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Abstract A family of lines through the origin in Euclidean space is called
equiangular if any pair of lines defines the same angle. The problem of esti-
mating themaximumcardinality of such a family inRn was extensively studied
for the last 70years. Motivated by a question of Lemmens and Seidel from
1973, in this paper we prove that for every fixed angle θ and sufficiently large
n there are at most 2n − 2 lines in R

n with common angle θ . Moreover, this
bound is achieved if and only if θ = arccos 1

3 . Indeed, we show that for all
θ �= arccos 1

3 and and sufficiently large n, the number of equiangular lines is
at most 1.93n. We also show that for any set of k fixed angles, one can find
at most O(nk) lines in R

n having these angles. This bound, conjectured by
Bukh, substantially improves the estimate of Delsarte, Goethals and Seidel

Peter Keevash: Research supported in part by ERC Consolidator Grant 647678.
Benny Sudakov: Research supported in part by SNSF Grant 200021-149111.

B Benny Sudakov
benjamin.sudakov@math.ethz.ch

Igor Balla
igor.balla@math.ethz.ch

Felix Dräxler
felix.draexler@math.ethz.ch

Peter Keevash
keevash@maths.ox.ac.uk

1 Department of Mathematics, ETH, 8092 Zurich, Switzerland

2 Mathematical Institute, University of Oxford, Oxford, UK

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00222-017-0746-0&domain=pdf


180 I. Balla et al.

from 1975. Various extensions of these results to the more general setting of
spherical codes will be discussed as well.

1 Introduction

A set of lines through the origin in n-dimensional Euclidean space is called
equiangular if any pair of lines defines the same angle. Equiangular sets of
lines appear naturally in various areas of mathematics. In elliptic geometry,
they correspond to equilateral sets of points, or, in other words, to regular
simplexes. These simplexes were first studied 70years ago [14], since the
existence of large regular simplexes leads to high congruence orders of elliptic
spaces, see [4,15,20]. In frame theory, so-called Grassmannian frames “are
characterised by the property that the frame elements have minimal cross-
correlation among a given class of frames” [16]. It turns out that optimal
Grassmannian frames are equiangular; hence searching for equiangular sets
of lines is closely related to searching for optimal Grassmannian frames, see
[16]. In the theory of polytopes, the convex hull of the points of intersection
of an equiangular set of lines with the unit sphere is a spherical polytope of
some kind of regularity, see [7].

It is therefore a natural question to determine themaximumcardinality N (n)

of an equiangular set of lines in R
n . This is also considered to be one of the

founding problems of algebraic graph theory, see e.g. [13, p. 249]. While it is
easy to see that N (2) ≤ 3 and that the three diagonals of a regular hexagon
achieve this bound, matters already become more difficult in 3 dimensions.
This problem was first studied by Haantjes [14] in 1948, who showed that
N (3) = N (4) = 6 and that an optimal configuration in 3 (and 4) dimensions
is given by the 6 diagonals of a convex regular icosahedron. In 1966, van
Lint and Seidel [20] formally posed the problem of determining N (n) for all
positive integers n and furthermore showed that N (5) = 10, N (6) = 16 and
N (7) ≥ 28.
A general upper bound of

(n+1
2

)
on N (n) was established by Gerzon (see

[19]). Let us outline his proof. Given an equiangular set of m lines in Rn , one
can choose a unit vector xi along the i th line to obtain vectors x1, . . . , xm satis-
fying

〈
xi , x j

〉 ∈ {−α, α} for i �= j . Consider the family of outer products xi x
ᵀ
i ;

they live in the
(n+1

2

)
-dimensional space of symmetric n×nmatrices, equipped

with the inner product 〈A, B〉 = tr(AᵀB). It is a routine calculation to verify

that
〈
xi x

ᵀ
i , x j x

ᵀ
j

〉
= 〈

xi , x j
〉2, which equals α2 if i �= j and 1 otherwise. This

family ofmatrices is therefore linearly independent, which impliesm ≤ (n+1
2

)
.

In dimensions 2 and 3 this gives upper bounds of 3 and 6, respectively,
matching the actual maxima. In R

7, the above bound shows N (7) ≤ 28.
This can be achieved by considering the set of all 28 permutations of the

123



Equiangular lines and spherical codes in Euclidean space 181

vector (1, 1, 1, 1, 1, 1, −3, −3), see [20,27]. Indeed, one can verify that the
dot product of any two distinct such vectors equals either −8 or 8, so that
after normalising the vectors to unit length this constitutes an equiangular
set of lines. Since the sum of the coordinates of each such vector is 0, they
all live in the same 7-dimensional subspace. It is also known that there is
an equiangular set of 276 lines in R

23, see e.g. [19], which again matches
Gerzon’s bound. Strikingly, these four examples are the only known ones to
match his bound [2]. In fact, for a long time it was even an open problem to
determine whether n2 is the correct order of magnitude. In 2000, de Caen [6]
constructed a set of 2(n + 1)2/9 equiangular lines in R

n for all n of the form
3 ·22t−1−1. Subsequently, several other constructions of the same order were
found [2,12,17]. For further progress on finding upper and lower bounds on
N (n) see e.g. [2] and its references.
Interestingly, all the above examples of size �(n2) have a common angle

on the order of arccos(1/
√
n). On the other hand, all known construction

of equiangular lines with a fixed common angle have much smaller size. It is
therefore natural to consider the maximum number Nα(n) of equiangular lines
in R

n with common angle arccosα, where α does not depend on dimension.
This question was first raised by Lemmens and Seidel [19] in 1973, who
showed that for sufficiently large n, N1/3(n) = 2n − 2 and also conjectured
that N1/5(n) equals 	3(n − 1)/2
. This conjecture was later confirmed by
Neumaier [23], see also [12] for more details. Interest in the case where 1/α
is an odd integer was due to a general result of Neumann [19, p. 498], who
proved that if Nα(n) ≥ 2n, then 1/α is an odd integer.

Despite active research on this problem, for many years these were the best
results known. Recently, Bukh [5] made important progress by showing that
Nα(n) ≤ cαn, where cα = 2O(1/α2) is a large constant only depending on α.
Our first main result completely resolves the question of maximising Nα(n)

over constant α. We show that for sufficiently large n, Nα(n) is maximised at
α = 1

3 .

Theorem 1.1 Fix α ∈ (0, 1). For n sufficiently large relative to α, the maxi-
mum number of equiangular lines in Rn with angle arccosα is exactly 2n − 2
if α = 1

3 and at most 1.93n otherwise.

A more general setting than that of equiangular lines is the framework of
spherical L-codes, introduced in a seminal paper by Delsarte et al. [9] in 1977
and extensively studied since.

Definition 1.2 Let L be a subset of the interval [−1, 1). A finite non-empty
set C of unit vectors in Euclidean spaceRn is called a spherical L-code, or for
short an L-code, if 〈x, y〉 ∈ L for any pair of distinct vectors x, y in C .

Note that if L = {−α, α}, then an L-code corresponds to a set of equian-
gular lines with common angle arccosα, where α ∈ [0, 1). For L = [−1, β],
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182 I. Balla et al.

finding the maximum cardinality of an L-code is equivalent to the clas-
sical problem of finding non-overlapping spherical caps of angular radius
1
2 arccosβ; for β ≤ 0 exact formulae were obtained by Rankin [25]. Gen-
eralising Gerzon’s result, Delsarte et al. [8] obtained bounds on the cardinality
of sets of lines having a prescribed number of angles. They proved that, for
L = {−α1, . . . , −αk, α1, . . . , αk} and α1, . . . , αk ∈ [0, 1), spherical L-codes
have size at most O(n2k). They subsequently extended this result to an upper
bound of O(ns) on the size of an L-code when L has cardinality s, see [9]. A
short proof of this estimate based on the polynomial method is due to Koorn-
winder [18].

Bukh [5] observed that, in some sense, the negative values of L pose less of
a constraint on the size of L-codes than the positive ones, as long as they are
separated away from 0. Specifically, he proved that for L = [−1, −β] ∪ {α},
where β ∈ (0, 1) is fixed, the size of any L-code is at most linear in the
dimension. Motivated by the above-mentioned work of Delsarte et al. [8] he
made the following conjecture.

Conjecture 1.3 Let β ∈ (0, 1) be fixed and let α1, . . . , αk be any k reals. Then
any spherical [−1, −β] ∪ {α1, . . . , αk}-code in Rn has size at most cβ,knk for
some constant cβ,k depending only on β and k.

We verify this conjecture in the following strong form.

Theorem 1.4 Let L = [−1, −β] ∪ {α1, . . . , αk} for some fixed β ∈ (0, 1].
Then there exists a constant cβ,k such that any spherical L-code inRn has size
at most cβ,knk. Moreover, if 0 ≤ α1 < · · · < αk < 1 are also fixed then such
a code has size at most

2k(k − 1)!
(
1 + α1

β

)
nk + o(nk).

In particular, if α1, . . . , αk are fixed this substantially improves the afore-
mentioned bound of Delsarte et al. [8,9] from O(n2k) to O(nk). We
furthermore show that the second statement of Theorem 1.4 is tight up to
a constant factor.

Theorem 1.5 Let n, k, r be positive integers and α1 ∈ (0, 1) with k and
α1 being fixed and r ≤ √

n. Then there exist α2, . . . , αk , β = α1/r −
O(

√
log(n)/n) and a spherical L-code of size (1 + r)

(n
k

)
in R

n+r with
L = [−1, −β] ∪ {α1, . . . , αk}.
This also resolves another question of Bukh, who asked whether the maxi-

mum size of a spherical [−1, 0) ∪ {α}-code in R
n is linear in n. By taking β

to be say log(n)/
√
n, our construction demonstrates that this is not the case.

The rest of this paper is organised as follows. InSect. 2wegive a construction
of an equiangular set of 2n − 2 lines in Rn and prove Theorem 1.1. In Sect. 3
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Equiangular lines and spherical codes in Euclidean space 183

we prove a special case of Theorem 1.4, namely the case k = 1.We provide the
construction which shows that our bounds are asymptotically tight in Sect. 4.
In Sect. 5, we prove Theorem 1.4. The last section of the paper contains some
concluding remarks and open problems.

Notation

We will always assume that the dimension n → ∞ and write f = o(1),
respectively f = O(1) to mean f (n) → 0 as n → ∞, respectively f (n) ≤ C
for some constant C and n sufficiently large. We will say γ is fixed to mean
that it does not depend on n.

