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Abstract For algebraic varieties defined by hyperkähler or, more generally,
algebraic symplectic reduction, it is a long-standing question whether the
“hyperkähler Kirwanmap” on cohomology is surjective.We resolve this ques-
tion in the affirmative for Nakajima quiver varieties. We also establish similar
results for other cohomology theories and for the derived category. Our proofs
use only classical topological and geometric arguments.

1 Introduction

Suppose M is a complex algebraic variety with the action of a complex alge-
braic groupG, yielding a quotient stack/equivariant spaceX = M/G; or more
generally X is any complex algebraic stack. Often X has one or more natural
open sets Xss—typically defined via geometric invariant theory (GIT)—that
are smooth algebraic varieties; thus, when X = M/G, we have Xss = Mss/G
where G acts freely on Mss. Fixing such an open subset i : Xss ↪→ X, one has
the following problem.
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162 K. McGerty, T. Nevins

Kirwan Surjectivity Problem When is the pullback map

H∗(X)
i∗−→ H∗(Xss) (1.1)

surjective?

Convention 1.1 Except when noted otherwise, H∗ means singular cohomol-
ogy with Z coefficients.

WhenX itself is smooth andXss is defined byGIT, classicalMorse-theoretic
results of Atiyah-Bott and Kirwan show that the “Kirwan map” (1.1) is sur-
jective. Significant recent attention focuses on the case when X is a singular,
but algebraic symplectic or even hyperkähler, stack: typically, letting Z be a
smooth G-variety with algebraic moment map μ : T ∗Z → g∗ = Lie(G)∗,
we have X = μ−1(0)/G and Xss = μ−1(0)ss/G for a choice of GIT stability.

This paper resolves theKirwanSurjectivity ProblemwhenXss is aNakajima
quiver variety.

Thus, let Q = (I, �) be a quiver and v,w ∈ Z
I≥0 vectors with w �= 0.

Following Nakajima [18,19], these data yield (notation as in Section 3.1):

(1) a finite-dimensional complex vector space M = M(v,w), with
(2) the linear action of the complex group G = ∏

i GLvi , and
(3) a (complex) moment map μ : M −→ Lie(G)∗.
Fix a nondegenerate stability condition θ (Definition 3.1) in the sense of
GIT—for example the one used in [18,19]—with stable locus μ−1(0)ss =
μ−1(0)s ⊂ M

s . TheG-actiononM
s is free, and thequotientM = M(v,w) :=

μ−1(0)s/G is the Nakajima quiver variety associated to Q, v,w, θ .

Theorem 1.2 Let M(v,w) be a smooth Nakajima quiver variety. Then the
Kirwan map

H∗
G
(pt) ∼= H∗

G
(μ−1(0)) −→ H∗

G
(μ−1(0)s) = H∗(M(v,w)

)

is surjective. Thus, H∗(M(v,w)
)
is generated by tautological classes.

We note that H∗
G
(pt) is a polynomial ring (in the tautological classes of the

theorem). Theorem 1.2 extends to many other cohomology theories, including
complex K -theory and elliptic cohomology.1

Theorem 1.3 Assume that E∗(pt) is concentrated in even degrees.
(1) The map E∗(BG) → E∗(M) is surjective.

1 We have in mind Grojnowski’s equivariant elliptic cohomology [9], since it seems to be the
only theory currently documented; though the same arguments apply to any theorywith standard
formal properties.
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Kirwan surjectivity for quiver varieties 163

(2) If E is complex-oriented, then E∗(M) is generated as an E∗(pt)-algebra
by Chern classes of tautological bundles.

Corollary 1.4 The natural maps K ∗
G
(pt) → K ∗(M) and Ell∗

G
(pt) →

Ell∗(M) are surjective.

Furthermore, ifT is an algebraic torus acting onM, then, because H∗(M) is
evenly graded, the Leray spectral sequence for H∗

T
(M) degenerates, showing

that H∗(M) = H∗
T
(M) ⊗H∗

T
(pt) H

∗(pt). Via Theorem 1.2 and the Nakayama
Lemma for graded rings, we conclude:

Corollary 1.5 For a torus T acting on M, the map H∗
G×T

(pt) → H∗
T
(M) is

surjective.

In particular, the expectation expressed in Section 2.2.2 of [1]—that their
map (9) is an embedding near the origin of ET—follows. We note the appli-
cability of the above results in other, similar contexts (cf. [17]). Analogues of
Corollary 1.5 can also be proven for K -theory and elliptic cohomology equiv-
ariant with respect to a torus T or more general “flavor symmetries” ofM: see
Sect. 3.4 for more discussion of such symmetry groups.

Our method also yields the following.

Theorem 1.6 Let D(M) denote the unbounded quasicoherent derived cate-
gory of M, and Dcoh(M) its bounded coherent subcategory.

(1) The category D(M) is generated by tautological bundles.
(2) There is a finite list of tautological bundles from which every object of

Dcoh(M) is obtained by finitely many applications of (i) direct sum, (ii)
cohomological shift, and (iii) cone.

We note that the second assertion of Theorem 1.6 is not simply a formal
consequence of the first, since we do not include taking direct summands (i.e.,
retracts) among the operations (i–iii). Results related to Theorem 1.6 appear
in [10].

We mention one further application of Theorem 1.2 (that will be readily
apparent to experts).

Corollary 1.7 (Assumption 5.13 of [2]) Let g = Lie(G), and Z := Z(g)∗ ⊂
g∗ denote the dual of the center. Consider the familyM = μ−1(Z)ss/G −→ Z
ofHamiltonian reductions. Then theDuistermaat-Heckmanmap for this family
is surjective. In particular, the family of Hamiltonian reductions M → Z
provides a versal Poisson deformation of the Nakajima quiver varietyM.

Cases of Kirwan surjectivity for quivers of finite and affineDynkin type, and
for star-shapedquivers, havepreviously been established (see [7,15,20,22,23])
by different techniques; and for moduli of GLn-Higgs bundles by Markman
[16].

Here is a sketch of the strategy used to prove Theorem 1.2.
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164 K. McGerty, T. Nevins

(1) We compactify M to a projective variety M by an explicit quiver con-
struction.

(2) We identify the class of the graph � of the inclusion i : M ↪→ M in
H∗(M × M) as a Chern class of a complex built from external tensor
products of tautological bundles onM × M.

(3) Purely topological arguments allow us to conclude (Sect. 2) that the Chern
classes of the tautological bundles generate the cohomology of M.

We emphasize that the overall strategy is not new: see [18] (and [16]). The
new ingredient here is the particular choice of modular compactification M.
Hiding behind our approach to Theorem 1.2 and our other results is, in fact,
a general pattern (that experts may already discern here) for moduli spaces in
noncommutative geometry—that is, moduli of objects in certain categories.
The general story will be worked out in a forthcoming paper. Nonetheless, it
seemed desirable to us to present the results for quiver varieties separately.
Indeed, on the one hand, the proof of Theorem 1.2 can be made completely
classical and explicit for quivers, in a way that avoids any categorical yoga or
abstraction (and thus will be of independent interest to some readers). On the
other hand, we also obtain sharper results for quiver varieties than seem to be
easily achievable in a completely general context.

Convention 1.8 Throughout the paper, all varieties, groups, etc. are defined
over C.

2 Topology of compactifications

Throughout the paper, we use H∗(X), with no further decorations indicat-
ing coefficients, to denote cohomology with Z-coefficients, and HBM∗ (X)

to denote Borel-Moore homology with Z-coefficients; if X is smooth with
D = dimR(X), there is a canonical isomorphism H∗(X) ∼= HBM

D−∗(X).

2.1 Pushforwards and the projection formula

Suppose f : X → Y is a proper morphism of relative dimension d of smooth,
connected varieties (or Deligne–Mumford stacks). Then there is a pushfor-
ward, or Gysin, map f∗ : H∗(X) → H∗−d(Y ).

