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Abstract Westudy the homotopy type of the space ofmetrics of positive scalar
curvature on high-dimensional compact spin manifolds. Hitchin used the fact
that there are no harmonic spinors on a manifold with positive scalar curvature
to construct a secondary index map from the space of positive scalar metrics to
a suitable space from the real K -theory spectrum. Ourmain results concern the
nontriviality of this map. We prove that for 2n ≥ 6, the natural KO-orientation
from the infinite loop space of the Madsen–Tillmann–Weiss spectrum factors
(up to homotopy) through the space of metrics of positive scalar curvature on
any2n-dimensional spinmanifold. Formanifolds of odddimension2n+1 ≥ 7,
we prove the existence of a similar factorisation.When combinedwith compu-
tationalmethods fromhomotopy theory, these results have strong implications.
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For example, the secondary index map is surjective on all rational homo-
topy groups. We also present more refined calculations concerning integral
homotopy groups. To prove our results we use three major sets of technical
tools and results. The first set of tools comes from Riemannian geometry:
we use a parameterised version of the Gromov–Lawson surgery technique
which allows us to apply homotopy-theoretic techniques to spaces of metrics
of positive scalar curvature. Secondly, we relate Hitchin’s secondary index to
several other index-theoretical results, such as the Atiyah–Singer family index
theorem, the additivity theorem for indices on noncompact manifolds and the
spectral flow index theorem. Finally, we use the results and tools developed
recently in the study of moduli spaces of manifolds and cobordism categories.
The key new ingredient we use in this paper is the high-dimensional analogue
of theMadsen–Weiss theorem, proven by Galatius and the third named author.
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1 Introduction

1.1 Statement of results

Among the several curvature conditions one can put on a Riemannian metric,
the condition of positive scalar curvature (hereafter, psc) has the richest con-
nection to topology, and in particular to cobordism theory. This strong link is
provided by two fundamental facts.

The first comes from index theory. Let /Dg be the Atiyah–Singer Dirac
operator on a Riemannian spin manifold (W, g) of dimension d. The scalar
curvature appears in the remainder term in the Weitzenböck formula (or, more
appropriately, Schrödinger–Lichnerowicz formula, cf. [47] and [36]). This
forces the Dirac operator /Dg to be invertible provided that g has positive
scalar curvature, and hence forces the index of /Dg to vanish. The index of /Dg
is an element of the real K -theory group KO−d(∗) = KOd(∗) of a point, due
to the Clifford symmetries of /Dg. The Atiyah–Singer index theorem in turn
equates ind( /Dg) with the ˆA -invariant of W , an element in KO−d(∗) which
can be defined in homotopy-theoretic terms through the Pontrjagin–Thom
construction. Thus if W has a psc metric, then ˆA (W ) = 0.

The second fundamental fact, due to Gromov and Lawson [24], is that if a
manifold W with a psc metric is altered by a suitable surgery to a manifold
W ′, then W ′ again carries a psc metric. These results interact extremely well
provided the manifolds are spin, simply-connected and of dimension at least
five. Under these circumstances, the question of whether W admits a psc
metric depends only on the spin cobordism class of W , which reduces it to a
problem in stable homotopy theory. Stolz [48] managed to solve this problem,
and thereby showed that such manifolds admit a psc metric precisely if their

ˆA -invariant vanishes. Much work has been undertaken to relax these three
hypotheses; see [45] and [46] for surveys.

Rather than the existence question, we are interested in understanding the
homotopy type of the space R+(W ) of all psc metrics on a manifold W . Our
method requires to consider manifoldsW with boundary ∂W . In that case, we
choose a collar [−ε, 0] × ∂W ⊂ W and consider the space R+(W )h of all
psc metrics on W which are of the form dt2 + h on this collar, for a fixed psc
metric h on ∂W .

To state our results, we recall Hitchin’s definition of a secondary index-
theoretic invariant for pscmetrics [29], whichwe shall call the index difference.
Ignoring some technical details for now, the definition is as follows. For a
closed spin d-manifoldW choose a basepoint psc metric g0 ∈ R+(W ), so for
another psc metric g we can form the path of metrics gt = (1− t) · g + t · g0
for t ∈ [0, 1]. There is an associated path of Dirac operators in the space
Fredd of Cld -linear self-adjoint odd Fredholm operators on a Hilbert space,

123



752 B. Botvinnik et al.

and it starts and ends in the subspace of invertible operators, which is con-
tractible. As the space Fredd represents KO−d(−), we obtain an element
inddiffg0(g) ∈ KO−d([0, 1], {0, 1}) = KO−d−1(∗) = KOd+1(∗). This con-
struction generalises to manifolds with boundary and to families, and gives a
well-defined homotopy class of maps

inddiffg0 : R+(W )h −→ �∞+d+1KO

to the infinite loop space which represents real K -theory. The main theorems
of this paper are stated as Theorems B and C. They involve the construction
of maps ρ : X → R+(W )h from certain infinite loop spaces X , and the
identification of the composition inddiffg0 ◦ρ with a well-known infinite loop
map. Using standard methods from homotopy theory, one can then derive
consequences concerning the induced map on homotopy groups,

Ak(W, g0) : πk(R+(W )h, g0) −→ KOk+d+1(∗)

=

⎧
⎪⎨

⎪⎩

Z k + d + 1 ≡ 0 (mod 4)

Z/2 k + d + 1 ≡ 1, 2 (mod 8)

0 else,

and we state these consequences first.

Theorem A Let W be a spin manifold of dimension d ≥ 6, and fix h ∈
R+(∂W ) and g0 ∈ R+(W )h. If k = 4s − d − 1 ≥ 0, then the map

Ak(W, g0)⊗ Q : πk(R+(W )h, g0)⊗ Q −→ KO4s(∗)⊗ Q = Q

is surjective. If e = 1, 2 and k = 8s + e − d − 1, then the map

Ak(W, g0) : πk(R+(W )h, g0) −→ KO8s+e(∗) = Z/2

is surjective. In other words, the map Ak(W, g0) is nontrivial if k ≥ 0, d ≥ 6
and the target is nontrivial.

Theorem A supersedes, to our knowledge, all previous results in the lit-
erature concerning the nontriviality of the maps Ak(W, g0), namely those
of Hitchin [29], Gromov–Lawson [23], Hanke–Schick–Steimle [25], and
Crowley–Schick [14].

Let us turn to the description of our main result, which implies Theorem
A by a fairly straightforward computation. To formulate it, we first recall the
definition of a specific Madsen–Tillmann–Weiss spectrum. Let GrSpind,n denote
the spin Grassmannian (see Definition 3.28) of d-dimensional subspaces ofR

n

equipped with a spin structure. It carries a vector bundle Vd,n ⊂ GrSpind,n × R
n
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Infinite loop spaces and positive scalar curvature 753

of rank d, which has an orthogonal complement V⊥
d,n of rank (n−d). There are

structure maps �Th(V⊥
d,n) → Th(V⊥

d,n+1) between the Thom spaces of these
vector bundles, forming a spectrum (in the sense of stable homotopy theory)
which we denote by MTSpin(d). This spectrum has associated infinite loop
spaces

�∞+lMTSpin(d) := colim
n→∞ �n+lTh(V⊥

d,n)

for any l ∈ Z, where the colimit is formed using the adjoints of the structure
maps.

The parametrised Pontrjagin–Thom construction associates to any smooth
bundle π : E → B of compact d-dimensional spin manifolds a natural map

αE : B −→ �∞MTSpin(d), (1.1)

which encodes many invariants of smooth fibre bundles. For example, there
is a map of infinite loop spaces ˆAd : �∞MTSpin(d) → �∞+dKO such that
the composition ˆAd ◦ αE : B → �∞+dKO represents the family index of the
Dirac operators on the fibres of π (a consequence of the Atiyah–Singer family
index theorem). The collision of notation with the ˆA -invariant mentioned
earlier is intended: there is a map of spectra MTSpin(d) → �−dMSpin into
the desuspension of the classical spin Thom spectrum, and the classical ˆA -
invariant is induced by a spectrum map ˆA : MSpin → KO constructed by
Atiyah–Bott–Shapiro. Our map ˆAd is the composition of these maps (or rather
the infinite loop map induced by the composition).

Definition 1.1 Two continuous maps f0, f1 : X → Y are called weakly
homotopic [3] if for each finite CW complex K and each g : K → X , the
maps f0 ◦ g and f1 ◦ g are homotopic. Similarly for maps of pairs.

With these definitions understood, we can now state the main results of this
paper.

Theorem B Let W be a spin manifold of dimension 2n ≥ 6. Fix h ∈ R+(∂W )

and g0 ∈ R+(W )h. Then there is a map ρ : �∞+1MTSpin(2n) → R+(W )h
such that the composition

�∞+1MTSpin(2n)
ρ−→ R+(W )h

inddiffg0−→ �∞+2n+1KO

is weakly homotopic to � ˆA2n, the loop map of ˆA2n.

For manifolds of odd dimension, we have a result which looks very similar;
we state it separately as it is deduced from Theorem B, and its proof is quite
different.
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Theorem C Let W be a spin manifold of dimension 2n + 1 ≥ 7. Fix h ∈
R+(∂W ) and g0 ∈ R+(W )h. Then there is a map ρ : �∞+2MTSpin(2n) →
R+(W )h such that the composition

�∞+2MTSpin(2n)
ρ−→ R+(W )h

inddiffg0−→ �∞+2n+2KO

is weakly homotopic to �2 ˆA2n, the double loop map of ˆA2n.

It should be remarked that in both cases the homotopy class of the map
ρ is in no sense canonical and depends on many different choices (among
them the metric g0). Theorem A is a consequence of Theorems B and C and
relatively easy computations in stable homotopy theory. The geometric form
of Theorems B and C gives an interpretation in terms of spaces of psc metrics
to more difficult and interesting stable homotopy theory computations as well.
In Sect. 5 we make such computations, and the results obtained are stated
below in Sect. 1.3.

1.2 Outline of the proofs of the main results

We now turn to a brief outline of the proofs of Theorems B and C, starting
with Theorem B. All manifolds in the sequel are assumed to be compact spin
manifolds.

The first ingredient is a refinement of theGromov–Lawson surgery theorem.
This is the cobordism invariance theorem of Chernysh [12] and Walsh [56],
which says that the homotopy type of R+(W )h is unchanged when W is
modified by appropriate surgeries in its interior (the precise formulation is
stated asTheorem2.4 below). Togetherwith the cut-and-paste invariance of the
index difference (whichwediscuss in detail in Sect. 3.4), this has two important
consequences. Firstly, it is enough to prove Theorem B when W = D2n and
h = h◦ is the round metric on S2n−1; secondly, we are free to replace D2n

by any other simply-connected manifold W within its spin cobordism class
(relative to S2n−1). Here the hypothesis 2n ≥ 6 is required for the first time.
From now on, let us assume that W 2n is a compact connected spin manifold
of dimension 2n ≥ 6 with ∂W = S2n−1.

As in [29] and [14], our method relies on the action of the diffeomorphism
group on the space of psc metrics. For a smooth manifold W equipped with a
collar c : [−ε, 0] × ∂W ↪→ W , we write Diff∂(W ) for the topological group
of those diffeomorphisms of W which are the identity on the image of c. This
group acts by pullback onR+(W )h◦ , and we may form the Borel construction
EDiff∂(W )×Diff∂ (W ) R+(W )h◦ , which fits into a fibration sequence

R+(W )h◦ −→ EDiff∂(W )×Diff∂ (W ) R+(W )h◦ −→ BDiff∂(W ). (1.2)
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Infinite loop spaces and positive scalar curvature 755

The Borel construction EDiff∂(W )×Diff∂ (W )R+(W )g◦ is the homotopy the-
oretic quotientR+(W )g◦//Diff∂(W ), and we use this notation from now on.

The action of Diff∂(W ) on R+(W )h◦ is free, so the projection map

R+(W )h◦//Diff∂(W ) −→ R+(W )h◦/Diff∂(W )

is a weak homotopy equivalence. This quotient space is known as the moduli
space of psc metrics on W in the literature, e.g. [52, §1].

We, however, find the following point-set model for the spaces in (1.2) more
enlightening. Choose an embedding ∂W ⊂ R

∞−1 and then take as a model for
EDiff∂(W ) the spaceEmb∂(W, (−∞, 0]×R

∞−1)of all embeddings e : W →
(−∞, 0] × R

∞−1 such that e ◦ c(t, x) = (t, x) for all (t, x) ∈ [−ε, 0] × ∂W .
With this model, BDiff∂(W ) may be identified with the set of all compact
submanifolds X ⊂ (−∞, 0] × R

∞−1 such that X ∩ ([−ε, 0] × R
∞−1) =

[−ε, 0]×∂W and which are diffeomorphic (relative to ∂W ) withW . One may
therefore view BDiff∂(W ) as the moduli space of manifolds diffeomorphic to
W . Using this model, the Borel construction EDiff∂(W )×Diff∂ (W )R+(W )h◦
is the space of pairs (X, g) with X ∈ BDiff∂(W ) and g ∈ R+(X)h◦ .

One important feature of the fibre sequence (1.2) is that it interacts well with
index-theoretic constructions, by virtue of a homotopy commutative diagram

R+(W )h◦
inddiff

�∞+2n+1KO

R+(W )h◦//Diff∂(W ) ∗

BDiff∂(W )
ind

�∞+2nKO,

(1.3)

which we establish in Sect. 3.8.4. The right-hand column is the path-loop-
fibration, the top map is the index difference (with respect to a basepoint)
and the bottom map is the ordinary family index of the Dirac operator on the
universal W -bundle over BDiff∂(W ), which can be computed in topological
terms by the index theorem.

If we choose W so that the topology of BDiff∂(W ) is well-understood, we
might hope to extract information about the homotopy type of R+(W )h◦ and
hence about π∗(inddiff) from (1.2). For example, if one can show that the map
ind∗ : πk(BDiff∂(W )) → KO−2n−k(∗) is nontrivial, then it follows that the
map inddiff∗ : πk−1(R+(W )g◦) → KO−2n−k(∗) is also nontrivial. This is
essentially the technique which was introduced by Hitchin [29]. But precise
knowledge of π∗(BDiff∂(W )) is scarce, especially when additional informa-
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756 B. Botvinnik et al.

tion such as the map ind∗ : πk(BDiff∂(W )) → KO−2n−k(∗) is required as
well.

The driving force behind Theorem B is the high-dimensional analogue of
the Madsen–Weiss theorem, proved by Galatius and the third named author
[19,20], which makes it possible to understand the homology of BDiff∂(W ),
rather than its homotopy. To describe this result, let

K := ([0, 1] × S2n−1)#(Sn × Sn),

and when W0 is a 2n-dimensional compact spin manifold with boundary
∂W0 = S2n−1 write Wk := W ∪ kK for the composition of W0 with k copies
of K . We choose W0 such that

(i) W0 is spin cobordant to D2n relative to S2n−1 and
(ii) the map W0 → BSpin(2n) classifying the tangent bundle of W0 is n-

connected.

Such a manifold W0 exists, and in fact by Kreck’s stable diffeomorphism
classification theorem [34, Theorem C] it is unique in the sense that if two
such manifolds W0 and W ′

0 are given, then Wk
∼= W ′

l for some k, l ∈ N.
Gluing in the cobordism K induces stabilisation maps

BDiff∂(W0) −→ BDiff∂(W1) −→ BDiff∂(W2) −→ BDiff∂(W3) −→ · · · .

The parametrised Pontrjagin–Thom maps (1.1) induce a map

αW∞ : BDiff∂(W∞) := hocolim
k→∞ BDiff∂(Wk) −→ �∞

0 MTSpin(2n), (1.4)

and it follows from [19] that the map αW∞ is acyclic. Recall that a map f :
X → Y of spaces is called acyclic if for each y ∈ Y the homotopy fibre
hofiby( f ) has the singular homology of a point. In particular, the map (1.4)
induces an isomorphism in homology and can in fact be identified with the
Quillen plus construction of BDiff∂(W∞).

Once a psc metric m ∈ R+(K )h◦,h◦ is chosen, gluing in the Riemannian
cobordism (K ,m) induces stabilisation maps

R+(W0)h◦ −→ R+(W1)h◦ −→ R+(W2)h◦ −→ R+(W3)h◦ −→ · · · .

The cobordism invariance theorem of Chernysh [12] andWalsh [56] allows us
to choose the psc metric m so that all these stabilisation maps are homotopy
equivalences, so in particular the map

R+(W0)h◦ −→ hocolim
k→∞ R+(Wk)h◦ (1.5)
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is a homotopy equivalence. Acting on a fixed collection of compatible psc
metrics gives a map

hocolim
k→∞ Diff∂(Wk) −→ hocolim

k→∞ R+(Wk)h◦ � R+(W0)h◦ � R+(D2n)h◦,

where we have used cobordism invariance twice, once in the form of (1.5) and
once to replace W0 by the spin cobordant manifold D2n . The map we wish to
construct is an extension of this map along �αW∞ : hocolimk Diff∂(Wk) →
�∞+1MTSpin(2n), but, as the map αW∞ is not a homotopy equivalence but
merely acyclic, an argument is necessary to form such an extension.

The two stabilisation maps (on the moduli space of manifolds and on the
space of psc metrics respectively) together yield stabilisation maps on the
Borel construction. After passing to the (homotopy) colimit, we obtain a fibre
sequence

hocolim
k→∞ R+(Wk)h◦ → hocolim

k→∞ (R+(Wk)h◦//Diff∂ (Wk))
p∞→ hocolim

k→∞ BDiff∂ (Wk).

The key step is now the construction of a fibration T+∞
p+∞→ �∞

0 MTSpin(2n)
with fibre R+(W0)h◦ and a homotopy cartesian diagram

hocolim
k→∞ (R+(Wk)h◦//Diff∂(Wk))

p∞

T+∞

p+∞

hocolim
k→∞ BDiff∂(Wk)

αW∞
�∞

0 MTSpin(2n).

(1.6)

The main input for the construction of the diagram (1.6) is the result that
for each pair of diffeomorphisms f0, f1 ∈ Diff∂(Wk) the automorphisms
f ∗
0 , f

∗
1 : R+(Wk)h◦ → R+(Wk)h◦ commute up to homotopy. This is again

derived from the cobordism invariance theorem, along with an argument of
Eckmann–Hilton type. This commutativity property allows us to carry out the
obstruction-theoretic argument to produce (1.6). At this point it is crucial that
αW∞ is acyclic and not only a homology equivalence.

The map ρ is defined to be the fibre transport map

�∞+1MTSpin(2n) −→ hocolim
k→∞ R+(Wk)h◦

of the fibration p+∞, followed by the homotopy inverse of (1.5) and the iden-
tification R+(W0)g◦ � R+(D2n)g◦ coming from the cobordism invariance
theorem. To show that inddiff ◦ ρ is weakly homotopic to � ˆA2n we use the
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758 B. Botvinnik et al.

diagram (1.3), Bunke’s additivity theorem for the index [11], and the Atiyah–
Singer family index theorem.

The deduction of Theorem C from Theorem B is by a short index-theoretic
argument. In the course of that argument, we need to compare indices of oper-
ators on manifolds of different dimension, and some index theorem is needed
for that purpose. We phrase the argument by using an alternative description
of the index difference map for closed manifolds, due to Gromov and Lawson
[24], in terms of a boundary value problem of Atiyah–Patodi–Singer type on
the cylinder W × [0, 1]. The proof of Theorem C relates the index difference
for (2n+1)-dimensionalmanifolds (Hitchin’s definition)with the index differ-
ence for 2n-dimensional manifolds (Gromov–Lawson’s definition). In order
to make the argument conclusive we need to know that these definitions agree,
but this follows from a family version of the spectral flow index theoremwhich
was proved by the second named author [17].

Remark 1.2 The argument for the deduction of Theorem C from Theorem B
also yields that Im(Ak+1(∂W, h)) ⊂ Im(Ak(W, g)) when g ∈ R+(W )h . This
allows one to prove Theorem A by induction on the dimension, starting with
d = 6. Along the same lines, if Theorem B is established for 2n = 6, we get
for all d ≥ 6 a factorisation

�d−5 ˆA6 : �∞+d−5MTSpin(6)
ρ−→ R+(Wd)h

inddiffg−→ �∞+d+1KO,

which suffices for some of the computational applications.
In addition, the proof of Theorem B in the special case 2n = 6 enjoys

several simplifications, the principal one being that the results of [19] may
be replaced by those of [20]. Consequently, we have given (in Sect. 4.3.1) a
separate proof of this special case.

1.3 Further computations

We state the followingmore detailed computations for even-dimensional man-
ifolds: they have odd-dimensional analogues too, which we leave to the reader
to deduce from the results of Sect. 5. The first concerns the surjectivity of
the map on homotopy groups induced by the index difference, without any
localisation.

Theorem D Let W be a spin manifold of dimension 2n ≥ 6. Fix h ∈ R+(∂W )

and g0 ∈ R+(W )h. Then the map

Ak(W, g0) : πk(R+(W )h, g0) −→ KOk+2n+1(∗)
is surjective for 0 ≤ k ≤ 2n − 1.
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One application of this theorem is as follows. Let B8 be a spinmanifold such
that ˆA (B) ∈ KO8(∗) is the Bott class (such a manifold is sometimes called
a “Bott manifold”). By the work of Joyce [30, §6] there is a Bott manifold
which admits a metric gB with holonomy group Spin(7). Then gB must be
Ricci-flat and hence scalar-flat. For any closed spin d-manifold W , cartesian
product with (B, gB) thus defines a direct system

R+(W ) −→ R+(W × B) −→ R+(W × B × B) −→ · · ·

and as ˆA (B) is the Bott class there is an induced map from the direct limit

inddiffh[B−1] : R+(W )[B−1] := hocolim
k→∞ R+(W × Bk) −→ �∞+d+1KO.

It then follows from Theorem D (or its odd-dimensional analogue) that this
map is surjective on all homotopy groups.

Secondly, working away from the prime 2 we are able to use work of
Madsen–Schlichtkrull [37] to obtain an upper bound on the index of the image
of the index difference map on homotopy groups.

Theorem E Let W be a spin manifold of dimension 2n ≥ 6. Fix h ∈ R+(∂W )

and g0 ∈ R+(W )h. Then the image of the map

A4m−2n−1(W, g0)[12 ] : π4m−2n−1(R+(W )h, g0)[12 ] −→ KO4m(∗)[12 ]

has finite index, dividing

A(m, n) := gcd

{
n∏

i=1

(22mi−1 − 1) · Num
(
Bmi

2mi

) ∣
∣
∣
∣mi ≥ 0,

n∑

i=1

mi = m

}

(wherewe adopt the convention that (22m−1−1)·Num( Bm2m ) = 1whenm = 0).

While the numbers A(m, 1) = (22m−1 − 1) · Num( Bm2m ) are compli-
cated, computer calculations (for which we thank Benjamin Young) show
that A(m, 2) = 1 for m ≤ 45401. Hence A(m, 2
) = 1 for m ≤ 45401 · 
,
and so for W a spin manifold of dimension 4
 ≥ 6 the map

Ak(W, g0)
[1
2

] : πk(R+(W )h, g0)
[1
2

] −→ KOk+4
+1(∗)
[1
2

]

is surjective for k < 45400 · 4
. (One can deduce similar ranges for manifolds
whose dimensions have other residues modulo 4, cf. Sect. 5.4.)
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Remark 1.3 In Sect. 5.4.2 we show that the estimate in Theorem E is approx-
imately sharp: the quotient of A(m, n) by the index of the image of the map

π4m−2n(MTSpin(2n))
[
1
2

]
−→ π4m−2n−1(R+(W )h, g0)

[
1
2

]
−→ KO4m(∗)

[
1
2

]

has all prime factors p relatively small, in the sense that p ≤ 2m + 2. Thus
any prime number q dividing A(m, n) with q > 2m + 2 must in fact divide
the index of the image of this composition.

