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Abstract In this paper, we give an explicit determination of the theta lifting for
symplectic-orthogonal and unitary dual pairs over a nonarchimedean field F
of characteristic 0. We determine when theta lifts of tempered representations
are nonzero, and determine the theta lifts in terms of the local Langlands
correspondence.
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1 Introduction

The theory of local theta correspondence was initiated by Roger Howe almost
40 years ago and has since been a major theme in representation theory and
the theory of automorphic forms. In this paper, we shall address some basic
questions concerning the local theta correspondence. Let us briefly recall the
setup in broad strokes, leaving the precise exposition to the main body of the
paper.

Let F be a nonarchimedean local field of characteristic 0 and let E be F
itself or a quadratic field extension of F. Fixe = *1 andseteg =€ if E = F
and €p = 0 if E is a quadratic field. Consider a —e-Hermitian space W,, over
E of dimension n with associated isometry group U(W,,). Likewise, let V,, be
an e-Hermitian space over E of dimension m with associated isometry group
U(V,,). Then

UWy) x U(Viy) —> Sp(Resg/r(Wy @k Vin))

forms a reductive dual pair in the above symplectic group.

After fixing some extra data, the dual pair U(W,,) x U(V,,) has a Weil repre-
sentation ww,v,,. For an irreducible representation 7 of U(W,,), the maximal
m-isotypic quotient of wy, v, has the form

7 X ®Wn,Vm (JT)

for some smooth representation O, v, (7w) of U(V,;,) (known as the big theta
lift of ). It was shown by Kudla that ®y, v, (;r) has finite length (possibly
zero). The following basic result is known as the Howe duality conjecture (see
[14,15,20,45]):

Theorem 1.1 If ®y, v, () is nonzero, then it has a unique irreducible quo-
tient GWme ().

We call Oy, v, () the small theta lift of 7 to U(V,,) and shall interpret it
to be 0if Ow, v, (7r) is zero. After the above theorem, it is natural to consider
the following two basic problems:

Problem A Determine precisely when 6y, v, (77) is nonzero.
Problem B Determine 0y, v, (7) precisely when it is nonzero.

In this paper, we shall address these two problems for tempered representations
.

To formulate answers to these two problems, especially Problem B, it is
necessary to have some sort of classification of irreducible representations of
the groups U(W,,) and U(V,,). Such a classification is provided by the local
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Local theta correspondence of tempered representations 343

Langlands correspondence (LLC). The recent results of Arthur [1], Mok [35],
Kaletha—Minguez—Shin—White [23] and Gan—Savin [13] meant that the LLC
is almost completely known for the groups considered in this paper.

The LLC classifies the irreducible representations & of U(W,) by their
L-parameters (¢, 1), where

¢: WDg — GLy(C)

is a conjugate self-dual representation of the Weil-Deligne group WDg =
WEg x SL,(C) of a certain sign, and

nelr(Ag)

is an irreducible character of the component group Ay associated to ¢. We
may think of ¢ as the last name of the representation 7 and 7 its first name.
Thus we shall address Problems A and B in terms of the last names and first
names of tempered representations.

Before going on, let us give a reformulation of Problem A. Let V = (V,;)
be a Witt tower of e-Hermitian spaces over E so that V,,,4» = V,, + H, where
H is the hyperbolic plane. In particular, m = dimg(V,,) is of a fixed parity.
Then one has a Witt tower of local theta correspondence associated to the dual
pair U(W,,) x U(V,,). It is known by Kudla that the number

my() = min {m | Oy, w, () # 0}

is finite. Moreover, Oy, w, () # 0 forallm > my (7). The number my () is
called the first occurrence index of 7 in the Witt tower V. Addressing Problem
A for r is equivalent to determining the first occurrence index my (;r) of 7 in
every Witt tower V.

For this purpose, the so-called conservation relation reduces our workload
by half. More precisely, given any Witt tower V), there is a companion Witt
tower V' = (V). We shall denote the two Witt towers by (V,F) and (V,,,) and
denote the first occurrence indices of r by m™® (;r) accordingly. The conserva-
tion relation, shown by Kudla—Rallis [26] and Sun—Zhu [43], says that

mT(m)+m (r)=2-(n+e+1).
This shows that
m9%" (1) = min {m* (), m™ (@)} <n+e+1
and

m"P (1) = max {m+(7r), m_(ﬂ)} >n+e¢+ 1.
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344 H. Atobe, W. T. Gan

To address Problems A and B, we need to determine:

e the value of m9°""(;r) and which of m*(xr) it is equal to;
e the L-parameter (an (9), anf(n)) of Qanf,Wn (;r) if it is nonzero;

in terms of the L-parameter (¢, n) of 7.

Let us describe our results in the special case of discrete series representa-
tions when U(W) x U(V) = Mp,,, X Oz;,+1. More precisely, let Wy, be the
2n-dimensional symplectic space and szfn 41 be the two (2m + 1)-dimensional

quadratic spaces of discriminant 1, with VZZ 41 the split quadratic space. Let
7 be an irreducible (genuine) discrete series representation of Mp(W»,), with
L-parameter (¢, n). Thus

¢ =P
i=1

is a direct sum of distinct irreducible symplectic representations of the Weil—
Deligne group WD = Wpr x SL2(C) of F and n is a character of the
component group

,
Ay =P 7/27a;,

i=1

which is a Z/27Z-vector space with a canonical basis {¢;} indexed by the
summands ¢; of ¢. Let zy denote the element Zle a; € Ag. On the other
hand, since O(Vi )= SO(V;n +1) X Z/2Z, an irreducible representation
of O(Vzi 41) is parametrized by (¢', ’, v") where

e ¢’ is a symplectic representation of WD

e 1’ is an irreducible character of the component group A ;

e V' = +1 is a sign, with v/ = 1 corresponding to the trivial character of
7./27.

Now we consider the theta liftings of 7 to the two Witt towers V. The
conservation relation says that

mi () + m"P () = 4n + 4,
so that
mi(r) <2n+1 and m"(r) = 2n+3.
Our main results in this case are summarized in the following three theorems:
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Local theta correspondence of tempered representations 345

Theorem 1.2 (1) m9°%"(r) = m€(x) ifand only ife = n(zg). We call Ynze)
the going-down tower, and V™"%9) the going-up tower.
(2) Consider the set T containing 0 and all even integers | > 0 satisfying the
following conditions:
e (chain condition) ¢ contains S» + S4+ - - - + S;, where Sy, denotes the
(unique) k-dimensional irreducible representation of SL,(C);
e (initial condition) if ey denotes the basis element of Ay associated to
Sy, then n(ez) = 1;
e (alternating condition) n(e;) = —n(eij42) foreven2 <i <[ —2.
Let

[(m) =max 7.
Then
m¥N () =2n+ 1 —1(7) and m"(7) =2n+3+1(n).

In particular, the above theorem addresses Problem A.

Theorem 1.3 Consider the going-down tower V1@s)  For each Vo1 in
this Witt tower, with 2m + 1 > md""(z) = 2n + 1 — (%), con-
sider the theta lift Ow,, v,,. () and let its L-parameter be given by
(O2m+1(P)s Oam+1(10), vam+41(@, 1m)).

(1) One has:

Vm+1(@, ) = n(z¢) - €(1/2, P).
(2) If m < n, then
92m+1(¢) =¢ — Son—2m.

Hence 02, +1(¢9) is adiscrete series parameter and there is a natural injec-
tion Ag,,, . (¢) <> Ag. For the basis element a; of Ag,,,_.,(¢) associated to
an irreducible summand ¢;, one has

Orm+1(m)(@i)/n(ai) = € (1/2, ¢ @ Satn—my—1) - €(1/2, ¢;)
_{—1 if ¢i = Sox for some 1 <k <n —m—1,

1 otherwise.

(3) If m = n, then

92m+1(¢) = ¢ and 92m+1(n) =1n.

Hence 0y,,,4+1(¢) is a discrete series parameter.
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346 H. Atobe, W. T. Gan

4) If m > n, then 0,41 (1) is non-tempered and is the unique Langlands
quotient of the standard module

1 .
TR X O ().

X
In particular,
™ m—n+4—i _(m_”"‘l_i)
o) =& |EPII" " @ 27,
i=1
so that there is a natural identification Ag,, () = Aby.1 (), and
Om+1(n) = O2n41(n).

Theorem 1.4 Consider the going-up tower V~1%). For each Vop41 in this
Witt tower, consider the theta lift Ow,, v, () and let its L-parameter be

given by (om+1(®), Oom+1(10), vam+1(, m)).
(1) One has:

Vam+1(, m) = 1(zg) - €(1/2, $).
) If2m 4+ 1 = m"P (), then 03,11 () is a tempered representation with
hm+1(9) = ¢ + Sim)+2,

so that there is a natural inclusion

Ap = Apyi1(9)-

For the basis element a; of Ae,,, ., | (¢) associated to an irreducible summand
¢i, one has

Orm1(m)(ai)/n(ai) = €(1/2, i ® Sier)+1) - €(1/2, ¢i)
-1 if i = Sox for some 1 <k <I(m)/2,
{ 1 otherwise.

B)If2m+1 > m" () (sothatm —n — 1 — I(;w) > 0), then Orp41(7)
is non-tempered and is the unique Langlands quotient of the standard
module

P T T L s Gy ().

In particular,
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Local theta correspondence of tempered representations 347

m—n—1-I1(w)/2 1 1
Om+1(P) =¢ @ Sl(n)+2 (&) @ | - |m*n+§71 e |,|*(m7n+jfz) ’

i=1
so that there is a natural identification Ag,,, . \(¢) = A6,up () and

O2m+1(1) = Opur () (0).

Taken together, the above two theorems give precise determination of the theta
lifts of any discrete series representation 7w of Mp(W»,,). In the case of tempered
7, the results are in the same spirit, though slightly more involved to state.

We note that Problems A and B have been extensively studied by Muié [36—
39], Meeglin [31,32] and Mati¢ [28-30], at least for the symplectic-orthogonal
dual pairs and the metaplectic-orthogonal dual pairs. Their work uses the
Mereglin-Tadi¢ classification of discrete series representations of classical
groups in terms of supercuspidal representations. At that point, the Moeglin—
Tadic¢ classification was conditional, and it may be viewed as a preliminary
form of the LLC. As such, the formulation of the answers to Problems A and
B in the various papers of Mui¢ may seem somewhat complicated, as are the
proofs. The formulation of our main results and their proofs are neater and
more transparent. There are several reasons for this:

e the LLC affords a more efficient language to describe the answers;

e the theory of local theta correspondence is in a more mature state today
than at the time of Mui¢’s work. For example, the conservation relation is
now known and we do exploit it to simplify life;

e we make use of a wider spectrum of tools than Mui¢. For example, we use
results of Gan—Ichino [11] on the behaviour of the standard gamma factors
and Plancherel measures in the local theta correspondence, as well as results
of Gan-Takeda [14] and Gan—Savin [13]. In the proofs of some of these
results, the doubling see-saw diagram plays a crucial role. In addition,
Problems A and B in the almost equal rank case were resolved in [12]
for the unitary case and [2] for symplectic-orthogonal case by the local
intertwining relation given by Arthur [1]. Muié, on the other hand, mainly
made use of the computation of Jacquet modules and Kudla’s filtration.

However, the main innovation of this paper is the exploitation of the local
Gross—Prasad conjecture (GP), which is now established, in addressing Prob-
lems A and B. Recall that the GP conjecture comes in two flavours: the Bessel
case and the Fourier—Jacobi case. For tempered representations, the Bessel
case was proved by Waldpsurger [47-50] for special orthogonal groups, and
Beuzart-Plessis [4-6] for unitary groups. In [12] and [2], the Fourier—Jacobi
case (for tempered representations) was deduced from the Bessel case by using
the theta correspondence in the almost equal rank case. In particular, in the
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348 H. Atobe, W. T. Gan

almost equal rank case, Problems A and B were fully addressed in [12] for uni-
tary dual pairs, [2] and [3] for symplectic-orthogonal dual pairs, and [13] for
metaplectic-orthogonal dual pairs, and these allow one to deduce the Fourier—
Jacobi case of the GP conjecture from the Bessel case. In this paper, with the
GP conjecture in hand, we turn the table around and use it to understand the
theta correspondence for general dual pairs.

Let us give a brief summary of the contents of this paper. After describing
some background material on theta correspondence and the LLC in Sects. 2
and 3, our main results are given in Sect. 4. In order not to overburden the
reader with too much background material, we have placed the more precise
description of LLC in Appendices A and B. The local Gross—Prasad conjecture
and Prasad’s conjectures (which resolve Problems A and B for almost equal
rank dual pairs) are placed in Appendices C and D, respectively. Note that
in a prequel to this paper [3], we have discussed the LLC for full orthogonal
groups and established the GP conjecture for full orthogonal groups. Finally
the proofs of the main results are given in Sects. 5 and 6.

2 Local theta correspondence

In this section, we fix some notations.

2.1 Fields

Let F be a nonarchimedean local field of characteristic 0 and residue charac-
teristic p. Let or be the ring of integers of F, pr be the maximal ideal of of,
@ be a uniformizer of o, and gr be the cardinality of o /pF. The absolute
value | - | on F is normalized by |op|r = qgl. We fix a non-trivial additive
character ¥ of F.

Let E be either F itself or a quadratic extension of F, and wg,r be the
quadratic character of F* corresponding to E via the local class field theory.
We denote the generator of Gal(E/F) by c. We define a non-trivial additive
character g of Eby Vg = Y otrg/p. If E # F, we fix an element § € E*
such that trg, ¢ (8) = 0, and set

vEx) =y <§trE/F(5x)>

forx € Eanda € F*.Ifa = 1, we simply write £ = wf. One should not
confuse ¥ with wE. If E = F, we set

Ya(x) = ¥(ax)
forx € Fanda € F*.
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Local theta correspondence of tempered representations 349

2.2 Spaces
Fix e = +1in E*. Let

W, = a — e-Hermitian space over E of dimension n over E,

V.n = an e-Hermitian space over E of dimension m over E.

We set

€ ifE=F,

l=n-— ith =
n—m-+e¢€y wi €0 {0 ifE £ F,

and

1 if [ is odd ,
* 2 if [ is even .

We define the discriminant disc(V,,) and disc(W,,) asin [11, §2.2]. Note that

F*/F*? ifE=F,
disc(Vip) € { F*/NEg/r(E™) if E# Fande = +1,
8™ . F*/Ng/p(E*) ifE# Fande = —1.

2.3 Groups

We will consider the isometry groups associated to the pair (V,,, W,) of *e-
Hermitian spaces. More precisely, we set:

the metaplectic group Mp(Wp,), if E=F,e=+landmisodd,
GWy) = . .
the isometry group of Wy, otherwise.

We define H (V,,) similarly by switching the roles of W, and V,,,.
For a vector space X over E, we denote the general linear group of X by
GL(X). Let dety = detg(x) be the determinant on GL(X).

2.4 Representations
Let G be a p-adic group. We denote the category of smooth representations

of G by Rep(G). Let Irr(G) be the set of equivalence classes of irre-
ducible smooth (genuine) representations of G. We also denote by Irriemp(G)
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350 H. Atobe, W. T. Gan

(resp. Irrgisc (G)) the subset of Irr(G) of classes of irreducible tempered rep-
resentations (resp. discrete series representations).

For a parabolic subgroup P = M N of G, let 6 p be the modulus character
of P. For (19, Vo) € Rep(M), we define the normalized induction Indg(no)
by the space of smooth functions f: G — V) such that

f(mng) = (Sp(m)% -mo(m) f(g) forme M,n € Nand g € G.
The group G acts on Indg (7rp) by right translation. For (;r, V) € Rep(G), we
define the normalized Jacquet module Rp () by Rp(w) = V/V(N), where

V(N) is the subspace generated by w(n)v — v forn € N and v € V. Note that
V(N) is an M-subrepresentation of V. The group M acts on Rp(7) by

m - (v mod V(N)) = 8p(m)_% - (m)v mod V(N)

form e Mandv € V.
We have the normalized induction functor

Indg: Rep(M) — Rep(G)
and the normalized Jacquet functor
Rp: Rep(G) — Rep(M).

Let P = MN be the opposite parabolic subgroup to P. Then there exist two
Frobenius reciprocity formulas:

Homg (n, Indg (m))) = Homys(Rp(), mo) (standard Frobenius reciprocity)

and
Homg (Indg (7o), 71) = Homy (w0, Rp()) (Bernstein’s Frobenius reciprocity).

2.5 Parabolic inductions
We shall use Tadi¢’s notation for induced representations. Let W, be a —e-
Hermitian space, and G(W,,) as in Sect. 2.3. If X, is a t-dimensional isotropic

subspace of W,,, we decompose

W=X&W, X,
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Local theta correspondence of tempered representations 351

where X[ is a r-dimensional isotropic subspace of W, such that X; @ X7
is non-degenerate, and W,_o; is the orthogonal complement of X; & X; in
W,. We denote by P(X;) = L(X;) - U(X;) the maximal parabolic subgroup
stabilizing X;, where L(X;) = GL(X;) x G(W,_2;) is the Levi subgroup of
P(X;) stabilizing X;. If t € Irr(GL(X;)) and o € Irr(G(W,—2)), we write

T X 7 = Ind¢Wn) (t ® mo) .

P(Xy)

More generally, a standard parabolic subgroup P of G(W) has the Levi factor
of the form GL,, (E) x --- x GL,, (E) x G(Wp,), and we set

TI X -+ X Tp X 700 ::Indg(w”)(n®~~-®rr®no),

where 7; is a representation of GL,,, (E) and 7 is a representation of G(W,,).
When G (W,,) = Mp(W,,) is ametaplectic group, we will follow the convention
of [13, § 2.2-2.5] for the normalized parabolic induction.

2.6 Galois conjugate

Recall that ¢ denotes the generator of Gal(E/ F). Let X be a vector space over
E of dimension 7. Choose a basis {x;} of X, and we set

i: GL(E) - GL(X), g [(x1,...,x) = (x1,...,x)g].
For a representation t of GL(X), we define the c-conjugate “z of t by
‘t(h) ==t (iocoi ' (h))

forh € GL(X).Let {x;.} be another basis of X and we denote by i’: GL,(E) —
GL(X) the corresponding map. If A € GL,(E) satisfies

(X X)) = (X1, ) - A,
then we have i’(g) = i(A- g - A™!), and so
i'ocoi™ () =i(A- A iocoiTl(h)-i(A-<AT)

for h € GL(X). This shows that the equivalence class of “t is independent of
the choice of a basis of X.
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352 H. Atobe, W. T. Gan

2.7 MVW functor

Let § be an F-linear automorphism on W, such that 6G(W,)$ -1 = GwW,).
For arepresentation 7 of G(W,,), we denote by 7% the representation of G (W,,)
defined by conjugation, i.e., 7%(g) = m(8g8~"). The following proposition is
in Chapter 4.11.1 in [33].

Proposition 2.1 Let w be an irreducible admissible representation of G(W,,)
and " be the contragredient of . Let § be an E-conjugate linear automor-
phism on Wy, such that

(8x,8y) = (y, x)

for x,y € W,. Here, (—, —) denotes the Hermitian pairing of W,. Then,
S ~

T’ E Y.
Fix § as in Proposition 2.1. We define a functor
MVW: Rep(G(W,)) — Rep(G(W,,))

by 7MYV = 7% Note that MVW is independent of the choice of §. By the
definition and Proposition 2.1, we see that

e MVW is an involution, i.e., (JTMVW)MVW =

° MV(}V Wis a covariant functor; Gow

o nd3(\" (z @ mMVW = Ind (V" (‘T @ 7)YV for 7 € Irr(GL(X,)) and
7o € Rep(G(Wy—2:));

e if 7 is irreducible, then 7MVW = zV

.

We will use MVW in the following form.

Lemma 2.2 Let P be a standard parabolic subgroup of G(W,) with the
Levi factor of the form GL,,(E) x --- x GL,, (E) x G(Wy,). Then for
7, € Irr(GL,, (E)), mo € Irr(G(Wy,)) and € Trr(G(Wy,)), the following
are equivalent:

(1) m is a subrepresentation of T| X - -+ X T X 70;
(2) 7 is a quotient of ‘T’ x - -+ x ‘T, X 7.

Proof Use both the contragredient functor and the MVW functor. O
2.8 Weil representations
Let(V, W) = (V,,, W) be asin Sect. 2.2. We consider the Weil representation

of the pair G(W) x H (V). We fix a pair of characters x = (xv,,, xw,) of E*
asin [11, §3.2]. When there is no fear of confusion, xy, and xw, are simply

@ Springer



Local theta correspondence of tempered representations 353

denoted by xv and xw, respectively. Note that ©x, I= xv and ¢ X;,l = Xw.
Moreover, if V,, (resp. W,,) is a symplectic space, then xy = 1 (resp. xyw = 1).
These data and v give a splitting G(W) x H(V) — Mp(W ® V) of the
dual pair. More precisely, see [17,25] and [11, § 3.3]. Pulling back the Weil
representation of Mp(W ® V) to G(W) x H (V) via this splitting, we obtain
the associated Weil representation wy w4 of G(W) x H(V). We simply
write wy w for the Weil representation.

2.9 Theta correspondence

Let wy, w be the Weil representation of G(W) x H(V). For wr € Irr(G(W)),
the maximal 7 -isotypic quotient of wy w is of the form

7 X Oy w(r),

where Oy w () is a smooth representation of H (V). We emphasize that
Oy w () depends on x and ¥ also. It was shown by Kudla [24] that @y w ()
is either zero or of finite length.

The following result is proven by Waldspurger [45] when p # 2 and by
[14,15] in general.

Theorem 2.3 (Howe duality conjecture) If Oy w () is nonzero, then Oy w ()
has a unique irreducible quotient Oy ().

2.10 First occurrence and tower property

Fixe = £1. Let W, be a —e-Hermitian space as in Sect. 2.2. For an anisotropic
e-Hermitian space V,,,, and r > 0, we put

Ving+2r = Ving © H",
where H is the hyperbolic plane. The collection

V = {Vigs2r | r =0}
is called a Witt tower of spaces. Note that disc(V},) and the parity of dim(V,,;)
depend only on the Witt tower V to which V,, belongs. One can con-
sider a tower of the theta correspondence associated to reductive dual pairs

{((GW,), HV,y)) | Vi € V}.Form € Irr(G(W,)), we have the representation
Ovy,,.w, () of H(V,). The number

my() = min {m | Oy, w, () # 0}

@ Springer



354 H. Atobe, W. T. Gan

is finite and is called the first occurrence index of 7 for the Witt tower V), and
the representation 9va<ﬂ>’ w, (7r) is called the first occurrence of 7 for this Witt
tower.

The following proposition is often referred to as the tower property of theta
correspondence (see [24]).

Proposition 2.4 Let my () be the first occurrence index of w for the Witt
tower V = {V,,,}. Then we have Oy, w, () # 0 for any m > my (7).

If E # F ore = +1, for a given Witt tower V = {V,,}, there exists another

Witt tower V' = {V } such that

oV, * Vn;,;

e dim(V,,) = dim(V/,) mod 2;

o disc(V;,) =disc(V) ) if E = F and € = +1.
We call V' the companion Witt tower of V. Also, by a companion space of
Vin, we mean V,, or V, . For each 7 € Irr(G(W,)), we may consider two first
occurrence indices my () and my (). Let VT = {V,F} be the Witt tower
whose anisotropic space is

0 if E # F and m is even,

(E, 1) if E# F,misodd and € = +1,

(E, d) if E# F,misoddand e = —1,

0 if E = F,m is even and disc(V;,) = 1,

(F, wpaye)  ifE=Fmisevenand d i=disc(V,y) # 1in F*/F*2,
(F, 2disc(Vyy)) if E = F and m is odd.

Here, we consider V,, as a vector space equipped with a suitable Hermitian
pairing. For example, by (F, 2disc(V,,)), we mean the one dimensional space
equipped with the bilinear form

(x,y) — 2dxy,

where d € F* satisfies d mod F*? = disc(V,,) in F*/F*?. Note that this
space has discriminant disc(V,,). We denote the other Witt tower by {V, }.
Then foreachr € Irr(G (W,,)), we have two first occurrence indices mE () =
my= (7).

On the other hand, if £ = F and € = —1, then there is only a single
tower of symplectic spaces V = {V,,}. In this case, a companion space of
Vi is just V,,,. However, since m is a representation of the orthogonal group
G(W,) = O(W,), we may consider its twist 7 @ det. Thus we have the two
towers of theta lifts

Qv,,.w, (™) and Oy, w,(T @ det).
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Hence we may define two first occurrence indices for each = € Irr (G (W,,)).
When 7 is odd, we define m™ (1) by

m* () := min {m | ©v, w, (") #0withn" € {m, 7 ® det}
such that 7' (—1y,) = +id} .

When n is even, we define m* (1) by

m* ) = min { min {m | Oy, w,(7) # 0}, min {m | O, w,(x @ den) £ 0]},
m~ () := max [ min {m | Oy, .w, () # O}, min {m | Oy, w, (T @ det) # 0}]
Hence, in this case, m* () < m™ (7) by convention.
In any case, for each & € Irr (G (W,,)), we have two first occurrence indices
mi(rr). We put

m"P () = max {m+(7t), m_(n)} and m%"" () = min {m+(n), m_(n')} .

The following proposition is often referred to as the conservation relation (see
[43]).

Proposition 2.5 For any nw € Irr (G (W,,)), we have
m"P () + m¥ () = 2n + 2 + 2¢.
This relation shows that
mP(x)>n+14¢ and m(7) <n+1+ .
If we put
[ =n—m® (1) + €,

then we have [ > —1.

3 Parametrization of irreducible representations

In this section, we explain the local Langlands correspondence (LLC) quickly.
More precisely, see Appendix B.
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Let WDg = WEg x SLy(C) be the Weil-Deligne group of E. We define
®(H(V,,)), which is a set of equivalence classes of representations of WDE,
in the various cases as follows:

®(O(V,) = {¢p: WDr — Sp(m — 1,C)} / =, if m is odd,
®(Sp(Vim)) ={¢: WDF — SO(m +1,C)}/ =,

O(O(Vp) ={¢: WDr — O(m,C) | det(¢p) = xv} /=,  ifmiseven,
SMp(Vi)) = {¢: WDF — Sp(m,C)} / =..

For the unitary group U(m), we define ®(U(m)) to be the set of equivalence
classes of conjugate self-dual representations of WDg of sign (—1)"~!. For
the notion of conjugate self-dual representations, see Appendix A.3.

We say that ¢ € ®(H (V),)) is tempered if ¢ (WEg) is bounded. We denote
by ®temp(H (Vin)) the subset of equivalence classes of tempered ¢. For ¢ €
®(H(V,,)), we denote by L(s, ¢), (s, ¢, ¥'), and y (s, ¢, ¥’) the L-, -,
and y-factors associated to ¢, respectively. Here, ¥’ is a non-trivial additive
character of E. The root number £(1/2, ¢, ¥') is also denoted by &(¢) or
e(@, ¥).

For an irreducible representation ¢g of WD g, we denote the multiplicity of
@0 in ¢ by my(¢o). We can decompose

¢ =mip1+---+m; ¢, +¢,+C¢N,
where ¢1, .. ., ¢, are distinct irreducible representations of WD of the same

type as ¢, m; = mg(¢;), and ¢’ is a sum of irreducible representations of WD g
which are not of the same type as ¢. We define the component group Ay by

,
Ay = @(Z/2Z)a,~ = (Z)27)".
i=1
Namely, Ay is a free Z/27Z-module of rank r and {ay, ..., a,} is a basis of Ay

with a; associated to ¢;. Fora = a;;, +---+a; € Ay with1 <i; <--- <
iy <r,weput

=i, & D Py

Also, we set

r r
9 = Zm¢(¢l) cap = Zmi - a; € A¢.
i=1

i=1
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We call z4 the central element in Ay. There is a homomorphism

det: Ay — Z/2Z, Y eiai—> Y & -dim(¢) (mod 2),

i=l i=1

where ¢; € {0, 1} = Z/27Z.
The LLC classifies Irr(H (V,;,)) as follows:

Desideratum 3.1 (1) There exists a partition
| Jurcaven = || 1.
Vo $eD(H(Vin))

where V5 runs over all companion spaces of Vy,. We call Tl the L-packet

of .
(2) m € Irr(H (V,)) is tempered if and only if = belongs to Ty for tempered

¢.

(3) There exists a map
L: H¢, —> :4:5,
which satisfies certain character identities. Here, we denote by ;1;, the
Pontryagin dual of Ag.

(4) The map t is surjective unless H(V,,) = Sp(Vy;) is a symplectic group.
In this case, the image of t is given by

{nedy|nep) =1}

(5) Themap tis injective unless H (V,,) = O(V,,) is an odd orthogonal group
(i.e., m is odd). In this case, each fiber of this map is of the form

{m, m ® det}.
Hence the map
My — Ag x {£1}, 7 > (1), 0r(—1))

is bijective, where wy is the central character of 1.
(6) Suppose that 'V, exists. Then w € Tly is a representation of H(V,;) if
and only if 1(w)(z¢) = —1.

Therefore, unless H(V,,) = O(V,,) is an odd orthogonal group, T €
Irr(H (V) is parametrized by (¢, n), where ¢ € ®(H(V,,)) and n € Ay. If
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H(V,,) = O(V,,) is an odd orthogonal group, = € ILr\(H (Vin)) is parametrized
by the triple (¢, n, v), where ¢ € ®(H(V,,)), n € Ag and v € {£1}. The pair
(¢, n) is called the L-parameter for . We also call ¢ and 5 the last name and
the first name of 7, respectively.

Remark 3.2 The map ¢: Iy, — Z; may not be canonical. To specify ¢, we
need to choose a Whittaker datum for H (V,,,). More precisely, see Remark B.2
below.

Suppose that H (V,;) = O(V,,) is an even orthogonal group (i.e., m is even).
Then the following are equivalent:

e ¢ € ®(0O(V,,)) contains an irreducible orthogonal representation of WD g
of odd dimension;

e some 7 € Iy satisfies 7 2 7 @ det;

e any 7 € Il satisfies 7 2 7 ® det.

4 Main results

The purpose of this paper is to describe theta lifts of tempered representations
in terms of the local Langlands correspondence. In this section, we state the
main results over 3 theorems. Though we formulate the main results as 3
theorems, these are proven together (in Sect. 6).

We denote by S, the unique irreducible algebraic representation of SL,(C)
of dimension r. When x is a character of E*, we regard x as a character of
W via the local class field theory ng = E*,sothat xS, = x X S, is a
representation of WD = Wpg x SL,(C). The first main theorem gives an
answer to Problem A in Sect. 1 for tempered representations.

Theorem 4.1 Let (V,,,, W) and « € {1,2} be as in Sect. 2.2, and © €
Irttemp (G (Wy)) with L-parameter (¢, ).

(1) Consider the set T containing k — 2 and all integers | > 0 with [
k mod 2 satisfying the following conditions:

e (chain condition) ¢ contains xy Sy forr =k, k +2,...,1;
e (odd-ness condition) the multiplicity my(xv S,) is odd for r =k, k +
2,...,1—2;

e (initial condition) if k = 2, then

) €-8(xy =1) if E=F andm # n mod 2,
A if E % F andm = n mod 2;
e (alternating condition) n(e;) = —n(ey42) forr =k, 6k +2,...,1 —2.
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Here, e, is the element in Ay corresponding to xv Sy, and for a character

X, we put
+1 ifx=1
8 = 1 =
(x ) { —1  otherwise.
Let
[(m) =max 7.
Then

mI" (1) =n+ ey —I(r) and m"P(r) =n+2+ ey +1(n).

() Ifl(w) = —1, then m"P () = m9°""(xr). Suppose that [(7) > 0. Then ¢
contains xy if k = 1. Moreover, m%°""(r) = m® (1) if and only if

n(zy + e1) ific =1,

N(zg) (@) -£(@®xv) - xv(=1)2  ifE=F,m#nmod?2ande=+1,
=) nGzg) - e9) fE=F,m#nmod2ande = —1,

U(Z¢)'8(¢®X;],¢f) if E# F and m = n mod 2.

We call VO™ = V¥ (resp. VP := V™) the going-down tower (resp. the
going-up tower) with respect to 7.

Remark 4.2 Recall that when (G(W,), H(V,,)) = (O(W,), Sp(V,,)) with
even n, by the definition, m%°"*(x) = m*(x) for each = € Irr(O(W,))
(see Sect. 2.10). In this case, (2) asserts that if 7 € Irr(O(W,,)) satisfies that
Oy, . w,(m) # 0 and Oy, w, (7 ® det) = 0 for some m < n, then the L-
parameter (¢, n) of m satisfies that ¢ O 1 and n(zy + e1) = 1. This follows
from Prasad’s conjecture (Theorem D.2 below).

The proof of Theorem 4.1 is given in Sect. 6. We give an indication for the
relevant results. To prove (1), itis enough to show the following two statements:

o If Oys w, () #0,thenl:=n—-—m+e 7.
o n—mI" (1) +eg+2¢ 7.

For the first assertion, (chain condition) and (odd-ness condition) follow
from Corollary 6.2, and (initial condition) and (alternating condition) fol-
low from Proposition 6.8. The second assertion follows from Corollary 6.13,
Proposition 6.10 and Prasad’s conjecture (Theorem D.2). The assertion (2)
follows from Prasad’s conjecture (Theorem D.2) together with a comparison
of central elements z4 (Proposition 6.7) unless E = F, m # n mod 2 and
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€ = —1. In this case, we compare the central character of 7 € Irr(O(W),))
with the central element z (Proposition 6.20).

The second and third main theorems describe the L-parameter for
OV, W, (7).

Theorem 4.3 Let (V,,,, W) and « € {1,2} be as in Sect. 2.2, and © €
Irtemp(G (Wy)) with L-parameter (¢, n). Assume that V,, belongs to the
going-down tower VI m > mI"(1) and m = mI°"(;r) mod 2. Put
my; =n+e€y+2—«k. Let (0,,(¢), 6,,(n)) be the L-parameter for Oy, w, ().

(1) If m9" () < m < my, then

On (D) = (D ® xy ' xw) — xwSl,

wherel = n —m + €y > 0. In particular, there is a canonical injection
Ap, ) — Ag. If 1 = 1, then we have n|Aq,, ) = Om(n). If | > 1, then
Om(n)(a)/n(a) is equal to

E@ Xy ® Si-1) (@) - xy(—1)z M@ ifE = F,e =+l andm is odd,

e (077" @ Si1) e (67 xw) o (—DPE) i E = Fe = —1and n is odd,
a ,—1 a. —1 =1 . _

e|P“xy ® Si—1)-det ((b Xy )(—1) 2 if E=F and m, n are even,

e (0747 @ i1, vF) ifE #F,

forany a € Ag, ) C Agp.
2) Ifm =m and k = 1, then

O (@) = (9 @ 21y xw ) @ -
In particular, there is a canonical injection Ay — Aq,, (¢). Moreover,
we have O, (n)|Agp = 0.
(3) If m = m and k = 2, then

Om, (@) = & ® Xy ' xw-

In particular, there is a canonical identification Ay = Aéml ()- Moreover,
Om(n)(a)/n(a) is equal to

2@ e (¢ @ xy aw) - (o aw) (D4 E =
s(¢“®x;1,w§) ifE #F
forany a € Ag,, (¢) = Ag.
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4) If m > my, then 6,,(¢) is equal to

(m—my)/2

mfn;eoﬁ»l_i _mfn;eoJrl_H
m@» | P (xW lg & xwl-lg )

i=1

In particular, there is a canonical identification Aq,,¢) = As,,, (). More-
over, we have 6,, (77)|A€m1 @) = Om, ().

) If (G(Wy), H(Vin)) = (Mp(Wy), O(Vin)) with odd m, then 8y, w, (1) is
parametrized by (0, (9), O (1), vin (¢, 1)) with

V(. m) =n(zg) - £(®) - xv(=1)2.
Remark 4.4 In Theorem 4.1 (2), we note that

1 if ¢ contains xy,
[Aem OF A¢] = : :
! 2 if ¢ does not contain xy .

If ¢ does not contain xy, then m* () = m~(w) = m, for any = € Iy by
Theorem 4.1 (1), and L, (B) is not contained in Ag. The value 6,,, (17)(zg,, | (@)
is determined by Desideratum 3.1 (4) or (6).

The assertion (1) will be shown in Sect. 6.2. The assertions (2) and (3) are
the (almost) equal rank cases (Theorems B.8, D.1 and D.2). The assertion (4)
follows from [14, Proposition 3.2] (see Proposition 5.6 below). The assertion
(5) is Proposition 6.19.

Theorem 4.5 Let (V,,,, W,,) and k € {1,2} be as in Sect. 2.2, and @ €
Irremp(G(Wy)) with L-parameter (¢, n). Assume that V,, belongs to the
going-up tower VP and

m>m"P(r)>n+e+2 ie, I(m)>0.

Let (01,(¢), O (n)) be the L-parameter for Oy, w, (). We putl = m —n —
e —2>0.

(1) Suppose that m = m"P(rr) so thatl = (7). Ifl = 0 or mg(xv S)) is odd,
then

0n(@® = (9 ® xy ' xw) @ xwSts2,
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sothat Oy, w, (1) is tempered. In particular, there is a canonical injection
Ay = Ay, (). Moreover, 6,,(n)(a)/n(a) is equal to

€ ((an;l ® Sl+1) -e(9?) - Xv(—l)%dimwa) ifE=F,e =+1andmis odd,
¢ (¢aX\71 ® 51+1> ce (6%xw) - xw (=D 2IMOD B Z F e = 1 andn is odd,
e (¢aX‘71 ® Sl+1) - det (¢ax;1) (—l)% if E = F and m, n are even,

e (0%xy" ® 511, 9F) ifE £ F,

fora e A¢ C Agm(q;).
(2) Suppose that m = m*P(rr) so that | = I(7w). If | > 0 and my(xvS;) =
2h > 0, then

1 _1
o (@) = (6 ® xy"xw) = xws)) @ (owSr @ (|- |7+ [7)):
so that Oy, w, (1) is not tempered. In this case,
T C xySt; x -+ X xySt; % mg,

where o € Ittemp(G(Wy—21)) has the L-parameter (¢o, no) given by
do = ¢ — (xvSt)®*" and no = nlAg,- Then

mo :=m"P(mg) =m —2lh —2 and
oo (@0) = (9 ® xy ' xw) — Caw SHEED.

Inparticular, there is a canonical identification Ag,, (¢ = Ao, (¢)- More-

over, we have 6,, (77)|A9m0 (@0) = Omo(M0)-
(3) Suppose thatm > my := m"P(;). Then 0,,(¢) is equal to

(m—m1)/2

mfn;eo+1 i _m—n;eOJrl +i
m@@e| P (xWHE ® xw |'lp )

i=1

In particular, there is a canonical identification Aq,, ¢) = Ao, (¢)- More-
over, we have 6, (17)|A9m1 @) = Om, ().

4) If (GW,), H(Vin)) = Mp(W,,), O(Vin)) with odd m, then By, w, (1) is
parametrized by (6, (), 6 (1), vin (¢, 1)) with

(. m) = n(zg) - £(¢) - xv (=17
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Remark 4.6 Note that in (1), Ay can have index 2 in Ay, (¢). In this case, we
see that

Ab,(¢) = Ap ® (Z/2ZL)e|(rr)+2-

By Theorem 4.1 (1), we have 6,, () (e1(z)+2) = —0m(n)(ei(x)). Together with
this equation, we see that (1) describes 6,,(n) completely.

Under the assumption of Theorem 4.5 (1), we will show that 6y, w, ()
is tempered (Corollary 6.13). If we knew the temperedness of Oy, w, (),
we obtain Theorem 4.5 (1) by applying Theorem 4.3 (1) to 8y, w, (;r). The
assertions (2) and (3) will be shown in Sects. 6.6 and 6.7, respectively. The
assertion (4) is Propositions 6.19.

The twisted epsilon factors appearing in Theorems 4.3 and 4.5 can be com-
puted by using the following lemma.

Lemma 4.7 Let | > 3 be an integer, xy be a character of E* and ¢ be a
representation of WD E such thatqu;l is (conjugate) self-dual of sign (—1)' 1.

(1) If E = F and l is even, then
£ (¢>x; '® Sl—l) = (=)o O St (v ) g (¢x; H.

(2) If E = F and l is odd, then

e (017" @Sim1) - det (9 ") (=7 = (= 1yelay St s,
(3) If E # F and |l is even, then

¢ <¢X\71 ® Si_1. WzE) = (—1)"ms v Si=2)+Fme (v S2) g <¢X‘71, w2E> .
4) If E # F and l is odd, then

ey’ ®Si1,¥3) = (=1 ST EmaGvSy,

Proof This follows from Lemma A.4. O

5 Irreducibility and temperedness of theta lifts

In this section, we recall Kudla’s filtration of the normalized Jacquet module

of Weil representations, and prove the irreducibility and temperedness of theta
lifts.
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5.1 Kudla’s filtration and irreducibility of big theta lifts

Let (V,,, W,,) be a pair of spaces as in Sect. 2.2. We denote the anisotropic
space in the Witt tower V = {V};,} by V,,. Decompose

Wp = Xp+ Wy + X]t and Vi =Y4 + Vin—2a + Y;’

where Xy, X (resp. Yy, Y;) are k-dimensional (resp. a-dimensional) isotropic

subspaces of W, (resp. V,,;) such that Xy + X (resp. Y, +Y) is non-degenerate,

and W,, o (resp. Vi, —24) is the orthogonal complement of Xy + X’ (resp. Y, +

YY) in W, (resp. V,,). Let P(Xy) (resp. Q(Y,)) be the maximal parabolic

subgroup of G(W,,) (resp. H(V,,)) stabilizing X (resp. Y,). We denote the

normalized Jacquet functor with respect to a parabolic subgroup P by Rp.
The following lemma is called Kudla’s filtration.

Lemma 5.1 ([24]) The normalized Jacquet module Rpx,(wv,, w,) has an
equivariant filtration

Rpxp(@v,.w,) =R D R' 5. > RF S R =,

whose successive quotient J* = R®/R“t\ is described as follows:

GL(Xr) xG(Wy—2) X H (Vi) Mk—a
J=1Indp " XX GWy 2% OY) (XV |dety, |7 ® S(som(Yy, X})) ® me-za,anzk) )

where

e Mk g=m—n+k—a—e€y)/2

o Xy = Xi—q + X, with dim(Xy—,) = k — a and dim(X))) = a, and
P(Xy—qa, Xi) is the maximal parabolic subgroup of GL(Xy) stabilizing
Xk—as

e Isom(Y,, X)) is the set of invertible E-conjugate linear maps from Y, to X,
and S(Isom(Y,, X)) is the space of locally constant compactly supported
functions on Isom(Y,, X/);

e GL(X]) x GL(Y,) acts on S(Isom(Y,, X})) as

((g, h) - [)(x) = xv(det(g) xw(det(h)) f(g~" -x-h)

for (g,h) € GL(X)) x GL(Y,), f € S(som(Y,, X))) and x €
Isom(Y,, X)).
Ifm — 2a < dim(Vyy,), we interpret R* and J* to be 0.

For a representation ¢/ of a totally disconnected locally compact group G,
we denote by Uy the smooth part of U/, i.e., the G-submodule of smooth
vectors in 4. Note that for & € Irr(G(W,,)), we have an isomorphism
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Homgw,) (0v,,.w,. 7). = Ov,,.w, )"

as representations of H (V). In the following proposition, in order to simplify
notation, we will also use Oy, w, (7)" to denote the left hand side of the above
equation when 7 is admissible but possibly reducible.

The following proposition is useful.

Proposition 5.2 Assume thatl = n — m + €y > 0 and k > 0. Let mq be
an admissible representation of G(W,_»r), and t be an irreducible essen-
tially discrete series representation of GL(X). Then we have: the space
HomgLx,)xG(w,_») (4, xvT" ® 7o) is isomorphic to

H(Vp - .
IndQ((Yk)) (XWlfv ® OV, o, Wyt (770)v> ifa=k,

k=l+
2

1 -k
H(Vy, - . =
IndQEka)l) (XW1 Ste—1 |detYk—1 |E ® OV, 510 Wy (”O)V) ifa=k—1andt =St |deth ‘Ez )
0 otherwise
as representations of H(Vy,).

Proof We put v’ = “tV. For a = k, it is easy to see that

HomgL (x,)xG(W,_20) (Jk, xvt ® 770)00

~ H(Vy -1
= IndQ((Yk)) (XW v’ ® Homg(w, ) (a)Vm—stWn—Zk’ 770)00)

(c.f, [13, p. 1674-1676]).
Next, we assume that a < k. By Bernstein’s Frobenius reciprocity, we have

HomaLx,)xGw, o0 (5 xvT' ® o)

2"_“ ® S (Isom(Yq, X))

= Homgr(x;_,)x GL(X},) x G (W) <XV |detx,_,

®a)vm—2usWn—2k’ RP(ina,Xk)(XVT/) ® 7.[0) )

where P(Xy—_q, Xr) is the parabolic subgroup of GL(Xj) opposite to
P(Xk—a, Xr). By [53, Proposition 9.5], the normalized Jacquet module

Rez—xo(xvt') is given by

Rz x0 (xvt) = xvu \detxk,a 21 ® XvT2 \detxg|eEz,

where 11 (resp. 12) is an irreducible (unitary) discrete series representation of
GL(Xk—q) (resp. GL(X))), and e, e2 € R such that

e1<ey and e;-(k—a)+e-a=0.
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Since GL(X—,) acts on xy|dety, 2’"" ® S(Isom(Yy, X)) @ wv, .. W, o
by the character xy |dety, |))gk_a,ifHOHlGL(Xk)xG(W,,_Zk)(Ja» xvT' ®mg) # 0,
then we must have k — a = 1. Moreover, by results of Zelevinsky (see [38,
p. 105]), we must have " = St |detx, | for some e € R. Then we have

k=1 !
an e =2e —.
2 2 2

e =e—
We must have e; = A so that e = (k — [)/2. In this case, we have

HomgL (x,)x G (W,-2) (JH, xwt' ® no)oo

k—l+1
~ 2
= HomGL(x;_ )« G(Wy-20) (5 (Isom (Yi—1, X;_1)) ® ®V,, s Wyae XV Sti—t ‘detx;,,l - ®7T0)
o0
H k—£+l
~ m —1
= IndQ(Yk,l) (XW Ste—1 ‘detX,'{,, P ® Homg w, ) (an,—2k+2.Wr1—2k’ ﬂo)oo>
(c.tf., [13, p. 1674-1676]). Hence the proposition follows. |

Corollary 5.3 We put no = n — 2k and my = m — 2k. Let w € Irr (G(Wp,)),
o € Irr(G(Wy,)) and © be an irreducible essentially discrete series repre-
sentation of GL(Xy). Assume that

oe/=n—m+e¢ >0;
1—k

o T % Stldetx, |7 ;

G(W,
° IndPEXk))(XVr ® my) — .

Then we have
H( Vi
IndQ((yk)) <XWT ® OV, Wiy (770)) — Oy, .w, (7).

Proof By Lemma 2.2, we have 1 — Indgg/l:‘)) (xv°tY ® o). Hence we have

Ov,,.w, ()" = Homgw,) (0v,,.w,, )
G(W,
—> HomG(Wn) (me,Wn’ IndPEXk)) (XVC-[V ® 7_[0))00

= HomGL (x;)x G (W,y) (RP(Xk) (wvm,Wn) vtV ® ”0)00 .
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I—k
Since t 2 Sty|dety, |E2 , by Proposition 5.2, we have

HomarL(x)x G (W) (Rpxo (@v,.w,) » xvt” @ mo)

— HomgL(x,)xG (W) <Jk, Xt ® no)oo

~ (1rqH Vo !
= (IndQ((Yk)) (pr ® Oy, W, (no))) :

Taking the contragredient functor, we get the corollary. O
Corollary 5.3 implies an irreducibility condition of big theta lifts.

Proposition 5.4 Let m € Irr(G(W,)) whose last name is ¢ € O(G(W,)).
Assume that

e 7 is tempered;
e Oy, w,(m) #O0forl=n—m+e¢ >0;
e ¢ contains xy S; with multiplicity one.

Then ©vy,, w, (7) is irreducible and tempered.

Proof We prove this corollary by induction on n. If 7 is a discrete series
representation, then by a similar argument as that for [11, Proposition C.1],
we see that all irreducible subquotients of Oy, w, (;r) are discrete series rep-
resentations. Hence Oy, w, (77) is a direct sum of irreducible discrete series
representations, and so ®v,, w, (7r) is irreducible by the Howe duality conjec-
ture (Theorem 2.3).

Suppose that 7 is not a discrete series representation. Then there exist

T € Irrgisc (GL(Xy)) and mo € Trremp(G(Wyy)) with ng = n — 2k such

that Indgé}vg:))()(vr ® mg) — m. By our assumption, T 2 St;. Also, T &
k

-k
Sti|dety, |, since 7 is discrete series. Hence we can apply Corollary 5.3 to
7. We have

H(V,
indg " (xwt ® Oy, w, (70)) > Ov, ., (7).
By the induction hypothesis, we see that ®Vm0, Wi (7o) 1s irreducible and tem-

pered. Hence so is ®y,, w, (7), by the Howe duality conjecture (Theorem 2.3)
and the fact that the induced representation is semisimple and tempered. 0O

5.2 Temperedness of theta lifts 1

First, we prove the following proposition.

Proposition 5.5 Let w € Irr(G(W,,)) be such that ®y,, w, () # 0. Assume
one of the following:
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(1) m is tempered and m < n + 1 + €g;
(2) m is a discrete series representation and Oy, w, (1) is the first lift to the
going-up tower VP so that m = m"P ().

Then all irreducible subquotients of Oy, w, ;) are tempered.

Proof The first case is similar to [11, Proposition C.1]. Hence we consider
the second case. So we assume that 7 is a discrete series representation and
m = m"P ().

Fix an H (V,,)-invariant filtration of @y, w, (7):

Oy, w,(T)=2pDX; DD DTy =0
such that
I; == %/ X

is irreducible for any i. Suppose that [ is non-tempered. We may assume that
I1; is tempered for i = 0, ..., k — 1. Then there exists a maximal parabolic
subgroup Q of H(V,,) with Levi component Ly = GL;(E) x H(Vy,,) such
that

I, — Indg(v’”)(rl det| ;" ® 0p),

where © € Irrgisc (GL;(E)), so > 0 and o9 € Irr(H (Vy,)). By a similar
argument as that for [11, Proposition C.1], we have a nonzero H (V,;,)-map

Ov,.w, (1) — Ind ) (r det| ;° ® ao) .

Hence we have
7" < Hompv,,) (a’Vm,Wn» Indg(v’") (‘r |det| ;" ® a()))
= HomGL, (E)x H (Vi) (RQ (@v,.w,) 7 Idetl ;" & "0) ’

where R denotes the normalized Jacquet functor with respect to Q. The last
Hom space has been studied precisely in the proof of [14, Proposition 3.1].
According to (the proof of) this proposition, one of the following must occur:

(@) Oy, _, .w, () #0;
(b) Ind{p(¢" (xvSta ® 70) — 7 for some a and 7y € Irtiemp(G (Winy)).