The Gysin map satisfies the projection formula [5]: for classes c ∈
H∗(X), c′ ∈ H∗(Y ), we have

f∗(c ∪ f ∗c′) = f∗(c) ∪ c′. (2.1)

Moreover, if f : X → Y is a closed immersion, then

f∗ f ∗c = c ∪ [X ], (2.2)
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Kirwan surjectivity for quiver varieties 165

where [X ] denotes the fundamental class of X in Borel-Moore homology
(which is canonically isomorphic to cohomology since Y is smooth).

2.2 Künneth components and images under pullback

SupposeC ∈ H∗(X ×Y ) is a cohomology class and that the Künneth formula
H∗(X × Y ) ∼= H∗(X) ⊗ H∗(Y ) holds.2 We may write

C =
∑

xi ⊗ yi with xi ∈ H∗(X), yi ∈ H∗(Y ). (2.3)

The classes xi , yi are the left-hand, respectively right-hand, Künneth compo-
nents of C with respect to the decomposition (2.3); they are not independent
of the choice of decomposition (2.3).

Now suppose that f : X → Y is a morphism from a smooth variety X to a
smooth, proper variety Y . Let � f ⊂ X × Y be the graph of the map.

Proposition 2.1 The image of f ∗ : H∗(Y ) → H∗(X) is contained in the span
of the Künneth components of [� f ] with respect to X (and any decomposition
as in (2.3)).

Proof Write X X × Y
pX�� pY �� Y for the projections and, abusively,� f :

X → X × Y for both the graph immersion and its image. Write p∗ : Y →
Spec(C) for the projection to a point. Then (pX )∗ exists since Y is proper, and

f ∗d = (pX )∗(� f )∗�∗
f p

∗
Y d = (pX )∗([� f ] ∪ p∗

Y d)

=
∑

i

(pX )∗
[
(p∗

X xi ∪ p∗
Y yi ) ∪ p∗

Y d
]

=
∑

i

xi ∪ p∗(yi ∪ d).

This proves the claim. �


2.3 Resolution of a graph

Again suppose that f : X → Y is a morphism from a smooth variety to an
irreducible projective variety,with graph� ⊂ X×Y .We assume f (X) ⊂ Y sm,
the smooth locus of Y . We consider the situation in which f ∗ : H∗(Y ) →
H∗(X) is surjective.

2 This is true when one of X , Y is a Nakajima quiver variety: Nakajima proves that the coho-
mology of a quiver variety is free abelian.
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166 K. McGerty, T. Nevins

Example 2.2 If HBM∗ (X, Z) ∼= H∗(X, Z) is generated by algebraic cycles and
X → Y is an open immersion, then H∗(Y, Z) → H∗(X, Z) is surjective.

Remark 2.3 For a Nakajima quiver variety M, H∗(M, Z) is generated by
algebraic cycles by Theorem 7.3.5 of [19].

Continuing with the above situation, let Ỹ be a resolution of singularities;
since f (X) does not intersect the singular locus of Y , f lifts canonically to a
morphism f̃ : X → Ỹ and the preimage of � f in X × Ỹ is � f̃ .

Proposition 2.4 Suppose that

R :
⊕

j

E−1
j � F−1

j −→
⊕

j

E0
j � F0

j −→
⊕

j

E1
j � F1

j (2.4)

is a complex of vector bundles on X × Y with the following properties.

(1) H1(R) = 0,H−1(R) = 0, andH := H0(R) is a vector bundle on X ×Y .
(2) rk(H) = d := dim(Y ).
(3) s ∈ H0(X×Y,H) is a sectionwith scheme-theoretic zero locus Z(s) = �.

Letting Ỹ → Y be a resolution of singularities, write

R̃ :
⊕

j

E−1
j � F̃−1

j −→
⊕

j

E0
j � F̃0

j −→
⊕

j

E1
j � F̃1

j

for the pullback of R to X × Ỹ and H̃ = H0(R̃). Then:

(i) cd(H̃) = [� f̃ ] in X × Ỹ .

(ii) The Chern classes of H̃ are polynomials, with integer coefficients, in the
Chern classes of the bundles E�

j and F̃�
j .

(iii) The image of the map H∗(Ỹ , Z) → H∗(X, Z) is contained in the span
of the Chern classes of the bundles E�

j .

Proof (i) It is standard that if the zero locus of a section of a vector bundle
H̃ of rank d has codimension d—in which case it is a local complete
intersection subscheme—then its fundamental class equals cd(H̃).

(ii) By the additivity of Chern classes, we have

c(H̃) =
∏

j

c(E0
j � F̃0

j )
∏

j

c(E−1
j � F̃−1

j )−1
∏

j

c(E1
j � F̃1

j )
−1.

The inverses of the total Chern classes are the total Segre classes, which
are known to be polynomials, with integer coefficients, in the Chern
classes: see Chapter 5 of [8]. Moreover, the Chern classes of E�

j � F̃�
j
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Kirwan surjectivity for quiver varieties 167

are also polynomials (with integer coefficients) in the Chern classes of
E�
j and F̃�

j : see Example 14.5.2 of [8].3

(iii) By parts (i) and (ii), the class [� f̃ ] has a Künneth decomposition (2.3)
whose left-hand components are integer polynomials in theChern classes
of the bundles E�

j . Assertion (iii) is now immediate from Proposition 2.1.
�


Corollary 2.5 Suppose that M is a smooth Nakajima quiver variety and
M ↪→ M is an open immersion in a projective variety. If the graph �

of the immersion can be written as the zero locus Z(s) of a section s ∈
H0(M × M,H) of a vector bundle H as in Proposition 2.4, then H∗(M, Z)

is generated by the Chern classes of the bundles E�
j .

Proof As explained above, H∗(M, Z) is known to be generated by algebraic
cycles; hence (cf. Proposition 1.8 of [8]) for any projective compactification
M the restriction map H∗(M, Z) → H∗(M, Z) is surjective. The assertion
is now immediate from Proposition 2.4. �


3 Quiver varieties

3.1 Basics of quivers

Let (I, E) be an undirected graph with with vertex set I and edge set E .
Following Nakajima [18,19], we let H denote the set of pairs of an edge with
an orientation; thus H comes with source and target maps s, t : H → I .
Given h ∈ H , we let h denote the same edge with opposite orientation, so
s(h) = t (h) and t (h) = s(h).

Next, fix a preferred orientation for each edge: in other words, fix a decom-
position H = � 
 � where � = {h | h ∈ �}. We let Q = (I, �) denote
the quiver, i.e., the finite directed graph, with vertices I and arrows �; then
Qdbl = (I, H) is the associated doubled quiver. We define a function

ε : H −→ {±1} by ε(h) =
{
1 if h ∈ �,

−1 if h ∈ �.
(3.1)

3 This is, however, abstractly clear: the Chern classes are pulled back along the composite

X × Ỹ → BGL(rk(E�
j ))× BGL(rk(F̃�

j ))
⊗−→ BGL

(
rk(E�

j ) · rk(F̃�
j )

)
, hence are polynomials

in the cohomology classes generating H∗(
BGL(rk(E�

j )) × BGL(rk(F̃�
j ))

)
.
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168 K. McGerty, T. Nevins

The preprojective algebra is the quotient�0(Q) = kQdbl/
( ∑

h∈H ε(h)hh
)
of

the path algebra kQdbl of the doubled quiver. The relation
∑

h∈H ε(h)hh = 0
is the preprojective relation.

If V• is an I -graded vector space, then Rep(Q, V•) = ⊕
h∈� Hom(Vs(h),

Vt (h)). When v ∈ Z
I≥0 and Vi = C

vi for all i ∈ I , we write Rep(Q, v) =
Rep(Q, V•).

Let v = (vi )i∈I ,w = (wi )i∈I be dimension vectors, and Vi ,Wi (i ∈ I )
be complex vector spaces with dim(Vi ) = vi , dim(Wi ) = wi ; here Wi are
the framing vector spaces. Given pairs v1,w1 and v2,w2 and vector spaces
V j
i ,W j

i ( j = 1, 2) as above, let

L(V 1, V 2) =
⊕

i∈I
Hom(V 1

i , V 2
i ), E(V 1, V 2) =

⊕

h∈H
Hom(V 1

s(h), V
2
t (h)).

One has obvious “compositions” of L(V 1, V 2) with L(V 2, V 3), L(V 3, V 1),
E(V 2, V 3), and E(V 3, V 1).
On p. 520 of [18], Nakajima defines a bilinear map

E(V 2, V 3) × E(V 1, V 2) → L(V 1, V 3), by

(C, B) �→ CB =
⎛

⎝
∑

t (h)=k

Ch Bh

⎞

⎠

k

∈ L(V 1, V 3). (3.2)

We note that, for any (C, B), we have

(εC)B + C(εB) = 0. (3.3)

Now, fixing v,w and collections of vector spaces (Vi ), (Wi ) as above, let

M = M(v,w) = E(V, V ) ⊕ L(W, V ) ⊕ L(V,W ).

We write [B, i, j] for an element of M. The group

G = G(v) =
∏

i

GL(Vi ) ∼=
∏

i

GLvi

acts linearly on M in the obvious way. There is a canonical moment map
μ : M −→ Lie(G)∗, coming from the identification of M as a cotangent
bundle to a linear space, defined by:

μ(B, i, j) = εBB + i j ∈ L(V, V ) ∼= Lie(G)∗.
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Kirwan surjectivity for quiver varieties 169

3.2 Crawley-Boevey’s construction

Suppose Q = (I, �) is a quiver with dimension vectors v,w as above. To
such data, Crawley-Boevey associates [4, Section 1] a new quiver, that we will
denote by QCB. It has vertex set ICB = I ∪ {∞}, and oriented arrows

�CB = � ∪ {
a(i, j) | s(ai, j ) = ∞, t (ai, j ) = i, i ∈ I, j ∈ {1, . . . ,wi }

}
.

In other words, we add wi -many arrows from ∞ to i . Let α ∈ Z
ICB≥0 be

the dimension vector for QCB that equals vi at i ∈ I and 1 at the vertex ∞.
Then M(v,w) = T ∗ Rep(QCB, α). Also the natural homomorphism G →
G(α) := ∏

i∈ICB GL(αi )/Gm (whereGm is the diagonalmultiplicative group)
is an isomorphism,making the identification ofM(v,w)with T ∗ Rep(QCB, α)

equivariant. It is immediate that the two canonical moment maps coincide.

3.3 Semistability and stability for quiver representations

Fix a quiver Q = (I, �) with dimension vector α. Let G = ∏
i GL(αi )

denote the group determined by Q. We write β ≤ α for a dimension vector β

if βi ≤ αi for all i ∈ I , and β < α if β ≤ α and β �= α.
Following [14], given a character χ : G → Gm , write

χ
(
(gi )i∈I

) =
∏

i∈I
det(gi )

θi and θ = (θi )i∈I ∈ Z
I .

Given an I -graded vector space (Mi )i∈I , we define δi (M) = dim(Mi ), and
thus abusively write

θ : K 0(kQ -mod) → Z, θ =
∑

i

θiδi so that θ(M) =
∑

i

θi dim(Mi ).

Associated to χ one gets a corresponding notion of GIT semistability as in
[14]. In particular, by Proposition 3.1 of [14], if V is a representation of Q for
which θ(V ) = 0, then V is χ -semistable, respectively stable, if and only if for
every nonzero proper subrepresentation M ⊂ V , we have

θ(M) ≥ 0, respectively θ(M) > 0.

Definition 3.1 Wewill call the semistability condition θ a nondegenerate sta-
bility (with respect to α) if, for every nonzero dimension vector β < α we
have θ(β) �= 0.
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170 K. McGerty, T. Nevins

Remark 3.2 If θ is a nondegenerate stability condition, then semistability and
stability coincide. The converse is treated in [18, Theorem 2.8].

Now suppose that Q0 = (I0, �0) is a quiver with dimension vector v and
framing vector w and that Q = QCB

0 = (I, �) is the associated Crawley-
Boevey quiver, with dimension vector α so that α∞ = 1 and α|I0 = v. Write
G0 = ∏

i∈I0 GL(vi ) and G = ∏
i GL(αi ), so that G = G0 × Gm . Given any

character χ0 : G0 → Gm , χ0(gi ) = ∏
i∈I0 det(gi )

θi , let δ : Gm → G0 be the
diagonal Gm and write χ0(δ(z)) = zd . We get a character χ : G → Gm by
χ(g, z) = χ0(g)z−d ; we slightly abusively write θ = ∑

i∈I0(θ0)iδi − dδ∞.
Then χ is trivial on the diagonal Gm in G0 × Gm , and thus χ factors through
a character of G(α) := G/Gm , which obviously agrees with χ0 under the
isomorphism G0 → G(α).

Recalling the moment map

μ : M(v,w) → Lie(G0)
∗

above, the Nakajima quiver variety associated to dimension vector v and fram-
ing vector w is

M = Mθ (v,w) := μ−1(0)//χ0G0.

When θ is understood, we suppress the subscript θ in the rest of the
paper. Crawley-Boevey [4, p. 261] shows that M(v,w) ∼= T ∗ Rep(Q, α),
intertwining the G0 and G-actions, and identifying χ0-(semi)stability with χ -
(semi)stability. Thus we may take the Hamiltonian reduction of T ∗ Rep(Q, α)

with respect to G(α), using the stability condition determined by χ or equiv-
alently θ , and obtainM as the GIT quotient.

The quiver variety M comes equipped, by its construction, with a map
M → BG where BG is the classifying space of the group G. The induced
homomorphism H∗(BG(α)) = H∗

G(α)(pt) → H∗(M) is the Kirwan map
appearing in Theorem 1.2.

3.4 Symmetries ofM

As noted in the introduction, it is common (in enumerative geometry and in
quantum field-theoretic contexts) to study equivariant cohomology ofM with
respect to a “flavor symmetry” group.

We review a standard construction of such a group acting on M. Fix the
quiver Q = QCB

0 and a dimension vector α with α∞ = 1. First, sup-
posing i, j are distinct vertices of Q, we note that T ∗ Hom(Cαi , C

α j ) ∼=
Hom(Cαi , C

α j ) × Hom(Cα j , C
αi ) is GL(α j ) × GL(αi )-equivariantly and

symplectically isomorphic to T ∗ Hom(Cα j , C
αi ) via
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Kirwan surjectivity for quiver varieties 171

Hom(Cαi , C
α j ) × Hom(Cα j , C

αi ) � (X, Y ) �→ (−Y, X)

∈ Hom(Cα j , C
αi ) × Hom(Cαi , C

α j ).

Thus, without loss of generality we will replace Q by a quiver in which, for
every pair of distinct vertices i, j , all arrows between i and j are oriented in
the same direction.

For distinct i, j , write ni j for the number of arrows of Q between i and j , and
write ni for the number of loops at the vertex i . Then we have a G-equivariant
and symplectic identification

M(v,w) ∼=
⎛

⎝
∏

∃(i→ j)

T ∗ Hom(Cαi , C
α j ) ⊗ C

ni j

⎞

⎠×
(

∏

i

End(Cαi ) ⊗ C
2ni

)

.