Thirdly, we study the p-local homotopy type of the spaces R+(Sd) of
positive scalar curvature metrics on spheres. In [57], Walsh has shown that
R+(Sd) admits the structure of an H -space, so for any prime p we may form
the localisationR+◦ (Sd)(p) of the identity component of this H -space, that is,
the component of the round metric g◦. This may be constructed, for example,
as the mapping telescope of the r th power maps on this H -space, over all r
coprime to p.

Theorem F Let d ≥ 6 and p be an odd prime. Then there is a map

f : (�∞+d+1KO)(p) −→ R+◦ (Sd)(p)

such that (inddiffg◦)(p) ◦ f induces multiplication by (22m−1 − 1) ·Num( Bm2m )
times a p-local unit on π4m−d−1.

Thus if p is an odd regular prime (i.e. is not a factor of Num(Bm) for any
m) and in addition does not divide any number of the form (22m−1 − 1), then
there is a splitting

R+◦ (Sd)(p) � (�∞+d+1
0 KO)(p) × F(p),

where F is the homotopy fibre of inddiffg◦ . In particular, for such primes the
map induced by inddiffg◦ on Fp-cohomology is injective.

At the prime 2 we are not able to obtain such a strong splitting result, but we
can still establish enough information to obtain the cohomological implication.

Theorem G For d ≥ 6, the map inddiffg◦ : R+(Sd) → �∞+d+1KO is
injective on F2-cohomology.

2 Spaces of metrics of positive scalar curvature

We begin this chapter by precisely defining the spaces which we shall study, in
Sect. 2.1. In the other sections, we survey results on spaces of positive scalar
curvature metrics which we shall need later. Section 2.2 provides technical but
mostly elementary results, for later reference. The most important result, to be
discussed in Sect. 2.3, is the cobordism invariance theorem of Chernysh and
Walsh and the hasty reader can jump directly to that section.
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2.1 Definitions

Let W : M0 � M1 be a cobordism between closed manifolds. For us, a
cobordism will always be a morphism in the cobordism category in the sense
of [21, §2.1]. In particular, the boundary ofW is collared: for some a0 < c0 <
c1 < a1 ∈ R, there is an embedding b = b0 � b1 : [a0, c0] × M0 � [c1, a1] ×
M1 → W which induces the canonical identification of {ai }×Mi withMi . Let
�(W ; Sym2(TW )) be the space of smooth symmetric (0, 2)-tensor fields on
W . This is a Frechét topological vector space; the topology is generated by the
maximum norms ‖∇ku‖C0 , where u ∈ �(W ; Sym2(TW )), and the gradients
are taken with respect to any fixed reference metric on W ; the topology so
defined does not depend on the specific choice of this reference metric.

For εi > 0 small enough, we writeR(W )ε0,ε1 ⊂ �(W ; Sym2(TW )) for the
subspace of all Riemannian metrics g onW for which there exist Riemannian
metrics hi on Mi such that b∗

i (g) = hi + dt2 on the collars [a0, a0 + ε0]× M0
and [a1 − ε1, a1] × M1. This is convex and hence contractible. The subspace
R+(W )ε0,ε1 ⊂ R(W )ε0,ε1 of metrics with positive scalar curvature is open.
Any metric g on W induces a metric h on ∂W by restriction, and if g is of
product form g = h + dt2 on the collar and has positive scalar curvature then
h also has positive scalar curvature. This yields a continuous map

res : R+(W )ε0,ε1 −→ R+(M0)× R+(M1).

For a pair (h0, h1) ∈ R+(M0)× R+(M1) we write

R+(W )
ε0,ε1
h0,h1

:= res−1(h0, h1) ⊂ R+(W )ε0,ε1 .

In plain language: this is the space of all positive scalar curvature metrics
whose restriction to the collar around Mi coincides with hi + dt2.

Let us write

r : �(W ;Sym2(TW )) −→ �([a0, a0 + ε0] × M0 � [a1 − ε1, a1] × M1;Sym2(TW ))

for the restriction map. Note thatR+(W )
ε0,ε1
h0,h1

is an open subspace of the space

r−1(h0 + dt2 � h1 + dt2), and that the latter is homeomorphic to a Frechét
space. ThereforeR+(W )

ε0,ε1
h0,h1

is a metric space, and hence paracompact. From
[41, Theorem 13] and [26, Proposition A.11], it follows thatR+(W )

ε0,ε1
h0,h1

has
the homotopy type of a CW complex.

From now on, we abbreviate

R+(W ) := R+(W )ε0,ε1 and R+(W )h0,h1 := R+(W )
ε0,ε1
h0,h1
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for implicitly fixed values of εi . In Lemma 2.1 below we will show that the
homotopy type of this space does not depend on εi , which justifies this short
notation.

If one of the manifolds Mi is empty then we writeR+(W )h , where h is the
boundary metric.

Let W : M0 � M1 and W ′ : M1 � M2 be two cobordisms and W ∪W ′ =
W ∪M1 W ′ be their composition. Let hi ∈ R+(Mi ), i = 0, 1, 2, be given.
Then there is a gluing map

μ : R+(W )h0,h1 × R+(W ′)h1,h2 −→ R+(W ∪ W ′)h0,h2,

where the metric μ(g, g′) is defined to agree with g on W and with g′ on W ′.
If we fix g′ ∈ R+(W ′)h1,h2 , then we obtain a map

μg′ : R+(W )h0,h1 −→ R+(W ∪ W ′)h0,h2
g �−→ μ(g, g′)

by gluing in the metric g′. Sometimes we abbreviate g ∪ g′ := μ(g, g′).

2.2 Some basic constructions with psc metrics

2.2.1 Collar stretching

Lemma 2.1 For 0 < δi ≤ εi < |ai − ci |, the inclusion R+(W )
ε0,ε1
h0,h1

↪→
R+(W )

δ0,δ1
h0,h1

is a homotopy equivalence.

Proof For typographical simplicity, we assume that a0 = 0, M1 = ∅ and write
(ε, δ, c, h) := (ε0, δ0, c0, h0). Let Hs : R → R, s ∈ [0, 1], be an isotopy such
that

(i) H0 = id,
(ii) Hs = id near [c,∞) and near (−∞, 0],
(iii) (Hs)

′ = 1 near δ,
(iv) H1(δ) = ε and
(v) Hs ≤ Hu for s ≤ u.

This induces an isotopy of embeddings, also denoted Hs , of the collar to itself,
and by condition (ii) also ofW into itself. Define a homotopy Fs : R+(W )δh →
R+(W )δh by the formula

Fs(g) :=
{
dt2 + h on [0, Hs(δ)],
(Hs)

∗g elsewhere.
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By construction, Fs maps the subspace R+(W )εh to itself, F0 is the iden-
tity and F1 maps R+(W )δh into R+(W )εh . This proves that F1 is a two-sided
homotopy inverse of the inclusion, as claimed. ��

Lemma 2.1 has the following immediate consequence.

Corollary 2.2

(i) The map R+(W )
ε0,ε1
h0,h1

→ colim
ε0,ε1→0

R+(W )
ε0,ε1
h0,h1

is a weak homotopy

equivalence.
(ii) For a2 > a1 and h1 ∈ R+(M1), let g = dt2 + h1 ∈ R+([a1, a2] × M1).

The gluing map μg : R+(W )h0,h1 → R+(W ∪ ([a1, a2] × M1))h0,h1 is a
homotopy equivalence.

2.2.2 The quasifibration theorem

LetW be a manifold with collared boundary M and res : R+(W ) → R+(M)
be the restriction map. For h ∈ R+(M), the geometric fibre res−1(h) is the
space R+(W )h while the homotopy fibre hofibh(res) is the space of pairs
(g, p), with g ∈ R+(W ) and p a continuous path in R+(M) from res(g)
to h. Inside the homotopy fibre, we have the space (hofibh(res))C∞ , which
is defined by the condition that p has to be a smooth path. The inclusion
i : (hofibh(res))C∞ → hofibh(res) is a homotopy equivalence [13, Lemma
2.3]. Chernysh constructs a map

S′ : (hofibh(res))C∞ −→ R+(W )εh

roughly as follows: pick an embedding j : W → W onto the complement of
a collar [0, 1] × ∂W ⊂ W , then the metric S′(g, p) is defined to be ( j−1)∗g
on the image of j , and a suitably tempered form of the metric dt2 + pt on the
collar (the metric dt2 + pt has in general neither positive scalar curvature nor
a product form near the boundary {0, 1} × ∂W , but Chernysh shows how to
carefully modify it to have these properties). Chernysh proves that S′ is a two-
sided homotopy inverse to the fibre inclusion R+(W )h → (hofibh(res))C∞
[13, Lemma 2.2]. By inverting i , we obtain a homotopy class of maps S :
hofibh(res) → R+(W )h .

Theorem 2.3 (Chernysh [13])

(i) The map S is a two-sided homotopy inverse to the fibre inclusion
R+(W )h → hofibh(res).

(ii) In particular, the restriction map res : R+(W ) → R+(M) is a quasifi-
bration.
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2.3 The cobordism theorem

2.3.1 Standard metrics

On the disc Dd , fix a collar of its boundary Sd−1 ⊂ Dd by the formula

b : Sd−1 × (−1, 0] −→ Dd

(v, t) �−→ (1 + t) · v.

We assume that disks are always equipped with this collar.
On the sphere Sd , let gd◦ = g◦ ∈ R+(Sd) and hd−1◦ = h◦ ∈ R+(Sd−1) be

the ordinary metrics of Euclidean spheres of radius 1 (of positive scalar cur-
vature as long as the sphere has dimension at least 2)1. Let gdhemi be the metric
on Dd which comes from identifying Dd ⊂ R

d with the lower hemisphere of
Sd ⊂ R

d+1 via

Dd −→ Sd

x �−→ (x,−
√
1 − |x |2)

and taking gd◦ under this identification. (Note that gdhemi does not have a product
form near the boundary of Dd .)

We say that a rotation-invariant psc-metric g on Dd is a torpedo metric if

(i) b∗(g) agrees with the product metric hd−1◦ + dt2 near Sd−1 × {0},
(ii) g agrees with gdhemi near the origin.

We fix a torpedo metric gdtor on Dd once and for all (for each d ≥ 3). In [55,
§2.3], it is proved that gdtor can be chosen to have the following extra property:
the metric on Sd obtained by gluing together two copies of gdtor on the upper
and lower hemispheres is isotopic to gd◦ . Such a metric on Sd will be called a
double torpedo metric and denoted by gddtor.

2.3.2 Spaces of metrics which are standard near a submanifold

Let W be a compact manifold of dimension d with boundary M , equipped
with a collar b : M × (−1, 0] → W . Let X be a closed (k − 1)-dimensional
manifold and φ : Xk−1 × Dd−k+1 → Wd be an embedding, and suppose that
φ and b are disjoint. Let gX ∈ R(X) be a Riemannian metric, not necessarily
of positive scalar curvature. However, we assume that the metric gX + gd−k+1

tor

1 The notation g versus h carries no mathematical meaning, but we typically use g’s for metrics
on a cobordism and h’s for metrics on the boundary of a cobordism.
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on X × Dd−k+1 has positive scalar curvature (this is the case for example if
gX has non-negative scalar curvature). Fix h ∈ R+(M) and let

R+(W ;φ, gX )h ⊂ R+(W )h

be the subspace of those metrics g such that φ∗g = gX + gd−k+1
tor . We call this

the space of psc metrics on W which are standard near X . One of the main
ingredients of the proof of Theorem B is the following result, due to Chernysh
[12]. A different proof was later given by Walsh [56].

Theorem 2.4 (Chernysh, Walsh) If d − k + 1 ≥ 3, then the inclusion map

R+(W ;φ, gX )h −→ R+(W )h

is a homotopy equivalence.

Both authors state the result when the manifold W is closed. However, the
deformations of the metrics appearing in the proof take place in a given tubular
neighbourhood of X , and therefore the global structure of W does not play a
role. The precursor of Theorem 2.4 is the famous surgery theorem of Gromov
and Lawson [23]: ifR+(W )h is nonempty, thenR+(W ;φ, gX )h is nonempty.
Onemight state this by saying that the inclusionmap is (−1)-connected. Gajer
[18] showed that the inclusion map is 0-connected, i.e. that each psc metric on
W is isotopic to one which is standard near X .

2.3.3 Cobordism invariance of the space of psc metrics

The original application of Theorem 2.4 was to show that for a closed, simply-
connected, spin manifold W of dimension at least 5, the homotopy type of
R+(W ) only depends on the spin cobordism class ofW . We recall the precise
statement and its proof.

Theorem 2.5 (Chernysh, Walsh) Let W : M0 � M1 be a compact d-
dimensional cobordism, φ : Sk−1 × Dd−k+1 → int W be an embedding,
and W ′ be the result of surgery along φ. Fix hi ∈ R+(Mi ). If 3 ≤ k ≤ d − 2
then there is a homotopy equivalence

SEφ : R+(W )h0,h1 � R+(W ′)h0,h1 .

Furthermore, the surgery datum φ determines a preferred homotopy class of
SEφ .

ThemapSEφ is called the surgery equivalence induced by the surgery datum
φ.
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Proof Since the surgery is in the interior of W , the boundary of W and the
metric on ∂W are not affected. Sowemay, for typographical simplicity, assume
that W is closed. Let W ◦ := W \ φ(Sk−1 × int(Dd−k+1)), a manifold with
boundary Sk−1 × Sd−k , and let

W ′ = W ◦ ∪Sk−1×Sd−k (Dk × Sd−k)

be the result of doing a surgery on φ to W . There is a canonical embedding
φ′ : Dk × Sd−k → W ′, and if we do surgery on φ′, we recover W . Note
that the restriction of the psc metric gk−1◦ + gd−k+1

tor on Sk−1 × Dd−k+1 to the
boundary Sk−1 × Sd−k is gk−1◦ + gd−k◦ , by the definition of a torpedo metric.
Similarly, the restriction of the psc metric gktor + gd−k◦ on Dk × Sd−k to the
boundary is gk−1◦ + gd−k◦ . Therefore we get maps

R+(W ;φ, gk−1◦ )

ι0

∼=R+(W ′;φ′, gd−k◦ )

ι1

R+(W ) R+(W ′)

(2.1)

By Theorem 2.4, the map ι0 (ι1, respectively) is a homotopy equivalence if
d − k + 1 ≥ 3 (if k ≥ 3, respectively). ��

The cobordism invariance of the space R+(W ) for closed, simply-
connected, spin manifolds of dimension at least five follows by the same use
of Smale’s handle cancellation technique as in [23].

2.3.4 Existence of stabilising metrics

We use Theorem 2.4 to deduce the existence of psc metrics g on certain cobor-
disms K such that the gluing map μg is a homotopy equivalence.

Theorem 2.6 Let d ≥ 5 and Md−1 be a closed simply-connected spin man-
ifold. Let K : M � M be a cobordism which is simply-connected and spin,
and which is in turn spin cobordant to [0, 1] × M relative to its boundary.
Then for any boundary condition h ∈ R+(M) there is a g ∈ R+(K )h,h with
the following property: if W : N0 � M and V : M � N1 are cobordisms,
and hi ∈ R+(Ni ) are boundary conditions, then the two gluing maps

μ(−, g) : R+(W )h0,h −→ R+(W ∪M K )h0,h

μ(g,−) : R+(V )h,h0 −→ R+(K ∪M V )h,h0

are homotopy equivalences.
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Proof By assumption there is a relative spin cobordism Xd+1 from K to
[0, 1] × M . Since dim(X) ≥ 6, by doing surgery in the interior of X we
can achieve that X is 2-connected, so the inclusions [0, 1] × M → X and
K → X are both 2-connected maps. By an application of Smale’s handle
cancellation technique to X , we can assume that the cobordism X is obtained
by attaching handles of index 3 ≤ k ≤ d − 2 to the interior of either of its
boundaries. (A reference which discusses handle cancellation for cobordisms
between manifolds with boundary is [54].)

Let g ∈ R+(K )h,h be a psc metric, and φ : Sk−1 × Dd−k+1 ↪→ K be
a piece of surgery data in the interior of K such that surgery along it yields
a manifold K ′ (this corresponds to a surgery of index k) and suppose that
3 ≤ k ≤ d − 2. Let g′ ∈ R+(K ′)h,h be in the path component corresponding
to that of g under the surgery equivalence SEφ : R+(K )h,h � R+(K ′)h,h of
Theorem 2.5.

As in the proof of Theorem 2.5 there is a commutative diagram

R+(W )h0,h × R+(K )h,h R+(W ∪ K )h0,h

R+(W )h0,h × R+(K ;φ, gk−1◦ )h,h R+(W ∪ K ;φ, gk−1◦ )h0,h

R+(W )h0,h × R+(K ′)h,h R+(W ∪ K ′)h0,h

where all the vertical maps are homotopy equivalences (since 2 ≤ k − 1 ≤
d − 3). Thus gluing on the metric g ∈ R+(K )h,h from the right induces
a homotopy equivalence if and only if gluing on the corresponding metric
g′ ∈ R+(K ′)h,h does. The same is true for gluing in metrics from the left.

Gluing ([0, 1] × M, dt2 + h) on to either side induces a homotopy equiv-
alence, by Corollary 2.2. By Theorem 2.5 the cobordism X induces a surgery
equivalence R+(K )h,h � R+([0, 1] × M)h,h , so if we let g ∈ R+(K )h,h
be in a path component corresponding to that of h + dt2 under the surgery
equivalence then gluing on (K , g) from either side also induces a homotopy
equivalence, as required. ��

3 The secondary index invariant

This chapter contains the index theoretic arguments that go into the proof of
our main results. We begin by stating our framework for K -theory in Sect. 3.1.
Then we recall the basic properties of the Dirac operator on a spin manifold
and on bundles of spin manifolds, including those with noncompact fibres, in
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Sect. 3.2. These analytical results allow the definition of the secondary index
invariant, inddiff, to be presented in Sect. 3.3.

Conceptually simple as the definition of inddiff is, it seems to be impossible
to compute directly. The purpose of the rest of this chapter is to provide com-
putational tools. One computational strategy is to use the additivity property
of the index, which results in a cut-and-paste property for the index differ-
ence. This is done in Sect. 3.4. The other computational strategy is to relate
the secondary index to a primary index. In Sect. 3.5, we describe the abstract
setting necessary to carry out such a comparison. This is then applied in two
different situations. The first is the passage from even to odd dimensions, in
other words the derivation of Theorem C from Theorem B, which is carried
out in Sect. 3.6. The second situation in which we apply the general compari-
son pattern is when we compute the index difference by a family index in the
classical sense. This will be essential for the proof of Theorem B, and is done
in Sect. 3.8. The classical index can be computed using the Atiyah–Singer
index theorem for families of Clifford-linear differential operators, which we
first discuss in Sect. 3.7. Also in Sect. 3.8, the index theorem is interpreted in
homotopy-theoretic terms, and there, another key player of this paper enters
the stage: the Madsen–Tillmann–Weiss spectra.

3.1 Real K-theory

The homotopy theorists’ definition of real K -theory is in terms of the periodic
K -theory spectrum KO. By definition, theKO-groups of a CW-pair (X, Y ) are
given by

KOk(X, Y ) := [(X, Y ), (�∞−kKO, ∗)].
In general, as is usual in homotopy theory, one first replaces a space pair by a
weakly equivalent CW-pair to which one applies the above definition, but in
Sects. 3 and 4 we shall take care to only apply it to pairs of the homotopy type
of CW-pairs.

The specific choice of a model for KO is irrelevant, as long as one considers
only spaces having the homotopy type of CW complexes. For index theoretic
arguments, we use the Fredholm model, which we now briefly describe. Our
model is a variant of a classical result by Atiyah–Singer [7] and Karoubi [31].
More details and further references can be found in [17, §2]. We begin by
recalling some subtleties concerning Hilbert bundles and their maps.
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3.1.1 Hilbert bundles

Let X be a space (usually paracompact andHausdorff) and let H → X be a real
or complex Hilbert bundle. For us, a Hilbert bundle will always have separable
fibres and the unitary group with the compact-open topology as a structure
group. An operator family F : H0 → H1 is a fibre-preserving, fibrewise linear
continuousmap. It is determined by a collection (Fx )x∈X of bounded operators
Fx : (H0)x → (H1)x . Some care is necessary when defining properties of the
operator family F by properties of the individual operators Fx . We will recall
the basic facts and refer the reader to [17, §2.3] for a more detailed discussion.
An operator family F is adjointable if the collection of adjoints (F∗

x ) also is an
operator family. The algebra of adjointable operator families on H is denoted
by LinX (H). There is a notion of a compact operator family which is due to
Dixmier–Douady [15, §22]; the set of compact operator families is denoted
KomX (H) and is a ∗-ideal in LinX (H). A Fredholm family is an element in
LinX (H) which is invertible modulo KomX (H).

The reader is warned that being compact (or Fredholm) is a stronger con-
dition on an operator family F than just saying that all Fx are compact (or
Fredholm), and it can be difficult to check in concrete cases. To prove that a
given operator family is compact (or invertible, or Fredholm), one can use the
following sufficient criterion [17, Lemma 2.16]. To state the criterion, let us
say that F : H0 → H1 is locally norm-continuous if each point x ∈ X admits
a neighborhoodU and trivialisations of Hi |U such that in this trivialisation, F
is given by a continuous map U → Lin((H0)x , (H1)x ) (with the norm topol-
ogy in the target). If F is locally norm-continuous and each Fx is compact
(or invertible, or Fredholm), then F is compact (or invertible, or Fredholm),
at least when the base space X is paracompact. One has to keep in mind that
local norm-continuity always refers to a specific local trivialization. Therefore,

the composition H0
F0→ H1

F1→ H2 of two locally norm-continuous operator
families is again locally norm-continuous only if F0 and F1 are locally norm
continuous with respect to the same local trivialization of H1.

3.1.2 Clifford bundles

Definition 3.1 Let V → X be a Riemannian vector bundle and let τ : V → V
be a self-adjoint involution on V . A Cl(V τ )-Hilbert bundle over K = R or C

is a triple (H, ι, c), where H → X is a K-Hilbert bundle (always assumed to
have separable fibres), ι is a Z/2-grading (i.e. a self-adjoint involution) on H
and c = (cx )x∈X is a collection of linear maps cx : Vx → Lin(Hx ) such that

(i) For all v, v′ ∈ Vx , the following identities hold:
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cx (v)ι+ ιcx (v) = 0

cx (v)
∗ = −cx (τv)

cx (v)cx (v
′)+ cx (v

′)cx (v) = −2〈v, τv′〉.
(ii) If s ∈ �(X; V ) is a continuous section, then the collection (cx (s(x))x∈X

of bounded operators is an element of LinX (H).

To ease notation, we typically write c(v) := cx (v). If the grading and
Clifford multiplication is understood, we denote a Cl(V τ )-Hilbert bundle
simply by the letter H . The opposite Cl(V τ )-Hilbert bundle has the same
underlying Hilbert bundle, but the Clifford multiplication and grading are
replaced by −c and −ι. We write “Cl(V+ ⊕ W−)-Hilbert bundle” when
the involution τ(v,w) = (v,−w) on V ⊕ W is considered. We denote by
R

p,q the space R
p+q , with the standard scalar product and the involution

τ(v,w) = (v,−w), v ∈ R
p, w ∈ R

q (note that this convention differs
from that in [4], we think it is easier to memorise). We abbreviate the term
“Cl((X × R

p)+ ⊕ (X × R
q)−)-Hibert bundle” to “Clp,q -Hilbert bundle”.

Instead of “finite-dimensional Cl(V+ ⊕ W−)-Hilbert bundle”, we will rather
say Cl(V+ ⊕ W−)-module. A Clp,q -Fredholm family is a Fredholm family
such that F ι = −ιF and Fc(v) = c(v)F for all v ∈ R

p,q .

3.1.3 K -theory

We denote the product of pairs of spaces by

(X, Y )× (A, B) := (X × A, X × B ∪ Y × A).

