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Abstract In 1997, Jost (Calc Var PDE 5:1–19, 1997) and Lin (Collection
of papers on geometry, analysis and mathematical physics, World Sci. Publ.,
River Edge, 1997), independently proved that every energy minimizing har-
monic map from an Alexandrov space with curvature bounded from below to
an Alexandrov space with non-positive curvature is locally Hölder continuous.
Lin (1997) proposed an open problem: can the Hölder continuity be improved
to Lipschitz continuity? J. Jost also asked a similar problem about Lipschitz
regularity of harmonic maps between singular spaces [see page 38 in Jost (in:
Jost, Kendall, Mosco, Röckner, Sturm (eds) New directions in Dirichlet forms,
International Press, Boston, 1998)]. The main theorem of this paper gives a
complete resolution to it.

Mathematics Subject Classification 58E20

1 Introduction

Given a map u : Mn → N k between smooth Riemannian manifolds of
dimension n and k, there is a natural concept of energy associated to u. The
minimizers, or more general critical points of such an energy functional, are
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called harmonic maps. If n = 2, the regularity of energy minimizing harmonic
maps was established by Morrey [42]. For energy minimizing harmonic maps
defined on a higher dimensional Riemannian manifold, a well-known regular-
ity theory has been developed by Schoen and Uhlenbeck [51]. In particular,
in the case where the target space N k has non-positive sectional curvature,
it has been proved that any energy minimizing harmonic map is smooth (see
also [20]). However, without any restriction on the target space N k , an energy
minimizing map might not be even continuous.

1.1 Harmonic maps between singular spaces and Hölder continuity

Gromov and Schoen [17] initiated to study the theory of harmonic maps into
singular spaces, motivated by the p-adic superrigidity for lattices in groups
of rank one. Consider a map u : M → Y . If Y is not a smooth manifold,
the energy of u can not be defined via its differential. A natural idea is to
consider an energy concept as a limit of suitable difference quotients. The
following concept of approximating energy for maps between metric spaces
was introduced by Korevaar and Schoen [33].

Let (M, dM), (Y, dY ) be two metric spaces and let � be a domain of M ,
equipped with a Radon measure vol on M . Given p � 1, ε > 0 and a Borel
measurable map u : � → Y , an approximating energy functional Eu

p,ε is
defined on C0(�), the set of continuous functions compactly supported in �,
as follows:

Eu
p,ε(φ) := c(n, p)

ˆ
�

φ(x)

ˆ
Bx (ε)∩�

d p
Y (u(x), u(y))

εn+p
dvol(y)dvol(x)

where φ ∈ C0(�) and c(n, p) is a normalized constant.
In the case where � is a domain of a smooth Riemannian manifold and Y

is an arbitrary metric space, Korevaar and Schoen [33] proved that Eu
p,ε(φ)

converges weakly, as a linear functional onC0(�), to some (energy) functional
Eu

p(φ). The same convergence has been established for the case where � is
replaced with one of the following:

• a domain of a Lipschitz manifold (by Gregori [16]);
• a domain of a Rimannian polyhedron (for p = 2, by Eells and Fuglede
[11]);

• a domain of a singular space with certain condition, including Alexandrov
spaces with curvature bounded from below, abbreviated by CBB for short
(by Kuwae and Shioya [37]).

When p = 2, minimizing maps, in the sense of calculus of variations, of
such an energy functional Eu

2 (φ) are called harmonic maps.
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Lipschitz continuity of harmonic maps 865

Sturm [55] studied a generalization of the theory of harmonicmaps between
singular spaces via an approach of probabilistic theory.

The purpose of this paper is to study the regularity theory of harmonic maps
from a domain of an Alexandrov space with CBB into a complete length space
of non-positive curvature in the sense of Alexandrov, abbreviated by NPC for
short. This problem was initiated by Lin [39] and Jost [26–28], independently.
They established the following Hölder regularity.

Theorem 1.1 (Lin [39], Jost1 [27]) Let � be a bounded domain in an Alexan-
drov space with CBB, and let (Y, dY ) be an NPC space. Then any harmonic
map u : � → Y is locally Hölder continuous in �.

TheHölder regularity of harmonicmaps between singular spaces or into sin-
gular spaces has been also studied by many other authors. For example, Chen
[7], Eells and Fuglede [11,13,14], Ishizuka andWang [22] and Daskalopoulos
and Mese [8,10], and others.

1.2 Lipschitz continuity and main result

Lin [39] proposed an open problem:whether theHölder continuity in the above
Theorem 1.1 can be improved to Lipschitz continuity? Precisely,

Conjecture 1.2 (Lin [39]) Let �, Y and u be as in Theorem 1.1. Is u locally
Lipschitz continuous in �?

Jost also asked a similar problem about Lipschitz regularity of harmonic
maps between singular spaces (see page 38 in [28]). The Lipschitz continuity
of harmonic maps is the key in establishing rigidity theorems of geometric
group theory in [8,9,17].

Up to now, there are only a few answers for some special cases.
Thefirst is the casewhere the target spaceY = R, i.e., the theory of harmonic

functions. The Lipschitz regularity of harmonic functions on singular spaces
has been obtained under one of the following two assumptions: (i) � is a
domain of a metric space, which supports a doubling measure, a Poincaré
inequality and a certain heat kernel condition [23,34]; (ii) � is a domain of an
Alexandrov space with CBB [49,50,58]. Nevertheless, these proofs depend
heavily on the linearity of the Laplacian on such spaces.

It is known from [6] that the Hölder continuity always holds for any
harmonic function on a metric measure space (M, d, μ) with a standard
assumption: the measure μ is doubling and M supports a Poincaré inequality
(see, for example, [6]). However, in [34], a counterexample was given to show

1 J. Jost worked on a generalized Dirichlet form on a larger class of metric spaces.
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that such a standard assumption is not sufficient to guarantee the Lipschitz
continuity of harmonic functions.

The second is the case where � is a domain of some smooth Riemannian
manifold and Y is an NPC space. Korevaar and Schoen [33] established the
following Lipschitz regularity for any harmonic map from � to Y .

Theorem 1.3 (Korevaar–Schoen [33])Let�be a bounded domain of a smooth
Riemannian manifold M, and let (Y, dY ) be an NPC metric space. Then any
harmonic map u : � → Y is locally Lipschitz continuous in �.

However, their Lipschitz constant in the above theorem depends on the C1-
norm of the metric (gi j ) of the smooth manifold M . In Section 6 of [26],
Jost described a new argument for the above Korevaar–Schoen’s Lipschitz
regularity using intersection properties of balls. The Lipschitz constant given
by Jost depends on the upper and lower bounds of Ricci curvature on M .
This does not seem to suggest a Lipschitz regularity of harmonic maps from a
singular space.

The major obstacle to prove a Lipschtz continuity of harmonic maps from
a singular space can be understood as follows. For the convenience of the
discussion, we consider a harmonic map u : (�, g) → N from a domain � ⊂
R

n with a singular Riemanian metric g = (gi j ) into a smooth non-positively
curved manifold N , which by the Nash embedding theorem is isometrically
embedded in some Euclidean space R

K . Then u is a solution of the nonlinear
elliptic system of divergence form

1√
g
∂i

(√
ggi j∂ j uα

)
+ gi j Aα

(
∂i u, ∂ j u

) = 0, α = 1, . . . , K (1.1)

in the sense of distribution, where g = det(gi j ), (gi j ) is the inverse matrix
of (gi j ), and Aα is the second fundamental form of N . It is well-known that,
as a second order elliptic system, the regularity of solutions is determined
by regularity of its coefficients. If the coefficients

√
ggi j are merely bounded

measurable, Shi [54] proved that the solution u is Hölder continuous. But, a
harmonic map might fail to be Lipschitz continuous, even with assumption
that the coefficients are continuous. See [25] for a counterexample for this.

The above Lin’s conjecture is about the Lipschitz continuity for harmonic
maps between Alexandrov spaces. Consider M to be an Alexandrov space
with CBB and let p ∈ M be a regular point. According to [43,45], there is
a coordinate neighborhood U � p and a corresponding BVloc-Riemannian
metric (gi j ) on U . Hence, the coefficients

√
ggi j of elliptic system (1.1) are

measurable on U . However, it is well-known [43] that they may not be contin-
uous on a dense subset of U for general Alexandrov spaces with CBB. Thus,
it is apparent that the above Lin’s conjecture might not be true.
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Lipschitz continuity of harmonic maps 867

Our main result in this paper is the following affirmative resolution to the
above Lin’s problem, Conjecture 1.2.

Theorem 1.4 Let � be a bounded domain in an n-dimensional Alexandrov
space (M, |·, ·|) with curvature � k for some constant k � 0, and let (Y, dY )

be an NPC space (not necessary locally compact). Assume that u : � → Y
is a harmonic map. Then, for any ball Bq(R) with Bq(2R) ⊂ � and R � 1,
there exists a constant C(n, k, R), depending only on n, k and R, such that

dY
(
u(x), u(y)

)

|xy| � C(n, k, R) ·
(( Eu

2

(
Bq(R)

)

vol
(
Bq(R)

)
)1/2 + oscBq (R)u

)

for all x, y ∈ Bq(R/16), where Eu
2 (Bq(R)) is the energy of u on Bq(R).

Remark 1.5 Acurvature condition on domain space is necessary. Indeed, Chen
[7] constructed a harmonic function u on a two-dimensional metric cone M
such that u is not Lipschitz continuous if M has no a lower curvature bound.

1.3 Organization of the paper

The paper is composed of six sections. In Sect. 2, we will provide some neces-
sary materials on Alexandrov spaces. In Sect. 3, we will recall basic analytic
results on Alexandrov spaces, including Sobolev spaces, super-solutions of
Poisson equations in the sense of distribution and super-harmonicity in the
sense of Perron. In Sect. 4, we will review the concepts of energy and approxi-
mating energy, and thenwewill prove a point-wise convergence result for their
densities. In Sect. 5, we will recall some basic results on existence and Hölder
regularity of harmonic map into NPC spaces.We will then give an estimate for
point-wise Lipschitz constants of such a harmonic map. The Sect. 6 is devoted
to the proof of the main Theorem 1.4.

2 Preliminaries

2.1 Basic concepts on Alexandrov spaces with curvature � k

Let k ∈ R and l ∈ N. Denote by M
l
k the simply connected, l-dimensional

space form of constant sectional curvature k. The space M
2
k is called k-plane.

Let (M, | · · |) be a complete metric space. A rectifiable curve γ connecting
two points p, q is called a geodesic if its length is equal to |pq| and it has unit
speed. A metric space M is called a geodesic space if, for every pair points
p, q ∈ M , there exists some geodesic connecting them.
Fix any k ∈ R. Given three points p, q, r in a geodesic space M , we can

take a triangle �pqr in k-plane M
2
k such that |pq| = |pq|, |qr | = |qr | and
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868 H.-C. Zhang, X.-P. Zhu

|r p| = |r p|. If k > 0, we add the assumption |pq| + |qr | + |r p| < 2π/
√

k.
The triangle�pqr ⊂ M

2
k is unique up to a rigid motion. We let 	̃ k pqr denote

the angle at the vertex q of the triangle �pqr , and we call it a k-comparison
angle.

Definition 2.1 Let k ∈ R. A geodesic space M is called an Alexandrov space
with curvature � k if it satisfies the following properties:

(i) it is locally compact;
(ii) for any point x ∈ M , there exists a neighborhood U of x such that the

following condition is satisfied: for any two geodesics γ (t) ⊂ U and
σ(s) ⊂ U with γ (0) = σ(0) := p, the k-comparison angles

	̃
κγ (t)pσ(s)

is non-increasing with respect to each of the variables t and s.

It is well known that the Hausdorff dimension of an Alexandrov space with
curvature � k, for some constant k ∈ R, is always an integer or +∞ (see, for
example, [4] or [5]). In the following, the terminology of “an (n-dimensional)
Alexandrov space M” means that M is an Alexandrov space with curvature
� k for some k ∈ R (and that its Hausdorff dimension = n). We denote by
vol the n-dimensional Hausdorff measure on M .

On an n-dimensional Alexandrov space M , the angle between any two
geodesics γ (t) and σ(s) with γ (0) = σ(0) := p is well defined, as the limit

	 γ ′(0)σ ′(0) := lim
s,t→0

	̃
κγ (t)pσ(s).

We denote by �′
p the set of equivalence classes of geodesic γ (t) with γ (0) =

p, where γ (t) is equivalent to σ(s) if 	 γ ′(0)σ ′(0) = 0. (�′
p,

	 ) is a metric
space, and its completion is called the space of directions at p, denoted by�p.
It is known (see, for example, [4] or [5]) that (�p, 	 ) is an Alexandrov space
with curvature � 1 of dimension n − 1. It is also known (see, for example,
[4] or [5]) that the tangent cone at p, Tp, is the Euclidean cone over �p.
Furthermore, T k

p is the k-cone over �p (see page 355 in [4]). For two tangent
vectors u, v ∈ Tp, their “scalar product” is defined by (see Section 1 in [48])

〈u, v〉 := 1

2

(|u|2 + |v|2 − |uv|2) .

Let p ∈ M . Given a direction ξ ∈ �p, we remark that there does possibly
not exists geodesic γ (t) starting at p with γ ′(0) = ξ .

We refer to the seminar paper [5] or the text book [4] for the details.
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Lipschitz continuity of harmonic maps 869

Definition 2.2 (Boundary, [5]) The boundary of an Alexandrov space M is
defined inductively with respect to dimension. If the dimension of M is one,
then M is a complete Riemannian manifold and the boundary of M is defined
as usual. Suppose that the dimension of M is n � 2. A point p is a boundary
point of M if �p has non-empty boundary.

From now on, we always consider Alexandrov spaces without boundary.

2.2 The exponential map and second variation of arc-length

Let M be an n-dimensional Alexandrov space and p ∈ M . For each point
x 	= p, the symbol ↑x

p denotes the direction at p corresponding to some
geodesic px . Denote by [43]

Wp := {x ∈ M\{p}∣∣ geodesic px can be extended beyond x
}
.

According to [43], the set Wp has full measure in M . For each x ∈ Wp, the
direction ↑x

p is uniquely determined, since any geodesic in M does not branch
[5]. Recall that the map logp : Wp → Tp is defined by logp(x) := |px |· ↑x

p
(see [48]). It is one-to-one from Wp to its image

Wp := logp(Wp) ⊂ Tp.

The inverse map of logp,

expp = (logp)
−1 : Wp → Wp,

is called the exponential map at p.
One of the technical difficulties in Alexandrov geometry comes from the

fact thatWp may not contain any neighbourhood of the vertex of the cone Tp.
If M has curvature � k on Bp(R), then exponential map

expp : Bo(R) ∩ Wp ⊂ T k
p → M

is a non-expendingmap [5], where T k
p is the k-cone over�p and o is the vertex

of Tp.
In [46], A. Petrunin established the notion of parallel transportation and

second variation of arc-length on Alexandrov spaces.

Proposition 2.3 (Petrunin, Theorem 1.1. B in [46]) Let k ∈ R and let M be
an n-dimensional Alexandrov space with curvature � k. Suppose that points
p and q such that the geodesic pq can be extended beyond both p and q.
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Then, for any fixed sequence {ε j } j∈N going to 0, there exists an isometry
T : Tp → Tq and a subsequence {ε j } j∈N ⊂ {ε j } j∈N such that

∣∣ expp(ε j · η) expq(ε j · T η)
∣∣ � |pq| − k · |pq|

2
|η|2 · ε2j + o

(
ε2j

)
(2.1)

for any η ∈ Tp such that the left-hand side is well-defined.

Here and in the following, we denote by g(s) = o(s�) if the function g(s)
satisfies lims→0+ g(s)

s� = 0.

2.3 Singularity, regular points, smooth points and C∞-Riemannian
approximations

Let k ∈ R and let M be an n-dimensional Alexandrov space with curvature
� k. For any δ > 0, we denote

Mδ := {x ∈ M : vol(�x ) > (1 − δ) · vol(Sn−1)
}
,

where S
n−1 is the standard (n − 1)-sphere. This is an open set (see [5]). The

set Sδ := M\Mδ is called the δ-singular set. Each point p ∈ Sδ is called a
δ-singular point. The set

SM := ∪δ>0Sδ

is called singular set. A point p ∈ M is called a singular point if p ∈ SM .
Otherwise it is called a regular point. Equivalently, a point p is regular if and
only if Tp is isometric to R

n [5]. At a regular point p, we have that T k
p is

isometric M
n
k . Since we always assume that the boundary of M is empty, it is

proved in [5] that the Hausdorff dimension of SM is � n − 2. We remark that
the singular set SM might be dense in M [43].

Some basic structures of Alexandrov spaces have been known in the fol-
lowing.

Fact 2.4 Let k ∈ R and let M be an n-dimensional Alexandrov space with
curvature � k.

1. There exists a constant δn,k > 0 depending only on the dimension n and k
such that for each δ ∈ (0, δn,k), the set Mδ forms a Lipschitz manifold [5]
and has a C∞-differentiable structure [36].

2. There exists a BVloc-Riemannian metric g on Mδ such that
• the metric g is continuous in M\SM [43,45];
• the distance function on M\SM induced from g coincides with the orig-

inal one of M [43];
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Lipschitz continuity of harmonic maps 871

• the Riemannian measure on M\SM induced from g coincides with the
Hausdorff measure of M [43].

Apoint p is called a smooth point if it is regular and there exists a coordinate
system (U, φ) around p such that

|gi j (φ(x)) − δi j | = o(|px |), (2.2)

where (gi j ) is the corresponding Riemannian metric in the above Fact 2.4 (2)
near p and (δi j ) is the identity n × n matrix.

It is shown in [45] that the set of smooth points has full measure. The
following asymptotic behavior of Wp around a smooth point p is proved in
[58].

Lemma 2.5 (Lemma 2.1 in [58]) Let p ∈ M be a smooth point. We have

∣∣∣dvol(x)

d Hn(v)
− 1
∣∣∣ = o(r), ∀ x ∈ Wp ∩ Bp(r), v = logp(x)

and

Hn
(
Bo(r) ∩ Wp

)

Hn
(
Bo(r)

) � 1 − o(r). (2.3)

where Bo(r) ⊂ Tp and Hn is n-dimensional Hausdorff measure on Tp (
isom≈

R
n).

The following property on smooth approximation is contained in the proof
of Theorem 6.1 in [36]. For the convenience, we state it as a lemma.

Lemma 2.6 (Kuwae–Machigashira–Shioya [36], C∞-approximation). Let
k ∈ R and let M be an n-dimensional Alexandrov space with curvature � k.
The constant δn,k is given in the above Fact 2.4 (1).