(3.4)
Here the first product ranges over those pairs (i, j) of distinct vertices for

which there exists an arrow in Q from i to j . Letting

K =
⎛

⎝
∏

i �= j

GL(ni j )

⎞

⎠ ×
(

∏

i

Sp(ni )

)

,

we see immediately from (3.4) that K acts by G-equivariant symplecto-
morphisms on M(v,w), and thus acts on the quiver variety M. Because K

commutes with G, its action automatically lifts to an equivariant structure on
every tautological bundle, and we obtain:

Theorem 3.3 The Kirwan map H∗
G×K

(pt) → H∗
K
(M) is surjective.

The full symplectomorphism group of M is in general larger than K. For
example, it is known (cf. [12] and the discussion in [13]) that the “affine
Cremona group” of automorphisms of A

2 is generated by GL(2) and the
subgroup B of automorphisms of the form (x, y) �→ (x + f (y), y) for poly-
nomials f (y); the group Aut(A2) also acts on the Hilbert scheme (A2)[n] and
the moduli spaces of higher-rank framed sheaves, both of which appear as
quiver varieties associated to the (framed) Jordan quiver, and the subgroup
Sympl(A2) generated by SL(2) and B acts by symplectomorphisms. More
generally, there is a product of groups of “tame automorphisms” (a review of
the terminology, some relevant literature, and illuminating results can be found
in [21]) of the auxiliary spaces C

ni j , C
2ni that can be seen to act on M(v,w)

compatibly with G.
In light of the previous paragraph, it is perhaps natural to restrict attention

to the group AutGm (M) of those automorphisms (or SymplGm
(M) of those

symplectomorphisms) that are compatible with a suitable conical Gm-action
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172 K. McGerty, T. Nevins

onM. This reduces Aut(A2) toGL(2), or Sympl(A2) to SL(2) for symplecto-
morphisms, i.e., to the group K for (A2)[n]; in general, we are unsure whether
this group is reductive, and one may want to restrict attention further to a
“reductive part” of AutGm (M) or SymplGm

(M).
Finally, we note that one knows that automorphisms of a quiver can induce

finite groups of automorphisms of associated quiver varieties: for example,

minimal resolutions Ã2/μr of type A Kleinian singularities (for r ≥ 3) admit

Z/2 symmetries that act nontrivially on H2(Ã2/μr ); the nontriviality of the
action on cohomology shows that such a Z/2-action cannot be the restriction

of the action on Ã2/μr of any connected group. We do not know how close
K → SymplGm

(M)◦ is to being surjective in general.

3.5 Tautological bundles and Nakajima’s section

We continue with a quiver Q = (I, �). Let V 1 and V 2 be I -graded vector
spaces of dimension v, and W an I -graded vector space of dimension w. One
defines functors from G-representations, respectively G × G-representations,
to G-equivariant vector bundles on a G-variety Z , respectively to G × G-
equivariant vector bundles on a G × G-variety, by R �→ R := O ⊗C R.

In particular, each V j
i defines a G-equivariant vector bundle V

j
i on M,

and the G×G-representations L(V 1, V 2), E(V 1, V 2), L(W, V 2), L(V 1,W )

define G × G-equivariant vector bundles

L (V 1, V 2), E (V 1, V 2), L (W, V 2), L (V 1,W )

on M × M (where G × G acts on V 1 via the first factor and on V 2 via the
second factor).

Remark 3.4 In the language of stacks, these bundles are pullbacks along
M/G × M/G → BG × BG.

Nakajima defines G × G-equivariant homomorphisms,

L (V 1, V 2)
σ �� E (V 1, V 2) ⊕ L (W, V 2) ⊕ L (V 1,W )

τ �� L (V 1, V 2),

(3.5)

where at a point ([B, i, j], [B ′, i ′, j ′]) ∈ M × M the maps σ , τ are given by

σ(ξ) = (B ′ξ − ξ B, −ξ i, j ′ξ), τ (C, a, b) = εB ′C + εCB + i ′b + aj. (3.6)

Fix a nondegenerate stability condition θ as in Sect. 3.3 and write M
s for

the GIT stable locus of M with respect to θ and μ−1(0)s = μ−1(0) ∩ M
s.
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Proposition 3.5 Suppose [B, i, j], [B ′, i ′, j ′] ∈ M.

(1) If [B ′, i ′, j ′] ∈ M
s thenσ is injective in thefiber over

([B, i, j], [B ′, i ′, j ′]).
(2) If [B, i, j] ∈ M

s then τ is surjective in thefiber over
([B, i, j], [B ′, i ′, j ′]).

(3) τ ◦ σ = 0 in the fiber over
([B, i, j], [B ′, i ′, j ′]) ∈ μ−1(0) × μ−1(0).

Now define a section s of E (V 1, V 2) ⊕ L (W, V 2) ⊕ L (V 1,W ) by

s([B, i, j], [B ′, i ′, j ′]) = (0, −i ′, j). (3.7)

Proposition 3.6 (1) Over M × M, we have τ(s) = 0.
(2) Viewing s|μ−1(0)×μ−1(0)s as a section of coker(σ ), its vanishing locus

Z(s) in μ−1(0)s × μ−1(0)s is smooth and equals the locus of pairs([B, i, j], [B ′, i ′, j ′]) for which
G · [B, i, j] = G · [B ′, i ′, j ′].

For the proofs of these propositions when the character is the one used in
[18], see [18, p. 537 and Lemma 5.2]. We reprove the assertions in general in
Proposition 5.4 and Theorem 6.2.

We now want to translate the above in terms of the Crawley-Boevey quiver
QCB. Consider framed representations [B, i, j], [B ′, i ′, j ′] ∈ μ−1(0)s ×
μ−1(0)s, acting on the vector spaces (V 1,W ) and (V 2,W ) (both with associ-
ated dimensionsv,w).Wewrite BCB, (B ′)CB for the associated representations
of the preprojective algebra �0(QCB), and (V �)CB for their underlying vector
spaces. Thus, one has

(V �)CBj =
{
V �
i if j = i ∈ I ;

C if j = ∞.

Now

L
(
(V 1)CB, (V 2)CB

) = L(V 1, V 2) ⊕ Hom(C, C), (3.8)

E((V 1)CB, (V 2)CB) = E(V 1, V 2) ⊕ L(W, V 2) ⊕ L(V 1,W ). (3.9)

The following is immediate from (3.8), (3.9), and Proposition 3.6:

Proposition 3.7 (1) Under the identifications of (3.8), (3.9), the map

L
(
(V 1)CB, (V 2)CB

) = L(V 1, V 2) ⊕ C
σ⊕s−−→ E(V 1, V 2)

⊕ L(W, V 2) ⊕ L(V 1,W )

= E((V 1)CB, (V 2)CB)
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is identified with the map

∂0 : L(
(V 1)CB, (V 2)CB

) −→ E((V 1)CB, (V 2)CB)

defined by ∂0(φ) = (B ′)CBφ − φBCB.
(2) Thus, for the dual map

∂∨
0 : E ((V 1)CB, (V 2)CB) −→ L

(
(V 1)CB, (V 2)CB

)

we have that coker(∂∨
0 ) is the direct image to μ−1(0)s ×μ−1(0)s of a line

bundle on the smooth subvariety of part (2) of Proposition 3.6.

4 Graded tripled quivers and their moduli spaces

The present section is intended to provide a compactification of the moduli
space of representations of the preprojective algebra �0(Q) associated to a
quiver Q. For applications to Nakajima quiver varieties associated to a quiver
Q0, set Q = QCB

0 , the Crawley-Boevey quiver associated to Q0.

4.1 Graded tripling of a quiver

Let (I, E) be a graph, α ∈ Z
I≥0 a dimension vector for I . Fix an orientation

� defining a quiver Q = (I, �) as in Sect. 3.1. Fixing a closed interval
[a, b] ⊂ Z, we define a new quiver associated to (I, �), the graded-tripled
quiver, denoted Qgtr, as follows. We give Qgtr the vertex set I × [a, b] where
I is the vertex set of Q. If E is the edge set of Q and H the associated set of
pairs of an edge together with an orientation, we give Qgtr the arrow set

(
H × [a, b − 1]) ∪ (

I × [a, b − 1]).

