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Abstract We prove that if (X,d,m) is a metric measure space withm(X) = 1
having (in a synthetic sense) Ricci curvature bounded from below by K > 0
and dimension bounded above by N ∈ [1,∞), then the classic Lévy-Gromov
isoperimetric inequality (together with the recent sharpening counterparts
proved in the smooth setting by Milman for any K ∈ R, N ≥ 1 and upper
diameter bounds) holds, i.e. the isoperimetric profile function of (X,d,m) is
bounded from below by the isoperimetric profile of the model space. More-
over, if equality is attained for some volume v ∈ (0, 1) and K is strictly
positive, then the space must be a spherical suspension and in this case we
completely classify the isoperimetric regions. Finally we also establish the
almost rigidity: if the equality is almost attained for some volume v ∈ (0, 1)
and K is strictly positive, then the space must be mGH close to a spheri-
cal suspension. To our knowledge this is the first result about isoperimetric
comparison for non smooth metric measure spaces satisfying Ricci curvature
lower bounds. Examples of spaces fitting our assumptions include measured
Gromov–Hausdorff limits of Riemannian manifolds satisfying Ricci curva-
ture lower bounds, Alexandrov spaces with curvature bounded from below,
Finsler manifolds endowed with a strongly convex norm and satisfying Ricci
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curvature lower bounds; the result seems new even in these celebrated classes
of spaces.

1 Introduction

1.1 Isoperimetry

The isoperimetric problem, having its roots in myths of more than 2000 years
ago, is one of the most classical and beautiful problems in mathematics. It
amounts to answer the following natural questions:

(1) Given a space X what is the minimal amount of area needed to enclose a
fixed volume v?

(2) Does an optimal shape exist?
(3) In the affirmative case, can we describe the optimal shape?

There are not many examples of spaces where the answer to all the three
questions above is known. If the space X is the euclidean N -dimensional space
R

N then it is well known that the only optimal shapes, called from now on
isoperimetric regions, are the round balls; if X is the round N -dimensional
sphere S

N then the only isoperimetric regions are metric balls, etc. To the
best of our knowledge, the spaces for which one can fully answer all the three
questions above either have a very strong symmetry or they are perturbations
of spaces with a very strong symmetry. For an updated list of geometries
admitting an isoperimetric descriptionwe refer to [26,AppendixH]. Let us also
mention that the isoperimetric problem has already been studied in presence
of (mild) singularities of the space: mostly for conical manifolds [49,53] and
polytopes [52]. The isoperimetric problem has been analyzed from several
complementary points of view: for an overview of the more geometric aspects
we refer to [55,61,62], for the approach via geometric measure theory see
for instance [47,51], for the connections with convex and integral geometry
see [12], for the point of view of optimal transport see [29,66], for the recent
quantitative forms see [23,31].

Besides the euclidean one, themost famous isoperimetric inequality is prob-
ably the Lévy-Gromov inequality [39, Appendix C], which states that if E is a
(sufficiently regular) subset of a Riemannian manifold (MN , g) with dimen-
sion N and Ricci bounded below by K > 0, then

|∂E |
|M | ≥

|∂B|
|S| , (1.1)

where B is a spherical cap in the model sphere, i.e. the N -dimensional sphere
with constant Ricci curvature equal to K , and |M |, |S|, |∂E |, |∂B| denote the
appropriate N or N − 1 dimensional volume, and where B is chosen so that
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Sharp and rigid isoperimetric inequalities 805

|E |/|M | = |B|/|S|. In otherwords, the Lévy-Gromov isoperimetric inequality
states that isoperimetry in (M, g) is at least as strong as in the model space S.

Let us observe next that the isoperimetric problemmakes sense in the larger
class of metric measure spaces. A metric measure space (X,d,m), m.m.s. for
short, is a metric space1 (X,d) endowed with a Borel probability measure
m. In the standard situation where the metric space is a compact Riemannian
manifold,m is nothing but the normalized volume measure. Notice that in the
Lévy-Gromov inequality (1.1) one considers exactly this normalized volume
measure.
Regarding them.m.s. setting, it is clear that the volumeof aBorel set is replaced
by its m-measure, m(E); the boundary area of the smooth framework instead
can be replaced by the Minkowski content

m+(E) := lim inf
ε↓0

m(Eε)−m(E)

ε
, (1.2)

where Eε := {x ∈ X : ∃y ∈ E such that d(x, y) < ε} is the ε-neighborhood
of E with respect to the metric d. So the isoperimetric problem for a m.m.s.
(X,d,m) amounts to finding the largest function I(X,d,m) : [0, 1] → R

+ such
that for every Borel subset E ⊂ X it holds m+(E) ≥ I(X,d,m)(m(E)).

The main goal of this paper is to prove that the Lévy-Gromov isoperimetric
inequality holds in the general framework of metric measure spaces. For the
problem to make sense, we also need a notion of “Ricci curvature bounded
below by K and dimension bounded above by N” for m.m.s.

1.2 Ricci curvature lower bounds for metric measure spaces

The investigation about the topic beganwith the seminal papers of Lott–Villani
[45] and Sturm [64,65], though has been adapted considerably since the work
of Bacher–Sturm [9] and Ambrosio–Gigli–Savaré [4,5]. The crucial property
of any such definition is the compatibility with the smooth Riemannian case
and the stability with respect to measured Gromov–Hausdorff convergence.
While a great deal of progress has been made in this latter general framework
from both the analytic, geometric and structural points of view, see for instance
[2–7,9,14,15,18,27,33,35–37,43,50,59,63,66], the isoperimetric problem
has remained elusive.

The notion of lower Ricci curvature bound on a general metric-measure
space comes with two subtleties. The first is that of dimension, and has been
well understood since the work of Bakry-Émery [10] and Bakry–Ledoux [11]:
in both the geometry and analysis of spaces with lower Ricci curvature bounds,

1 During all the paper we will assume (X,d) to be complete, separable and proper
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it has become clear the correct statement is not that “X has Ricci curvature
bounded from below by K ”, but that “X has N -dimensional Ricci curvature
bounded from below by K ”. Such spaces are said to satisfy the (K , N )-
Curvature Dimension condition, CD(K , N ) for short; a variant of this is that
of reduced curvature dimension bound, CD∗(K , N ). See [9–11,65] and Sect.
2.1 for more on this.

The second subtle point is that the classical definition of a metric-measure
space with lower Ricci curvature bounds allows for Finsler structures (see
the last theorem in [66]), which after the aforementioned works of Cheeger–
Colding are known not to appear as limits of smooth manifolds with Ricci
curvature lower bounds. To address this issue, Ambrosio–Gigli–Savaré [5]
introduced a more restrictive condition which rules out Finsler geometries
while retaining the stability properties under measured Gromov–Hausdorff
convergence, see also [2] for the present simplified axiomatization. In short,
one studies the Sobolev spaceW 1,2(X) of functions on X . This space is always
a Banach space, and the imposed extra condition is that W 1,2(X) is a Hilbert
space. Equivalently, the Laplace operator on X is linear. The notion of a lower
Ricci curvature bound compatible with this last Hilbertian condition is called
Riemannian Curvature Dimension bound,RCD for short. Refinements of this
have led to the notion ofRCD∗(K , N )-spaces, which is the key object of study
in this paper.

1.3 Main results

Our main result is that the Lévy-Gromov isoperimetric inequality holds for
m.m.s. satisfying N -Ricci curvature lower bounds:

Theorem 1.1 (Lévy-Gromov in RCD∗(K , N )-spaces) Let (X,d,m) be an
RCD∗(K , N ) space for some N ∈ N and K > 0. Then for every Borel subset
E ⊂ X it holds

m+(E) ≥ |∂B||S| ,

where B is a spherical cap in the model sphere (the N-dimensional sphere
with constant Ricci curvature equal to K ) chosen so that |B|/|S| = m(E).

Actually Theorem 1.1 will be just a particular case of the more general
Theorem 1.2 including any lower bound K ∈ R on the Ricci curvature and
any upper bound N ∈ [1,∞) on the dimension. In order to state the result
we need some model space to compare with: the same role that the round
sphere played for the Lévy-Gromov inequality. The model spaces for general
K , N have been discovered by Milman [48] who extended the Lévy-Gromov
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isoperimetric inequality to smooth manifolds with densities, i.e. smooth Rie-
mannian manifold whose volume measure has been multiplied by a smooth
non negative integrable density function. Milman detected a model isoperi-
metric profile IK ,N ,D such that if a Riemannian manifold with density has
diameter at most D > 0, generalized Ricci curvature at least K ∈ R and
generalized dimension at most N ≥ 1 then the isoperimetric profile function
of the weighted manifold is bounded below by IK ,N ,D . The main result of this
paper is the non-smooth generalization of this statement:

Theorem 1.2 (Lévy-Gromov-Milman inRCD∗(K , N )-spaces) Let (X,d,m)

be ametric measure space withm(X) = 1 and having diameter D ∈ (0,+∞].
Assume is satisfies the RCD∗(K , N ) condition for some K ∈ R, N ∈ (1,∞)

or N = 1, K ≥ 0. Then for every Borel set E ⊂ X it holds

m+(E) ≥ IK ,N ,D(m(E)).

In other words it holds I(X,d,m)(v) ≥ IK ,N ,D(v) for every v ∈ [0, 1].
Remark 1.3 Theorems 1.1 and 1.2 hold (and will be proved) in the more
general framework of essentially non branching CDloc(K , N )-spaces, but we
decided to state them in this form so to give a unified presentation also with
the rigidity statement below. The restriction K ≥ 0 if N = 1 is due to the fact
that for K < 0 and N = 1 the CDloc(K , N ) does not imply CD∗(K , N ), see
Remark 2.4 for more details.

The natural question is now rigidity: if for some v ∈ (0, 1) it holds
I(X,d,m)(v) = IK ,N ,∞(v), does it imply that X has a special structure? The
answer is given by the following theorem. Before stating the result let us
observe that if (X,d,m) is an RCD∗(K , N ) space for some K > 0 then,

called d′ :=
√

K
N−1 d, we have that (X,d′,m) is RCD∗(N − 1, N ); in other

words, if the Ricci lower bound is K > 0 then up to scaling we can assume it
is actually equal to N − 1.

Theorem 1.4 Let (X,d,m) be an RCD∗(N − 1, N ) space for some N ∈
[2,∞), with m(X) = 1. Assume that there exists v̄ ∈ (0, 1) such that
I(X,d,m)(v̄) = IN−1,N ,∞(v̄).

Then (X,d,m) is a spherical suspension: there exists an RCD∗(N − 2,
N − 1) space (Y,dY ,mY ) with mY (Y ) = 1 such that X is isomorphic as
metric measure space to [0, π ] ×N−1

sin Y .
Moreover, in this case, the following hold:

i) For every v ∈ [0, 1] it holds I(X,d,m)(v) = IN−1,N ,∞(v).
ii) For every v ∈ [0, 1] there exists a Borel subset A ⊂ X with m(A) = v

such that

m+(A) = I(X,d,m)(v) = IN−1,N ,∞(v).
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iii) If m(A) ∈ (0, 1) then m+(A) = I(X,d,m)(v) = IN−1,N ,∞(v) if and only
if

Ā = {(t, y) ∈ [0, π ] ×N−1
sin Y : t ∈ [0, rv]} or

Ā = {(t, y) ∈ [0, π ] ×N−1
sin Y : t ∈ [π − rv, π ]},

where Ā is the closure of A and rv ∈ (0, π) is chosen so that∫
[0,rv] cN (sin(t))N−1dt=v, cN beinggivenby c−1N :=∫[0,π ](sin(t))N−1dt.

A last question we address here is the almost rigidity: if (X,d,m) is an
RCD∗(K , N ) space such that I(X,d,m)(v) is close to IK ,N ,∞(v) for some
v ∈ (0, 1), does this force X to be close to a spherical suspension? Let us
mention that variants of this problem were addressed for smooth Riemannian
N -manifolds satisfyingRicci≥ N−1:Croke [25] proved that the ratio between
the profile of the manifold over the profile of the sphere is uniformly bounded
from below by a constant which is strictly more than 1 as soon as the compact
manifold is not isometric to the canonical N -sphere; this has been quanti-
tatively estimated in [32] where Bérard, Besson, and Gallot gave explicit
expressions of the infimum of the ratio in terms of the Ricci curvature and
the diameter; finally Bayle [8] proved that if the isoperimetric profile is close
in the uniform norm to the one of the N -sphere then the diameter is almost
maximal; combining this fact with the Maximal Diameter Theorem for limit
spaces proved by Cheeger–Colding [19], one gets that the manifold must be
close to a spherical suspension.

The next Theorem 1.5 together with its Corollary 1.6 extend the above
results in two ways: first of all we assume closeness just for some v ∈ (0, 1)
and not uniform closeness for every v ∈ [0, 1], second we give a complete
answer in the larger class of RCD∗(K , N ) spaces.

Theorem 1.5 (Almost equality in Lévy-Gromov implies almost maximal
diameter) For every N > 1, v ∈ (0, 1), ε > 0 there exists δ̄ = δ̄(N , v, ε) > 0
such that the following holds. For every δ ∈ [0, δ̄], if (X,d,m) is an
RCD∗(N − 1− δ, N + δ) space satisfying

I(X,d,m)(v) ≤ IN−1,N ,∞(v)+ δ,

Then diam ((X,d)) ≥ π − ε.

The following corollary is a consequence of the Maximal Diameter Theo-
rem [43], and of the compactness/stability of the class ofRCD∗(K , N ) spaces,
for some fixed K > 0 and N > 1, with respect to the measured Gromov–
Hausdorff convergence. Recall also that the measured Gromov Hausdorff
convergence restricted to (isomorphism classes of) RCD∗(K , N ) spaces is
metrizable (for more details see Sect. 2.2).
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Corollary 1.6 (Almost equality in Lévy-Gromov implies mGH-closeness to
a spherical suspension) For every N ∈ [2,∞), v ∈ (0, 1), ε > 0 there exists
δ̄ = δ̄(N , v, ε) > 0 such that the following hold. For every δ ∈ [0, δ̄], if
(X,d,m) is an RCD∗(N − 1− δ, N + δ) space satisfying

I(X,d,m)(v) ≤ IN−1,N ,∞(v)+ δ,

then there exists anRCD∗(N −2, N −1) space (Y,dY ,mY ) withmY (Y ) = 1
such that

dmGH (X, [0, π ] ×N−1
sin Y ) ≤ ε.

Remark 1.7 (Notable examples of spaces fitting in the assumptions of themain
theorems) The class of RCD∗(K , N ) spaces include many remarkable family
of spaces, among them:
• Measured Gromov Hausdorff limits of Riemannian N -dimensional man-
ifolds satisfying Ricci ≥ K . Despite the fine structural properties of
such spaces discovered in a series of works by Cheeger–Colding [20–22]
and Colding–Naber [24], the validity of the Lévy-Gromov isoperimet-
ric inequality (and the above generalizations and rigidity statements) has
remained elusive. We believe this is one of the most striking applications
of our results. For Ricci limit spaces let us also mention the recent work by
Honda [41] where a lower bound on the Cheeger constant is given, thanks
to a stability argument on the first eigenvalue of the p-Laplacian for p = 1.

• Alexandrov spaces with curvature bounded from below. Petrunin [58]
proved that the lower curvature bound in the sense of comparison angles
is compatible with the optimal transport type lower bound on the Ricci
curvature given by Lott–Sturm–Villani (see also [67]). Moreover it is well
known that the Laplace operator on anAlexandrov space is linear. It follows
that Alexandrov spaces with curvature bounded from below are examples
ofRCD∗(K , N ) and therefore our results apply as well. Let us note that in
the framework of Alexandrov spaces the best result regarding isoperimetry
is a sketch of a proof by Petrunin [57] of the Lévy-Gromov inequality for
Alexandrov spaces with (sectional) curvature bounded below by 1.

A last class of spaces where Theorems 1.1 and 1.2 apply is the one of smooth
Finsler manifolds where the norm on the tangent spaces is strongly convex,
and which satisfy lower Ricci curvature bounds. More precisely we consider
a C∞-manifold M , endowed with a function F : T M → [0,∞] such that
F |T M\{0} is C∞ and for each p ∈ M it holds that Fp := TpM → [0,∞] is a
strongly-convex norm, i.e.

gp
i j (v) := ∂2(F2

p)

∂vi∂v j
(v) is a positive definite matrix at every v ∈ TpM\{0}.
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Under these conditions, it is known that one can write the geodesic equations
and geodesics do not branch; in other words these spaces are non-branching.
We also assume (M, F) to be geodesically complete and endowed with a C∞
probability measure m in a such a way that the associated m.m.s. (X, F,m)

satisfies the CD∗(K , N ) condition. This class of spaces has been investigated
by Ohta [54] who established the equivalence between the Curvature Dimen-
sion condition and a Finsler-version of Bakry-Emery N -Ricci tensor bounded
from below. Recalling Remark 1.3, these spaces fit in the assumptions of The-
orems 1.1–1.2, and to our knowledge the Lévy-Gromov inequality (and its
generalizations) is new also in this framework. �

1.4 Outline of the argument

The main reason why the Lévy-Gromov type inequalities have remained elu-
sive in non smooth metric measure spaces is because the known proofs heavily
rely on the existence and sharp regularity properties of isoperimetric regions
ensured byGeometricMeasureTheory (see for instance [1,39,47,51]). Clearly
such tools are available if the ambient space is a smooth Riemannian manifold
(possibly endowed with a weighted measure, with smooth and strictly positive
weight), but are out of disposal for general metric measure spaces.

In order to overcome this huge difficulty we have been inspired by a paper of
Klartag [44] where the author gave a proof of the Lévy-Gromov isoperimetric
inequality still in the framework of smooth Riemannian manifolds, but via
an optimal transportation argument involving L1-transportation and ideas of
convex geometry. In particular he used a localization technique, having its
roots in a work of Payne–Weinberger [56] and developed by Gromov–Milman
[40], Lovász–Simonovits [46] and Kannan–Lovász–Simonovits [42], which
consists in reducing an n-dimensional problem, via tools of convex geometry,
to one-dimensional problems that one can handle.

Let us stress that even if the approach by Klartag [44] does not rely on
the regularity of the isoperimetric region, it still heavily makes use of the
smoothness of the ambient space in order to establish sharp properties of the
geodesics in terms of Jacobi fields and estimates on the second fundamental
forms of suitable level sets, all objects that are still not enough understood in
general m.m.s. in order to repeat the same arguments.

To overcome this difficulty we use the structural properties of geodesics and
of L1-optimal transport implied by the CD∗(K , N ) condition. Such results
have their roots in previous works of Bianchini–Cavalletti [13] and the first
author [14,15], and will be developed in Sects. 3 and 4. The first key point
is to understand the structure of d-monotone sets, in particular we will prove
that under the curvature condition one can decompose the space, up to a set
of measure zero, in equivalence classes called rays where the L1-transport
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is performed (see Theorem 3.8). A second key point, which is the technical
novelty of the present workwith respect to the aforementioned papers [13–15],
is that on almost every ray the conditional measure satisfies a precise curvature
inequality (see Theorem 4.2). This last technical novelty is exactly the key to
reduce the problem on the original m.m.s. to a one dimensional problem.

This reduction is performed in Sect. 5 where we adapt to the non-smooth
framework methods of convex geometry developed in the aforementioned
papers [40,42,44,46]. The main result of the section is Theorem 5.1 asserting
that if f is an L1-function with null mean value on an RCD∗(K , N )-space
(X,d,m), then we can disintegrate the measure along d-monotone rays on
which the induced measure satisfies a curvature condition and such that the
function along a.e. ray still has null mean value.

In thefinal Sect. 6we apply these techniques to prove themain theorems.The
idea is to use Theorem 5.1 to reduce the study of isoperimetry for Borel subset
of X , to the study of isoperimetry for Borel subsets of the real line endowed
with a measure satisfying suitable curvature condition. A tricky point is that
the measure on the real line is a priori non smooth, while the results of Mil-
man [48] regarding isoperimetric comparison for manifolds with density are
stated for smooth densities. This point is fixed by a non-linear regularization
process which permits to regularize the densities maintaining the convexity
conditions equivalent to the lower Ricci curvature bounds (see Lemma 6.2
and Theorem 6.3).

The proof of the Lévy-Gromov inequality (and its generalization) will then
consist in combining the dimension reduction argument, the regularization
process, and the Isoperimetric Comparison proved byMilman [48] for smooth
manifolds with densities. The (resp. almost) rigidity statement will follow
by observing that if the space has (resp. almost) minimal isoperimetric pro-
file then it must have (resp. almost) maximal diameter, and so the Maximal
Diameter Theorem proved by Ketterer [43] (resp. combined with the com-
pactness/stability properties of the class of RCD∗(K , N ) spaces) will force
the space to be (resp. almost) a spherical suspension. To obtain the complete
characterization of isoperimetric regions we will perform a careful analysis of
the disintegration of the space induced by an optimal set.

1.5 Future developments

In the present paper we decided to focus on the isoperimetric problem,
due to its relevance in many fields of Mathematics. In the following [16]
we will employ the techniques developed in this paper to prove func-
tional inequalities like spectral gap, Poincaré and log-Sobolev inequalities,
the Payne-Weinberger/Yang-Zhong inequality, among others. Some of these
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inequalities are consequences of the four functions theorem ofKannan, Lovász
and Simonovits.

2 Prerequisites

In what follows we say that a triple (X,d,m) is a metric measure space,
m.m.s. for short, if (X,d) is a complete and separable metric space and m is
positive Radon measure over X . For this paper we will only be concerned with
m.m.s. with m probability measure, that is m(X) = 1. The space of all Borel
probability measures over X will be denoted by P(X).

A metric space is a geodesic space if and only if for each x, y ∈ X there
exists γ ∈ Geo(X) so that γ0 = x, γ1 = y, with

Geo(X) := {γ ∈ C([0, 1], X) : d(γs, γt )

= |s − t |d(γ0, γ1), for every s, t ∈ [0, 1]}.

Recall that for complete geodesic spaces local compactness is equivalent to
properness (a metric space is proper if every closed ball is compact). We
directly assume the ambient space (X,d) to be proper. Hence from now on we
assume the following: the ambient metric space (X,d) is geodesic, complete,
separable and proper and m(X) = 1.

We denote with P2(X) the space of probability measures with finite second
moment endowed with the L2-Wasserstein distanceW2 defined as follows: for
μ0, μ1 ∈ P2(X) we set

W 2
2 (μ0, μ1) = inf

π

∫

X×X
d2(x, y) π(dxdy), (2.1)

where the infimum is taken over all π ∈ P(X × X) with μ0 and μ1 as the first
and the second marginal. Assuming the space (X,d) to be geodesic, also the
space (P2(X),W2) is geodesic.

Any geodesic (μt )t∈[0,1] in (P2(X),W2) can be lifted to a measure ν ∈
P(Geo(X)), so that (et )� ν = μt for all t ∈ [0, 1]. Here for any t ∈ [0, 1], et
denotes the evaluation map:

et : Geo(X)→ X, et (γ ) := γt .

Given μ0, μ1 ∈ P2(X), we denote by OptGeo(μ0, μ1) the space of all
ν ∈ P(Geo(X)) forwhich (e0, e1)� ν realizes theminimum in (2.1). If (X,d) is
geodesic, then the set OptGeo(μ0, μ1) is non-empty for any μ0, μ1 ∈ P2(X).
It isworth also introducing the subspace ofP2(X) formedby all thosemeasures
absolutely continuous with respect with m: it is denoted by P2(X,d,m).
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2.1 Geometry of metric measure spaces

Here we briefly recall the synthetic notions of lower Ricci curvature bounds,
for more detail we refer to [9,45,64–66].

In order to formulate the curvature properties for (X,d,m)we introduce the
following distortion coefficients: given two numbers K , N ∈ R with N ≥ 0,
we set for (t, θ) ∈ [0, 1] × R+,

σ
(t)
K ,N (θ) :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∞, if K θ2 ≥ Nπ2,

sin(tθ
√
K/N )

sin(θ
√
K/N )

if 0 < K θ2 < Nπ2,

t if K θ2 < 0 and N = 0, or if K θ2 = 0,
sinh(tθ

√−K/N )

sinh(θ
√−K/N )

if K θ2 ≤ 0 and N > 0.

(2.2)
We also set, for N ≥ 1, K ∈ R and (t, θ) ∈ [0, 1] × R+

τ
(t)
K ,N (θ) := t1/Nσ

(t)
K ,N−1(θ)(N−1)/N . (2.3)

As we will consider only the case of essentially non-branching spaces, we
recall the following definition.

Definition 2.1 Ametricmeasure space (X,d,m) is essentially non-branching
if and only if for anyμ0, μ1 ∈ P2(X), withμ0, μ1 both absolutely continuous
with respect to m, any element of OptGeo(μ0, μ1) is concentrated on a set of
non-branching geodesics.

A set F ⊂ Geo(X) is a set of non-branching geodesics if and only if for
any γ 1, γ 2 ∈ F , it holds:

∃ t̄ ∈ (0, 1) such that ∀t ∈ [0, t̄ ] γ 1
t = γ 2

t �⇒ γ 1
s = γ 2

s , ∀s ∈ [0, 1].
Definition 2.2 (CD condition)An essentially non-branchingm.m.s. (X,d,m)

verifies CD(K , N ) if and only if for each pair μ0, μ1 ∈ P2(X,d,m) there
exists ν ∈ OptGeo(μ0, μ1) such that

�
−1/N
t (γt ) ≥ τ

(1−t)
K ,N (d(γ0, γ1))�

−1/N
0 (γ0)+ τ

(t)
K ,N (d(γ0, γ1))�

−1/N
1 (γ1),

ν-a.e. γ ∈ Geo(X), (2.4)

for all t ∈ [0, 1], where (et )� ν = �tm.

For the general definition ofCD(K , N ) see [45,64,65]. It is worth recalling
that if (M, g) is a Riemannian manifold of dimension n and h ∈ C2(M) with
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814 F. Cavalletti, A. Mondino

h > 0, then the m.m.s. (M, g, h vol) verifies CD(K , N ) with N ≥ n if and
only if (see Theorem 1.7 of [65])

Ricg,h,N ≥ Kg, Ricg,h,N := Ricg − (N − n)
∇2
gh

1
N−n

h
1

N−n
.

If N = n the generalized Ricci tensor Ricg,h,N = Ricg makes sense only
if h is constant. In particular, if I ⊂ R is any interval, h ∈ C2(I ) and L1

is the one-dimensional Lebesgue measure, the m.m.s. (I, | · |, hL1) verifies
CD(K , N ) if and only if

(
h

1
N−1

)′′ + K

N − 1
h

1
N−1 ≤ 0. (2.5)

Wealsomention themore recentRiemannian curvature dimension condition
RCD∗ introduced in the infinite dimensional case in [2,3,5] and then inves-
tigated by various authors in the finite dimensional refinement. A remarkable
property is the equivalence of the RCD∗(K , N ) condition and the Bochner
inequality: the infinite dimensional case was settled in [5], while the (techni-
cally more involved) finite dimensional refinement was established in [6,27].
We refer to these papers and references therein for a general account on the
synthetic formulation of Ricci curvature lower bounds for metric measure
spaces.

Here we only mention that RCD∗(K , N ) condition is an enforcement of
the so called reduced curvature dimension condition, denoted byCD∗(K , N ),
that has been introduced in [9]: in particular the additional condition is that
the Sobolev space W 1,2(X,m) is an Hilbert space, see [4,5].

The reduced CD∗(K , N ) condition asks for the same inequality (2.4)
of CD(K , N ) but the coefficients τ

(t)
K ,N (d(γ0, γ1)) and τ

(1−t)
K ,N (d(γ0, γ1)) are

replaced by σ
(t)
K ,N (d(γ0, γ1)) and σ

(1−t)
K ,N (d(γ0, γ1)), respectively.

Hence while the distortion coefficients of the CD(K , N ) condition are
formally obtained imposing one direction with linear distortion and N − 1
directions affected by curvature, the CD∗(K , N ) condition imposes the same
volume distortion in all the N directions.

For both definitions there is a local version that is of some relevance for
our analysis. Here we state only the local formulation CD(K , N ), being clear
what would be the one for CD∗(K , N ).

Definition 2.3 (CDloc condition) An essentially non-branching m.m.s.
(X,d,m) satisfies CDloc(K , N ) if for any point x ∈ X there exists a neigh-
borhood X (x) of x such that for each pair μ0, μ1 ∈ P2(X,d,m) supported
in X (x) there exists ν ∈ OptGeo(μ0, μ1) such that (2.4) holds true for all
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Sharp and rigid isoperimetric inequalities 815

t ∈ [0, 1]. The support of (et )� ν is not necessarily contained in the neighbor-
hood X (x).

One of the main properties of the reduced curvature dimension condition
is the globalization one: under the non-branching property, CD∗loc(K , N ) and
CD∗(K , N ) are equivalent (see [9, Corollary 5.4]), i.e. the CD∗-condition
verifies the local-to-global property.

We also recall a few relations betweenCD andCD∗. It is known by [34, The-
orem 2.7] that, if (X,d,m) is a non-branching metric measure space verifying
CD(K , N ) and μ0, μ1 ∈ P(X) with μ0 absolutely continuous with respect
to m, then there exists a unique optimal map T : X → X such (id, T )� μ0
realizes the minimum in (2.1) and the set OptGeo(μ0, μ1) contains only one
element. The same result holds if one replaces the non-branching assumption
with the more general one of essentially non-branching (see [17]); the same
comment applies also to the previous equivalence between the local and the
global version of CD∗(K , N ).

Remark 2.4 (CD∗(K , N ) Vs CDloc(K , N )) From [9,17] we deduce the
following chain of implications: if (X,d,m) is a proper, essentially non-
branching, metric measure space, then

CDloc(K−, N ) ⇐⇒ CD∗loc(K−, N ) ⇐⇒ CD∗(K , N ),

provided K , N ∈ R with N > 1 or N = 1 and K ≥ 0. Let us remark
that on the other hand CD∗(K , 1) does not imply CDloc(K , 1) for K < 0:
indeed it is possible to check that (X,d,m) = ([0, 1], | · |, c sinh(·)L1) sat-
isfies CD∗(−1, 1) but not CDloc(−1, 1) which would require the density to
be constant. For a deeper analysis on the interplay between CD∗ and CD we
refer to [9,38].

2.2 Measured Gromov–Hausdorff convergence and stability of
RCD∗(K, N)

Let us first recall the notion of measured Gromov–Hausdorff convergence,
mGH for short. Since in this work we will apply it to compact m.m. spaces
endowed with probability measures having full support, we will restrict to this
framework for simplicity (for a more general treatment see for instance [36]).
We denote N̄ := N ∪ {∞}.
Definition 2.5 A sequence (X j ,d j ,m j ) of compact m.m. spaces with
m j (X j ) = 1 and supp(m j ) = X j is said to converge in themeasuredGromov–
Hausdorff topology (mGH for short) to a compact m.m. space (X∞,d∞,m∞)

with m∞(X) = 1 and supp(m∞) = X∞ if and only if there exists a separable
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816 F. Cavalletti, A. Mondino

metric space (Z ,dZ ) and isometric embeddings {ι j : (X,d j )→ (Z ,dZ )} j∈N̄
with the following property: for every ε > 0 there exists j0 such that for every
j > j0

ι∞(X∞) ⊂ BZ
ε [ι j (X j )] and ι j (X j ) ⊂ BZ

ε [ι∞(X∞)],

where BZ
ε [A] := {z ∈ Z : dZ (z, A) < ε} for every subset A ⊂ Z , and

∫

Z
ϕ (ι j )�(m j ) →

∫

Z
ϕ (ι∞)�(m∞) ∀ϕ ∈ Cb(Z),

whereCb(Z) denotes the set of real valued bounded continuous functions with
bounded support in Z .

The following theorem summarizes the compactness/stability properties we
will use in the proof of the almost rigidity result (notice these hold more gen-
erally for every K ∈ R by replacing mGH with pointed-mGH convergence).

Theorem 2.6 (Metrizability and Compactness) Let K > 0, N > 1 be
fixed. Then the mGH convergence restricted to (isomorphism classes of)
RCD∗(K , N ) spaces is metrizable by a distance function dmGH . Furthermore
every sequence (X j ,d j ,m j ) of RCD∗(K , N ) spaces admits a subsequence
which mGH-converges to a limit RCD∗(K , N ) space.

The compactness follows by the standard argument of Gromov, indeed for
fixed K > 0, N > 1, the spaces have uniformly bounded diameter, moreover
themeasures ofRCD∗(K , N ) spaces are uniformly doubling, hence the spaces
are uniformly totally bounded and thus compact in the GH-topology; the weak
compactness of the measures follows using the doubling condition again and
the fact that they are normalized. For the stability of the RCD∗(K , N ) condi-
tion under mGH convergence see for instance [9,27,36]. The metrizability of
mGH-convergence restricted to a class of uniformly doubling normalizedm.m.
spaces having uniform diameter bounds is also well known, see for instance
[36].

2.3 Warped product

Given two geodesic m.m.s. (B,dB,mB) and (F,dF ,mF ) and a Lipschitz
function f : B → R+ one can define a length function on the product B× F :
for any absolutely continuous γ : [0, 1] → B × F with γ = (α, β), define

L(γ ) :=
∫ 1

0

(|α̇|2(t)+ ( f ◦ α)2(t)|β̇|2(t))1/2 dt
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and define accordingly the pseudo-distance

|(p, x), (q, y)| := inf {L(γ ) : γ0 = (p, x), γ1 = (q, y)} .

Then the warped product of B with F is defined as

B × f F := (B × F/∼, |·, ·|) ,

where (p, x) ∼ (q, y) if and only if |(p, x), (q, y)| = 0.One can also associate
a measure and obtain the following object

B ×N
f F := (B × f F,mC ), mC := f NmB ⊗mF .

Then B×N
f F will be a metric measure space called measured warped product.

For a general picture on the curvature properties of warped products, we refer
to [43].

2.4 Isoperimetric profile

Given a m.m.s. (X,d,m) as above and a Borel subset A ⊂ X , let Aε denote
the ε-tubular neighborhood

Aε := {x ∈ X : ∃y ∈ A such that d(x, y) < ε}.

The Minkowski (exterior) boundary measure m+(A) is defined by

m+(A) := lim inf
ε↓0

m(Aε)−m(A)

ε
. (2.6)

The isoperimetric profile, denoted by I(X,d,m), is defined as the point-wise
maximal function so thatm+(A) ≥ I(X,d,m)(m(A)) for everyBorel set A ⊂ X ,
that is

I(X,d,m)(v) := inf
{
m+(A) : A ⊂ X Borel, m(A) = v

}
. (2.7)

2.5 The model isoperimetric profile function IK,N,D

If K > 0 and N ∈ N, by the Lévy-Gromov isoperimetric inequality (1.1) we
know that, for N -dimensional smoothmanifolds havingRicci≥ K , the isoperi-
metric profile function is bounded below by the one of the N -dimensional
round sphere of the suitable radius. In other words the model isoperimetric
profile function is the one of S

N . For N ≥ 1, K ∈ R arbitrary real numbers
the situation is more complicated, and just recently Milman [48] discovered
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818 F. Cavalletti, A. Mondino

what is the model isoperimetric profile. In this short section we recall its defi-
nition.

Given δ > 0, set

sδ(t) :=

⎧
⎪⎨
⎪⎩

sin(
√

δt)/
√

δ δ > 0

t δ = 0

sinh(
√−δt)/

√−δ δ < 0

, cδ(t) :=

⎧
⎪⎨
⎪⎩

cos(
√

δt) δ > 0

1 δ = 0

cosh(
√−δt) δ < 0

.

Given a continuous function f : R → R with f (0) ≥ 0, we denote by
f+ : R → R

+ the function coinciding with f between its first non-positive
and first positive roots, and vanishing everywhere else, i.e. f+ := f χ[ξ−,ξ+]
with ξ− = sup{ξ ≤ 0; f (ξ) = 0} and ξ+ = inf{ξ > 0; f (ξ) = 0}.

Given H, K ∈ R and N ∈ [1,∞), set δ := K/(N − 1) and define the
following (Jacobian) function of t ∈ R:

JH,K ,N (t) :=

⎧
⎪⎪⎨
⎪⎪⎩

χ{t=0} N = 1, K > 0

χ{Ht≥0} N = 1, K ≤ 0(
cδ(t)+ H

N−1sδ(t)
)N−1
+ N ∈ (1,∞)

.

As last piece of notation, given a non-negative integrable function f on a closed
interval L ⊂ R, we denote with μ f,L the probability measure supported in L
with density (with respect to the Lebesguemeasure) proportional to f there. In
order to simplify a bit the notation we will write I(L , f ) in place of I(L , |·|,μ f,L ).

The model isoperimetric profile for spaces having Ricci ≥ K , for some
K ∈ R, dimension bounded above by N ≥ 1 and diameter at most D ∈ (0,∞]
is then defined by

IK ,N ,D(v) := inf
H∈R,a∈[0,D] I([−a,D−a],JH,K ,N )(v), ∀v ∈ [0, 1]. (2.8)

The formula above has the advantage of considering all the possible cases in
just one equation, but probably it is also instructive to isolate the different
cases in a more explicit way. Indeed one can check [48, Section 4] that:

• Case 1: K > 0 and D <

√
N−1
K π ,

IK ,N ,D(v) = inf
ξ∈
[
0,
√

N−1
K π−D

] I([ξ,ξ+D],sin(
√

K
N−1 t)N−1

)(v), ∀v ∈ [0, 1] .

• Case 2: K > 0 and D ≥
√

N−1
K π ,

IK ,N ,D(v) = I([0,
√

N−1
K π ],sin(

√
K

N−1 t)N−1
)(v), ∀v ∈ [0, 1] .
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• Case 3: K = 0 and D <∞,

IK ,N ,D(v) = min

{
infξ≥0 I([ξ,ξ+D],t N−1)(v) ,

I([0,D],1)(v)

}

= N

D
inf
ξ≥0

(
min(v, 1− v)(ξ + 1)N +max(v, 1− v)ξ N

) N−1
N

(ξ + 1)N − ξ N
,

∀v ∈ [0, 1] .
• Case 4: K < 0, D <∞:

IK ,N ,D(v)=min

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

infξ≥0 I([ξ,ξ+D], sinh(
√
−K
N−1 t)N−1

)(v),

I([0,D],exp(√−K (N−1)t)
)(v) ,

infξ∈R I([ξ,ξ+D], cosh(
√
−K
N−1 t)N−1

)(v)

⎫
⎪⎪⎪⎬
⎪⎪⎪⎭

∀v∈[0, 1].

• In all the remaining cases, that is for K ≤ 0, D = ∞, the model profile
trivializes: IK ,N .D(v) = 0 for every v ∈ [0, 1].
Note that when N is an integer,

I([0,
√

N−1
K π ],(sin(

√
K

N−1 t)N−1
) = I(SN ,gKcan,μ

K
can)

by the isoperimetric inequality on the sphere, and so Case 2 with N integer
corresponds to Lévy-Gromov isoperimetric inequality.

2.6 Disintegration of measures

We include here a version of the Disintegration Theorem (for a comprehensive
treatment see for instance [30]).

Given a measurable space (R,R), i.e.R is a σ -algebra of subsets of R, and
a function Q : R → Q, with Q general set, we can endow Q with the push
forward σ -algebra Q of R:

C ∈ Q ⇐⇒ Q−1(C) ∈ R,

which could be also defined as the biggest σ -algebra on Q such that Q is
measurable. Moreover given a probability measure ρ on (R,R), define a
probability measure q on (Q,Q) by push forward via Q, i.e. q := Q� ρ.

Definition 2.7 A disintegration of ρ consistent with Q is a map (with slight
abuse of notation still denoted by) ρ : R × Q → [0, 1] such that, setting
ρq(B) := ρ(B, q), the following hold:
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820 F. Cavalletti, A. Mondino

(1) ρq(·) is a probability measure on (R,R) for all q ∈ Q,
(2) ρ·(B) is q-measurable for all B ∈ R,

and satisfies for all B ∈ R,C ∈ Q the consistency condition

ρ
(
B ∩Q−1(C)

) =
∫

C
ρq(B) q(dq).

A disintegration is strongly consistent with respect toQ if for q-a.e. q we have
ρq(Q

−1(q)) = 1. The measures ρq are called conditional probabilities.

We recall the following version of the disintegration theorem that can be
found in [30, Section 452]. Recall that a σ -algebra J is countably generated
if there exists a countable family of sets so that J coincide with the smallest
σ -algebra containing them.

Theorem 2.8 (Disintegration of measures) Assume that (R,R, ρ) is a count-
ably generated probability space and R = ∪q∈QRq is a partition of R. Denote
with Q : R → Q the quotient map:

q = Q(x) ⇐⇒ x ∈ Rq ,

and with (Q,Q, q) the quotient measure space. Assume (Q,Q) = (X,B(X))

with X Polish space, where B(X) denotes the Borel σ -algebra. Then there
exists a unique strongly consistent disintegration q �→ ρq w.r.t. Q, where
uniqueness is understood in the following sense: if ρ1, ρ2 are two consistent
disintegrations then ρ1,q(·) = ρ2,q(·) for q-a.e. q ∈ Q.

3 d-monotone sets

Let ϕ : X → R be any 1-Lipschitz function. Here we present some useful
results concerning the d-cyclically monotone set associated with ϕ:

� := {(x, y) ∈ X × X : ϕ(x)− ϕ(y) = d(x, y)}, (3.1)

that can be interpret as the set of couples moved by ϕ with maximal slope.
Recall that a set � ⊂ X × X is said to be d-cyclically monotone if for any
finite set of points (x1, y1), . . . , (xN , yN ) it holds

N∑

i=1
d(xi , yi ) ≤

N∑

i=1
d(xi , yi+1),

with the convention that yN+1 = y1.
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The following lemma is a consequence of the d-cyclically monotone struc-
ture of �.

Lemma 3.1 Let (x, y) ∈ X × X be an element of �. Let γ ∈ Geo(X) be such
that γ0 = x and γ1 = y. Then

(γs, γt ) ∈ �,

for all 0 ≤ s ≤ t ≤ 1.

For its proof see Lemma 3.1 of [14]. It is natural then to consider the set of
geodesics G ⊂ Geo(X) such that

γ ∈ G ⇐⇒ {(γs, γt ) : 0 ≤ s ≤ t ≤ 1} ⊂ �,

that is G := {γ ∈ Geo(X) : (γ0, γ1) ∈ �}.
We now recall some definitions, already given in [13], that will be needed

to describe the structure of �.

Definition 3.2 We define the set of transport rays by

R := � ∪ �−1,

where �−1 := {(x, y) ∈ X × X : (y, x) ∈ �}. The set of initial points and
final points are defined respectively by

a :={z ∈ X : � x ∈ X, (x, z) ∈ �,d(x, z) > 0},
b :={z ∈ X : � x ∈ X, (z, x) ∈ �,d(x, z) > 0}.

The set of end points is a ∪ b. We define the transport set with end points:

Te = P1(�\{x = y}) ∪ P1(�
−1\{x = y}).

where {x = y} stands for {(x, y) ∈ X2 : d(x, y) = 0}.
Remark 3.3 Here we discuss the measurability of the sets introduced in Def-
inition 3.2. Since ϕ is 1-Lipschitz, � is closed and therefore �−1 and R are
closed as well. Moreover by assumption the space is proper, hence the sets
�, �−1, R are σ -compact (countable union of compact sets).

Then we look at the set of initial and final points:

a = P2 (� ∩ {(x, z) ∈ X × X : d(x, z) > 0})c ,

b = P1 (� ∩ {(x, z) ∈ X × X : d(x, z) > 0})c .
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822 F. Cavalletti, A. Mondino

Since {(x, z) ∈ X× X : d(x, z) > 0} = ∪n{(x, z) ∈ X× X : d(x, z) ≥ 1/n},
it follows that both a and b are the complement of σ -compact sets. Hence a
and b are Borel sets. Reasoning as before, it follows that Te is a σ -compact
set.

It can be proved that the set of transport rays R induces an equivalence
relation on a subset of Te. It is sufficient to remove from Te the branching
points of geodesics and then show that they all havem-measure zero. This will
be indeed the case using the curvature properties of the space.

To this aim, set�(x) := P2(�∩({x}×X)),�(x)−1 := P2(�−1∩({x}×X)),
consider the sets of forward (respectively backward) branching

A+ := {x ∈ Te : ∃z, w ∈ �(x), (z, w) /∈ R},
A− := {x ∈ Te : ∃z, w ∈ �(x)−1, (z, w) /∈ R},

and define the transport set T := Te\(A+ ∪ A−). Then one can prove the
following

Theorem 3.4 Let (X,d,m) satisfy CD∗(K , N ) and be essentially non-
branching with 1 ≤ N < ∞. Then the set of transport rays R ⊂ X × X
is an equivalence relation on the transport set T and

m(Te\T ) = 0.

Moreover the transport set T is σ -compact set.

For its proof in the context of RCD-space see [14, Theorem 5.5]; the proof
works the same here (see [17]).
The next step is to decompose the reference measure m restricted to T with
respect to the partition given by R, where each equivalence class is given by

[x] = {y ∈ T : (x, y) ∈ R}.
Denote the set of equivalence classes with Q. In order to use Disintegration

Theorem, we need to construct the quotient map

Q : T → Q

associated to the equivalence relation R. Recall that a section of an equivalence
relation E over T is a map F : T → T such that for any x, y ∈ X it holds

(x, F(x)) ∈ E, (x, y) ∈ E ⇒ F(x) = F(y).

Note that to each section F is canonically associated a quotient set Q = {x ∈
T : x = F(x)}.
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Proposition 3.5 There exists an m-measurable section

Q : T → T

for the equivalence relation R.

For its proof see [14, Proposition 5.2].
As pointed out before, one can take as quotient space Q the image of Q and
since

Q = Q(T ) = {x ∈ T : d(x,Q(x)) = 0},
it follows that Q is m-measurable. Then the quotient measure will be given
by

q := Q� m�T .

Observe that from the m-measurability of Q it follows that q is a Borel
measure. By inner regularity of compact sets, one can find a σ -compact set S ⊂
Q such that q(Q\S) = 0. By definition of q it follows thatm(T \Q−1(S)) = 0,
in particular one can take a Borel subset of the quotient set without changing
m�T .

Then from Theorem 2.8 one obtains the following disintegration formula,

m�T =
∫

Q
mq q(dq), mq(Q

−1(q)) = 1, q-a.e. q ∈ Q. (3.2)

We now consider the ray map from [13], Sect. 4.

Definition 3.6 (Ray map) Define the ray map

g : Dom(g) ⊂ S × R → T

via the formula:

graph(g) :=
{
(q, t, x) ∈ S × [0,+∞)× T : (q, x) ∈ �, d(q, x) = t

}

∪
{
(q, t, x) ∈ S × (−∞, 0] × T : (x, q) ∈ �, d(x, q) = t

}

= graph(g+) ∪ graph(g−).

Hence the ray map associates to each q ∈ S and t ∈ Dom (g(q, ·)) ⊂ R the
unique element x ∈ T such that (q, x) ∈ � at distance t from q if t is positive
or the unique element x ∈ T such that (x, q) ∈ � at distance−t from q if t is
negative. By definition Dom(g) := g−1(T ).

Next we list few regularity properties enjoyed by g ([14, Proposition 5.4]).
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Proposition 3.7 The following holds.

– g is a Borel map.
– t �→ g(q, t) is an isometry and if s, t ∈ Dom (g(q, ·)) with s ≤ t then

(g(q, s), g(q, t)) ∈ �;
– Dom(g) � (q, t) �→ g(q, t) is bijective on Q−1(S) ⊂ T , and its inverse
is

x �→ g−1(x) = (
Q(x),±d(x,Q(x))

)

where Q is the quotient map previously introduced and the positive or
negative sign depends on (x,Q(x)) ∈ � or (Q(x), x) ∈ �.

Observe that from Lemma 3.1, Dom (g(q, ·)) is a convex subset of R (i.e.
an interval), for any q ∈ Q. Using the ray map g one can prove that q-almost
every conditional measure mq is absolutely continuous with respect to the 1-
dimensional Hausdorff measure considered on the ray passing through q. This
and all the other results presented so far are contained in the next theorem.

Theorem 3.8 Let (X,d,m) verify CD∗(K , N ) for some K , N ∈ R, with 1 ≤
N < ∞ and be essentially non-branching. Let moreover � be a d-cyclically
monotone set such as in (3.1) and let Te be the set of all points moved by � as
in Definition 3.2.

Then there exists T ⊂ Te that we call transport set such that
(1) m(Te\T ) = 0,
(2) for every x ∈ T , the transport ray R(x) := Q−1(Q(x)) is formed by

a single geodesic and for x �= y, both in T , either R(x) = R(y) or
R(x) ∩ R(y) is contained in the set of forward and backward branching
points A+ ∪ A−.

Moreover the following disintegration formula holds

m�T =
∫

Q
mq q(dq), mq(Q

−1(q)) = 1, q-a.e. q ∈ Q.

Finally for q-a.e. q ∈ Q the conditional measure mq is absolutely continu-
ous with respect to H1�{g(q,t):t∈R}.

For its proof see [14, Theorem 6.6.]. Note that in Theorem 1.1 and Theorem
5.5 of [14] it is uncorrectly stated that R(x) ∩ R(y) is contained in the set of
end points a∪ b, see Definition 3.2, while the proof yields the weaker version
that we just reported.
Notice that since t �→ g(q, t) is an isometry,H1�{g(q,t):t∈R}= g(q, ·)� L1.

We conclude this section showing that, locally, the quotient set Q can be
identified with a subset of a level set of ϕ.
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Lemma 3.9 (Q is locally contained in level sets ofϕ) It is possible to construct
a Borel quotient mapQ : T → Q such that the quotient set Q can be written
locally as a level set of ϕ in the following sense:

Q =
⋃

i∈N
Qi , Qi ⊂ ϕ−1(αi ),

where αi ∈ Q, Qi is σ -compact (in particular Qi is Borel) and Qi ∩ Q j = ∅,
for i �= j .

Proof For each n ∈ N, consider the set Tn of those points x having ray R(x)
longer than 1/n, i.e.

Tn := P1{(x, y) ∈ T × T ∩ R : d(x, y) ≥ 1/n}.

It is easily seen that T = ⋃
n∈N Tn and that Tn is σ -compact; moreover if

x ∈ Tn, y ∈ T and (x, y) ∈ R then also y ∈ Tn . In particular, Tn is the union
of all those rays of T with length at least 1/n. Now we consider the following
saturated subsets of Tn: for α ∈ Q

Tn,α := P1
(
R ∩

{
(x, y) ∈ Tn × Tn : ϕ(y) = α − 1

3n

})

∩P1
(
R ∩

{
(x, y) ∈ Tn × Tn : ϕ(y) = α + 1

3n

})
, (3.3)

and we claim that

Tn =
⋃
α∈Q

Tn,α. (3.4)

We show the above identity by double inclusion. First note that (⊃) holds
trivially. For the converse inclusion (⊂) observe that for each α ∈ Q, the set
Tn,α coincides with the family of those rays R(x) ∩ Tn such that there exists
y+, y− ∈ R(x) such that

ϕ(y+) = α − 1

3n
, ϕ(y−) = α + 1

3n
. (3.5)

Then we need to show that any x ∈ Tn , also verifies x ∈ Tn,α for a suitable
α ∈ Q. So fix x ∈ Tn and since R(x) is longer than 1/n, there exist y, z+, z− ∈
R(x) ∩ Tn such that

ϕ(y)− ϕ(z+) = 1

2n
, ϕ(z−)− ϕ(y) = 1

2n
.
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826 F. Cavalletti, A. Mondino

In particular, if y = g(q, s), the map
[− 1

2n , 1
2n

] � t �→ ϕ(g(q, s + t)) =
ϕ(y)− t is well defined with image

[
ϕ(y)− 1

2n , ϕ(y)+ 1
2n

]
. If we pick α ∈ Q

such that |ϕ(y) − α| < 1
6n , it is straightforward to verify the existence of

t−, t+ ∈ [0, 1
2n

]
such that

ϕ(g(q, s + t+)) = α − 1

3n
, ϕ(g(q, s − t−)) = α + 1

3n
.

In particular, calling y+ = g(q, s + t+) and y− = g(q, s − t−), we have that
y+, y− ∈ R(x) satisfy (3.5) and therefore x ∈ Tn,α . This concludes the proof
of the identity (3.4).

By the above construction, one can check that for each α ∈ Q, the level set
ϕ−1(α) is a quotient set for Tn,α , i.e. Tn,α is formed by disjoint geodesics each
one intersecting ϕ−1(α) in exactly one point. Observe moreover that Tn,α is
σ -compact.

Since T = ⋃
n∈N Tn = ⋃

n∈N,α∈Q Tn,α , it follows that we have just con-
structed a quotient map Q : T → Q such that the quotient set Q satisfies the
desired properties. Moreover its graph verifies:

graph(Q) =
⋃

n∈N,α∈Q
Tn,α ×

(
ϕ−1(α) ∩ Tn,α

)
,

in particular it is σ -compact and therefore Q is Borel-measurable. �

4 d-Monotone sets and curved conditional measures

In this section we focus on the curvature properties ofmq . Recall that to any 1-
Lipschitz functionwe associate a d-monotone set to which in turn we associate
a partition and a disintegration on the corresponding transport set:

m�T =
∫

Q
mq q(dq), mq(Q

−1(q)) = 1, q-a.e. q ∈ Q,

and for q-a.e. q ∈ Q

mq = g(q, ·)�
(
hq · L1) ,

for some function hq : Dom (g(q, ·)) ⊂ R → [0,∞).
It has already been shown that hq has some regularity properties, provided

that the space verifies some curvature bounds.We start by recalling the follow-
ing inequality obtained in [14] in the context of RCD-space; the same proof
works here (see [17]): assume K > 0, for q-a.e. q ∈ Q:
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Sharp and rigid isoperimetric inequalities 827

(
sin((b − t1)

√
K/(N − 1)

sin((b − t0)
√
K/(N − 1)

)N−1
≤ hq(t1)

hq(t0)

≤
(
sin((t1 − a)

√
K/(N − 1)

sin((t0 − a)
√
K/(N − 1)

)N−1
(4.1)

for each a < t0 < t1 < b and a, b ∈ Dom (g(q, ·)). A similar inequality also
holds for K ≤ 0. It follows that for q-a.e.q ∈ Q,

{t ∈ Dom (g(q, ·)) : hq(t) > 0} = Dom (g(q, ·)) is convex, (4.2)

and t �→ hq(t) is locally Lipschitz continuous.
In order to deduce stronger curvature properties for the density hq , one

should use the full curvature information of the space. In order to do so it
is necessary to include d2-cyclically monotone sets as subset of d-cyclically
monotone sets. We present here a strategy already introduced in [14].

Lemma 4.1 Let � ⊂ � be any set so that:

(x0, y0), (x1, y1) ∈ � ⇒ (ϕ(y1)− ϕ(y0)) · (ϕ(x1)− ϕ(x0)) ≥ 0.

Then � is d2-cyclically monotone.

Proof It follows directly from the hypothesis of the lemma that the set

� := {(ϕ(x), ϕ(y)) : (x, y) ∈ �} ⊂ R
2,

is monotone in the Euclidean sense. Since � ⊂ R
2, it is then a standard fact

that � is also | · |2-cyclically monotone, where | · | denotes the modulus. We
anyway include a short proof: there exists a maximal monotone multivalued
function F such that � ⊂ graph(F) and its domain is an interval, say (a, b)
with a and b possibly infinite; moreover, apart from countably many x ∈ R,
the set F(x) is a singleton. Then the following function is well defined:

�(x) :=
∫ x

c
F(s)ds,

where c is any fixed element of (a, b). Then observe that

�(z)−�(x) ≥ y(z − x), ∀ z, x ∈ (a, b),

where y is any element of F(x). In particular this implies that � is convex
and F(x) is a subset of its sub-differential. In particular � is | · |2-cyclically
monotone.
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828 F. Cavalletti, A. Mondino

Then for {(xi , yi )}i≤N ⊂ �, since � ⊂ �, it holds

N∑

i=1
d2(xi , yi ) =

N∑

i=1
|ϕ(xi )− ϕ(yi )|2

≤
N∑

i=1
|ϕ(xi )− ϕ(yi+1)|2

≤
N∑

i=1
d2(xi , yi+1),

where the last inequality is given by the 1-Lipschitz regularity of ϕ. The claim
follows. �

Before stating the next result let us recall thatCD∗(K , N ) andCDloc(K , N )

are equivalent if 1 < N <∞ or N = 1 and K ≥ 0, but for N = 1 and K < 0
the CDloc(K , N ) condition is strictly stronger than CD∗(K , N ), see Remark
2.4 for more details.

Theorem 4.2 Let (X,d,m) be an essentially non-branching m.m.s. verifying
the CDloc(K , N ) condition for some K ∈ R and N ∈ [1,∞).

Then for any 1-Lipschitz function ϕ : X → R, the associated transport
set � induces a disintegration ofm restricted to the transport set verifying the
following: if N > 1, for q-a.e. q ∈ Q the following curvature inequality holds

hq((1− s)t0 + st1)
1/(N−1) ≥ σ

(1−s)
K ,N−1(t1 − t0)hq(t0)

1/(N−1)

+σ
(s)
K ,N−1(t1 − t0)hq(t1)

1/(N−1), (4.3)

for all s ∈ [0, 1] and for all t0, t1 ∈ Dom (g(q, ·)) with t0 < t1. If N = 1, for
q-a.e. q ∈ Q the density hq is constant.

Proof We first consider the case N > 1. AsCD∗(K , N ) andCDloc(K , N ) are
equivalent conditions in the framework of essentially non-branching metric
measure spaces, during this proof we will use the convexity property imposed
by CDloc(K , N ).

Step 1.
Thanks to Lemma 3.9, without any loss of generality we can assume that the

quotient set Q (identified with the set {g(q, 0) : q ∈ Q}) is locally a subset of
a level set of the map ϕ inducing the transport set, i.e. there exists a countable
partition {Qi }i∈N with Qi ⊂ Q Borel set such that

{g(q, 0) : q ∈ Qi } ⊂ {x ∈ X : ϕ(x) = αi }.
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Sharp and rigid isoperimetric inequalities 829

It is clearly sufficient to prove (4.3) on each Qi ; so fix ī ∈ N and for ease of
notation assume αī = 0 and Q = Qī . As Dom (g(q, ·)) is a convex subset of
R, we can also restrict to a uniform subinterval

(a0, a1) ⊂ Dom (g(q, ·)), ∀ q ∈ Qi ,

for some a0, a1 ∈ R. Again without any loss of generality we also assume
a0 < 0 < a1.

Consider any a0 < A0 < A1 < a1 and L0, L1 > 0 such that A0+ L0 < A1
and A1 + L1 < a1. Then define the following two probability measures

μ0 :=
∫

Q
g(q, ·)�

(
1

L0
L1�[A0,A0+L0]

)
q(dq),

μ1 :=
∫

Q
g(q, ·)�

(
1

L1
L1�[A1,A1+L1]

)
q(dq).

Since g(q, ·) is an isometry one can also representμ0 andμ1 in the following
way:

μi :=
∫

Q

1

Li
H1�{g(q,t) : t∈[Ai ,Ai+Li ]} q(dq)

for i = 0, 1. Theorem 3.8 implies thatμi is absolutely continuous with respect
to m and μi = �im with

�i (g(q, t)) = 1

Li
hq(t)

−1, ∀ t ∈ [Ai , Ai + Li ].

Moreover from Lemma 4.1 it follows that the curve [0, 1] � s �→ μs ∈ P(X)

defined by

μs :=
∫

Q

1

Ls
H1�{g(q,t) : t∈[As ,As+Ls ]} q(dq)

where

Ls := (1− s)L0 + sL1, As := (1− s)A0 + s A1

is the unique L2-Wasserstein geodesic connecting μ0 to μ1. Again one has
μs = �sm and can also write its density in the following way:

�s(g(q, t)) = 1

Ls
hq(t)

−1, ∀ t ∈ [As, As + Ls].
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830 F. Cavalletti, A. Mondino

Step 2.
ByCDloc(K , N ) and the essentially non-branching property one has: for q-a.e.
q ∈ Qi

(Ls)
1
N hq((1− s)t0 + st1)

1
N ≥ τ

(1−s)
K ,N (t1 − t0)(L0)

1
N hq(t0)

1
N

+τ
(s)
K ,N (t1 − t0)(L1)

1
N hq(t1)

1
N ,

for L1-a.e. t0 ∈ [A0, A0 + L0] and t1 obtained as the image of t0 through
the monotone rearrangement of [A0, A0 + L0] to [A1, A1 + L1] and every
s ∈ [0, 1]. If t0 = A0 + τ L0, then t1 = A1 + τ L1. Also A0 and A1 + L1
should be taken close enough to verify the local curvature condition.

Then we can consider the previous inequality only for s = 1/2 and include
the explicit formula for t1 and obtain:

(L0 + L1)
1
N hq(A1/2 + τ L1/2)

1
N ≥ σ

(1/2)
K ,N−1(A1 − A0 + τ |L1 − L0|) N−1

N

×
{
(L0)

1
N hq(A0 + τ L0)

1
N + (L1)

1
N hq(A1 + τ L1)

1
N

}
,

for L1-a.e. τ ∈ [0, 1], where we used the notation A1/2 := A0+A1
2 , L1/2 :=

L0+L1
2 . Now observing that the map s �→ hq(s) is continuous (see (4.1)), the

previous inequality also holds for τ = 0:

(L0 + L1)
1
N hq(A1/2)

1
N ≥ σ

(1/2)
K ,N−1(A1 − A0)

N−1
N

×
{
(L0)

1
N hq(A0)

1
N + (L1)

1
N hq(A1)

1
N

}
, (4.4)

for all A0 < A1 with A0, A1 ∈ (a0, a1), all sufficiently small L0, L1 and q-a.e.
q ∈ Q, with exceptional set depending on A0, A1, L0 and L1.

Noticing that (4.4) depends in a continuous way on A0, A1, L0 and L1, it
follows that there exists a common exceptional set N ⊂ Q such that q(N ) = 0
and for each q ∈ Q\N for all A0, A1, L0 and L1 the inequality (4.4) holds
true. Then one can make the following (optimal) choice

L0 := L
hq(A0)

1
N−1

hq(A0)
1

N−1 + hq(A1)
1

N−1
, L1 := L

hq(A1)
1

N−1

hq(A0)
1

N−1 + hq(A1)
1

N−1
,

for any L > 0 sufficiently small, and obtain that

hq(A1/2)
1

N−1 ≥ σ
(1/2)
K ,N−1(A1 − A0)

{
hq(A0)

1
N−1 + hq(A1)

1
N−1

}
. (4.5)
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Now one can observe that (4.5) is precisely the inequality requested for
CD∗loc(K , N − 1) to hold. As stated in Sect. 2.1, the reduced curvature-
dimension condition verifies the local-to-global property. In particular, see
[18, Lemma 5.1, Theorem 5.2], if a function verifies (4.5) locally, then it
also satisfies it globally. Hence hq also verifies the inequality requested for
CD∗(K , N − 1) to hold, i.e. for q-a.e. q ∈ Q, the density hq verifies (4.3).

Step 4.
If N = 1 and K > 0,CD∗(K , 1) andCDloc(K , 1) are equivalent.We therefore
prove the claim for CDloc(K , 1). Since the condition CDloc(K , 1) does not
depend on K , our argument will also be valid for N = 1 and K < 0.

So repeat the same construction of Step 1. and obtain for q-a.e. q ∈ Q

(Ls)hq((1− s)t0 + st1) ≥ (1− s)L0hq(t0)+ sL1hq(t1),

for any s ∈ [0, 1] and L0 and L1 sufficiently small. As before, we deduce for
s = 1/2 that

L0 + L1

2
hq(A1/2) ≥ 1

2

(
L0hq(A0)+ L1hq(A1)

)
.

Now taking L0 = 0 or L1 = 0, it follows that necessarily hq has to be
constant. �
Remark 4.3 Inequality (4.3) is the synthetic formulation of the following dif-
ferential inequality on hq,t0,t1 :

(
h

1
N−1
q,t0,t1

)′′
+ (t1 − t0)

2 K

N − 1
h

1
N−1
q,t0,t1 ≤ 0, (4.6)

for all t0 < t1 ∈ Dom (g(q, ·)), where hq,t0,t1(s) := hq((1− s)t0 + st1). It is
easy to observe that the differential inequality (4.6) on hq,t0,t1 is equivalent to
the following differential inequality on hq :

(
h

1
N−1
q

)′′
+ K

N − 1
h

1
N−1
q ≤ 0,

that is precisely (2.5). Then Theorem 4.2 can be alternatively stated as follows.
If (X,d,m) is an essentially non-branching m.m.s. verifying CD∗(K , N )

(or CDloc(K , N )) and ϕ : X → R is a 1-Lipschitz function, then the
corresponding decomposition of the space in rays {Xq}q∈Q produces a disin-
tegration {mq}q∈Q of m so that for q-a.e. q ∈ Q,

the m.m.s. (Dom (g(q, ·)), | · |, hqL1) verifies CD(K , N ).
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832 F. Cavalletti, A. Mondino

Accordingly, from now on we will say that the disintegration q �→ mq is a
CD(K , N ) disintegration.

5 Localization via optimal transportation

In this section we prove the next localization result using L1-optimal trans-
portation theory.

Theorem 5.1 Let (X,d,m) be an essentially non-branching metric measure
space verifying the CDloc(K , N ) condition for some K ∈ R and N ∈ [1,∞).
Let f : X → R be m-integrable such that

∫
X f m = 0 and assume the

existence of x0 ∈ X such that
∫
X | f (x)|d(x, x0)m(dx) <∞.

Then the space X can be written as the disjoint union of two sets Z and T
with T admitting a partition {Xq}q∈Q and a corresponding disintegration of
m�T , {mq}q∈Q such that:

• For any m-measurable set B ⊂ T it holds

m(B) =
∫

Q
mq(B) q(dq),

where q is a probability measure over Q defined on the quotient σ -algebra
Q.

• For q-almost every q ∈ Q, the set Xq is a geodesic and mq is supported
on it. Moreover q �→ mq is a CD(K , N ) disintegration.

• For q-almost every q ∈ Q, it holds
∫
Xq

f mq = 0 and f = 0 m-a.e. in Z.

Proof Step 1.
Let f : X → R be such that

∫
f m = 0 and

∫
X | f (x)|d(x, x0)m(dx) < ∞,

for some x0 ∈ X . Then consider f+ and f−, the positive and the negative part
of f , respectively. It follows that if we define

μ0 :=
(∫

f+m

)−1
f+m, μ1 :=

(∫
f−m

)−1
f−m

thenμ0, μ1 are both probabilitymeasures and are concentrated on two disjoint
subsets of X , namely { f+ > 0} and { f− > 0} respectively.

The integrability condition on f ensures the existence of an L1-Kantorovich
potential for μ0 and μ1, i.e. a map ϕ : X → R with global Lipschitz constant
equals 1 such that any transport plan π ∈ P(X× X)with marginalsμ0 andμ1
is optimal for the L1-transportation distance if and only if π(�) = 1, where

� := {(x, y) ∈ X × X : ϕ(x)− ϕ(y) = d(x, y)}.
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Here with global Lipschitz constant we mean

‖ϕ‖li p := sup
x �=y

|ϕ(x)− ϕ(y)|
d(x, y)

,

and for π to have marginal measures μ0 and μ1 means that

(P1)� π = μ0, (P2)� π = μ1,

where Pi : X× X → X is the projection on the i-th component, with i = 1, 2.
For the existence of ϕ just observe that the dual optimal transportation problem
reduces to find the maximizer of

∫
X f φ m among all φ : X → R that are

1-Lipschitz whose existence follows straightforwardly from the integrability
condition on f .

Then from the Theorem 4.2 applied to ϕ and � we have that

m�T =
∫

Q
mq q(dq),

and q �→ mq is a CD(K , N ) disintegration.

Step 2.
It remains to show that for this particular choice of ϕ, the last part of Theorem
5.1 holds. Therefore let π be any optimal transport plan between μ0 and μ1,
i.e. π(�) = 1.

Suppose by contradiction the existence of a measurable set A ⊂ X\T with
m(A) > 0 and f (x) �= 0 for all x ∈ A. Then we can assume with no loss of
generality that μ0(A) > 0 and A ⊂ X\Te. Recall that Te is the transport set
with end points.

Since μ0 and μ1 are concentrated on two disjoint sets, any optimal plan is
indeed concentrated on �\ {x = y}. Then

μ0(Te) = π
(
(�\{x = y}) ∩ Te × X

)

≥ π
( {(x, y) ∈ �\{x = y} : ∃ z ∈ X, z �= x, (x, z) ∈ �} )

= π(�\{x = y}) = 1.

Since μ0 is a probability measure, this is in contradiction with μ0(A) > 0.
Therefore f (x) = 0 for a.e. x ∈ X\T .
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Step 3. It remains to show that q-a.e. q ∈ Q one has
∫

f mq = 0. Since for
both μ0 and μ1 the set Te\T is negligible, for any Borel set C ⊂ Q

μ0(Q
−1(C)) = π

(
(Q−1(C)× X) ∩ �\{x = y}

)

= π
(
(X ×Q−1(C)) ∩ �\{x = y}

)

= μ1(Q
−1(C)), (5.1)

where the second equality follows from the fact that T does not branch: indeed
since μ0(T ) = μ1(T ) = 1, then π

(
(�\{x = y})∩T ×T

) = 1 and therefore
if x, y ∈ T and (x, y) ∈ �, then necessarilyQ(x) = Q(y), that is they belong
to the same ray. It follows that

(Q−1(C)× X) ∩ (�\{x = y}) ∩ (T × T ) = (X ×Q−1(C))

∩ (�\{x = y}) ∩ (T × T ),

and (5.1) follows.
Since f has null mean value it holds

∫
X f+(x)m(dx) = − ∫X f−(x)m(dx),

which combined with (5.1) implies that for each Borel C ⊂ Q

∫

C

∫

Xq

f (x)mq(dx)q(dq)

=
∫

C

∫

Xq

f+(x)mq(dx)q(dq)−
∫

C

∫

Xq

f−(x)mq(dx)q(dq)

=
(∫

X
f+(x)m(dx)

)−1 (
μ0(Q

−1(C))− μ1(Q
−1(C))

)

= 0.

Therefore for q-a.e. q ∈ Q the integral
∫

f mq vanishes and the claim
follows. �

6 Sharp and rigid isoperimetric inequalities

The goal of the paper is to compare the isoperimetric profile of a m.m.s.
satisfying synthetic Ricci lower curvature bounds with model spaces on the
real line. So, in order to start, in the next subsection we will focus on the case
(X,d) = (R, | · |).
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6.1 Isoperimetric profile for m.m.s. over (R, | · |)
Given K ∈ R, N ∈ [1,+∞) and D ∈ (0,+∞], consider the following family
of probability measures

F s
K ,N ,D := {μ ∈ P(R) : supp(μ) ⊂ [0, D], μ

= hμL1, hμ verifies (4.3) and is continuous if N ∈ (1,∞), hμ

≡ const if N = 1}, (6.1)

and the corresponding comparison synthetic isoperimetric profile:

Is
K ,N ,D(v) := inf

{
μ+(A) : A ⊂ R, μ(A) = v, μ ∈ F s

K ,N ,D

}
,

where μ+(A) denotes the Minkowski content defined in (2.6).
The term synthetic refers to μ ∈ F s

K ,N ,D meaning that the Ricci curvature
bound is satisfied in its synthetic formulation: if μ = h · L1, then h verifies
(4.3).

The goal of this short section is to prove that Is
K ,N ,D coincides with its

smooth counterpart IK ,N ,D defined by

IK ,N ,D(v) := inf
{
μ+(A) : A ⊂ R, μ(A) = v, μ ∈ FK ,N ,D

}
, (6.2)

where now FK ,N ,D denotes the set of μ ∈ P(R) such that supp(μ) ⊂ [0, D]
and μ = h · L1 with h ∈ C2((0, D)) satisfying

(
h

1
N−1

)′′ + K

N − 1
h

1
N−1 ≤ 0 if N ∈ (1,∞), h ≡ const if N = 1.

(6.3)

Remark 6.1 Our notation is consistent, in the sense that the model isoperi-
metric profile for smooth densities IK ,N ,D defined in (6.2) coincides with the
model profile IK ,N ,D defined in Sect. 2.5; for the proof see [48, Theorem 1.2,
Corollary 3.2].

It is easily verified that FK ,N ,D ⊂ F s
K ,N ,D . Also here the diameter D of the

support of the measure μ can attain the value +∞.
In order to prove that IK ,N ,D(v) = Is

K ,N ,D(v) for every v ∈ [0, 1] the
following approximation result will play a key role. In order to state it let us
recall that a standard mollifier in R is a non negative C∞(R) function ψ with
compact support in [0, 1] such that ∫

R
ψ = 1.
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Lemma 6.2 Let D ∈ (0,∞) and let h : [0, D] → [0,∞) be a continuous
function. Fix N ∈ (1,∞) and for ε > 0 define

hε(t) := [h 1
N−1 ∗ ψε(t)]N−1 :=

[∫

R

h(t − s)
1

N−1ψε(s) ds

]N−1

=
[∫

R

h(s)
1

N−1ψε(t − s) ds

]N−1
, (6.4)

whereψε(x) = 1
ε
ψ(x/ε) andψ is a standardmollifier function. The following

properties hold:

(1) hε is a non-negative C∞ function with support in [−ε, D + ε];
(2) hε → h uniformly as ε ↓ 0, in particular hε → h in L1.

(3) If h satisfies the convexity condition (4.3) corresponding to the above fixed
N > 1 and some K ∈ R then also hε does. In particular hε satisfies the
differential inequality (6.3).

Proof First of all observe that since the mollifier function ψε is non negative,
then the mollification preserves the order, i.e.

f (t) ≤ g(t) for a.e. t ∈ R ⇒ fε(t) ≤ gε(t) for every t ∈ R. (6.5)

The proofs of the first and second claims follow by the standard properties
of convolution, for which we refer to [28, Theorem 6, Appendix C.4].

In order to get the third claim we use (4.3) together with the fact that ψε

is non-negative to infer that for every fixed t0, t1 ∈ [0, D] and s ∈ [0, 1] the
following holds

hε((1− s)t0 + st1)
1

N−1

= (h
1

N−1 ∗ ψε)((1− s)t0 + st1)

=
∫

R

h
1

N−1 ((1− s) (t0 − t)+ s (t1 − t)) ψε(t) dt

≥ σ
(1−s)
K ,N−1(t1 − t0)

∫

R

h
1

N−1 (t0 − t) ψε(t) dt

+ σ
(s)
K ,N−1(t1 − t0)

∫

R

h
1

N−1 (t1 − t) ψε(t) dt

= σ
(1−s)
K ,N−1(t1 − t0)hε(t0)

1
N−1 + σ

(s)
K ,N−1(t1 − t0)hε(t1)

1
N−1 . (6.6)

It is finally a standard computation to check, for C2 functions, that the
convexity inequality (4.3) is equivalent to the differential inequality (6.3). �
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Theorem 6.3 For every v ∈ [0, 1], K ∈ R, N ∈ [1,∞), D ∈ (0,∞] it holds
Is
K ,N ,D(v) = IK ,N ,D(v).

Proof For N = 1 the statement is trivial as FK ,1,D = F s
K ,1,D , so we can

assume N ∈ (1,∞).
It is also clear that Is

K ,N ,D(v) ≤ IK ,N ,D(v) for every v ∈ [0, 1], since
FK ,N ,D ⊂ F s

K ,N ,D .
In order to show the converse inequality, it is enough to consider the case
D ∈ (0,∞): indeed for K > 0 we know that the diameter of the space is
bounded by the Bonnet-Myers Theorem and for K ≤ 0, D = ∞ it holds
IK ,N ,D(v) ≡ 0.
For an arbitrary measure μ = h · L1 ∈ F s

K ,N ,D , Lemma 6.2 gives a sequence
hk ