10.7 Let N ∈ N be as above and α ∈ T. Let ξ0,N ,α,k (k ∈ N) be
the intersection points of C0,N with the Riemann surface L̂α described by
Lemma 10.6. Then there is a constant cN > 1 independent of α satisfying the
following properties for every 0 < r < rN :
i. the intersection of the curve Cr,N with the Riemann surface L̂α inside

(rND)2\Br1/N | log r |3/N can be enumerated as ξr,N ,α,k such that ξr,N ,α,k
and ξ0,N ,α,k are compatible, where k ∈ N such that ξ0,N ,α,k ∈
(rND)2\Br1/N | log r |3/N ;

ii. for every k ∈ N with ξ0,N ,α,k ∈ (rND)2\Br1/N | log r |3/N ,

distC(ξr,N ,α,k, ξ0,N ,α,k) ≤ cN | log r |−3.

Proof We need to prove that for every point

ξ1 ∈
(
C0,N ∩ L̂α

) ∩ ((rND)2\Br1/N | log r |3/N
)

(
resp. ξ1 ∈

(
Cr,N ∩ L̂α

) ∩ ((rND)2\Br1/N | log r |3/N
))

,

there is exactly one point

ξ2 ∈
(
Cr,N ∩ L̂α

) ∩ ((rND)2\Br1/N | log r |3/N
)

(
resp. ξ2 ∈

(
C0,N ∩ L̂α

) ∩ ((rND)2 \ Br1/N | log r |3/N
))

such that ξ1 and ξ2 are compatible and that

distC(ξ1, ξ2) � | log r |−3. (10.21)

We will only show that for every point

ξ1 ∈
(
C0,N ∩ L̂α

) ∩ ((rND)2\Br1/N | log r |3/N
)
,

there is exactly one point

ξ2 ∈
(
Cr,N ∩ L̂α

) ∩ ((rND)2\Br1/N | log r |3/N
)
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satisfying (10.21) since the other assertion can be proved similarly. Let s0 :=
rN .

Let f and g be the holomorphic functions on Ds0 introduced in the proof of
Lemma 10.6 (see (10.19)). Since g satisfies |g(w)| ≤ M−1|aNwN |, w ∈ Ds0,

f admits the following Taylor expansion:

f (w) = −ãNwN + h(w) for w ∈ Ds0, (10.22)

where h(w) = O(wN+1). By (10.16) we get that

|ãN/aN − 1| < 2−N for N large enough. (10.23)

Write ξ1 = (z1, w1). Since ξ1 ∈ C0,N , the previous lemma implies that
z1 = f (w1). Recall from Sect. 8 the coordinates (Z ,W ). Under the coor-
dinates (Z ,W ), we infer from (8.6), (8.7) and (8.8) the following simple
correspondence between C0,N and Cr,N :

(Z ,W ) ∈ C0,N ⇐⇒ (r + Z ,W ) ∈ Cr,N . (10.24)

In order to exploit this nice correspondence under the coordinates (z, w), we
introduce the holomorphic function Rr given by the following relation

Z(Rr (w)+ f (w), w)− Z( f (w), w) = r, w ∈ Ds0 . (10.25)

Recall from (8.1) that the Jacobian matrix of (Z ,W ) over (z, w) at (0, 0) is
the identity matrix. Consequently, using the Taylor expansion of Z(z, w) and
substituting f (w) (resp. Rr (w)+ f (w)) for z, we infer from (10.25) that

Rr (w)+ O(R2
r (w))+ O(Rr (w) f (w)) = r, for w ∈ Ds0 . (10.26)

We need to find ξ2 = (z2, w2) ∈ Cr,N which is compatible with ξ1. Write
z2 = et z1, w2 = eλtw1 for some 0 < |t | � 1. We deduce from this and from
(z2, w2) ∈ Cr,N and (10.25) that

Rr (e
λtw1)+ f (eλtw1) = et z1. (10.27)

In the sequel, s ∈ (0, s0) is a number whose exact value will be determined
later on. Since z1 = f (w1), it follows from the last line and (10.22) that t is
a root of the following holomorphic function on Ds defined by

F(t) := Rr (e
λtw1)−ãN eλNtwN

1 +h(eλtw1)+ãN etwN
1 −eth(w1), t ∈ Ds .

(10.28)
On the other hand, since (z1, w1) ∈ C0,N , we get by Proposition 10.3

with r = 0 that 2|aNwN
1 | ≥ |z1|. This together with the second inequality in
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(10.9) imply |z1| ≤ 2N+1|w1|. Since (z1, w1) /∈ Br1/N | log r |3/N , it follows that
|w1| ≥ 2−N−1r1/N | log r |3/N . This together with the first inequality in (10.9)
yield that

|aNwN
1 | ≥ 2−N |w1|N ≥ 2−N (N+1)r | log r |3.

Hence, there is cN > 1 such that

r < cN | log r |−3|aNwN
1 |. (10.29)

Now we choose M large enough (M depending on N ), and 0 < s < s0 such
that

s := c′| log r |−3 for c′ = c′N > 0 a large constant independent of r.
(10.30)

Thenwededuce from (10.29), (10.30) and (10.26), (10.18), (10.19) and (10.23)
that for r > 0 small enough,

Rr (w) = r + o(r) and r � s|ãNwN
1 |. (10.31)

Consider the holomorphic function

H(t) := −ãN eλNtwN
1 + ãN e

twN
1 , t ∈ Ds .

Observe that H has the unique root t = 0 on Ds . Moreover, when the constant
c′ is large enough, we have that

|H(t)| ≈ s|ãNwN
1 | and |H(t)| > s|ãNwN

1 |, for t ∈ ∂Ds . (10.32)

We also infer from (10.22) that

h(eλtw)− eth(w) = O(twN+1) for w ∈ Ds0,

where O(·) depends on N .

Putting this together with the definition of F and H and (10.32) and (10.31),
a straightforward computation shows that for t ∈ ∂Ds,

|F(t)− H(t)| ≤ |Rr (e
λtw1)| + |h(eλtw1))− eth(w1)|

≤ s|ãNwN
1 | < |H(t)|.

Using this, we can apply Rouché’s theorem to F and H.Consequently, F has a
unique root onDs . Therefore, there is a unique t ∈ Ds such that F(t) = 0, i.e.,
there is a unique ξ2 = (et z1, eλtw1) ∈ Cr,N with |t | ≤ s. Since s ≈ | log r |−3,
(10.21) follows from Lemma 10.5. ��
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In order to prove the last part of Proposition 9.1, the following lemma gives
us the discrepancy between the intersection points of a leaf with the algebraic
curve Cr,N and with the analytic curve Cr inside the ball Br1/N | log r |−3/N .

Lemma 10.8 Let N ∈ N be as above and α ∈ T. Let ξr,α,k (k ∈ N) be the
intersection of the analytic curve Cr with the Riemann surface L̂α described
by Lemma 10.1. Then there is a constant cN > 1 large enough independent of
α satisfying the following properties for every 0 < r < rN :
i. the intersection of the curve Cr,N with the Riemann surface L̂α inside the
ball Br1/N | log r |−3/N can be enumerated as ξr,N ,α,k such that ξr,N ,α,k and
ξr,α,k are compatible, where k ∈ N such that ξr,α,k ∈ Br1/N | log r |−3/N ;

ii. for every k ∈ N with ξr,α,k ∈ Br1/N | log r |−3/N , we have that

distC (ξr,N ,α,k, ξr,α,k) ≤ cN | log r |−3. (10.33)

Proof We need to prove that for every point ξ1 ∈ (Cr ∩ L̂α) ∩ Br1/N | log r |−3/N
(resp. ξ1 ∈ (Cr,N ∩ L̂α) ∩ Br1/N | log r |−3/N ), there is exactly one point ξ2 ∈
(Cr,N ∩ L̂α) ∩ Br1/N | log r |−3/N (resp. ξ2 ∈ (Cr ∩ L̂α) ∩ Br1/N | log r |−3/N ) such
that ξ1 and ξ2 are compatible and that

distC(ξ1, ξ2) � | log r |−3. (10.34)

We will only show that for every point ξ1 ∈ (Cr ∩ L̂α)∩Br1/N | log r |−3/N , there
is exactly one point ξ2 ∈ (Cr,N ∩ L̂α)∩Br1/N | log r |−3/N satisfying (10.34) since
the other assertion can be proved similarly.