Let 0 < δ < δn,k . For any compact set C ⊂ Mδ , there exists an neighbor-
hood U of C with U ⊂ Mδ and a C∞-Riemannian metric gδ on U such that
the distance dδ on U induced from gδ satisfies

∣∣∣∣
dδ(x, y)

|xy| − 1

∣∣∣∣ < κ(δ) for any x, y ∈ U, x 	= y, (2.4)

where κ(δ) is a positive function (depending only on δ) with limδ→0 κ(δ) = 0.

Proof In the first paragraph of the proof of Theorem 6.1 in [36] (see page 294),
the authors constructed a κ(δ)-almost isometric homeomorphism F from an
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neighborhood U of C to some C∞-Riemannian manifold N with distance
function dN . That is, the map F : U → N is a bi-Lipschitz homeomorphism
satisfying

∣∣∣∣
dN (F(x), F(y))

|xy| − 1

∣∣∣∣ < κ(δ) for any x, y ∈ U, x 	= y.

Now let us consider the distance function dδ on U defined by

dδ(x, y) := dN
(
F(x), F(y)

)
.

The map F : (U, dδ) → (N , dN ) is an isometry, and hence the desired C∞-
Riemannian metric gδ can be defined by the pull-back of the Riemanian metric
gN . ��

2.4 Semi-concave functions and Perelman’s concave functions

Let M be an Alexandrov space without boundary and � ⊂ M be an open set.
A locally Lipschitz function f : � → R is called to be λ-concave [48] if for
all geodesics γ (t) in �, the function

f ◦ γ (t) − λ · t2/2

is concave. A function f : � → R is called to be semi-concave if for any
x ∈ �, there exists a neighborhood of Ux � x and a number λx ∈ R such
that f |Ux is λx -concave. (see Section 1 in [48] for the basic properties of
semi-concave functions).

Proposition 2.7 (Perelman’s concave function, [29,44]) Let p ∈ M. There
exists a constant r1 > 0 and a function h : Bp(r1) → R satisfying:

(i) h is (−1)–concave;
(ii) h is 2-Lipschitz, that is, h is Lipschitz continuous with a Lipschitz constant

2.

We refer the reader to [58] for the further properties for Perelman’s concave
functions.

3 Analysis on Alexandrov spaces

In this section, we will summarize some basic analytic results on Alexandrov
spaces, including Sobolev spaces, Laplacian and harmonicity via Perron’s
method.
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Lipschitz continuity of harmonic maps 873

3.1 Sobolev spaces on Alexandrov spaces

Several different notions of Sobolev spaces on metric spaces have been estab-
lished, see [6,19,33,36,37,53].2 They coincide with each other onAlexandrov
spaces.

Let M be an n-dimensional Alexandrov space with curvature � k for some
k ∈ R. It is well-known (see [36] or the survey [57]) that the metric measure
space (M, | · · |, vol) is locally doubling and supports a local (weak) L2-
Poincaré inequality. Moreover, given a bounded domain � ⊂ M , both the
doubling constant Cd and the Poincaré constant CP on � depend only on n, k
and diam(�).

Let � be an open domain in M . Given f ∈ C(�) and point x ∈ �, the
pointwise Lipschitz constant [6] of f at x is defined by:

Lip f (x) := lim sup
y→x

| f (x) − f (y)|
|xy| .

Wedenote by Liploc(�) the set of locally Lipschitz continuous functions on
�, andby Lip0(�) the set ofLipschitz continuous functions on�with compact
support in �. For any 1 � p � +∞ and f ∈ Liploc(�), its W 1,p(�)-norm
is defined by

‖ f ‖W 1,p(�) := ‖ f ‖L p(�) + ‖Lip f ‖L p(�).

The Sobolev space W 1,p(�) is defined by the closure of the set

{ f ∈ Liploc(�)| ‖ f ‖W 1,p(�) < +∞},

underW 1,p(�)-norm.The spaceW 1,p
0 (�) is definedby the closure of Lip0(�)

under W 1,p(�)-norm (this coincides with the definition in [6], see Theorem
4.24 in [6]). We say a function f ∈ W 1,p

loc (�) if f ∈ W 1,p(�′) for every
open subset �′ ⊂⊂ �. Here and in the following, “�′ ⊂⊂ �” means �′
is compactly contained in �. In Theorem 4.48 of [6], Cheeger proved that
W 1,p(�) is reflexible for any 1 < p < ∞.

3.2 Laplacian and super-solutions

Let us recall a concept of Laplacian [47,58] on Alexandrov spaces, as a func-
tional acting on the space of Lipschitz functions with compact support.

2 In [6,19,33,37,53], Sobolev spaces are defined on metric measure spaces supporting a dou-
bling property and a Poincaré inequality.
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874 H.-C. Zhang, X.-P. Zhu

Let M be an n-dimensional Alexandrov space and � be a bounded domain
in M . Given a function f ∈ W 1,2

loc (�), we define a functionalL f on Lip0(�),
called the Laplacian functional of f , by

L f (φ) := −
ˆ

�

〈∇ f , ∇φ〉 dvol, ∀φ ∈ Lip0(�).

When a function f is λ-concave, Petrunin in [47] proved thatL f is a signed
Radon measure. Furthermore, if we write its Lebesgue decomposition as

L f = � f · vol + �s f, (3.1)

then

�s f � 0 and � f · vol � n · λ · vol.

Let h ∈ L1
loc(�) and f ∈ W 1,2

loc (�). The function f is said to be a super-
solution (sub-solution, resp.) of the Poisson equation

L f = h · vol,

if the functionalL f satisfies

L f (φ) �
ˆ

�

hφdvol
(
or L f (φ) �

ˆ
�

hφdvol
)

for all nonnegative φ ∈ Lip0(�). In this case, according to the Theorem 2.1.7
of [21], the functionalL f is a signed Radon measure.

Equivalently, f ∈ W 1,2
loc (�) is sub-solution ofL f = h · vol if and only if it

is a local minimizer of the energy

E(v) =
ˆ

�′

(|∇v|2 + 2hv
)
dvol

in the set of functions v such that f � v and f − v is in W 1,2
0 (�′) for every

fixed �′ ⊂⊂ �. It is known (see for example [35]) that every continuous
super-solution of L f = 0 on � satisfies Maximum Principle, which states
that

min
x∈�′ f � min

x∈∂�′ f

for any open set �′ ⊂⊂ �.
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Lipschitz continuity of harmonic maps 875

A function f is a (weak) solution (in the sense of distribution) of Poisson
equationL f = h · vol on � if it is both a sub-solution and a super-solution of
the equation. In particular, a (weak) solution of L f = 0 is called a harmonic
function.

Now remark that f is a (weak) solution of Poisson equationL f = h ·vol if
and only if L f is a signed Radon measure and its Lebesgue’s decomposition
L f = � f · vol + �s f satisfies

� f = h and �s f = 0.

Given a function h ∈ L2(�) and g ∈ W 1,2(�), we can solve the Dirichlet
problem of the equation

{
L f = h · vol
f = g|∂�.

Indeed, by the Sobolev embedding theorem (see [18,36]) and a standard argu-
ment (see, for example, [15]), it is known that the solution of the Dirichlet
problem exists uniquely in W 1,2(�) (see, for example, Theorem 7.12 and
Theorem 7.14 in [6]). Furthermore, if we add the assumption h ∈ Ls with
s > n/2, then the solution f is locally Hölder continuous in � (see [31,36]).

Lemma 3.1 Let � be a bounded domain of an Alexandrov space. Assume that
g ∈ L∞(�). If f ∈ W 1,2(�) is a weak solution of the Poisson equation

L f = g · vol.

Then f is locally Lipschitz continuous in �.

Proof In [24, Theorem 3.1], it has been shown that Yau’s gradient estimate
for harmonic functions implies that the local Lipschitz continuity for solutions
of L f = g · vol. On the other hand, Yau’s gradient estimate for harmonic
functions has been established in [58] (see also [23]). ��

The following mean value inequality is a slight extension of Corollary 4.5
in [58].

Proposition 3.2 Let M be an n-dimensional Alexandrov space and � be a
bounded domain in M. Assume function h ∈ L1

loc(�) with h(x) � C for some

constant C. Suppose that f ∈ W 1,2
loc (�) ∩ C(�) is nonnegative and satisfies

that

L f � h · vol.
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If p ∈ � is a Lebesgue point of h, then

1

Hn−1
(
∂ Bo(R) ⊂ T k

p

)
ˆ

∂ Bp(R)

f (x)dvol � f (p) + h(p)

2n
· R2 + o(R2).

Proof The same assertion has been proved under the added assumption that
h ∈ L∞ in Corollary 4.5 in [58]. Here, we will use an approximated argument.

For each j ∈ N, by setting h j := max{− j, h}, we conclude that h j ∈
L∞(�), h j is monotonely converging to h, and

L f � h · vol � h j · vol, ∀ j ∈ N.

For any p ∈ �, by using Proposition 4.4 in [58], we have, for all R > 0
with Bp(R) ⊂⊂ � and for each j ∈ N,

1

Hn−1
(
∂ Bo(R) ⊂ T k

p

)
ˆ

∂ Bp(R)

f dvol − f (p) � (n − 2) · ωn−1

vol(�p)
· � j (R),

where

� j (R) =
ˆ

B∗
p(R)

Gh j dvol − φk(R)

ˆ
Bp(R)

h j dvol,

where B∗
p(R) = Bp(R)\{p}, the function G(x) := φk(|px |) and φk(r) is

the real value function such that φ ◦ disto is the Green function on M
n
k with

singular point o. That is, if n � 3,

φk(r) = 1

(n − 2) · ωn−1

ˆ ∞

r
s1−n

k (t)dt,

and

sk(t) =

⎧
⎪⎨
⎪⎩

sin
(√

kt
)

/
√

k k > 0

t k = 0

sinh
(√−kt

)
/
√−k k < 0.

Here, ωn−1 is the volume of (n − 1)-sphere S
n−1 with standard metric. If

n = 2, the function φk can be given similarly.
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Letting j → ∞ and applying the monotone convergence theorem, we get

1

Hn−1
(
∂ Bo(R) ⊂ T k

p

)
ˆ

∂ Bp(R)

f dvol − f (p) � (n − 2) · ωn−1

vol(�p)
· �(R),

(3.2)

where

�(R) =
ˆ

B∗
p(R)

Ghdvol − φk(R)

ˆ
Bp(R)

hdvol.

Letting p be a Lebesgue point of h, it is calculated in [58] that (see from line
6 to line 14 on page 470 of [58]),

�(R) = vol(�p)

2n(n − 2)ωn−1
h(p) · R2 + o(R2).

Therefore, the desired result follows from this and Eq. (3.2). ��

3.3 Harmonicity via Perron’s method

The Perron’s method has been studied in [1,30] in the setting of measure
metric spaces. We follow Kinnunen–Martio,3 Section 7 of [30], to defined the
super-harmonicity.

Definition 3.3 Let � be an open subset of an Alexandrov space. A function
f : � → (−∞, ∞] is called super-harmonic on � if it satisfies the following
properties:

(i) f is lower semi-continuous in �;
(ii) f is not identically ∞ in any component of �;
(iii) for every domain �′ ⊂⊂ � the following comparison principle holds:

if v ∈ C(�′) ∩ W 1,2(�′) and v � f on ∂�′, then h(v) � f in �′.
Here h(v) is the (unique) solution of the equation Lh(v) = 0 in � with
v − h(v) ∈ W 1,2

0 (�′).
A function f is sub-harmonic on �, if − f is super-harmonic on �.

For our purpose in this paper, wewill focus on the casewhere� is a bounded
domain and the function f ∈ C(�) ∩ W 1,2

loc (�). Therefore, in this case, we
can simply replace the definition of super-harmonicity as follows.

3 Kinnunen–Martio works in the setting of metric measure spaces, which supported a doubling
measure and a Poincaré inequality. These conditions are satisfied by Alexandrov space with
CBB, see [36,57].

123



878 H.-C. Zhang, X.-P. Zhu

Definition 3.3′: Let � be a bounded domain of an Alexandrov space. A
function f ∈ C(�)∩ W 1,2

loc (�) is called super-harmonic on� if the following
comparison principle holds:

(iii′) for every domain �′ ⊂⊂ �, we have h( f ) � f in �′.
Indeed, if f ∈ C(�) ∩ W 1,2

loc (�), then f ∈ C(�′) ∩ W 1,2(�′) for any domain
�′ ⊂⊂ �. Hence, the the condition (iii) implies (iii′). The inverse follows
from Maximum Principle. Indeed, given any domain �′ ⊂⊂ � and any v ∈
C(�′) ∩ W 1,2(�′) with v � f on ∂�′, Maximum Principle implies that
h(v) � h( f ) in �′. Consequently, the condition (iii′) implies (iii).

Lemma 3.4 (Kinnunen–Martio [30]) Let � be a bounded domain of an
Alexandrov space. Assume that f ∈ W 1,2

loc (�) ∩ C(�). Then the following
properties are equivalent to each other:

(i) f is a super-solution of L f = 0 on �;
(ii) f is a super-harmonic function in the Definition 3.3′.

Proof Let f ∈ W 1,2
loc (�). The function f is a super-solution of L f = 0 on

� if and only if it is a superminimizer in �, defined by Kinnunen–Martio on
page 865 of [30].

Now the equivalence between (i) and (ii) follows from the Corollaries 7.6
and 7.9 in [30]. ��

It is easy to extend the Lemma 3.4 to Poisson equations.

Corollary 3.5 Let � be a bounded domain of an Alexandrov space. Assume
that f ∈ W 1,2

loc (�)∩C(�) and g ∈ L∞(�). Then the following properties are
equivalent to each other:

(i) f is a super-solution of L f = g · vol on �;
(ii) f satisfies the following comparison principle: for each domain �′ ⊂⊂

�, we have v � f in �′, where v ∈ W 1,2(�′) is the (unique) solution of

Lv = g · vol with v − f ∈ W 1,2
0 (�′).

Proof Let w be a weak solution of Lw = g · vol on � (in the sense of
distribution). Then, by Lemma 3.1, we havew ∈ C(�)∩W 1,2

loc (�). We denote

f̃ := f − w ∈ C(�) ∩ W 1,2
loc (�).

Obviously, the property (i) is equivalent to that f̃ is a super-solution of
L f̃ = 0 on �. On the other hand, taking any domain �′ ⊂⊂ � and letting
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Lipschitz continuity of harmonic maps 879

v ∈ W 1,2(�′) is the (unique) solution ofLv = g ·vol with v− f ∈ W 1,2
0 (�′),

we have

Lv−w = 0 with (v − w) − f̃ ∈ W 1,2
0 (�′).

That is, h( f̃ ) = v−w.Hence, the property (ii) is equivalent to that f̃ is a super-
harmonic function in the Definition 3.3′. Now the Lemma is a consequence of
Lemma 3.4. ��

4 Energy functional

From now on, in this section, we always denote by � a bounded open domain
of an n-dimensional Alexandrov space (M, |·, ·|) with curvature � k for some
k � 0, and denote by (Y, dY ) a complete metric space.

Fix any p ∈ [1, ∞). A Borel measurable map u : � → Y is said to be
in the space L p(�, Y ) if it has separable range and, for some (hence, for all)
P ∈ Y ,

ˆ
�

d p
Y

(
u(x), P

)
dvol(x) < ∞.

We equip L p(�, Y ) with a distance given by

d p
L p(u, v) :=

ˆ
�

d p
Y

(
u(x), v(x)

)
dvol(x), ∀ u, v ∈ L p(�, Y ).

Denote byC0(�) the set of continuous functions compactly supported on�.
Given p ∈ [1, ∞) and amapu ∈ L p(�, Y ), for each ε > 0, theapproximating
energy Eu

p,ε is defined as a functional on C0(�):

Eu
p,ε(φ) :=

ˆ
�

φ(x)eu
p,ε(x)dvol(x)

where φ ∈ C0(�) and eu
p,ε is approximating energy density defined by

eu
p,ε(x) := n + p

cn,p · εn

ˆ
Bx (ε)∩�

d p
Y

(
u(x), u(y)

)

ε p
dvol(y),

where the constant cn,p = ´
Sn−1 |x1|pσ(dx), and σ is the canonical Rieman-

nian volume on S
n−1. In particular, cn,2 = ωn−1/n, where ωn−1 is the volume

of (n − 1)-sphere S
n−1 with standard metric.

Let p ∈ [1, ∞) and a u ∈ L p(�, Y ). Given any φ ∈ C0(�), it is
easy to check that, for any sufficiently small ε > 0 (for example, 10ε <
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d(∂�, suppφ)), the approximating energy Eu
p,ε(φ) coincides, up to a constant,

with the one defined by Kuwae and Shioya [37],4 that is,

Ẽu
p,ε(φ) := n

2ωn−1ε
n

ˆ
�

φ(x)

ˆ
Bx (ε)∩�

d p
Y (u(x), u(y))

ε p · IQ(�)(x, y)dvol(y)dvol(x),

where

Q(�) :={(x, y) ∈ � × � : |xy|< |γxy, ∂�|, ∀geodesic γxy from x to y
}
,

and IQ(�)(x, y) is the indicator function of the set Q(�). It is proved in [37]
that, for each φ ∈ C0(�), the limit

Eu
p(φ) := lim

ε→0+ Eu
p,ε(φ)

exists. The limit functional Eu
p is called the energy functional.

Now the pth order Sobolev space from � into Y is defined by

W 1,p(�, Y ) := D(Eu
p) :=

{
u ∈ L p(�, Y )| sup

0�φ�1, φ∈C0(�)

Eu
p(φ) < ∞

}
,

and pth order energy of u is

Eu
p := sup

0�φ�1, φ∈C0(�)

Eu
p(φ).

In the following proposition, we will collect some results in [37].

Proposition 4.1 (Kuwae–Shioya [37]) Let 1 < p < ∞ and u ∈ W 1,p(�, Y ).
Then the following assertions (1)–(5) hold.

1. (Contraction property, Lemma 3.3 in [37]) Consider another complete
metric spaces (Z , dZ ) and a Lipschitz map ψ : Y → Z, we have
ψ ◦ u ∈ W 1,p(�, Z) and

Eψ◦u
p (φ) � Lipp(ψ)Eu

p(φ)

for any 0 � φ ∈ C0(�), where

Lip(ψ) := sup
y,y′∈Y, y 	=y′

dZ (ψ(y), ψ(y′))
dY (y, y′)

.

4 Indeed,Kuwae andShioya [37] defined it onmore generalmetric spaces satisfying aSMCPBG
condition. And they proved that Alexandrov spaces satisfy such a condition (see Theorem 2.1
of [37]).
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In particular, for any point Q ∈ Y , we have dY
(
Q, u(·)) ∈ W 1,p(�, R)

and

EdY (Q,u(·))
p (φ) � Eu

p(φ)

for any 0 � φ ∈ C0(�).
2. (Lower semi-continuity, Theorem 3.2 in [37]) For any sequence u j → u

in L p(�, Y ) as j → ∞, we have

Eu
p(φ) � lim inf

j→∞ E
u j
p (φ)

for any 0 � φ ∈ C0(�).

3. (Energy measure, Theorem 4.1 and Proposition 4.1 in [37]) There exists a
finite Borel measure, denoted by Eu

p again, on �, is called energy measure
of u, such that for any 0 � φ ∈ C0(�)

Eu
p(φ) =

ˆ
�

φ(x)d Eu
p(x).

Furthermore, the measure is strongly local. That is, for any nonempty open
subset O ⊂ �, we have u|O ∈ W 1,p(O, Y ), and moreover, if u is a constant
map almost everywhere on O, then Eu

p(O) = 0.
4. (Weak Poincaré inequality, Theorem 4.2(ii) in [37]) For any open set O =

Bq(R) with Bq(6R) ⊂⊂ �, there exists postive constant C = C(n, k, R)

such that the following holds: for any z ∈ O and any 0 < r < R/2, we
have
ˆ

Bz(r)

ˆ
Bz(r)

d p
Y

(
u(x), u(y)

)
dvol(x)dvol(y) � Crn+2 ·

ˆ
Bz(6r)

d Eu
p(x),

where the constant C given on page 61 of [37] depends only on the constants
R, ϑ, and � in the Definition 2.1 for WMCPBG condition in [37]. In
particular, for the case of Alexandrov spaces as shown in the proof of
Theorem 2.1 in [37], one can choose R > 0 arbitrarily, ϑ = 1 and � =
sup0<r<R

vol(Bo(r)⊂M
n
k )

vol(Bo(r)⊂Rn)
= C(n, k, R).

5. (Equivalence for Y = R, Theorem 6.2 in [37]) If Y = R, the above
Sobolev space W 1,p(�, R) is equivalent to the Sobolev space W 1,p(�)

given in previous Sect. 3. To be precise: For any u ∈ W 1,p(�, R), the
energy measure of u is absolutely continuous with respect to vol and

d Eu
p

dvol
(x) = |∇u(x)|p.
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Remark 4.2 It is not clear whether the energy measure of u ∈ W 1,p(�, Y ) is
absolutely continuous with respect to the Hausdorff measure vol on �. If �

is a domain in a Lipschitz Riemannian manifold, the absolute continuity has
been proved by G. Gregori in [16] (see also Korevaar–Schoen [33] for the case
where � is a domain in a C2 Riemannian manifold).

Let p > 1 and let u be a map with u ∈ W 1,p(�, Y ) with energy measure
Eu

p. Fix any sufficiently small positive number δ with 0 < δ < δn,k , with δn,k
as in Fact 2.4 in Sect. 2.3. Then the set

�δ := � ∩ Mδ := {x ∈ � : vol(�x ) > (1 − δ)vol(Sn−1)
}

is an open subset in � and forms a Lipschitz manifold. Since the singular set
of M has (Hausdorff) codimension at least two [5], we have vol(�\�δ) = 0.
Hence, by the strongly local property of the measure Eu

p, we have u ∈
W 1,p(�δ, Y ) and its energy measure is Eu

p|�δ . Since �δ is a Lipschitz man-
ifold, according to Gregori in [16], we obtain that the energy measure Eu

p|�δ

is absolutely continuous with respect to vol. Denote its density by |∇u|p (we
write |∇u|p instead of |∇u|p because the quantity p does not in general behave
like power, see [33]). Considering the Lebesgue decomposition of Eu

p with
respect to vol on �,

Eu
p = |∇u|p · vol +

(
Eu

p

)s
,

we have that the support of the singular part (Eu
p)

s is contained in �\�δ.

Clearly, the energy density |∇u|p is the weak limit (limit as measures) of
the approximating energy density eu

p,ε as ε → 0 on �δ . We now show that
eu

p,ε converges almost to |∇u|p in L1
loc(�) in the following sense.

Lemma 4.3 Let p > 1 and u ∈ W 1,p(�, Y ). Fix any sufficiently small δ > 0
with 0 < δ < δn,k , with δn,k as in Fact 2.4 in Sect. 2.3. Then, for any open
subset B ⊂⊂ �δ , there exists a constant ε = ε(δ, B) such that, for any
0 < ε < ε(δ, B), we have

ˆ
B

∣∣eu
p,ε(x) − |∇u|p(x)

∣∣dvol(x) � κ(δ),

where κ(δ) is a positive function (depending only on δ) with limδ→0 κ(δ) = 0.

Proof Fix any sufficiently small δ > 0 and any open set B as in the assumption.
By applyingLemma2.6, there exists someneighborhoodUδ ⊃ B and a smooth
Riemannian metric gδ on Uδ such that the distance dδ on Uδ induced from gδ

satisfies
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∣∣∣∣
dδ(x, y)

|xy| − 1

∣∣∣∣ � κ1(δ) for any x, y ∈ Uδ, x 	= y,

where κ1(δ) is a positive function (depending only on δ) with limδ→0 κ1(δ) =
0. This implies that

Bδ
x

(
r · (1 − κ1(δ))

) ⊂ Bx (r) ⊂ Bδ
x

(
r · (1 + κ1(δ)

)
(4.1)

for any x ∈ Uδ and r > 0 with the ball Bδ
x

(
(1 + κ1(δ)r

) ⊂ Uδ and

1 − κn
1 (δ) � dvolδ(x)

dvol(x)
� 1 + κn

1 (δ) ∀ x ∈ Uδ, (4.2)

where Bδ
x (r) is the geodesic balls with center x and radius r with respect to the

metric gδ , and volδ is the n-dimensional Riemannian volume on Uδ induced
from metric gδ .

(i). Uniformly approximated by smooth metric gδ .
For any ε > 0, we write the energy density and approximating energy

density of u by |∇u|p,gδ and eu
p,ε,gδ

on (Uδ, gδ) with respect to the smooth
Riemannian metric gδ.

Sublemma 4.4 We have, for any x ∈ Uδ and any ε > 0 with Bx (10ε) ⊂ Uδ ,

∣∣eu
p,ε(x) − eu

p,ε,gδ
(x)
∣∣ � κ4(δ) · eu

p,2ε(x) + ∣∣eu
p,ε(1+κ1(δ)),gδ

(x) − eu
p,ε,gδ

(x)
∣∣

+ ∣∣eu
p,ε,gδ

(x) − eu
p,ε(1−κ1(δ)),gδ

(x)
∣∣, (4.3)

where κ4(δ) is a positive function (depending only on δ) with limδ→0 κ4(δ) =
0.

Proof For each x ∈ Uδ and ε > 0 with Bx (10ε) ⊂ Uδ , by applying Eqs.
(4.1)–(4.2) and setting

f (y) := 2(n + p) · c−1
n,p · d p

Y

(
u(x), u(y)

)
,

we have, from the definition of approximating energy density,

eu
p,ε(x) =

ˆ
Bx (ε)∩�

f

εn+p
dvol(y)

�
(
1 − κn

1 (δ)
)−1 ·

ˆ
Bδ

x

(
ε·(1+κ1(δ))

) f

εn+p
dvolδ(y)

= (1 − κn
1 (δ)

)−1 · (1 + κ1(δ))
n+p · eu

p,ε·(1+κ1(δ)),gδ
(x)

:= (1 + κ2(δ)
) · eu

p,ε·(1+κ1(δ)),gδ
(x).

(4.4)
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Similarly, we have

eu
p,ε(x) �

(
1 + κn

1 (δ)
)−1 · (1 − κ1(δ))

n+p · eu
p,ε·(1−κ1(δ)),gδ

(x)

:= (1 − κ3(δ)
) · eu

p,ε·(1−κ1(δ)),gδ
(x).

(4.5)

Thus
∣∣eu

p,ε(x) − eu
p,ε,gδ

(x)
∣∣

� max

⎧
⎨
⎩

κ2(δ) · eu
p,ε(1+κ1(δ)),gδ

(x) +
∣∣∣eu

p,ε(1+κ1(δ)),gδ
(x) − eu

p,ε,gδ
(x)

∣∣∣ ,
κ3(δ) · eu

p,ε(1−κ1(δ)),gδ
(x) +

∣∣∣eu
p,ε,gδ

(x) − eu
p,ε(1−κ1(δ)),gδ

(x)

∣∣∣

⎫
⎬
⎭ .

(4.6)

Without loss of the generality, we can assume that κ1(δ) < 1/3 for any suf-
ficiently small δ. Then, from (4.5) and the definition of the approximating
energy density,

eu
p,ε(1+κ1(δ)),gδ

(x) �
(
1 − κ3(δ)

)−1 · eu
p,ε(

1+κ1(δ)

1−κ1(δ)
)
(x)

�
(
1 − κ3(δ)

)−1 ·
[
2 · 1 − κ1(δ)

1 + κ1(δ)

]n+p · eu
p,2ε(x)

�
(
1 − κ3(δ)

)−1 · 2n+p · eu
p,2ε(x)

and

eu
p,ε(1−κ1(δ)),gδ

(x) �
(
1 − κ3(δ)

)−1 · eu
p,ε(x)

�
(
1 − κ3(δ)

)−1 · 2n+p · eu
p,2ε(x).

By substituting the above two inequalities in Eq. (4.6), we obtain

∣∣eu
p,ε(x) − eu

p,ε,gδ
(x)
∣∣ � κ4(δ) · eu

p,2ε(x) +
∣∣∣eu

p,ε(1+κ1(δ)),gδ
(x) − eu

p,ε,gδ
(x)

∣∣∣
+
∣∣∣eu

p,ε,gδ
(x) − eu

p,ε(1−κ1(δ)),gδ
(x)

∣∣∣ ,

where the function κ4(δ) := (
1 − κ3(δ)

)−1 · 2n+p · max{κ2(δ), κ3(δ)}. The
proof of the Sublemma is finished. ��
(ii). Uniformly estimate for integral

ˆ
B

∣∣eu
p,ε(x) − eu

p,ε,gδ
(x)
∣∣dvol(x).
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To deal with this integral, we need to estimate integrals of the right hand
side in Eq. (4.3).

Noting that themetric gδ is smooth onUδ, The following assertion is summa-
rized in [16], and essentially proved by [52]. Please see the paragraph between
Lemma 1 and Lemma 2 on page 3 of [16].

Fact 4.5 The approximating energy densities

lim
ε→0

eu
p,ε,gδ

= |∇u|p,gδ in L1
loc(Uδ, gδ).

Now let us continue the proof of this Lemma.
Since the set B ⊂⊂ Uδ , from the above Fact 4.5, there exists a constant

ε1 = ε1(δ, B) such that for any 0 < ε < ε1, we have

ˆ
B

∣∣|∇u|p,gδ (x) − eu
p,ε,gδ

(x)
∣∣dvolδ � δ.

Hence, by using Eq. (4.2),

ˆ
B

∣∣|∇u|p,gδ (x) − eu
p,ε,gδ

(x)
∣∣dvol � δ · (1 + κn

1 (δ)
) := κ5(δ). (4.7)

Triangle inequality concludes that, for any number ε with 0 < ε < ε1
1+κ1(δ)

,

ˆ
B

∣∣eu
p,ε(1+κ1(δ)),gδ

(x) − eu
p,ε,gδ

(x)
∣∣dvol(x) � 2κ5(δ) (4.8)

and
ˆ

B

∣∣eu
p,ε,gδ

(x) − eu
p,ε(1−κ1(δ)),gδ

(x)
∣∣dvol(x) � 2κ5(δ). (4.9)

By using Lemma 3 in [16] (more precisely, the equation (35) in [16]), for
any φ ∈ C0(Uδ) and any γ > 0, there exists a constant ε2 = ε2(γ, φ) such
that the following estimate holds for any 0 < ε < ε2:

Eu
p,ε(φ) � Eu

p(φ) + Cγ,

where C is a constant independent of γ and ε. Now, since B ⊂⊂ Uδ , there
exists ϕ ∈ C0(Uδ) (⊂ C0(�)) with ϕ|B = 1 and 0 � ϕ � 1 on Uδ . Fix such a
function ϕ and a constant γ1 > 0 with Cγ1 � 1. Then for any 0 < ε < ε3 :=
min{ε2(γ1, ϕ)/2, dist(suppϕ, ∂Uδ)/10}, we have
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ˆ
B

eu
p,2ε(x)dvol �

ˆ
Uδ

ϕ(x)eu
p,2ε(x)dvol � Eu

p,2ε(ϕ) � Eu
p(ϕ) + 1

� Eu
p(�) + 1.

(4.10)

By integrating Eq. (4.3) on B with respect to vol and combining with Eq.
(4.8)–(4.10), we obtain that, for any 0 < ε < min{ε3, ε1/

(
1 + κ1(δ)

)},
ˆ

B

∣∣eu
p,ε(x) − eu

p,ε,gδ
(x)
∣∣dvol(x) � κ6(δ), (4.11)

where the positive function κ6(δ) = κ4(δ) · (Eu
p(�) + 1

)+ 4κ5(δ).
(iii). Uniformly estimate for the desired integral

ˆ
B

∣∣eu
p,ε(x) − |∇u|p(x)

∣∣dvol(x).

According to Eqs. (4.7) and (4.11), we have, for any sufficiently small
ε > 0,

ˆ
B

∣∣eu
p,ε(x) − |∇u|p(x)

∣∣dvol(x)

�
ˆ

B

∣∣eu
p,ε(x) − eu

p,ε,gδ
(x)
∣∣dvol(x)

+
ˆ

B

∣∣eu
p,ε,gδ

(x) − |∇u|p,gδ (x)
∣∣dvol(x)

+
ˆ

B

∣∣|∇u|p,gδ (x) − |∇u|p(x)
∣∣dvol(x)

� κ6(δ) + κ5(δ) +
ˆ

B

∣∣|∇u|p,gδ (x) − |∇u|p(x)
∣∣dvol(x).

(4.12)

To estimate the desired integral, we need only to control the last term in above
equation. It is implicated by the combination of the uniformly estimate (4.11)
and Fact 4.5. We give the argument in detail as follows.

By Eq. (4.2), for any φ ∈ C0(Uδ) we have

∣∣∣
ˆ

Uδ

φ(x) · (eu
p,ε,gδ

− |∇u|p,gδ

)
dvol(x)

∣∣∣

� max |φ| ·
ˆ

W

∣∣eu
p,ε,gδ

− |∇u|p,gδ

∣∣dvol(x)

� max |φ| ·
ˆ

W

∣∣eu
p,ε,gδ

− |∇u|p,gδ

∣∣dvolδ(x) · (1 + κn
1 (δ)

)
,
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Lipschitz continuity of harmonic maps 887

where W is the support set of φ. By taking limit as ε → 0, and using Fact 4.5,
we have, weakly converging as measure

eu
p,ε,gδ

· vol w
⇀ |∇u|p,gδ · vol.

Combining with the fact eu
p,ε · vol w

⇀ |∇u|p · vol, we have
(
eu

p,ε − eu
p,ε,gδ

) · vol w
⇀
(|∇u|p − |∇u|p,gδ

) · vol.
By applying estimate of (4.11) and according the lower semi-continuity of
L1-norm with respect to weakly converging of measure, we have
ˆ

B

∣∣|∇u|p − |∇u|p,gδ

∣∣dvol � lim inf
ε→0

ˆ
B

∣∣eu
p,ε − eu

p,ε,gδ

∣∣dvol � κ6(δ).

By substituting the estimate into Eq. (4.12), we get
ˆ

B

∣∣eu
p,ε(x) − |∇u|p(x)

∣∣dvol(x) � κ5(δ) + 2κ6(δ) := κ(δ).

This completes the proof of the lemma. ��
Corollary 4.6 Let p > 1 and u ∈ W 1,p(�, Y ). Then, for any sequence of
number {ε j }∞j=1 converging to 0, there exists a subsequence {ε j } j ⊂ {ε j } j
such that, for almost everywhere x ∈ �,

lim
ε j →0

eu
p,ε j

(x) = |∇u|p(x).

Proof Take any sequence {δ j } j going to 0, and let {B j } j be a sequence of open
sets such that, for each j ∈ N,

B j ⊂⊂ �δ j and vol
(
�δ j \B j

)
� δ j .

Since the sequence {ε j } j tends to 0, we can choose a subsequence {ε j } j of
{ε j } j such that, for each j ∈ N, ε j < ε(δ j , B j ), which is the constant given
in Lemma 4.3. Hence, we have

ˆ
B j

∣∣eu
p,ε j

− |∇u|p
∣∣dvol � κ(δ j ), ∀ j ∈ N.

For each j ∈ N, vol(�\�δ j ) = 0. So, the functions eu
p,ε j

is measurable on �

for any j ∈ N. In the following, we will prove that the sequence

{ f j := eu
p,ε j

} j
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converges to f := |∇u|p in measure on �. Namely, given any number λ > 0,
we will prove

lim
j→∞ vol

{
x ∈ � : | f j (x) − f (x)| � λ

} = 0.

Fix any λ > 0, we consider the sets

A j (λ) := {x ∈ �\SM : | f j (x) − f (x)| � λ
}
.

Noting that SM has zero measure (indeed, it has Hausdorff codimension at
least two [5]), we need only to show

lim
j→∞ vol

(
A j (λ)

) = 0.

By Chebyshev inequality, we get

λ · vol(A j (λ) ∩ B j
)

�
ˆ

A j (λ)∩B j

| f j − f |dvol �
ˆ

B j

| f j − f |dvol � κ(δ j )

for any j ∈ N. Thus, noting that A j (λ) ⊂ �\SM ⊂ �δ j for each j ∈ N, we
have

vol
(

A j (λ)
)

� vol
(

A j (λ) ∩ B j
)+ vol

(
A j (λ)\B j

)
� κ(δ j )

λ
+ vol

(
�δ j \B j

)

� κ(δ j )

λ
+ δ j

for any j ∈ N. This implies that lim j→∞ vol
(

A j (λ)
) = 0, and hence, that

{ f j } j converges to f in measure.
Lastly, by F. Riesz theorem, there exists a subsequence of {ε j } j , denoted

by {ε j } j again, such that the sequence {eu
p,ε j

} j converges to |∇u|p almost
everywhere in �. ��
The above pointwise converging provides the following mean value property,
which will be used later.