Let C = {v1, . . . , vm} be a spherical L-code in R
n . We define MC to be

the associated Gram matrix given by (MC )i, j = 〈
vi , v j

〉
. We also define an

associated complete edge-labelled graph GC as follows: let C be its vertex set
and for any distinct u, v ∈ C , we give the edge uv the value γ iff 〈u, v〉 = γ .
We also say that uv is a γ -edge and for brevity, we sometimes refer to γ as
the “angle” between u and v, instead of the “cosine of the angle”. For β > 0,
we slightly abuse our notation and say that uv is a β-edge if 〈u, v〉 ≤ −β. We
call a subset S ⊂ GC a γ -clique if uv is a γ -edge for all distinct u, v ∈ S. For
any x ∈ GC we define the γ -neighbourhood of x to be Nγ (x) = {y ∈ GC :
xy is a γ -edge}. Furthermore, we define the γ -degree dγ (x) = |Nγ (x)| and
the maximum γ -degree �γ = maxx∈G dγ (x).

We denote the identity matrix by I and denote the all 1’s matrix by J , where
the size of the matrices is always clear from context. Let Y be a set of vectors
in Rn . We define span(Y ) to be the subspace spanned by the vectors of Y and
for a subspace U , define U⊥ = {x ∈ R

n : 〈x, y〉 = 0 for all y ∈ U } to be
the orthogonal complement. For all x ∈ R

n define pY (x) to be the normalised
(i.e. unit length) projection of x onto the orthogonal complement of span(Y ),
provided that the projection is nonzero. That is, if we write x = u + v for
u ∈ span(Y )⊥, v ∈ span(Y ) and u �= 0, then pY (x) = u/‖u‖. More generally,
for a set of vectors S we write pY (S) = {pY (x) : x ∈ S}.

2 Equiangular lines

Suppose thatwe are given a set of equiangular lines inn-dimensional Euclidean
space Rn with common angle arccosα. By identifying each line with a unit
vector along this line, we obtain a set of unit vectors with the property that the
inner product of any two vectors equals either α or −α. As we have already
mentioned in the introduction, we will refer to such a set as a {−α, α}-code.
Given a {−α, α}-code C , we call an α-edge of GC positive and a −α-edge
negative.
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184 I. Balla et al.

Van Lint and Seidel [20] observed that a particular set of equiangular lines
corresponds to various {−α, α}-codes, depending onwhich of the two possible
vectors we choose along each line. Conversely, this means that we can negate
any number of vectors in a {−α, α}-code without changing the underlying set
of equiangular lines. In the corresponding graph, this means that we can switch
all the edges adjacent to some vertex from positive to negative and vice versa.

The proof of Theorem 1.1 builds on several key observations. The first is
that we can use Ramsey’s theorem to find a large positive clique in GC . We
then negate some vertices outside of this clique, in order to obtain a particularly
advantageous graph, for which we can show that almost all vertices attach to
this positive clique entirely via positive edges. We then project this large set
onto the orthogonal complement of the positive clique.Nextweobserve that the
resulting graph contains few negative edges, which implies that the diagonal
entries of the Gram matrix of the projected vectors are significantly larger in
absolute value than all other entries. Combining this with an inequality which
bounds the rank of such matrices already gives us a bound of (2 + o(1))n. To
prove the exact result, we use more carefully the semidefiniteness of the Gram
matrix together with some estimates on the largest eigenvalue of a graph.

We finish this discussion by giving an example of an equiangular set of
2n − 2 lines with common angle arccos 1

3 in R
n , first given by Lemmens

and Seidel [19]. This is equivalent to constructing a spherical {−1
3 ,

1
3}-code

C of size 2n − 2. For any such code C , observe that the Gram matrix MC
is a symmetric, positive-semidefinite (2n − 2) × (2n − 2) matrix with 1s on
the diagonal and rank at most n. Conversely, if M is any matrix satisfying all
properties listed, thenM is theGrammatrix of a set of 2n−2 unit vectors inRn ,
see e.g. [13, Lemma 8.6.1]. Thus it suffices to construct such a matrix. To that
end, consider the matrix M with n−1 blocks on the diagonal, each of the form

(
1 −1

3−1
3 1

)
,

and all other entries 1
3 . Clearly M is a (2n − 2) × (2n − 2) symmetric matrix,

so we just have to verify that it is positive-semidefinite and of rank n. To do
so, we need to show that M has smallest eigenvalue 0 with multiplicity n − 2.
This is a routine calculation.

2.1 Orthogonal projections

Before we can delve into the proof of Theorem 1.1, we will set the ground by
providing some necessary lemmas. We start with a well-known upper bound
on the size of a negative clique, which will guarantee us a large positive clique
using Ramsey’s theorem. For later purposes, the lemma is stated in some more
generality.
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Equiangular lines and spherical codes in Euclidean space 185

Lemma 2.1 Let 0 < α < 1 and let C be a spherical [−1, −α]-code in R
n.

Then |C | ≤ α−1 + 1.

Proof Let v = ∑
x∈C x . Then, since every x ∈ C is a unit vector and

〈
x, x ′〉 ≤

−α for x �= x ′,

0 ≤ ‖v‖2 =
∑

x∈C
‖x‖2 +

∑

x,x ′∈C
x �=x ′

〈
x, x ′〉 ≤ |C | − α|C |(|C | − 1),

which we can rewrite into the desired upper bound on |C |. ��
Remark 2.2 Wenote that equality in the above lemmaoccurs only if the vectors
of C form a regular simplex.

As indicated above, this lemma enables us to find a large positive clique in
our graph. The next step is to understand how the remaining vertices attach
to this clique. A key tool towards this goal is orthogonal projection. We will
first need a lemma that lets us compute the inner product between two vectors
in the span of a clique in terms of the inner products between the vectors and
the clique. Because we will need it again in a later section, we state it in some
generality.

Lemma 2.3 Let −1 ≤ γ < 1 and t �= −1/γ + 1. Suppose Y is a spherical
{γ }-code of size t and V is the matrix with Y as column vectors. Then for all
v1, v2 ∈ span(Y ) we have

〈v1, v2〉 =
sᵀ
1 s2 −

(
γ

1+γ (t−1)

)
sᵀ
1 Js2

1 − γ
,

where si = V ᵀvi for i = 1, 2 are the vectors of inner products between vi
and Y .

Proof Let us first prove that Y is linearly independent. Suppose that∑
y∈Y cy y = 0 for some reals cy . Taking the inner product with some y′ ∈ Y

gives
0 =

∑

y∈Y
cy

〈
y, y′〉 = (1 − γ )cy′ + γ

∑

y∈Y
cy .

Since this equation is true for all y′ ∈ Y and γ �= 1, all cy are identical. Unless
they equal 0, this implies that 1 + (t − 1)γ = 0, a contradiction.

By passing to a subspace, we may assume that Y ⊂ R
t , so that V ᵀ is

invertible and we have vi = (V ᵀ)−1si . Thus

〈v1, v2〉 = ((V ᵀ)−1s1)
ᵀ(V ᵀ)−1s2 = sᵀ

1V
−1(V ᵀ)−1s2 = sᵀ

1 (V ᵀV )−1s2.

123



186 I. Balla et al.

To obtain the result, we observe that V ᵀV is the Gram matrix of Y , so that
V ᵀV = (1 − γ )I + γ J and moreover

(V ᵀV )−1 = I − γ
1+γ (t−1) J

1 − γ
. ��

The following lemma shows how the angle between two vectors changes
under an appropriate projection. Recall that pY (x) denotes the normalised
projection of x onto the orthogonal complement of span(Y ).

Lemma 2.4 Let−1 < γ < 1 and let Y ∪{x1, x2} be a set of unit vectors inRn

so that all pairwise inner products, except possibly 〈x1, x2〉, equal γ . Suppose
additionally that Y has size 1 if γ is negative. Then pY (x1) and pY (x2) are
well-defined and we have

〈pY (x1), pY (x2)〉 = 〈x1, x2〉 − γ

1 − γ
+ γ (1 − 〈x1, x2〉)

(1 + γ |Y |)(1 − γ )
. (1)

Proof For i = 1, 2,write xi = ui+vi where vi ∈ span(Y ) and ui ∈ span(Y )⊥.
Let V be the matrix with Y as columns and observe that si = V ᵀvi = V ᵀ(xi −
ui ) = (γ, . . . , γ )ᵀ. Let t = |Y | and observe that t �= −1/γ +1 and t �= −1/γ ,
so we can apply Lemma 2.3 to obtain

〈v1, v2〉 = 〈v1, v1〉 = 〈v2, v2〉 = tγ 2 − γ
1+γ (t−1) (tγ )2

1 − γ
= tγ 2

1 + γ (t − 1)
< 1.

Thus using the fact that xi is a unit vector and ui , vi are orthogonal, we have
||ui ||2 = 1 − ||vi ||2 > 0 for i = 1, 2. Since pY (xi ) = ui/||ui ||, we can finish
the proof by computing

〈u1, u2〉
‖u1‖‖u2‖ = 〈x1, x2〉 − 〈v1, v2〉√

1 − ||v1||2
√
1 − ||v2||2

=
〈x1, x2〉 − tγ 2

1+γ (t−1)

1 − tγ 2

1+γ (t−1)

= 〈x1, x2〉 − γ

1 − γ
+ γ (1 − 〈x1, x2〉)

(1 + γ t)(1 − γ )
.

��
Remark 2.5 Note that when the conditions of the lemma are met we have
〈pY (x1), pY (x2)〉 ≤ 〈x1, x2〉, which in particular implies that pY (x1) �=
pY (x2) when x1 �= x2. Note furthermore that if |Y | = 1, then the right-
hand side of (1) simplifies to (〈x1, x2〉−γ 2)/(1−γ 2) (this is most easily seen
by looking at the second-to-last term in the final equation of the above proof)
and that, for fixed 〈x1, x2〉, the latter is a decreasing function in γ 2.
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Equiangular lines and spherical codes in Euclidean space 187

In particular, after projecting onto a positive clique (i.e. γ = α) of size t , an
angle of α becomes 1/(t+α−1) (that is, if

〈
x, x ′〉 = α, then

〈
pY (x), pY (x ′)

〉 =
1/(t + α−1)) and an angle of −α becomes

− 2α

1 − α
+ 1 + α

(t + α−1)(1 − α)
.

Since these two angles will frequently pop up, we will make the following
definition.

Definition 2.6 For α ∈ (0, 1) and t ∈ N, let L(α, t) = {−σ(1 − ε) + ε, ε},
where ε = ε(α, t) = 1/(t + α−1) and σ = σ(α) = 2α/(1 − α).

Note that L(α, t) comprises the two possible angles after projecting onto a
positive clique of size t . A set attached to a positive clique in a {−α, α}-code
entirely via positive edges therefore turns into an L(α, t)-code after projecting.
When we project, we will continue to call edges positive or negative according
to whether their original values are α or −α. Note in particular that a positive
edge may obtain a negative value after projection.

Equipped with this machinery to handle projections, the next lemma gives
an upper bound on the number of vertices which are not attached to the positive
clique entirely via positive edges. The result is analogous to Lemma 5 of Bukh
[5].

Lemma 2.7 Let X ∪ Y ∪ {z} be a {−α, α}-code in R
n in which all edges

incident to any y ∈ Y are positive and all edges between X and z are negative.
If |Y | ≥ 2/α2, then |X | < 2/α2.

Proof Let us first project X ∪{z} onto the orthogonal complement of span(Y ),
and let us denote pY (X) by X ′ and pY (z) by z′. By Lemma 2.4 and the
subsequent paragraph, we verify that X ′ ∪ {z′} is an L(α, |Y |)-code in which
all edges incident to z′ are negative and have value −σ(1 − ε) + ε, which,
by Remark 2.5, is at most −α. The positive angles equal ε < 1/|Y | and since
|Y | ≥ 2/α2 we get the bound ε ≤ α2/2. Let us now project X ′ onto the
orthogonal complement of span(z′). By Lemma 2.4 and Remark 2.5 we find
that the positive angle becomes

ε − (σ (1 − ε) − ε)2

1 − (σ (1 − ε) − ε)2
. (2)

and the negative angles become at most −α−(σ (1−ε)−ε)2

1−(σ (1−ε)−ε)2
, which is at most

(2). Furthermore, using (σ (1 − ε) − ε)2 ≥ α2 and Remark 2.5, (2) is at most
(ε−α2)/(1−α2). Since ε ≤ α2/2, this yields an upper boundof−α2/(2−2α2)

on all angles after projection. Therefore, after projecting X ′ onto the orthogonal
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188 I. Balla et al.

complement of span(z′), we obtain a spherical [−1, −α2/(2−2α2)]-code. By
Lemma 2.1, it has size at most (2−2α2)/α2+1 < 2/α2, concluding the proof
of the lemma. ��

Using this lemma, we will see that, after appropriately negating some ver-
tices, all but a fixed number of vertices are attached to the positive clique via
positive edges. Hence Theorem 1.1 can be reduced to studying L(α, t)-codes,
as follows.

Lemma 2.8 Let α ∈ (0, 1) be fixed and let t = log log n. For all sufficiently
large n and for any spherical {−α, α}-code C in R

n, there exists a spherical
L(α, t)-code C ′ in Rn such that |C | ≤ |C ′| + o(n).

Proof Recall thatGC denotes the complete edge-labelled graph corresponding
to C . From Lemma 2.1 we know that GC doesn’t contain a negative clique
of size α−1 + 2. By Ramsey’s theorem there exists some integer R such that
every graph on at least R vertices contains either a negative clique of size at
least α−1 + 2 or a positive clique of size t . A well-known bound of Erdős and
Szekeres [11] shows R ≤ 4t = o(n). Thus if |C | < R, then we are done by
taking C ′ = ∅. Otherwise we have by Ramsey’s theorem that GC contains a
positive clique Y of size t .

For any T ⊂ Y , let ST comprise all vertices v inGC\Y forwhich the edge vy
(y ∈ Y ) is positive precisely when y ∈ T . Let us negate all vertices v which lie
in ST for some |T | < t/2 and note thatC remains a {−α, α}-code.However, all
sets ST for |T | < t/2 are now empty. Given some T ⊂ Y with t/2 ≤ |T | < t ,
pick a vertex z ∈ Y\T and consider the {−α, α}-code ST ∪ T ∪ {z}. Since any
edge incident to T is positive, all edges between ST and z are negative and
|T | ≥ t/2 > 2/α2 for n large enough, we can apply Lemma 2.7 to deduce
that |ST | < 2/α2. Moreover, by Lemma 2.4 and Remark 2.5 we have that
C ′ = pY (SY ) is an L(α, t)-code with |C ′| = |SY |. Thus we conclude

|C | = |SY | +
∑

t/2<|T |<t

|ST | + |Y | < |C ′| + 2t+1/α2 + t = |C ′| + o(n).

��

2.2 Spectral techniques

In view of Lemma 2.8, we just need to bound the size of L(α, t)-codes. Our
main tool will be an inequality bounding the rank of a matrix in terms of its
trace and the trace of its square. This inequality goes back to [3, p. 138] and its
proof is based on a trick employed by Schnirelman in his work on Goldbach’s
conjecture [26]. For various combinatorial applications of this inequality, see,
for instance, the survey by Alon [1] and other recent results [10].
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Lemma 2.9 Let M bea symmetric realmatrix. Then rk(M) ≥ tr(M)2/tr(M2).

Proof Let r denote the rank of M . Since M is a symmetric real matrix, M has
precisely r non-zero real eigenvalues λ1, . . . , λr . Note that tr(M) = ∑r

i=1 λi
and tr(M2) = ∑r

i=1 λ2i . Applying Cauchy–Schwarz yields r
∑r

i=1 λ2i ≥
(
∑r

i=1 λi )
2, which is equivalent to the desired inequality. ��

We use Lemma 2.9 to deduce the next claim.

Lemma 2.10 Let C be an L(α, t)-code in R
n and let d denote the average

degree of the graph spanned by the negative edges in GC. Then |C | ≤ (1 +
σ 2d)(n + 1).

Proof Recall that L(α, t) = {−σ(1 − ε) + ε, ε}. Every diagonal entry of
N = MC − ε J equals 1 − ε and N contains exactly d|C | non-zero off-
diagonal entries, each of which equals −σ(1 − ε). Observe that rk(N ) ≤
rk(MC) + rk(J ) ≤ n + 1 by the subadditivity of the rank. Furthermore,
tr(N ) = |C |(1− ε) and tr(N 2) = ∑

i, j N
2
i j . By applying Lemma 2.9 to N we

can therefore deduce

|C |2(1 − ε)2 ≤
(
|C |(1 − ε)2 + |C |dσ 2(1 − ε)2

)
(n + 1),

which is equivalent to the desired inequality after dividing by |C |(1− ε)2. ��
It thus proves necessary to obtain upper bounds on the average degree d of

the negative edges in GC .

Remark 2.11 The proof of Lemma 2.7 provides uswith a bound on d, and if we
are a bit more careful, we already have enough to prove that for a fixed α and
t → ∞, any L(α, t)-code has size at most 2n+o(n). Indeed, suppose thatC is
an L(α, t)-code with t → ∞. Let z′ ∈ C and let X ′ be the vertices connected
to z′ via negative edges. We project X ′ onto the orthogonal complement of z′
and observe that since t → ∞, ε → 0 and hence the positive angle (2) in
Lemma 2.7 becomes −σ 2/(1−σ 2)+ o(1). Thus we obtain a [−1, −σ 2/(1−
σ 2)+o(1)]-code which has size at most (1−σ 2)/σ 2+1+o(1) = 1/σ 2+o(1)
by Lemma 2.1. Since this holds for all z, we have that d ≤ 1/σ 2 + o(1) and
hence applying Lemma 2.10 we conclude |C | ≤ 2n + o(n).

The following lemma shows that it will be sufficient to find an upper bound
on d in terms of the largest eigenvalue of some fixed-size subgraph of C , by
whichwemean a subgraph of size O(1). Let us fix some standard notation. For
a matrix A, we denote its largest eigenvalue by λ1(A). If H is a graph, then we
can identify H with its adjacency matrix A(H), so that we will write λ1(H)

to mean λ1(A(H)). It is well-known that λ1 is monotone in the following
sense: if H is a subgraph of G, then λ1(H) ≤ λ1(G) (see e.g. [21, chapter 11,
exercise 13]).
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Lemma 2.12 LetC be a fixed-size L(α, t)-code inRn and assume that t → ∞
as n → ∞. Let H be the subgraph of GC containing precisely all negative
edges. Then σλ1(H) ≤ 1 + o(1).

Proof The Gram matrix MC and A = A(H) are related by the equation

MC = I + ε(J − I ) − σ(1 − ε)A,

where J denotes the all-ones matrix. Let x be a normalised eigenvector of A
with eigenvalue λ1(H). Since MC is positive-semidefinite, we deduce

0 ≤ 〈MCx, x〉 = 1 − ε + ε 〈J x, x〉 − σ(1 − ε)λ1(H)

≤ 1 − σλ1(H) + ε(|C | + σλ1(H)), (3)

where 〈J x, x〉 ≤ |C | follows from the fact that |C | is the largest eigenvalue of
J . Since σ, |C | and λ1(H) are all O(1) and ε = o(1), (3) yields the required
σλ1(H) ≤ 1 + o(1). ��

The following two lemmas are concerned with establishing a connection
between the average degree of a graph and its largest eigenvalue. The first
lemma and its proof are inspired by Nilli’s proof [24] of the Alon-Boppana
bound on the second eigenvalue of a graph.

Lemma 2.13 Let G be a graph with minimum degree δ > 1. Let v0 be some
vertex of G and let H be the subgraph consisting of all vertices within distance
k of v0. Then λ1(H) ≥ 2(1 − 1/(k + 1))

√
δ − 1.

Proof For 0 ≤ i ≤ k, let Vi denote the set of vertices at distance i from v0 in
H , let ei denote the number of edges in H [Vi ] and let hi denote the number
of edges in H [Vi , Vi+1], where we set hk = 0 and, since we will need it later
in the proof, h−1 = 0. Let us define a function f on the vertices of H by
f (v) = (δ −1)−i/2 if v ∈ Vi . Letting A denote the adjacency matrix of H , we
have λ1(H) ≥ 〈A f, f 〉/〈 f, f 〉. In order to prove the desired bound on λ1(H),
we therefore need to bound the quantity 〈 f, f 〉 from above in terms of 〈A f, f 〉.
We have

〈 f, f 〉 =
k∑

i=0

|Vi |
(δ − 1)i

and 〈A f, f 〉 =
k∑

i=0

(
2ei

(δ − 1)i
+ 2hi

(δ − 1)i+1/2

)
.

Note that for 0 ≤ i ≤ k − 1, hi−1 + 2ei + hi counts the sum of the degrees of
all vertices in Vi and is therefore of size at least δ|Vi |. Moreover, since every
vertex in Vi+1 is adjacent to some vertex in Vi we have |Vi+1| ≤ hi . Fix any
j in the range 0 ≤ j ≤ k. Using the above two observations we find
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〈 f, f 〉 ≤
j−1∑

i=0

hi−1 + 2ei + hi
δ(δ − 1)i

+ |Vj |
(δ − 1) j

+
k−1∑

i= j

hi
(δ − 1)i+1 . (4)

Observe that δ ≥ 2
√

δ − 1 and that we have the identity

1

δ(δ − 1)i
+ 1

δ(δ − 1)i+1 = 1

(δ − 1)i+1 .

Collecting terms belonging to the same hi in the first sum of (4) and using the
estimate and identity of the previous sentence, we find

〈 f, f 〉 ≤
k∑

i=0

(
hi

(δ − 1)i+1 + 2ei
δ(δ − 1)i

)
+ |Vj |

(δ − 1) j
≤ 〈A f, f 〉

2
√

δ − 1
+ |Vj |

(δ − 1) j
.

