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Abstract We introduce and study a class of Iwanaga—Gorenstein algebras
defined via quivers with relations associated with symmetrizable Cartan matri-
ces. These algebras generalize the path algebras of quivers associated with
symmetric Cartan matrices. We also define a corresponding class of gener-
alized preprojective algebras. For these two classes of algebras we obtain
generalizations of classical results of Gabriel, Dlab—Ringel, and Gelfand—
Ponomarev. In particular, we obtain new representation theoretic realizations
of all finite root systems without any assumption on the ground field.
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1 Introduction and main results
1.1 Quivers, Coxeter functors and preprojective algebras

Let Q be a finite connected acyclic quiver, and let H = K Q be the path algebra
of Q with coefficients in a field K. The following five results, all proved in
the 1970’s, form an essential part of the foundations of modern representation
theory of finite-dimensional algebras.

(1) Gabriel’s Theorem [30]: The quiver Q is representation-finite if and only
if Q is a Dynkin quiver of type A,, D,, E¢, E7, Es. In this case, there
is a bijection between the isomorphism classes of indecomposable repre-
sentations of Q and the set of positive roots of the corresponding simple
complex Lie algebra.

(2) Bernstein, Gelfand and Ponomarev’s [11] discovery of Coxeter functors
CE(—-) = Fif 0--+0 Fili :rep(H) — rep(H),

which are defined as compositions of reflection functors. They lead to a
more conceptual proof of Gabriel’s Theorem. Applied to the indecom-
posable projective (resp. injective) representations they yield a family of
indecomposable representations, called preprojective (resp. preinjective)
representations.

(3) Gabriel’s Theorem [32] saying that there are functorial isomorphisms
TC*(—) & t*(—), where T is a twist functor and 7 (—) is the Auslander—
Reiten translation (see also the comment below on an earlier result by
Brenner and Butler).
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(4) Auslander, Platzeck and Reiten’s Theorem [3] saying that the functors F; k+
and Hom g (T, —), where F; k+ is a BGP-reflection functor and 7' is the asso-
ciated APR-tilting module, are equivalent. This result can be considered
as the starting point of tilting theory.

(5) Gelfand and Ponomarev’s [35] discovery of the preprojective algebra
[T1(Q) of a quiver, and their result that I[1(Q), seen as a module over
H, is isomorphic to the direct sum of all preprojective H-modules, hence
the name preprojective algebra. The algebra I1(Q) is isomorphic to the
tensor algebra Ty (Ext}q(D(H ), H)), where D denotes the duality with
respect to the base field K, see [7,22,48].

The above results hold for arbitrary ground fields K. At the price of quite
strong assumptions on K they were generalized from quivers to the more
general setup of modulated graphs. (One needs to assume the existence of
finite field extensions of K with prescribed degrees.) For the finite type sit-
uation, this extended the theory from the simply laced root systems of types
Ay, Dy, Eg, E7 and Eg to the non-simply laced root systems B, C,,, F4 and
G». The definition of a modulated graph (also called species) and of its repre-
sentations is due to Gabriel [31]. The theory itself has been developed by Dlab
and Ringel, who generalized (1), (2) and (5) to modulated graphs [25-28,46].
Brenner and Butler [14] proved an earlier result closely related to (3), which
is also valid for modulated graphs. (They don’t treat C* as endofunctors, and
the twist automorphism 7" does not appear.)

1.2 Hereditary, selfinjective and Iwanaga—Gorenstein algebras

In this section, by an algebra we mean a finite-dimensional K -algebra.

An algebra A is hereditary if all A-modules have projective and injective
dimension at most 1. The representation theory of quivers and species corre-
sponds to the representation theory of finite-dimensional hereditary algebras.

An algebra A is selfinjective if the classes of projective and injective
A-modules coincide. This implies that all modules (except the projective-
injectives) have infinite projective and injective dimension. Despite being
opposite homological extremes, hereditary and selfinjective algebras are often
intimately linked. For example the path algebra K Q is always hereditary, and
in contrast, if Q is a Dynkin quiver, then the closely related preprojective
algebra T1(Q) is selfinjective. Also, the classification of representation-
finite selfinjective algebras shows striking similarities to the classification of
representation-finite hereditary algebras.

An algebra A is m-Iwanaga—Gorenstein if

inj. dim(A) <m and proj. dim(D(A)) < m.
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These algebras were first studied by Iwanaga [39,40]. In this case, [4,
Lemma 6.9] implies that inj. dim(A) = proj. dim(D(A)), and by [40, Theo-
rem 5] for any A-module M the following are equivalent:

(i) proj. dim(M) < m;
(i1) inj. dim(M) < m;
(iii) proj. dim(M) < oo;
(iv) inj. dim(M) < oo.

Note that with this definition a given algebra can be m-Iwanaga—Gorenstein
for different values of m. An algebra is selfinjective if and only if it is O-
Iwanaga—Gorenstein. All hereditary algebras and also all selfinjective algebras
are 1-Iwanaga—Gorenstein. Now let A be a 1-Iwanaga—Gorenstein algebra.
Then there are two subcategories of the category rep(A) of finite-dimensional
A-modules which are of interest:

(a) The subcategory
H(A) :={M €rep(A) | proj.dim(M) <1 and inj. dim(M) < 1}.
(b) The subcategory
GP(A) := (M € rep(A) | Extl (M, A) = 0}

of Gorenstein-projective modules.
Let P(A) be the subcategory of projective A-modules. We have
P(A) = H(A) NGP(A).

For each M € rep(A) there are short exact sequences
O—-Hy—>Gy—->M-—0

and
0—>M-—>HY > GM > 0

with Hy, HM € H(A) and Gy, GM € GP(A), see [2, 8.1].

The category H(A) carries the homological features of module categories of
hereditary algebras, whereas GP(A) is a Frobenius category, thus displaying
the homological features of module categories of selfinjective algebras. We
have GP(A) = P(A) and H(A) = rep(A) if and only if A is hereditary, and

in the other extreme we have GP(A) = rep(A) and H(A) = P(A) if and only
if A is selfinjective.
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The stable category of GP(A) is a triangulated category, which is triangle
equivalent to the singularity category

Dyg(A) := D"(A)/K" (proj(A))

defined and studied by Buchweitz [17], see also [45]. (Here DP(A) denotes
the derived category of bounded complexes of finite-dimensional A-modules,
and K’ (proj(A)) is the homotopy category of bounded complexes of finite-
dimensional projective A-modules.) It follows that Ds;(A) = 0 if and only if
A is hereditary.

Thus the class of 1-Iwanaga—Gorenstein algebras can be seen as an inter-
mediary class sitting between the hereditary and the selfinjective algebras, and
the singularity category Dsg(A) can be considered as a measure of how far A
is from being hereditary.

1.3 1-Iwanaga—Gorenstein algebras attached to Cartan matrices

To each symmetrizable generalized Cartan matrix C and an orientation 2
of C we attach an infinite series of 1-Iwanaga—Gorenstein algebras H =
H(C, D, Q) indexed by the different symmetrizers D of C. These algebras
are defined by quivers with relations over an arbitrary field K.

If C is symmetric and connected, then (C, 2) corresponds to a connected
acyclic quiver Q, and the series of algebras H consists of the algebras of the
form

Ap®k KQ, (m=1),

where A, := K[X]/(X™) is a truncated polynomial ring. Representations of
such algebras are nothing else than representations of Q over the ground rings
Ap.

In the general case of a symmetrizable matrix C, the algebras H can be
identified with tensor algebras of modulations of the oriented valued graph
I" corresponding to (C, 2). However, in contrast to the classical notion of a
modulation, the rings attached to vertices of I" are truncated polynomial rings
instead of division rings.

We also introduce a series of algebras [1 = TI(C, D), again defined by
quivers with relations, which can be regarded as preprojective algebras of
quivers (or more generally of modulated graphs) over truncated polynomial
rings.

We show that analogues of all five results mentioned in Sect. 1.1 also hold
for our algebras H and I1. However certain definitions must be adapted. For
example, we say that H has finite t-representation type if its Auslander—
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Reiten quiver has only finitely many 7-orbits consisting entirely of modules
of finite homological dimension. The analogue of (1) states that H has finite
T-representation type if and only if C is of Dynkin type. In this case, there is a
bijection between the isomorphism classes of indecomposable modules sitting
on these t-orbits and the positive roots of the simple Lie algebra associated
with C. So for each Cartan matrix C of Dynkin type we get an infinite family
of new representation theoretic incarnations of the root system of C. Let us
stress that even in the non-simply laced case these incarnations are defined
without any assumption on the ground field K. To prove this theorem, we
define analogues of the reflection functors and Coxeter functors of (2), and we
give an analogue of Gabriel’s Theorem (3) for the subcategory of H-modules
of finite homological dimension. This yields alternative descriptions of the
preprojective algebra IT similar to (5). We also obtain an analogue of (4)
describing the reflection functors in terms of certain tilting H-modules.

In the rest of this section we give precise definitions of the algebras H and
I1, and we state our main results in more detail. We then point out previous
appearances of some of the algebras H and IT in the literature.

1.4 Definition of H and IT

A matrix C = (¢;j) € My(Z) is a symmetrizable generalized Cartan matrix

provided the following hold:

(C1) ¢j; =2 foralli;

(C2) ¢ij <Oforalli # j;

(C3) ¢ij #0if and only if cj; # 0.

(C4) There is a diagonal integer matrix D = diag(cy, ..., ¢,) with¢; > 1 for
all i such that DC is symmetric.

The matrix D appearing in (C4) is called a symmetrizer of C. The symmetrizer
D is minimal if c; + - - - + ¢;; 1s minimal. From now on, by a Cartan matrix we
always mean a symmetrizable generalized Cartan matrix. In this case, define
forall¢;j <0

gij = lged(cij, cji)l,  fij = lcijl/gij»  kij = ged(ci, ¢j).
Note that we have
gij = &ji» kij =kji, ci =kijfji.

Let C = (cjj) € M,(Z) be a Cartan matrix. An orientation of C is a subset
Qc{l,2,...,n} x{1,2,...,n} such that the following hold:

() {G, j), (j, )} N # @ ifand only if ¢;; < 0;
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(i) For each sequence ((iy,i2), (i2,i3),..., (it,i;+1)) with + > 1 and
(is,is4+1) € Qforall 1 <s <t wehavei| # i;11.

For an orientation 2 of C let Q := Q(C, 2) := (Qo, 01, s, t) be the quiver
with the set of vertices Qq := {1, ..., n} and with the set of arrows

Or:=1lef¥:j—il.)eQl<g=<gUle:i—ill<i=<n}

(Thus we have s(e(') = j and 1(o¥) = i and s(e;) = (&;) = i, where s(a)
and 7 (a) denote the starting and terminal vertex of an arrow a, respectively.)
If g;; = 1, we also write «;; instead of ozl.(}). We call Q a quiver of type C.
Let O° := Q°(C, 2) be the quiver obtained from Q by deleting all loops ¢;.
Clearly, Q° is an acyclic quiver. Having said that, one might want to call €2 an
acyclic orientation. Future research might require to modify the definition of
an orientation and drop the acyclicity assumption.

Throughout let K be a field. For a quiver O = Q(C, ©2) and a symmetrizer
D = diag(cy, ..., cy) of C, let

H:=H(C,D,Q) :=KQ/I

where K Q is the path algebra of Q, and [ is the ideal of K Q defined by the
following relations:

(H1) For each i we have the nilpotency relation

g =0.
(H2) For each (i, j) € Qandeach 1 < g < g;; we have the commutativity
relation
fii @ _ @ i

i % =98

£ ij €

The following remarks are straightforward.

(i) H is a finite-dimensional K -algebra.
(i) H depends on the chosen symmetrizer D. But note that the relation (H2)
does not depend on D.
(iii) The relation (H2) becomes redundant for all (i, j) € € with k;; = 1.
(iv) If C is symmetric and if D is minimal, then H is isomorphic to the path
algebra K Q°.

The behaviour of H under change of the symmetrizer D is studied in [33].
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The opposite orientation of an orientation €2 is defined as Q* := {(j, ) |
@i, j) € Q}. Let Q := Q U Q*. For later use, let us define

QU —-):={jeQolj)e}, Q=) ={iecQolj e}
QG- :={j€ Q|G j)eQ), Q- j:={ieQolj e}

Observe that 5& —) = Q(—, ).
For (i, j) € Q define

1 if@, j) e,

sen(i, j) :=
D=1 ) e o)

For Q = Q(C, 2) and a symmetrizer D = diag(cy, ..., ¢;) of C, we define
an algebra

:=T1(C,D,Q) :=KQ/I

as follows. The double quiver Q = Q(C) is obtained from Q by adding a
new arrow aﬁg) i — j for each arrow oc(g) Jj — i of Q°. (Note that we did
not add any new loops to the quiver Q.) The ideal I of the path algebra K Q
is defined by the following relations:

(P1) For each i we have the nilpotency relation

o
&' = 0.

(P2) Foreach (i, j) € Qandeach1 < g < g; j we have the commutativity
relation

e/ ol =Pl

(P3) For each i we have the mesh relation

8ji f]t 1

Z Z Z sgn(i, J)gf (g) (g) f,,—l f_o.

jeQ(—,i)&=1 f=0
We call IT a preprojective algebra of type C. Here are again some straightfor-
ward remarks:

(i) Up to isomorphism, the algebra I1 := I1(C, D) := I1(C, D, 2) does not
depend on the orientation €2 of C.
(i1) In general, IT can be infinite-dimensional.
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(iii) IT depends on the chosen symmetrizer D. But note that the relations (P2)
and (P3) do not depend on D.

(iv) If C is symmetric and if D is minimal, then IT is isomorphic to the classical
preprojective algebra I1(Q°) associated with Q°.

For an example illustrating the above definitions, see below Sect. 13.1.

1.5 Main results

Lete, ..., e, be the idempotents in H (resp. IT) corresponding to the vertices
of Q (resp. 0).Define H; := ¢;He;. Clearly, H; is isomorphic to the truncated
polynomial ring K [&;]/ (8? ). For each representation M of H or I1 we get an
H;-module structure on M; := e; M. The following definition is of central
importance.

Definition 1.1 A module M € rep(H) or M € rep(I1) is called locally free if
M; is a free H;-module for every i.

Let rep; ¢ (H) (resp. rep; ¢ (IT)) be the subcategory of all locally free M e
rep(H) (resp. M € rep(I1)).

Theorem 1.2 The algebra H is a 1-lwanaga—Gorenstein algebra. For M €
rep(H) the following are equivalent:

(1) proj. dim(M) < 1;
(ii) inj. dim(M) < 1;
(>iii) proj. dim(M) < oo;
(iv) inj. dim(M) < oo;
(V) M is locally free.

Let M be a locally free module. For each i € Qg let r; be the rank of the
free H;-module M;. Thus dimg (M;) = ric;. We put

rank(M) := (r1, ..., 1ry).

Let t be the Auslander—Reiten translation for the algebra H, and let T~
be the inverse Auslander—Reiten translation. An indecomposable H-module
M 1is preprojective (resp. preinjective) if there exists some k > 0 such that
M = 7 kp) (resp. M = (1)) for some indecomposable projective H-
module P (resp. indecomposable injective H-module 7). Let us warn the reader
that the usual definition of a preprojective or preinjective module M requires
some additional conditions on the Auslander—Reiten component containing
M.

In general, the Auslander—Reiten translates t¥(M) of an indecomposable
locally free H-module M are not locally free, see the example in Sect. 13.5.
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An indecomposable H-module M is called t-locally free, if T (M) is locally
free for all k € Z.

A module M over an algebra A is called rigid if Exti‘(M , M) =0.

The following result is an analogue for the algebras H = H(C, D, Q2) of
Gabriel’s Theorem (1) for quivers and of its generalization by Dlab and Ringel
to modulated graphs.

Theorem 1.3 There are only finitely many isomorphism classes of t-locally
free H-modules if and only if C is of Dynkin type. In this case, the following
hold:

(i) The map M > rank (M) yields a bijection between the set of isomorphism
classes of T-locally free H-modules and the set A*(C) of positive roots
of the semisimple complex Lie algebra associated with C.

(i1) For an indecomposable H-module M the following are equivalent:
(a) M is preprojective;
(b) M is preinjective;
(c) M is t-locally free;
(d) M is locally free and rigid.

Crawley-Boevey [21] studied representations of quivers over principal ideal
domains. There are some striking analogies between Theorem 1.3 and his
results.

Note that the algebras H are usually representation infinite, even if C is
a Cartan matrix of Dynkin type with a minimal symmetrizer D. Already for
C of type B3 with minimal symmetrizer, there exist indecomposable locally
free H-modules M with rank(M) ¢ AT (C), see Sect. 13.7. Furthermore, for
C of type Bs with minimal symmetrizer there exists a K *-family of pairwise
non-isomorphic indecomposable locally free H-modules, all having the same
dimension vector.

Inspired by the classical theory for path algebras and modulated graphs we
define Coxeter functors

Ct,C™: rep(H) — rep(H)
as products of reflection functors, see Sect. 8. Let
T: rep(H) — rep(H)

be the twist automorphism induced from the algebra automorphism H — H

defined by ¢; +— ¢; and ozl.(f) — —al.(f). In other words, T sends a represen-

tation (M;, M(a§f)), M(g;)) of H to (M;, —M(al.(j’)), M (&;)). The following
theorem, analogous to Gabriel’s Theorem (3), relates Coxeter functors to the
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Auslander—Reiten translation, and provides the main step in proving Theo-
rem 1.3.

Theorem 1.4 For M € rep(H) there are functorial isomorphisms
DExtL (M, H) = TC (M) and Ext},(D(H), M) = TC™(M).
Furthermore, if M € rep, ¢ (H), then there are functorial isomorphisms
TM)ZTCYM)andt~ (M) = TC™(M).

Vice versa, if t(M) = TCT(M) or t—(M) = TC~ (M) for some M €
rep(H), then M € rep,; (H).

Recall that H is a 1-Iwanaga—Gorenstein algebra, and that GP(H) denotes
the subcategory of Gorenstein-projective H-modules.

Corollary 1.5 For M € rep(H) the following are equivalent:

(i) CH(M) =0;
(i) M € GP(H).

For an algebra A and an A-A-bimodule M, let T4(M) denote the corre-
sponding tensor algebra. Theorem 1.4 implies the following description of the
preprojective algebra I1 = I1(C, D) associated with H.

Theorem 1.6 IT = Ty (Extl (D(H), H)).

The algebra IT contains H as a subalgebra in an obvious way. Let g II be
the algebra IT considered as a left module over H. The following result says
that yIT is isomorphic to the direct sum of all preprojective H-modules. This
justifies that IT is called a preprojective algebra.

Theorem 1.7 We have gIl = ®m20 ™" (g H). In particular, T1 is finite-
dimensional if and only if C is of Dynkin type.

Finally, we obtain the following analogue for locally free IT-modules of the
classical important Ext-symmetry of preprojective algebras.

Theorem 1.8 For M, N € rep, ¢ (IT) we have a functorial isomorphism

Exti (M, N) = DExt} (N, M).
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1.6 Previous appearances of H(C, D, 2)

1.6.1. Let Q be a quiver without oriented cycles. Ringel and Zhang [51] study
representations of Q over the algebra A := K[X]/(X 2) of dual numbers. This
can be interpreted as the category of A-modules with A := A ®x K Q. Itis
shown in [51] that A is a 1-Iwanaga—Gorenstein algebra, and that the stable
category of GP(A) is triangle equivalent to the orbit category D?(K Q)/[1]
of the bounded derived category D (K Q) of the path algebra K Q modulo the
shift functor [1]. In our setup, if we take symmetric Cartan matrices C with
symmetrizer D = diag(2, ..., 2), then the class of algebras H(C, D, €2) coin-
cides with the class of algebras studied by Ringel and Zhang. Fan [29] studies
the Hall algebra of representations of Q over K[X]/(X") withm > 1. Again
this is a special case of our setup with C symmetric and D = diag(m, ..., m).
For Q aquiveroftype A, A = K[X]/(X™)and A := AQk K Q the category
GP(A) is studied in work of Ringel and Schmidmeier [50]. Note also that in
this case we have A = T>(A), where T>(A) is the algebra of upper triangular
2 x 2-matrices with entries in A. More generally, the algebras 75(A) with A
a Nakayama algebra have been studied by Skowroniski [53], and the algebras
T, (A) have been studied by Leszczyriski and Skowronski [42].