Corollary 4.7 Let p > 1 and u ∈ W 1,p(�, Y ). Then, for any sequence of
number {ε j }∞j=1 converging to 0, there exists a subsequence {ε j } j ⊂ {ε j } j
such that for almost everywhere x0 ∈ �, we have the following mean value
property:
ˆ

Bx0 (ε j )

d p
Y

(
u(x0), u(x)

)
dvol(x) = cn,p

n + p
|∇u|p(x0) · ε

n+p
j + o

(
ε

n+p
j

)
.

(4.13)
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Proof According to the previous Corollary 4.6, there exists a subsequence
{ε j } j ⊂ {ε j } j such that

lim
ε j →0

eu
p,ε j

(x0) = |∇u|p(x0) for almost all x0 ∈ �.

Fix such a point x0. By the definition of approximating energy density, we get

n + p

cn,p · εn
j

ˆ
Bx0 (ε j )

d p
Y

(
u(x0), u(x)

)
dvol(x) = |∇u|p(x0) · ε

p
j + o

(
ε

p
j

)
.

The proof is finished. ��

5 Pointwise Lipschitz constants

Let � be a bounded domain of an Alexandrov space with curvature � k for
some k � 0. In this section, we will established an estimate for pointwise
Lipschitz constants of harmonic maps from � into a complete, non-positively
curved metric space (Y, dY ).

Let us first review the concept of metric spaces with (global) non-positive
curvature in the sense of Alexandrov.

5.1 NPC spaces

Definition 5.1 (see, for example, [3]) A geodesic space (Y, dY ) is said to have
global non-positive curvature in the sense of Alexandrov, denoted by N PC , if
the following comparison property is to hold: Given any triangle�P Q R ⊂ Y
and point S ∈ Q R with

dY (Q, S) = dY (R, S) = 1

2
dY (Q, R),

there exists a comparison triangle �P̄ Q̄ R̄ in Euclidean plane R
2 and point

S̄ ∈ Q̄ R̄ with

|Q̄ S̄| = |R̄ S̄| = 1

2
|Q̄ R̄|

such that

dY (P, S) � |P̄ S̄|.

It is also called a C AT (0) space.
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The following lemma is a special case of Corollary 2.1.3 in [33].

Lemma 5.2 Let (Y, dY ) be an NPC space. Take any ordered sequence
{P, Q, R, S} ⊂ Y , and let point Qm be the mid-point of Q R. we denote
the distance dY (A, B) abbreviatedly by dAB . Then we have

(
dP S − dQ R

) · dQ R �
(
d2

P Qm
− d2

P Q − d2
Qm Q

)+ (d2
SQm

− d2
S R − d2

Qm R

)
.

(5.1)

Proof Taking t = 1/2 and α = 1 in Equation (2.1v) in Corollary 2.1.3 of [33],
we get

d2
P Qm

+ d2
SQm

� d2
P Q + d2

RS − 1

2
d2

Q R + dP S · dQ R .

Since

dQ R = 2dQm Q = 2dQm R,

we have

dP S · dQ R − d2
Q R �

(
d2

P Qm
− d2

P Q − d2
Qm Q

)+ (d2
SQm

− d2
S R − d2

Qm R

)
.

This is Eq. (5.1). ��

5.2 Harmonic maps

Let � be a bounded domain in an Alexandrov space (M, |·, ·|) and let Y be an
NPC space. Given any φ ∈ W 1,2(�, Y ), we set

W 1,2
φ (�, Y ) := {u ∈ W 1,2(�, Y ) : dY

(
u(x), φ(x)

) ∈ W 1,2
0 (�, R)

}
.

Using the variation method in [27,39], (by the lower semi-continuity of
energy), there exists a unique u ∈ W 1,2

φ (�, Y ) which is minimizer of energy
Eu
2 . That is, the energy Eu

2 := Eu
2 (�) of u satisfies

Eu
2 = inf

w

{
Ew
2 : w ∈ W 1,2

φ (�, Y )
}
.

Such an energy minimizing map is called a harmonic map.

Lemma 5.3 (Jost [27], Lin [39]) Let � be a bounded domain in an Alexandrov
space (M, |·, ·|) and let Y be an NPC space. Suppose that u is a harmonic
map from � to Y . Then the following two properties are satisfied:
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Lipschitz continuity of harmonic maps 891

(i) The map u is locally Hölder continuous on �;
(ii) (Lemma 5 in [27], see also Lemma 10.2 of [11] for harmonic maps between

Riemannian polyhedra) For any P ∈ Y , the function

fP(x) := dY
(
u(x), P

) ( ∈ W 1,2(�)
)

satisfies f 2P ∈ W 1,2
loc (�) and5

L f 2P
� 2Eu

2 � 2|∇u|2 · vol.

According to this Lemma, we always assume that a harmonic map form �

into an NPC space is continuous in �.

5.3 Estimates for pointwise Lipschitz constants

Let u be a harmonic map from a bounded domain � of an Alexandrov space
(M, |·, ·|) to an NPC space (Y, dY ). In this subsection, we will estimate the
pointwise Lipchitz constant of u, that is,

Lipu(x) := lim sup
y→x

dY
(
u(x), u(y)

)

|xy| = lim sup
r→0

sup
|xy|�r

dY
(
u(x), u(y)

)

r
.

It is convenient to consider the function f : � × � → R defined by

f (x, y) := dY
(
u(x), u(y)

)
, (5.2)

where � × � ⊂ M × M , which is equipped the product metric defined as

|(x, y), (z, w)|2M×M := |xz|2 + |yw|2 for any x, y, z, w ∈ M.

Recall that (M × M, |·, ·|M×M) is also an Alexandrov space. The geodesic
balls in M × M are denoted by

B M×M
(x,y) (r) := {(z, w) : |(z, w), (x, y)|M×M < r}.

5 The assertion was proved essentially in Lemma 5 of [27], where J. Jost consider a different
energy form E . Jost’s argument was adapted in [11] to prove the same assertion for energy
minimizing maps from Riemannian polyhedra associated to the energy Eu

2 (given in the above
Sect. 4). By checking the proof in Lemma 10.2 of [11] word by word, the same proof also
applies to our setting without changes.
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Proposition 5.4 Let �, Y and u, f be as the above. Then the function f is
sub-solution of L (2)

f = 0 on � × �, where L (2) is the Laplacian on � × �

(because M × M is also an Alexandrov space, the notion L (2) makes sense).

Proof We divide the proof into three steps.
(i) For any P ∈ Y , we firstly prove that the functions fP(x) := dY

(
u(x), P

)
satisfy L fP � 0 on �.

Take any ε > 0 and set

fε(x) :=
√

f 2P(x) + ε2.

We have

|∇ fε | = fP

fε
· |∇ fP | � |∇ fP |.

Thus, we have fε ∈ W 1,2(�), since fP ∈ W 1,2(�). We will prove that, for
any ε > 0, L fε forms a nonnegative Radon measure.

From Proposition 4.1 (1) and (5), we get that fP ∈ W 1,2(�) and

Eu
2 � E fP

2 = |∇ fP |2 · vol.

By combining with Lemma 5.3 (ii),

L f 2ε
= L f 2P

� 2Eu
2 � 2|∇ fP |2 · vol � 2|∇ fε |2 · vol. (5.3)

Take any test function φ ∈ Lip0(�) with φ � 0. By using

−L f 2ε
(φ) =

ˆ
�

〈∇ f 2ε , ∇φ
〉
dvol = 2

ˆ
�

〈∇ fε, ∇( fε · φ)〉dvol

−2
ˆ

�

φ · |∇ fε |2dvol,

and combining with Eq. (5.3), we obtain that the functional

Iε(φ) := −
ˆ

�

〈∇ fε, ∇( fε · φ)〉 dvol = L fε ( fε · φ)

on Lip0(�) is nonnegative. According to the Theorem 2.1.7 of [21], there
exists a (nonnegative) Radon measure, denoted by νε , such that

νε(φ) = Iε(φ) = L fε ( fε · φ).
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Lipschitz continuity of harmonic maps 893

This implies that, for any ψ ∈ Lip0(�) with ψ � 0,

L fε (ψ) = νε

(
ψ

fε

)
� 0.

Thus, we get thatL fε is a nonnegative functional on Lip0(�), and hence, by
using the Theorem 2.1.7 of [21] again, it forms a nonnegative Radon measure.

Now let us prove the sub-harmonicity of fP . Noting that, for any ε > 0,

|∇ fε | � |∇ fP | and 0 < fε � fP + ε,

we get that the set { fε}ε>0 is bounded uniformly in W 1,2(�). Hence, it is
weakly compact. Then there exists a sequence of numbers ε j → 0 such that

fε j

w
⇀ fP in W 1,2(�).

Therefore, the sub-harmonicity of fε j for any j ∈ N implies that fP is sub-
harmonic. This completes the proof of (i).

(ii) We next prove that f is in W 1,2(� × �).
Let us consider the approximating energy density of f at point (x, y) ∈

� × �. Fix any positive number ε with Bx (2ε) ⊂ � and By(2ε) ⊂ �. By
the definition of approximating energy density, the triangle inequality, and by
noting that the ball in � × � satisfying

B M×M
(x,y) (ε) ⊂ Bx (ε) × By(ε) ⊂ � × �,

we have

c2n,2

2n + 2
· e f

2,ε(x, y)

=
ˆ

B M×M
(x,y)

(ε)

| f (x, y) − f (z, w)|2
ε2n+2 dvol(z)vol(w)

�
ˆ

Bx (ε)×By(ε)

[
dY
(
u(x), u(z)

)+ dY
(
u(y), u(w)

)]2
ε2n+2 dvol(z)dvol(w)

� 2 · vol(By(ε)
) ·

ˆ
Bx (ε)

dY
(
u(x), u(z)

)2
ε2n+2 dvol(z)

+ 2 · vol(Bx (ε)
) ·

ˆ
By(ε)

dY
(
u(y), u(w)

)2
ε2n+2 dvol(w)
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� 2
vol
(
By(ε)

)

εn
· cn,2

n + 2
eu
2,ε(x) + 2

vol
(
Bx (ε)

)

εn
· cn,2

n + 2
eu
2,ε(y)

� cn,k,diameter(�) · (eu
2,ε(x) + eu

2,ε(y)
)
.

Then, by the definition of energy functional, it is easy to see that f has finite
energy. Hence f is in W 1,2(� × �).

(iii) We want to prove that f is sub-harmonic on � × �.
For any g ∈ W 1,2(� × �), by Fubini’s Theorem, we conclude that, for

almost all x ∈ �, the functions gx (·) := g(x, ·) are in W 1,2(�), and that the
same assertions hold for the functions gy(·) := g(·, y). We denote by∇M×M g
the weak gradient of g. Note that the metric on M × M is the product metric,
we have

〈∇M×M g, ∇M×M h〉 (x, y) = 〈∇1g, ∇1h〉 + 〈∇2g, ∇2h〉 ,

for any g, h ∈ W 1,2(� × �), where ∇1g is the weak gradient of the function
gy(·) := g(·, y) : � → R, and ∇2g is similar.

Now, we are in the position to prove sub-harmonicity of f . Take any test
function ϕ(x, y) ∈ Lip0(� × �) with ϕ(x, y) � 0.

ˆ
�×�

〈∇M×M f , ∇M×Mϕ〉(x,y) dvol(x)dvol(y)

=
ˆ

�

ˆ
�

〈∇1 f , ∇1ϕ〉 dvol(x)dvol(y)

+
ˆ

�

ˆ
�

〈∇2 f , ∇2ϕ〉 dvol(y)dvol(x).

(5.4)

Fix y ∈ � and note that the function ϕy(·) := ϕ(·, y) ∈ Lip0(�). Accord-
ing to (i), the function fu(y) := dY

(
u(·), u(y)

)
is sub-harmonic on �. Hence,

we have
ˆ

�

〈∇1 f , ∇1ϕ〉 dvol(x) = −L fu(y)
(ϕy(·)) � 0.

By the same argument, we get for any fixed x ∈ �,

ˆ
�

〈∇2 f , ∇2ϕ〉 dvol(y) � 0.

By substituting these above two inequalities into Eq. (5.4), we have

ˆ
�×�

〈∇M×M f , ∇M×Mϕ〉(x,y) dvol(x)dvol(y) � 0,

123



Lipschitz continuity of harmonic maps 895

for any function ϕ ∈ Lip0(� × �). This implies that f is sub-harmonic on
� × �. The proof of the proposition is completed. ��

Now we can establish the following estimates for pointwise Lipschitz con-
stants of harmonic maps.

Theorem 5.5 Let � be a bounded domain in an n-dimensional Alexandrov
space (M, |·, ·|) with curvature � k for some k � 0, and let Y be an NPC
space. Suppose that u is a harmonic map from � to Y . Then, for any ball
Bq(R) ⊂⊂ �, there exists a constant C(n, k, R), depending only on n, k and
R, such that the following estimate holds:

Lip2u(x) � C(n, k, R) · |∇u|2(x) < +∞ (5.5)

for almost everywhere x ∈ Bq(R/6), where |∇u|2 is the density of the abso-
lutely continuous part of energy measure Eu

2 with respect to vol.

Proof Fix any ball Bq(R) ⊂⊂ �. Throughout this proof, all of constants
C1, C2, . . . depend only on n, k and R.

Note that M × M has curvature lower bound min{k, 0} = k, and that
diam(Bq(R)× Bq(R)) = √

2R. Clearly, on Bq(R)× Bq(R), both the measure
doubling property and the (weak) Poincaré inequality hold, with the corre-
sponding doubling and Poincaré constants depending only on n, k and R. On
the other hand, from Proposition 5.4, the function

f (x, y) := dY
(
u(x), u(y)

)

is sub-harmonic on Bq(R)× Bq(R). By Theorem 8.2 of [2], (or a Nash–Moser
iteration argument), there exists a constant C1 such that

sup
B M×M

(x,y)
(r)

f � C1 ·
( 

B M×M
(x,y)

(2r)

f 2dvolM×M

) 1
2

for any (x, y) ∈ Bq(R/2) × Bq(R/2) and any r > 0 with B M×M
(x,y) (2r) ⊂⊂

Bq(R) × Bq(R), where, for any function h ∈ L1(E) on a measurable set E ,

 
E

hdvol := 1

vol(E)

ˆ
E

hdvol.

In particular, for any fixed z ∈ Bq(R/2) and any r > 0 with Bz(2r) ⊂ Bq(R),
by noting that

Bz(r/2) × Bz(r/2) ⊂ B M×M
(z,z) (r) and B M×M

(z,z) (2r) ⊂ Bz(2r) × Bz(2r),
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we have

sup
y∈Bz(r/2)

f 2(y, z) � sup
Bz(r/2)×Bz(r/2)

f 2

� C2
1

vol
(
B M×M

(z,z) (2r)
)
ˆ

Bz(2r)×Bz(2r)

f 2dvolM×M . (5.6)

From Proposition 4.1 (4), there exists constant C2 such that the following
holds: for any z ∈ Bq(R/6) and any 0 < r < R/4, we have

ˆ
Bz(2r)

ˆ
Bz(2r)

f 2(x, y)dvol(x)dvol(y) � C2rn+2 ·
ˆ

Bz(12r)

d Eu
2 .

By combining with Eq. (5.6), we get for any z ∈ Bq(R/6)

sup
y∈Bz(r/2)

f 2(y, z)

r2
� C2

1 · C2 · rn · vol(Bz(12r)
)

vol
(
B M×M

(z,z) (2r)
)
 

Bz(12r)

d Eu
2 (5.7)

for any 0 < r < R/4. Noticing that Bz(r) × Bz(r) ⊂ B M×M
(z,z) (2r) again,

according to the Bishop–Gromov volume comparison [5], we have

rn · vol(Bz(12r)
)

vol
(
B M×M

(z,z) (2r)
) � rn

vol
(
Bz(r)

) · vol
(
Bz(12r)

)

vol
(
Bz(r)

) � C3 · rn

vol
(
Bz(r)

)

for any 0 < r < R/4. Hence, by using this and the Eq. (5.7), we obtain that,
for any z ∈ Bq(R/6),

sup
y∈Bz(r/2)

f 2(y, z)

r2
� C4 · rn

vol
(
Bz(r)

) ·
 

Bz(12r)

d Eu
2

for any 0 < r < R/4, where C4 := C2
1 · C2 · C3. Therefore, we conclude that

Lip2u(z) = lim sup
r→0

sup
|yz|�r/4

f 2(y, z)

(r/4)2
� 16 · lim sup

r→0
sup

|yz|<r/2

f 2(y, z)

r2

� 16C4 · lim sup
r→0

rn

vol
(
Bz(r)

) · lim sup
r→0

 
Bz(12r)

d Eu
2

(5.8)

for any z ∈ Bq(R/6). According to the Lebesgue decomposition theorem
(see, for example, Section 1.6 in [12]), we know that, for almost everywhere
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Lipschitz continuity of harmonic maps 897

x ∈ Bq(R/6), the limit limr→0
ffl

Bx (r)
d Eu

2 exists and

lim
r→0

 
Bx (r)

d Eu
2 = |∇u|2(x). (5.9)

On the other hand, from [5], we know that

lim
r→0

rn

vol(Bx (r))
= n/ωn−1 (5.10)

for any regular point x ∈ Bq(R/6) and that the set of regular points in an
Alexandrov space has full measure. Thus, (5.10) holds for almost all x ∈
Bq(R/6). By using this and (5.8)–(5.10), we get the estimate (5.5). ��
Consequently, we have the following mean value inequality.

Corollary 5.6 Let � be a bounded domain in an n-dimensional Alexandrov
space (M, |·, ·|) and let Y be an NPC space. Suppose that u is a harmonic
map from � to Y . Then, for almost everywhere x0 ∈ �, we have the following
holds:
ˆ

Bx0 (R)

[
d2

Y

(
P, u(x0)

)− d2
Y

(
P, u(x)

)]
dvol(x) � −|∇u|2(x0) · ωn−1

n(n + 2)
· Rn+2

+o(Rn+2).

for every P ∈ Y .

Proof We define a subset of � as

A := {x ∈ �| x is smooth, Lipu(x) < +∞,

and x is a Lebesgue point of |∇u|2
}
.

According to the above Theorem 5.5 and [45], we have vol(�\A) = 0.
Fix any point x0 ∈ A. For any P ∈ Y , we consider the function on �

gx0,P(x) := d2
Y

(
P, u(x0)

)− d2
Y

(
P, u(x)

)
.

Then, from Lemma 5.3 (ii), we have

Lgx0,P � −2Eu
2 � −2|∇u|2 · vol.

Since x0 is a Lebesgue point of the function −2|∇u|2, by applying Proposi-
tion 3.2 to nonnegative function (note that −2|∇u|2 � 0),

gx0,P(x) − inf
Bx0 (R)

gx0,P(x),
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898 H.-C. Zhang, X.-P. Zhu

we obtain

1

Hn−1(∂ Bo(R) ⊂ T k
x0)

ˆ
∂ Bx0 (R)

[
gx0,P(x) − inf

Bx0 (R)
gx0,P(x)

]
dvol

�
[

gx0,P(x0) − inf
Bx0 (R)

gx0,P(x)

]
− 2|∇u|2(x0)

2n
· R2 + o(R2).

Denote by

A(R) := vol
(
∂ Bx0(R) ⊂ M

)
and A(R) := Hn−1(∂ Bo(R) ⊂ T k

x0

)
.

Noting that gx0,P(x0) = 0, we haveˆ
∂ Bx0 (R)

gx0,P(x)dvol � − inf
Bx0 (R)

gx0,P(x) ·
(

A(R) − A(R)
)

−
( |∇u|2(x0)

n
· R2 + o(R2)

)
· A(R). (5.11)

By applying co-area formula, integrating two sides of Eq. (5.11) on (0, R), we
have

ˆ
Bx0 (R)

gx0,P(x)dvol =
ˆ R

0

ˆ
∂ Bx0 (r)

gx0,P(x)dvol

� −
ˆ R

0
inf

Bx0 (r)
gx0,P(x) ·

(
A(r) − A(r)

)
dr

−
ˆ R

0

( |∇u|2(x0)

n
· r2 + o(r2)

)
· A(r)dr

:= I (R) + I I (R). (5.12)

Since M has curvature� k, the Bishop–Gromov inequality states that A(r) �
A(r) for any r > 0. Hence we have

inf
Bx0 (r)

gx0,P(x) ·
(

A(r) − A(r)
)

� inf
Bx0 (R)

gx0,P(x) ·
(

A(r) − A(r)
)

for any 0 � r � R. So we obtain

I (R) � − inf
Bx0 (R)

gx0,P(x) ·
ˆ R

0

(
A(r) − A(r)

)
dr

= − inf
Bx0 (R)

gx0,P(x) ·
(

Hn(Bo(R) ⊂ T k
x0

)−vol
(
Bx0(R)

))
.

(5.13)
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Lipschitz continuity of harmonic maps 899

By Lipu(x0) < +∞ and the triangle inequality, we have

|gx0,P(x)|
=
(

dY
(
P, u(x0)

)+ dY
(
P, u(x)

)) · ∣∣dY
(
P, u(x0)

)− dY
(
P, u(x)

)∣∣

�
(
2dY
(
P, u(x0)

)+ dY
(
u(x0), u(x)

)) · dY
(
u(x), u(x0)

)

�
(
2dY
(
P, u(x0)

)+ Lipu(x0) · R + o(R)
)

· (Lipu(x0) · R + o(R)
)

= O(R). (5.14)

Since x0 ia a smooth point, from Lemma 2.5, we have

∣∣Hn(Bo(R) ⊂ Tx0

)− vol
(
Bx0(R)

)∣∣ � o(R) · Hn(Bo(R) ⊂ Tx0

) = o(Rn+1).

By using the fact that x0 is smooth again, and hence T k
x0 is isometric M

n
k , we

have

∣∣Hn(Bo(R) ⊂ T k
x0

)− Hn(Bo(R) ⊂ Tx0

)∣∣ = ∣∣Hn(Bo(R) ⊂ M
n
k

)

− Hn(Bo(R) ⊂ R
n)∣∣

= O(Rn+2).

By substituting the above two estimates and (5.14) into (5.13), we obtain

I (R) � o(Rn+2). (5.15)

Now let us estimate I I (R). Note that x0 is a smooth point. In particular, it
is a regular point. Hence

A(r) = vol(�x0) · sn−1
k (r) = ωn−1r

n−1 + o(rn−1).

We have

I I (R) = −
ˆ R

0

( |∇u|2(x0)

n
· r2 + o(r2)

)
· A(r)dr

= −|∇u|2(x0) · ωn−1

n

ˆ R

0

(
rn+1 + o(rn+1)

)
dr

= −|∇u|2(x0) · ωn−1

n(n + 2)
· Rn+2 + o(Rn+2).

(5.16)
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900 H.-C. Zhang, X.-P. Zhu

The combination of Eqs. (5.12) and (5.15)–(5.16), we have

ˆ
Bx0 (R)

gx0,P(x)dvol � −|∇u|2(x0) · ωn−1

n(n + 2)
· Rn+2 + o(Rn+2).

This is desired estimate. Hence we complete the proof. ��

6 Lipschtz regularity

We will prove the main Theorem 1.4 in this section. The proof is split into
two steps, which are contained in the following two subsections. In the first
subsection, wewill construct a family of auxiliary functions ft (x, λ) and prove
that they are super-solutions of the heat equation (see Proposition 6.13). In the
second subsection, we will complete the proof.

Let�be aboundeddomain in ann-dimensionalAlexandrov space (M, |·, ·|)
with curvature � k for some number k � 0, and let (Y, dY ) be a complete
NPC metric space. In this section, we always assume that u : � → Y is an
(energy minimizing) harmonic map. From Lemma 5.3, we can assume that u
is continuous on �.

6.1 A family of auxiliary functions with two parameters

Fix any domain �′ ⊂⊂ �. For any t > 0 and any 0 � λ � 1, we define the
following auxiliary function ft (x, λ) on �′ by:

ft (x, λ) := inf
y∈�′

{
e−2nkλ · |xy|2

2t
− dY

(
u(x), u(y)

)}
, x ∈ �′. (6.1)

We denote by St(x, λ) the set of all pointswhere are the “inf” of (6.1) achieved,
i.e.,

St (x, λ) :=
{

y ∈ �′ | ft (x, λ) = e−2nkλ · |xy|2
2t

− dY
(
u(x), u(y)

)}
.

It is clear that (by setting y = x)

0 � ft (x, λ) � −osc
�′u := − max

x,y∈�′
dY
(
u(x), u(y)

)
. (6.2)

Given a function g(x, λ) defined on�×R, we always denote by g(·, λ) the
function x �→ g(x, λ) on �. The notations g(x, ·) and g(·, ·) are analogous.
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Lipschitz continuity of harmonic maps 901

Lemma 6.1 Fix any domain �′′ ⊂⊂ �′ and denote by

C∗ := 2osc
�′u + 2 and t0 := dist2(�′′, ∂�′)

4C∗
.

For each t ∈ (0, t0), we have

(i) for each λ ∈ [0, 1] and x ∈ �′′, the set St (x, λ) 	= ∅ and it is closed,
and

ft (x, λ) = min
y∈Bx (

√
C∗t)

{
e−2nkλ · |xy|2

2t
− dY

(
u(x), u(y)

)} ;

(ii) for each λ ∈ [0, 1], the function ft (·, λ) is in C(�′′) ∩ W 1,2(�′′), and

ˆ
�′′

|∇ ft (x, λ)|2dvol(x) � 2 · e−4nk · diam
2(�′)

t2
· vol(�′′) + 2Eu

2 (�′′);
(6.3)

(iii) for each x ∈ �′′, the function ft (x, ·) is Lipschitz continuous on [0, 1],
and

| ft (x, λ) − ft (x, λ′)| � e−2nk · C∗ · |λ − λ′|, ∀λ, λ′ ∈ [0, 1]. (6.4)

(iv) the function (x, λ) �→ ft (x, λ) is in C
(
�′′ × [0, 1])∩ W 1,2(�′′ × (0, 1))

with respect to the product measure ν := vol × L1, where L1 is the
Lebesgue measure on [0, 1].

Proof (i) Let x ∈ �′′. The definition of C∗ and t0 implies that Bx (
√

C∗t) ⊂⊂
�′. Let t ∈ (0, t0) and λ ∈ [0, 1]. Take any a minimizing sequence {y j } j of
(6.1). We claim that

|xy j |2 � C∗t (6.5)

for all sufficiently large j ∈ N. Indeed, from ft (x, λ) � 0, we get that

e−2nkλ · |xy j |2
2t

− dY
(
u(x), u(y j )

)
� 1

for all sufficiently large j ∈ N. Thus,

|xy j |2 � 2t
(
1 + dY

(
u(x), u(y j )

))
� 2t (1 + osc

�′u) � C∗t
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902 H.-C. Zhang, X.-P. Zhu

for all j ∈ N large enough, where we have used that k � 0 and the definition
of C∗. This proves (6.5). The assertion (i) is implied by the combination of
(6.5) and that u is continuous.

(ii) Let t ∈ (0, t0) and λ ∈ [0, 1] be fixed. Take any x, y ∈ �′′ and let point
z ∈ �′ achieve the minimum in the definition of ft (y, λ). We have, by the
triangle inequality,

ft (x, λ) − ft (y, λ) � e−2nkλ · |xz|2
2t

− dY
(
u(x), u(z)

)− e−2nkλ · |yz|2
2t

+ dY
(
u(y), u(z)

)

� e−2nkλ · (|xz| − |yz|) · (|xz| + |yz|)
2t

+ dY
(
u(x), u(y)

)

� e−2nkλ · diam(�′)
t

· |xy| + dY
(
u(x), u(y)

)
.

By the symmetry of x and y, we have

| ft (x, λ) − ft (y, λ)| � e−2nkλ · diam(�′)
t

· |xy| + dY
(
u(x), u(y)

)
.

This inequality implies the following assertions:

• f (·, λ) is continuous on �′′, since u is continuous;
• for any ε > 0, the approximating energy density of f (·, λ) satisfies (since

e−2nkλ � e−2nk)

e ft (·,λ)
2,ε (x) � 2e−4nk · diam2(�′)/t2 + 2eu

2,ε(x), x ∈ �′′.

This implies (6.3), and hence (ii).
(iii) Let any x ∈ �′′ be fixed. Take any λ, μ ∈ [0, 1]. Let a point z ∈

St (x, μ). That is, point z achieves the minimum in the definition of ft (x, μ).
By the triangle inequality, we get

ft (x, λ) − ft (x, μ) � e−2nkλ · |xz|2
2t

− dY
(
u(x), u(z)

)− e−2nkμ · |xz|2
2t

+ dY
(
u(x), u(z)

)

� (e−2nkλ − e−2nkμ) · |xz|2
2t

� |λ − μ| · e−2nk · C∗t

2t
� e−2nk · C∗ · |λ − μ|,
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Lipschitz continuity of harmonic maps 903

where we have used λ, μ � 1 and |xz| �
√

C∗t (since (i)). By the symmetry
of λ and μ, we have

| ft (x, λ) − ft (x, μ)| � e−2nk · C∗ · |λ − μ|.
This completes (iii).

(iv) is a consequence of the combination of Eqs. (6.3) and (6.4), and that ft
is bounded on �′′ × [0, 1]. ��

Fix any domain �′′ ⊂⊂ �′ and let t0 be given in Lemma 6.1. For each
t ∈ (0, t0) and each λ ∈ [0, 1], the set St (x, λ) is closed for all x ∈ �′′, by
Lemma 6.1(i). We define a function Lt,λ(x) on �′′ by

Lt,λ(x) := dist
(
x, St (x, λ)

) = min
y∈St (x,λ)

|xy|, x ∈ �′′. (6.6)

Lemma 6.2 Fix any domain �′′ ⊂⊂ �′. For each t ∈ (0, t0), we have:

(i) the function (x, λ) �→ Lt,λ(x) is lower semi-continuous in �′′ × [0, 1];
(ii) for each λ ∈ [0, 1],

‖Lt,λ‖L∞(�′′) �
√

C∗t, (6.7)

where the constant C∗ is given in Lemma 6.1.

Proof Let x ∈ �′′ and λ ∈ [0, 1].We take sequences {(x j , λ j )} j ⊂ �′′×[0, 1]
with (x j , λ j ) → (x, λ), as j → ∞, such that

lim
j→∞ Lt,λ j (x j ) = lim inf

z→x, μ→λ
Lt,μ(z).

For each j , let y j ∈ St (x j , λ j ) such that Lt,λ j (x j ) = |x j y j |. Since
dist(y j , �

′′) �
√

C∗t0 = dist(�′′, ∂�′)/2 for all j ∈ N (by Lemma 6.1(i)),
there exists a subsequence, say {y jl }l , converging to some y ∈ �′. By the
continuity of u and ft (·, λ) (see Lemma 6.1(iv)), we get

ft (x, λ) = e−2nkλ · |xy|2
2t

− dY
(
u(x), u(y)

)
.

This implies y ∈ St (x, λ). From the definition of Lt,λ(x), we have

Lt,λ(x) � |xy| = lim
l→∞ |x jl y jl | = lim

l→∞ Lt,λ j (x jl ) = lim inf
z→x, μ→λ

Lt,λ(z).

Therefore, Lt,λ is lower semi-continuous on �′′ × [0, 1]. The proof of (i) is
complete.
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904 H.-C. Zhang, X.-P. Zhu

For each t ∈ (0, t0) and each λ ∈ [0, 1], the function Lt,λ(·) is lower
semi-continuous, and hence it is measurable, on �′′. By Lemma 6.1(i) and the
definition of Lt,λ, we have 0 � Lt,λ(x) �

√
C∗t for all x ∈ �′′. Hence, the

estimate (6.7) holds. This completes the proof of the lemma. ��
Lemma 6.3 Fix any domain �′′ ⊂⊂ �′. For each t ∈ (0, t0), we have

lim inf
μ→0+

ft (x, λ + μ) − ft (x, λ)

μ
� −e−2nkλ · nk

t
· L2

t,λ(x)

for any λ ∈ [0, 1) and x ∈ �′′.
Consequently, we have, for each x ∈ �′′, (by Lemma 6.1(iii))

∂ ft (x, λ)

∂λ
� −e−2nkλ · nk

t
· L2

t,λ(x) L1−a.e. λ ∈ (0, 1). (6.8)

Proof Let t ∈ (0, t0), λ ∈ [0, 1) and x ∈ �′′. For each 0 < μ < 1 − λ, we
take a point yλ+μ ∈ St (x, λ + μ). By the definition of ft (x, λ) and St (x, λ),
we have

ft (x, λ + μ) − ft (x, λ)

= e−2nk(λ+μ) |xyλ+μ|2
2t

− dY
(
u(x), u(yλ+μ)

)

− inf
z

{
e−2nkλ |xz|2

2t
− dY

(
u(x), u(z)

)}

�
(

e−2nk(λ+μ) − e−2nkλ
)

· |xyλ+μ|2
2t

�
(

e−2nk(λ+μ) − e−2nkλ
)

· L2
t,λ+μ(x)

2t
,

where we have used k � 0. By the lower semi-continuity of Lt,λ, we have

lim inf
μ→0+

ft (x, λ + μ) − ft (x, λ)

μ
� e−2nkλ · (−nk) · L2

t,λ(x)

t
.

This proves the lemma. ��
We need a mean value inequality.

Lemma 6.4 Given any z ∈ � and P ∈ Y , we define a function wz,P by

wz,P(·) := d2
Y

(
u(·), u(z)

)− d2
Y

(
u(·), P

)+ d2
Y

(
P, u(z)

)
.
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Lipschitz continuity of harmonic maps 905

Then, there exists a sequence {ε j } j converging to 0 and a set N with
vol(N ) = 0 such that the following property holds: given any x0 ∈ �\N
and any P ∈ Y , the following mean value inequalities

ˆ
Bo(ε j )∩W

wx0,P
(
expx0(η)

)
dη � o

(
εn+2

j

)
(6.9)

hold for any set W ⊂ Wx0 satisfying

Hn
(
W ∩ Bo(ε j )

)

Hn
(
Bo(ε j ) ⊂ Txo

) � 1 − o(ε j ). (6.10)

Proof We firstly show that there exists a sequence {ε j } j converging to 0 and
a set N with vol(N ) = 0 such that the following property holds: for any
x0 ∈ �\N and any P ∈ Y , we have

ˆ
Bx0 (ε j )

wx0,P(x)dvol(x) � o
(
εn+2

j

)
. (6.11)

This comes from the combination of Corollaries 4.7 and 5.6. Indeed, on
the one hand, by applying Corollary 4.7 with p = 2 to the sequence {ε j =
j−1}∞j=1, we conclude that there exists a subsequence {ε j } j ⊂ {ε j } j and a set
N1 with vol(N1) = 0 such that for any point x0 ∈ �\N1, we have

ˆ
Bx0 (ε j )

d2
Y

(
u(x0), u(x)

)
dvol(x)

= ωn−1

n(n + 2)
|∇u|2(x0) · εn+2

j + o
(
εn+2

j

)
,

(6.12)

where we have used cn,2 = ωn−1/n. On the other hand, from Corollary 5.6,
there exists a set N2 with vol(N2) = 0 such that, for all x0 ∈ �\N2, we have

ˆ
Bx0 (ε j )

[
d2

Y

(
P, u(x0)

)− d2
Y

(
P, u(x)

)]
dvol(x)

� −|∇u|2(x0) · ωn−1

n(n + 2)
· εn+2

j + o
(
εn+2

j

) (6.13)

for every P ∈ Y . Now, denote byN = N1 ∪ N2. The Eq. (6.11) follows from
the combination of the definition of function wx0,P and (6.12)–(6.13).

According to [45], the set of smooth points has full measure in M . Then,
without loss the generality, we can assume that x0 is smooth. By Theorem 5.5,
we can also assume that Lipu(x0) < +∞.
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906 H.-C. Zhang, X.-P. Zhu

Since the point x0 is smooth, by using Lemma 2.5, we have

ˆ
Bo(ε j )∩Wx0

wx0,P
(
expx0(η)

)
d Hn(η)

=
ˆ

Bx0 (ε j )∩Wx0

wx0,P(x) · (1 + o(ε j )
)
dvol(x)

�
ˆ

Bx0 (ε j )

wx0,P(x)dvol(x) +
ˆ

Bx0 (ε j )

|wx0,P(x)| · o(ε j )dvol(x).

(6.14)

Herewehave used thatWx0 has fullmeasure in M [43]. SinceLipu(x0) < +∞,
we have, for x ∈ Bx0(ε j ),

d2
Y

(
u(x), u(x0)

)
� Lip2u(x0) · ε2j + o

(
ε2j

)
.