Averaging over all 0 ≤ j ≤ k yields

〈 f, f 〉 ≤ 〈A f, f 〉
2
√

δ − 1
+ 〈 f, f 〉

k + 1
,

which is equivalent to the desired inequality. ��
Lemma 2.14 Let H be a connected graph on

(i) 11 vertices and 10 edges. Then λ1(H) ≥ 20/11.
(ii) k vertices and k edges. Then λ1(H) ≥ 2.
(iii) 6 vertices and 5 edges, so that some vertex has degree 5. Then λ1(H) ≥

2.2.
(iv) 5 vertices and 5 edges so that some vertex has degree 4. Then λ1(H) ≥

2.25.
(v) 8 edges so that some vertex has degree 4. Then λ1(H) ≥ 2.2.

Proof Let A denote the adjacency matrix of H and 1 the all-ones vector of
appropriate length. Note that λ1(H) ≥ 〈A1,1〉 / 〈1,1〉 = d, where d denotes
the average degree of H . This is sufficient to establish (i) and (ii), since the
average degree of the graphs is 20/11 and 2, respectively.

Suppose that H is a star with 5 leaves, as in (iii). Let x be the vector giving
weight

√
5 to its internal vertex and weight 1 to each leaf. Then 〈x, x〉 = 10

and 〈Ax, x〉 = 10
√
5 yielding the required λ1(H) ≥ √

5 > 2.2.
Suppose that H is as in (iv). Let x be the vector giving weight 1 to the vertex

of degree 4 and 1/2 to the others. Then 〈x, x〉 = 2 and 〈Ax, x〉 = 4.5 yielding
the required λ1(H) ≥ 2.25.

Finally, suppose that H is as in (v) and let v be the vertex of degree 4. If
two of the neighbours of v are adjacent, we are done by (iv). Otherwise, let x
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be the vector giving weight 4 to v, weight
√
5 to its 4 neighbours and weight 1

to all other vertices. Then 〈Ax, x〉 = 40
√
5 and 〈x, x〉 ≤ 40 since there are at

most 4 vertices of weight 1. Hence λ1(H) ≥ 〈Ax, x〉 / 〈x, x〉 ≥ √
5 > 2.2. ��

The next lemma deals with {−α, α}-codes in which the negative edges are
very sparse. This will be the case when α is rather large.

Lemma 2.15 Let α ∈ (0, 1)\{13} and let C be an L(α, t)-code in R
n. If the

negative edges form a matching, then |C | ≤ n + 1.

Proof Recall that L(α, t) = {−σ(1 − ε) + ε, ε}. Let J denote the all-ones
matrix. Since the rank of matrices is subadditive, we have

rk(MC − ε J ) ≤ rk(MC) + rk(−ε J ) = rk(MC ) + 1 ≤ n + 1. (5)

Since the negative edges ofGC form amatching, thematrix (MC−ε J )/(1−ε)

consists of m identical 2 × 2 blocks with 1’s on the diagonal and −σ off the
diagonal, and |C |− 2m identical 1× 1 identity matrices, where m denotes the
number of negative edges. The former have determinant 1 − σ 2, the latter 1.
Since α �= 1

3 , these quantities are non-zero, so that MC −ε J has full rank, that
is, rk(MC − α J ) = |C |. Together with (5) this gives the desired inequality. ��
Remark 2.16 Note that one can also prove |C | ≤ n with some more work.

2.3 Proof of the main result

In this section, we present the proof of Theorem 1.1. First, combining
Lemma 2.10 with the newly gained information about the relation between
σ , the largest eigenvalue of fixed-size graphs and d, we prove the following
theorem about L(α, t)-codes. This theorem will allow us to analyse equian-
gular lines for all angles except arccos 1

3 .

Theorem 2.17 Let α ∈ (0, 1)\{13} and t ∈ N so that t → ∞ as n → ∞. Let
C be an L(α, t)-code in Rn for which every vertex is incident to at most O(1)
negative edges. Then |C | < 1.92n for sufficiently large n.

Proof Recall that L(α, t) = {−σ(1− ε) + ε, ε}, where ε = 1/(t + α−1) and
σ = 2α/(1 − α); note that ε = o(1). Throughout the proof, let G denote the
graph consisting only of the negative edges of the graph corresponding to C
(that is, we delete from GC all positive edges to obtain G). We split the proof
of this lemma into different regimes, depending on the value of σ .

Case 1, σ ∈ [0.71, ∞): We will show that no two edges in G are adjacent.
Together with Lemma 2.15 this will show that |C | ≤ n + 1. Let β = −σ(1−
ε) + ε. If β < −1, G cannot contain any edges and we are done. Otherwise,
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suppose to the contrary that x, y and z are unit vectors inC so that xy and xz are
negative edges. Let us decompose y and z as y = βx+u and z = βx+v, where
u and v are orthogonal to x . Since x, y and z are unit vectors, taking norms on
both sides of each equation and rearranging yields 1 − β2 = ‖u‖2 = ‖v‖2.
Since σ ≥ 0.71 > 1/

√
2 and ε = o(1), we have β2 > 1/2+ ε for sufficiently

large n and hence t . Therefore, ‖u‖, ‖v‖ < 1/
√
2. Furthermore, taking the

inner product of y and z gives

〈y, z〉 = β2 + 〈u, v〉 > ε + 1/2 − ‖u‖‖v‖ > ε,

a contradiction to 〈y, z〉 ∈ L(α, t), finishing the proof of the first case.

Case 2, σ ∈ [0.551, 0.71]: We will prove that G decomposes into trees on
at most 10 vertices. Lemma 2.12 shows that G cannot contain a fixed-size
subgraph H with λ1(H) > 1/0.55 = 20/11. In particular, by Lemma 2.14,
G doesn’t contain a subgraph on 11 vertices and 10 edges or a subgraph on
k vertices and k edges for any k ≤ 10. Since any connected graph on at least
11 vertices contains a tree on 11 vertices, all components have at most 10
vertices, and since the only acyclic components are trees, all components are
trees on at most 10 vertices. The average degree of any component is therefore
at most 18/10 and hence so is the average degree of G. Applying Lemma 2.10
establishes the required bound

|C | ≤ (1 + 1.8σ 2)(n + 1) < 1.92n.

Case 3, σ ∈ [0.47, 0.551]: Lemma 2.12 implies that G cannot contain a fixed-
size subgraph H with λ1(H) > 2.13 > 1/0.47. We can therefore deduce
from Lemma 2.14 that G doesn’t contain a vertex of degree higher than 4,
that the neighbourhood of a vertex of degree 4 contains no edges and that the
neighbourhood of a vertex of degree 4 is incident to at most 3 more edges. The
latter two properties imply that each vertex of degree 4 is adjacent to a leaf.
On the other hand, each leaf is adjacent to exactly one vertex (not necessarily
of degree 4), so G contains no more vertices of degree 4 than leaves. Since G
also doesn’t contain any vertices of higher degree than 4, the average degree
of G is at most 3. Applying Lemma 2.10 establishes the required bound

|C | ≤ (1 + 3σ 2)(n + 1) < 1.92n.

Case 4, σ ∈ (0, 0.47]: Let d be the average degree of the negative edges in
GC and suppose for the sake of contradiction that |C | > 1.92n. Combining
this lower bound on |C | with the upper bound given by Lemma 2.10 yields
d > 0.92/σ 2 −o(1) > 4. Let l be the integer satisfying 2l < d ≤ 2l +2; note
that d > 4 implies l ≥ 2. It is well known that a graph with average degree d
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contains a subgraph with minimum degree at least d/2. Hence G contains a
subgraph G ′ with minimum degree at least l + 1. Applying Lemma 2.13 to G ′
for k = 11, we find that G ′ contains a subgraph H with maximal eigenvalue
λ1(H) > 1.83

√
l and, since the maximum degree of G is bounded by a

constant independent of n, so is the size of H by construction. Lemma 2.12
then gives

σ 2 ≤ 1 + o(1)

1.832l
<

1

3.34l
,

which together with Lemma 2.10 and l ≥ 2 yields the required

|C | <

(
1 + 2(l + 1)

3.34l

)
(n + 1) < 1.92n. ��

Now that we have finished all the necessary preparation, we are ready to
complete the proof of our first theorem.

Proof of Theorem 1.1 Let C be a {−α, α}-code in R
n and let t = log log n.

Suppose first that α �= 1
3 . Then by Lemma 2.8, there exists an L(α, t)-code C ′

in R
n such that |C | ≤ |C ′| + o(n). By Theorem 2.17, we have |C ′| < 1.92n

and hence |C | ≤ 1.93n for n large enough.
Otherwise α = 1

3 . For a detailed proof of the upper bound of 2n−2, we refer
the reader to [19]. Let us nonetheless sketch it for the sake of completeness.
Note that what follows is only an outline; filling in all the details requires
substantially more work. Instead of finding a large positive clique, we consider
the largest negative clique M in any graph obtained fromGC by switching any
number of vertices. By Lemma 2.1, we have that |M | ≤ 4. We can then
show that the cases |M | ≤ 3 are either straightforward or can be reduced
to the case |M | = 4. In the latter case, we can show that unless all vertices
attach to M in the same way (that is, no two vertices outside the clique attach
to some vertex within the clique differently), |C | is bounded from above by
some constant independent of n. If they do all attach in the same way, then
if we consider the projection C ′ = pM(C\M) of C\M onto the orthogonal
complement of span(M), we obtain a {−1, 0}-code. This means that any two
distinct vectors of C ′ are either orthogonal or lie in the same 1-dimensional
subspace, so that |C ′| ≤ 2dim(C ′). Moreover, by Remark 2.2 M is a regular
simplex so it lives in a 3-dimensional subspace, and hence dim(C ′) = n − 3.
Thus |C | = |M | + |C ′| ≤ 4 + 2(n − 3) = 2n − 2, finishing the proof. ��

3 Spherical codes

Let us now turn our attention from equiangular sets of lines to themore general
setting of spherical codes. Recall that a spherical L-code is a finite non-empty
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set C of unit vectors in Euclidean space Rn so that 〈x, y〉 ∈ L for any pair of
distinct vectors x, y in C . In this section, we prove Theorem 1.4 in the case
k = 1, obtaining the asymptotically tight bound even when α is allowed to
depend on n. The proof features all ideas central to the argument in the multi-
angular case (which we will treat in detail in Sect. 5), without concealing them
unnecessarily.

Theorem 3.1 Let β ∈ (0, 1] be fixed and α ∈ [−1, 1). Then any [−1, −β] ∪
{α}-code in Rn has size at most

2
(
1 + max

(α

β
, 0

))
n + o(n).