A (p, q)-cycle on X is a tuple (H, ι, c, F), consisting of a Clp,q -Hilbert bun-
dle and a Clp,q -Fredholm family. If Y ⊂ X is a subspace, then a relative
(p, q)-cycle is a (p, q)-cycle (H, ι, c, F)with the additional property that the
family F |Y is invertible. Clearly (p, q)-cycles can be pulled back along con-
tinuous maps, and there is an obvious notion of isomorphism of (p, q)-cycles
and of direct sum of finitely many (p, q)-cycles. A concordance of relative
(p, q)-cycles (Hi , ιi , ci , Fi ), i = 0, 1 on (X, Y ) consists of a relative (p, q)-
cycle (H, ι, c, F) on (X, Y ) × [0, 1] and isomorphisms (H, ι, c, F)|X×{i} ∼=
(Hi , ιi , ci , Fi ). A (p, q)-cycle (H, ι, c, F) is acyclic if F is invertible. Often,
we abbreviate (H, ι, c, F) to (H, F) if there is no risk of confusion. Occa-
sionally, we write x �→ (Hx , Fx ) to describe a (p, q)-cycle on X .

Definition 3.2 Let X be a paracompact Hausdorff space and Y ⊂ X be a
closed subspace. The group F p,q(X, Y ) is the quotient of the abelian monoid
of concordance classes of relative (p, q)-cycles, divided by the submonoid of
those concordance classes which contain acyclic (p, q)-cycles.
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The monoid so obtained is in fact a group, and the additive inverse is given
by

− [H, ι, c, F] = [H,−ι,−c, F], (3.1)

see [17, Lemma 2.19].
We let (I, ∂I) := ([−1, 1], {−1, 1}) and use the following notation:

�F p,q(X, Y ) := F p,q((X, Y )× (I, ∂I)).

Bott periodicity [17, §2.4] in this setting states that the map

bott : F p,q(X, Y ) −→ �F p−1,q(X, Y ) (3.2)

(H, F) �−→ ((x, s) �→ (Hx , Fx + sιxc(e1)x )) (3.3)

is an isomorphism of abelian groups (here ei denotes the i th basis vector of
R

p). By iteration, we get an isomorphism

F p,0(X, Y ) −→ �pF0,0(X, Y ). (3.4)

3.1.4 Classifying spaces and relation to the homotopical definition of
K -theory

In this section we shall explain the relation between F p,q and the KO-groups,
and in particular produce a comparison map F p,q(X, Y ) → KOq−p(X, Y ).

First, we recall a classical result by Atiyah–Singer [7] and Karoubi [31]. A
Clp,q -Hilbert space is ample if it contains any finite-dimensional irreducible
Clp,q -Hilbert space with infinite multiplicity, and we fix such an ampleClp,q -
Hilbert space U . Let Fredp,q be the space of Clp,q -Fredholm operators on U ,
with the norm topology and let Gp,q ⊂ Fredp,q be the (contractible) space
of invertible operators. These spaces are open subsets of Banach spaces and
hence are paracompact and have the homotopy type of CW complexes, by [41,
Theorem 13] and [26, Proposition A.11]. There is a map

bott : Fredp,q −→ map((I, ∂I), (Fredp−1,q ,Gp−1,q)) � �Fredp−1,q ,

defined by a formula analogous to 3.2 and themain result of [7] asserts that it is
a homotopy equivalence. Moreover, it is proven in [7] that there are homotopy
equivalences

(Fredp,q ,Gp,q) � (�∞+p−qKO, ∗)
of space pairs. In [17, DefinitionA.3], a coarser topology on Fredp,q is defined,
and with the new topology, the space pair is denoted (K p,q , Dp,q). We have
the following comparison result.
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Theorem 3.3 ([17, Theorem 2.21 and Theorem 2.22])

(i) There is a natural map [(X, Y ); (K p,q , Dp,q)] → F p,q(X, Y ) which is
bijective if X is paracompact and compactly generated and if Y ⊂ X is
closed.

(ii) The identity map (Fredp,q ,Gp,q) → (K p,q , Dp,q) is a weak equivalence
of pairs.

Hence there are maps

KOq−p(X, Y ) ←− [(X, Y ); (Fredp,q ,Gp,q)]
−→ [(X, Y ); (K p,q , Dp,q)] −→ F p,q(X, Y )

which are isomorphisms when (X, Y ) has the homotopy type of a CW pair.
Therefore for such a pair (X, Y ) and any class b ∈ F p,q(X, Y ), we obtain a
homotopy class of maps (X, Y ) → (�∞+p−qKO, ∗), the homotopy-theoretic
realisation of b. We shall use these isomorphisms to abuse notation slightly,
and for pairs with the homotopy type of CW-pairs we shall from now on write
KO−p(X, Y ) = F p,0(X, Y ).

For a general paracompact space pair (X, Y ), we at least have a comparison
map F p,q(X, Y ) → KOq−p(X, Y ): a CW approximation (X ′, Y ′) → (X, Y )
induces a map F p,q(X, Y ) → F p,q(X ′, Y ′) ∼= KOq−p(X ′, Y ′), and the latter
group is isomorphic to KOq−p(X, Y ), by the homotopy-theoretic definition
of the KO-groups. We will use the comparison map to identify elements in
F p,q(X, Y ) with their image in KOq−p(X, Y ). That the comparison map is
not an isomorphism in full generality does not matter to us, since we only use
it to construct elements in KOq−p(X, Y ) out of analytical data.

3.2 Generalities on Dirac operators

3.2.1 The spin package

A basic reference for spin vector bundles and associated constructions is [35,
§II.7]. Let V → X be a real vector bundle of rank d. A topological spin
structure is a reduction of the structure group of V to the group G̃L

+
d (R), the

connected 2-fold covering group of the group GL+
d (R) of matrices of positive

determinant. In the presence of a Riemannian metric on V , a topological spin
structure induces a reduction of the structure group to Spin(d), which is the
familiar notion of a spin structure. Explicitly, a spin structure is given by a
Spin(d)-principal bundle P → X and an isometry η : P ×Spin(d) R

d ∼= V .
From a spin structure on V , one can construct a fibrewise irreducible real
Cl(V+ ⊕ R

0,d)-module /SV , the spinor bundle. One can reconstruct P and η
from /SV , and it is often more useful to view the spinor bundle /SV as the more
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fundamental object. The opposite spin structure /Sop
V has the same underlying

vector bundle as /SV and the same Clifford multiplication, but the grading is
inverted (note that this is not the opposite bundle in the sense of the previous
section). If V = T M is the tangent bundle of a Riemannian manifold Md

with metric g, we denote spin structures typically by /SM . There is a canonical
connection ∇ on /SM derived from the Levi-Civita connection on M . The
spin Dirac operator /D = /Dg acts on sections of /SM and is defined as the
composition

�(M; /SM)
∇−→ �(M; T M ⊗ /SM)

c−→ �(M; /SM).

It is a linear formally self-adjoint elliptic differential operator of order 1, which
anticommutes with the grading and Clifford multiplication by R

0,d . We can
change the Cl0,d -multiplication on /SM to a Cld,0-multiplication by replacing
c(v) by ιc(v). With this new structure, /D becomes Cld,0-linear. Passing to the
opposite spin structure leaves the operator /D unchanged, but changes the sign
of the grading and of theCld,0-multiplication. The relevance of the Dirac oper-
ator to scalar curvature stems from the well-known Schrödinger–Lichnerowicz
formula (also known as Lichnerowicz–Weitzenböck formula) [47], [36], or [35,
Theorem II.8.8]:

/D
2 = ∇∗∇ + 1

4
scal(g). (3.5)

3.2.2 The family case

We need to study the Dirac operator for families of manifolds and also for
nonclosed manifolds. Let X be a paracompact Hausdorff space. We study
bundles π : E → X of possibly noncompact manifolds with d-dimensional
fibres.Thefibres ofπ are denoted Ex := π−1(x). Thevertical tangent bundle is
TvE → E and we always assume implicitly that a (topological) spin structure
on TvE is fixed (then of course the fibres are spin manifolds). A fibrewise
Riemannianmetric (gx)x∈X on E then gives rise to the spinor bundle /SE → E ,
a Cl((TvE)+ ⊕ R

0,d)-module. The restriction of the spinor bundle to the fibre
over x is denoted /Sx → Ex , and the Dirac operator on Ex is denoted /Dx .
Whenwe consider bundles of noncompact manifolds, they are always required
to have a simple structure outside a compact set.

Definition 3.4 Letπ : E → X be a bundle of noncompact d-dimensional spin
manifolds. Let t : E → R be a fibrewise smooth function such that (π, t) :
E → X×R is proper. Let a0 < a1 : X → [−∞,∞] be continuous functions.
Abusing notation, we denote X × (a0, a1) = {(x, s) ∈ X × R | a0(x) < s <
a1(x)} and E(a0,a1) := (π, t)−1(X×(a0, a1)). For a closed (d−1)-dimensional
spin manifold M , we consider the trivial bundle X × R × M → X , with the
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obvious projection map to R. We say that E is cylindrical over (a0, a1) if the
projection map E(a0,a1) → X × (a0, a1) is a smooth fibre bundle and if there
is a (d − 1)-dimensional spin manifold M such that there is an isomorphism
E(a0,a1) ∼= (X × R × M)(a0,a1) of spin manifold bundles over X × (a0, a1).
The bundle is said to have cylindrical ends if there are functions a−, a+ :
X → R such that E is cylindrical over (−∞, a−) and (a+,∞). A fibrewise
Riemannian metric g = (gx )x∈X on E is called cylindrical over (a0, a1) if
gx = dt2 + hx for some metric hx on M , over (a0, a1). We always consider
Riemannian metrics which are cylindrical over the ends. We say that a bundle
with cylindrical ends and metrics has positive scalar curvature at infinity if
there is a function ε : X → (0,∞), such that the metrics on the ends of Ex
have scalar curvature ≥ ε(x).

Any bundle of closed manifolds, equipped with an arbitrary function t ,
tautologically has cylindrical ends andpositive scalar curvature at infinity.Note
that the fibres of a bundle with cylindrical ends are automatically complete
in the sense of Riemannian geometry. Fibre bundles π : E → X of spin
manifolds with boundary can be fit into the above framework by a construction
called elongation.

Definition 3.5 Let π : E → X be a bundle of compact manifolds with col-
lared boundary, and assume that the boundary bundle is trivialised: ∂E =
X × N as a spin bundle. Let g = (gx )x∈X be a fibrewise metric on E so that
gx is of the form dt2 + hx near the boundary, for psc metrics hx ∈ R+(N ).
The elongation of (E, g) is the bundle Ê = E ∪∂E (X × [0,∞) × N ), with
the metric (dt2 + hx ) on the added cylinders. The elongation has cylindrical
ends and positive scalar curvature at infinity.

3.2.3 Analysis of Dirac operators

Let E → X be a spin manifold bundle, equipped with a Riemannian metric g,
andwith cylindrical ends. Let L2(E; /S)x be theHilbert space of L2-sections of
the spinor bundle /Sx → Ex . These Hilbert spaces assemble to aCld,0-Hilbert
bundle on X . TheDirac operator /Dx is a densely defined symmetric unbounded
operator on theHilbert space L2(Ex ; /Sx ), with initial domain�c(Ex , /Sx ), the
space of compactly supported sections. The domain of its closure is the Sobolev
space W 1(Ex ; /Sx ), and the closure of /Dx is self-adjoint (this is true because
Ex is a complete manifold). Thus we can apply the functional calculus for
unbounded operators to form f ( /Dx ), for (say) continuous bounded functions
f : R → C. In particular, we can take f (x) = x

(1+x2)1/2
and obtain the

bounded transform
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Fx := /Dx

(1 + /Dx
2
)1/2

.

From now on, we make the crucial assumption that the scalar curvature of g
is positive at infinity. This has the effect that /Dx

(1+ /Dx
2
)1/2

is a bounded Cld,0-

Fredholm operator. The collection of operators (Fx )x∈X is a Cld,0-Fredholm
family over X , which is moreover locally norm-continuous in the sense of
Sect. 3.1.1. These are standard facts, we refer to [17, §3.1] for detailed proofs
geared to fit into the present framework. Furthermore, if for each y ∈ Y ⊂ X
the metric gy has positive scalar curvature (on all of Ey , not only at the ends),
then the operator /Dy has trivial kernel, by the Bochner method using the
Schrödinger–Lichnerowicz formula (3.5), cf. [35, II Corollary 8.9]. Conse-
quently, the operator Fy is invertible for all y ∈ Y .

Definition 3.6 Let X be a paracompact Hausdorff space and Y ⊂ X be a
closed subspace. Let π : E → X be a bundle of Riemannian spin manifolds
with cylindrical ends and positive scalar curvature at infinity, with metric g.
We denote by Dir(E, g) the (d, 0)-cycle x �→ (L2(Ex , /SEx ), Fx ) and by
ind(E, g) its class in KO−d(X). If it is understood that the metric gy has
positive scalar curvature for all y ∈ Y , we use the same symbol to denote the
class in the relative K -group KO−d(X, Y ).

When we meet a bundle with boundary, by the symbols Dir(E, g) and
ind(E, g) we always mean the index of the elongated manifolds.

Lemma 3.7 Let π : E → X be a spin manifold bundle with cylindrical ends
and let g0, g1 be fibrewise metrics which both have positive scalar curvature
at infinity. Assume that g0 and g1 agree on the ends. Let Y ⊂ X and assume
that g0 and g1 agree over Y and have positive scalar curvature there. Then
ind(E, g0) = ind(E, g1) ∈ KO−d(X, Y ).

Proof This follows from the homotopy invariance of the Fredholm index or by
considering the metric (1− t)g0 + tg1 on the product bundle E × I → X × I ,
which gives a concordance of cycles. ��
In particular, if the fibres of π are closed and if Y = ∅, then ind(E, g) ∈
KO−d(X) does not depend on g at all. This observation justifies the notation
ind(E) ∈ KO−d(X) for closed bundles and ind(E, g) ∈ KO−d(X) when E is
a bundle with cylindrical ends, and the pscmetric g is only defined on the ends.
In that case, g = dt2 + h, and we could also write ind(E, h), emphasising the
role of h as a boundary condition. Finally, we remark that if we pass to the
opposite bundle Eop → X (with the opposite spin structure), then

ind(Eop, g) = −ind(E, g). (3.6)
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This follows from the definition of the opposite spin structure given in Sect.
3.2.1 and from the formula (3.1) for the additive inverse of a K -theory class.

3.3 The secondary index invariants

We now define the secondary index invariant, the index difference. There are
two definitions of this invariant which we will consider. The first one is due to
Hitchin [29] and we take it as the main definition.

3.3.1 Hitchin’s definition

Let W be a manifold with collared boundary M , and let h ∈ R+(M). On
the space I × R+(W )h × R+(W )h , we consider the elongation of the trivial
bundle with fibreW , and introduce the following fibrewise Riemannian metric
g: on the fibre over (t, g0, g1) it is 1−t

2 g0 + 1+t
2 g1 (since both metrics agree

on M , this has positive scalar curvature at infinity). For t = ±1, this metric
has positive scalar curvature and thus applying the results from the previous
section, we get an element

inddiff := ind(I × R+(W )h × R+(W )h × W, g)

∈ �KO−d(R+(W )h × R+(W )h,�) (3.7)

(where � is the diagonal) which is the path space version of the index differ-
ence.

Remark 3.8 One can phrase this construction in a slightly imprecise but con-
ceptually enlighteningway.Eachpair (g0, g1)of pscmetrics defines a path t �→
/D 1−t

2 g0+ 1+t
2 g1

in Fd,0, which for t = ±1 is invertible, and hence in the con-

tractible subspace Dd,0. The space of all paths γ : (I, {±1}) → (Fd,0, Dd,0)

is homotopy equivalent to the loop space �Fd,0. Since the spinor bundle
depends on the underlying metric and thus the operators /D 1−t

2 g0+ 1+t
2 g1

do not
act on the same Hilbert space, this does not strictly make sense.

If we keep a basepoint g ∈ R+(W )h fixed, we get an element

inddiffg ∈ �KO−d(R+(W )h, g)

by fixing the first variable. Using Theorem 3.3, we can represent this element
in a unique way by a homotopy class of pointed maps

inddiffg : (R+(W )h, g) −→ (�∞+d+1KO, ∗).
Remark 3.9 Note that it is important that the metrics are fixed on M , since
otherwise the metrics 1−t

2 g0 + 1+t
2 g1 might not have positive scalar curvature

123



Infinite loop spaces and positive scalar curvature 777

at infinity. In fact, if ∂W �= ∅, then there does not exist an extension of the
map inddiffg to R+(W ) ⊃ R+(W )h , see Corollary 3.25 below.

3.3.2 Gromov–Lawson’s definition

The second version of the index difference is due to Gromov and Lawson [24],
and we will use it as a computational tool. We define it (and use it) only for
closed manifolds. LetW be a d-dimensional closed manifold and consider the
trivial bundle over R+(W ) × R+(W ) with fibre R × W . Choose a smooth
function ϕ : R → [0, 1] that is equal to 0 on (−∞, 0] and equal to 1 on [1,∞).
Equip the fibre over (g0, g1) with the metric h(g0,g1) := dt2 + (1− ϕ(t))g0 +
ϕ(t)g1, which has positive scalar curvature at infinity and so gives an element

inddiffGL := ind(R+(W )× R+(W )× R × W, h)

∈ KO−d−1(R+(W )× R+(W ),�) (3.8)

(the degree shift appears since R × W has dimension d + 1). Again, we
obtain inddiffGLg ∈ KO−d−1(R+(W ), g) by fixing a basepoint. The homotopy-
theoretic realisations of both index differences are maps of pairs

inddiff, inddiffGL : (R+(W )× R+(W ),�) −→ (�∞+d+1KO, ∗). (3.9)

The following theorem answers the obvious question whether both definitions
of the index difference yield the same answer. It will be the main ingredient for
the derivation of Theorem C from Theorem B. It follows from a generalisation
of the classical spectral flow index theorem [43] to the Clifford-linear family
case.

Theorem 3.10 (Spectral flow index theorem [17]) For each closed spin man-
ifold W, the two definitions of the secondary index invariant agree, i.e. the
maps (3.9) are weakly homotopic (cf. Definition 1.1).

3.4 The additivity theorem

An efficient tool to compute the secondary index invariant is the additivity
theorem for the index of operators on noncompactmanifolds. There are several
versions of this result in the literature, but the version that is most useful for
our purposes is due to Bunke [11].

3.4.1 Statement of the additivity theorem

Assumption 3.11 Let X be a paracompact Hausdorff space. Let E → X and
E ′ → X be two Riemannian spin manifold bundles of fibre dimension d with
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metrics g and g′ and with cylindrical ends, such that E and E ′ have positive
scalar curvature at infinity.Assume that there exist functions a0 < a1 : X → R

such that E and E ′ are cylindrical over X×(a0, a1) and agree there: E(a0,a1) =
E ′
(a0,a1)

(more precisely, we mean that there exists a spin-preserving isometry
of bundles of closed manifolds over X × (a0, a1)). Assume that the scalar
curvature on E(a0,a1) is positive. Let

E0 = E(−∞,a1); E1 = E(a0,∞); E2 = E ′
(−∞,a1); E3 = E ′

(a0,∞)

and define Ei j := Ei ∪ E j for (i, j) ∈ {(0, 1), (2, 3), (0, 3), (2, 1)}. Note that
E = E01 and E ′ = E23. These are bundles of spin manifolds with cylindrical
ends, having positive scalar curvature at infinity.

Theorem 3.12 (Additivity theorem) Under Assumptions 3.11, we have

ind(E01)+ ind(E23) = ind(E03)+ ind(E21) ∈ KO−d(X).

Furthermore, if both bundles E01 and E23 have positive scalar curvature over
the closed subspace Y ⊂ X, then the above equation holds in KO−d(X, Y ).

If X = ∗, this is due to Bunke [11], and the case of arbitrary X and Y = ∅
is straightforward from his argument. For the case Y �= ∅, we need to give
an additional argument, and this forces us to go into some details of Bunke’s
proof. Furthermore, the setup used by Bunke is slightly different from ours
(cf. §1.1 loc.cit.), and so we decided to sketch the full proof here.

3.4.2 The proof of the additivity theorem

Using (3.6), we have to prove that

ind(E01)+ ind(E23)+ ind(Eop
03 )+ ind(Eop

21 ) = 0 ∈ KO−d(X). (3.10)

Let Hi j := L2(Ei j ; /S) be the Hilbert bundle on X associated with the bundle
Ei j . The sum of the indices showing up in (3.10) is represented by the tuple
(H, ι, c, F); the graded Cld,0-bundle is H := H01 ⊕ H23 ⊕ H03 ⊕ H21, with
Clifford action, involution, and operator given by
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c :=

⎛

⎜
⎜
⎝

c01
c23

−c03
−c21

⎞

⎟
⎟
⎠ ι :=

⎛

⎜
⎜
⎝

ι01
ι23

−ι03
−ι21

⎞

⎟
⎟
⎠

D :=

⎛

⎜
⎜
⎝

/D01
/D23

/D03
/D21

⎞

⎟
⎟
⎠ F := D

(1 + D2)1/2
.

Pick smooth functions λ0, μ0 : R → [0, 1] with supp(λ0) ⊂ [0,∞),
supp(μ0) ⊂ (−∞, 1] and μ2

0 + λ20 = 1; we can choose them to have
|λ′

0|, |μ′
0| ≤ 2. We obtain functions μ, λ : X × R → [0, 1] by μ(x, t) =

μ0(
t−a0(x)

a1(x)−a0(x)
) and λ(x, t) = λ0(

t−a0(x)
a1(x)−a0(x)

). The formula

J0 :=

⎛

⎜
⎜
⎝

−μ −λ
−λ μ

μ λ

λ −μ

⎞

⎟
⎟
⎠

defines an operator on H (the interpretation should be clear: for example,
multiplying a spinor over E01 by μ gives a spinor with support in E0, and we
can transplant it to E03). Then J := J0ι is an odd, Cld,0-linear involution.

Bunke proves that the anticommutatorFJ+JF is compact (stated and proved
as Lemma 3.14 below), whence

s �−→ cos(s)F + sin(s)J (3.11)

defines a homotopy from F to J ; since J is invertible, the element
[H, ι, c, F] ∈ KO−d(X) is zero, which proves Theorem 3.12 for Y = ∅.
Assume that the scalar curvature is positive over Y ⊂ X , so that F is
invertible over Y . If the homotopy (3.11) would go through invertible oper-
ators over Y , the proof of Theorem 3.12 would be complete. However,
s �→ cos(s)F + sin(s)J is not in general invertible if F is, and so we have to
adjust this homotopy.

Lemma 3.13 There exists C > 0 with the following property. Let x ∈ X and

x := a1(x)− a0(x) be the length of the straight cylinder in the middle. Then
‖Fx Jx + Jx Fx‖ ≤ C


x
.

Proof We ease notation by dropping the subscript x . First, compute the anti-
commutator
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P := DJ + J D =

⎛

⎜
⎜
⎝

−μ′ −λ′
−λ′ μ′

μ′ λ′
λ′ −μ′

⎞

⎟
⎟
⎠ eι,

where e denotes Clifford multiplication by the unit vector field ∂t on E . The
functionsμ and λ have been chosen so that |μ′|, |λ′| ≤ 2/
. Thus DJ + J D is

bounded, and ‖DJ + J D‖ ≤ 2
√
2



. As in [11], we write FJ+JF as an integral,

starting with the absolutely convergent integral

1

(1 + D2)1/2
= 2

π

∫ ∞

0
(1 + D2 + t2)−1dt ∈ Lin(L2(Ex , /Sx )).

