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Abstract We construct an enhanced version of knot contact homology, and
show that we can deduce from it the group ring of the knot group together
with the peripheral subgroup. In particular, it completely determines a knot up
to smooth isotopy. The enhancement consists of the (fully noncommutative)
Legendrian contact homology associated to the union of the conormal torus
of the knot and a disjoint cotangent fiber sphere, along with a product on a
filtered part of this homology. As a corollary, we obtain a new, holomorphic-
curve proof of a result of the third author that the Legendrian isotopy class of
the conormal torus is a complete knot invariant.
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1 Introduction

1.1 Conormal tori and knot contact homology

A significant thread in recent research in symplectic and contact topology has
concerned the study of smooth manifolds through the symplectic structures on
their cotangent bundles. In this setting, one can also study a pair of manifolds,
one embedded in the other—in particular, a knot in a 3-manifold—via the
conormal construction. If K ⊂ R

3 is a knot, then its unit conormal bundle,
the conormal torus �K , is a Legendrian submanifold of the contact cosphere
bundle ST ∗

R
3. Isotopic knots produce conormal tori that are isotopic as Leg-

endrian submanifolds, i.e., the Legendrian isotopy type of the conormal torus
is a knot invariant. The fact that this invariant is nontrivial depends essentially
on the contact geometry: the conormal tori of any two knots are smoothly
isotopic, even if the knots themselves are not isotopic.

Symplectic field theory [11] provides an algebraic knot invariant associ-
ated to this geometric invariant: the Legendrian contact homology of �K ,
also known as the knot contact homology of K . This is the homology of a
differential graded algebra generated by Reeb chords of �K with differential
given by counting holomorphic disks. In the past few years, there have been
indications that knot contact homology and its higher genus generalizations
are related via string theory to other knot invariants such as the A-polynomial,
HOMFLY-PT polynomial, and possibly various knot homologies: the cotan-
gent bundle equipped with Lagrangian branes along the conormal of the knot
and the 0-section is the setting for an open topological string theory that has
conjectural relations to all of these invariants. The physical account considers
the holomorphic disks that go into knot contact homology, and also crucially
takes into account higher genus information; this last part has not yet been
fully developed in the mathematical literature, but some beginnings can be
found in [1]. In particular, it is explained there how certain quantum invariants
should be conjecturally recovered from a quantization of knot contact homol-
ogy arising from the consideration of non-exact Lagrangians. In any case, it
appears that knot contact homology should be a very strong invariant, in the
sense that it encodes a great deal of information about the underlying knot.

Recent work of the third author [30] shows that the Legendrian conormal
torus �K is in fact a complete invariant of K : two knots with Legendrian
isotopic conormals must in fact be isotopic. Since �K is the starting point for
knot contact homology, this can be viewed as evidence for, or in any case is
consistent with, the possibility that knot contact homology itself is a complete
invariant. Other evidence in this direction is provided by the fact that knot
contact homology recovers enough of the knot group (the fundamental group of
the knot complement) to detect the unknot [24] and torus knots, among others
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A complete knot invariant from contact homology 1151

[15]. These results use the ring structure on the “fully noncommutative” version
of knot contact homology,where the algebra is generated byReeb chords along
with homology classes in H1(�K ) that do not commute with Reeb chords; see
[5,27]. However, the question of whether knot contact homology is a complete
invariant remains open.

1.2 Main results

In this paper, we present an extension of knot contact homology by slightly
enlarging the set of holomorphic disks that are counted. We will show that
this extension, which we call enhanced knot contact homology, contains the
knot group along with the peripheral subgroup, and this in turn is enough to
completely determine the knot [16,32]. As a corollary, we have a new proof
of the result from [30], using holomorphic curves rather than constructible
sheaves.

For our purposes, we need the Legendrian contact homology of not just
�K but the union of �K and a cotangent fiber �p of ST ∗

R
3; the inclusion

of the latter is analogous to choosing a basepoint for the fundamental group.
This new invariant, LCH∗(�K ∪ �p), is a ring that contains the knot contact
homology of K as a quotient. Using the “link grading” of Mishachev [21], we
can write:

LCH∗(�K ∪ �p)

∼= (LCH∗)�K ,�K ⊕ (LCH∗)�K ,�p ⊕ (LCH∗)�p,�K ⊕ (LCH∗)�p,�p ,

where (LCH∗)�i ,� j denotes the homology of the subcomplex generated by
composable words of Reeb chords ending on �i and beginning on � j ; see
Sect. 2 for details.

From this set of data, we pick out what we call the KCH-triple (RKK , RKp,

RpK ) associated to �K ∪ �p, defined by:

RKK = (LCH0)�K ,�K , RKp = (LCH0)�K ,�p , RpK = (LCH1)�p,�K .

Of these, RKK is precisely the degree 0 knot contact homology of K and con-
tains a subring Z[l±1,m±1] once we equip K with an orientation and framing
(which we choose to be the Seifert framing), where l,m denote the longitude
and meridian of K ; RKp and RpK are left and right modules, respectively,
over RKK . We remark that (LCH∗)�K ,�K , (LCH∗)�K ,�p , and (LCH∗)�p,�K

turn out to be supported in degrees ≥ 0, 0, and 1, respectively, and so the
KCH-triple is comprised of the lowest-degree summand of each.

We need one further piece of data in addition to the KCH-triple: a prod-
uct μ : RKp ⊗ RpK → RKK . While the differential in LCH∗(�K ∪ �p)
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1152 T. Ekholm et al.

counts holomorphic disks in the symplectization R × ST ∗
R
3 with boundary

on R × (�K ∪ �p) and one positive puncture at a Reeb chord of �K ∪ �p,
the product μ counts holomorphic disks with two positive punctures, at mixed
Reeb chords of �K ∪ �p. Extending Legendrian contact homology to “Leg-
endrian Rational Symplectic Field Theory” by counting disks with multiple
positive punctures has not yet been successfully implemented in general; the
difficulty comes from boundary breaking for holomorphic disks, which con-
tributes to the codimension-1 strata of moduli spaces. However, partial results
in this direction have been obtained by the first author [13] in the case of
multiple-component Legendrian linkswhen boundary breaking can be avoided
for topological reasons, and (with less relevance for our purposes) by the sec-
ond author [25] in complete generality in the case of Legendrian knots in R3.
In particular, the fact that μ is well-defined and invariant follows from [13].

Our main result is now as follows:

Theorem 1.1 Let K ⊂ R
3 be an oriented knot and p ∈ R

3\K be a point,
and let �K , �p denote the Legendrian submanifolds of ST ∗

R
3 given by the

unit conormal torus to K and the unit cotangent fiber over p. Then the KCH-
triple (RKK , RKp, RpK ) constructed from the Legendrian contact homology
of�K ∪�p, equippedwith the productμ : RKp⊗RpK → RKK , is a complete
invariant for K .

More precisely, if there is an isomorphism between the KCH-triples for two
oriented knots K0, K1 that preserves μ, then:

(1) K0 and K1 are smoothly isotopic up to mirroring and orientation reversal;
(2) if the isomorphism from RK0K0 to RK1K1 restricts to the identitymap on the

subring Z[l±1,m±1], then K0 and K1 are smoothly isotopic as oriented
knots.

A Legendrian isotopy between �K0 ∪ �p and �K1 ∪ �p induces an iso-
morphism between the KCH-triples that respects the product μ. Since R3 is
noncompact, any Legendrian isotopy between the conormal tori�K0 and�K1

can be extended to an isotopy between �K0 ∪ �p and �K1 ∪ �p by push-
ing p away from the (compact) support of the isotopy. Thus we deduce from
Theorem 1.1 a new proof of the following result.

Theorem 1.2 ([30]) Let K0, K1 be smooth knots in R
3 and let �K0, �K1

denote their conormal tori.

(1) If �K0 and �K1 are Legendrian isotopic, then K0 and K1 are smoothly
isotopic up to mirroring and orientation reversal.

(2) If �K0 and �K1 are parametrized Legendrian isotopic, then K0 and K1
are smoothly isotopic as oriented knots.

Here “parametrized Legendrian isotopic” means the following: each conormal
torus�K of an oriented knot K has two distinguished classes in H1(�K ) given
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by the meridian and Seifert-framed longitude, and a parametrized Legendrian
isotopy between conormal tori is an isotopy that sends meridian and longitude
to meridian and longitude.

Our proof of Theorem 1.1 depends crucially on the results of [5], which
relates knot contact homology to string topology. It is shown there that one can
construct an isomorphism from degree 0 knot contact homology, LCH0(�K ),
to a certain string homology constructed from paths (“broken strings”) on the
singular Lagrangian given by the union, inside the cotangent bundle, of the
zero section and the conormal. This isomorphism is induced by mapping a
Reeb chord to the chain of boundaries of all holomorphic disks asymptotic to
the Reeb chord with boundary on the singular Lagrangian.

In this paper, we extend the isomorphism from [5] to show that the KCH-
triple can also be computed using broken strings. Using this presentation, we
prove a ring isomorphism

Z[π1(R
3\K )] ∼= Z ⊕ (RpK ⊗RKK RKp)

wheremultiplication on the right is induced by the productμ : RKp⊗RpK →
RKK (see Sect. 4.4 for details).Knot groups are known to be left orderable [18],
i.e., they have a total ordering invariant under left multiplication, and left order-
able groups are determined by their group ring [17]; it follows that we can
recover the knot group itself from the KCH-triple. A further consideration of
the subringZ[l±1,m±1], which sits naturally in enhanced knot contact homol-
ogy (more precisely, in RKK ), shows that we can also recover the longitude
and meridian inside the knot group, and thus by [32] we have a complete knot
invariant.

We emphasize that the extra cosphere fiber is critical for our argument. It is
shown in [5] that knot contact homology LCH0(�K ) is isomorphic to a certain
subring ofZ[π1(R

3\K )], and this can be used to prove that LCH0(�K ) detects
the unknot and torus knots, as mentioned earlier. It is not clear whether this
subring suffices to give a complete invariant. By contrast, the extra cosphere
fiber allows the direct recovery of Z[π1(R

3\K )] and thus π1(R
3\K ).

1.3 Relation to sheaves

We conclude this introduction by sketching a Floer-theoretic path from the
arguments of [30] to those of the present work. The body of the paper does not
depend on any of the claims below; we include them solely for motivational
purposes and conceptual clarity. These claims could be established rigorously
by a variant of [3] in the partially wrapped context (a special case of [14, Con-
jecture 3]), together with a proof of Kontsevich’s localization conjecture [20].
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A significantly more detailed sketch of the following arguments appears in
section 6 of the arXiv version of the present paper, arXiv:1606.07050.

In [30] the basic tool is the category of sheaves on R
3, constructible with

respect to the stratification by the knot K and its complement R3\K . This
category is identifiedwith the infinitesimal Fukaya categorywhose objects are,
roughly, exact Lagrangians in T ∗

R
3 asymptotic to the conormal torus �K ⊂

ST ∗
R
3, and whose morphisms are the intersections between the Lagrangians

after perturbing infinitesimally along the Reeb flow at infinity [23,29].
There is another Floer-theoretic category one can associate to the same

geometry, the partially wrapped category with wrapping stopped by�K . Here
the objects are exact Lagrangians asymptotic to Legendrian submanifolds in
ST ∗

R
3, in the complement of the conormal torus �K . The morphisms are

computed by wrapping using a Reeb flow which stops at �K in the sense
of [31]. [A cut and paste model of the Reeb flow is obtained by attaching
T ∗([0, ∞) × �K ) to ST ∗

R
3 along �K , see [14, Section B.3].]

The infinitesimally wrapped category embeds into the partially wrapped
category: pushing a Lagrangian asymptotic to �K slightly backwards along
the Reeb flow gives a Lagrangian with trivial wrapping at infinity. To see
this, note that the Reeb flow starting at the shifted �K arrives immediately at
the stop �K and hence will flow no further. The image of this embedding is
expected to be categorically characterized as the “pseudo-perfect modules”.
In particular, the partially wrapped category should know at least as much as
the sheaf category.

Two notable objects of the partiallywrapped category are the cotangent fiber
F at a point not on the knot and the Lagrangian disk C which fills a small ball
linking the conormal torus. [In the cut and paste model, C is a cotangent fiber
in T ∗([0, ∞)×�K ).] TakingHomwith these Lagrangians gives functors from
the partially wrapped category, hence by restriction followed by the Nadler-
Zaslow isomorphism, from the sheaf category, to chain complexes.

In fact, the partially wrapped category also has a conjectural identification
with a certain category of sheaves [20,22]. Under these identifications, the
functor associated to F is computing the stalk at the point away from the knot,
and the functor associated to C is computing the microsupport of the sheaf at
the knot. These are the main operations used in [30] and having both is crucial
to the argument there.

It is also expected that the Lagrangians F and C generate the partially
wrapped Fukaya category, i.e., the partially wrapped category can be identified
with the category of perfect modules over the endomorphism algebra of F∪C .
This means that the partially wrapped Floer cohomology HW ∗(F∪C, F∪C)

of these two disks should contain all the information of the sheaf category, and
moreover in a way which makes the information needed in the arguments
of [30] immediately accessible.
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Both wrapped Floer cohomology and Legendrian contact homology are
algebras on Reeb chords; a precise relation between them is established in [3]
and generalized to the partially wrapped context in [14, Conjecture 3]. Specif-
ically, the partially wrapped Floer cohomologies of the disks F and C can
be computed from contact homology algebras and in the notation above, we
have:

HW 0(C,C) ∼= RKK ,

HW 0(C, F) ∼= RpK ,

HW 0(F,C) ∼= RKp,

HW 0(F, F) ∼= Z ⊕ (RpK ⊗ RKp).