Thus:

(1) for each h ∈ H , n ∈ [a, b − 1] we have arrows (h, n) with

s(h, n) = (s(h), n) and t (h, n) = (t (h), n + 1);

(2) for each i ∈ I , n ∈ [a, b − 1] we have arrows (i, n) with

s(i, n) = (i, n) and t (i, n) = (i, n + 1).
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For example, taking [a, b] = [0, 1]:

•
i1

h �� •
i2

k
��

��������

(i1,1)• (i2,1)•

•
(i1,0)

(h,0)

�������������������������

(i1,0)

��

•
(i2,0)

(i2,0)

��

(k,0)

��

(k,0)

��

�
�
�

�
�
	



(h,0)

		�
�
�
�
�
�
�
�
�
�
�
�

Remark 4.1 Letting b → ∞, the constructions extendmutatis mutandis to the
case [a, ∞) ⊂ Z.

Given a dimension vector α for Q, we define a “constant dimension vector”
αgtr for Qgtr by α

gtr
i,n = αi for all i ∈ I, n ∈ [a, b].

4.2 Relations and representations

We will consider Qgtr as a quiver with relations. Many of the relations are
derived from those for the preprojective algebra �0(Q).

Throughout the remainder of the paper,we assumeb−a ≥ 2 in the definition
of Qgtr. We fix a decomposition H = � 
 � as in Sect. 3.1, determining a
function ε.

Notation 4.2 We write:

(1) ah,n for the generators of kQgtr corresponding to arrows (h, n) (where
h ∈ H, n ∈ [a, b − 1]);

(2) ei,n for the generators of kQgtr corresponding to arrows (i, n) (where
i ∈ I, n ∈ [a, b − 1]).

Definition 4.3 We write A := kQgtr/I , where I is the two-sided ideal in the
path algebra kQgtr generated by the following relations:

(1)
∑

h∈H ε(h)ah,n+1ah,n , n ∈ [a, b − 2] (“preprojective relations”).
(2) et (h),n+1ah,n − ah,n+1es(h),n for all n ∈ [a, b − 2], h ∈ H .

We note that it is immediate from condition (2) that the element e := ∑
n en :=∑

n
∑

i∈I ei,n is central in A.

We write Rep(Qgtr, αgtr) for the space of representations of Qgtr with
dimension vector αgtr: thus, fixing an I × [a, b]-graded vector space V•,• =⊕

i∈I,n∈[a,b] Vi,n with dimension vector αgtr, we set

Rep(Qgtr, V•,•) = (⊕
h∈H,n∈[a,b−1] Hom(Vs(h),n, Vt (h),n+1)

)

⊕(⊕
i∈I,n∈[a,b−1] Hom(Vi,n, Vi,n+1)

)
.
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We write Rep(Qgtr, αgtr) when Vi,n = C
α
gtr
i,n . We also write

Rep(A, V•,•) ⊆ Rep(Qgtr, V•,•), respectively Rep(A, αgtr) ⊆ Rep(Qgtr, αgtr)

for the closed affine subscheme of representations of A (that is, representations
of Qgtr satisfying the relations generating I ).Wewill writeG = ∏

i∈I GL(αi )

for the group associated to Q and dimension vector α; then G
gtr ∼= G × [a, b]

naturally acts on the affine schemes Rep(A, αgtr) ⊆ Rep(Qgtr, αgtr).

Remark 4.4 We note that this choice of notation is not entirely consistent
with our earlier notation in the context of Nakajima quiver varieties. When
Q = QCB

0 is the Crawley-Boevey quiver associated to Q0, we will write
G0 = ∏

i∈I0 GL(αi ).

Consider �0 = �0(Q) as a graded algebra (with all generators corre-
sponding to arrows h ∈ H in degree 1). Let �0[e] be the graded polynomial
extension with deg(e) = 1.

Lemma 4.5 Suppose V•,• is an I×[a, b]-graded vector space. Letting h ∈ �0

act via
∑

n ah,n ∈ Rep(Qgtr, V•,•) and e act via
∑

i,n ei,n ∈ Rep(Qgtr, V•,•),
the space of graded �0[e]-module structures on V•,• is naturally identified
with Rep(A, V•,•).

4.3 From �0-modules to Qgtr-representations

Suppose we have a finite-dimensional representation V = (Vi )i∈I of the pre-
projective algebra �0 of dimension vector α.

Construction 4.6 We obtain a representation of A on a vector space V•,• of
dimension vector αgtr defined by:

(1) setting Vi,n := Vi for all n ∈ [a, b];
(2) defining each ei,n : Vi,n = Vi

id−→ Vi = Vi,n+1 to act by shift ofZ-grading;
and

(3) defining each generator of A corresponding to h ∈ H to act via �0

followed by grading shift.

The construction determines a morphism of algebraic varieties (“induc-
tion”)

Ind◦ : Rep(�0, V ) −→ Rep(A, V•,•).

Write G=
∏

i

GL(Vi ) andG
gtr =

∏

(i,n)∈I×[a,b]
GL(Vi,n) ∼=

∏

n∈[a,b]
G as above,
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with the diagonal homomorphism diag : G → G
gtr ∼= ∏

n∈[a,b] G. Then the
morphism Ind◦ is (G, G

gtr)-equivariant.We thus get a naturalGgtr-equivariant
morphism

Ind : G
gtr ×G Rep(�0, V ) −→ Rep(A, V•,•). (4.1)

Thus, given a representation (ah : Vs(h) → Vt (h))h∈H of �0 on V , and
(gi,n) ∈ G

gtr, we have

Ind
(
(gi,n), ah

) = (ah,n, ei,n)where ah,n = gt (h),n+1ahg
−1
s(h),n and

ei,n = gi,n+1g
−1
i,n .

Proposition 4.7 The map Ind of (4.1) defines an open immersion of G
gtr ×G

Rep(�0, V ) in Rep(A, V•,•), whose image consists of those (ah,n, ei,n) for
which:

ei,n is an isomorphism for all n ∈ [a, b − 1]. (4.2)

Proof The condition (4.2) is clearly an open condition. Given (ah,n, ei,n) sat-
isfying (4.2), define

ah := e−1
t (h),aah,a, gi,a := Idi , gi,n := ei,n−1ei,n−2 . . . ei,a for n ≥ a + 1.

Inductively applying the identity et (h),a+1ah,a = ah,a+1es(h),a , one calcu-
lates that (gi,n) · Ind◦(ah) = (ah,n, ei,n). This construction (ah,n, ei,n) �→
((gi,n), ah) ∈ G

gtr ×G Rep(�0, V ) is evidently inverse to Ind on the locus of
those (ah,n, ei,n) that satisfy the condition (4.2). �

Corollary 4.8 The morphism of quotient stacks

Ind◦ : Rep(�0, V )/G −→ Rep(A, V•,•)/G
gtr

is an open immersion.

Remark 4.9 We note that if V•,• lies in the open image of Ind, then it uniquely
determines an I × Z-graded �0[e]-module Ṽ•,• with Ṽi,n = αi for all n ∈ Z

and i ∈ I . In other words, V•,• uniquely extends “upwards and downwards”
to all graded degrees compatibly with the �0[e]-action.

4.4 Stability for Crawley-Boevey quivers

Suppose that Q0 = (I0, �0) is a quiver with dimension vector v and framing
vectorw and thatQ = QCB

0 = (I, �) is the associatedCrawley-Boeveyquiver,
with dimension vector α so that α∞ = 1 and α|I0 = v. We fix [a, b] ⊂ Z and
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let Qgtr denote the quiver constructed above from Q. We write αgtr for the
associated dimension vector: thus,

α
gtr
i,n = αi =

{
vi i ∈ I0
1 i = ∞.