Let Z(t) := (1 + D2 + t2)−1. For each u ∈ W 1(Ex ; /Sx ), we get

(FJ + JF)u = 2

π

∫ ∞

0
(Z(t)DJ + J Z(t)D)udt ∈ L2(Ex , /Sx ), (3.12)

and we claim that the formula

FJ + JF = 2

π

∫ ∞

0
Z(t)DJ + J Z(t)Ddt ∈ Lin(L2(Ex , /Sx )) (3.13)

is true and the integral is absolutely convergent. To prove this, it is enough
to show that the integral (3.13) converges absolutely, the equality then fol-
lows from (3.12). The operator Z(t)DJ + J Z(t)D is bounded, and we
estimate its norm as follows. Note that Z(t) and D commute. Thus Z(t)DJ +
J Z(t)D = Z(t)P+[J, Z(t)]D. Moreover, [J, Z(t)] = Z(t)[Z(t)−1, J ]Z(t)
and [Z(t)−1, J ] = DP − PD. Altogether, this shows that the integrand can
be written as

Z(t)DJ + J Z(t)D = Z(t)P − Z(t)PD2Z(t)+ Z(t)DPZ(t)D (3.14)

(these formal computations can be justified by restricting to the dense
domains). We have the following estimates:

‖Z(t)‖ ≤ 1

1 + t2

‖D2Z(t)‖ ≤ 1

‖Z(t)D‖ ≤ 1

2
√
1 + t2

.
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The first two are clear, and the third follows from supx
x

1+x2+t2
= 1

2
√
1+t2

.
Therefore, the norm of the operator (3.14) is bounded by

2
√
2




(
1

1 + t2
+ 1

1 + t2
+ 1

4(1 + t2)

)

= 9
√
2

2


1

1 + t2
.

Therefore (3.13) is true and the integral converges absolutely.Moreover, (3.13)

implies ‖FJ + JF‖ ≤ C


, with C = 9

√
2

2 . ��
Lemma 3.14 The anticommutator FJ + JF is compact.

Proof We use the integral formula (3.13), and revert to using the index x . By
an application of [28, Prop. 10.5.1], the operators Zx (t)Px and Px Zx (t)Dx
are compact. Since D2

x Zx (t) and Zx (t)Dx are bounded, it follows that the
integrand (3.14), namely Zx (t)Px − Zx (t)Px D2

x Zx (t)+ Zx (t)Dx Px Zx (t)Dx ,
is compact. Since the integral (3.13) converges absolutely, we get that Fx Jx +
Jx Fx is a compact operator, for each x ∈ X . This is not yet enough to guarantee
compactness of FJ + JF, see the discussion in Sect. 3.1.1. However, by [17,
Proposition 3.7], the family x �→ Fx is a Fredholm family, and the proof
in loc. cit. shows that F is locally norm-continuous, with respect to a local
trivialization of the Hilbert bundle that comes from a local trivialization of
the original fibre bundle which is compatible with the cylindrical structure
at infinity. The operator family J is locally norm-continuous with respect to
the same local trivializations, and hence FJ + JF is locally norm-continuous.
Therefore, using the criterionmentioned in Sect. 3.1.1, compactness ofFJ+JF
follows. ��
Proof of Theorem 3.12 Let κ : Y → (0,∞) be a lower bound for the scalar
curvature of E and E ′, i.e. a function such that for y ∈ Y

κ(y) ≤ scal(gy), scal(g
′
y).

By the Schrödinger–Lichnerowicz formula we have D2
y ≥ κ(y)

4 . Consider the
operator homotopy H(s) = cos(s)F + sin(s)J . By Lemma 3.13

H(s)2y = cos(s)2F2
y + sin(s)2 + cos(s) sin(s)(Fy Jy + Jy Fy)

≥ cos(s)2
κ(y)/4

1 + κ(y)/4
+ sin(s)2 − C

2
y
,

C being the constant from Lemma 3.13. Therefore Hy(s) is invertible for all
s ∈ [0, π/2] and y ∈ Y , provided that


y >
2C(1 + κ(y)/4)

κ(y)
(3.15)
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for all y ∈ Y . This proves Theorem 3.12 under the additional assumption that
the length 
y of the straight cylinder in the middle is long enough to satisfy
(3.15) for all y ∈ Y .

The key observation to treat the general case is now that stretching the
cylinder (a0, a1) to arbitrarily big length 
 does not affect the lower bound
κ for the scalar curvature (the metric is a product metric on the cylinder, and
stretching the cylinder in theR-direction does not change the scalar curvature).
Here is how the stretching is done.Wewill simultaneously change the function
toR and the metric on the common piece E(a0,a1) = E ′

(a0,a1)
. Let b : X×R →

[0,∞) be a function (the restriction to x × R should be smooth) with support
in X × (a0, a1). We change the metric g = g′ on E(a0,a1) = E ′

(a0,a1)
by adding

b(x, t)2dt2. The straight cylinder now has length
∫ a1(x)
a0(x)

√
1 + b2(x, τ )dτ . We

change the projection maps E, E ′ → R to (z ∈ E, E ′) to

t̃(z) := t (z)+
∫ t (z)

−∞

√
1 + b2(π(z), τ )dτ.

Let a′
1(x) := a0(x)+

∫ a1(x)
a0(x)

√
1 + b2(x, τ )dτ ; with the new metric and the

new projection functions, the two bundles are cylindrical over a X × (a0, a′
1).

Clearly, the new family with the stretched cylinder is concordant to the original
one. If the function b is picked such that for y ∈ Y , the inequality

∫ a1(y)

a0(y)

√

1 + b2(y, τ )dτ ≥ 3
C(1 + κ(y)/4)

κ(y)

holds, then the homotopy (3.11) is through invertible operators over Y . ��

3.4.3 A more useful formulation of the additivity theorem

We reformulate the additivity theorem slightly, to a form better adapted to
our needs. Let (X, Y ) be as above and let W : M0 � M1, W ′ : M1 � M2
be d-dimensional spin cobordisms. Let E → X (E ′ → X resp.) be a W -
bundle (W ′-bundle, resp.) with trivialised boundary and a spin structure. Let
hi ∈ R+(Mi ) be psc metrics and let g (g′, resp.) be a fibrewise Riemannian
metric on E (E ′, resp.) which coincides over the boundaries with hi . Assume
that over Y , the metrics g and g′ have positive scalar curvature.

Corollary 3.15 Under the above assumptions, the following holds:

ind(E, g)+ ind(E ′, g′) = ind(E ∪X×M1 E
′, g ∪ g′) ∈ KO−d(X, Y ).
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Proof Let E0 := X × (−∞, 0] × M0 ∪X×M0 E , E1 := X × [1,∞) × M1,
E2 := X×(−∞, 1]×M1 and E3 := E ′ ∪X×M2 [2,∞)×M2, with the metrics
extended by cylindrical metrics. By Theorem 3.12

ind(E01)+ ind(E23) = ind(E03)+ ind(E21) = 0 ∈ KO−d(X, Y ).

The manifold bundle E21 has positive scalar curvature and thus ind(E21) = 0.
Tracing through the definitions shows that ind(E01) = ind(E, g), ind(E23) =
ind(E ′, g′) and ind(E03) = ind(E ∪X×M1 E ′, g ∪ g′). This completes the
proof. ��

3.4.4 Additivity property of the index difference

Here we show what the additivity theorem yields for the index difference.

Theorem 3.16 Let M0
V� M1

W� M2 be spin cobordisms, hi ∈ R+(Mi )

be boundary conditions, and g ∈ R+(V )h0,h1 and m ∈ R+(W )h1,h2 be psc
metrics satisfying these boundary conditions. Then

R+(V )h0,h1 × R+(W )h1,h2
μ

inddiffg×inddiffm

R+(V ∪ W )h0,h2

inddiffg∪m

�∞+d+1KO ×�∞+d+1KO
+

�∞+d+1KO

is homotopy commutative.

Proof Write X := R+(V )h0,h1×R+(W )h1,h2 .On the space X×I,we consider
the following trivial fibre bundles equipped with Riemannian metrics:

(i) E01 has fibre (−∞, 0]×M0 ∪V ∪[1,∞)×M1; the metric over (x, y, t)
is 1−t

2 g + 1+t
2 x , extended to the cylinders by a product.

(ii) E23 has fibre (−∞, 1]×M1∪W ∪[2,∞)×M2; the metric over (x, y, t)
is 1−t

2 m + 1+t
2 y, extended to the cylinders by a product.

These two bundles are cylindrical over a neighborhood of X × I × {1} and
agree there. As in Sect. 3.4, these bundles are partitioned along M1 into Ei ,
i = 0, . . . , 3. By Theorem 3.12, we get

ind(E01)+ ind(E13) = ind(E03)+ ind(E21).

But ind(E21) = 0 because the bundles E1 and E2 have positive scalar
curvature. By construction ind(E01) = inddiffg, ind(E23) = inddiffm and
ind(E03) = inddiffg∪m ◦ μ. ��
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Remark 3.17 Let Wd be closed and φ : Sk−1 × Dd−k+1 → W be an embed-
ding, with 3 ≤ k ≤ d − 2. We use the notation of the proof of Theorem 2.5.
There are maps

μgk−1◦ +gd−k+1
tor

: R+(W ◦)gk−1◦ +gd−k◦ −→ R+(W )

μgktor+gd−k◦ : R+(W ◦)gk−1◦ +gd−k◦ −→ R+(W ′),

and the surgery equivalencemap SEφ is the composition of a homotopy inverse
of the first with the secondmap. Hence, the index difference satisfies an appro-
priate cobordism invariance.We leave the precise formulation to the interested
reader, as we will not use this fact.

3.4.5 Propagating a detection theorem

We spell out a consequence of Theorem 3.16 which is important for the global
structure of this paper. If onemanages to prove adetection theorem for the index
difference for a certain single spin cobordism Wd (satisfying the conditions
listed below), then the same detection theorem follows for all spin manifolds
of dimension d.

Proposition 3.18 Let W : ∅ � Sd−1 be a simply-connected spin cobordism
of dimension d ≥ 6, which is spin cobordant to Dd relative to its boundary.
Let g ∈ R+(W )hd−1◦ be in a path component which corresponds to that of

gdtor ∈ R+(Dd)hd−1◦ under a surgery equivalenceR+(W )hd−1◦ � R+(Dd)hd−1◦ .
Let W ′ be an arbitrary d-dimensional spin cobordism with boundary M ′

and let h′ ∈ R+(M ′) and g′ ∈ R+(W ′)h′ . Let X be a CW complex, â : X →
�∞+d+1KO be a map and let a factorisation

X
ρ−→ R+(W )hd−1◦

inddiffg−→ �∞+d+1KO

of â up to homotopy be given. Then there exists another factorisation

X
ρ′

−→ R+(W ′)h′
inddiffg′−→ �∞+d+1KO

of â up to homotopy.

Proof Let W0 = W \ int(Dd) be W with an open disc in the interior
removed. As W is simply-connected and spin cobordant to Dd relative to
its boundary, it follows that W0 is simply-connected and spin cobordant to
[0, 1] × Sd−1 relative to its boundary. Thus by Theorem 2.6 there is a metric
g0 ∈ R+(W0)hd−1◦ ,hd−1◦ such that the map
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μg0 : R+(Dd)hd−1◦ −→ R+(Dd ∪ W0)hd−1◦

is a weak homotopy equivalence, and gdtor ∪ g0 is isotopic to g. As X is a
CW-complex, there is a map ρ′ : X → R+(Dd)hd−1◦ so that μg0 ◦ρ′ � ρ, and
using Theorem 3.16 the composition

X
ρ′

−→ R+(Dd)hd−1◦

inddiff
gdtor−→ �∞+d+1KO

is homotopic to â.
Let W ′ be a spin cobordism with a psc metric g′ as in the assumption of

the proposition. We can change g′ by an isotopy supported in a small disc in
the interior so that g′ agrees with gdtor in that disc, by an easy application of
Theorem 2.4. This does not change the homotopy class of the index difference,
and we can writeW ′ = Dd ∪W ′

0 and g
′ = gdtor ∪ g1. The desired factorisation

is

X
ρ′

−→ R+(Dd)hd−1◦
μg1−→ R+(W ′)h′

inddiffg′−→ �∞+d+1KO

and the composition is homotopic to â, again by Theorem 3.16. ��

3.5 The relative index construction in an abstract setting

For the proof of TheoremsB andC,we need a precise tool to express secondary
indices in terms of primary indices. Our tool is the relative index construction.

Write I = [0, 1]. Let f : (X, x0) → (Y, y0) be a map of pointed spaces (in
practice, f will be a fibration of some kind). Recall the notions of mapping
cylinder Cyl( f ) := (X × I )

∐
Y/ ∼, (x, 1) ∼ f (x) and homotopy fibre

hofiby( f ) = {(x, c) ∈ X×Y I | f (x) = c(0), c(1) = y}. There is a naturalmap
εy0 : f −1(y0) → hofiby0( f ), x �→ (x, cy0), where cy0 denotes the constant
path at y0. Let (x0, cy0) ∈ hofiby0( f ) and x0 ∈ f −1(y0) be the basepoints, so
that εy0 is a pointed map. There is a natural map

ηy0 : (I, {±1})× (hofiby0( f ), ∗) −→ (Cyl( f ), X × {0} ∪ ({x0} × I ))

defined by

(t, x, c) �−→
{
(x, 1 + t) t ≤ 0

c(t) t ≥ 0

and the composition ηy0 ◦ (idI × εy0) is homotopic to the map ιy0 : I ×
f −1(y0) → Cyl( f ); (t, x) �→ (x, 1+t

2 ) (as maps of pairs). Moreover, there is
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the fibre transport map from the loop space of Y based at y0 to the homotopy
fibre (it is a based map):

τ : �y0Y −→ hofiby0( f )

c �−→ (x0, c).

We write KO−p( f ) := KO−p(Cyl( f ), X × {0} ∪ ({x0} × I )). There is an
induced map

trg : KO−p( f ) −→ �KO−p(hofiby0( f ), ∗)
α �−→ η∗

y0α,

called the transgression. (Often, we consider the composition ε∗
y0 ◦ trg and

call this composition transgression as well.) The inclusion i : Y → Cyl( f )
induces

bas : KO−p( f ) −→ KO−p(Y, y0)

α �−→ i∗α.

We call bas(α) the base class of the relative class α. Finally, there is a map,
the loop map � : KO−p(Y, y0) → �KO−p(�y0Y, ∗), given by pulling back
by the evaluation map I ×�y0Y → Y .

Lemma 3.19 Let α ∈ KO−p( f ) be given. Then

τ ∗trg(α) = �bas(α) ∈ �KO−p(�y0Y, ∗).

Proof The proof is easier to understand than the statement. The diagram

(I, {±1})× (�y0Y, ∗) ev

τ

(Y, y0)

i

(I, {±1})× (hofiby0( f ), ∗)
ηy0

(Cyl( f ), X ∪ ({x0} × I ))

is homotopy commutative (in space pairs), and hence the associated diagram
in K -theory is commutative. By tracing through the definitions, this commu-
tativity is expressed by the formula in the statement of the lemma. ��

This lemma has the following homotopy-theoretic interpretation. Recall
that we write relative K -theory classes as homotopy classes of maps, via the
bijection in Theorem 3.3.

123



Infinite loop spaces and positive scalar curvature 787

Corollary 3.20 Let α ∈ KO−p( f ) be a relative K -theory class. Then the
diagram

�y0Y

τ
�bas(α)

hofiby0( f ) trg(α)
�∞+p−q+1KO

is homotopy commutative.

Wewill use this to translate index-theoretic results into homotopy-theoretic
conclusions.

Remark 3.21 An instructive way to view these constructions is as follows.
First note that f ∗bas(α) ∈ KO−p(X, x0) is the zero class (there is a canonical
concordance to an acyclic cycle). One might say that α ∈ KO−p( f ) induces a
homotopy commutative diagram

hofiby0( f )
trg(α)

�∞+p+1KO

X

f

∗

Y
bas(α)

�∞+pKO

whose columns are homotopy fibre sequences.

3.6 Increasing the dimension

The first application of the generalities from Sect. 3.5 is the derivation of
Theorem C from Theorem B (the true ingredients are Theorems 3.10, 2.3 and
the additivity theorem).

Theorem 3.22 Let Wd be a compact spin manifold with boundary M. Let
h0 ∈ R+(M) and g0 ∈ R+(W )h0 . Under the equivalence R+(W )h0

∼→
hofibh0(res) of Theorem 2.3, fibre transport gives a weak homotopy class of
maps T : �h0R+(M) → R+(W )h0 , which makes the diagram

�h0R+(M) T

−�inddiffh0

R+(W )h0

inddiffg0
�∞+d+1KO.

weakly homotopy commutative.
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Before we embark on the proof of Theorem 3.22, we show how it accom-
plishes the promised goal.

Proof of Theorem C, assuming Theorems B and 3.22 By Proposition 3.18, it
is enough to consider the case W = D2n+1 and g0 = g2n+1

tor . Then h0 is the
round metric inR+(S2n). Consider the diagram

�∞+2MTSpin(2n)
−�ρ

�h0R+(S2n) T

−�inddiffh0

R+(D2n+1)h0

inddiffg0

�∞+2n+2KO.

The map �ρ is provided by Theorem B, the composition (−�inddiffh0) ◦
(−�ρ) � �(inddiffh0 ◦ ρ) is weakly homotopic to �2 ˆA2n , also by Theorem
B. The triangle is weakly homotopy commutative by Theorem 3.22, and T ◦
(−�ρ) is the map whose existence is claimed by Theorem C. ��

The rest of this section is devoted to the proof of Theorem 3.22. Consider
the restriction map res : R+(W ) → R+(M). We will construct and analyse a
relative class β ∈ KO−d(res).

Metrics of positive scalar curvature on M can be extended to (arbitrary)
metrics on W , by the following procedure. Pick a cut-off function a : W →
[0, 1] which is supported in the collar around M where g0 is of product form
and is equal to 1 near the boundary. For any h ∈ R+(M), let σ(h) := a(h +
dt2) + (1 − a)g0. The result is an extension map σ : R+(M) → R(W ) (to
R(W ), not toR+(W )!) such that σ(h0) = g0 and such that σ(h) restricted to
a collar is equal to h + dt2.

Consider the trivial fibre bundle with fibre W over the mapping cylinder
Cyl(res) of the restriction map, and define the following fibrewise Riemannian
metricm on it: over the point h ∈ R+(M) ⊂ Cyl(res) take themetricσ(h), and
over the point (g, t) ∈ R+(W )×[0, 1] take the metricm(g,t) := tσ(res(g))+
(1 − t)g. By the construction of σ ,

(i) the metricm is psc when restricted to the boundary bundle Cyl(res)×M ,
(ii) m(g,0) = g for g ∈ R+(W ) and
(iii) m(g0,t) = tσ(res(g0))+ (1 − t)g0 = g0, for t ∈ [0, 1].

Therefore,m has positive scalar curvature over (R+(W )×{0})∪({g0}×I ) ⊂
Cyl(res). We define the class

β = ind(W,m) ∈ KO−d(Cyl(res), (R+(W )× {0}) ∪ ({g0} × I )).

The choices made in the construction of β are the metric g0 and the cut-off
function a. The function a is a convex choice, and so β depends only on g0.
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Proposition 3.23

(i) Let εh0 : R+(W )h0 → hofibh0(res) be the fibre comparison map. Then the
map ε∗

h0
(trg(β)) : R+(W )h0 → �∞+d+1KO is homotopic to −inddiffg0 .

(ii) bas(β) : R+(M) → �∞+dKO is weakly homotopic to inddiffh0 .

Proof The first part is straightforward. The class ε∗
h0
(trg(β)) is represented

by the cycle ι∗h0β, and ιh0 : I × R+(W )h0 → Cyl(res) is the map (t, g) �→
(g, 1+t

2 ). So ι∗h0β is represented by the cycle (t, g) �→ Dir(W,mg, 1+t
2
), but

mg, 1+t
2

= 1 + t

2
σ(res(g))+ 1 − t

2
g = 1 + t

2
σ(h0)+ 1 − t

2
g

= 1 + t

2
g0 + 1 − t

2
g,

because g ∈ R+(W )h0 and σ(h0) = g0, and this represents minus the index
difference.

The second part is deeper and uses the additivity theorem and the spectral
flow theorem. The base class bas(β) lies inKO−d(R+(M), h0), and by tracing
through the definitions, we find that

bas(β) = ind(W, σ (h)),

the notation indicates that bas(β) is represented by the cycle whose value at
h ∈ R+(M) is the Dirac operator of the metric σ(h) on the manifold W . For
two metrics h0, h1 ∈ R+(M), denote by [h0, h1] the metric ds2 + ϕ(s)h1 +
(1 − ϕ(s))h0 on M × [0, 1], where ϕ : [0, 1] → [0, 1] is a smooth function
that is 0 near 0 and 1 near 1. Now we calculate, using the additivity theorem
(Corollary 3.15), that

ind(W, σ (h))+ ind(M × [0, 1], [h, h0])+ ind(Wop, g0)

= ind(W ∪ M × [0, 1] ∪ Wop, σ (h) ∪ [h, h0] ∪ g0)

= 0 ∈ KO−d(R+(M), h0).

To see that the index is zero, note first that the manifoldW ∪ (M ×[0, 1])∪
Wop is closed and therefore the index on the right hand side does not depend
on the choice of the metric, by Lemma 3.7. Moreover g0∪[h0, h0]∪g0 is a psc
metric onW ∪ (M ×[0, 1])∪Wop which agrees with σ(h)∪[h, h0]∪ g0 over
the basepoint h0 ∈ R+(M), and therefore the right-hand side is zero. On the
other hand, the contribution ind(Wop, g0) on the left hand side is zero because
g0 has positive scalar curvature, by Bochner’s vanishing argument with the
Lichnerowicz–Schrödinger formula. Therefore
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ind(W, σ (h)) = −ind(M × [0, 1], [h, h0]) = ind(M × [0, 1], [h0, h]).
The last equality is true by the addivitity theorem and by Lemma 3.7. But, by
Theorem 3.10, the right hand side is equal to inddiffh0 ∈ KO−d−1(R+(M)).

��
Proof of Theorem 3.22 Consider the diagram:

R+(W )h0
εh0

−inddiffg0

hofibh0(res)

trg(β)

�h0R+(M)τ

�inddiffh0

�∞+d+1KO.

(3.16)

The left triangle is homotopy commutative by Proposition 3.23 (i), and the
right triangle is homotopy commutative by Proposition 3.23 (ii) and Corollary
3.20. The final ingredient is the quasifibration theorem (Theorem 2.3): to get
the map T , take the homotopy inverse of εh0 provided by Theorem 2.3 and
compose it with τ .

Remark 3.24 The homotopy inverse to εh0 is given by an explicit construction,
which was sketched before Theorem 2.3.

As mentioned in Remark 3.9, we can now explain why the index difference
map cannot be extended from R+(W )h0 toR+(W ).

Corollary 3.25 If dim(W ) ≥ 7, ∂W �= ∅ and R+(W )h0 �= ∅, then there
does not exist a map R+(W ) → �∞+d+1KO which extends inddiffg0 :
R+(W )h0 → �∞+d+1KO.

Proof Fix g0 ∈ R+(W )h0 and consider the class β constructed in Proposition
3.23.By that Proposition andRemark3.21,weobtain a homotopy commutative
diagram whose columns are fibration sequences

R+(W )h0
−inddiffg0

�∞+d+1KO

R+(W ) ∗

R+(M)
inddiffh0

�∞+dKO.

Ahypothetical extension of inddiffg0 toR+(W )would force themap inddiffh0
to be zero on homotopy groups in positive degrees. This follows from the long
exact homotopy sequence and contradicts Theorem A. ��
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3.7 The Atiyah–Singer index theorem

In the case when the spin manifold bundle π : E → X has closed d-
dimensional fibres, the index ind(E) ∈ KO−d(X) can be expressed in
homotopy-theoretic terms using the Clifford-linear version of the Atiyah–
Singer family index theorem. We recall the result here.