Moreover, the product μ : RKp ⊗ RpK → RKK is identified with the ordi-
nary pair-of-pants product HW 0(F,C) ⊗ HW 0(C, F) → HW 0(C,C) in
wrapped Floer cohomology. Then the KCH-triple and product determines a
ring structure on HW 0(F, F), and our results show that HW 0(F, F) is ring
isomorphic to the group ring Z[π1(R

3\K )].
In fact, this ring isomorphism can be induced from moduli spaces of holo-

morphic disks as follows. Applying Lagrange surgery to R
3 ∪ LK (i.e.,

removing the interiors of small disk bundle neighborhoods of K in R
3 and

LK and joining the resulting boundary fiber circles over K by a family of
1-handles), we obtain a Lagrangian MK with the topology of R3\K . The disk
F intersects MK transversely in one point and the map above is induced from
moduli spaces of holomorphic disks with one positive puncture at a Reeb
chord of F , two Lagrangian intersection punctures at MK ∩ F , and boundary
on F ∪ MK . This map is then directly analogous to the corresponding map
in the cotangent bundle of a closed manifold and, as there, it gives an iso-
morphism of rings, intertwining the pair of pants product in wrapped Floer
chomology with the Pontryagin product on chains of loops.

1.4 Outline of the paper

In Sect. 2, we introduce enhanced knot contact homology and the KCH-triple,
along with the product map μ. We reformulate these structures in terms of
string topology in Sect. 3 and then in terms of the knot group in Sect. 4,
leading to a proof of Theorem 1.1 in Sect. 5.

2 Enhanced knot contact homology

In this section we present the ingredients of enhanced knot contact homology.
In Sect. 2.1 we discuss the structure of the contact homology algebra of a two
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component Legendrian link, in Sect. 2.2 we specialize to the case of a link
consisting of the conormal of a knot and the fiber sphere over a point. Finally,
in Sect. 2.3 we introduce the product operation on enhanced knot contact
homology.

2.1 Legendrian contact homology for a link

Let V = J 1(M) be the 1-jet space of a compact manifold M with the standard
contact structure, and let� ⊂ V be a connected Legendrian submanifold. The
Legendrian contact homology of �, which we will write as LCH∗(�), is the
homology of a differential graded algebra (A�, ∂), where A� is a noncom-
mutative unital algebra generated by Reeb chords of � and homology classes
in H1(�), with the differential given by a count of certain holomorphic curves
in the symplectization R × V with boundary on R × �.

Remark 2.1 For a Legendrian submanifold� of a general contact manifold V
the Legendrian algebra A� is an algebra generated by both Reeb chords and
closedReeborbits,where the orbits generate a (super)commutative subalgebra.
In the case of a 1-jet space there are no closed Reeb orbits and the algebra and
its differential involves chords only.

Remark 2.2 Legendrian contact homology is often defined with coefficients
in the group ring of H2(V, �) rather than H1(�), the difference being whether
one associates to a holomorphic disk its relative homology class in H2(V, �)

or the homology class of its boundary in H1(�). In the case of knot contact
homology, our setup amounts to specializing toU = 1 in the language of [6,26,
27] or Q = 1 in the language of [1]. Also, as mentioned in the introduction, the
version of the DGA that we consider here is the fully noncommutative DGA,
in which homology classes in H1(�) do not commute with Reeb chords. To
get loops rather than paths we fix a base point in each component of � and
capping paths connecting the base point to each Reeb chord endpoint, see
Fig. 1.

If� ⊂ V is a disconnected Legendrian submanifold, then there is additional
structure on the DGA of � first described by Mishachev [21]; in modern
language this is the “composable algebra”, and we follow the treatment from
[3,7,28]. For simplicity we restrict to the case � = �1 ∪ �2. For i, j = 1, 2,
let Ri j denote the set of Reeb chords that end on �i and begin on � j . The
composable algebra A�1∪�2 is the noncommutative Z-algebra generated by
Reeb chords of�1∪�2, elements ofZ[H1(�1)], elements ofZ[H1(�2)], and
two idempotents e1, e2, subject to the relations (where δi j is the Kronecker
delta):

• ei e j = δi j
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Fig. 1 Terms contributing to the differential of a1 ∈ R11, a2 ∈ R21, a3 ∈ R11: α0,
α1a4α2a5α3, α4a6α5a7α6a8α7, respectively. Here a5, a6 ∈ R11, a4, a8 ∈ R21, a7 ∈ R12,
α1, α6 ∈ H1(�1), and α0, α2, α3, α4, α5, α7 ∈ H1(�2). The boundaries of the disks lie on
R × �1 and R × �2 as shown, and represent the homology classes indicated after closing up
with suitably oriented capping paths, see Remark 2.2. Small arrows denote orientations on Reeb
chords

• ei ′a = δi i ′a and ae j ′ = δ j j ′a for a ∈ Ri j

• e jα = αe j = δi jα for α ∈ Z[H1(�i )].
Note thatA�1∪�2 is unital with unit e1 + e2. For i, j = 1, 2, defineA�i ,� j =
eiA�1∪�2e j ; then

A�1∪�2 =
⊕

i, j∈{1,2}
A�i ,� j .

In more concrete terms,A�1∪�2 is generated as a Z-module by monomials of
the form

α0a1α1a2 · · · anαn,

where there is some sequence (i0, . . . , in) with ik ∈ {1, 2} such that αk ∈
Z[H1(�ik )] and ak ∈ Rik−1ik for all k (and one empty monomial ei for each
component �i ). Monomials of this form are the “composable words”. Gener-
ators of A�i ,� j are of the same form but specifically with i0 = i and in = j .
Note that multiplication A�i ,� j ⊗ A�i ′ ,� j ′ → A�i ,� j ′ is concatenation if
j = i ′ and 0 otherwise.
The differential ∂ on A�1∪�2 is defined to be 0 on ei and on elements

of Z[H1(�i )] and is given by a holomorphic-disk count for Reeb chords of
�1∪�2. For a Reeb chord a ∈ Ri j the disks counted in ∂a aremaps intoR×V
and have boundary on (R × �1) ∪ (R × �2), one positive puncture where it
is asymptotic to R× a and several negative punctures. The contribution to the
differential is the composableword of homology classes andReeb chords in the
complement of the positive puncture along the boundary of the disk, see Fig. 1.
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The differential thus respects the direct-sumdecomposition
⊕

i, j∈{1,2} A�i ,� j ,
and this decomposition descends to the homology:

LCH∗(�1 ∪ �2) = H∗(A�1∪�2, ∂) =
⊕

i, j∈{1,2}
(LCH∗)�i ,� j ,

where (LCH∗)�i ,� j = H∗(A�i ,� j , ∂). Recall that Legendrian isotopies
induce isomorphisms on Legendrian contact homology via counts of holo-
morphic disks similar to the differential, see [10,12,13]. It follows that
a Legendrian isotopy between 2-component Legendrian links induces a
quasi-isomorphism between the DGAs that also respects the decomposi-
tion.

We can further refine the structure of A�1∪�2 by considering the filtration

A�1∪�2 = F0A�1∪�2 ⊃ F1A�1∪�2 ⊃ F2A�1∪�2 ⊃ · · ·

whereFkA�1∪�2 is the subalgebra generated as aZ-module by words involv-
ing at least k mixed chords (Reeb chords either from �1 to �2 or from �2 to
�1). This also gives a filtration on the summands of A�1∪�2 :

A�1,�1 = F0A�1,�1 ⊃ F2A�1,�1 ⊃ F4A�1,�1 ⊃ · · ·
A�1,�2 = F1A�1,�2 ⊃ F3A�1,�2 ⊃ F5A�1,�2 ⊃ · · ·
A�2,�1 = F1A�2,�1 ⊃ F3A�2,�1 ⊃ F5A�2,�1 ⊃ · · ·
A�2,�2 = F0A�2,�2 ⊃ F2A�2,�2 ⊃ F4A�2,�2 ⊃ · · · .

We note two properties of the filtration. First, it is compatible with multi-
plication: the product of elements of Fk1 and Fk2 is an element of Fk1+k2 .
Second, the differential ∂ respects the filtration, since the differential of any
mixed chord is a sum of words that each includes a mixed chord. As a conse-
quence of this second property, there is an induced filtration onLCH∗(�1∪�2)

as well as its summands (LCH∗)�i ,� j (�1 ∪ �2).
We abbreviate successive filtered quotients as follows: for k even when

i = j and k odd when i �= j , write

A(k)
�i ,� j

:= FkA�i ,� j /Fk+2A�i ,� j .

ThenA(k)
�i ,� j

is generated as aZ-module bywordswith exactly kmixed chords.
We will especially be interested in the following filtered quotients with their
induced differentials:

• A(0)
�i ,�i

, which is the DGA of �i itself;
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• A(1)
�i ,� j

with i �= j , which is generated by words with exactly 1 mixed
chord.

Note that for i �= j , the DGAs of �i and of � j act on A(1)
�i ,� j

on the left and

right, respectively, by multiplication, and this gives A(1)
�i ,� j

the structure of a
differential bimodule.

2.2 Legendrian contact homology for the conormal and fiber

We now restrict to the case where V is the contact manifold ST ∗
R
3 = J 1(S2).

If K ⊂ R
3 is a knot and �K ⊂ V is the unit conormal bundle of K , then the

knot contact homology of K is defined to be the Legendrian contact homology
of �K :

LCH∗(�K ) = H∗(A�K , ∂).

The conormal �K is topologically a 2-torus and has trivial Maslov class.
The triviality of the Maslov class gives a well-defined integer grading on
A�K , by the Conley–Zehnder index, see [7,10]. A choice of orientation for K
gives a distinguished set of generators l,m ∈ π1(�K ) ∼= Z

2, where m is the
meridian and l is the Seifert-framed longitude. The group ring Z[H1(�K )] ∼=
Z[l±1,m±1] is a subring of A�K in degree 0, and there is an induced map
Z[l±1,m±1] → HC0(K ) that is injective as long as K is not the unknot (see
[5]).

Since the Reeb flow on ST ∗
R
3 is the geodesic flow, Reeb chords correspond

under the projection ST ∗
R
3 → R

3 in a one to one fashion to oriented binormal
chords of K : for the flat metric on R3 these are simply oriented line segments
with endpoints on K that are perpendicular to K at both endpoints. Furthermore
the Conley–Zehnder grading of such a chord agrees with the Morse index for
the corresponding critical point of the distance function K × K → R, and
hence takes on only the values 0, 1, 2, see [7, Section 3.3.3].

Next suppose that in addition to the knot K , we choose a point p ∈ R
3\K .

Then we can form the Legendrian link� = �K ∪�p ⊂ ST ∗
R
3, where�K is

the unit conormal to K as before and �p is the unit cotangent fiber of ST ∗
R
3

at p.
Let (A�K∪�p , ∂) be theDGAassociated to the link�K∪�p. ThenA�K∪�p

is generated by Reeb chords of�K ∪�p (alongwith homology classes). There
are no Reeb chords from�p to itself, and so the Reeb chords of�K ∪�p come
in three types: from �K to itself, to �K from �p, and to �p from �K . These
all correspond to binormal chords of K ∪ {p}, where the normality condition
is trivial at p.
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We now discuss the grading on A�K∪�p . Homology classes are graded
by 0. The grading on pure Reeb chords from �K to itself is as for A�K .
In order to define the grading of mixed Reeb chords of a two-component
Legendrian submanifold ofMaslov index 0 such as�K ∪�p, it is customary to
choose a path connecting the two Legendrians, alongwith a continuous field of
Legendrian tangent planes along this path (i.e., isotropic 2-planes in the contact
hyperplanes along the path) interpolating between the tangent planes to the
Legendrians at the two endpoints. There is a Z’s worth of homotopy classes of
such fields of tangent planes, and different choices affect the grading of mixed
chords, shifting the grading of chords from �K to �p up by some uniform
constant k and shifting the grading of chords from �p to �K down by k. Note
here that the usual dimension formulas for holomorphic disks hold and are
independent of the path chosen since for any actual disk the path is traversed
algebraically zero times.

To assign a specific grading to mixed chords, it is convenient to place K and
p in a specific configuration in R

3. Let (x, y, z) be linear coordinates on R
3.

The unit circle in the xy plane is an unknot, and we can braid K around this
unknot so that it lies in a small tubular neighborhood of the circle; also, choose
p to lie in the xy plane, outside a disk containing the projection of K . If we
view �K , �p ⊂ J 1(S2) as fronts in J 0(S2) = S2 × R, then the front of �p
is the graph of the function v �→ p · v for v ∈ S2, and in particular the tangent
planes to this front over the equator {z = 0} ∩ S2 are horizontal. On the other
hand, if the braid for K has n strands, then the front of �K has 2n sheets near
the equator, n with positive R-coordinate and n with negative, and the tangent
planes to these sheets are nearly horizontal. We can now take the connecting
path between �p and �K as follows: choose a point v in the equator with
p · v < 0, and over v join the unique point in the front of �p to any of the
n points in �K with negative R-coordinate, see Fig. 2. The tangent planes
are horizontal at the �p endpoint and nearly horizontal at the �K endpoint;
choose the path to consist of nearly horizontal planes over v joining these
without rotation.

Proposition 2.3 With this choice of configuration, theReeb chords of�K∪�p
have grading as follows. Let γ be a binormal chord of K ∪{p} corresponding
to a Reeb chord c of�K ∪�p. Let “ ind” denote theMorse index of the critical
point corresponding to γ for the distance function on K ∪ {p}. Then:
• if c ∈ RKK (c goes to �K from �K ) then

|c| = ind(γ );
• if c ∈ RKp (c goes to �K from �p) then

|c| = ind(γ );
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Fig. 2 Degrees of mixed chords c, c′, c′′, c′′′ between the fronts of �K and �p in S2 ×R, and
the corresponding binormal chords γ, γ ′, γ ′′, γ ′′′ in R3. The connecting path γ0 between �K
and �p is also shown, with endpoints ∗K , ∗p

• if c ∈ RpK (c goes to �p from �K ) then

|c| = ind(γ ) + 1.

Proof We begin with mixed Reeb chords between �K and �p in either direc-
tion. For these, we can use [7, Lemma 2.5] (cf. [8, Lemma 3.4]), which writes
the degree |c| of a Reeb chord c between two sheets of a front projection in
terms of the Morse index indloc of the difference between the functions corre-
sponding to these two sheets, and the difference D − U between the number
of up and down cusps along a capping path for the chord, as

|c| = indloc +(D −U ) − 1.