However, (a) can not occur since Oy, w, (7) is the first occurrence. Also, (b)
contradicts that 7 is a discrete series representation. This completes the proof.
O
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We also need the following proposition in [14]:

Proposition 5.6 ([14, Proposition 3.2]) Let 7 € Iir(G(W,,)). Assume that
I =n—m+e€y < 0and®by, w, () is nonzero and tempered. We put V2, =
Vin @ H" for r > 0. Then 6y, w, () is the unique irreducible quotient of
the standard module

2r—1-1 2r—3-1 11

xw g xxwllg® x-xxwllg 6y, w,@@).

This proposition implies Theorem 4.3 (4). In fact, [14, Proposition 3.2] can
be applied to a more general situation as we shall show in Proposition 6.18
below. Theorem 4.5 (3) is proven by showing that we can apply [ 14, Proposition
3.2]to Oy, A (7r), which may be non-tempered, for 7 € Irremp(G(Wy)).

Also, Proposition 5.6 implies the following.

Corollary 5.7 Let w7 € Irr(G(W),)). Assume thatl = n —m + ¢y < —1
and Oy,, w, (1) is nonzero and tempered. Let Vy,, be the space which belongs
to the same Witt tower as Vy,, and lp = n — mg + €9 = 0 or —1. Then

®Vm0,Wn (7‘[) =0.
Proof If Oy, .w, () were nonzero, it must be tempered by Proposition 5.5,

so that Oy, w, (;r) is non-tempered by Proposition 5.6. This contradicts the
temperedness of Oy, w, (7). O

6 Proof of main theorems

In this section, we prove Theorems 4.1, 4.3 and 4.5.

6.1 Correspondence of last names
First, we study the correspondence of last names.

Proposition 6.1 Let © € Irremp(G(Wy,)) with L-parameter (¢, n). Assume
that ®y, w, () #0withl =n —m + €y > 0. Then ¢ contains xy S;.

Proof Consider the standard gamma factors (see Appendix A.1). By Proposi-
tion A.1 and Desideratum B.1 (7), the gamma factor

L(1-s59"®x")

L(s.o@x;")

y(so@xy' ve)=c(s0@x" ve)
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has a pole at s = l+—1 This implies that L(1 — s, ¢" ® X;l) has a pole at

l+1

s ="5.We decompose

¢=@¢i®sz‘,

i>1

where ¢; is a tempered representation of Wg. Then we have

L(l—s,¢v®x;1)=]_[L< S </> ® Xy )

i>1
Since ¢; is tempered, only L(1 —s+ 51 2 QI Xy 1Y can have apoleats = 131 .
Moreover, if it has a pole, then ¢; ® x, ! must contain the trivial representation.
Hence the proposition follows. O

Corollary 6.2 Letw € Irremp(G(Wy,)) with L-parameter (¢, n). Assume that
Oy, .w, (@) #O0withl =n —m + €y > 0. Define k € {1,2} by k =1 mod 2.
Then ¢ contains xyS, forr = K,k + 2,...,1. Moreover, the multiplicity
mg(xvSy)isoddforr =k, k+2,...,1—2.

Proof By Propositions 6.1 and 2.4, we see that ¢ contains xy S, for r =
K,k +2,...,1.

By an induction on n, we prove that mg(xv S;) is odd for any r = « + 2i
with 0 <i < (I — «)/2. We may assume that my(xv S,) > 2. Then we can
write

= xvS D oD xvSr

for some ¢y € Pemp(G(Wyy)) with ng = n — 2r. We can find 7y €

Irtemp (G (Why,)) such that there is a surjection Indgg)vgr”))()(VStr ® my) — 7.

Then the L-parameter of my is given by (¢o, n|Ag,). Since r < [, by
Corollary 5.3, we have a surjection Indgé)‘//r’“;)(XWStr ® ®Vm0’Wﬂo (mp)) —»
Ovy,,.w, () with mg = m — 2r. In particular, ®Vmo’wno (7r0) 1s nonzero. Since
noy —mo + €p = [, by the induction hypothesis, we see that my, (xv S,) is odd.
Therefore mg(xv S;) = mg,(xvSy) + 2 is also odd. O

Corollary 6.2 gives the (chain condition) and the (odd-ness condition) in
Theorem 4.1 (1). Note that it is possible that my(xv S;) is even as we shall
see later. The parity of my(xv S;) determines the temperedness of the first
occurrence QV,,;up(n)sWrL (7r) to the going-up tower (Corollary 6.13).

Next, we determine the last name of theta lifts in a special case for the
going-down tower.
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Theorem 6.3 Letm € Irriemp(G(Wy,)) whose lastnameis ¢ € ®emp(G(Wy)).
Assume that Oy, w, () #0withl =n —m + €y > 0. Put

OV, W, () = <¢ ® XEIXW) — XwS.

Then Oy, w,(¢) € ©(H (Vi) and it is the last name of Oy,, w, (7).

Proof Let ¢g(r) be the last name of Oy, w, (7r). Consider the Plancherel mea-
sure (see Appendix A.2). By Theorem A.2, we have

oy (T xw ® Ov,,.w, (1))

1-1 - -1, N\
=y (Txv @)y | s — > LYE) v S ——. T, Yg

for any supercuspidal representation T of GL; (E). Using Desideratum B.1 (8)
and Lemma A.3, for any irreducible representation ¢, of Wg, we have

7 (5. $exw ® 95ays ) v (=5 @rxw)” © by, V')
7 (s, 6oty @Y, v) v (=5 Gox)” © 6, 975")
v (s =5t oo ve)y (-5 - 5hov.vz)
=y (5. 6w ® v, m, @ VE) ¥ (=5, @exw) @ bv,,.w, @) V5 ")

By Proposition 5.5 (1), we see that ¢ () is tempered. Hence by Lemma A.6,
we have

(pe(ﬂ) = evms Wy (¢)’

as desired. In particular, we have 6y, w, (¢) € ®(H (Vy)). a

6.2 Correspondence of first names

In this subsection, we compare the first name of 6y, w, (;r) with the one of 7.
To do this, we need the following lemma.

Lemma 6.4 Let w1 € Irr(G(W,)). Assume that Oy, w,(r) # 0 and all
irreducible subquotients of Oy, w, (i) are tempered. Then all irreducible sub-
quotients of ®v, w, (r) belong to the same L-packet.

Proof This follows from [12, Lemma A.1], [11, Lemma B.2, Proposition B.3]
and [12, Lemma A.6]. O
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In the following theorem, to avoid a confusion, we denote the characters
associated to V,, and W), by xv,, and xw,, respectively.

Theorem 6.5 Let w € Irriemp (G (Wy,)) with L-parameter (¢, n). Assume that
Oy, . w, () #O0withl =n—m+ey > 1. Let (0(¢), 0(n)) be the L-parameter
for By, w, () € Irr(H (Vy,)). Then we have

6(n)(@)/n(a) =
e (#°x5, ® Sim1) - £6) - xy,, (=12 ImOY fE=F.c=+1andmis odd,
e (¢ 2y, © Si-1) & (8°3w,) - xw, (~1)Z4MED i E — Fle = —1and n is odd,

=1
£ (¢“x‘7ml ® Sl,]) - det <¢“x‘7ml> (=1) 7 . pdet@ if E=F and m, n are even,

e (0“xy, @ S0 vF) fE#F,
where the constant v € {£1} is given by

v= (=17 nler +e).

Proof If E # F, we choose a character x of E* such that x|F* = wg/F.
We shall treat the cases € = +1 and € = —1 separately.
Suppose that € = +1. Put

Wy ifE=F,
““ oy, ifE#F.

Let L be the Hermitian space of dimension 1 such that

(—D)"™! i E=F,

dise(l) = { (—)™  ifE#£F.

Put Vipi1 = Vi ®L.IFE # F,weset x;, = x V" and XVims1 = XV XL- We
denote by (G'(W,,), H(V,;+1)) the pair of groups associated to (Vy,1, Wy,)
defined in Sect. 2.3. By Lemma C.6, we can find 77" € Irremp(G'(W,,)) such
that

HomG/(W,,) (71 Q' a)) #0 if E=Fandm =0mod 2, or E # Fandm = 1 mod 2,
Homg/(w,) (reon’ @) #£0 otherwise

so that

{Homc/(Wn) (r®w, 7)) #0 ifE=Fandm=0mod2, or E # Fandm = 1 mod 2,

Homg/(w,) (T ® w,7"Y) #0  otherwise.
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We put o = 0Oy, w, () € Irtiemp(H (Vj)). Since w = Oy, v, (o), we have
Homg'(w,) (®w,.v,,(0) ® @, ") D Homg/w,) (T @ @, 7"") # 0
or
Homg'(w,) (Ow,.v,,(0) ® , ") D Homg/(w,) (7 ® o, 7"V) # 0.

The see-saw diagram

G(Wy) x G(Wy) H V11
G'(Wy) H(Vyu) x H(L)

implies that
Homp v, (©Ov,,,.w, (@), o) # 0.
Hence Oy, ., w, (") has an irreducible subquotient ¢’ such that
Homy(v,,)(0’,0) # 0 sothat Homp(y,) (c” ® o', C) # 0.

Since 0¥ and o’ are tempered, they are unitary, so thatoc¥ = o and o’ = o”V.
Hence we have

HomH(Vm) (O‘ % ON, C) 75 0.

By the GP conjectures (Theorems C.1 — C.4 and Corollary C.5), we have

e (0% ® dprx—1) - (@) - X_l(—l)% dim(¢) if E = F and m is odd,

e (0 @) e (¢ ® )@ det(@) (=17 IM @) if B — F and m is even,
= E<¢a®¢ﬂ/®x_1,1//2E> if E # F and m is odd,

wE/F(—l)dim((pa) € <¢a Ry R X, 105) if E # F and m is even,

€ (0(9)" ® dyrv) - det (v ) (—1)% dim(0(¢)“) if E = F and m is odd,

det(a)

0@ = ¢ (00)° ® $yr) - det@())(—1)2 M) ., (57V) if E = F and m is even,

wE/F(_l)(m+1)dim(9(¢)“) e (9(¢)a ® dyrv, wf) fE£F

fora € Agp) C Ay. Here,

e ¢, and ¢, are the last names of 7" and o', respectively;
e v(0"Y) € {£1}is the central value of 6"V, i.e., 0"V (—1y,. ) = v(o"") -id.
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By Theorem 6.3, Lemma 6.4, Proposition B.4 and Theorem B.8, we have

0(p) = (¢ ® X‘;m] — Sl) ® xw, sothat 6(¢)’ = ¢ ® X‘;leW,l
and

. (6 ® Aviar = Si—1) ® Xy if E # F or m is odd,
T (A2 ® XVps1 X—1 = S1-1) ® XVT/: if E = F and m is even.

Therefore we have

O (a)/n(a) =
e (69 X7, ®Si-1) () - v, (—)FIm@ it E= F and m is odd,

e (6“xy, @ Si1) - det (6957, ) (=1)F v@if £ = F and m is even,
e (x5, @ i1 vF) iFE£F,

for some constant v € {£1}.

We shall determine this constant v € {#£1}. So we assume that £ = F
and m is even, hence G(W,) = Sp(W,) and H(V,;) = O(V,,). Since 0 =
OV, W, () € ITiemp(O(V)y,)) satisfies that 7 = 6Oy, v, (o) is nonzero and
tempered, by Corollary 5.7, we have O, v, (o) = 0. By Prasad conjecture
(Theorem D.2), we have 6 (1) (zg(¢) +e1) = —1.Since zg(¢) +e1 = zp+e1+e;
in Ay, wehave n(zg(p)+e1) = n(ej+e;). Onthe otherhand, ifa = zy+e1+ey,
we have

= — -1
& ((,ba)(vml & Sl—l) - det (‘f’aval) (-7 - vdet(a)
- -1
= (¢va1 ® Sl—]) e ((S1BS)®S1—1) - xv, (1) 7 -v.

We have ¢((S1 @ S) ® Si—1) = —(—1)!~! = —1. Also, since det(¢X;ml) =
Xv,,» by Lemma A.4 and the (odd-ness condition) proved in Corollary 6.2, we
know

e (17, ® Sim1) - v, (=17 = (= 1y Grom S+ Gt Sics) ot (i 51)
-1

=(=D7.

Hence we have v = (—1)% -n(e1 + ¢;), as desired.
Now suppose thate = —1.Thenn > m—eg+2.1fn <2—¢p,thenn = 2—
€0 and m = 0. In this case, the only representation of G (W, ) which participates

@ Springer



Local theta correspondence of tempered representations 375

in the theta correspondence with H (Vp) is the trivial representation, so that
we have nothing to prove. In the other cases, there is a line L in W,, such that

(=" iftE=F,

dise(L) =1 e ifE + F.

Let W,_; be the orthogonal complement of L in W,,. If E # F, we set
XL = X(fl)nil and xw,_, = Xw,,x(fl)n. By Lemma C.6, we can find 7’ €
Irremp (G (Wy,—1)) such that
Homgw, ,)(r ® 7', C) #0 sothat Homgw, ,)(m, ") #O0.
We put o = 6Oy, w, () € Itriemp(H (V). Since m = 0w, v, (o), we have
HomG(W,H) (®Wn,Vm (0), JTN) D) HomG(anl)(n, 7'[/\/) # 0.

The see-saw diagram

G(Wy) H(Vyu) x H(Vip)

=

G(Wn-1) x G(L) H(Vp)

implies that
Homy v, (Ov,.w, (") ®w,0) #0 if E=F andn =0 mod 2,
or E # Fandn = 1 mod 2,
Homy v, (®v,.w,,(7"Y) ®@,0) #0  otherwise,

where we put

oy ifE=F,
““ oy, fE#£F.

Hence Oy, w, (") has an irreducible subquotient o’ such that

Hompg v, (6' ® w,0) #0 if E=F andn = 0 mod 2,
or E # Fandn =1 mod 2,
Hompg v, (6' ® @,0) #0  otherwise,
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so that

Hompgv,) (0 ® 0™V, w) #0 if E=F andn =0 mod 2,
or £ # Fandn =1 mod 2,
Homp v, (0 ® o', @) #0  otherwise.

Here we use the fact that o, o’ and w are unitary. By the GP conjectures
(Theorems C.1-C.4 and Corollary C.5), we have

" ® §r) - det(rr) (— 1) IO it E = F and n is odd,

@) = | £ ® pyr) - det(¢®)(—1)2 IM@x) (7@ if f — F and n is even,

05 p (DD e (90 @ b v ) it E # F,

(00" @ dov x-1) - £ (0(9)) - X—l(—l)% dim@@)*) if E= F and n is odd,
£(0(@) @ porv) - £ (B(h) ® o) @

0(n)(a) = - det (0(0)") (— 1)z dim(95) if E = F andn is even,
8(0(¢>)"®¢0w®x*1,wff) if E # F and n is odd,
wE/F(—l)dim(€(¢)“) & (9(45)” ® dov ® X, w2E> if E # F and n is even

fora € Agp) C Ay. Here,

e ¢, and ¢, are the last names for 7’ and oV, respectively;
e v(n') € {£1} is the central value of ', i.e., 7' (—1y,,,) = v(7') - id.

By Theorem 6.3, Lemma 6.4, Proposition B.4 and Theorem B.§, we have

06) = (9 ©xy, — 1) @ xw, sothat 6@ =¢" @ 1y, 1w,
and

(¢n/ Q xv,, — Sl—l) ® Xv;l 1 if E # F ornisodd,
¢ N o= n—
’ (¢n’ ® xv,, — 5171) ® Xv;nl,lel if E = F and n is even.

Therefore we have

& (¢“x‘7ml ® Sl—l) € (¢“x\7,:an)
- Xw, (—1)2 Gm©@" if E= F and n is odd,
o @/n@ = { & (6°xy,! ® 1) -det (¢°xy,")
(—1)% - pdet(@ if E = F and n is even,
8(¢“x‘7m1 ®Sz—1,w5) ifE + F,
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for some constant v € {%1}.

We shall determine this constant v € {+1}. So we assume that £ = F
and n is even, hence G(W,) = O(W,) and H(V,;) = Sp(V,,). Note that
0(n)(za(¢)) = 1. Also, by Prasad conjecture (Theorem D.2), we have n(zy +
e1) = 1. Since zg(p) = z4 + €; in Ay, we have n(z9(p)) = n(e1 + ¢;). On the
other hand, if a = z4 + ¢;, we have

€ <¢GX‘7ml ® Sl—l) - det (qﬁax‘;’n]) (_1)% . pdet(@)
= =1
=¢e (¢val X Sz_1> e (SI®S—1) - xw, (=) 7 v,

We have e(S;® S;_1) = (=1)!~1 = 1. Also, by Lemma A .4 and the (odd-ness
condition) proved in Corollary 6.2, we have

e (67, ® Sim1) - xw, (=17 = (= 1) Cosm Si2) o G S+ i S0

Hence we have v = (—1)% - n(er + e1), as desired. This completes the
proof. m|

Remark 6.6 Suppose that E = F and m, n are even. After Proposition 6.8,

which shows the (alternating condition), we will obtain n(ey 4 ¢;) = (—1)I_T1
so that v = 1. By using Theorems 4.3 (5) and 4.5 (4), which are proven in
Proposition 6.19, we can obtain v = 1 directly.

6.3 Comparison of central elements

Let (Viy, Wy) andl = n —m + €p be as in Sect. 2.2. Let & € Irtiemp (G (Wy)).
Assume that / > 2 and o = 6y, w,(r) # 0 so that o € Irr(H (V);,)). We
denote the L-parameters for 7 and o by (¢, ;) and (¢, 1o ), respectively.
In this subsection, we compare “n (z¢,)” With “ns (z¢,)”.

Let ¢ € ®(G(W,)) (resp. ¢’ € ®(H (V). If L =n —m + € is odd and
¢ contains xy (resp. ¢’ contains xw ), then we denote by e the element in Ay
(resp. Ag) corresponding to xy (resp. xw), i.€., ¢°! = xy (resp. P = xw)
(for the definition of ¢¢, see Sect. 3).

Proposition 6.7 Let w1 € Itremp(G(Wy)) such that o = 0y, w,(T) €
Irr(H (Vy,)) is nonzero. Assume thatl = n — m + €9 > 2. We denote the
L-parameters for m and o by (¢, ny) and (Ps, 1), respectively. Then we
have the following:

(1) Iflis odd, then ¢ D xv and ¢5 D xw.
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2) If E=F, m #nmod 2 and € = +1, then

e (2,) = N6 (2,) - €(Pr) - € (P @ xv) - xv (—1)2.

QB)IfE=F, m#nmod2ande = —1, then

N (Zgn) = =10 (26,) - 80w = 1) - 6(8a) - (b ® xw) - xw (="

4) IfE=F,m =nmod 2 and € = +1, then ny(z¢, + e1) = 1o (24, )-
O) IfE=F,m=nmod 2and e = —1, then 1y (z¢,) = —15(2¢, + €1).
(6) If E # F andl is even, then

No(Zg,) = € (qﬁn ® x;l, sz> ‘N (Zg,)-

() If E # F and | is odd, then ny(e1) = —ns(e1) and 1y (z¢, + 1) =
770(2%)-

Proof (1) follows from Corollary 6.2 and Theorem 6.3.

The proofs of (2)—(7) are similar. So we prove (3) only. By the assumption,
G(W,) = O(W,) is an odd orthogonal group and H (V;,) = Mp(V;,) is a
metaplectic group. By Theorem B.6, there is unique Wy, such that 7' =
GW,;H.Vm (o) is nonzero. Let (¢p;/, n,’) be the L-parameter for 7z’. Note that
Ow,.v,, (o) = m is tempered and m —n —€p < —1. By applying Corollary 5.7
to o € IrrMp(Vy,)) and O(W,), we have Ow,,., v, (0) = 0, where Wy,
is the space which belongs to the same Witt tower as W,,. This implies that
W1 # W1 Since

o) = +1  if O(W,) is split,
Tl =1 1 i O(W,,) is not split,

+1  ifO(Wp,) is split,
e (24,) = . Ol .
-1 1fO( m—H) is not split,
we have
N (Zg,) = =N (2g,,)-
On the other hand, by Theorem B.8, we have

e (20.) = N0 (24,) - €(Pe) - € (b0 @ xw) - xw(=1)2.
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Since ¢y = (¢7 ® X;l)(W) @ xwS; by Theorem 6.3, using Lemma A.5, we
have

M (Zo,) = 10(2g,) - 80w = 1) - ) - € (b ® xw) - xw(=1)'7 .

Hence we obtain (3).
Using Theorems B.8,D.1,D.2, Proposition 2.4, and Corollary 5.7, the proofs
of the other cases are similar to that of the above case. O

Ifl € {—1,0, 1}, then we see that a similar assertion holds by using The-
orem B.8 and Prasad’s conjectures (Theorems D.1 and D.2). This implies
Theorem 4.1 (2) unless £ = F, m # nmod 2 and ¢ = —1. In this case,
G(W,) = O(W,) is an odd orthogonal group, and the first occurrence indices
m* (1) can be determined by the central character of & € Irr(O(W,,)). Hence
the remaining issue of Theorem 4.1 (2) is a relation between the central
character of 7w and theta lifts ®y, w, (7). It will be treated in Sect. 6.8 (Propo-
sition 6.20).

6.4 Character conditions

In this subsection, we derive the (initial condition) and the (alternating condi-
tion) in Theorem 4.1 (1).

Proposition 6.8 Let w7 € Irriemp(G(Wy,)) with L-parameter (¢, n). Assume
that Oy, w,(w) # 0andl = n —m + €y > 2. Define k € {1,2} by k =
[ mod 2. Let ¢; be the element in Ay corresponding to xvS; C ¢. Then we
have

n(ec+2i+2) = —n(ec+2i)
for0 <i < (Il —«)/2. Moreover, if k = 2, then

(e2) = €-8(xy =1 if E=F and m #% n mod 2,
TV = 2 ifE % F andm = n mod 2.
Proof Let (8(¢), 6(n)) be the L-parameter for 6y, w, (7). Note that
Zp = Z0(p) + €1-

By applying Proposition 6.7 and Theorem 6.5 to a = zg(¢) € Agp) C Ay, We
have
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nzg) 00D (200))
0 o) 1 (z000)

Sixv =1 -elpxy' ®S-1) ¢ (¢X\71) if E=F,e=+1andm is odd,
—e(@®S-1) &) if E=F,e =—1andnis odd,

n(er) =

— n(el)-€<¢X‘7l ®Sl_1> ~)(v(—l)17Tl ifE=F,e=+1landm =n=0mod 2,

—¢ (q)x;l, 1//25) ce(pxy' @S, yE) i E# Fandm=nmod2,

n(e1)~a<¢X;1®S,,1,sz) if E % F andm % n mod 2.

IftE =F,¢e =—1andm = n = 0 mod 2, applying Proposition 6.7 and
Theorem 6.5t0 a = zgp) +e1 = z¢ +e1 + e € Agp) C Ap. we obtain

nGzg+e) 0 (zo(p) + €1)
0(n) (Ze(¢) + el) n (Z9(¢>) + el)
=nen) e (exy" @ Si1) xw(-=D'T

n(e) =

By the tower property (Proposition 2.4), a similar equation for n(e;—»;)
holds fori =0, 1, ..., (I —«)/2. In particular, if x = 2, then we have

€-3(xyv =1 if E = F and m # n mod 2,

77(82)={_1 if E # F and m = n mod 2.

Moreover, we have

-1
n(ecraitd) _ ° (0x7' ® Sesirn. vf) | e (ex7") =1 ifE=F,
n (exc+2i) g(d)x‘;l ®S,(+2i,1,1//2‘5) 1 ifE#F

forO <i < (I—«)/2.By Lemma A.4 and (odd-ness condition) in Theorem 4.1
(1), this is equal to (—1)"¢ XV Se+2i) = 1, o

This is the (initial condition) and the (alternating condition) in Theorem 4.1
(1). In particular, we have

n—m7)+egeT

for any 7w € Irremp (G (Wy)).
Also, when E = F and m, n are both even (so that / is odd), we have

(el +e) = (—1)7.

Theorem 6.5 together with this equation implies Theorem 4.3 (1).
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Remark 6.9 We may apply the result shown above (i.e., Theorem 4.3 (1)) to the
going-up tower sometimes. Under the notation and assumption of Theorem 4.5
(1), we will show that 0y, w, (7) is tempered (Corollary 6.13). If we knew the
temperedness of Oy, w, (7r), Theorem 4.3 (1) implies Theorem 4.5 (1).

The following proposition says that /() = max 7 = n — m9%°"" () + €y
in a special case.

Proposition 6.10 Let v € Irrenp (G(Wy,)) with L-parameter (¢, n). Assume
that
o [ =n—mo (1) 4 ¢ > 0;
e ¢ contains xy Sj—z; fori = —1,0,..., (1 —«x)/2;
e the first occurrence o"P = Qv/up( W () to the going-up tower VP is
tempered.

Then we have:

(1) If I = 0, then the (initial condition) in Theorem 4.1 (1) does not hold.
Namely,

—€-8(xv=1) ifE=Fandm # n mod 2,

77(62):{+1 if E # F and m = n mod 2.

(2) If1 > 0O, then my(xv S;) is odd, and the (alternating condition) in Theo-
rem 4.1 (1) does not hold. Namely,

nlera +er) = —(=1)"0S = 41,
Proof First, we prove (2). Let (¢, n,) be the L-parameter for o"P. Note
that o"P is tempered by the assumption, and m"P(7) —n —eg = 1 +2 >

2 by the conservation relation (Proposition 2.5). By applying Theorem 6.3,
Corollary 6.2 and Proposition 6.8 to o"P, we have

¢a=<¢®x;%w)®xW&u,

and we see that mg, (xwS1) = me(xvSy) is odd, and s (ej42 + ¢) = —1.
Therefore it is enough to show n(e;+2 + €1)/ns(e1+2 + ¢;) = —1. It follows
from Theorem 4.3 (1). Hence we have (2). The proof of (1) is similar. |

By Proposition 5.5, if 7 is a discrete series representation, then the first

occurrence o'P = QV,;up(,,),Wn () is tempered. Hence by Proposition 6.10, we

see that

n—mi""(7)+e+2=1+2¢T
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if 7w is a discrete series representation. This completes the proof of Theorem 4.1
(1) for discrete series representations.

6.5 Temperedness of theta lifts 2

()

In this subsection, we discuss whether the first occurrence o = 6y, w iy Wi
mUP ()’

for the going-up tower V'P is tempered or not.

Let 7 € Irremp(G(W,)) with L-parameter (¢, n). Assume that [ = n —
mIo (1) 4¢€y > 0. Define k € {1, 2} by x = [ mod 2. Then by Corollary 6.2,
we know that ¢ contains xy S42; for 0 <i < (I —«)/2, and my(xv Sc+2i)
isodd for0 <i < (I —«)/2. Note that m"P(r) —n —eg =1 +2 > 2.

Decompose ¢ = ¢’ @ ¢o ® ‘¢’ with ¢g € Pisc(G(Why,)). Assume that

XVT] X+« X XyTy XTI =TT

for some 1; € Irrgisc(GL, (E)) and g € Irrgisc (G(Wy,,)) with ng = n —
2 Zle ki, so that the L-parameter of 77 is given by (¢o, n|Ag,). If m > n+eo,
then by a similar argument as that for [11, Proposition C.4], we have

XWTL X -+ X XwTr X Oy, w, (710) = Oy, w, (1),

where mg = m — 2 ;_, k;. In particular, if ®y,, w, (;r) is nonzero, then
OV,,. W, (7T0) 18 also nonzero.

Lemma 6.11 Suppose that m%“" () < m"P (). Then the going-down tower
VAOWN \ith respect to 1 is also the going-down tower VIO with respect to
0.

Proof Setm =n+ey+2—k.Thenl=n—m+e¢=x—-2€{0,—1}. A
tower V is the going-down tower with respect to 7z if and only if ®v,, w, (7) is
nonzero for V,, € V. In this case, ®Vm0,Wn0 (7o) is also nonzero for V,,, € V.
This shows that V is also the going-down tower with respect to mg. O

We determine the first occurrence index of 7 in terms of the one of 7.

Proposition 6.12 Let notation be as above. If m%°"™(x) = n + €y — [ with
| > 0, then

no+ ey — 1 ifmg(xvSy) is odd,

m" () = . .
no+e—1+2 ifmy(xvS) is even.

Proof Note that we have proven Theorem 4.1 (1) for the discrete series repre-
sentation my. By Corollary 6.2, we see that mg (xy Sc42;) isodd for0 <i <
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(I —«)/2, where we define k € {1, 2} by k =/ mod 2. If my(xv Sy) is even,
then by applying Theorem 4.1 (1) to 7, we have m9°" (7r9) = ng+e€g—1+2.

Suppose that my(xyS;) is odd. Note that m"P(nw) = n + €p + [ + 2. By
Lemma 6.11 and a remark before this lemma, we have m"P(;rg) < ng + €o +
[ + 2. Hence m%"(mg) > no + €9 — [. On the other hand, by applying
Theorem 4.1 (1) to 7, we have m9°"" (1) < ng + €¢ — [. Therefore we have
mY (10) = ng + €9 — L. O
Corollary 6.13 Let 7 € Irremp(G(Wy)) with L-parameter (¢, n). Assume
that m9°" () = n 4+ €g — [ with | > 0, so that m"P () = n + €y + 1 + 2. Let
o= er;uP(n)’W” (1) be the first occurrence for the going-up tower V'P.

(1) Ifl = 0, then o is tempered.
(2) Suppose thatl > 0. Then o is tempered if and only if my(xv Sp) is odd.

Proof We prove (2). The proof of (1) is similar. So we assume that / > 0.

If o is tempered, then we have proven that my(xv S;) is odd in Proposi-
tion 6.10.

Conversely, suppose that my(xv §;) is odd. We may assume that

XVT]L X - X XyTy XTTo —>» T

for some 7; € Irrgisc(GLg, (E)) and g € Irrgisc (G(W,,,)) with ng = n —
23", ki. As we have seen before Lemma 6.11, we have

XWTLX o X Xw T X Oy w, (10) — Oy w, (7),

wheremg = m—2 er _1 ki andm = m"P (7). Hence there exists an irreducible
subquotient ogp of @Vr;lo,wno (70) such that

XwWTl X -+ X XWTr X009 — O.

Since my(xvS;) is odd, by Proposition 6.12 together with the conservation
relation (Proposition 2.5), we see that 6‘%0 Wag (7o) is the first lift of a discrete

series representation iy to the going-up tower V'P. By Proposition 5.5 (2), the
irreducible subquotient o of Oy, o Wio (7o) is tempered. Therefore, o is also
tempered. O

Corollary 6.13 and Proposition 6.12 imply that
n—m7)+e+2=142¢T

for any tempered representation 7. Hence we have [(w) = max 7 = n —
m9°%" (1) 4 €. This completes the proof of Theorem 4.1 (1). Also, using
Corollary 6.13, we obtain Theorem 4.5 (1) from Theorem 4.3 (1), as we noted
in Remark 6.9.
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6.6 Non-tempered first lifts

In this subsection, we prove Theorem 4.5 (2).
Let w € Irtemp(G (Wy)) with L-parameter (¢, 7). Assume thatl = () =
n —m9%%" () 4+ €y > 0. Theorem 4.1 (1) implies that

e ¢ contains xv.S;, xvSi—2, ..., xvSk, where k € {1, 2} is defined by « =
[ mod 2;
o my(xvSky2i)isoddfor0 <i < (I —«)/2.

We put m = m"P(;r). Note thatm —n —eg =1 + 2. Leto = 0y, w, (1) be
the first occurrence of 7 to the going-up tower V'P. By Corollary 6.13, we see
that o is non-tempered if and only if m (v S;) is even. In this subsection, we
assume these conditions.

Suppose that ¢ is the Langlands quotient of the standard module

T |- x - x5 | % 0o,

where 7; € Irrgisc (GLy, (E)), 00 € Ittemp(H (Ving)), 2k1+- - - +2k, +mo = m,
ands; > --- > 5, > 0.
First, we have the following:

Proposition 6.14 Foranyi =1, ...,r, the exponent s; is in (1/2)7Z.

Proof Consider the Plancherel measure (see Appendix A.2). By Theorem A.2,
we have

w(xwt 'y ®0)

—1 —1
_ K [—1 -1 Vv -1
_M(th||E®n)y s — 2 ’Ta’l/fE 7/ _S_T»t vWE

for any t € Irr(GLg(E)). In particular, by Desideratum B.1 (8), we have

7 (s xwoe ® @ e) - v (=5 ' &Y @ 6o g ")
=y (s ve @6y vE) v (5. 1797 @ 9. ¥

[—1 ! -1 ., \
'V(S_TaqST’WE) 'y(_S_T7¢-[vwE) .

Let A be the set of sgp € C such that the left hand side of the above equation has
a pole at s = so for some unitary supercuspidal representation t of GLy(E).
Looking at the right hand side, we see that

1
{Re(S()) | so € .A} C EZ.
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Let ¢, be the irreducible representation of WD g corresponding to 7;. We
may decompose ¢, = ¢; X Sy, where ¢; is an irreducible representation of
WE and d; is a positive integer. Since

b = o ' & © ¢r, [ © by @7 1" @+ @ pr I

we have

Y (S’ XW¢‘[ ®¢;/’ ‘WE) Y (—S, X‘;ld)rv ®¢Ja WEI)

= |:1_[]/(S — Sis XWd)‘L’ ®¢Z’ WE)V(S —J’_si’ XW¢T ®C¢T," 1:Z’E)

i=1
xy(=s—=sixy' ¢y @b VE )y (—s+sixy ¢ ® o, wgl)]
y(s Xwdr ® bon VE) - V(= 5. Xy Y ® oy Vi)

X

Now suppose that some s j isnotin (1/2)Z. We may assume thats; ¢ (1/2)Z
and s; satisfies that

d;
max{sj—i— |s,¢ Z}_sl-|-T

Taking ¢, = Xv_yl¢i, in the above equation, we see that y (s, xwd: Py, VE) -

y(=s, X' ¢y ® ¢o, ¥z ) hasapole at s = 1 +s; + (d; — 1)/2 since the
local gamma factor y (s — s;, xwdr ® ¢;§, ¥E) has a pole at this point. Hence
14+s;+(di—1)/2 € Abut1+s;+(d; —1)/2 ¢ (1/2)Z. This s a contradiction.

O

Corollary 6.15 We have s; = 1/2 and t; = xwStj+1 foranyi =1,...,r

Proof By [14, Proposition 3.1], we know that s; = 1/2 and t1 = xwSt;+1.
Hence we haves; = 1/2foranyi = 1, ..., r. Since each t; is a discrete series
representation of a general linear group, we can interchange t; with 71 (see
e.g., [53]). Hence we have 7; = xwSt;41 foranyi =1,...,r. O

The following is the key result.
Proposition 6.16 We have r = 1.

Proof By (the proof of) Proposition 3.1 in [14], we can find an irreducible
representation o1 of H(V,y,) such that

Ind gy (XWStl-H 7 ® 01) o0,
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and
G(Wy
IndP§Xl)) (XVSU ® Ow,, vy, (01)> — T,

where we put m; = m —2(l + 1) and n; = n — 2/. We have to show that o7 is
tempered. Suppose for the sake of contradiction that o is not tempered. Then
by Corollary 6.15, there exists 02 € Irr(H (V,)) such that

H(Viny)

1/2
IndQ(Yz’+1) (XWSt1+1 |-l ®02) — o1,

where my = m; —2(l + 1) and V,,, = Y/

11 © Vi, © (Y], )*. Since m; —
n1 — €o = L, by Corollary 5.3, we have

G(Way)

1/2
IndP(Xl/H) (XVStH—l ||E/ ® ®Wn2,Vm2 (02)) - ®W”1’V’"1 (O’]),

where np = n; —2(l + 1) and W,,, = X]

141 ® Wn, ® (X7, )*. Combining
these maps, we have

1/2
XvSt X xvSter 1% % OW,, .V, (02) = 7.

This contradicts the hypothesis that 7 is tempered by Casselman’s criterion.
O

Now we are ready to prove Theorem 4.5 (2). More precisely, we prove the
following theorem:

Theorem 6.17 Let w € Irtiemp(G(Wy)) with L-parameter (¢, n). Assume
that

o | =I(m)=n—m¥""(7)+¢ > 0;
o my(xvS;) = 2h for some h > 0.

We write ¢ = ¢po D (XVSZ)@Zh. Putng =n —2hl and mg = m — 2hl — 2. Let
7o € Ittiemp (G (Wy,)) such that

XvSty X ... xySty X wy — 7,
so that the L-parameter of g is (¢o, n|Ag,). Here, xySt; appears h-times.
We set m = m"P(w) and let o = Oy, w, (1) be the first occurrence of 7 to the
going-up tower V'P. Then we have

12
Xw St |‘|E/ X XwSt; X -+ X xwSt; X o9 — 0,
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where oy = 9Vm0,WnO (o), and xwSt; appears (h — 1)-times. In particular,

if we denote the L-parameter for o (resp. 09) by (¢o, 15) (resp. (Poy, Noy))s
then we have

boo = Dxy  xw — OewSH® Y and
1/2

_ —1/2
B = by + v SOPD 4w @ (1215,

Moreover the canonical injection Ay, <~ Ay, is in fact bijective, and we
0 o
have nglA%0 = Noy-

Proof By [14, Proposition 3.1], we can find o1 € Irr(H(V,,,)) and m; €
Irr(G(Wy,)) withmy; =m — 2(l + 1) and ny = n — 2/ such that

H(Vip 1/2 G(W,
IndQ((Y,+)1) (XWSU—H |'|E/ ® 01> - 0, IndPEXl)) (xvSt; @ my) — 7

and m; is a subquotient of ®Wn1?Vm1 (01). Proposition 6.16 says that o is
tempered. Hence 6y, v, (01) belongs to the same L-packet as 771 by Propo-
sition 5.5 and Lemma 6.4. Therefore we have

1/2 —1/2
b0 = b0y + xwSis1® (117 +115"7%)
172

— —1/2
= (s v + w1 )+ wSen @ (11 4+ 1157%)

_ 1/2 -1/2
= oy v = xwSi+oxwSe @ (11 + 1),

where we denote by ¢, and ¢, the last names for o and 7y, respectively.
In particular, there exists 09 € Irremp(H (Vy,)) whose L-parameter is

(Do Ney) With
boy = DXy xw — GwSDEH TV gy =g |Ag,,
such that
172
xwSti1 g7 X xwSty X - -+ x xwSt; X o9 — 0,

with xwSt; occuring A — 1 times. Note that xwSt; x --- X xwSt; X op is
irreducible since ¢, contains xw S, so that

1/2
XwStit1 |-|E/ X xwSt; X -+ X xwSt; X g

is a standard module, which has a unique Langlands quotient. We have to show
that oy = QVm()aWn() (o). Since xwSti4+1] - |2/2 and xwSt; are not linked, we
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have

12
XwSti41 |-|E/ X xwSty X -+ X xwSt; X o

~ 12

= XxwSt; X -+ X xwSt; X xwSti41 |-|E/ X 0.

For the linked-ness and its properties, see [53] (in particular, see [53, Theorem
9.7]). By Lemma 2.2, we have

—1/2
o = xwSt; X - X xwSt; X xwStiy1 || 2 % op.

Since m —n —€g = [+ 2, by applying Corollary 5.3 to xwSt; X - - - X xwSt; X
XwSti+1] - |El/2 X 00, we have

7'['v —> @anan (U)v = HomH(Vm) (a)v”l'w"’ O')OO

—-1/2
<> Hompv,)) (wvm,wn, XSt X <+ X wSu X xw St g x ao)oo
= xySty x - x xySt

HVin—2h—1)1) —1/2
X Homp (v, _,_1y) <me—2(h—l)len—2(h—l)l’ IndQ(YH]) xwStip1 |1 7" ® 0o ~

We cannot apply Corollary 5.3 to

HVin—2t—-1y1) —1/2
HomH(Vm,z(h,l)[)(a)Vm,Q(],,l)],Wn,z(h,])[ 5 IndQ(Y1+]) (XWStl+1| : |E ® 00))00-

According to Proposition 5.2, J/ and J/*! can contribute. However, since

I+1 —1/2
HOMGL (v, )x H(Vig) (Vs xwStis1| - [ 77 ® 00)
~ G (Whg421) 1/2 v
= (IndP(X1+1) (XVSt[+1| : |E ® @Wno,z,VmO (00))) s
we have
Homgw,)
v 1+1 ~1/2 _
<7T s Xy Sty X -+ X xy Sty X HOMGL (v ) x H (Vi) (U7 XwSt1 || g ®00)oo) =0

by Casselman’s temperedness criterion. Hence we have

—12
7 xySt X -+ x Xy Sty x HOMGL(Y,, 1) x H (Vyy) (Jl, XwStigtl - |5 / ®<70)Oo
= xySty x -+ x xySty x (Xvstl X (H)Wn—lelst—Zhl—Z (O’o)v)

by Proposition 5.2. In particular, there exists an irreducible subquotient 7z, of
®Wnovao (09) such that

XvSt; X -+ X xySt; X 7'[(/) —» T,
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where xySt; appears h-times. This implies that the L-parameter for 7 is
given by (¢o, n|Ag,), which is the same as the one for 7g. Also, if G(W,)
is an odd orthogonal group, the central character of 7, coincides with the
one of my. Hence we have rr(’) = mp. Since ¢4, contains xwS; with mul-
tiplicity one, by Proposition 5.4, we see that ®Wn0,Vm0 (0p) is irreducible,
and so ®Wnovao (og) = HW"O’V'"O (09) = mp. In other words, we have
oy = 9Vm0,Wn0 (7r9). This completes the proof. ]

6.7 Higher lifts

In this subsection, we prove Theorem 4.5 (3).

Let w € Irremp(G(W,,)) with L-parameter (¢, 1), and o = 0Oy, w, () €
Irr(H (V) be the first occurrence to the going-up tower i.e., m = m"P ().
Assume that o is non-tempered. Then (7)) +2 = m —n — ¢y > 2. Let
o' =0y , w, () be a higher lift, i.e., m" > m. The assertion of Theorem 4.5
(3) follows from [14, Proposition 3.2] if we knew that this proposition can be
applied to o and o’. So what we have to show is as follows:

Proposition 6.18 We can apply [14, Proposition 3.2] to o and o’. Namely,
the same assertion as Proposition 5.6 is true for o = 0y, w, (7) and o' =

Ov . w, (7).

Proof We freely use the notation of [14]. According to the proof of Proposition
3.21in[14], it suffices show that only the O-th piece Rg of the filtration of Lemma
2.2 in [14] can contribute in the proof of Proposition 3.2 in [14] for ¢ and o”’.

Suppose that R; contributes for some ¢ > 0. Then we have a nonzero
GL(Y;)-homomorphism

xw |dety, [ = Rgy5(0),

where

o V=Y + Vi, + Y withmg =m — 2t
es=m+r—n—e¢€y)/2+1t/2 > 0forsomer > 0.

See also the argument after Lemma 2.2 in [14].
Put

Y = > Im( f).

fEHOInGL(y[) (XW |detyt |s s RW(U))
This is a GL(Y;) x H (Vy,)-subrepresentation of RW(O’) of the form

Y =xw ‘detyt|s X >,
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where ¥ is a nonzero smooth representation of H (V). Since Rm(cr) is
finite length, so is Xo. Hence we can find an irreducible subrepresentation o
of ¥o. We obtain a nonzero GL(Y;) x H (V,)-homomorphism

XW ‘dety[|s X og — RW(O').
By Bernstein’s Frobenius reciprocity, we have a surjection

Indg((;/t")') (XW ‘detyt |S X o'()) —» 0.

By Lemma 2.2, this surjection gives an injection

H (Vi) =
o — IndQ(Yt) (XW |detyt| X oo) .

Hence we have
n* — Hompg (v, (O)Vm,Wn’ 0)
H(Viy, -
<> Homy v, (CUVm,Wn: IndQ((Y[)) (XW |dety,| ° K Go))

= HOMGL(Y,)x H (Vny) (RQ(Yf) (@v,.w,) » xw |dety,| " K 00) :

By Kudla’s filtration (Lemma 5.1), we see that there is a nonzero homomor-
phism

7'[v — HomGL(Y,)XH(VmO) <Ja, XW ‘detyt |_S & O’())OO

for some 0 <a <t.
First, consider the case when 0 < a < t. By the definition of the normalized
Jacquet module, we have

|—s+a/2 —s—(t—a)/2

Rty (v [detr,| ™) = xw [dety,_, Xy |dety, |

Note that GL(Y;—,) acts on J¢ by the character

(n—m+ep+t—a)/2

XW ’deth—a
Since t —a > 0 > —r/2, we have
m—m+4e+t—a)/2#—(m+r—n—ey)/2—t/2+a/2.
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Hence we have
Homg w,) (JTV, HomGL(v,)x H (V,uy) (J“, xw |dety,| * K GO)oo) —0.

We conclude that there must be an injection

7V s HomGL(Y,)xH(VmO) (Jt, XW \detyt |_s X (T())OO .
However,

HomGL(Y,)xH(VmO)(Jr7 XwW |detyl }7‘7 X 0‘())oc = (Indgr(W")(Xv |detXt |S X ®W"0’Vmo (O‘())))v.

Since s > 0, it has no irreducible tempered subrepresentations by Casselman’s
criterion.
We obtain a contradiction, so that R; cannot contribute for any r > 0. O

6.8 Central characters of representations of odd orthogonal groups

Recall that for an odd orthogonal group O(V,,), our local Langlands corre-
spondence described in Sect. 3 or Appendix B parametrizes Irr(O(V,,;)) by the
triples (¢, n, v). More precisely, a pair (¢, ) corresponds to the set

{o, 0 ® det}
for some o € Irr(O(V,,)), and
v: Irr(O(Vy,)) — {£1}

is given by the central character, i.e.,o (—1y,) = v(o)-idforo € Irr(O(V,,)).

In this subsection, we consider the theta correspondence for
Mp(W,), 0(Vy)), ie., E = F,e = 41, m is odd and n is even. We prove
Theorems 4.3 (5), 4.5 (4) and complete the proof of Theorem 4.1 (2). Namely,
we treat the following two issues:

(1) Form € Irremp(Mp(Wy,)) with 0y, w, (r) # 0, determine v(Oy,, w, (7).
(2) For 0 € Iremp(O(Vin)), determine which tower {®y, v, (o)}, or
{Ow,.v, (0 ®det)}, is the going-down tower.

First, we consider (1). Let # € Irr(Mp(W,)) and assume that o =
Ov,,.w, (r) is nonzero so that o € Irr(O(V,;,)). We define e(V) € {1} by

+1 if O(V,,) is split,

e(V) = . . .
—1 if O(V,,) is non-split.
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Note that € (V) = 14 (z¢,) by Desideratum B.1 (3), where (¢, 15) is the L-
parameter for 0. The following proposition is Theorem 4.3 (5) and Theorem 4.5

4).
Proposition 6.19 Let w1 € Itremp(Mp(Wy,)) with L-parameter (¢r, nx).
Assume that o = 6y, w, (1) is nonzero. Then we have

V() = nn(2g,) - £(r) - xv(—=1)2.

Proof The Schrodinger model of the Weil representation allows one to relate
the central characters of = and o. In particular, if z(7r) denotes the central sign
of m as defined in [13, Pg. 1658], we have:

() = v(o) - xv (D3,

On the other hand, by the properties of the local Shimura correspondence [13,
Theorem 1.4] and the definition of LL.C for Mp(W,,), we see that

() = &(Pr) N (Zd)ﬂ)-
Combining the two equations gives the desired result. O

Next, we consider (2). Let o € Irr(O(V,,)). We compare the two towers
{Ow,.v,,(0)}n and {Ow, v, (0 ® det)},.

Proposition 6.20 Let 0 € Irtemp(O(Vy,)) with L-parameter (¢po, 0o, Vo).
Then {®Ow, v, (0)}, is the going-down tower with respect to o, i.e.,

min {n | Ow, v, (0) # 0} < min {n | Ow,.v, (c ® det) # 0}
if and only if
Vo = 77(7(Z¢a) - &(¢o).

Proof Note that {®w, v, (o)}, is the going-down tower if and only if
Ow,, _,.v,(0) is nonzero. This is equivalent to v, = €(V) - e(¢ps) =
No (2g,) - €(¢s) by [11, Theorem 11.1]. O

Together with Proposition 6.7, this completes the proof of Theorem 4.1 (2).
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Appendix A: Preparations for the local Langlands correspondence

In this appendix, we recall some basic results on standard gamma factors,
Plancherel measures, and local factors associated to representations of Weil—
Deligne groups.

A.1 Standard gamma factors

Fix a non-trivial additive character i of F. For & € Irr (G (W,,)) and a character
x of EX, let y (s, m, x, ¥) be the standard y-factor defined by Lapid—Rallis
[27] using the doubling method. For its properties, see [9,27] and [11, §10,
§11]. The property which we need is as follows:

Proposition A.1 ([11, Theorem 11.2]) Let w € Irtiemp(G(Wp)). Assume that

Ov, w,(m) #0andl =n—m+¢€y > 0. Then y (s, 7, X;l, Yr) has a pole at
[+1
s = ==,

=72
A.2 Plancherel measures

Let G be a reductive group over F and P = MU be a parabolic subgroup of
G. For € Irr(M), consider the normalized induced representation

IS () := Ind§ ().
We define an intertwining operator
Jpp(m): 15 (1) — IS ()

by the integral
I = [ fdn tor f € 1o,

where P = MU is the parabolic subgroup of G opposite to P. More precisely,
the above integral converges if 7 belongs to a certain cone in its Bernstein com-
ponent (which is a complex manifold), and admits a meromorphic continuation
to the whole Bernstein component, being given by a rational function in 7 (see
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[46, Théoreme IV.1.1]). Then there exists a rational function w of 7 such that
Tpp(m) o Jpp(m) = ()~

The rational function wu is called the Plancherel measure associated to / g ()
(though some reader might find it more appropriate to use the term Plancherel
measure or density for the product of the function u with the formal degree of
7 if 7 is essentially square-integrable). The function p is only well-defined
up to a scalar since it depends on the choice of Haar measures on U and U.
We choose Haar measures as in [11, §B.2], which are determined by . We
denote the corresponding Plancherel measure by (.

Let (V;,, Wy,) beasin Sect. 2.2, and put W,,, = W, +H* and Vi, = Vi +HF
with n; = n + 2k and m; = m + 2k. We consider the maximal parabolic
subgroups P = MpUp and Q = MUy of G(W,,) and H(V,,,) with Levi
components

Mp = GLy(E) x G(W,) and Mg = GLi(E) x H(Vy).

respectively.

Theorem A.2 ([11, Theorem 12.1]) Let 7 € Irr(G(W,)) and put o =
Ov,,.w, (). Assume that o # 0, so that o € Irr(H (V,,)). For t € Irr(GLi (E))
and s € C, we put Ty = t|det [},. Then we have

Py (Tsxv @ ) ( [—1 ) ( -1 _1>
—_— = §——,7T, . —s - —, 7, .
iy Gxw®o) 7 TvE)Y Vi

__For metaplectic groups, we have to replace GLi (E) with its double cover
GLy(E). More precisely, see [13, § 2.2—§ 2.5] and [11, §2.5 and §2.6].

A.3 Representations of Weil-Deligne groups

We denote by Wr and WD = Wg x SL,(C) the Weil group and Weil—
Deligne group of E, respectively. Let /g be the inertia subgroup of Wg. We
fix a geometric Frobenius element Frobg of Wg.

