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Abstract We prove that the Witt vector affine Grassmannian, which parame-
trizes W (k)-lattices in W (k)[ 1p ]n for a perfect field k of characteristic p, is
representable by an ind-(perfect scheme) over k. This improves on previous
results of Zhu by constructing a natural ample line bundle. Along the way, we
establish various foundational results on perfect schemes, notably h-descent
results for vector bundles.

1 Introduction

1.1 Motivation and goals

Fix a perfect field k of characteristic p, and let W (k) be the ring of Witt
vectors of k. This paper dealswith the question of putting an algebro-geometric
structure (over k) on the set

GLn

(
W (k)

[
1

p

])
/GLn(W (k)),
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330 B. Bhatt, P. Scholze

or, equivalently, on the set of W (k)-lattices in W (k)[ 1p ]n . This is a mixed-
characteristic version of the affine Grassmannian, which (for the group GLn)
parametrizes k[[t]]-lattices in k((t))n . For the introduction, let us call the usual
affine Grassmannian Graff , and the Witt vector affine Grassmannian GrWaff .

Some of the interest in GrWaff comes from its relation with the special fibers
ofRapoport–Zink spaces. These are, viaDieudonné theory, naturally described
by affine Deligne–Lusztig varieties in the Witt vector affine Grassmannian.1

However, as the Witt vector affine Grassmannian was only known as a set,
the affine Deligne–Lusztig varieties were also only known as sets; this was a
hindrance to talking systematically about notions like connected components
or dimensions (though ad hoc definitions could be given in such cases, cf.
e.g. [14], [24, §10]). Another motivation is that in the context of forthcoming
work of the second author, GrWaff is supposed to appear as the special fibre
of an object over Zp whose generic fibre is an affine Grassmannian related to
Fontaine’s ring B+

dR, which is only defined on perfectoid algebras. In fact, the
results in this paper show that some strange features of perfectoid spaces have
more elementary analogues for perfect schemes. Notably, the v-topology on
perfect schemes introduced in this paper is an analogue of a similar topology
in the context of perfectoid spaces.

1.2 Results

We first recall the relevant structure on Graff that we intend to transport to
GrWaff . The usual affine Grassmannian Graff is known to be represented by an
ind-projective ind-scheme, and was first considered in an algebraic-geometric
context by Beauville–Laszlo [9]; earlier work, motivated by the Korteweg–de-
Vries equation, includes [49] and [51]. More precisely, for integers a ≤ b, one
has closed subfunctors Graff,[a,b] ⊂ Graff parametrizing lattices M ⊂ k((t))n

lying between tak[[t]]n and tbk[[t]]n; varying the parameters gives a filtering
system that exhausts Graff , i.e.,

Graff � lim−→Graff,[a,b].

Now each Graff,[a,b] admits a closed embedding into a (finite disjoint
union of) classical Grassmannian(s) Gr(d, tak[[t]]n/tbk[[t]]n) as those k-
subvectorspaces V ⊂ tak[[t]]n/tbk[[t]]n which are stable under multipli-
cation by t . As such, they are projective k-schemes, and all transition maps

1 For example, if β : G → G0 is an isogeny of p-divisible groups over k, and a trivialization
W (k)[ 1p ]n � D(G0)[ 1p ] of the Dieudonné module of G0 has been fixed, then the induced map

D(β) on Dieudonné modules defines a point of GrWaff . In the equal characteristic case, the
relation has been obtained by Hartl and Viehmann [27, Theorem 6.3].
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Projectivity of the Witt vector affine Grassmannian 331

are closed embeddings; this proves that Graff is an ind-(projective scheme). In
fact, there is a natural line bundle L on Graff , given by

L = detk(t
ak[[t]]n/M)

on Graff,[a,b]. As this line bundle is already ample on the classical Grass-
mannian Gr(d, tak[[t]]n/tbk[[t]]n), it stays so on each Graff,[a,b].

Our aim here is to establish similar results in the Witt vector case, GrWaff .
This question has been considered previously, notably byHaboush [23], Kreidl
[30], and Zhu [57]. The primary issue is that for a general Fp-algebra R, its
ring of Witt vectors W (R) is pathological: it may contain p-torsion, and the
natural map W (R)/p → R may not be an isomorphism. However, if R is
perfect, i.e. the Frobenius map � : R → R is an isomorphism, then

W (R) =
⎧⎨
⎩

∑
n≥0

[an]pn | an ∈ R

⎫⎬
⎭

is well-behaved. In fact, W (R) may be characterized as the unique (up to
unique isomorphism) p-adically complete flatZp-algebra lifting R. As already
observed by Kreidl, [30, Theorem 5], if one restricts to perfect rings R, then
the set of W (R)-lattices M in W (R)[ 1p ]n is a reasonable object, e.g. one has
faithfully flat descent. Kreidl’s work also shows that it is difficult to get repre-
sentability results if one does not restrict to perfect rings.

Zhu [57], then proved a representability result forGrWaff restricted to perfect
rings. There is still a similar presentation of GrWaff as an increasing union of
GrWaff,[a,b] parametrizing latticesM between paW (R)n and pbW (R)n . Zhu’s
result is that each GrWaff,[a,b] can be represented by the perfection of a proper
algebraic space over Fp. Our main theorem improves on this result of Zhu.

Theorem 1.1 The functor GrWaff,[a,b] on perfect rings R, parametrizing
W (R)-lattices M ⊂ W (R)[ 1p ]n lying between paW (R)n and pbW (R)n, is
representable by the perfection of a projective algebraic variety over Fp.
Consequently, GrWaff is representable by an inductive limit of perfections
of projective varieties.

Our proof is independent of the work of Zhu. The crucial step is the con-
struction of a natural line bundleL onGrWaff,[a,b], analogous to the line bundle

L = detR(ta R[[t]]n/M)
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on Graff,[a,b].2 However, as paW (R)n/M does not carry the structure of an
R-module, it is not clear how to make sense of detR(paW (R)n/M).
We give two solutions to this problem. Both make use of strong non-flat

descent properties for line bundles on perfect schemes. In fact, it turns out that
Voevodsky’s h-topology is subcanonical on the category of perfect schemes,
and supports the “correct” bundle theory (see Sect. 4 for precise statements):

Theorem 1.2 Any vector bundle E on a perfect Fp-scheme X gives a sheaf
for the h-topology on perfect schemes over X via pullback, and one has
Hi
h(X,E) � Hi (X,E) for all i . Moreover, one has effective descent for vector

bundles along h-covers of perfect schemes.

The first part of this theorem is due to Gabber, cf. [12, §3]; the second part,
in fact, extends to the full derived category (see Sect. 11). Using this descent
result, we can informally describe our first construction of L, which is K -
theoretic. The idea here is simply that one can often (e.g., when R is a field,
or always after an h-cover) filter paW (R)n/M in such a way that all gradeds
Qi are finite projective R-modules, and then define

L =
⊗
i

detR(Qi ).

The problem is then showing that this construction is independent of the choice
of filtration; once L is canonically independent of the choices, one can use h-
descent (i.e., Theorem 1.2) to define it in general. In K -theoretic language,
this amounts to constructing a natural map

d̃et : K (W (R) on R) → PicZ(R)

from a K -theory spectrum3 to the groupoid of graded line bundles PicZ(R);
here the K -theory spectrum parametrizes perfect complexes onW (R) that are
acyclic after inverting p (the relevant example is paW (R)n/M in the above
notation), while the Z-grading on the target keeps track of the fibral rank (and
can be largely ignored at first pass). As we recall in the Appendix, taking
determinants of projective modules defines a natural map

det : K (R) → PicZ(R),

so our problem can be reformulated as that of extending the map det along
the forgetful map α : K (R) → K (W (R) on R). When R is the perfection

2 The existence of this line bundle was already conjectured by Zhu.
3 We are ultimately only interested in the statement at the level of π0. However, the language
of spectra, or at least Picard groupoids, is critical to carry out the descent.
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Projectivity of the Witt vector affine Grassmannian 333

of a regular Fp-algebra, this problem is easy to solve: α is an equivalence,
thanks essentially to Quillen’s dévissage theorem. In general, we use de Jong’s
alterations and h-descent for line bundles to reduce the problem to the previous
case.

Our second construction is more geometric. Here, we observe that on a
suitable Demazure resolution

G̃r
Waff,[a,b] → GrWaff,[a,b]

parametrizing filtrations of paW (R)n/M with gradeds being finite projective
R-modules, there is a line bundle L̃ as above by definition. The problem
becomes that of descending L̃. To handle such descent questions, we give the
following criterion (see Theorem 6.8, Remark 6.12):

Theorem 1.3 Let f : X → Y be the perfection of a proper surjective map
of Fp-schemes. Assume that all geometric fibres of f are connected. Then a
vector bundle E on X descends (necessarily uniquely) to a vector bundle on
Y if and only if E is trivial on all geometric fibres of f .

Remark 1.4 In a previous version this theorem was stated under the stronger
hypothesis R f∗OX = OY .

In finite type situations, such a theorem implies descent of vector bundles
after some finite purely inseparable map, which may have interesting applica-
tions.

Having constructed the line bundle L, we prove that it is ample by using a
fundamental result of Keel [28], on semiample line bundles in positive char-
acteristic. Unfortunately, contrary to the situation in equal characteristic, we
are not able to give a direct construction of enough sections of Lwhich would
give a projective embedding.

We remark that it is a very interesting question whether there is a natural
“finite-type” structure on the Witt vector affine Grassmannian. For example,
all minuscule Schubert cells, which parametrize lattices M ⊂ W (k)[ 1p ]n that
differ from the standard lattice by (strict) p-torsion, are canonically the perfec-
tions of classical Grassmannians; it is natural to wonder if such a story extends
deeper into the stratification. Nevertheless, for all questions of a “topological”
nature (such as connected components, dimensions, or étale cohomology),
it suffices understand the perfection: the functor X 	→ Xperf preserves this
information.

1.3 Outline

We begin in Sect. 2 by collecting some basic notions surrounding Voevodsky’s
h-topology on the category of schemes (and its non-noetherian analogue, the
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v-topology, which relies on results of Rydh [47]); the main result is a criterion
for an fppf sheaf to be an h-sheaf in terms of “abstract blowup squares,” see
Theorem 2.9. Next, in Sect. 3, we study perfect schemes and the perfection
functor, and record some surprising vanishing and base change results that will
be useful later. All this material is put to use in Sect. 4 to prove Theorem 1.2.
Using the results of Sects. 3 and 4, in Sects. 5 and 6, we give the two promised
constructions of line bundles; we stress that the results in Sect. 6, which include
Theorem 1.3 above, go beyond the construction of line bundles, and will be
used later. Specializing to the problem at hand, in Sect. 7, we collect some
geometric observations about certain universal families parametrizing finite
torsion Zp-modules filtered in a certain way; these are exploited to prove
Theorem 1.1 in Sect. 8. We briefly discuss the extension of Theorem 1.1 to
general groups G in Sect. 9. The special case of G = SLn is then studied
in Sect. 10: we identify a central extension of SLn(Qp) resulting from our
construction of the line bundle in classical terms, and raise several related
questions, mostly motivated by the corresponding equicharacteristic story.

In Sect. 11, which is not used in the rest of the paper, we extend Theorem 1.2
to the derived category of quasi-coherent sheaves; here we use the language of
∞-categories, and rely on a notion recently introduced by Mathew [38]. This
section also contains some other results of independent interest: h-descent for
Witt vector cohomology after inverting Frobenius (in Sect. 11.5) extending
[4, §3], a conceptual proof of Kunz’s theorem on regular noetherian rings (in
Corollary 11.35), a characterization of h-covers of noetherian schemes in terms
of the derived category (in Theorem 11.26), and derived h-descent for the full
quasi-coherent derived category of noetherian schemes (in Theorem 11.12)
extending [25].

Finally, in the Appendix, we briefly review the construction of the determi-
nant map det mentioned above in the language of ∞-categories and spectra;
our goal here is to give an intuitive picture of the construction, and detailed
proofs are not given.

2 h-sheaves

In this section, we recall some general facts about sheaves on the h-topology
defined by Voevodsky [54, §3]. We use results of Rydh [47], in the non-
noetherian case. In the following, all schemes are assumed to be qcqs for
simplicity. Let us start by recalling the notion of universally subtrusive mor-
phisms.

Definition 2.1 Amorphism f : X → Y of qcqs schemes is called universally
subtrusive or a v-cover if for any map Spec(V ) → Y , with V a valuation ring,
there is an extension V ↪→ W of valuation rings and a commutative diagram
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Projectivity of the Witt vector affine Grassmannian 335

Spec(W ) X

f

Spec(V ) Y.

Wesay that f ′ : X ′ → Y is a refinement of f if f ′ is still universally subtrusive,
and factors through f .

By [47, Corollary 2.9], this agrees with [47, Definition 2.2]. We also remark
that any v-cover is submersive (and thus universally submersive), meaning that
themap |X | → |Y | is a quotientmap. IfY is noetherian, universally submersive
maps are v-covers, cf. [47, Theorem 2.8].

Remark 2.2 The name v-cover, besides the similarity with the existing notion
of h-covers, is meant to suggest surjectivity at the level of valuations. In fact,
this can be made precise as follows. Recall that there is a fully faithful functor
X 	→ X ad from schemes to adic spaces sending Spec(R) to Spa(R, R), the
space of (equivalence classes of) valuations on Rwhich only take values≤1, cf.
[26]. Then a map f : X → Y is a v-cover if and only if | f ad| : |X ad| → |Y ad|
is surjective.

Before going on, let us discuss several examples.

Example 2.3 ([47, Remark 2.5]) Let f : X → Y be a map of qcqs schemes.
Then f is a v-cover in any of the following cases.

(i) The map f is faithfully flat.
(ii) The map f is proper and surjective.
(iii) The map f is an h-cover in the sense of Voevodsky.

Indeed, for (i), one can first lift the special point of the valuation ring, and then
lift generalizations. For (ii), one can first lift the generic point of the valuation
ring, and then use the valuative criterion of properness. Finally, (iii) follows
from (i) and (ii) (as h-covers are generated by proper surjective maps and fppf
maps). As an example of a surjective map f : X → Y that is not a v-cover,
consider the following example, also given by Voevodsky: Let Y = A

2
k over

some field k, let X̃ → Y be the blow-up of Y at the origin (0, 0), and let X ⊂ X̃
be the complement of a point in the exceptional locus. Any valuation on Y that
specializes from the generic point to (0, 0) in the direction corresponding to
the missing point of X does not admit a lift to X̃ .

We need the following structural result about v-covers.

Theorem 2.4 ([47, Theorem 3.12]) Let f : X → Y be a finitely presented
v-cover, where Y is affine. Then there is a refinement f ′ : X ′ → Y of f which
factors as a quasi-compact open covering X ′ → Y ′ and a proper surjective
map Y ′ → Y of finite presentation.
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It follows from the flattening techniques of Raynaud–Gruson [46], that, up
to refinements, one can break up general proper surjective maps into blow-ups,
and finitely presented flat maps. This is formalized in the following definition.

Definition 2.5 Let f : X → Y be a proper surjective map of finite presenta-
tion between qcqs schemes. We say that f is of inductive level 0 if it can be
refined into a composition of a proper fppf map f ′ : X ′ → Y ′ and a finitely
presented nilimmersion Y ′ ↪→ Y . For n > 0, we say that f is of inductive
level ≤ n if f admits a refinement f ′ : X ′ → Y which has a factorization
X ′ → X0 → Y0 → Y , where

(o) the map Y0 → Y is a finitely presented nilimmersion,
(i) the map X0 → Y0 is proper surjective of finite presentation, and an

isomorphism outside a finitely presented closed subset Z ⊂ Y0 such that
X0 ×Y0 Z → Z is of inductive level ≤ n − 1, and

(ii) the map X ′ → X0 is a proper fppf cover.

These notions are preserved under base change. The following lemma
ensures that every relevant map is of inductive level ≤ n for some n.

Lemma 2.6 Let f : X → Y be a proper surjective map of finite presentation
between qcqs schemes. Then f is of inductive level ≤ n, for some n ≥ 0.

Proof By noetherian approximation, we can assume that Y is of finite type
over Z, cf. [53, App. C, Theorem C.9]. We now prove the more precise result
that f : X → Y is of inductive level ≤ dim Y , by induction on dim Y . We can
assume that Y is reduced, as we allowed base-changes by nilimmersions. If
dim Y = 0, then Y is a disjoint union of spectra of finite fields; then X → Y
admits a point over a finite étale extension of Y , which shows that X → Y is
of inductive level 0.

Now assume that dim Y > 0. By generic flatness and [46, Théorème 5.2.2]
(cf. [47, Proposition 3.6]), one can refine X → Y by X ′ → X0 → Y , where
X ′ → X0 is a proper fppf cover, and X0 → Y is a blow-up which is an
isomorphism outside a closed subset Z ⊂ Y of dim Z ≤ n − 1. By induction,
X0 ×Y Z → Z is of inductive level ≤ n − 1, as desired. �
Now fix a qcqs base scheme S, and consider the category Schfp/S of finitely

presented S-schemes.

Definition 2.7 The h-topology on Schfp/S is generated by finitely presented
v-covers.

Wewill refer to finitely presented v-covers as h-covers in the sequel; in cases
of overlap, this agrees with Voevodsky’s definition. Our next goal is to charac-
terize h-sheaves amongst all presheaves in terms of some easily geometrically
testable properties.
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Proposition 2.8 Let F be a presheaf (of sets) on Schfp/S. Then F is an h-sheaf
if and only if the following conditions are satisfied.

(i) The presheaf F is a sheaf for the fppf topology.
(ii) Let Y = Spec(A) ∈ Schfp/S be an affine scheme, and X → Y a proper

surjective map of finite presentation, which is an isomorphism outside a
finitely presented closed subset Z ⊂ Y with preimage E ⊂ X. Then the
diagram

F(Y ) F(X)

F(Z) F(E)

is a pullback square.

Note in particular that if X ↪→ Y is a finitely presented nilimmersion of
affine schemes of finite presentation over S, then taking Z = X in (ii) (with
preimage E = X ), one sees that F(Y ) = F(X).

Proof Clearly, if F is an h-sheaf, then (i) is satisfied. To verify (ii), note that
X → Y is an h-cover. The sheaf axiom implies that F(Y ) is the equalizer of
F(X) ⇒ F(X×Y X). But X E×Z E → X×Y X is a further h-cover, so that
F(Y ) is the equalizer of F(X) ⇒ F(X  E ×Z E) = F(X) × F(E ×Z E).
They clearly agree in the first component, so F(Y ) is the equalizer of F(X) ⇒
F(E ×Z E). Now, given elements aX ∈ F(X) and aZ ∈ F(Z) which agree
on E , the two pullbacks of aX to E ×Z E are both given by the pullback of
aZ along E ×Z E → Z , giving an element aY ∈ F(Y ) restricting to aX on X .
As F(Z) ↪→ F(E), E → Z being an h-cover, it follows that aY also restricts
to aZ , as desired.

For the converse, we first check that F is separated. Thus, take an h-cover
f : X → Y in Schfp/S and two sections a, b ∈ F(Y ) that become equal on X .
As F is an fppf sheaf (and in particular, a Zariski sheaf), we may assume that
Y = Spec(A) is affine by (i). Applying Theorem 2.4, we may then assume
that X is a quasicompact open cover of a proper surjective map Y ′ → Y .
Using (i) again, we can reduce to the case that X → Y is proper surjective. By
Lemma2.6, X → Y is of inductive level≤ n for somen.We argue by induction
on n. If n = 0, then, after further refinement, X → Y is a composition of an
fppf cover and a nilimmersion; using (i) and (ii), we see a = b. If n > 0, then
after further refinement, X → Y factors as a composition of nilimmersions,
fppf covers, and amap X ′ → Y ′ which is an isomorphismoutside somefinitely
presented Z ⊂ Y ′, for which X ′ ×Y ′ Z → Z is of inductive level ≤ n − 1.
Using (ii) and induction, one again finds that a = b, as desired.
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Nowwe check that F is a sheaf. Thus, take an h-cover f : X → Y in Schfp/S
and a section a ∈ F(X) whose two pullbacks to F(X ×Y X) agree. By (i), we
may assume that Y is affine. As we already proved that F is separated, we are
also free to replace f by a refinement. Thus, by Theorem 2.4, we may assume
that X factors as a composite of an fppf cover, and a proper surjective map;
using (i) again, we may then assume that X → Y is a proper surjective map.
By Lemma 2.6, X → Y is of inductive level ≤ n for some n. Using induction
on n and properties (i) and (ii) once more, we can assume that X → Y is an
isomorphism outside some finitely presented Z ⊂ Y with preimage E ⊂ X ,
and that a ∈ F(X) induces a section of F(E) that comes via pullback from
aZ ∈ F(Z). Property (ii) gives us an element aY ∈ F(Y ) whose pullback to
X is a, as desired. �
In fact, the same result holds true for sheaves of spaces, and in particular for

stacks. In the following, all limits and colimits are taken in the ∞-categorical
sense (i.e., they are homotopy limits and homotopy colimits). The reader unfa-
miliar with the language of sheaves of spaces as developed by Lurie in [33]
may assume that F is a prestack in the following theorem; this is the most
important case for the sequel. For ease of reference, we prefer to state the
theorem in its natural generality.

Theorem 2.9 Let F be a presheaf of spaces on Schfp/S. Then F is an h-sheaf
if and only if it satisfies the following properties.

(i) The presheaf F is a sheaf for the fppf topology.
(ii) Let Y = Spec(A) ∈ Schfp/S be an affine scheme of finite presentation over

S, and X → Y a proper surjective map of finite presentation, which is
an isomorphism outside a finitely presented closed subset Z ⊂ Y with
preimage E ⊂ X. Then the diagram

F(Y ) F(X)

F(Z) F(E)

is a ( homotopy ) pullback square.

Proof Assume first that F is a sheaf. Clearly, (i) is then satisfied. For (ii), we
follow the proof of [55, Lemma 3.6]. LetFX be the sheaf associated with X for
any X ∈ Schfp/S; this is a sheaf of sets.

4 As F(X) = Hom(FX , F) is the space
of maps in the∞-category of sheaves of spaces in the h-topology, it is enough
to prove that FY is the pushout of FX and FZ along FE in the ∞-category of

4 The h-topology is not subcanonical (as e.g. nilimmersions are covers), so one needs to sheafify.
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Projectivity of the Witt vector affine Grassmannian 339

sheaves of spaces in the h-topology. From the previous proposition, we know
that this is true as sheaves of sets. But FE (U ) ↪→ FX (U ) is injective for all
U ∈ Schfp/S (i.e., cofibrant as a map of simplicial sets), so the set-theoretic
pushout

FZ (U )
⊔

FE (U )

FX (U )

is also a homotopy pushout. This shows that the pushout of FX and FZ along
FE in the ∞-category of presheaves of spaces on Schfp/S is still discrete; thus,
its sheafification is also discrete, and then agrees with the pushout FY in the
category of sheaves of sets.

For the converse, we have to show that for any h-cover f : X → Y in Schfp/S
with Cech nerve X•/Y → Y given by the n-fold fibre products Xn/Y of X over
Y , the map

F(Y ) → lim F(X•/Y )

is a weak equivalence. If this condition is satisfied, we say that f is of F-
descent; if this condition is also satisfied for any base change of f , we say that
f is of universal F-descent. We need the following very general dévissage
lemma.

Lemma 2.10 ([36, Lemma 3.1.2]) Let f : X → Y and g : Y → Z be
morphisms in Schfp/S with composition h = g ◦ f : X → Z.

(a) If h is of universal F-descent, then g is of universal F-descent.
(b) If f is of universal F-descent and g is of F-descent, then h is of F-descent.

In particular, if f and g are of universal F-descent, then h is of universal
F-descent.

First, we prove that all proper surjective maps f : X → Y in Schfp/S with
Y affine are of universal F-descent, by induction on the inductive level. If
f : X → Y is of inductive level 0, then it can be refined by a composition of
a finitely presented nilimmersion and a proper fppf cover; using assumptions
(i) and (ii) along with Lemma 2.10 (a) shows that f is of universal F-descent.
If f : X → Y is of inductive level ≤ n, then after refinement it is of the
form X → X0 → Y0 → Y as in the definition. Here, X → X0 is proper
fppf, and thus of universal F-descent by assumption (i), and Y0 → Y is a
finitely presented nilimmersion, and thus of universal F-descent by (ii). Using
Lemma 2.10 (b), it is enough to prove that X0 → Y0 is of universal F-descent.
Recall that X0 → Y0 is an isomorphism outside a finitely presented closed
subset Z ⊂ Y0 such that X0 ×Y0 Z → Z is of inductive level ≤ n − 1.
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For convenience, let us rename X0 → Y0 as X → Y . Let Xn/Y be the n-
fold fibre product of X over Y . Applying (ii) to Xn/Y → Y , we get a pullback
square

F(Y ) F(Xn/Y )

F(Z) F(En/Z ).

By induction, E → Z is of (universal) F-descent, and so F(Z) →
lim F(E•/Z ) is a weak equivalence. Taking the limit of the pullback squares
gives a pullback square

F(Y ) lim F(X•/Y )

F(Z) lim F(E•/Z ).

As the lowermap is a weak equivalence, it follows that the uppermap is a weak
equivalence, showing that X → Y is of F-descent. By the same argument, it
is of universal F-descent, as desired.

Now, given a general h-cover f : X → Y in Schfp/S , we want to prove
that f is of universal F-descent. Take an open affine cover Y ′ → Y , and let
X ′ = X ×Y Y ′. Using Lemma 2.10, it is enough to prove that X ′ → Y ′ is of
universal F-descent, in other words, we may assume that Y is affine. Then,
using Theorem 2.4, f : X → Y can be refined by a composition of an fppf
cover and a proper surjective map. Both of these are of universal F-descent
(by (i), resp. the above), finally proving that f is of universal F-descent, using
Lemma 2.10 once more. �

This yields the following criterion for detecting h-cohomological descent
of abelian fppf sheaves:

Corollary 2.11 Let F be a sheaf of abelian groups on Schfp/S. Assume that for

any affine scheme Y = Spec(A) ∈ Schfp/S of finite presentation over S, and
X → Y aproper surjectivemapof finite presentation,which is an isomorphism
outside a finitely presented closed subset Z ⊂ Y with preimage E ⊂ X, the
triangle

R�fppf(Y, F) → R�fppf(X, F) ⊕ R�fppf(Z , F) → R�fppf(E, F)

in the derived category of abelian groups is distinguished. Then, for all X ∈
Schfp/S, R�h(X, F) = R�fppf(X, F).
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Proof For any n ≥ 0, apply the previous theorem to the presheaf of spaces
sending X to τ≥0R�fppf(X, F)[n] (or rather the simplicial set corresponding
to it under the Dold–Kan correspondence). Then (i) is satisfied by definition,
and (ii) by assumption. �

Moreover, if the sheaves are finitely presented, one can remove finite pre-
sentation constraints on the schemes. For this, we record the following simple
observation.

Lemma 2.12 Let f : X = Spec(A) → Y = Spec(B) be a v-cover in Sch/S.
Then one can write f as a cofiltered limit of h-covers fi : Xi = Spec(Ai ) →
Yi = Spec(Bi ) of finitely presented Xi , Yi ∈ Schfp/S.