1.6.2. A general framework for studying cluster structures arising from 2-
Calabi—Yau categories with loops has been provided by [16]. As an example
they study the cluster category C := D?(7,,)/7~[1] of the mesh category of
a tube 7, of rank n > 2. The endomorphism algebras of the maximal rigid
objects in C have been studied by Vatne and Yang [54,56]. It turns out that
there exists a maximal rigid object T in C such that End¢(T) is isomorphic to
one of our algebras H(C, D, 2), where C is of Dynkin type C,,—; and D is
minimal. (We identify the types C; = A| and C» = B3.)

1.6.3 Let Q be a Dynkin quiver of type Eg, and let F := S*~ ™4 where §
is the Serre functor and X is the translation functor for the bounded derived
category D?(K Q) of the path algebra K Q. Ladkani [41, Section 2.6] stud-
ies the orbit category C := D?(K Q)/F. He shows that C is a triangulated
2-Calabi—Yau category containing exactly 6 cluster-tilting objects. Ladkani
shows that C categorifies a cluster algebra of Dynkin type G>. He also shows
that the cluster tilting-objects in C have an endomorphism algebra isomorphic
to A = KQ/I, where Q is a quiver of the form

& &

» .

l<=—2o0 1——=2

and I is generated by £3. Note that the algebras A are isomorphic to the algebras
H(C, D, Q) with C of type G, and D minimal.
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1.7 Previous appearances of I1(C, D)

1.7.1 Let C be a Cartan matrix of Dynkin type. In [38], an algebra A = A(C)
was introduced, by means of an infinite quiver with potential. Certain finite-
dimensional A-modules (the generic kernels K, g ) , see [38, Definition 4.5])
were shown to encode the g-characters of the K1r1110V—Reshet1kh1n modules
of the quantum loop algebra U,(Lg), where g is the complex simple Lie
algebra with Cartan matrix C. The connection with the algebras considered
in this article is the following: Let I1(C) denote the algebra K Q/I, where
[ is the two-sided ideal defined by the relations (P2) and (P3) only. (Thus,
the nilpotency relation (P1) is omitted.) Then A(C) is a truncation of a Z-
covering of TT(C*), where C* is the transposed Cartan matrix, in other words,
the Cartan matrix of the Langlands dual g* of g. In particular, for m <« 0
the generic kernels K, (’) of A(C) coincide with the indecomposable projec-
tive I1(C*, D)- modules regarded as Z-graded IT(C*)-modules (compare for
instance [38, Section 6.5] to Fig. 11 below). This generalizes [38, Example 4.7].

1.7.2 The algebras ﬁ(C ) mentioned in Sect. 1.7.1 were defined and studied
independently by Cecotti [18, Section 3.4] and Cecotti and del Zotto [19,
Section 5.1]. In [18] they are called generalized preprojective algebras.

1.7.3 For (C, ) let

8ji

WC. = > > senl, jel afal).

(j.i)e 8=l

Then the cyclic derivatives of the potential W (C, €2) yield the defining relations
(P2) and (P3) of [1(C, D), compare [18,19,38], where these relations are also
encoded via potentials.

1.7.4 After the first version of this article appeared on arXiv, we were informed
by D. Yamakawa of the following connection between I1(C, D) and some
quiver varieties for quivers with multiplicities introduced in [55]. Suppose that
C is a generalized Cartan matrix of the form C = (¢;;) = 21, — AD, where I,
is the unit matrix, A = (a;;) is a symmetric matrix with a;; € Nand a;; = 0,
and D = diag(cy, ..., ¢,) with positive integers ¢;. Then C is symmetrizable
with symmetrizer D. (Note that not every symmetrizable Cartan matrix is
of this form. For instance Cartan matrices of type C, are of this form, but
not Cartan matrices of type B,.) Assume further that k;; = ged(ci, ¢j) =1
whenever ¢;; < 0. Then the defining relations (P2) of IT(C, D) are redundant,
and the mesh relations (P3) can be regarded as the vanishing of the moment
map of some Hamiltonian space considered in [55]. As a result, in this case,
the isomorphism classes of locally free IT(C, D)-modules of rank vector r are
parametrized by the set theoretical quotient N3¢ (r, 0) of [55].
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1.8 Future directions

This article intends to provide the foundation for generalizing many of the
connections between path algebras, preprojective algebras, Lie algebras and
cluster algebras from the symmetric to the symmetrizable case.

In particular, since the algebras H and IT are defined via quivers with rela-
tions, one can study their module varieties over an arbitrary field K. Taking
K = C, one can hope to generalize Lusztig’s nilpotent varieties and Nakajima
quiver varieties from the symmetric to the symmetrizable case.

As afirst step in this direction, in [34] we construct the enveloping algebra of
the positive part of an arbitrary simple finite-dimensional complex Lie algebra
as an algebra of constructible functions on varieties of locally free H-modules.

1.9 Outline

The article is organized as follows. In Sect. 2 we recall some definitions and
basic facts on Cartan matrices, quadratic forms and Weyl groups. A descrip-
tion of the projective and injective H-modules and some fundamental results
on locally free H-modules are obtained in Sect. 3. In particular, Sect. 3 con-
tains the proof of Theorem 1.2 (combine Proposition 3.5 and Corollary 3.7). In
Sect. 4 we show that the quadratic form g¢ associated with a Cartan matrix C
coincides with the restriction of the homological Euler form of H to the sub-
category of locally free H-modules. The representation theory of the algebras
H and IT can be reformulated in terms of a generalization of the represen-
tation theory of modulated graphs. This point of view, which is of central
importance for proving (and in part also for formulating) our main results,
is explained in Sect. 5. An interpretation of H and IT as tensor algebras is
discussed in Sect. 6. Section 7 provides a bimodule resolution of H. In Sect. 8
we introduce a trace pairing for H;-modules and relate it with the adjunction
isomorphisms. Section 9 contains some fundamental properties of generaliza-
tions of BBK-reflection functors to our algebras I1. (The letters BBK stand
for Baumann and Kamnitzer [8,9] and Bolten [12]. Independently from each
other they introduced reflection functors for the classical preprojective alge-
bras associated with quivers.) The reflection functors for I restrict to reflection
functors for H. We show that the latter are generalized versions of APR-tilting
functors. The intimate relation between Coxeter functors and the Auslander—
Reiten translation for H is studied in Sect. 10. Theorem 1.4 follows from
Theorem 10.1 and Proposition 11.9. We also prove some crucial properties
of the algebras IT. In particular, Theorem 1.6 corresponds to Corollary 10.6.
In Sect. 11 we use the previous constructions for proving Theorem 1.3 (see
Theorem 11.10). The proof of Theorem 1.7 can be found in Sect. 11.3. We also
obtain some first results on the Auslander—Reiten theory of H. Section 12 con-
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tains the construction of a bimodule resolution for IT. This resolution plays
an important part in the study of locally free representations. In particular,
Sect. 12.2 contains the proof of Theorem 1.8 (see Theorem 12.6). Finally,
Sect. 13 contains a collection of examples.

1.10 Notation

By a subcategory we always mean a full subcategory which is closed under
isomorphisms and direct summands. By an algebra we mean an associative
K -algebra with 1. For a K-algebra A let mod(A) be the category of finite-
dimensional left A-modules. If A = K Q/I is the path algebra of a quiver Q
modulo some ideal /, then rep(A) denotes the category of finite-dimensional
representations of (Q, /). By definition these are the representations of Q
which are annihilated by /. We often identify mod(A) and rep(A). Let proj(A)
and inj(A) be the full subcategories of rep(A) with objects the projective
and injective A-modules, respectively. Let D := Homg (—, K) be the usual
K -duality. For a finite-dimensional algebra A let t(—) = t4(—) be the
Auslander—Reiten translation of A. For a module X we denote by add(X)
the subcategory of modules which are isomorphic to finite direct sums of
direct summands of X. As a general reference for the representation theory
of finite-dimensional algebras we refer to the books [5,47]. The composition
of maps f: X — Y and g: ¥ — Z is denoted by gf : X — Z. For arrows
a:i — jand B: j — kinaquiver, we write their composition as fo: i — k.
By N we denote the natural numbers including 0.

2 Cartan matrices and the Weyl group
2.1 Cartan matrices and valued graphs
Let C = (¢;j) € My, (Z) be a Cartan matrix, and let D = diag(cy, ..., c,) be
a symmetrizer of C. The valued graph I' (C) of C has vertices 1, ..., n and an

(unoriented) edge between i and j if and only if ¢;; < 0. An edge i J
has value (|cj;|, |c;j|). In this case, we display this valued edge as

- ejilsleih
e

and we just write J it (cjil, leijh = 1, 1).

A Cartan matrix C is connected if I'(C) is a connected graph. In this case,
the symmetrizer D is uniquely determined up to multiplication with a positive
integer. More precisely, if D is a minimal symmetrizer of a connected Cartan
matrix C, then the other symmetrizers of C are given by mD with m > 1.
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2.2 The quadratic form
Define the quadratic form g¢: Z" — Z of C by
n
qc ‘= ZC,‘Xi2 — ZC,‘|C,'J'|X,‘X]'.
i=1 i<j

(Recall that c;|c;j| = cjl|cj;i|.) The quadratic form g¢ plays a crucial role in
the representation theory of the quivers of Cartan type C and more generally
of the species (see for example [26]) of type C.

A Cartan matrix C is of Dynkin or Euclidean type if q¢ is positive definite
or positive semidefinite, respectively. It is well known that C is of Dynkin type

if and only if I'(C) is a disjoint union of Dynkin graphs. (The Dynkin graphs
are listed in Sect. 13.2.)

2.3 The Weyl group
As before let C = (c;;) be a Cartan matrix, and let a1, . . ., a, be the positive
simple roots of the Kac-Moody algebra g(C) associated with C. For 1 <

i, j < n define

si(otj) = G,

This yields a reflection s; : Z" — 7" on the root lattice
n
7' =" Za;
i=1

where we identify «; with the ith standard basis vector of Z". The Weyl group
W (C) of g(C) is the subgroup of Aut(Z") generated by s1, ..., s,. The Weyl
group is finite if and only if C is of Dynkin type.

2.4 Roots

Let

Awe(C) = W(a)

i=1
be the set of real roots of C.
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Let
(=, )c:Z"x7" - 7Z

be the symmetric bilinear form of C defined by («;, ;)¢ := c;c;j. The fun-
damental region of C is defined by

F:={d e N" | d #0, supp(d) connected, (d,®;)¢c <Oforall 1 <i < n},

where supp(d) is the full subgraph of I' (C) given by the vertices i withd; # 0.
Then

Ain(C) :=W(F)UW(=F)

is the set of imaginary roots of C.
Let

AL(C) := A(C)NN" and A} (C) := Ajm(C) NN

be the set of positive real roots and positive imaginary roots, respectively. It
turns out that

Are(C) = AL(C)U-ALC) and Aim(C) = Al (C)U—AL (O).
Finally, let
A(C) := Awe(C) U Ajn (C)
be the set of roots of C, and
AT(C) == A(C)NN" = AL(C)U AT (O)
is the set of positive roots.
By definition, for w € W(C) and d € A(C) we have w(d) € A(C). We

have gc(d) = c;ifd € W(w;) isarealroot, and gc (d) < 0ifd is an imaginary
root. The following are equivalent:

(1) C is of Dynkin type;
(i) A(C) is finite;
(iil) A (C) = A(C).
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2.5 Coxeter transformations

For an orientation 2 of C and some 1 <i < n let
5i(Q) :={(r,s) e Qi ¢ {r,s}}U{(s,r) e Q" |i e {rs}}

If i is a sink or source in Q°(C, 2), then s;(€2) is again an orientation of
C. A sequence i = (iy,...,I,) is a +-admissible sequence for (C, Q2) if
{it,..., iy} = {1,...,n},i; is a sink in Q°(C, 2) and i; is a sink in the
acyclic quiver Q°(C, s;,_, - - -5;;(2)) for 2 < k < n. For such a sequence i
let

(079 if k:l,
SiySiy S (ey) if 2<k<n

Bik = P == [

where 51, ...,s, € W(C). Similarly, define

SinlnsikJrl(aik) lf 1 Skfl’l—l,

”“zﬂ::[ it k=n.

in
Let

tom s s I n T S s I n
¢ =808, 8 L0 — Z" and ¢ = sp,8i, -0 8,0 L — 17

be the Coxeter transformations. For k € 7 we set

(cHHk if k>0,
F=deH* if k<o,

id if k =0.
We get
T (Bik) = (5i,siy_y - 5iy)(SiySiy -+ Sip_, (i)
= sin Sinfl e sik (aik)
= =S Siy_y o Sigg ()
= —Vik-

The following two lemmas are well known. For example, they are a conse-
quence of the study of preprojective and preinjective representations of species
without oriented cycles.
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Lemma 2.1 Suppose C is not of Dynkin type. Then the elements ¢~" (8;) and
c*(yj) withr,s > 0and 1 < i, j < n are pairwise different elements in
AL(C).

Let C be of Dynkin type. For 1 < i < n let p; > 1 be minimal with
c™Pi(B;) ¢ N', and let g; > 1 be minimal such that c¢%/ (y;) ¢ N". It is well
known that such p; and ¢g; exist. The elements ¢™"(f;) with 1 <i < n and
0 < r < p; — 1 are pairwise different, and the elements c*(y;) with1 < j <n
and 0 < s < g; — 1 are pairwise different.

Lemma 2.2 Assume that C is of Dynkin type. Then

ATO)={c"B)I1<i<n 0<r<p—1}={"(y) 1
<j=n 0=<s=<gq;—1}

3 Locally free H-modules

For the whole section, let H = H(C, D, ) and Q = Q(C, 2) as defined in
Sect. 1.4.

3.1 Modules defined by idempotents

Let M € rep(H). For 1 < i < nlet M; := ¢;M. The H-module structure
on M is described by the spaces M; with 1 < i < n and by K-linear maps
M(a): M) — M;(q) with a running through the arrows of the quiver Q.
(Of course, these maps need to satisfy the defining relations for H.)

For a non-empty subset J of {1,...,n} lete := ZjeJ ej. Thus e is an
idempotent in H. We get a vector space decomposition

eM =P M;.
jeJ
For 1 <i <n we set

M; if iel,
0 otherwise,

(eM); := I

and for each arrow « of Q we define a map (eM)(a): (eM)s@) — (eM);(w)
by

M(x) ifs(x), t(x)e€J,
0 otherwise.

(eM)(a) = [
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This defines an H-module structure on e M. This follows from the nature of the
defining relations for H. Namely, for a given i, there are no relations passing
through i, i.e. any of the relations either starts in i, ends in i, or does not
involve i.

3.2 Description of the projective and injective modules

The algebra H is by definition a path algebra modulo an admissible ideal
generated by zero relations and commutativity relations. This implies that
each indecomposable projective H-module P; := He; has a basis B; with
the following properties: For each path p in Q and each b € B; we have
p - b € B; U{0}. In particular, we can visualize P; by drawing a graph with
vertices the elements in B;, and an arrow b L b’ if for an arrow a € 01
and b, b’ € B; we have a - b = b'. We say that P; has a multiplicative basis.
Similarly, the indecomposable injective H-modules I; := D(e; H) have a
multiplicative basis.

Let i be a vertex of Q. We define an H-module _ H; as follows: A basis
of ¢;_H; is given by vectors a;  with 1 < ¢ < ¢;, and for j € Q(—,i) a
basis of e; _ H; is given by vectors b{g withl <c¢ <c¢j,1 < f < fji and
1 < g < gji,and fors ¢ Q(—, i) define e;_ H; := 0. The arrows of Q act as
follows:

Naice—1 if c>=2,
Fidie =0 it c=1

f, .
cphe . iy i e=2,
! 0 if c=1,

and for0 <k <k;;,0< f < fj;and 1 < g < gj; we have

(& fii—r.g
Qi dici—f—kfji = bjsjcj_kfif

Forc; =9,c; =6, fj; =3, fij = 2 (and therefore kj; = 3) we display a
part of the module (e; + ¢;)_ H; in Fig. 1.

The module _ H; has one i-column with basis (@i, ....aic),and for each
j € Q(—, i) ithas a j-column with basis (bj s ...,b{”fj) foreach1 < f <

fjiandeach 1 < g < g;;. By definition we have

dim_H; =c¢; + Z fiigjicj-
JEQU(=,D)
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Fig. 1 Construction of the @
H-module (¢; + e;)— H; aio ”
with ¢; =9, cj = 6, th =
3,f,-j:2andkj,-:3 €i

al?

€ b?’g €j
(9)
“ji ‘ bl’g
@i, 7 | 5,6
€5 = b?’g
(9) &i
a9
Ji 3,9
36 bjia
€j
(9) )
I sg
. LA B
a; 5 \L bJ’4
€j
€ b?’g €j
v 1
I »g
a4 b,
€ €j b?’g
9
(9) €J
i 13,9
a; 3 bj’Q
€j
1
(9)
%y 2,9
aj 9 ——————> bj 5
\L 9
€j
4 b?’f £j
(9)
% bl’g
A1 \|/ 5,2
2,9
bj71 Ej
1,9
ij1
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The number of j-columns of _H; is fjigji = |cjil.
Suppose j isasinkin Q°. The module Pj = ¢; Pjhasabasisaj 1, ..., aj;
such that

ajc—1 if ¢>2,
gidjc = .
SR K ifc=1,
Then (aj 1, ..., aj,cj) is the j-column of P;.

Next, assume that i is a vertex of Q such that for each j € Q(—, i) the
projective module P; is already constructed, and P; has a distinguished basis
including a j-column (a; 1, ..., aj,cj), which forms a basis of ¢; P;.

Then P; is constructed as follows: We take for each j € Q(—,i),1 <
f =< fiiand 1 < g < gj; a copy ij’g of P; and identify the j-column

(b5, ... bTE) of _H; with the j-column (aj1, ..., aj.,) of P**. The
resulting module is our indecomposable projective H-module P;, and by def-
inition its i-column is the i-column (a; 1, .. ., a; ;) of the module _ H;.

The indecomposable injective H-modules /; are constructed dually by glu-
ing modules ; H_, which are dual to the modules _ H;. Again, forc; =9, ¢; =
6, fji =3, fij = 2and kj; = 3 we display a part of the module (¢; +-¢;); H_
in Fig. 2.

Recall that the notion of a locally free module can be found in Defi-

nition 1.1. Let Sy, ..., S, be the simple H-modules with dim(S;) = «;,
and let Eq, ..., E, be the (indecomposable) locally free H-modules with
rank (E;) = «;. (Here aq, ..., « is the standard basis of Z".) We refer to the

E; as the generalized simple H-modules. Thus E; corresponds to the regular
representation of H;. More precisely, we have E; = ¢; E;, and ¢; E; has a basis
ai1,...,daic such that

ajc—1 i c¢>2,
Eidj c ‘= .

0 ifc=1.
In particular, if i is a sink in Q°(C, 2), then E; = P;. Dually, if i is a source
in Q°(C, 2), then E; = I;.

It follows from our construction of P; and /; that these modules are locally

free. Furthermore, we get the following result, which again follows directly
from our construction.