Write ξ1 = (z1, w1). So z1 = r. We need to find ξ2 = (z2, w2) ∈ Cr,N
which is compatible with ξ1. Let s0 := rN . Consider two cases.
Case 1: |w1| ≥ 2r.

In this case we fix a number s ∈ (0, s0) as follows

s := c′| log r |−3 for c′ > 0 a large constant independent of r.

Let f, h and Rr be the holomorphic functions on Ds0 introduced in the proof
of Lemmas 10.6 and 10.7 (see (10.22) and (10.25)). On the other hand, we
deduce from the membership (z2, w2) ∈ Cr,N and (10.24) and (10.25) that
z2 = Rr (w2) + f (w2). Write z2 = et z1, w2 = eλtw1 for some 0 < |t | � 1
since ξ2 is compatible with ξ1. Consequently, we infer that t is a solution of
the following equation

Rr (e
λtw1)+ f (eλtw1) = et z1.
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Using (10.22) and the equality z1 = r, we deduce that t is a root of the
following holomorphic function on the disc Ds

F(t) := Rr (e
λtw1)− ãN e

λNtwN
1 + h(eλtw1)− etr, t ∈ Ds .

Consider another holomorphic function on Ds :

H(t) := r − ret , t ∈ Ds .

Observe that H admits a unique root t = 0 on Ds . Moreover, |H(t)| ≈ sr for
t ∈ ∂Ds .

Since (z1, w1) ∈ Br1/N | log r |−3/N , it follows that |w1| ≤ r1/N | log r |−3/N .

This together with the second inequality in (10.9) yield that

|aNwN
1 | ≤ 2N |w1|N ≤ 2Nr | log r |−3.

This, combined with (10.19) and (10.22), implies that when the constant c′ is
large enough,

|ãNwN
1 | < sr/2. (10.35)

Then we deduce from (10.35) and (10.26), (10.18), (10.19) that for r > 0
small enough,

Rr (w) = r + O(r2), w ∈ Ds0 . (10.36)

On the other hand, we infer from (10.22) that |h(eλtw1)| � |ãN eλNtwN
1 |.

Putting this together with (10.35) and (10.36), we deduce for t ∈ ∂Ds that

|F(t)− H(t)| ≤ |Rr (e
λtw1)− r | + |h(eλtw1)|

≤ O(r2)+ |ãNwN
1 | < sr ≈ |H(t)|.

Consequently, by Rouché’s theorem applied to F and H, there is a unique
t ∈ Ds such that F(t) = 0, i.e., there is a unique ξ2 = (et z1, eλtw1) ∈ Cr,N
with |t | ≤ s. Since s � | log r |−3, (10.34) follows from Lemma 10.5.
Case 2: |w1| ≤ 2r.

Here the difficulty lies in the fact that we cannot apply Proposition 10.3 (i)
and that the functions f, g, h etc are therefore not available any more. In this
case we choose s := c′r2 for c′ > 0 a large constant. Using the assumption
|w1| ≤ 2r and the expansion (10.10), we get that

|z∞(r, w1)− zN (r, w1)| ≤
∞∑
j=N
|a j ||ϑ j (r, w1)|

⎛
⎝|w1| + |

∞∑
k=2

bkr
k |
⎞
⎠

j

= O(r2).
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Moreover, using (8.2) and (8.1) we infer that

|r − z∞(r, w1)| = O(r2).

On the other hand, using (10.10) and (8.2) and (8.1), we obtain that

zN (etr, eλtw1)− zN (r, w1) = z∞(etr, eλtw1)− z∞(r, w1)+ O(r2)+ O(t2)

= etr − r + O(r2)+ O(t2) = O(r2)+ O(t2).

Putting together these three estimates, we have for t ∈ Ds that

|zN (etr, eλtw1)− r | ≤ ∣∣zN (etr, eλtw1)− zN (r, w1)
∣∣

+ |zN (r, w1)− z∞(r, w1)|
+ |r − z∞(r, w1)|

= t + O(t2)+ O(r2).

Consequently, when c′ is large enough, we know by Rouché’s theorem applied
to the identity function Ds � t �→ t and the holomorphic function t �→
zN (etr, eλtw1)− r that the latter admits a unique root on Ds . Hence, there is a
unique ξ2 = (et z1, eλtw1) ∈ Cr,N with |t | ≤ s. Since s � | log r |−3, (10.34)
follows from Lemma 10.5. ��

11 Mass of T ∧ [Cr] on balls

The main purpose of this section is to prove Proposition 8.3 and one half of
Proposition 8.6. Recall that T := {α ∈ C : e−2πb ≤ |α| ≤ 1}. In parallel with
the integral operator Ks given in (6.3), we also consider, for each s > 0, the
domain Ds := {t ∈ R : t ≥ s}, and the function K̃s : R→ R

+ given by

K̃s(y) :=
∫
Ds

V

V 2 + (y −U )2
dt, y ∈ R. (11.1)

Here U, V are functions of the variable t and the parameter s which satisfy
the following system of equations (see (5.6), (5.2) and (5.3)):

U + iV = (u + is)γ and t = bu + as.

The following result is the main technical point in the proof of Proposi-
tion 8.3.

Lemma 11.1 There is a constant c > 1 such that for all y ∈ R and s > 0,

c−1 ≤ K̃s(y)/Ks(y) ≤ c.
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Taking Lemma 11.1 for granted, we arrive at the

End of the proof of Proposition 8.3. In what follows we use the notation
introduced in Lemma 10.1. By (10.1), we have that uα,k = 2kπ − (log |α|)/b
and vr = − log r.This, coupled with (5.1), (5.2) and (5.3), implies that ξr,α,k ∈
Brδ if and only if buα,k + avr ≥ −δ log r, which is, in turn, equivalent to

k ≥ 1

2πb

(
(δ − a)(− log r)+ log |α|

)
.

LetZδ,r,α be the set of all integers k satisfying the last inequality. Observe that

‖T ∧ [Cr ]‖Brδ
=
∫

T

( ∑
k∈Zδ,r,α

hα(ξr,α,k)
)
dν(α).

For α ∈ T let Dα := D−δ log r , tr,α,k := buα,k + avr , k ∈ Z. Then k ∈ Zδ,r,α
if and only if tr,α,k ∈ Dα. Moreover, consider the function χα : Dα → C

given by

χα(t) := u + ivr , where vr = − log r and t = bu + avr .

Let m = 1 and choose ρ > 1 large enough. Using Harnack’s inequality, we
see that the assumption of Part 1 of Proposition 7.7 is fulfilled. Hence, by
Definition 7.8 we obtain an interpretation (K α)α∈T of the geometric intersec-
tion T ∧ [Cr ] on Brδ with mesh m = 1. Moreover, we infer from the above
discussion and formula (11.1) that K α(y) = K̃−δ log r (y). Consequently, by
Part 1 of Proposition 7.7 we get that

‖T ∧ [Cr ]‖Brδ
≈
∫

α∈T

( ∫ ∞
−∞

K̃−δ log r (y)H̃α(y)dy
)
dν(α).

On the other hand, by Lemma 11.1 we know that K̃−δ log r (y) ≈ K−δ log r (y).
By the definition of Ks in (6.3), we may find a constant cδ > 1 such that
c−1δ < K−δ log r (y)/K−δ log r (y) < cδ. So K̃−δ log r (y) ≈ K− log r (y). This,
combined with the last estimate for ‖T ∧ [Cr ]‖Brδ

, implies that

‖T ∧ [Cr ]‖Brδ
≈
∫

α∈T

( ∫ ∞
−∞

K− log r (y)H̃α(y)dy
)
dν(α).

Comparing this with Lemma 6.1, the proof is completed. ��
End of the proof of Lemma 11.1. Let c2, c3 be the constants with c3 > c2 > 1
given by Lemma 7.9. We consider three cases.
Case 1: s ≥ c2(1+ |y|)1/γ .

123



Singular holomorphic foliations by curves 597

By Part 2 of Lemma 7.9 and by formula (11.1), we have that

K̃s(y) ≈
∫ ∞
t=s

sdt

tγ+1
≈ s1−γ .

This, compared with formula (6.3), completes the proof of Case 1.
Case 2: c−13 ≤ s

(1+|y|)1/γ ≤ c2.

Write Ds = D1
s ∪ D2

s , where

D1
s :=

{
t ∈ Ds : t ≤ c2(1+ |y|)1/γ

}
,

D2
s :=

{
t ∈ Ds : t ≥ c2(1+ |y|)1/γ

}
.

Consequently, formula (11.1) gives that

K̃s(y) =
( ∫

D1
s

+
∫
D2
s

) V

V 2 + (y −U )2
dt =: I + I I. (11.2)

To estimate (I ), we apply Part 4 of Lemma 7.9 and obtain that

I ≈
∫
D1
s

dt

(1+ |y|) =
∫ c2(1+|y|)1/γ

c−13 (1+|y|)1/γ
dt

(1+ |y|) ≈ (1+ |y|)1/γ−1.

To estimate (I I ), we apply Part 2 of Lemma 7.9 and obtain that

I I ≈
∫
D2
s

min{t, v}dt
(max{t, v})γ+1 ≤

∫ ∞
c−13 (1+|y|)1/γ

sdt

tγ+1
≈ (1+ |y|)1/γ−1.

Inserting the above estimates for (I ) and (I I ) into (11.2), we obtain that
K̃s(y) ≈ (1 + |y|)1/γ−1 in the second case. Comparing this with formula
(6.3), the proof of Case 2 is complete.
Case 3: s ≤ c−13 (1+ |y|)1/γ .

Write Ds = D1
s ∪ D2

s ∪ D3
s , where

D1
s :=

{
t : s ≤ t ≤ c−12 (1+ |y|)1/γ

}
,

D2
s :=

{
t : t ≥ c2(1+ |y|)1/γ

}
,

D3
s :=

{
t : c−12 (1+ |y|)1/γ ≤ t ≤ c2(1+ |y|)1/γ

}
.

Consequently, we get, similarly as in (11.2), that

K̃s(y) =
( ∫

D1
s

+
∫
D2
s

+
∫
D3
s

) V

V 2 + (y −U )2
dt =: I + I I + I I I.
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To estimate (I ) we apply Part 1 and Part 3 of Lemma 7.9. Consequently, we
obtain that

I ≈
∫
D1
s

tγ−1sdt
(1+ |y|)2 ≈ s

( ∫ c−12 (1+|y|)1/γ

t=s
tγ−1dt

(1+ |y|)2
)

� s(1+ |y|)−1.

To estimate (I I ), we apply Part 2 of Lemma 7.9 and obtain that

I I ≈
∫
D2
s

sdt

tγ+1
≈ s

( ∫ ∞
c2(1+|y|)1/γ

dt

tγ+1
)
≈ s(1+ |y|)−1.

To estimate (I I I ), we apply Part 5 of Lemma 7.9 and obtain that

I I I ≈
∫ c2(1+|y|)1/γ

c−12 (1+|y|)1/γ
(1+ |y|)1/γ−1sdt
s2 + (t − ρ(y, s))2

,

where ρ(y, s) satisfies c−12 (1 + |y|)1/γ ≤ ρ(y, s) ≤ c2(1 + |y|)1/γ . Write
I I I := I I I1 + I I I2, where

I I I1 =
∫
|t−ρ(y,s)|≤s

(1+ |y|)1/γ−1sdt
s2 + (t − ρ(y, s))2

≈
∫
|t−ρ(y,s)|≤s

(1+ |y|)1/γ−1dt
s

≈ (1+ |y|)1/γ−1,

and

I I I2 ≈
∫

(1+ |y|)1/γ−1sdt
s2 + (t − ρ(y, s))2

≤
∫

(1+ |y|)1/γ−1sdt
(t − ρ(y, s))2

� c(1+ |y|)1/γ−1,

the integrals in the last line being taken over the region

{
t ∈ R : c−12 (1+ |y|)1/γ ≤ t ≤ c2(1+ |y|)1/γ and |t − ρ(y, s)| ≥ s

}
.

Thus, I I I ≈ (1+ |y|)1/γ−1.
Combining the obtained estimates for (I ), (I I ) and (I I I ), and using the

assumption s ≤ c−13 (1+ |y|)1/γ , we infer that

K̃s(y) = I + I I + I I I ≈ s(1+ |y|)−1 + (1+ |y|)1/γ−1 ≈ (1+ |y|)1/γ−1.

This, compared with formula (6.3), allows us to conclude the proof of the last
case. ��
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Singular holomorphic foliations by curves 599

As an application of Lemma 11.1, we are able to establish one half of the
proof of Proposition 8.6.

Proof of Proposition 8.6 for the geometric intersection T ∧[Cr ]. In parallel
with the integral operator K̃s given in (11.1), we consider, for each s > 0,
the domain Ds,N := {t ∈ R : t ≥ s/N + 3(log s)/N }, and the function
Ks,N : R→ R

+ given by

Ks,N (y) :=
∫
Ds,N

V

V 2 + (y −U )2
dt, y ∈ R, (11.3)

Here U, V are functions of the variable t and the parameter s which satisfy
the following system of equations (see (5.6), (5.2) and (5.3)):

U + iV = (u + is)γ and t = bu + as. (11.4)

We argue as in the proof of Lemma 11.1 for δ := 1/N making the obviously
necessary changes. The factor log s in the definition of Ds,N can be overlooked
without changing the final result. For α ∈ T, set Dα := D− log r,N and K α :=
K− log r,N and χα(t) := u(t) − i log r, t ∈ Dα, where u is a function of
t satisfying Eq. (11.4) with s := − log r. Consequently, using Lemma 10.1
we can show that (K α)α∈T is an interpretation of the geometric intersection
T ∧ [Cr ] on Br1/N | log r |−3/N with mesh 1.

It remains us to show that the above interpretation is coherent.We can check
this using Lemma 7.9 and the fact that the mesh of the interpretation is 1. ��

12 Mass of T ∧ [Cr,N ] outside the corona Ar,N

The objective of this section is to establish Proposition 9.1. We start with the
following simple lemma.

Lemma 12.1 Let 0 < s < r <∞. Let h be a positive harmonic function on
the disc Dr . Then there is a constant c > 0 depending only on the quotient
s/r such that for x1, x2 ∈ Ds,

|h(x1)− h(x2)| ≤ cr−3|x1 − x2|
∫

Dr

h(z)dLeb(z),

where dLeb is the Lebesgue measure in C.

Proof Using a continuity argument we may assume that h is continuous on
Dr . By Poisson integral formula, we have

h(x) = 1

2πr

∫
∂Dr

r2 − |x |2
|x − y|2 h(y)dσ(y) for x ∈ Dr , y ∈ ∂Dr ,
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where dσ(y) is the Lebesgue measure on ∂Dr . We infer from this formula
that

|h(x1)− h(x2)| ≤ c
|x1 − x2|

r2

∫
∂Dr

h(y)dσ(y) = 2πc|x1 − x2|h(0)

r

= 2c|x1 − x2|
r3

∫
Dr

h(z)dLeb(z),

where the equalities hold by the mean-property. Hence, the lemma follows.
��

Now we are in the position to prove the first part of Proposition 9.1.