Since an equiangular set of lines corresponds to a {−α, α}-code, this implies
a weaker bound of 4n+o(n) for equiangular sets. The reason for this is that we
can’t switch edges from negative to positive any more, since a negative edge
might not obtain value α after switching. Moreover, this is essentially tight
because if we take our example of 2n − 2 lines with angle arccos 1

3 and take
both unit vectors along each line, we get a [−1, −1

3 ]∪{13}-code of size 4n−4.
The beginning of the proof of Theorem 3.1 is along the lines of the proof of

the corresponding theorem for equiangular sets of lines. We start by finding
a large positive clique in GC . Unlike before, however, a substantial portion
of the vertices might not attach to this clique entirely via positive edges. In
fact, almost all vertices attach either entirely via positive edges or mostly via
negative ones. Similarly to before, we can bound the size of the set of vertices
attaching positively to the clique by 2n+o(n). Repeating this argument yields
a set of positive cliques in such a way that almost all edges between these
cliques are negative. This imposes a bound on the number of repetitions, which
is enough to bound the size of the L-code.

We start by proving a lemma similar to Lemma 2.7, which enables us to
analyse how vertices connect to a positive clique.

Lemma 3.2 Let L = [−1, −β]∪ {α} for some α, β ∈ (0, 1) and suppose that
X ∪Y ∪{z} is an L-code in which all edges incident to any y ∈ Y are positive
edges and all edges between X and z are negative edges. Suppose furthermore
that |Y | > 1/α2. Then |X | < 1/β2.

Proof Let αX denote the average value of the edges in X and −βz the average
value of the edges between X and z. Note that αX ≤ α and βz ≥ β. Let M be
the Gram matrix of X ∪ Y ∪ {z} and let v = (x, . . . , x, y, . . . , y, ζ )ᵀ, where

x = 1/|X |, y = − α(1 + βz)/|Y |
α − α2 + (1 − α)/|Y | and ζ = βz − y|Y |α.
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Then

〈Mv, v〉 = (|X |2 − |X |)αX + |X |
|X |2 + 2y|Y |α + y2((|Y |2 − |Y |)α

+ |Y |) + 2ζ(−βz + y|Y |α) + ζ 2

= 1 − αX

|X | + αX − β2
z + 2y|Y |α(1 + βz)

+ y2|Y |2(α − α2 + (1 − α)/|Y |)

= 1 − αX

|X | + αX − β2
z − α2(1 + βz)

2

α − α2 + (1 − α)/|Y |
≤ 1 − α

|X | + α − β2
z − α2(1 + βz)

2

α − α2 + (1 − α)/|Y | .

Since 〈Mv, v〉 ≥ 0 and β2
z ≥ β2, it is therefore sufficient to prove that

α − β2
z − α2(1 + βz)

2

α − α2 + (1 − α)/|Y | < −β2
z (1 − α).

Using |Y | > 1/α2 and rewriting the above inequality, it suffices to show that

α(1 − β2
z ) <

α(1 + βz)
2

1 − α2 ,

which is clearly true since α, βz > 0. ��
Remark 3.3 Thev in the aboveproof is chosen so as tominimise 〈Mv, v〉/||v||2.
An appropriate projection also minimises this quantity and so the above
argument could also be done using projections. Indeed, this minimisation is
precisely why projections are so useful for us.

After projecting onto a large α-clique, the new α will become o(1). In this
case, the next lemma gives a bound on the values of the negative edges incident
to a fixed vertex.

Lemma 3.4 Let L = [−1, −β]∪{α} and let C be an L-code. If α = o(1) and
−β1, . . . , −βN are the values of the negative edges incident to some vertex x
in GC, then αN = o(1) and

∑N
i=1 β2

i ≤ 1 + o(1).

Proof We will first derive the upper bound on N . Let C = Nβ(x) ∪ {x} and
M = MC . If we let v = (1, . . . , 1, βN )ᵀ, then we have

0 ≤ 〈Mv, v〉 =
∑

1≤i, j≤N

Mi j − 2βN
N∑

i=1

βi + β2N 2 ≤ N + o(1)N 2 − β2N 2,
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which implies N ≤ (1 + o(1))β−2 and therefore establishes the claimed
αN ≤ (1+ o(1))αβ−2 = o(1). Now if we let w = (β1, . . . , βN , 1)ᵀ, then we
obtain

〈Mw, w〉 = 1 −
N∑

i=1

β2
i +

∑

1≤i, j≤N
i �= j

βiβ j Mi j ≤ 1 −
N∑

i=1

β2
i +

∑

1≤i, j≤N

βiβ jα

≤ 1 −
N∑

i=1

β2
i + αN

N∑

i=1

β2
i ,

where the last step follows from Cauchy–Schwarz. Using 〈Mw, w〉 ≥ 0 and
αN = o(1), we obtain the required

∑N
i=1 β2

i ≤ 1 + o(1). ��
As we outlined above, when proving Theorem 3.1 we will obtain a mul-

tipartite graph which has mostly negative edges between its parts. The next
lemma gives a bound on the number of parts of such a graph. Because we will
consider more general spherical codes in a later section, we prove it in more
generality.

Lemma 3.5 Let β ∈ (0, 1] be fixed, let α ∈ [−1, 1) and L = [−1, −β] ∪
[α, 1). Suppose t → ∞ as n → ∞ and let C be a spherical L-code such
that GC is the disjoint union of  α-cliques Y1, . . . , Y each of size t , such that
the number of β-edges between any Yi and Y j is at least t2(1 − o(1)). Then
 ≤ 1 + α/β + o(1).

Proof Let A be the number of α-edges and B be the number of β-edges in
GC . Since the remaining

(|C |
2

) − A − B edges have value at most 1, we have
as in the proof of Lemma 2.1 that

0 ≤
∥∥
∥∥
∥

∑

x∈C
x

∥∥
∥∥
∥

2

≤ |C | − 2Bβ + 2Aα + |C |(|C | − 1) − 2B − 2A,

which implies 2B(β + 1) + 2A(1 − α) ≤ |C |2. Now observe that C has size
t , 

(t
2

)
α-edges inside the parts, and at least

(

2

)
t2(1− o(1)) β-edges between

parts. Thus if we substitute these values into the above inequality and solve
for , we obtain the required

 ≤ β + α + 1−α
t − o(1)(1 + β)

β − o(1)(1 + β)
= 1 + α

β
+ o(1).

��
Now we have all of the necessary tools to prove the main theorem of this

section.
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Proof of Theorem 3.1 Suppose first that |α| < 1/ log log n = o(1). Let Q =
MC−α J . By the subadditivity of the rankwe have rk(Q) ≤ rk(MC )+rk(J ) ≤
n + 1. Consider some x ∈ C . Let N = dβ(x) and let −β1, . . . , −βN be the
values of the negative edges incident to x . By Lemma 3.4 we have

∑N
j=1 β2

j ≤
1 + o(1) and αN = o(1). It follows that if i is the row corresponding to x in
N , then

∑

j �=i

Q2
i, j =

N∑

j=1

(β j + α)2 ≤
N∑

j=1

β2
j + 2|α|N + α2N ≤ 1 + o(1).

Noting that Q has 1 − α on the diagonal, we obtain

tr(Q2) =
|C |∑

i=1

Q2
i,i +

|C |∑

i=1

∑

j �=i

Q2
i, j

≤ |C |(1 − α) + |C | (1 + o(1))) ≤ |C |(2 + o(1)).

Thus applying Lemma 2.9 to Q yields

|C |2(1 − α)2 = tr(Q)2 ≤ tr(Q2)rk(Q) ≤ |C |(2 + o(1))(n + 1).

After dividing by |C |(1− α)2 = |C |(1− o(1)), we obtain the required |C | ≤
2n + o(n).

We now prove the theorem for all remaining values of α, that is, for all α

satisfying |α| ≥ 1/ log log n. If α < 0 we are done by Lemma 2.1. Suppose
therefore that α > 0. Let  = 1 + α/β and t = 1

4 log n. Suppose for the sake
of contradiction that there exists some ε > 0 so that for arbitrarily large n,

|C | > 2(1 + 2ε)n.

From Lemma 2.1 we know thatGC doesn’t contain a negative clique bigger
than β−1 +2. By Ramsey’s theorem, there exists some integer R so that every
graph on at least R vertices contains either a negative clique of size at least
β−1 + 2 or a positive clique of size t . A well-known bound of Erdős and
Szekeres [11] shows R ≤ 4t ≤ √

n < |GC |. Therefore GC contains a positive
clique Y of size t .

For any T ⊂ Y , let ST comprise all vertices v in GC\Y for which vy
(y ∈ Y ) is an α-edge precisely when y ∈ T . Given some T ⊂ Y with√
t ≤ |T | < t , pick a vertex z ∈ Y\T and consider the [−1, −β] ∪ {α}-code

ST ∪ T ∪{z}. Since any edge incident to T is an α-edge, all edges between ST
and z are β-edges and |T | ≥ √

t > 1/α2, we can apply Lemma 3.2 to deduce
that |ST | < 1/β2. For T = Y , since pY (SY ) is a [−1, −β] ∪ {α′}-code for
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α′ = 1/(t + 1/α) < 1/ log log n, we infer |SY | < (2 + ε)n for sufficiently
large n from the first part of the proof. Now let

G ′ = GC\
(
Y ∪

⋃

T⊂Y
|T |>√

t

ST

)

and note that for all x ∈ G ′, |Nα(x)∩Y | = o(t). Applying the bounds derived
above, we obtain

∣∣
∣∣
∣
∣∣
∣

Y ∪
⋃

T⊂Y
|T |>√

t

ST

∣∣
∣∣
∣
∣∣
∣

≤ t + 2t/β2 + |SY | ≤ 2(1 + ε)n.

We can therefore iterate this procedure  times to obtain  disjoint α-cliques
Y1, . . . , Y and a disjoint graph G ′ of size at least 2εn >

√
n, so that the

number of α-edges between Yi and Y j is o(t2) for distinct i and j . Since
|G ′| >

√
n, there exists an additional α-clique Y+1 ⊂ G ′ of size t , also

with o(t2) edges to any Yi . But then the induced subgraph on Y1 ∪ · · · ∪ Y+1
contradicts Lemma 3.5, finishing the proof. ��

4 A construction

In this section we prove Theorem 1.5, which states that for any positive inte-
gers n, k, r and α1 ∈ (0, 1) with k and α1 fixed and r ≤ √

n, there exist
α2, . . . , αk , β = α1/r − O(

√
log(n)/n) and a spherical L-code of size

(1 + r)
(n
k

)
in R

n+r with L = [−1, −β] ∪ {α1, . . . , αk}. This construction
shows that the second statement of Theorem 1.4 is tight up to a constant fac-
tor. It also answers a question of Bukh. In [5] he asked whether for fixed α,
any spherical [−1, 0) ∪ {α}-code has size at most linear in the dimension.
Theorem 1.5 gives an example of such a code with size that is superlinear in
the dimension. Indeed, for any α fixed, if we choose r = √

n/ log(n) then by
Theorem 1.5, we obtain a [−1, −β]∪{α}-code of size at least rn = n3/2/ log n
in R(1+o(1))n , where β > 0 for n large enough.

Given vectors u ∈ R
n and v ∈ R

m , we let (u, v) denote the concatenated
vector inRn+m . We first give an outline of the construction.We start by finding
a {0, 1/k, . . . , (k − 1)/k}-code C of size

(n
k

)
, given by Lemma 4.1. We then

take a regular r -simplex so that all inner products are negative. For each vector
v of the simplex, we take a randomly rotated copy Cv of C and attach a scaled
Cv to v by concatenation, and then normalise all vectors to be unit length. That
is, for all u ∈ Cv we take (λu, v)/

√
λ2 + 1 where λ is a scaling factor chosen
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so that the resulting code has the given α1 as one of its inner products. By
randomly rotating the copies of C , we ensure that the inner products between
vectors coming from different copies remain negative. This follows from the
well-known fact that the inner product between random unit vectors is unlikely
to be much bigger than 1/

√
n, given by Lemma 4.2.

Lemma 4.1 For any positive integers n, k with k ≤ n, there exists a spherical
{0, 1/k, . . . , (k − 1)/k}-code of size (n

k

)
in Rn.

Proof LetC be the set of {0, 1}-vectors inRn having exactly k 1’s. Then |C | =(n
k

)
and for any distinct u, v ∈ C , we observe that 〈u, v〉 ∈ {0, 1, . . . , k − 1}.

Since ‖u‖2 = k for all u ∈ C , we thus obtain thatC/
√
k is a {0, 1/k, . . . , (k−

1)/k}-code. ��
The following lemma follows from the well known bound for the area of a

spherical cap, which can be found in [22, Corollary 2.2].

Lemma 4.2 Let u, u′ ∈ R
n be unit vectors chosen independently and uni-

formly at random. Then for all t > 0,

Pr [〈u, u′〉 ≥ t] < e−t2n/2.

We are now ready to prove Theorem 1.5.

Proof of Theorem 1.5 Let L = {0, 1/k, . . . , (k−1)/k} and letC be an L-code
of size

(n
k

)
, as given by Lemma 4.1. Let λ = √

1/α1 − 1 and define

αi = λ2(i − 1)/k + 1

λ2 + 1

for 2 ≤ i ≤ k. Note that by the choice of λ, the above also holds for α1. Let
L ′ = {α1, . . . , αk}.
Let S be a set of r + 1 unit vectors in R

r so that
〈
v, v′〉 = −1/r for all

distinct v, v′ ∈ S, i.e. S is a regular r -simplex. For each v ∈ S, let Cv be an
independent and uniformly random rotation of C in Rn . We define

C ′ =
{

(λu, v)√
λ2 + 1

: v ∈ S, u ∈ Cv

}
,

and observe that ‖(λu, v)‖2 = λ2 +1, so that C ′ is indeed a set of unit vectors
in R

n+r of size (1 + r)
(n
k

)
. Moreover, for any v ∈ S and distinct u, u′ ∈ Cv ,

we have
〈

(λu, v)√
λ2 + 1

,
(λu′, v)√
λ2 + 1

〉
= λ2

〈
u, u′〉 + 1

λ2 + 1
∈ L ′,
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since
〈
u, u′〉 ∈ L . Finally, suppose that u ∈ Cv and u′ ∈ Cv′ for distinct

v, v′ ∈ S. Observe that u, u′ are independent and uniformly random unit

vectors inRn , so wemay apply Lemma 4.2 with t =
√(

4 log
(n
k

) + 2 log n
)
/n

to obtain Pr [〈u, u′〉 ≥ t] < e−t2n/2 = n−1
(n
k

)−2. Now define β = 1/r−λ2t
λ2+1

=
α1/r − O(

√
log(n)/n) and observe that if

〈
u, u′〉 < t , then

〈
(λu, v)√
λ2 + 1

,
(λu′, v′)√

λ2 + 1

〉
= λ2

〈
u, u′〉 + 〈

v, v′〉

λ2 + 1
≤ λ2t − 1/r

λ2 + 1
= −β.

Thus it suffices to show thatwith positive probability,
〈
u, u′〉 < t for all possible

u, u′, since then C ′ will be a [−1, −β]∪ L ′-code. To that end, we observe that
there are

(|S|
2

)|C |2 ≤ n
(n
k

)2 such pairs u, u′ and so the result follows via a
union bound. ��

5 Lines with many angles and related spherical codes

5.1 A general bound when β is fixed

In this section we give a proof of Conjecture 1.3, i.e. the first statement of
Theorem 1.4. To this end, we need a well-known variant of Ramsey’s theorem,
whose short proof we include for the convenience of the reader. Let Kn denote
the complete graph on n vertices. Given an edge-colouring of Kn , we call an
ordered pair (X, Y ) of disjoint subsets of vertices monochromatic if all edges
in X ∪ Y incident to a vertex in Y have the same colour. For the graph of
a spherical code, we analogously call (X, Y ) a monochromatic γ -pair if all
edges incident to a vertex in Y have value γ .

Lemma 5.1 Let k, t,m, n be positive integers satisfying n > kktm and let
f : E(Kn) → [k]bean edge k-colouringof Kn. Then there is amonochromatic
pair (X, Y ) such that |X | = m and |Y | = t .

Proof Construct kt vertices v1, . . . , vkt and sets X1, . . . , Xkt as follows. Fix
v1 arbitrarily and let c(1) ∈ [k] be a majority colour among the edges (v1, u).
Set X1 = {u : f (v1, u) = c(1)}. By the pigeonhole principle, |X1| ≥ �(n −
1)/k� ≥ kkt−1m. In general, we fix any vi+1 in Xi , let c(i + 1) ∈ [k] be a
majority colour among the edges (vi+1, u) with u ∈ Xi , and let Xi+1 = {u ∈
Xi : f (vi+1, u) = c(i + 1)}. Then |Xi+1| ≥ �(|Xi | − 1)/k� ≥ kkt−i−1m,
and for every 1 ≤ j ≤ i the edges from v j to all vertices in Xi+1 have colour
c( j). Since we have only k colours, there is a colour c ∈ [k] and S ⊂ [kt]with
|S| = t so that c( j) = c for all j ∈ S. Then Y = {v j : j ∈ S} and X = Xkt
form a monochromatic pair of colour c, satisfying the assertion of the lemma.

��

123



202 I. Balla et al.

We will also need the following simple corollary of Turán’s theorem, which
can be obtained by greedily deleting vertices together with their neighbour-
hoods.

Lemma 5.2 Every graph on n vertices with maximum degree � contains an
independent set of size at least n

�+1 .

Finally, we will need the bound on the size of an L-code previously men-
tioned in the introduction, see [9,18].

Lemma 5.3 If L ⊆ R with |L| = k and C is an L-spherical code in R
n then

|C | ≤ (n+k
k

)
.

Now we have the tools necessary to verify Conjecture 1.3.

Proof of first part of Theorem 1.4 We argue by induction on k. The base case
is k = 0, when L = [−1, −β], and we can take cβ,0 = β−1+1 by Lemma 2.1.

Henceforth we suppose k > 0. We can assume n ≥ n0 = (2k)2kβ
−1
. Indeed,

if we can prove the theorem under this assumption, then for n < n0 we can
use the upper bound for Rn0 (since it contains Rn). Then we can deduce the
bound for the general case by multiplying cβ,k (obtained for the case n ≥ n0)

by a factor nk0 = (2k)2k
2β−1

. Now suppose C is an L-code in R
n , where

L = [−1, −β] ∪ {α1, . . . , αk}, with α1 < · · · < αk .
Consider the case αk < β2/2. We claim that �β ≤ 2β−2 + 1. Indeed,

for any y, x1, x2 ∈ GC with 〈y, x1〉 , 〈y, x2〉 ≤ −β, we have by the proof of
Lemma 2.4 that

〈
py(x1), py(x2)

〉 = 〈x1, x2〉 − 〈y, x1〉 〈y, x2〉√
1 − 〈y, x1〉2

√
1 − 〈y, x2〉2

≤ αk − β2
√
1 − 〈y, x1〉2

√
1 − 〈y, x2〉2

< −β2/2 .

Thus the projection of the β-neighborhood of y satisfies |py(Nβ(y))| ≤
2β−2+1byLemma2.1, as claimed.ByLemma5.2, the graphofβ-edges inGC
has an independent set S of size |C |/(2β−2+2). Therefore S is an {α1, . . . , αk}-
code, so |S| ≤ nk + 1 ≤ 2nk by Lemma 5.3. Choosing cβ,k > 4β−2 + 4, we
see that the theorem holds in this case. Henceforth we suppose αk ≥ β2/2.

Next consider the case that there is  ≥ 2 such that α−1 < α2
/2. Choosing

the maximum such  we have

α2
/2=2(α/2)

2≥2(α+1/2)
4 ≥ · · · ≥ 2(αk/2)

2k−+1 ≥ β ′ := (β/2)2
k
.

(6)
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Note that by induction the graph of {β, α1, . . . , α−1}-edges in GC contains
no clique of order cβ,−1n−1, so by Lemma 5.2 its complement has maximum
degree at least m = |C |/(2cβ,−1n−1). Letting y ∈ GC be a vertex attaining
this maximum degree in {α, . . . , αk}-edges, we have by the pigeonhole prin-
ciple that there exists J ⊂ GC of size at least m/k, and an index  ≤ s ≤ k
such that 〈x, y〉 = αs for all x ∈ J . Now observe that for any x1, x2 ∈ GC with
〈x1, x2〉 ∈ [−1, −β]∪{α1, . . . , α−1}, we have by Lemma 2.4 and Remark 2.5
that

〈
py(x1), py(x2)

〉 = 〈x1, x2〉 − α2
s

1 − α2
s

≤ α2
/2 − α2

 < −α2
/2 ≤ −β ′.

Furthermore, by Lemma 2.4 we have that py(J ) is an L ′-code, where L ′ =
[−1, −β ′]∪{α′

, . . . , α
′
k}, with α′

i = αi−α2
s

1−α2
s
for i ≥ . By the induction hypoth-

esis, we have |J | ≤ cβ ′,k−+1nk−+1, so choosing cβ,k > 2kcβ,−1cβ ′,k−+1
the theorem holds in this case.

Now suppose that there is no  > 1 such that α−1 < α2
/2. We must

have α1 > 0. Let t = �1/β ′�. We apply Lemma 5.1 to find a monochromatic
pair (X, Y ) with |Y | = t and |X | = m ≥ (k + 1)−(k+1)t n. Since GC has
no β-clique of size t by Lemma 2.1, (X, Y ) must be a monochromatic αr -
pair for some 1 ≤ r ≤ k. Let X ′ = pY (X) be the projection of X onto the
orthogonal complement of Y . By Lemma 2.4 and Remark 2.5, we have that
X ′ is a [−1, β] ∪ {α′

1, . . . , α
′
k}-code, where

α′
i = αi − αr

1 − αr
+ αr (1 − αi )

(1 + αr t)(1 − αr )
for 1 ≤ i ≤ k.

We can assume α′
k ≥ β2/2, since otherwise choosing cβ,k > (k +

1)(k+1)t (4β−2 + 4) we are done by the first case considered above. Since
α′
r = (α−1

r + t)−1 < β ′, the computation in (6) implies that there exists  > 1
such that α−1 < α2

/2. Choosing cβ,k > (k + 1)(k+1)t2kcβ,−1cβ ′,k−+1 we
are done by the second case considered above. ��

5.2 An asymptotically tight bound when β, α1, . . . , αk are fixed

The goal of this section will be to prove the second statement of Theorem 1.4.
The case k = 1 is given by Theorem 3.1, so henceforth we assume that we are
given a fixed k ≥ 2.

Our general strategy will be to use projections in order to reduce the num-
ber of positive angles and then apply induction. When projecting onto the
orthogonal complement of a large clique, Lemma 2.4 tells us that the new

123



204 I. Balla et al.

inner product will be some function of the old one plus o(1). In view of this,
it will be convenient to prove the following, slightly more general version of
Theorem 1.4.

Theorem 5.4 Let β ∈ (0, 1], α1, . . . , αk ∈ [0, 1) be fixed with α1 < · · · < αk
and let n ∈ N. If C is a spherical [−1, −β+o(1)]∪{α1+o(1), . . . , αk+o(1)}-
code in Rn, then

|C | ≤
(
1 + α1

β

)
(k − 1)!(2n)k + o(nk)

for n sufficiently large.

Remark 5.5 We use γ + o(1) to refer to a specific γ ∗ ∈ R depending on n
such that γ ∗ = γ + o(1), not a range of possible values near γ . We will still
say γ -edge,�γ , etc. when we are referring to a (γ +o(1))-edge,�γ+o(1), etc.
in the graph GC .

The case k = 1 of Theorem 5.4 follows by inserting o(1) terms into expres-
sions in the proof of Theorem 3.1, and so we henceforth assume that it holds.
Moreover, since we will be making use of induction, we also assume that The-
orem 5.4 holds for all k′ < k. Now let β ∈ (0, 1] and α1, . . . , αk ∈ [0, 1)
be fixed with α1 < · · · < αk and let n ∈ N. Let C be a spherical
[−1, −β + o(1)] ∪ {α1 + o(1), . . . , αk + o(1)}-code in Rn .

The argument will be a generalisation of the one used to prove Theorem 3.1
and so we will need to generalise some lemmas. Firstly, we will need the
following generalisation of Lemma 3.2.

Lemma 5.6 Let α ∈ (0, 1) and γ ∈ [−1, 1) be distinct reals. Let X ∪ Y ∪ {z}
be a set of unit vectors in R

n so that Y ∪ {z} is an {α}-code, that all edges
inside X have value at most α, that all edges between X and Y have value at
least α and that all edges between X and z all have value at least γ if γ > α

and at most γ if γ < α. Suppose furthermore that |Y | > 4/
(
α(γ −α)2

)
. Then

|X | < 1/(γ − α)2.

Proof Let αX denote the average value of the edges inside X , αY the aver-
age value of the edges between X and Y and γz the average value of the
edges between X and z. Note that our assumptions imply αY ≥ α ≥ αX
and |γz − α| ≥ |γ − α|. Let M be the Gram matrix of X ∪ Y ∪ {z} and let
v = (x, . . . , x, y, . . . , y, ζ )ᵀ, where

x = 1/|X |, y = − (αY − αγz)/|Y |
α − α2 + (1 − α)/|Y | and ζ = −(γz + y|Y |α).
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Then, similarly to the proof of Lemma 3.2,

〈Mv, v〉 = |X | + (|X |2 − |X |)αX

|X |2 + 2y|Y |αY + y2((|Y |2 − |Y |)α + |Y |)
+ 2ζ(γz + y|Y |α) + ζ 2

= 1 − αX

|X | + αX − γ 2
z + 2y|Y |(αY − αγz)

+ y2|Y |2(α − α2 + (1 − α)/|Y |)

≤ 1 − α

|X | + α − γ 2
z − (αY − αγz)

2

α − α2 + (1 − α)/|Y | ,

where the last inequality uses αX ≤ α. Note that αY ≥ α ≥ αγz , so (αY −
αγz)

2 ≥ α2(1 − γz)
2. Since 〈Mv, v〉 ≥ 0 and (γz − α)2 ≥ (γ − α)2, it is

therefore sufficient to prove that

α − γ 2
z − α2(1 − γz)

2

α − α2 + (1 − α)/|Y | < −(γz − α)2.

As one can easily check, this can be rewritten as |Y | ≥ (1 − α)(1 + α −
2γz)/α(γz − α)2, which is true by assumption. ��

We will also need the following generalisation of Lemma 3.4.

Lemma 5.7 If α1 = 0, then GC has the following degree bounds:

(i) �αi ≤ 1
αi

(k − 2)!(2n)k−1 + o(nk−1) for all 2 ≤ i ≤ k.
(ii) If −β1, . . . , −βN are the values of the β-edges incident to some x ∈ GC,

then N ≤ O(nk−1) and

N∑

i=1

β2
i ≤ (k − 1)!(2n)k−1 + o(nk−1).

Proof Let x ∈ C and let C ′ = px (Nαi (x)) be the normalised projection of
the αi -neighbours of x onto span(x)⊥. By Lemma 2.4, we see that C ′ is a
[−1, −β ′ + o(1)] ∪ {α′

1 + o(1), . . . , α′
k + o(1)}-spherical code for

α′
j = α j − α2

i

1 − α2
i

for 1 ≤ j ≤ k, β ′ = β + α2
i

1 − α2
i

.

In particular α′
1 = −α2

i
1−α2

i
< 0. Now let  be the largest integer such that

α′
 < 0 and observe that C ′ is, in particular, a [−1, α′

 + o(1)] ∪ {α′
+1 +
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o(1), . . . , α′
k + o(1)}-code. If  ≥ 2 then applying Theorem 5.4 by induction

we obtain |C ′| ≤ O(nk−), which trivially implies (i). Otherwise α′
2 ≥ 0 and

applying Theorem 5.4 by induction we obtain

|C ′| ≤
(
1 + α′

2

−α′
1

)
(k − 2)!(2n)k−1 + o(nk−1).

To verify (i), it suffices to observe that 1 − α′
2/α

′
1 = 1 + (α2 − α2

i )/α
2
i =

α2/α
2
i ≤ 1/αi .

Now we derive the upper bound on N = dβ(x). Let M = MNβ(x)∪{x} be
the Gram matrix of Nβ(x) ∪ {x} and let v = (1, . . . , 1, βN )ᵀ. Then using (i)
we conclude

0 ≤ vᵀMv

≤
∑

1≤i, j≤N

Mi j − (
β2 + o(1)

)
N 2

≤ N

⎛

⎝1 + (α1 + o(1))N +
k∑

j=2

(α j + o(1))�α j

⎞

⎠ − (
β2 + o(1)

)
N 2

≤ N

⎛

⎝1 + o(1)N +
k∑

j=2

(α j + o(1))

(
1

α j
(k − 2)!(2n)k−1 + o(nk−1)

)
⎞

⎠

− (
β2 + o(1)

)
N 2

≤ N
(
1 + (k − 1)!(2n)k−1 + o(nk−1)

)
− (

β2 + o(1)
)
N 2,

which implies N ≤ 1
β2 (k − 1)!(2n)k−1 + o(nk−1) = O(nk−1).

Finally, let −β1, . . . , −βN be the values of the β-edges incident to x and

let w =
(
β1, . . . , βN ,

∑N
i=1 β2

i

)ᵀ
. Then

0 ≤ wᵀMw = −
(

N∑

i=1

β2
i

)2

+
N∑

i=1

β2
i +

∑

1≤i, j≤Ni �= j

βiβ j Mi j

≤ −
(

N∑

i=1

β2
i

)2

+
N∑

i=1

β2
i +

k∑

r=2

αr

⎛

⎝
∑

i, jMi, j=αr+o(1)

βiβ j

⎞

⎠

+ o(1)
∑

1≤i, j≤N

βiβ j .
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Applying Cauchy–Schwarz, we obtain

∑

1≤i, j≤N

βiβ j =
(

N∑

i=1

βi

)2

≤ N
N∑

i=1

β2
i ≤ O(nk−1)

N∑

i=1

β2
i .

Furthermore, for 2 ≤ r ≤ k we have

0 ≤ 1

2

∑

i, j Ai, j=αr+o(1)

(βi − β j )
2 ≤ �αr

N∑

i=1

β2
i −

∑

i, j Ai, j=αr+o(1)

βiβ j ,

and thus we obtain

αr
∑

i, j Ai, j=αr+o(1)

βiβ j ≤
(
(k − 2)!(2n)k−1 + o(nk−1)

) N∑

i=1

β2
i .

Combining these inequalities and dividing by
∑N

i=1 β2
i yields the desired (i i):

N∑

i=1

β2
i ≤ (k − 1)!(2n)k−1 + o(nk−1).

��
Finally, we will need a new lemma to deal with what happens if the clique

we find via Ramsey’s theorem is an αi -clique for i ≥ 2.

Lemma 5.8 Let 2 ≤ i ≤ k and suppose X ∪ Y is a [−1, −β] ∪ {α1, . . . , αk}-
spherical code with |Y | → ∞ as n → ∞, such that all edges incident to any
y ∈ Y are αi -edges. Then |X | ≤ O(nk−1).

Proof Let X ′ = pY (X) be the normalised projection of X onto span(Y )⊥. By
Lemma 2.4, we have that X ′ is a [−1, −β ′+o(1)]∪{α′

1+o(1), . . . , α′
k+o(1)}-

code for

α′
j = α j − αi

1 − αi
for 1 ≤ j ≤ k, β ′ = β + αi

1 − αi
.

Observe that α′
i−1 = (αi−1 − αi )/(1 − αi ) < 0, so that X ′ is, in particular, a

[−1, α′
i−1 +o(1)]∪ {α′

i +o(1), . . . , α′
k +o(1)}-code and hence we may apply

Theorem 5.4 by induction to conclude |X ′| ≤ O(nk−i+1) ≤ O(nk−1). ��
Wenow have all of the necessary lemmas to finish the proof of Theorem 5.4.
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Proof of Theorem 5.4 Suppose first that α1 = 0. Let Q = MC −(α1+o(1))J ;
by the subadditivity of the rank we have rk(Q) ≤ rk(MC ) + rk(J ) ≤ n + 1.
Now fix some x ∈ C , and let N = dβ(x) and β1, . . . , βN be the values of the
β-edges incident to x . Using parts (i) and (ii) of Lemma 5.7, it follows that if
i is the row corresponding to x in Q then

∑

j �=i

Q2
i, j ≤

N∑

j=1

(−β j − (α1 + o(1)))2 +
k∑

r=2

(αr − α1 + o(1))2�αr

≤ (1 + o(1))
(
(k − 1)!(2n)k−1 + o(nk−1)

)

+
k∑

r=2

(k − 2)!(2n)k−1 + o(nk−1)

≤ 2(k − 1)!(2n)k−1 + o(nk−1).

Noting that Q has 1 − (α1 + o(1)) = 1 − o(1) on the diagonal, we obtain

tr(Q2) =
|C |∑

i=1

Q2
i,i +

|C |∑

i=1

∑

j �=i

Q2
i, j ≤ |C |

(
1 + 2(k − 1)!(2n)k−1 + o(nk−1)

)
.

Thus applying Lemma 2.9 to Q yields

|C |2(1 − o(1))2 = tr(Q)2 ≤ tr(Q2)rk(Q)

≤ |C |
(
1 + 2(k − 1)!(2n)k−1 + o(nk−1)

)
(n + 1).

Dividing by |C |(1−o(1))2, we obtain the required |C | ≤ (k−1)!(2n)k+o(nk).
We will now prove the theorem for α1 > 0. Let t = log log n, let ε → 0

sufficiently slowly as n → ∞ and suppose for sake of contradiction that
|C | ≥ (1 + α1/β)(k − 1)!(2n)k + εnk . Let m = �|C |/(k + 1)(k+1)t − 1� so
that |C | > (k + 1)(k+1)tm.

Regarding a γ -edge of C as an edge coloured with the colour γ , we deduce
by Lemma 5.1 that there are some subsets X and Y of C so that |X | = m,
|Y | = t and (X, Y ) is a monochromatic γ -pair for some γ ∈ {β, α1, . . . , αk}.
Since t > 1

β
+1 for n sufficiently large, Y cannot be a β-clique by Lemma 2.1

and hence (X, Y ) cannot be a monochromatic β-pair. Hence it must be a
monochromatic αi -pair. If 2 ≤ i ≤ k, then by Lemma 5.8 we conclude
�(nk/(k + 1)(k+1)t ) ≤ m ≤ O(nk−1), a contradiction for n large enough
by our choice of t . Hence, (X, Y )must be a monochromatic α1-pair and hence
C contains an α1-clique Y of size t .
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For each T ⊆ Y , let ST be the set of vertices x ∈ GC\Y so that Nβ(x)∩Y =
Y\T . Now fix T ⊆ Y and let t1, . . . , t|T | be some ordering of the elements of
T . For each pattern of the form p ∈ [k]|T |, let ST (p) consist of all x ∈ ST for
which 〈x, ti 〉 = αpi + o(1) for all i .

Define t∗ = 4/
(
α1(β+α1)

2
)+o(1) and suppose first that t∗ ≤ |T | < t . We

claim that ST (p) does not contain an α1-clique of size larger than 1/β2 +o(1)
for any p ∈ [k]|T |. To that end, fix some z ∈ Y\T and let X be an α1-
clique in ST (p). Note that, for any x ∈ X , 〈x, z〉 < −β + o(1) and |T | ≥
t∗ > 4/

(
(α + o(1))(β + α + o(1))2

)
, so that we may apply Lemma 5.6 to

X ∪ T ∪ {z} to conclude that |X | < 1/(β + α)2 + o(1) < 1/β2 + o(1).
Now letm′ = �|ST (p)|/(k+1)(k+1)t−1� so that |ST (p)| > (k+1)(k+1)tm′.

Then by Lemma 5.1, ST (p) contains an (X ′, Y ′) monochromatic pair with
|X ′| = m′ and |Y ′| = t . Since t > 1/β2+o(1) for n large enough, Y ′ cannot be
a monochromatic α1-clique or β-clique, and thus (X ′, Y ′) is a monochromatic
αi -pair for some 2 ≤ i ≤ k. Thus by Lemma 5.8, we conclude that m′ ≤
O(nk−1). Since this holds for all p, we obtain

|ST | =
∑

p∈[k]|T |
|ST (p)| ≤ k|T |(k + 1)(k+1)t O

(
nk−1

)

≤ (k + 1)(k+2)t O
(
nk−1

)
.

Now suppose that T = Y and let p ∈ [k]t\{(1, . . . , 1)}. We claim that
SY (p) does not contain an α1-clique of size larger than 1/(α2 − α1)

2 + o(1).
To that end, fix an index j such that p j ≥ 2 and let X be an α1-clique in SY (p).
Note that, for any x ∈ X ,

〈
t j , x

〉 = αp j + o(1) ≥ α2 + o(1). Furthermore, for
sufficiently large n, we have t > 4/

(
α1(α2 −α1)

2
)+o(1). Therefore, we may

apply Lemma 5.6, with α = α1 + o(1) and γ = α2 + o(1), to X ∪ T ′ ∪ {z},
where z = t j and T ′ = Y\{t j }, to conclude that |X | < 1/(α2 − α1)

2 + o(1).
As above, let m′ = �|SY (p)|/(k + 1)(k+1)t − 1� and observe that by

Lemma 5.1, SY (p) contains an (X ′, Y ′) monochromatic pair with |X ′| = m
and |Y | = t . Since t is large enough, it cannot be a β or α1-pair, so it must
be a monochromatic αi for some 2 ≤ i ≤ k, and hence by Lemma 5.8, we
conclude that m′ ≤ O(nk−1). Thus we obtain

∑

p∈[k]t\{(1,...,1)}
|SY (p)|

≤ k|T |(k + 1)(k+1)t O
(
nk−1

)
≤ (k + 1)(k+2)t O

(
nk−1

)
.

Finally, let p = (1, . . . , 1). and define X ′ = pY (SY (1, . . . , 1)) to be the
normalised projection of SY (1, . . . , 1) onto span(Y )⊥. By Lemma 2.4 we have
that X ′ is a [−1, −β ′ + o(1)] ∪ {α′

1 + o(1), . . . , α′
k + o(1)}-spherical code for
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α′
j = α j − α1

1 − α1
for 1 ≤ j ≤ k, β ′ = β + α1

1 − α1
.

Since α′
1 = 0, we can apply the previous case of Theorem 5.4 to obtain

|X ′| ≤ (k − 1)!(2n)k + o(nk). It follows that

|SY | = |SY (1, . . . , 1)| +
∑

p∈[k]t\{(1,...,1)}
|SY (p)|

≤ (k − 1)!(2n)k + o(nk) + (k + 1)(k+2)t O
(
nk−1

)

= (k − 1)!(2n)k + o(nk).

Noting that (k + 1)(k+2)t = o(n), we therefore obtain
∣
∣∣
∣∣
∣

⋃

T⊆Y,|T |≥t∗
ST

∣
∣∣
∣∣
∣
= |SY | +

∣
∣∣
∣∣
∣

⋃

T⊂Y,|T |≥t∗
ST

∣
∣∣
∣∣
∣

≤ (k − 1)!(2n)k + o(nk) + 2t (k + 1)(k+2)t O
(
nk−1

)

= (k − 1)!(2n)k + o(nk).

Thus if we define G ′ = GC\
(⋃

T⊆Y,|T |≥t∗ ST
)
then |G ′| ≥ (α1/β)(k −

1)!(2n)k+(ε−o(1))nk . Hencewe can iterate the above procedure  = α1/β+
1 times to obtain disjoint α1-cliques Y1, . . . , Y and a disjoint graph G ′ of
size at least (ε − o(1))n2. By having ε → 0 slowly enough, we can apply
Lemma 5.1 one more time to G ′ to obtain a monochromatic α1-pair, which
gives an additional α1-clique Y+1 ⊆ G ′ of size t . Note that by construction,
the number of β-edges between Yi and Y j is at least t (t − t∗) = t2(1 − o(1))
for distinct i and j . But then we can apply Lemma 3.5 to obtain  + 1 ≤
α1/β + 1 + o(1), a contradiction for n large enough. ��

6 Concluding remarks

In this paper, we showed that the maximum cardinality of an equiangular set
of lines with common angle arccosα is at most 2n − 2 for fixed α ∈ (0, 1)
and large n. Moreover, we proved that this bound is only attained for α = 1

3
and that we have an upper bound of 1.93n otherwise. In view of the result of
Neumann [19, p. 498], it is not too surprising that lim supn→∞ Nα(n)/n should
be biggest when 1/α is an odd integer. What is surprising, however, is that a
maximum occurs at all and moreover that it happens when α is large. Indeed,
the constructions of �(n2) equiangular lines have α → 0, and so one might a
priori expect that lim supn→∞ Nα(n)/n should increase as α decreases.
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If α = 1/(2r − 1) for some positive integer r , an analogous construction
as for α = 1

3 yields an equiangular set of r	(n − 1)/(r − 1)
 lines with angle
arccos (1/(2r − 1)). Indeed, consider a matrix with t = 	(n − 1)/(r − 1)

blocks on the diagonal, each of size r , with 1 on the diagonal and −α off the
diagonal; all other entries are α. One can show that this is the Gram matrix for
a set of r t unit vectors in R

n . For n large enough and r = 2 [20] and r = 3
[23], it is known that this construction is optimal. This motivates the following
conjecture, which was also raised by Bukh [5].

Conjecture 6.1 Let r ≥ 2 be a positive integer. Then, for sufficiently large n,

N 1
2r−1

(n) = r(n − 1)

r − 1
+ O(1).

If α is not of the above form, the situation is less clear but it is conceivable
that Nα(n) = (1 + o(1))n.

We believe that the tools developed here should be useful to determine the
asymptotics of Nα(n) for every fixed α. If α is allowed to depend on n, then
our methods work provided that α > �(log−1 n). The only place where this
assumption is really necessary is our use of Ramsey’s theorem in order to
obtain a large positive clique. However, it is conceivable that a large positive
clique exists even when α < �(log−1 n), in which case our methods would
continue to be effective.

We have also proved an upper bound of O(nk) for a set of lines attaining
k prescribed angles. If the angles can tend to 0 together with n, however,
this bound no longer applies and the general bound of O(n2k) by Delsarte
et al. [8] remains best possible. There are by now plentiful examples showing
that for k = 1 their bound gives the correct order of magnitude, but no such
constructions are known for other values of k. So it would be interesting to
determine whether the bound of Delsarte, Goethals and Seidel is tight for
k ≥ 2.

Acknowledgements Wewould like to thank Boris Bukh and the referee for useful comments.
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