By combining with the definition of function wx0,P and (5.14), we get

|wx0,P(x)| � O(ε j ), ∀ x ∈ Bx0(ε j ). (6.15)

The combination of (6.11), (6.14) and (6.15) implies that

ˆ
Bo(ε j )∩Wx0

wx0,P
(
expx0(η)

)
d Hn(η) � o

(
εn+2

j

)

+O(ε j ) · o(ε j ) · vol(Bx0(ε j ))

= o
(
εn+2

j

)
. (6.16)

Given any set W ⊂ Wx0 satisfying Eq. (6.10), we obtain

∣∣∣
ˆ

Bo(ε j )∩(Wx0\W )

wx0,P
(
expx0(η)

)
d Hn(η)

∣∣∣
(6.15)
� O(ε j ) · Hn(Bo(ε j ) ∩ (Wx0\W )

)

� O(ε j ) · Hn(Bo(ε j )\W
)

(6.10)
� O(ε j ) · o(ε j ) · Hn(Bo(ε j )

)

= o
(
εn+2

j

)
.

(6.17)

The combination of Eqs. (6.16) and (6.17) implies the Eq. (6.9). Hence we
have completed the proof. ��
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The following two lemmas were stated by Petrunin [50], and their detailed
proofs were given in [58].

Lemma 6.5 (Petrunin [50], see also Lemma 4.15 in [58]) Let h be the Perel-
man’s concave function given in Proposition 2.7 on a neighborhood U ⊂ M.
Assume that f is a semi-concave function defined on U. And suppose that
u ∈ W 1,2(U ) ∩ C(U ) satisfies Lu � λ · vol on U for some constant λ ∈ R.

We assume that point x∗ ∈ U is a minimal point of function u + f + h, then
x∗ has to be regular.

The second lemma is Petrunin’s perturbation in [50]. We need some nota-
tions. Let u ∈ W 1,2(D) ∩ C(D) satisfy Lu � λ · vol on a bounded domain
D. Suppose that x0 is the unique minimum point of u on D and

u(x0) < min
x∈∂ D

u.

Suppose also that x0 is regular and g = (g1, g2, . . . gn) : D → R
n is a

coordinate system around x0 such that g satisfies the following:

(i) g is an almost isometry from D to g(D) ⊂ R
n (see [5]). Namely, there

exists a sufficiently small number δ0 > 0 such that

∣∣∣‖g(x) − g(y)‖
|xy| − 1

∣∣∣ ≤ δ0, for all x, y ∈ D, x 	= y;

(ii) all of the coordinate functions g j , 1 � j � n, are concave [44].
Then there exists ε0 > 0 such that, for each vector V = (v1, v2, . . . , vn) ∈
R

n with |v j | � ε0 for all 1 � j � n, the function

G(V, x) := u(x) + V · g(x)

has a minimum point in the interior of D, where · is the Euclidean inner
product of R

n and V · g(x) =∑n
j=1 v j g j (x).

Let

U = {V ∈ R
n : |v j | < ε0, 1 � j � n} ⊂ R

n.

We define ρ : U → D by setting

ρ(V ) to be one of minimum point of G(V, x).

Note that the map ρ might not be uniquely defined.
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Lemma 6.6 (Petrunin [50], see also Lemma 4.16 in [58]) Let u, x0, {g j }n
j=1

and ρ be as above. There exists some ε ∈ (0, ε0) such that for arbitrary
ε′ ∈ (0, ε), the image ρ(U +

ε′ ) has nonzero Hausdorff measure, where

U +
ε′ := {V = (v1, v2, . . . , vn) ∈ R

n : 0 < v j < ε′ for all 1 � j � n}.

Consequently, given any set A ⊂ D with full measure, then for any ε′ < ε,
there exists V ∈ U +

ε′ such that the function u(x) + V · g(x) has a minimum
point in A.

Proof The first assertion is the result of Lemma 4.16 in [58]. The second
assertion is implied obviously by the first one. ��

The following lemma is the key for us to prove that ft (x, λ) is a super-
solution of the heat equation.

Lemma 6.7 Given any point p ∈ �′, there exits a neighborhood Up(=
Bp(Rp)) of p and a constant tp > 0 such that, for each t ∈ (0, tp) and
each λ ∈ [0, 1], the function x �→ ft (x, λ) is a super-solution of the Poisson
equation

L ft (x,λ) = −e−2nkλ · nk

t
L2

t,λ(x) · vol (6.18)

on Up.

Proof Let Up = Bp(Rp) ⊂⊂ �′ be a neighborhood of p such that U =
Bp(2Rp) supports a Perelman’s concave function h (see Proposition 2.7).
Suppose that tp = R2

p/(2C∗), where C∗ is given in Lemma 6.1. Now, for each
t ∈ (0, tp), we have ∅ 	= St (x, λ) ⊂⊂ U for any (x, λ) ∈ Up × [0, 1], by
Lemma 6.1(i).

To prove the lemma, it suffices to prove the following claim.

Claim For each t ∈ (0, tp) and each λ ∈ [0, 1], the function x �→ ft (x, λ) is
a super-solution of the Poisson equation

L ft (x,λ) =
(

− e−2nkλ · nk

t
L2

t,λ(x) + θ
)

· vol on Up

for and any θ > 0.

We will divide the argument into four steps, as we did in the proof of
Proposition 5.3 in [58]. However, the method is used in the crucial fourth step
there, is not available for our auxiliary functions ft (x, λ) in this paper. Here we
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Lipschitz continuity of harmonic maps 909

will use a new idea in the fourth step via the previous mean value inequalities
given in Lemma 6.4.

Step 1. Setting up a contradiction argument.
Suppose that the Claim fails for some t ∈ (0, tp), λ ∈ [0, 1] and some

θ0 > 0. According to Corollary 3.5, there exists a domain B ⊂⊂ Up such that
the function ft (·, λ) − v(·) satisfies

min
x∈B

(
ft (x, λ) − v(x)

)
< 0 = min

x∈∂ B

(
ft (x, λ) − v(x)

)
,

where v is the (unique) solution of the Dirichlet problem

{
Lv =

(
− e−2nkλ · nk

t L2
t,λ + θ0

)
· vol in B

v = ft (·, λ) on ∂ B.

In this case we say that ft (·, λ) − v(·) has a strict minimum in the interior of
B.
Let us define a function H(x, y) on B × U , similar as in [50,58], by

H(x, y) := e−2nkλ

2t
· |xy|2 − dY

(
u(x), u(y)

)− v(x).

Let x ∈ B be a minimum of ft (·, λ) − v on B, and let y ∈ St (x, λ) (⊂⊂ U )

such that

|x y| = Lt,λ(x). (6.19)

By the definition of St (x, λ), H(x, y) has a minimum at (x, y).
Let us fix a real number δ0 with

0 < δ0 � θ0

8n(1 + √−k · diamU )
, (6.20)

and consider the function

H0(x, y) := H(x, y) + δ0|xx |2 + δ0|yy|2, (x, y) ∈ B × U.

Since (x, y) is one of the minimal points of H(x, y), we conclude that it is the
unique minimal point of H0(x, y).

Step 2. Petrunin’s argument of perturbation.
In this step,wewill perturb the above function H0 to achieve someminimum

at a smooth point.
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910 H.-C. Zhang, X.-P. Zhu

Recall the Perelman’s concave function h is 2-Lipschitz on U (see Propo-
sition 2.7). Then, for any sufficiently small number δ1 > 0, the function

H1(x, y) := H0(x, y) + δ1h(x) + δ1h(y)

also achieves its a strict minimum in the interior of B ×U . Let (x∗, y∗) denote
one of minimal points of H1(x, y).

(i) We first claim that both points x∗ and y∗ are regular.
To justify this, we consider the function on B

H1(x, y∗) = H0(x, y∗) + δ1h(x) + δ1h(y∗)

= e−2nkλ · |xy∗|2
2t

− dY
(
u(x), u(y∗)

)− v(x) + δ0|xx |2

+ δ0|yy∗|2 + δ1h(x) + δ1h(y∗).

From the first paragraph of the proof of Proposition 5.4, we have

L
dY

(
u(x),u(y∗)

) � 0.

Notice thatLv = −nk · e−2nkλ · L2
t,λ/t + θ0 ∈ L∞(B) (since Lemma 6.2(ii))

and |xx |2, |xy∗|2/(2t) is semi-concave on B. Notice also that x∗ is a minimun
of H1(x, y∗). We can use Lemma 6.5 to conclude that x∗ is regular. Using the
same argument to function H1(x∗, y), we can get that y∗ is also regular.

Consider the function

H2(x, y) := H1(x, y) + δ1 · |xx∗|2 + δ1 · |yy∗|2

on B × U . It has the unique minimal point at (x∗, y∗).
(ii) We will use Lemma 6.6 to perturb the function H2 to achieve some

minimum at a smooth point.
Firstly, we want to show that

L (2)
H2

� C(M, t, λ, δ1, δ0, ‖Lt,λ‖L∞(B)) (6.21)

for some constant C(M, t, δ1, δ0, ‖Lt,λ‖L∞(B)), where L (2) is the Laplacian
on B × U.

Note that

|xy|2 = 2 · dist2DM
(x, y),

where distDM (·) is the distance function from the diagonal set DM := {(x, x) :
x ∈ M} on M × M. Thus we know that |xy|2 is a semi-concave function on
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M × M . The function |xx |2 +|yy|2 is also semi-concave on M × M , because

|xx |2 + |yy|2 = |(x, y)(x, y)|2M×M .

The function |xx∗|2 + |yy∗|2 is semi-concave on M × M too. By combining
these with the concavity of h(x)+ h(y) on U ×U and the sub-harmonicity of
dY
(
u(x), u(y)

)
on U ×U (see Proposition 5.4), and thatLv = −nk · e−2nkλ ·

L2
t,λ/t + θ0 ∈ L∞(B) (since Lemma 6.2(ii)), we obtain (6.21).
Since (x∗, y∗) is regular in M × M , by [5] and [45], we can choose a nearly

orthogonal coordinate system near x∗ by concave functions g1, g2, . . . , gn and
another nearly orthogonal coordinate system near y∗ by concave functions
gn+1, gn+2, . . . , g2n. Now, the point (x∗, y∗), the function H2 and system
{gi }1�i�2n meet all of conditions in Lemma 6.6.

Meanwhile, according to Lemma 6.4, there exists a sequence {ε j } j con-
verging to 0 and a set N with vol(N ) = 0 such that for all points
(x0, y0) ∈ (�\N ) × (�\N ), the mean value inequalities (6.9) hold for
functions wx0,P and wy0,Q for any P, Q ∈ Y and any corresponding sets sat-
isfying (6.10) (please see Lemma 6.4 for the definition of functions wx0,P and
wy0,Q). From now on, fixed such a sequence {ε j } j .

Hence, by applying Lemma 6.6, there exist arbitrarily small positive num-
bers b1, b2, . . . , b2n such that the function

H3(x, y) := H2(x, y) +
n∑

i=1

bi gi (x) +
2n∑

i=n+1

bi gi (y)

achieves a minimal point (xo, yo) ∈ B × U , which satisfies the following
properties:

1. xo 	= yo;
2. both xo and yo are smooth;
3. geodesic xo yo can be extended beyond xo and yo;
4. point xo is a Lebesgue point of e−2nkλ · −nk

t L2
t,λ + θ0;

5. the mean value inequalities (6.9) hold for functions wxo,P and wyo,Q for
any P, Q ∈ Y and any corresponding sets satisfying (6.10).

Indeed, according to Lemma 6.4 and noting that the set of smooth points
has full measure, it is clear that the set of points satisfying the above (1)–(5)
has full measure on B × U.

Step 3. Second variation of arc-length.
In this step, we will study the second variation of the length of geodesics

near the geodesic xo yo.
Since M has curvature � k and the geodesic xo yo can be extended beyond

xo and yo, by the Petrunin’s second variation (Proposition 2.3), there exists an
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isometry T : Txo → Tyo and a subsequence of {ε j } j given in Step 2, denoted
by {ε j } j again, such that

F j (η) � −k|η|2 · |xo yo|2 + o(1) (6.22)

for any η ∈ Txo , where the function F j is defined by

F j (η) := | expxo(ε j · η) expyo(ε j · T η)|2 − |xo yo|2
ε2j

if η ∈ Txo such that ε j · η ∈ Wxo and ε j · T η ∈ Wyo , and F j (η) := 0 if
otherwise.

Now we claim that

ˆ
Bo(1)

F j (η)d Hn(η) � −k · ωn−1

n + 2
· |xo yo|2 + o(1). (6.23)

Indeed, by setting z is the mid-point of xo and yo and using the semi-concavity
of distance function distz , we conclude

|z expxo(ε j · η)| � |zxo| + 〈↑z
xo, η

〉 · ε j + σ1 · |η|2 · ε2j

and

|z expyo(ε j · T η)| � |zyo| +
〈
↑z

yo, T η
〉
· ε j + σ2 · |η|2 · ε2j

for any η ∈ Txo such that ε j · η ∈ Wxo and ε j · T η ∈ Wyo , where σ1, σ2 are
some positive constants depending only on |xoz|, |yoz| and k. By applying
the triangle inequality and ↑z

yo= −T (↑z
xo), we get (note that |xoz| = |yoz| =

|xo yo|/2),

F j (η) �
(|z expxo(ε j · η)| + |z expyo(ε j · T η)|)2 − |xo yo|2

ε2j

� 2(σ1 + σ2) · |η|2 · |xo yo| + (σ1 + σ2)
2 · |η|4 · ε2j

� σ3

for any η ∈ Bo(1) ⊂ Txo , where σ3 is some positive constant depending only
on |xoz|, |yoz| and k. That is,F j is bounded from above in Bo(1) uniformly.
According to Fatou’s Lemma, (6.22) implies
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Lipschitz continuity of harmonic maps 913

lim sup
j→∞

ˆ
Bo(1)

F j (η)d Hn(η) � (−k)

ˆ
Bo(1)

|xo yo|2|η|2d Hn(η) = −k · ωn−1

n + 2
· |xo yo|2.

This is the desired (6.23). Therefore, by the definition of function F j , we
have

ˆ
Bo(ε j )∩W

(
| expxo(η̂) expyo(T η̂)|2 − |xo yo|2

)
d Hn(η̂)

η̂=ε j ·η== εn
j ·
ˆ

Bo(1)
ε2j · F j (η)d Hn(η)

� −k · ωn−1

n + 2
· |xo yo|2 · εn+2

j + o
(
εn+2

j

)
,

(6.24)

where W := Wxo ∩ T −1(Wyo) = {v ∈ Txo : v ∈ Wxo and T v ∈ Wyo
}
.

Step 4. Maximum principle via mean value inequalities.
Let us fix the sequence of numbers {ε j } j as in the above Step 2 and Step 3,

and fix the isometry T : Txo → Tyo and the set W := Wxo ∩ T −1(Wyo) as in
Step 3.

Recall that in Step 2, we have proved that the function

H3(x, y) = e−2nkλ

2t
· |xy|2 − dY

(
u(x), u(y)

)− v(x) + γ̃1(x) + γ̃2(y)

has a minimal point (xo, yo) in the interior of B × U , where both xo and yo

are smooth points, and the functions

γ̃1(x) := δ0 · |xx |2 + δ1 · h(x) + δ1

8
|x∗x |2 +

n∑
i=1

bi · gi (x),

and γ̃2(y) := δ0 · |yy|2 + δ1 · h(y) + δ1

8
|y∗y|2 +

2n∑
i=n+1

bi · gi (y).

Consider the mean value

I (ε j ) : =
ˆ

Bo(ε j )∩W

[
H3
(
expxo(η), expyo(T η)

)− H3(xo, yo)
]
d Hn(η)

= I1(ε j ) − I2(ε j ) − I3(ε j ) + I4(ε j ) + I5(ε j ), (6.25)
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where

I1(ε j ) := e−2nkλ

2t
·
ˆ

Bo(ε j )∩W

(
| expxo(η) expyo(T η)|2 − |xo yo|2

)
d Hn(η),

I2(ε j ) :=
ˆ

Bo(ε j )∩W

(
dY
(
u(expxo(η)), u(expyo(T η)

)

− dY
(
u(xo), u(yo)

))
d Hn(η),

I3(ε j ) :=
ˆ

Bo(ε j )∩W

(
v(expxo(η)) − v(xo)

)
d Hn(η),

I4(ε j ) :=
ˆ

Bo(ε j )∩W

(
γ̃1(expxo(η)) − γ̃1(xo)

)
d Hn(η),

I5(ε j ) :=
ˆ

Bo(ε j )∩W

(
γ̃2(expyo(T η)) − γ̃2(yo)

)
d Hn(η).

The minimal property of point (xo, yo) implies that

I (ε j ) � 0. (6.26)

We need to estimate I1, I2, I3, I4 and I5. Recall that the integration I1 has been
estimated by (6.24).
(i) The estimate of I2.

By applying Lemma 5.2 for points

P = u
(
expxo(η)

)
, Q = u(xo), R = u(yo) and S = u

(
expyo(T η)

)
,

we get

(
dY
(
u(expxo(η)), u(expyo(T η)

)− dY
(
u(xo), u(yo)

)) · dY
(
u(xo), u(yo)

)

�
(
d2

P Qm
− d2

P Q − d2
Qm Q

)+ (d2
SQm

− d2
S R − d2

Qm R

)

= −wxo,Qm

(
expxo(η)

)− wyo,Qm

(
expyo(T η)

)
,

(6.27)

where Qm the mid-point of u(xo) and u(yo), and the functionwz,Qm is defined
in Lemma 6.4, namely,

wz,Qm (·) := d2
Y

(
u(·), u(z)

)− d2
Y

(
u(·), Qm

)+ d2
Y

(
Qm, u(z)

)
.
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Now we want to show that the set W := Wxo ∩ T −1(Wyo) satisfies (6.10).
Since both points xo and yo are smooth, by (2.3) in Lemma 2.5, we have

Hn
(
Wxo ∩ Bo(s)

)

Hn
(
Bo(s) ⊂ Txo

) � 1 − o(s) and
Hn
(
Wyo ∩ Bo(s)

)

Hn
(
Bo(s) ⊂ Tyo

) � 1 − o(s).

Note that T : Txo → Tyo is an isometry (with T (o) = o). We can get

Hn
(
W ∩ Bo(s)

)

Hn
(
Bo(s) ⊂ Txo

) = Hn
(
Wxo ∩ T −1(Wyo) ∩ Bo(s)

)

Hn
(
Bo(s) ⊂ Txo

) � 1 − o(s). (6.28)

In particular, by taking s = ε j , we have that the set W satisfies (6.10).
Now by integrating Eq. (6.27) on Bo(ε j ) ∩ W and using Lemma 6.4, we

have

dY
(
u(xo), u(yo)

) · I2(ε j ) � −
ˆ

Bo(ε j )∩W
wxo,Qm

(
expxo(η)

)
d Hn(η)

−
ˆ

Bo(ε j )∩W
wyo,Qm

(
expyo(T η)

)
d Hn(η)

� −o
(
εn+2

j

)
.