Proposition 3.1 For everyi € Qq, the canonical exact sequence

0— @ PJ‘.Cji|—> Pp—E, —0
J€Q(=,0)
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Fig. 2 Construction of the p2:9
H-module (¢; +¢;); H- &9
with ¢; =9, cj =0, fj,' = lfz
3,f,-j:2andkj,-:3 b2"g
7,8
1
i b;§
(9)
b2~,g i c a:
0,7 ¢ 7,6
«ool
€j
2,9
bi,()‘ &
(9)
1,9 %t
& b —=ajs
2,9
bis &
€j
s b
p2o0 e '
i,4 ¢ aj.4
1
s b’y
€j
2,9
bis &
(9)
e bl’g %5
: i T @53
2,9 )
b3 i
€j
by
(9)
p2g Lo 1% A
i,1 ¢ aj,2
1.9
bi,Z g
-
ol

is a minimal projective resolution of E;, and the canonical exact sequence

cjil
0> E — I, —> @ Ij‘f =0
jeQi,-)

is a minimal injective resolution of E;.
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Fig. 3 A projective and an injective H-module for type C3

3.3 Example

Let
2 -1 0
C=1|-2 2 -1
0o -1 2

with symmetrizer D = diag(4, 2,2) and 2 = {(2, 1), (3,2)}. Thus C is a
Cartan matrix of type C3. Then H = H(C, D, Q) is given by the quiver

£1 & &3
2773
with relations f:‘l1 =0, 8% = 8_72, =0, e0 = Ol21812 and e3a3r = w3p82. The
indecomposable projective H-module P; and the indecomposable injective
H-module /3 are displayed in Fig. 3. The modules P, and P3 are submodules
of Py, and I| and I are factor modules of I5.

3.4 The rank vectors of projective and injective modules

Assume that i = (i1, ..., i,) is a +-admissible sequence for (C, 2). Without
loss of generality, assume that iy = k for 1 < k < n. Recall that we defined
some positive roots Bk, yx € AL(C) in Sect. 2.5.

Lemma 3.2 We have rank (Py) = f.

Proof By our construction of the indecomposable projective H-modules P;
we get

rank (Py) = rank(Ey) + Z gjk fjrrank (P;)
JEQU(—K)

=rank(Ex) + D lcjilrank(P;).
JEQ(—k)
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For k = 1 we have Py = E}. Thus we have rank(P;) = oy = 1. Fork > 2
we have

Br = 51+ Sk—2(otg — Cr—1 kQlk—1)
=51 Sk—2(ak) — ck—1,kBk—1

= — D b

JEQ(—.k)

=ar + Z lcjklBj

JEQ(=K)
The claim follows by induction. O
The proof of the next result is similar to the proof of Lemma 3.2.
Lemma 3.3 We have rank(I;) = y%.
As a consequence of Lemmas 3.2 and 3.3 we get the following result.

Proposition 3.4 We have rank (P;), rank(/;) € Aj;(C ).

3.5 The Coxeter matrix

The Cartan matrix Cy of H is the (n x n)-matrix with kth column the dimen-
sion vector dim(P), 1 < k < n. (This is not to be confused with the Cartan
matrix C.) It follows that the kth row of Cg is dim(/), 1 < k < n, see for
example [48, Section 2.4, p.70]. The matrix Cg is invertible over Q (but not
necessarily over Z). (We can choose a numbering of the vertices of Q(C, 2)
such that Cg is an upper triangular matrix with only non-zero entries on the
diagonal.) The Coxeter matrix of H is defined as

oy =—-Chcy!
where C[Ti denotes the transpose of Cg. It follows that
@y (dim(Py)) = —dim(Ix)
(Here we treat dim(Py) as a column vector.)
Next, let Cy p be the (n x n)-matrix with kth column the rank vector
rank(P%), and let Cy ; be the (n x n)-matrix with kth row the rank vector

rank(/;), 1 <k < n. We have

Cyp=D"'CyandCy;=CyD".
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We get
D™'oyD =-D"'CciCy'D =] ,Cy',
and this matrix satisfies
D™y D(rank(Py)) := —rank (7).

Thus by Lemmas 3.2 and 3.3 we can identify D~'®y D with the Coxeter
transformation c*.

3.6 Homological characterization of locally free modules

Proposition 3.5 For M € rep(H) the following are equivalent:
(i) proj. dim(M) < 1;
(i1) inj. dim(M) < 1;
(>iii) proj. dim(M) < oo;
(iv) inj. dim(M) < oo;
(v) M is locally free.
Proof For M = 0, all properties (i), ..., (v) hold. Thus we assume that M is
non-zero.

Let M be locally free. Then there exists a vertex i of the quiver Q(C, 2) of
H such that e; M # 0 and e;M = O for all j € Q(—,i). (Here we used that
0°(C, Q) is acyclic.) It follows that e; M is a submodule of M, and (1 —¢;) M
is isomorphic to the factor module M /e; M of M. So we get a short exact
sequence

0—>eM—>M-—(1—e)M—0

of H-modules. Note that e;M and (1 — ¢;)M are both locally free. If (1 —
e;)M = 0, then ¢, M = M. In this case, we have M = Elm for some m > 1,
and Proposition 3.1 yields that (i), ..., (iv) hold for M. If (1 — e;)M # O,

then by induction on the dimension we get that (i), . .., (iv) hold for ¢; M and
for (1 — ¢;) M. Now one uses long exact homology sequences associated with
the short exact sequence above to show that (i), ..., (iv) also hold for M.

Next, assume that M is not locally free. Let i be a vertex of Q such that
e; M is not a free H;-module. Any projective resolution

---—>P2—>P1—>P0—>M—>O (3.1)
of M yields a projective resolution of H;-modules

coo—>ejPy > e; Py > e; Py > eiM — 0. 3.2)
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But H; is a selfinjective algebra, and e; M is not a projective H;-module. Thus
the resolution (3.2) and therefore also the resolution (3.1) has to be infinite.
This implies proj. dim(M) = oo. Dually, one shows that inj. dim(M) = oo.

0

For a finite-dimensional algebra A, let t = t4 denote its Auslander—Reiten
translation. Recall that for X, Y € mod(A) there are functorial isomorphisms

Extl (X, Y) = DHoma (Y, (X)) = DHom 4, (z~(Y), X),

see for example [48, Section 2.4] for details. These isomorphisms are often
referred to as Auslander—Reiten formulas. If proj. dim(X) < 1, we get a func-
torial isomorphism

Extl (X, Y) = DHomyu (Y, 7(X)),
and if inj. dim(Y) < 1, then
Exty (X, Y) = DHomu(z ™ (Y), X).

Recall that an A-module X is t-rigid (resp. T~ -rigid) if Hom4 (X, 7(X)) =0
(resp. Hom4 (77 (X), X) = 0) [1]. Clearly, if X is r-rigid or 7~ -rigid, then X
is rigid.
Corollary 3.6 For M € rep,; ; (H) the following are equivalent:
(1) M is rigid;
(i) M is t-rigid;
(i) M is Tt~ -rigid.
Combining Propositions 3.1 and 3.5 yields the following result.
Corollary 3.7 The algebra H is a 1-lwanaga—Gorenstein algebra.

Lemma 3.8 The subcategory rep, ; (H) is closed under extensions, kernels of
epimorphisms and cokernels of monomorphisms.

Proof Let
0>xLv&z50

be a short exact sequence in rep(H). For each 1 < i < n this induces a short
exact sequence

0—>eX—>eY—>eZ—0
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of H;-modules. Recall that M € rep(H) is locally free if and only if ¢; M is a
projective (and therefore also an injective) H;-module for all i. It follows that
if any two of the three modules ¢; X, ¢; Y and e; Z are projective H;-modules,
then the third module is also projective as an H;-modules. This finishes the
proof. O

For the following definitions, see for example [6]. Let A be a finite-
dimensional K-algebra, and let ¢/ be a subcategory of mod(A). Then U is
a resolving subcategory if the following hold:

(i) aA €U,
(i1) U is closed under extensions (i.e. for a short exact sequence 0 — X —
Y - Z — 0 of A-modules, if X, Z € U, then Y € U);
(iii) U is closed under kernels of epimorphisms.

Dually, U is coresolving if

(i) D(Ax) € U;
(i1) U is closed under extensions;
(iii) U is closed under cokernels of monomorphisms.

For X € mod(A) a homomorphism f: X — U is a left U-approximation of
X if U e 4 and

H U’
Homy (U, U") M

Homy(X,U') = 0
is exact for all U’ € U. Dually, a homomorphism g: U — X is a right
U-approximation of X if U € U and

Homy (U’, U) —>H0mA(U/’g)

Homu(U’, X) — 0

is exact for all U’ € U. The subcategory U is covariantly finite if every X €
mod(A) has aleft{/-approximation. Dually, i/ is contravariantly finite if every
X € mod(A) has a right U/-approximation. Finally, U/ is functorially finite if
U is covariantly and contravariantly finite.

Theorem 3.9 The subcategory rep, ¢ (H) is resolving, coresolving and func-
torially finite. In particular, rep, ; (H) has Auslander—Reiten sequences.

Proof By Lemma 3.8 and Proposition 3.1 we get that rep, ; (H) is a resolving
and coresolving subcategory of rep(H ). Furthermore, by Proposition 3.5 we
know thatrep, ; (H) coincides with the subcategory of all H-modules with pro-
jective dimension 1. Thusrep; ; () is covariantly finite by [4, Proposition 4.2].
Since rep, ¢ (H) also coincides with the subcategory of all H-modules with
injective dimension 1, the dual of [4, Proposition 4.2] yields that rep; ; () is
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contravariantly finite. Thus rep, ; (H) is functorially finite in rep(H). Now it
follows from [6, Theorem 2.4] thatrep, ; (H ) has Auslander—Reiten sequences.
O

4 The homological bilinear form

As before, let H = H(C, D, Q2). For M, N € rep,; (H) define

(M, N)y := dim Homy (M, N) — dim Extl, (M, N),
M,N)g:=(M,N)yg +(N,M)p,
qu(M) := (M, M)p.

Proposition 4.1 For M, N € rep,; (H) we have
n
(M,N)y = Zciaibi - Z cilcijlaibj
i=1 (j.)eR
where rank(M) = (ay, ..., a,) and rank(N) = (by, ..., by).

Proof Let Q = Q(C, Q). Leti; be asink in Q°, and let i,, be a source of Q°.
We get short exact sequences

ai; f1 12

0— E; S M>M -0 4.1)
and N
0> N 5 N3 E™ -0 4.2)

where f] is the obvious canonical inclusion, f is the canonical projection onto
Cok(f1), g» is the obvious canonical projection, and g; is the canonical inclu-
sion of Ker(g2). Applying Homp (—, N) to sequence (4.1) and Homg (M, —)
to the sequence (4.2) yields the long exact cohomology sequences

0 — Homy(M', N) - Homg(M, N) — HomH(EZi1 ,N)
— Extl (M, N) — Ext};(M, N) — Extj(E;"\N) > 0 (4.3)

and

0 — Homy(M,N') — Hompy (M, N) — Hompy (M, Ef:”)
— Extl (M, N') — Extly(M, N) — Extl (M, E;") — 0. (4.4)
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For the exactness of the first cohomology sequence we used thatinj. dim(N) <
1, and for the second sequence we needed that proj. dim(M) < 1, compare

Proposition 3.5. The first sequence implies that

a,-l

(M,N)u = (M',N)y +(E;/', N)n,

il
and the second sequence yields
biy
(M,N)u = (M, N\ + (M, E;" ) 1.

Thus by induction we get

(M,N)y = Z aib;(Ei, Ej)g.

1<i,j<n

For 1 < j < n we have

1 f | — "
dim Homy (E;, Ej) = dimHomy (P, Ejy =< " ' =/
0 otherwise.

Recall that the minimal projective resolution of E; has the form

0— @ le.cﬁl—> P, — E;, — 0.
Je(=.0)
Applying Homp (—, E;) for 1 < j < n yields

cjlejil if j € Q(—, i),

. 1
dim Extyy (Ei, Ej) = [ 0 otherwise

Since cjcj; = cjcjj, the result follows.

4.5)

O

Proposition 4.1 shows that for M, N € rep,; (H) the number (M, N)p

depends only on the rank vectors rank (M) and rank(N). This implies:

Corollary 4.2 The map (M, N) — (M, N) g descends to the Grothendieck
group 7" of rep, ¢ (H) and induces a bilinear form 7" x 7" — 7 still denoted
by (—, —)u. This bilinear form is characterized by {(a;, )y = (E;, Ej)n,

where a1, . .., oy is the standard basis of 7.".

Let
(= ) 7" x7"— 7
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be the symmetrization of (—, —) g defined by (a, b))y := {(a, b)y + (b, a)q,
and let gp : Z"" — 7 be the quadratic form defined by gy (a) := {(a, a)y. The
forms gg and (—, —) g are called the homological bilinear forms of H.

Corollary 4.3 We have qg = qc and (—, —)g = (—, —)c-
Proof By definition we have
qc —ZC,XZ zcl|clj|x Xj,
l<_]

and we know from Proposition 4.1 that

n

qH = ZCiXiZ - Z cileij| XiX .
i=1 (j.i)eR

Note that gy does not depend on the orientation €2, since c¢;c;; = cjc;; for all
i, j. Thus we have gg = gc. Similarly, one also shows easily that (—, —)g =

(= —c. 0
5 An analogy to the representation theory of modulated graphs

The constructions and results of this section form a crucial part of this article.
For example, it contains the foundation for defining reflection functors and
Coxeter functors for the algebras H(C, D, 2).

5.1 The bimodules ; H;

Let C = (¢;jj) € My(Z) be a Cartan matrix with symmetrizer D =
diag(cy, ..., cp), and let Q be an orientation of C, and let Q2* be the opposite
orientation. Let H := H(C, D, Q) and H* := H(C, D, *). Recall that for
1 <i < n we have

H; = e;He; = K|g;1/(&]").
In the following we write ®; for a tensor product ® 5, over H;. If there is no

danger of misunderstanding, we also just write ® instead of ®;.
For (j,i) € Q we define

jH; == H; SpanK(a(g) |1 <g=<gj)H;

_ SpanK(ef’ (g) fz |f]vfl >0,1<g <gjl)
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Our considerations in Sect. 3.2 show that ; H; is an H;-H;-bimodule, which
is free as a left H;-module and free as a right H;-module. Let ; H; be the
corresponding H;-H j-bimodule coming from H*. We get

gij [fii— gij fij—
=@ D el - D el
g=1 f=0 g=1 f=0
and
8ij fl] 8ij fji
=@ D i) =@ B el
g=1 f=0 g=1 f=0
So we have
|le‘
H(]H)— i —(IH)Hv
| ijl ~
mGH) = HY = (jH)p,.
Define
fii—
jLi= e aWer el 1< g < gy),
) 4 ﬁ
iLi =0 a®e; 0Pl 1< g < i),
fi
iR = {aﬁ‘f),ejaﬁf),...,ej’ (g) |1 <g<gijh
f'l 1
iRy =l e, e <g)|1<g<gu}

Then ;L; (resp. jR;) is a basis of ; H; as a left Hj-modules (resp. as a right
Hi—module). We have |le'| = |,'Rj| = |Cj,'| and |iLj| = |jR,'| = |C,'j|.

Let (;L;)* and (;R;)* be the dual basis of Homp,(;H;, Hj) and
Homy, (; H;, H;), respectively. For b € ;L; or b € ;R; let b* be the cor-
responding dual basis vector. Similarly, define (; L ;)* and (; R;)*.

There is an H;-H j-bimodule isomorphism

,'Hj — HOIIlHj(jHl', Hj)
given by

fii—1=f
,0( J l(]g)) (O[(g) f)
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forO < f < fji—1land1 < g < g;;. Indeed, for the left H;-module structure
on Homp; (j H;, H;) one has

—1 .
@ | @iel if f>0,
i (@i &) = (o) fi-luw fi e s

(a3 €; ) R if f=0.

Jji % J
Similarly there is an H;-H j-bimodule isomorphism
Al ,'Hj — HOInH[(jHi, H,')

given by

fii=1=f
e ) = ey

forO < f < f;j —land 1 < g < g;;. In particular, we get p(;R;) = (;L;)*
and A(G;L;) = (jR;)*. In the following, we sometimes identify the spaces
HomHj (jH;, Hj), H; and Homgy, (; H;, H;) via p and A. For example, for
b € ;L;, we consider b* € HomHj(jHi, Hj;) as an element in ; H;.
If N; is an H;j-module, then we have a natural isomorphism of H;-modules
HomHj(jHi, Nj) — iH;®; N;

defined by

f D b fb)

bGjLi

Now, if in addition M; is an H;-module, the adjunction map gives an isomor-
phism of K -vector spaces:

HOInHj(jHi ®; M;, Nj) — Hompg;, (M;, HOl’nHj(jHi, N]))

Combining these two maps we get a functorial isomorphism of K-vector
spaces

adj; :=ad;i(M;, Nj): Homp,(;H; ® M;, Nj) — Homp,(M;,H; ®; Nj)
given by
f=lfime Z b*®; f(b®;m)
be;L;
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The inverse ad;il of ad;; is given by

g gV h@im—> D b (h)(g(m)y
be;L;

where the elements (g(m)), € N; are uniquely determined by

gm)y= > b*®; (g(m)).

bEjLi

Here we used that each element x in ; H; ® j N; can be written uniquely as a
sum of the form

x = Z b* ®; xp.

be;L;

5.2 Representation theory of modulated graphs

The tuple (H;, ;Hj, j H;) defined in Sect. 5.1 is called a modulation of C and
is denoted by M(C, D).

For an orientation Q2 of C, a representation M = (M;, M) of (M(C, D), )
is given by a finite-dimensional H;-module M; for each 1 < i < n and an
H;-linear map

Mijil'H]' ®j Mj — M;

for each (i, j) € Q. A morphism f: M — N of representations M =
(M;, M;j) and N = (N;, N;j) of (M(C, D), ) is a tuple f = (f;); of
H;-linear maps f;: M; — N; for 1 <i < n such that for each (i, j) € Q the
diagram

1®; f;
iHj ®j Mj#—iHj ®j Nj

L
f'.

M; l N;

commutes. One easily checks that the representations of (M (C, D), 2) form
an abelian category rep(C, D, Q2).
For (M;, M;;) € rep(C, D, 2) define a representation
(M, M), M(&:)
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of H(C, D, Q2) as follows: Define a K -linear map M (g;): M; — M; by
M(e;)(m) := eim.

(Here we use that M; is an H;-module.) Let (i, j) € 2. Recall that ; H; has an
H;-basis

fii=1
L=l afe; ol |1 <g < g}

Define a K -linear map M(ozl.(jg)): M; — M; by

M (e )(m) = Mij (e ®; m).

Now one can check that the relations (H1) and (H2) are satisfied. In other
words, (M;, M(ozl.(f)), M (g;)) is a representation of H(C, D, 2).

Conversely, let (M;, M(ozi(f)), M (g;)) be a representation of H(C, D, Q).
Note that M; is an H;-module via the map M (¢g;). For (i, j) € 2 define an
H;-linear map

Mij: iHj ®j Mj — M;

Mij(eSel @m) = M (@) o M(ej)")(m).
Then (M;, M;;) € rep(C, D, £2).

These two constructions yield obviously mutually inverse bijections
between the representations of (M(C, D), Q) and H(C, D, 2). It is also
clear how to associate to a morphism in rep(C, D, 2) a morphism in
rep(H(C, D, 2)) and vice versa. Now it is straightforward to verify the fol-
lowing statement.

Proposition 5.1 The categories rep(C, D, 2) and rep(H (C, D, Q)) are iso-
morphic.

Thus the representation theory of the algebras H(C, D, 2) shows a strik-
ing analogy to the representation theory of modulated graphs in the sense of
Dlab and Ringel [26]. The main difference is that in Dlab and Ringel’s theory,
the rings H; would be division rings, whereas in our case they are commuta-
tive symmetric algebras, or more precisely, truncations of polynomial rings.
Generalizations of the representation theory of modulated graphs have been
formulated already in [43].

@ Springer



96 C. Geiss et al.

5.3 Representations of I1(C, D)

Next, we want to interpret the category rep(I1(C, D)) of finite-dimensional
representations of I1(C, D) as a category of representations of modulated
graphs. Let rep(C, D, Q) be the category with objects M = (M;, M;j, M;;)
with (i, j) € € such that (M;, M;;) € rep(C, D, ) and (M;, Mj;) €
rep(C, D, 2*). Given two such objects M and N a tuple f = (f;); is a
homomorphism f: M — N if f is both a homomorphism (M;, M;;) —
(N;, Nij) inrep(C, D, 2) and a homomorphism (M;, M;;) — (N;, Nj;) in
rep(C, D, Q%).
For an object M = (M;, M;j, M;;) inrep(C, D, Q) let

Miin = (sgn, p)Mij);: D iHj ® M; — M
jeQi,-)
and

M; ou = (iji)j:Mi_> @ iHj@Mj.
JEQ(=,0)

These are both H;-module homomorphisms. (Recall that Mj\./l. = ad;;(Mj;),
see Sect. 5.1.) Set

Mj = @ ,‘Hj@Mj.
J€Q(i,-)

Since §(i, —) = Q(—, i), we have

@ iHi @ Mj = @ iHi @ M.

jeQ(i,—) keQ(—,i)
Thus we get a diagram

— M Miow —
Ml 1,1n Ml 1,0ul Ml .

Proposition 5.2 The category rep(I1(C, D)) is isomorphic to the full subcat-
egory of rep(C, D, Q2) with objects M = (M;, M;;, M j;) such that

Mi,in o Mi,out =0

foralli.
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Proof For an object M = (M;, M;;j, Mj;) inrep(C, D, Q), the composition
MiinoMiow =, sgn(i, ))Mij oM}
JEQU=i)
is in End g, (M;) and maps an element m € M; to

Miin o Miou(m) = D" sen(i, j) D Mij (b* ®; Mji(b ®; m)).
J€Q(=,0) bejLi

Letb € ;L;. Thus we have b =a§.§)£fji_l_f forsome 0 < f < f;; — 1. This

implies that b* = sl.f ozl.(/ig) € i R;. It follows that

sgn(i, HM;j (b* ®@; Mji(b ®; m))
= sgn(i, )M (e M (e[ )M @) M (e) 717 (m).

In view of the defining relation (P3) of I1(C, D), this yields the result. O

6 The algebras H and II are tensor algebras

Let A be a K-algebra, and let M = g4 M4 be an A-A-bimodule. The tensor
algebra T4 (M) is defined as

Ty(M) := @ M®*

k=0

where MY := A, and M®* is the k-fold tensor product of M for k > 1. The
multiplication of T4 (M) is defined as follows: For r, s > 1, m;, m; € M and
a,a’ € Alet

(ml®"'®mr)'(m/1®"'®m;) = (ml®"'®mr®m/1®"'®m;)
and
am ® - -@my)a == (am; ® - @m,a’).
Recall that the modules over a tensor algebra T4 (M) are given by the A-module
homomorphisms M ®4 X — X, where X is an A-module.
Let A be a K-algebra, Ag a subalgebra and A; an Ap-Ap-subbimodule of

A. Following [10] we say that A is freely generated by A| over Ay if the fol-
lowing holds: For every K-algebra B and any pair ( fo, f1) with fo: Ao — B
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an algebra homomorphism, and fi: A; — B an Ag-Ag-bimodule homomor-
phism (with the Ag-Ag-bimodule structure on B given by fj) there exists a
unique K -algebra homomorphism f: A — B which extends fo and f7. The
following two lemmas can be found in [10, Section 1].

Lemma 6.1 Forany K -algebra A and any A-A-bimodule M the tensor alge-
bra Ty (M) is freely generated by M over A.

Lemma 6.2 Let A be a K-algebra which is freely generated by A1 over Ay.
Then A is isomorphic to the tensor algebra Ta,(A1).

Let Q be a finite quiver, and let w: Q1 — {0, 1} be a map assigning to
each arrow of Q a degree. Then the path algebra K Q is naturally N-graded:
Each path gets as degree the sum of the degrees of its arrows. By definition
the paths of length O have degree 0. Let rq, ..., r;, be a set of relations for
K Q which are homogeneous with respect to this grading. Suppose that there
is some 1 </ < m such that deg(r;) = O for 1 <i </ and deg(r;) = 1 for
[+1<j<m.

Let A := K Q/I, where [ is the ideal generated by r1, . .., r;,. Clearly, A is
again N-graded. Let A; be the subspace of elements with degree i . Observe that
A is naturally an Ag-Ag-bimodule. Now Lemmas 6.1, 6.2 yield the following
result.

Proposition 6.3 A is isomorphic to the tensor algebra Ty, (A1).
As before, let H = H(C, D, 2). Define

S :=ﬁH,~ and B := @ iHj.

i=1 (i,))eQ

Clearly, B is an S-S-bimodule.
Proposition 6.4 H = Ts(B).

Proof The algebra H is graded by defining deg(e;) := 0 and deg(al.(f) ) =1
for all (i, j) € @ and all g. The defining relations for H are homogeneous, S
is the subalgebra of elements of degree 0, and B is the subspace of elements

of degree 1. Now we can apply Proposition 6.3. O
Let IT = I1(C, D, 2) be the preprojective algebra. Define deg(e;) := 0 for
all i, and for (i, j) € Q let deg(ozi(f)) := 0 and deg(ajf)) := 1 forall g. Let
ITy :=TI(C, D, 2);
be the subspace of IT consisting of the elements of degree 1. Note that IT; is

an H-H-bimodule. Again we can apply Proposition 6.3 and get the following
result.
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Proposition 6.5 T1 = Ty (I1y).
Define
D #i.
i,))eQ
Next, for 1 <i <nlet
pii= D, seni.j) D b ®;beTs(B).
JEQ(=0) bejLi

Every b € jL; is of the form b = aﬁf)eiﬂ'

and 1 < g < g;;. Then b* € ; R; is equal to &;
defining relation (P3)

fforsomeO< f=<fji—1

/ a(g) Thus p; translates to the

8ij fjl 1

>S5S sendi, Dela (g) <g> 1

jeQ(—,i)8=1 f=0

of TII.
The algebra T (B) /(p1, ..., pn) is an analogue of Dlab and Ringel’s [28]
definition of a preprojective algebra of a modulated graph.

Proposition 6.6 T1 = Ts(B)/(p1, ..., pn)-

Proof Similarly as in the proof of Proposition 6.4 one shows that T(B) is
isomorphic to the path algebra K'Q modulo the defining relations (P1) and
(P2) of II.

Let M be a module over the tensor algebra Ts(B). Then M is defined by
the structure maps

M,‘ji,'Hj X Mj — M;
for each (i, j) € Q. This yields maps
M;ji == M;j o (id,-Hj ®iMj;): iHi®; jH @ M; — M,.

Now M is a module over T(B) /(p1, ..., py) if and only if for each vertex i
and each m € M; we have p;m = 0. This is equivalent to

Z sgn(i, j)M;ji( Z b*®;b®;m)=0.

FjeQ(—.i) be;L;
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It follows from the definitions that

Z sgn(i, j)M,'ji( Z b* ®j b ®; m) = (Mi,in o Mi,out)(m)-
jeQ(—.i) bejLi

Now Proposition 5.2 yields the result. O

7 Projective resolutions of H-modules

Proposition 7.1 We have a short exact sequence of H-H-bimodules

mult

n
Po: 00— D Hej®;Hi® eH>DHe e ™ H—0
(ai)eR =
(7.1)
where

d(p®;jh®;q) :=ph®iq—pQR;hq.

Proof We know that H = Ts(B). The sequence P, is isomorphic to the
sequence

mult

0> H®sBRsHS>HosH™ 00

of H-H-bimodules, where d(h @ b @ h') := (hb ® ' — h ® bh’). Now the
statement follows from [52, Theorems 10.1 and 10.5]. O

The components of P, are projective as left H-modules and as right H-
modules. However, the components are not projective as H-H-bimodules.
(Except, if S is semisimple, then the first two components are in fact projective
bimodules.) In any case, viewed as a short exact sequence of left or right
modules, P, splits as an exact sequence of projective modules.

Corollary 7.2 If M € rep, ; (H), then P, @y M is a projective resolution of
M. Explicitly, Ps ® g M looks as follows

n

0— @ H€j®jo,' ®; M; M@Hek@)kMkﬂ)M—)O (7.2)
(j.heQ k=1

where

dOM)(pRjh® m)=ph® m—p; Mjj(h®; m).
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(Here M j; : jH; ® M; — M is the Hj-linear structure map of M associated
with (j, i) € Q.)

Proof By the remarks above, P, ® g M is always exact. If M is locally free,
theney HQuM = e M and jH; ®;e; HR®y M = jH; ®; M; are free H-resp.

H ;-modules. Thus the relevant components of P, ® y M are indeed projective.
O

8 The trace pairing
8.1 The trace pairing for homomorphisms between free H;-modules

Foreachi =1, 2, ..., n we have the K -linear map
" Hy — K
defined by

ci—1

-
Zk,si = Agi—1.
=0

For free H;-modules U and V, with V finitely generated, the trace pairing is
the non-degenerate, bilinear form

tr:=try yv: Homg, (U, V) x Hompg,(V,U) — K
defined by
(f.8) = ;" (Trp, (f 0 8)).
It induces an isomorphism
Homy, (U, V) — DHomg, (V, U), f — tr(f, —).

Note, that for U = @ ., Hiuj and V = @);_, H;vr we have

jeJ

,
Homp, (U, V) = | | @5 Homy, (Hiu . Hiv) and
jed k=1
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.
D Homp, (V. U) =D [ €D €D Homy, (H; vy, Hyu,)
jeld k=1

,
= H @DHomHl.(H,'vk, Hiuj).

jelJ k=1

Let W be another finitely generated free H;-module. The following lemma is
easily verified:

Lemma 8.1 For f € Homy,(V, W) the following diagram of natural mor-
phisms commutes:

Hom(U, f)

Homp, (U, V) Homp, (U, W)
D Homy, (V, U) 22" b Homy (W, U)

In other words, under the trace pairing the transpose of Hompy, (f, U) is iden-
tified with Homy, (U, f).

8.2 Adjunction and trace pairing

Recall from Sect. 5.1 that for (j, i) € Q we have isomorphisms of H;-H ;-
bimodules

adji: HOIIlHj(jHi, Hj) —> HOIl’lHi(Hi, ,'Hj),
where we abbreviate iH; ® Hi = jH; and,-H,- ®; Hi =;H;.
Lemma 8.2 The diagram of natural isomorphisms

ad;;

Homp; (; Hi, Hj) Homy, (H;, i H;)

l D(adj;) \L

DHOInHj(Hj, jHi) HDHomHi(iHj, Hi)

with the vertical isomorphisms induced by the respective trace pairings, com-
mutes.
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Proof We have to show that for any ¢ € Homp,(jH;, H;) and ¥ €
Hompy, (; H;, H;) we have

tra;, 1;(ad;i (@), ¥) = tr; 1, 1, (P, ad;; () 8.1)
To this end, write
8ij f/z C/_l
d) Z Z ((X(g) k) d)(g k) with ¢(g NI Zd)lg k) l and
g=1 k=0
gij fij— ci—1
4 0 k 4
v = Z z(a(g) k) W(é D) with w(é Ky Zw(g ) 1
g=1 k'=

where we use heavily the notation from Sects. 1.4 and 5.1. Now a straightfor-
ward, though tedious, calculation shows that both sides of (8.1) yield

gij Jfij—1 fji—1kij—1

Z Z Z Z W/Eifzz lig-;—kaij(kij—l—l)'

g=1 k'=0 k=0 [=0

As a direct consequence we obtain the following:

Proposition 8.3 Let M be a free Hi-module, and N a finitely generated
free Hj-module, and denote by D(ad;;): DHomHj(N,jH,' ® M) —
DHomy,(;H; ®j N, M) the transpose of ad;; = ad;;(N, M). We have a
commutative diagram

Homy, (jH; ® M, N) Hompy, (M, H; ®; N)

J/ D(ad;;) J/

DHomHj(N,jH,' ®; M) —=DHomy,(H; ®; N, M)

where the vertical arrows are the isomorphisms induced by the trace pairings.

Proof In fact, this follows from Lemma 8.2 since ad j; and the isomorphisms
induced by the trace pairing are in fact natural transformations between the
corresponding bifunctors defined on pairs of free modules. O

9 Reflection functors

In this section, let H = H(C, D, 2) and IT = I1(C, D).
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9.1 Reflection functors for IT

We keep the notations of Sect. 5.3. Let M € rep(I1). Thus we have M =
(M;, M;;, Mj;), where (i, j) runs over €2, such that M; i, o M; ou¢ = O for
each i. Hence for every i, we have M; oy (M;) € Ker(M; in).

Generalizing the construction in [8, Section 2.2], see also [12], we fix some
vertex i and construct a new I1-module by replacing the diagram

—~ M Moy —
Ml ,1n Ml 1,0ul Ml

— Mi,()utMi,in can

M; —0 Ker(Mj in) —> M;

where M,-,Om : M; — Ker(M; ip) is induced by M; oy and can is the canonical
inclusion. Gluing this new datum with the remaining part of M gives a new
IM-module X" (M).

Similarly, replacing

— M',in M',out -
M,' ;> Ml' ’—> M,'

by

can Mi,outMi,in —_

M; =5 Cok(M; o) ——"5 M;

where Mi,m : Cok(M; out) — M; is induced by M, ;, and can is the canonical
projection. Gluing this new datum with the remaining part of M gives a new
[T-module denoted by X, (M).

The above constructions are obviously functorial. It is straightforward to
show that Z;L is left exact, and ¥; is right exact. Both functors are covariant,
K -linear and additive.

The commutative diagram

Mi,outMi,in —

]’\\[i = COk(Mi,out) M;
—_— Mi,in Mi,out —_
M; M; M;
_— Mi,ou Mi,in —
M; t Ker(M; in) = M;
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of H;-module homomorphisms summarizes the situation and also shows the
existence of canonical homomorphisms X" (M) — M — E;F(M ).

For M € rep(I1) let sub; (M) be the largest submodule U of M such that
e;U = U, and let soc; (M) be the largest submodule V of M such that V is
isomorphic to a direct sum of copies of S;. For example, we have sub; (E;) = E;
and soc; (E;) = S;. Dually, let fac; (M) be the largest factor module M /U of
M such that e;(M/U) = M/ U, and let top; (M) be the largest factor module
M /V of M such that M/ V is isomorphic to a direct sum of copies of S;. All
these constructions are functorial.

The proof of the following proposition follows almost word by word the
proof of Baumann and Kamnitzer [8, Proposition 2.5], who deal with classical
preprojective algebras associated with Dynkin quivers. One difference is that
we need to work with sub; and fac; instead of soc; and top,;.

Proposition 9.1 For each i the following hold:

(1) The pair (X", E;r ) is a pair of adjoint functors, i.e. there is a functorial
isomorphism

Homp (Z;, (M), N) = Homp (M, T (N)).

(i1) The adjunction morphismsid — Zi—" Xoand % Ei+ — id can be inserted
in functorial short exact sequences

0 — sub; — id — Z;FZI._—>O
and
0— %, =" — id - fac; — 0.

Proof Toestablish (i), it is enough to define a pair of mutually inverse bijections
between Homp(%; (M), N) and Homp (M, E;“ (N)) for any IT-modules M
and N, which are functorial in M and N. The construction looks as follows.
Consider a morphism f: M — El.+ (N). By definition, this is a collection of
H j-module homomorphisms

fi: M; — (ZF(N));

with 1 < j < n such that the diagram

1Qf;
iHj®; M;j —H; ®; (£ (N));
M l(zﬂN»U
fi
M; (ZF(N));
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commutes for all (i, j) € Q. Recall that
P HieM
jeQi,-)

Set

J€Q,~)
In the diagram
— Mz in Mi,oul — T Mz nule in
M, i M; Cok(M; out) —————— M;
|
— Nz nutNr in n — Ni,in \ Ni,nut —_~
N; Ker(N;,in) N;i Ni N;

the two left squares commute.

There is thus a unique map g; making the third square commutative.
(Observe that N; in fi M out = Niintfi = 0. Thus N; iy f; factors through the
cokernel of M; out.)

The fourth square also commutes. Thus if we set g; := f; for all vertices
J # i we get a homomorphism g: ¥ (M) — N. Conversely, consider a
homomorphism g: ¥, (M) — N and set

8i ‘= @ 1®gj:1/\/1v,-—>7V7.

JEQ(=.)
In the diagram
— Mz in Mi,oul — T Mz aule in
M; M; M; Cok(M; out) ———— M
I
l ¥ @ 5 @
— z oulN: in N — Ni,in Ni,oul —_—~
N; —————— Ker(N; in) N; N; N;

the two right squares commute. Thus there is a unique map f; making the
second square commutative. The first square then also commutes. Thus if we
set f; := g; for all the vertices j # i, we get a morphism f: M — E;r(N).
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To establish (ii), one checks that X, Ei+ (M) is the IT-module obtained by
replacing in M the part

— M',in M',out —
M,' ;> M,' l—) M,‘

with
—~ Miin Mi,out -
Mi —_— Im(M,;in) —_— Mi
and that E;r 3. (M) is the IT-module obtained by replacing in M the part

fn Mi,in Mi,out fn
M,‘ —> Mi e M,'

with
i,out

g Mi,in M, —
Ml' —_— Im(Ml-,out) —_— Mi.

It remains to observe that as vector spaces, fac;(M) = Cok(M; ;) and
sub; (M) = Ker(M; out)- O

For the following corollary, observe that sub;(M) = O if and only if
soc; (M) = 0. Dually, fac; (M) = 0 if and only if top; (M) = 0.

Corollary 9.2 The functors E;F: T, — Siand T : S; — T; define inverse
equivalences of the subcategories

T = {M e rep(Il) | top; (M) = O}
and
S;i = {M e rep(Il) | soc;(M) = 0}.

Corollary 9.3 For M, N € rep(I1) the following hold:
() If M, N € T, then Z;L induces an isomorphism

Exth(M, N) = Extf(Z;7(M), Z;7(N)).
() If M, N € S;, then X, induces an isomorphism

Ext{;(M, N) = Ext};(Z; (M), B (N)).
Proposition 9.4 For M € rep(I1) the following are equivalent:
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(i) top; (M) = 0;
(i) M = 2725 (M).

Furthermore, if M € rep, ¢ (I1), then (1) and (i) are equivalent to the following:
(iii) rank(Z;"(M)) = s; (rank(M)).
Dually, the following are equivalent:

(1) soc;(M) = 0;

(i) M = =FE7(M).
Furthermore, if M € rep, ¢ (I1), then (i) and (i) are equivalent to the following:
(iii) rank(X; (M)) = s;(rank (M)).
Proof The equivalence of (i) and (ii) follows directly from Proposition 9.1 and
Corollary 9.2.

Suppose (i) holds for some vertex i of Q(C, Q). Leta = (ay,...,ay) =
rank (M). Recall that we have the H;-module homomorphism

M; in: @ iH;® Mj — M;.
JjeQi.-)

Since top; (M) = 0, the map M, i, is surjective. This implies that Z;L (M) is
again locally free with

rank (S (M)i = D leijlaj — ai = (si(rank (3,7 (M)))
JeQi,-) ;

(Here we used that ; H; ® ; M is a free H;-module of rank |c;;|a;.) Thus (iii)
holds.
Vice versa, the equality

(rank (2" (M))); = (si (rank (%" (M))));

implies that M; i, is surjective. Thus (iii) implies (). O

Let M = (M;, M;j, M;;) € rep(C, D, Q). We say that M; i, (resp. M; out)
splits if the image of M, ip (resp. M; ou) 1S a free H;-module. The following
lemma is straightforward.