Proof One canwrite A as a filtered colimit of finitely presented B-algebras Ai .
As Spec(A) → Spec(B) factors over Spec(Ai ), it follows that Spec(Ai ) →
Spec(B) is still a v-cover. This reduces us to the case that X → Y is finitely
presented. In that case, it comes as a base-change of some finitely presented
map X ′ = Spec(A′) → Y ′ = Spec(B ′) of finitely presented X ′, Y ′ ∈ Schfp/S .
From Theorem 2.4, it follows that X ′ → Y ′ is also a v-cover, possibly after
changing Y ′. �

In order to work with perfect schemes, we need the following variant of the
h-topology, which doesn’t impose any finiteness constraints:

Definition 2.13 For a qcqs base scheme S as above, the v-topology on the
category Sch/S of qcqs schemes over S is the topology generated by v-covers.

Then we get the following version of Theorem 2.9.

Corollary 2.14 Let F be a presheaf of n-truncated spaces on Sch/S for some
n ≥ 0. Assume that the following conditions are satisfied.

(i) The presheaf F is a sheaf for the fppf topology.
(ii) Let Y = Spec(A) ∈ Sch/S be an affine scheme of finite presentation over

S, and X → Y a proper surjective map of finite presentation, which is
an isomorphism outside a finitely presented closed subset Z ⊂ Y with
preimage E ⊂ X. Then the diagram

F(Y ) F(X)

F(Z) F(E)

is a homotopy pullback square.
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(iii) If Y = Spec(A) ∈ Sch/S is a cofiltered limit of finitely presented Yi =
Spec(Ai ) ∈ Schfp/S, then

colim F(Yi ) → F(Y )

is a weak equivalence.

Then F is a sheaf for the v-topology.

Proof By (i) and (ii), the restriction of F to Schfp/S is an h-sheaf byTheorem2.9.
In general, by fppf descent, it is enough to prove that if f : X = Spec(A) →
Y = Spec(B) is a v-cover, then f is of F-descent. By Lemma 2.12, we can
write f as a cofiltered limit of h-covers fi : Xi = Spec(Ai ) → Yi = Spec(Bi )
between finitely presented S-schemes. Then, for each i ,

F(Yi ) → lim F(X•/Yi
i )

is a weak equivalence. Passing to the filtered colimit over i gives a weak
equivalence

F(Y ) � colim
i

F(Yi ) � colim
i

(lim F(X•/Yi
i )).

As F is n-truncated for some n, one can commute the filtered colimit with the
limit (see [34, Corollary 4.3.7] for a proof in the context of spectra, which is
the only relevant case for the sequel). This gives

F(Y ) � lim(colim
i

F(X•/Yi
i )),

where each

colim
i

F(Xn/Yi
i ) � F(Xn/Y ),

proving the claim. �
In particular, this applies to usual sheaves (of sets) and stacks. Similarly, we

also have an analogue of Corollary 2.11.

Corollary 2.15 Let F be a sheaf of abelian groups on Sch/S. Assume that for

any affine scheme Y = Spec(A) ∈ Schfp/S of finite presentation over S, and
X → Y aproper surjectivemapof finite presentation,which is an isomorphism
outside a finitely presented closed subset Z ⊂ Y with preimage E ⊂ X, the
triangle

R�fppf(Y, F) → R�fppf(X, F) ⊕ R�fppf(Z , F) → R�fppf(E, F)
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in the derived category of abelian groups is distinguished. Moreover, assume
that if Y = Spec(A) ∈ Sch/S is a cofiltered limit of finitely presented Yi =
Spec(Ai ) ∈ Schfp/S, then F(Y ) = colim F(Yi ).

Then, for all X ∈ Sch/S, R�v(X, F) = R�fppf(X, F). �

3 Perfect schemes

In this section, we collect some results on perfect schemes and the per-
fection functor. Notably, we prove that base change for quasi-coherent
complexes holds true in the perfect setting without any flatness assumptions
(see Lemma 3.18).

Definition 3.1 A scheme X over Fp is perfect if the Frobenius map FrobX :
X → X is an isomorphism.

For any scheme X/Fp, write Xperf for its perfection, i.e., Xperf := lim X ,
with transition maps being Frobenius.

Definition 3.2 Let Perf be the category of perfect qcqs schemes over Fp
endowed with the v-topology, generated by v-covers.

Remark 3.3 To avoid set-theoretic issues in the following (in particular, in
defining v-cohomology), choose an uncountable strong limit cardinal κ , i.e.
for all cardinals λ < κ , also 2λ < κ . Then replace Perf by the category
of perfect qcqs schemes covered by Spec(A) with |A| < κ . Then Perf is
essentially small, and all arguments will go through in this truncated version
of Perf.5

In order to pass between the usual and perfect world, observe the following.

Lemma 3.4 Let f : X → Y be a morphism of (not necessarily qcqs) schemes
over Fp. The following properties hold for f if and only if they hold for fperf .

(i) quasicompact,
(ii) quasiseparated,
(iii) affine,
(iv) separated,
(v) integral,
(vi) universally closed,
(vii) a universal homeomorphism.

5 In Lemma 6.2 below, we do a “big” construction, which however works in this truncated
version of Perf as κ is a strong limit cardinal. One can also do a more careful construction in
Lemma 6.2 to keep the rings smaller, and allow more general κ .
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Moreover, if one of the following properties holds for f , then it also holds for
fperf .

(viii) a closed immersion,
(ix) an open immersion,
(x) an immersion,
(xi) étale,
(xii) (faithfully) flat.

Proof Note that |X | = |Xperf |. In particular, all topological conditions are
invariant, dealing with (i), (ii), (vi), (vii) (using that base-changes are also
compatible), and the faithfully flat case in (xii) follows from the flat case.
Moreover, (viii), (ix) and (thus) (x) are clear. For (xii), say A → B is a flat
map of Fp-algebras. Write An:=A, and form the inductive system {An} with
transition maps given by Frobenius, so colim An = Aperf , and similarly on B.
Then we can identify Bperf � colim Aperf ⊗An Bn as a filtered colimit of flat
Aperf -modules, which shows that Bperf is flat over Aperf .
For (iii), we can assume that Y is affine, and we need to prove that X ∈

Sch/Fp is affine if and only if Xperf is affine. Clearly, if X is affine, then so is
Xperf . The converse follows from [53, App. C, Proposition C.6].
If f is separated, then fperf is separated by (viii). Conversely, if fperf is

separated, then the diagonal morphism � f is universally closed by (vi). But a
morphism of schemes is separated if and only if� f (X) ⊂ X ×Y X is a closed
subset.

Now, for (v), we can assume f : X = Spec(A) → Y = Spec(B) is affine.
It is clear that if B → A is integral, then so is Bperf → Aperf . Conversely,
if x ∈ A satisfies a monic polynomial equation over Bperf inside Aperf , then
some pn-th power of x satisfies a monic polynomial equation over B inside
A.
Finally, for (xi), it is enough to prove that if f : X → Y is étale, then the

natural map g : Xperf → X ×Y Yperf is an isomorphism. But for this, it is
enough to observe that the relative Frobenius map X → X ×Y,FrobY Y is an
isomorphism, as it is a universal homeomorphism between étale Y -schemes.

�
Next, we relate line bundles on X and Xperf . First, we record that perfection

is not too lossy:

Lemma 3.5 For any qcqs Fp-scheme X, pullback along Xperf → X induces
Pic(X)[ 1p ] � Pic(Xperf).

Proof Since Xperf := lim X is a limit of copies of X along Frobenius, we have
colim Pic(X) � Pic(Xperf), where the colimit is indexed by pullback along
Frobenius on X ; the latter raises a line bundle to its p-th power, giving the
claim. �
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Recall that if X is a qcqs scheme, andL a line bundle on X , thenL is called
ample if for any x ∈ X , there exists a section s ∈ �(X,L⊗n) for some n, such
that Xs = {y ∈ X | s(y) �= 0} is an affine neighborhood of x . (Cf. e.g. [52,
Tag 01PR].)

Lemma 3.6 If X ∈ Sch/Fp and L is a line bundle on X, then L is ample if
and only if the pullback of L to Xperf is ample.

Proof Using the identification

�(Xperf ,L
⊗n) = lim−→

f 	→ f p
�(X,L⊗npm ),

this follows from |X | = |Xperf | and the affine part of Lemma 3.4. �
Topological invariance of the étale site (cf. e.g. [52, Tag 04DY]) implies

that X and Xperf have the same étale site.

Theorem 3.7 Let X beanyFp-schemewith perfection Xperf . ThenY ∈ X ét 	→
Yperf ∈ (Xperf)ét is an equivalence of sites. �

In characteristic p, the perfection is a canonical representative in its universal
homeomorphism class.

Lemma 3.8 If f : X → Y is a universal homeomorphism of perfect schemes,
then f is an isomorphism. In particular, if f : X → Y is a morphism of
Fp-schemes, then f is a universal homeomorphism if and only if fperf is an
isomorphism.

Proof This is an easy consequence of [56, Theorem 1]. Note that necessarily
f is integral (cf. [52, Tag 04DC]), so we may assume Y = Spec(A), X =
Spec(B), where B is integral over A. As A is reduced, necessarily A → B
is injective. Then the condition that X → Y is a universal homeomorphism
is the condition that B is weakly subintegral over A in the language of [56].
On the other hand, [56, Theorem 1] implies that A is weakly normal in B:
To check this, it is enough to see that if b ∈ B is an element such that either
both b2, b3 ∈ A or bp, pb ∈ A, then b ∈ A. But in characteristic p, either
condition implies bp ∈ A, which by perfectness implies that b ∈ A. Thus, the
weakly subintegral closure of A in B is equal to both A and B, i.e. A = B. �
Remark 3.9 In the context of this paper, a different proof of Lemma 3.8 can
be given as follows. Say A → B is a map of perfect rings inducing a universal
homeomorphism on spectra. By v-descent (Theorem 4.1), it is enough to prove
that A → B is an isomorphism after a v-localization. Thus, by Lemma 6.2, we
can reduce to the case that A is w-local, with all local rings valuation rings. As
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one can check whether a map is an isomorphism on local rings, this reduces us
to a valuation ring. But then there is a (unique) section over the generic point,
which by integrality extends to the valuation ring. But the section B → A is
surjective, and still a universal homeomorphism on spectra, and therefore (as
B is reduced) injective, i.e. bijective. Therefore, A = B, as desired.

We will use the following terminology in the world of perfect schemes.

Definition 3.10 Let g : B → A a map of perfect rings. The map g is called
perfectly finitely presented if A = (A0)perf for some finitely presented B-
algebra A0.

Any such B-algebra A0 is called a model for the B-algebra A. Note that
any two models differ by finite purely inseparable morphisms.

Proposition 3.11 Let f : X → Y be a morphism in Perf .6 The following
conditions are equivalent.

(i) There is a covering of X by open affine Spec(Ai ) ⊂ X mapping into open
affine Spec(Bi ) ⊂ Y such that Bi → Ai is perfectly finitely presented.

(ii) For any open affine Spec(A) ⊂ X mapping into an open affine
Spec(B) → Y , the map B → A is perfectly finitely presented.

(iii) For any cofiltered system {Zi } ∈ Perf/Y with affine transition maps and
limit Z = lim Zi ∈ Perf/Y , the natural map

colim Hom/Y (Zi , X) → Hom/Y (Z , X)

is a bijection.

If these equivalent conditions are satisfied, then f is called perfectly finitely
presented.

Proof Clearly, (ii) implies (i). It is a standard exercise to deduce (iii) from (i),
as in [19, §8.8]. Finally, to see that (iii) implies (ii), one reduces to the case
X = Spec(A) → Y = Spec(B) is a map of affines. One can write B → A
as a filtered colimit of perfectly finitely presented B-algebras Ai . Applying
condition (iii) with Zi = Spec(Ai ) gives a map A → Ai of B-algebras such
that A → Ai → A is the identity. This implies that Ai → A is surjective, so
replacing B by Ai we may assume that B → A is surjective, i.e. X ⊂ Y is a
closed subscheme. In that case, X ⊂ Y is a cofiltered intersection of closed
subschemes Xi = Spec(Ai ) ⊂ Y with B → Ai perfectly finitely presented.
Applying condition (iii) with Zi = Xi (and limit Z = X ) shows that Xi ⊂ X
for some i . But X ⊂ Xi , so X = Xi and A = Ai is perfectly finitely presented.

�
6 Recall that this includes the assumption that X and Y are qcqs.
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Moreover, one has the usual approximation properties for perfectly finitely
presented morphisms. For any X ∈ Perf, let Perffp/X ⊂ Perf/X be the full
subcategory of perfectly finitely presented Y → X .

Proposition 3.12 Let Xi be a cofiltered inverse system in Perf with affine
transition maps.7 Then the limit X = lim Xi exists in Perf , and agrees with
the limit taken in schemes.

The natural pullback functor

2- lim−→
i

Perffp/Xi
→ Perffp/X

is an equivalence.

Proof The standard argument as in [19, §8.8] works. �
All the perfectly finitely presentedmorphisms encountered in this paper will

by their definitions be perfections of finitely presented morphisms. However,
this is a general statement, cf. also [57, Proposition A.13] for a more geometric
proof of a similar statement.

Proposition 3.13 Let f : X → Y be a perfectly finitely presented morphism
in Perf . Then there exists a finitely presented morphism f0 : X0 → Y of
schemes such that f = ( f0)perf .

Any such f0 : X0 → Y will be called a model for f . Again, any twomodels
differ by finite purely inseparable morphisms.

Proof First, we deal with the absolute case Y = Spec(Fp). Using [53, The-

orem C.9], we can write X as a cofiltered limit of Xi,0 ∈ Schfp/Fp
with affine

transition maps. Let i0 be any chosen index, and replace the indexing cat-
egory by the set of indices i ≥ i0. Let Xi be the perfection of Xi,0. Then
X = lim Xi , and we write fi : X → Xi for the projection maps. Proposi-
tion 3.11 (iii) implies that the map X = lim Xi → X of perfect Xi0 -schemes
factors through a map g : Xi → X for some i ≥ i0, i.e. the composite

X
fi−→ Xi

g−→ X,

is the identity, where all maps are maps over Xi0 . We claim that fi is a
closed immersion. As everything is affine over Xi0 , we can assume that
Xi = Spec(Ai ) and X = Spec(A) are affine, by pulling back to an open
affine of Xi0 . But then there are maps A → Ai → A whose composite is the
identity. Thus, Ai → A is surjective, meaning that fi is a closed immersion.

7 We recall that all objects of Perf are assumed to be qcqs.
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In other words, we can assume that X ↪→ X ′ is a closed subscheme of
some X ′ which is the perfection of a finitely presented X ′

0 ∈ Schfp/Fp
. Then

|X | ⊂ |X ′| = |X ′
0| is a closed subset, defining a reduced subscheme X0 ⊂ X ′

0,

with X0 ∈ Schfp/Fp
. Moreover, there is a map X → (X0)perf , which is a

universal homeomorphism, and therefore an isomorphism by Lemma 3.8.
In general, using [53, Theorem C.9] again, we can write Y as a limit of

Yi,0 ∈ Schfp/Fp
with affine transition maps. Letting Yi be the perfection of Yi,0,

we see that we can write Y as a limit of Yi ∈ Perffp/Fp
. Using Proposition 3.12,

we can assume that Y = Yi is the perfection of some Y0 = Yi,0 ∈ Schfp/Fp
.

Therefore, X is also perfectly finitely presented over Fp. By the case already

handled, X is the perfection of some X ′
0 ∈ Schfp/Fp

. Now as Y0 is finitely

presented (as a scheme), the composite map X = (X ′
0)perf → Y → Y0 factors

through a map X ′
0 → Y0, up to a power of Frobenius, which we can forget.

Taking X0 = X ′
0 ×Y0 Y gives the desired model. �

Definition 3.14 Let f : X → Y be a perfectly finitely presented map in Perf.
Then f is called proper if it is separated and universally closed.

Corollary 3.15 Let f : X → Y be a perfectly finitely presented map in Perf ,
with a model f0 : X0 → Y . Then f is proper if and only if f0 is proper.

Proof This follows from Lemma 3.4. �
The following somewhat miraculous vanishing result for Tor-groups is

responsible for many of the remarkable properties of the v-topology on perfect
schemes.

Lemma 3.16 Let C ← A → B be a diagram of perfect rings. Then

TorAi (B,C) = 0

for all i > 0.

In the language of derived algebraic geometry, this says that the simplicial

Fp-algebra B
L⊗A C is discrete. But B

L⊗A C is still perfect, and one can
show that any perfect simplicial Fp-algebra is discrete, see Proposition 11.6.
We give a more direct proof below.

Proof We may write A → B as the composition of the perfection of a free
algebra and a quotient map. Clearly, Tor-terms vanish for the free algebra, so
we may assume that A → B is surjective. Let I = ker(A → B). By a filtered

colimit argument, we may assume that I = ( f
1

p∞
1 , . . . , f

1
p∞
n ) is perfectly
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finitely generated. By induction, we may assume that n = 1, so I = f
1

p∞ A.
We claim that in this case

I = lim−→
f

1
pn

− 1
pn+1

A

is the direct limit of A with transition maps given by multiplication by

f
1
pn − 1

pn+1 . Here, the map

γ : lim−→
f

1
pn

− 1
pn+1

A → I

is given by A → I , a 	→ f
1
pn a, in the n-spot. Clearly, γ is surjective. To

check that γ is injective, assume that a ∈ A with f
1
pn a = 0. By perfectness

of A, we get f
1

pn+1 a
1
p = 0, so in particular f

1
pn+1 a = 0. But then a is killed

under the transition map, which is multiplication by f
1
pn − 1

pn+1 .

Applying the same argument for IC = f
1

p∞ C ⊂ C shows that

IC = lim−→
f

1
pn

− 1
pn+1

C = I
L⊗A C.

Thus, B
L⊗A C , which is the cone of I

L⊗A C → C , is equal to the cokernel
of IC → C , i.e. B ⊗A C , showing that all higher Tor-terms vanish. �
Remark 3.17 The proof of Lemma 3.16 shows, in particular, that any quotient
R/I of a perfect ring R by the radical I of a finitely generated ideal I0 has finite
Tor-dimension as an R-module. In Proposition 11.31, this statement will be
extended to non-reduced quotients under a mild finite presentation constraint.

The previous lemma implies the promised base-change result:

Lemma 3.18 Let

X ′ g′

f ′
X

f

Y ′
g Y
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be a pullback diagram in Perf . Then, for any K ∈ Dqc(X), the base-change
morphism

Lg∗R f∗K → R f ′∗Lg′∗K

is a quasi-isomorphism.

Here as usual Dqc(X) denotes the full subcategory of the derived category
of OX -modules consisting of those complexes of OX -modules whose coho-
mology sheaves are quasicoherent.

Proof This reduces immediately to the case where all schemes are affine; let
X = Spec(A), Y = Spec(B) etc., and let K ∈ Dqc(X) = Dqc(A). In that
case, one has to prove that

K
L⊗A A′ ∼= K

L⊗B B ′,

for which it is enough to see that

B
L⊗A A′ = B ′.

But this is the statement of Lemma 3.16. �

4 h-descent for vector bundles on perfect schemes

Our goal is to prove v-descent for vector bundles on perfect schemes, as well
as certain related bundles defined using the Witt vectors. So, for any perfect
scheme X and n ≥ 1, we write Wn(X) for the scheme obtained by applying
the Witt vector functor Wn(−) locally on X ; let W (X):= colimWn(X) be
the corresponding p-adic formal scheme. Let Vect(X) denote the groupoid of
vector bundles on X , and let Pic(X) be the groupoid of line bundles.

Theorem 4.1 (i) If X = Spec(A) ∈ Perf is an affine scheme and E ∈
Vect(Wn(X))(resp. E ∈ Vect(W (X))) corresponding to some finite pro-
jective Wn(A)-module (resp. W (A)-module) M, then

M = R�v(X,E).

(ii) For each n, the functor X 	→ Vect(Wn(X)) on Perf is a v-stack and,
consequently, the functor X 	→ Vect(W (X)) is a v-stack.

Remark 4.2 This theorem implies in particular that the v-topology on Perf
is subcanonical. Given the vast generality of v-covers, one might be tempted
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to believe that the v-topology is the canonical topology on Perf; however,
Lemma 6.3 provides additional covers in the canonical topology that are not
v-covers. It may be an interesting problem to describe the canonical topology
on Perf.

Remark 4.3 We warn the reader that Theorem 4.1 does not imply descent for
standard properties ofmorphisms in the h-topology. For example, the inclusion
j : U :=(A2 − {0})perf ↪→ X :=A2

perf is not affine, but becomes affine after
base change to the blowup π : Y :=(Bl0(X))perf → X of X at 0. The main
issue, say in comparison with the fpqc topology, is that pullback along π∗ is
not exact. For the same reason, h-descent data for flat quasi-coherent sheaves
need not be effective: the pullback of the complex Rj∗OU along the blowup
π is a flat quasi-coherent sheaf on Y equipped with descent data along π that
does not arise as the pullback of a flat quasi-coherent sheaf on X .

Part (i) of this theorem (for the h-topology) is a result of Gabber, cf. [12,
§3]. Note that the analog of this result without perfections is manifestly false:
there is no descent for vector bundles along the inclusion of the reduced sub-
scheme of a non-reduced subscheme. By passing to Hom-bundles, we obtain
the following.

Corollary 4.4 Fix some perfect qcqs scheme X, and E1,E2 ∈ Vect(W (X)).
Then the functor ( f : Y → X) 	→ Hom( f ∗E1, f ∗E2) is a v-sheaf on Perf/X .

Here we write f ∗Ei ∈ Vect(W (Y )) for the pullback of Ei under the map
W (Y ) → W (X) induced by f via functoriality. Our strategy for proving
Theorem 4.1 is to apply Corollary 2.14 to the presheaves on Sch/Fp obtained
from the presheaves on Perf via X 	→ Xperf . In this respect, we observe the
following.

Proposition 4.5 Let F be a presheaf of spaces on Perf . Let F ′ be the presheaf
of spaces on Sch/Fp defined by F

′(X) = F(Xperf). Then F is a v-sheaf if and
only if F ′ is a v-sheaf.

Proof If F ′ is a sheaf, then for any v-cover f : X → Y between X, Y ∈
Perf ⊂ Sch/Fp , one has Cech descent for X → Y in Sch/Fp , saying that

F ′(Y ) → lim F ′(X•/Y )

is a weak equivalence. But the inclusion Perf ⊂ Sch/Fp preserves fibre prod-
ucts, so each Xn/Y is perfect, and F ′(Y ) = F(Y ) and F ′(Xn/Y ) = F(Xn/Y ),
so in particular

F(Y ) → lim F(X•/Y )

is a weak equivalence, proving that F is a sheaf.
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Conversely, assume F is a sheaf and let f : X → Y be a v-cover in Sch/Fp .
Then fperf : Xperf → Yperf is a v-cover, and Cech descent for Xperf → Yperf
says that

F(Yperf) → lim F(X
•/Yperf
perf )

is a weak equivalence. But X
n/Yperf
perf = (Xn/Y )perf , so this translates into a weak

equivalence

F ′(Y ) → lim F ′(X•/Y ),

showing that F ′ is a sheaf. �
The following special case is the heart of the proof.

Lemma 4.6 Let f : X → Y be a proper map of noetherian Fp-schemes that
is an isomorphism outside some closed subset Z ⊂ Y with preimage E ⊂ X.

(i) If E ∈ Vect(Yperf), then the triangle

R�fppf(Y,E) → R�fppf(X,E) ⊕ R�fppf(Z ,E) → R�fppf(E,E)

is distinguished.
(ii) Pullback gives an equivalence

Vect(Yperf) � Vect(Xperf) ×Vect(Eperf ) Vect(Zperf)

of groupoids.

In other words, part (ii) of the lemma asserts that specifying a vector bundle
on Yperf is equivalent to specifying its pullbacks on Xperf and Zperf , together
with an identification of the two over Eperf : no higher order isomorphisms,
infinitesimal extensions, or coherence data need be specified.

Proof By faithful flatness of completions and Zariski descent, we may assume
Y = Spec(A), and Z = Spec(A/I ), where A is a noetherian ring, and I ⊂ A
is an ideal such that A is I -adically complete. By abuse of notation, we will
also write I ⊂ OX for the pullback of I ⊂ A as an ideal sheaf. For part (i), fix
some E ∈ Vect(Yperf) corresponding to some finite projective Aperf -module
M . Writing M as a direct summand of a free module reduces us to the case
that E = OXperf is trivial. In that case, the result is [12, Lemma 3.9].

By passing to Hom-bundles, fully faithfulness of the functor

Vect(Yperf) → Vect(Xperf) ×Vect(Eperf ) Vect(Zperf)

follows from (H0 of) part (i).
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For essential surjectivity, we must check: given(
E ∈ Vect(Xperf),F ∈ Vect(Zperf), φ : E|Eperf � f ∗F

)
∈ Vect(Xperf)

×Vect(Eperf )Vect(Zperf),

there is a uniqueG ∈ Vect(Yperf) inducing this data.We need some preliminary
reductions first.

First, we reduce to the case where X is the blowup of Y along Z . By
Raynaud–Gruson [46, Corollary 5.7.12] and a 2-out-of-3 property for fibre
squares, wemay assume that X is a blowup of Y along some closed subscheme
Z ′ ⊂ Y that does not meet Y − Z . After replacing Z by a larger infinitesimal
neighbourhood if necessary (as this does not change the perfection), we may
assume Z ′ ⊂ Z as schemes. Let E ′ denote the preimage of Z ′ in X . By the
full faithfulness we have already shown, it is enough to show that the induced
triple (E,F|Z ′

perf
, φ|E ′

perf
) comes from G ∈ Vect(Yperf). Thus, after replacing

Z with Z ′ and E with E ′, we may assume that X is the blowup of Y along
Z . In particular, E ⊂ X is an effective Cartier divisor whose ideal sheaf is
exactly I ⊂ OX , and this ideal sheaf is relatively ample for the map X → Y
by the construction of blowups. In particular, as the base is affine, I/I 2 is an
ample line bundle on E . By Serre vanishing, there exists some n such that
Hi (X, I k/I k+1) = 0 for i > 0 and k ≥ n.
We can now begin the proof. By approximation, the triple (E,F, φ) arises

from a similar triple (E0,F0, φ0) ∈ Vect(X) ×Vect(E) Vect(Z), at least after
Frobenius twisting. Now Vect(Y ) → Vect(Z) is bijective on isomorphism
classes by affineness of Y and deformation theory. Thus, there is a unique G0 ∈
Vect(Y ) liftingF0. In particular, using φ0, we have a natural identificationψ0 :
f ∗(G0)|E � E0|E . Write G ∈ Vect(Yperf) for its pullback to the perfection.
Then ψ0 induces an isomorphism ψ : f ∗(G)|Eperf � E|Eperf . It is enough to
check that the latter lifts to an identification f ∗G � E. We will check that ψ0
itself admits such an extension to X , at least after replacing all objects by their
pullbacks along a fixed (finite) power of Frobenius.

After replacing ψ0 by a large enough Frobenius pullback (depending on n),
we may assume: there exists an isomorphism ψn : f ∗(G0)|nE � E0|nE lifting
ψ0; here we write mE ⊂ X for the scheme defined by Im+1. The formal exis-
tence theorem shows that Vect(X) � limVect(mE), so it is enough to show
that ψn deforms compatible to mE for m ≥ n. The obstruction to extending
across nE ⊂ (n+1)E lies in H1(X, I n/I n+1⊗Hom( f ∗G0,E0)). As I n/I n+1

is an OE -module, this simplifies to showing H1(X, I n/I n+1) = 0; here we
use the projection formula, as well as ψ0 to identify Hom( f ∗G0,E0)|E �
f ∗(End(G0)|Z

)
. The vanishing now follows from the assumption on n, so we

have such an extension. Inductively, one extends ψn compatibly to all mE for
m ≥ n, proving the theorem. �
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Proof of Theorem 4.1 Part (i) reduces by induction and the 5-lemma to the
case n = 1. In that case, after the translation given by Proposition 4.5, we
verify the conditions of Corollary 2.14, cf. Corollary 2.11. Condition (i) of
Proposition 4.5 follows from Lemma 3.4 and faithfully flat descent. Condition
(ii) follows from Lemma 4.6 (i), while condition (iii) is clear.

Write Fn for the prestack X 	→ Vect(Wn(Xperf)), and F∞ = limFn . We
will show that Fn is a v-stack for each n by induction on n; this formally
implies F∞ is a v-stack by passage to limits. For n = 1, the result follows
from Corollary 2.14 using Lemmas 3.4 and 4.6 (ii). Assume inductively that
Fn−1 is a v-stack. It is enough to prove that if f : X → Y is a v-cover of
Y = Spec(A) ∈ Perf, and E ∈ Vect(Wn(X)) is a vector bundle equipped with
descent data to Y , then E descends to Y . Now E defines a v-sheaf on Perf/X
which using the descent datum descends to a v-sheaf EY of Wn(O)-modules
on Perf/Y . It is filtered as

0 → EY /p
pn−1

−→ EY → EY /pn−1 → 0.

By induction, both EY /p and EY /pn−1 are the sheaves associated with a finite
projective A-module M1, resp. a finite projective Wn−1(A)-module Mn−1,
with M1 = Mn−1/p. By part (i) of the theorem, we have

R�v(Y,EY /p) = M1 , R�v(Y,EY /pn−1) = Mn−1.

But then M = R�v(Y,EY ) is an extension of Mn−1 by M1 which is flat
over Z/pnZ; any such extension is easily seen to be a finite projective
Wn(A)-module M . One then verifies that EY is the sheaf associated with
M ∈ Vect(Wn(Y )). �

5 Construction of line bundles: K -theoretic approach

Our goal is to attach “determinant” line bundles to certain complexes of sheaves
that are not linear over the structure sheaf in the setting of perfect schemes. The
main technical tool will be the h-descent (or, rather, v-descent) result proven
earlier. For the construction, we first recall the following notion (cf. §12).

Construction 5.1 For any scheme X , let PicZ(X) be the groupoid of graded
line bundles on X , i.e., an object is given by a pair (L , f ) where L is a
line bundle on X , and f : X → Z is a locally constant function; the set
Isom((L , f ), (M, g)) is empty if f �= g, and given by Isom(L , M) other-
wise. This groupoid is endowed with a symmetric monoidal structure⊗where
(L , f ) ⊗ (M, g):=(L ⊗ M, f + g), and the commutativity constraint

(L ⊗ M, f + g)=:(L , f ) ⊗ (M, g) � (M, g) ⊗ (L , f ):=(M ⊗ L , g + f )
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determined by the rule

� ⊗ m 	→ (−1) f ·gm ⊗ �.

The endows PicZ(X) with the structure of a (not strictly commutative) Picard
groupoid such that

π0(Pic
Z(X)) = Pic(X) × H0(X ét,Z) and π1(Pic

Z(X)) = O(X)×.

We view the association X 	→ PicZ(X) as a sheaf of connective spectra for
the étale topology. We also write Pic(X) for the usual (strictly commutative)
Picard groupoid of line bundles, so L 	→ (L , 0) establishes a fully faith-
ful embedding Pic(X) ⊂ PicZ(X) compatible with the symmetric monoidal
structures. Likewise, the association (L , f ) 	→ f gives a symmetric monoidal
functor PicZ(X) → H0(X ét,Z). This data fits together into a fibre sequence

Pic(X) → PicZ(X) → H0(X ét,Z),

of spectra. As X varies, this gives a fibre sequence of sheaves of connective
spectra in the étale topology. The projection (L , f ) 	→ L gives a (non-
symmetric!) monoidal functor η : PicZ(X) → Pic(X), and thus splits the
sequence as spaces (in fact, as E1-spaces). This allows us to extract honest
line bundles from graded ones.

The v-descent result in the previous section implies:

Proposition 5.2 The functor X 	→ PicZ(X) is a stack in the v-topology of
Perf .

Proof We have a fibre sequence

Pic(X) → PicZ(X) → H0(X ét,Z)

of groupoids. It is elementary to check that X 	→ H0(X ét,Z) is a v-sheaf.
Using the preceding fibre sequence, the claim now follows from Theorem 4.1
(ii). �

To connect K -theory with line bundles, recall the determinant map. Here,
for any qcqs scheme X , K (X) is defined as by Thomason–Trobaugh [53,
Definition 3.1], using the∞-category of perfect8 complexes Perf(X).9 In par-
ticular, there is natural map of spaces Perf(X)� → K (X), where Perf(X)� ⊂
8 We apologize for the two very different uses of the word “perfect”.
9 In [53], the language of Waldhausen categories was used. See [3, Notation 12.11] for a
definition of the K -theory spectrum in terms of the stable ∞-category Perf(X).
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Perf(X) denotes the subcategory with all objects, and only isomorphisms as
morphisms. Then Perf(X)� is an ∞-category (i.e., weak Kan complex) with
only invertible morphisms, which is the same thing as a space (i.e., Kan com-
plex). Under the map Perf(X)� → K (X), any perfect complex C ∈ Perf(X)

defines a point [C] ∈ K (X). For any distinguished triangle

C ′ → C → C ′′,

one has an identity [C] = [C ′] + [C ′′] (up to homotopy) in K (X), under
the interpretation of K (X) as a space equipped with an invertible coherently
commutative and associative group law, cf. Theorem 12.9. These are, in some
sense, the defining properties of K (X).

Proposition 5.3 There exists a natural functorial map det : K (X) →
PicZ(X) of connective spectra.

Concretely, this means that there is a functor Perf(X)� → PicZ(X), C 	→
det(C) such that for any distinguished triangle as above, det(C) � det(C ′) ⊗
det(C ′′). In this language, this was first discussed by Knudsen–Mumford [29].

Proof By Zariski descent for PicZ, we need only construct a functorial map
for affine schemes X = Spec(A). But for affine schemes X = Spec(A), there
is a natural equivalence K (X) � K (A), where K (A) is defined as in §12,
which comes equipped with det : K (A) → PicZ(A). �
Remark 5.4 The determinant map K (X) → PicZ(X) does not factor through
Pic(X) ⊂ PicZ(X), and is the reason we use PicZ(X).

Assume now that X is a perfect scheme. Let Perf(W (X) on X) be the
∞-category of perfect complexes on W (X) which are acyclic after invert-
ing p; if X = Spec(A), then this simply the ∞-category of perfect
W (A)-complexes which are acyclic after base change to W (A)[ 1p ]. Using
v-descent of line bundles, we will construct a “determinant” for objects
in Perf(W (X) on X), extending the map from Proposition 5.3. To this end,
we use K -theory spectra, so let K (W (X) on X) be the K -theory spectrum
associated with Perf(W (X) on X) as in [53, Definition 3.1]. The functor
Perf(X) → Perf(W (X) on X) induces a map of connective spectra K (X) →
K (W (X) on X). It is known that such maps are equivalences if X and W (X)

are regular; this is essentially Quillen’s dévissage theorem [45, Theorem 4]:

Theorem 5.5 Let Y be a regular scheme, and Z ⊂ Y a closed subscheme
such that Z is regular. Then the natural map

K (Z) → K (Y on Z)

of spaces is a weak equivalence.
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Concretely, this means that any C ∈ Perf(Y on Z) can be filtered in such
a way that all associated gradeds are in Perf(Z); moreover, the choice of this
filtration is essentially irrelevant.

Proof Let U = Y\Z . Then Y , U and Z are regular, so K (Y ) = G(Y ),
K (U ) = G(U ) and K (Z) = G(Z) agree with G = K ′-theory, cf. [53, Theo-
rem 3.21]. Now the result follows by comparing the localization sequences of
[53, Theorem 5.1] and [45, Proposition 3.2]. �

A similar result holds true in the perfect case.

Corollary 5.6 Assume X = Spec(R) for the perfection R of a regular Fp
algebra R0. Then K (X) � K (W (X) on X).

Proof Choose a p-adically complete flat Zp-algebra A0 deforming R0, and a
map φ : A0 → A0 lifting Frobenius on R0; this is possible as all obstructions
live in (positive degree) coherent cohomology groups on Spec(R0), and thus
vanish. Let A∞ = colim A0, where the colimit is computed along φ, so A∞
is a flat Zp-algebra deforming R, and Â∞ � W (R): the right hand side is the
unique p-adically complete Zp-flat lifting of the perfect ring R, and the left
hand side provides one such lifting. Let Y = Spec(A∞).

We claim that Perf(Y on X) → Perf(W (X) on X) is an equivalence.
Unwinding definitions, we must check that base change along the natural
map A∞ → Â∞ identifies the ∞-categories of perfect complexes on either
ring which are acyclic after inverting p. This is a standard argument found
in derived analogues of the Beauville–Laszlo theorem (see [7, Lemma 5.12]
for example), and we sketch a proof here for convenience. It suffices to check
that K � K ⊗A∞ Â∞ where K is an A∞-perfect complex (resp. an Â∞
perfect complex) with K [ 1p ] = 0. But observe that any such K admits an

A∞/pn-structure (resp. an Â∞/pn-structure): the colimit of the system

K
p−→ K

p−→ K
p−→ K → · · ·

is 0, so multiplication by pn on K must be 0 for n � 0 by the compactness
of K . The claim now follows from the observation that A∞/pn � Â∞/pn ,
and that the same is true in the derived sense since both A∞ and Â∞ are
p-torsionfree.
The equivalence from the previous paragraph gives K (W (X) on X) �

K (Y on X) � colim K (Y0 on X0), where X0 = Spec(R0), and Y0 =
Spec(A0), and the last isomorphism comes from [53, Proposition 3.20]. We
also have a compatible description K (X) � colim K (X0) for the K -theory
of X . Now the result follows from the equivalence K (X0) � K (Y0 on X0) of
Theorem 5.5. �
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Combining the previous corollary with v-descent gives the promised exten-
sion of the determinant map:

Theorem 5.7 There is a natural functorial (in X ∈ Perf) map d̃et :
K (W (X) on X) → PicZ(X) of connective spectra extending the determinant
map K (X) → PicZ(X); it is unique up to a contractible space of choices.

Intuitively, this map is constructed as follows. If X = Spec(A), where A
is the perfection of a regular Fp-algebra, then any C ∈ Perf(W (X) on X) can
be filtered in a way that all associated gradeds Ci lie in Perf(X). Then, one
defines

d̃et(C) =
⊗
i

det(Ci ).

Here, Corollary 5.6 ensures that this expression is well-defined up to unique
isomorphism. The general case follows by v-descent, using v-descent of line
bundles and de Jong’s alterations. However, to do the descent, one needs to
remember higher homotopies, which is the main reason that we have to work
with the ∞-category of (connective) spectra, and cannot work with its homo-
topy category.10

Proof Consider the maps of presheaves of groupoids on Perf,

τ≤1K (W (X) on X)
f←− τ≤1K (X)

g−→ PicZ(X).

Passing to the v-sheafification (in fact, h-sheafification is enough), both f
and g become equivalences. Indeed, it is enough to check this on perfections
of finitely presented schemes. For f , this follows from de Jong’s alterations,
[15], and Corollary 5.6. For g, this follows from Proposition 12.18. Thus,PicZ

agrees with the v-sheafification of τ≤1K (W (X) on X). But there is a natural
map from K (W (X) on X) to its 1-truncation, and then to the sheafification. �

6 Construction of line bundles: geometric approach

In this section, we record some geometric observations, which can also be
used to construct line bundles.11 We begin by giving a criterion for pullback
of line bundles along a proper map to be lossless:

10 One could, however, truncate all spectra in degrees > 1, i.e. apply τ≤1, and work in the
2-category of groupoids.
11 In fact, even if the line bundle is constructed using the K -theoretic approach, some of the
geometric lemmas of this section are used.
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Proposition 6.1 Let f : X → Y be a proper surjective perfectly finitely
presented map in Perf . Assume that all geometric fibres of f are connected.
Then the pullback functor Vect(Y ) → Vect(X) is fully faithful.

A similar result holds true for Vect(Wn(X)) and Vect(W (X)).

Proof For full faithfulness, by passing to Hom-bundles, it is enough to prove
that for E ∈ Vect(X), the adjunction map

E → f∗ f ∗E

is an isomorphism. This is a local statement, so we can assume that E = OY
is trivial, and Y is affine. Choose a model f0 : X0 → Y of X . We need to see
that the map of OY -algebras

OY → f∗OX0

is an isomorphism after perfection. But A → H0(Y, f∗OX0) is a univer-
sal homeomorphism (on spectra), thus an isomorphism after perfection by
Lemma 3.8. �

Next, we want to give criteria for when a vector bundle descends along a
proper map. The following lemma breaks arbitrary rings into valuation rings
v-locally, and will help simplify the base of the morphism:

Lemma 6.2 Let X be a qcqs scheme. Then there is a v-cover Spec(A) → X
such that:

(1) Each connected component of Spec(A) is the spectrum of a valuation
ring.

(2) The subset of closed points in Spec(A) is closed.

In particular, A is w-local in the sense of [11, §2].

Proof We may assume that X = Spec(S) is affine. Pick a set V of representa-
tives for all equivalence classes of valuations, and amap Spec(Ri ) → Spec(S)

from a valuation ring Ri for each i ∈ V , realizing this valuation. Let
A = ∏

i∈V Ri . Clearly, Spec(A) → Spec(S) is a v-cover. We first check
(2). For this, note that the formation of Jacobson radicals commutes with
products of rings. Hence, the Jacobson radical of A is given bym:= ∏

i∈V mi ,
where mi ⊂ Ri is the maximal ideal. If we set ki :=Ri/mi to be the cor-
responding residue field, then A/m � ∏

i ki=:B. The closed immersion
Spec(B) ⊂ Spec(A) induces a homeomorphism on π0: for this, it is enough
to note that any idempotent of B lifts uniquely to an idempotent of A (as can
be checked in each factor). Moreover, the ring B is absolutely flat by [52,
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Tag 092G], and hence Spec(B) is Hausdorff by [52, Tag 092F]. Now any
closed point of Spec(A) comes from Spec(B) (as the kernel of A → B is
the Jacobson radical), and every point of Spec(B) gives a closed point (since
Spec(B) is Hausdorff). Thus, the subset of closed points of Spec(A) coincides
with the closed subset Spec(B) ⊂ Spec(A), giving (2).

To proceed further, let T be the Stone–Cech compactification of the discrete
setV . Recall that elements ofT are ultrafilters onV , i.e. collectionsPof subsets
U ⊂ V satisfying: (a) stability under finite intersections, (b) ifU ∈ P andU ⊂
U ′, thenU ′ ∈ P, and (c) for eachW ⊂ V , exactly one ofW and V \W lies inP.
For each subset W ⊂ V , there is a clopen decomposition of T = TW  TV \W
according to whether the ultrafilterP ∈ T containsW or V \W . It is a classical
fact that Spec(B) � T (see [31, §3] for example); explicitly, an ultrafilter P
corresponds to the prime ideal {(bi ) ∈ ∏

i∈V ki | {i ∈ V | bi = 0} ∈ P} ⊂ B.
Now, as shown above in the proof of (2), the inclusion Spec(B) → Spec(A)

identifies Spec(B) � π0(Spec(B)) � π0(Spec(A)) (see [11, §2] for a discus-
sion of the topology onπ0). Thus, the canonicalmap Spec(A) → π0(Spec(A))

can be identifiedwith amapβ : Spec(A) → T , which can be described explic-
itly as follows. The preimage of TW in Spec(A) is Spec(

∏
i∈W Ri ). The fibres

β−1(t) = Spec(At ) are connected components of Spec(A), and are given by

At = lim−→
W∈P

∏
i∈W

Ri ,

i.e., each At is identified with an ultraproduct of the valuation rings Ri (by
definition of the ultraproduct), where t ∈ T corresponds to the ultrafilter
P. Note that the colimit is filtered. For (1), it now suffices to prove that an
ultraproduct of valuation rings is a valuation ring. First, At is a domain: if
f, g ∈ At have product f g = 0, then f, g ∈ ∏

i∈W Ri for some W , and
f g = 0 ∈ ∏

i∈W Ri , possibly after shrinking W . As each Ri is a domain,
W is covered by {i ∈ W | fi = 0} and {i ∈ W |gi = 0}. By definition of
an ultrafilter, at least one of these sets lies in P, so f = 0 or g = 0 in At .
Now, if f/g ∈ Frac(At ), f, g ∈ At , f, g �= 0, then one may again assume
f, g ∈ ∏

i∈W Ri , and all coordinates of f, g are nonzero. As each Ri is a
valuation ring, one of fi/gi and gi/ fi lies in Ri for each i ∈ W . One possibility
happens for a set contained in the ultrafilter, showing that one of f/g and g/ f
lies in At . Thus, At is indeed a valuation ring, proving (1). �

In fact, one can even break up valuation rings, allowing a reduction to
valuation rings of rank12 1.

12 The rank of a valuation ring V is simply the Krull dimension of V , and can also be defined
purely combinatorially from the value group of V . We refer to [10, Chapter 6] for more on
valuation rings.
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Lemma 6.3 Let V beaperfect valuation ringwith valuation |·| : V → �∪{0}.
Let α : � → �′ be a map of ordered abelian groups with kernel �0. Let
V ′ = V [S−1] where S is the set of all elements f ∈ V with α(| f |) = 1; then
V ′ is a valuation ring with a valuation | · |′ : V ′ → �′. Moreover, let V → V0
be the quotient of V by the ideal I of all f ∈ V with α(| f |) < 1; then V0 is
a valuation ring with a valuation | · |0 : V0 → �0. Let V ′

0 be the fraction field
of V0.

The sequence

0 → V → V ′ ⊕ V0 → V ′
0 → 0

is exact, and for any perfect V -scheme X and K ∈ Dqc(X), the triangle

R�(X, K ) → R�(X ×SpecV SpecV ′, K ) ⊕ R�(X ×SpecV SpecV0, K )

→ R�(X ×SpecV SpecV ′
0, K )

is distinguished.

In other words, one may consider SpecV0  SpecV ′ → SpecV as a cover
for the purposes of quasi-coherent sheaf theory, although it is not a v-cover.
Geometrically, SpecV is a totally ordered chain of points, SpecV ′

0 ⊂ SpecV
is a point, and SpecV0 (resp. SpecV ′) forms the set of specializations (resp.
generalizations) of SpecV ′

0 in SpecV .

Proof The distinguished triangle for general X follows from the exact
sequence and Lemma 3.18.

Let us rewrite everything in terms of the fraction field L of V , which comes
with the valuation | · | : L → � ∪ {0}. Then

V = | · |−1(�≤1 ∪ {0})
and

V ′ = | · |−1(�0 · �≤1 ∪ {0}).
Moreover, V0 is the quotient of V by

I = | · |−1(�<�0 ∪ {0})
and V ′

0 is the quotient of V ′ by I ; note that I is an ideal of both V and V ′.
Thus, I = ker(V → V0) = ker(V ′ → V ′

0), which implies the exactness of

0 → V → V ′ ⊕ V0 → V ′
0 → 0,

proving the claim. �
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The next lemma uses the preceding reductions to give a crucial special case
of a fibral criterion for descent of vector bundles under proper maps:

Lemma 6.4 Let V be a perfect valuation ring, let f : X → SpecV be a
proper perfectly finitely presented map with R�(X,OX ) = V ; in particular,
all geometric fibres of f are connected. Let E be a vector bundle on X such
that for all geometric points ȳ of SpecV , E is trivial on X ȳ. Then E is trivial.

Remark 6.5 The lemma holds more generally, replacing the condition R�

(X,OX ) = V by the condition that all geometric fibres are connected (and
nonempty), cf. Remark 6.12 below.

Proof We begin with some generalities that help reduce us to the rank 1 case.
Every commutative ring R can be regarded as a filtered colimit colimi Ri of its
finitely generated Z-subalgebras Ri ⊂ R. When R is a valuation ring, there is
an induced valuation on Ri , and the corresponding valuation ring R′

i has finite
rank (which can be bounded in terms of the transcendence degree of its fraction
field over the prime subfield). Moreover, in this case, the inclusion Ri ⊂ R
extends canonically to an extension R′

i ⊂ R of valuation rings. Thus, we also
have R = colimi R′

i , so we can write any valuation ring as a filtered colimit
of finite rank valuation subrings. Note that the map Spec(R) → Spec(R′

i ) is
surjective: it is flat (as R is a torsionfree R′

i -module) and its image contains
the closed point, and thus all points as the image of a flat map is stable under
generalizations. Applying this to R = V , by the usual limit arguments, we
may thus assume that the valuation of V is of finite rank. Applying Lemma 6.3,
we may inductively assume that V is of rank 1. Moreover, we can assume that
V is complete, and that the fraction field K of V is algebraically closed, as by
Proposition 6.1, it is enough to prove the result over a v-cover of SpecV .

As the fraction field of V is algebraically closed, there is a section s :
SpecV → X , by taking a point of the generic fibre and then taking the closure.
We claim that the map

s∗ : R�(X,E) → R�(SpecV, s∗E) ∼= V rkE

is a quasi-isomorphism. As E is trivial on the generic fibre and R�(X ×SpecV
SpecK ,O) ∼= K , it follows that s∗ ⊗V K is a quasi-isomorphism. On the other
hand, E is trivial over X ×SpecV Speck, there k is the residue field of V . By
finite presentation, E is trivial over (the derived scheme) X ×L

SpecV SpecV/g

for some g ∈ m = ker(V → k). As R�(X ×L

SpecV SpecV/g,O) ∼= V/g, one

sees that also s∗ L⊗V V/g is a quasi-isomorphism. Now the following lemma
applied to the cone of s∗ implies that s∗ is a quasi-isomorphism.
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Lemma 6.6 Let R be a ring and g ∈ R a non-zero divisor. Let C ∈ D(R) be

a complex such that C ⊗R R[g−1] = C
L⊗R R/g = 0. Then C = 0.

Remark 6.7 For R = V a perfect valuation ring, there exist complexes 0 �=
C ∈ D(V ) such thatC⊗V K = C

L⊗V k = 0, e.g.C = K/m (sitting in degree
0). For this reason, we needed to lift the second condition from k to V/g for
some g ∈ m in the proof of Lemma 6.4. In contrast, if R is a noetherian ring,
then any K ∈ D(R) satisfies: K � 0 if and only if K ⊗L

R k for any residue
field k of R.

Proof As C ⊗R R[g−1] = 0, any cohomology group Hi (C) is g-torsion. On
the other hand, the long exact cohomology sequence one gets from

0 → R
g−→ R → R/g → 0

by tensoring with C shows that multiplication by g is an isomorphism on
Hi (C). Together, these imply Hi (C) = 0, for all i . �
In particular, we see that R�(X,E) = V rkE, so f∗E is a vector bundle on

SpecV . Now consider the adjunction map

f ∗ f∗E → E,

which is a map of vector bundles on X . To see whether this is an isomorphism,
we can check on fibres, where it follows from the assumption thatE is trivial on
fibres, and the fact that taking f∗E = R f∗E commutes with any base-change
by Lemma 3.18. Thus, E ∼= f ∗ f∗E is the pullback of the trivial vector bundle
f∗E, and therefore trivial. �
Finally, we can give the fibral criterion to descend vector bundles along

proper covers.

Theorem 6.8 Let f : X → Y be a proper perfectly finitely presented map
in Perf such that R f∗OX = OY ; in particular, all geometric fibres of f are
connected. Let E ∈ Vect(X). Then E descends to Y if and only if for all
geometric points ȳ of Y , E is trivial on the fibre X ȳ.

Proof Clearly, if E ∈ Vect(X) comes via pullback from Y , then it is trivial on
geometric fibres.

For the converse, by v-descent for vector bundles and Proposition 6.1, it
is enough to prove the result after pullback along some v-cover Y ′ → Y . By
Lemma 6.2, we may assume that Y is affine, and each connected component is
the spectrum of a valuation ring. If E is trivial over one connected component,
this trivialization spreads to a small open and closed neighborhood. Thus, it is
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enough to prove that E is trivial over each connected component of Y , which
reduces us to the case that Y = Spec(V ) is the spectrum of a valuation ring.
In that case, the result follows from Lemma 6.4. �

In fact, the condition R f∗OX = OY can also be checked on geometric fibres:

Lemma 6.9 Let f : X → Y be a proper surjective perfectly finitely presented
map in Perf such that for all geometric points ȳ of Y with field of definition
k(ȳ) and fibre X ȳ, one has R�(X ȳ,O) = k(ȳ). Then R f∗OX = OY .

We remark that if f : X → Y arises as the perfection of a proper map
f0 : X0 → Y0 of schemes of finite type over a perfect field k, and X0
admits a Frobenius splitting (cf. [41]), the conclusion of the lemma implies
that Ri f0∗OX0 = 0 for i > 0. Namely, if X0 admits a Frobenius splitting,
then OX0 is a direct summand of OX , and the same is true for its higher direct
images. It may be interesting to compare our results on perfect schemes with
related results on Frobenius split schemes.

Proof It is enough to check the assertion locally in the v-topology. By
Lemma 6.2, we may assume that Y = Spec(A) is the spectrum of a w-local
ring all of whose local rings are valuation rings. Then it is enough to check
the assertion on stalks, which reduces us to the case that Y = Spec(V ) is the
spectrum of a valuation ring. By approximation, we can assume that the valu-
ation on V is of finite rank. Applying Lemma 6.3 inductively, we can assume
that V is a rank-1-valuation ring, which we can also assume to be complete
and algebraically closed. Finally, pick a model f0 : X0 → Y = Spec(V ) of
f as in Proposition 3.13.
Consider the complex K ∈ Db(V ) given as a cone of V → R�(X0,OX0),

which comes equipped with a Frobenius-linear map ϕ : K → K . Let M =
Hi (K ) be a cohomology group of K . This is a finitely presented V -module
which comes equipped with a Frobenius-linear map ϕ : M → M . Moreover,
by Lemma 3.18 and our hypothesis, N = lim−→ϕ

M satisfies N ⊗V k(s) =
N⊗V k(η) = 0, where s, η ∈ Spec(V ) are the special and generic point.13 The
statement for the generic fibre implies that there is somem such that ϕm(M) ⊂
Mtors is contained in the torsion submodule of M . Then the statement for the
special fibre implies that there is some m such that ϕm(M) ⊂ mMtors, where
m ⊂ V is the maximal ideal. By finite presentation, this implies that there is
some g ∈ m with ϕm(M) ⊂ gMtors. But Mtors is finitely presented, so there
is some n such that gnMtors = 0. Then ϕmn(M) ⊂ gnMtors = 0. This implies

13 If i > 0, then N = Hi (X,OX ), and there is a short exact sequence 0 → Hi (X,OX ) ⊗V

k(s) → Hi (Xs ,OXs ) → TorV1 (Hi+1(X,OX ), k(s)) → 0, where the middle term is zero;

thus, N ⊗V k(s) = 0. A similar argument works for i = 0, where N = H0(X,OX )/V .
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that N = lim−→ϕ
M = 0. Thus, lim−→ϕ

K is quasi-isomorphic to 0, which implies

that R�(X,OX ) = V , as desired. �
In particular, checking isomorphisms can be done pointwise.

Corollary 6.10 Let f : X → Y be a proper perfectly finitely presented map
of perfect Fp-schemes such that for all geometric points ȳ of Y , the fibre X ȳ
is isomorphic to Spec(k(ȳ)). Then f is an isomorphism.

Proof Picking any finite type model f0 of f , the assumption implies that f0
is quasifinite, thus finite, and in particular affine; therefore, f itself is affine,
so f is determined by f∗OX . But Lemma 6.9 implies f∗OX = OY , so that f
is an isomorphism.

Alternately, one may argue as follows, as suggested by the referee. As
above, we first show that f is the perfection of a finite morphism f0. The fibral
assumption shows that f0(k) is bijective for any algebraically closed field k,
and hence f0 is universally injective. It is also clear that f0 is universally
surjective. As f0 is finite, it follows that f0 is a universal homeomorphism.
One then concludes using Lemma 3.8. �

In our application, the geometric fibres will be of the following form.

Lemma 6.11 Let k be a perfect field, and let Q be a finite lengthW (k)-module.
Let X be a perfect k-scheme which comes equipped with a filtration FiliQX ⊂
QX = Q⊗W (k)W (OX )whose associated gradeds griQX = FiliQX/Fili+1QX
are finite projective OX -modules. Then the line bundle

L =
⊗
i

detOX gr
iQX

on X is trivial.

Using Theorem 5.7, this follows from the identity

L = d̃et(QX ) = d̃et(Q) ⊗k OX .

Here, we give an independent, more geometric, proof.

Proof Wemay reduce to the universal case where X parametrizes filtrations of
QX with griQX finite projective of given rank. Refining further (which gives
rise to a map with geometrically connected fibres), we may assume that X
parametrizes such filtrations with each griQX a line bundle.

Let n be the length of Q. Let X0 = Spec(k), Q0 = Q regarded as a sheaf
on X0, and inductively let fi : Xi → Xi−1 parametrize locally free quotients
Gi of rank 1 of Qi−1/p, and set Qi = ker( f ∗

i Qi−1 → Gi ) over Xi . Then fi is
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a proper surjective perfectly finitely presented map, and X = Xn . Moreover,
each geometric fibre of fi is the perfection of a projective space. Applying
Lemma 6.9, this shows that R fi∗OXi = OXi−1 .

We claim by descending induction on i = n, n − 1, . . . , 0 that L descends
(necessarily uniquely) to a line bundleLi on Xi . For i = n, this is a tautology,
so assume L descends to Li+1 over Xi+1. By Theorem 6.8, to check whether
Li+1 descends to Xi , it is enough to check on all geometric fibres, so let x̄ ∈ Xi
be a geometric point, giving a finite lengthW (k(x̄))-module Qi , equippedwith
a fixed filtration into 1-dimensional k(x̄)-modules. Replacing Q by Qi , we can
assume that i = 0.

Now L1 is a line bundle over X1, which is the perfection of a projective
space Pk . Let Y ⊂ X parametrize those filtrations which are refinements of
the p-adic filtration of Q. Then L restricted to Y agrees with

(⊗
i

detk(p
i Q/pi+1Q)

)
⊗k OY ,

and is therefore trivial. On the other hand, themap Y → X1 is the perfection of
a proper surjective map with geometrically connected fibres: It is a successive
(perfection of a) flag variety bundle. But L1 becomes trivial over Y , and is
thus trivial by Proposition 6.1. �
Remark 6.12 In the period in which this paper was being refereed, we discov-
ered that the fibral conditions in Theorem 6.8 can be weakened substantially:
one only needs geometric connectedness for the fibers. Since this result is
likely more applicable, we record it here; it is not used elsewhere in the paper.
The proof involves reduction to very big nonarchimedean fields. One may
wonder whether the theorem admits a more “classical” proof.

Theorem 6.13 Let f : X → Y be a proper surjective perfectly finitely pre-
sented map in Perf such that all geometric fibres of f are connected. Let
E ∈ Vect(X). Then E descends to Y if and only if for all geometric points ȳ
of Y , E is trivial on the fibre X ȳ.

Proof As in the proof of Theorem 6.8, one reduces to the case that Y =
Spec(V ) is the spectrum of a valuation ring, and then, as in the first paragraph
of the proof of Lemma 6.4, we reduce to V having rank 1. Let K be the fraction
field of V , and m ⊂ V the maximal ideal, and let η and s be the generic and
special points of Spec(V ) respectively. We begin by explaining a reduction to
the case where f is flat. Choose a model f0 : X0 → Spec(V ) of f0, so f0 is a
finitely presented propermapwith perfection f . Let X ′

0 ⊂ X0 be the closure of
the generic fiber X0,η ⊂ X0. The induced map g0 : X ′

0 → Spec(V ) is proper
and flat with geometrically connected fibers: g0,∗OX ′

0
is a torsionfree finite
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V -algebra of rank 1, and must thus coincide with V . The closed immersion
X ′
0 → X0 is an isomorphism away from the special fibre, so X has a v-cover

by X ′ and Xs with overlap X ′
s ; here we drop the subscript ‘0’ to denote passage

to the perfection. By Theorem 4.1, vector bundles on X are the same as vector
bundles on X ′ and Xs together with an isomorphism over X ′

s . As the global
functions on X ′

s are constant by geometric connectedness, it suffices to show
triviality of E over X ′ and Xs separately. Since we are assuming triviality over
Xs , we may thus assume X = X ′ is flat over V .
We are now in the following setup: V is a valuation ring of rank 1, f : X →

Spec(V ) is a proper perfectly finitely presented flat map with geometrically
connected fibers, and E ∈ Vect(X) is trivial on both fibers Xη and Xs . We
will need to arrange a few extra properties. First, we want thatOX is integrally
closed inOXη . For this, we make the extra assumption that the fraction field K
of V is algebraically closed, which amounts to a further v-cover on the base.
Let f0 : X0 → Spec(V ) be a proper flat and reduced model of f . In this
situation, by [6, §6.4.1, Corollary 5], the normalization X ′

0 of X0 in its generic
fibre is of finite presentation over Spec(V ). Arguing as in the first paragraph,
we can then reduce to the case where X = X ′ has the property that OX is
integrally closed in OXη .

Let M = H0(X,E) ⊂ H0(Xη,OXη)
∼= Kr . This is bounded (as one

can find an injection E ↪→ Or
X into a trivial vector bundle, as Eη is trivial).

Moreover, we claim that M = HomV (m, M), where m ⊂ V is the maximal
ideal. This follows from the statement E = HomV (m,E) on the level of
sheaves, which can be reduced to OX = HomV (m,OX ). To check this, let
f0 : X0 → Spec(V ) be a proper flat reduced model of f such that OX0 is
integrally closed in OX0,η . Then HomV (m,OX ) = lim−→ϕ

HomV (m,OX0) as

OX0 = OX0,η ∩ OX by our assumption that OX0 is integrally closed in OX0,η .
ButOX0 is locally a free V -module (of infinite rank), by [46, Corollaire 3.3.13],
so HomV (m,OX0) = OX0 by reduction to HomV (m, V ) = V . In conclusion,

HomV (m,OX ) = lim−→
ϕ

HomV (m,OX0) = lim−→
ϕ

OX0 = OX ,

as desired.
In fact, as we are allowed to make further v-covers, we can assume in

addition that K is spherically complete (i.e., any decreasing sequence of closed
balls in V has nonempty intersection; equivalently, Ext1V (m, V ) = 0) and with
value group R≥0. We claim that in this situation M = H0(X,E) is a finite free
V -module.

Lemma 6.14 Let K be a complete nonarchimedean field which is spherically
complete, and with value groupR≥0. Let V be the valuation ring of K ,m ⊂ V
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themaximal ideal, and let M ⊂ Kr be a sub-V -module such that M is bounded
and M = HomV (m, M). Then M is a finite free V -module.

Proof If r = 1, then any sub-V -module is of the form {x ∈ K | |x | ≤ a} or
{x ∈ K | |x | < a} for some a ∈ R≥0 ∪ {∞}. The case a = ∞ is not allowed
as M is bounded, and the case {x ∈ K | |x | < a} is excluded by the condition
M = HomV (m, M); the right-hand side evaluates to {x ∈ K | |x | ≤ a} in this
case. As any a ∈ R≥0 is the absolute value of some x ∈ K by assumption, it
follows that M is free of rank 1 if a �= 0; otherwise M = 0.

In general, we induct on r , so let M ′ = M ∩ Kr−1 and M ′′ = M/M ′.
Then M ′ ⊂ Kr−1 and M ′′ ⊂ K are bounded V -submodules. Moreover,
M ′ = HomV (m, M ′) as this holds for M ; thus, by induction, M ′ is finite free.
This implies, as K is spherically complete, that Ext1V (m, M ′) = 0, so one
finds that also M ′′ = HomV (m, M ′′). Therefore, M ′′ is finite free, and so is
the extension M of M ′′ by M ′. �

In particular, this applies to show that M = H0(X,E) is a finite free V -
module. We have a short exact sequence

0 → M ⊗V k(s) → H0(Xs,Es) → TorV1 (H1(X,E), k(s)) → 0.

But M ⊗V k(s) and H0(Xs,Es) are k(s)-vector spaces of the same dimension
as Es is trivial, so M ⊗V k(s) → H0(Xs,Es) is an isomorphism. This implies
that the map of vector bundles f ∗M → E is an isomorphism, as it is an
isomorphism in both fibres. Thus, E is trivial, as desired. �

7 Families of torsion W(k)-modules

In this section, we collect some results on the behaviour of “families” of torsion
W (k)-modules indexed by perfect schemes; some of the discussion overlaps
with [57]. The following definition will help with the bookkeeping:

Definition 7.1 Consider the set of sequences λ:=(λ1, λ2, . . . , λn, . . .) of non-
negative integers such that λ j ≥ λ j+1 for all j , and λ j = 0 for sufficiently
large j . For another such sequence μ, we say μ ≤ λ if λ − μ (computed term
wise) is a non-negative linear combination of ε j :=(0, . . . , 0, 1, −1, 0, . . .),
where the 1 entry is in the j-th spot.

If λ is any such sequence, we write λ − 1 for the sequence with entries
(λ − 1) j given by λ j − 1 in case λ j ≥ 1, and 0 otherwise.

The sequence λ represents the isomorphism class of a finite torsion module
over W (k).
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Definition 7.2 Fix a perfect field k. A finitely generated p-power torsion
W (k)-module Q is said to have type λ if Q � ⊕ jW (k)/pλ j ; in that case,
write λ = λ(Q). Let R be a perfect ring, and let Q be a finitely generated
p-power torsionW (R)-module. Then Q has type≤ λ if λ(Q⊗W (k(x))) ≤ λ

for all x ∈ Spec(R). If λ(Q ⊗ W (k(x))) = λ for each x ∈ Spec(R), then Q
has type exactly λ.

The case where Q has type exactly λ is very rigid; in particular, it implies
that Q is finitely presented.

Lemma 7.3 Let R be a perfect ring, and let Q be a finitely generated W (R)-
module of p-power torsion, of type exactly λ. Then each pi Q/pi+1Q is a finite
projective R-module.

Proof Consider first i = 0. For any point x ∈ Spec(R), we know Q/p ⊗
k(x) � (Q ⊗ W (k(x)))/p. Thus, Q/p is a finitely generated R-module such
that Q/p ⊗ k(x) has the same rank n for all x ∈ Spec(R). As R is reduced,
this implies that Q/p is finite projective: for any point x ∈ Spec(R), after
replacing R by some localization around x , there are f1, . . . , fn ∈ Q/p freely
generating Q/p ⊗ k(x). The cokernel C of the resulting map Rn → Q/p
is finitely generated with C ⊗ k(x) = 0. By Nakayama, C is trivial in a
neighborhood. But in this neighborhood, the surjective map Rn → Q/p has
to be an isomorphism at all points (as it is a surjective map of vector spaces of
the same dimension), and thus is injective, as R is reduced. In particular, the
kernel pQ of Q → Q/p is still finitely generated, and of type exactly λ − 1,
so the claim for i > 0 follows by induction. �
Remark 7.4 In Lemma 7.3, one can compute the rank of the projective module
pi Q/pi+1Q explicitly: it is the largest j such that i < λ j ; we denote this
number by nλ(i). More pictorially: if one visualizes λ as a “bar graph” where
each bar is made from blocks and the j-th bar has λ j blocks, then nλ(i) is the
size of the i-th row (starting at 0).

Using these notations, let us recall the usual characterization of themajoriza-
tion inequality λ ≥ μ.

Lemma 7.5 Let λ = (λ1, λ2, . . .) and μ = (μ1, μ2, . . .) be eventually 0
decreasing sequences of nonnegative integers. Let Qλ, Qμ be torsion W (k)-
modules with λ(Qλ) = λ and λ(Qμ) = μ. Then the following conditions are
equivalent.

(i) One has λ ≥ μ.
(ii) For all n ≥ 1, the inequality

n∑
j=1

λ j ≥
n∑
j=1

μ j
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holds, and is an equality for sufficiently large n.
(iii) For all m ≥ 0, the inequality

∑
i≥m

nλ(i) ≥
∑
i≥m

nμ(i)

holds true (noting that both sums are finite), and is an equality for m = 0.
(iv) The lengths lg(Qλ) = lg(Qμ) are equal, and for all m ≥ 0, lg(pmQλ) ≥

lg(pmQμ).

Proof The equivalence of (i) and (ii) is standard: Clearly (i) implies (ii) as
adding a sequence εn = (0, . . . , 0, 1, −1, 0, . . .) preserves the inequalities.
Conversely, for the smallest n where the inequality is (ii) is strict, one can
subtract εn + εn+1 + · · · + εn′ from λ for suitable n′ while preserving all
inequalities, and then argue inductively. Moreover, (iii) and (iv) are the same,
as

lg(pmQλ) =
∑
i≥m

nλ(i).

As

∑
j

λ j =
∑
i

nλ(i),

one sees that the equality part in (ii) and (iii) is equivalent. It remains to show
that the inequalities are equivalent. We give the proof that (ii) implies (iii); the
converse is identical.14 Thus, take any m ≥ 0, and let n be maximal such that
μn > m. Then

∑
i≥m

nμ(i) =
n∑
j=1

(μ j − m).

Let n′ be maximal such that λn′ > m, so that we have a similar equality

∑
i≥m

nλ(i) =
n′∑
j=1

(λ j − m).

14 In fact, λ 	→ nλ is (up to shift i 	→ i + 1) the transpose of a partition, so the situation is
symmetric.
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Assume first that n ≤ n′. Applying (ii) for n shows

∑
i≥m

nμ(i) =
n∑
j=1

(μ j − m) ≤
n∑
j=1

(λ j − m),

which is at most

n′∑
j=1

(λ j − m) =
∑
i≥m

nλ(i) ,

as all further summands for n < j ≤ n′ are positive. If n > n′, then again
applying (ii) for n shows that

∑
i≥m

nμ(i) =
n∑
j=1

(μ j − m) ≤
n∑
j=1

(λ j − m),

which is at most

n′∑
j=1

(λ j − m) =
∑
i≥m

nλ(i),

as all extra summands λ j − m for n′ < j ≤ n are nonpositive. �
The basic source of finite torsion W (k)-modules in the sequel comes from

isogenies:

Definition 7.6 For any perfect ring R, a map f : N → M of finite projective
W (R)-modules is called an isogeny if it admits an inverse up to multiplication
by a power of p.

In particular, any isogeny is injective.

Lemma 7.7 A finitely generated p-torsion W (R)-module Q is of projective
dimension 1 if and only if it can be written as the cokernel of an isogeny.

Proof If Q is the cokernel of the isogeny f : N → M , then

0 → N → M → Q → 0

is a projective resolution of Q as W (R)-module, showing that the projective
dimension is (at most) 1; clearly, Q is not projective, so the projective dimen-
sion is 1.
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Conversely, if M is of projective dimension 1, then pick a surjection M =
W (R)n → Q. Its kernel N is projective. By checking at the characteristic 0
points of Spec(W (R)) (which are dense), one sees that N is of rank n, and
thus finite projective. �

We will also need the following lemma.

Lemma 7.8 Let R be a perfect ring, and let Q be a finitely generated R-
module. Then Q is a projective R-module if and only if it is of projective
dimension 1 as W (R)-module.

Proof Note that R = W (R)/p is of projective dimension 1 asW (R)-module.
Thus, the same is true for any free module, and then also for any direct sum-
mand of a free module, i.e. any projective module.

Conversely, assume Q is a finitely generated R-module that is of pro-
jective dimension 1 as W (R)-module. Take any x ∈ Spec(R), and let
n = dimk(x)(Q ⊗ k(x)). Pick a map M = W (R)n → Q that is surjective
after ⊗k(x). By Nakayama, we may assume that it is surjective, after some
localization on Spec(R). Let f : N ↪→ M be the kernel of M → Q. Then N
is a finite projective W (R)-module (as Q is of projective dimension 1), and
there is an injection

g : pW (R)n ↪→ N .

On the other hand, after base-change R → k(x), g is surjective. Applying
Nakayama again (noting that g being surjective is equivalent to g mod p
being surjective), we can assume that g is surjective, after a further localization
around x . Then g : pW (R)n ∼= N , and Q = W (R)n/pW (R)n = Rn is finite
projective. �

Now we want to prove that the locus where the cokernel Q of an isogeny
has type ≤ λ is closed.

Lemma 7.9 Let R be a perfect ring, and let β : N → M be an isogeny
of finite projective W (R)-modules with cokernel Q. Fix any sequence λ of
non-negative integers as above. The set

Spec(R)≤λ ⊂ {x ∈ Spec(R) | λ(Q ⊗ W (k(x))) ≤ λ}

is a closed subset of Spec(R).

The proof uses the Demazure scheme, so we define this first (see also [57,
§1.3]).
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Definition 7.10 Let X be a perfect Fp-scheme, let Q be a finitely generated
p-power torsion quasicoherentW (OX )-module of projective dimension 1, and
let λ be a sequence of non-negative integers as above. The Demazure scheme
is the perfect scheme

Demλ(Q) → X

parametrizingdecreasingfiltrationsFiliQ ⊂ Q such that griQ = FiliQ/Fili+1Q

is a finite projective OX -module of rank nλ(i).15

We reserve the name Demazure resolution for the “absolute” construction
defined inDefinition 8.4 below; aDemazure schememay not be (the perfection
of) a smooth scheme.

Proposition 7.11 The Demazure scheme exists, i.e. the moduli problem is
representable by a perfect scheme. The map Demλ(Q) → X is a proper
perfectly finitely presented morphism.

In the proof, we use the following convention: if X is a perfect scheme, F
a finitely presented quasicoherent OX -module, and n ∈ Z≥0, then Quot(F, n)

denotes the perfection of the Quot-scheme, over X , parametrizing locally free
quotients F � G with rk(G) = n. If F is locally free, this is the perfection
of a Grassmannian. In general, Quot(F, n) → X is a proper perfectly finitely
presented morphism.

Proof Assume first that λ = 0. In that case Demλ(Q) ⊂ X is the subset
of x ∈ X such that Q ⊗ W (k(x)) = 0, and we claim that this is open and
closed (which implies the proposition in this case). The claim is local, so we
may assume X = Spec(R), and Q is associated to a finitely presented W (R)-
module Q that can be written as a cokernel of an isogeny f : N → M of finite
freeW (R)-modules. Then the locuswhereQ⊗W (k(x)) = 0 is (byNakayama)
the locus where f is an isomorphism, i.e. where det f ∈ W (R) is invertible.
But det f ∈ W (R)[ 1p ]×, which implies that x 	→ vp(det( f ⊗ W (k(x)))) is
a locally constant function on SpecR; in particular, the locus where det f is
invertible is open and closed.

In general, consider Quot(Q/p, nλ(0)) → X . This parametrizes the differ-
ent choices for Fil1Q such that Q/Fil1Q is a finite projective OX -module of
rank nλ(0): Over Quot(Q/p, nλ(0)), one has the universal cokernelQ/p → G,
and one can define Fil1Q = ker(Q → G). This is still of projective dimension
1, and

Demλ(Q) = Demλ−1(Fil
1Q),

15 See Remark 7.4 for the definition of nλ(i).
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where λ−1 = (λ1−1, . . . , λn−1, 0, . . .) is the sequence of non-negative inte-
gers obtained from λ by subtracting 1 from all positive entries. By induction,
the proposition follows. �
Remark 7.12 The special case λ = 0 in the above proof can be presented
slightly differently via K -theory as follows. In Sect. 5, we defined a canon-
ical map r : K0(W (X) on X) → H0(X,Z) by composing the determinant
construction with the canonical map PicZ(X) → H0(X,Z). Now any Q as in
the proposition defines element of K0(W (X) → X). Unwinding definitions
shows that r(Q) is given by the locally constant function X → Z sending
x ∈ X to the length of Q ⊗L

W (OX ) W (κ(x)) � Q ⊗W (OX ) W (κ(x)) as a finite
torsion W (κ(x))-module. In particular, the vanishing locus of this function is
clopen in X .

Lemma 7.13 Let X, Q and λ be as in Definition 7.10. The image of the mor-
phism Demλ(Q) → X is the locus

X≤λ = {x ∈ X | λ(Q ⊗ W (k(x))) ≤ λ}.
If Q is of type exactly λ, then Demλ(Q) → X is an isomorphism. Moreover, if
the fibre over a geometric point x̄ of X is nonempty, then

R�(Demλ(Q) ×X x̄,O) = k(x̄),

where k(x̄) is the residue field of x̄ .

Proof To determine the image, we may assume that X = Spec(k) is a point;
thenQ determines a torsionW (k)-module Q.We need to show that themodule

Q ∼=
n⊕

i=1

W (k)/pλi (Q)

admits a decreasing filtration Fili Q ⊂ Q with gradeds gri Q ∼= knλ(i) if and
only if λ(Q) ≤ λ. Assume first that Q admits such a filtration. Then Fil1Q
admits a filtration of type given by λ−1, as nλ−1(i) = nλ(i +1) for all i ≥ 0;
it follows by induction that λ(Fil1Q) ≤ λ − 1. But then Q is an extension

0 → Fil1Q → Q → knλ(0) → 0

from which it follows that

λ(Q) ≤ λ(Fil1Q) + (1, . . . , 1︸ ︷︷ ︸
nλ(0)

, 0, . . .) ≤ (λ − 1) + (1, . . . , 1︸ ︷︷ ︸
nλ(0)

, 0, . . .) = λ,
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as desired. This analysis also implies that if one has equality λ(Q) = λ,
then the filtration is given by Fili Q = pi Q; thus, Corollary 6.10 implies that
Demλ(Q) → X is an isomorphism if Q is of type exactly λ.

Conversely, assume that λ(Q) ≤ λ, again in the case X = Spec(k). In that
case, we have to show that

R�(Demλ(Q),O) = k,

which implies in particular that Demλ(Q) is nonempty. Recall that Demλ(Q)

can be written as

Demλ(Q) = Demλ−1(Fil
1Q),

where Fil1Q is the kernel of the universal quotient Q → G over Quot
(Q/p, nλ(0)). Arguing inductively (always using Lemma 6.9 to pass from
fibrewise information to global information), we see that the locus

Quot(Q/p, nλ(0))≤λ−1 ⊂ Quot(Q/p, nλ(0))

where ker(Q → G) is of type ≤ λ − 1 is the image of

f : Demλ−1(Fil
1Q) → Quot(Q/p, nλ(0)),

and in particular closed, and R f∗O = OIm f , so it remains to prove that

R�(Quot(Q/p, nλ(0))≤λ−1,O) = k.

Let us describe the locus Quot(Q/p, nλ(0))≤λ−1. Note that Q/p comes
with a decreasing filtration

Fm(Q/p) = ker(Q/p
pm−→ pmQ/pm+1Q).

We claim that a quotient Q/p → G with kernel F ⊂ Q/p lies in
Quot(Q/p, nλ(0))≤λ−1 if and only if for allm ≥ 0, dim(F∩ Fm(Q/p)) ≥ am
for certain integers am (determined by λ and Q).16 Indeed, by Lemma 7.5,
λ(Fil1Q) ≤ λ − 1 if and only if for all m ≥ 0, the length of pmFil1Q is
bounded by the length of pmQλ−1, where Qλ−1 is a torsion W (k)-module
with λ(Qλ−1) = λ − 1. But there is an exact sequence

0 → pmFil1Q → pmQ → coker(F
pm−→ pmQ/pm+1Q) → 0,

16 Here, Q stands for the base extension of Q to varying fields.
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which allows one to compute the length of pmFil1Q in terms of Q, dimF =
nλQ (0) − nλ(0) and dim(F ∩ Fm(Q/p)). More precisely, the inequalities are

dim(F ∩ Fm(Q/p)) ≥ nλQ (0) − nλ(0) +
∑

i≥m+1

(nλQ (i) − nλ(i))=:am .

Thus, the following lemma finishes the proof. For this we need to observe
two inequalities. First,

dim FmQ/p = nλQ (0) − nλQ (m) ≥ nλQ (0) − nλ(m) +
∑

i≥m+1

(nλQ (i) − nλ(i))

≥ nλQ (0) − nλ(0) +
∑

i≥m+1

(nλQ (i) − nλ(i)) = am ,

using the majorization

∑
i≥m

nλ(i) ≥
∑
i≥m

nλQ (i).

Second,

dimF = nλQ (0) − nλ(0) ≥ nλQ (0) − nλ(0) +
∑

i≥m+1

(nλQ (i) − nλ(i)) = am ,

using the same majorization. �
Lemma 7.14 Let k be a perfect field, and V a finite-dimensional k-vector
space equipped with a decreasing filtration FmV ⊂ V , m = 1, . . . , N. Let
a1, . . . , aN be integers such that am ≤ dim FmV , and let n ≤ dim V be an
integer such that n ≥ am for all m. Consider the space X of subspaces F ⊂ V
of dimension n such that dim(F∩ FmV ) ≥ am for all m = 1, . . . , N. Then X
is a projective k-scheme, and

R�(Xperf ,O) = k.

Proof Clearly, X is a projective k-scheme, as it is closed inside a Grass-
mannian.

For the cohomological statement, we argue by induction on N . We may
clearly assume am > 0 for all m. Let X̃ → X be the covering which para-
metrizes subspaces W ⊂ F ∩ FNV of exact dimension aN . Then all fibres
of X̃ → X are perfections of Grassmannians. By Lemma 6.9, the derived
pushforward of OX̃perf

is OXperf . Thus, it is enough to prove that

R�(X̃perf ,O) = k.
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On the other hand, X̃ maps to the Grassmannian of aN -dimensional subspaces
of FNV , and each fibre is a similar scheme for V/W with the induced filtration
and a′

m = am − aN , n′ = n − aN . By induction and Lemma 6.9, the result
follows. �
Proof of Lemma 7.9 By Lemma 7.13 and Proposition 7.11, the desired locus
is the image of a proper perfectly finitely presented morphism, and therefore
closed. �

8 The Witt vector affine Grassmannian

In this section, we use the results proved earlier in the paper to establish the
promised representability result for the Witt vector affine Grassmannian.

8.1 Statements

We now introduce the affine Grassmannian. For this, fix once and for all an
integer n ≥ 0.

Definition 8.1 For any sequence λ = (λ1, . . . , λn, 0, . . .) of non-negative
integers as above, let Gr≤λ be the functor on Perf sending X ∈ Perf to the set
of finite projective W (OX )-submodules E ⊂ W (OX )n such that the defining
inclusion β : E ↪→ W (OX )n is an isogeny, and Q = coker(β) is of type ≤ λ.

Let Grλ ⊂ Gr≤λ be the subfunctor where the type is exactly λ. For μ ≤ λ,
there is a closed immersion Gr≤μ ⊂ Gr≤λ of functors (by Lemma 7.9), and
Grλ = Gr≤λ\ ∪μ<λ Gr≤μ is open in Gr≤λ.

Note that by Theorem 4.1 and Corollary 4.4, the functor Gr≤λ is a v-sheaf.
The following theorem was proved by Zhu, [57].

Theorem 8.2 (Zhu) The functor Gr≤λ is represented by the perfection of a
proper algebraic space over Fp.

Our main result is:

Theorem 8.3 The functor Gr≤λ is representable by a proper perfectly finitely
presentedFp-scheme, and there is a natural ample line bundleL ∈ Pic(Gr≤λ).

In particular, Gr≤λ is the perfection of a projective Fp-scheme.
In the K -theoretic approach of Theorem 5.7, the line bundle L is given by

L = d̃et(Q). Note that Q is quasi-isomorphic to the perfect complex E →
W (O)n , which is supported set-theoretically on the special fibre {p = 0}. In
the geometric approach, the existence of L is Theorem 8.8 below.

Our proof of Theorem 8.3 is independent of Theorem 8.2. Our strategy is to
first construct the line bundleL, and then to employ a fundamental theorem of
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Keel [28] on positivity of line bundles in characteristic p; this will allow us to
work our way up to Gr≤λ from lower-dimensional strata by induction. Keel’s
theorem only applies to projective schemes, so we cannot apply it directly to
Gr≤λ; instead, we will apply it to a suitable h-cover.

8.2 The Demazure resolution

To study Gr≤λ, it will be useful to have access to (what will turn out to be) a
convenient resolution.

Definition 8.4 The Demazure resolution is the map

ψ : G̃rλ = Demλ(Q) → Gr≤λ,

of v-sheaves on Perf, where W (O)n → Q denotes the universal cokernel on
Gr≤λ.

Remark 8.5 By Proposition 7.11, the map ψ : G̃rλ → Gr≤λ is relatively
representable by a proper perfectly finitely presented map. Moreover, ψ is
surjective and an isomorphism over Grλ by Lemma 7.13, and

Rψ∗OG̃rλ = OGr≤λ

by Lemmas 7.13 and 6.9.17

The following proposition justifies the name Demazure resolution.

Proposition 8.6 The functor G̃rλ is representable by the perfection of a smooth
projective Fp-scheme. It represents the functor associating to X ∈ Perf the
set of λ1-tuples Eλ1 ⊂ . . . ⊂ E1 ⊂ E0 = W (OX )n of finite projective W (OX )-
submodules of W (OX )n such that each Qi :=Ei/Ei+1 is a finite projective
OX -module of rank nλ(i), where nλ(i) is the number defined in Remark 7.4.

Proof From the definitions, it follows that G̃rλ is the subfunctor of those λ1-
tuples (E1, . . . ,Eλ1) as in the statement, for which the cokernel Q of Eλ1 ↪→
W (OX )n is of type ≤ λ. However, Lemma 7.13 guarantees that Q is always of
type ≤ λ.

The moduli description now presents G̃rλ as a successive perfect Grass-
mannian bundle. Indeed, set X0 = Spec(Fp), E0 = W (OX0)

n . Define

17 As we do not yet know that Gr≤λ is representable, all of these assertions mean that they hold
true after an arbitrary base-change to a representable S over Gr≤λ. Note that viewing Gr≤λ as
an object of a suitable ringed topos (the one associated to the site Perf ringed using O equipped
with the v-topology) leads to a potentially different notion of a pushforward. Nevertheless, both
these definitions coincide by Lemma 3.18.
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inductively πi : Xi+1 → Xi and Ei+1 over Xi+1, by letting Xi+1 =
Quot(Ei/p, nλ(i)) parametrize quotientsQi of Ei/p of rank nλ(i), and setting
Ei+1 = ker(π∗

i Ei → Qi ). Then Ei+1 is still a finite projective W (OXi+1)-
module by Lemma 7.8, and Xλ1 = G̃rλ. By induction, each Xi is the perfection
of a smooth projective Fp-scheme. �

The intermediate isogenies being recorded in G̃rλ keep track of how the
quotient Q on Gr≤λ, which is a pλ1-torsion module, is filtered by p-torsion
modules. The following example is perhaps useful:

Example 8.7 Consider the case n = 3 and λ = (2, 1, 0). Then G̃rλ parame-
trizes chains of isogeniesE2 → E1 → E0 = W (O)3,where eachQi :=Ei/Ei+1
is a vector bundle of rank 2−i . The only elementμ < λ isμ:=(1, 1, 1). Hence,
Gr≤λ has a 2-step stratification with open Grλ, and closed Grμ. The Demazure
resolution G̃rλ is a tower of two perfect P2-bundles over a point, and hence
has dimension 4; it follows Grλ also has dimension 4. Now Grμ is a single
point, and classifies the inclusion pE0 ↪→ E0. The fibre of ψ over Grμ is the
perfection of P2, corresponding to the Grassmannian of rank-2-quotients of
E0/pE0 = O3.

8.3 The line bundle L

The goal of this section is to construct a natural line bundle L on Gr≤λ.

Theorem 8.8 There is a line bundle Lλ on Gr≤λ such that ψ∗Lλ is the line
bundle L̃λ on G̃rλ given by

L̃λ =
λ1−1⊗
i=0

detOXQi .

The restriction of Lλ to Gr≤μ is given by Lμ for μ < λ, compatibly in μ.

We recall that by Proposition 6.1 and Remark 8.5, the functor ψ∗ from line
bundles on Gr≤λ to line bundles on G̃rλ is fully faithful.

Proof In the K -theoretic approach, one can define Lλ = d̃et(Q), which
is clearly compatible with restriction to Gr≤μ. In the geometric approach,
the existence of Lλ follows by combining Theorem 6.8, Remark 8.5 and
Lemma 6.11.

However, in the geometric approach it is not immediately clear that the
line bundles Lλ thus constructed are compatible for varying λ. To see this, it
is enough to consider the special case λ = (N , 0, . . .): any two comparable
λ’s are both less than some λ of this form. Then G̃rλ parametrizes finite pro-
jective W (O)-submodules EN ⊂ . . . ⊂ E1 ⊂ E0 = W (O)n such that each
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Qi = Ei/Ei+1 is a line bundle. For anyμ < λ, there is a cover G̃rμ(λ) → G̃rμ
refining the universal filtration of Q on G̃rμ to a complete flag; this has geo-
metrically connected fibres, given by products of perfections of classical flag
varieties. Then G̃rμ(λ) ⊂ G̃rλ is a closed subfunctor, given by the condition
that certain quotients Ei/E j are killed by p. The line bundles thus constructed

on G̃rλ and G̃rμ(λ) are clearly compatible, and then Proposition 6.1 implies
the same for Gr≤μ ⊂ Gr≤λ. �

Because of the compatibility between the different Lλ, we will simply call
them L below.

8.4 Proof of Theorem 8.3

We put the preceding geometry to use in proving L ∈ Pic(Gr≤λ) is ample.18

Lemma 8.9 The following statements are true about line bundles on G̃rλ.

(i) The line bundle ⊗λ1−1
i=0 det(Qi )

ai is ample if a0 � a1 � a2 � · · · �
aλ1−1 � 0.

(ii) For each x ∈ Grλ and i = 0, . . . , λ1 − 1, there exists a section s ∈
H0(̃Grλ, det(Qi )) such that s(x) �= 0.

Proof For (i), we work by induction using the tower

Xλ1

πλ1−1→ Xλ1−1 → · · · π1→ X1
π0→ X0

encountered in the proof of Proposition 8.6. Specifically, by induction, we will
check that for m ≤ λ1, the bundle ⊗m−1

i=0 det(Qi )
ai is ample on Xm provided

a0 � a1 � a2 � · · · � am−1 � 0. When m = 0, X0 is a point, so the
statement is clear. Assume inductively that there exist integers b0 � b1 �
· · · � bm−1 � 0 such that ⊗m−1

i=0 det(Qi )
bi is ample on Xm . Now Xm+1 →

Xm is (the perfection of) a Grassmannian fibration with universal quotient
bundle Qm , so det(Qm) is relatively ample for this morphism. It follows that

det(Qm) ⊗
(

⊗m−1
i=0 det(Qi )

bi
)N

is ample on Xm+1 for N � 0, which proves

the inductive hypothesis, and thus the claim.
For (ii), as all the Qi ’s are killed by p, we first note the following: for each

i , there is a natural mapOn � piW (O)n/pi+1W (On) → Qi of vector bundles
on G̃rλ given by taking a local section f ∈ On to the residue class of pi f̃ for a
suitable lift f̃ ∈ W (O)n .Moreover, thesemaps are surjective overGrλ. Indeed,
at a point x ∈ Grλ, the p-adic filtration on Qx coincides with the one coming

18 Cf. Lemma 3.6 for the meaning of this statement.
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from the Qi , i.e., Qi = piQ/pi+1Q over Grλ; see the proof of Lemma 7.13.
As the map W (O)n → Q is surjective, also piOn/pi+1On → piQ/pi+1Q is
surjective, and hence the map On → Qi considered above is surjective at x .
This implies that ∧rk(Qi )(On) → ∧rk(Qi )(Qi ) = det(Qi ) is surjective at x . We
then find a section of det(Qi ) non-vanishing at x by picking a suitable general
1-dimensional subspace of L0 ⊂ ∧rk(Qi )(F⊕n

p ), and using the induced map

L0 ⊗ OG̃rλ → ∧rk(Qi )(On) → det(Qi ) as a section. �
Next, we check that L is nef, even strictly nef.

Lemma 8.10 The line bundle L ∈ Pic(Gr≤λ) is strictly nef. In particular,
L̃ ∈ Pic(̃Grλ) is nef.

Here “strictly nef” means that L has positive degree on any non-constant
curve.

Proof Fix a smooth connected projective curve C over k, and a non-constant
map f : Cperf → Gr≤λ. Then the generic point of Cperf maps into Grμ for a
unique μ, in which case f factors through Gr≤μ by Lemma 7.9. Renaming μ

as λ, we can assume thatCperf meets Grλ. Then the pullback of G̃rλ → Gr≤λ to
Cperf is proper and admits a generic section; by properness, the section extends
to amap f̃ : Cperf → G̃rλ. In that case, we need to prove that L̃ = ⊗idetO(Qi )

is ample on Cperf .
By Lemma 8.9 (ii) (and the assumption thatCperf meets Grλ), detO(Qi )|Cperf

has a nonvanishing section, and thus is effective. If their tensor product is not
ample, then it follows that all detO(Qi ) become trivial over Cperf . On the
other hand, Lemma 8.9 (i) guarantees that a weighted tensor product of the
detO(Qi ) is ample (on G̃rλ, and thus on Cperf since f is non-constant), which
is a contradiction. �

Now we can prove that L̃ is big.

Lemma 8.11 The line bundle L̃ is big, with exceptional locus contained in
the boundary G̃rλ\Grλ.

We briefly recall the meaning the terms used above; see [32, §1,2] and [28,
§0] for more. Fix a line bundle N on a proper variety X over some field.

(1) We say that N is big if, for m � 0, we can write N⊗m � A ⊗ E , where
A is an ample line bundle, and E is an effective line bundle.

(2) If N is nef, its exceptional locus is the Zariski closure of the union of all
closed subvarieties Z ⊂ X such that N |Z is not big.

In the perfect setting, we define these notions by passage to finite type
models.
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Proof Recall that L̃ = ⊗λ1−1
i=0 det(Qi ). Choose integers N � a0 � a1 �

· · · � aλ1−1 � 0, and write

L̃⊗N =
(

⊗λ1−1
i=0 det(Qi )

ai
)

⊗
(

⊗λ1−1
i=0 det(Qi )

N−ai
)
.

By Lemma 8.9 (i), the first term on the right is ample, while Lemma 8.9 (ii)
implies that the second term is effective. It immediately follows that L̃⊗N , and
hence L̃, is big. In fact, this factorisation combined with Lemma 8.9 (ii) shows
that for any x ∈ Grλ, we can write L̃⊗N = A(D), where A is ample, and D is
an effective divisor missing x . Thus, the exceptional locus E(L̃⊗N ) = E(L̃)

misses x by [28, Lemma 1.7] and Lemma 8.10. Varying x then shows that
E(L̃) ⊂ G̃rλ\Grλ. �
We now finish the promised proof:

Proof of Theorem 8.3 Wewill prove thatGr≤λ is representable, andL is ample
on Gr≤λ, by induction on λ. When λ is minimal, L = L̃ is ample on the
Grassmannian Gr≤λ = G̃rλ. Assume inductively that L|Gr≤μ is ample for all
μ < λ.

First, we prove that L̃ is semiample on G̃rλ. Note that L̃ is nef by
Lemma 8.10. Using Keel’s [28, Theorem 1.9], it is enough to check that
L̃|E(L̃) is semiample. By Lemma 8.11, the locus E(L̃) is contained in
ψ−1(Gr≤λ\Grλ) = ψ−1(∪μ<λGr≤μ). By induction, we know that L|Gr≤μ

is ample for μ < λ. Using [28, Lemma 1.8], this shows L|∪μ<λGr≤μ is ample,
so L̃|ψ−1(∪μ<λGr≤μ) is semiample, and thus L̃|E(L̃) is semiample.

Let φ : G̃rλ → X be the Stein factorization associated to L̃, so φ is
a proper surjective perfectly finitely presented map of perfectly finite pre-
sented k-schemes with geometrically connected fibres (and thus a v-cover),
and L̃⊗N = φ∗M for some ample M ∈ Pic(X) and N ≥ 1.19

We claim that
G̃rλ ×Gr≤λ G̃rλ = G̃rλ ×X G̃rλ (1)

as closed subschemes of G̃rλ × G̃rλ. Assuming this claim for the moment, we
can finish the proof as follows. Both X and Gr≤λ are v-sheaves, and thus are
given by the coequalizer

G̃rλ ×X G̃rλ ⇒ G̃rλ,

resp.

G̃rλ ×Gr≤λ G̃rλ ⇒ G̃rλ,

19 For the construction, choose finite type models, apply the Stein factorization, and then go to
the perfection.
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as v-sheaves. As the equivalence relation agrees, we get Gr≤λ = X , on which
L⊗N = M (by Lemma 6.1) is ample, as wanted.

It remains to verify equation (1) above. As everything is perfect, and in
particular reduced, this can be checked on k-points, at least after enlarging k
to make it algebraically closed.

Thus, let x, y ∈ G̃rλ(k) be any pair of points mapping to the same point
of X . As the fibres of G̃rλ → X are geometrically connected, it follows that
there is a geometrically connected F ⊂ (G̃rλ)k contracted to a point in X ,
such that x, y ∈ F . We can even assume that F is a curve. Note that L̃⊗N is
trivial on F . We want to show that F gets contracted under G̃rλ → Gr≤λ, as
then (x, y) ∈ (G̃rλ ×Gr≤λ G̃rλ)(k). But as the pullback of L

⊗N to F is trivial,
F gets contracted by Lemma 8.10.
Conversely, let x, y ∈ G̃rλ(k) be a pair of points mapping to the same

point of Gr≤λ. The same arguments apply, as the fibres of G̃rλ → Gr≤λ are
geometrically connected by Lemma 7.13, and M is ample on X . �

9 Affine Grassmannians for general groups

In this section, we deduce as corollaries several results concerning more gen-
eral group schemes. Fix a complete discrete valuation field K of characteristic
0 with perfect residue field k of characteristic p and ring of integersOK . More-
over, let G be a reductive group over K , and let G be a smooth affine group
scheme over OK with generic fibre G.

For a k-algebra R, we define the relative Witt vectors WOK (R) as

WOK (R) = W (R) ⊗W (k) OK ,

noting that there is a canonical inclusion W (k) ↪→ OK .

Definition 9.1 The (p-adic) loop group of G is the functor

LG : R 	→ G

(
WOK (R)

[
1

p

])

on perfect k-algebras. The positive (p-adic) loop group of G is the functor

L+G : R 	→ G(WOK (R))

on perfect k-algebras.

Clearly, both functors take values in groups. As regards representability, we
have the following well-known result.
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Proposition 9.2 The functor L+G is representable by an affine perfect scheme.
The functor LG is a strict ind-(perfect affine scheme), meaning that it can be
written as an inductive limit of perfect affine schemes along closed immersions.

Remark 9.3 One can define LG and L+G on general (non-perfect) k-algebras
by the same formula. Then L+G is already representable by a (non-perfect)
affine scheme, but LG is not representable by a strict ind-(affine scheme). The
problem is that elements of WOK (R)[ 1p ] do not admit a simple description as
infinite sequences of elements of R, if R is not perfect.

Proof The first assertion is true for any affine scheme X over OK in place of
G, cf. work of Greenberg [22], and follows by observing that any element of
WOK (R) can be written as an infinite sequence of elements of R in such a
way that addition and multiplication are given by polynomial functions. The
statement about LG can be reduced to the case of GLn by fixing a closed
embedding G ↪→ GLn (which induces a closed embedding LG ↪→ LGLn),
where one gets representable subfunctors by restricting the pole orders of
g, g−1 ∈ GLn(WOK (R)[ 1p ]). �
Definition 9.4 The affine Grassmannian of G is the fpqc quotient

GrG = LG/L+G

on the category of perfect k-schemes.

One immediately verifies the following proposition, cf. also [30, Theo-
rem 5].

Proposition 9.5 If G = GLn, then for any perfect k-algebra R, GrGLn (R)

is the set of finite projective WOK (R)-modules M ⊂ WOK (R)[ 1p ]n such that

M[ 1p ] = WOK (R)[ 1p ]n. �
Now one has the following result.

Corollary 9.6 The affine Grassmannian GrG can be written as an increas-
ing union of perfections of quasiprojective schemes over k, along closed
immersions. If G is a parahoric group scheme, then GrG can be written as
an increasing union of perfections of projective schemes over k, along closed
immersions.

Proof Replacing G by ResOK /W (k)G, we may assume that OK = W (k). One
can find a representation G ↪→ GLn such that GLn/G is quasi-affine, cf.
[44, §1.b]. In that case, the induced map GrG ↪→ GrGLn is a locally closed
embedding, cf. [57, Proposition 1.20] in the case considered here. This reduces
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representability of GrG to the case of G = GLn . But here, the result follows
from Theorem 8.3.

If G is parahoric, then [57, §1.5.2] shows that GrG is ind-proper, and thus
(by ind-quasi projectivity) ind-projective. �

One can also determine the connected components of GrG in case G is
parahoric, using Kottwitz’ map

κ : LG(k̄) → π1(G)GalK ,

defined for any algebraically closed field k̄ containing k.

Proposition 9.7 ([57, Proposition 1.21]) Assume that G is parahoric. There

are canonical bijections κ : π0(LG) ∼= π0(GrG)
∼=−→ π1(G)GalK , whereGalK

is the absolute Galois group of K . �

10 The central extension of LG

In this section, let us fix G = SLn , n ≥ 2, over a complete discrete valuation
ring OK of mixed characteristic with perfect residue field k as above. We have
the affine Grassmannian GrSLn .

Proposition 10.1 The affine Grassmannian GrSLn parametrizes finite projec-
tive WOK (R)-modules M ⊂ WOK (R)[ 1p ]n such that M[ 1p ] = WOK (R)[ 1p ]n
and detM = WOK (R). There is a natural ample line bundle L on GrSLn given
by

L = d̃etR(paWOK (R)n/M)

for any a � 0.

Proof The first part is standard, cf. [30, Theorem 5]. For the second part, note
that

d̃etR : K (W (R) on R) → PicZ(R)

induces by composition K (WOK (R) on R) → K (W (R) on R) (using that a
perfect complex of WOK (R)-modules stays perfect as a complex of W (R)-
modules) a similar determinant map

d̃etR : K (WOK (R) on R) → PicZ(R).

Clearly, the line bundle L is independent of the choice of a � 0. �
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The line bundle L is not equivariant under the action of LG. However, for
any fixed element g ∈ LG(R), the line bundles g∗L and L on GrSLn ⊗k R
are locally on R isomorphic: Their difference is given by the line bundle
detR(paWOK (R)n/gWOK (R)n) on R for a � 0.

Definition 10.2 Let L̃G be the functor on perfect k-algebras R given by

L̃G(R) = {(g, α) | g ∈ LG(R), α : g∗L ∼= L on GrSLn ⊗k R}.
With this definition, it is clear that L̃G acts on L.

Proposition 10.3 There is a short exact sequence

1 → Gm → L̃G → LG → 1

of Zariski sheaves (thus, of v-sheaves). This makes L̃G a central extension of
LG by Gm.

Proof The projection to LG is (g, α) 	→ g, and the embedding ofGm is given
by α ∈ Gm 	→ (1, α). It remains to see that the automorphism group scheme
of L on GrSLn is given by Gm . Thus, we have to see that

H0(GrSLn ⊗k R,Gm) = R×.

It is enough to see that

H0(GrSLn ⊗k R,O) = R.

But GrSLn is an increasing union of perfections of reduced projective k-
schemes, which we can assume to be connected by Proposition 9.7. �

On k-rational points, one can identify L̃G(k) with a more familiar object.
We want to identify the central extension

1 → k∗ → L̃G(k) → SLn(K ) → 1.

For any field F , Steinberg [50], has constructed a central extension (whose
kernel was identified by Matsumoto [37]),

1 → K2(F) → S̃Ln(F) → SLn(F) → 1.

Here, K2(F) is the second K -group of F ; note that Milnor and Quillen K -
theory give the same answer in this range. Thus, K2(F) is the quotient of the
abelian group F∗ ⊗Z F∗ by the Steinberg relations x ⊗ (1 − x) = 0 for all
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0, 1 �= x ∈ F . One way to explain the relation of this extension to Quillen
K -theory is as follows. There is a natural map

BSLn(F) → BGLn(F) → BGL∞(F) → (BGL∞(F))+ = τ≥1K (F),

where τ≥1K (F) is the connected component of 0 of Quillen’s K -theory space
K (F) of F . This map factors canonically over the simply connected cover
τ≥2K (F), as the (determinant) map SLn(F) → π1K (F) = F× is trivial.
Composing with τ≥2K (F) → B2K2(F), one gets a map

BSLn(F) → B2K2(F),

which (by passing to loops) is equivalent to a map of E1-groups SLn(F) →
BK2(F), i.e. an extension of SLn(F) by K2(F).

Proposition 10.4 The extension

1 → k∗ → L̃G(k) → SLn(K ) → 1

is the pushout of Steinberg’s extension

1 → K2(K ) → S̃Ln(K ) → SLn(K ) → 1

along the tame Hilbert symbol map K2(K ) → K1(k) = k∗.

Proof The extension L̃G(k) is the group of pairs (g, α) of g ∈ SLn(K ) and
α : d̃etk(paOn

K /gOn
K ) ∼= k, for any a � 0. This can be encoded in the map

of E1-groups SLn(K ) → Bk∗ sending g ∈ SLn(K ) to the 1-dimensional
k-vector space d̃etk(paOn

K /gOn
K ). This can be refined to a map of E1-groups

SLn(K ) → K (OK on k) by sending g to the perfect complex paOn
K /gOn

K .
The tame Hilbert symbol map K2(K ) → K1(k) = k∗ can be defined as the

boundary map in the long exact sequence

· · · → K2(OK ) → K2(K ) → K1(k) → K1(OK ) → · · ·

coming from the fibration sequence K (OK on k) → K (OK ) → K (K ) and the
identification K (OK on k) ∼= K (k). Recall that Steinberg’s extension comes
from the map of E1-groups SLn(K ) → �K (K ) sending any g ∈ SLn(K ) to
the induced loop in K (K ). It remains to see that composing this map with the
map �K (K ) → K (OK on k) from the fibration sequence induces the map of
E1-groups SLn(K ) → K (OK on k) considered above. This follows from the
constructions. �
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Proposition 10.5 For any m ≥ 1, the representation

H0(GrSLn ,L
⊗m)

of L̃G is infinite-dimensional. More precisely, for any projective subscheme
X ⊂ GrSLn , the restriction map

H0(GrSLn ,L
⊗m) → H0(X,L⊗m)

is surjective, and the right-hand side is infinite-dimensional once dim X > 0.

Proof If X = (X0)perf is the perfection of a positive-dimensional projective
scheme X0 over k with an ample line bundle L0 on X0 with pullback L to X ,
then

H0(X,L) = lim−→
s 	→s p

H0(X0,L
⊗pk

0 )

is infinite-dimensional. If Y0 ⊂ X0 is a closed subscheme with perfection Y ⊂
X , then the restriction map H0(X0,L

⊗pk ) → H0(Y0,L⊗pk |Y0) is surjective
for k large enough (by Serre vanishing), and thus H0(X,L) → H0(Y,L)

is surjective. Applying these observations, one gets the result; the n ≥ 2
assumption ensures that GrSLn , and hence a suitable X ⊂ GrSLn , is not zero-
dimensional. �

We end this section with several questions.

Question 10.6 (i) Can one construct an explicit nonzero section ofL (or some
tensor power) on GrSLn? This would give rise to divisors on GrSLn , which
are classically known as Theta-divisors.

(ii) What can be said about the representation H0(GrSLn ,L
⊗m) of L̃G? Is it

(topologically) irreducible? Classically, these representations are impor-
tant in Kac–Moody theory and the Verlinde formula, cf. e.g. [9]. Note that
here, the representation is much bigger, as already the space of sections
on any finite-dimensional part is infinite-dimensional.

(iii) Is Pic(GrSLn ) = Z[ 1p ] · L? Note that as GrSLn is a functor on perfect

schemes, its Picard group is a Z[ 1p ]-module.
(iv) LetGbe a general split, simple and simply connected group. Is Pic(GrG) ∼=

Z[ 1p ]·LG, with a specified generatorLG?One can get somemultiple of the
primitive line bundle via pullback from SLn , and the line bundle coming
from the adjoint representation of G should be the 2h∨-th power of LG,
where h∨ is the dual Coxeter number. E.g., if G = E8, the primitive
line bundle should be a 60-th root of the line bundle coming from the
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adjoint representation of E8. Faltings [16], constructed the primitive line
bundle by constructing natural divisors (on the corresponding affine flag
variety), related to orbits underG(k[t−1]) in the equal characteristic case;
this approach seems to break down in mixed characteristic.

(v) Steinberg’s extension exists for a general split, simple and simply con-
nected groupG, cf. e.g. [5]. Can one compare it with the central extension
of LG corresponding to the primitive line bundle?

(vi) Is there a finite-type structure on GrSLn , of some sort? Presumably, such
a structure would give rise to a subrepresentation of H0(GrSLn ,L

⊗m), so
properties of this representation (such as irreducibility) may be relevant
to this question.

11 h-descent for the derived category of quasi-coherent complexes

In this section, we investigate quasi-coherent sheaf theory on perfect schemes
more thoroughly; these results complement those in Sect. 4 by extending them
to the derived category (and, in fact, give new proofs of the results in Sect. 4
that do not rely on projective methods like the ones in Lemma 4.6), but are not
used elsewhere in the paper. For convenience, we define:

Definition 11.1 Theh-topologyonPerf is the topologygenerated bydeclaring
perfectly finitely presented v-covers to be covers; thus, the perfection of an
h-cover in Sch/Fp gives an h-cover in Perf, and any h-cover in Perf is of this
form, up to refinements (by Lemmas 2.12 and 3.12).

First, recall the warning in Remark 4.3: it is difficult to extend the h-descent
results for vector bundles in Perf to a larger class of quasi-coherent sheaves,
as even flat quasi-coherent sheaves fail h-descent. Nevertheless, it turns out
that this problem is specific to the abelian world, and disappears if we pass
directly to the derived category. More precisely, in the language of [33], one
has the following descent results:

Theorem 11.2 Regard Dqc(−), Perf(−), etc. as presheaves of spaces on Perf .
Then:

(1) The functor X 	→ Dqc(X) gives an h-sheaf of spaces on Perf .
(2) The functor X 	→ Perf(X) gives a hypercomplete20 v-sheaf of

spaces on Perf . The same applies to Perf(Wn(X)), Perf(W (X)) and
Perf(W (X) on X).

20 The notion of a hypercomplete sheaf is specific to working in the ∞-categorical setting.
Roughly speaking, a sheaf in the ∞-categorical setup is only required to satisfy descent along
Cech covers, while a hypersheaf is required to satisfy descent along hypercovers. If the sheaf
takes on n-truncated values for some finite integer n, then the notions coincide.
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(3) Let Perffp ⊂ Perf be the subcategory of all objects, and only perfectly
finitely presented morphisms; this still carries the h-topology. The asso-
ciation X 	→ Db

qc(X) is functorial in X ∈ Perffp, and defines an h-sheaf.
(4) Let k be a perfect field, or more generally the perfection of a regular Fp-

algebra of finite Krull dimension, and give Perffp/k the induced h-topology.

Then the functor X 	→ Dqc(X) is a hypercomplete h-sheaf on Perffp/k .

Remark 11.3 In Theorem 11.2 (4), the same result follows formally if k is the
perfection of an algebra R0 which can be written as a quotient of a regular Fp-
algebra of finite Krull dimension. Rings with this property include noetherian
F-finite rings (by [17, Remark 13.6]), and complete noetherian local rings (by
the Cohen structure theorem).

Remark 11.4 Theorem 11.2 (2) is a close analogue of h-descent for perfect
complexes in the setting of derived schemes (see [25] aswell as Theorem 11.12
below); here the h-topology on derived schemes is defined by passing to
underlying classical schemes. However, the result above is stronger: in the
derived setting, the functor X 	→ Perf(X) does not give a hypercomplete
sheaf. Indeed, if X is any derived scheme with classical truncation τ(X), then
the constant simplicial derived schemewith value τ(X) is a h-hypercover of X ,
but Perf(X) �= Perf(τ (X)) unless X is classical. In fact, even if X is classical,
but not reduced, then the same argument applies to Xred ↪→ X .

Remark 11.5 Theorem 11.2 (4) gives a fully faithful inclusion Db
qc(X) ⊂

Db(Perffp/X,h,O) for any X ∈ Perffp/k . This leads to a new numerical invariant

of bounded complexes K ∈ Db
qc(X) as follows: define the h-amplitude of

such a K to be the amplitude of K ∈ Db(Perffp/X,h,O). For example, any flat
quasi-coherent OX -module has h-amplitude 0. On the other hand, there exist
non-discrete complexes in Db

qc(X) with h-amplitude 0: the complex Rj∗OU
in Remark 4.3 has h-amplitude 0 as it becomes a flat quasi-coherent module
after an h-cover. It might be interesting to study this invariant further in the
context of local algebra.

The proof of Theorem 11.2 takes up the rest of Sect. 11. We begin in
Sect. 11.1 by proving that any perfect simplicial commutative ring is discrete.
In Sect. 11.2, we study a property of maps of E∞-rings singled out recently
by Akhil Mathew; the key result here is Proposition 11.25, which shows that
h-covers give descendable maps on cohomology (there is also a partial con-
verse in Theorem 11.26). The results in Sects. 11.1 and 11.2 are then applied
in Sect. 11.3 to prove Theorems 11.2 (1)–(3). Theorem 11.2 (4) is then estab-
lished in Sect. 11.4; the key result here is Proposition 11.31: perfectly finitely
presented rings have finite global dimension. Finally, in Sect. 11.5, we use the
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discreteness of perfect simplicial commutative rings proven in Sect. 11.1 to
improve and reprove an h-descent theorem for Witt vector cohomology from
[4].

11.1 Discreteness of perfect simplicial commutative rings

Wework in the setting of derived algebraic geometry given by simplicial com-
mutative rings over Fp. Note that any such ring carries a canonical Frobenius
endomorphism, so it makes sense to talk about perfect simplicial commutative
Fp-algebras. Our basic observation is that Frobenius kills higher homotopy:

Proposition 11.6 If A is perfect simplicial commtuative Fp-algebra, then A
is discrete.

Proof Fix an integer i > 0, and set Ai = SymFp
(Fp[i]). As an element of

πi (A) is induced from the canonical element in πi (Ai ) along a map Ai → A,
it suffices to show that Frob kills πi (Ai ). For i = 1, we can write this ring
as Fp ⊗L

Fp[x] Fp, which allows us to identify π1(A1) � (x)/(x2) via a stan-
dard resolution. It is then clear that Frob kills π1(A1). In general, we proceed
by induction using the formula Ai+1 = Fp ⊗L

Ai
Fp to get an identification

πi+1(Ai+1) � πi+1(Fp ×Ai Fp) � πi (Ai ) that is compatible with Frobenius.
�

Remark 11.7 The analogous cosimplicial statement is false: if X is an ordi-
nary elliptic curve over Fp and Y = Xperf , then R�(Y,OY ) is a non-discrete
complex that can be represented by a cosimplicial perfect Fp-algebra. Indeed,
the ordinarity ensures that H1(Y,OY ) �= 0, while the desired cosimplicial pre-
sentation can be obtained via any Cech complex associated to an affine open
cover.

Remark 11.8 Proposition 11.6 can also be deduced from the following more
general and more precise assertion, pointed out by Gabber: if A is a simplicial
commutative ring, then the multiplication m : A× A → A induces the 0 map
on πi for i > 0. Gabber suggested an explicit simplicial proof, but we give a
different argument here. To show this statement for all A, it is enough to check
the universal case A = Sym(K ) for K = (Z ⊕ Z)[i] with i > 0. For any
(free) simplicial abelian group K , there is a natural commutative diagram (of
simplicial sets)

K × K K ⊗Z K

Sym(K ) × Sym(K ) Sym(K ) ⊗Z Sym(K ) Sym(K )
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with the composite K × K → Sym(K ) being induced by the multiplication
map. For K = (Z⊕Z)[i] with i > 0, one has K ⊗Z K = Z4[2i], so πi (K ⊗Z
K ) = 0. The diagram then shows that the multiplication map A × A → A
induces the 0 map πi (K × K ) � πi (A × A) → πi (A), which proves the
claim.

Passage to the perfection makes sense in the world of simplicial commu-
tative Fp-algebras, and is local for the étale topology. Consequently, there is
a perfection functor X 	→ Xperf on derived Fp-schemes. The previous result
then translates to:

Corollary 11.9 Let X be a derived Fp-scheme with underlying scheme
τ(X) ↪→ X. Then τ(X)perf � Xperf . In particular, Xperf is classical.

Proof The dual statement is that A → π0(A) is an isomorphism after per-
fection for any simplicial commutative Fp-algebra A, which was shown in
Proposition 11.6. �

One consequence of the discreteness of perfect simplicial commutative Fp-
algebras is the coincidence of homotopy-colimits with naive ones:

Lemma 11.10 The collection of perfect rings is closed under colimits in all
Fp-algebras. Moreover, any such colimit is automatically a homotopy-colimit
in simplicial commutative Fp-algebras. In particular, the perfection functor
A 	→ Aperf is cocontinuous on simplicial commutative Fp-algebras.

Proof Filtered colimits are easy to handle in all statements, so we reduce to
cofibre coproducts. So say C ← A → B is a diagram of Fp-algebras. For the
first statement, we must show that B⊗A C is perfect if A, B, andC are so. The
Frobeniusmap on the tensor product is induced by passage to colimits from the
Frobenius endomorphism of the diagram C ← A → B, so the claim is clear.
For the second statement, by the same argument, the simplicial commutative
A-algebra B ⊗L

A C is perfect, and hence discrete by Proposition 11.6. The last
statement follows easily from these considerations. �
Remark 11.11 This fails if B and C are perfect, but A is not. For example, set
A to be an imperfect field, and B = C = Aperf . Then B ⊗A C has non-trivial
nilpotents.

11.2 Descendable maps of E∞-rings

The goal of this section21 is to prove the following theorem, which gives
derived h-descent for quasi-coherent complexes on noetherian schemes.

21 In this section, we depart from our standing conventions, and go “fully” derived. Thus,
for an E∞-ring A (which could be a discrete ring), the notation Mod(A) refers to the stable
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Theorem 11.12 Let f : X → S be an h-cover of noetherian schemes with
derived Cech nerve X•/Y . Then Dqc(S) � lim Dqc(X•/S).

Remark 11.13 Theorem 11.12 applies to all quasi-coherent complexes, and
thus specializes to a similar descent result for perfect or pseudo-coherent
complexes (since the property of being perfect or pseudo-coherent can be
detected22 after pullback along an h-cover for noetherian schemes); the
latter was proven earlier in [25, §4] for all noetherian derived schemes.
However, Theorem 11.12 does not extend to derived schemes. Indeed, let
A = SymC(C[2]). Then A → π0(A) gives an h-cover of derived schemes.
If one had derived h-descent in this setting, then the base change functor
D(A) → D(π0(A)) would be conservative. However, K = A[u−1], where
u ∈ π2(A) is the generator, satisfies: (a) K �= 0, and (b) K ⊗A π0(A) = 0.

To prove this derived h-descent result for complexes, we will use a property
ofmorphisms of rings recently singled out byMathew [38] that implies descent
for complexes. In fact, it is this property, and not Theorem 11.12, that plays
an important role in the sequel.

Fix a stable homotopy theory C in the sense of [38], i.e., C is a presentable
symmetric monoidal stable ∞-category where the ⊗-product commutes with
colimits in each variable; themain relevant example for us will beC = Dqc(X)

for a qcqs scheme X . Mathew studied the following class of maps in C:

Definition 11.14 A map A → B in CAlg(C) is descendable if {A} →
{Tot≤n B•} is a pro-isomorphism of A-modules, where B• is the derived Cech
nerve of A → B.

A list of examples coming up in algebraic geometry is given in Lemma11.23
below (see also Example 11.19). Before studying this notion further, we record
the main consequence of interest to us.

Theorem 11.15 ([38, Proposition 3.21]) If C is a stable homotopy theory,
and A → B is a descendable map in CAlg(C) with Cech nerve B•, then
A � R lim B•, andModC(A) � limModC(B•).

Remark 11.16 Assume C = D(Ab) is the derived category of abelian groups.
Fix a map A → B of discrete rings with Cech nerve B•. If A → B is
descendable, then A � R lim B• by Theorem 11.15. It is tempting to guess

Footnote 21 continued
∞-category of A-module spectra (and coincideswith the usual derived category D(A)when A is
discrete). Likewise, all tensor products are always derived. The one exception is that “schemes”
refers to ordinary schemes; when we need derived schemes, we say so.
22 For detection of pseudo-coherence after passage to an h-cover, one argues as in Lemma 11.30
below.
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the converse is also true. However, this is false: if A = Zp and B = Fp, then
A → B is not descendable (as it is not so after inverting p), but A � R lim B•
by [13, Theorem 4.4].

In order to use this notion, we record some basic stability properties.

Lemma 11.17 Let A → B → C be composable maps in CAlg(C).

(1) If A → B and B → C are descendable, so is A → C.
(2) If A → C is descendable, so is A → B.

Proof This is [38, Proposition 3.23]. �
In applications, it will be useful to use the following more quantitative

version:

Definition 11.18 A map A → B in CAlg(C) is descendable of index ≤ m if
F⊗Am → A is null-homotopic, where F is the fibre of A → B.

We give one example first.

Example 11.19 Let A = Z[a, b, c, d]/(ab+ cd − 1), and B = A[ 1a ] × A[1c ].
Then A → B is faithfully flat, so Q:=B/A is flat. Let F � Q[−1] be the
fibre of A → B, so F⊗m = Q⊗m[−m] is concentrated in degree m. Thus, the
map F⊗m → A is classified by an element of ExtmA(Q⊗m, A). As A is regular
(it is smooth over Z) of dimension 4, it has global dimension 4, so the relevant
Ext-group vanishes for m ≥ 5, and hence A → B is descendable of index
≤ 5. More generally, the same argument shows that if A is any Gorenstein
(noetherian) ring of dimension d, and A → B is faithfully flat, then A → B
is descendable of index ≤ d + 1: indeed, A has injective dimension d as an
A-module.

We begin our analysis by observing that this notion is compatible with the
previous one:

Lemma 11.20 A map A → B in CAlg(C) is descendable if and only if it
is descendable of index ≤ m for some m ≥ 0. Moreover, any lax-monoidal
cocontinuous functor preserves the property of being descendable of index
≤ m.

Proof Let F be the fibre of A → B. Assume first that A → B is descendable.
Then the map F → A becomes null-homotopic after applying − ⊗A B. By
[38, Proposition 3.26], it follows that the m-fold composition

F⊗Am → F⊗Am−1 → · · · → F → A

is null-homotopic for some large m, so A → B is descendable of index ≤ m.
Conversely, assume A → B is descendable of index ≤ m, so F⊗Am → A
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is null-homotopic. If B• is the Cech nerve of A → B, then the fibre of the
map {A} → {Tot≤n B•} of pro-objects is identified with {F⊗An}, where the
transition maps multiply the first two factors; see [13, Corollary 6.7]. The
assumption that F⊗Am → A is null-homotopic then implies that this fibre is
pro-zero: the m-fold transition map F⊗A(m+i) → F⊗Ai is null-homotopic for
each i ∈ N; this proves the claim.

Let � : C → D be a lax-monoidal cocontinuous functor between stable
homotopy theories, and assume that A → B in CAlg(C) is descendable of
index ≤ m; so, if F is the fibre, then F⊗Am → A is null-homotopic in ModA.
As � is exact, �(F) is the fibre of �(A) → �(B). As � is lax-monoidal and
cocontinuous, one checks, using the bar-resolution construction of the tensor
product of A-modules, that the induced functor ModA → Mod�(A) is also
lax-monoidal. This gives, for each i ∈ N, natural maps

�(F)⊗�(A)i → �(F⊗Ai )

whose composition with the canonical map �(F⊗Ai ) → �(A) is the canon-
ical map �(F)⊗�(A)i → �(A). Specializing to i = m then shows that the
canonical map �(F)⊗�(A)m → �(A) is null-homotopic, proving the claim. �

An arbitrary filtered colimit of descendable maps is not descendable in
general:

Example 11.21 If R is a discrete ring and I ⊂ R is a locally nilpotent ideal
that is not nilpotent (for example: R = C[x1, x2, x3, . . . ]/(x1, x22 , x33 , . . . ),
and I = (x1, x2, x3, . . . )), then R → R/I is not descendable: for any m,
the multiplication map I⊗m → R has image Im , and is thus non-zero by
hypothesis. However, we can write R/I = colim R/J as a filtered colimit
of R-algebras indexed by finitely generated subideals J ⊂ I . Each such J
is nilpotent, so R → R/J is descendable (by Lemma 11.23 below). Thus,
descendability is not stable under filtered colimits.

Nevertheless, it turns out that filtered colimits of descendable maps of
bounded index are descendable, provided the indexing category is not too
large:

Lemma 11.22 Let I be a filtered category such that inverse limits over I opp

have finite cohomological dimension (in spectra). Fix A ∈ CAlg(C), and an
I -indexed system {Ai } in CAlg(C)A/. If each A → Ai is descendable of index
≤ m for some m independent of i , then A → A∞ = colim Ai is descendable.

Proof We give a proof when I = N (which is the only relevant case in the
sequel), leaving the generalization to general I to the reader. Let Fi be the
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fibre of A → Ai , so F⊗m
i → A is null-homotopic for all i . Let F = colim Fi

be the fibre of A → A∞. Then one knows

Map(F, A) � limMap(Fi , A),

which gives a short exact sequence

0 → R1 lim π1Map(Fi , A) → π0Map(F, A) → lim π0(Map(Fi , A)) → 0.

The assumption tells us that the map F⊗m → A lies in the subspace

R1 lim π1Map(F⊗m
i , A) ⊂ π0Map(F⊗m, A).

It remains to observe that the map on π0 induced by the obvious map

Map(F⊗m, A) × Map(F⊗m, A) → Map(F⊗2m, A)

kills the R1 lim terms (as it pairs them to an R2 lim, which always vanishes
for N-indexed towers). �

We now collect some examples of descendable maps from algebraic geom-
etry:

Lemma 11.23 Fix a map f : X → Y of qcqs schemes.

(1) If { ji : Ui → X} is a finite open cover of X by qc opens, then OX →∏
i R ji,∗OUi is descendable in Dqc(X).

(2) If f is fppf, then OY → R f∗OX is descendable in Dqc(Y ).
(3) If I ⊂ OX is nilpotent and quasi-coherent, thenOX → OX/I is descend-

able in Dqc(X).
(4) IfA → B is descendable in Dqc(X), then R f∗A → R f∗B is descendable

in Dqc(Y ).

Proof For (1), we may write Dqc(X) as a finite limit of categories of the form
Dqc(Ui1 ∩ ... ∩ Uin ). By [38, Proposition 3.24], we reduce to the case where
X = Ui for some i , whence the claim is clear by Lemma 11.17 (2). For (2),
using (1), as lax-monoidal cocontinuous functors preserve descendability, we
reduce to the case where X and Y are affine, and then it follows from [38,
Proposition 3.31]; (3) similarly follows from [38, Proposition 3.33]. (4) again
follows from the preservation of descendability under lax-monoidal cocontin-
uous functors. �
Remark 11.24 Mathew shows that if A → B is a faithfully flat map of discrete
rings, and B is countably generated as an A-algebra, then A → B is descend-
able. We do not know if the countable generation assumption is necessary.
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The main “new” class of descendable morphisms relevant for us is:

Proposition 11.25 Let f : X → Y be an h-cover of noetherian schemes.
Then OY → R f∗OX is descendable.

The proof below is adapted from an argument due to Akhil Mathew for the
case of finite morphisms; our previous argument relied on almost mathematics
and was restricted to perfect schemes.

Proof We freely use Lemma 11.17 (2) to replace f by further covers when
necessary. Using Lemma 11.23, it is enough to handle the case where f is
proper surjective. Assume that f is of inductive level ≤ n for some n ≥ 0
(by Proposition 2.6). We prove the claim by induction on n. If n = 0, then,
after refinements, f factors as a composition of an fppf map and a nilpotent
closed immersion, so the claim follows from Lemma 11.23 (2), (3), (4) and
Lemma 11.17 (1). In general, after refinements, we have a factorization X →
X ′ → Y ′ → Y where X → X ′ is proper and fppf, Y ′ → Y is a nilpotent
closed immersion, and X ′ → Y ′ is an isomorphism outside a closed subset
Z ′ ⊂ Y ′ such that X ′ ×Y ′ Z ′ → Z ′ is of inductive level ≤ n − 1. By the
argument used in the n = 0 case, it is enough to prove the statement for
X ′ → Y ′. We now rename X = X ′, Y = Y ′, and Z = Z ′ for convenience. By
Lemma 11.23 (1), (3) and (4), the property of descendability can be checked
locally on Y , so wemay assume Y = Spec(A) is affine.WriteU = Y − Z , and
let I ⊂ A be an ideal defining the closed subset Z ⊂ Y . Then the fibre F of
OY → R f∗OX is aOY /I n-complex for n � 0; herewe use that F has coherent
cohomology groups, is bounded, and is trivial over Spec(A) − V (I ) by flat
base change for coherent cohomology. After replacing I with this power, we
assume F admits the structure of an OY /I -complex. By induction, we know
that OZ → R f∗O f −1Z is descendable. So there is some k � 0 such that the
composite F⊗k → OY → OZ is null-homotopic, and hence that F⊗k → OY
factors as F⊗k → I → OY . Then the canonical map F⊗k+1 → OY factors
as

F⊗k+1 � F⊗k ⊗ F
a→ I ⊗ F

b→ F
c→ OY

where a is induced from the previous factorization, b is the multiplication
map, and c is the canonical map. The map b is null-homotopic as F admits an
OY /I -structure, so the above composition is also null-homotopic. �
Proof of Theorem 11.12 We first record some generalities. Let F:=Dqc(−),
viewed as a presheaf of spaces on derived schemes. In this proof, we will say
that a map f : X → Y of (always qcqs) derived schemes is good if f is of
universal F-descent, i.e., that F(Y ) � limF(X•/Y ), and the same is true after
arbitrary base change on Y . Then, by Lemma 2.10, we have: (a) the class of
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goodmaps is stable under composition and base change, and (b) if a composite
X → Y → Z is good, then so is Y → Z . Moreover, if f : X → Y is an affine
map with OY → R f∗OX is descendable, then f is good by Theorem 11.15.

Now let f : X → S be an h-cover of noetherian schemes. We must check
that f is good. This can be checked locally on S, so we may assume that
S is affine. Choose a Zariski cover j : U → X such that U is affine, and
set g : U → S. Then g is affine and an h-cover of noetherian schemes, so
OS → Rg∗OU is descendable, and thus g is good by the last sentence of the
previous paragraph. It then follows that f is good, proving the claim. �

Using Proposition 11.25, one can classify descendable maps in cases of
interest in algebraic geometry:

Theorem 11.26 Let A → B be a finitely presentedmap of noetherian discrete
rings. Then Spec(B) → Spec(A) is an h-cover if and only if A → B is
descendable.

Proof The “only if” direction follows from Proposition 11.25. Conversely,
assume that A → B is a descendable map of connective E∞-rings. We will
check that Spec(B) → Spec(A) is a topological quotient; this suffices to
prove the claim by the well-known (see [54, §3]) characterization of h-covers
of noetherian schemes as universal topological quotients (and the stability
of descendability under base change). To prove this, note that, by [8, Theo-
rem1.10], the poset of quasi-compact open subsets ofSpec(A) canbe identified
with the ∞-category CA of eventually connective compact localizations of
A in CAlg(D(A)), i.e., CA ⊂ CAlg(D(A)) is the full subcategory of those
C which are bounded above as A-complexes, compact as commutative A-
algebras, and satisfy C ⊗A C � C via the multiplication map. If we write
B• for the Cech nerve of A → B, then descendability gives an identifica-
tion D(A) � lim D(B•). This equivalence is symmetric monoidal, and thus
induces CAlg(D(A)) � lim CAlg(D(B•)). It is easy to see23 that this iden-
tification induces an equivalence CA � lim CB• . Now say V ⊂ Spec(A)

is a subset whose inverse image U ⊂ Spec(B) is a quasi-compact open;
we must check that V is a quasi-compact open. By construction, we see
that p−1

1 (U ) = p−1
2 (U ) as quasi-compact open subsets of Spec(B ⊗A B),

where p1, p2 : Spec(B ⊗A B) → Spec(B) are the two projection maps. But
then U defines an object of lim CB• , which thus comes from one in CA, i.e.,

23 The only non-trivial bit is to check descent of compactness, i.e., show: given C ∈
CAlg(D(A)) satisfying C ⊗A C � C , if C ⊗A B is compact in CAlg(D(B)), then C is
compact in CAlg(D(A)). For this, one first notes that the functor MapA(C, −) on CAlg(D(A))

takes on discrete values sinceC ⊗A C � C : in fact, the values are always contractible or empty.
The same also applies to C ⊗A Bi ∈ CAlg(D(Bi )) for all i . The descent of compactness now
follows as totalization of cosimplicial n-truncated spaces commute with filtered colimits for
any finite n.

123



Projectivity of the Witt vector affine Grassmannian 399

U is the inverse image of some quasi-compact open W ⊂ Spec(A). Since
Spec(B) → Spec(A) is surjective, it follows that W = V , so V is a quasi-
compact open subset. �

11.3 h-descent for complexes

We now discuss quasi-coherent complexes in the h-topology on perfect
schemes; here the latter is defined as the topology generated by perfections of
fppf covers and finitely presented proper surjections. The key descent result
is:

Theorem 11.27 Let f : X → Y be an h-cover in Perf . Then OY → R f∗OX
is descendable.

Proof By approximation, devissage, and (derived) base change, it is enough
to prove the following: if f0 : X0 → Y0 is either an fppf or a proper surjective
map of noetherian schemes, then the map f : X → Y on perfections induces
a descendable map OY → R f∗OX .

For the fppf case: we know that OY0 → R f0,∗OY0 is descendable of some
index ≤ m by Lemma 11.23 (2). Write Xn → X0 and Yn → Y0 for the n-fold
Frobenius maps, and let gn : Wn:=Xn ×Yn Y → Y be the base change. Then
we know that X � limWn . Now each OY → Rgn,∗OWn is descendable of
index ≤ m by base change. Since m is independent of n, the claim follows
from Lemma 11.22.

For the proper case, one argues exactly as in the fppf case using Proposi-
tion 11.25 instead of Lemma 11.23 (2); the only difference is that the fibre
product defining the scheme Wn appearing above must be replaced with the
derived fibre product (to get base change for the index of descendability); by
Proposition 11.6, the limit limWn is still simply X , so the previous argument
goes through. �

We can now prove most of Theorem 11.2:

Proof of Theorem 11.2 (1), (2) Part (1) is proven exactly as Theorem 11.12
using Theorem 11.27 instead of Proposition 11.25.

For (2), first note the functor X 	→ Perf(X) is an h-sheaf of spaces by (1).
Indeed, if f : X → S is an h-cover in Perf with Cech nerve X•/S → S, then
(1) gives Dqc(S) � lim Dqc(X•/S). Here the limit on the right is also a limit
of symmetric monoidal ∞-categories, so passage to the dualizable objects
shows Perf(S) � lim Perf(X•/S), i.e., Perf(−) is an h-sheaf of spaces. Now,
for integers a ≤ b and a scheme X , let Perf [a,b](X) ⊂ Perf(X) be the full
∞-category spanned by perfect complexes with Tor-amplitude contained in
[a, b], i.e., those perfect complexes K that can, locally on X , be represented
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by a complex of finite projective modules located in degrees between a and b.
Then one can check:

(1) Perf [a,b](−) gives a presheaf of (b−a)-truncated spaces on Perf: for any
X ∈ Perf and any two K , L ∈ Perf [a,b](X),

Map(K , L):=τ≤0RHom(K , L) � τ≤0R�(X, K∨ ⊗ L),

and the latter space is (b − a)-truncated since K∨ ⊗ L ∈ D≥−b+a
qc (X).

(2) Perf(−) = colim Perf [−n,n](−) as presheaves on Perf.
(3) Membership in Perf [a,b](X) ⊂ Perf(X) can be detected v-locally. In

fact, one has a stronger statement: if K ∈ Perf(A) for a ring A, then
K ∈ Perf [a,b](A) provided K ⊗A k ∈ D[a,b](k) for every residue field
k of A. To see this, one can reduce to A being noetherian (by (4) below)
and local, and then use minimal free resolutions.

(4) Both Perf(−) and Perf [a,b](−) commute with filtered colimits of rings.