End of the proof of estimate (9.1) in Proposition 9.1. Let N ∈ N and let rN
be given by Proposition 8.1. Consider the compact set

Y := Cr,N ∩ (X\D2).

By Proposition 8.1 (i) and (ii), we have that Y ∩ E = ∅. We use the finite
coverU of X by singular flow boxes (Ue)e∈E and regular flow boxes (Up)p∈P
introduced in Sect. 2.2. We may assume without loss of generality that

Y ⊂
⋃
p∈P

Up. (12.1)

Putting (8.6) and (8.8) and (12.1) together, we use an argument of local com-
plex geometry to express the intersection points of the algebraic curves Cr,N
and C0,N with a plaque of Up as the roots of some holomorphic functions
definedon someopen subset ofUp.Consequently, by shrinking rN if necessary,
wemay find a constant 0 < δ = δN < 1 such that for every x ∈ C0,N∩(X\D2)

and every 0 < r < rN , there is exactly one point τ(x) ∈ Cr,N such that x
and τ(x) are on the same plaque Vx of at least one of the regular flow boxes
(Up)p∈P and that

dist(x, τ (x)) ≤ cr δ for some constant c > 1 independent of x . (12.2)

In fact, δ is the reciprocal of the multiplicity of the intersection of C0,N and
Vx at x .

By shrinking the union ∪x∈C0,N Vx , we may find an open neighborhood
V of (X\D2) ∩ C, where C is the closure of

⋃
0≤r<rN Cr,N . Therefore, by

Proposition 2.6 we have the following integral representation of T in V:

T =
∫

hx [Vx ]dν(x),
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Singular holomorphic foliations by curves 601

where, for each x ∈ C0,N∩(X\D2), hx denotes the positive harmonic function
associated to the current T on the plaqueVx , and ν is a positive Radonmeasure
on Cr,N ∩ (X\D2).

On the other hand, by Part 1 of Lemma 2.4, we have that

c−1 ≤ η(x) ≤ c, x ∈
⋃
p∈P

Up for some constant c > 1.

This, combined with (12.2) and (12.1), implies that distP(x, τ (x)) ≤ cr δ and
that the diameter of the plaque Vx with respect to the Poincaré metric gP is
≈ 1. Applying Lemma 12.1 to the disc Dr for r ≈ 1, we get a constant c > 1
such that

|hx (x)− hx (τ (x))| � distP(x, τ (x))

∫
Vx

hx (y)gP(y) � r δ

∫
Vx

hx (y)gP(y).

Integrating both sides with respect to dν(x), we obtain that
∫
x∈C0,N∩(X\D2)

|hx (x)− hx (τ (x))|dν(x) � r δ‖T ∧ gP‖V � r δ,

where the last inequality holds because ‖T ∧gP‖X is finite by [10, Proposition
4.2] (this corresponds to (1.2) in the case δ = 1). Since we know by using
(12.1) and Proposition 7.1 that the left hand side is bigger than

∣∣∣‖T ∧ [Cr,N ]‖X\D2 − ‖T ∧ [C0,N ]‖X\D2

∣∣∣,
the desired estimate follows. ��
Remark 12.2 Estimate (9.1) in Proposition 9.1 still holds if we replace X and
D
2 by the bidiscs D

2 and (sD)2 respectively for any 0 < s < 1, i.e., there are
constants 0 < δ = δN < 1 and c = cs,N > 1 such that

∣∣∣‖T ∧ [Cr,N ]‖D2\(sD)2 − ‖T ∧ [C0,N ]‖D2\(sD)2

∣∣∣ ≤ crδ for 0 < r < min{s, rN }.

The last two parts of Proposition 9.1 concern balls in a singular flow box
around a singular point x̄ ∈ E . In what follows, we may assume without loss
of generality that F is the foliation on D

2 associated to the vector field F
introduced in Sect. 5 and that x̄ = 0 ∈ D

2. Moreover, let c0 be the constant
c > 1 given by Lemma 10.5 (ii).

Definition 12.3 Given a point x0 = (z0, w0) ∈ (D\{0})2 and a number 0 <
ρ < 1/2, a cell with center x0 and radius ρ is the set Cell(x0, ρ) given by
{
x = (z, w) ∈ (D\{0})2 : max{|1− z/z0|, |1− z0/z|, |1− w/w0|, |1− w0/w|} < ρ

}
.
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Note that for x ∈ Cell(x0, ρ),

(1+ ρ)−1‖x0‖ ≤ ‖x‖ ≤ (1+ ρ)‖x0‖.
We fix a number 0 < ρ0 < 1/2 so that the following two conditions (i)–(ii)
are satisfied:

i. For every 0 < ρ ≤ ρ0 and every point x0 = (z0, w0) ∈ (D\{0})2,
Cell(x0, ρ) is a flow box with the transversals

Tx0 := {(z0, w) ∈ Cell(x0, ρ) : w ∈ C} and

T
′
x0 := {(z, w0) ∈ Cell(x0, ρ) : z ∈ C}.

We often identify Tx0 and T
′
x0 with its projection on second first and its

first components respectively, that is, with the set {w ∈ D : |1−w/w0| <
ρ and |1 − w0/w| < ρ} and {z ∈ D : |1 − z/z0| < ρ and |1 − z0/z| <
ρ} respectively. The plaque of V := Cell(x0, ρ) passing through α =
(z0, w) ∈ Tx0 is denoted by Vα.

ii. All points in Vα are compatible with each other in the sense of Defini-
tion 10.4, in particular with α, for all α ∈ Tx0 .

Finally, set ρ1 := 1/4c−20 ρ0.

The following result illustrates the usefulness of the constants ρ0 and ρ1
given in Definition 12.3.

Proposition 12.4 Let U (resp. V) be the cell with center x0 ∈ (D\{0})2 and
radius ρ0 (resp. radius ρ1). Let Tx0 be a transversal of V as in Definition 12.3.
Let D1,D2 be two analytic curves in U such that for every α ∈ Tx0 and
j = 1, 2, D j intersects the plaque Vα at a unique point α j . Then there is
a constant c > 0 independent of x0 such that for every harmonic current T
tangent to the foliation, we have that

‖[D1] ∧ T − [D2] ∧ T ‖V ≤ c
(log∗ |x0|)2‖T ∧ gP‖U

‖x0‖ sup
α∈Tx0

‖α1 − α2‖.

Proof By Proposition 2.6 we have the following integral representation of T
in V:

T =
∫

hα[Vα]dν(α),

where, for each α ∈ Tx0, hα denotes the positive harmonic function associated
to the current T on the plaque Vα.

Letα ∈ Tx0 .Sincewe knowbyDefinition 12.3 that ‖α‖ ≈ ‖x0‖ and that the
points in Vα are compatible with each other, it follows from Lemma 10.5 (ii)
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and the choice of ρ0, ρ1 that there are two constants 0 < c′ < c′′ (independent
of α and x0) and constants cα, c′α ∈ [c′, c′′] such that

φα(Dcα(log∗ ‖x0‖)−1) ⊂ Vα ⊂ φα(Dc′α(log∗ ‖x0‖)−1) ⊂ φα(D2c′α(log∗ ‖x0‖)−1) ⊂ Uα.

Therefore, applying Lemma 12.1 to the disc Dr for r := 2c′α(log∗ ‖x0‖)−1,
we get a constant c > 1 such that for x1, x2 ∈ Vα, we have that

|hα(x1)− hα(x2)| ≤ c‖x0‖−1(log∗ ‖x0‖)2|x1 − x2|
∫

Uα

hαgP ,

where gP is, as usual, the leafwise Poincaré metric restricted to Uα ⊂ Lα.

Applying the last inequality to x1 = α1 and x2 = α2 and integrating both
sides with respect to dν(α) and using the above integral representation of T,

we obtain that
∫

α∈Tx0

|hα(α1)− hα(α2)|dν(α) ≤ c
(log∗ |x0|)2‖T ∧ gP‖U

‖x0‖ sup
α∈Tx0

‖α1 − α2‖.

