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Abstract We prove a structural theorem that provides a precise local picture
of how a sequence of closed embedded minimal hypersurfaces with uniformly
bounded index (and volume if the ambient dimension is greater than three) in a
Riemannian manifold (Mn, g), 3 ≤ n ≤ 7, can degenerate. Loosely speaking,
our results show that embedded minimal hypersurfaces with bounded index
behave qualitatively like embedded stable minimal hypersurfaces, up to con-
trolled errors. Several compactness/finiteness theorems follow from our local
picture.
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618 O. Chodosh et al.

1 Introduction

Minimal hypersurfaces are critical points of the volume functional, and as such
it is natural to study their existence and behavior from a variational point of
view. A key invariant related to this point of view is the (Morse) index of such
an object; and the assumption of bounded index (rather than genus or total
curvature as in the classical theory) that we are concerned with in this paper
is very natural. Many minimal surfaces with bounded index are expected to
arise from the variational min-max theory of Almgren–Pitts [36]. For instance,
Marques–Neves [30] have introduced non-trivial k-parameter sweep-outs in
arbitrary three-manifolds (for any k), and theMorse index of the corresponding
minimal surface is expected (generically) to be k. Moreover, Colding–Gabai
[8] have recently studied sequences of index one minimal surfaces and as they
relate to the problem of classifying Heegaard splittings of three-manifolds.

In this work, we provide a precise local picture of how a sequence of embed-
ded minimal hypersurfaces with uniformly bounded index (and volume if the
ambient dimension is greater than three) in a Riemannian manifold (Mn, g),
3 ≤ n ≤ 7, can degenerate. We may roughly describe it as follows. For the
sake of exposition, we assume here that n = 3, the surfaces are all two-sided
and have uniformly bounded area, i.e., consider a sequence of embedded two-
sided minimal surfaces � j in a closed Riemannian manifold (M3, g) so that
index(� j ) ≤ I and areag(� j ) ≤ �. Given these assumptions, our results
imply that genus(� j ) is uniformly bounded:

(1) A blow-up argument allows us to extend Schoen’s curvature estimates
[41] to the case of bounded index (cf. Corollary 2.3), to see that the
curvature of � j is bounded away from at most I points, where the index
may be concentrating. Blowing up around these points at the scale of
curvature, we produce a smooth non-flat embedded minimal surface in
R
3 with index at most I .

(2) By [39] (see also [12]), this limiting surface has genus bounded linearly
above in terms of I . This can be seen as a kind of “lower semi-continuity
of topology,” since any genus that is seen in the blow-up limit certainly
contributes to the genus of � j for j sufficiently large.

(3) Furthermore, after passing to a subsequence, � j converges to a closed
minimal surface in (M, g) smoothly away from the points of index con-
centration. Such a surface has bounded genus.

These facts, by themselves, are not sufficient to conclude that the genus of
� j is uniformly bounded. The reason for this is that it is a priori possible that
some genus is lost to the intermediate scales, and thus does not appear in the
blow-up limits, or at the original scale. This can be illustrated by an analogy
with the bubbling phenomenon for harmonic maps; a sequence of harmonic
maps may degenerate to form a bubble tree and the key point in proving that
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Minimal hypersurfaces with bounded index 619

the energy of the bubbles is the limit of the energy of the original sequence of
maps, is to show that no energy is lost in the neck regions joining the bubbles.
Hence, to prove genus bounds, we must also show:

(4) No topology is lost in the intermediate scales. The key to this is a scale-
breaking Morse theoretic argument (cf. Lemma 3.1), which allows us to
show that the intermediate regions are topologically simple (i.e., planar
domains). The key geometric input for this argument is the fact that the
curvature is sufficiently small in a scale invariant sense in the intermediate
region, a fact related to the half-space theorem for complete properly
embedded minimal surfaces in R

3.

This scale-breaking analysis of the intermediate regions forms the technical
heart of our work. In ambient manifolds (Mn, g) with 4 ≤ n ≤ 7, a similar
argument works given appropriate modifications. Moreover, for n = 3, we
show that uniform area bounds are unnecessary for understanding the local
picture of degeneration. In fact, we will be able to use the above argument to
prove that index bounds imply area bounds (in addition to genus bounds) in
3-manifolds of positive scalar curvature in Theorem 1.3.

1.1 Applications of the local picture of degeneration

Thanks to our understanding of how embedded hypersurfaces with uniformly
bounded index (and volume) can degenerate, we can prove various results
along the lines of the general principle that (when the ambient dimension sat-
isfies 3 ≤ n ≤ 7) “embedded minimal hypersurfaces with uniformly bounded
index behave qualitatively like embedded stable minimal hypersurfaces.” We
now discuss several results along these lines.

1.1.1 Finitely many diffeomorphism types

An easy application of curvature estimates for stable minimal hypersurfaces
shows that for a closed Riemannian manifold (Mn, g), 3 ≤ n ≤ 7, there
can be at most N = N (M, g, �) distinct diffeomorphism types in the set of
stable embedded minimal hypersurfaces with volg(�) ≤ �. To see this, sup-
pose that � j is an infinite sequence of pairwise non-diffeomorphic embedded
stable minimal hypersurfaces. Using the curvature estimates1 established in

1 Note that the works [45,46] only explicitly consider (embedded) two-sided stable hypersur-
faces. However, using the fact that a properly embedded hypersurface in Euclidean space is
two-sided, we can extend the curvature estimates to the one-sided case as well; see the Proof of
Lemma 2.4 as well as Lemma C.1.
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620 O. Chodosh et al.

[39,41,45,46] we see that if � j is a sequence of embedded2 stable minimal
hypersurfaces, then there is C > 0 so that |II� j |(x) ≤ C for all x ∈ � j .
Because volg(� j ) ≤ �, by passing to a subsequence we may find �∞ so
that � j converges locally smoothly to �∞ with finite multiplicity. Thus, for j
sufficiently large we may construct a smooth covering map � j → �∞ with
a uniformly bounded number of sheets. Because the � j are assumed to be
non-diffeomorphic, this easily yields a contradiction.3

To try to extend this proof to the case of uniformly bounded index, we must
contend with the possibility that the hypersurfaces have diverging curvature.
Using our local picture of degeneration, we can deal with this possibility and
show the following finiteness result.

Theorem 1.1 Fix (Mn, g) a closed Riemannian manifold, where 3 ≤ n ≤ 7.
Then there can be at most N = N (M, g, �, I ) distinct diffeomorphism types
in the set of embedded minimal hypersurfaces� ⊂ (M, g)with index(�) ≤ I
and volg(�) ≤ �.

In particular, for a closed three-manifold (M3, g), there is r0 = r0(M, g,
�, I ) so that any embedded minimal surface� in (M3, g) with index(�) ≤ I
and areag(�) ≤ � has genus(�) ≤ r0.

In a related direction, we can partially extend Ros’s bounds [39, Theorem
17] (see also [12]) to higher dimensions as follows.

Theorem 1.2 For 4 ≤ n ≤ 7, there is N = N (n, I, �) ∈ N so that there are
at most N mutually non-diffeomorphic complete embedded minimal hypersur-
faces �n−1 ⊂ R

n with index(�) ≤ I and vol(� ∩ BR(0)) ≤ �Rn−1 for all
R > 0.

It would be interesting to understand how N depends on I and �.4

1.1.2 Three-dimensional results

A well known compactness result for minimal surfaces in a fixed three-
manifold is due to Choi–Schoen [14] who showed that for any sequence of

2 Strictly speaking, embeddedness is not needed for this result in dimension n = 3. Note that
it will be essential elsewhere in our work even when n = 3.
3 This follows from the fact that there are only finitely many different k-sheeted covers of a
given compact manifold �∞. This can be proven by topological considerations, or as pointed
out to us by the referee, this is an immediate consequence of a theorem of Hall (cf. [2, Theorem
21.4]) which says that the number of subgroups of finite index k of a finitely generated group is
finite. Note that here we are implicitly using the fact that the smooth structure on the base and
the topological data of the covering map uniquely determine the smooth structure of the cover
(because the covering map is smooth).
4 Added in proof: recently, Li has shown that for n = 4, the N in Theorem 1.2 can be bounded
independently of the area growth bound (� < ∞) [28].
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Minimal hypersurfaces with bounded index 621

minimal surfaceswith bounded genus and area there is a subsequence converg-
ing to a smooth minimal surface (possibly with multiplicity). The convergence
is moreover smooth away from finitely many points where curvature is con-
centrating.

This result has several important manifestations; for example, in a hyper-
bolic manifold, a genus bound for a minimal surface already implies an area
bound by the Gauss equation and the Gauss-Bonnet formula. Moreover, in a
three-manifoldwith positive Ricci curvature, the area of an embeddedminimal
surface can be bounded above in terms of its genus, by work of Choi–Wang
[15] and Yang–Yau [58]. This bound and the non-existence of two-sided stable
minimal hypersurfaces with ambient positive Ricci curvature, shows that the
Choi–Schoen compactness implies that the set of closed, embedded minimal
surfaces with fixed genus in a three-manifold of positive Ricci curvature is
compact in the smooth topology. In a general Riemannian three-manifolds, on
the other hand, it is no longer possible to bound the area nor the index of an
embedded minimal surface by the genus, even if one assumes positive scalar
curvature, as it can be seen in examples constructed by Colding–De Lellis [7].

However, we are able to show that in three-manifolds with positive scalar
curvature, uniform indexboundsdo implyuniformarea andgenusbounds.This
indicates that index bounds are not only very natural from the variational point
of view, but they actually yieldmore control on theminimal surface than genus
bounds. That such a result should hold follows again fromour general principle
that because this holds for embedded stable minimal surfaces, it should hold
for an embedded minimal surface with bounded index. The corresponding
result in the case of stable surfaces is a consequence of the fact that by work of
Fischer-Colbrie–Schoen [20] and Schoen–Yau [49], two-sided stable minimal
surfaces in ambient manifolds with positive scalar curvature are S

2, along
with a geometric compactness argument based on the fact that S

2 is simply
connected.

Theorem 1.3 Suppose that (M3, g) is a closed three-manifold with positive
scalar curvature. For I ∈ N, there is A0 = A0(M, g, I ) < ∞ and r0 =
r0(M, g, I ) so that if � ⊂ (M, g) is a connected, closed, embedded minimal
surface with index(�) ≤ I , then areag(�) ≤ A0 and genus(�) ≤ r0.

Remark 1.4 Unfortunately, without any extra assumption, even the space
of embedded stable minimal surfaces fails to be compact in general three-
manifolds due to the failure of uniform area bounds. We discuss several
examples in Sect. 1.2. In the converse direction, Ejiri–Micallef have shown
[18] that for immersed minimal surfaces in a general three-manifold, uniform
bounds on their area and genus imply uniform bounds on their index.

In a more technical direction, we remark that as a byproduct of the Proof of
Theorem 1.17, we obtain:
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Theorem 1.5 Suppose that � j is a sequence of embedded minimal surfaces
in a three-manifold (M, g) with uniformly bounded index, i.e., index(� j ) ≤ I
for some I ∈ N. Then, after passing to a subsequence, � j converges to a
lamination L away from at most I singular points. The lamination can be
extended across these points.

Remark 1.6 We note that the fact that the limit lamination L has removable
singularities can be seen as a consequence of deep work by Meeks–Perez–
Ros [31], combined with our curvature estimates for � j , which after passing
to the limit, imply5 that |IIL|(x)dg(x,B∞) ≤ C for x ∈ L. Our Proof of
Theorem 1.5 however does not rely on the removable singularity results in
[31], and thus provides a self-contained proof that the limit lamination of
a sequence of embedded closed minimal surfaces with bounded index has
removable singularities.

Remark 1.7 We also remark that Theorem 1.17 and Corollary 1.19 provide an
alternative approach to a recent result by Colding–Gabai, [8, Theorem 2.2] (cf.
Remark 1.18).We will not reproduce the full statement here, but only note that
it loosely says that a degenerating sequence of index-one embedded minimal
surfaces will look like a small catenoid connected by large annular regions to
the rest of the surface.

We remark that as consequence of the Theorems 1.1 and 1.3, we may easily
deduce several compactness results. By a theorem of Colding–Minicozzi [10],
the set of closed embeddedminimal surfaces with uniformly bounded area and
genus is finite in (M3, g), as long as g is “bumpy” in the sense of White [57],
i.e. g has the property that there are no immersed minimal submanifolds with
non-zero Jacobi fields.6 Such metrics are “generic” by the main result in [57].
Thus, we have:

Corollary 1.8 Suppose that (M3, g) is a closed three-manifold with a bumpy
metric of positive scalar curvature. For I ∈ N, there are only finitely many
closed, connected, embedded minimal surfaces � with index(�) ≤ I .