Here the last inequality comes from Lemma 6.4. If dY
(
u(xo), u(yo)

) 	= 0,
then this inequality implies that

I2(ε j ) � −o
(
εn+2

j

)
. (6.29)

If dY
(
u(xo), u(yo)

) = 0, then it is simply implied by the definition of I2 that
I2(ε j ) � 0 for all j ∈ N. Hence, the estimate (6.29) always holds.
(ii) The estimate of I3.

By setting the function

g(x) := v(xo) − v(x)

on B, we have g(xo) = 0 and

Lg = −Lv =
(

e−2nkλ · nk

t
L2

t,λ − θ0

)
· vol on B.

Recall Lt,λ ∈ L∞(B) (see Lemma 6.2(ii)). By Lemma 3.1, we know that g is
locally Lipschitz on B. Fix some r0 > 0 such that Bxo(r0) ⊂⊂ B, and denote
by c0 the Lipschitz constant of g on Bxo(r0).
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Take any s < r0. Noticing that g(xo) = 0, we have that g(x) + c0s � 0 in
Bxo(s). By using Proposition 3.2, we have

1

Hn−1
(
∂ Bo(s) ⊂ T k

xo

)
ˆ

∂ Bxo (s)

(
g(x) + c0s

)
dvol

�
(
g(xo) + c0s

)+ e−2nkλ · nk
t L2

t,λ(xo) − θ0

2n
s2 + o(s2).

So, we get (notice that g(xo) = 0 )

ˆ
∂ Bxo (s)

g(x)dvol � c0s ·
(

Hn−1
(
∂ Bo(s) ⊂ T k

xo

)
− vol(∂ Bxo(s))

)

+
(

e−2nkλ · k

2t
L2

t,λ(xo)− θ0

2n

)
s2 · Hn−1

(
∂ Bo(s)⊂T k

xo

)

+ o(sn+1).

Notice that Bishop volume comparison theorem implies vol(∂ Bxo(s)) �
Hn−1(∂ Bo(s) ⊂ T k

xo). We can use co-area formula to obtain

ˆ
Bxo (s)

g(x)dvol � c0s ·
(

Hn
(

Bo(s) ⊂ T k
xo

)
− vol

(
Bxo(s)

))

+
(

e−2nkλ · k

2t
L2

t,λ(xo) − θ0

2n

)ˆ s

0
τ 2

· Hn−1(∂ Bo(τ ) ⊂ T k
xo

)
dτ + o(sn+2).

(6.30)

Because that xo is a smooth point, we can apply Lemma 2.5 to conclude

∣∣Hn(Bo(s) ⊂ Tx0

)− vol
(
Bx0(s)

)∣∣ � o(s) · Hn(Bo(s) ⊂ Tx0

) = o(sn+1).

(6.31)

On the other hand, the fact that xo is smooth also implies that T k
xo is isometric

to M
n
k , and hence

∣∣Hn(Bo(s) ⊂ T k
x0

)− Hn(Bo(s) ⊂ Tx0

)∣∣ = O(sn+2)

and

Hn−1(∂ Bo(τ ) ⊂ T k
xo

) = ωn−1 ·
(sinh(√−kτ)√−k

)n−1

= ωn−1 · τ n−1 + O(τ n+1).
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Thus, by substituting this and (6.31) into (6.30), we can get

ˆ
Bxo (s)

g(x)dvol �
(

e−2nkλ · k

2t
L2

t,λ(xo) − θ0

2n

)
· ωn−1

n + 2
· sn+2 + o(sn+2).

(6.32)

Next we want to show that

ˆ
Bo(s)∩W

g(expxo(η))d Hn(η) �
ˆ

Bxo (s)
g(x)dvol(x) + o(sn+2) (6.33)

for all 0 < s < r0.
Since xo is a smooth point, we can use Lemma 2.5 to obtain

ˆ
Bo(s)∩Wxo

g(expxo(η))d Hn(η)

=
ˆ

Bxo (s)∩Wxo

g(x)(1 + o(s))dvol(x)

�
ˆ

Bxo (s)
g(x)dvol(x) +

ˆ
Bxo (s)

|g(x)| · o(s)dvol(x)

�
ˆ

Bxo (s)
g(x)dvol(x) +

ˆ
Bxo (s)

O(s) · o(s)dvol(x)

(since g(x)is Lipschitz continuous in Bxo(s) and g(xo) = 0).

=
ˆ

Bxo (s)
g(x)dvol(x) + o(sn+2)

(6.34)

for all 0 < s < r0, where we have used that Wxo has full measure (please see
§2.2).

ˆ
Bo(s)∩W

g(expxo(η))d Hn(η) −
ˆ

Bo(s)∩Wxo

g(expxo(η))d Hn(η)

�
ˆ

Bo(s)∩(Wxo\W )

|g(expxo(η))|d Hn(η)

� O(s) · vol(Bo(s) ∩ (Wxo\W )
)

(6.35)

for all 0 < s < r0. Here we have used the fact that g is Lipschitz continuous
in Bxo(s) and g(xo) = 0 again. Recall (6.28) in the previous estimate for I2.
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We have

vol
(
Bo(s) ∩ (Wxo\W )

)
� vol

(
Bo(s)\W

) (6.28)
� o(s) · vol(Bo(s) ⊂ Txo

)

� o(sn+1).

By combining thiswith (6.34)–(6.35), we conclude the desired estimate (6.33).
By taking s = ε j and using (6.32)–(6.33), we obtain the estimate of I3

−I3(ε j ) =
ˆ

Bo(ε j )∩W
g(expxo(η))d Hn(η)

�
(

e−2nkλ · k

2t
L2

t,λ(xo) − θ0

2n

)
· ωn−1

n + 2
· εn+2

j

− o
(
εn+2

j

)
, ∀ j ∈ N.

(6.36)

(iii) The estimate of I4 and I5.
Because all of the integrated functions in I4 and I5 are semi-concave, we

consider the following sublemma.

Sublemma 6.8 Let σ ∈ R and let f be a σ -concave function near a smooth
point z. Then

ˆ
(Bo(s)∩W1)⊂Tz

(
f (expz(η)) − f (z)

)
d Hn(η) � ωn−1

2(n + 2)
· σ · sn+2 + o(sn+2)

for any subset W1 ⊂ Wz ⊂ Tz with Hn(Bo(s)\W1) � o(sn+1).

Proof Since f is σ -concave near z, we have

f (expz(η)) − f (z) � dz f (η) + σ

2
|η|2

for all η ∈ Wz . The integration on Bo(s) ∩ W1 tells us

ˆ
Bo(s)∩W1

(
f (expz(η)) − f (z)

)
d Hn �

ˆ
Bo(s)∩W1

(
dz f (η) + σ

2
|η|2)d Hn.

(6.37)
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Lipschitz continuity of harmonic maps 919

Because f is semi-concave function, we have
´

Bo(s)
dz f (η)d Hn � 0 (see

Proposition 3.1 of [58]). Thus,

ˆ
Bo(s)∩W1

dz f (η)d Hn � −
ˆ

Bo(s)\W1

dz f (η)d Hn

� max
Bo(s)

|dz f (η)| · Hn(Bo(s)\W1)

� O(s) · o(sn+1) = o(sn+2).

Similarly, we have

ˆ
Bo(s)∩W1

|η|2d Hn =
ˆ

Bo(s)
|η|2d Hn −

ˆ
Bo(s)\W1

|η|2d Hn

=
ˆ s

0
t2 · ωn−1 · tn−1dt −

ˆ
Bo(s)\W1

|η|2d Hn

(because z is smooth)

= ωn−1 · sn+2

n + 2
+ O(s2) · o(sn+1)

(
because 0 � Hn(Bo(s)\W1) � o(sn+1)

)
.

Substituting the above two inequalities into Eq. (6.37), we have

ˆ
Bo(s)∩W1

(
f (expz(η)) − f (z)

)
d Hn � ωn−1 · σ

2(n + 2)
· sn+2 + o(sn+2).

This completes the proof of the sublemma. ��
Now let us use the sublemma to estimate I4 and I5.
Note that M has curvature � k implies that the function dist2q(x) := |qx |2

is 2(
√−k|qx | · coth(√−k|qx |))-concave for all q ∈ M . For all q, x ∈ U , we

have

2
√−k|qx | · coth(√−k|qx |) � 2(1 + √−k|qx |)

� 2 + 2
√−k · diam(U ) := Ck,U .

By combining with that h is (−1)-concave and that gi (x) is concave for any
1 � i � n, we know that the function γ̃1 is (δ0 · Ck,U − δ1 + δ1 · Ck,U /8)-
concave. Recall that the Eq. (6.28) implies

Hn(Bo(s)\W ) � o(s) · vol(Bo(s) ⊂ T k
xo

) = o(sn+1).
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920 H.-C. Zhang, X.-P. Zhu

According to Sublemma 6.8, we obtain (by setting s = ε j )

I4(ε j ) � κ(δ0, δ1) · ωn−1

2(n + 2)
· εn+2

j + o
(
εn+2

j

)
, ∀ j ∈ N, (6.38)

where

κ(δ0, δ1) := (δ0 · Ck,U − δ1 + δ1 · Ck,U ).

Since the map T is an isometry, the same estimate holds for I5. Namely,

I5(ε j ) � κ(δ0, δ1) · ωn−1

2(n + 2)
· εn+2

j + o
(
εn+2

j

)
, ∀ j ∈ N. (6.39)

Let us recall the Eq. (6.25), (6.26) and combine all of estimates from I1 to
I5. That is, the equations (6.24), (6.29), (6.36), (6.38) and (6.39). We obtain

0 �
[−k · e−2nkλ

t
|xo yo|2 + e−2nkλ · k

t
L2

t,λ(xo) − θ0

n

+ 2κ(δ0, δ1)

]
ωn−1

2(n + 2)
· εn+2

j

+ o(εn+2
j ).

Thus,

−k · e−2nkλ

t

(
|xo yo|2 − L2

t,λ(xo)
)

− θ0

n
+ 2κ(δ0, δ1) � 0. (6.40)

Recall that in Step 2, we have H3(x, y) converges to H0(x, y) as δ1 and bi
tends to 0+, 1 � i � 2n. Notice that the point (x, y) is the unique minimum of
H0, we conclude that (xo, yo) converges to (x, y) as δ1 → 0+ and bi → 0+,
1 � i � 2n. Hence, letting δ1 → 0+ and bi → 0+, 1 � i � 2n, in (6.40), we
obtain

−k · e−2nkλ

t

(
|x y|2 − lim inf

δ1→0+, bi →0+ L2
t,λ(xo)

)
− θ0

n
+ 2 · δ0 · Ck,U � 0.

(6.41)

On the other hand, by the lower semi-continuity of Lt,λ (from Lemma 6.2(i)),
we have

lim inf
δ1→0+, bi →0+ Lt,λ(xo) � Lt,λ(x).
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Lipschitz continuity of harmonic maps 921

Therefore, by combining with (6.41), (6.19) and the fact −k � 0, we have

0 � −θ0

n
+ 2 · δ0 · Ck,U = −θ0

n
+ 4 · δ0 · (1 + √−k · diam(U )

)
.

This contradicts with (6.20) and completes the proof of the Claim, and hence
that of the lemma. ��
Corollary 6.9 Given any domain �′′ ⊂⊂ �′, there exits a constant t1 > 0
such that, for each t ∈ (0, t1) and each λ ∈ [0, 1], the function x �→ ft (x, λ)

is a super-solution of the Poisson Eq. (6.18) on �′′.

Proof For any p ∈ �′, by Lemma 6.7, there exists a neighborhood Bp(Rp)

and a number tp > 0 such that the function ft (·, λ) is a super-solution of the
Poisson Eq. (6.18) on Bp(Rp), for each t ∈ (0, tp) and λ ∈ [0, 1].

Given any �′′ ⊂⊂ �′, we have �′′ ⊂ ∪p∈�′ Bp(Rp/2). Since �′′ is com-
pact, there exist finite p1, p2, . . . , pN such that �′′ ⊂ ∪1� j�N Bp j (Rp j /2).
By the standard construction for partition of unity, there exist Lipschitz func-
tions 0 � χ j � 1 on �′ with suppχ j ⊂ Bp j (Rp j ) for each j = 1, 2, . . . , N

and
∑N

j=1 χ(x) = 1 on �′′.
Take any nonnegative φ ∈ Lip0(�′′). Then χ jφ ∈ Lip0(Bp j (Rp j )) for

each j = 1, 2, ·, N . We thus obtain

ˆ
�′′

〈∇ ft (·, λ), ∇φ〉 vol = L ft (·,λ)

⎛
⎝

N∑
j=1

χ j · φ

⎞
⎠ =

N∑
j=1

L ft (·,λ)(χ j · φ)

�
N∑

j=1

ˆ
Up j

e−2nkλ · −nk

t
L2

t,λ · (χ j · φ)vol

=
ˆ
�′′

e−2nkλ · −nk

t
L2

t,λ · φvol.

This completes the proof of the corollary. ��
In the following we want to show that the function ft (·, ·) satisfies a

parabolic differential inequalityL ft (x,λ) � ∂ ft/∂λ.
Given a domain G ⊂ M and an interval I = (a, b), then Q = G × I is

called a parabolic cylinder in space–time M × R. For a parabolic cylinder Q,
we equip with the product measure

ν := vol × L1.

When G = Bx0(r) and I = Iλ0(r
2) := (λ0 − r2, λ0 + r2), we denote by the

cylinder
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922 H.-C. Zhang, X.-P. Zhu

Qr (x0, λ0) := Bx0(r) × Iλ0(r
2).

If without confusion arises, we shall write it as Qr .
The theory for local weak solution of the heat equation on metric spaces has

been developed by Sturm in [56] and, recently, by Kinnunen–Masson [32],
Marola–Masson [41]. According to Lemma 6.1(iv), our auxiliary functions
ft (x, λ) are in W 1,2(�′′ × (0, 1)). So we consider only the weak solution in
W 1,2

loc (Q). In such a case, the definition of weak solution of the heat equation
can be simplified as follows.

Definition 6.10 Let Q = G × I be a cylinder. A function g(x, λ) ∈ W 1,2
loc (Q)

is said a (weak) super-solution of the heat equation

Lg = ∂g

∂λ
on Q, (6.42)

if it satisfies

−
ˆ

Q
〈∇g, ∇φ〉 dν(x, λ) �

ˆ
Q

∂g

∂λ
· φdν(x, λ)

for all nonnegative function φ ∈ Lip0(Q).
A function g(x, λ) is said a sub-solution of the Eq. (6.42) on Q if −g(x, λ)

is a super-solution on Q. A function g(x, λ) is said a local weak solution of
the Eq. (6.42) on Q if it is both sub-solution and super-solution on Q.

Remark 6.11 The test functions φ in the above Definition 6.10 also can be
chosen in Lip(Q) such that, for each λ ∈ I , the function φ(·, λ) is in Lip0(G).

That is, it vanishes only on the lateral boundary ∂G × I .

Lemma 6.12 Let Q = G × I be a cylinder. Suppose a function g(x, λ) ∈
W 1,2

loc (Q). If, for almost all λ ∈ I , the function x �→ g(x, λ) is a super-solution
of the Poisson equation

Lg = ∂g

∂λ
· vol on G. (6.43)

Then g(x, λ) is a super-solution of the heat equation

Lg = ∂g

∂λ
on Q.

Proof Take any nonnegative function φ(x, λ) ∈ Lip0(Q). Then, for each
λ ∈ I , the function φ(·, λ) is in Lip0(G). For almost all λ ∈ I , since the
function g(·, λ) is a super-solution of the Poisson Eq. (6.43) on G, we have
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Lipschitz continuity of harmonic maps 923

−
ˆ

G
〈∇g, ∇φ〉 dvol =

ˆ
G

φdLg �
ˆ

G
φ · ∂g

∂λ
dvol. (6.44)

Notice that g(x, λ) ∈ W 1,2
loc (Q) and φ(x, λ) ∈ Lip0(Q), we know that

| 〈∇g, ∇φ〉 | ∈ L2(Q) and that φ · ∂g
∂λ

∈ L2(Q). By using Fubini Theorem, we
obtain

−
ˆ

G×I
〈∇g(x, λ), ∇φ(x, λ)〉 dν(x, λ) = −

ˆ
I

ˆ
G

〈∇g, ∇φ〉 dvoldλ

(6.44)
�

ˆ
I

ˆ
G

φ · ∂g

∂λ
dvoldλ =

ˆ
G×I

φ · ∂g

∂λ
dν(x, λ).

Thus, g(x, λ) is a super-solution of the heat equationLg = ∂g
∂λ

on Q. ��
Now we are ready to show that the function (x, λ) �→ ft (x, λ) is a super-

solution of the heat equation.

Proposition 6.13 Given any �′′ ⊂⊂ �′, and let t∗ := min{t0, t1}, where t0 is
given in Lemma 6.1, and t1 is given in Corollary 6.9. Then, for each t ∈ (0, t∗),
the function (x, λ) �→ ft (x, λ) is a super-solution of

L ft (x,λ) = ∂ ft (x, λ)

∂λ
(6.45)

on the cylinder �′′ × (0, 1).

Proof From Lemma 6.1(iv), we know that ft (x, λ) ∈ W 1,2(�′′ × (0, 1)) for
all t ∈ (0, t∗). According to Corollary 6.9, for each λ ∈ [0, 1], the function
ft (·, λ) is a super-solution of the Poisson equation

L ft (·,λ) = −e−2nkλ · nk

t
L2

t,λ · vol on �′′.

On the other hand, by Lemma 6.3, we have

∂ ft (x, λ)

∂λ
� −e−2nkλ · nk

t
L2

t,λ(x) (6.46)

for ν-a.e. (x, λ) ∈ �′′ × (0, 1). We know that ∂ ft
∂λ

∈ L2(�′′ × (0, 1)) from
Lemma 6.1(iv). By Fubini’s theorem, we get that, for almost all λ ∈ (0, 1),
the Eq. (6.46) holds for almost all x ∈ �′′. Hence, for almost all λ ∈ (0, 1),
we have

L ft (·,λ) � ∂ ft (x, λ)

∂λ
· vol on �′′.
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Therefore, the proposition follows from Lemma 6.12. ��

6.2 Lipschitz continuity of harmonic maps

In this subsection, we will prove our main Theorem 1.4.
We need the following weak Harnack inequality for sub-solutions of the

heat equation (see Theorem 2.1 [56] or Lemma 4.2 [41]).