3.7.1 KR-theory and the Atiyah–Bott–Shapiro construction

The formulation of the index theoremwhichwe shall use is in terms ofAtiyah’s
K R-theory [4]. Let Y be a locally compact space with an involution τ (a “Real
space” in the terminology of [4]). Classes in the compactly supported Real
K -theory K Rc(Y ) are represented by triples (E, ι, f ), with E → Y a finite-
dimensional “Real vector bundle” as defined in [4, §1], ι a Z/2-grading on E
and f : E → E an odd, self-adjoint bundle map which is an isomorphism
outside a compact set. Both ι and f are required to be Real homomorphisms
as defined in [4, §1]. Out of the set of concordance classes of triples (E, ι, f ),
one defines K Rc(Y ) by a procedure completely analogous to that of Definition
3.2. Recall the Atiyah–Bott–Shapiro construction [5]: let X be a compact
space, V,W → X be Riemannian vector bundles and p : V ⊕ W → X be
their sum. Let V+ ⊕ W− be the total space of V ⊕ W , equipped with the
involution (x, y) �→ (x,−y). Let E be a real Cl(V+ ⊕ W−)-module. Then
the triple (p∗E ⊗ C, ι, γ ) with γv,w := ι(c(v) + ic(w)) represents a class
abs(E) ∈ K Rc(V+ ⊕ W−), the Atiyah–Bott–Shapiro class of E .

If V → X is a rank d spin vector bundle with spin structure /SV , then the
KO-theory Thom class of V is defined to be

λV := abs( /SV ) ∈ K Rc(V
+ ⊕ R

0,d) ∼= KOd
c (V ) ∼= K̃O

d
(Th(V )),

where the first isomorphism is proved in [4, §2-3] (and the second one is a
standard property of compactly supported K -theory).

3.7.2 The Clifford-linear index theorem

Let π : E → X be a spin manifold bundle with closed d-dimensional fibres
over a compact base space. Assume that E ⊂ X × R

n and that π is the
projection to the first factor. Let NvE be the vertical normal bundle, so that
TvE ⊕ NvE = E × R

n and let U ⊂ X × R
n be a tubular neighborhood

of E . The spin structure on TvE induces a spin structure on NvE . The open
inclusion NvE ∼= U ⊂ X × R

n induces a map (via a Pontrjagin–Thom type
collapse construction)

ψ : K Rc(NvE
+ ⊕ R

0,n−d) −→ K Rc(X × R
n,n−d) ∼= KO−d(X), (3.17)
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where the last map is the (1, 1)-periodicity isomorphism [4, Theorem 2.3].
The Clifford-linear index theorem is

Theorem 3.26 With this notation, ind(E) = ψ(λNvE ) ∈ KO−d(X).

This result is due to Hitchin [29, Proposition 4.2] and is of course a con-
sequence of the Atiyah–Singer index theorem for families of real elliptic
operators [8]. However, Hitchin’s explanation of the argument (as well as the
treatment in [35, §16]) leaves out a critical detail. For sake of completeness,
we discuss this detail.

Recall that /STvE has an action c of the Clifford algebra Cld,0. The Dirac
operator /Dx on Ex anticommutes with the self-adjoint bundle endomorphism
ιc(v), for each (x, v) ∈ X × R

d,0. Using the isomorphism (3.4), the family of
Dirac operators defines a family

Rx,v := /Dx

(1 + /Dx
2
)1/2

+ ιc(v)

over X × R
d which is invertible unless v = 0 and so gives an element in the

group KO0(X × Dd , X × Sd−1). Hitchin uses the real family index theorem
[8] to compute the index of the family (Rx,v)(x,v)∈X×Rd,0 . However, the family
index theorem as proven in [8] only compares elements in absolute K -theory,
not in relative K -theory, and it is not completely evident how the topological
index of the family (Rx,v) (as an element in relative K -theory) is defined.
Therefore, a slight extension of the real family index theorem is necessary.

Theorem 3.27 Let π : E ⊂ X × R
n → X be a closed manifold bundle over

a compact base. Let Q : �(E; V0) → �(E; V1) be a family of real elliptic
pseudo-differential operators of order 0. Assume that Y ⊂ X is a closed
subspace such that for y ∈ Y , the operator Qy is a bundle isomorphism. The
symbol class smb(Q) is then an element in K Rc(Tv(EX−Y )

−) and the family
index ind(Q) ∈ KO(X, Y ) = KOc(X − Y ) can be computed as the image of
smb(Q) under the composition

K Rc(Tv(EX−Y )
−) −→ K Rc(Tv(EX−Y )

− ⊕ Nv(EX−Y )
− ⊕ Nv(EX−Y )

+) =
KOn

c (NvEX−Y ) −→ KOn
c ((X − Y )× R

n) ∼= KOc(X − Y )

of the Thom isomorphism, the map induced by the inclusion and Bott period-
icity.

Proof For Y = ∅, this is precisely the Atiyah–Singer family index theorem
[8]. In the general case, form Z = X ∪Y X , E ′ = E ∪E |Y E . Since Q is a
bundle isomorphism over Y , we can form the clutching V ′

0 = V0 ∪Q V1 and
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V ′
1 = V1∪idV1 over E ′ and extend the family Q by the identity over the second

copy X2 of X . We obtain a new family P , which coincides with Q over the
first copy X1 of X and is a bundle isomorphism over X2. Therefore, under the
map KO(X, Y ) ∼= KO(Z , X2) → KO(Z), the topological (resp. analytical)
index of Q is mapped to the topological (resp. analytical) index of P . By the
index theorem, the topological and analytical indices of P agree. Finally, as
the inclusion X2 → Z splits, the map KO(Z , X2) → KO(Z) is injective, and
the indices agree in KO(X, Y ) = KO(Z , X2). ��
Proof of Theorem 3.26 We have to compute the family index of the family
Rx,v := /Dx

(1+ /Dx
2
)1/2

+ ιv over X × Dd , as an element in KO(X × (Dd , Sd−1)).

Consider the homotopy (t ∈ [0, 1])

Rt,x,v :=
√
1 − t2|v|2 /Dx

(1 + /Dx
2
)1/2

+ ιv

of families of order 0 pseudo-differential operators. Because

R2
t,x,v = (1 − t2|v|2) /D

2
x

1 + /D
2
x

+ |v|2,

we find that Rt,x,v is invertible for |v| = 1. If ξ ∈ TvE has norm 1, then

smbR2
t,x,v

(ξ) = (1 − t2|v|2) |ξ |2
1 + |ξ |2 + |v|2

and this is invertible for all x , v, and t , so the family Rt,x,v is elliptic. Thus we
can replace the original family Rx,v = R0,x,v by R1,x,v, which over X × Sd−1

is just the family ιv of bundle automorphisms. Thus the relative family index
theorem (Theorem 3.27) applies. The computation of the topological index of
this family is done in the proof of [29, Proposition 4.2]. ��

3.8 Fibre bundles, Madsen–Tillmann–Weiss spectra, and index theory

We can reformulate the Atiyah–Singer index theorem in terms of theMadsen–
Tillmann–Weiss spectrum MTSpin(d). The basic reference for these spectra
is [21] and the connection to the index theorem was pointed out in [16]. We
refer to those papers for more details. Later, we will present the variation for
manifolds with boundary, and finally relate the index difference to the family
index.
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3.8.1 Madsen–Tillmann–Weiss spectra

Let γd → BSpin(d) be the universal spin vector bundle. By definition, the
Madsen–Tillmann-Weiss spectrum MTSpin(d) is the Thom spectrum of the
virtual vector bundle −γd , which may be described concretely as follows.

Definition 3.28 For n ≥ d, we define the spin Grassmannian GrSpind,n as the
homotopy fibre of the natural map

BSpin(d)× BSpin(n − d) −→ BSpin(n).

The spinGrassmannian comeswith amap θ : GrSpind,n → Grd,n = O(n)
O(d)×O(n−d)

to the ordinary Grassmannian, and we let

Vd,n ⊂ GrSpind,n × R
n and V⊥

d,n ⊂ GrSpind,n × R
n

be the pullback of the tautological d-dimensional vector bundle on Grd,n and
its orthogonal complement.

By stabilising with respect to n, one obtains structure maps

σn : �Th(V⊥
d,n) −→ Th(V⊥

d,n+1),

and by definition the sequence of these spaces form the spectrumMTSpin(d).
The (n times looped) adjoints of the σn yield maps

�nTh(V⊥
d,n) −→ �n+1Th(V⊥

d,n+1),

and by definition�∞MTSpin(d) is the colimit over these maps. Similarly the
space�∞+lMTSpin(d) is the colimit of the�n+lTh(V⊥

d,n), for l ∈ Z. There are

maps V⊥
d−1,n−1 → V⊥

d,n which are compatible with the structure maps of the
spectra and give amap of spectraMTSpin(d−1) → �MTSpin(d). On infinite
loop spaces this induces a map �∞MTSpin(d − 1) → �∞−1MTSpin(d).

3.8.2 Spin fibre bundles and the Pontrjagin–Thom construction

A bundle π : E ⊂ X × R
n → X of d-dimensional closed manifolds with a

fibrewise spin structure has a Pontrjagin–Thom map

αE : X −→ �nTh(V⊥
d,n) −→ �∞MTSpin(d)

whose homotopy class does not depend on the embedding of E into X × R
n .

We also need a version for manifolds with boundary. Let Wd be a manifold
with boundary M , and consider fibre bundles E → X with structure group
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given by the diffeomorphisms that fix the boundary pointwise. The boundary
bundle is then trivialised, ∂E ∼= X × M . Assume that there is a (topological)
spin structure on the vertical tangent bundle TvE , which is constant on the
boundary bundle. Under favourable circumstances (which always hold for the
manifolds to be considered in this paper), the following lemma shows that
such spin structures exist.

Lemma 3.29 Let W be a manifold with boundary M such that (W,M) is
1-connected, and let π : E → X be a smooth fibre bundle with fibre W and
trivialised boundary bundle, ∂E ∼= X × M. For each spin structure on W
there is a unique spin structure on TvE which is isomorphic to the given one
on the fibre and which is constant over ∂E.

Proof The Leray–Serre spectral sequence for the fibration pair (E, ∂E) →
X proves that (E, ∂E) is homologically 1-connected and that the fibre
inclusion (W,M) → (E, ∂E) induces an injection H2(E, ∂E; Z/2) →
H2(W,M; Z/2). The obstruction to extending the spin structure on ∂E to
all of E lies in H2(E, ∂E; Z/2) and goes to zero in H2(W,M; Z/2) since
W is assumed to be spin and the spin structure on M is assumed to extend
over W . Thus the obstruction is trivial, which shows the existence of the spin
structure. Uniqueness follows from H1(E, ∂E; Z/2) = 0. ��
A closed spin manifold Md−1 determines a point M ∈ �∞−1MTSpin(d),
namely the image under

�∞MTSpin(d − 1) −→ �∞−1MTSpin(d)

of the point in�∞MTSpin(d−1) determined by the Pontrjagin–Thommap of
the trivial bundleM → ∗. Of course, this point is not unique, but depends on an
embedding of M into R

∞ and a tubular neighborhood, which is a contractible
choice.

If W is a d-dimensional manifold with boundary M , and π : E → X is
a smooth manifold bundle with fibre W equipped with a trivialisation ∂E ∼=
X × M of the boundary and a fibrewise spin structure which is constant along
the boundary, then there is a Pontrjagin–Thom map

αE : X −→ �[∅,M]�∞−1MTSpin(d)

to the space of paths in�∞−1MTSpin(d) from the basepoint ∅ to [M]. A spin
nullbordism V : M � ∅ determines a path in �∞−1MTSpin(d) from M to ∅
and thus a homotopy equivalence

θV : �[∅,M]�∞−1MTSpin(d)
∼−→ �∞MTSpin(d)
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and we define αE,V := θV ◦αE : X → �∞MTSpin(d). For two nullbordisms
V0 and V1 of M the maps αE,V0 and αE,V1 differ by loop addition with the
constant map αV op

0 ∪V1 .

3.8.3 The index theorem and homotopy theory

The vector bundles V⊥
d,n → GrSpind,n have spin structures, so have KO-theory

Thom classes λV⊥
d,n

∈ KOn−d(Th(V⊥
d,n)). These assemble to a unique spectrum

KO-theory class λ−d ∈ KO−d(MTSpin(d)), alias a spectrum map

λ−d : MTSpin(d) −→ �−dKO.

Remark 3.30 Arguments for this—especially uniqueness—are not so well-
known, so we briefly give one (see also [10, VIII.6] for a related discussion).
The collection {λV⊥

d,n
}n of Thom classes defines a class in the inverse limit

limn KOn−d(Th(V⊥
d,n)), so byMilnor’s lim1 exact sequence it suffices to show

that lim1
n KO

n−d−1(Th(V⊥
d,n)) vanishes. The KO-theory Thom isomorphisms

given by the λV⊥
d,n

show that the inverse system {KOn−d−1(Th(V⊥
d,n))}n is

pro-isomorphic to the inverse system {KO−1(GrSpind,n )}n . If we let ESpin(d)(k)
be the k-fold join of Spin(d), which is the kth step in Milnor’s model
for ESpin(d), with quotient BSpin(d)(k) := ESpin(d)(k)/Spin(d), then as
GrSpind,n → BSpin(d) is (n−d−1)-connectedwe can find a lift BSpin(d)(k) →
GrSpind,n as long as n ! k. This gives a map of direct systems of spaces with
homotopy equivalent direct limits, and so a pro-homomorphism

� : {KO−1(GrSpind,n )}n −→ {KO−1(BSpin(d)(k))}k
with an associated map of Milnor exact sequences

lim
n

1KO−1(GrSpind,n )

lim1�

KO0(BSpin(d)) lim
n

KO0(GrSpind,n )

lim�

lim
k

1KO−1(BSpin(d)(k)) KO0(BSpin(d)) lim
k

KO0(BSpin(d)(k)).

But {KO−1(BSpin(d)(k))}k is Mittag-Leffler by [6, Corollary 2.4] (or rather
its analogue for KO-theory, which may be deduced from [6, Theorem 7.1]) so
has vanishing lim1, so by the commutativity of the left-hand square the inverse
system {KO−1(GrSpind,n )}n also has vanishing lim1.
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The infinite loop map of λ−d is denoted ˆAd := �∞λ−d : MTSpin(d) →
�∞+dKO. With these definitions, we arrive at the following version of the
index theorem.

Theorem 3.31 Let π : E → X be a bundle of closed d-dimensional spin
manifolds. Then the maps

ind(E), (�∞λ−d) ◦ αE : X −→ �∞+dKO

are weakly homotopic.

The translation of Theorem 3.26 into Theorem 3.31 is exactly parallel to
the translation of the complex family index theorem described in [16].

For manifold bundles with nonempty boundary, we need a psc metric h ∈
R+(M) to be able to talk about ind(E, h) := ind(E, dt2+h) ∈ KO−d(X). To
express the index in this situation in terms of homotopy theory, an additional
hypothesis on h is needed.

Theorem 3.32 Let π : E → X be a bundle of d-dimensional spin manifolds,
with trivialised boundary X × M. Let h ∈ R+(M) and let V : M � ∅ be a
nullbordism which carries a psc metric g ∈ R+(V )h. Then the maps

ind(E, h), (�∞λ−d) ◦ αE,V : X −→ �∞+dKO

are weakly homotopic.

Proof By the additivity theorem (Corollary 3.15), ind(E, h) = ind(E ∪∂E
(X ×V )). The result follows in a straightforward manner from Theorem 3.31,
by the definition of αE,V as αE∪∂E (X×V ). ��

In most cases of interest to us, we will be able to take V = Wop, where W
is a fibre of E .

3.8.4 Spin fibre bundles and the index difference

We now show how to fit the index difference into this context. Let W be a
d-dimensional spin manifold with boundary M and collar [−ε, 0] × M ⊂ W ,
such that (W,M) is 1-connected. Let π : E → X be a smooth fibre bundle
with fibreW and structure group Diff∂(W ), the diffeomorphismswhich fix the
collar pointwise, and with underlying Diff∂(W )-principal bundle Q → X . We
assume that X is paracompact. By Lemma 3.29, there is a spin structure on the
vertical tangent bundle TvE → E , which is constant along ∂E = X × M ⊂
E . Let h0 ∈ R+(M) be fixed and write R+(W )h0 = R+(W )εh0 , on which
Diff∂(W ) acts by pullback of metrics; there is an induced fibre bundle

p : Q ×Diff∂ (W ) R+(W )h0 −→ X.

123



798 B. Botvinnik et al.

Observe that a point in Q×Diff∂ (W )R+(W )g0 is a pair (x, g), where x ∈ X and
g is a psc metric on π−1(x) with boundary condition h0. Choose a basepoint
x0 ∈ X and identify π−1(x0) with W . Then p−1(x0) may be identified with
R+(W )h0 and we also choose a basepoint g0 ∈ p−1(x0).

We will now introduce an element β = βπ,g0 ∈ KO−d(p), depending only
on the bundle π and the metric g0. To begin the construction of β, choose a
fibrewise Riemannian metric k on the fibre bundle π : E → X such that

(i) on π−1(x0) = W , the metric k is equal to g0,
(ii) near ∂E , k has a product structure and the restriction to ∂E is equal to h0.

It is easy to produce such a metric using a partition of unity, and of course k
will typically not have positive scalar curvature. Now let Ẽ → Cyl(p) be the
pullback of the bundle π along the natural map Cyl(p) → X . The bundle Ẽ
has the following fibrewise metric: over a point x ∈ X ⊂ Cyl(p), we take the
metric kx , and over a point (x, g, t) ∈ Q×Diff∂ (W )R+(W )h0 ×[0, 1], we take
the metric (1− t)g+ tkx . This metric satisfies the boundary condition h0, and
it has psc if t = 0 or if (x, g) = (x0, g0). Since E and hence Ẽ is spin, there is a
Dirac operator for thismetric, so awell-defined elementβ ∈ KO−d(p) (defined
using the elongation of the bundle Ẽ). The following properties of this con-
struction are immediately verified (for the last one, one uses Corollary 3.15).

Proposition 3.33

(i) The base class of β is the usual family index of E, with the metric k: that is
bas(β) = ind(E, k) ∈ KOd(X) (this class only depends on the boundary
condition h).

(ii) The transgression of β to p−1(x0) = R+(W )h0 is the index difference
class inddiffg0 ∈ �KO−d(R+(W )h0).

(iii) The class β is natural with respect to pullback of fibre bundles.
(iv) Let V : M � M ′ be a spin cobordism and m ∈ R+(V )g0,g1 be a psc

metric. Let π ′ : E ∪∂E (X ×V ) → X be the bundle obtained by fibrewise
gluing in V . We obtain a commutative diagram

Q ×Diff∂ (W ) R+(W )h0
μm

p

Q ×Diff∂ (W ) R+(W ∪ V )h1

p′

X,

and the image of βπ ′,g0∪m ∈ KO−d(p′) in KO−d(p) agrees with βπ,g0

Proposition 3.33 gives a more precise statement of the diagram 1.3, as
follows. Let p be the universal W -bundle over BDiff∂(W ). The cycle β
defines a nullhomotopy of the map ind(E, k) ◦ p, which can be viewed as
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a map R+(W )h//Diff∂(W ) → P�∞+dKO to the path space. On the fibre
of R+(W )h//Diff∂(W ) → BDiff∂(W ), β induces the index difference map
inddiffg0 . However, in the next chapter, we will use Proposition 3.33 instead
of the more informal diagram 1.3.

4 Proof of the main results

In this sectionwewill prove TheoremB. Before beginning the proof in earnest,
we will establish a result (Theorem 4.1) which will be a fundamental tool in
the proof, but is also of independent interest. For the purpose of exposition
we have structured the proof of Theorem B into three parts. In Sect. 4.2 the
main constructive argument of the paper is carried out, which is stated as
Theorem 4.7. This construction assumes the existence of a space X which
can be approximated homologically by hocolimk BDiff∂(Wk), where Wk is
a certain sequence of spin cobordisms, and the output of this construction is
a map �X → R+(Wk). Sections 4.3 and 4.4 provide the data assumed for
Theorem 4.7. In Sect. 4.3, we set up the general framework and finish the proof
in the case 2n = 6 (which is done by directly quoting [20]). Section 4.4 deals
with the general case, which instead uses [19].

4.1 Action of the diffeomorphism group on the space of psc metrics

As in the previous section, for a manifold W with boundary ∂W and collar
[−ε, 0]×∂W ⊂ W , and a boundary condition h ∈ R+(∂W ), we have a space
R+(W )h = R+(W )εh and there is a right action of the group Diff∂(W ) of
diffeomorphisms of W which are the identity on the collar on R+(W )h by
pullback of metrics. This in particular induces a homomorphism

�(W ) := π0(Diff∂(W )) −→ π0(Aut(R+(W )h)), (4.1)

to the group of homotopy classes of self homotopy equivalences of the space
R+(W )h .

Theorem 4.1 Let W be a compact simply-connected d-dimensional spinman-
ifold with boundary ∂W = Sd−1. Assume that d ≥ 5 and that W is spin
cobordant to Dd relative to its boundary. Then for h = hd−1◦ the image of the
homomorphism (4.1) is an abelian group.

The conclusion can also be expressed by saying that the action in the homotopy
category of �(W ) on R+(W )hd−1◦ is through an abelian group.

The proof of this theorem will consist of an application of the cobordism
invariance of spaces of psc metrics (Theorem 2.4) and a formal argument
of Eckmann–Hilton flavour. We first present the formal argument, and then
explain how to fit our geometric situation into this framework.
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Lemma 4.2 Let C be a nonunital topological category with objects the inte-
gers, and let G be a topological group which acts on C, i.e. G acts on the
morphism spaces C(m, n) for all m, n ∈ Z, and the composition law in C is
G-equivariant. Contrary to the usual notation of category theory, let us write
composition as

C(m, n)× C(n, k) −→ C(m, k)
(x, y) �−→ x · y.

Suppose that

(i) C(m, n) = ∅ if n ≤ m.
(ii) For eachm �= 0 there exists a um ∈ C(m,m+1) such that the composition

maps

um · − : C(m + 1, n) −→ C(m, n) for n > m + 1

− · um : C(n,m) −→ C(n,m + 1) for n < m

are homotopy equivalences.
(iii) There exists an x0 ∈ C(0, 1) such that the composition maps

− · x0 : C(m, 0) −→ C(m, 1) for m < 0

x0 · − : C(1, n) −→ C(0, n) for n > 1

are homotopy equivalences.
(iv) The G-action on C(m, n) is trivial unless m ≤ 0 and 1 ≤ n.

Then for any f, g ∈ G the maps f, g : C(0, 1) → C(0, 1) commute up to
homotopy.

Remark 4.3 To understand the motivation for the above set-up and its proof,
the reader may consider the following discrete analogue. Let M be a unital
monoid, and X be a set with commuting left and right M-actions, and in
addition an action of a group G on X by left and right M-set maps. Finally,
suppose that there is an x0 ∈ X such that the maps x0 · −,− · x0 : M → X
are both bijections. Then G acts on X through its abelianisation.

Proof For a point y in a spaceY , we denote by [y] ∈ π0(Y ) the path component
it belongs to. For f ∈ G there are elements y f ∈ C(−1, 0) and z f ∈ C(1, 2)
such that

[y f · x0] = [u−1 · f x0] ∈ π0(C(−1, 1))

[x0 · z f ] = [ f x0 · u1] ∈ π0(C(0, 2)).
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To see this, first note that u−1 · f x0 = f (u−1 · x0) as the composition is
G-equivariant and G acts trivially on C(−1, 0), and then note that the maps

C(−1, 0)
−·x0−→ C(−1, 1)

f←− C(−1, 1)
u−1·−←− C(0, 1)

are all homotopy equivalences and hence induce bijections on π0. Choose y f
so that [y f ] corresponds to [x0] under these bijections. The argument for z f
is analogous, using the homotopy equivalences

C(1, 2) x0·−−→ C(0, 2) f←− C(0, 2) −·u1←− C(0, 1)

instead. We now claim that the maps

f g(− · u−1 · x0 · u1), g f (− · u−1 · x0 · u1) : C(−2,−1) −→ C(−2, 2)

are homotopic, which follows by the concatenation of homotopies

f g(− · u−1 · x0 · u1) = f (− · u−1 · gx0 · u1)
� f (− · u−1 · x0 · zg)
= (− · u−1 · f x0 · zg)
� (− · y f · x0 · zg)
� (− · y f · gx0 · u1)
= g(− · y f · x0 · u1)
� g(− · u−1 · f x0 · u1)
= g f (− · u−1 · x0 · u1).