Remark 1.9 A slightly different version of this corollary has recently been
independently obtained by Carlotto [5], assuming the ambient positive scalar
curvature metric is bumpy in the sense of [55] (i.e., there is no embedded—as
opposed to immersed—minimal submanifold with a non-zero Jacobi field) but

5 Alternatively, [29, (3.1)] establishes similar curvature estimates for the limit lamination; the
exact form of estimates we establish here (before passing to the limit) are crucial for our Proof
of Theorem 1.17 in several other places.
6 It seems to us that in general, the notion of “bumpy” from [57], rather than the notion from
[55] is necessary to deal with the possibility of a one-sided limit in the proof of [10]. See also
[5, Remark 3.1].
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Minimal hypersurfaces with bounded index 623

with the additional assumption that (M3, g) contains no embedded minimal
RP2.

Combining Theorem 1.3 with the work of Choi–Schoen [14], we also have:

Corollary 1.10 Suppose that (M3, g) is a closed three-manifold with positive
Ricci curvature. Then, for I ∈ N, the set of closed, connected, embedded
minimal surfaces � with index(�) ≤ I is compact in the smooth topology.

In particular, combined with the recent work of Marques–Neves [30] we
obtain

Corollary 1.11 Suppose that (M3, g) is a closed three-manifold with a bumpy
metric of strictly positive Ricci curvature. Then, there exists a sequence of
closed, embedded minimal surfaces � j with index(� j ) → ∞.

Remark 1.12 These last two corollaries have been recently proven by Li–Zhou
[29] by somewhat different arguments.

1.2 Counterexamples

Several examples show that the set of closed, embedded, stable minimal sur-
faces can fail to be compact, even if the metric is bumpy and even if we restrict
only to the set of such surfaces with a fixed genus. The examples below show
that the hypothesis in the applications discussed above cannot be significantly
weakened.

Example 1.13 The simplest example of non-compactness occurs in the square
three-torus T

3 = R
3/Z

3, equipped with the flat metric, as seen by choosing
positive rational numbers θk ∈ Q converging to an irrational number θ∞ ∈
R\Q. Letting γk denote the simple closed geodesic in the two-torus T

2 =
R
2/Z

2 with slope θk , it is easy to see that �k := γk × S
1 is an embedded

stable minimal surface with areag(�k) → ∞. Note that the surfaces �k limit
to the lamination of T

3 by a single plane γ∞ ×S
1 (where γ∞ is the non-closed

geodesic with slope θ∞). Of course, the flat metric on T
3 is manifestly not

bumpy, but it is relatively easy to see that for an arbitrary metric on T
3, we can

minimize (by [47]) the g-area of immersions homotopic to the embedding of
�k intoT

3 and then argue (using [4,21] and fundamental group considerations)
that this yields a sequence of embedded, stable, minimal tori in (T3, g) with
unbounded area.

One might hope that the torus T
3 is somehow special in the previous exam-

ple. However, the following results show that for any closed three-manifold,
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it is not possible to use bumpiness (or more generally, any “generic” prop-
erty which is satisfied by a C2-dense set of metrics) to prove area bounds for
embedded stable minimal surfaces (even assuming fixed genus).

Example 1.14 Fix a Riemannian three-manifold M . Work of Colding–
Minicozzi [10] shows that there is a C2-open set of metrics g on M so that
there is a sequence of embedded stableminimal tori� j with areag(� j ) → ∞.
Indeed, for any domain in M of the form � = S × S

1 where S is a disk with
three holes removed (i.e., � is a solid torus with three holes removed, which
obviously exists in any coordinate chart), they show that if� has strictly mean
convex boundary with respect to a metric g, then there exists such a sequence
of tori in � ⊂ (M, g). Their construction relies on an idea of “looping” tori
around the holes; see [27, Figure 3.2.3] for a nice illustration. These examples
were subsequently extended byDean [16] andKramer [27] to give examples of
sequences of embedded, stable, minimal surfaces with unbounded area, with
any fixed genus.

Example 1.15 An even more extreme example similar to Example 1.14 but
with a more complicated looping scheme was given by Colding–Hingston [9],
who in aC2-open set of metrics on any three-manifold, construct a sequence of
stable toriwith unbounded areawhose limit lamination has surprising behavior.

In a more topological vein, we have the following examples of embedded
minimal surfaces with bounded index (in fact stable) but unbounded genus
(and hence area).

Example 1.16 For �r the closed oriented surface of genus r > 1, Jaco proved
[26] that Mr := �r × S

1 admits a sequence of incompressible surfaces with
unbounded genus. For any Riemannian metric g on Mr , we may minimize
area using [47] and see that the resulting stable minimal surface is embedded
(after passing to a one-sided quotient, if necessary) by [21]. It is clear that
these minimal surfaces must have unbounded genus.

1.3 Precise statement of degeneration and surgery results in
3-dimensions

We now state our main results in three-dimensions.

Theorem 1.17 (Local picture of degeneration) There are functions m(I ) and
r(I ) with the following property. Fix a closed three-manifold (M3, g) and a
natural number I ∈ N. Then, if� j ⊂ (M, g) is a sequence of closed embedded
minimal surfaces with

index(� j ) ≤ I,
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then after passing to a subsequence, there is C > 0 and a finite set of points
B j ⊂ � j with cardinality |B j | ≤ I so that the curvature of � j is uniformly
bounded away from the set B j , i.e.,

|II� j |(x)min{1, dg(x,B j )} ≤ C,

but not at B j , i.e.,

lim inf
j→∞ min

p∈B j
|II� j |(p) = ∞.

Passing to a further subsequence, the points B j converge to a set of points
B∞ and the surfaces � j converge locally smoothly, away from B∞, to some
lamination L ⊂ M\B∞. The lamination has removable singularities, i.e.,
there is a smooth lamination ˜L ⊂ M so that L = ˜L\B∞. Moreover, there
exists ε0 > 0 smaller than the injectivity radius of (M, g) so that B∞ is
4ε0-separated and for any ε ∈ (0, ε0], taking j sufficiently large guarantees
that

(1) Writing �′
j for the components of � j ∩ B2ε(B∞) containing at least one

point from B j , no component of �′
j is a topological disk, so we call �′

j
the “neck components.” They have the following additional properties:

(1.a) The surface�′
j intersects ∂Bε(B∞) transversely in at most m(I ) simple

closed curves.
(1.b) Each component of �′

j is unstable.

(1.c) The genus7 of �′
j is bounded above by r(I ).

(1.d) The area of �′
j is uniformly bounded, i.e.,

lim sup
j→∞

areag(�
′
j ) ≤ 2πm(I )ε2(1 + o(ε))

as ε → 0.
(2) Writing �′′

j for the components of � j ∩ B2ε(B∞) that do not contain
any points in B j , each component of �′′

j is a topological disk, so we call
�′′

j the “disk components.” Moreover, we have the following additional
properties

(2.a) The curvature of �′′
j is uniformly bounded, i.e.,

lim sup
j→∞

sup
x∈�′′

j

|II� j |(x) < ∞.

7 See Definition A.2.
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(2.b) Each component of�′′
j has area uniformly bounded above by 2πε2(1+

o(ε)).

As is clear from the proof, it would be possible to give explicit bounds for
m(I ) and r(I ), if one desired.

Remark 1.18 As remarked above, a similar description in the special case of
index one surfaces was recently obtained by Colding–Gabai [8, Theorem 2.2].
However, our proof differs from theirs (even in the index one case) in how
we transfer topological information between scales. Additionally, the higher
index case introduces serious technical difficulties, due to the possibility of
simultaneous concentration at multiple scales.

Akey applicationofTheorem1.17 is a prescription for performing “surgery”
on a sequence of bounded index minimal surfaces so that their curvature
remains bounded, while only changing the topology and geometry in a con-
trollable way.

Corollary 1.19 (Controlled surgery) There exist functions r̃(I ) and m̃(I )with
the following property. Fix a closed three-manifold (M3, g) and suppose that
� j ⊂ (M3, g) is a sequence of closed embedded minimal surfaces with

index(� j ) ≤ I.

Then, after passing to a subsequence, there is a finite set of points B∞ ⊂ M
with |B∞| ≤ I and ε0 > 0 smaller than the injectivity radius of (M, g) so
B∞ is 4ε0-separated, and so that for ε ∈ (0, ε0], if we take j sufficiently large
then there exists embedded surfaces ˜� j ⊂ (M3, g) satisfying:

(1) The new surfaces ˜� j agree with � j outside of Bε(B∞).
(2) The components of � j ∩ Bε(B∞) that do not intersect the spheres

∂Bε(B∞) transversely and the components that are topological disks
appear in ˜� j without any change.

(3) The curvature of ˜� j is uniformly bounded, i.e.

lim sup
j→∞

sup
x∈˜� j

|II
˜� j

|(x) < ∞.

(4) Each component of ˜� j ∩ Bε(B∞) which is not a component of � j ∩
Bε(B∞) is a topological disk of area at most 2πε2(1 + o(ε)).

(5) The genus drops in controlled manner, i.e.,

genus(� j ) − r̃(I ) ≤ genus(˜� j ) ≤ genus(� j ).
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(6) The number of connected components increases in a controlled manner,
i.e.,

|π0(� j )| ≤ |π0(˜� j )| ≤ |π0(� j )| + m̃(I ).

(7) While ˜� j is not necessarily minimal, it is asymptotically minimal in the
sense that lim j→∞ ‖H

˜� j
‖L∞(˜� j )

= 0.

The new surfaces ˜� j converge locally smoothly to the smooth minimal lami-
nation ˜L from Theorem 1.17.

Remark 1.20 The strategy we use to prove Theorem 1.17 can be extended
to a higher dimensional setting (assuming a uniform volume bound). Certain
aspects of the local structure change; in particular, due to the failure of the
half-space theorem in higher dimensions, the separation of sheets into “neck
regions” and “disk regions” does not occur in the same way as in three dimen-
sions. As such, we will not attempt to formulate a higher dimensional version
of Theorem 1.17 or Corollary 1.19, but from the Proof of Theorems 1.1 and
1.2 it is clear that the general picture described in the introduction holds.

1.4 Related results

As remarked above, Li–Zhou [29] have proven compactness results for embed-
ded minimal surfaces with bounded index in a three-manifold with a metric
of positive Ricci curvature. This was preceded by the higher dimensional (i.e.,
allowing the ambient manifold to be n-dimensional for 3 ≤ n ≤ 7) result of
Sharp [43], showing that for a metric of positive Ricci curvature, the space of
embedded minimal surfaces with uniformly bounded area and index is com-
pact.

After this paper was completed, we were informed by Carlotto that he had
independently arrived at a proof of a slightly different version of Corollary
1.8. His paper [5] appeared at essentially the same time as ours.

These worksmainly focus on properties of limits of surfaces with uniformly
bounded index, rather than theway inwhich such surfaces degenerate.As such,
their arguments are of a rather different nature than those in this paper.

Buzano and Sharp [3] have given an alternative approach to prove topolog-
ical bounds for hypersurfaces with bounded index and area, cf. Theorem 1.1.
Their approach also yields further geometric information about the Ln-norm
of the second fundamental form.

Finally, we refer to the works of Ros [38] and Traizet [51] studying how
complete embedded minimal surfaces in R

3 with bounded total curvature
degenerate. Some parallels can be drawn between their results and Theorem
1.17, but our work takes a different technical approach due to the precise
behavior of the index.
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1.5 Outline of the paper

In Sect. 2, wemake several preliminary definitions and prove curvature bounds
away from finitely many points for hypersurfaces with bounded index. Section
3 contains a key topological result allowing us to control the topology of the
“intermediate regions”, assuming a curvature bound of the appropriate form.
We establish the local picture of degeneration in three-manifolds in Sect. 4
and the surgery result in Sect. 5. These results then allow us to establish
the three-dimensional compactness results in Sect. 6. Section 7 contains the
proof of the higher dimensional results. “Appendix A” contains a discussion
of the non-orientable genus as well as the genus of surfaces with boundary.
“Appendix B” recalls certain facts about finite index surfaces in R

3, while
“Appendix C” contains a brief discussion about two-sidedness on small scales.
In “Appendix D” we provide proofs of several removable singularity results.
Finally, “Appendix E” contains examples to illustrate that the various forms
of degeneration discussed in the Proof of Propositions 4.3 and 4.4 can in fact
occur.