Since Perf(−) is an h-sheaf on Perf, it follows from (a) and (c) that Perf[a,b](−)

gives an h-sheaf of truncated spaces on Perf as well. By (d) and Lemma 2.12, it
follows that Perf [a,b](−) is a v-sheaf of truncated spaces; herewe use that total-
izations of truncated cosimplicial spaces commuteswithfiltered colimits.Also,
by truncatedness, this v-sheaf is automatically hypercomplete. In other words,
if X• → S is a v-hypercover in Perf, then Perf [a,b](S) � lim Perf [a,b](X•).
By working locally on S and calculating Map(OS,OS) using this equiv-
alence, it follows that Perf(S) → lim Perf(X•) is fully faithful as well.
Finally, if K • ∈ lim Perf(X•), then there exist integers a ≤ b such that
K 0 ∈ Perf [a,b](X0) ⊂ Perf(X0). But then K i ∈ Perf [a,b](Xi ) for each i since
K i is a pullback of K 0 along some simplicial structure map Xi → X0. Thus,
K ∈ lim Perf [a,b](X•) � Perf [a,b](S) ⊂ Perf(S); this proves (2) for Perf(X).
It is then easy to deduce the same result for Perf(Wn(X)), Perf(W (X)) and
Perf(W (X) on X). �

Weend by noting a corollary (or, really, an equivalent form) of this h-descent
result, extending Lemma 4.6 to the derived category:

Corollary 11.28 Let f : X → Y be a proper surjective finitely presented
map in Sch/Fp which is an isomorphism over a quasi-compact open U ⊂ Y . If
Z ⊂ Y is the complement of U and E := f −1(Z) ⊂ X, then pullback induces
an equivalence of ∞-categories

Dqc(Yperf) � Dqc(Xperf) ×Dqc(Eperf ) Dqc(Zperf),

and thus a similar statement for the corresponding ∞-category of perfect
complexes.
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Proof This follows from Theorem 11.2 (1) and Theorem 2.9 applied to
F(X) = Dqc(Xperf); the statement about perfect complexes follows immedi-
ately by passage to dualizable objects. �
Proof of Theorem 11.2 (3) Next, we establish part (3) of Theorem 11.2,
i.e. X 	→ Db

qc(X) is functorial in X ∈ Perffp, and gives an h-sheaf of spaces.
Note that the functoriality is a bit surprising from the perspective of “classi-
cal” algebraic geometry: bounded complexes often become unbounded after
pullback along non-flat maps. This phenomenon does not occur in the perfect
setting thanks to the following result. �
Proposition 11.29 Let R → S be a perfectly finitely presented map of perfect
Fp-algebras. Then S is of finite Tor-dimension over R.

Proof Wewill show that if S is the perfection of R[X1, . . . , Xn]/( f1, . . . , fm),
then the Tor-dimension of S over R is bounded by m. To see this, we may
replace R by the perfection of R[X1, . . . , Xn] to assume n = 0. Moreover, by
induction, we may assume that m = 1. Then S = R/ f 1/p

∞
R, so it is enough

to see that f 1/p
∞
R is flat. But the proof of Lemma 3.16 shows that

f 1/p
∞
R = colim

f 1/pn−1/pn+1
R,

which is a filtered colimit of flat R-modules, and thus flat. �
This directly implies that X 	→ Db

qc(X) is functorial in X ∈ Perffp. To see
that it is an h-sheaf, it is enough to observe that we already have h-descent for
Dqc(X), and that the following lemma holds true.

Lemma 11.30 Let f : X → Y be an h-cover in Perf . Given K ∈ Dqc(Y ), if
f ∗K ∈ Dqc(X) is bounded, so is K .

Proof This is clear if f is the perfection of an fppf map. Thus, by devissage,
it is enough to prove this for f being the perfection of a proper surjective
map of inductive level ≤ n. We work by induction on n. If n = 0, then, after
refinements, f is the perfection of an fppf map, so the claim is clear. For
general n, we thus reduce to the case where f is perfectly proper surjective,
an isomorphism outside a closed subset Z ⊂ Y with preimage E ⊂ X , and
the restriction fZ : E → Z of f is of inductive level ≤ n − 1. Then we have
a pullback diagram

OY R f∗OX

OZ R f∗OE .
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Tensoring this diagram with K , and using the projection formula, gives a
pullback diagram

K R f∗( f ∗K )

K |Z R f∗( f ∗K |E ) � R fZ ,∗ f ∗
Z (K |Z ).

Now the terms on the right are bounded since f ∗K is bounded (as derived
pushforward along qcqs maps has finite cohomological dimension). By induc-
tion applied to fZ , the complex K |Z is also bounded. The preceding square
then shows that K is bounded. �

11.4 h-hyperdescent for complexes

In this section, we establish hyperdescent for quasi-coherent complexes, i.e.,
prove Theorem 11.2 (4). So fix a ring k that is the perfection of a regular
Fp-algebra of finite Krull dimension. We start by observing a general result
on finite global dimension in this setup.

Proposition 11.31 Let R be a perfectly finitely presented k-algebra. Then R
has finite global dimension, i.e., there exists some positive integer N such that
each R-module has projective dimension ≤ N.

Proof Choose a perfect polynomial ring P over k equipped with a surjection
P → R. Then R ⊗L

P R � R by Lemma 11.10. Thus, for any R-module M ,
we have

M � M ⊗L
R (R ⊗L

P R) � M ⊗L
P R.

Thus, it suffices to prove the result for P ,which is the perfection of a regularFp-
algebra P0 of finite Krull dimension. Let d = dim(P). Write P0 → Pn for the
n-fold Frobenius map, so there are natural P0-algebra maps Pn → Pn+1 given
by Frobenius, and P � colim Pn . Now, for any P-module M , we can regard
M as a Pn-module via restriction along Pn → P , and write Fn:=M ⊗Pn P for
its base change back to P . Then we have natural maps Fn → M compatibly
in n, and this leads to

M � colim Fn.

Now each Fn has projective dimension ≤ d since Pn is a regular ring of
dimension d, and Pn → P is flat. Writing an N-indexed colimit as the cone
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of a map between direct sums then shows that M has projective dimension
≤ d + 1, so setting N = d + 1 solves the problem. �
Remark 11.32 Proposition 11.31 implies that for any X ∈ Perffp/k , each K ∈
Db
qc(X) has projective amplitude contained in [a, b] for suitable integers a ≤

b, i.e., K can be represented, on affines Spec(A) ⊂ X , by a complex E• of
projective A-modules with Ei = 0 for i /∈ [a, b] (see [52, Tag 0A5M]).

Remark 11.33 Proposition 11.31 implies that for any perfectly finitely pre-
sented k-algebra R, the Tor-dimension of any R-module is bounded above by
some fixed integer N . We will show24 that, in fact, one can choose N = 2d,
where d:= dim(R). We work by induction on d. We can assume that R is the
perfection of a noetherian complete local ring. If d = 0, there is nothing to
prove as R is a product of fields. If d > 0, choose a Noether normalization of
R, i.e., a finite injective map of noetherian rings P0 → R0 with P0 regular,
and R = R0,perf ; set P = P0,perf . Then it is easy to see that the Tor-dimension
of any P-module is bounded above by d = dim(P0) = dim(R). Moreover, a
standard argument25 implies that there exists some non-zero f ∈ P such that

P → R is almost finite étale with respect to the ideal I = ( f
1

p∞ ) ⊂ P; note
that the ideal I is flat and satisfies I 2 = I , so almost mathematics ([21]) with
respect to I makes sense. In particular, the multiplication map R ⊗L

P R → R
is an almost direct summand as a R ⊗L

P R-complex by almost étaleness. (In
fact, R ⊗L

P R � R ⊗P R by Lemma 11.10.) Given an R-module M , we may
view M as an R ⊗L

P R-module via the multiplication map, and M ⊗L
P R as an

R ⊗L
P R-complex in the natural way; applying

(
M ⊗L

P R
) ⊗L

R⊗L
P R

(−) to the

preceding retraction shows that M is an almost direct summand of M ⊗L
P R

as an R ⊗L
P R-complex. Using the second factor inclusion R ↪→ R ⊗L

P R,
this implies that any R-module M is an almost direct summand of a complex
of the form N ⊗L

P R, where N is some P-module, and the R-module struc-
ture comes from the second factor. In particular, since the Tor-dimension of
N is bounded above by d, the same is true for M in the almost world. To
pass back to the non-almost world, set J = I R ⊂ R, so both I and J are
flat ideals in the corresponding rings; here we use the proof of Lemma 3.16
to get the flatness of J . The preceding almost vanishing (and the flatness

24 An earlier version of this preprint asserted that one may choose N = d . This is false:
if R = k[x, y]/(xy)perf , then d = 1, but TorR2 (R/(x), R/(y)) �= 0. We thank Gabber for
pointing out the mistake, the previous example, and the correct bound. Gabber has also pointed
out that the global dimension N in Proposition 11.31 is ≤ 2d + 1, where equality is obtained
in some examples; we do not prove that here.
25 Indeed, after possibly adjusting our initial choice of P0 and R0, the map P0 → R0 is
generically étale, so there exist some non-zero f ∈ P0 such that P0 → R0 is finite étale after
inverting f . One then checks that such an f does the job.
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of J ) implies that I ⊗L
P M � J ⊗L

R M � J ⊗R M has Tor-dimension
≤ d; here we use that I ⊗L

P (−) kills almost zero objects in D(P) since
I ⊗L

P P/I � I ⊗P P/I � I/I 2 = 0. We now have canonical short exact
sequences

0 → TorR1 (R/J, M) → J ⊗R M → JM → 0

and

0 → JM → M → M/JM → 0.

By induction, both M/JM and TorR1 (R/J, M) have Tor-dimension ≤ 2d −
2 over R/J . Now R/J has Tor-dimension ≤ 1 over R as J is R-flat; the
same then holds for any flat R/J -module by Lazard’s theorem. By taking
flat resolutions, it follows that both M/JM and TorR1 (R/J, M) have Tor-
dimension ≤ 2d − 1 over R. The first exact sequence then shows that JM
has Tor-dimension ≤ 2d over R; the second one then implies that M has
Tor-dimension ≤ 2d as well.

Remark 11.34 The homological properties of perfections of noetherian Fp-
algebras established above have been investigated previously in the com-
mutative algebra literature to some extent. For example, [1, Theorem 3.1]
establishes that reduced quotients of perfectly finitely presented rings have
Tor-dimension ≤ d, which can be deduced from Lemma 3.16. Likewise, [2,
Theorem 1.2] proves that such quotients which are domains have a finite res-
olution by countably generated projectives, which follows immediately from
the proof of Proposition 11.31.

Using Proposition 11.31, one can reprove Kunz’s theorem characterizing
regularity.

Corollary 11.35 (Kunz) Let R be a noetherian Fp-algebra. Then R is regular
if and only if the absolute Frobenius R → R is flat.

Proof The forward direction is well-known, and we have nothing new to offer.
Instead, we explain the converse: if Frobenius is flat, then R is regular. This
can be checked after completion at points, so we may assume R is a complete
noetherian local Fp-algebra; here we use that the hypothesis on flatness of
Frobenius passes to completions of R. By Remark 11.3, every Rperf -module
has finite Tor-dimension. The faithful flatness of R → Rperf then implies that
every R-module has finite Tor-dimension, so R is regular. �

To prove that quasi-coherent complexes give hypercomplete h-sheaves, our
basic tool will be the following:
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Lemma 11.36 Let R be the perfection of a finitely presented k-algebra. Let
M ∈ D(R), and let N • be a cosimplicial R-module such that R lim N • is
bounded. Then the natural map gives

M ⊗L
R R lim N • � R lim(M ⊗L

R N •). (2)

The proof below applies to any ring of finite global dimension.

Proof Let M = R lim τ≤i M be the Postnikov tower for M . For any K ∈
Db(R), we first observe that the canonical map

M ⊗L
R K � (

R lim τ≤i M
) ⊗L

R K → R lim(τ≤i M ⊗L
R K )

is an equivalence. Indeed, by Proposition 11.31, this reduces to the case where
K is given by a single projective R-module, which is clear (by calculating
homology of either side). Applying this observation to K = R lim N • (which
is permissible, since R lim N • is bounded by assumption), we obtain

M ⊗L
R R lim N • � R lim

(
τ≤i M ⊗L

R R lim N •). (3)

Similarly, applying this observation to K = N • shows that

M ⊗L
R N • � R lim

(
τ≤i M ⊗L

R N •) (4)

as cosimplicial A-complexes. Plugging equations (3) and (4) into the two
sides of equation (2), and commuting limits, we reduce to the case where
M = τ≤i M is bounded below. Assume first that M is, in fact, bounded. Then,
using Proposition 11.31, we reduce to the case where M is a projective R-
module, which is straightforward (via Dold–Kan). To pass to the general case,
it is enough to show that for fixed k, the maps

ai : τ≤i M ⊗L
R R lim N • → M ⊗L

R R lim N •

and

bi : R lim(τ≤i M ⊗L
R N •) → R lim(M ⊗L

R N •)

(induced by the canonical map τ≤i M → M) induce isomorphisms on Hk

for i sufficiently large. For ai , this follows by observing that the functor
− ⊗L

R R lim N • has bounded homological dimension (i.e., carries D>i (R) to
D>i−c(R) for some fixed c) by Proposition 11.31 since R lim N • is bounded
below (in fact, it is bounded). For bi , it suffices to observe that the functor
R lim(− ⊗L

R N •) has bounded homological dimension by Proposition 11.31
since each Ni is an R-module, and hence bounded below as a complex. �
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Using the previous lemma, we immediately see that quasi-coherent com-
plexes are hypercomplete:

Lemma 11.37 For any Y ∈ Perffp/k and K ∈ Dqc(Y ), the functor ( f : X →
Y ) 	→ R�(X, f ∗K ) gives a hypercomplete h-sheaf of spectra on Perffp/Y .

Proof Let f : X• → Y be an h-hypercover. We must check that pullback
induces an equivalence

R�(Y, K ) � R lim R�(X•, f ∗K ).

By Zariski hyperdescent, we may assume Y = Spec(A) and X• are all affine,
and that K corresponds to some M ∈ D(A). By the projection formula, we
are reduced to showing that

M � R lim
(
R�(X•,OX•) ⊗L

A M)

via the canonical map. This follows from Lemma 11.36 applied to N • =
R�(X•,OX•); this lemma applies because R lim N • � A (as the structure
sheaf is truncated, and hence hypercomplete) is bounded. �

In order to get effectivity of hyperdescent for quasi-coherent complexes,
it is convenient to use the following criterion for hypercompleteness (in the
special case n = −1):

Lemma 11.38 Let X be an ∞-topos. Let F → G be a map in X which is
relatively n-truncated for some integer n. If G is hypercomplete, so is F.

Proof When G = ∗, this follows from [33, Lemma 6.5.2.9]. In general, one
reduces to this case by working in the slice ∞-topos X/G (since a map in X/G

is ∞-connective if and only if its image under the forgetful functor X/G → X

is ∞-connective by [33, Proposition 6.5.1.18]). �
Hyperdescent for quasi-coherent complexes follows relatively formally

from everything so far:

Proof of Theorem 11.2 (4) Let X be the ∞-topos defined by the h-topology
on Perffp/k . Write O for the structure sheaf, viewed as a sheaf of E∞-rings

on X, i.e., the h-sheaf of E∞-rings on Perffp/k defined by X 	→ R�(X,OX ).

Note that any X ∈ Perffp/k defines a hypercomplete object of X (since it is
0-truncated); likewise, O is a hypercomplete h-sheaf of spectra since it is
valued in coconnective spectra. Now for any X ∈ Perffp/k , let G(X) be the

∞-category of hypercomplete h-sheaves of O-module spectra on Perffp/X , i.e.,
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the ∞-category of sheaves O-module spectra on the hypercompletion of X/X .
By [34, Remark 2.1.11] applied to the hypercompletion of X, one deduces
that G is itself a hypercomplete h-sheaf. Moreover, Lemma 11.37 gives a map
Dqc(X) → G(X) which is fully faithful: the right adjoint is given by the
global sections functor when X is affine, so full faithfulness again follows
from Lemma 11.37. Now, by Theorem 11.2 (1), the functor Dqc(−) is also
an h-sheaf. Thus, by varying X , we obtain a map Dqc(−) → G(−) in X

which is relatively (−1)-truncated26 (by full faithfulness), and whose target is
hypercomplete. By Lemma 11.38, it follows that Dqc(−) is a hypercomplete
h-sheaf. �
Remark 11.39 The proof of effectivity of hyperdescent given above is a bit
abstract. Concretely, one may argue as follows: if X• → Y is a h-hypercover
in Perffp/k , and K • ∈ lim Dqc(X•) is a hyperdescent datum, then K • defines a
unique hypercomplete h-sheaf L of O-module spectra on Y by the formula

(g : U → Y ) 	→ L(U ):=R�(U ×Y X•, g∗K •).

The formation of L commutes with base change, by construction. It remains
to check that L is quasi-coherent. By general nonsense and Lemma 11.37,
L|Xi � K i , and thus this restriction is quasi-coherent for all i . In particular,
for any g : U → Y that factors through X0, we know that L|U is quasi-
coherent. But then M :=L|X0 is an object of Dqc(X0) equipped with canonical
Cech descent data for the map X0 → Y (since L comes from Y ). Since the
latter is an h-cover, we finish by invoking Theorem 11.2 (1).

11.5 Descent for Witt vector cohomology

Fix a noetherian Fp-scheme S of finite Krull dimension. The next result of
Berthelot–Bloch–Esnault (see [4, Theorem 2.4 & Proposition 3.2]) identifies
a descent property for the cohomology of this sheaf on Schfp/S after inverting
p:

Theorem 11.40 The functor X 	→ R�(X,WOX )[ 1p ] is an h-sheaf of spectra
on Schfp/S.

We can improve this to a descent property where only F is inverted:

Proposition 11.41 The functor X 	→ R�(X,WOX )[ 1F ] is an h-sheaf of spec-
tra on Schfp/S.

26 This means that the fibres are either contractible or empty.
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It is convenient to use some derived algebraic geometry to establish this
result. For this, we use the following notation.

Notation 11.42 All occurrences of derived geometry in this section are meant
with respect to simplicial commutative rings. For any such derived scheme
X , write Xcl for its underlying classical scheme. Fibre products of ordinary
schemes are computed in the ordinary sense unless the adjective ‘derived’ is
present. By evaluating the Witt vector construction termwise on a simplicial
commutative ring, we obtain a sheaf W (OX ) of simplicial commutative rings
on any derived Fp-scheme X . The Frobenius on X induces an endomorphism
F : W (OX ) → W (OX ), and we will study the sheafW (OX )[ 1F ]. There is also
a V operatorW (OX ) → W (OX ) such that FV = V F = p, but we do not use
V .

The key observation is that the presheaf in Proposition 11.41 is insensitive
to the derived structure.

Lemma 11.43 Let X be a derivedFp-scheme. Then pullback along Xcl ↪→ X
induces an isomorphism

W (OX )

[
1

F

]
� W (OXcl )

[
1

F

]
.

Proof Wemay assume X = Spec(A) is affine.Wemust show thatW (A)[ 1F ] �
W (π0(A))[ 1F ]. The definition of W (−) identifies W (A) with the simplicial
set

∏
i∈N A in a manner that is compatible with F , functorial in the map

A → π0(A), and sends 0 ∈ W (A) to 0 = (0, 0, ...) ∈ ∏
i∈N A. Applying

π0 then immediately gives the π0-version of the desired statement. It remains
to show that W (A)[ 1F ] is discrete. The preceding description of W (A) also
gives an isomorphism πi (W (A), 0) � ∏

i∈N πi (A, 0) of groups compatible
with F ; here we use the Eckman–Hilton observation that, given a simplicial
abelian group K , the two induced group structures on πi (K , 0) for i > 0 (one
coming from the usual group structure on higher homotopy groups which only
depends on the simplicial set underlying K , the other coming from the group
structure on K ) are identical. As F kills πi (A, 0) for i > 0 by (the proof of)
Proposition 11.6, it follows that F must kill πi (W (A), 0) for i > 0, and thus
W (A)[ 1F ] is discrete, as wanted. �
Remark 11.44 As a consequence of Lemma 11.43 and the formula V F = p,
one has: if A is a simplicial commutative Fp-algebra, then the cone of the
canonical map W (A) → W (π0(A)) is killed by p.

The next lemma is the crucial ingredient in the proof of Proposition 11.41,
and is the only spot in the proof where derived schemes arise (via derived fibre
products of non-flat maps).
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Lemma 11.45 Consider a cartesian square

E X

f

Z
i

Y

of qcqs Fp-schemes with Y affine, and Z ↪→ Y a constructible closed immer-
sion. Assume that pullback induces a fibre sequence

R�(Y,OY ) → R�(X,OX ) ⊕ R�(Z ,OZ ) → R�(E,OE ). (5)

For any integer n ≥ 1, let Xn/Y be the n-fold self fibre product of X over Y ,
and set En/Y = Xn/Y ×Y Z, so En/Y is the n-fold self fibre product of E over
Y (and thus also over Z, since Z → Y is a monomorphism). Then pullback
induces a fibre sequence

R�

(
Y,W (OY )

[
1

F

])
→ R�

(
Xn/Y ,W (OXn/Y )

[
1

F

])

⊕R�

(
Z ,W (OZ )

[
1

F

])
→ R�

(
En/Y ,W (OEn/Y )

[
1

F

])
.

Proof As the Witt vector functor W (−) is a derived inverse limit of the trun-
cated Witt vector functors Wm(−), and because each Wm(−) is an m-fold
iterated extension of copies of Ga (with Frobenius twists), the case n = 1 is
immediate from the fibre sequence (5), giving the desired fibre sequence

R�

(
Y,W (OY )

[
1

F

])
→ R�

(
X,W (OX )

[
1

F

])

⊕R�

(
Z ,W (OZ )

[
1

F

])
→ R�

(
E,W (OE )

[
1

F

])
. (6)

Note that we did not need to invert F to get the above sequence; this will not
be true for higher n.

Assumenow thatn = 2. SinceY is affine, applying−⊗R�(Y,OY )R�(X,OX )

to the fibre sequence (5), and using that coherent cohomology commutes with
base change in the derived setting, we get a fibre sequence

R�(X,OX ) → R�
(
X ×L

Y X,OX×L
Y X

)
⊕ R�

(
Z ×L

Y X,OZ×L
Y X

)

→ R�
(
E ×L

Y X,OE×L
Y X

)
.
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Arguing as above for n = 1, this gives a fibre sequence

R�

(
X,W (OX )

[
1

F

])
→ R�

(
X ×L

Y X,W (OX×L
Y X

)

[
1

F

])

⊕ R�

(
Z ×L

Y X,W (OZ×L
Y X

)

[
1

F

])

→ R�

(
E ×L

Y X,W (OE×L
Y X

)

[
1

F

])
.

By Lemma 11.43, we can ignore the derived structure, so this sequence is
identified with

R�

(
X,W (OX )

[
1

F

])
→ R�(X2/Y ,W

(
OX2/Y )

[
1

F

])

⊕R�

(
E,W (OE )

[
1

F

])
→ R�

(
E2/Y ,W (OE2/Y )

[
1

F

])
.

Comparing this last sequence with (6) and simplifying, we get

R�

(
Y,W (OY )

[
1

F

])
→ R�

(
X2/Y ,W (OX2/Y )

[
1

F

])

⊕R�

(
Z ,W (OZ )

[
1

F

])
→ R�

(
E2/Y ,W (OE2/Y )

[
1

F

])
,

as wanted for n = 2. For n ≥ 3, one argues similarly by induction. �
We now prove the h-descent result, essentially using the criterion in The-

orem 2.9. As it is not clear to us how to check criterion (ii) in Theorem 2.9
directly, we instead follow the proof of Theorem 2.9 below.

Proof of Proposition 11.41 For simplicity,writeF(X) = R�(X,W (OX )[ 1F ]).
If f : X → Y is a finite universal homeomorphism, then F(X) � F(Y ) since
a power of Frobenius on either X or Y factors over f . In particular, F(−)

carries nilimmersions to isomorphisms. This fact will be used without further
comment.

We begin by checking that F(−) is an fppf sheaf. Since the functor
R�(X,WOX ) takes on coconnective values, it is enough to check this on
affines and before inverting F , so we want: if A → B is an fppf map of Fp-
algebras with Cech nerve B•, then W (A) � limW (B•). Exchanging limits,
we reduce to the analogous statement forWn(−), which follows from standard
exact sequence expressing Wn(−) as an iterated extension of (Frobenius-
twisted) copies of W1(−).
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To check h-descent, we must check the following: if f : X → Y is a proper
surjective map of finitely presented S-schemes with Cech nerve X•/Y (in the
classical sense), then F(Y ) � limF(X•/Y ). We prove this by induction on
dim(Y ). If dim(Y ) = 0, then we are reduced to the case of fppf descent as in
Lemma 2.6. In general, using Lemmas 2.6 and 2.10 (and the fact that F(−) is
an fppf sheaf that converts nilimmersions into isomorphisms), we may assume
that f is an isomorphism outside some Z ⊂ Y with dim(Z) < dim(Y ); in fact,
by the proof of Lemma 2.6, we can even arrange for X to be the blowup of Y
along Z . Let E = X×Y Z be the exceptional divisor, so Hi (X,OX (−nE)) = 0
for all i > 0 and n ≥ n0 by Serre vanishing (as OX (−E) is relatively ample
for X → Y by the construction of blowups). Replacing E with a suitable
thickening (and similarly for Z , to ensure Z still receives a map from E), we
may assume that Hi (X,OX (−E)) = 0 for i > 0. Now set Y ′ = X E Z be
the pushout of E ↪→ X along E → Z . This gives a square

E X

Z Y ′

which is a Cartesian square up to universal homeomorphisms, and the induced
map Y ′ → Y is a finite universal homeomorphism. In particular, F(Y ) �
F(Y ′) and F(X•/Y ) � F(X•/Y ′

), so we may replace Y with Y ′. (Note that in
the process of making these replacements, we have destroyed the property of
f being a blowup or that E is the scheme-theoretic preimage of Z , but have
preserved the crucial consequence that Hi (X,OX (−E)) = 0 for i > 0.)

Now, by induction on dimension, we have F(Z) � limF(E•/Z ). As in the
proof of Theorem 2.9, we are reduced to showing that for each n > 0, applying
F(−) to the square

En/Y Xn/Y

Z Y

induces a fibre sequence

F(Y ) → F(Xn/Y ) ⊕ F(Z) → F(En/Y )

of spectra. Using Lemma 11.45, it is enough to show that

R�(Y,OY ) → R�(X,OX ) ⊕ R�(Z ,OZ ) → R�(E,OE )
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is a fibre sequence. This follows from the conjunction of the following facts:
the first term has no Hi for i > 0 as Y is affine, the second map induces an
isomorphism on applying Hi for i > 0 as Hi (X,OX (−E)) = 0 for i > 0
(and because Z are affine), and applying H0 gives a sequence

H0(Y,OY ) → H0(X,OX ) ⊕ H0(Z ,OZ ) → H0(E,OE )

which is left-exact as Y is the pushout X E Z , and right exact because
H0(X,OX ) → H0(E,OE ) is surjective as H1(X,OX (−E)) = 0. �
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Appendix: Determinants

Let R be a commutative ring. Our goal in this section is to recall the definition
of the natural map

det : K (R) → PicZ(R)

from the K -theory spectrum of R to the Picard groupoid of graded line bundles
PicZ(R). Intuitively, this is just the map sending a finite projective R-module
M to (detM, rkM).
Recall that a symmetric monoidal category is a category C equipped with a

functor ⊗ : C × C → C , a unit object 1 ∈ C , as well as a unitality constraint
ηX : 1 ⊗ X ∼= X , a commutativity constraint cX,Y : X ⊗ Y ∼= Y ⊗ X and an
associativity constraint aX,Y,Z : X ⊗ (Y ⊗ Z) ∼= (X ⊗ Y ) ⊗ Z functorially
in X, Y, Z ∈ C , satisfying certain compatibility conditions. Moreover, there
is a notion of symmetric monoidal functor between symmetric monoidal cat-
egories, which is a functor which commutes with ⊗ in the appropriate sense.
As usual, there is also a notion of a natural transformation between symmetric
monoidal functors. The definitions were originally given by MacLane [40].

Definition 12.1 A symmetric monoidal category C is called strict if cX,X :
X ⊗ X ∼= X ⊗ X is the identity for all X ∈ C .
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In general, the axioms of a symmetric monoidal category say that cX,Y ◦
cY,X = id for all X, Y ∈ C , so in particular cX,X is always an involution.