As the map − · u−1 · x0 · u1 : C(−2,−1) → C(−2, 2), is a homotopy equiva-
lence, it follows that the maps f g, g f : C(−2, 2) → C(−2, 2) are homotopic.
Finally, the diagram

C(0, 1)
h

u−2·u−1·−·u1 C(−2, 2)

h

C(0, 1) u−2·u−1·−·u1 C(−2, 2)

commutes for each h ∈ G and the horizontalmaps are homotopy equivalences.
It follows that f g � g f : C(0, 1) → C(0, 1), as required. ��
Proof Consider a closed disc Dd ⊂ Sd−1 × (0, 1). By Theorem 2.4 we may
find h ∈ R+(Sd−1 ×[0, 1])h◦,h◦ which is equal to g

d
tor in the disc D

d and is in
the same path component as the cylinder metric hd−1◦ +dt2. By cutting out the
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disc, we obtain a psc metric on T := Sd−1 × [0, 1] \ int(Dd), also denoted h.
Let us denote by P = Sd−1 the boundary component of T created by cutting
out this disc.

Gluing in (T, h) along Sd−1 × {0} gives a map

μh : R+(W )h◦ −→ R+(W ∪Sd−1×{0} T )h◦,h◦ .

This is a homotopy equivalence, because its composition with the map

R+(W ∪Sd−1×{0} T )h◦,h◦ −→ R+(W ∪Sd−1×{0} T ∪P Dd)h◦,

which glues in the torpedo metric on Dd , is homotopic to the gluing map
μh◦+dt2 after identifying the target with R+(W ∪Sd−1×{0} Sd−1 × [0, 1])h◦ .
These last two maps are homotopy equivalences, by Theorem 2.4 and Corol-
lary 2.2 (ii) respectively. Let us write V := W ∪Sd−1×{0} T , considered as a
cobordism Sd−1 = P � Sd−1 × {1} = Sd−1.

We now let G := Diff∂(W ) and C(0, 1) = R+(V )h◦,h◦ . The group G acts
on V , by extending diffeomorphisms as the identity on T , and the gluing map
μh : R+(W )h◦ → R+(V )h◦,h◦ isG-equivariant and a homotopy equivalence.
To prove the theorem it is therefore enough to show that the image of the action
map π0(G) → π0(Aut(C(0, 1))) is an abelian group. This will follow by an
application of Lemma 4.2. Define a nonunital category C having objects the
integers, and

C(m, n) =

⎧
⎪⎨

⎪⎩

R+((Sd−1 × [m, 0]) ∪ V ∪ (Sd−1 × [1, n]))h◦,h◦ m ≤ 0, n ≥ 1,

R+(Sd−1 × [m, n])h◦,h◦ m < n ≤ 0 or 1 ≤ m < n,

∅ otherwise.

Composition is defined by the gluing maps, and the G-action is defined by
letting G act trivially on cylinders. For m �= 0, we let um ∈ C(m,m + 1) =
R+(Sd−1×[m,m+1])h◦,h◦ be the cylindermetric h◦+dt2, so that assumption
(ii) of Lemma 4.2 holds by Corollary 2.2. Finally, note that V is cobordant
relative to its boundary to Sd−1 × [0, 1] and so Theorem 2.6 shows that there
is a psc metric x0 ∈ C(0, 1) satisfying assumption (iii) of Lemma 4.2. ��

4.2 Constructing maps into spaces of psc metrics

Statement of the main construction theorem

Let 2n ≥ 6 and suppose that

W : ∅ � S2n−1

123



Infinite loop spaces and positive scalar curvature 803

is a simply-connected spin cobordism, which is spin cobordant to D2n relative
to its boundary. Let

K := ([0, 1] × S2n−1)#(Sn × Sn) : S2n−1 � S2n−1.

For i = 0, 1, 2, . . . let K |i := S2n−1 and K |[i,i+1] : K |i � K |i+1 be a copy
of K . Also, consider W as a cobordism to K |0. Then we write

Wk := W ∪ K |[0,k] := W ∪
k−1⋃

i=0

K |[i,i+1] : ∅ � K |k

for the composition of W and k copies of K , so W0 = W . Define the group
Dk := Diff∂(Wk), andwrite Bk := BDk for the classifying space of this group
and πk : Ek := EDk ×Dk Wk → Bk for the universal bundle. There is a homo-
morphism Dk → Dk+1 given by extending diffeomorphisms over K |[k,k+1]
by the identity, and this induces a map λk : Bk → Bk+1 on classifying spaces.
Let B∞ := hocolimk Bk denote the mapping telescope.

By Lemma 3.29, there is a unique fibrewise spin structure on each bundle
Ek . Thus there is the family of Dirac operators on the fibre bundles πk . We
now list further hypotheses on the manifold W , which will allow us to carry
out an obstruction-theoretic argument. We will later make particular choices
of W and construct the data assumed in these assumptions.

Assumption 4.4 We are given

(i) a space X with an acyclic map � : B∞ → X ,
(ii) a class â ∈ KO−2n(X) such that �∗(â) restricts to ind(Ek, hd−1◦ ) ∈

KO−2n(Bk), for all k, up to phantom maps.

Remark 4.5 Recall that amap f : X → Y of spaces is called acyclic if for each
y ∈ Y the homotopy fibre hofiby( f ) has the singular homology of a point. This
is equivalent to f inducing an isomorphism on homology for every system of
local coefficients on Y ; if Y is not simply-connected then it is stronger than
merely being a homology equivalence. If Y (and hence X ) is connected and
F = hofiby( f ), we get from the long exact homotopy sequence

π2(X) −→ π2(Y ) −→ π1(F) −→ π1(X) −→ π1(Y ) −→ 1

that ker(π1( f )) is a quotient of the perfect group π1(F) and hence itself
perfect. It follows that f : X → Y may be identified with the Quillen plus
construction applied to the perfect group ker(π1( f )), by [44, Theorem 5.2.2]
[27, Theorem 3.5].
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804 B. Botvinnik et al.

Remark 4.6 Recall that amap f : X → Y to a pointed space is called phantom
if it is weakly homotopic to the constant map to the basepoint. Maps f0, f1 :
X → �Z to a loop space are said to agree up to phantom maps if their
difference f0 · f −1

1 is phantom: this is equivalent to f0 and f1 being weakly
homotopic in the sense of Definition 1.1.

In order to make certain homotopy-theoretic arguments we (functorially)
replace certain spaces by CW complexes, writing Rk := |Sing•R+(Wk)h2n−1◦ |
and X := |Sing•X |. The rest of this section is devoted to the proof of the
following result.

Theorem 4.7 If the spin cobordism W : ∅ � S2n−1 is such that W is simply-
connected and is spin cobordant to D2n relative to its boundary, and Assump-
tions 4.4 hold, then there is a map ρ : �X → R0 such that the composition
with inddiffm0 : R0 → �∞+2n+1KO agrees with �â, up to phantom maps.

In Sects. 4.3 and 4.4 we will show how a tuple (W, X, â) satisfying these
hypotheses can be constructed, but in the rest of this section we will prove
Theorem 4.7, and so suppose that the hypotheses of this theorem hold.

Setting the stage for the obstruction argument

Theorem 4.7will be proved by an obstruction-theoretic argument, which needs
some preliminary constructions. Before we begin, let us collect the important
consequences of our work so far.

Proposition 4.8

(i) There is a surgery equivalence R+(W0)h2n−1◦ � R+(D2n)h2n−1◦ , and so

in particular R+(W0)h2n−1◦ is non-empty. Thus we may choose an g−1 ∈
R+(W0)h2n−1◦ which lies in the component of g2ntor ∈ R+(D2n)h2n−1◦ under
the surgery equivalence.

(ii) There are metrics gi ∈ R+(K |[i,i+1])h2n−1◦ ,h2n−1◦ so that the gluing maps

μgi : R+(Wi )h2n−1◦ −→ R+(Wi+1)h2n−1◦

are homotopy equivalences. Let

mi := g−1 ∪ g0 ∪ g1 ∪ · · · ∪ gi−1 ∈ R+(Wi )h2n−1◦ .

(iii) The action homomorphism �(Wk) → π0(Aut(R+(Wk)h2n−1◦ )) has
abelian image.

Proof This is straightforward from the previous work: Because W0 = W is
spin cobordant to D2n relative to its boundary by assumption, the first part
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follows from Theorem 2.5. Because the manifold

K |[i,i+1] = ([0, 1] × S2n−1)#(Sn × Sn)

is cobordant to a cylinder relative to its boundary, the second part follows from
Theorem 2.6. The third assertion follows from Theorem 4.1, again using the
assumption that W0 is spin cobordant to D2n relative to its boundary. ��

We introduce the abbreviations Rk := R+(Wk)h2n−1◦ , Tk := EDk ×Dk Rk ,
write pk : Tk → Bk for the projection map and writeμk := μhk : Rk → Rk+1
for the gluing maps defined by the metrics hk of Proposition 4.8 (ii). The map
μk is Dk-equivariant (by construction), so there is an induced map between
the Borel constructions

Rk
μk Rk+1

Tk
νk

pk

Tk+1

pk+1

Bk
λk Bk+1.

By Proposition 4.8 (ii), the top map is a weak homotopy equivalence, so the
lower square is weakly homotopy cartesian. Using the (unique) spin structure
that each fibre bundle πk : Ek → Bk has (cf. Lemma 3.29), the construction
of Sect. 3.8 gives relative KO-classes βk ∈ KO−d(pk). Let hocolimk pk :
hocolimkTk → hocolimk Bk be the induced map on mapping telescopes.

Proposition 4.9 There is a relative KO-class β∞ ∈ KO−d(hocolimk pk), such
that the restriction to KO−d(pk) is equal to βk .

Proof The map

KO−d(hocolimk pk) −→ limk KO
−d(pk)

is surjective by Milnor’s lim1 sequence. The classes βk ∈ KO−d(pk) give
a consistent collection by Proposition 3.33, and so there exists a β∞ ∈
KO−d(hocolimk pk) restricting to them.

Let us move to the simplicial world, in which we will carry out the proof
of Theorem 4.7. The simplicial group Sing•Dk (obtained by taking singular
simplices) acts on the simplicial set Sing•Rk . We denote the geometric reali-
sations by Dk := |Sing•Dk | and Rk := |Sing•Rk |, and also write Bk := BDk .
Let D∞ and R∞ be the colimits of the induced maps

λk : Dk −→ Dk+1 and μk : Rk −→ Rk+1,
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806 B. Botvinnik et al.

which, as these maps are cellular inclusions, are also homotopy colimits. Let
B∞ := BD∞ and� : B∞ → X := |Sing•X | be a map in the homotopy class
induced by

B∞ = colim
k→∞ Bk

�←− hocolim
k→∞ Bk −→ |Sing•(B∞)| |Sing•�|−→ |Sing•(X)| = X.

Let
pk : Tk := EDk ×Dk Rk −→ Bk

be the induced fibre bundles, for k ∈ N∪{∞}. There is a commutative diagram

T∞
p∞

hocolimkTk

hocolimkpk

� hocolimkTk

hocolimk pk

B∞ hocolimkBk
� hocolimk Bk .

As the four left spaces in the diagram are all CW-complexes, there exists
a class β∞ ∈ KO−2n(p∞) whose pullback to KO−2n(hocolimkpk) coin-
cides with the pullback of the class β∞ constructed in Proposition 4.9 to
Cyl(hocolimkpk). The square

Tk

pk

T∞
p∞

Bk B∞.

(4.2)

is homotopy cartesian, as both maps are Serre fibrations, the map Rk → R∞
on fibres is a homotopy equivalence by Proposition 4.8 (ii), and all the spaces
have the homotopy type of CW complexes. The following property of the class
β∞ is clear from the construction and Proposition 4.9.

Lemma 4.10 The pullback of β∞ to each Cyl(pk) agrees with the pullback
of βk along the weak homotopy equivalence Cyl(pk) → Cyl(pk).

The obstruction argument

The topological group D∞ acts on R∞, and the map p∞ : T∞ → B∞ is the
associated Borel construction. In particular, there is an associated homomor-
phism D∞ → Aut(R∞) of topological monoids, which on classifying spaces
gives a map

h : B∞ −→ B(Aut(R∞)).
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Lemma 4.11 The monodromy map π1(B∞) → π0(Aut(R∞)) has abelian
image.

Proof Because a group is commutative if all its finitely generated subgroups
are, and because the diagram (4.2) is homotopy cartesian, it is enough to
prove that the monodromy map π1(Bk) → π0(Aut(Rk)) has abelian image
for each k. But π1(Bk) = π0(Dk) = �(Wk), and under this identification,
the monodromy map becomes the homomorphism �(Wk) → π0(Aut(Rk))

induced from the action, and we have shown that this acts through an abelian
group in Proposition 4.8 (iii). ��
Proposition 4.12 The exists a commutative and homotopy cartesian square

T∞
p∞

T+∞
p+∞

B∞ � X.

Moreover, there is a unique class β+∞ ∈ KO−2n(p+∞) which restricts to β∞ ∈
KO−2n(p∞).

Proof First, we invoke May’s general classification theory for fibrations [38].
The result (loc. cit. Theorem 9.2) is that there is a universal fibration E →
BAut(R∞)with fibreR∞ over the classifying space of the topological monoid
Aut(R∞) and a homotopy cartesian diagram

T∞
p∞

E

B∞ h BAut(R∞).

By Assumption 4.4 (i) there is an acyclic map� : B∞ → X. We claim that
the obstruction problem

B∞ �

h

X

g

BAut(R∞)

can be solved, up to homotopy. Since� is acyclic, by the universal property of
acyclic maps [27, Proposition 3.1] it is sufficient to prove that ker(π1(�)) ⊂
ker(π1(h)). The group ker(π1(�)) is perfect, but by Lemma 4.11 the group
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π1(h) has abelian image, and so π1(h)(ker(π1(�))) is trivial; in other words,
ker(π1(�)) ⊂ ker(π1(h)).

Therefore, we have constructed a factorisation

h : B∞
�−→ X

g−→ BAut(R∞)

up to homotopy. Let us denote by p+∞ : T+∞ → X the fibration obtained by
pulling E back along the map g, so there is an induced commutative square

T∞ � ′

p∞

T+∞
p+∞

B∞ � X.

By construction, the square is homotopy cartesian. Therefore, since � is
acyclic, so is � ′. Thus the class β∞ ∈ KO−d(p∞) from Lemma 4.10 extends
to a unique class β+∞ ∈ KO−d(p+∞). ��

Now we define the map ρ∞ : �X → R∞ as the fibre transport of the
fibration p+∞. Since R0 → R∞ is a homotopy equivalence, we can lift ρ∞ to
a map ρ : �X → R0. It remains to check that ρ has the property stated in
Theorem 4.7. We apply the relative index construction (i.e. Corollary 3.20) to
the class β+∞ and obtain a homotopy commutative diagram

�X
ρ

ρ∞
�bas(β+∞)

R0
� R∞

trg(β+∞)
�∞+2n+1KO.

The composition R0 → R∞
trg(β+∞)→ �∞+2n+1KO is homotopic to (the

pullback to R0 of) the index difference with respect to the psc metric m0 ∈
R+(W0)h2n−1◦ , by construction, Lemma 4.10 and Proposition 3.33. Recall that

in Assumption 4.4 (ii) we have chosen a map â : X → �∞+2nKO which
restricts to the family index on each Bk .

Proposition 4.13

(i) The classes bas(β+∞) and â in [X, �∞+2nKO] agree up to phantommaps.
(ii) The classes�bas(β+∞) and�â in [�X, �∞+2n+1KO] agree up to phan-

tom maps.
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The proof of Theorem 4.7 will be completed by the second statement of
Proposition 4.13. For the proof, we need general results about the relation
between phantom maps into loop spaces and homology equivalences.

Lemma 4.14 If the pointed map k : X → �Z is a phantom, then so is its
adjoint kad : �X → Z under the loop/suspension adjunction. If f : X → �Z
is a pointed phantom map, then so is the loop map � f : �X → �2Z.

Proof Without loss of generality, we can assume that X is a connected CW
complex. Let l : F → �X be a map from a finite CW complex, and we wish
to show that kad ◦ l is nullhomotopic. After adding a disjoint basepoint to F ,
we may assume that l is a pointed map. As any finite subcomplex of �X is
contained in the suspension �L of a finite (pointed) subcomplex L ⊂ X , we
can write l = (�i) ◦ j , where i : L → X is the inclusion and j : F → �L
somemap. But then kad ◦ l = kad ◦�i ◦ j = (k ◦ i)ad ◦ j . Since k is a phantom
and L is finite, k ◦ i is nullhomotopic. Because the target of k ◦ i is an H -space,
k ◦ i is nullhomotopic as a pointed map, by [26, 4A.2, 4A.3]. Hence the adjoint
(k ◦ i)ad is nullhomotopic as desired.

The second part is similar: let g : K → �X be a pointed map from a finite
CW complex. Then (� f ) ◦ g is adjoint to f ◦ gad . Because f is a phantom,
f ◦ gad is nullhomotopic, and nullhomotopic as a pointed map since its target
is an H-space. Therefore (� f ) ◦ g is nullhomotopic, as desired. ��
Lemma 4.15 Let f : X → Y be a homology equivalence and h : Y → �Z
be a map to a loop space. If h ◦ f is a phantom, then so is h.

Proof Without loss of generality, we can assume that X and Y are connected
CW complexes and that h and f are pointed maps. It is also enough to prove
that h becomes nullhomotopic when composed with pointed maps with finite
CW source. Let F be a finite pointed complex and g : F → Y be a map; we
wish to show that h ◦g is nullhomotopic. It is enough to prove that (h ◦g)ad =
had ◦ (�g) : �F → �Y → Z is nullhomotopic. Now as f was assumed to
be a homology equivalence of connected CW complexes, � f : �X → �Y
is a homotopy equivalence. Thus there exists a map m : �F → �X with
(� f ) ◦ m � �g. Hence

(h ◦ g)ad = had ◦ (�g) � had ◦ (� f ) ◦ m = (h ◦ f )ad ◦ m.

But by assumption, h ◦ f is a phantom and thus by Lemma 4.14, (h ◦ f )ad

is a phantom as well. As �F is finite, we find that (h ◦ g)ad and thus h ◦ g is
nullhomotopic, as claimed. ��
Proof of Proposition 4.13 The first statement implies the second, by Lemma
4.14. We claim that the two compositions

bas(β+∞) ◦�, â ◦� : B∞ −→ X −→ �∞+2nKO
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agree up to phantoms. Since � is a homology equivalence, this will imply—
by Lemma 4.15—that bas(β+∞) and â agree up to phantoms, as desired. Let
f : K → B∞ be a map from a finite CW complex. By compactness, it lands in
some Bk . To finish the proof, it is thus enough to check that the compositions

Bk −→ X
bas(β+∞)−→ �∞+2nKO and Bk −→ X

â−→ �∞+2nKO

agree up to phantoms.But byAssumption 4.4 (ii), the second of those composi-
tions is homotopic to (the pullback toBk of) the family index ind(Ek, h2n−1◦ ) ∈
KO−2n(Bk), up to phantoms. Moreover, by Proposition 4.12, Lemma 4.10 and
Proposition 3.33, the first of those compositions is homotopic to (the pullback
to Bk of) the family index ind(Ek, h2n−1◦ ) ∈ KO−2n(Bk) as well. ��

4.3 Starting the proof of Theorem B

Consider a sequence of spin cobordisms

∅ W� K |0 K |[0,1]� K |1 K |[1,2]� K |2 K |[2,3]� K |3 � · · · (4.3)

as in the previous section. The associated fibre bundles πk : Ek → Bk admit
unique spin structures—which are compatible—by Lemma 3.29. Hence we
obtain a map

hocolim
k→∞ Bk −→ hocolim

k→∞ �[∅,K |k ]�∞−1MTSpin(2n)

on homotopy colimits. Each of the maps

�[∅,K |k ]�∞−1MTSpin(2n) −→ �[∅,K |k+1]�∞−1MTSpin(2n),

which concatenates a path with the path obtained from the Pontrjagin–Thom
construction applied to K |[k,k+1], is a homotopy equivalence, and as K |−1 = ∅
we obtain a map

α∞ : B∞ := hocolim
k→∞ Bk −→ �∞

0 MTSpin(2n) (4.4)

well-defined up to homotopy.
Suppose for now that the map α∞ is acyclic. Then it satisfies Assumption

4.4 (i), and for Assumption 4.4 (ii) we take the class

�∞(λ−2n) ∈ KO−2n(�∞
0 MTSpin(2n))
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represented by the infinite loop map of the KO-theory Thom class of
MTSpin(2n).

Proposition 4.16 The maps ind(Ek, h2n−1◦ ) : Bk → �∞+2nKO and Bk →
B∞

α∞→ �∞
0 MTSpin(2n)

�∞(λ−2n)→ �∞+dKO agree up to phantom maps.

Proof Let C be compact and C → Bk be a map which classifies a spin fibre
bundle E → C with fibre Wk and trivialised boundary. On the boundary
bundle C × K |k , there is the psc metric h2n−1◦ . We give the trivial fibre bundle
C ×Wop

k the fibrewise psc metric mk constructed in Proposition 4.8 ii. We let
E ′ := Ek ∪C×K |k (C × Wop

k ), which is the bundle Ek with a trivial bundle
glued to it, and has closed fibres. Since mk is psc, we find by the additivity
theorem (Corollary 3.15) that

ind(Ek, h
2n−1◦ ) = ind(E ′).

By construction, the map C → Bk → B∞
α∞→ �∞

0 MTSpin(2n) is the map
αE ′ : C → �∞

0 MTSpin(2n). By the Atiyah–Singer family index theorem
(Theorem 3.32), these two maps out of C are homotopic. ��

We have verified the hypotheses of Theorem 4.7, which thus provides a
map

ρ : �∞+1MTSpin(2n) −→ R+(W0)h2n−1◦

such that the composition

�∞+1MTSpin(2n)
ρ−→ R+(W0)h2n−1◦

inddiffh−1−→ �∞+2n+1KO

is homotopic to �∞(λ−2n) up to phantom maps. This establishes Theorem B
for the manifoldW = W0, and the general case then follows from Proposition
3.18.

Thus in order to finish the proof of Theorem B in dimension 2n we must
produce a spin cobordism W : ∅ � S2n−1 such that the following three
conditions are satisfied

(i) W is 1-connected,
(ii) W is spin cobordant to D2n relative to its boundary,
(iii) the associated map α∞ is acyclic.

Themain result of [20] gives criteria onW for themap α∞ to be a homology
isomorphism, as long as 2n ≥ 6. This result is enough to prove Theorem B in
the case 2n = 6, and we explain it first.
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4.3.1 Finishing the proof of Theorem B: the 6-dimensional case

In this case we let W = D6, which clearly satisfies the first two conditions.
The manifoldWk is then the k-fold connected sum #k(S3 × S3), minus a disc.
To establish the acyclicity of the map α∞ in this case, we use the following
theorem.

Theorem 4.17 (Galatius–Randal-Williams) The map

α∞ : hocolim
k→∞ BDiff∂(#

k(S3 × S3) \ D6) −→ �∞
0 MTSpin(6) (4.5)

is a homology equivalence.

This is a consequence of the general theorem [20, Theorem 1.8], and is
explicitly discussed in [20, §1.5]. There is one minor observation required: in
[20] the notation Diff∂(W ) denotes the colimit of the groups of diffeomor-
phisms fixing smaller and smaller collars, whereas in this paper it denotes the
group of diffeomorphisms fixing a single collar. But the natural homomor-
phism between these groups is a weak homotopy equivalence by an argument
like that of Lemma 2.1, and we will not distinguish between them.

Having a homology equivalence is not quite enough for the obstruction
theory in the previous subsection, where we needed the map to be acyclic.
However, we also have the following.

Proposition 4.18 The space �∞
0 MTSpin(6) is simply-connected.