Lemma 9.5 Let M € rep(I1) be locally free. For each i the following hold:

@) El.+ (M) is locally free if and only if M; iy splits.
(i) X (M) is locally free if and only if M; ou splits.
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9.2 Reflection functors for H

We keep the notations of Sect. 5.2. Recall that for an orientation 2 of C and
some 1 <i < n we defined

5i(Q) :={(r,s) e Qi ¢ {r,s}}U{(s,r) e Q% |i € {r s}}.

Define
si(H) :=s;(H(C, D, Q)) :=H(C, D, s;(2)). 9.1)

Now let k be a sinkin Q°(C, 2). Then X ,j obviously restricts to a reflection
functor

Fk+: rep(H) — rep(sx(H))

which can also be described as follows. Let M = (M;, M;;) € rep(C, D, 2).
Recall that

Mpin = (sgn(k, )Myj)j: D «Hj @ Mj — M;.
jeQk,—)

(Note that Q(k, —) = Q(k, —), since k is a sink.) Let Ny := Ker(My in). We
obtain an exact sequence

My in
0> N> P «H;j®; Mj —> M.
jeQ,-)

Let us denote by (vak)j the inclusion map Ny — @jeﬂ(k,—) Hj ®; M;.
Then we have F,:F(M) = (N,, N;) with (, s) € s;(S2), where

M if k
N, = : 1 r#k and
Ny if r=k
Noo— M if (r,s)eQ and r #k,
LYY i (rs) € QF and s =k

Similarly, if k is a source in Q°(C, €2), then X restricts to a reflection functor
F, : rep(H) — rep(sx(H)).

Proposition 9.6 Let M be locally free and rigid in rep(H). Then F, ki (M) is
locally free and rigid.
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Proof Without loss of generality assume that 1 is a sink and » is a source in
0°(C, ). Let M be alocally free and rigid H-module. To get a contradiction,
assume that F' 1+ (M) is not locally free and that M is of minimal dimension
with this property. Recall that F’ 1+ (E1) = 0. Thus by the minimality of its
dimension, M does not have any direct summand isomorphic to E1. We can
also assume that e; M # 0 for all 1 < i < n. (Otherwise M can be considered
as amodule over an algebra H(C’, D', Q') with fewer vertices.) Since F 1+ (M)
is not locally free, we get Hompy (M, E1) # 0, see Lemma 9.5.
We have a short exact sequence

0->M - M-—e,M—0 9.2)
where M' = (e; + --- + e,—1)M. Clearly, M’ and e,M are both
locally free. In particular, e,M = E; for some s > 1. We have

Hompy(M’, e, M) = 0. Thus applying Homgy(M’, —) to (9.2) we get an
embedding ExtL, (M’, M") — Ext},(M’, M). Applying Homp (—, M) 10(9.2)
and using that Ext%{ (enM, M) = 0 we get Ext}q (M', M) = 0. This shows
that M’ is rigid. Applying Hompy (—, E}) to the sequence (9.2) yields that
Hompy (M', E;) # 0. Since M’ is locally free and rigid, the minimality of M
implies that M" = E| @ U for some r > 1 and some locally free and rigid
module U with Hompg (U, E1) = 0. This yields short exact sequences

0-ULMEv_oo 9.3)

and
0—>E —-V—>eM—0 9.4)

where f is the obvious embedding, and g is the obvious projection onto
V := Cok(f). Note that V is also locally free, and that Homy (U, E,) = 0.
Applying Hompg (U, —) to (9.4) implies that Homgy (U, V) = 0. Now we
apply Homy (M, —) and Hompg(—, V) to (9.3) and get similarly as before
that V is rigid. Applying Hompg (—, E1) to (9.3) implies Hompy (M, Eq) =
Hompy (V, E1) # 0. By the minimality of M it now follows that U = 0 and
V = M. Thus we have n = 2.

Since M is locally free, Proposition 3.5 implies that it has a minimal pro-
jective resolution of the form

0—-P - P > M-—DO.

Since M is rigid and locally free, we know that M is also 7-rigid, see Corol-
lary 3.6. Thus by [1, Proposition 2.5] we get that add(P")Nadd(P”) = 0. (Itcan
be easily checked that [1, Proposition 2.5] is true for arbitrary ground fields.)
We obviously have Homg (M, E;) # 0, since 2 is a source in Q°(C, 2). By
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assumption we have Homgy (M, E{) # 0. Thisimplies that Homg (M, S;) # 0
for the simple H-modules S;, wherei = 1, 2. Thus P’ contains both P; and P,
as direct summands. Since add(P’) Nadd(P") = 0, it follows that P”” = 0. In
other words, M is projective. But P = E| is the only indecomposable projec-
tive H-module with Hompg (P, E1) # 0. Thus M contains a direct summand
isomorphic to Ey, a contradiction.

Altogether we proved that Hom g (M, E1) = O for any locally free and rigid
H-module M, which does not have a direct summand isomorphic to E7. In this
case, we have top; (M) = 0 and M| j, is surjective. Thus F1+ (M) is rigid by
Corollary 9.3, and F' 1+ (M) is locally free by Lemma 9.5. The corresponding
statement for F, (M) is proved dually. This finishes the proof. O

9.3 Reflection functors and APR-tilting

As before, let H = H(C, D, 2) and Q = Q(C, 2). Let i be a sink in Q°,
and define

T:=pyH/E; ®t,(E;) and B := Endy (T)°P.

We also assume that i is not a source in Q°. Wehave E; = He;.Forl < j <n
set P; := He; and I; := D(e;H). Let S; be the corresponding simple H-
module with §; = top(P;) = soc(). Furthermore, let

| He; it j £,
P By i =i

Thus wehave T =T & - - - @ T,,. The indecomposable projective B-modules
are (up to isomorphism) Homy (7', T}) where 1 < j < n. Let e¢; denote the
primitive idempotent in B obtained by composing the canonical projection
T — T; with the canonical inclusion 7; — T. Then Homy (T, T;) = Be;.
Finally, let S; denote the simple B-module associated with e;. We are using
the same notation for the idempotents in H, s;(H) and B and also for the
associated simple modules. However, the context will always save us from
confusion.

Recall that a finite-dimensional module 7" over a finite-dimensional algebra
A is a tilting module if the following hold:

(i) proj. dim(7) < 1;
(ii) Ext(T, T) = 0;
(iii)) The number of isomorphism classes of indecomposable direct summands
of T is equal to the number of isomorphism classes of simple A-modules.
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The following result is inspired by Auslander, Platzeck and Reiten’s [3]
ground breaking interpretation of BGP-reflection functors as homomorphism
functors of certain tilting modules. Their result can be seen as the beginning
of tilting theory.

Theorem 9.7 With the notation above, the H-module T is a tilting module,
and the functors

Fi+(—): rep(H) — rep(s;(H)) and Hompy (T, —): rep(H) — rep(B)
are equivalent, i.e. there exists an equivalence
S: rep(s;(H)) — rep(B)
such that we have an isomorphism of functors S o Fl.Jr = Hompg (T, —).

As a preparation for the proof of Theorem 9.7 we construct a minimal
injective resolution of the H-module E;, see (9.6) below. This yields via the
inverse Nakayama functor a minimal projective resolution (9.7) of 7, (E;).

Let E; be the right H-module such that D(E}) = E;. Similarly to Proposi-
tion 3.1 there is a minimal projective resolution

0> P iHj®jejHS eiH — E[ -0 (9.5)
jeQi.-)

of the right H-module E’, where the map ¢; H — E is the canonical pro-
jection, and for j € €2(i, —) the jth component of the map p is just the
multiplication map

Hij: iHi®jejH — e;H.
(The maps H;; are the structure maps of the (left) H-module structure on H'.)

Note that,-Hj ®j ejH = ejchji‘.
There is a chain of H;-H;-bimodule isomorphisms

jHi = HomHi(,'Hj, Hi) = DHOInHj(jHi, Hj) = D(,'Hj),
where the first and third isomorphisms are constructed as in Sect. 5.1, and the
second isomorphism is defined as in Lemma 8.2. Thus for r € ; R; we can
consider 7* now as an element in D(; H;).
Under the isomorphism

D(e]'H) Xj D(,’Hj) — D(iHj ®; ejH)
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defined by
t®@n> (h®@ejh’ — n(h)e;h’))

the dual of the multiplication map H;; is identified with the map
H;;-: D(e;H) — D(ejH) ®; D(;H})

defined by

9> D> er-—)®rt

)’G,'Rj

Wehave D(¢; H) = I; andD(e; H)® ;D(;H;) = 1;®; jH; = Ijl.cjil.Applying
the duality D to (9.5) we get a minimal injective resolution
(HY) jeq i, -)
0 E — I ——— P 1;®; jH —0. (9.6)
JEQ,-)

For j € Q(, —) set

0ij = vy (H): E; > P; ®; jHj
whichis given by he; +— Zre,«RJ- hr®r*. Here v;ll . inj(H) — proj(H)isthe
inverse Nakayama functor obtained via restriction from Homgy (D(Hpg), —).
Let 6 := (0;;); where j € (i, —). Recall that E; = P;, since i is a sink in
0°. We get that the exact sequence

0> E5 @@ P®;jH — t(E) -0 9.7)
jeQi,-)

is a minimal projective resolution of 7, (E;). Note that (9.7) is not an
Auslander—Reiten sequence if E; is not simple.

Lemma 9.8 The following hold:

(1) ty(E;) is locally free;

(i) Hompy (74 (Ei), H) = 0;
(111) EndH(‘E;(E,‘)) = EndH(Ei) = H,'.
Proof The existence of the exact sequence (9.7) implies that 7, (E;) is locally
free. Since inj. dim(E;) < 1, we have Homy (t,(E;), H) = 0. The H-
module E; is indecomposable non-injective with proj. dim(z, (E;)) = 1
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and inj. dim(E;) = 1. Thus by the Auslander—Reiten formulas we get
Endy (t5 (E;)) = Endy (E;) = H;. This finishes the proof. O

Lemma 9.9 The H-module T is a tilting module.
Proof By the above considerations we know that

0—E > @@ Pi®;H — ty(E)—>0
jeQi,-)

is a minimal projective resolution of 7, (E;). It follows that proj. dim(7) = 1.
Furthermore, we have

Exth (T, T) = Exth (v (E), T)
= DHomgy(T, E;)
= DHomg (ty (E), Ej)
=0.

The equality in the first line of the above equations holds since 7 (E;) is the
only non-projective indecomposable direct summand of 7". The isomorphism
in the second line follows by the Auslander—Reiten formulas and the fact that
proj. dim(z (E;)) < 1. The equality in the third line holds since i is a sink.
Finally, the equality in the fourth line follows from Lemma 9.8(ii). The module
H has exactly n pairwise non-isomorphic indecomposable direct summands.
This finishes the proof. O

Lemma 9.10 We have g D(T) = D(B)/D(e; B) ® tp(D(e; B)).
Proof We have

g D(T) = Hompy(T,D(H)) = éHomH(T, D(e;H)).
j=1
For j # i there are B-module isomorphisms
Homy (T,D(ejH)) = DHompy(He;, T) = DHompy(T;, T) = D(e;B).
It follows that
3 D(T) = D(B)/D(e; B) ® Homp (T, D(e; H)).

Since Ext}q (T, E;) # 0, the Connecting Lemma [36, Section 2.3] implies that

Homy (T, D(e; H)) = t(Ext} (T, E;)).
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We have
Exty, (T, E;) = DHomy (t;(E;), T) = D(e; B).

The first isomorphism is obtained from the Auslander—Reiten formulas and
the fact that inj. dim(£;) < 1. The second isomorphism is obvious. Note that
both isomorphism are B-module isomorphisms. This finishes the proof. O

For any of the algebras A € {H, 5s;(H), B} and any simple A-module S; let

Tf‘ := {M € rep(A) | Homa(M, S;) = 0},
S} :={M € rep(A) | Hom,(S;, M) = 0}.

Using the notation from Sect. 9.1, for A € {H, s;(H)} we have TJ.A =7;N
rep(A) and S;.‘ = §; Nrep(A).

Lemma 9.11 The functors F := Homgy (T, —) and G := T ®p — induce
mutually quasi-inverse equivalences F: T — Y and G: Y — T, where

T := (M erep(H) | ExtL (T, M) = 0}
={M erep(H) | DHompg (M, E;) = 0}
=7H
and
Y :={N erep(B) | Tork(T, N) = 0}
= {N erep(B) | DEXt}B(N, D(T)) =0}
= {N €rep(B) | Homp(D(e¢; B), N) = 0}
=S5,
Furthermore, we have F(rep(H)) € Y and G (rep(B)) € 7.

Proof This follows mainly from classical tilting theory (Brenner-Butler
Therorem, see for example [36, Section 2]) and the Auslander—Reiten for-
mulas. The third equality in the description of ) uses the Auslander—Reiten
formulas in combination with Lemma 9.10. For j # i we have

Hompg(D(¢; B), D(¢; B)) = DExtk(D(e; B), D(T)) = 0.

Thus every composition factor of D(e; B) is isomorphic to S;. This implies the
fourth equality in the description of ). O
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Corollary 9.12 Via restriction of the functors Fl.+, FoF~ and F we get a
commutative diagram

Fr (H)
H ! Si
TH—'- 5

l

H F B
77—

of equivalences of subcategories.
Proof Combine Lemma 9.11 and Corollary 9.2. O

Corollary 9.13 Via restriction of the functor F o F;~ we get a commutative
diagram

Fr
rep(H) —— Ss"(H)

rep(H) _F_, SB

with F o F;~ an equivalence of subcategories.

Proof This follows from Corollary 9.12, the definition of Fl.+ and the last
statement in Lemma 9.11. O

Lemma 9.14 The following hold:
(i) proj(si(H)) € 8'™;
(i) proj(B) € SP.

Proof Since i is a source in Q(C, s5;(£2))°, we get that proj(s; (H)) C SS’(H)

Part (ii) is obvious, since the modules Homy (7', T) are (up to 1som0rph1sm)
the indecomposable projective B-modules. O

Theorem 9.7 follows now from [3, Lemma 2.2]. (Corollary 9.13 and
Lemma 9.14 and the fact that SiA is closed under submodules for A €
{s; (H), B} ensure that the assumptions of [3, Lemma 2.2] are satisfied.)

As a consequence, via restriction of F o F;", we get an equivalence of
subcategories

proj(si (H)) — proj(B).
In particular, we have Fi+(Tj) = si(H)ej forall 1 < j < n. We also get an

algebra isomorphism s; (H) = B
We leave it as an exercise to formulate a dual version of Theorem 9.7.
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9.4 Coxeter functors

Let 0 = Q(C, Q).
Given a +-admissible sequence (i1, ..., i,) for (C, 2) let

Ct=Fto...0 FZ.T: rep(H) — rep(H).

In

Dually, one defines —-admissible sequences (ji, ..., ju) and C~ = F,; )
..o F J:. We call C* and C~ Coxeter functors. Similarly as in the classical

case one proves the following result, compare [11].

Lemma 9.15 Thefunctors C™ and C~ do not depend on the chosen admissible
sequences for (C, 2).

The next lemma is a consequence of Proposition 9.1, Corollary 9.2 and
Lemma 9.5.

Lemma 9.16 Let M be an indecomposable locally free H-module. Let
(i1, ..., In) bea+-admissible sequence for (C, Q). Assume that F: e Fl.T (M)
is locally free and non-zero for some 1 < s < n. Then we have

+ + ~ (-
F' Fr(M) = (F,

lk+1

"'Fi:)(Fi—: . )Fi;f e FiT(M)

lk+1

forl <k <s—1,and Fl: e Fi1+ (M) is indecomposable and locally free for
1<k<s.

There is also an obvious dual of Lemma 9.16.

10 Coxeter functors and Auslander—Reiten translations
10.1 Overview

Asbeforewe fix H = H(C, D, 2). Our aimis to compare the Coxeter functors
C™ and C~ introduced in Sect. 9.4 with the Auslander—Reiten translations t
and 7.

Without loss of generality we assume that for each (i, j) € Q we have
i < j. Thus,

C+=F,j'o-~oF1+.
Recall that we defined the twist automorphism 7 of H by

TE)=e, Tef)=—ef, (€Qo (.j)eQ 1<g<g.
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The twist by T defines an automorphism of rep(H ) which we denote also by
T. More explicitly, for M = (M;, M;;) € rep(H) we have (T M); = M; and
(TM)ij = —M;;.

Following [32, Section 5], we start in Sect. 10.2 by constructing a new
algebra H containing two subalgebras H () and H(j) canonically isomorphic
to H. Denoting by

Res, : rep(ﬁ) — rep(H)), (a €{0,1})

the corresponding restriction functors, we will show that C* = Res; o Resg,
where

Res}: rep(H(o)) — rep(H)
is right adjoint to Resg. This will follow from a factorization
Res) = Res’fn_lvn) 0---0 Res’(klyz) ) Res?‘o,])

similar to the definition of C T, and from a comparison of the functors Res’("i 10

and Fl.+ obtained in Lemma 10.2.

After that, we will give a different description of the adjoint functor
Res;;, which will allow to show that, for M e rep;; (H), the H-module
Res; oRes;j(M) is the kernel of a certain map dy,. On the other hand, it fol-
lows from Corollary 7.2 that (T M) is the kernel of the map D Hompg(d ®
TM, H). We will then show that, under the trace pairings, the maps d, and
DHompg(d ® TM, H) can be identified, hence

CT (M) = Resj oResi;(M) = ©(T M).

A more detailed statement of our results will be given in Theorem 10.1, whose
proof is carried out in Sects. 10.3-10.5.

The remaining sections present direct applications of Theorem 10.1. In 10.6
we give another description of the preprojective algebra IT = I1(C, D) as a
tensor algebra. In 10.7 we adapt to our setting a description of the category
rep(IT) due to Ringel in the classical case, in terms of H-module homomor-
phisms M — TC™(M). Finally, in Sect. 10.8 we show that the subcategory
of Gorenstein-projective H-modules coincides with the kernel of the Coxeter
functor C.

10.2 An analogue of the Gabriel-Riedtmann construction

The following is an adaptation of [32, Section 5] to our situation.
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10.2.1 The algebra H

To our fixed datum (C, D, §2) we attach a new algebra H defined by a quiver
with relations. The quiver Q has set of vertices

Qo= {(i.a) | i € Qo, a € {0,1}},
and set of arrows
él = {aéiz)(ﬁa)(],a)—)(l,a)|(l,])€§2, lfgfgljv ae{oal}}

U oSt 6D = (G001 G, ) €2, 1< g < gij)
U (g6 (@) = (@) | (,a) € Qo).

Accordingly we put
Q= {((i.a). (j.a)). ((j,0), (i, 1)) | (i, j) € 2, a € {0, 1}}.
Let
H:=KQ/I
where 7 is the ideal of K é defined by the following relations:
(ﬁl) For each (i, a) € Qo we have
(t a) — =0.
(ﬁ2) For each ((i, a), (j, b)) € 2 and each 1 < g < gij we have

f/t (g) (g) gfij
Ei.a)¥ia) b = Yia) (b (,b):

(ﬁS) For eachi € Q¢ we have

gij fji—1

f (2) €3] f;z—l f
Z Z Z €1,0%0,0)(,0%,06,HEG 1)
jeQ,—) g=1 f=0
8ij f/z

(g) (g) fjl 1-f .
+ Z Z Z 8(1 0%6.0G. DG DEDEGD =0.

Jj€Q(=.i) g=1 f=0

When C is symmetric and D is minimal the algebra H coincides with the
bounded quiver denoted by Q Q in [32, Section 5.3].
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10.2.2 Example

Let H = H(C, D, 2) be defined by the quiver

& €1 &3
y (y ()
2 a2 1 13 3

with relations gp = 0, s% = 8% = 0 and g113 = «13¢3. Here C is a Cartan
matrix of Dynkin type B3z, and D is the minimal symmetrizer. Then H is
defined by the quiver

£(2,0) £2,1)
2,1
(1,002, 0> 2, o1, e, 1> D
(l 0) (l 1)
o(2,0)(1,1)
1,0
(1, ) . l) I,

8(3 0) 8(3 1))
Q(1,0)(3,0) a(1,1)(3,1)

(3, 0) (3, D

bound by the relations
£2,a) =0,

2 2
€la) = £G.a) = 0>
8(1,a)a(1,a)(3,a) = O{(l,a)(?),a)g(?),a)a
8(3,0)05(3,0)(1,1) - a(3,0)(],1)8(1,1)a

with a € {0, 1}, and

@2,00(1,n%1,n2.1) =0,

£(1,0)%(1,0)(2,0)¥(2,0)(1,1) T ¥(1,0)(2,0)0%(2,0)(1, ) E(1,1)

+ £1.02(1,003.0023,0)(1,1) + &(1,003.0023,00(1, (1,1 = 0,
£(3,0)%(3,0)(1,H(1,1)3,1) T &3,00(1, D1, 13, 1)E3,1) = 0.

1023 Hasa quotient of a tensor algebra

It will be useful to have a more intrinsic description of H inthe spirit of Sect. 6.
Define C = (C(i.a).(j.p) € Z20*9° = M»,(Z) by
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cij if (a=b).
or(a,b) = (0,1) and (i, j) € QF,

Clia).(ib) i=
(¢.a).(7:) or (a,b) = (1,0) and @, ) € ©,
0  otherwise.
Clearly, C is a Cartan matrix with symmetrizer D = diag(c, . s Cny Cly ey
¢n), where D = diag(cy, . . ., ¢,) is our symmetrizer for C, and €2 is an orien-

tation of C. Moreover, if ¢(; 4),(j,») < O then
i = &ijs Jaw.Go) = fijs keanG = kij.
As before, one defines the corresponding algebra H (5 , 5, ﬁ). Let
Hi.a) = Klea)l/ (8] 4)-
We have isomorphisms
NG.a): Hi = Hia)
defined by &; — &(; 4y, and as before for each ((i, a), (j, b)) € Q we get an

H; q)-H(j p)-bimodule (; 4)H(jp) and an H(; p)-H(; q)-bimodule (; ) H; q).
There are bimodule isomorphisms

iy tta=band G e @
COTUD =N He i (a.b) = (0, 1) and (i, j) € Q.

via N(,a) and 77(j,b)-
Set

E = H H(i,a)-

(i,a)e Qo

Then

B = @IHJ

(i.j)eQ
is an S-S-bimodule, and we have an isomorphism
T5(B) = H(C, D, Q).
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Incase (i, j) € Q2 we abbreviate ; R? for the standard right basis of ; o) H(,0)
and ; L! for the standard left basis of (; 1) H(;.1). Moreover, in this case we can
identify in a obvious way (j0)H,1) with Homp;  (i,00H(j,0). Hj,0)) and
obtain an H; o)-basis (r}), .. go of (j 0)H(;,1) which is under this identification

i
dual to ,-R?. Similarly, we obtain a dual H; 1)-basis (Zi)ee,«L}. of (j,0)H,1)-
For j € Qg, define

pi= > r®t+ > reri (10.1)
i€Q(—,j) keQ(j,—-)
teiL} rejRY

We have p; € e(j’O)E Q3 Ee(ﬂ). Now, arguing as in Sect. 6, we obtain:
H = T5(B)/(%j | j € Qo)-

Similarly to the case of preprojective algebras, for M € rep(H (C, D, Q)) and
Jj € Qo we can define maps

Mj.in=(M(;,0),(k.c)) (k.c): . GO Hk.e) Oy o) Mk.c) — M(j0)
(k,0)€Q((j,0),—)

M out = da),;.1)(Mi.a).i.) Gy : M1y =
@ G0 Hi,a) ®H; 0 Miia)-
(i,a)eQ(—,(j,1))

Note that Q((j,0), =) = Q(—, (j, 1)) and thus, if we identify by a slight
abuse H(; o) with H(; 1), we can write

@ G0 Hik,e) ®Hy oy Mk,c0)
(k.c)eQ((j,0).—)

= @ G Hi,a) ®Hg o) Mia)-
(i.a)eQ(—,(j.1))

With this setup M € rep(H(a, 13, §)) belongs to rep(ﬁ) if and only if
Mj,in o Mj,out =0 (10.2)
for all j € Qo.
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10.2.4 The subalgebras H ) and H(1)

Fora =0, 1 set

1, = Ze(i*“)’ Hyg = ﬂaﬁﬂa.

iel

Clearly, H(,) is a (non-unitary) subalgebra of H, and we have natural isomor-

phisms n,: H — H,) with n4(g;) = €,y and 1, (aISf)) = a((il)(j’a).

We obtain for a € {0, 1} exact restriction functors
Res,: rep(H) — rep(H)), M 1,H Q75 M =1,M.
We will use several times the elementary fact that the functor
Resg: rep(H)) — rep(ﬁ), N + Homp, (1oH, N)

is uniquely characterized up to isomorphism as the right adjoint of Resg. It is
not hard to see that

Resg o Res(y = idyep Hy) -
10.2.5 The H-H-bimodule X
Define
X =X(C,D,Q) :=1¢H1,.
We regard X as an H-H-bimodule via the maps ng and 7y, that is,
hxh' := no(h)xn (h'), (h,h € H, x € X).

Similarly, using 1o and n; we can regard Res; o Res as a functor from rep(H)
to rep(H). Then it is easy to see that we have an isomorphism of functors:

Res) oResjy = Hompy (X, —).

Theorem 10.1 The following hold:

(a) For each M € rep(H) we have a functorial isomorphism

Hompy (X, M) = CT(M).
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(b) For each M € rep,; (H) we have functorial isomorphisms
Hompy (X, TM) Z TCT(M) = t(M).
(c) Foreach M € rep(H) we have a functorial isomorphism
XQ@uM=C (M)
(d) For each M € rep,; (H) we have functorial isomorphisms

XQquTMZ=ZTC (M)=Z1t (M).

10.3 Proof of Theorem 10.1(a)

We follow the hints from [32, Section 5.5]. For I € Q¢ U {0} we define
idempotents in H

/
19 = Ze(l”o) + Ze(i'l)’ ]1(()) =1o+ Ze(i,l),

i>l i<l i<l
and the corresponding (non-unitary) subalgebras
HO =10 F10, HO .= ]l(()l)ﬁll(()l).

Clearly, H O = goO - Hqy, H n) — Hqy, H™ = H , and an easy calcula-
tion shows that, using the notation of Eq. (9.1),

HO =g - s051(HD), (I € Qo).

Moreover 1) € H® and thus H® ¢ H® > HD forl € Qp. We study
the corresponding restriction functors:

Res®: rep(ﬁ) — rep(H(l)), M—19H ®Fg M,
Res(.my: rep(H™) — rep(H?), M ]l(()l)f](m) ®pgm M, (I <m).

Obviously, Res(; ;) admits a right adjoint
Ny
Reszkl,m)(_) = Homg(n (]1(())H(m), -)
and

RCS() = ReS(()’l) o RCS(LQ) O:+-+0 RCS(n_Ln) .
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Thus we have
Res; = Resfn_lvn) 0.+ 0 Res’("l’z) o Res’(“o,l) .

Lemma 10.2 With the above notations we have functorial isomorphisms
Res® oResf; | (M) = F'o Res V(M)

forall M € rep(H"Dyandi € Qo ={1,...,n}.

Proof Note that naturally
ReS([_L,') [¢] Reszki—l,i)(M) =M
forall M € rep(ﬁ =1y, Now there is a unique functor
RZ‘,-_]’Z-): rep(H ™) > rep(H®)

satisfying the two following conditions for all M € rep(ﬁ (=1y.
Resi_1.i)oRG_, ;) (M) =M, Res” oR}:_| . (M) =F; oRes" V(M.
Indeed, the first condition fixes the restriction of RZ’—l i)(M ) to HUD and
the second one fixes the restriction of RZ"I | l)(M ) to H?). Because of the
deﬁmtlons of H and HY=D this determines completely the structure of

( i~ 1.i) (M), and gives uniqueness. Note that the quivers of H H =1 and of H®
contain some common arrows, but the representations M and F i+oRes(’ D)
are the same for those arrows, by definition of Fl.+. So RE“Z._I 0 (M) isindeed a
representation of H (C,D,Q), supported on the vertices and arrows of HO,

Finally, this representation satisfies the relation (10.2) for j = i, because again

of the definition of F , SO RZ‘l 1. )(M) € rep(ﬁ(i))

To prove the lemma we have to show that the above functor R* G—1.0) is iso-
morphic to Res( i—1.i)Or equivalently, that RZ._L ) isright adjoint to Res(; _1 ;).
To do so, let N € rep(ﬁ @) and M € rep(l—~I =Dy and consider the natural
map

Hom ) (N, Rzki—l,i)(M)) — Hom -1y (Res—1,i)(N), M)
obtained by restricting f: N — R(l | l)(M) to Res(;—1,;)(N). We have to

show that this restriction is in fact leeCtIVG. That is, for g € Hompgi-
(Res(—1,)(N), M) we have to show that there exists a unique g 1) €
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HomH (Nq, 1),Ker(1\7l,-,in)) which lifts g to an element of Hom g (N,

RG_ 1H(MD).
Now let

Ni 4+ = @ (.00 Hik.c) ®Hy oy Nik.c)
(k,c)eQ((i,0),—)

denote the domain of Nl in, and similarly let M; | denote the domain of M, in.
By the definition of H H (=1 -homomorphisms, we have a commutative diagram

lgi.+ \Lg(i,O)
Mi in

0 — Ker(M; in) —> Mi +

where the bottom row is exact by construction, and in the top row the com-
position is zero since N is a HO- module. Thus M, in © &i.4+ © N, out = 0.
By the universal property of Ker(/\/ﬁ,m) there exists a unique morphism of
H;-modules g 1y: N1y — Ker(M;in) which makes the left-hand square
commutative. O

We can now finish the proof of Theorem 10.1(a). Using n times Lemma 10.2,
for M € rep(H) (regarded as a representation of Hy) we have

Hompy (X, M) = Res; o Resj(M)
=Res™ o Res’(knfl,n) o---0 RCS?()’])(M)
— Frj‘ o Res(n_l) o Res;(kn—z,n—l) O-++0 RCS?OJ)(M)

= F,;FOF;r_1 o--'oFl+ oRes(O)(M)

= CT(M).
10.4 Proof of Theorem 10.1(b)
We follow the idea of [32, Section 5.4], and start by giving an alternative
description of Resg. This is done by constructing in two steps a functor
Rj: rep(H)) — rep(H), and then showing that Rj is right adjoint to

Resp.
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Let M € rep(H(y)). We first define M e rep(H(é, D, Q) by requiring that

Reso(M) = M
Res| (M) = @ Homp, o (1,00 Hik. 1) ®Hy .y €k.1) Hi, M ,0))-
(k.)eQ

(Note that H(y and H(1) can also be regarded as subalgebras of H (E , 5, ?2),
so we allow ourselves, by some abuse of notation, to continue to denote the
restriction functors rep(H (C Q)) — rep(H,)) by Res,.) It remains to
define, for (i, j) € 2, the structure map

M0G0 .oy Hi,1) QHy,y M1y —> Mj,00 = Mj,0)-

This is given by the following composition:

G.oHi ®my @ Homp, , (1,00 Hk.1) ® e.1)Hieq. 1y, M.0))
(k.)e

PTOJ
— (,0Hi,1) ®H,, Hompy; o (¢j,0)Hi, 1) ® e,y Hieg, 1y, M(j,0)

eval.

= (.0 Hi,1) ®H, ;) Homp; o ((j,00Hi, 1y, M(j,00) — Mj,0),

where the first map is the projection on the direct summand indexed by (k, /) =
(i, j) and the second map is the evaluation 1 ® ¢ > @(h).
Secondly, we define a subrepresentation Rj(M) of M as follows. We set

(RE(M)) .0y = Moy = Mioy, (i € Qo),

and we define (RE)“ (M))n,1) as the subspace of M(h, 1) consisting of all

(MZJ)(k,l)eQ € @ Homp, o, (1,00 Hk,1) ® e, 1yHayewm, 1y, M ,0))
(k.)ex

such that, for all / € Qg and nV € eq,1Hyem,1) the following relation
holds:

Z MZ,;(ff ®¢-nM)+ Z Mq.,0y,(m,0)(r ® Mﬁm(l’i ®n)) =o0.
keQ (=1 meQ(l,—)
terL) reiRY
(10.3)
Here, we use the notation from Sect. 10.2.3. It is straightforward to check that
Rj(M)isan H (C D Q) -subrepresentation of M. Moreover, R (M) is in fact
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a representation of H. To see this, we check the defining relations (10.1) with
the help of the special case n!) = e,1) of Eq. (10.3). In fact, if we apply p;

to uU) = (Mi’l)(k,l)eg € R5(M)(j,1) we deduce from the definitions that

Z M(j,O),(j,l)(ei X M(iyl),(j,l)(g ® M(])))
ieQ(—,))
ZEiL}

+ Z M(],O),(k,()) (r ® M(kyo),(j,l)("j_ ® /'L(J)))
ke2(j,—)
I’E_/'Rl?

= Z H,{j(fi ®L-e1))
i€Q(—,j)
eeiL}

+ Z M 0).k.0)(r ® ,wjl-,k(i’i ®e(j.1))) =0,
keQ(j,—)
rEjR;()

as required. _
Thus, we have obtained a functor Rj: rep(H)) — rep(H), M +>
R (M). It will follow from the next lemma that R is isomorphic to Resy.

Lemma 10.3 R is right adjoint to Res,.

Proof LetN € rep(ﬁ) and M € rep(Hg)). Consider x € Homgz (N, Rj(M)).
Thus, x is given by a family of maps

x4 e Homp, , (NGa), (RG(M))i.0)). ((i.a) € Qo).

subject to the usual commutativity relations. By the construction of Rj(M)
we have more explicitly for all i € Qo and n(; 1) € N 1):

1.0
x % € Hompy,, , (N(i.0). Mi0)),

x V) € EB Homp, o, (q,00Hk,1) ® e, 1yHieq, 1y, Mq,0)).
(k,1)eQ

Let us denote by X,Eiél)(—, n,1)) the (k, I)-component ofx("’l)(n(i,l)). These
maps are subject to the following relations for (i, j) € Q, @ e iL‘Jl., re iR(;:

X(i’o)(N(i,O),(j,O)(ﬁ(O) ® ng,0)) = M(i,O),(j,O)(ﬁ(O) ® X(j’o)(n(j,O))),
(10.4)
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. .
xYONG.0), 60 (s ® ng1y)) = Xl-(fj 't ®@eqnyngny), (105

i1 i1
x5 (= Nan. gy @ @) = 6V (= eV ). (10.6)
Equation (10.4) means that we have indeed a well-defined restriction
rv,m: Homg (N, R5(M)) — Homp,, (Reso(N), M).

Combining (10.5) and (10.6) we see that the maps X,E,jl’l) for (k,1) € Q and
j € Qg are determined by the maps X(i’o) withi € Qg, in other words ry_u
is injective.

By the same token we see that for each x © ¢ Hom H) (Resg(N), M) there
exists ¥ € Hom H(@.D.a) (N, M ) which restricts to x©). We leave it as an
exercise to show that if N € rep(H) then Im(x) C Rj(M). Thus, ry u is
bijective. |

Proposition 10.4 For M € rep,; (H) we have
(T M) = Res; o Ry (M),

where in the right-hand side Hyy and Hyy are identified with H by means of
the isomorphisms ng and n;.

Proof Since M is locally free, T M is also locally free and Corollary 7.2
provides a projective resolution:

n
0> @ He;jo H @ TM)y; % D He© TMy ™5 TM—0
(j,)e k=1
Therefore, by definition of the Auslander—Reiten translation t, we know that
(T M) is isomorphic to Ker(D Hompy(d @y TM, H)).

On the other hand, the construction of R (M) shows that Res| o Rij(M) can
be identified with the kernel of the map

n
dy: €P Hompy (Hf ® ejH. M;) — P Homp, (exH. My)
(e k=1

whose (J, i)-component is defined by

0 = DL PG @ L)+ D Mi(r ® ¢ (r* ®; ). (10.7)

lejL; re;R;
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Indeed, Res| o Rj(M) is the subspace of Res (1\71) defined by Eq. (10.3). Our
goal is to identify under the trace pairing the map DHompgy(d @ TM, H)
with dy,. For (j,i) € Q, the restriction d ® TM: He; ® jH; ® M; —
He; @ M; & Hej ® Mj is given by

dTM)(p@h®m) =ph@m+pQMji(h@m). (10.8)
(Note the plus sign, coming from the twist map 7). Using adjunction we have
HomH(He,' X M,’, H) = HOIIlHi (M,', HomH(Hei, H)) = HomHi (Mi, e,'H),

so under the trace pairing we get

DHompy(He; @ M; & Hej ®Mj, H)
= HomH[. (e;H, M;) @HomHj(ejH, Mj).

Similarly,

DHOIHH(Hej ® jHi ® M;)
= Homy,(¢;H, jH; ® M;) = Homp, (H; ® ejH, M;),
where the second isomorphism is given by adi—j1 .Hence DHompy (d®T M, H)
can be identified with a map from @ )eq Hompy, (H; ® e;H, M;) to

@ Hompy, (ex H, My), and comparison between (10.7) and (10.8) shows that
this map is indeed dj,. O

Now we are ready to prove part (b) of Theorem 10.1. By Lemma 10.3 and
the uniqueness of adjoint functors we have a functorial isomorphism Rj(—) =
Res;j(—). Hence, by Proposition 10.4, if M € rep, ¢ (H) we have

Homp (X, TM)=Res; oResj(T M)=Res; o Rj(TM) = (T’M) = T (M).

This proves Theorem 10.1 (b).

10.5 Proof of Theorem 10.1(c),(d)

Clearly, (c) follows from (a) since C~ is left adjoint to CT. In order to show
(d), let M, N € rep; ¢ (). Recall, that this implies that both, M and N, have
projective and injective dimension at most 1. We obtain functorial isomor-
phisms

Homg(t~ (M), N) = Homg (M, t(N))

@ Springer



Quivers with relations for symmetrizable Cartan matrices I... 131

=~ Hompy (M, CT(TN))
= Hompgy(C™ (TM), N).
The first isomorphism is obtained from the Auslander—Reiten formulas, the
second follows from (b), and the third isomorphism is just the adjunction map.
With the usual H-H-bimodule structure on D(H) we obtain a functorial
isomorphism of right H-modules

D(X) = Hompy (X, D(H))

for all (left) H-modules X. Now, in our situation D(H) is locally free, thus
taking N = D(H) in the above chain of functorial isomorphisms we get

M =C(TM)=X" oy M

where the last isomorphism comes from (c). This proves Theorem 10.1 (d).

10.6 Another description of I1(C, D) as a tensor algebra
Let [T = TII(C, D). Recall from Sect. 6 that IT; is the subspace of IT of
elements of degree 1. Let X7 be the twisted version of the H-H-bimodule X,
where the bimodule structure is defined by

hxh' = hxT (W), (h,h € H, x € X).
Theorem 10.5 We have isomorphisms of H-H -bimodules

M = X7 = Ext),(D(H), H).
Proof Note that the bimodule isomorphism IT; = X7 follows directly from
the definitions. On the other hand, we have by Theorem 10.1(d) for locally
free modules M a functorial isomorphism
X' @y M =t~ (M) = Extl, (D(H), M). (10.9)
Note that the functor
Exth (D(H), —): rep(H) — rep(H)

is right exact since proj. dim(D(H)) < 1. For M € rep(H) let

Ph—>Py—> M—0 (10.10)
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be a projective presentation of M. Applying the right exact functors X7 @y —
and Ext}q (D(H), —) to (10.10) yields a functorial commutative diagram

X" @y P X" @y Py XT oy M 0

lnpl lnpo lw

Ext}, (D(H), Pi) — Ext},(D(H), Py) — Ext};(D(H), M) —=0

with exact rows. Since the restrictions of X7 ® z — and Ext}q(D(H ), —) to
rep; ;. (H) are isomorphic, we get that np, and np, are isomorphisms. This
implies that 737 is an isomorphism as well. It follows that the functors X7 ®
— and Ext}q (D(H), —) are isomorphic. From the canonical isomorphism of
H-H-bimodules Ext}q(D(H), H)®y H = Ext}{(D(H), H) we conclude
that the right exact functors Ext}, (D(H), —) and Ext}q (D(H), H) gy — are
isomorphic. This implies that Ext}q(D(H ), H) and X7 are isomorphic as H-
H-bimodules. o

Corollary 10.6 We have K -algebra isomorphisms
M= Ty(XT) = Ty (Exty, (D(H), H)).
Proof Combine Theorem 10.5 and Proposition 6.5. O
Corollary 10.7 For M € rep(H) there are functorial isomorphisms
Hompy (XT, M) = DExt}, (M, H) and XT @y M = Ext},(D(H), M).

Proof We get the second isomorphism from the proof of Theorem 10.5. The
first isomorphism follows then by adjunction. O

10.7 The morphism categories C(1, TC*) and C(TC—, 1)
Let [T = I1(C, D). Following a definition due to Ringel [49] , we define a
category C(1, TC™) as follows. Its objects are the H-module homomorphims

M — TC* (M), where M € rep(H) and the morphisms in C(1, TC™") are
given by commutative diagrams

M—L- Tt

hl lrcﬂh)

N —-T1Ct (V).
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Similarly, let C(TC~, 1) be the category with objects the H-module homo-
morphisms TC~ (M) — M.

Theorem 10.8 The categories rep(I1),C(1, TC") and C(TC~, 1) are iso-
morphic.

Proof 1t follows from Proposition 9.1 that (TC~, TC™) is a pair of adjoint
functors rep(H) — rep(H). Now [49, Lemma 1] implies that the categories
C(1,TC") and C(TC~, 1) are isomorphic. It follows from Theorem 10.1(c)
that there is a functorial isomorphism X '@y —=TC (-), and by Corol-
lary 10.6 we have I1 = Ty (X Ty Now [49, Lemma 12] gives an isomorphism
of categories C(TC~, 1) = rep(I1(C, D)). O

One can also adapt Ringel’s proof of [49, Theorem B] to obtain a more
direct proof of Theorem 10.8.

10.8 The kernel of the Coxeter functor

As before, let H = H(C, D, ©2). Recall that H is a 1-Iwanaga—Gorenstein
algebra with the subcategory

GP(H) = {M € rep(H) | Ext}, (M, H) = 0}

of Gorenstein-projective modules.

As an immediate consequence of Theorem 10.1(a), Corollary 10.7, and the
definition of C*(—) we get the following result. Here, the map M, i, is defined
as in Sect. 5.3, since we can regard the H-module M also as a module over
I1(C, D).

Theorem 10.9 For an H-module M the following are equivalent:

(i) M € GP(H);
(i) CT (M) =0;
(iii) M; in is injective forall 1 <i < n.

If C is symmetric, then the equivalence of (i) and (iii) in Theorem 10.9 is a
special case of [44, Theorem 5.1]. For C symmetric and D = diag(2, ..., 2)
the category GP(H ) has been studied in detail in [51].

11 t-Locally free H-modules
11.1 Preprojective, preinjective, and regular H-modules
Let M be an indecomposable H-module. Recall that M is t-locally free if

t*(M) is locally free for all k € Z. Furthermore, M is called preprojective
(resp. preinjective) if there exists some k > 0 such that M = 7k(P) (resp.
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M = t*(I)) for some indecomposable projective H-module P (resp. inde-
composable injective H-module 7). A t-locally free H-module M is t-locally
free regular if M is neither preprojective nor preinjective. (An indecomposable
module M over a finite-dimensional algebra is called regular if T"(M) # 0
forallk € Z.)

Let C be a K -linear category. The stable category C (resp. C) is the quotient
category of C modulo the ideal of all morphisms factoring through projective
(resp. injective) objects.

Proposition 11.1 The restriction of t(—) yields an equivalence of stable cat-
egories

rep (H) — F(H)

where F(H) := {M € rep(H) | Homy(D(H), M) = 0}, and t~ (—) yields
an equivalence of stable categories

tepy ¢ (H) — G(H)
where G(H) := {M € rep(H) | Homy (M, H) = 0}.
Proof Combine Proposition 3.5 with [4, Lemma 4.1] and its dual. O
Corollary 11.2 For an indecomposable M € rep(H ) the following are equiv-

alent:

(1) M erep; (H);
(ii)) Homgy(t= (M), H) = 0;
(iii) Homg (D(H), t(M)) = 0.

Corollary 11.3 For an indecomposable M € rep(H) the following are equiv-
alent:

(1) M is t-locally free;
(ii) Hompy (= (zX(M)), H) = 0 for all k € Z;
(iti) Homp (D(H), t(t*(M))) = 0 for all k € 7.

Proof Recall that for an indecomposable module M we have t(t~(M)) = M
if and only if M is not injective, and 7~ (t(M)) = M if and only if M is not
projective. Now the statement is a direct consequence of Corollary 11.2. O

Proposition 11.4 Let M € rep; ¢ (H) be indecomposable and rigid. Then M
is T-locally free and T (M) is rigid for all k € 7.

Proof By Theorem 10.1 we know that f(M) = T*Ck(M). Now the result
follows from Proposition 9.6. O
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Recall from Sect. 3.5 the Coxeter matrix ® .

Proposition 11.5 Fora t-locally free module M € rep(H) the following hold:

Q) If TX(M) # 0 for some k € Z, then rank(t*(M)) = (D~ '®yz D)k
(rank (M)).

(i1) Ifrk(M) % 0 for some k € 7 and rank(M) is contained in Afe(C) or
A (C), then rank (tX (M) is in AL(C) or Al (C), respectively.

Proof Part (i) follows from [48, Section 2.4, p.75] combined with Corol-
lary 11.3 and the fact that t-locally free H-modules and their t¥-translates
have projective and injective dimension at most 1. To prove (ii), let i be a sink
(resp. source) in Q°(C, €2). Then for a t-locally free module M with M 2 E;
the map M, i, is surjective (resp. M; ou 1s injective). Now the result follows
from Proposition 9.4 and Theorem 10.1(b),(d). ]

Proposition 11.6 Let M be a preprojective or preinjective H-module. Then
the following hold:

(1) M is t-locally free and rigid;
(ii) rank(M) € AL(C);
(iii) If M and N are preprojective or preinjective H-modules with dim(M) =
dim(N), then M = N.

Proof By definition we have M = =% (P;) or M = t¥(I;) for some k > 0 and
some 1 <i < n. The modules P; and /; are indecomposable, locally free and
rigid. Thus by Proposition 11.4 the module M is t-locally free and rigid. We
know from Sect. 3.4 that rank(P;), rank(/;) € Art(C). Now part (ii) follows
from Proposition 11.5(ii), and (iii) is a consequence of Lemmas 2.1 and 2.2. O

Lemma 11.7 Assume C is connected and not of Dynkin type. Let X be a
preprojective, Y a t-locally free regular and Z a preinjective H-module. Then
we have Hompyg (Z,Y) = 0, Homg (Y, X) = 0 and Homgy (Z, X) = 0.

Proof We have X = ‘L'_k(Pi) for some 1 < i < n and some k > 0. We get
Hompg (Y, X) = Hompy (zX(Y), P;) and Hompy (Z, X) = Homp (tX(2), P)).
Now Corollary 11.3 yields that these homomorphism spaces are zero. Simi-
larly, one shows that Homy (Z, Y) = 0. |

A sequence ((i1, p1),..., @iy, pr)) with 1 < iy < nand p; € {+, —}is
admissible for (C, ) if the following hold:

(i) Either iy is asinkin Q°(C, Q) and p; = +, or i1 is a source in Q°(C, 2)
and p; = —;

(i1) For each 2 < k < n, either iy is a sink in Q°(C, s;,_, - --5;,(£2)) and
Dk = +, or i is a source in Q°(C, s;,_, ---5;,(2)) and py = —.
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Proposition 11.8 For an indecomposable locally free M € rep(H) the fol-
lowing are equivalent:

(i) M is t-locally free;

(i1) For each admissible sequence ((i1, p1), ..., (i;, pr)) for (C, ) the mod-
ule

p p
Firt e Fl.ll(M)
is locally free.

Proof Assume M is t-locally free. Let i be a sink in Q°(C, 2). We want to
show that F;" (M) is t-locally free. If M = P; = E;, then F," (M) = 0, which
is trivially T-locally free. Thus we can assume that M 22 E;. If M = P; for
some j # i, then top; (M) = 0. In particular, M; ;j is surjective. Thus Fl.+(M )
is locally free. Now Lemma 9.16 yields that F i+ (M) is indecomposable. Next,
assume that M is not projective. In other words, we have T (M) # 0. There
clearly exists a +-admissible sequence (iy, ..., i,) for (C, 2) with i} = i.
Using that M is t-locally free and applying Theorem 10.1 we get

T(M)=TCH(M) =TF; - FF(M).

By Lemma 9.16, the module Fl.+(M ) is indecomposable and locally free.
We can now assume that t¥ (Fl.+(M )) # 0 for all k € Z. (Otherwise, the
indecomposable module FI.Jr (M) is preprojective or preinjective and therefore
t-locally free.)

Letk > 0. There exists a +-admissible sequence (j, . . ., ju) for (C, 5;(£2))
with j, = i. It follows that (7, ji, ..., ju—1) is a +-admissible sequence for
(C, 2). We have

T(F (M) = T(F - Fi (FF (M) = F (1(M)),
and this module is indecomposable and locally free since (M) is t-locally
free. Now it follows by induction that " (F l.+ (M)) = Ff(rk (M)) is indecom-
posable and locally free for each £ > 0.

Next, let k < 0. Then there exists a —-admissible sequence (ji, ..., j,) for
(C, si(2)) with ji = i. Then (jo, ..., ju, ) is a —-admissible sequence for
(C, 2). We get

T(FTWM)=F, - F R FT(M)=F; - F (M)
and

T~ ~ FrFoFT .. FT ~FT ... FT
Fr( (M) = F'FF; - F (M) Z F; - F; (M),
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(For the lastisomorphism we used the dual of Lemma 9.16.) Again by induction
we get that " (F l.+ M) = Fl.+(rk (M)) is indecomposable and locally free for
each k < 0.

Altogether we showed that F l.+ (M) is t-locally free. Dually, one shows that
F j_ (M) is t-locally free for each source j in Q°(C, €2). This implies (ii).

To show the other direction, assume that (ii) holds. It follows that T*C* (M)
is locally free for all k € Z. Now we can apply Theorem 10.1 and get % (M) =
TKCK(M). Thus M is t-locally free.

ol

Proposition 11.9 For an H-module M the following are equivalent:

(1) M is locally free;
(i) (M) = TCT(M);
i) TT(M) ETC—(M).

Proof By Theorem 10.1(b) we know that (i) implies (ii). Now suppose that
(ii) holds. Let f: M — N be a monomorphism from M to a locally free
H-module N. (For example we could just take the injective envelope of M.)
Since TC™ is a left exact functor we get an exact sequence

0— TCT(M)— TCT(N).
By Theorem 10.1(b) and assumption (ii) we get an exact sequence
00— t(M) — t(N).

By Proposition 11.1 we have Homg(D(H),t(N)) = 0, since N is
locally free. Applying Hompy (D(H), —) to the exact sequence above gives
Hompyg (D(H), T(M)) = 0. Again by Proposition 11.1 this implies that M is
locally free. The equivalence of (i) and (iii) is proved dually. O

11.2 Finite type classification for 7-locally free modules

Theorem 11.10 For a Cartan matrix C of Dynkin type the following hold:

(i) The map M +— rank (M) yields a bijection between the set of isomorphism
classes of T-locally free H-modules and the set A*(C) of positive roots
of the Lie algebra associated with C.

(i1) For an indecomposable H-module M the following are equivalent:
(a) M is preprojective;
(b) M is preinjective;
() M is t-locally free;
(d) M is locally free and rigid.
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Proof Leti = (i1, ..., i,) be a +-admissible sequence for (C, 2). We have
rank(P; ) = Bik for 1 < k < n, compare Sect. 3.4. Since C is of Dynkin
type, we get all elements of AT (C) by applying the Coxeter transformation
c¢ ¥ to the B withs > 0and 1 < k < n, compare Lemma 2.2. In particular,
the preprojective H-modules and the preinjective H-modules coincide. Now
Proposition 11.6 implies part (i). We also get that (a) and (b) in part (ii) are
equivalent, and that (a) and (b) implies (c) and (d). By Proposition 11.4 we
know that (d) implies (c). Now let M € rep(H) be t-locally free. Then there
exists an injective H-module /; with Hompg (M, I;) # 0. Since C is of Dynkin
type, we know that P; = rk(li) for some k > 0 and some 1 < j < n.
If (M) = 0 for some s > 0, then M is preprojective and we are done.
Thus assume that ¥ (M) # O for all s > 0. Then we have Homg (M, [;) =
Hompy (X (M), T(I;)) = Homp (z*(M), P;) # 0. (Note that all modules
appearing here have projective and injective dimension at most one. Thus
the stable homomorphism spaces are equal to the ordinary homomorphism
spaces.) It follows that Hompy (t~ (zk 1 (M), Pj) # 0, a contradiction to
Corollary 11.3. This finishes the proof. |

Combining the results in Sect. 11.1, Theorem 11.10 and Lemmas 2.1 and
2.2 we get the following result.

Theorem 11.11 There are finitely many isomorphism classes of t-locally free
H-modules if and only if C is of Dynkin type.

11.3 The algebra IT as a module over H
Let IT = I1(C, D).
Theorem 11.12 z4I1 = @mzo " (g H).
Proof By Proposition 11.6 we know that t " (H) is locally free for all m > 0.
Thus we have v~ (H) = Ext},(D(H), H) and
o (" V() = Exty (D(H), ©= "D (H)
= Extl,(D(H), H) @yt~ " V(H)
= ExtL (D(H), H) ®py Ext}, (D(H), H)®"~D

where the last isomorphism follows by induction. By Corollary 10.6 we know
that T = Ty (Ext},(D(H), H)). The result follows. o

Corollary 11.13 I1 is finite-dimensional if and only if C is of Dynkin type.
Proof This follows directly from Theorems 11.10 and 11.12 and the fact that
AT(C) is finite if C is of Dynkin type. i
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11.4 Regular components of the Auslander—Reiten quiver

A connected component C of the Auslander—Reiten quiver of H is t-locally
free regular if it consists only of t-locally free regular modules. (A connected
component of the Auslander—Reiten quiver of a finite-dimensional algebra is
called regular if it consists only of regular modules.)

Proposition 11.14 For a connected component C of the Auslander—Reiten
quiver of H the following are equivalent:

(i) C contains a t-locally free regular module;
(ii) C is t-locally free regular.

Proof Trivially, (ii) implies (i). For the other direction assume that M is a
t-locally free regular module in C. Let 0 — t(M) - E — M — 0 be
the Auslander—Reiten sequence ending in M. Applying t¥(—) yields again an
Auslander—Reiten sequence

0— rk+1(M) — rk(E) — rk(M) -0

for each k € Z. Here we used that 1 (M) and t¥(M) and therefore also
t%(E) have projective and injective dimension equal to 1. It follows that T8 (N)
is locally free for each indecomposable direct summand N of E. Now (ii)
follows by induction. O

Let C be a connected component of the Auslander—Reiten quiver of H.
Suppose C contains an indecomposable projective module P; withc¢; > 2. Then
rad(P;) is obviously not locally free. Thus rad( P;) contains an indecomposable
direct summand R, which is not locally free. Since the inclusionrad(P;) — P;
is a sink map, there is an arrow [R] — [P;] in the Auslander—Reiten quiver of
H . Thus C contains a module, which is not locally free.

Ringel [47] proved that the regular components of the Auslander—Reiten
quiver of a wild hereditary algebra are always of type ZA~. An alternative
proof is due to Crawley-Boevey [20, Section 2] and can easily be adapted to
obtain the following theorem.

Theorem 11.15 Assume that C is connected and neither of Dynkin nor of
Euclidean type. Let C be a t-locally free regular component of the Auslander—
Reiten quiver of H. Then C is a component of type Z.A .

12 Projective resolutions and Ext-group symmetries of IT-modules
12.1 Projective resolutions of I1(C, D)-modules

Let H = H(C, D, Q) and I1 = I1(C, D). Let Rep, ¢ (IT) denote the category
of alllocally free IT-modules, possibly of infinite rank. For typographic reasons
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we use in this section the convention I = {1, 2, ..., n}. Recall that we have
defined the S-S-bimodule

E:: @ l‘H',
(i,/))€Q

and that we can identify IT and T (E_) /J, where J is the ideal of T’ (B) which
is generated by the elements p; € B ®g B fori € I. For the next result we
follow closely the ideas from [24, Lemma 3.1].

Proposition 12.1 There is an exact sequence of I1-I1-bimodules
@Héi(@ein i) @ H€j Qj jH,' ®; eIl ﬁ) @Hei R e,-l'[il‘[—>0

iel (j.i)e2 iel

P,

(12.1)

where

flei®e):=p Qe +e ® p;,
8(ej®h®ej):=hei®@e; —ejQejh,
him@m') .= mm'.

Proof Observe first, that the above complex can be written more compactly
as

MesT 5 Mes®B @I Mes I -5 M- 0

Note that we have a surjective I[1-IT-bimodule homomorphism

n
@He,- ®; eIl 5 J/J2
i=1
defined by ¢; ® e; — p;. Moreover, we have a canonical map

J/J* S5 ey Bes Tl

given by X — x; ® 1 + 1 ® X, coming from the compositions of

[ — — j®id —
] PE* esB) TS nes B
k>1

@ Springer



Quivers with relations for symmetrizable Cartan matrices I... 141

and

o e
725 DB es B “L B,
k>1

respectively, where the maps i ;; and i , are the obvious inclusions. Note that
both compositions vanish on J2. It is easy to see that f = can o r. Thus we
only have to show that the sequence

2 can mult

J/J°— H®SB®SB—>H®SH—>H—>O
where u(1 @ b® 1) := b ® 1 — 1 ® b is exact. This is a special case of a
combination of results by Schofield [52, Theorems 10.1,10.3,10.5]. O

Corollary 12.2 For each M € Rep, ¢ (I1) the complex Po @11 M is the begin-
ning of a projective resolution of M.

Proof The components of P, are projective as left and as right modules. In
fact, for example H" ®; ;T = (e;IT)™ is a projective right [T-module. Now,
jHi is a free right H;-module and Ile; is a free right H;-module and thus
[le; ®; jH; is also a free right H;-module. Altogether, Ile; ® ; jH; ®; ¢;I1
is a projective right IT-module. A similar argument shows that I[Te; @y, ¢; 1
is projective as a right [T-module. Thus as a sequence of right modules the
sequence P, splits. This implies that the sequence P, @ M is exact. Now,
if M € Rep, ¢ (IT), then the relevant components of P, @ M are evidently
projective. O

Let us write the complex P, @1 M explicitly:

@Hez ®161M @ Hej ®]JH ®;eiM
iel (],l)EQ

2 D @ M 25 M >0 (12.2)
iel
and the maps fys, gu, hyr act on generators as follows:
fulej@mp= ("@l@m;j+e;®@"@Mj;lam))
i€eQ(—.j)
leiL;

_ Z (rer ®@m;+e@r® My ®@m))),

ke (j,—)
r€; Ry
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g @h@mj)=hQ@m;—e @ Mjj(h@m;j),
hy(ei @ mi) = m;.

Proposition 12.3 Suppose that the Cartan matrix C has no components of
Dynkin type. Then in the complex P, for I1 we have Ker(f) = 0. In particular,
forall M € Rep, ¢ (IT) we have proj. dim(M) < 2.