In our case indloc is 2 for all mixed Reeb chords: the difference functions
between the sheets near the Reeb chords look roughly like the difference
function between the front of�p and the 0-section and hence has localmaxima,
see Fig. 2.
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To count up and down cusps, we recall the definition of capping path. Let
∗K , ∗p denote the endpoints of the fixed path γ0 connecting �K and �p. If c
is a mixed chord of �K ∪ �p, then the capping path for c is given as follows,
cf. [7, Lemma 2.5]: if c goes to �K (respectively �p) from �p (�K ), then
take the union of a path in �K (�p) from the endpoint of c to ∗K (∗p) and a
path in �p (�K ) from ∗p (∗K ) to the beginning point of c. Any capping path
that passes through the north or south pole of S2 traverses an up cusp if it goes
from a negative sheet of �K to a positive sheet, and a down cusp if it goes in
the opposite direction; see [7, Section 3.1].

There are four types of mixed chords, which we denote by c, c′, c′′, c′′′ as
shown in Fig. 2. The longer chords c (with corresponding binormal chord γ )
from �p to �K begin near ∗p and end on the sheet near ∗K ; the capping
path for c can be chosen to avoid the poles of S2, and so the degree of c is
|c| = 2−1 = 1 = ind(γ ). The shorter chords c′ (with corresponding binormal
chord γ ′) from�p to�K end on one of the negative sheets of�K ; the capping
path for c′ passes from a negative sheet to a positive sheet of �K through one
of the poles, traversing one up cusp in the process, and so |c′| = 2 − 1 − 1 =
0 = ind(γ ′). For the mixed chords c′′, c′′′ from �K to �p with binormal
chords γ ′′, γ ′′′, similar computations give |c′′| = 2+1−1 = ind(γ ′′)+1 and
|c′′′| = 2 − 1 = ind(γ ′′′) + 1. This establishes the result for mixed chords.

For pure chords the calculation is similar; we give a brief description and
refer to [7, Lemma 3.7] for details. There are the longer chords corresponding
to the chords of the unknot: for the round unknot there is an S1 Bott-family
of chords which after perturbation gives rise to two chords. We write c (with
corresponding binormal chord γ ) and e (with corresponding binormal chord
ε) to denote a chord of K corresponding to the shorter and longer chord of
the unknot, respectively. The local index at e (respectively c) is 2 (1), and a
path connecting the endpoint to the start point has one down cusp. This gives
|e| = 2 + 1 − 1 = 2 = ind(ε), and |c| = 1 + 1 − 1 = 1 = ind(γ ). Finally,
there are short chords of K that are contained in a tubular neighborhood of
the unknot. These are of two types, depending on whether the underlying
binormal chord has Morse index 0 or 1. Let a (with corresponding binormal
chord α) be of the former type and b (with corresponding binormal chord β)
of the latter. Noting that there are paths connecting their start and endpoints
without cusps and that the local index is 1 for a and 2 for b, it follows that
|a| = 1 − 1 = 0 = ind(α) and |b| = 2 − 1 = 1 = ind(β). The formulas
relating degrees and indices thus hold for all types of chords. ��

From Proposition 2.3, since ind(γ ) is in {0, 1, 2} if γ joins K to itself and
{0, 1} otherwise, we find that Reeb chords in RKK , RKp, and RpK have
degrees in {0, 1, 2}, {0, 1}, and {1, 2}, respectively. It follows that A�K ,�K

(respectively A�K ,�p , A�p,�K ) is supported in degree ≥ 0 (respectively ≥
0, ≥ 1), and in lowest degree is generated as a Z-module by only words
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with the minimal possible number of mixed chords. In particular,F2A�K ,�K ,
F3A�K ,�p , andF3A�p,�K are all zero in degree 0, 0, and 1 respectively, and
so:

H0(A�K ,�K ) ∼= H0

(
A(0)

�K ,�K

)

H0(A�K ,�p)
∼= H0

(
A(1)

�K ,�p

)

H1(A�p,�K ) ∼= H1

(
A(1)

�p,�K

)
.

As noted in Sect. 2.1, the first of these, H0(A(0)
�K ,�K

), is exactly the degree
0 Legendrian contact homology of �K , that is, degree 0 knot contact homol-
ogy. The homology coefficients Z[H1(�K )] ∼= Z[l±1,m±1] form a degree
0 subalgebra of the DGA of �K with zero differential, and so we have a
map Z[l±1,m±1] into the degree 0 knot contact homology of K . In addition,
A�K ,�K acts on the left (respectively right) onA�K ,�p (respectivelyA�p,�K ),
with an induced action on homology.

Definition 2.4 The KCH-triple of �K ∪ �p is

(RKK , RKp, RpK ) = (H0(A�K ,�K ), H0(A�K ,�p), H1(A�p,�K )).

Here RKK is viewed as a ring equipped with a mapZ[l±1,m±1] → RKK , and
RKp and RpK are an (RKK ,Z)-bimodule and a (Z, RKK )-bimodule, respec-
tively.

Note that althoughwe have chosen a particular placement of K and p above,
the KCH-triple of �K ∪ �p is unchanged by isotopy of �K and �p, since it
can be defined strictly in terms of graded pieces of the homology ofA�K∪�p ,
which is invariant under Legendrian isotopy up to quasi-isomorphism. That
is:

Proposition 2.5 If �K0 ∪ �p and �K1 ∪ �p are Legendrian isotopic, then
they have isomorphic KCH-triples (RK0K0, RK0 p, RpK0) and (RK1K1, RK1 p,

RpK1), in the sense that there are isomorphisms

ψKK : RK0K0

∼=→ RK1K1

ψKp : RK0 p
∼=→ RK1 p

ψpK : RpK0

∼=→ RpK1

compatible with multiplications RKi Ki ⊗ RKi Ki → RKi Ki , RKi Ki ⊗ RKi p →
RKi p, and RpKi ⊗ RKi Ki → RpKi . If furthermore the Legendrian isotopy is
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parametrized in the sense that it sends the basis l0,m0 of H1(�K0) to the basis
l1,m1 of H1(�K1), then ψKK (m0) = m1, ψKK (l0) = l1.

Remark 2.6 As mentioned above, the gradings in A�K ,�p and A�p,�K are
not canonically defined but rather depend on a choice of homotopy class of
a path connecting the tangent planes at base points in the components of the
Legendrian link (possible choices are in one to one correspondence with Z).
In general, in Definition 2.4 we would want to set RKp = Hd(A�K ,�p) and
RpK = H1−d(A�p,�K ), where d ∈ Z corresponds to the choice of homotopy
class of path. [In all cases we still have RKK = H0(A�K ,�K ).]

This indeterminacy would seem to pose problems for Proposition 2.5. How-
ever, we can eliminate the ambiguity by stipulating that we have picked the
unique choice of grading for which

min
{
d | Hd(A�K ,�p) �= 0

} = 0.

This is because with our preferred choice of grading, Hd(A�K ,�p) = 0 for
d < 0, while we will show that RKp = H0(A�K ,�p) is nonzero (see for
instance Proposition 4.13).

Remark 2.7 If we choose p sufficiently far away from K , then by action
considerations (the action of the Reeb chord at the positive puncture of a
holomorphic disk is greater than the sum of the actions at the negative punc-
tures), the differential in (A�K∪�p , ∂) of any word containing exactly k mixed
chords must only involve words again containing exactly k mixed chords. In
this case, the DGA (A�K∪�p , ∂) is isomorphic to its associated graded DGA
under the filtration Fk , and the homology LCH∗(�K ∪ �p) decomposes as a
direct sum by number of mixed chords.

Wewill use theKCH-triple of�K∪�p to produce a complete knot invariant.
More specifically, we have the following object created from the KCH-triple:

Definition 2.8 Let Rpp denote the Z-module

Rpp = RpK ⊗RKK RKp.

Alternatively, we can write Rpp in terms of the homology of A�K∪�p :

Proposition 2.9 We have

Rpp
∼= H1(A�p,�p)

∼= H1

(
A(2)

�p,�p

)
.

Proof The first isomorphism is immediate from the definition of Rpp. Since
there are no self Reeb chords of �p, and since any mixed Reeb chord to �p
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from �K has degree ≥ 1, any degree 1 generator of A�p,�p must consist of
a mixed chord to �p from �K , followed by some number of Reeb chords of
�K , followed by a mixed chord to �K from �p. The result now follows from
the definition of the KCH-triple. ��

In fact, we will show (Proposition 4.17) that there is a ring isomorphism

Z ⊕ Rpp
∼= Z[π1(R

3\K )]
and this is the key to proving our main result, Theorem 1.1. To get this, we in
particular need a multiplication operation on Rpp. In the next subsection, we
will define a product map

μ : RKp ⊗ RpK → RKK .

This will then induce a map

μ : Rpp ⊗Z Rpp = RpK ⊗RKK RKp ⊗Z RpK ⊗RKK RKp

→ RpK ⊗RKK RKK ⊗RKK RKp = Rpp,

which is the desired multiplication on Rpp.

2.3 Product

Recall that the differential in the contact homology DGAA�K∪�p that is used
to define the KCH-triple (RKK , RKp, RpK ) counts holomorphic disks with
one positive puncture in the symplectization R × ST ∗

R
3 with boundary on

R × (�p ∪ �K ). As described in [2,13], one can also produce invariants by
counting holomorphic diskswith two positive punctures atmixedReeb chords,
along with an arbitrary number of negative punctures at pure Reeb chords.

For general two-component Legendrian links, the resulting algebraic struc-
ture is a bit complicated to describe, but in our case it is simple because�p has
no self Reeb chords: reading along the boundary of any of these two-positive-
punctured disks, we see a positive puncture from �K to �p, followed by a
positive puncture from�p to�K , followed by some number of negative punc-
tures from �K to �K . This allows us to define the product of a Reeb chord
from �K to �p with a Reeb chord from �p to �K , or more generally the
product of composable words inA�K ,�p andA�p,�K , each of which contains
exactly one mixed Reeb chord. The result of the product in either case will be
an alternating word of pure chords from �K to �K and homotopy classes of
loops in �K . (No mixed Reeb chords are involved.)

We now describe this construction in more detail. Let a1 be a Reeb chord to
�K from�p anda2 aReeb chord to�p from�K . Letb = β0b1β1 · · · bmβm be
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Fig. 3 A disk in the moduli space M(a1, a2; β0b1β1b2β2b3β3). Here the βi coefficients
record the homology classes of the depicted arcs in �K . The arrows on Reeb chords denote
their positive orientations

aword inReeb chordsbi from�K to itself andhomology classesβi in H1(�K ).
Consider the moduli space of holomorphic disks in the symplectization R ×
ST ∗

R
3 of the following form. We take the domain of the disks to be the

unit disk in the complex plane with punctures and boundary data as follows:
there are two positive punctures at 1 and −1; the arc in the upper half plane
connecting these two punctures maps to R × �p; there are m ≥ 0 negative
punctures along the boundary arc in the lower half plane; and the boundary
components in the lower half plane all map to R × �K according to b. See
Fig. 3. We write

M(a1, a2; b)

for the moduli space of holomorphic disks in the symplectization R× ST ∗
R
3

with punctures and boundary data as described.
The dimension of this moduli space is then the following, where |c| denotes

the grading of the Reeb chord c:

dim(M(a1, a2; b)) = |a1| + |a2| − |b|.

Remark 2.10 This is a special case of a general dimension formula for holo-
morphic disks in the symplectization R × ST ∗Q of the cosphere bundle over
an n-manifold, with boundary in R × �, where � is a Legendrian submani-
fold of Maslov class 0. If such a disk u has positive punctures at Reeb chords
a1, . . . , ap and negative punctures at Reeb chords b1, . . . , bq then its formal
dimension dim(u) is (see e.g. [4, Theorem A.1] or [13, Section 3.1]):
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dim(u) = (n − 3) +
p∑

j=1

(|a j | − (n − 3)) −
q∑

k=1

|bk |.

As in the definition of the differential in Legendrian contact homology, we
need to consider orientations of these moduli spaces induced by capping oper-
ators and the Fukaya orientation on the space of linearized Cauchy–Riemann
operators on the diskwith trivializedLagrangian boundary condition.1 There is
basically only one point where the construction here differs from that used for
the differential. The disks in the differential have a unique positive puncture and
we write the capped-off linearized problem for a disk with positive puncture at
a and negative punctures and boundary data according to b = β0b1 · · · bmβm
as above as (with C±

c denoting the positive/negative capping operator at the
Reeb chord c and L denoting the linearized Cauchy-Riemann operator at the
holomorphic disk under consideration)

C+
a ⊕ L ⊕ C−

b1
⊕ · · · ⊕ C−

bm
≈ F,

where F denotes a trivialized boundary condition on the closed disk andwhere
“≈” means “is related to via a linear gluing exact sequence”, see [9]. For the
product, we have disks with two positive punctures and there is no natural
way to order the punctures in general. However, in our case the two positive
punctures are distinguished since both are mixed and have different endpoint
configurations. We choose the following ordering:

C+
a1 ⊕ L ⊕ C−

b1
⊕ · · · ⊕ C−

bm
⊕ C+

a2 ≈ F.

As usual this then induces a linear gluing sequence which in the transverse
case orients the moduli space.

With these orientations determined, we can now define μ. Suppose that we
have c1a1 ∈ A(1)

�K ,�p
and a2c2 ∈ A(1)

�p,�K
, where a1, a2 are mixed chords to

�K from�p (respectively to�p from�K ), and c1, c2 are words in pure Reeb
chords on �K and homology classes in �K . Define:

μ(c1a1, a2c2) =
∑

|a1|+|a2|−|b|=1

|M(a1, a2; b)/R| c1bc2.

This produces a map

μ : A(1)
�K ,�p

⊗ A(1)
�p,�K

→ A(0)
�K ,�K

.

1 In fact, for the purposes of this paper and in particular the proof of Theorem 1.1, one could
ignore orientations and work over Z/2 rather than Z. However, for the purposes of the general
theory, we will work over Z throughout.
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Proposition 2.11 ([13]) The product map μ has degree −1 and satisfies the
Leibniz rule:

μ ◦ (∂ ⊗ 1 + 1 ⊗ ∂) = ∂ ◦ μ.