Applying Proposition 7.1, we see that the left hand side is bigger than ‖[D1]∧
T − [D2] ∧ T ‖V, and hence the proposition follows. ��
End of the proof of estimate (9.2) in Proposition 9.1. Fix N ∈ N large enough
and let 0 < rN < 1 be the constant given by Lemma 10.7. Set s := rN . By
Remark 12.2 we can reduce estimate (9.2) to the following one:
∣∣∣‖T∧[Cr,N ]‖(sD)2\Br1/N | log r |3/N

−‖T∧[C0,N ]‖(sD)2\Br1/N | log r |3/N

∣∣∣ ≤ c| log r |−1,
(12.3)

where c is a constant which depends only on N . Fix ρ2 with 0 < ρ2 � ρ0 and
2πρ−12 ∈ N. Consider the countable set

X := {x = (z, w) ∈ (sD)2 : |z|, |w| ∈ {s(1− ρ2)
p : p ∈ N}

and arg z, argw ∈ {0, ρ2, 2ρ2 . . . , 2π}} .
Consider the family C of cells Cell(x, ρ0), where x ∈ X. We see easily that
when ρ2 is small enough and when a constant 0 < ρ3 � ρ1 is small enough,
the following property holds:
Property (i). For every point x ∈ (sD\{0})2, there exists at least one cell
C ∈ C such that Cell(x, ρ3) ⊂ C.

In particular, Property (i) implies that

(sD)2\({z = 0} ∪ {w = 0}) =
⋃
x∈X

Cell(x, ρ0).
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Moreover, we can check that the following property also holds.
Property (ii). There is K ∈ N such that each point in (sD\{0})2 belongs to at
most K cells in the family C .

Let 0 < r < rN be arbitrary.
Combing Lemmas 10.6 and 10.7, we see that for every α ∈ T and k ∈ N

with ξ0,N ,α,k ∈ (sD)2\Br1/N | log r |3/N ,

distC (ξr,N ,α,k, ξ0,N ,α,k) � | log r |−3 and distC (ξN ,α,k, ξ0,N ,α,k) ≈ N−1.
(12.4)

Fix α0 ∈ T. Suppose that there is k ∈ N such that ξ0,N ,α0,k ∈
(sD)2\Br1/N | log r |3/N . By Property (i), we may find a cell C = Ck ⊂ C

such that C ′ := Cell(ξ0,N ,α0,k, ρ3) ⊂ C. Set ρ4 := 1/4c−20 ρ3, where the
constant c0 > 1 is introduced just before Definition 12.3. Next, using (12.4)
we can check that there are constants c′ > 1 and 0 < ρ5 � 1 depending
only on ρ0, ρ1, ρ2, ρ3 (in particular, they are independent of r and N ) with the
following property:

There is an open ball Wα0 with center α0 ∈ T and radius ρ5 in T, where T

is defined in (5.4), and an interval Sr,α0 ⊂ N such that

• c′−1N ≤ #Sr,α0 ≤ c′N , where # denotes the cardinality;
• for every k ∈ Sr,α0 and α ∈ Wα0, all three points ξN ,α,k, ξ0,N ,α,k, ξr,N ,α,k
not only belong to the bidisc (sD)2, but also belong to the cell C ′′ :=
Cell(ξ0,N ,α0,k, ρ4).

Let TC ′′ be a transversal of C ′′ in the sense of Definition 12.3. For every
W ⊂ T, let L̂W :=⋃α∈W L̂α. Set

TC ′′,α0 := TC ′′ ∩ L̂Wα0
.

This is a nonempty open subset of TC ′′ . This, combined with (12.4), allows us
to apply Proposition 12.4 to two algebraic curves C0,N and Cr,N in the cellsC ′
and C ′′. The only change is that we use the constants ρ3, ρ4 instead of ρ0, ρ1.

Consequently, we get a constant c′ > 0 such that

∫
α∈TC ′′,α0

|hα(ξ0,N ,α,k)− hα(ξr,N ,α,k)|dν(α)

� c′ | log |ξ0,N ,α0,k0 ||2‖T ∧ gP‖C ′
‖ξ0,N ,α0,k0‖

· sup
α∈T
‖ξ0,N ,α,k − ξr,N ,α,k‖.

Using the first estimate in (12.4) and the inequality |ξ0,N ,α0,k0 | ≥ r1/N |
log r |3/N , the right hand side is bounded from above by a constant
times| log r |−1‖T ∧ gP‖C . On the other hand, the left hand side is bounded
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from below by |[C0,N ]∧T −[Cr,N ]∧T ‖C∩L̂Wα0
. Hence, for C = Ck we have

that

|[C0,N ] ∧ T − [Cr,N ] ∧ T ‖C ′′∩L̂Wα0
� | log r |−1‖T ∧ gP‖C .

Summing up the last inequality over all k ∈ Sr,α0, and using Property (ii)
above, we get that

|[C0,N ] ∧ T − [Cr,N ] ∧ T ‖L̂Wα0
� | log r |−1‖T ∧ gP‖X .

A compactness argument shows that we can cover T by a finite number of
open sets Wα0 . Applying the above estimate to each element of this cover and
summing up the obtained estimates, (12.3) follows and we are done. ��
End of the proof of estimate (9.3) in Proposition 9.1. We argue as in the
above proof of estimate (9.2) in Proposition 9.1 using Lemma 10.8 instead of
Lemma 10.7. We only point out here the necessary modification. Fix α0 ∈ T.

Suppose that there is k ∈ N such that ξr,α0,k ∈ Br1/N | log r |−3/N . By Prop-
erty (i) in the previous proof, we may find a cell C = Ck ⊂ C such that
Cell(ξr,α0,k, ρ3) ⊂ C. Thus, there is an open ball Wα0 with center α0 and
radius ρ5 in T and an interval Sr,α0 ⊂ N such that c′−1N ≤ #Sr,α0 ≤ c′N
points, and that for every k ∈ Sr,α0 and α ∈ Wα0, the two points ξr,α,k and
ξr,N ,α,k belong to the cell C ′′ := Cell(ξr,α0,k, ρ4).

Next, using Lemma 10.8 instead of the first estimate in (12.4), we conclude
the proof as in the previous one. ��

13 Mass of T ∧ [Cr], T ∧ [C0,N ], T ∧ [Cr,N ] on the corona Ar,N

The objective of this section is to establish Proposition 9.2. Recall that for
every s > 0, the function Ks : R→ R

+ is given by (6.3).

13.1 Mass of T ∧ [Cr] on Ar,N

In order to prove the first inequality of this proposition, we consider, for each
s > 1 and N ∈ N\{0}, the following domain in R :

Ds,N := {t ∈ R
+ : N−1(s − 3 log s) ≤ t ≤ N−1(s + 3 log s)}, (13.1)

and the function K (1)
s,N : R→ R

+ given by

K (1)
s,N (y) :=

∫
Ds,N

V

V 2 + (y −U )2
dt, y ∈ R, (13.2)
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606 V.-A. Nguyên

Here U, V are functions of the variable t and the parameter s which satisfy
the following system of equations (see (5.6), (5.2) and (5.3)):

U + iV = (u + is)γ and t = bu + as.

It is worthy comparing the domain Ds,N (resp. the function K (1)
s,N ) with the

domains Ds (resp. the function K̃s) given in (11.1).

Lemma 13.1 For every 0 < r < 1/2,

‖T ∧ [Cr ]‖Ar,N ≈
∫

α∈T

( ∫ ∞
−∞

K (1)
− log r,N (y)H̃α(y)dy

)
dν(α).

Proof Using (10.1), (5.1) and (5.3), we see that ξr,α,k ∈ Ar,N if and only if

1

2πb

(
(N−1 − a)(− log r)− 3 log(− log r)+ log |α|

)
≤ k

≤ 1

2πb

(
(N−1 − a)(− log r)+ 3 log(− log r)+ log |α|

)
.

Let Z
1
r,N ,α be the set of all integers k satisfying the last inequalities. Observe

that

‖T ∧ [Cr ]‖Ar,N =
∫

α∈T

⎛
⎜⎝ ∑

k∈Z1
r,N ,α

hα(ξr,α,k)

⎞
⎟⎠ dν(α).

For α ∈ T let Dα := D− log r,N , tr,α,k := buα,k+avr , k ∈ Z. Then k ∈ Zr,N ,α

if and only if tr,α,k ∈ Dα. Moreover, consider the function χα : Dα → C

given by

χα(t) := u + ivr , where vr = − log r and t = bu + avr .

Let m = 1 and choose ρ > 1 large enough. Using Harnack’s inequality, we
see that the assumption of Part 1 of Proposition 7.7 is also fulfilled. In other
words, by Definition 7.8 we obtain an interpretation (K α)α∈T of the geometric
intersection T ∧ [Cr ] on Ar,N with mesh m = 1. Consequently, applying Part
1 of Proposition 7.7 the lemma follows. ��
Lemma 13.2 There is a constant c > 1 such that for all y ∈ R, s > 1 and
N ∈ N\{0},

K (1)
s,N (y) ≤ cs−1(log s)Ks(y).
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Singular holomorphic foliations by curves 607

Proof We follow the method of proof of Lemma 11.1. Let c2, c3 be the con-
stants with c3 > c2 > 1 given by Lemma 7.9. We consider three cases.
Case 1: s ≥ c2(1+ |y|)1/γ .

By Part 2 of Lemma 7.9 and by formula (13.2), we have that

K (1)
s,N (y) ≈

∫ t=s/N+3(log s)/N

t=s/N−3(log s)/N
(s/N )dt

sγ+1 ≈ N−2s−γ log s.

This, compared with formula (6.3), completes the proof of Case 1.
Case 2: c−13 (1+ |y|)1/γ ≤ s ≤ c2(1+ |y|)1/γ .

Applying Part 5 of Lemma 7.9, we get that

K (1)
s,N (y) ≈

∫ t=s/N+3(log s)/N

t=s/N−3(log s)/N
(1+ |y|)1/γ−1tdt
t2 + (s − ρ(y, t))2

,

where ρ(y, t) satisfies c−12 (1+|y|)1/γ ≤ ρ(y, t) ≤ c2(1+|y|)1/γ .A straight-
forward computation shows that the right hand side is ≈ N−1s−1 log s(1 +
|y|)1/γ−1. Comparing this with formula (6.3), the proof of Case 2 is complete.
Case 3: s ≤ c−13 (1+ |y|)1/γ .

Applying Part 1 and Part 3 of Lemma 7.9, we get that

K (1)
s,N (y) ≈

∫ t=s/N+3(log s)/N

t=s/N−3(log s)/N
tγ−1sdt

(1+ |y|)2 ≈ N−γ sγ log s(1+ |y|)−2.

This, compared with formula (6.3), allows us to conclude the proof of the last
case. ��

End of the proof of inequality (9.5) in Proposition 9.2. Applying Lemma 13.1
and then Lemma 13.2, we see that for every 0 < r < 1/2,

‖T ∧ [Cr ]‖Ar,N ≈
∫

α∈T

( ∫ ∞
−∞

K (1)
− log r,N (y)H̃α(y)dy

)
dν(α)

� N−1(− log r)−1 log(− log r)

×
∫

α∈T

( ∫ ∞
−∞

K− log r (y)H̃α(y)dy
)
dν(α).

By Lemma 6.1 and identity (6.2), the integral in the last line is uniformly
bounded in r. The proof is thereby completed. ��
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13.2 Mass of T ∧ [C0,N ] on Ar,N

The next part of this section is devoted to the proof of the second inequality
of Proposition 9.2. We consider, for each s > 1 and N ∈ N\{0}, the function
K (2)
s,N : R→ R

+ given by

K (2)
s,N (y) := N 2

∫
Ds,N

V

V 2 + (y −U )2
dt, y ∈ R. (13.3)

Here the domain Ds,N is given in (13.1), andU, V are functions of the variable
t which satisfy the following system of equations (see (5.6), (5.2) and (5.3)):

U + iV = (u + iv)γ and t = bu + av and v = Nt + log |d|,

where d := −aN (see (8.7) and Lemma 10.6 for aN ).

Lemma 13.3 For every 0 < r < 1/2,

‖T ∧ [C0,N ]‖Ar,N ≈
∫

α∈T

( ∫ ∞
−∞

K (2)
− log r,N (y)dy

)
dν(α).

Proof Using (10.2), (10.3), (10.4), (5.1), (5.2) and (5.3), we see that ξN ,α,k ∈
Ar,N if and only if

(− log r)− 3 log(− log r) ≤ tN ,α,k ≤ (− log r)+ 3 log(− log r). (13.4)

Let Z
1
N ,α be the set of all integers k satisfying the last inequalities. Observe

that

‖T ∧ [Cd
N ]‖Ar,N =

∫
α∈T

⎛
⎜⎝ ∑

k∈Z1
N ,α

hα(ξN ,α,k)

⎞
⎟⎠ dν(α)

‖T ∧ [C0,N ]‖Ar,N =
∫

α∈T

⎛
⎜⎝ ∑

k∈Z1
N ,α

hα(ξ0,N ,α,k)

⎞
⎟⎠ dν(α).

On the other hand, by Lemma 10.6 we know that ξN ,α,k and ξ0,N ,α,k are
compatible for k ∈ Z

1
N ,α. Hence, by Harnack’s inequality, there is a constant

c > 1 such that

c−1hα(ξN ,α,k) ≤ hα(ξ0,N ,α,k) ≤ chα(ξN ,α,k).
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Singular holomorphic foliations by curves 609

This, combined with the above equalities, implies that

‖T ∧ [C0,N ]‖Ar,N ≈
∫

α∈T

⎛
⎜⎝ ∑

k∈Z1
N ,α

hα(ξN ,α,k)

⎞
⎟⎠ dν(α).

So we need to show that the right hand side in the last line is equivalent to
the right hand side of the lemma. For α ∈ T let Dα := D− log r,N , tN ,α,k :=
buN ,α,k+avN ,α,k, k ∈ Z.Then k ∈ Z

1
N ,α if and only if tN ,α,k ∈ Dα.Moreover,

consider the function χα : Dα → C given by

χα(t) := uN (t)+ ivN (t), where vN (t) = Nt + log |d| and

t = buN (t)+ avN (t).

By (10.4), (10.5) and (10.6), we choose m = N−2. Moreover, take ρ > 1
large enough. Using Harnack’s inequality, we see that the assumption of Part
1 of Proposition 7.7 is fulfilled. Hence, we obtain an interpretation (K α)α∈T,

in the sense of Definition 7.8, of the geometric intersection T ∧ [Cr ] on Ar,N
with mesh m = N−2. Consequently, applying Part 1 of Proposition 7.7 the
lemma follows. ��
Lemma 13.4 There is a constant c > 1 such that for all y ∈ R and s > 1 and
N ∈ N\{0},

K (2)
s,N (y) ≤ cN 2s−1(log s)Ks(y).

Proof We follow the method of proof of Lemma 11.1. Let c2, c3 be the con-
stants with c3 > c2 > 1 given by Lemma 7.9. We consider three cases.
Case 1: s ≥ c2(1+ |y|)1/γ .

By Part 2 of Lemma 7.9 and by formula (13.3), we have that

K (2)
s,N (y) ≈ N 2

∫ t=s/N+3(log s)/N

t=s/N−3(log s)/N
tdt

(Nt)γ+1
≈ s−γ log s.

This, compared with formula (6.3), completes the proof of Case 1.
Case 2: c−13 (1+ |y|)1/γ ≤ s ≤ c2(1+ |y|)1/γ .