Proof In a first step we show that Ker(E! ®p f) = 0 for the generalized
simple right IT-modules E; concentrated at the vertex i € /. To this end we
adapt the relevant part of the proof of [15, Proposition 4.2] to our setting:
Choose an orientation €2 such that in H = H(C, D, 2) the projective H-
module P; = He; is the generalized simple H-module E;. We have a short
exact sequence of H-modules

0— P — @jeQ(i,—)Pj X jHi -1t (P) — 0, (12.3)

see the proof of Theorem 9.7. Note, that this sequence is possibly not an
Auslander—Reiten sequence. Applying Homg (—, IT) to (12.3) we obtain the
sequence of right [T-modules

0 — Hompy (v (F), Il) = Djeqi—)iHj ®; I1
— ¢;T1 — Extl(t™(P;), 1) — 0 (12.4)

Now, by Theorem 11.12
HIl = ®jer ren T (P)),

with all summands indecomposable, locally free preprojective modules. In
particular, in our situation all summands have injective dimension 1. Thus,
Exty, (t7(P,), T X(Pj)) = DHompy(t %(Pj), P;,) = 0 unless (j, k) =
(i,0). We conclude that we have an isomorphism of right IT-modules
Exty, (t7(P;), 1) = E/. Next

Hompy (z7 (P;), IT) = Hompy (P;, T(xI1)) = ¢; 11

where the last equality holds since by our hypothesis on C we have 7(zI1) =
g 1. Alltogether, we can identify now the exact sequence (12.4) with

E/®f Ei®s /
0— ¢l — Bjeqi,—)iHj®; 11 — ¢l - E; - 0

Now, let U := Ker(f). Then U is projective as a left [I-module since P, LS
IT — 01is a (split) exact sequence of projective left modules. Next we observe
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that E{® U = 0 since Cok( f) is projective as a left module. Now, let m C TI

be the ideal which is generated by B. Thus IT/m/ € rep; ¢ (I1) is filtered by
the generalized simples E; for all j > 1 and IT C 1(i1_nj(1'l /m/). Thus, since

U is projective as a left module we get

U=N®nUC (né_nm/mf)) ®nU C Li_gl(l'l/mj ®n U) = 0.
J J

This finishes the proof. O
12.2 Symmetry of extension groups
Let IT = I1(C, D), and let M = (M;, M,‘j, Mj,') and N = (N, N,‘j, Nj,') be
in Rep, ; (IT). Let Qo4(M, N) be the complex
f
P Homp, (My, No) <= P Hompy, (H; ®; M. Ni)
kel (i.j)eQ

<= P Homp, (Mg, Ny) (12.5)
kel

gMN

where fM’ ~ is defined by

(fM,N ((K/fij)(i,j)eﬁ))k

= > sgn(j. k)(Nij o ad; i (¥jx) — Y. j o ad; (M)
JEQU—k)

and gy n is defined by
(&m.N((DKker)) . j) = Nij o (id;m; ®j) — ¢i o Mij.

If N is of finite rank, via the trace pairing from Sect. 8.1, we can identify
the K-dual of the shifted complex Q4(N, M)[2] with the following complex
Qo(N, M)*:

@HomHk(Mk,Nw = P Homp,(M;. H; ®; N))
kel i,))eQ
Fom
< P Homy, (M. Ni) (12.6)
kel

@ Springer



144 C. Geiss et al.

(Recall that we have for example natural isomorphisms
Hompy, (M, Ny) = DHompy, (N, My)

since Ny is free of finite rank by hypothesis.) We define moreover
ady n: @ Homp, (j H; ® M;, N;)
(i.J)€R
®(i,j)e§ sgn(i,j)adj;

@ Hompy, (M;, ;H; ®; N;).
(i,))eQ

We know that ad s y is an isomorphism.

Lemma 12.4 For M, N € Rep,; (I) the following hold:

(a) The complex Hom (P, @1 M, N) is isomorphic to Qe(M, N).
(b) If N is of finite rank

(id@ Homp, My, N)» adpm N, ide Hom g, (M, Ny))

is an isomorphism between the complexes Qo(M, N) and Qo(N, M)*.

Proof Part (a) is straightforward. For (b) we show that f;‘\‘, v =ady nogm N.

To this end we evaluate for (i, j) €  the (i, J)-component of f[\”} y On
(AM)ker € ®rer Homp, (M, Ni), according to our discussion of the trace
pairing in Sects. 8.1 and 8.2:

(Fr (O = sgn(, ad; ;(hjoMj;) —ad;;(Nji) o k)
=sgn(i, j)(ad;;(Aj o M;j;) —ad;;(Nj;) o A;)
=sgn(i, j)(ad;;(Aj o Mj; — Nj; o (idyg; ®21;)))

where the second equality follows from Proposition 8.3, and the third equality
is just the definition of ad j;. The proof of 37;;,’ yoady N = fu, n is similar. O

Proposition 12.5 For M, N € Rep, ¢ (I1) we have the following functorial
isomorphisms:

(a) Ker(gm n)=Homn(M, N) and Ker(fu,n)/ Im(gm, n) ZExth (M, N).
(b) Cok fu.n = Extzl-I (M,N )~if C has no component of Dynkin type.

(¢) Homp (N, M) = D Cok(fm.n) if M is of finite rank.

Proof Part (a) follows from the functorial isomorphism of (12.5) with
Homp (P, @ M, N). Part (b) follows by the same token since in this sit-
uation by Proposition 12.3 the map fj, in (12.2) is injective.
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For (c) we just note that by (a) and Lemma 12.4 (b) we have Ker( f A"j, N) =
Ker(gn m) = Homp (N, M). O

Theorem 12.6 Let M € Rep,; (IT) and N € rep, ¢ (I1).

(a) There is a functorial isomorphism
Extl (M, N) = DExt} (N, M).

(b) If the Cartan matrix C has no component of Dynkin type, we have more
generally functorial isomorphisms

Ext? (M, N) = DExth (N, M) fori =0, 1, 2.
(c) If M is also of finite rank we have
dimExt}I(M, N) = dimHomp (M, N) + dim Homp (N, M) — (M, N)p.

Proof Recall, that by Proposition 12.5 (a) and (b) we have naturally
H(Qo(M,N)) = Ext’i_I(M, N) fori = 0,1 and also fori = 2 in case C
has no Dynkin component. In our situation (N of finite rank), the complex
Q.(N, M)* is, via the trace pairing, identified to the K-dual shifted com-
plex D Q.(N, M)[2]. Thus, by the same token we have H>~/(Q4(N, M)*) =
DExt‘i_[(N , M) fori =0, 1, and also for i = 2 in the Dynkin-free case. Now,
by Lemma 12.4 (b) the complexes Qo(M, N) and Qo(N, M)* are naturally
isomorphic, which implies (a) and (b). For (c), we observe that by Proposi-
tion 12.5 we obtain from the complex (12.5) the equality

dim Homp (N, M) — dimExt%—[(M, N) + dim Homp (M, N)
=2- > dimHompy, (M, Ni) — > dimHomy, (; H; ®; M;, N)
kel ME
=(M,N)n,

which is equivalent to our claim. O

The last statement in Theorem 12.6 generalizes Crawley-Boevey’s formula
in [23, Lemma 1].

Corollary 12.7 Suppose that the Cartan matrix C is connected of Dynkin
type. Then Tl is a selfinjective algebra. Moreover, in this situation we have
Ker(f) = Homp (D(I1), IT) as a I1-T1-bimodule, where f is the last morphism
in the complex P, of Proposition 12.1.
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Proof By Corollary 11.13, IT is in this situation a finite-dimensional basic K -
algebra. So, for the first claim we have to show only that I, as a left module,
is injective. In any case, we can find a short exact sequence of left I[T-modules

0—>1'IL>Q£>R—>0

with Q injective. Since IT and Q are locally free, R is also locally free. Now,
Homp (¢, T) is surjective since Ext};(R, IT) = DExt};(TI, R) = 0 by Theo-
rem 12.6. Thus, there exists p € Homp (Q, IT) with pt = idp. In other words,
IT is a direct summand of the injective module Q.

For the second claim we note that we have here natural identifications
f = D(fn,pm) = &ban,n- Now, Ker(gpm),n) = Homp(D(IT), IT) by
Proposition 12.5 (a). o

Remark 12.8 For (classical) preprojective algebras IT associated to a Dynkin
quiver it seems to be folklore that Ker( /) = D(I1). This is not in contradiction
with the above statement. In fact, the Nakayama automorphism, viewed as an
element of the group of outer automorphism has order 2 (except for a few cases
over fields of characteristic 2 when it is the identity), see [15, Theorem 4.8].
and thus D(IT) = Homp (D(IT), IT) as a bimodule. We expect that for our
generalized preprojective algebras a similar statement holds.

13 Examples

13.1. The algebras H(C, D) and I1(C, D)

2 -4 0
c=|-6 2 =3
0o -9 2

is a Cartan matrix, and D = diag(9, 6, 2) is the minimal symmetrizer of C. Let
Q = {(1,2), (2, 3)}. This is an orientation of C. We have fj» =2, f>1 = 3,
f3 =1, fao = 3,812 = 2 and g»3 = 3. The algebra H = H(C, D, Q) is
given by the quiver

€1 &2 &3

3y (r O)

1=—/2=—"=-3

with relations
8?=0,8§=0,8§=0,

el =aife3, (g=1,2),
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E%ag) = 01%)83, (g=1,2,3).

(Recall that ozi(‘?) denotes an arrow j — i.)
__The preprojective algebra I1 = TI(C, D) is given by the double quiver
Q(C) with relations

8?=0, 83:0, 8%=O,

3 (9) 9 .2 2 (g) 9.3
gy =ay e, s =alel, (g=1,2),

sgag) = a%)%, s3a§§) = ag)sg, (g=1,2,3),
2

Y (e el et + eraffaler + el o)) = 0.

g=1

2
> (ebfies —exefaf)
g=1

3
+> (e + erafalfer + edaffal) = 0,
g=1

3

(8) ()
Z —Ol3§ a2§ =0.
g=1

13.2 Cartan matrices of Dynkin type

Figure 4 shows a list of valued graphs called Dynkin graphs. By definition each
of the graphs A,, B,, C,, and D, has n vertices. The graphs A, D,, E¢, E7
and Eg are the simply laced Dynkin graphs. A Cartan matrix C is of Dynkin
type if the valued graph I'(C) is isomorphic (as a valued graph) to a disjoint
union of Dynkin graphs.

13.3 Finite representation type

Let H = H(C, D, 2) with D = diag(cy, ..., ¢;). Without loss of general-
ity assume that C is connected. We only sketch the proof of the following
proposition.

Proposition 13.1 The algebra H is representation-finite if and only if we are
in one of the following cases:

(1) C is of Dynkin type A,, C,, Dy, Eg, E7, Eg, By, B3 or G,, and D is
minimal;
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(2,1)

(1,2)

Es

Eg

1,2
F, a2

G O

Fig. 4 Dynkin graphs

(i) C is of Dynkin type Ay;
(iii) C is of Dynkin type Ao, andwe have (c1, ¢3) = (2,2) or (c1, ¢2) = (3, 3);
@iv) C is of Dynkin type Az, and we have (c1, c2, c3) = (2, 2, 2).

Proof Assume that D is minimal. For Dynkin types A,,, D, Es, E7, E3, the
algebra H is representation-finite by Gabriel’s Theorem. For type C,,, the alge-
bra H is a representation-finite string algebra. The Auslander—Reiten quiver
of H for types B, Bz and G; can be computed by covering theory and the
knitting algorithm for preprojective components. They all turn out to be finite.

If C is of type Aj, then the symmetrizers are D = (m) with m > 1. Then
H = Kle1]/(e}") is just a truncated polynomial ring, which is obviously
representation-finite.
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If C is of type As and (c1,c2) = (2,2) or (c1,c2) = (3,3), then H is a
representation-finite algebra, see Bongartz and Gabriel’s list Maximal algebras
with 2 simples modules in [13, Section 7].

If C is of type Az with (cq, c2,c3) = (2,2, 2), then one can again use
covering theory and the knitting algorithm to check that H is representation-
finite.

It is straightforward to check that these are all representation-finite cases.
(One first compiles the list of all minimal algebras H, which are not mentioned
in (i), (i), (iii) and (iv). These are the algebras H = H(C, D, Q2) of types
Ay with D = diag(4, 4);

Az with D = diag(3, 3, 3);
A4 with D = diag(2, 2, 2, 2);
By with D = diag(4, 2);

B4 with D minimal;

D4 with D = diag(2, 2, 2, 2);
e F4 with D minimal.

Then one uses covering theory and the Happel—Vossieck list (see [37]) to check
that these minimal algebras are representation infinite.) O

13.4 Notation

In the following sections we discuss several examples. We also display the
Auslander—Reiten quivers of some representation-finite algebras H. The t-
locally free H-modules are marked with a double frame, the locally free H -
modules, which are not t-locally free, are marked with a single solid frame,
and the Gorenstein-projective H-modules, which are not projective, have a
dashed frame.

13.5 Dynkin type A;

Let

2 -1
=(4 7)
with symmetrizer D = diag(2, 2) and 2 = {(1, 2)}. Thus C is a Cartan matrix

of Dynkin type A, with a non-minimal symmetrizer. We have f1» = fo1 = 1.
Thus H = H(C, D, Q) is given by the quiver

€1 &
3y ()
1%2
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Fig. 5 The Auslander—Reiten quiver of H(C, D, Q2) of type Ay with D = diag(2, 2)

Fig. 6 The indecomposable 1 92
projective I1(C, D)-modules as1 €1 a1 €9
for type A> with D = (2,2) / \ / \
2 1 1 2
5\2\ AQI 6?\ AIQ
2 1

with relations e% = 8% = 0 and e112» = a1262. The Auslander—Reiten quiver

of H is displayed in Fig. 5. The numbers in the figure correspond to compo-
sition factors and basis vectors. (The three modules in the left most column
have to be identified with the three modules in the right most column.) Note
that P, = I is projective-injective.

The preprojective algebra IT = I1(C, D) is given by the quiver

€1 &2
(Vo ()
1=—=2
a2

with relations 8% = 8% =0,810120 = 01282, &2000] = 11, ®1202] = 0 and
—an112 = 0. The indecomposable projective [T-modules are shown in Fig. 6.
(The arrows indicate when an arrow of the algebra IT acts with a non-zero scalar
on a basis vector.)
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Fig.7 The 5

Auslander—Reiten quiver of Il<—-=—-——-—-—-=
H(C, D, Q) of type By with 1

D minimal

13.6 Dynkin type B,

Let

2 —1
-(57)
with symmetrizer D = diag(2, 1) and 2 = {(1, 2)}. The graph I'(C) looks as

follows:

2,1
1()

Thus C is a Cartan matrix of Dynkin type B>. We have fj = 1 and f2; = 2.
Then H = H(C, D, 2) is given by the quiver

€1 &
3y ()
1%2

with relations 812 = 0 and & = 0. The Auslander—Reiten quiver of H is
shown in Fig. 7. The numbers in the figure correspond to composition factors
and basis vectors. (In the last two rows the two modules on the left have to be
identified with the corresponding two modules on the right.)

The preprojective algebra IT = I1(C, D) is given by the quiver

€1 &2
(Vo ()
1=—=2
o2

with relations 8% =0, =0, aparie] + g1apaz1 = 0 and —apjayp = 0.
The indecomposable projective [T-modules are shown in Fig. 8. (The arrows
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Fig. 8 The indecomposable 1 )
projective I1(C, D)-modules as1 1

for type By with D minimal / \ \L
2 1 1

12 i l 21 i/ €1
1 2 1
6?\ /Xu i
1 2

indicate when an arrow of the algebra IT acts with a non-zero scalar on a basis
vector.)

13.7 DynKin type B3

Let
2 —-10
C=1|-12 -1
0 -22

with symmetrizer D = diag(2, 2, 1) and Q2 = {(1, 2), (2, 3)}. The graph I'(C)
looks as follows:

2.1

1—2 3

Thus C is a Cartan matrix of Dynkin type B3. Wehave fio = fo1 =1, foz =1
and f3» = 2. Thus H = H(C, D, Q2) is given by the quiver

&1 & &3
Yy )y ()
1 a2 2 23 3

with relations 8% = 8% =0,e3 =0and g1a12 = a12&2. The Auslander—Reiten

quiver of H is shown in Fig. 9. As vertices we have the graded dimension
vectors (arising from the obvious Z-covering of H) of the indecomposable
H-modules. (In the last three rows the three modules on the left have to be
identified with the corresponding three modules on the right.) The indecom-
posable H-module M with graded dimension vector
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N

N

Fig. 9 The Auslander—Reiten quiver of H(C, D, 2) of type B3 with D minimal

Quivers with relations for symmetrizable Cartan matrices I...

o=
— N\ —
—.—

is locally free. (It is a direct summand of an extension of locally free modules.)
We have rank(M) = (1,2, 1). In the root lattice of C this corresponds to

a1 + 2ap + a3. Thus we have rank (M) ¢ AT(C).

13.8 Dynkin type C3

Let

2 -10
-1 2 =2
0 -1 2

C ) (
diag(1, 1,2) and Q = {(1, 2), (2, 3)}. The graph I"'(C)

with symmetrizer D
looks as follows:

pringer

As

3

(1,2)

1—2
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Fig. 10 The Auslander—Reiten quiver of H(C, D, 2) of type C3 with D minimal

Thus C is a Cartan matrix of Dynkin type C3. We have f12 = fo1 =1, fo3 =2
and f3» = 1. Then H = H(C, D, 2) is given by the quiver

&1 &2 &3
vy )y ()
1 o2 2 23 3

with relations £ = g7 = 0 and 8% = 0. The Auslander—Reiten quiver of H is
shown in Fig. 10. The numbers in the figure correspond to composition factors
and basis vectors. (In the last three rows the three modules on the left have to
be identified with the corresponding three modules on the right.)

The preprojective algebra IT = I1(C, D) is given by the quiver

€1 &2 €3
(Vau Va1
l—=2—=

12 23

with relations €] = ¢p = 0, 8% =0, apa; =0, —apja2 + axzazn = 0 and
—a300383 — 3032023 = 0. The indecomposable projective IT-modules are
shown in Fig. 11.
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1

2

23 @32 @12
21 €3

2

\123
21
@23

3
3
3

\is
Q32
€3

3
3
3

ass
2

@12
@32

1

2
@32

1

2

@32 @12
€3

2

\123
21
@23

™ o
o
!
a ™ o
7N
o o
N o
~ s & <
N
— o
§ —~ ¢
x a 3 al
3 3 5 3 8

— NN — "N — —>

Fig. 11 The indecomposable projective I[1(C, D)-modules for type C3 with D minimal

HNHO  —AN—O
——HOO O—=—CO

—ANNO [ —H—H—=O
OO | H—HOO

O—N—H O
O—H—O OO

ANNO
—_——O

N

I
|
|
—AN—O |
———O
| |
| |
| Y N
| Oo—OO
Oo—OoO
| o 2
| \ |
¥ _
——O |
—oo
|
/ |
Y
[elelole]
Sooo

SN
O

Fig. 12 The Auslander—Reiten quiver of H(C, D, Q) of type G, with D minimal

13.9 Dynkin type G,

Let

-3
-1 2

pringer

H's
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with symmetrizer D = diag(1, 3) and 2 = {(1, 2)}. The graph I"'(C) looks as
follows:

(1,3)
2

Thus C is a Cartan matrix of Dynkin type G,. We have fi1» =3 and fo; = 1.
Thus H = H(C, D, Q) is given by the quiver

€1 &
3y ()
1%2

with relations ¢ = 0 and 8% = 0. The Auslander-Reiten quiver of H is
displayed in Fig. 12. As vertices we have the graded dimension vectors (arising
from the obvious Z-covering of H) of the indecomposable H-modules. (The
three modules in the left most column have to be identified with the three
modules in the right most column.)
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