Assume given a nondegenerate stability condition θ = ∑
θiδi for Q with

respect to α.

Remark 4.10 In particular, we have θ∞ �= 0.

We want to choose a stability condition θgtr for Qgtr with the following
properties:

(1) θgtr is nondegenerate with respect to αgtr. In particular, the semistable and
stable points of Rep(Qgtr, αgtr) coincide.

(2) If V is a representation associated to a representation of the preprojective
algebra �0(Q), then V is θgtr-stable if and only if the corresponding
�0(Q)-representation is θ -stable.

We first remind the reader that δi,n(M) := dim(Mi,n); we will write θ as
a linear combination of the δi,n . Also, we note that it suffices to construct
a rational linear functional θgtr, since any positive integer multiple of θgtr

evidently defines the same stable and semistable loci.
In our construction of θgtr, we will want to fix a positive integer

T � 0. (4.3)

We fix an ordering on the vertices of Q0, identifying I = {1, . . . , r}. We write
θgtr as a sum of terms:

θ lg = T r+1[δ∞,b − δ∞,a
] +

r∑

i=1

T i [δi,b − δi,a
]
, θmid =

∑

i∈I
θiδi,a

and θ sm = −
r∑

i=1

T−iδi,a + T−r−1
∑

(i,n)∈I×(a,b)

δi,n.

Finally, we write C := θ lg(αgtr) + θmid(αgtr) + θ sm(αgtr) and write

θgtr := θ lg + θmid + θ sm − Cδ∞,a.

We note that θ lg(αgtr) = 0, so C is bounded independent of T . Also, since
δ∞,a(α

gtr) = 1, we get θgtr(αgtr) = 0.

Lemma 4.11 For fixed dimension vector α (and thus αgtr) and choices as in
(4.3),

θgtr(M) �= 0 for 0 � M � V .
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Proof Assume that θgtr(M) = 0. Write mi,n := δi,n(M) = dim(Mi,n). Since
the coefficients of T in θgtr are bounded independent of T , we conclude that
each T -coefficient of θgtr(M) must vanish. In particular, θ lg(M) = 0 and thus
mi,b = mi,a for all i ∈ I .

Since m∞,a ∈ {0, 1}, we consider the two cases:
Case 1 m∞,a = m∞,b = 0. In this case 0 = θgtr(M) = θmid(M) + θ sm(M),

and again for T � 0 each coefficient of T must vanish. From
θ sm(M) = 0 we get mi,a = 0 for all i ∈ I0, and

∑
(i,n)∈I×(a,b) mi,n =

0 implyingmi,n = 0 for (i, n) ∈ I×(a, b). Combinedwith the equality
mi,b = mi,a for all i ∈ I from above, we conclude M = 0.

Case 2 m∞,a = m∞,b = 1. Then

0 = θgtr(M) = θmid(M) + θ sm(M) − [
θmid(αgtr) + θ sm(αgtr)].

Again, considering term-by-term in powers of T , we find that mi,a = αi,a

for i ∈ I0; and then
∑

(i,n)∈I×(a,b) mi,n = ∑
(i,n)∈I×(a,b) α

gtr
i,n implying (since

mi,n ≤ α
gtr
i,n) that mi,n = α

gtr
i,n for (i, n) ∈ I × (a, b). Combined with the

equality mi,b = mi,a for all i ∈ I , we conclude that mi,n = α
gtr
i,n for all

(i, n) ∈ I × [a, b], i.e. M = V . �

Proposition 4.12 With respect to θgtr as above, we have:

(1) The semistable and stable loci of Rep(Qgtr, αgtr) coincide, as do those of
Rep(A, αgtr).

(2) Every stable point of Rep(Qgtr, αgtr) is generated as a kQgtr-module in
degree a.

(3) If V•,•, W•,• are vector spaces with dimension vector αgtr, equipped with
A-module structures making them stable, then HomA(V•,•,W•,•) is 1-
dimensional if V•,• and W•,• are isomorphic as A-modules and is 0-
dimensional otherwise.

(4) For a representation V of �0 of dimension vector α, V is stable with
respect to θ if and only if Ind◦(V ) ∈ Rep(A, αgtr) is stable with respect
to θgtr.

Proof (1) This is the content of Lemma 4.11.
(2) Supposing V is stable, letM be the subrepresentation generated by VI×{a}.

Arguing as in the proof of Lemma 4.11, we have that θ lg(M) < 0, and
therefore V is unstable, unlessmi,b = mi,a for all i ∈ I . We conclude that
mi,b = mi,a for all i ∈ I and hence that

θgtr(M) = θmid(M) + θ sm(M) − [
θmid(αgtr) + θ sm(αgtr)].

Noting that θmid(M) = θmid(V ) by definition and analyzing θ sm(M) −
θ sm(V ) term-by-term in powers of T , we find that θgtr(M) < 0 unless
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mi,n = α
gtr
i,n for all (i, n) ∈ I × (a, b), and thus stability of V implies

M = V .
(3) is standard.
(4) Consider a representation V of �0(Q). As before, we write αgtr for the

dimension vector of Ind◦(V ) where V has dimension vector α. For any
sub-representation M ⊆ Ind◦(V ), write mi,n = dim(Mi,n).

Because ei,n : Ind◦(V )i,n → Ind◦(V )i,n+1 is an isomorphism for each
n ∈ [a, b − 1], we have, for any sub-representation M , that mi,n+1 ≥ mi,n
for all (i, n) ∈ I × [a, b − 1]. Analyzing θgtr(M) term-by-term in powers of
T , we conclude that θgtr(M) > 0, and thus M is irrelevant to the stability of
Ind◦(V ), unless mi,b = mi,a for all i ∈ I , i.e., unless M = Ind◦(V ′) for some
�0(Q)-submodule V ′ ⊆ V .

Thus, suppose M = Ind◦(V ′) for some �0(Q)-submodule V ′ ⊆ V . Write
α′ for the dimension vector of V ′. Then θgtr(M) = θ(α′)+θ sm(M)− [

θ(α)+
θ sm(αgtr)]α′∞.

Case 1 α′∞ = 0.
In this case, θgtr(M) = θ(α′)+θ sm(M). If θ(α′) < 0, soV ′ destablizes
V , then we see that θgtr(M) < 0, so M destabilizes Ind◦(V ). On the
other hand if θ(α′) > 0 then θgtr(M) > 0 as well. Thus in this case,
V ′ destabilizes V if and only if Ind◦(V ′) destabilizes Ind◦(V ).

Case 2 α′∞ = 1.
Then, as in Case 2 of Lemma 4.11,

θgtr(M) = θmid(M) + θ sm(M) − [
θmid(αgtr) + θ sm(αgtr)].

The leading term in T is θmid(M) − θmid(αgtr) = θ(α′). Thus θgtr(M) < 0
if and only if θ(α′) < 0, and so V ′ destabilizes V if and only if Ind◦(V ′)
destabilizes Ind◦(V ). This completes the proof. �


As in [14, Proposition 4.3], since Qgtr has no oriented cycles we obtain a
projective quotient

M := Rep(A, αgtr)//χgtrG
gtr.

Corollary 4.13 The natural map Ind : M → M is an open immersion of the
quiver varietyM in a projective scheme.

Remark 4.14 Although we expect that for sufficiently large interval [a, b] and
sufficiently generic θgtr the compactificationM is nonsingular and connected,
we do not need this. Instead, we may replace M by the closure of M in M
and give that closure the reduced scheme structure. Thus, in what follows we
always assume without comment that M is integral and projective.
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5 A perfect complex on M×M

We note that the construction in this section is similar to the one in Section
5 of [18]. However, we wish to emphasize that Nakajima’s framings are not
explicitly present in this section: for applications to Nakajima quiver varieties
with nonzero framing, one should take Q = (Q0)

CB to be the Crawley-Boevey
quiver associated to the quiver Q0 used in Nakajima’s constructions.