Note that whenever C is a symmetric monoidal category, the subcategory
C� ⊂ C consisting of all objects, but only isomorphisms as morphisms,
is another symmetric monoidal category (as all extra data concerns isomor-
phisms). Let us refer to symmetricmonoidal categories all ofwhosemorphisms
are isomorphisms as symmetric monoidal groupoids.

Below, we will recall that any symmetric monoidal category C admits a
K -theory spectrum K (C), and any symmetric monoidal functor F : C → D
induces a map of spectra K (F) : K (C) → K (D). Applying this to the
inclusion C� ⊂ C will give an equivalence K (C�) � K (C); actually, an
equality K (C�) = K (C). For this reason, we largely restrict to symmetric
monoidal groupoids in the following.

The following examples are our main interest.

Example 12.2 Fix a commutative ring R.

(i) The groupoid Vect(R) of finite projective R-modules is a symmetric
monoidal category with respect to ⊕, unit 0, and the standard unitality,
commutativity and associativity constraints. For example, cX,Y : X⊕Y ∼=
Y ⊕ X sends (x, y) to (y, x). Note that cX,X is not the identity map for
X �= 0.

We remark that the groupoid of finite projective R-modules is also sym-
metric monoidal with respect to the tensor product⊗; we will not use this
symmetric monoidal structure.

(ii) The groupoid Pic(R) of line bundles over R (i.e., finite projective R-
modules of rank 1) is a symmetric monoidal category with respect to ⊗,
unit 1, and the standard unitality, commutativity and associativity con-
straints. For example, cX,Y : X ⊗ Y ∼= Y ⊗ X sends x ⊗ y to y ⊗ x . Note
that cX,X is the identity map for all X ∈ Pic(R).

(iii) The groupoid PicZ(R) of Z-graded line bundles. Here, an object is
given by a pair (L , f ) where L ∈ Pic(R), and f : Spec(R) → Z
is a locally constant function; the set Isom((L , f ), (M, g)) is empty if
f �= g, and given by Isom(L , M) otherwise. The unit is given by (1, 0).
This groupoid is endowed with a symmetric monoidal structure ⊗ where
(L , f ) ⊗ (M, g):=(L ⊗ M, f + g), and the commutativity constraint

(L ⊗ M, f + g)=:(L , f ) ⊗ (M, g) � (M, g) ⊗ (L , f ):=(M ⊗ L , g + f )

determined by the rule

� ⊗ m 	→ (−1) f ·gm ⊗ �,
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and the obvious associativity constraint. Note that c(L , f ),(L , f ) : (L , f )⊗
(L , f ) ∼= (L , f ) ⊗ (L , f ) is given by multiplication with (−1) f , and is
thus not in general the identity.

The following proposition is central.

Proposition 12.3 There is a natural symmetric monoidal functor

det : Vect(R) → PicZ(R)

sending M ∈ Vect(R) to (detM, rkM) ∈ PicZ(R) = Pic(R) × H0

(Spec(R),Z).

Note that this functor does not factor through Pic(R).

Proof All verifications are automatic, and the only critical observation is the
following. If M, N ∈ Vect(R), then the commutativity constraint cM,N :
M ⊕ N ∼= N ⊕ M swapping N and M induces multiplication by (−1)rkMrkN

on

det(M) ⊗ det(N ) ∼= det(M ⊕ N )
detcM,N∼= det(N ⊕ M) ∼= det(N ) ⊗ det(M),

if one identifies det(M) ⊗ det(N ) and det(N ) ⊗ det(M) using the usual com-
mutativity constraint of Pic(R). �

Now we recall the construction of the K -theory spectrum. Let C be a sym-
metric monoidal category, with C� ⊂ C the underlying symmetric monoidal
groupoid. By definition, K (C) = K (C�), so assume that C is a groupoid to
start with. Recall that a groupoid is equivalent to a space whose only nonzero
homotopy groups are π0 and π1. Concretely, this can be realized by the nerve
construction,which associates to any categoryC the simplicial set N (C)whose
n-simplices are chains of n − 1 morphisms,

X0
f0→ X1

f1→ · · · fn−1→ Xn.

In particular, the 0-simplices N (C)0 are the objects of C , and the 1-simplices
N (C)1 are the morphisms ofC . Higher simplices encode the composition law,
and degenerate simplices encode identity morphisms. If C is a groupoid, then
N (C) is a Kan complex, whose geometric realization |N (C)| is a (compactly
generated) topological space whose only nonzero homotopy groups are π0 and
π1. In fact, |N (C)| is homotopy equivalent to the disjoint union

⊔
X∈C/�

BAut(X)
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of the classifying spaces of the automorphism group Aut(X), over all isomor-
phism classes of objects X ∈ C . In the following, we refer to Kan complexes
as ‘spaces’. They are naturally organized into the ∞-category S of spaces.
Here and in the following, we make use of the theory of ∞-categories, cf.
[33], which were previously defined under the name of weak Kan complexes
(by Boardman–Vogt) and quasicategories (by Joyal). Using this language, we
can easily state precise definitions and theorems without having to go into the
pain of detailed constructions. Giving detailed proofs is more elaborate, and
we only try to convey the meaning of the statements below.

As C is symmetric monoidal, the space N (C) is equipped with an addition
law N (⊗) : N (C) × N (C) = N (C × C) → N (C). Moreover, this addition
law is commutative and associative up to coherent isomorphisms, as expressed
by the commutativity and associativity constraints. However, the addition law
is not strictly commutative and associative. Such spaces equippedwith a coher-
ently commutative and associative (but not necessarily invertible) addition law
are known as (special) �-spaces, as defined by Segal [48], or as E∞-monoids,
as defined by May [39]. Although our definition is essentially that of a special
�-space, we prefer to call them E∞-monoids.27

Definition 12.4 Let Fin∗ be the category of finite pointed sets.28 For n ≥ 0,
let [n] = {0, 1, . . . , n} ∈ Fin∗ be the object pointed at 0. An E∞-monoid is a
functor

X : N (Fin∗) → S

of ∞-categories to the ∞-category S of Kan complexes, such that for all
[n] ∈ Fin∗, the natural map

X ([n]) →
n∏

i=1

X ([1])

is a weak equivalence, where the map is induced by the n maps [n] → [1]
contracting everything to 0 except i .

The E∞-monoids are naturally organized into an ∞-category (a full sub-
category of the ∞-category of functors from N (Fin∗) to S), which we call the
∞-category of E∞-monoids MonE∞ .

For an E∞-monoid X , the 0-th space X ([0]) is weakly contractible, as it is
weakly equivalent to an empty product. We refer to X ([1]) as the underlying
27 Lurie in [35, Remark 2.4.2.2] calls these commutative monoids. However, with [35, Nota-
tion 5.1.1.6], this becomes the same thing as an E∞-monoid.
28 This is Segal’s category � (or its opposite, depending on references).
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space of the E∞-monoid X , and will sometimes confuse X with X ([1]). It
is pointed in the sense that it comes equipped with a map X ([0]) → X ([1])
from a weakly contractible space; the space X ([0]) is the ’unit’ of X ([1]).
Moreover, using the map [2] → [1] sending only 0 to 0, we get a natural map

X ([1]) × X ([1]) � X ([2]) → X ([1])

which gives an addition law on X ([1]). The higher data precisely ensure that
the unit is unital, and that the addition law is commutative and associative
’up to coherent homotopy’. In particular, for an E∞-monoid X , the set of
connected components π0X :=π0X ([1]) forms a commutative monoid.

Construction 12.5 Let C be a symmetric monoidal groupoid. We define an
E∞-monoid N (C) in the following way. For each finite pointed set (S, s) ∈
Fin∗, let

N (C)(S) = N
({(XT )T⊂S\{s}, XTT ′ ∼= XT ⊗ XT ′ })

be the nerve of the groupoid of objects XT ∈ C for all T ⊂ S\{s} which are
equipped with compatible isomorphisms XTT ′ ∼= XT ⊗ XT ′ for any disjoint
subsets T, T ′ ⊂ S\{s}. For any morphism f : (S, s) → (S′, s′), let the map

N (C)(S) → N (C)(S′)

be given by

(XT )T⊂S\{s} 	→ (X f −1(T ′))T ′⊂S′\{s′}.

Remark 12.6 Here,we have defined an actual functor fromFin∗ to the category
of Kan complexes. The naive definition of N (C)(S) would be N (C)(S) =
N (C)S\{s}, with the map

N (C)S\{s} → N (C)S
′\{s′}

for a map f : (S, s) → (S′, s′) of pointed sets being given by

(Xt )t∈S\{s} 	→ (⊗t∈ f −1(t ′)Xt )t ′∈S′\{s′}.

This definition is not compatiblewith composition on the nose, but can bemade
into a functor of ∞-categories N (C) : Fin∗ → S. However, the verification of
this fact is most easily done by constructing a weakly equivalent strict functor,
as above.
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We leave it to the reader to spell out the definition of compatibility of the
isomorphisms XTT ′ ∼= XT ⊗ XT ′ ; verifying that N (C)([n]) → N (C)n is an
equivalence uses the precise axioms of a symmetric monoidal category.

Definition 12.7 An E∞-monoid X is called grouplike if the commutative
monoid π0(X) is a group. Let MongpE∞ ⊂ MonE∞ denote the full subcate-
gory of grouplike E∞-monoids.

Grouplike E∞-monoids are equivalent to connective spectra.

Definition 12.8 The ∞-category of connective spectra Sp≥0 is given by the
limit of

S∗
�← S≥1∗

�← S≥2∗
�← · · ·

in the ∞-category of ∞-categories, where S∗ is the ∞-category of pointed
spaces, S≥i∗ ⊂ S∗ is the full subcategory of i-connected spaces29, and � :
S∗ → S∗, X 	→ ∗ ×X ∗ is the loop space functor.

The following theorem is due to Segal, [48, Proposition 3.4], cf. [35, Theo-
rem 5.2.6.10, Remark 5.2.6.26]. The functorMongpE∞ → Sp≥0 is usually called
“the infinite loop space machine”.

Theorem 12.9 There is a natural equivalence of ∞-categories

MongpE∞ � Sp≥0.

May–Thomason [42], showed that there is essentially only one such equiv-
alence (although there are many constructions).30 Let us briefly sketch the
definition of the functors in either direction. Let X ∈ Sp≥0 be a connective
spectrum. Then the natural map

X  X → X × X

from the coproduct to the product, taken in the ∞-category of connective
spectra (equivalently, of spectra), is an equivalence, cf. [35, Lemma 1.1.2.10].
Thus, the obvious map X  X → X extends to a map X × X → X , which is
the ’addition law’ of the spectrum. Repeating the same arguments for arbitrary
finite (co)products shows that the forgetful functor

MonE∞(Sp≥0) → Sp≥0

29 i.e., of pointed spaces X ∈ S∗ such that π j X = 0 for j < i .
30 For an∞-categorical discussionof thesematters, see recentworkofGepner–Groth–Nikolaus
[20].
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from the ∞-category of E∞-monoids in Sp≥0 to Sp≥0, is an equivalence,
i.e. any (connective) spectrum comes equipped with a canonical E∞-monoid
structure. Composing with the forgetful map

MonE∞(Sp≥0) → MonE∞(S) = MonE∞

gives a functor Sp≥0 → MonE∞ , preserving all πi . As all πi , including π0, of
a spectrum are groups, it follows that the functor takes values in MongpE∞ .

Conversely, start with an E∞-monoid X ∈ MonE∞ (not necessarily group-
like). Then X admits a classifying space BX . Indeed, there is a natural functor
�op → Fin∗ (cf. [48, p. 295]) taking the m-simplex �m to [m]. This allows
one to view X as a simplicial space X ′ : N (�op) → N (Fin∗) → S, which
can be turned into a space BX = colim�op X ′ ∈ S. In fact, one checks directly
that BX still carries a canonicalE∞-monoid structure, cf. [48, Definition 1.3].
This gives a functor

B : MonE∞ → MonE∞ .

There is a natural map X → �BX of E∞-monoids.31 The following is [48,
Proposition 1.4].

Proposition 12.10 If X ∈ MonE∞ is k-connected, then BX is (k + 1)-
connected. Moreover, the natural map

X → �BX

is an equivalence if and only if X is grouplike.

Remark 12.11 As π0(�BX) = π1(X) is a group, �BX is always a grouplike
E∞-monoid. Also, BX is always 1-connected, and thus grouplike (asπ0BX =
0 is a group).

Thus, if X ∈ MongpE∞ is a grouplike E∞-monoid, the sequence of spaces

X, BX, B2X, . . . forms a connective spectrum, giving a functor

MongpE∞ → Sp≥0.

In particular, the construction shows that as with classical monoids, one can
form the group completion.

31 The∞-categoryMonE∞ admits all small limits, andMonE∞ → S∗, X 	→ X ([1]), preserves
all small limits. In particular, this applies to the loop space X 	→ �X = ∗×X ∗, giving a functor
� : MonE∞ → MonE∞ .
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Corollary 12.12 The full subcategory MongpE∞ ⊂ MonE∞ is a reflective sub-
category, cf. [33, Remark 5.2.7.9], i.e. it admits a left adjoint, called the group
completion,

MonE∞ → MongpE∞ : X 	→ Xgp = �BX .

Recall that K0(C) is the group completion of the commutative monoid of
objects of C up to isomorphism. Using the above machinery, we can erase the
words “up to isomorphism”, and arrive at the definition of higher algebraic
K -theory:

Definition 12.13 Let C be a symmetric monoidal category. The K -theory
spectrum K (C) ∈ Sp≥0 is defined to be the image under MongpE∞ � Sp≥0

of the group completion N (C�)gp of the E∞-monoid N (C�) from Construc-
tion 12.5.

Clearly, this construction is functorial in C . There is a certain situation in
which the group completion is unnecessary.

Definition 12.14 A symmetric monoidal category C is called a Picard
groupoid ifC is a groupoid, and any object X ∈ C admits an inverse X−1 ∈ C
such that X ⊗ X−1 ∼= 1.

The groupoids Pic(R) and PicZ(R) are examples of Picard groupoids
(explaining the name), as one can form the inverse of a line bundle.

Proposition 12.15 A symmetric monoidal groupoid C is a Picard groupoid if
and only if the E∞-monoid N (C) is grouplike.

Proof One has an identification of π0N (C) = C/ � with the monoid (under
⊗) of objects ofC up to isomorphism.But, by definition,C is a Picard groupoid
if and only if C/ � is a group. �

In particular, for a Picard groupoid, the space underlying K (C) is just the
nerve N (C), which is 1-truncated. One can show that this induces an equiv-
alence between Picard groupoids and 1-truncated connective spectra, cf. [43,
§3]. The idea is that both can be identified with grouplike E∞-monoids in
groupoids.

Because of this equivalence, we will often confuse a Picard groupoid with
its K -theory spectrum, and in particular we continue to write PicZ(R) for the
corresponding (1-truncated) connective spectrum.

Definition 12.16 Let R be a commutative ring. The K -theory spectrum of R
is K (R) = K (Vect(R)).
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420 B. Bhatt, P. Scholze

Corollary 12.17 There is a natural functorial map

det : K (R) → PicZ(R)

of connective spectra.

Proof Apply the K -theory functor to

det : Vect(R) → PicZ(R).

�
As PicZ(R) is 1-truncated, the map K (R) → PicZ(R) factors canonically

over the 1-truncation τ≤1K (R). In fact,PicZ(R) is, at least after Zariski sheafi-
fication, precisely the 1-truncation of K (R).

Proposition 12.18 The natural map

det : τ≤1K (R) → PicZ(R)

of presheaves of groupoids on the category of affine schemes becomes an
isomorphism after Zariski sheafification.

Proof We need to prove that the maps

K1(R) = π1K (R) → π1Pic
Z(R)

and

K0(R) = π0K (R) → π0Pic
Z(R)

are isomorphisms after Zariski sheafification; equivalently, for local rings R.
But if R is local, K1(R) = R× = π1PicZ(R), and K0(R) = Z = π0PicZ(R).
�

References

1. Aberbach, I.M., Hochster, M.: Finite Tor dimension and failure of coherence in absolute
integral closures. J. Pure Appl. Algebra 122(3), 171–184 (1997)

2. Asgharzadeh, M.: Homological properties of the perfect and absolute integral closures of
Noetherian domains. Math. Ann. 348(1), 237–263 (2010)

3. Barwick, C.: On the algebraic K-theory of higher categories. J. Topol. (2012, to appear).
arXiv:1204.3607

4. Berthelot, P., Bloch, S., Esnault, H.: On Witt vector cohomology for singular varieties.
Compos. Math. 143(2), 363–392 (2007)

123

http://arxiv.org/abs/1204.3607


Projectivity of the Witt vector affine Grassmannian 421

5. Brylinski, J.-L., Deligne, P.: Central extensions of reductive groups by K2. Publ. Math.
Inst. Hautes Études Sci. 94, 5–85 (2001)

6. Bosch, S., Güntzer, U., Remmert, R.: Non-Archimedean analysis. In: Grundlehren der
MathematischenWissenschaften [Fundamental Principles of Mathematical Sciences], vol.
261. Springer, Berlin (1984) (A systematic approach to rigid analytic geometry)

7. Bhatt, B.: Algebraization and Tannaka duality. Camb. J. Math. (2014, to appear).
arXiv:1404.7483

8. Bhatt, B., Halpern-Leistner, D.: Tannaka duality revisited (2015). arXiv:1507.01925
9. Beauville, A., Laszlo, Y.: Conformal blocks and generalized theta functions. Commun.

Math. Phys. 164(2), 385–419 (1994)
10. Bourbaki, N.: Éléments de mathématique. Masson, Paris (1985) (Algèbre commutative.

Chapitres 5 à 7. [Commutative algebra. Chapters 5–7], Reprint)
11. Bhatt, B., Scholze, P.: The pro-étale topology for schemes. Astérisque (2013, to appear).

arXiv:1309.1198
12. Bhatt, B., Schwede, K., Takagi, S.: The weak ordinarity conjecture and F-singularities. In:

Proceedings of the conference in honor of Professor Yujiro Kawamata on his 60th birthday
(2013, to appear). arXiv:1307.3763

13. Carlsson,G.: Derived completions in stable homotopy theory. J. PureAppl. Algebra 212(3),
550–577 (2008)

14. Chen, M., Kisin, M., Viehmann, E.: Connected components of affine Deligne–Lusztig
varieties in mixed characteristic (2013). arXiv:1307.3845

15. de Jong, A.J.: Smoothness, semi-stability and alterations. Inst. Hautes Études Sci. Publ.
Math. 83, 51–93 (1996)

16. Faltings,G.:Algebraic loop groups andmoduli spaces of bundles. J. Eur.Math. Soc. (JEMS)
5(1), 41–68 (2003)

17. Gabber, O.: Notes on some t-structures. In: Geometric Aspects of Dwork Theory. vol. I,
II, pp. 711–734. Walter de Gruyter GmbH & Co. KG, Berlin (2004)

18. Grothendieck, A., Dieudonné, J.: Éléments de géométrie algébrique. III. Étude coho-
mologique des faisceaux cohérents. I. Inst. Hautes Études Sci. Publ. Math. 11, 5–167
(1961)

19. Grothendieck, A., Dieudonné, J.: Éléments de géométrie algébrique. IV. Étude locale des
schémas et des morphismes de schémas. III. Inst. Hautes Études Sci. Publ. Math. 28, 5–255
(1966)

20. Gepner, D., Groth, M., Nikolaus, T.: Universality of multiplicative infinite loop space
machines (2013). arXiv:1305.4550

21. Gabber, O., Ramero, L.: Almost ring theory. In: Lecture Notes in Mathematics, vol. 1800.
Springer, Berlin (2003)

22. Greenberg, M.J.: Schemata over local rings. Ann. Math. 2(73), 624–648 (1961)
23. Haboush, W.J.: Infinite dimensional algebraic geometry: algebraic structures on p-adic

groups and their homogeneous spaces. Tohoku Math. J. (2) 57(1), 65–117 (2005)
24. Hamacher, P.: The geometry ofNewton strata in the reductionmodulo p of Shimura varieties

of PEL type (2013). arXiv:1312.0490
25. Halpern-Leistner, D., Preygel, A.: Mapping stacks and categorical notions of properness.

(2014). arXiv:1402.3204
26. Huber, R.: A generalization of formal schemes and rigid analytic varieties. Math. Z. 217(4),

513–551 (1994)
27. Hartl, U., Viehmann, E.: The Newton stratification on deformations of local G-shtukas. J.

Reine Angew. Math. 656, 87–129 (2011)
28. Keel, S.: Basepoint freeness for nef and big line bundles in positive characteristic. Ann.

Math. (2) 149(1), 253–286 (1999)
29. Knudsen, F.F., Mumford, D.: The projectivity of the moduli space of stable curves. I.

Preliminaries on “det” and “Div”. Math. Scand. 39(1), 19–55 (1976)

123

http://arxiv.org/abs/1404.7483
http://arxiv.org/abs/1507.01925
http://arxiv.org/abs/1309.1198
http://arxiv.org/abs/1307.3763
http://arxiv.org/abs/1307.3845
http://arxiv.org/abs/1305.4550
http://arxiv.org/abs/1312.0490
http://arxiv.org/abs/1402.3204


422 B. Bhatt, P. Scholze

30. Kreidl, M.: On p-adic lattices and Grassmannians. Math. Z. 276(3–4), 859–888 (2014)
31. Kruckman, A.: Notes on ultra filters (2012). https://math.berkeley.edu/~kruckman/

ultrafilters.pdf. Accessed 27 Nov 2016
32. Lazarsfeld, R.: Positivity in algebraic geometry. I. In: Ergebnisse der Mathematik und

ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in
Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics],
vol. 48. Springer, Berlin (2004) (Classical setting: line bundles and linear series)

33. Lurie, J.: Higher topos theory. In: Annals of Mathematics Studies, vol. 170. Princeton
University Press, Princeton (2009)

34. Lurie, J.: Derived algebraic geometry viii: Quasi-coherent sheaves and tannaka duality
theorems (2014). http://www.math.harvard.edu/~lurie/papers/DAG-VIII.pdf. Accessed 27
Nov 2016

35. Lurie, J.: Higher algebra (2014). http://www.math.harvard.edu/~lurie/papers/
higheralgebra.pdf. Accessed 27 Nov 2016

36. Liu, Y., Zheng, W.: Enhanced six operations and base change theorem for Artin stacks.
(2012). arXiv:1211.5948

37. Matsumoto, H.: Sur les sous-groupes arithmétiques des groupes semi-simples déployés.
Ann. Sci. École Norm. Sup. 4(2), 1–62 (1969)

38. Matthew,A.: TheGalois group of a stable homotopy theory (2014). arXiv:1404.2156v1.pdf
39. May, J.P.: E∞ spaces, group completions, and permutative categories. In: New Develop-

ments in Topology (Proc. Sympos. Algebraic Topology, Oxford, 1972), pp. 61–93. London
Math. Soc. Lecture Note Ser., No. 11. Cambridge University Press, London (1974)

40. MacLane, S.:Natural associativity and commutativity.RiceUniv. Stud.49(4), 28–46 (1963)
41. Mehta, V.B., Ramanathan, A.: Frobenius splitting and cohomology vanishing for Schubert

varieties. Ann. Math. (2) 122(1), 27–40 (1985)
42. May, J.P., Thomason, R.: The uniqueness of infinite loop space machines. Topology 17(3),

205–224 (1978)
43. Patel, D.: de Rham E-factors. Invent. Math. 190(2), 299–355 (2012)
44. Pappas, G., Rapoport, M.: Twisted loop groups and their affine flag varieties. Adv. Math.

219(1), 118–198 (2008). (With an appendix by T. Haines and Rapoport)
45. Quillen, D.: Higher algebraic K -theory. I. In: Algebraic K -Theory, I: Higher K -Theories

(Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972), vol. 341, pp. 85–147. Lecture
Notes in Mathematics. Springer, Berlin (1973)

46. Raynaud, M., Gruson, L.: Critères de platitude et de projectivité. Techniques de “platifica-
tion” d’un module. Invent. Math. 13, 1–89 (1971)

47. Rydh, D.: Submersions and effective descent of étale morphisms. Bull. Soc. Math. Fr.
138(2), 181–230 (2010)

48. Segal, G.: Categories and cohomology theories. Topology 13, 293–312 (1974)
49. Sato, M., Sato, Y.: Soliton equations as dynamical systems on infinite-dimensional Grass-

mann manifold. In: Nonlinear Partial Differential Equations in Applied Science (Tokyo,
1982),North-HollandMath. Stud., vol. 81, pp. 259–271.North-Holland,Amsterdam(1983)

50. Steinberg, R.: Générateurs, relations et revêtements de groupes algébriques. In: Colloq.
Théorie des Groupes Algébriques (Bruxelles, 1962), pp. 113–127. Librairie Universitaire,
Louvain, Gauthier-Villars, Paris (1962)

51. Segal, G., Wilson, G.: Loop groups and equations of KdV type. Inst. Hautes Études Sci.
Publ. Math. 61, 5–65 (1985)

52. The Stacks Project Authors. Stacks project (2015). http://stacks.math.columbia.edu.
Accessed 27 Nov 2016

53. Thomason, R.W., Trobaugh, T.: Higher algebraic K -theory of schemes and of derived
categories. In: The Grothendieck Festschrift, Vol. III, vol. 88 of Progr. Math., pp. 247–435.
Birkhäuser Boston, Boston, MA (1990)

54. Voevodsky, V.: Homology of schemes. Selecta Math. (N.S.) 2(1), 111–153 (1996)

123

https://math.berkeley.edu/~kruckman/ultrafilters.pdf
https://math.berkeley.edu/~kruckman/ultrafilters.pdf
http://www.math.harvard.edu/~lurie/papers/DAG-VIII.pdf
http://www.math.harvard.edu/~lurie/papers/higheralgebra.pdf
http://www.math.harvard.edu/~lurie/papers/higheralgebra.pdf
http://arxiv.org/abs/1211.5948
http://arxiv.org/abs/1404.2156v1.pdf
http://stacks.math.columbia.edu


Projectivity of the Witt vector affine Grassmannian 423

55. Voevodsky,V.: Homotopy theory of simplicial sheaves in completely decomposable topolo-
gies. (2000). http://www.math.uiuc.edu/K-theory/443/cdstructures.pdf. Accessed 27 Nov
2016

56. Yanagihara, H.: Some results on weakly normal ring extensions. J. Math. Soc. Jpn. 35(4),
649–661 (1983)

57. Zhu, X.: Affine Grassmannians and the geometric satake in mixed characteristic. Ann.
Math. (to appear, 2014). arXiv:1407.8519

123

http://www.math.uiuc.edu/K-theory/443/cdstructures.pdf
http://arxiv.org/abs/1407.8519

	Projectivity of the Witt vector affine Grassmannian
	Abstract
	1 Introduction
	1.1 Motivation and goals
	1.2 Results
	1.3 Outline

	2 h-sheaves
	3 Perfect schemes
	4 h-descent for vector bundles on perfect schemes
	5 Construction of line bundles: K-theoretic approach
	6 Construction of line bundles: geometric approach
	7 Families of torsion W(k)-modules
	8 The Witt vector affine Grassmannian
	8.1 Statements
	8.2 The Demazure resolution
	8.3 The line bundle mathcalL
	8.4 Proof of Theorem 8.3

	9 Affine Grassmannians for general groups
	10 The central extension of LG
	11 h-descent for the derived category of quasi-coherent complexes
	11.1 Discreteness of perfect simplicial commutative rings
	11.2 Descendable maps of Einfty-rings
	11.3 h-descent for complexes
	11.4 h-hyperdescent for complexes
	11.5 Descent for Witt vector cohomology

	Acknowledgements
	Appendix: Determinants
	References