Applying Part 5 of Lemma 7.9, we get that

K (2)
s,N (y) ≈ N 2

∫ t=s/N+3(log s)/N

t=s/N−3(log s)/N
(1+ |y|)1/γ−1tdt

t2 + (Nt − ρ(y, t))2
,

where ρ(y, t) satisfies c−12 (1+|y|)1/γ ≤ ρ(y, t) ≤ c2(1+|y|)1/γ .A straight-
forward computation shows that the right hand side is ≈ Ns−1 log s(1 +
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|y|)1/γ−1. On the other hand, by formula (6.3) we have that Ks(y) ≈
(1+ |y|)1/γ−1. This completes the proof of Case 2.
Case 3: s ≤ c−13 (1+ |y|)1/γ .

Applying Part 1 and Part 3 of Lemma 7.9, we get that

K (2)
s,N (y) ≈ N 2

∫ t=s/N+3(log s)/N

t=s/N−3(log s)/N
tγ−1(Nt)dt

(1+ |y|)2 ≈ N 2−γ sγ log s(1+ |y|)−2.

Since we know by formula (6.3) that Ks(y) ≈ (1+|y|)1/γ−1, the proof of the
last case, and hence the lemma, is thereby completed. ��
End of the proof of inequality (9.6) in Proposition 9.2. Applying Lemma 13.3
and then Lemma 13.4, we see that for every 0 < r < 1/2,

‖T ∧ [C0,N ]‖Ar,N ≈
∫

α∈T

( ∫ ∞
−∞

K (2)
− log r,N (y)H̃α(y)dy

)
dν(α)

� N (− log r)−1 log(− log r)

×
∫

α∈T

( ∫ ∞
−∞

K− log r (y)H̃α(y)dy
)
dν(α).

By Lemma 6.1 and identity (6.2), the integral in the last line is uniformly
bounded in r. The proof is thereby completed. ��

13.3 Mass of T ∧ [Cr,N ] on Ar,N

The remainder of the section is devoted to the proof of inequality (9.7) in
Proposition 9.2.

Let 0 < κ = κN � 1 be a very small constant whose exact value will
be determined later on, and let rN > 0 be the constant satisfying both Lem-
mas 10.7 and 10.8. Write

‖T∧[Cr,N ]‖Ar,N=‖T∧[Cr,N ]‖Ar,N∩B
κr1/N
+‖T∧[Cr,N ]‖Ar,N \Bκr1/N

=: I+I I.
(13.5)

Arguing as in the proof of Lemma 10.8 and replacing the ball Br1/N | log r |−3/N
with Bκr1/N and choosing 0 < κ < 1 small enough, we obtain the following
weaker result for every 0 < r < rN and α ∈ T : The intersection of the curve
Cr,N with the Riemann surface L̂α inside the ball Bκr1/N can be enumerated
as ξr,N ,α,k such that ξr,N ,α,k and ξr,α,k are compatible, where k ∈ N such that
ξr,α,k ∈ Bκr1/N . Consequently, we get that

I =
∫

α∈T

(∑
hα(ξr,N ,α,k)

)
dν(α),
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Singular holomorphic foliations by curves 611

where the sum is taken over all k ∈ N such that ζr,α,k ∈ Ar,N ∩Bκr1/N . More-
over, using that ζr,N ,α,k and ζr,α,k are compatible, an application of Harnack’s
inequality gives that

hα(ξr,N ,α,k) ≤ c′hα(ξr,α,k) for some constant c′ > 1.

Therefore, we infer that

I ≤ c′
∫

α∈T

(∑
hα(ξr,α,k)

)
dν(α) = c′‖T ∧ [Cr ]‖Ar,N∩B

κr1/N
.

The right hand side is bounded from above by c′‖T ∧[Cr ]‖Ar,N . This, coupled
with (9.5), implies that

I ≤ c(− log r)−1 log(− log r). (13.6)

Next, we turn to (I I ). Observe that every point (z, w) /∈ Bκr1/N with
zN (z, w) = r satisfies the assumption of Proposition 10.3 for the sequence
MN := 8N as in (10.16). Therefore, we have for such a point that

|zN (z, w)− (z∞(z, w)+ aNwN )| ≤ 8−N |aN ||w|N . (13.7)

Consequently, we can argue as in the proof of Lemma 10.7 while replacing
the ball Br1/N | log r |3/N with Bκr1/N . Thus we obtain the following weaker fact
than Lemma 10.7.

Claim For N large enough, there exist two numbers "N and �N such that by
reducing rN if necessary, for every 0 < r < rN and α ∈ T, the following two
properties hold:

i. for every point ξ1 ∈ (C0,N ∩ L̂α) ∩ (Ar,N\Bκr1/N ), there exist at least
one point and at most "N points ξ2 ∈ (Cr,N ∩ L̂α)∩ (Ar,N\Bκr1/N ) such
that ξ1 and ξ2 are quasi-compatible in the sense of Definition 10.4 and
distC (ξ1, ξ2) ≤ �N ;

ii. for every point ξ1 ∈ (Cr,N ∩ L̂α)∩ (Ar,N\Bκr1/N ), there exist at least one
point and at most "N points ξ2 ∈ (C0,N ∩ L̂α)∩ (Ar,N\Bκr1/N ) such that
ξ1 and ξ2 are quasi-compatible and distC(ξ1, ξ2) ≤ �N .

Sketchy proof of the claim.Weonly prove assertion (i) since assertion (ii) can
be done similarly. Unlike the proof of Lemma 10.7, s in this claim is a large
positive number. Arguing as in the proof of (10.29), we may find a constant
cN > 1 such that

r < cNκ−1|aNwN
1 |.
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612 V.-A. Nguyên

Now we choose M large enough (M depending on N ). In fact, instead of
(10.30) s in this claim is of the form

s := c′κ−1 for c′ = c′N > 0 a large constant independent of r . (13.8)

As in the proof of Lemma 10.7 we want to estimate the number of roots t of
the following holomorphic function on Ds defined by (10.28):

F(t) := Rr (e
λtw1)−ãN eλNtwN

1 +h(eλtw1)+ãN etwN
1 −eth(w1), t ∈ Ds .

Consider again the function

H(t) := −ãN eλNtwN
1 + ãN e

twN
1 , t ∈ Ds .

Since H(t) = 0 if and only if t = 2iπk
λN−1 for k ∈ Z, we may choose s and c′

large enough (depending only on N and λ) such that

|H(t)| ≥ c′−1|ãNwN
1 | for t ∈ ∂Ds,

and that H admits a finite number of roots, say "N ≥ 1 roots on Ds . Using
this and (10.18), (10.19), (10.23), (10.26), (10.29), (13.8) and (10.31), we can
show that

|F(t)− H(t)| < H(t) for t ∈ ∂Ds .

Consequently, applyingRouché’s theorem again to F and H, the claim follows
with �N := s. ��

Using the claim we may find a constant c′′ = c′′N > 1 such that

I I ≤ c′′
∫

α∈T

(∑
hα(ξ0,N ,α,k)

)
dν(α) = c′′‖T ∧ [C0,N ]‖Ar,N \Bκr1/N

,

where the sum is taken over all k ∈ N such that ξ0,N ,α,k ∈ Ar,N\Bκr1/N . The
right hand side is bounded from above by c′′‖T ∧ [C0,N ]‖Ar,N .

This, coupled with (9.6), implies that

I I ≤ c(− log r)−1 log(− log r). (13.9)

End of the proof of inequality (9.7) in Proposition 9.2. Putting (13.5), (13.6)
and (13.9) altogether, (9.7) follows. ��
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Singular holomorphic foliations by curves 613

14 Completion of the reductions

In the first part of this section we complete the proof of Proposition 8.6.
More specifically, we will show that the geometric intersection T ∧ [C0,N ]
on Br1/N | log r |−3/N admits a coherent interpretation K ∗− log r,N satisfying the
conclusion of this proposition. As a consequence, the second part is devoted
to the proof of Proposition 8.4.

14.1 End of the proof of Proposition 8.6

The proof is divided into 4 steps.
Step 1: Construction of a coherent interpretation with mesh N−2.