Fix a quiver Q and a dimension vector α. Let V•,•, W•,• be two I × [a, b]-
graded vector spaces with dimension vector αgtr.

Remark 5.1 We again emphasize that V•,•, W•,• will be endowed with the
structure of representations of Qgtr satisfying the relations of A. Our choice
of notation for the space W•,• is not meant to indicate any relationship to
Nakajima’s framing vector space (Wi )i∈I .

Convention 5.2 Wenowfix an N ≥ 2 and set [a, b] = [0, N ] in the definitions
of Qgtr, αgtr, A.

Suppose that we choose representations of A in V•,•,W•,•; we write
(aV , eV ) = (aVh,n, e

V
i,n), respectively (aW , eW ) = (aWh,n, e

W
i,n) to denote these

two structures. We also write

aVn =
∑

h∈H
aVh,n and eVn =

∑

i∈I
eVi,n, and similarly for W .

In terms of the sign function (3.1) and the pairing (3.2), the preprojective
relations become

(εaVn+1)a
V
n = 0 = aVn+1(εa

V
n ). (5.1)

Assumption 5.3 We assume that the representation V•,• lies in the image of
Ind: in other words, the linear operators eVi,n are invertible for n ∈ [0, N − 1].

Consider the vector spaces and maps, graded so E(V•,0,W•,1) lies in coho-
mological degree 0,

L(V•,0,W•,0)
∂0−→ E(V•,0,W•,1)

∂1−→ L(V•,0,W•,2), (5.2)

defined as follows: given φ ∈ L(V•,0,W•,0) and ψ ∈ E(V•,0,W•,1), we let

∂0(φ) = aW0 φ − eW0 ◦ φ ◦ (eV0 )−1aV0 ,

∂1(ψ) = (εaW1 )ψ − eW1 ◦ ψ ◦ (eV0 )−1(εaV0 ). (5.3)

Proposition 5.4 (1) The kernel of ∂0 is naturally identified with a subspace
of HomA(V•,•,W•,•).
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(2) The composite ∂1 ◦ ∂0 is zero.
(3) If [a, b] = [0, 2], the cokernel of ∂1 is naturally identified with

HomA(W•,•, V•,•)∗.

We note that for assertion (3), we use in a fundamental way that Remark 4.9
applies to V•,•.

Proof If ∂0(φ) = 0, then we may define a linear map �• : V•,• → W•,•
by �n = eWn−1 . . . eW0 ◦ φ ◦ (eVn−1 . . . eV0 )−1. It is immediate from the con-
struction that �• is compatible with the operators en in the obvious sense.
Similarly, since ∂0(φ) = 0 we get that aW0 �0 = �1aV0 ; it is immediate by
induction that�• is compatible with all operators a in the obvious sense. Thus
�• ∈ HomA(V•,•,W•,•). Since e ∈ A acts invertibly on V•,• in the appro-
priate range, any such �• is determined uniquely by �0 = φ by the above
construction, proving assertion (1).

For assertion (2), we calculate:

∂1∂0(φ) = (εaW1 )aW0 φ − (εaW1 )eW0 φ(eV0 )−1aV0
− eW1 aW0 φ(eV0 )−1(εaV0 ) + eW1 eW0 φ(eV0 )−1aV0 (eV0 )−1(εaV0 ). (5.4)

Now

−(εaW1 )eW0 φ(eV0 )−1aV0 − eW1 aW0 φ(eV0 )−1(εaV0 )

= −eW1 (εaW1 )φ(eV0 )−1aV0 − eW1 aW0 φ(eV0 )−1(εaV0 ),

which vanishes by (3.3). Thus to prove (2) it suffices to show that

(εaW1 )aW0 φ + eW1 eW0 φ(eV0 )−1aV0 (eV0 )−1(εaV0 )

= (εaW1 )aW0 φ + eW1 eW0 φ(eV0 )−1(eV1 )−1aV1 (εaV0 ) = 0.

However, (εaW1 )aW0 = 0 = aV1 (εaV0 ) is immediate from the preprojective
relations (5.1).

We now turn to assertion (3). Suppose λ : W 2 → V 0 is an I -graded linear
map. We have that tr

(
λ∂1(ψ)

) = 0 for all ψ ∈ E(V 0,W 1) if and only if

0 = tr
[
λ
(
(εaW1 )ψ − eW1 ◦ ψ ◦ (eV0 )−1(εaV0 )

)]

= tr
[(

λ(εaW1 ) − (eV0 )−1(εaV0 )λeW1
) ◦ ψ

]

for all ψ , if and only if

λ(εaW1 ) − (eV0 )−1(εaV0 )λeW1 = 0. (5.5)
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By the nondegeneracy of the trace pairing, we obtain:

Lemma 5.5 The cokernel of ∂1 is naturally dual to the space of those λ satis-
fying (5.5).

We now use Assumption 5.3 and Remark 4.9 to see that V•,• lifts to an
I ×Z-graded�0[e]-module Ṽ•,• with dim(Vi,n) = αi for all i ∈ I and n ∈ Z,
in such a way that Ṽ•,•+1 ∼= Ṽ•,• via multiplication by e. In particular, we use
λ to define a graded linear map �• : W•,• → V•,• by taking

�2 = eV1 e
V
0 λ, �1 = eV0 λeW1 , �0 = λeW1 eW0 , (5.6)

similarly to our construction of �• above. It is immediate from the definitions
of the �i that

�2e
W
1 = eV1 �1, �1e

W
0 = eV0 �0.

As in our construction of �•, it follows from Equation (5.5) that �• is indeed
a graded A-module homomorphism: it remains only to observe that

�2(εa
W
1 ) = eV1 e

V
0 λ(εaW1 ) = eV1 (εaV0 )λeW1 = εaV0 e

V
0 λeW1 = εaV0 �1,

where the second equality follows from (5.5); and

�1(εa
W
0 ) = eV0 λeW1 (εaW0 ) = eV0 λ(εaW1 )eW0

= eV0 (eV0 )−1(εaV0 )λeW1 eW0 = εaV0 �0,

where the third equality follows from (5.5); and that any graded A-module
homomorphism �• : W•,• → V•,• is uniquely determined by �2 = eV1 e

V
0 λ

by the formulas (5.6), completing the proof. �

Corollary 5.6 When Q is a Crawley-Boevey quiver and [a, b] = [0, 2], then
the complex (5.2) descends to a perfect complex C on M × M.

Proof WhenQ = (Q0)
CB is aCrawley-Boeveyquiver,wehaveG ∼= G0×Gm ,

where G0 = ∏
i∈I0 GL(vi ), Gm acts trivially on the stable locus, and G0

acts freely on the stable locus of Rep(�0(Q), α) with quotient M. Similarly,
G

gtr ∼= (G0)
3 ×G

3
m ; the subgroup (Ggtr)0 = (G0)

3 ×G
2
m ×{1} acts freely on

Rep(A, αgtr)s with quotientM. Since the complex defined by (5.2) is (Ggtr)0×
(Ggtr)0-equivariant, it descends to a perfect complex C onM × M. �


6 Proofs of Theorems 1.2, 1.3, and 1.6

Let Q0 be a quiver with dimension vector v and framing vector w, and let
Q = QCB

0 be the Crawley-Boevey quiver associated to Q0 and w.
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We take [a, b] = [0, 2] in the definitions of Qgtr, etc.
LetM ↪→ M denote the compactification of the quiver variety constructed

in Sect. 4.4. We wish to modify slightly the complex of (5.2) and Corollary
5.6. Thus, we consider the splitting

L(V•,0,W•,0) = L(V•,0,W•,0)I0 ⊕ C

=
⎡

⎣
⊕

i∈I0
Hom(Vi,0,Wi,0)

⎤

⎦ ⊕ Hom(V∞,0,W∞,0).

We write δ0 = ∂0|L(V•,0,W•,0)I0
: L(V•,0,W•,0)I0 → E(V•,0,W•,1).

Similarly, we consider the splitting

L(V•,0,W•,2) = L(V•,0,W•,2)I0 ⊕ C

=
⎡

⎣
⊕

i∈I0
Hom(Vi,0,Wi,2)

⎤

⎦ ⊕ Hom(V∞,0,W∞,2)

and write δ1 = π ◦ ∂1 for the composite of ∂1 followed by the projection

π : L(V•,0,W•,2) � L(V•,0,W•,2)I0 .

It is immediate from Corollary 5.6 that we obtain a complex on M × M,
namely

R : L (V•,0,W•,0)I0
δ0−→ E (V•,0,W•,1)

δ1−→ L (V•,0,W•,2)I0 . (6.1)

Remark 6.1 The complex (6.1) is evidently of the form (2.4).

Theorem 6.2 For the complex R of (6.1), we have:

(1) δ0 is injective and δ1 is surjective on each fiber. In particular, H1(R) =
0 = H1(R∨), and H0(R) is a vector bundle onM × M.

(2) the map C = Hom(V∞,0,W∞,0) → E(V•,0,W•,1) defines a section s of
H0(R) whose scheme-theoretic zero locus is the graph � of the inclusion
M ↪→ M.

(3) rk(R) = dim(M).

Proof (1) By Proposition 5.4, when V•,• and W•,• are stable, ker(∂0) is zero
or consists of multiples of the identity endomorphism of V•,• ∼= W•,•; in
either case, we have ker(∂0) ∩ L(V•,0,W•,0)I0 = 0. Thus δ0 is injective
on each fiber.
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Similarly either coker(∂1) is zero, or else V•,• ∼= W•,• and coker(∂1) ∼=
Hom(W•,•, V•,•)∗ ∼= C by stability of V•,• and W•,•; in the latter case, since
im(∂1) has codimension 1, its projection on L(V•,0,W•,2)I0 must be surjective:
otherwise im(∂1) ∩ Hom(V∞,0,W∞,2) �= 0, but (by stability) every nonzero
element of its dual Hom(W•,•, V•,•) is nonzero at the vertex ∞. We conclude
that δ1 is surjective on each fiber, concluding the proof of assertion (1).

(2) By Proposition 5.4, the cohomologies H1(C) and H1(C∨) are supported
set-theoretically on the graph � of the inclusion M ↪→ M. It follows that
the set-theoretic zero locus of the section s of assertion (2) is �. Thus, to
prove the scheme-theoretic assertion, we may restrict R toM × M.

Supposing, then, that both eVi,n and e
W
i,n act invertibly for n = 0, 1, and applying

appropriate automorphisms of V•,• and W•,•, we may assume that aV = aW

and that all eVi,n and eWi,n are identity matrices. Let C[h̄] denote the ring of

dual numbers and let aV + h̄bV , aW + h̄bW be first-order deformations of
V•,•, W•,•. It is immediate from the formulas (5.3) that the linearization of
the map ∂0 of (5.2) is given by φ �→ bW0 φ − φbV0 . If the linearization is of
less than full rank, then by Proposition 5.4(1) there is a homomorphism 0 �=
φ ∈ Hom(V•,•,W•,•) with bWφ = φbV . Then the map Id+h̄φ intertwines
aV + h̄bV and aW + h̄bW : in other words, the differential of ∂0 is degenerate
only in directions tangent to �, which implies the assertion about s.

(3) The rank assertion is immediate by direct calculation as in [18]. �

Proof of Theorem 1.2 Let d = dim(M). By Theorem 6.2 and Remark 6.1, the
hypotheses of Corollary 2.5 are satisfied. Theorem 1.2 follows. �

Proof of Theorem 1.3 By Theorem 7.3.5 of [19], H∗(M, Z) is known to be
free abelian and concentrated in even degrees. By the universal coefficient
theorem, it follows that for any graded ring E∗(pt), H∗(M, Z) ⊗Z E∗(pt) =
H∗(M, E∗(pt)

)
and H∗(BG, Z) ⊗Z E∗(pt) = H∗(BG, E∗(pt)

)
.

The Atiyah-Hirzebruch spectral sequence for a cohomology theory E and
space X has E2-page E p,q

2 = H p
(
X, Eq(pt)

) �⇒ E p+q(X). By the pre-
vious paragraph, if E∗(pt) is evenly graded the spectral sequence degenerates
at E2 for both E∗(M) and E∗(BG). Assertion (1) of the theorem thus follows
from Theorem 1.2.

To prove (2), we observe that all the ingredients of the proof of Proposition
2.4 hold in any complex-oriented cohomology theory E . In particular, there is a
Gysin map for proper morphisms and one can calculate f ∗ via pull–cup-with-
graph–push; that [�] = cd(R) and Chern classes of R depend polynomially
on the Chern classes of the tautological bundles follow from explicit formulas
as in Lemmas 2.1 and 2.3 of [11]. It remains to see that E∗(M) → E∗(M)

is surjective; however, the natural map M → BG factors through M → BG
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defined via projection of G
gtr on any factor G, and surjectivity of E∗(M) →

E∗(M) follows from that of E∗(BG) → E∗(M). �

Proof of Theorem 1.6 We note that assertion (1) is immediate from assertion
(2).

In light of Remark 6.1, we will use the notation of Proposition 2.4 for the
complex R. The Koszul complex associated to the complex R and section s
ofH = H0(R) of Theorem 6.2 provides a resolution (Section B.3.4 of [8]) of
O� ,

[ d∧
H∗ → · · · →

2∧
H∗ → H∗ → OM×M

]
� O�. (6.2)

For each k, consider the kth tensor power T k(R) of the complex R: it is
a differential graded vector bundle whose terms are tensor products of E�

j s

and F�
j s. The symmetric group Sk naturally acts on T k(R) with the usual

Z/2Z-graded sign conventions; we write
∧k

(R) = T k(R)Sk ,sgn, the sign-
isotypic part of T k(R). Both operations T k(−) and (−)Sk ,sgn preserve quasi-
isomorphism, hence

∧k
(R) � ∧k

(H). The Koszul complex thus writes O�

as an iterated cone on the complexes
∧k

(R)∨.
We remark that, viewing E• := ⊕ jE•

j and F• := ⊕ jF•
j as Z/2-graded

vector bundles, we find that
∧k

(R) is a direct summand of
∧k

(E• � F•)
in a canonical way. Furthermore, following the work of [3]4 it is known that
∧k

(E• � F•) is an iterated extension of tensor products of Schur functors
applied to the Z/2-graded vector bundles E• and F• (see Corollary 1.2 of [6]
and the discussion preceeding it formore details).Moreover, the expression for
∧k

(E•�F•) as an iterated extension ofSλ(E•) andSλ(F•) is compatiblewith
the expression for

∧k
(R) as a direct summand of

∧k
(E• �F•): in particular,

∧k
(R) is an iterated cone on external tensor products of the objects Sλ(E�

j ),

Sλ(F�
j ) that are obtained by applying Schur functors to the various E�

j andF�
j .

Suppose G is a coherent complex on M. For any external tensor product
Sλ(E�

j )
∨ � N , we have

R(pM)∗
(
(Sλ(E�)∨ � N ) ⊗ (pM)∗G) � Sλ(E�

j )
∨ ⊗U •

for some bounded complex U • of finite-dimensional vector spaces. Using
(6.2) and the conclusion of the previous paragraph, we find that G|M lies in
the subcategory of Dcoh(M) that is generated, under the operations (i–iii) of
assertion (2) of Theorem 1.6, by the Sλ(E�

j )
∨, where the Schur functors that

appear are exactly those used in writing all the
∧k

(H) as above. �

4 We thank J. Weyman for help with references.
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