Lemma 6.14 [41,56] Let G × I be a parabolic cylinder in M × R, and let
g(x, λ) be a nonnegative, local bounded sub-solution of the heat equation
Lg = ∂g

∂λ
on Qr ⊂ G × I . Then there exists a constant C = C(n, k, diamG),

depending only on n, k and diamG, such that we have

ess sup
Qr/2

g � C

r2 · vol(Bx (r)
)
ˆ

Qr

gdν. (6.47)

Fix any domain �′ ⊂⊂ �. For any t > 0 and any 0 � λ � 1, the function
ft (x, λ) is given in (6.1). Notice that

0 � − ft (x, λ) � osc
�′u. (6.48)

The following lemma is essentially a consequence of the above weak Har-
nack inequality.

Lemma 6.15 Let R � 1 and let ball Bq(2R) ⊂⊂ �′. Suppose that t∗ is given
in Proposition 6.13 for �′′ = Bq(2R). For each t ∈ (0, t∗) and λ ∈ (0, 1), we
define the function x → |∇− ft (x, λ)| on Bq(2R) by

|∇− ft (x, λ)| := lim sup
r→0

sup
y∈Bx (r)

(
ft (x, λ) − ft (y, λ)

)
+

r
∀x ∈ Bq(2R),

(6.49)

where a+ = max{a, 0}.
Then, there exists a constant C1(n, k, R) such that

1

vol
(
Bq(R)

)
ˆ

Bq (R)×( 14 , 34 )

|∇− ft (x, λ)|2dν � C1(n, k, R) · osc2
�′u

(6.50)

holds for all t ∈ (0, t∗).

Proof 1. First, let us consider an arbitrary function h ∈ W 1,2
(
Bq(R)

)
. Take

any �1 ⊂⊂ Bq(R). According to the Theorem 3.2 of [18], there exists a
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Lipschitz continuity of harmonic maps 925

constant C = C(�1, Bq(R)) such that for almost all x, y ∈ �1 with |xy| �
dist(�1, ∂ Bq(R))/C , we have

|h(x) − h(y)| � |xy| ·
(

M(|∇h|)(x) + M(|∇h|)(y)
)
,

where Mw is the Hardy–Littlewood maximal function for the function w ∈
L1
loc(Bq(R))

Mw(x) = sup
s>0

1

vol(Bx (s))

ˆ
Bx (s)∩Bq (R)

|w|dvol.

Hence, for almost all x ∈ �1, we have
 

Bx (r)

|h(x) − h(y)|dvol(y)

� r ·
 

Bx (r)

(
M(|∇h|)(x) + M(|∇h|)(y)

)
dvol(y)

� r ·
(

M(|∇h|)(x) + M[(M(|∇h|)](x)
)

(6.51)

for any r < dist(�1, ∂ Bq(R))/C .
2. Fix any t ∈ (0, t∗). We first introduce a function F(x, λ) on Bq(R)× (0, 1)
as

F(x, λ) := lim sup
r→0

1

r
·
 

Iλ(r2)

 
Bx (r)

∣∣ ft (x, λ) − ft (x ′, λ′)
∣∣dvol(x ′)dλ′

for any (x, λ) ∈ Bq(R) × (0, 1), where Iλ(r2) = (λ − r2, λ + r2). We claim
that there exists a constant C2(n, k, R) such that

ˆ
Bq (R)

F2(x, λ)dvol(x) � C2(n, k, R) ·
ˆ

Bq (R)

|∇ ft (x, λ)|2dvol(x)

(6.52)

holds for all λ ∈ (0, 1).
To justify this, let us fix any λ ∈ (0, 1). According to Lemma 6.1(ii), we

have ft (·, λ) ∈ W 1,2
(
Bq(R)

)
. Take any �1 ⊂⊂ Bq(R). By using (6.51) to

the function ft (·, λ), we obtain that, for almost all x ∈ �1,
 

Bx (r)

| ft (x, λ) − ft (x ′, λ)|dvol(x ′)

� r ·
(

M(|∇ ft (·, λ)|)(x) + M[(M(|∇ ft (·, λ)|)](x)
)

(6.53)
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for all r < dist(�1, ∂ Bq(R))/C(�1, Bq(R)). Thus, for almost all x ∈ �1, we
can use Lemma 6.1(iii) to conclude

Gr (x, λ) : = 1

r
·
 

Iλ(r2)

 
Bx (r)

∣∣ ft (x, λ) − ft (x ′, λ′)
∣∣dvol(x ′)dλ′

� 1

r
·
 

Iλ(r2)

 
Bx (r)

(∣∣ ft (x ′, λ′) − ft (x ′, λ)
∣∣+ ∣∣ ft (x ′, λ) − ft (x, λ)

∣∣)dvol(x ′)dλ′

(6.4)
� e−2nk · C∗

r
·
 

Iλ(r2)
|λ − λ′|dλ′

+ 1

r

 
Bx (r)

 
Iλ(r2)

∣∣ ft (x ′, λ) − ft (x, λ)
∣∣dλ′dvol(x ′)

(6.53)
� e−2nk · C∗ · r + M(|∇ ft (·, λ)|)(x) + M[(M(|∇ ft (·, λ)|)](x),

for all sufficiently small r > 0, where we have used |λ′ − λ| � r2. By the
definition of F(x, λ), we have

F(x, λ) = lim sup
r→0

Gr (x, λ) � M(|∇ ft (·, λ)|)(x) + M[(M(|∇ ft (·, λ)|)](x)

(6.54)

for almost all x ∈ �1. By the arbitrariness of �1 ⊂⊂ Bq(R), we know
that (6.54) holds for almost all x ∈ Bq(R). Now the desired estimate (6.52)
is implied by the L2-boundedness of maximal operator (see, for example,
Theorem 14.13 in [18]). Notice that the norm ‖M‖L2→L2 of maximal operator
depends only on the doubling constant of Bq(R); and hence, it depends only
on n, k and R.

According to Proposition 6.13, the function (x, λ) �→ − ft (x, λ) is a non-
negative sub-solution of the heat equation on Bq(2R) × (0, 1). By using the
parabolic version of Caccioppoli inequality (Lemma 4.1 in [41]), we can get

sup
1
4�λ� 3

4

ˆ
Bq (R)

f 2t (·, λ)dvol +
ˆ

Bq (R)×( 14 , 34 )

|∇ ft |2dν

� C3(n, k, R) ·
ˆ

Bq (2R)×(0,1)
f 2t dν,

where we have used that R � 1. In particular, by combining with (6.48), we
have

ˆ
Bq (R)×( 14 , 34 )

|∇ ft |2dν � C3(n, k, R) · vol(Bq(2R)
) · osc2

�′u. (6.55)

On the other hand, fix any (x, λ) ∈ Bq(R)× (0, 1). From Proposition 6.13,
we know that the function

(
ft (x, λ) − ft (·, ·)

)
+ is a sub-solution of the heat
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Lipschitz continuity of harmonic maps 927

equation on Bq(R) × (0, 1). According to Lemma 6.14 (noticing that ft is
continuous), there exists a constant C4(n, k, R) such that

sup
Qr/2(x,λ)

(
ft (x, λ) − ft (x ′, λ′)

)
+

� C4(n, k, R)

r2 · vol(Bx (r)
)
ˆ

Qr (x,λ)

∣∣ ft (x, λ) − ft (x ′, λ′)
∣∣dν(x ′, λ′)

for all Qr (x, λ) = Bx (r)× Iλ(r2) ⊂⊂ Bq(R)×(0, 1).Hence, by the definition
of |∇− ft | and F , we have

|∇− ft (x, λ)| � 2C4(n, k, R) · F(x, λ), ∀(x, λ) ∈ Bq(R) × (0, 1).

(6.56)

By integrating (6.56) on Bq(R) × (14 ,
3
4) and combining with (6.52), (6.55),

we have
ˆ

Bq (R)×( 14 , 34 )

|∇− ft (x, λ)|2dν � 4C2
4 · C2 · C3 · vol(Bq(2R)

) · osc2
�′u.

By combining this with vol
(
Bq(2R)

)
� C5(n, k, R) · vol(Bq(R)

)
, we get the

desired estimate (6.50). ��
Now we are in the position to prove the main theorem.

Proof of the Theorem 1.4 Let us fix a ball Bq(R)with Bq(2R) ⊂ � anddenote
by �′ = Bq(R). Let t = min{t∗, R2/(64 + 64osc

�′u)}, where t∗ is given in
Proposition 6.13 for �′′ = Bq(R/2). Denote by

v(t, x, λ) := − ft (x, λ), (t, x, λ) ∈ (0, t) × Bq(R/2) × [0, 1].

According to Proposition 6.13, for each t ∈ (0, t), the function v(t, ·, ·) is a
sub-solution of the heat equation on the cylinder Bq(R/2) × (0, 1). ��

Next, we want to estimate ∂+
∂t v(t, x, λ).

Sublemma 6.16 For any t ∈ (0, t) and any (x, λ) ∈ Bq(R/4) × (0, 1), we
have

∂+

∂t
v(t, x, λ) : = lim sup

s→0+

v(t + s, x, λ) − v(t, x, λ)

s

� Lip2u(x) + |∇− ft (x, λ)|2
(6.57)
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Proof For the convenience, we denote by

ρ(x, y) := dY
(
u(x), u(y)

)

in the proof of this Sublemma.
Fix any (x, λ) ∈ Bq(R/4)×[0, 1] and t+s � t .We can apply Lemma 6.1(i)

to conclude

v(t + s, x, λ) = sup
y∈Bq (R/2)

{
ρ(x, y) − e−2nkλ · |xy|2

2(t + s)

}
.

We claim firstly that

|xy|2
2(t + s)

= inf
z∈�′

{ |xz|2
2s

+ |yz|2
2t

}
.

To justify this, we notice that, by the triangle inequality, any minimal
geodesic γ between x and y is in Bq(R). By taking z ∈ γ with |xz| = s

s+t |xy|,
we conclude that the left hand side of the above is greater than the right hand
side. The converse is implied by the triangle inequality.

Thus, we have

v(t + s, x, λ) = sup
y∈Bq (R/2)

{
ρ(x, y) − e−2nkλ · inf

z∈�′

{
|xz|2
2s

+ |yz|2
2t

}}

= sup
y∈Bq (R/2)

sup
z∈�′

{
ρ(x, y) − e−2nkλ · |xz|2

2s
− e−2nkλ · |yz|2

2t

}

� sup
z∈�′

sup
y∈�′

{
ρ(x, z) + ρ(y, z) − e−2nkλ · |xz|2

2s
− e−2nkλ · |yz|2

2t

}

(by the triangle inequality)

= sup
z∈�′

{
ρ(x, z) − e−2nkλ · |xz|2

2s
+ v(t, z, λ)

}
.

Hence, we can get

v(t + s, x, λ) − v(t, x, λ)

s

� sup
z∈�′

{
ρ(x, z) + v(t, z, λ) − v(t, x, λ)

s
− e−2nkλ · |xz|2

2s2

}

� sup
z∈�′

{
ρ(x, z) + v(t, z, λ) − v(t, x, λ)

s
− |xz|2

2s2

}
:= R H S,

(6.58)
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where we have used that k � 0. It is clear that R H S � 0 (by taking z = x).
On the other hand, if |xz| � s1/4, then

ρ(x, z) + v(t, z, λ) − v(t, x, λ)

s
− |xz|2

2s2
�

3 · osc
�′u

s
− s2/4

2s2

�
6osc

�′u − s−1/2

2s
< 0

for any 0 < s < (6osc
�′u)−2. Hence,

R H S = sup
|xz|<s1/4

{
ρ(x, z) + v(t, z, λ) − v(t, x, λ)

s
− |xz|2

2s2

}

for all sufficiently small s > 0. Now let us continue the calculation of (6.58).
By using Cauchy–Schwarz inequality, we have

v(t + s, x, λ) − v(t, x, λ)

s

� sup
|xz|<s1/4

{
ρ(x, z) + v(t, z, λ) − v(t, x, λ)

s
− |xz|2

2s2

}

� sup
|xz|<s1/4

{(
ρ(x, z)

|xz| + [v(t, z, λ) − v(t, x, λ)]+
|xz|

)
· |xz|

s
− |xz|2

2s2

}

� 1

2
sup

|xz|<s1/4

(
ρ(x, z)

|xz| + [ ft (x, λ) − ft (z, λ)]+
|xz|

)2

for all sufficiently small s > 0. Letting s → 0+, we get the desired Eq. (6.57).
This completes the proof the sublemma. ��

Sublemma 6.17 We define a function H (t) on (0, t) by

H (t) := 1

vol
(
Bq(R/4)

)
ˆ

Bq (R/4)×( 14 , 34 )

v(t, x, λ)dν(x, λ), t ∈ (0, t).

Then H (t) is locally Lipschitz in (0, t).

Proof For the convenience,wecontinue todenote byρ(x, y) :=dY
(
u(x), u(y)

)
in the proof of this Sublemma. Given any interval [a, b] ⊂ (0, t), we have to
show thatH (t) is Lipschitz continuous in [a, b].
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Let us fix any t, t ′ ∈ [a, b]. Take any (x, λ) ∈ Bq(R/4) × (0, 1) and let
y ∈ �′ achieve the maximum in the definition of v(t ′, x, λ). Then we have

v(t ′, x, λ) − v(t, x, λ) = ρ(x, y) − e−2nkλ |xy|2
2t ′

− sup
z∈�′

{
ρ(x, z)

−e−2nkλ |xz|2
2t

}

� e−2nkλ · |xy|2
2

·
(
1

t
− 1

t ′

)

� e−2nk · diam
2(�′)
2

· |t ′ − t |
a2 ,

where we have used that k � 0, λ � 1 and t ′, t � a. By the symmetry of t
and t ′, we have

|v(t ′, x, λ) − v(t, x, λ)| � e−2nk · diam
2(�′)

2a2 · |t ′ − t |.

The integration of this on Bq(R/4) × (14 ,
3
4) implies the Lipschitz continuity

of H (t) on [a, b]. Therefore, the proof of sublemma is complete. ��

Now let us continue to prove the proof of Theorem 1.4.
Fixed every t > 0, from the Sublemma 6.16 and Sublemma 6.17, we can

apply dominated convergence theorem to conclude

d+

dt
H (t) = lim sup

s→0+

1

vol
(
Bq (R/4)

)
ˆ

Bq (R/4)×( 14 , 34 )

v(t + s, x, λ) − v(t, x, λ)

s
dν

� 1

vol
(
Bq (R/4)

)
ˆ

Bq (R/4)×( 14 , 34 )

lim sup
s→0+

v(t + s, x, λ) − v(t, x, λ)

s
dν

� 1

vol
(
Bq (R/4)

)
ˆ

Bq (R/4)×( 14 , 34 )

(
Lip2u(x) + |∇− ft (x, λ)|2(x)

)
dν.

(6.59)

Since Bq(3R/2) ⊂⊂ �, we can use Theorem 5.5 to obtain

ˆ
Bq (R/4)

Lip2u(x)dvol(x)

� C1 ·
ˆ

Bq (R/4)
|∇u|2(x)dvol(x) � C1 · Eu

2

(
Bq(R/4)

)
.
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Here and in the following of the proof, all of constants C1, C2, . . . , depend
only on n, k and R. By combining with Lemma 6.15 and (6.59), we have

d+

dt
H (t) � C1

2
· Eu

2

(
Bq(R/4)

)

vol
(
Bq(R/4)

) + C2 · osc2
�′u

� C3

(
Eu
2

(
Bq(R)

)

vol
(
Bq(R)

) + osc2
�′u

)
,

where we have used that vol
(
Bq(R)

)
� C(n, k, R) · vol(Bq(R/4)

)
. Denoting

by

Au,R :=
(

Eu
2

(
Bq(R)

)

vol
(
Bq(R)

)
) 1

2 + oscBq (R)u,

we have d+
dt H (t) � 2C3 · A 2

u,R .

We notice that limt→0+ v(t, x, λ) = 0 for each given (x, λ) ∈ Bq(R/4) ×
(0, 1). Indeed, from Lemma 6.1(i),

v(t, x, λ) = max
Bx (

√
C∗t)

{
dY (u(x), u(y)) − e−2nkλ |xy|2

2t

}

� max
Bx (

√
C∗t)

dY (u(x), u(y)).

Bycombining thiswith the continuity ofu,wededuce that limt→0+ v(t, x, λ) =
0. Since v(t, ·, ·) is bounded from (6.48), we can use dominated convergence
theorem to conclude that limt→0+ H (t) = 0. By combining this with Sub-
lemma 6.17 and d+

dt H (t) � 2C3 · A 2
u,R , we have

H (t) � 2C3 · t · A 2
u,R . (6.60)

for any t ∈ (0, t),
Let us recall Proposition 6.13 that, for each t ∈ (0, t), the function v(t, ·, ·) is

nonnegative and a sub-solution of the heat equation on the cylinder Bq(R/2)×
(0, 1), hence so is the function v(t,·,·)

t . By using Lemma 6.14 and R � 1, we
obtain

sup
Bq (R/8)×( 38 , 58 )

v(t, x, λ)

t
� C4

R2 · vol(Bq (R/4)
)
ˆ

Bq (R/4)×( 14 , 34 )

v(t, x, λ)

t
dν(x, λ)

= C4

R2 · H (t)

t

(6.60)
� C4

R2 · 2C3 · A 2
u,R := C5 · A 2

u,R . (6.61)
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Given any x, y ∈ Bq(R/8), from the definition of v(t, x, λ), we can apply
(6.61) to v(t, x, 1

2 ) and deduce

dY
(
u(x), u(y)

)

t
− e−nk |xy|2

2t2
�

v
(
t, x, 1

2

)

t
� C5 · A 2

u,R (6.62)

for all t ∈ (0, t). Now, if |xy| < enk/2 ·Au,R · t , by choosing t = |xy|
Au,R ·enk/2 in

(6.62), we have

dY
(
u(x), u(y)

)

|xy| �
(

C5 + 1

2

)
· e−nk/2Au,R := C6 · Au,R . (6.63)

At last, let x, y ∈ Bq(R/16). If |xy| < enk/2 · Au,R · t , then (6.63) holds.
If |xy| � enk/2 · Au,R · t , we can take some minimal geodesic γ between x
and y. The triangle inequality implies that γ ⊂ Bq(R/8). By choosing points
x1, x2, . . . , xN+1 in γ with x1 = x, xN+1 = y and |xi xi+1| < enk/2 ·Au,R · t
for each i = 1, 2, . . . , N and by using the triangle inequality and (6.63), we
have

dY
(
u(x), u(y)

)
�

N∑
i=1

dY
(
u(xi ), u(xi+1)

)
� C6 · Au,R ·

N∑
i=1

|xi xi+1|

= C6 · Au,R · |xy|.

That is, (6.63) still holds. Therefore the proof of Theorem 1.4 is complete. ��
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