Let d := −aN (see (8.7) and Lemma 10.6 for aN ). We consider, for each
s > 1 and N ∈ N\{0}, the following domain in R :

D∗s,N := {t ∈ R
+ : t ≥ N−1(s − 3 log s)}, (14.1)

and the function K ∗s,N : R→ R
+ given by

K ∗s,N (y) := N 2
∫
D∗s,N

V

V 2 + (y −U )2
dt, y ∈ R. (14.2)

Here U, V are functions of the variable t which satisfy the following system
of equations (see (5.6), (5.2) and (5.3)):

U + iV = (u + iv)γ and t = bu + av and v = Nt + log |d|.

For α ∈ T, set Dα := D∗− log r,N , and K α := K ∗− log r,N , and χα(t) =
uα(t) + ivα(t), t ∈ Dα. Here uα and vα are affine functions in t such that
uα(tN ,α,k) = uN ,α,k and vα(tN ,α,k) = vN ,α,k for k ∈ N (see (10.3)–(10.4) in
Lemma 10.2). We will show that (K α)α∈T is a coherent interpretation of the
geometric intersection T ∧ [C0,N ] on Br1/N | log r |−3/N .

By Lemma 10.6 and using (5.1) we know that for every α ∈ T, each point
ξ = (z, w) = ψα(u + iv) ∈ Cd

N = {z = dwN } ∩ L̂α corresponds to a unique
point ξ = (z, w) = ψα(u+ iv) ∈ C0,N ∩ L̂α such that ξ and ξ ′ are compatible
and distC(ξN ,α,k, ξ0,N ,α,k) � N−1. Using Definition 10.4 we infer from the
last inequality that

|u − u′| � N−1 and |v − v′| � N−1. (14.3)
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On the other hand, by (10.5)–(10.6) in Lemma 10.2, if u := uN ,α,k, v :=
vN ,α,k, u′ := uN ,α,k+1, v′ := vN ,α,k+1 for some k ∈ N,we also get inequality
(14.3).

Using (5.2) and (5.6), we set

t = bu + av, t ′ = bu′ + av′, U + iV = (u + iv)γ , U ′ + iV ′ = (u′ + iv′)γ .

This, combined with (14.3), yields that t ≈ t ′ and v ≈ v′. Since ξ ∈ Cd
N =

{z = dwN } ∩ L̂α ∩ Br1/N | log r |−3/N , it follows from (5.3) that

t ≥ −N−1 log r + 3N−1 log (− log r) and v = Nt + log |d|.

Note that the second estimate in (10.6) shows that the mesh of (K α)α∈T should
be N−2.Using the above estimates for t, v and t ′, v′ and applying Lemma 7.9,
we can show that there is a constant c > 1 independent of the above points
ξ, ξ ′ such that

c−1 V

V 2 + (y −U )2
≤ V ′

V ′2 + (y −U ′)2
≤ c

V

V 2 + (y −U )2
for y ∈ R.

Therefore, by Definition 7.8, (K α)α∈T is a coherent interpretation of the geo-
metric intersection T ∧ [C0,N ] on Br1/N | log r |−3/N as desired. This completes
Step 1.
Step 2: There are constant c, κ > 1 independent of N such that for κ(1 +
|y|)1/γ ≤ s, we have K ∗s,N (y) ≤ cs1−γ .

To start Step 2, let c2, c3 be the constants with c3 > c2 > 1 given by
Lemma 7.9. Set

κ := max{c2, c3}.

By Part 2 of Lemma 7.9 and by formula (14.2), we have that

K ∗s,N (y) ≈
∫ ∞
t=s/N−3(log s)/N

N 2tdt

(Nt)γ+1
≈ s1−γ .

This completes the proof of Step 2.
Step 3: There are constant c, κ > 1 independent of N such that for s ≤
κ−1(1+ |y|)1/γ ≥ s, we have c−1 ≤ K ∗s,N (y)

N (1+|y|)1/γ−1 ≤ c.
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Let κ be given by Step 2. Applying Part 5 of Lemma 7.9 and using Step 2
above for s = κ(1+ |y|)1/γ , we get that

K ∗s,N (y) ≈ (1+|y|)1/γ−1+
∫ (1+|y|)1/γ /N

t=s/N−3(log s)/N
(1+ |y|)1/γ−1N 2tdt

t2 + (Nt + log |d| − ρ(y, t))2
,

(14.4)
where ρ(y, t) is defined as follows: there exists a solution u := u(y, t) of the
following equation

U = y, U + iV = (u + i t)γ (14.5)

satisfying c−12 (1 + |y|)1/γ ≤ u, ρ(y, t) ≤ c2(1 + |y|)1/γ with ρ(y, t) :=
bu + at.

For every k = 1, . . . , N , let tk, uk ∈ R be such that

ρ(y, tk) = ktk and ρ(y, tk) := buk + atk . (14.6)

Observe that

(N−k−1)t+log |d| ≤ Nt+log |d|−ρ(y, t) ≤ (N−k)t+log |d| for t ∈ [tk+1, tk ]. (14.7)

On the other hand, we deduce from (14.6) and (14.5) that

tγk Re
(
(b−1(k − a)+ i)γ

) = Re
(
(b−1(k − a)tk + i tk)

γ
) = Re

(
(uk + i tk)

γ
) = y.

This, combined with the estimate

Re
(
(b−1(k − a)+ i)γ

) ≈ kγ for large k,

implies the following estimates

tk ≈ k−1|y|1/γ ,

and

tk−1 − tk ≈ tγ+1k (tγk − tγk−1)

≈ k−(γ+1)|y|1+1/γ Re
(
(b−1(k − a)+ i)γ

)− Re
(
(b−1(k − a)+ i)γ

)
|y|

≈ k−1|y|1/γ
(
Re
(
(b−1(1− ak−1)+ ik−1)γ

)− Re
(
(b−1(1− ak−1)+ ik−1)γ

))

≈ k−2|y|1/γ .
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Inserting these inequalities into (14.7) and hence (14.4), we get that

K ∗s,N (y) ≈ (1+ |y|)1/γ−1 + N 2
N∑

k=1

(tk−1 − tk)(1+ |y|)1/γ−1tk
t2k + (Ntk + log |d| − ρ(y, tk))2

≈ (1+ |y|)1/γ−1 + N 2(1+ |y|)1/γ−1
N∑

k=1

(tk−1 − tk)

tk(N − k)2

≈ (1+ |y|)1/γ−1 + N 2(1+ |y|)1/γ−1
N−1∑
k=1

k−2|y|1/γ
k−1|y|1/γ (N − k)2

≈ (1+ |y|)1/γ−1
(
1+ N 2

N−1∑
k=1

1

k(N − k)2

)

≈ N (1+ |y|)1/γ−1,

where in the second ≈ we use that −N log 2 ≤ log |d| ≤ N log 2, which
follows, in turn, from the first two inequalities in (10.9).
Step 4: There are a constant κ > 1 independent of N and a constant cN > 1

such that for κ−1s ≤ (1+ |y|)1/γ ≤ κs, we have c−1N ≤
K ∗s,N (y)

(1+|y|)1/γ−1 ≤ cN .

We use Lemma 7.9 in order to estimate K ∗s,N (y). Since this step is much
easier than Step 2 and Step 3, we leave it to the interested reader.

Putting Steps 1, 2, 3 and 4 altogether, the proof of Proposition 8.6 is thereby
completed. ��

14.2 End of the proof of Proposition 8.4.

We apply what has been done in this section toBr1/N instead ofBr1/N | log r |−3/N .

Consequently, we obtain quite similar estimates as in Step 2, 3, 4 above. This,
combined with Lemma 6.1 for r1/N instead of r , yields a constant c = cN > 0
such that

‖T ∧ [C0,N ]‖Br1/N
≤ cG(x0, r

1/N ) for 0 < r < 1/2.

Replacing r1/N by r, the result follows. ��
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