If E # F,weregard W as asubgroup Wr suchthat Wr/ Wg = Gal(E/F)
and fixs €e Wp\ Wg. If E = F,weputs = 1.

Let M be a finite dimensional vector space over C. We say that a homomor-
phism ¢ : WDg — GL(M) is a representation of WD if

e ¢ (Frobg) is semi-simple;
e the restriction of ¢ to Wg is smooth;
e the restriction of ¢ to SL,(C) is algebraic.
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We call ¢ tempered if the image of W is bounded. Let ¢ be the contragredient
representation of ¢ defined by ¢V (w) = "¢ (w)~!. We define a representation
“p of WDE by ‘p(w) = ¢(sws™"). Then the equivalence class of ¢ is
independent of the choice of s.

Fix b € {#1}. We say that ¢ is conjugate self-dual of sign b if there exists
a non-degenerate bilinear form B: M x M — C such that

B (¢ (w)x, (sws™")y) = B(x, ),
B(y,x) =b- B(x, $(s>)y)
for x, y € M and w € WDg. In this case, ¢ is equivalent to “¢pV. If E = F,

then s = 1 and ‘¢ = ¢. In this case, we call ¢ self-dual of sign b. We also say
that ¢ is

orthogonal if ¢ is self-dual of sign + 1,
symplectic if ¢ is self-dual of sign — 1,
conjugate-orthogonal if ¢ is conjugate self-dual of sign + 1,
conjugate-symplectic if ¢ is conjugate self-dual of sign — 1.

More precisely, see [10, §3].

For each positive integer k, there exists a unique irreducible algebraic rep-
resentation Sy of SL,(C) of dimension k. It is easy to see that S is (conjugate)
self-dual of sign (— D =1, Moreover we have

min{a,b}

Sa ® Sp = @ Sa+b+1-2k = Satb—1 DB Satp—3 D -+ - B Sja—b|+1
k=1

for positive integers a and b. We can prove this isomorphism by computing
the character of S, ® S, using the highest weight theory for SL,(C).

A.4 Local factors

We define local factors associated to representations of WD . Fix a non-trivial
additive character /" of E. A representation ¢ of WD is written by

¢=@¢n®Sn’

n>1

where (¢,, M,,) is a representation of Wg. Let M,{E be the subspace of M,
consisting of /g-fixed vectors. Note that M,{E is a subrepresentation of M, and
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¢, (Frobg) € GL(M,fE ) is independent of the choice of Frobg. We define the
local factors associated ¢ by

- -1
L(s, ¢) = [ [ det (1 — q;<s+2)¢n(FrobE)|M,{E)

n>1

=]t (+—¢n),

n>1

1 n—1

e(s.¢.v) =[] (s bn. v')" det (—qg ¢n(FrobE)|M,{E) ,
n>1

AN ’ L(l _S’¢v)

V(S’QS’I//) _e(sa(ﬁ’I//)T,qs).

For the definition of &(s, ¢,,, ¥'), see [44, §3]. For ¢ € E*, we define the
non-trivial additive character ¥ of E by ¥/ (x) = ¥/ (cx). It is known that

#)(s-1)

dim(
e (s, ¢, ) = det(p)(c) - el -e(s, ¢, 9).

The local functional equation asserts that

y(s, o, ¥y (1 —s5,07, lﬁlfl) =1 or
e(s,0.9) e (1 —5.¢". ) = det(@®)(~D).

In particular, if ¢ is self-dual with det(¢) = 1, then £(1/2, ¢, ') is in {£1}
and independent of ¥'. In this case, we write e(¢) := &(1/2, ¢, ¢¥’). For
a # b mod 2, we have

£(Sq ® Sp) = (—1)minta-b},

If E # F and ¢ is conjugate self-dual, then we write (¢, V') :=
e(1/2, ¢, v"). By [10, Propostition 5.1], if E # F and ‘¢’ = /"1, then
e(¢p,¥') € {£1}. Here, “y/(x) = ¢'(“x) forx € E, where “x is the conjugate
of x.

We need some lemmas for local factors.
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Lemma A.3 Let ¢ be an irreducible representation of Wg and | be a positive
integer. Then we have

e(s, o, Y)le (—Ss ¢, ‘p/_l)l

_ [—1 , -1 ., ;4
_g<s—T,¢,W)8<—S—T,¢,¢ ),

and
y(s.0 @S, 9)y (s, ¢" @S, v
[—1 [—1
=Y <S - T’ ¢7 W) Y <_S - T’ ¢\/’ W/_1> .
Proof Straightforward. O

Lemma A.4 Let v’ be a non-trivial additive character of E, ¢ be a represen-
tation of WDE, and [ be a positive integer. Assume that

o V|F=1ie, Y =y VifE #F;
e ¢ is conjugate self-dual of sign (—1)!~Vif E # F;
o ¢ is self-dual of sign (—1)'"Vif E = F.

We define a;(¢) € {£1} by

w) = LB S V) { det(¢)(—1) ifE=F,

X
e(P®Si—1,¥") 1 ifE #F.
Here, if | = 1, then we interpret e(¢p Q@ Sj_1, ¥') := 1.

(1) Suppose that ¢ is irreducible. Then a;(¢) = —1 if and only if ¢ = 5.

(2) If ¢ = do ® “¢y, then ay(¢p) = 1.

(3) In general, aj(¢p) = (—1)"9GD where mg(Sy) is the multiplicity of Sy in
o.

Proof Straightforward. O

For a character y of E*, we put

1 if y =1,

S(X:D:{ 1 if g £1.

Lemma A.5 Let x be a quadratic character of E*, and k be a positive integer.
Then x ® Sy is a symplectic representation of WD, and satisfies

e(x ® Su) = —8(x = 1) - x (=D
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Proof Since x and Sy is self-dual representations of sign +1 and —1, respec-
tively, we see that x ® So has sign —1. By the definition of the e-factor, we
have

2k—1
e (X ® S0 = e, )™ - det (—x (Frobp)[C0™)

2k—1
= x (=¥ - det (—x(FrobE>|<C<x>’E) ,

where C() denotes the space of x. If x is ramified, then C(x ) = 0 so that
det(—x (Frobg)|C(x)') = 1. If x is unramified, then we have
det (—X(FrobE)|©(X)’E)
{ —1 if x =1,

1 if x is the unique non-trivial unramified quadratic character.

Hence for any quadratic character x, we have det(—x (Frobg)|C( 0)E) =
—5(x =1). O

The following lemma is [13, Lemma 12.3] and [12, Lemma A.6].

Lemma A.6 Let ¢1, ¢o be a tempered representations of WDEg of the same
dimension n. Assume that

v (.0 @ ') v (5,91 @, ¥'")
=y (5.0 ®¢p. V) -y (—s. 2@, . ¥")

for every irreducible representation ¢, of Wg. Then
¢ =

as representations of WDE.

Appendix B: Local Langlands correspondence

In this paper, we assume the local Langlands correspondence for classical
groups, which parametrizes irreducible representations. For general linear
groups, it was established by Harris—Taylor [18], Henniart [19], and Scholze
[41]. For other classical groups, it is known by Arthur [1], Mok [35], and
Kaletha—Minguez—Shin—White [23], under some assumption on the stabiliza-
tion of twisted trace formulas. For this assumption, see also the two books
[34] of Mceglin—Waldspurger, and papers of Chaudouard-Laumon [7,8]. For
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metaplectic groups, it was established by the second author and Savin [13].
In this appendix, we summarize some of its properties which are used in this

paper.
B.1 Parameters and its component groups

In this subsection, we define parameters and its component groups for (possibly
disconnected) classical groups. More precisely, see [1] and [10].

Fix € € {£1}. Let V,, be an e-Hermitian space of dimension m and
G = H(Vy,,) be the isometry group of V,,. Let ®(H(V,,)) be the set of
equivalence classes of representations ¢ of WDpg of dimension m if V,, is
an even-dimensional orthogonal space, or of dimension m — €g otherwise,
which are

conjugate self-dual of sign (—l)mfl, if £ #F,
self-dual of sign + 1 such that det(¢p) = v, ifE=F, e=+1andm € 27,
self-dual of sign — € such that det(¢) =1, otherwise.

In particular, if £ = F, € = +1 and m = 1, then ®(H(V))) =
{ the zero representation of WD g}. We call an element in ®(H (V,;,)) a param-
eter for H (V,;,). We denote by ®emp(H (V) the subset of equivalence classes
of tempered parameters, i.e., the subset of ¢ € ®(H(V,,;)) such that ¢ (Wg)
is bounded. R

If E=F and G = H(V,,), we denote by G the Langlands dual group of
G. Itis given by

Sp,—1(C) if E=F,e =+41and m is odd,
G=1{S0,41(C) ifE=Fe=—I,
SO,,(C) if E = F,e¢ = +1 and m is even.

Let ¢ € ®(H(V,,)). We denote the space of ¢ by M and the WD g-invariant
bilinear form on M by B. Let

Cy = {g e GL(M) ‘ B(gx,gy) = B(x,y)forany x,y e M,
and g¢(w) = ¢p(w)g for any w € WDg}

be the centralizer of Im(¢) in Aut(M, B). Also we put

+ _

{ Cy NSL(M) if E = F and m is even,
5 =

Co otherwise.
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Finally, we define the component groups Ay and A;; of ¢ by
Ap =m(Cy) and AJ = mo(Cy),
respectively.

Let ¢ € ®(H(V,;)). For an irreducible representation ¢9 of WDg, we
denote the multiplicity of ¢¢ in ¢ by my(¢o). We can decompose

p=mip+---+m, +¢/+c¢/\/,
where ¢1, . .., ¢, are distinct irreducible (conjugate) self-dual representations
of WDg of the same type as ¢, m; = mgy(¢;), and ¢’ is a sum of irreducible

representations of WD g which are not (conjugate) self-dual of the same type
as ¢. Then by [10, § 4], Ay is described as follows:

.
Ay = @(Z/ZZ)ai = (Z)27)".
i=1
Namely, Ay is a free Z/2Z-module of rank r with a canonical basis {a;}

indexed by the summands ¢; of ¢. For a = a; + --- + a;, € Ay with
1 <ij<---<ip <r,weput

P =i, @ D Py

Also, we denote

r N
9 = Zm¢(¢l) ca;p = Zmi - a; € A¢.

This is the image of —1 in Ay. We call zy the central element in Ag. The
determinant map det: GL(M) — C* gives a homomorphism

r r
det: Ay — Z/2Z, Zeiai — Zsi - dim(¢;),
i=1 i=1

where ¢; € {0, 1} = Z/27Z. Then the group A; can be described as follows
([10, Theorem 8.1]):

At = ker(det) if E = F and m is even,
2| Ay otherwise.
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We say that a parameter ¢ is discrete if m; = 1 foranyi = 1,...,r and
¢ =0, ie., ¢ is a multiplicity-free sum of irreducible (conjugate) self-dual
representations of WD g of the same type as ¢. We denote by ®gisc (H (V) the
subset of equivalence classes of discrete parameters. Then we have a sequence

Pisc (H (Vin)) C Premp(H (Vin)) C P(H (V).
B.2 Local Langlands correspondence for connected classical groups

In this subsection, we introduce IT(H (V,,)) and state some properties of the
local Langlands correspondence which we need.

First, we consider orthogonal groups. So we assume that £ = F and € =
+1, and we write H(V,,) = O(V,,). We define equivalence relations ~get on
Irr (O(V,,)) and ~; on Irr (SO(V},,)) by

0 ~get 0 @det and o9y ~; o]

for o € Irr(O(V,,)) and o9 € Irr(SO(V,,)). Here, we fix an element
e € O(Vy) \ SO(V,) and define of by of(h) = oo(e'he) for oy €
Irr(SO(V,,)) and h € SO(V,,). Note that o|SO(V,;,) = (0 ® det)|SO(V,,,) for
o € Irr(O(V,n)), and Indg%) (00) = Indgl)s) (¢ for o € Irr(SO(Vin)).
The restriction and the induction give a canonical bijection

Irr(O(Vin))/ ~det<— Irr(SO(Vin))/ ~e

In [1], Arthur has parametrized not Irr(SO(V,,)) but Irr (SO(V,,))/ ~¢. Via
the above bijection, we translate the parametrization for Irr(O(V};,))/ ~det.

We return the general setting. Let E be either F or a quadratic extension
of F, V,, be an e-Hermitian space of dimension m for fixed ¢ € {£1}, and
H (V,,) be the isometry group of V,,. We define [1(H (V,;,)) by

Irr(H (Viy))/ ~det if E = Fand e = +1,

[T(H(Vy)) = { Trr(H (V,)) otherwise.

For m € Irr(H(Vy,)), we denote the image of m under the canonical map
Irr(H(Vy,)) — I1(H (Vy,)) by [r]. Also, we denote the image of Irr..(H (Vy,))
in IT(H (Vi) by I1.(H (Vy,)) for x = disc or temp.

If E # F or € = +1, then there exist exactly two Witt towers ) and V'’
such that V,,, € VV and

dim(V,,) = dim(V, ) mod2  if E # F,
disc(V;,) = disc(V,) if E=Fande =+1
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for V!, eV’ Let V7 be the Witt tower whose anisotropic space is

0 if E # F and m is even,

(E, 1) if E # F,misodd and € = +1,

(E, d) if £ # F,misodd and ¢ = —1,

0 if E = F, mis even and disc(V,) = 1,

(F(x/c?),trF(\/g)/F) if E = F,misevenandd := disc(Vy,) # 1in F*/F*2,

(F, 2disc(Vin)) if E = F and m is odd.

We denote the other Witt tower by V™. A pure inner form of H(V,,) is H(V,)
or H(V, ), where V¥ € VX If E = F and € = —1, a pure inner form of
H (V) is H(V,,) itself only.

Now we are ready to describe the desiderata for the Langlands correspon-
dence.

Desideratum B.1 (1) There exists a canonical surjection

| |m@E ) - @H VL))
4

where V, runs over the spaces such that H(V,,) is a pure inner form of
H(V,). For ¢ € ®(H(Vy)), we denote by Hg the inverse image of ¢

under this map, and call Hg the L-packet of ¢.
(2) There exists a bijection

. 0 e
L.H¢—>A¢,

which satisfies certain character identities. Here, we denote by A;’ the
Pontryagin dual of A;.

3) Let [] € Hg with «([rr]) = n. Then 7] € TI(H(V,,)) if and only if
zp € Aj and 1(zg) = —1.

(4) We have

| o (rovm)y = || m

Vi PP (H (Vi)
for x € {disc, temp}.
(5) Assumethat p = ¢pr+¢po+p,, where ¢ is an element in Diemp(H (Viny))

and ¢ is an irreducible tempered representation of WD g which corre-
sponds to T € Ittemp(GLy (E)). Then the induced representation

Indg(v’") (t ® mo)
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(6)

(7

)

is a direct sum of tempered representations of H(Vy,), where Q is a
parabolic subgroup of H(V,,) with Levi subgroup L% = GLi(E) x
H (Vi) and my is (a representative of) an element in T1 o The L-packet
Hg is given by
H(Vpy
Hg = {[n] ! T C IndQ( )(r ® mo) , [mo] € Hgo}.

Moreover if 1 C Indg(v’")('c ® mo), then t([7r])|A$0 = (([mo]).
Assume that

¢ = o |17+ A o, 17+ P+ (e 1+ + ¢, [17)7

where ¢ is an element in ®emp(H (Viy)), ¢r; is an irreducible tempered
representation of WD g which corresponds to t; € Ittiemp(GLy, (E)), and
sy > -+ > s, > 0. Then the L-packet Hg consists of (the equivalence
classes of) the unique irreducible quotients w of the standard modules

7y |det|} x -+ x 7, |det|}: X 7o,

where 1o runs over (representatives of) elements of Hgo. Moreoverif  is
the unique irreducible quotient of 1| det |;‘ X« X 7| det |;f X 110, then

([ DIAS) = (o))
The local Langlands correspondence respects the standard y-factor.
Namely, we have

Y. mx, ¥) =y (s, ¢ x, V)
for w € Irr(H(V,,)) whose parameter is ¢, and any character x of E*.
Here, we put g = otrgp.

The Plancherel measures are invariants of an L-packet. Namely, if 71, 72
have the same parameter ¢, then we have

My (Ts @ 1) = py (T5 @ 2)

for any t € Irr(GLy(E)). In particular, by a result of Shahidi [42], we
have

(@ @M =7 (5.9 ® 8", ¥e) -7 (=5.6) © 9, ¥")
Y (25, Ro¢e, ) -y (=25, Rog,, ¥ ™")
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for any w whose parameter is ¢ € ®(H (Vy,)), where

Asait  if E # F and m is even,
Asai™ if E # F andm is odd,

Sym2 ifE=F,¢e =+1andm is odd,

A2 otherwise.

The desiderata B.1 (7) and (8), atleast for quasi-split classical groups, should
follow from [1] and [35], supplemented by some results of many others. For
non-quasi-split unitary groups, see also [23] and [32, § 1.4, Theorem 1.4.1].

Remark B.2 Thebijection:: I19 — A may not be canonical. It is determined
by a choice of a Whittaker datum of a quasi-split pure inner form H(V,)). If
m is odd, then H(V,;) has a unique Whittaker datum, so that ¢ is canonical.
Otherwise, we choose the Whittaker datum such that

JwE in [12] if E #+ Fande = +1,
Jy in[12] if E# Fande = —1,
lio, in [2] if E=Fande = +1,
b in [2] if E=Fande =—1.