This follows from recent calculations of Galatius and the third named author
[22, Lemma 5.7]. We have been informed by Bökstedt that his calculations
with Dupont and Svane [9] can be used to give an alternative proof. It follows
from this proposition that the map (4.5) is actually acyclic (as the target is
simply-connected, so there are no local coefficient systems to check), which
finishes the proof of Theorem B for d = 6.

4.4 Finishing the proof of Theorem B

There are three ways in which the case 2n > 6 is more difficult to handle
than the case 2n = 6. Firstly, the infinite loop space �∞

0 MTSpin(2n) is not
necessarily simply-connected, so it is not automatic that the homology equiv-
alences coming from [20] are acyclic. Secondly, the manifold obtained by the
countable composition of the cobordisms K = ([0, 1] × S2n−1)#(Sn × Sn)
does not form a “universal spin-end” in the sense of [20, Definition 1.7] unless
2n = 6, and so the results of [20] do not apply. Thirdly, even if the results of
[20] did apply to this stabilisation, wemust show that there is a spin cobordism

123



Infinite loop spaces and positive scalar curvature 813

W : ∅ � S2n−1 whose structure map 
W : W → BSpin(2n) is n-connected
and which in addition satisfies the conditions given in Sect. 4.3.

The first two of these difficulties can be avoided by appealing instead to the
results of [19], which build on those of [20]. These results upgrade those of
[20] to always give acyclic maps instead of merely homology equivalences,
and to allow more general stabilisations than by “universal ends”. The third
difficulty must be confronted directly, and we shall do so shortly. First, let us
state the version of the result of [19] which we shall use, and show how to
extract it from [19].

Theorem 4.19 (Galatius–Randal-Williams) Let W : ∅ � S2n−1 be a spin
cobordism such that the structure map 
W : W → BSpin(2n) is n-connected.
Then the map

α∞ : hocolim
k→∞ BDiff∂(Wk) −→ �∞

0 MTSpin(2n)

is acyclic.

Proof We adopt the notation used in the introduction of [19]. Let θ :
BSpin(2n) → BO(2n) be the map classifying the universal spin bundle
of dimension 2n. Let us write 
̂W : TW → θ∗γ2n for the bundle map
covering 
W , write P := S2n−1, and let 
̂P := 
̂W |P . We have the cobor-
dism K = ([0, 1] × P)#(Sn × Sn) and we wish to choose a bundle map

̂K : T K → θ∗γ2n such that
(i) 
̂K |{0}×P = 
̂K |{1}×P = 
̂P , and
(ii) 
̂K restricted to W1,1 ⊂ K is admissible in the sense of [19, Definition

1.2].

As themap θ is 2-co-connected, andwe have assumed that n ≥ 3, themanifold
W1,1 has a unique θ -structure. As admissible θ -structures always exist by [19,
§2.2], it must be admissible, so it is enough to find a 
̂K satisfying (i). But as
K may be obtained from {0, 1} × P by attaching a single 1-cell followed by
n-cells and higher, the only obstruction to finding a bundle map 
̂K extending
given bundle maps over {0} × P and {1} × P is whether these are coherently
oriented. Thus there is such a 
̂K .

The space Bunθ∂,n(Wk; 
̂P), of those θ -structures on Wk which restrict to


̂P on ∂Wk = K |k = P and have n-connected underlying map, is homotopy
equivalent to the space of (n-connected) relative lifts

P

P B

θ

Wk
τ BO(2n)
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of a Gauss map τ ofWk . The obstructions to trivialising an element of the pth
homotopy group of this space therefore lie in the groups

Hi (Dp+1 × Wk, ∂(D
p+1 × Wk);πi (BO(2n), B)), i ≥ 1.

As the map θ is 2-co-connected these obstruction groups vanish for i ≥ 3.
As the pair (Wk, P) is 1-connected, the pair (Dp+1 × Wk, ∂(Dp+1 × Wk)) is
(p + 2)-connected, and so these obstruction groups also vanish for i ≤ p + 2
so in particular for i ≤ 2. Therefore the obstruction groups vanish for all p,
so πp(Bunθ∂,n(Wk; 
̂P)) = 0 for all p. Thus the natural map gives a weak
homotopy equivalence

Bunθ∂,n(Wk; 
̂P)//Diff∂(Wk)
�−→ BDiff∂(Wk).

On the other hand, Bunθ∂,n(Wk; 
̂P)//Diff∂(Wk) is a path component of the

space N θ
n (P, 
̂P) of [19, Definition 1.1], and by [19, Theorem 1.5] there is

an acyclic map

hocolim
k→∞ N θ

n (P, 
̂P) −→ �∞MTSpin(2n),

where the homotopy colimit is formed using the endomorphism − ∪ (K , 
̂K )
of N θ

n (P, 
̂P). Restricting to the path component

hocolim
k→∞ Bunθ∂,n(Wk; 
̂P)//Diff(Wk, K |k) �−→ hocolim

k→∞ Diff(Wk, K |k)

this map identifies with α∞. ��
It remains to provide a spin cobordism W which satisfies all conditions

we needed so far. We equip D2n with the unique (up to isomorphism) spin
structure and S2n−1 with that induced on the boundary.

Proposition 4.20 For 2n ≥ 6 there exists a spin cobordism W : ∅ � S2n−1

such that

(i) W is spin cobordant relative to its boundary to D2n,
(ii) the structure map 
W : W → BSpin(2n) is n-connected (as BSpin(2n)

is simply-connected, it follows that W is simply-connected).

Proof This works for more general θ -structures, but we confine ourselves to
the case we need. The space BSpin(2n) is simply-connected and has finitely-
generated homology in each degree, so there exists a finite complex X and an
n-connected map f : X → BSpin(2n). Let f ∗γ2n → X be the pullback of
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Infinite loop spaces and positive scalar curvature 815

the universal spin vector bundle. The structuremap D2n → BSpin(2n) factors
as

D2n h−→ X
f−→ BSpin(2n),

which yields an isomorphism T D2n ∼= h∗ f ∗γ2n . By surgery below the middle
dimension in the interior of D2n (compare [53,Theorem1.2]which also applies
to the case with boundary), wemay find a cobordism relative boundary Y from
D2n to a manifold W , and a map g : Y → X extending h such that

(i) the map g|W : W → X is n-connected,
(ii) there is a stable isomorphism TY ∼= g∗ f ∗γ2n ⊕ R extending the isomor-

phism T D2n ∼= h∗ f ∗γ2n .
It follows from (ii) that Y is a spin cobordism and so is W , as well. The stable

tangent bundle of W is classified by the map ϕ : W g|W→ X
f→ BSpin(2n)

j→
BSpin and since g|W and f are n-connected and j : BSpin(2n) → BSpin is
2n-connected, it follows that ϕ is n-connected. There is a homotopy commu-
tative diagram

W
ϕ


W

BSpin

BSpin(2n)

j

from which the n-connectivity of 
W follows. ��

5 Computational results

In this section, we will derive the computational consequences of Theorems
B and C. To do so, we will study the effect of the maps

�∞+1λ−2n : �∞+1
0 MTSpin(2n) −→ �∞+2n+1KO

�∞+2λ−2n : �∞+2
0 MTSpin(2n) −→ �∞+2n+2KO

on homotopy and homology, and in particular their images; Theorems B and
C show that these maps factor throughR+(S2n) andR+(S2n+1) respectively,
so the images of these maps are contained in the the images of the respective
secondary index maps. This section is almost entirely homotopy-theoretic,
and except for Theorem 5.13, we shall not mention spaces of psc metrics any
further.

Recall that MTSpin(d) is the Thom spectrum Th(−γd) of the additive
inverse of the universal vector bundle γd → BSpin(d). For any virtual spin
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vector bundle V → X of rank r ∈ Z, we denote the KO-theoretic Thom class
by λV ∈ KOr (Th(V )) = [Th(V ),�rKO]. Note that there is a unique lift of
λV to�rko, the appropriate suspension of the connectiveKO-spectrum, which
we denote by the same symbol. In the special case V = −γd , we denote the
Thom class by λ−d ∈ [MTSpin(d),�−d(ko)]. We are interested in the groups

Jd,k := Im ((λ−d)∗ : πk(MTSpin(d)) → πd+k(ko)) .

5.1 Multiplicative structure of Madsen–Tillmann–Weiss spectra

The spectrum ko has a ring structure, and the algebraic structure of π∗(ko)
is well-known, due to Bott periodicity. There are elements η ∈ π1(ko), κ ∈
π4(ko) and β ∈ π8(ko), such that

π∗(ko) = Z[η, κ, β]/(2η, η3, κ2 − 4β, κη). (5.1)

Even though MTSpin(d) is not itself a ring spectrum, there is a useful
product structure available to us as the collection {MTSpin(d)}d≥0 form what
one might call a graded ring spectrum. Namely, there are maps

μ : MTSpin(d) ∧ MTSpin(e) −→ MTSpin(d + e)

which come from the bundle maps γd × γe → γd+e which cover the Whitney
sum maps BSpin(d)× BSpin(e) → BSpin(d + e). The usual multiplicative
property of Thom classes translates into the statement that the diagram

MTSpin(d) ∧ MTSpin(e)

λ−d∧λ−e

μ
MTSpin(d + e)

λ−(d+e)

�−dko ∧�−eko �−(d+e)ko

(where the bottom horizontal map is the ring spectrum structure map) com-
mutes up to homotopy. On the level of homotopy groups, this commutativity
means that for a ∈ πk(MTSpin(d)), b ∈ πl(MTSpin(e)), we have

(λ−(d+e))∗(μ(a, b)) = (λ−d)∗(a) · (λ−e)∗(b) ∈ πd+e+k+l(ko). (5.2)

In order to write down elements in πk(MTSpin(d)), the interpretation of
this homotopy group in terms of Pontrjagin–Thom theory is useful.

Theorem 5.1 The group πk(MTSpin(d)) is isomorphic to the cobordism
group of triples (M, V, φ), where M is a closed (k + d)-manifold, V → M a
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Infinite loop spaces and positive scalar curvature 817

spin vector bundle of rank d and φ : V ⊕ εk
R

∼= T M a stable isomorphism of
vector bundles.

This is just a special case of the classical Pontrjagin–Thom theorem, see
e.g. [49, Chapter II]. There are homomorphisms

πk+1(MTSpin(d − 1)) −→ πk(MTSpin(d)) −→ �
Spin
d+k, (5.3)

where the symbol�Spin
d+k denotes the ordinary spin cobordism group of (d+k)-

manifolds. The first homomorphism sends [M, V, φ] to [M, V⊕R, φ], and the
second forgets V and φ (but keeps the spin structure on M that is induced by
them). The homomorphism πk(MTSpin(d)) → �

Spin
d+k is surjective for k ≤ 0

and bijective for k < 0. The image of πk(MTSpin(d)) → �
Spin
d+k (for k > 0)

is the group of all cobordism classes which contain manifolds whose stable
tangent bundle splits off a k-dimensional trivial summand. Any d-dimensional
spin manifold M defines an element [M, T M, id] ∈ π0(MTSpin(d)), but this
construction does not descend to a homomorphism�

Spin
d → π0(MTSpin(d)),

as a (d + 1)-dimensional spin cobordism does not generally admit a destabili-
sation of its tangent bundle to a d-dimensional vector bundle compatible with
the tangent bundle along its boundary (e.g. Dd+1 as a nullbordism of Sd for d
even).

The product has a pleasant description in terms of manifolds: if [Mi , Vi , φi ]
∈ πki (MTSpin(di )), i = 0, 1, then

[M0 × M1, V0 × V1, φ0 × φ1] = μ([M0, V0, φ0], [M1, V1, φ1])
∈ πk0+k1(MTSpin(d0 + d1)).

It is a consequence of the Atiyah–Singer index theorem that

(λ−d)∗([M, V, φ]) = ind( /DM) ∈ KO−d−k = πk+d(ko)

for [M, V, φ] ∈ πk(MTSpin(d)). From now on, we will denote this invariant
by the classical notation ˆA (M). For k + d ≡ 0 (mod 4), the value of ˆA (M)
can be computed in terms of characteristic classes by the formula

ˆA (M) =
{

〈 Â(T M), [M]〉 · βr if d + k = 8r ,
1
2 〈 Â(T M), [M]〉 · βrκ if d + k = 8r + 4.

(5.4)

For each d ≥ 0 there is a class

ed := [∗,Rd , id] ∈ π−d(MTSpin(d)),
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818 B. Botvinnik et al.

which is a generator for the group π−d(MTSpin(d)) ∼= Z. These classes
clearly satisfy μ(ed , ee) = ed+e and ˆA (ed) = 1. Moreover, e0 is a unit for
the multiplication μ. Multiplication by e1 defines a map

ηd : S−1 ∧ MTSpin(d) −→ MTSpin(d + 1), (5.5)

which coincides with the analogous map in [21, §3] and which on homotopy
groups induces the first map in (5.3). The composition

S−d ed−→ MTSpin(d)
λ−d−→ �−dko

is the dth desuspension of the unit map of the ring spectrum ko. To sum up,
we obtain a homotopy commutative diagram:

S0
e0

e1

e2

MTSpin(0)

η1

λ−0
ko

�MTSpin(1)

η2

λ−1

�2MTSpin(2)

η3

λ−2

...

(5.6)

From (5.2) and (5.6), we obtain

Corollary 5.2 There are inclusions Jd,k ⊇ Jd−1,k+1 and Jd,k Je,l ⊆ Jd+e,k+l .

5.2 Proof of Theorem A

In this section we shall provide the homotopy theoretic calculations which,
when combined with Theorem B and C, establish Theorem A. We first inves-
tigate the effect of the maps λ−d on rational homotopy groups.

Theorem 5.3 For each d ≥ 2 and d + k ≡ 0 (mod 4), the map

(λ−d)∗ : πk(MTSpin(d))⊗ Q −→ πk+d(ko)⊗ Q ∼= Q

is surjective.
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Infinite loop spaces and positive scalar curvature 819

Proof The proof is a standard calculation with characteristic classes, but we
present the details as they will be used later on.

Let π : V → X be a complex vector bundle of rank n whose underlying
real bundle has a spin structure. The spin structure determines a Thom class
λV ∈ KO2n(Th(V )), which for this proof we shall write as λSpinV . On the other
hand, the complex structure determines a Thom class λC

V ∈ K 2n(Th(V )). The
groups SO(2), Spin(2), and U (1) are all isomorphic, but Spin(2) → SO(2)
is a double cover. Identifying all these groups with U (1), it follows that a
spin structure on a complex line bundle is precisely a complex square root. In
particular, the spin structure on V determines a square root det(V )1/2 of the
complex determinant line bundle of V . The relation between the Thom classes
λ
Spin
V and λC

V under the complexification map c : KO → KU is given by the
following formula2, cf. [35, (D.16)]:

c(λSpinV ) = det(V )−1/2 · λC

V ∈ K 2n(Th(V )).

If V ⊕ V⊥ ∼= εn
C
, we obtain, using that det(V )⊗ det(W ) = det(V ⊕ W ), the

formula

c(λSpin
V⊥ ) = det(V )1/2 · λC

V⊥ ∈ K 2n(Th(V⊥)).

This relation is preserved under stabilisation, and therefore we get an equation
in the K -theory of the Thom spectrum

c(λSpin−V ) = det(V )1/2 · λC−V ∈ K−2n(Th(−V )).

Similarly, if uV ∈ H2n(Th(V ); Q) is the cohomological Thom class, then

ch(λC

V ) = I (V ) · uV ∈
∏

i

H i+2n(Th(V ); Q)

where I (−) is the genus associated to 1−ex
x cf. [35, p. 241]. This is also

multiplicative and stable, hence gives an equation in spectrum cohomology

ch(λC−V ) = 1
I (V ) · u−V ∈

∏

i

H i−2n(Th(−V ); Q).

2 It is important here to adopt the correct convention for K -theory Thom classes of complex
vector bundles: one should take the convention used in [35, TheoremC.8], which is characterised
by the identity (λCL )

2 = (1 − L) · λCL ∈ K 0(Th(L)) when L → CP
∞ is the universal line

bundle.
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After these generalities let us begin the proof of the theorem. By Corollary
5.2, it is enough to consider the case d = 2, and as Spin(2) can be identified
withU (1) we may identify BSpin(2) with CP

∞. Under this identification the
universal rank 2 spin bundle is identified with L⊗2, the (realification of the)
tensor square of the universal complex line bundle overCP

∞. Specialising the
above general theory to this case, we obtain

c(λSpin−L⊗2) = L · λC

−L⊗2 ∈ K−2(MTSpin(2)). (5.7)

and

ch(λC

−L⊗2) = c1(L⊗2)

1 − ec1(L⊗2)
· u−L⊗2 .

If we define x := c1(L), which generates H2(CP
∞; Z), then we obtain

ch(c(λSpin−L⊗2)) = 2x

1 − e2x
ex · u−L⊗2

= − x

sinh(x)
· u−L⊗2 ∈ H∗(MTSpin(2); Q),

and following [39, Appendix B] the identity 1
sinh(2v) = 1

tanh(v) − 1
tanh(2v) yields

x

sinh(x)
= 1 +

∞∑

m=1

(−1)m
(22m − 2)Bm

(2m)! x2m,

where Bm is the mth Bernoulli number (our notation for Bernoulli numbers
also follows [39, Appendix B]). We hence obtain the formula

ch(c(λSpin−L⊗2)) = −
(

1 +
∞∑

m=1

(−1)m
(22m − 2)Bm

(2m)! x2m
)

· u−L⊗2 . (5.8)

The point of the proof is now that (2
2m−2)Bm
(2m)! �= 0 for allm > 0.More precisely,

consider the diagram

π4m−2(MTSpin(2))⊗ Q
(λ−2)∗

h

π4m(ko)⊗ Q

h

H4m−2(MTSpin(2); Q)

�

(λ−2)∗
H4m(ko; Q)

〈ph4m ,−〉

H4m(BSpin(2); Q)
e

Q.
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The upper vertical maps are the Hurewicz homomorphisms, which are iso-
morphisms by Serre’s finiteness theorem; the left bottom vertical arrow is the
inverse Thom isomorphism, and the right bottom vertical map is the evalu-
ation against the mth component of the Pontrjagin character, which is also
an isomorphism. The upper square is commutative, and the above calcu-
lation shows that the lower square commutes if e is the evaluation against

(−1)m+1 (22m−2)Bm
(2m)! x2m �= 0 ∈ H4m(BSpin(2); Q). As this class is nonzero,

the lower horizontalmap is onto, and so is the upper horizontalmap, as claimed.
��

We now describe the effect of the maps λ−d onto the Z/2 summands.

Theorem 5.4 For each d ≥ 0 and 0 ≤ i ≡ 1, 2 (mod 8), the map

(λ−d)∗ : πi (�dMTSpin(d)) −→ πi (ko) ∼= Z/2

is surjective.

Proof That the unit map S0 → ko hits all 2-torsion follows from the work
of Adams on the J -homomorphism [2, Theorem 1.2]. But the d-fold desus-
pension of the unit map is λ−d ◦ ed , by the remarks before diagram (5.6).

��

5.3 Integral surjectivity

The following implies Theorem D.

Theorem 5.5 The homomorphism (λ−d)∗ : πk(MTSpin(d)) → πd+k(ko) is
surjective for all k ≤ d + 1.

Proof If k + d �≡ 0 (mod 4), then the map is surjective by Theorem 5.4. In
particular, if k = d+1 then k+d is odd so the claim follows in this case. For the
case k ≤ d, using themultiplicative structure (5.2) and (5.1) itwill be enough to
create elements k ∈ π2(MTSpin(2)) with ˆA (k) = κ and b ∈ π4(MTSpin(4))
with ˆA (b) = β. For both cases, we use Theorem 5.1, and both elements will
be given by a (2m − 1)-connected 4m-manifold, m = 1, 2, with the desired
value of ˆA (M), plus a spin vector bundle V → M of rank 2m, and a stable
isomorphism V ⊕ε2m

R
∼= T M . We will writeμM ∈ H4m(M) for the generator

with 〈μM , [M]〉 = 1. Recall the formulae for the low-dimensional Â-classes
and the Hirzebruch classes

Â1 = − 1

23 · 3 p1 Â2 = 1

27 · 32 · 5(−4p2 + 7p21)

L1 = 1

3
p1 L2 = 1

32 · 5(7p2 − p21).
(5.9)
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We first construct the element k ∈ π2(MTSpin(2)). Let K be a K3 surface,
which is a simply-connected spin manifold. It is well-known that the intersec-
tion form of K is q = 2(−E8)⊕ 3H , the direct sum of two times the negative
E8-form and three hyperbolic summands. The signature of this form is −16,
which by Hirzebruch’s signature theorem means that p1(T K ) = −48μK .
Therefore, Â(T K ) = 2μK and so ˆA (K ) = κ by (5.4), as required. We claim
that there exists a complex line bundle L → K such that p1(L⊗2) = p1(T K ).
Let c ∈ H2(K ) and Lc be the line bundle with c1(La) = c. Since

p1(L
⊗2
c ) = c1(L

⊗2
c )2 = 4q(c) · μK ,

we have to pick c such that q(c) = −12. It is easy to see that a quadratic
form which contains a hyperbolic summand represents any even number, and
therefore such a c exists. We now claim that T K and L⊗2

c ⊕ ε2
R
are stably

isomorphic. To see this,wemust show that the triangle in the following diagram
commutes.

BSpin(2)

K T K

L⊗2
c

BSpin
p1/2

K (Z, 4)

As the map p1/2 : BSpin −→ K (Z, 4) is 8-connected, it is enough to show
that p1(T K ) = p1(L⊗2

c ⊕ ε2) ∈ H4(K ; Z), but we have arranged for this to
be true. Hence there is a stable isomorphism φ : L⊗2

c ⊕ ε2 ∼= T K and the
element k = [K , Lc, φ] ∈ π2(MTSpin(2)) has the desired properties.

In the 8-dimensional case the proof is similar but more difficult (with the
exception that every vector bundle on a 3-connected 8-manifold is spin, so
we do not have to take care of this condition). Let P be the 8-dimensional
(−E8)-plumbing manifold, which is 3-connected as the Dynkin diagram for
E8 is contractible. Consider �28P , the boundary connected sum of 28 copies
of P . This is a 3-connected parallelisable manifold, with signature−25 ·7, and
its boundary ∂(�28P) is diffeomorphic to S7, by the calculation of Kervaire–
Milnor [32] that the group of homotopy 7-spheres is a cyclic group of order
28. The manifold M := �28N ∪S7 D

8 is parallelisable away from a point, and
therefore p1(T M) = 0. The Hirzebruch signature theorem and (5.9) shows
that

p2(T M) = −25 · 32 · 5μM

and Â(T M) = μM , so that ˆA (M) = β, by (5.4). For r ≥ 0 let Kr := �r (S4×
S4) and Mr := M�Kr . This is still parallelisable away from a point, whence
p1(T Mr ) = 0, and since Mr is cobordant to M , we still have ˆA (Mr ) = β.
We now claim that for r = 12, we can find a 4-dimensional vector bundle
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Vr → Kr so that the connected sum of Vr with the trivial bundle over M
yields a vector bundle over Mr with the same Pontrjagin classes as T Mr .
Consider the exact sequence

KO−1(M (4)
r )

δ→ K̃O
0
(S8) → KO0(Mr ) → KO0(M (4)

r ) → K̃O
1
(S8) = 0

coming from the cofibre sequence M (4)
r → Mr → S8. As M (4)

r is a bouquet of
4-spheres we haveKO−1(M (4)

r ) ∼= Z/2, and since K̃O0
(S8) ∼= Z it follows that

the map δ is zero. Because KO0(M (4)
r ) is free abelian, it follows that KO0(Mr )

is torsion-free, and this implies that the Pontrjagin character ph : KO0(Mr ) →
H∗(Mr ; Q) is injective. Therefore, a stable vector bundle on Mr is determined
by its Pontrjagin classes. Thus if we are able to find a 4-dimensional vector
bundle Vr → Kr such that ε4

R
�Vr → M�Kr = Mr has the same Pontrjagin

classes as T Mr , then it will be stably isomorphic to T Mr .
Isomorphism classes of 4-dimensional stably trivial vector bundles on Kr −

∗ � ∨r
(S4 ∨ S4) are in bijection with 2H4(Kr ) ∼= (Z2)r , the group of

cohomology classes that are divisible by 2. The bijection is given by the Euler
class. For each such vector bundle, there is an obstruction in

π7(BSpin(4)) ∼= π6(S
3 × S3) ∼= Z/12 ⊕ Z/12

against extending the vector bundle over Kr (the isomorphism π6(S3) ∼=
Z/12 is classical, see [51, p. 186]). To explain this obstruction, write
x1, y1, . . . , xr , yr ∈ π4(

∨r
(S4 ∨ S4)) for the inclusions of the wedge sum-

mands, so that the attaching map for the 8-cell of Kr is the sum of Whitehead
products

∑r
i=1[xi , yi ]. Thus, if we write ρ ∈ π4(BSpin(4)) for the class with

Euler class 2 and first Pontrjagin class zero, then the stably trivial vector bun-
dle on Kr − ∗ with Euler class (a1, b1, . . . , ar , br ) ∈ (Z2)r ∼= 2H4(Kr ) has
obstruction

r∑

i=1

[ai · ρ, bi · ρ] =
(

r∑

i=1

aibi

)

· [ρ, ρ] ∈ π7(BSpin(4))

against extending over Kr . Therefore, if we take r = 12, all ai to be equal
and all bi to be equal, then the obstruction is zero and the vector bundle can
be extended.