Thus μ descends to a map on homology.

Here and in the rest of the paper, we use Koszul signs when defining the
tensor product of maps: in particular, (∂ ⊗ 1)(a ⊗ b) = (∂a) ⊗ b while
(1⊗∂)(a⊗b) = (−1)|a|a⊗(∂b) if ∂ has odddegree.AlthoughProposition 2.11
is implicitly contained in [13], we give the proof for definiteness.

Proof of Proposition 2.11 Once we know that the moduli spaces are trans-
versely cut out for generic data then the fact that μ has degree −1 follows
from the dimension formula. The disks with two positive punctures consid-
ered here cannot be multiply covered for topological reasons (e.g. only one
positive puncture is asymptotic to a chord from �p to �K ). Thus the same
argument as for disks with one positive puncture can be used to show transver-
sality for generic almost complex structure where the formal dimension then
equals the actual dimension, see e.g. [10, Proposition 2.3].

To see the displayed equation, we look at the boundary of moduli spaces
M(a1, a2; b) of dimension 2. It follows by SFT compactness that the boundary
consists of broken curves. We must check that there cannot be any boundary
breaking. To see this note that any splitting arc in the domain that separates the
positive punctures must connect boundary points that map to distinct compo-
nents of the Legendrian submanifold. Thus there is no boundary breaking and
several-level disks account for the whole boundary. The equation follows from
identifying contributing terms with the boundary of an oriented 1-dimensional
manifold. ��

We will also need the fact that μ is invariant under Legendrian isotopy. As
in [13] this can be understood by looking at cobordismmaps and homotopies of
such.Wewill only need invariance on the level of homology, and this is slightly
easier to prove:we need only the statement that themultiplication on homology
induced by μ is invariant under Legendrian isotopy and this follows from
properties of cobordism maps and analogues of these for the product. To see
this first recall that a Legendrian isotopy�Kt ∪�pt , 0 ≤ t ≤ 1, from�K0∪�p0
to�K1∪�p1 gives an exact Lagrangian cobordism LK ∪L p ⊂ R×ST ∗

R
3 that

agreeswith (R×�K0)∪(R×�p0) in the positive end and (R×�K1)∪(R×�p1)

in the negative. Furthermore there is a cobordism map

� : A�K0∪�p0
→ A�K1∪�p1

that is a quasi-isomorphism respecting the filtration with respect to the number
of mixed chords. This cobordism map counts holomorphic disks in the cobor-
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dism as follows. If a is a Reeb chord of �K0 ∪ �p0 and if b is an alternating
word of Reeb chords and homotopy classes of paths in �K1 ∪ �p1 then let
Mco(a,b) denote the moduli space of holomorphic disks in R× ST ∗

R
3 with

boundary on LK ∪L p, with one positive puncture where the disk is asymptotic
to the Reeb chord a and with several negative punctures which together with
the boundary arcs give the word b. The map � is then given by

�(a) =
∑

|a|−|b|=0

|Mco(a,b)|b.

In order to study invariance for the product, we look at moduli spaces in the
cobordism analogous to the moduli spaces used in the definition ofμ. If a1 is a
Reeb chord from�K0 to�p0 ,a2 a chord from�p0 to�K0 , andb awordofReeb
chords and homotopy classes of paths on�K1 as above, then letMco(a1, a2; b)

denote the moduli space of disks with boundary on LK ∪ L p with two positive
punctures asymptotic to a1 and a2, and with negative punctures and boundary
arcs mapping according to b. Then define κ : RK0 p0 ⊗ Rp0K0 → RK1K1 by:

κ(c1a1, a2c2) =
∑

|a1|+|a2|−|b|=0

|Mco(a1, a2; b)|�(c1)b�(c2).

Proposition 2.12 ([13]) Given a Legendrian isotopy (�Kt , �pt ), t ≤ 0 ≤ 1,
and product maps μ0 and μ1 for �K0 ∪�p0 and �K1 ∪�p1 as defined above,
we have:

� ◦ μ0 − μ1 ◦ � − κ ◦ (∂0 ⊗ 1 + 1 ⊗ ∂0) + ∂1 ◦ κ = 0. (1)

Thus, on the level of homology, � sends μ0 to μ1.

Proof The proof follows from an analysis of the boundary of 1-dimensional
moduli spaces of the form Mco(a1, a2; b). By gluing and SFT compactness
the boundary of such a moduli space consists of two-level buildings. Hence
the terms contributing to (1) are in 1-to-1 correspondence with the boundary
of an oriented 1-manifold. The homology statement follows from (1) together
with the fact that � is a quasi-isomorphism respecting the filtration. ��

We now connect this general discussion of the product μ with the KCH-
triple. Recall from Sect. 2.2 that we have:

RKK
∼= H0

(
A(0)

�K ,�K

)
RKp

∼= H0

(
A(1)

�K ,�p

)
RpK

∼= H1

(
A(1)

�p,�K

)
.

Then the product gives a map

μ : RKp ⊗ RpK → RKK .
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We can now write the invariance property as follows.

Proposition 2.13 The RKK -bimodule map μ : RKp ⊗Z RpK → RKK is
invariant under Legendrian isotopy of �K ∪ �p: given isotopic �K0 ∪ �p
and�K1∪�p and isomorphismsψKK , ψKp, ψpK of KCH-triples as in Propo-
sition 2.5, we have

ψKK ◦ μ0 = μ1 ◦ (ψKp ⊗ ψpK ).

3 String topology

In this section we will describe how to extend the results from [5] to enhanced
knot contact homology with the product μ. This will allow us to interpret
LCH∗(�K ∪ �p) in low degree in terms of a version of string topology and
homotopy data; in particular, we will proceed in Sect. 4 to use string topology
arguments to write the KCH-triple in terms of π1(R

3\K ).
Themain result of [5] is an isomorphism in degree 0 between the Legendrian

contact homology of �K and a “string homology” defined using chains of
broken strings, where a broken string is a loop in the union R

3 ∪ LK of the
zero section and the conormal bundle of LK in T ∗

R
3. Here we will give

a modification of this approach that produces an isomorphism between the
Legendrian contact homology of �K ∪ �p (in the appropriate degree) and
string homology for broken strings inR3∪LK ∪L p, where L p is the conormal
of p in T ∗

R
3, i.e. the fiber T ∗

pR
3.Wewill then prove that the productμ defined

in Sect. 2.3 corresponds to the Pontryagin product on string homology under
this isomorphism.

The discussion in this section closely parallels the treatment in [5], as our
setup is nearly identical to the one there, differing only in the introduction of
L p.Where convenient, we adopt notation from [5] tomake the correspondence
clearer.

3.1 Broken strings

Here we recall the definition of broken strings from [5], suitably modified
for our purposes. Let K ⊂ R

3 be a knot and p ∈ R
3 be a point in the

complement of K . Write Q = R
3 and view Q as the zero section in T ∗Q, and

let N = LK ⊂ T ∗Q be the conormal bundle to K , while L p is the cotangent
fiber T ∗

p Q. We then have three Lagrangians Q, N , and L p in T ∗Q; N and
L p are disjoint, Q and L p intersect transversely at p, and Q and N intersect
cleanly along K . See Fig. 4.

Fix base points (x0, ξ0) ∈ N\K and (p, ξ) ∈ L p\{p}. If we use a metric
to identify T ∗Q and T Q, then these points become (x0, v0) with v0 ∈ Tx0N
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Fig. 4 The cotangent bundle T ∗Q with Lagrangians Q, N , L p

and (p, v) with v ∈ TpQ. This metric also gives a diffeomorphism between a
neighborhood of the zero section in N (which in turn is diffeomorphic to all
of N ) and a tubular neighborhood of K in Q, and we can view Q ∪ N as the
disjoint union of Q and N ⊂ Q glued along K . This allows us to identify Tx N
with Tx Q for x ∈ K . Similarly we view Q ∪ N ∪ L p as the disjoint union of
Q ∪ N and L p with p ∈ Q and 0 ∈ L p identified, and the metric identifies
TpQ with T0L p = T ∗

p Q.
Now consider a piecewise C1 path in Q ∪ N ∪ L p. This path can move

between Q and N (in either direction) at a point on K = Q ∩ N , and between
Q and L p at p; we call the pointswhere the path changes components switches,
either at K or at p.

Definition 3.1 A broken string is a piecewiseC1 path s : [a, b] → Q∪N∪L p
such that:

• the endpoints s(a), s(b) are each at one of the two base points (x0, v0) ∈ N
or (p, v) ∈ L p;

• if s(t0) is a switch at K from N toQ (i.e., for small ε > 0, s((t0−ε, t0]) ⊂ N
and s([t0, t0 + ε)) ⊂ Q), then:

lim
t→t0−(s′(t))normal = lim

t→t0+(s′(t))normal,

where we identify Ts(t0)N with Ts(t0)Q and vnormal denotes the component
of v normal to K with respect to the metric on Q;
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• if s(t0) is a switch at K from Q to N , then:

lim
t→t0−(s′(t))normal = − lim

t→t0+(s′(t))normal;

• if s(t0) is a switch at p from L p to Q, then:

lim
t→t0− s′(t) = lim

t→t0+ s′(t);

• if s(t0) is a switch at p from Q to L p, then:

lim
t→t0− s′(t) = − lim

t→t0+ s′(t).

The portions of s in Q (respectively N , L p) are called Q-strings (respectively
N -strings, L p-strings).

Remark 3.2 A broken string models the boundary of a holomorphic disk in
T ∗Q with boundary on Q ∪ N ∪ L p and one positive puncture at infinity at a
Reeb chord for �K ∪�p. The condition on the derivatives at a switch follows
the behavior of the boundary of such a disk at a point where the boundary
switches between Q and N , or between Q and L p: if vin and vout denote the
incoming and outgoing tangent vectors of a broken string at a switch then
vout = Jvin, where J is the almost complex structure along the 0-section
induced by the metric.

If we project from T ∗Q to Q, then the endpoints of a broken string are each
either at p or at the point on K that is the projection of x0. With this in mind,
we call a broken string s:

• a KK broken string if s(a) = s(b) = (x0, v0)
• a Kp broken string if s(a) = (x0, v0) and s(b) = (p, v)

• a pK broken string if s(a) = (p, v) and s(b) = (x0, v0)
• a pp broken string if s(a) = s(b) = (p, v).

3.2 String homology

We now construct a complex from broken strings whose homology might be
called “string homology”; in Sect. 3.4 below, we will describe an isomorphism
between this homology and enhanced knot contact homology.

For � ≥ 0, let �� denote the space of broken strings with � switches at p
(note that we do not count switches at K here), equipped with theCk-topology
for some k ≥ 3. We write

�� = �KK
� � �

Kp
� � �

pK
� � �

pp
�
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Fig. 5 The maps δKQ (respectively δKN , δ
p
Q , δ

p
L p

) insert an N -string (Q-string, L p-string, Q-

string) at an interior point of a Q-string (N -string, Q-string, L p-string) that lies on K (K , p,
p)

where �
i j
� denotes the subset of �� corresponding to i j broken strings for

i, j ∈ {K , p}, and then

Ck(��) = CKK
k (��) ⊕ CKp

k (��) ⊕ C pK
k (��) ⊕ C pp

k (��)

for the free Z-module generated by generic k-dimensional singular simplices
in�� (C

i j
k is the summand corresponding to i j broken strings). Here “generic”

refers to simplices that satisfy the appropriate transversality conditions at
switches and with respect to K and to p; compare [5, Definition 5.3].

In addition to the usual boundary operator ∂ : Ck(��) → Ck−1(��) on
singular simplices, there are two string operations

δKQ , δKN : Ck(��) → Ck−1(��)

defined for k ≤ 2 in [5, Section 5.3] (where they are called δQ , δN ). We refer
to [5] for details, but qualitatively these operations take a generic k-dimensional
family of broken strings, identify the subfamily consisting of broken strings
where a Q-string or N -string has an interior point in K , and insert a “spike” in
N or Q at this point; see Fig. 5.We note that this interior intersection condition
is codimension 1, and that adding a spike increases the number of switches at
K by 2. In our setting, there are two more string operations

δ
p
Q, δ

p
L p

: Ck(��) → Ck−2(��+2)

that are defined in the same way as δKQ , δKN , but inserting spikes in L p or Q
where a Q-string or L p-string has an interior point at p; see Fig. 5 again. Note
now that the interior intersection condition is codimension 2, and that adding
a spike increases the number of switches at p by 2.
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We then have the following result, which is a direct analogue of Proposi-
tion 5.8 from [5] and is proved in the same way.

Lemma 3.3 On generic 2-chains, the operations ∂ , δKQ + δKN , and δ
p
Q + δ

p
L p

each have square 0 and pairwise anticommute. In particular, we have

(
∂ + δKQ + δKN

)2 = 0,
(
∂ + δKQ + δKN

) (
δ
p
Q + δ

p
L p

)
+

(
δ
p
Q + δ

p
L p

) (
∂ + δKQ + δKN

)
= 0,

(
δ
p
Q + δ

p
L p

)2 = 0.

Lemma 3.3 allows us to construct a complex out of broken strings in the
following way. For m ∈ 1

2Z, define

Cm =
⊕

k+�/2=m

Ck(��).

By consideration of the parity of the number of switches at p, we can write
Cm = CKK

m ⊕C pp
m when m is an integer and Cm = CKp

m ⊕C pK
m when m is a

half-integer. We define a shifted complex C̃∗, ∗ ∈ Z, by:

C̃ K K
m = CKK

m , C̃ K p
m = CKp

m+1/2, C̃ pK
m = C pK

m−1/2, C̃ pp
m = C pp

m ,

C̃m = C̃ K K
m ⊕ C̃ K p

m ⊕ C̃ pK
m ⊕ C̃ pp

m ;
that is, we shift the grading up by 1/2 if the beginning point is p and down
by 1/2 if the endpoint is p. By Lemma 3.3, ∂ + δKQ + δKN + δ

p
Q + δ

p
L p

is a

differential on C̃∗ that lowers degree by 1.

Remark 3.4 The 1
2 -grading for strings broken at p has the following geomet-

ric counterpart for holomorphic disks with switching Lagrangian boundary
conditions on L p ∪ Q and a punctures at the intersection point p = L p ∩ Q.
Consider a disk u : (D, ∂D) → (T ∗Q, L p ∪ Q) with m punctures mapping
to p and with a positive puncture asymptotic to a Reeb chord a. The formal
dimension of u can then be expressed as follows, see [4, Theorem A.1]:

dim(u) = (dim(Q) − 3) + μ + m + 1 = μ + m + 1, (2)

where μ is the Maslov index of the loop of Lagrangian tangent planes along
the boundary of u. Here we close this loop by the capping operator at a and
as follows at the punctures mapping to p: connect the incoming tangent plane
(T ∗

p Q or T ∗L p) to the outgoing tangent plane (T ∗L p or T ∗
p Q) with a negative

123



A complete knot invariant from contact homology 1175

rotation along the Kähler angle (i.e. act by e−i π
2 s , 0 ≤ s ≤ 1). In the case

at hand the tangent planes along Q and L p are stationary with respect to the
standard trivialization and the dimension formula reduces to

dim(u) = |a| + m
(−3

2 + 1
)
. (3)

(Note thatm is even, i.e., there is an even number of switches, because both the
first and the last boundary componentmap to L p.) In the dimension formula (3)
there is a contribution of −1

2 . In order to have each puncture contributing with
an integer we can for example deform L p so that the Kähler angles between
Q and L p become (ε, π

2 , π
2 ) instead of the original (π

2 , π
2 , π

2 ). This way the
contribution toμ in (2) for the punctures at p switching from L p to Q becomes
−2 and the contribution for those switching in the opposite direction−1, giving
total dimension contributions−1 and 0, respectively. This deformation and the
corresponding grading shift are chosen to match our choice of capping path
connecting �K to �p: that is, so that both Reeb chords that start at L p get
shifted up by 1 compared to the Morse grading and so that chains of broken
strings starting at p are also shifted up.

3.3 Switches at a point in an example

On the complex of broken strings, there are four string operations, δKQ , δKN ,

δ
p
Q , and δ

p
L p
. The two that introduce switches on the knot, δKQ and δKN , have

appeared before and are studied at length in [5]. For the other two, δ pQ and δ
p
L p
,

which introduce switches at a point, the only property we need for our main
argument is their codimension; in the following section, Sect. 3.4, we use this
to prove an isomorphism to knot contact homology. Here we examine δ

p
Q and

δ
p
L p

more closely in a model case. This is a digression from the main argument
and can be skipped without loss of continuity, but provides some context for
these operations within contact geometry.

Consider Q = Sn and as usual let L p ⊂ T ∗Sn be the cotangent fiber over p,
with�p ⊂ ST ∗Sn the Legendrian sphere given by the unit cotangent fiber. By
the surgery result from [3, §5.5], we can compute the DGAof�p in ST ∗Sn via
the DGA for the Legendrian unknot U ⊂ S2n−1, where S2n−1 is the standard
contact (2n − 1)-sphere, i.e., the contact boundary of the standard symplectic
2n-ball, with the differential in the latter DGA twisted by a point condition at
p.
There is (effectively) only one Reeb chord a of U of grading |a| = n − 1,

see [3], and the differential is ∂a = p. To see this one can use the flow tree
description of holomorphic disks: it is easy to see that for the standard front
of the unknot there is exactly one rigid point constrained Morse flow tree with
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positive puncture at a. Thus the DGA of �p is generated by chords ar , r ≥ 1,
of grading r(n − 1) + (n − 2), and the differential is

∂(ar ) =
r∑

j=2

a j−1 · ar− j .

We claim that this DGA is chain isomorphic to the complex of broken strings
in Q ∪ L p with differential given by ∂ + δ

p
Q + δ

p
L p
. For the latter, note that

L p is contractible so we simply forget the N -strings and think of the chains
of broken strings as the tensor algebra of chains on the based loop space of
Sn with differential ∂ + δp, where δp splits a chain over the locus where its
evaluationmap hits p. ByMorse theory, the space of non-constant based loops
in Sn is a cell complex with a cell in dimensions

(n − 1), 2(n − 1), 3(n − 1), 4(n − 1), . . . .

For degree reasons there are only quadratic terms in the differential ∂ + δp
and in order to compute δp we need to see the unstable manifolds of the cells
that correspond toMorse flow in the Bott-manifolds followed by shrinking the
loops over half-disks. It is not hard to see that δp acts on the Morse cells by
splitting the cell of dimension r(n − 1) into two cells of dimensions j (n − 1)
and k(n − 1), where j + k = r − 1, in all possible ways.

We thus conclude that the complex of broken strings in Q ∪ L p is indeed
isomorphic to the DGA of the cosphere �p. Furthermore, one can check that
this isomorphism is induced by the map that associates to a Reeb chord c of
∂L p the chain carried by the moduli-space of disks with positive puncture
at c and switching boundary condition on Q ∪ L p. Note that each pair of
switches in the boundary of such a disk contributes −(n−2) to the dimension
of the moduli space, see Remark 3.4, which explains the difference in grading
between the generators of the DGA of �p and generators of the complex of
chains of broken strings (r(n − 1) + (n − 2) versus r(n − 1) for r ≥ 1).

3.4 String homology and enhanced knot contact homology

In [5] the DGA A�K was related to string homology via a chain map defined
through a count of holomorphic diskswith switching boundary condition.Here
we similarly relateA�K∪�p to string homology. More precisely, if a is a Reeb
chord of�K ∪�p thenwe letMsw(a) denote themoduli space of holomorphic
disks in T ∗

R
3 with one positive puncture asymptotic to the Reeb chord a at

infinity, and such that the disk has switching boundary on Q∪ N ∪ L p: that is,
the boundary of the disk lies on Q ∪ N ∪ L p, and there are several punctures
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Fig. 6 A Reeb chord a to �p from �K and a holomorphic disk in Msw(a) whose boundary
is the depicted broken string s

where the boundary switches between the Lagrangians L p and Q or between
LK and Q, in either direction.
The boundary of a disk inMsw(a), oriented counterclockwise, is a broken

string in Q∪N∪L p; see Fig. 6.More precisely, each endpoint of a Reeb chord
of �K ∪ �p is a point in �K ∪ �p; fix paths in L p or N that connect these
points to the base points (p, ξ) or (x0, ξ0). Then the union of the boundary of
a disk in Msw(a) and the paths for the endpoints of a is a broken string.

We can stratify Msw(a) by the number of switches at p: for � ≥ 0, let
Msw

� (a) denote the subset ofMsw(a) of disks with � switches at p. The mod-
uli space Msw

� (a) is an oriented C1-manifold and we let [Msw
� (a)] denote

the chain of broken strings in �� carried by this moduli space (that is, the
chain given by the boundaries of disks in the moduli space). Now define
� : A�K∪�p → C̃∗ by

�(a) =
∑

�

[Msw
� (a)

]
.

Proposition 3.5 The map

� : (A�K∪�p , ∂) →
(
C̃∗, ∂ + δKQ + δKN + δ

p
Q + δ

p
L p

)

is a degree zero chainmapof differential graded algebras,wheremultiplication
on C̃∗ is given by chain-level concatenation of broken strings.
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Proof The proof is very similar to [5, Proposition 5.8]. We first check that the
map � has degree 0. The dimension of Msw

� (a) is

dim
(Msw

� (a)
) = |a| − �′,

where �′ is the number switches at p along the boundary where the boundary
switches from L p to Q. To see this, recall fromRemark 3.4 that the contribution
to the dimension formula is 0 for punctures switching from Q to L p at p and
−1 for the puncture switching from L p to Q.

We now have three cases. If a joins �K to itself, then � = 2�′ and

[Msw
� (a)

] ∈ C|a|−�/2

(
�KK

�

)
⊂ C̃ K K|a| .

If a goes to�K from�p, then if we traverse the boundary of a disk inMsw
� (a)

beginning at the positive puncture, we begin on N , then alternately switch to
and from L p, and end on L p; thus � = 2�′ + 1 and

[Msw
� (a)

] ∈ C|a|−(�−1)/2

(
�

Kp
�

)
⊂ C̃ K p

|a| .

Finally, if a goes to �p from �K , then the same argument gives � = 2�′ − 1
and

[Msw
� (a)

] ∈ C|a|−(�+1)/2

(
�

pK
�

)
⊂ C̃ pK

|a| .

In all cases we find that � preserves degree.
We next study the chain map equation. To this end we must understand the

codimension 1 boundary ofMsw(a) which contributes the singular boundary
∂�(a). This boundary consists of three parts:

(i) 2-level disks with one level of dimension dim(Msw(a)) − 1 and a level
of dimension 1 in the symplectization end;

(ii) 1-level disks in which a boundary arc in Q or in LK shrinks to a point in
K , or equivalently a disk with one boundary arc that hits K in an interior
point;

(iii) 1-level disks in which a boundary arc in Q or in L p shrinks to a point at
p, or equivalently a disk with one boundary arc that hits p in an interior
point.

Configurations of type (i) are counted by �(∂a), configurations of type (i i)
by (δKQ + δKN )�(a), and configurations of type (i i i) by (δ

p
Q + δ

p
N )�(a). The

chain map equation follows. ��
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We will be especially interested in the subcomplexes C̃ K K∗ , C̃ K p∗ , C̃ pK∗
in the lowest degree. These are given as follows, where the differential is
d = ∂ + δKQ + δKN (the operations δ

p
Q , δ

p
L p

do not appear for degree reasons):

C̃ K K
1 = CKK

1 (�0) ⊕ CKK
0 (�2)

d−→ C̃ K K
0 = CKK

0 (�0)

C̃ K p
1 = CKp

1 (�1) ⊕ CKp
0 (�3)

d−→ C̃ K p
0 = CKp

0 (�1)

C̃ pK
2 = C pK

1 (�1) ⊕ C pK
0 (�3)

d−→ C̃ pK
1 = C pK

0 (�1).

Note that d acts on the first summand in each case, and is 0 on the second.
Amain result from [5] is that� induces an isomorphism in degree 0 homol-

ogy. In our setting, this becomes the following:

Proposition 3.6 The map � induces isomorphisms

RKK = H0(A�K ,�K )
∼=−→ H0(C̃

K K∗ , d)

= coker
(
∂ + δKQ + δKN : CKK

1 (�0) → CKK
0 (�0)

)

RKp = H0(A�K ,�p)
∼=−→ H0(C̃

K p∗ , d)

= coker
(
∂ + δKQ + δKN : CKp

1 (�1) → CKp
0 (�1)

)

RpK = H1(A�p,�K )
∼=−→ H1(C̃

pK∗ , d)

= coker
(
∂ + δKQ + δKN : C pK

1 (�1) → C pK
0 (�1)

)
.

Proof The isomorphism for RKK is proven in [5, §7] via an action/length
filtration argument, and the other isomorphisms use exactly the same argument.
A short description of the argument is as follows.A lengthfiltration on chains of
broken strings given by the supremum norm of the sum of the lengths of the Q-
strings is introduced. On theDGA there is the action filtration and for a suitable
choice of almost complex structure on T ∗

R
3 the chain map � respects this

filtration. A standard approximation argument shows that the string homology
complex is quasi-isomorphic to the string homology complex of piecewise
linear broken strings. On the complex of piecewise linear broken strings, a
length-decreasing flow (with splittings when the segments cross the knot) then
deforms the complex to a complex generated by certain chains associated to
binormal chords and using basic holomorphic strips over binormal chords and
the action/length filtrations then shows that � is a quasi-isomorphism. ��
Remark 3.7 It is likely that � is in fact an isomorphism in all degrees. The
reason that we restrict to the lowest degree (0 for A�K ,�K and A�K ,�p and
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1 for A�p,�K ) here, following the same restriction in [5], is that the proof of
the isomorphism in [5] involves an explicit examination of moduli spaces of
holomorphic disks with switching boundary conditions of dimensions≤ 2. To
extend the isomorphism to higher degrees would require one to work out the
relevant string homology in degree d + 2, imposing conditions at endpoints
of the strings that match degenerations in higher dimensional moduli spaces
of holomorphic disks, and this has not been worked out for moduli spaces of
dimensions ≥ 3.

Remark 3.8 In [5], coker
(
∂ + δKQ + δKN : CKK

1 (�0) → CKK
0 (�0)

)
is writ-

ten as “string homology” H string
0 (K ), and the first isomorphism in Proposi-

tion 3.6 states that H string
0 (K ) is isomorphic to knot contact homology in degree

0. A variant of this construction, modified string homology H̃ string
0 (K ), is also

considered in [5, §2], and it is observed there that H̃ string
0 (K ) ∼= Z[π1(R

3\K )].
In our language, modified string homology is defined by

H̃ string
0 (K ) = coker

(
∂ + δKQ + δKN : C pp

1 (�2) → C pp
0 (�2)

)

and the above map is part of the differential d : C̃ pp
2 → C̃ pp

1 .
Two things prevent us from using modified string homology to show that

LCH∗(�K ∪ �p) is a complete invariant. First, H̃ string
0 (K ) is not directly a

summand of the homology of C̃∗, although it does map to C̃ pp
1 . Second, the

isomorphism of H̃ string
0 (K ) with Z[π1(R

3\K )] is as a Z-module, without the
product structure.One could try to recover the product onZ[π1(R

3\K )], which
is crucial to recovering the knot group itself, via the natural concatenation
product on C̃ pp∗ , but this sends C̃ pp

1 ⊗ C̃ pp
1 to C̃ pp

2 rather than to C̃ pp
1 .

Instead, we need a product on C̃∗ that (in our grading convention) reduces
degree by 1. Intuitively this is given by concatenating a broken string ending
at p and a broken string beginning at p, and deleting the two switches at p.
More precisely, we use the Pontryagin product; we discuss this product and
its holomorphic-curve counterpart next.