[ =

Here, in the first case, we fix a nonzero element § € E such thattrg,r(8) =0
and put ¥ £ (x) = ¥ (Atrg/p(8x)) for x € E.

Remark B.3 If H(V,,) = Sp(V,,) is a symplectic group, then zy ¢ A; so that
Ap = A; ® (Z/27)z4
for each ¢ € ®(Sp(V,,)). Hence we may identify ;l;f with

{nedy|nie) =1} C Ay

If H(V,,) is not an orthogonal group, we have [1(H (V};)) = Irr(H (V).
In this case, we set I1y = Hg for ¢ € ®(H(V,,)). Using Remark B.3, unless
H (V,,) is an orthogonal group, we may regard ¢ as an injection
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LZH¢L>Z;.

Ifr ellgyand(r) =n € ;1;, we call (¢, n) the L-parameter for .
The L-parameter for the contragredient representation 7 ¥ of 7 is described
by Kaletha [22].

Proposition B.4 ([22, Theorem 4.9]) Let w € Irr(H (V,,)) with L-parameter
(¢, Nz ). We denote the L-parameter for " by (¢prv, nzv). Then we have
v = ¢, In particular, the component groups Ay, and Agpy are canonically
identified. Moreover, we have nyv = ny - no, where ng is given by

6UE/F(—1)dim((’b7‘;) if E # F and m is even,
no(a) = det(dﬂ)(—l) ifE=Fande =—1,

1 otherwise

fora e Ay, .

B.3 Local Langlands correspondence for full orthogonal groups

In this subsection, we explain the parametrization of Irr(O(V,,)). Through this
subsection, we assume £ = F and € = +1, so that H(V,;;) = O(V};,). For
¢ € ®(O(Vy)), we define the L-packet I1y of O(V,,), which is a subset of
UyeIrr(O(V,;)) by the inverse image of Hg under the canonical map

| 0wy — [ JIowm) =] |ir©wm)/ ~d -

Vin Vin Vin

In the rest of this subsection, we parametrize I1y.

First, we assume that m is odd. Then O(V,;,) = SO(V,,) x {£1y,,}. Any rep-
resentationw € Irr(O(V,,)) isdetermined by itsimage [ ] in Irr (O(V,,))/ ~det
and its central character w; : {1y, } — C*. Hence we have a bijection

My — Ag x {£1}, 7 > (t([7]), 0z (~1yp)).

If m € I1y corresponds to (1, v) € Z;; x {1}, we call the triple (¢, n, v) the
L-parameter for 7.

Next, we assume that m is even. For ¢ € ®(O(V,,)), we have an inclusion
A; C Ay, so that we obtain a canonical surjection

Ap — A7
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Proposition B.S For ¢ € I1y, we have #I1y = #;\.;. Moreover, the following
are equivalent:

o [Ap:Af1=2;
o m ®det Z m for some m € Ily;
o m @det Z m forany mw € Iy.
Proof This follows from [2, Proposition 3.2]. O

We fix € € O(Vy,) \ SO(V,,) as in [3], which depends on the choice of
Whittaker datum. Then [1, Theorem 2.2.4] gives a bijection

L:l'[(,,—)@

which satisfies a similar condition of Desiderata B.1 (2) — (8), and such that
the diagram

is commutative. More precisely, see [3]. If 7 € Iy and () = n, we call
(¢, n) the L-parameter for .

B.4 Local Langlands correspondence for metaplectic groups

In this subsection, we explain the parametrization of Irr(Mp(W>,)). Let
(Way, Vi) be as in Sect. 2.2. Through this subsection, we assume E = F,
€ = +1 and m = 2n + 1, so that G(W»,) = Mp(Wy,) and H(V,;,) =

O(V2ﬂ+1 ) .
First, we recall a result of Gan—Savin.

Theorem B.6 ([13, Theorem 1.1 and Corollary 1.2]) Let ¢ € F*/F*%. The
theta correspondence gives a natural bijection (depending on the choice of

V)

Ir(Mp(Wa,)) — | | Trr (O(V3,,.)) / ~ae= | | TT(O(V5,41).

LJ LJ
V2n+l V2n+1

where the union is taken over all the isomorphism classes of orthogonal spaces
V3,1 over F with dim(Vy, ) =2n + 1 and disc(V5,, ;) = c.
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We describe this map more precisely. Since we are in the p-adic set-
ting, there are exactly two isomorphism classes V>, and Vz’n 41 such that
dim(V2,41) = dim(V,,, ) = 2n + 1 and disc(Vap41) = disc(V;,, ) =
c. For m € Irr(Mp(W2,)), exactly one of two theta lifts Ov,, ., w,, ()
and ®V2/n+l’W2” (r) is nonzero. If Ovy .y, (1) is nonzero, then the image
of 7 under this map is [9V2‘,1+1,W2n (m)]. Also, the inverse image can be
described as follows: For o € Irr(O(Vy, ), exactly one of two theta
lifts ®W2"’V2.n+l(0) and ®W2n~V2'n+1(G ® det) is nonzero, and the image of
[o] € TI(O(V3,, ;) under the inverse map is the nonzero small theta lift
91/1/”“\/2-”_'_1 (o) or 0W2nsV2'n+1 (0 ® det).

Corollary B.7 The theta correspondence for (Mp(W2,), O(Vy, 1)) with
disc(Vy,, 1) = 1 and the local Langlands correspondence for O(Vy, ) gives
a surjection (depending on )

IrrMp(W2,,)) = @(O(V2p41)).

For¢ € ®(O(Va,41)), wedenote by Iy the inverse image of ¢ under this map,
and call Ty the L-packet of ¢. Moreover, the composition of t for O(Va,41)
and the relevant theta lift gives a bijection (depending on )

L:H¢—>Z;5.

We define ® Mp(Wy,,)) := ®(O(Va,+1)). For x = disc or temp, we put
O, (Mp(W3,)) := ©4(0(Va,41)). Then by [13, Theorem 1.3], we see that
Desideratum B.1 (1), (2), (4), (5), (6), (7) and (8) for R = Sym2 are satisfied.

We also need to know the effect of theta correspondence on L-parameters
for the pair for Mp(Wa,,), O(Va,41)) with disc(Va,+1) = c. Then xyv = .,
where y. is the quadratic character of F* associated to ¢ € F*/F*?,

Theorem B.8 We write ¢ = disc(Va,41). Let 1 € Irr(Mp(W>y,)) and o €
Irr (O(Vay4-1)) with L-parameters (¢, 1z ) and (¢s, 15 ), respectively. Assume
that o = Ov,, .| w,, (r). Then we have the following:

(1) We have

b0 = Pr ® Xe-

In particular, we have a canonical identification Ay, = Ay, .
(2) The characters n; and ny are related by

Mo (@) /12(@) = £(¢%) - £ (6% ® xe) - xe(—1)2IMOD € (1)

foranya € Ay, = Ay, .
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(3) Let (¢ppv, nyv) be the L-parameter for " € Irr(Mp(Wa,)). Then we
have

Prv = ox @ x—1 and
N (@) /(@) = & (¢2) - & (6% ® x_1) - x_1(—1)29mOD ¢ (11

foranya € Ay, = Ag_.,.
Proof This follows from [13, Theorem 1.5]. See also [2, § 3.6]. |

Appendix C: Gross—Prasad conjecture

To prove main theorems, we used two highly non-trivial results. One is the
Gross—Prasad conjecture, which gives an answer for restriction problems. The
other is Prasad’s conjectures, which describe the local theta correspondence
for (almost) equal rank cases. In this appendix, we state the Gross—Prasad
conjecture (GP).

The Gross—Prasad conjecture consists of four cases; orthogonal, hermitian,
symplectic-metaplectic, and skew-hermitian cases. For each case, the state-
ments are slightly different. So we state each case separately. We refer the
reader to [10, §6 and §18] for a discussion of the various subtleties in the
definition of the characters which appear in the statements of conjecture.

First, we state the GP conjecture for the orthogonal cases.

Theorem C.1 (GP conjecture for the orthogonal cases) For an orthogonal
space Vi3, we put V.2 | = V.3 @ L(_yym+1, where L(_yyn+1 is the orthogonal
space of dimension 1 and discriminant (—1 Y+ We set Veyen and Vyaq so that

{Vevens Vodd} = Vi, Ving1} and dim(Veyen) € 27.

For ¢ € Pemp(O(Veyen)), ¢ € Diemp(O(Vodd)) and v € {1}, there exists a
unique pair (o, 0') € Ty x Ty such that

e 0 ® o’ is a representation of O(V,) x O(V”'H_l)for some V5,
e the central character of o’ corresponds to v;
° HOInO(V':l)(O' ®o',C) #0.

Moreover, (o) and (o) are given by

(o) (@) = £ (¢ ® ¢') - det(§)(—1)2 @) . MG,
(o) = (9 ©¢"™) -detg) (DI

fora e Aganda’ € Ay.
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The GP conjecture for the special orthogonal cases was proven in [47-50].
In [3], the authors extended this result to the full orthogonal cases under an
assumption on LLC for O(V>,).

Secondly, we state the GP conjecture for the hermitian cases.

Theorem C.2 (GP conjecture for the hermitian cases) Suppose that E # F.
For a hermitian space V., we put V> = V3 & L1ym, where Ly
is the hermitian space of dimension 1 and discriminant (—1)". For ¢ €
Diemp(U(Vin)) and ¢’ € Piemp(U(Viut1)), there exists a unique pair (o, 0”) €
1y x Iy such that o ® o’ is a representation of U(V,5) X UV, ) for some
Vo, and

HOHIU(V,;) (O’ ®o’, (C) # 0.

Moreover, (o) and (o) are given by

L) (@) = wpyp (=)D M@ g <¢a ®¢, ‘/sz> :

to)(a) = a)E/F(_l)mdim(qu/) € (¢ ® ¢, Wf)

fora e Aganda’ € Ay.

The GP conjecture for the hermitian cases was proven in [4-6].
Thirdly, we state the GP conjecture for the symplectic-metaplectic cases.

Theorem C.3 (GP conjecture for the symplectic-metaplectic cases) Let W, be
a symplectic space. For c € F*, we denote by wy,. be the Weil representation
of Mp(W,, ® L1) associated to the additive character ¥.(x) = ¥ (cx) of
F, where Ly is the orthogonal space of dimension 1 and discriminant 1. For
¢ € Pemp(Sp(Wy)) and ¢ € Diemp(Mp(Wy,)), there exists a unique pair
(m, ") € Ty x My such that

HomMp(Wn)(n ® ', a)l/,() # 0.

Moreover, () and (') are given by

() (@) =& (¢ % ® F) - & (pxe ® d)/)det(a)
- det(@®) (=1)2 9m@) . det(p?) (c),

@) = (41 @) o9 xe -

/(4/)

fora e Aganda’ € Ay.
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The GP conjecture for the symplectic-metaplectic cases was proven by [2]
when ¢ = 1. For general c, it follows from [10, Proposition 18.1] and the case
when ¢ = 1.

Finally, we state the GP conjecture for the skew-hermitian cases.

Theorem C.4 (GP conjecture for the skew-hermitian cases) Suppose that
E # F. Let W, be a skew-hermitian space. For a character x of E* such
that x|F* = wg/F, we denote by wy , the Weil representation of U(W,)
associated to Y and x. For ¢, ¢’ € Diemp(U(W,)), there exists a unique pair
(m, ") € My x Mg such that & and 7t are representations of the same group
U(Wy) and

HomU(Wn‘) (71’ ® ', a)l/,,x) # 0.

Moreover, () and ((7t') are given by

W@ =e (¢ @¢' @ x " vE).,
W)@ =e (@0 ® x~" vF)
fora e Ay anda’ € Ay.

The GP conjecture for the skew-hermitian cases was proven by [12]. We
also use the following form.

Corollary C.5 Let the notation be as above. For ¢, ¢’ € Diemp(U(Wy)), there
exists a unique pair (7, ') € Ty x My such that w and 7" are representations
of the same group U(Wp) and

HomU(Wn') (7‘[ ® 7'[/, a),/,_,x) # 0.

Moreover, (1) and ((t") are given as follows:

(@) = 0p/ (=D o (¢ @ ¢ © 1. vE ),

L(?T/)(a/) — C()E/F(_l)dim(¢,a/) .e (¢ ® ¢/a’ ® X, w2E>

fora e Aganda’ € Ay.

Proof Since 7 and 7’ are tempered, we have 7V = 7 and 7’V = 7/. The
assertion follows from Theorem C.4 and Proposition B.4. |

We also need the following lemma.
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Lemma C.6 Let V,, be a Hermitian space of dimension m and W,, be a skew-

Hermitian space of dimension n. Put V41 = V,, & L for some line L. If

E = F, we set G(W,) and G'(W,) to be Sp(W,) or Mp(W,) such that

{G(W,), G(W,)} = {Sp(W,,), Mp(W,))}. Let w = wy,, or wy .

(1) For o € Ittiemp(H (Vit1)), there exists o € Irriemp (H (Vi) such that
Hompg (y,)(c ® o', C) # 0.

(2) For m € Itriemp(G (W), there exists ' € Irremp(G'(Wy)) such that
Homgw,) (7 ® 7', w) # 0.

Proof The proof is similar to that of Lemma 12.5 in [13]. The absolutely con-
vergence of double integrals which we need are proven in [21] for orthogonal
cases, [16] for hermitian cases, [52] for symplectic-metaplectic cases, and [51]
for skew-hermitian cases. O

Appendix D: Prasad’s conjectures

In this appendix, we state Prasad’s conjectures [40], which are the other highly
non-trivial results.

Let (V,,, W,,) beasin Sect. 2.2. We have fixed a non-trivial additive character
Y of F,and 6 € E* such that trg,r(8) = 0if E # F. Recall that we put

vE) = v (Strese(en)

forx € E and c € F*.If ¢ = 1, we simply write £ = le. For a represen-
tation ¢ of WD, we write (¢, ¥ £) = e(1/2, ¢, ¥ F).
First, we state Prasad’s conjecture for the equal rank case:

Theorem D.1 (Prasad’s conjecture for the equal rank case) Assume that E #
F and m = n. Hence G(Wy,) = U(W,) and H(V;F) = U(VY). Let m €
Irr (U(W,,)) with L-parameter (¢, n). Then we have the following:

(1) There is a unique pure inner form U(V,?) of U(V,,) such that Ovye w, ()
is nonzero.
(2) For given U(V,}), the theta lift ®ys w, () is nonzero if and only if

e ® xy ' WE) = wgyr (87" - disc(V)) - disc(W,)) .

(3) Suppose Ovys w, (1) is nonzero. Let (6(¢p), 0(n)) be the L-parameter of

Ove w, (7). Then 0(¢) = ¢ ® X;l Xxw- In particular, we have a canonical
identification Ay = Ag(p). Moreover, we have

o @ /0@ =¢ (¢ © 1", vE)

fora e A¢ = A9(¢).
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Next, we state Prasad’s conjecture for the almost equal rank case. If £ = F
and ¢ = —1, then G(W,)) = O(W,) and H(V,,) = Sp(Vy,). Recall that
for m € Irr(O(W,)), we may consider the two theta lifts ®y,, w, () and
Oy, w, (T & det).

Theorem D.2 (Prasad’s conjecture for the almost equal rank case) Assume
thatl = n —m + €9 = —1. Let m € Irr(G(W,)) with L-parameter (¢, n).
Then we have the following:

(1) Suppose that ¢ does not contain xy.

(a) For any pure inner form H(V,}) of H(Vin), the theta lift ©ye w, () is
nonzero.

(b) Let (8(¢9),0(n)) be the L-parameter of Oys w, (). Then we have
() = (¢ ® X;l)(w) @ xw. Hence there is a canonical injection
A¢ —> A9(¢).

(c) We have [Ag(g) : Apl = 2.

(d) The character 0(n) of Ag(g) satisfies

O(m[Ag = 1.

(i1) Suppose that ¢ contains xy.
(a) Exactly one of two theta lifts ®y,, w, () and ®vy; w, (1) (or Oy, w, ()
and Oy, w, (7w @ det)) is nonzero.
(b) Oys w, (1) is nonzero if and only if

nizg +e) =1 fGW,) =0W,)and H(V,) = Sp(Vu),

Ve e Yt otherwise.

Here, ey is the element in Ay corresponding to xy.
(¢) Suppose that Oye w, () is nonzero. Let (0(¢),0(n)) be the L-

parameter of Oye w, (). Then 0(¢) = (¢ ® XQIXW) @ xw. Hence
there is a canonical injection Ay — Ag(g).

(d) We have [A9(¢) : A¢] =1.

(e) The character 6(n) of Ag(yp) satisfies

O(m[Ag =n.

Prasad’s conjectures (Theorems D.1 and D.2) are established by [12] when
E # F. When E = F, Theorem D.2 is proven by [2] and [3].

By the conservation relation (Proposition 2.5), for any & € Irr (G (W,)), we
have

mo (1) <n+eo+ 1.
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If m3%%" (1) = n 4 €o + 1, then m"P(7) = mI°" () = n 4 €y + 1. Namely,
both of two theta lifts ®ye w, () with m = n + € + 1 are nonzero. In this
case, ¢ does not contain xy by Theorem D.2.
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