2 Preliminaries

2.1 Definitions and basic notation

Let� be a closed embedded minimal hypersurface in (M, g). Recall, whether
� is one-sided or two-sided, the Morse index of �, henceforth denoted by
index(�), is defined as the number of negative eigenvalues of the quadratic
form associated to second variation of area:

Q(v, v) :=
∫

�

|∇⊥v|2 − |II�|2|v|2 − Ric(v, v) d�,

where v is a section of the normal bundle of � in M , ∇⊥ the induced connec-
tion, and II� the second fundamental form of �. Whenever � is two-sided,
the Morse index is equal to the number of negative eigenvalues of the asso-
ciated Jacobi operator 
� + |II�|2 + Ric(N , N ) acting on smooth functions
ϕ ∈ C∞(�). If � is one-sided, however, we consider the orientable double
cover ̂� → �. The corresponding change of sheets involution of τ : ̂� → ̂�

must satisfy N ◦ τ = −N for any choice of unit normal vector N for ̂�. The
Morse index of � is then equal to the negative eigenvalues of the operator



̂� + |II
̂�|2 + Ric(N , N ) over the space of smooth functions ϕ ∈ C∞(̂�)

satisfying ϕ ◦ τ = −ϕ.
In Lemma C.1, we show that a hypersurface that is properly embedded in a

topological ball is two-sided. We will use this frequently below.
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We will be dealing with sequences of embedded minimal surfaces without
area bounds in threemanifolds and so it will be convenient to considerminimal
laminations: A closed set L in M3 is called a minimal lamination if L is the
union of pairwise disjoint, connected, injectively immersed minimal surfaces,
called leaves. For each point x ∈ M3, we require the existence of a neigh-
borhood x ∈ � and a C0,α local coordinate chart � : � → R

3 under which
image the leaves of L pass through in slices of the form R

2 × {t} ∩ �(�).
All distance functions considered in our work will be induced by some

ambient metric, and we denote by dh the distance function induced by the
metric h. Given a closed set S, we let dh(·,S) denote the distance to S with
respect to themetric h. IfS is a finite set of points, |S|will denote its cardinality,
and for some δ > 0, we say that S is δ-separated if dh(x,S\{x}) > δ for every
x ∈ S. We will also consider metric balls and write, as usual, Br (p) to denote
the ball of radius r > 0 centered at p. If a finite set of points is δ-separated
and δ > r > 0, then the set of points within distance at most r from S forms
a union of disjoint balls, which we will denote by Br (S) (Note: we omit the
dependence of the ambient metric in our notation for Br as it should always
be clear in the context in which is being used).

2.1.1 Smooth blow-up sets

The following definition turns out to be quite convenient in the sections to
come. Suppose that (Mj , g j , 0 j ) is a sequence8 of complete pointed Rieman-
nian manifolds which are converging in the pointed Cheeger–Gromov sense to
(M∞, g∞, 0∞). Suppose that � j is a sequence of embedded minimal hyper-
surfaces in (Mj , g j ). A sequence of finite sets of points B j ⊂ � j is said to be
a sequence of smooth blow-up sets if:

(1) The set B j remains a finite distance from the basepoint 0 j , i.e.

lim sup
j→∞

max
p∈B j

dg j (p, 0 j ) < ∞.

(2) If we set λ j (p) := |II� j |(p) for p ∈ B j , then the curvature of � j blows
up at each point in B j , i.e.,

lim inf
j→∞ min

p∈B j
λ j (p) = ∞.

(3) If we choose a sequence of points p j ∈ B j , then after passing to a subse-
quence, the rescaled surfaces � j := λ j (p j )(� j − p j ) converge locally

8 In practice, either (Mj , g j , 0 j ) will be a fixed (independently of j) compact manifold or
(M∞, g∞, 0∞) will be Euclidean space.
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630 O. Chodosh et al.

smoothly to a complete, non-flat, embedded minimal surface �∞ ⊂ R
n

without boundary, satisfying

|II�∞|(x) ≤ |II�∞|(0),
for all x ∈ R

n .
(4) The blow-up points do not appear in the blow-up limit of the other points,

i.e.,

lim inf
j→∞ min

p,q∈B j
p 
=q

λ j (p)dg j (p, q) = ∞.

2.2 Curvature estimates and index concentration

Recall that Schoen [41] has proven that two-sided stable minimal surfaces in
a three-manifold have uniformly bounded curvature. Subsequently, the two-
sided hypothesis was shown to be unnecessary by Ros [39].9 In particular, we
have:

Theorem 2.1 [39,41] Fix (M3, g) a closed three-manifold. There is C =
C(M, g) so that if � ⊂ (M, g) is a compact stable minimal surface, then

|II�|(x)min{1, dg(x, ∂�)} ≤ C

for all x ∈ �.

Here we show that sequence of embedded minimal surfaces of bounded
index have curvature bounds away from at most finitely many points. This
can be thought of as a generalization of Schoen and Ros’s curvature estimates
for stable minimal surfaces to the case of finite Morse index. The proof by
induction is most convenient if we prove a more general bound for surfaces
with boundary.

Lemma 2.2 Fix (M3, g) a closed three-manifold and I ∈ N. Suppose that
� j ⊂ (M, g) is a sequence of compact embedded minimal surfaces with
index(� j ) ≤ I . Then, after passing to a subsequence, there exist C > 0 and
a sequence of smooth blow-up sets B j ⊂ � j with |B j | ≤ I , so that

|II� j |(x)min{1, dg(x,B j ∪ ∂� j )} ≤ C.

for all x ∈ � j .

9 We remark that properly embedded surfaces are two-sided on small scales (cf. LemmaC.1), so
the curvature estimates from [41] actually suffice when considering embedded surfaces, which
is what we will do below.
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Minimal hypersurfaces with bounded index 631

Proof We prove this by induction on I . When I = 0, the surface � is stable,
so the statement is exactly the curvature estimates discussed in Theorem 2.1.

For I > 0, consider � j ⊂ (M, g) with index(� j ) ≤ I . By passing to a
subsequence, we may assume that

ρ j := sup
x∈� j

|II� j |(x)min{1, dg(x, ∂� j )} → ∞.

If we cannot find such a subsequence, it is easy to see that the curvature
estimates hold with B j = ∅.

A standard point picking argument allows us to find p̃ j ∈ � j so that for
λ j = |II� j |( p̃ j ) → ∞, the rescaled surfaces

� j := λ j (� j − p̃ j )

converge locally smoothly, after passing to a subsequence, to a properly embed-
ded10 two-sided minimal surface in R

3, ̂�∞, of index at most I and with no
boundary, so that

|II
̂�∞|(x) ≤ |II

̂�∞|(0) = 1.

For the reader’s convenience, we recall the point picking argument at the end
of the proof.

Because ̂�∞ is non-flat, there is some radius ̂R > 0 so that ̂�∞ ∩ B
̂R(0)

has non-zero index, ̂�∞\B
̂R(0) is stable, and ̂�∞ intersects ∂BR(0) trans-

versely. Moreover, taking ̂R larger if necessary, we may arrange that all of
these properties are satisfied in addition to

|II
̂�∞|(x) ≤ 1

4
. (2.1)

for x ∈ ̂�∞\B
̂R(0).11

We define ˜� j := � j\B̂R/λ j
( p̃ j ). For j large, this ball cannot intersect the

boundary of � j (by the choice of p̃ j and because ρ j → ∞) and ∂B
̂R/λ j

( p̃ j )

intersects� j transversely. Thus,˜� j is a smooth compactminimal surfacewith

10 Usually, the blow-up limit ̂�∞ would only be injectively immersed. Here, because it has
finite index and no boundary, it is properly embedded by Theorem B.1.
11 That non-flatness of̂�∞ implies non-zero index is a consequence of [17,20,37]. The remain-
ing claims in this paragraph can be proven as follows: because �̂∞ has finite index, it has finite
total curvature [19, Theorem 2]. By [42, Proposition 1], ̂�∞ is “regular at infinity,” i.e., graph-
ical over a fixed plane outside of a compact set with good asymptotic behavior. This is easily
seen to imply the remaining claims.
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632 O. Chodosh et al.

smooth, compact boundary

∂˜� j = ∂� j ∪ (∂B
̂R/λ j

( p̃ j ) ∩ � j ).

For j large, index(˜� j ) ≤ I − 1. By the inductive hypothesis, passing to
a subsequence, there is a sequence of smooth blow-up sets ˜B j ⊂ � j with
|˜B j | ≤ I − 1 and a constant ˜C (independent of j) so that

|II
˜� j

|(x)min{1, dg(x, ˜B j ∪ ∂˜� j )} ≤ ˜C . (2.2)

We claim that B j := ˜B j ∪ { p̃ j } is a sequence of smooth blow-up sets. The
only thing we must check is that none of the points in ˜B j can appear in the
blow-up around p̃ j and vice versa (in particular, this guarantees that rescaling
� j around points in ˜B j still yields a smooth limit). First, suppose that

lim inf
j→∞ min

r̃∈˜B j

λ j dg j (̃r , p̃ j ) < ∞,

where we recall that λ j = |II� j |( p̃ j ). Assume that, the minimum is attained
at r̃ j ∈ ˜B j . By choice of ̂R (specifically (2.1)) we see that after passing to a
subsequence,

η j := |II� j |(̃r j ) ≤ 1

2
|II� j |( p̃ j ) = 1

2
λ j .

Thus, we have reduced to the other possibility, i.e.

lim inf
j→∞ η j dg j (̃r j , p̃ j ) < ∞.

However, this is a contradiction, as the blow-up of ˜� j around r̃ j has no
boundary (by the inductive step).

Now, suppose that there is z j ∈ � j so that

lim sup
j→∞

|II� j |(z j )min{1, dg j (z j ,B j ∪ ∂� j )} = ∞.

Combined with (2.2) and choice of p̃ j , we may pass to a subsequence with
z j ∈ ˜� j and

dg j (z j ,B j ∪ ∂� j ) = dg j (z j , p̃ j ) → 0,

dg j (z j , ˜B j ∪ ∂˜� j ) = dg j (z j , p̃ j ) − ̂R

λ j
.
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Minimal hypersurfaces with bounded index 633

Because ̂�∞ has bounded curvature, we see that z j cannot appear in the
blow-up around p̃ j , i.e.,

lim inf
j→∞ λ j dg j (z j , p̃ j ) = ∞.

Thus,

lim sup
j→∞

|II� j |(z j )
̂R

λ j
≤ lim sup

j→∞

˜ĈR

λ j dg j (z j , ˜B j ∪ ∂˜� j )
= 0.

Combined with (2.2), this implies that

˜C ≥ lim sup
j→∞

|II� j |(z j )min{1, dg j (z j , ˜B j ∪ ∂˜� j )} = ∞,

a contradiction. This completes the proof.
Finally, we recall the point-picking argument used above to construct �̂∞.

Choose q̃ j ∈ � j so that

|II� j |(q̃ j )min{1, dg(q̃ j , ∂� j )} = ρ j → ∞

and set r j = |II� j |(q̃ j )
− 1

2 . Then, choose p̃ j ∈ � j ∩ Br j (̃q j ) so that

|II� j |( p̃ j )dg( p̃ j , ∂Br j (̃q j )) = max
x∈� j∩Br j (̃q j )

|II� j |(x)dg(x, ∂Br j (̃q j )).

Note that the right hand side is at least |II� j |(q̃ j )
1
2 (which is tending to infinity)

by choice of r j . Let R j = dg( p̃ j , ∂Br j (̃q j )). Because dg(x, ∂BRj ( p̃ j )) ≤
dg(x, ∂Br j (̃q j )) for x ∈ BRj ( p̃ j ), we find that

|II� j |( p̃ j )dg( p̃ j , ∂BRj ( p̃ j )) = max
x∈� j∩BR j ( p̃ j )

|II� j |(x)dg(x, ∂BRj ( p̃ j )).

Note that |II� j |( p̃ j )R j ≥ |II� j |(̃q j )r j → ∞.
As above, we set λ j = |II� j |( p̃ j ). Then, the rescaled surfaces

� j = λ j (� j − p̃ j )

satisfy

|II� j
|(x)dg j

(x, ∂Bλ j R j (0)) ≤ λ j R j ,
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for x ∈ � j ∩ Bλ j R j (0). Thus, if x ∈ � j lies in a given compact set of R
3,

then

|II� j
|(x) ≤ λ j R j

λ j R j − dg j
(x, 0)

→ 1 = |II� j
|(0)

as j → ∞. By construction, we see that dg j
(0, ∂� j ) → ∞. Passing to a

subsequence, we may take a smooth limit of λ j (� j − p̃ j ) to find a complete,
non-flat, embedded minimal surface ̂�∞ in R

3 of index at most I and with no
boundary, completing the point picking argument. ��
Corollary 2.3 For (M3, g) and I ∈ N, if � j ⊂ (M, g) is a sequence of
closed embedded minimal surfaces with index(� j ) ≤ I , after passing to a
subsequence, there is C > 0 and a sequence smooth blow-up sets B j ⊂ � j
with |B j | ≤ I , so that

|II� j |(x)dg(x,B j ) ≤ C,

for all x ∈ � j .

In higher dimensions, we similarly have the following curvature estimates.

Lemma 2.4 Fix, for 4 ≤ n ≤ 7, a closed n-dimensional manifold (Mn, g), as
well as� > 0 and I ∈ N. Suppose that� j ⊂ (M, g) is a sequence of compact
embedded minimal hypersurfaces with volg(� j ) ≤ � and index(� j ) ≤ I .
Then, after passing to a subsequence, there exists C > 0 and a sequence of
smooth blow-up sets B j ⊂ � j with |B j | ≤ I , so that

|II� j |(x)min{1, dg(x,B j ∪ ∂� j )} ≤ C.

for all x ∈ � j .