3.5 String topology and the product

Having established isomorphisms � in low degree between enhanced knot
contact homology and string homology, we now examine the behavior of the
product map μ under this isomorphism. Recall from Sect. 2.3 that μ is a map

μ : A(1)
�K ,�p

⊗ A(1)
�p,�K

→ A(0)
�K ,�K

.

123



A complete knot invariant from contact homology 1181

Wewill show that under the isomorphism�,μmaps to the Pontryagin product
at the base point (p, v) ∈ L p, which we now define.

Consider two chains of broken strings in CKp
k1

(��1) and C pK
k2

(��2). We
define their Pontryagin product at (p, v) as the concatenation at (p, v) followed
by removing the path between the switches at p that precede and follow this
concatenation. This gives a map

CKp
k1

(��1) ⊗ C pK
k2

(��2) → CKK
k1+k2(��1+�2−2).

Summing over integers k1, k2 and half-integers �1, �2, we get the Pontryagin
product at p

P : C̃ K p∗ ⊗ C̃ pK∗ → C̃ K K∗

which has degree −1.
We now treat the relation between P and μ. Note that � : A�K∪�p → C̃∗

induces maps

A(1)
�K ,�p

→ C̃ K p∗ , A(1)
�p,�K

→ C̃ pK∗ .

We claim that these�maps intertwine P andμ on the level of homology. This
is not true on the chain level, but the difference can be measured by a map �

that we now define.
If a1 and a2 are Reeb chords to �K from �p and to �p from �K , respec-

tively, then we write Msw(a1, a2) for the moduli space of holomorphic disks
u : D → T ∗Q that send positive punctures at−1 and 1 to a1 and a2 at infinity,
the arc in the upper half plane connecting these punctures to L p, and the arc
in the lower half plane to Q ∪ LK ∪ L p. We can stratify Msw(a1, a2) by the
number of switches that the boundary of a holomorphic disk has at p; for
� ≥ 0 even, write Msw

� (a1, a2) for the subset of Msw(a1, a2) corresponding
to disks with � switches at p. The formal dimension of this moduli space is,
see Remark 2.10,

dim
(Msw

� (a1, a2)
) = |a1| + |a2| − �/2.

With notation as in Sect. 2.3, define a map

� : A(1)
�K ,�p

⊗ A(1)
�p,�K

→ CKK∗

as follows:

�(b1a1 ⊗ a2b2) =
∑

|a1|+|a2|−�/2=0

�(b1) · [Msw
� (a1, a2)

] · �(b2),
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where [Msw
� (a1, a2)] denotes the chain in CKK

0 (��) ⊂ CKK
�/2 = C̃ K K

�/2 carried
by themoduli space (i.e., the chain of broken strings corresponding to the disks
inMsw

� (a1, a2)) and where · denotes the concatenation product: given broken
strings in �(b1),Msw

� (a1, a2), and �(b2), we concatenate the three to obtain
another broken string.

Remark 3.9 To see that [Msw
� (a1, a2)] is a chain of broken strings we use [4,

Theorem 1.2] which implies that there is a uniform bound on the number of
switches on the boundary of a disk in any moduli space with two positive
punctures.

Proposition 3.10 On A(1)
�K ,�p

⊗ A(1)
�p,�K

we have the following:

� ◦ μ − P ◦ (� ⊗ �) + � ◦ (1 ⊗ ∂ + ∂ ⊗ 1)

−
(
∂ + δKQ + δKN + δ

p
Q + δ

p
L p

)
◦ � = 0.

Proof To see this we note that the codimension one boundary ∂Msw(a1, a2)
consists of the following breakings:

• Two-level disks with one level in the symplectization of dimension one and
one level in the cotangent bundle. These are accounted for by the first and
third terms and ∂ in the last term.

• Lagrangian intersection breaking at K , accounted for by the operations
δKQ + δKN in the last term.

• Lagrangian intersection breaking at p in the upper half disk, accounted for
by the second term.

• Lagrangian intersection breaking at p in the lower half disk, accounted for
by the operations δ

p
Q + δ

p
L p

in the last term.

The formula follows. ��
We can now assemble our results in low degree into the following result.

Recall that RKK
∼= H0(A(0)

�K ,�K
), RKp

∼= H0(A(1)
�K ,�p

), and RpK
∼=

H1(A(1)
�p,�K

). From Proposition 3.6, we have an isomorphism � : RKK →
H0(C̃ K K∗ , d). The following is now an immediate consequence of Proposi-
tion 3.10.

Proposition 3.11 The following diagram commutes:

RKp ⊗ RpK
μ

�⊗�

RKK

�

H0(C̃
K p∗ , d) ⊗ H1(C̃

pK∗ , d)
P H0(C̃ K K∗ , d).
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4 Legendrian contact homology and the knot group

In this section, we use the isomorphism from Sect. 3 between Legendrian con-
tact homology and string topology to write the KCH-triple (RKK , RKp, RpK )

defined in Sect. 2.2 in terms of the knot group π1(R
3\K ). This will allow

us to recover the knot group from the KCH-triple along with the product
μ : RKp ⊗ RpK → RKK . Along the way, we present the KCH-triple in terms
of the cord algebra and deduce that enhanced knot contact homology encodes
the Alexander module.

4.1 String homology and the cord algebra

From Proposition 3.6, we have isomorphisms between the KCH-triple
(RKK , RKp, RpK ) and parts of the homology of the string complex (C̃∗, d).
As in [5], we can interpret this string homology in terms of the “cord algebra”
of K , essentially by considering only the Q-strings. Here we give this cord
algebra interpretation of string homology, which will allow us in Sect. 4.3 to
rewrite the KCH-triple in terms of the knot group. The cord-algebra approach
has the added benefit of readily yielding the Alexander module of the knot as
the homology of a certain linearization of enhanced knot contact homology,
as we will see.

We first review the cord algebra as presented in [5, §2.2], adapted to our
purposes. Let K ⊂ Q be an oriented knot and p ∈ Q be a point in the knot
complement, where Q = R

3 as before. Let K ′ be a parallel copy of K in the
Seifert framing, and choose a base point ∗ on K ′.

Definition 4.1 A cord is a continuousmap γ : [0, 1] → Q with γ (0), γ (1) ∈
(K ′\{∗})∪{p} and γ ([0, 1])∩K = ∅. A cord is a KK (respectively Kp; pK ;
pp) cord if γ (0), γ (1) ∈ K ′ (respectively γ (0) ∈ K ′, γ (1) = p; γ (0) = p,
γ (1) ∈ K ′; γ (0) = γ (1) = p).

Definition 4.2 ([5]) The cord algebra of K , CordKK , is the noncommu-
tative unital ring freely generated by homotopy classes of KK cords and
Z[l±1,m±1], modulo the following skein relations, where the cord is drawn
in red, K in black, and K ′ in gray:

123



1184 T. Ekholm et al.

(1) = 1−m

(2) = m · and = ·m

(3)
*

* = l ·
*

* and
*

* =
*

* · l

(4) − = · .

Note that a typical element of CordKK is a linear combination of products
of cords and elements of Z[l±1,m±1], and multiplication in CordKK is given
by formal concatenation of products.

We can extend Definition 4.2 to cover cords with endpoints at p as well,
where the relations only apply near K and do not affect the ends at p. Note that
the skein relations may still involve KK cords: for example, if the beginning
and end points of the cords on the left hand side of (4) lie at K and p respec-
tively, then (4) gives a relation between two Kp cords (the left hand side) and
a product of a KK cord and a Kp cord (the right hand side).

Definition 4.3 The Kp cordmodule of K , CordKp, is the left CordKK -module
freely generated by Kp cords, modulo the skein relations (2), (3), and (4)
from Definition 4.2. Similarly, the pK cord module of K , CordpK , is the right
CordKK -module freely generated by pK , modulo the same skein relations.

Now a broken string in CKK
0 (�0) (respectively CKp

0 (�1), C
pK
0 (�1)) pro-

duces an element of CordKK (respectively CordKp, CordpK ) given by the
product of the Q-strings taken in order. This map induces maps from string
homology to the cord algebra and modules, and as in [5] we can show
that these maps are isomorphisms. Combined with Proposition 3.6, this
shows that the cord algebra and modules are isomorphic to the KCH-triple
(RKK , RKp, RpK ), and this is the fact that we will exploit in this section to
prove Theorem 1.1.

Proposition 4.4 There are isomorphisms

CordKK
∼= H0

(
C̃ K K∗ , d

) ∼= RKK

CordKp
∼= H0

(
C̃ K p∗ , d

) ∼= RKp

CordpK
∼= H1

(
C̃ pK∗ , d

) ∼= RpK
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where the first line is a ring isomorphism, and the second and third lines send
the left and right actions ofCordKK to the left and right actions of RKK . Under
these isomorphisms, the map μ : RKp ⊗ RpK → RKK is the concatenation
map

CordKp ⊗CordpK → CordKK .

Proof The first line is proved in Proposition 2.9 of [5], and the other two lines
have the same proof. The fact that these isomorphisms preserve multiplica-
tion follows formally from the construction of the cord algebra and modules.
The description of μ as a concatenation product is a direct consequence of
Proposition 3.11. ��

4.2 Enhanced knot contact homology and the Alexander module

Here we digress from the main argument to observe that we can use the cord
modules to recover the Alexander module H1(X̃K ) of K , where X̃K is the infi-
nite cyclic cover ofR3\K and H1(X̃K ) is viewed as aZ[m±1]-module as usual
by deck transformations. As a consequence, we show that a certain canoni-
cal linearization of enhanced knot contact homology contains the Alexander
module and thus the Alexander polynomial.

It was previously known [24] that the Alexander module can be extracted
from the same linearization of usual knot contact homology LCH∗(�K ), but
in a somewhat obscure way—essentially, the degree 1 linearized homology is
the second tensor product of H1(X̃K ) ⊕ Z[m±1], with the proof involving an
examination of the combinatorial form of the DGA of �K in terms of a braid
representative for K , and a relation to the Burau representation. Here we will
see that with the introduction of the fiber �p alongside �K , we can instead
deduce the Alexander module in a significantly simpler way. In particular,
we will use linearized homology not in degree 1 but in degree 0, which is
more geometrically natural (for instance, it relates more easily to the cord
algebra).

We first present a variant of the cord algebra and modules, following [24]
and especially the discussion in [5, §2.2]. Choose a base point ∗ on K corre-
sponding to the base point ∗ on K ′. Let an unframed cord of K be a path whose
endpoints are in (K\{∗}) ∪ {p} and which is disjoint from K in its interior;
we can divide these into KK , Kp, pK , pp cords depending on where the
endpoints lie.
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1186 T. Ekholm et al.

Definition 4.5 ([24]) The unframed cord algebra of K , Cord′
KK , is the non-

commutative algebra over Z[l±1,m±1] generated by homotopy classes of
unframed KK cords, modulo the following skein relations:

(1) = 1−m

(2)
*

= l ·
*

and
*

=
*

· l

(3) −m = · .

The unframed Kp (respectively pK) cord module of K , Cord′
Kp (respec-

tively Cord′
pK ), is the right (respectively left) Cord′

KK -module generated by
unframed Kp (respectively pK ) cords, modulo the skein relations (2) and (3).

Note that Cord′
KK , Cord

′
Kp, and Cord′

pK are all Z[l±1,m±1]-modules,
unlike their framed counterparts CordKK , CordKp, CordpK , where elements
of Z[l±1,m±1] do not necessarily commute with cords. However, we have the
following.

Proposition 4.6 The unframed cord algebra and modules Cord′
KK , Cord

′
Kp,

Cord′
pK are isomorphic to the quotients of the cord algebra and modules

CordKK , CordKp, CordpK obtained by imposing the relations that elements
of Z[l±1,m±1] commute with cords.
Proof This is essentially laid out in [5, §2.2]. Fix a cord γ0 from p to a point
x0 ∈ K ′\{∗}. Given any cord γ , we can produce a loop γ̃ in R

3\K based
at p, by joining any endpoint of γ on K ′ to x0 along (any path in) K ′, and
appending γ0 or −γ0 as necessary. Let γ ′ be the unframed cord obtained from
γ by joining any endpoint of γ on K ′ to the corresponding point on K by a
straight line segment normal to K . Then the map

γ �→ m− lk(γ̃ ,K )γ ′

gives the desired isomorphisms from the quotients of CordKK , CordKp,
CordpK to Cord′

KK , Cord
′
Kp, Cord

′
pK . (For the inverse maps from Cord′ to

Cord, homotope any cord with a beginning or end point on K so that it begins
or ends with γ0 or −γ0, and then remove ±γ0.) Note that the displayed map
from Cord to Cord′ sends the skein relations (1), (3), (4) in Definition 4.2 to
(1), (2), (3) in Definition 4.5, and the normalization by powers of m means
that (2) from Definition 4.2 becomes trivial under this map. ��
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Now from [24], there is a canonical augmentation of the DGA for K ,

ε : (A�K , ∂) → (Z[m±1], 0),
whose definitionwe recall here. SinceA�K is supported in nonnegative degree,
the graded map ε is determined by its action on the degree 0 part of A�K , or
equivalently (since ε ◦ ∂ = 0) by the induced action on H0(A�K , ∂). This in
turn is determined by the induced action on Cord′

KK , which by Proposition 4.6
is the quotient of H0(A�K , ∂) by setting l,m to commute with everything. On
Cord′

KK , ε is defined as follows:

ε(l) = 1

ε(m) = m

ε(γ ) = 1 − m

for any unframed KK cord γ . (Note that ε preserves the skein relations for
Cord′

KK and is thus well-defined.) We can extend ε from an augmentation of
A�K to an augmentation ofA�K∪�p by setting ε to be 0 for any mixed chord
between �K and �p.

Remark 4.7 Applying [1, Theorem 6.15] to the holomorphic strips over binor-
mal chords shows that the augmentation ε is induced by an exact Lagrangian
filling MK diffeomorphic to the knot complement, obtained by joining the
conormal LK and the zero-section Q via Lagrange surgery along the knot K .