Thus, for each c ∈ 2H4(S4 × S4), we obtain a 4-dimensional vector bundle
Vc on K12 = �12(S4 × S4) with Euler class

(c, c, . . . , c) ∈ H4(K1; Z)r ∼= H4(Kr ; Z).

When restricted to the 4-skeleton, the bundle Vc is stably trivial and so
p1(Vc) = 0.
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Nowwe take the connected sumofVcwith the trivial vector bundle onM and
get a vector bundleW12 → M12 = M�K12, with p1(W12) = 0 andEuler class

e(W12) = (c, c, . . . , c, 0) ∈ H4(K1)⊕ · · · ⊕ H4(K1)⊕ H4(M) = H4(M12).

Let q0 be the intersection form on H4(S4 × S4), and compute

p2(W12) = e(W12)
2 = q(c, c, . . . , c, 0)μM12 = 12q0(c)μM12 .

In order to achieve that p2(W12) = p2(T M12) = 25 · 32 · 5μM12 , we have to
find an even c so that q0(c) = −23 · 3 · 5. As in the four-dimensional case,
we can find an even c with q0(c) = 8s, for each s ∈ Z, and picking s = −15
finishes the proof. ��
5.3.1 Homological conclusions

We can use Theorem 5.5 to obtain results on the image of

H∗(�∞+1MTSpin(d); F) → H∗(�∞+d+1ko; F)

when F is a field.When F = Q or F2, the result is particularly nice. For F = Q

and d ≥ 2, we find that

H∗(�∞+1MTSpin(d); Q) −→ H∗(�∞+d+1ko; Q)

is surjective, using Theorem 5.3. For F = F2, we have the following result,
proving Theorem G.

Proposition 5.6 For n ≥ 0, the Thom class maps

�∞+1λ−2n : �∞+1MTSpin(2n) −→ �∞+2n+1ko

�∞+2λ−2n : �∞+2MTSpin(2n) −→ �∞+2n+2ko

are surjective on F2-homology.

Proof We require some information about

H∗(�∞+kko; F2) = H∗(�k(Z × BO); F2)

as algebras over the Dyer–Lashof algebra. When k ≡ 0, 1, 2, 4mod 8, so
�k(Z × BO) is disconnected, the class ξ = [1] ∈ H0(�

k(Z × BO); F2)

of the path component corresponding to a generator of πk(Z × BO), and
its inverse ξ−1 = [−1], generate H∗(�∞+kko; F2) as an algebra over the
Dyer–Lashof algebra. For the remaining k the unique nontrivial class ξ in the
lowest nonvanishing reduced homology group generates H∗(�∞+kko; F2)

as an algebra over the Dyer–Lashof algebra. These claims follow from the
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calculations of Kochman [33] and Priddy [42], a pleasant reference for which
is [40].

By Theorems 5.4 and 5.5 the class ξ is in the image of

π∗(�∞+ jMTSpin(2n))
�∞+ jλ−2n∗−→ π∗(�∞+2n+ jko) −→ H∗(�∞+2n+ jko; F2)

for j = 1, 2, and if k ≡ 0, 1, 2, 4mod 8 then ξ−1 is too. Thus these classes
are also in the image of H∗(�∞+ jλ−2n; F2). As�∞+ jλ−2n is an infinite loop
map its imageonF2-homology is closedundermultiplication andDyer–Lashof
operations, so the map is surjective on F2-homology as claimed. ��

5.4 Away from the prime 2

Away from the prime 2, we can considerably improve the surjectivity result
Theorem 5.5 by applying work of Madsen and Schlichtkrull [37]. All spaces
X that occur in the sequel are infinite loop spaces, so they have localisations
X → X(p) which induce algebraic localisation at p on homotopy and homol-
ogy (see e.g. [50]).

Theorem 5.7 Let p be an odd prime. There is a loopmap f : (�∞+2
0 ko)(p) →

�∞
0 MTSpin(2)(p) such that the composition

(�∞+2
0 ko)(p)

f−→ �∞
0 MTSpin(2)(p)

�∞λ−2−→ (�∞+2
0 ko)(p)

on π4m−2(−) is multiplication by a p-local unit times (22m−1−1) ·Num( Bm2m ).
Proof Let us write �2

0(Z × BO) for �∞+2
0 ko, β : BU

∼→ �2
0(Z × BU )

for the Bott equivalence and β−1 for its homotopy inverse. The proof will be
based onwork ofMadsen–Schlichtkrull [37]. Theirwork allows us to construct
the following homotopy commutative diagram, where all infinite loop spaces
are implicitly localised at p, and k ∈ N is chosen such that its residue class
generates (Z/p2)×.

CP
∞

L−1

CP
∞

L−1

�2
0(Z × BO)

1©

ρ

f

BU

2©

β−1◦�2(1−ψk)◦β

�s̃

BU

�s

�∞
0 MTSpin(2)

3©�∞λ−2

�
�∞

0 MTSO(2)

β−1◦�∞(r(t)·λC−L )

�∞ω Q0(CP
∞+ )

�2
0(Z × BO)

ρ
BU
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Here MTSO(2) = Th(−γ2) is the Thom spectrum of minus the tautological
bundle γ2 → BSO(2); it receives a spectrum map from MTSpin(2) coming
from the map BSpin(2) → BSO(2). Identifying BSO(2) with CP

∞, and
γ2 with the tautological complex line bundle L → CP

∞, the map ω is the
“inclusion” map Th(−L) → Th(−L ⊕ L) = �∞

CP
∞+ . The map ρ = β−1 ◦

�2c is obtained by looping the complexification map twice then using the
inverse Bott equivalence, and ψk is the kth Adams operation. The diagram is
constructed as follows.

(i) The square 2© is constructed in [37, Section 7], specifically in the proof
of Theorem 7.8 of that paper, and the only property we require of it is the
fact that�s ◦ (L − 1) � inc−[1], where inc : CP

∞ → Q1(CP
∞+ ) is the

standard inclusion, and−[1] denotes its translation from the 1 component
to the 0 component, cf. proof of Lemma 7.5 in [37].

(ii) The map f is defined so as to make the square 1© commute. This uses
the fact that the lower map in 1© is an equivalence, as we are working at
an odd prime so BSpin(2) → BSO(2) is a p-local equivalence.

(iii) In the square 3© the left hand map is the infinite loop map of λ−2, the
KO-theory Thom class of MTSpin(2).

(iv) In the square 3© the right hand map is the infinite loop map which
corresponds under the Bott isomorphism to the class r(t) · λC−L ∈
K−2
(p)(MTSO(2)) in the p-local K -theory of MTSO(2), where λC−L ∈

K−2
(p)(MTSO(2)) is the Thom class, and

r(t) = √
1 + t ∈ K 0

(p)(BSO(2)) = Z(p)[[t]], t = L − 1

is the formal power series expansion of
√
1 + t , whose coefficients lie

in Z[12 ] so are p-local integers for any odd prime p, so this defines an
element in p-local K -theory. Under the map BSpin(2) → BSO(2) the
line bundle L pulls back to L⊗2, and so r(t) pulls back to L .

(v) The commutativity of square 3© is another way of expressing formula
(5.7) from the proof of Theorem 5.3.

We wish to compute the effect of the composition �∞λ−2 ◦ f on π4m−2,
where it must be multiplication by some p-local integer Am ∈ Z(p). As the
map

ρ : π4m−2(�
2
0(Z × BO)) −→ π4m−2(BU )

is an isomorphism, the effect of the composition β−1 ◦�∞(r(t) · λC−L) ◦�s̃
on π4m−2 must also be multiplication by Am . Because the map

β−1 ◦�∞(r(t) · λC−L) ◦�s̃ : BU −→ BU

123



Infinite loop spaces and positive scalar curvature 827

is a loop map it sends primitives in H∗(BU ; Q) to primitives, and so sends
the Chern character class ch2m−1 to a multiple of ch2m−1. As classes in
π4m−2(BU ) are detected faithfully by their evaluations against ch2m−1, it
follows that the map β−1 ◦�∞(r(t) ·λC−L)◦�s̃ sends ch2m−1 to Am · ch2m−1.
Thus we may compute in rational cohomology.

Let us identify BSO(2)withCP
∞, so the tautological bundle is given by the

universal complex line bundle L . Write x := c1(L) ∈ H2(CP
∞; Z). Firstly,

by the same technique used to establish formula (5.8) in the proof of Theorem
5.3 we have

ch(r(t) · λC−L) = ex/2 · x

1 − ex
· u−L = − x/2

sinh(x/2)
· u−L .

and so (as the Bott isomorphism corresponds to the (double) suspension iso-
morphism under the Chern character) we have

(β−1 ◦�∞(r(t) · λC−L))
∗ch2m−1 = (−1)m+1 (2

2m − 2) · Bm

(2m)! · 22m σ ∗(x2m · u−L),

where σ ∗ : H∗(MTSO(2)) → H∗(�∞
0 MTSO(2)) denotes the cohomology

suspension. As ω∗(xi ) = xi+1 · u−L , we may write the above equation as

(β−1 ◦�∞(r(t) · λC−L))
∗ch2m−1

= (−1)m+1 (2
2m − 2) · Bm

(2m)! · 22m (�∞ω)∗(σ ∗(x2m−1)). (5.10)

Secondly, we wish to compute (�s)∗(σ ∗(x2m−1)). The class σ ∗(x2m−1) is
primitive and �s is a loop map, so this class will again be primitive and so a
multiple of ch2m−1. To determine which multiple, we may pull it back further
to CP

∞, where

(�s ◦ (L − 1))∗(σ ∗(x2m−1)) = (inc − [1])∗(σ ∗(x2m−1)) = x2m−1.

As (L − 1)∗ch2m−1 = x2m−1/(2m − 1)!, we find that
(�s)∗(σ ∗(x2m−1)) = (2m − 1)! · ch2m−1. (5.11)

Thirdly, we wish to compute (β−1 ◦�2(1 − ψk) ◦ β)∗ch2m−1. Again, this
will be primitive and we may find which multiple of ch2m−1 it is by pulling
back further to CP

∞. We have β−1 ◦ (1 − ψk) ◦ β � 1 − k · ψk , and so the
map β−1 ◦�2(1−ψk) ◦ β ◦ (L − 1) is homotopic to L − k · L⊗k + k − 1 and
so pulls ch2m−1 back to 1−k2m

(2m−1)! · x2m−1. Thus

(β−1 ◦�2(1 − ψk) ◦ β)∗ch2m−1 = (1 − k2m) · ch2m−1. (5.12)
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Fourthly, the commutativity of 2© along with (5.10)–(5.12) gives

(�∞(r(t) · λC−L ) ◦�s̃)∗ch2m−1 = (−1)m+1 (2
2m − 2) · Bm
2m · 22m · (1 − k2m) · ch2m−1

and so

Am = (22m−1 − 1) · Num( Bm2m ) ·
(

(−1)m+1 · 1

22m−1 · (1 − k2m)

Den( Bm2m )

)

.

Finally, it is well-known that (1−k2m)
Den(Bm/2m)

is a p-local unit whenever p is

an odd prime and k generates (Z/p2)×. This follows from Lemma 2.12 and
Theorem 2.6 of [1], together with von Staudt’s theorem.

Hence Am is (22m−1 − 1) · Num( Bm2m ) times a p-local unit, as claimed. ��

There are two types of consequences of Theorem 5.7. The first concerns the
index of the groups Jd,k[12 ] ⊂ πd+k(ko)[12 ], and the other is a splitting result
for the index difference. We begin with the homotopy group statements. One
derives from Theorem 5.7:

Corollary 5.8 The subgroup J2,4m−2[12 ] ⊂ π4m(ko)[12 ] has finite index which
divides (22m−1 − 1) · Num( Bm2m ).

Next, we adopt the convention that (22m−1 − 1) ·Num( Bm2m ) = 1 for m = 0
and set

A(m, n) := gcd

{
n∏

i=1

(22mi−1 − 1) · Num
(
Bmi
2mi

) ∣∣
∣
∣mi ≥ 0,

n∑

i=1

mi = m

}

.

Usingproducts andCorollary 5.8,wefind that J2n,4m−2n[12 ] ⊂ π4m(ko)[12 ]has
finite index dividing A(m, n). Using the maps (5.5) we arrive at the following
conclusion, which proves Theorem E.

Corollary 5.9 For each n,m, q ≥ 0, J2n+q,4m−2n−q [12 ] ⊂ π4m(ko)[12 ] has
finite index dividing A(m, n).

The strength of this result can be demonstrated by some concrete calcula-
tions. Recall that Num( Bm2m ) = ±1 for m ∈ {1, 2, 3, 4, 5, 7} and Num( B612 ) =
−691, so any prime p dividing A(m, 2) in particular divides each of
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1 · (22m−1 − 1) · Num( Bm2m )
1 · (22m−3 − 1) · Num( Bm−1

2(m−1) )

7 · (22m−5 − 1) · Num( Bm−2
2(m−2) )

31 · (22m−7 − 1) · Num( Bm−3
2(m−3) )

127 · (22m−9 − 1) · Num( Bm−4
2(m−4) )

7 · 73 · (22m−11 − 1) · Num( Bm−5
2(m−5) )

691 · 23 · 89 · (22m−13 − 1) · Num( Bm−6
2(m−6) )

8191 · (22m−15 − 1) · Num( Bm−7
2(m−7) )

form ≥ 7, and the appropriately truncated list form ≤ 6.Computer calculation
(for which we thank Benjamin Young) shows that form ≤ 45401 the first four
conditions (or the first m for m < 4) already imply that A(m, 2) = 1. We
therefore have that J4,4m−4[12 ] = π4m(ko)[12 ] for m ≤ 45401. Therefore,
further taking products, we see that

J4
+q,4k−q [12 ] = π4
+4k(ko)[12 ]
for q ≥ 0 and k ≤ 45400 · 
.
5.4.1 A homotopy splitting

The final of our computational results is the following splitting theorem. To
state it, we introduce a condition on prime numbers.

Definition 5.10 Recall that an odd prime number is called regular if it does
not divide any of the numbers Num( Bm2m ). We say that an odd prime is very
regular if in addition it does not divide any of the numbers (22m−1 − 1).

Remark 5.11 The usual definition of a regular prime p is one which does
not divide Num(Bm) for any 2m ≤ p − 3. This is equivalent to not dividing
Num( Bm2m ) for any 2m ≤ p−3, and is also equivalent to not dividing Num( Bm2m )

for any m: If such a p divided Num( Bn2n ) for some 2n > p− 3 then we cannot

have p−1 | 2n (as then p | Den( Bn2n ) by von Staudt’s theorem) sowemust have
p − 1 � 2n. Thus we may find 0 �= 2n ≡ 2mmod (p − 1) with 2m ≤ p − 3.
Kummer’s congruence (of p-integers) Bn

2n ≡ Bm
2m mod p then contradicts p

being regular in the usual sense.

Remark 5.12 By Fermat’s little theorem, if a prime p divides (22m−1 − 1) for
somem, then it also divides (22m

′−1 −1) for somem′ ≤ p−1
2 . Hence it is easy
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830 B. Botvinnik et al.

to check the condition of not dividing any 22m−1 − 1, and for example of the
regular primes less than 100 the primes 7, 23, 31, 47, 71, 73, 79 and 89 are not
very regular, and the remaining primes 3, 5, 11, 13, 17, 19, 29, 41, 43, 53, 61,
83, and 97 are very regular.

The spaceR+(Sd) is an H -space by [57], and the componentR+◦ (Sd) of the
roundmetric is a grouplike H -space. Therefore for each prime number p there
is a p-localisation R+◦ (Sd) → R+◦ (Sd)(p), which induces the corresponding
algebraic localisation on homotopy and homology.

Theorem 5.13 For d ≥ 6 and each odd very regular prime, there is a weak
homotopy equivalence

R+◦ (Sd)(p) � �∞+d+1
0 ko(p) × F(p)

where F is the homotopy fibre of the index difference map

inddiffgd◦ : R+◦ (Sd) −→ �∞+d+1
0 ko.

Proof We consider the composition

�∞+d+1
0 ko(p)

(5.7)−→ �∞+d−1
0 MTSpin(2)(p)

−→ �∞+d−5
0 MTSpin(6)(p) −→ �d−6R+◦ (S6)(p)

L−→ R+◦ (Sd)(p)
inddiff

gd◦−→ �∞+d+1
0 ko(p).

(5.13)

The first map is from Theorem 5.7 and the second is the map (5.5). The
third map is the map from Theorem B, looped (d − 6) times. To understand
the fourth map L , apply Theorem 3.22, which gives the left triangle of the
(weakly) homotopy commutative diagram

�gm−1◦ R+(Sm−1)
T

�inddiff
gm−1◦

R+(Dm)hm−1◦
inddiffgmtor

μgmtor R+(Sm)

inddiffgmdtor
�inddiffgm◦

�∞+m+1KO.

The (homotopy) commutativity of the right triangle follows from the addi-
tivity theorem,more preciselyTheorem3.16. The (d−6)-fold iteration ofmaps
along the top of this diagram (and p-localisation) yields the map L in (5.13);
the commutativity up to homotopy of this diagram shows that inddiffgd◦ ◦ L is

homotopic to �d−6inddiffg6◦ . By Theorem B, the composition
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�∞+d−5
0 MTSpin(6)(p) −→ �d−6R+◦ (S6)(p)
L−→ R+◦ (Sd)(p)

inddiff
gd◦−→ �∞+d+1

0 ko(p)

is the same as �∞+d−5λ−6, and so precomposing with the map

�∞+d−1
0 MTSpin(2)(p) −→ �∞+d−5

0 MTSpin(6)(p)

gives�∞+d+1λ−2. Therefore, by Theorem 5.7 the composition (5.13) induces
multiplication by a p-local unit times (22m−1 − 1) · Num( Bm2m ), which proves
TheoremF. If p is in addition very regular then the composition (5.13) is aweak
homotopy equivalence, so composing all but the last map gives a composition

�∞+d+1
0 ko(p)

θ−→ R+◦ (Sd)(p)
inddiff

gd◦−→ �∞+d+1
0 ko(p)

which is a weak homotopy equivalence.
Let j : F → R+◦ (Sd) be the inclusion of the homotopy fibre of the map

inddiffg◦ . Implicitly localising all spaces at p, it follows that the map

π∗(�∞+d+1
0 ko)⊕ π∗(F)

θ∗⊕ j∗→ π∗(R+◦ (Sd))⊕ π∗(R+◦ (Sd))
�→ π∗(R+◦ (Sd))

is an isomorphism. But R+◦ (Sd)(p) is an H -space, and therefore, by the clas-
sical Eckmann–Hilton lemma, addition on π∗(R+◦ (Sd)(p)) is induced by the
H -space multiplication μ on R+◦ (Sd)(p). Therefore, the map

μ ◦ (θ × j) : �∞+d+1
0 ko(p) × F(p) −→ R+◦ (Sd)(p)

is a weak homotopy equivalence. ��

5.4.2 Sharpness

Recall that we write c : ko → ku for the complexification map, and that the
Chern character map ch2m : π4m(ku) → Q is an isomorphism onto Z ⊂ Q.
The identity (cf. [35, Proposition 12.5])

ch(c(λ−2n)) = (−1)n Â(γ2n) · u−2n ∈ H∗(MTSpin(2n); Q),
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where u−2n ∈ H−2n(MTSpin(2n); Q) is the cohomological Thom class,
yields the commutative diagram

π4m−2n(MTSpin(2n))

h

λ−2n
π4m−2n(�

−2nko)
c

π4m−2n(�
−2nku)

ch2m

H4m−2n(MTSpin(2n); Z) H4m(BSpin(2n); Z)�
−·u−2n (−1)n Â4m

Q,

and the composition along the top of the diagram has image in Z ⊂ Q. Fur-
thermore, the complexification map c is an isomorphism with Z[12 ]-module
coefficients.

Let p be an odd prime number such that 4m < 2p − 3. Then the map h(p)
is an isomorphism by the Atiyah–Hirzebruch spectral sequence

E2
s,t = Hs(MTSpin(2n);πt (S0)(p)) (⇒ πs+t (MTSpin(2n))(p),

as the first p-torsion in the stable homotopy groups of spheres is in degree
2p − 3. This shows that the image of the map

Â4m : H4m(BSpin(2n); Z(p)) −→ Q (5.14)

lies inZ(p) ⊂ Q. In addition, ifwewrite jd,k for the index of Jd,k inKOd+k then
its p-adic valuation νp( jd,k) is equal to that of the index of the image of (5.14)
inside Z(p) (because the map c is an isomorphism with Z(p)-coefficients). We
will proceed to analyse this index.

The map
∏n

i=1 BSpin(2) → BSpin(2n) induces a surjection on homol-
ogy with Z[12 ]-module coefficients (as with these coefficients BSpin(k) →
BSO(k) is an isomorphism), so the image of (5.14) is the same as that of

Â4m :
(

n⊗

i=1

H∗(BSpin(2); Z(p))

)

4m

−→ Q.

Identify BSpin(2) with CP
∞, so that L⊗2 is the universal spin rank 2 bun-

dle, and let x = c1(L). Write xi for the pullback of x to the i th factor of∏n
i=1 BSpin(2). Then the Â-class of the direct sum of the pullbacks of the n

universal bundles to
∏n

i=1 BSpin(2) is, by multiplicativity,

n∏

i=1

xi
sinh(xi )

,
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and if we let A
 := (−1)
 (2
2
−2)B

(2
)! be the coefficient of x2
 in x

sinh(x) then we
find that the image of (5.14) is precisely the Z(p)-linear span

〈
n∏

i=1

Ami

∣
∣
∣
∣

∑
mi = m

〉

Z(p)

⊂ Q.

Each A
 with 
 ≤ m is a p-integer: our assumption 2
 ≤ 2m < p shows
that (2
)! is a p-local unit, and von Staudt’s theorem shows that Den( B
2
 ) is
a p-local unit. (Alternatively this follows from the commutative diagram in
the case n = 1 and localised at p, using that composition along the top is a
p-integer, and that composition along the bottom has image the Z(p)-linear
span of A
.) Thus

νp( j2n,4m−2n) = min∑
mi=m

νp

(
n∏

i=1

(22mi−1 − 1) · Num( Bmi
2mi

)

)

.

Thus, in terms of the constants A(m, n) defined in Theorem E, there is an
identity

j2n,4m−2n = A(m, n) · A

B

where (by Corollary 5.9) A is a power of 2, and B is an integer all of whose
prime factors p satisfy p ≤ 2m + 2.
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