Proof The argument is similar to Lemma 2.2, so we will be brief. By [44–46],
if �̂ is an embedded, two-sided stable minimal hypersuface in R

n (for 4 ≤
n ≤ 7), with Euclidean volume growth, i.e. limR→∞ R1−n vol(�̂∩BR) < ∞,
then it is a finite union of finitely many parallel planes. Because a complete
properly embedded hypersurface inR

n is two-sided (cf. [40]) and an embedded
hypersurface in R

n with bounded second fundamental form and Euclidean
volume growth is easily seen to be properly embedded, we obtain the following
Bernstein-type result: if �̂ is an embedded stable minimal hypersurface in
R
n (for 4 ≤ n ≤ 7) with Euclidean volume growth and bounded second

fundamental form, then it is the union of finitely many parallel planes. In
particular, we do not need to assume a priori that �̂ is two-sided.

From this, we obtain the claim when I = 0. Indeed, if it were false, we
could find a sequence of compact embedded stable minimal hypersurfaces
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Minimal hypersurfaces with bounded index 635

� j ⊂ (Mn, g) with volg(� j ) ≤ �. The point picking argument used above
then produces a non-flat, embedded stable minimal hypersurface in R

n with
Euclidean volume growth (by the volume bounds and the monotonicity for-
mula) and uniformly bounded second fundamental form. This contradicts the
above observation.

More generally, assume that the result fails for some fixed index bound I
and for a sequence � j . Then, as in the Proof of Lemma 2.2, we may find
p̃ j ∈ � j so that for λ j = |II� j |( p̃ j ), the rescaled surfaces

� j := λ j (� j − p̃ j )

converge locally smoothly, after passing to a subsequence, to an embedded
finite index minimal hypersurface ̂�∞ in R

n with Euclidean area growth with

|II
̂�∞|(x) ≤ |II

̂�∞|(0) = 1.

Unlike the case when n = 3, it is possible that �̂∞ has multiple compo-
nents.12 However, the monotonicity formula guarantees that the number of
components is bounded. Thanks to the above observation (implying that the
index of �̂∞ is non-zero) and the fact that there are only finitely many com-
ponents, we may choose R̂ exactly as in the Proof of Lemma 2.4. The rest of
the proof proceeds by removing BR̂/λ j

(p j ) from � j and using the inductive
step, exactly as in Lemma 2.2. ��

3 Annular decomposition from curvature estimates

The following lemma is a generalization of [54, p. 251] (see also [31, Lemma
4.1]). It will play a crucial role in later arguments, allowing us to transmit
topological information between different scales.

Lemma 3.1 (Annular decomposition) There is 0 < τ0 < 1
2 with the following

property. Assume that g is a Riemannian metric on {|x | ≤ 4} ⊂ R
n which

is sufficiently smoothly close to gRn . Suppose that � ⊂ B2(0) is a properly
embedded hypersurface with ∂� ⊂ ∂B2(0). Assume that for some τ ≤ τ0 and
p ∈ Bτ0(0), we have:

(1) Each component of � intersects Bτ (p).
(2) The hypersurface � intersects ∂Bτ (p) transversely in m manifolds dif-

feomorphic to S
n−2 with the standard smooth structure.

12 Recall that the half-space theorem fails for n ≥ 4. For example, for n ≥ 4, a catenoid in R
n

is bounded between two parallel planes.
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(3) The curvature of � satisfies |II�|(x)dg(x, p) ≤ 1
4 for all x ∈ � ∩

(

B1(0)\Bτ (p)
)

.

Then, � intersects ∂B1(0) transversely in m manifolds diffeomorphic to the

standard S
n−2 and each component of � ∩

(

B1(0)\Bτ (p)
)

is diffeomorphic

to S
n−2 × [0, 1] with the standard smooth structure.

Proof As long as g is sufficiently close to gRn , working in normal coordinates
around p, a computation as in [23, pp. 417–8] shows that the third hypothesis
implies that the curvature of � with respect to gRn satisfies

|IIRn

� |(x)dRn (x, p) ≤ 1

2
.

Hence, it is not hard to check that it is suffices to take g = gRn .
Choose χ ∈ C∞

c ([0, 1)) a smooth positive cutoff function so that χ(r) ∈
[0, 1], χ(r) = 1 for r ≤ 1

4 and χ(r) = 0 for r sufficiently close to 1. We will
take τ > 0 sufficiently small based on this fixed cutoff function. Consider the
function

f (x) = dRn (x, p)2χ(dRn (0, x)2) + dRn (x, 0)2(1 − χ(dRn (0, x)2)).

By assuming τ > 0 is sufficiently small, we see that f (x) = dRn (x, p)2

near ∂Bτ (p) and f (x) = dRn (x, 0)2 near ∂B1(0). Note that for any point
q ∈ R

n ,

∇�(dRn (x, q)2) = 2((x − q) − 〈x − q, N 〉 N )

(D2
�(dRn (x, q)2))x (v, v) = 2

(|v|2 − II�(x)(v, v) 〈x − q, N 〉) ,

where N is any choice of normal vector at x and v is any vector in Tx�. Thus,
we compute

(D2
� f )x (v, v) = 2χ

(|v|2 − II�(x)(v, v) 〈x − p, N 〉)

+ 2(1 − χ)
(|v|2 − II�(x)(v, v) 〈x, N 〉)

+ 2χ ′(dRn (x, p)2 − dRn (x, 0)2)
(|v|2 − II�(x)(v, v) 〈x, N 〉)

+ 4χ ′′(dRn (x, p)2 − dRn (x, 0)2) (〈x, v〉 − 〈x, N 〉 〈N , v〉)2
+ 8χ ′ (〈x − p, v〉 − 〈x − p, N 〉 〈N , v〉)
× (〈x, v〉 − 〈x, N 〉 〈N , v〉)
− 8χ ′ (〈x, v〉 − 〈x, N 〉 〈N , v〉)2

= 2
(|v|2 − II�(x)(v, v) 〈x − p, N 〉)
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− 2(1 − χ)II�(x)(v, v) 〈p, N 〉
+ 2χ ′(dRn (x, p)2 − dRn (x, 0)2)

(|v|2 − II�(x)(v, v) 〈x, N 〉)

+ 4χ ′′(dRn (x, p)2 − dRn (x, 0)2) (〈x, v〉 − 〈x, N 〉 〈N , v〉)2
− 8χ ′ (〈p, v〉 − 〈p, N 〉 〈N , v〉) (〈x, v〉 − 〈x, N 〉 〈N , v〉) .

Observe that for τ > 0 sufficiently small, |II�|(x)| ≤ 1
2 on the supports of

1 − χ , χ ′ and χ ′′. In particular, it is easy to see that on �\Bτ (p),

(D2
� f )x (v, v) ≥ 2

(|v|2 − II�(x)(v, v) 〈x − p, N 〉) − CdRn (p, 0)|v|2,
for some C > 0 independent of τ . Combined with the assumed second fun-
damental form bounds, we have that

(D2
� f )x (v, v) ≥ 2

(

3

4
− CdRn (p, 0)

)

|v|2.

Thus, as long as dRn (p, 0) ≤ τ is sufficiently small, this is strictly positive.
Choosing such a τ , any critical point of f in �\Bτ (p) must be a strict

local minimum. The mountain pass lemma then implies that f cannot have
any critical points in the interior of �\Bτ (p). Thus, the result follows from
standard Morse theory. ��

4 Degeneration of bounded index minimal surfaces in three-manifolds

Let I be a natural number. In this section, we analyze how a sequence of
embedded minimal surfaces with index at most I in a three-manifold might
degenerate and prove Theorem 1.17. By the curvature estimates from Corol-
lary 2.3, we will be mostly working on small scales near a finite set of at
most I points so that we will frequently find ourselves in situations where the
following hypothesis, which we will call (ℵ), hold.

Suppose that g j is a sequence ofmetrics on {|x | ≤ 2r j } ⊂ R
3 with r j → ∞,

so that g j is locally smoothly converging to the Euclidean metric gR3 . Assume
also that:

(1) We have� j ⊂ Br j (0) a sequence of properly embeddedminimal surfaces
with ∂� j ⊂ ∂Br j (0).

(2) The surfaces have index(� j ) ≤ I .
(3) There is a sequence of non-empty smooth blow-up sets B j ⊂ Bτ0(0)

(where τ0 is fixed in Lemma 3.1) with |B j | ≤ I and C > 0 so that

|II� j |(x)dg j (x,B j ∪ ∂� j ) ≤ C,

for x ∈ � j .
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(4) The smooth blow-up sets converge to a set of points B∞ and there is a
smooth lamination � ⊂ R

3\B∞ so that � j converges locally smoothly
to � away from B∞.

Then, we will say that � j satisfies (ℵ).
Observe that by Lemma C.1, the surfaces � j are all two-sided. We will use

this repeatedly below without comment.
All the statements we will prove when working under hypothesis (ℵ) will

turn out to be open conditions, so the reader may think of all the metric balls
to be defined using the Euclidean distance.

Lemma 4.1 For� as in (ℵ), the lamination� extends acrossB∞ to a smooth
lamination ˜� ⊂ R

3. After a rotation, ˜� = R
2 × K for K ⊂ R closed.

Proof We claim there exists ε > 0 sufficiently small so that each leaf in
� ∩ Bε(B∞) has stable universal cover. We first choose ε > 0 sufficiently
small so that B∞ is 4ε-separated (we will choose ε > smaller below).

On one hand, if a leaf of�∩ Bε(B∞) has the convergence to occurring with
multiplicity bigger than one, then it must have stable universal cover (cf. [33,
Lemma A.1]). On the other hand, consider the set of leaves of � ∩ Bε(B∞)

where the convergence to occurs with multiplicity one. By passing to a double
cover if necessary, we may assume that all such leaves are two-sided.13 Each
leaf must have bounded index, and sum of the index of such leaves must be
bounded above by I (or else it would violate the bound for index(� j )). In
particular there are only finitely many unstable leaves. For each leaf, we may
argue as in [19, Proposition 1] to find ε > 0 even smaller so that it is stable
in Bε(B∞). Since there are only finitely many of such leaves, we may arrange
that each leaf of � ∩ Bε(B∞) has stable universal cover.14

Thus, by Proposition D.3, � ∩ Bε(B∞) extends across B∞. Thus, there is
a smooth lamination ˜� ⊂ R

3 with � = ˜�\B∞. Finally, by Corollary B.2, ˜�
is either a non-flat single properly embedded surface of finite total curvature,
or else is a lamination of R

3 by parallel planes.
If ˜� is a non-flat properly embedded surface of finite total curvature, then

the convergence of � j to � (away from p∞) must occur with multiplicity
one.15 Finally, because the convergence occurs with multiplicity one, Allard’s
regularity theorem16 [1] would imply that � j converged smoothly to ˜� near

13 Because the � j are all two-sided by Lemma C.1, even if they limit to a one-sided leaf, the
index bounds hold for the two-sided double cover.
14 Here we use the well-known fact that two-sided stability passes to covers [20].
15 To see this, note that if the convergence had multiplicity greater than one, then ˜� would
necessarily be stable and thus flat by [17,20,37]. This follows by combing e.g., [33, Lemma
A.1] with the fact that stability extends across isolated points.
16 The version proven in [56] is also applicable here.
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B∞. This is not compatible with the definition of smooth blow-up set, so we
see that˜� is a (non-empty) lamination ofR

3 by parallel planes. This completes
the proof. ��

It is convenient to write �′
j for the union of components of � j ∩ B2(0)

which contain at least one point in B j , and �′′
j for the union of components of

� j ∩ B2(0) which contain no points in B j . Whenever j is sufficiently large,
these will represent, respectively, the neck and disk components of � j .

Lemma 4.2 Assume that � j are as in (ℵ). The surfaces �′′
j ⊂ B2(0) have

uniformly bounded curvature, i.e.

lim sup
j→∞

sup
x∈�′′

j

|II� j |(x) < ∞.

Proof After passing to a subsequence, suppose that z j ∈ �′′
j satisfies

|II� j |(z j ) = sup
x∈�′′

j

|II� j |(x) := λ′′
j → ∞.

Then,

�′′
j := λ′′

j (�
′′
j − z j )

will converge to a complete17 non-flat properly embedded two-sided minimal
surface �′′∞ in R

3 with finite index (cf. Theorem B.1). On the other hand, we
claim that after passing to a subsequence,

�′
j := λ′′

j (�
′
j − z j )

converges away from some finite set of points B∞ to a non-empty smooth
lamination �′ of R

3\B∞. The reason that �′ is non-empty is that

lim sup
j→∞

min
p∈B j

λ′′
j dg j (z j , p) < ∞

by the curvature estimates assumed in (ℵ). Thus, at least one point in the
rescaled blow-up sets must remain at a bounded distance from the origin.
Corollary D.5 and then Theorem B.1 imply that �′ contains either a plane or
properly embedded minimal surface with finite total curvature �′∞.

17 By (3) in (ℵ) we see that for all r > 0, for j sufficiently large, Br(λ′′
j )

−1(z j ) ∩ ∂�′′
j = ∅.

Note that this also guarantees that we can find such z j .
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Fig. 1 An illustration of the
Proof of Proposition 4.3. The
crucial estimate (4.2) allows
us to transfer topological
information from the
rescaled picture (on the
bottom) to the original scale
(on the top)

BR/λj
(pj)

Bδ(p∞)

Σj ∩ BR(0)

Λ
Σj

Because �′′∞ is non-flat, the half-space theorem (cf. Corollary B.2) implies
that �′′∞ = �′∞. However, this implies that λ′′

j (� j − z j ) limits to �′′∞ with
multiplicity greater than one. As in the previous lemma, this contradicts the
fact that �′′∞ is not flat. ��

We give an example to illustrate the behavior described in the following two
propositions in “Appendix E”. The main idea of the Proof of Proposition 4.3
is illustrated in Fig. 1.

Proposition 4.3 (One point of curvature concentration) Suppose that � j sat-
isfies (ℵ) with |B j | = 1 for each j . Then, the lamination� extends across B∞
to a smooth lamination ˜� ⊂ R

3. Moreover, for j sufficiently large:

(1) The surfaces �′′
j are disks with uniformly bounded curvature.

(2) The surfaces�′
j intersect ∂B1(0) transversely in at most 32 (I +1) circles.

(3) The surfaces �′
j have genus at most

3
2 (I + 1).
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(4) The surfaces �′
j have uniformly bounded area, i.e.,

lim sup
j→∞

area(�′
j ) < ∞.

After a rotation, ˜� = R
2 × K for K ⊂ R closed and �′

j ∩ B1(0) smoothly

converges away from B∞ to B1(0) ∩ (R2 × {η}) with finite multiplicity, for
some |η| ≤ 1

2 .

Proof Let us write B j = {p j }, B∞ = {p∞} and λ j := |II� j |(p j ). Lemma
4.1 shows that the limit lamination � extends across B∞ to a lamination ˜� by
parallel planes.

By the definition of a smooth blow-up set, after passing to a subsequence,
the surfaces

� j := λ j (� j − p j )

converge to �∞ ⊂ R
3, a complete, non-flat, properly embedded (and thus

two-sided) minimal surface. It has index at most I . By18 [12], the genus g and
number of ends r of � j are both bounded by 3

2 (I + 1). Choose R > 0 so that
�∞ intersects ∂BR(0) transversely and

|II�∞|(x)dR3(x, 0) <
1

4
(4.1)

for x ∈ �∞\BR(0).
First, assume that there is δ > 0 so that for j sufficiently large,

|II� j |(x)dg j (x, p j ) <
1

4
(4.2)

for x ∈ � j ∩ (Bδ(p j )\BR/λ j (p j )). Because � j is converging away from p∞
to a lamination consisting of planes, this will immediately imply that for j
sufficiently large, (4.2) actually holds for all x ∈ � j ∩ (B2(0)\BR/λ j (p j )).
From this, assertions (2) through (5) follow easily from Lemma 3.1 (note that
we have assumed that B j ⊂ Bτ0(0) and τ0 < 1

2 ) and the above description
of �∞.

18 We remark that it is not strictly necessary to refer to [12] here. Indeed, one could argue in a
similar manner to the Proof of Theorem 1.2 to use our blow-up strategy along with the fact [19]
that “a finite index surface in R

3 cannot have infinite genus” to prove that there is C = C(I ) so
that an embedded minimal surface in R

3 with index at most I has at most C(I ) genus and ends.
Referring to [12] allows us to avoid such a discussion (and also allows us to obtain functions
m(I ) and r(I ) in Theorem 1.17 that are explicitly computable).
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It remains to prove the crucial fact that we can find δ > 0 so that (4.2)
holds for x ∈ � j ∩ (Bδ(p j )\BR/λ j (p j )). If this failed, we could find z j ∈
� j ∩ (B2(0)\BR/λ j (p j )) with δ j := dg(z j , p j ) → 0 and

|II� j |(z j )δ j ≥ 1

4
. (4.3)

We now consider

�̂ j = δ−1
j (� j − p j ).

and ẑ j = δ−1
j (z j − p j ).

Note that the curvature of �̂ j at the origin cannot be uniformly bounded
as j → ∞, as otherwise �̂ j would limit to a homothety of �∞. This would
contradict the choice of R and z j , in particular (4.1). Hence, �̂ j satisfies all
of the hypotheses of the proposition (with blow-up set B̂ j = {0}). By Lemma
4.1, �̂ j converges subsequentially (away from 0) to a lamination of R

3 by
parallel planes. The (scale invariant) curvature estimates in (ℵ) guarantee that

|II
�̂ j

|(x)dĝ j (x, 0) ≤ C

for, e.g., x ∈ B2(0) ∩ �̂ j . Thus, the convergence of �̂ j to the lamination by
parallel planes takes place smoothly away from {0}.

In particular, we find that |II
�̂ j

|(ẑ j ) → 0 (since ẑ j remains a bounded
distance away from 0). This contradicts (4.3) after rescaling. Thus, (4.2) holds
for some δ > 0, completing the proof. ��
Proposition 4.4 (Multiple points of curvature concentration) There are func-
tions m(I ) and r(I ) so that the following holds. Suppose that � j satisfies (ℵ).
Then, the lamination � extends across B∞ to a smooth lamination ˜� ⊂ R

3.
Moreover, for j sufficiently large:

(1) The surfaces �′′
j are minimal disks of uniformly bounded curvature.

(2) The surfaces �′
j intersect ∂B1(0) transversely in at most m(I ) circles.

(3) The surfaces �′
j have genus at most r(I ).

(4) The surfaces �′
j have uniformly bounded area, i.e.,

lim sup
j→∞

area(�′
j ) < ∞.

After a rotation, ˜� = R
2 × K for K ⊂ R closed and �′

j ∩ B1(0) converges

to B1(0) ∩ (R2 × {η1, . . . , ηn}) with finite multiplicity for some |ηi | ≤ 1
2 .
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Proof Wewill induct on the index bound I in (ℵ). If I = 1, then the proposition
follows from Proposition 4.3 above. Now, assume that the proposition holds
for I − 1 and that index(� j ) ≤ I . Lemma 4.1 implies that the lamination �

extends across B∞ to ˜� a lamination by parallel planes.
We first consider the case that |B∞| ≥ 2. Pick δ > 0 so that B∞ is 4δ-

separated. In particular, Bδ(B∞) is a disjoint union of balls and, after passing
to a subsequence, we may assume that for any connected component B of
Bδ(B∞),

index(� j ∩ B) ≥ 1.

Because we are assuming that |B∞| ≥ 2, this implies that

index(� j ∩ B) ≤ I − 1.

Now, we choose ε j → 0 sufficiently slowly so that B j ⊂ Bε j τ0/2(B∞) and

lim inf
j→∞ ε j min

p∈B j
|II� j |(p) = ∞.

We claim that (after taking δ > 0 smaller if necessary) for j large we have

|II� j |(x)dg j (x,B∞) <
1

4
(4.4)

for x ∈ � j ∩ (Bδ(B∞)\Bε j (B∞)). If this were to fail, then we may argue as in
the one point case,19 Proposition 4.3: after passing to a subsequence, we may
choose p∞ ∈ B∞ and z j ∈ � j ∩ Bδ(p∞) with z j → p∞, so that

|II� j |(z j )dg(z j , p∞) ≥ 1

4
,

for δ j = dg(z j , p∞) → 0. The surfaces

δ−1
j (� j ∩ Bδ(p∞) − p∞)

satisfy the inductive hypothesis and have unbounded curvature. Hence, after
passing to a subsequence, they converge to a lamination of R

3 by parallel
planes (smoothly near ∂B1(0)), contradicting the choice of z j .

19 Observe that things are slightly different than the one point case. In this situation, we work
away from the ball Bε j (p∞) with p∞ fixed, rather than the ball p j as in the one-point case.
We must do this to handle the possibility that multiple points in B j are converging to the single
point p∞.
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Because we now know that (4.4) holds, we are able to transfer topologi-
cal information from the scale Bε j (B∞) (where we may apply the inductive
hypothesis, by choice of ε j ) to the scale Bδ(B∞), using Lemma 3.1. In par-
ticular, we see that any component of � j ∩ Bδ(B∞) containing some point
in B j intersects Bδ(B∞) transversely in at most m(I − 1) circles, has genus
at most r(I − 1). On the other hand, observe that � j ∩ (B1(0)\Bδ/2(B∞)) is
converging smoothly to the planar domains ˜� ∩ (B1(0)\Bδ/2(B∞)).

From this, it is not hard to check that �′
j ∩ (B1(0)\Bδ(B∞)) satisfies the

hypothesis of Lemma A.3, which yields the asserted bounds on the genus
and number of boundary components of �′

j . Combined with fact that ˜� is
a lamination by parallel planes, this also yields the asserted area bounds, so
have proven assertions (2)-(5). Finally, assertion (1) follows from Lemma 4.2
and the fact that �̃ consists of parallel planes. This completes the proof in the
|B∞| ≥ 2 case.

Thus, it remains to consider the case that |B∞| = 1. Passing to a subse-
quence, we may assume that |B j | ≥ 2 for each j , as otherwise we could apply
Proposition 4.3. Then, we may choose p j , q j ∈ B j so that

ε jτ0/2 := dg j (p j , q j ) = max
p,q∈B j
p 
=q

dg j (p, q) → 0.

Then, consider the sequence

� j := ε−1
j (� j − p j )

By definition of a sequence of smooth blow-up sets (i.e., the various points
cannot appear in the blow-up of the other points), the curvature must still be
blowing up at each point in B j = ε−1

j (B j − p j ). Thus� j satisfies the hypoth-

esis of the proposition with |B∞| ≥ 2, so the conclusion of the proposition
holds for� j . At this point, wemay argue as above (cf. the analogous argument
in the Proof of Proposition 4.3), establishing the curvature estimate (4.4) for
x ∈ � j ∩ (Bδ(p j )\Bε j (p j )) for some δ > 0. As before, this allows us to
remove the singularities in the limit lamination and conclude that it must be
a lamination by planes. Using this, we may readily transfer the topological
information out to the scale of B1(0) for � j using Lemma 3.1 and as before
conclude assertions (1) through (5). ��

4.1 Completing the Proof of Theorem 1.17

Assume that� j ⊂ (M3, g) is a sequenceof closed embeddedminimal surfaces
with
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index(� j ) ≤ I.

Passing to a subsequence, Corollary 2.3 yields a sequence of smooth blow-
up sets B j so that |B j | ≤ I and a constant C > 0 so that

|II� j |(x)min{1, dg(x,B j )} ≤ C.

Passing to a further subsequence, B j converges to a finite set of points B∞
and � j converges away from B∞ to a lamination L ⊂ M\B∞. The remaining
argument is very similar to the Proof of Proposition 4.4, so we omit some of
the details below. Arguing as in Lemma 4.1, the lamination L extends across
B∞ to a smooth lamination ˜L ⊂ M .

Choose ε j → 0 sufficiently slowly so that B j ⊂ Bε j τ0/2(B∞) and

lim inf
j→∞ ε j min

p∈B j
|II� j |(p) = ∞.

We claim that by taking ε0 > 0 sufficiently small (in particular, so that it
is smaller than the injectivity radius and so that B∞ is 4ε0-separated), for j
large, we have the improved curvature bounds

|II� j |(x)dg(x,B∞) <
1

4
(4.5)

for x ∈ � j ∩ (B2ε0(B∞)\Bε j (B∞)). To prove this we argue exactly as before:
we may pick a connected component � j ∩ (B2ε0(B∞)\Bε j (B∞)) where it
fails and rescale a sequence of points where where (4.5) fails to unit scale.
This rescaled sequence then satisfies the hypothesis of Proposition 4.4, so it
limits to a lamination of R

3 by parallel planes (away from a discrete set). This
contradicts the fact that we chose points volating (4.5). Thus, we may find
some ε0 > 0 as claimed. Taking ε0 > 0 even smaller if necessary, we may
arrange that for every component B of B2ε0(B∞), the metric g restricted to
B and rescaled by by ε−1

0 around its center satisfies the hypothesis in Lemma
3.1.

Now, Propositions 4.3 and 4.4 applied to each component B of � j ∩
Bε j (B∞), after rescaling it by ε−1

j around the center of B yields the desired
topological information at the scale of Bε j (B∞). The improved curvature esti-
mates in (4.5) and Lemma 3.1 then allow us to transfer this information out
to the scale of Bε0(B∞), exactly as in the Proof of Propositions 4.3 and 4.4.
In particular, topological statements (1.a), (1.b), (1.c) follow, and also (2.a) by
Lemma 4.2.

Finally, fix ε ∈ (0, ε0] and B = Bε0(p∞) a connected component of
Bε0(B∞). Because ˜L is smooth in B, as ε → 0, each leaf in ε−1(˜L∩ B− p∞)
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converges with multiplicity one to a plane in R
3. Rotating a local coordinate

frame, we may assume that all such planes are of the form R
2 × {t} for some

t ∈ R.
Thus, by (1.a) we can see that for j sufficiently large (depending on

ε) any component of � j ∩ B2ε(p∞) must intersect Bε(p∞)\Bε/2(p∞)

union of at most m(I ) annuli, which converge graphically to the annulus
(

R
2 × {0})∩(

Bε(p∞)\Bε/2(p∞)
)

. Combinedwith themonotonicity formula,
the area estimate (1.d) easily follows. The argument for (2.b) follows a similar
line of reasoning, except any disk region is converging smoothly everywhere
to a leaf in ˜L ∩ B, which is nearly planar on small scales.

5 Surgery for bounded index surfaces in three-manifolds

In this section, we describe how Corollary 1.19 follows from Theorem 1.17.
We first prove the following local description of the surgery operation.

Proposition 5.1 (Local picture of surgery) Suppose that � j is a sequence of
embedded surfaces in B3(0) with ∂� j ⊂ ∂B3(0), and so that:

(1) The surfaces � j\B1(0) converge smoothly, with finite multiplicity, to the

flat annulus A(3, 1) :=
(

B3(0)\B1(0)
)

∩ {x3 = 0} as j → ∞.

(2) The set of components of � j which are topological disks converge
smoothly to the flat disk D(3) := B3(0) ∩ {x3 = 0} as j → ∞.

Then, for j sufficiently large, we may construct embedded surfaces ˜� j with
∂˜� j ⊂ ∂B3(0), and so that:

(1) The surfaces ˜� j agree with the � j near ∂B3(0).
(2) Any component of � j which is topologically a disk is unchanged.
(3) The surfaces˜� j converge smoothly, with finite multiplicity, to the flat disk

D(3) as j → ∞.

Proof Fix a smooth cutoff function χ : R
2 → [0, 1], with χ(x) ≡ 1 for

|x | ≥ 7
4 and χ(x) ≡ 0 for |x | ≤ 5

4 .
We define the cylinder and annular cylinder

C(r) := {(x1, x2, x3 : (x1)2 + (x2)2 < r2}, r > 0,

C(r1, r2) := C(r1)\C(r2), r1 > r2 > 0.

Taking j sufficiently large, each component of � j ∩C(2, 1) is graphical over
the flat annulus A(2, 1), and the topological disk components of � j ∩ C(2)
are graphical over the flat disk D(2).
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For now, we assume at most two of the components of � j are topological
disks, and each of the disk components, if they exist, is either the topmost com-
ponent or bottommost component. Choose a smooth functionw j : D(2) → R

so that

(1) The graph of w j is contained in B3(0).
(2) The graph of w j lies strictly above (resp. below) the bottommost (resp.

uppermost) disk if it exists.
(3) The function w j converges smoothly to 0 as j → ∞.

For example, when � j contains both an uppermost and bottommost disk, then
we may take the average of their respective graphs. We additionally choose
real numbers η j → 0 so that the graph ofw j +η satisfies the above properties
as well for all η ∈ (0, η j ).

Wemay find functions u j,1, . . . , u j,n( j) : A(2, 1) → R so that any non-disk
component of � j is the graph of the u j,l in C(2, 1). By assumption, for all k,

sup
l∈{1,...,n( j)}

‖u j,l‖Ck(A(2,1)) → 0

as j → ∞. By embeddedness of � j , we may arrange that

u j,1(x) < u j,2(x) < · · · < u j,n( j)(x)

for x ∈ A(2, 1).
Now, we define

ũ j,l(x) = χ(x)u j,l(x) + (1 − χ(x))

(

w j (x) + l

n( j)
η j

)

We now define a surface ˜� j which agrees with � j in B3(0)\C(2) and which
is defined inside of C(2) to be the union of the graphs of the ũ j,l along with
the disk components in � j , if they exist. It is easy to check that ˜� j satisfies
the asserted properties.

Finally, we may easily reduce the case of general � j to the above case
by considering contiguous subsets of the components of � j which are in the
above form and applying the argument above to themaximal such subsets. This
choicewill preserve embeddedness, becausewe have chosen them so that there
will at least be a disk separating the non-disk components of different subsets.

��
Now, we may complete the proof of the surgery result. Consider � j a

sequenceof compact embeddedminimal surfaces in (M3, g)with index(� j ) ≤
I . We pass to a subsequence so that the conclusion of Theorem 1.17 applies. In
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particular, there is a finite set of points B∞ ⊂ M with |B∞| ≤ I and a smooth
lamination ˜L of M so that � j converges to L = ˜L\B∞ away from B∞.

Take ε0 as in Theorem 1.17 and choose ε ∈ (0, ε0]. Pick any p ∈ B∞; we
will showhow toperform the surgery in Bε(p).Write L for the leaf of ˜L∩Bε(p)
that passes through p.Wemay fix a diffeomorphism of� : Bε(p) → B3(0) ⊂
R
3 so that � maps Bε/3(0) difeomorphically onto B1(0) and L onto the flat

disk D(3) ⊂ R
3 as in Proposition 5.1.

Consider the connected components of � j ∩ Bε(pi ) which are converging
smoothly to L in the annulus Bε(p)\Bε/3(p) (by Theorem 1.17, this includes
all of the neck components, i.e., all of the components of� j∩Bε(p) containing
somepoint inB j ).Using themaximumprinciple, the area bounds and curvature
estimates for the disk components show that they converge smoothly to L
(although they might do so with infinite multiplicity). Now, we define � j to
be the union of all of the neck components of � j ∩ Bε(p), as well as all of
the disc components which are directly adjacent (either above or below) to a
neck component.

It is not hard to see that if the uppermost (resp. lowermost) component of
� j is a neck component, we may simply add in a disk which is above (resp.
below) all of the components of � j , but which is below (resp. above) all of the
disk components not converging to L .

Now we apply Proposition 5.1 to � j (and then removing the extra disks on
top and bottom, if we had to add them) and replace� j ∩Bε(p) by the resulting
surface. Repeating this for each p ∈ B∞ yields ˜� j . The asserted properties of
˜� j follow easily from Proposition 5.1 and Theorem 1.17.

6 Proofs of the three-dimensional compactness results

Proof of Theorem 1.1 for n=3 Fix I ∈ N, A < ∞, and a closed Riemannian
three-manifold (M, g). Suppose that� j ⊂ (M, g) is a sequence of connected,
embedded, closed minimal surfaces with index(� j ) ≤ I and area(� j ) ≤ A
but genus(� j ) → ∞. By20 Corollary 1.19, we may find ˜� j with uniformly
bounded area and curvature, but so that

genus(˜� j ) ≥ genus(� j ) − r̃(I ) → ∞.

This is a contradiction: after passing to a subsequence, the surfaces ˜� j must
converge smoothly and with finite multiplicity to some closed, embeddedmin-
imal surface ˜�∞ (which must have finite genus).

20 Note one could also prove Theorem 1.1 for n = 3 using Theorem 1.17 directly (somewhat
like we will do for Theorems 1.1 or 1.2).
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Proof Theorem 1.3 Fix I ∈ N and (M, g) a closedRiemannian three-manifold
with positive scalar curvature. We only need to prove the area bound, since the
genus bound would immediately follow from Theorem 1.1 (the case n = 3 is
proven above). Suppose that � j ⊂ (M, g) is a sequence of connected, closed,
embedded minimal surfaces with index(� j ) ≤ I and areag(� j ) → ∞.

After passing to a subsequence, by Theorem 1.17, there is a finite set of
points B∞ and a lamination ˜L ⊂ M so that � j converges locally to the
lamination L := ˜L\B∞ away from B∞. Because the area of � j is diverging,
passing to a further subsequence, there is p ∈ M\B∞ so that

lim inf
j→∞ areag(� j ∩ Br (p)) = ∞.

for all r > 0. A standard argument along the lines of [32, Lemma 1.1], [33,
Lemma A.1], and [6, Proposition 2.1] shows that there is a leaf p ∈ L ⊂ L
with stable universal cover and so that for r > 0 fixed sufficiently small,
� j ∩ Br (p) consists of n( j) → ∞ sheets, which are all smoothly graphically
converging to L ∩ Br (p).

BecauseL = ˜L\B∞ has removable singularities, there is a smooth complete
minimal surface˜L so that L = ˜L\B∞. The log-cutoff trick shows that stability
extends across isolated points, so ˜L has stable universal cover ̂L . We think of
̂L as an immersed stable minimal surface in M . If we consider a disk D ⊂ ̂L
and if x is any point in the interior of D, by Schoen-Yau [48,49], the intrinsic
distance to the boundary must satisfy:

dD(x, ∂D) ≤ 2π
√
2√

3κ0
,

where κ0 > 0 is the infimum of the scalar curvature of M . This implies that ̂L
must be compact, since D is arbitrary. By [20, Theorem 3], ̂L is a two-sphere.

We choose ε > 0 smaller than ε0 from the surgery theoremand small enough
so that p /∈ B2ε(B∞). Let ˜� j denote the surfaces resulting from a surgery at
scale ε, as constructed in Corollary 1.19. Because the original surfaces � j are
connected, Corollary 1.19 implies that the number of components of ˜� j is
uniformly bounded above, |π0(˜� j )| ≤ m(I ) + 1.

Putting these facts together, we may find a connected component ̂� j ⊂ ˜� j
so that areag(̂� j ) → ∞ and so that ̂� j ∩ Bε(p) is smoothly converging to
L ∩ Bε(p). The maximum principle then implies that ̂� j converges locally
smoothly to ˜L . In particular, the universal cover of ̂� j converges in the sense
of immersions to ̂L , which we have seen is a topological sphere. This implies
that the area of ̂� j is uniformly bounded, a contradiction. ��
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7 Bounded diffeomorphism type in higher dimensions

Here, we discuss the 4 ≤ n ≤ 7 case of Theorems 1.1 and 1.2. Motivated by
the three-dimensional case, we define the hypothesis (�) as follows.
Fix 4 ≤ n ≤ 7 and suppose that g j is a sequence of metrics on {|x | ≤ 2r j } ⊂
R
n that is locally smoothly converging to gRn . Assume that:

(1) We have � j ⊂ Br j (0) ⊂ R
n a sequence of properly embedded minimal

hypersurfaces with ∂� j ⊂ ∂Br j (0).
(2) The surfaces � j are connected.
(3) The hypersurfaces have index(� j ) ≤ I .
(4) The hypersurfaces satisfy vol(� j ) ≤ �rn−1

j .
(5) There is a sequence of non-empty smooth blow-up sets B j ⊂ Bτ0(0)

(where τ0 is fixed in Lemma 3.1) with |B j | ≤ I and C > 0 so that

|II� j |(x)dg j (x,B j ∪ ∂� j ) ≤ C,

for x ∈ � j .
(6) The smooth blow-up sets converge to a set of pointsB∞ and for any r > 0,

the hypersurfaces� j ∩ Br (0) converge in sense of varifolds to a disk with
multiplicity k ∈ N, i.e.

[� j ∩ Br (0)] ⇀ k[{xn = 0} ∩ Br (0)].
Then, we say that � j satisfies (�).

Let us briefly note that the main difference between hypothesis (�) and the
hypothesis (ℵ) used in three dimensions is the assumption that the surfaces
are connected (in addition to the assumption that they satisfy a uniform area
bound). The connectedness assumption is useful to compensate for the fact that
the half-space theorem fails in higher dimensions. To exploit this assumption,
we will work “big to small” when proving the crucial curvature estimates, e.g.,
(7.1).

Proposition 7.1 Given a sequence � j satisfying (�) that intersect ∂B1(0)
transversely, we may pass to a subsequence so that all of the � j ∩ B1(0) are
diffeomorphic.

Proof We prove this by induction on I . For I = 0 this trivially follows from
the curvature and area estimates.

We first consider the one point of concentration, i.e. |B j | = 1. We write
B j = {p j } andB∞ = {p∞} andλ j = |II� j |(p j ). Bypassing to a subsequence,
we have that

� j := λ j (� j − p j )
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converges to�∞ ⊂ R
n a complete, non-flat, properly embedded minimal sur-

face with index at most I and vol(�∞∩Br (0)) ≤ �rn−1 (by themonotonicity
formula). Because of these properties, �∞ must be “regular at infinity” in the
sense that outside of a large compact set, it is the finite union of a graphs,
all over the same fixed plane, of functions with nice asymptotic behavior, see
[42,53]. In particular, we may take R > 0 so that �∞ intersects ∂BR(0)
transversely and

|II�∞|(x)dRn (x, 0) <
1

4

for x ∈ �∞\BR(0).
We claim that for j sufficiently large,

|II� j |(x)dg j (x, p j ) <
1

4
(7.1)

for x ∈ � j ∩
(

B2(0)\BR/λ j (p j )
)

. If this holds, then Lemma 3.1 easily is seen
to imply that for j sufficiently large, all of the hypersurfaces� j∩B1(0) are dif-
feomorphic (here, we have used the fact that “regular ends” are diffeomorphic
to S

n−2 × (0, 1) with the standard smooth structure).
On the other hand, if (7.1) does not hold,wemay choose δ j to be the smallest

radius21 greater than R/λ j so that

|II� j |(x)dg j (x, p j ) <
1

4

holds for x ∈ � j ∩ (

B2(0)\Bδ j (p j )
)

. Note that for j sufficiently large, such
a δ j exists and moreover δ j → 0. This follows from fact that � j converges
smoothly to {xn = 0} away from p∞.

Define

�̂ j := δ−1
j (� j − p j ).

Passing to a subsequence, there is �̂∞ ⊂ R
n so that �̂ j converges locally

smoothly with finite multiplicity to �̂∞ away from {0}, and converges in
the sense of varifolds in B1(0). Because �̂∞ has finite index, we may apply
Proposition D.6 to see that the singularity at {0} is removable. In particular
(after relabeling the hypersurface), �̂∞ is an embedded minimal hypersurface

21 Observe that when n = 3, the half-space theorem affords us considerably more flexibility in
this argument. Here, we must tranfer “connectedness” from larger to smaller scales by choosing
the largest scale where the estimate (7.1) is violated.
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in R
n with index(�̂∞) ≤ I and vol(�̂∞ ∩ Br (0)) ≤ �rn−1. In particular,

it is regular at infinity and has finitely many components. Hence, we may
choose γ ≥ 1 so that ∂Bγ (0) intersects each component transversely, and
�̂∞ ∩ ∂Bγ (0) is the disjoint union of finitely many manifolds diffeomorphic
to S

n−2 with the standard smooth structure.
By choice of δ j , the curvature estimates (7.1) hold for x ∈ � j ∩

(

B2(0)\Bγ δ j (p j )
)

. Applying Lemma 3.1, we see that� j ∩
(

B2(0)\Bγ δ j (p j )
)

is diffeomorphic to the union of annular regions. In particular, � j ∩ Bγ δ j (p j )

must be connected (because we have assumed that � j is connected in (�)).
From this, we see that �̂∞ is connected. Observe that the convergence of �̂ j to
�̂∞ cannot be smooth at {0} by choice of R and the assumption that δ j ≥ R/λ j .
In particular, the convergence of �̂ j to �̂∞ must occur with multiplicity at
least two, so �̂∞ is (two-sided) stable and thus a plane; note that this uses the
fact that �̂∞ is connected.22 The convergence of �̂ j to �̂∞ occurs smoothly
near ∂B1(0). This contradicts the choice of δ j (namely that (7.1) fails at some
point in � j ∩ ∂Bδ j (p j )). This completes the proof in the case that |B j | = 1.

Now, we consider the case of |B∞| ≥ 2. Pick δ > 0 so that B∞ is 4δ-
separated. In particular, if B is a component of Bδ(B∞), then for j sufficiently
large, we see that

index(� j ∩ B) ≤ I − 1.

We may choose ε j → 0 sufficiently slowly so that B j ⊂ Bε j/j (B∞),

lim inf
j→∞ ε j min

p∈B j
|II� j |(p) = ∞

and so that every connected component of � j ∩ Bδ(B∞) intersects Bε j (B∞).
That we can find ε j satisfying final condition is easily justified by combin-
ing the smooth convergence away from B∞ to {xn = 0} with the varifold
convergence.

Consider �′
j a connected component of � j ∩ Bδ(p∞) for some p∞ ∈ B∞.

We claim that for j sufficiently large,

|II� j |(x)dg j (x, p∞) <
1

4
(7.2)

for x ∈ �′
j ∩

(

Bδ(p∞)\Bε j (p∞)
)

. Suppose that we have proven (7.2) for each
component. By the monotonicity formula and the uniform volume bound in

22 If we did not arrange for �̂∞ to be connected, then we could only conclude that it contained
a plane through the origin but it could have other non-flat components.
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(�), there must be a bounded number of such components. Thus, by taking j
sufficiently large, we have that

|II� j |(x)dg j (x, p∞) <
1

4

for x ∈ � j∩
(

Bδ(p∞)\Bε j (p∞)
)

. The inductive step (it is not hard to see that it
is applicable to each connected component of� j ∩Bε j (p∞), by howwe chose
ε j ), along with Lemma 3.1 and these bounds easily show that after passing to
a subsequence each hypersurface � j ∩ Bδ(p∞) is diffeomorphic. Passing to
a further subsequence, we may arrange that each hypersurface � j ∩ Bδ(B∞)

is diffeomorphic. Now, since � j\Bδ/2(B∞) converges smoothly (with finite
multiplicity) to {xn = 0}\Bδ/2(B∞), there are only a finite number of ways
that the hypersurfaces� j ∩Bδ(B∞) could join upwith� j ∩(B1(0)\Bδ(B∞)),
which is diffeomorphic to a disjoint union of finitelymany copies of the “planar
region” {xn = 0} ∩ (

B1(0)\Bδ/2(B∞)
)

. Hence, as usual it remains to prove
(7.2) for each connected component �′

j .
The argument is similar to the one point of concentration above. If (7.2)

failed, then we could choose δ j ≥ ε j to be the smallest number so that (7.2)
held for x ∈ �′

j ∩ (

Bδ(p∞)\Bδ j (p∞)
)

. As before, δ j → 0. The surface

�̂′
j := δ−1

j (�′
j − p∞)

converges after passing to a subsequence to �̂′∞. Now, we may argue
exactly as in the one point case to choose γ ≥ 1 so that each component
of �̂′∞ intersects ∂Bγ (0) transversely in spheres. Lemma 3.1 implies that
�′

j ∩ (

Bδ(p∞)\Bγ δ j (p∞)
)

is the union of annular regions. This implies that

�̂′∞ is connected, and is thus a plane through the origin. This contradicts the
choice of δ j by the same argument as before. This completes the proof in the
case that |B∞| ≥ 2.

Finally, in the case that |B∞| = 1 and |B j | ≥ 2, we can rescale by the
distance between the furthest two points of concentration. The proof proceeds
just as in Proposition 4.4, as long as we prove the crucial curvature estimates
from the large to small scale, as we have done above. We omit the details. ��

Now, to finish the Proof of Theorem 1.2, we first observe that it is not
restrictive to assume that the hypersurfaces are connected (the volume bounds
andmonotonicity formula imply that there can be atmost a bounded number of
connected components). If � j was a sequence of pairwise non-diffeomorphic
connected, embedded, minimal hypersurfaces in R

n with vol(� ∩ BR(0)) ≤
�R1−n and index(�) ≤ I , then because such surfaces are “regular at infinity,”
we may rescale and rotate the � j so that outside of Bτ0/2(0), the � j are
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graphical over {xn = 0}. This guarantees that in particular the � j ∩ B1(0) are
pairwise non-diffeomorphic as well. It is not hard to show that � j ∩ Br j (0)
satisfies (�), so the proof follows from the previous proposition.

The Proof of Theorem 1.1 also follows easily from the above propo-
sition: for � j ⊂ (Mn, g) as in the statement of Theorem 1.1, pairwise
non-diffeomorphic, their curvature cannot be bounded. Combining the pre-
vious proposition with the usual Morse theory argument, we see that after
passing to a subsequence, the � j are all diffeomorphic in small fixed balls
containing the points of curvature blow-up. The other portion of� j converges
smoothly, and there are only finitely many ways to connect the regions of large
curvature to the regions of bounded curvature.
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Appendix A: The genus of a surface

Definition A.1 For � a non-orientable closed surface, we define the (non-
orientable) genus of � to be

genus(�) = 1

2
genus(̂�)

where ̂� is the oriented double cover.

Definition A.2 For a compact surface � with boundary ∂� consisting of one
ormore closed curves, we define genus(�) to be the genus of the closed surface
formed by gluing disks to each boundary component.

Suppose that �1, �2 are two oriented surfaces with boundary. If we form an
oriented surface � by gluing together b boundary components, then from the
well known formula χ(�) = χ(�1) + χ(�2), we find that

genus(�) = genus(�1) + genus(�2) + b − 1.
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The reader should keep in mind the example of a torus thought of as a
sphere with two disks removed, glued to an annulus (along the two boundary
components); neither component has any genus in the sense of Definition A.2,
but obviously the torus is a genus one surface.

As a consequence of this, we find

Lemma A.3 Suppose that � is a properly embedded surface in B2(0) ⊂ R
3

so that there is a finite set of points B ⊂ B1/2(0) which are 3ε-separated for
some ε ∈ (0, 1/4) having the following properties:

(1) The surface � intersects ∂Bε(B) and ∂B1(0) transversely.
(2) The surface �\Bε(B) is topologically the union of finitely many com-

ponents, each of which is topologically a disk with finitely many holes
removed.

(3) The surface � ∩ Bε(B) is two-sided.
(4) For each p ∈ B, we have an upper bound r(p) on the genus of� ∩ Bε(p)

and an upper boundm(p) on the number of boundary circles�∩∂Bε(p).

Then, the genus of � is bounded by

genus(�) ≤
∑

p∈B
(r(p) + m(p) − 1)

and the number of boundary circles of � ∩ B1(0) is bounded by

|π0(� ∩ ∂B1(0))| ≤
∑

p∈B
m(p).

Appendix B: Finite index surfaces in R
3

The following theorem is a consequence of results due to Osserman [35] and
Fischer-Colbrie [19] in the two-sided case. The one sided case is due to Ros
[39].

Theorem B.1 Suppose that � ↪→ R
3 is a complete minimal injective immer-

sion in R
3 with finite index. Then � is two-sided, has finite total curvature,

and is properly embedded.

Proof By [19, Theorem 2] and [39, Theorem 17], finite index is equivalent
to finite total curvature for a complete minimal immersion in R

3. Using [35],
we have that� is conformally diffeomorphic to a punctured Riemann surface.
Hence, so is the orientable double cover—this shows the orientable double
cover has finite total curvature. By [42], we find that � is a proper embedding
and is thus two-sided. ��
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This, along with the half-space theorem for minimal surfaces of finite total
curvature (which is a trivial consequence of [42]) implies.

Corollary B.2 Suppose that � is a smooth lamination of R3 with finite index.
Then, it is either a single properly embedded surface of finite total curvature
or else it consists only of parallel planes, i.e. after a rotation � = R

2 × K for
K ⊂ R closed.

Appendix C: Two-sidedness of embedded surfaces on small scales

In this section, we record the following well known two-sidedness property of
properly embedded surfaces. We include a short proof for completeness (cf.
[40]).

Lemma C.1 Suppose that �n ⊂ B1(0) ⊂ R
n+1 is a properly embedded

hypersurface. Then, � is two-sided.

Proof Suppose � were one-sided. Then, we can find a loop γ ⊂ B1(0) so
that γ intersects � in exactly one point. Because B1(0) is simply connected,
γ spans a disk D. Because � is properly embedded, we can perturb D away
from its boundary so that D is transverse to �. This is easily seen to be a
contradiction. ��

Appendix D: Removable singularity results

The following result is well known, but we indicate the proof for completeness.

Proposition D.1 (Properly embedded surfaces with curvature bounds) Sup-
pose that (M, g) is a complete Riemannian three-manifold and p ∈ M.
Suppose that for ε > 0, � ⊂ Bε(p)\{p} is a properly embedded minimal
surface with

|II�|(x)dg(x, p) ≤ C.

Then, � smoothly extends across p, i.e. there is ˜� ⊂ Bε(p) with � = ˜�\{p}.
Proof Because � is proper it has finite area in Bε(p)\{p}. Hence, the mono-
tonicity formula is applicable and we may consider a tangent cone to � at p
(the tangent cone may not be unique). The assumed curvature estimate imples
that any tangent cone is smooth away from {0}, so it is a single plane (possibly
with multiplicity) through the origin, and blow-ups of � converge smoothly
away from 0 to any such tangent cone. Combined with a blow-up argument,
this shows that there is δ ∈ (0, ε) so that
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|II�|(x)dg(x, p) <
1

4

for all x ∈ � ∩ Bδ(p). A Morse theory argument analogous to Lemma 3.1
implies that � ∩ Bδ(p) is the union of topological planes and annuli. Hence,
it has finite Euler characteristic. A properly embedded minimal surface with
finite Euler characteristic is well known to extend across a point singularity,
cf. [14, Proposition 1]. ��

We will make use of the following Bernstein-type result due to Gulliver–
Lawson [22]; see also [31, Lemma 3.3] and [11, Lemma A.26].

Theorem D.2 (Gulliver–Lawson’s Bernstein theorem) Suppose that ϕ : � →
R
3\{0} is a non-empty two-sided stable minimal immersion which is complete

away from {0}. Then the trace of ϕ is a plane.

Using this,we show the following removable singularity result for two-sided
stable laminations. The fundamental strategy is somewhat similar to [31], but
thanks to the stability hypothesis (which is considerably stronger than the
assumptions in [31]), we are able to give a relatively short argument, inspired
by ideas in [6].

Proposition D.3 (Removable singularities for two-sided stable laminations)
Suppose that (M, g) is a complete Riemannian three-manifold and p ∈ M.
Suppose that for some ε > 0, L ⊂ Bε(p)\{p} is a minimal lamination with
the property that any leaf L ⊂ L has stable universal cover. Then, there is a
smooth lamination ˜L ⊂ Bε(p) so that L = ˜L\{p}.
Proof Because the claim is purely local, at several points we will replace L
with its intersection with some smaller ball Bε′(p). For simplicity, we will not
relabel the resulting immersion or ball. Furthermore, we will always work in
a normal coordinate system around p (where we can assume the metric to be
sufficiently close to Euclidean, by taking ε > 0 sufficiently small).

Observe that, taking ε smaller if necessary, by Schoen’s curvature estimates
[41], there isC > 0 so that |IIL|(x)dg(x, p) ≤ C for all x ∈ L. Hence, for any
ρ j → ∞, passing to a subsequence, the laminations ρ j (L j − p) converge to
a smooth lamination L∞ of R

3\{0} away from {0}. Moreover each leaf in L∞
has stable universal cover and is complete away from {0}. Hence by Theorem
D.2, after rotating, L∞ = (R2 × K )\{0} for some closed set K ⊂ R.

Thus, taking ε > 0 sufficiently small, we may guarantee that

|IIL|(x)dg(x, p) <
1

4
(D.1)

for all x ∈ L.
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Now, pick any leaf L ⊂ L so that p is in the (topological) closure of L . We
claim that for anyρ j → 0, passing to a subsequence and rotating the coordinate
chart, the surfaces L j := ρ j L converge to the lamination (R2 × {0})\{0} ⊂
R
3\{0}. To prove this, by our above argument, it is sufficient to show that there

is not another plane � = R
2 × {z} in the lamination limit of ρ j L . If such a

plane did exist, then by curvature estimates, we would have locally smooth
convergence to � (because 0 /∈ �). At the scale of L , this would imply that
there was some δ ∈ (0, ε) sufficiently small, so that L ∩ Bδ(p)\{p} contains a
properly embedded component D diffeomorphic to a disk, intersecting ∂Bδ(p)
transversely.

Now, by the curvature estimates (D.1), we claim that a Morse theory argu-
ment along the lines of Lemma 3.1 shows that L\Bδ(p) contains an annular
region connecting the disk D to ∂Bε(0). Given this, because L is connected (by
definition) we see that it must be the union of D with this annular region. This
implies that p cannot be in the closure of L , a contradiction. We emphasize
that L is not assumed to be proper, so we cannot simply apply Lemma 3.1.
However, the given curvature estimates and resulting compactness properties
of the leaves are sufficient to handle the lack of properness in the proof of the
mountain pass lemma; this has been carried out in detail in [6, Appendix E]
in a completely analogous situation.

Thus, we may take δ ∈ (0, ε/3) sufficiently small so that after rotating
the normal coordinate system, L ∩ (B3δ(p)\Bδ(p)) intersects ∂B2δ(p) trans-
versely, is contained in a δ/10 neighborhood of the coordinate plane R

2 ×{0},
and is amultigraph over this plane (cf. [6, Lemma 4.1]). Hence, the intersection
L ∩ ∂B2δ(p) is the union of simple closed curves and injectively immersed
curveswhich “spiral near the equator” of the sphere ∂B2δ(p). First, assume that
L ∩ ∂B2δ(p) contains a simple closed curve. Then, by the curvature estimate
(D.1) and the Morse theory argument used above, we see that L ∩ ∂B3δ(p) is
a properly embedded annulus in B3δ(p)\{p}. Hence, L extends across {p} by
Proposition D.1.

Thus, it remains to consider the case that L ∩ ∂B2δ(p) consists of one or
more spiraling curves. Our argument here is analogous to the technique of
passing to the top sheet in [6, Proposition 4.2]. We have seen that L ∩∂B2δ(p)
is contained in an δ/10 neighborhood of the equator (R2 × {0} ∩ ∂B2δ(p).
Taking a sequence of points w j ∈ L ∩ ∂B2δ(p) with x3(w j ) approaching
supw∈L∩B2δ(p) x

3(w), after passing to a subsequence, the points w j converge
to w′, which lies in a “top sheet” L ′ ⊂ L. By construction, L ′ ∩ ∂B2δ(p) will
contain a simple closed curve, and thus the Morse theory argument guarantees
that L ′ ∩ B3δ(p) is a properly embedded topological disk or annulus. By
Proposition D.1, L ′ extends across {p}. Similarly, we may pass to the bottom
sheet to find a properly embedded L ′′ ⊂ L which extends across {p}. Note
that by construction L ′ 
= L ′′ (otherwise, there could not be any spiraling).
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Note that by the maximum principle, it cannot happen that both L ′ and
L ′′ contain p (because they are smoothly, properly embedded in B3δ(p)), so
we assume that p /∈ L ′. However, this leads to a contradiction as follows:
by construction and the curvature estimates, we can find a sufficiently small
tubular neighborhood U of L ′ ∩ B3δ(p) so that L ∩ U is a multigraph over
L ′ ∩ B3δ(p). Because L ′ ∩ B3δ(p) is a disk (and thus is simply connected),
this shows that at least one component of L ∩ U must be a disk, contradicting
the assumed spiraling behavior of L . ��
Remark D.4 We remark that by combining the curvature estimates [39,41]
with the removable singularity result [31], the following strengthened version
of Proposition D.3 holds: suppose that L ⊂ Bε(p)\{p} is a lamination so that
every leaf has a cover that is stable. Then, L extends smoothly across {p}.
Note that that this version is compatible with one-sided stability of leaves,
while Proposition D.6 requires two-sided stability.23

We have not been able to find a self contained proof of this strengthened
assertion, due to the fact that we do not know if the one-sided version of
Theorem D.2 holds. It would thus be interesting to know if there can be a
non-flat, one-sided stable immersion in R

3 that is complete away from the
origin. Note that the surface cannot be injectively immersed, because then by
the curvature estimates [39], one could take the lamination closure away from
{0} and then apply [31].

Fortunately, for our purposes, the removable singularity result contained in
Proposition D.3 is sufficient.

Corollary D.5 (cf. [31]) Suppose that B ⊂ R
3 is a finite set of points and

� ⊂ R
3\B is a smooth lamination of R

3\B so that

|II�|(x)dR3(x,B) ≤ C.

Then, either � extends smoothly across the points B or it contains a plane.

Proof If each leaf is properly embedded inR
3\B, then PropositionD.1 implies

that � extends across B. Otherwise, � contains some limit leaf L , which has
stable universal cover by standard arguments (cf. [33, Lemma A.1]). Then
the closure of L in � is a non-empty lamination consisting entirely of leaves
with stable universal cover. Proposition D.3 then guarantees that the closure
of L extends smoothly across B. Hence, we see that L must be a plane, by
[17,20,37]. ��

Finally, we need the following removable singularity result valid in higher
dimensions.

23 We emphasize that one-sided stability does not necessarily imply that the universal cover is
stable; consider RP2 in RP3.
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Proposition D.6 Suppose that (Mn, g) is a complete Riemannian n-dimen-
sional manifold, for 4 ≤ n ≤ 7 and for some ε > 0, � ⊂ Bε(p)\{p} is a
properly embedded stable minimal hypersurface. Then, � smoothly extends
across p.

Proof Stability of the hypersurface implies that |II�|(x)dg(x, p) ≤ C . This
follows from a blow-up argument as in Lemma 2.4, based on [45,46] and the
fact that a properly embedded hypersuface in R

n is two-sided (cf. [40]).
As usual, the claim is purely local, so there is no harm with assuming that

ε > 0 is sufficiently small. The curvature estimates and properness guarantee
that volg(�) < ∞. Thus, the monotonicity formula allows us to consider
the tangent cones to (the varifold closure of) � at p. The curvature estimates
guarantee all of the tangent cones have smooth, compact, connected, cross
section in S

n−1. It is well known that (by Alexander duality, cf. [40]) compact
embedded hypersurfaces separate S

n−1, and are thus two-sided. Thus, the
tangent cones themselves are two-sided.Because the rescalings of� j converge
smoothly away from the origin to the tangent cones, we may see that the cones
are stable precisely in the sense needed to apply [44]. This allows us to conclude
that all tangent cones to � at p are hyperplanes (possibly with multiplicity).

In particular, taking ε > 0 smaller if necessary, we may arrange that

|II�|(x)dg(x, p) ≤ 1

4
.

Then, using a Morse theoretic argument along the lines of Lemma 2.4 (and
taking ε > 0 smaller if necessary), we may arrange that each of the (bounded
number of) components of � is diffeomorphic to S

n−2 × (0, 1) and each
component intersects ∂Bs(p) transversely in a connected submanifold for s ≤
ε. From this, it is not hard to see that any tangent cone to (the varifold closure
of) the hypersurface ˜� at p is a multiplicity one plane. Thus, by Allard’s
theorem [1], ˜� extends smoothly across p. Using the maximum principle, we
thus see that there can be only one component of � whose closure includes p.
This completes the proof. ��

Appendix E: Examples of degeneration

We give examples to illustrate the “one point of concentration” and “multiple
points of concentration” discussed in Propositions 4.3 and 4.4. Recall that (see
[13,24,25]) the Costa surface�(1) ⊂ R

3 is an embeddedminimal surface with
genus one and three ends (one flat end, and two catenoidal ends) Furthermore,
Hoffman–Meeks have shown that it is possible to deform the flat end of �1
into a catenoidal end, producing a family �(t) for t ≥ 1 of embedded genus
three embedded minimal surfaces with three catenoidal ends. As t → ∞, the
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Fig. 2 This depicts the Hoffman–Meeks deformation �(t) of the Costa surface for t large.
The surface looks like three planes joined by three catenoidal necks. The marked points are
the points of curvature concentration, and at the scale of curvature around any of them, �(t) is
geometrically close to a catenoid. By choosing the scaling appropriately, one may arrange that
the point of concentration stay at a bounded distance, or all converge to the origin

logarithmic growth of middle catenoidal end approaches that of the other end
pointing in the same direction. See [24, Figure 3.2] or Fig. 2 for an illustration
of the deformation family for t large.

The exact index of �(t) seems to be unknown for t > 1 (note that
index(�(1)) = 5 by [34]). However, because the family �(t) has uniformly
bounded total curvature, the main result of [52] implies that index(�(t)) ≤ I
for some I ∈ N.Wewill always assume that�t is scaled so that the second fun-
damental form’s maximal norm is equal to 1 and so that the line {x1 = x2 = 0}
is the intersection of the two planes of reflection symmetry.

First, to illustrate the case of one point of concentration simply consider

� j =
(

1

j
�(1)

)

∩ Br j (0)

for some r j → ∞. As r → ∞, this converges smoothly away from the origin
to the plane R

2 × {0} with multiplicity 3. Clearly this satisfies (ℵ) with one
point of curvature concentration p j converging to 0 as j → ∞. Rescaling the
sequence at the scale of curvature around p j simply finds �1.

Second, to illustrate the various possibilities for multiple points of concen-
tration, we must describe the behavior of �(t) as t → ∞ more precisely. One
may show that for ρ j → 0 sufficiently quickly,

� j :=
(

ρ j�
( j)

)

∩ Br j (0)

looks like three nearby disks, with the middle disk jointed to the bottom disk
by two catenoidal necks in equal and opposite directions from the origin and
the middle disk joined to the top disk by a single catenoidal neck near the
origin. This is well illustrated in [24, Figure 3.2]; see also Fig. 2. To establish
this picture rigorously, one may appeal to [38, Theorem 2] and the fact that
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the catenoid is the only non-flat embedded minimal surface �̂ ⊂ R
3 with total

curvature
∫

�̂
κ > −12π (cf. [24, Theorem 3.1]).

In particular, the blow-up set B j has |B j | = 3 and rescaling around any
such point is a catenoid. However, if we chose ρ j → 0 sufficiently quickly,
B j converges to B∞ = {0} as j → ∞. On the other hand, if ρ j → 0 at
precisely the correct rate, it is clear that (after a rotation) B j converges to
{(0, 0, 0), (±1, 0, 0)} ⊂ R

3. This example, and considerably more refined
examples are discussed in great detail in [50].
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