Linearizing with respect to this augmentation gives the linearized contact
homology

LCHε∗
(
�K ∪ �p

)

= (
LCHε∗

)
�K ,�K

⊕ (
LCHε∗

)
�K ,�p

⊕ (
LCHε∗

)
�p,�K

⊕ (
LCHε∗

)
�p,�p

.

As discussed previously, in [24] it is shown that (LCHε
1)�K ,�K recovers the

Alexander module H1(X̃K ). Here instead we have the following.

Proposition 4.8 We have isomorphisms of Z[m±1]-modules
(
LCHε

0

)
�K ,�p

∼= (
LCHε

1

)
�p,�K

∼= H1(X̃K ) ⊕ Z[m±1].

Proof We will prove the isomorphism for (LCHε
1)�p,�K ; the isomorphism

for (LCHε
0)�K ,�p follows by symmetry between Cord′

Kp and Cord′
pK . The

complexwhose homology computes (LCHε∗)�p,�K is the freeZ[m±1]-module
generated by Reeb chords to �p from �K , with the differential ∂ lin given by
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Fig. 7 Three pK cords γ1, γ2, γ3 related by γ1 − mγ2 = (1 − m)γ3

applying the augmentation ε to all pure Reeb chords from �K to itself to the
usual differential ∂ . In particular, since the degree 1 homology (LCHε

1)�p,�K

is the quotient of the Z[m±1]-module generated by degree 1 Reeb chords to
�p from �K by the image of ∂ lin, we have:

(LCHε
1)�p,�K

∼= RpK ⊗ε Z[m±1] ∼= Cord′
pK ⊗εZ[m±1].

Here by “⊗ε” we mean ⊗RKK (or ⊗Cord′
KK

) where we use ε to give Z[m±1]
the structure of an RKK -module (or Cord′

KK -module), and implicitly we are
setting l,m to commute with everything in (LCHε

1)�p,�K and RpK .
Now Cord′

pK ⊗εZ[m±1] is the quotient of the free Z[m±1]-module gen-
erated by unframed pK cords by the skein relations (2) and (3) from
Definition 4.5, where l is sent to 1 and all KK cords are sent to 1−m. Relation
(2) then says that pK cords are unchanged if we move their K endpoint over
∗, while relation (3) becomes:

−m = (1−m) .

That is, if γ1, γ2, γ3 are unframed pK cords that are related as shown in the
left side of Fig. 7, then we impose the relation:

γ1 − mγ2 = (1 − m)γ3.

Thus we can describe Cord′
pK ⊗εZ[m±1] in terms of a knot diagram for

K as follows. Use the diagram to place K in a neighborhood of the xy plane
in R

3, and place p high above the xy plane along the z axis. If the diagram
has n crossings, then it divides K into n strands from undercrossing to under-
crossing. Then Cord′

pK ⊗εZ[m±1] is generated by n unframed pK cords,
namely straight line segments from p to any point on each of these strands,
and each crossing gives a relation γ1 − mγ2 = (1 − m)γ3 if γ1, γ2, γ3 are
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A complete knot invariant from contact homology 1189

as shown in the right side of Fig. 7. But this is the well-known presentation
of H1(X̃K ) ⊕ Z[m±1] from knot colorings. In particular, what we have just
described is the Alexander quandle of K , see [19]. ��
Remark 4.9 The description we have given in this section for the unframed
cord modules is highly reminiscent of the construction of the knot quandle
from [19], which is known to be a complete invariant. However, we do not
know how to extract the entire knot quandle, rather than just the Alexander
quandle (which is a quotient), from the unframed cord module.

4.3 String homology in terms of the knot group

Having expressed the KCH-triple (RKK , RKp, RpK ) in terms of cords in
Sect. 4.1, our next step en route to proving Theorem 1.1 is to rewrite the
KCH-triple further, in terms of the knot group and the peripheral subgroup of
the knot K . For RKK , which is the degree 0 knot contact homology of K , this
was done in [5, §2.3–2.4], and we follow the treatment there.

Writeπ = π1(R
3\K ) for the knot group and π̂ = π1(�K ) for the peripheral

subgroup.A framing and orientation on K givesmeridian and longitude classes
m, l ∈ π̂ , which we can then view as classes in π as well. In what follows,
we place square brackets around elements of π and curly brackets around
elements of π̂ .

Define S to be the Z-module freely generated by words that are formal
products of nontrivial words whose letters are alternately in π and π̂ , divided
by the following string relations, where we use x and α to denote elements of
π and π̂ respectively:

(1) · · ·1 [xα1]{α2} · · ·2 = · · ·1 [x]{α1α2} · · ·2
(2) · · ·1 {α1}[α2x] · · ·2 = · · ·1 {α1α2}[x] · · ·2
(3) (· · ·1 [x1x2] · · ·2) − (· · ·1 [x1mx2] · · ·2) = · · ·1 [x1]{1}[x2] · · ·2
(4) (· · ·1 {α1α2} · · ·2) − (· · ·1 {α1mα2} · · ·2) = · · ·1 {α1}[1]{α2} · · ·2.

Note that there is no restriction on generators of S as to whether the first or
last letters are inπ or π̂ .We can define a product on S as follows:multiplication
of two words w1, w2 generating S is zero unless the last letter of w1 and the
first letter of w2 are both in π or both in π̂ , in which case it is concatenation
combined with the product in π or π̂ ; that is,

(· · ·1 {α1}) · ({α2} · · ·2) = · · ·1 {α1α2} · · ·2
(· · ·1 [x1]) · ([x2] · · ·2) = · · ·1 [x1x2] · · ·2 .

Wenowhave the following result identifying RKK , RKp, RpK fromSect. 3.1
with summands of S.
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Proposition 4.10 RKK , RKp, and RpK are isomorphic to the Z-submodules
of S generated by the following sets:

• for RKK , words beginning and ending in π̂;
• for RKp, words beginning in π̂ and ending in π ;
• for RpK , words beginning in π and ending in π̂ .

Multiplication in S inducesmaps RKK ⊗RKK → RKK , RKK ⊗RKp → RKp,
RpK ⊗ RKK → RpK that agree with, respectively, the ring structure on RKK
and the RKK -module structure on RKp and RpK .

Proof Same as the proof of [5, Proposition 2.14]. Briefly, by Proposition 4.4,
the KCH-triple is isomorphic to (CordKK ,CordKp,CordpK ). Given a cord,
we can produce a closed loop in R

3\K based at p, and hence an element of
π , as in the proof of Proposition 4.6. Thus products of cords, with elements
of Z[l±1,m±1] in between, correspond to alternating products of elements of
π and π̂ . The string relations on S come from the skein relations on cords.
Note that the distinct behaviors of RKK , RKp, and RpK in the statement of
Proposition 4.10 come from the construction of the cord algebra and modules:
an element of CordKK begins and ends with an element of π̂ (possibly 1),
while an element of CordKp begins with an element of π̂ and ends with a cord
(which maps to π ), and similarly for CordpK . ��

To clarify:

• RKK is generated by {α1}, {α1}[x1]{α2}, {α1}[x1]{α2}[x2]{α3}, . . .
• RKp is generated by {α1}[x1], {α1}[x1]{α2}[x2], . . .
• RpK is generated by [x1]{α1}, [x1]{α2}[x2]{α2}, . . .
where αi ∈ π̂ and xi ∈ π . To this, we can then add:

• Rpp = RpK ⊗RKK RKp is generated by [x1]{α1}[x2], [x1]{α1}[x2]{α2}[x3],
. . ..

Finally, the product μ : RKp ⊗ RpK → RKK has a simple interpretation
in terms of S, since by Proposition 4.4 it is the concatenation product:

μ({α0} · · · {α1}[x1], [x2]{α2} · · · {α3}) = {α0} · · · {α1}[x1x2]{α2} · · · {α3}.
The product on Rpp = RpK ⊗RKK RKp induced by μ is then also given by
concatenation.

4.4 The KCH-triple within Z[π1(R
3\K )]

Although the notation from Sect. 4.3 using square and curly brackets is natural
from the viewpoint of broken strings, it will be convenient for our purposes
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to reinterpret the KCH-triple (RKK , RKp, RpK ) directly in terms of the group
ring of the knot group, which we henceforth denote by

R := Z[π1(R
3\K )].

This is the content of Proposition 4.13 below.
To prepare for this result, extend the notation · · · [x1]{α1}[x2] · · · ∈ S, where

up to now we have xi ∈ π and αi ∈ π̂ , by linearity to allow for arbitrary
xi ∈ R = Zπ . Given any element of S of the form · · · [x1]{α1}[x2] · · · with
αi ∈ π̂ and xi ∈ Zπ , the string relations on S allow us to get rid of any internal
part in curly braces, where “internal” means not at the far left or far right. More
precisely, by (1) and (3) from the defining relations for S in Sect. 4.3, we can
write:

· · · [x1]{α1}[x2] · · · = · · · [x1α1x2] · · · − · · · [x1α1mx2] · · · .

This allows us to inductively reduce the number of internal curly braces until
none are left.

Thus for instance we can write any element of RKp as a linear combination
of elements of the form {α1}[x1], where x1 ∈ Zπ , and this in turn is equal
to {1}[α1x1] by string relation (2). Similar results hold for RpK and RKK , as
well as for Rpp, and we conclude the following:

Proposition 4.11 As Z-submodules of S, we have:

• RKK is generated by the elements of the form {α} and {1}[x]{1} for α ∈ π̂

and x ∈ π ;
• RKp is generated by {1}[x] for x ∈ π ;
• RpK is generated by [x]{1} for x ∈ π ;
• Rpp is generated by [x1]{1}[x2] for x1, x2 ∈ π .

Write R̂ = Z[π̂ ] = Z[l±1,m±1], and view R̂ as a subring of R. In [5,
Proposition 2.20], it is shown that the map {α} �→ α, {1}[x]{1} �→ x(1 − m)

induces an isomorphism from RKK to R̂+R(1−m), where the latter is viewed
as a subring of R (and R(1 − m) is the left ideal generated by 1 − m).

Remark 4.12 To be precise, the map in [5, Proposition 2.20] is from RKK to
R̂ + (1 − m)R rather than R̂ + R(1 − m), and sends {1}[x]{1} to (1 − m)x
rather than x(1 − m). This however is just a choice of where to place the
(1−m) factors. Our convention can be derived from the convention in [5] by
the symmetry that reverses the order of words in S.

We can now generalize this isomorphism to the entire KCH-triple.
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Proposition 4.13 We have Z-module isomorphisms between the KCH-triple
and the following Z-submodules of R = Z[π ]:

RK K
∼=→ R̂ + R(1 − m) {α} �→ α , {1}[x]{1} �→ x(1 − m);

RKp
∼=→ R {1}[x] �→ x;

RpK
∼=→ R(1 − m) [x]{1} �→ x(1 − m),

where the second and third isomorphisms hold for any knot K and the first
isomorphismholds as longas K is not the unknot.Weuseφ to denote all of these
isomorphisms; then it is furthermore the case that φ sends all multiplications
RKK ⊗ RKK → RKK , RKK ⊗ RKp → RKp, RpK ⊗ RKK → RpK , as well
as the product RKp ⊗ RpK → RKK , to multiplication in R.

Proof This follows the proof of [5, Proposition 2.20]. To see that φ is
well-defined, extend the definition of φ to all generators of S (ignoring Propo-
sition 4.11 for the moment) by:

{α1}[x1]{α2} · · · {αk−1}[xk]{αk} �→ α1(1 − m)x1α2(1 − m) · · ·αk−1(1 − m)xkαk

{α1}[x1]{α2} · · · {αk−1}[xk] �→ α1x1α2(1 − m) · · ·αk−1(1 − m)xk
[x1]{α1}[x2] · · · [xk]{αk} �→ x1α1(1 − m)x2 · · · xkαk(1 − m)

[x1]{α1}[x2] · · · [xk] �→ x1α1(1 − m)x2 · · · xk;

that is, replace each term {α} in curly braces by α(1 − m) unless {α} is at
the end of a word, in which case replace it by α. It is easily checked that
this map preserves the string relations on S, and so it gives a well-defined map
φ : S → R. Restricted to generators of the form {α}, {1}[x]{1}, {1}[x], [x]{1},
φ is as given in the statement of the proposition; note now by Proposition 4.11
that these suffice to determine φ.

We next check bijectivity. The maps φ are clearly surjective. It is proved
in [5, Proposition 2.20] that φ on RKK is injective as long as K is knotted. The
fact that φ is injective on RKp is trivial: by Proposition 4.11, any element of
RKp can be written as {1}[x] for some x ∈ R, and then φ({1}[x]) = 0 implies
x = 0. To prove that φ is injective on RpK , note that if φ([x]{1}) = 0, then
x(1−m) = 0 in R; then since knot groups are left orderable, R = Zπ has no
zero divisors [17], and so x = 0.

Finally, the fact that φ respects multiplication and μ follows readily from
the definition of φ: for example,
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φ(μ({α0} · · · {α1}[x1], [x2]{α2} · · · {α3}))
= φ({α0} · · · {α1}[x1x2]{α2} · · · {α3})
= α0(1 − m) · · ·α1(1 − m)x1x2α2(1 − m) · · ·α3

= φ({α0} · · · {α1}[x1]) · φ([x2]{α2} · · · {α3}).
��

Remark 4.14 In Section 6.5 of the arXiv version of this paper, we give an
interpretation of the maps in Proposition 4.13 in terms of moduli spaces of
holomorphic disks inducing maps from partially wrapped Floer homology
into chains on spaces of paths and loops in R

3\K .

Recall that the product μ gives a ring structure on Rpp = RpK ⊗ RKp.
Similarly to Proposition 4.13, we then have the following.

Proposition 4.15 The isomorphisms φ : RpK
∼=→ R(1 − m) and RKp

∼=→ R
induce a ring isomorphism

φ : Rpp
∼=→ R(1 − m)R

where R(1 − m)R denotes the two-sided ideal of R generated by 1 − m.

Proof Same as the proof of Proposition 4.13, but now use the fact that φ is
defined on Rpp by

[x1]{α1}[x2] · · · {αk−1}[xk] �→ x1α1(1 − m)x2 · · ·αk−1(1 − m)xk

and that any element of Rpp can be written as [x] for some x ∈ R. ��
Although R(1 − m)R is not all of R, we observe the following.

Proposition 4.16 The submodules Z = Z · 1 and R(1 − m)R of R are com-
plementary: R ∼= Z ⊕ R(1 − m)R as Z-modules.

Proof The homomorphism from π to the trivial group induces a map R =
Z[π ] → Z, which restricts to the identity on Z and to the zero map on R(1−
m)R; thusZ∩R(1−m)R = 0.On the other hand,π = π1(R

3\K ) is generated
by a finite collection of meridians, each of which is an element of π of the form
γmγ −1 for some γ ∈ π , and γmγ −1 = 1−γ (1−m)γ −1 ∈ Z+ R(1−m)R;
thus Z + R(1 − m)R = R. ��

We can restate the combination of Propositions 4.15 and 4.16 as follows.
Consider the direct sum Z⊕ Rpp, and give this a ring structure by defining the
generator 1 of Z to be the multiplicative identity and setting multiplication on
the factor Rpp to be as usual. That is:
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(n1, r1) · (n2, r2) = (n1n2, n1r2 + n2r1 + r1r2).

Then:

Proposition 4.17 We have a ring isomorphism φ : Z ⊕ Rpp
∼=→ R defined

by

φ(n, [x1]{α1}[x2]) = n + x1α1(1 − m)x2.

Remark 4.18 The ring Z⊕ Rpp may seem like an odd candidate to be isomor-
phic to R = Z[π1(R

3\K )]. In fact, it is the correct object to consider from
at least two perspectives. One is through the cord algebra and modules: we
have Rpp

∼= CordpK ⊗CordKp, and we can use the skein relation for cords
[Definition 4.2 (4)] to rewrite the product of a pK cord with a Kp cord as the
difference of two pp cords. This gives a map

CordpK ⊗CordKp → Cordpp .

This map is not surjective, since it maps to the ideal generated by differences
of cords, but it becomes an isomorphism if we add the Z-module generated by
the trivial pp cord to the left hand side to obtain Z⊕ Rpp. On the other hand,
any pp cord is a loop in R

3\K , and this induces an isomorphism between
Cordpp and Z[π1(R

3\K )].
The other perspective is through partially wrapped Floer homology; see the

discussion in the Introduction, and the arXiv version of this paper for a fuller
discussion.

5 Proof of Theorem 1.1

Here we present the proof of our main result. Briefly, by Proposition 4.17, we
can recover R = Z[π1(R

3\K )] from the ring structure on Rpp, which itself is
determined by the Legendrian contact homology of �K ∪ �p along with the
product μ. This allows us to recover the knot K itself. The details of the proof
are broken into two subsections corresponding to statements (1) and (2) from
Theorem 1.1, and at the end of this section we make some remarks about the
difference between the two.

5.1 Proof of Theorem 1.1 (2)

Suppose that K0, K1 are knots such that there are isomorphisms between
the KCH-triples of K0 and K1; these isomorphisms are compatible with the

products μ : RKi p ⊗ RpKi → RKi Ki ; and the isomorphism RK0K0

∼=→ RK1K1
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sends the meridian and longitude m0, l0 of K0 to the meridian and longitude
m1, l1 of K1, respectively. Under these assumptions, we want to conclude that
K0, K1 are isotopic in R

3 as oriented knots. Since RKK detects the unknot
(see e.g. [5, Corollary 1.5]), we will assume that K0, K1 are both knotted.

For i = 0, 1, write Ri = Z[π1(R
3\Ki )] and R̂i = Z[m±1

i , l±1
i ] ⊂ Ri .

By Proposition 4.13, we can write the isomorphisms between the KCH-triples
(RK0K0, RK0 p, RpK0) and (RK1K1, RK1 p, RpK1) as a triple of maps

(ψKK , ψKp, ψpK ) : (R̂0 + R0(1 − m0), R0, R0(1 − m0))
∼=→ (R̂1 + R1(1 − m1), R1, R1(1 − m1)).

These maps are compatible with multiplication and the product μ in the way
described in Proposition 4.13.

Write Ri
pp = RpKi ⊗RKi Ki

RKi p; then the map ψpK ⊗ ψKp is an isomor-

phism from R0
pp to R1

pp, and it preserves the ring structure on Ri
pp determined

by μ. By Proposition 4.17, we can then view

ψpp := id ⊕ (ψpK ⊗ ψKp) : Z ⊕ R0
pp

∼=→ Z ⊕ R1
pp

as a ring isomorphism ψpp : R0
∼=→ R1.

Now Ri = Z[π1(R
3\Ki )] and knot groups are left-orderable, and so any iso-

morphism between R0 and R1 must come from a group isomorphism between
the knot groups [17]. More precisely, the set of units in the group ring Z[G] of
a left-orderable group G are exactly the elements ±g for g ∈ G, and so there
exists an isomorphism

ψ : π1(R
3\K0)

∼=→ π1(R
3\K1)

such that ψpp(γ ) = ±ψ(γ ) for all γ ∈ π1(R
3\K0).

Now that we know that the knot groups of K0 and K1 are isomorphic, it
remains to show that the isomorphism preserves the peripheral structure. We
will show that there is some γ ∈ π1(R

3\K1) such thatψ(m0) = γ −1m1γ and
ψ(l0) = γ −1l1γ , whence the composition ofψ and conjugation by γ gives an

isomorphism π1(R
3\K0)

∼=→ π1(R
3\K1) sending m0, l0 to m1, l1 as desired.

For this, we use the assumption that ψKK (m0) = m1 and ψKK (l0) = l1.
The elements 1 ∈ R0 ∼= RK0 p and 1−m0 ∈ R0(1−m0) ∼= RpK0 have images
under ψKp and ψpK

ψKp(1) = x ψpK (1 − m0) = x ′(1 − m1)
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for some x, x ′ ∈ R1. In R1, we have

1 − m1 = ψKK (1 − m0) = ψKKμ(1, 1 − m0)

= μ(ψKp(1), ψpK (1 − m0)) = μ(x, x ′(1 − m1)) = xx ′(1 − m1).

Now the group ring of a left-orderable group has no zero divisors, and so it
follows that xx ′ = 1 ∈ R1 and hence there exists some γ ∈ π1(R

3\K1) such
that x = ±γ , x ′ = ±γ −1.

Next, for α ∈ Z, view lα0 (1 − m0) = (1 − m0) · lα0 · 1 as an element of
RpK0 ⊗RK0K0

RK0K0 ⊗RK0K0
RK0 p = R0

pp. Then we have

ψpp
(
lα0 (1 − m0)

) = ψpK (1 − m0) · ψKK
(
lα0

) · ψKp(1)

= γ −1(1 − m1) · lα1 · γ.

Now since ψpp = ±ψ on elements of π1(R
3\K0), both of ψpp(lα0 (1 − m0))

and γ −1(1 − m1) · lα1 · γ are binomials (i.e., sums of the form n1γ1 + n2γ2
with ni ∈ Z and γi ∈ π1(R

3\K1)), and equating terms gives

{
ψ

(
lα0

)
, ψ

(
m0l

α
0

)} = {
γ −1lα1 γ, γ −1m1l

α
1 γ

}
.

Plugging in α = 0 and α = 1 in succession gives ψ(m0) = γ −1m1γ and
ψ(l0) = γ −1l1γ , as desired.

5.2 Proof of Theorem 1.1 (1)

We now consider the case where there is an isomorphism between the KCH-
triples of K0 and K1 preserving the productμ, but without the assumption that
longitude and meridian classes are mapped to themselves. We will prove that
there is an isomorphism π1(R

3\K0) ∼= π1(R
3\K1) sending m0 to m

±1
1 and l0

to l±1
1 . It then follows from Waldhausen [32] that K0 is smoothly isotopic to

either K1 or the mirror of K1, as unoriented knots. (Note that our argument
identifies not only the peripheral subgroups but also the meridians in each, and
so we do not need to appeal to Gordon and Luecke [16].) As in the previous
proof, we can assume that K0 and K1 are both knotted.

The setup is as in Sect. 5.1, except thatψKK (m0) = mn1
1 ln21 andψKK (l0) =

mn3
1 ln41 for some

( n1 n2
n3 n4

) ∈ GL2(Z) not necessarily the identity matrix. As in
the previous proof,ψpp is inducedby agroup isomorphismψ : π1(R

3\K0) →
π1(R

3\K1). Now however when we write ψKp(1) = x , ψpK (1 − m0) =
x ′(1 − m1) for x, x ′ ∈ R1, we have

xx ′(1 − m1) = 1 − mn1
1 ln21 . (4)
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We can then appeal to the following algebraic result.

Lemma 5.1 Suppose G is left orderable and m, g ∈ G, z ∈ Z[G] satisfy
z(1 − m) = 1 − g in Z[G]. Then g = mn for some n ∈ Z.

Proof Let < be the left-invariant ordering on G. Without loss of generality,
we may assume m > 1; the lemma is trivial if m = 1, and we can replace
m by m−1 if m < 1. Write z = ∑k

i=1 ai gi for ai ∈ Z and gi ∈ G; we may
assume that ai �= 0 for all i and g1 < g2 < · · · < gk . Then gi < gim
for all i , and so among the subset S = {g1, . . . , gk, g1m, . . . , gkm} of G
(which may contain repeated elements), g1 is strictly lowest. Furthermore, let
g jm be the largest among the k distinct elements g1m, . . . , gkm; then g jm
is strictly largest among the elements of S. It follows that the expansion of
z(1−m) = ∑k

i=1(ai gi − ai gim) involves g1 and g jm at least. Since 1− g is
a binomial, it follows that {g1, g jm} = {1, g}, and furthermore that all terms
in the expansion not involving g1 or g jm must cancel. Thus g1m must be
canceled by gi1 for some i1, whence gi1m must be canceled by gi2 for some
i2, and so forth. We conclude that there is a sequence i0 = 1, i1, . . . , i� = j
such that gir = gir−1m for all r = 1, . . . , �, and so g j = g1mr−1. The lemma
follows. ��

We now continue with the proof of Theorem 1.1 (1). By Eq. (4) and
Lemma 5.1, mn1

1 ln21 = mn
1 for some n. By the Loop Theorem, since K2 is

knotted, l1 is not a power of m1, and so n2 = 0. Since
( n1 n2
n3 n4

)
is invertible, it

follows that n1 = ±1 and n4 = ±1.
We treat the cases n1 = 1 and n1 = −1 separately. If n1 = 1,

then ψKK (m0) = m1 and ψKK (l0) = mn3
1 l±1

1 . As in Sect. 5.1, we have
xx ′(1−m1) = 1−m1 and so x = ±γ , x ′ = ±γ −1 for some γ ∈ π1(R

3\K1).
Now for any α ∈ Z, we compute

ψpp
(
lα0 (1 − m0)

) = ψpK (1 − m0) · ψKK
(
lα0

) · ψKp(1)

= γ −1mαn3
1 l±α

1 (1 − m1)γ.

Identifying terms as in Sect. 5.1 gives

{
ψ(l0)

α, ψ(m0)ψ(l0)
α
} =

{
γ −1mαn3

1 l±α
1 γ, γ −1mαn3+1

1 l±α
1 γ

}
.

Plugging in α = 0 and α = 1 in succession gives ψ(m0) = γ −1m1γ and
ψ(l0) = γ −1mn3

1 l±1
1 γ . Conjugating ψ by γ gives a group isomorphism

π1(R
3\K1)

∼=→ π1(R
3\K2) sending m0 to m1 and l0 to mn3

1 l±1
1 . Since the

longitude is the identity in (and the meridian generates) the abelianization of
π1, we must have n3 = 0: thus m0 is sent to m1 and l0 to l

±1
1 .
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If instead n1 = −1, we can run the same argument to conclude x = ±γ ,
x ′ = ∓γ −1m−1

1 ;ψpp(lα0 (1−m0)) = −γ −1m−1
1 (1−m1)m

αn3
1 l±α

1 γ ;ψ(m0) =
γ −1m−1

1 γ and ψ(l0) = γ −1mn3
1 l±1

1 γ ; and finally there is an isomorphism

π1(R
3\K0)

∼=→ π1(R
3\K1) sending m0 to m

−1
1 and l0 to l

±1
1 .

This completes the proof of Theorem 1.1 (1).

5.3 A note on different types of Legendrian isotopy

The difference between statements (1) and (2) in Theorem 1.1 is in the strength
of the assumption about the Legendrian isotopy relating two conormal tori
�K0 and �K1 . One might ask if the weaker assumption—an unparametrized
Legendrian isotopy between �K0 and �K1—might still imply the stronger
result—a smooth isotopy between K0 and K1 as oriented knots. This appears
to be possible, but our invariants do not show this.

The issue is a symmetry of ST ∗
R
3: the diffeomorphism of R3 given by

(x, y, z) �→ (x, y, −z) induces a coorientation-preserving contactomorphism
of ST ∗

R
3 that preserves cotangent fibers and sends the conormal torus of K

to the conormal torus of the mirror m(K ) of K . It follows that there is an
isomorphism

LCH∗(�p ∪ �K ) ∼= LCH∗(�p ∪ �m(K )),

and indeed between the DGAs for �p ∪ �K and �p ∪ �m(K ). Further, this
isomorphism preserves the product μ. [On the homology of the conormal
torus, the mirroring map preserves l but sendsm tom−1, and so this symmetry
does not contradict Theorem 1.1 (2).]

There is a result that is somewhere in between statements (1) and (2) from
Theorem1.2: if�K0, �K1 are Legendrian isotopic in an orientation-preserving
manner, then K0, K1 are smoothly isotopic as unoriented knots. Indeed, from
the proof of Theorem 1.1 (1) in Sect. 5.2, the Legendrian isotopy must send
(m0, l0) to (m±1

1 , l±1
1 ), and the orientation-preserving condition implies that

the two signs agree. It follows that there is an isomorphismbetweenπ1(R
3\K0)

andπ1(R
3\K1) that preserves the peripheral subgroup, possibly after changing

the orientation of K1.
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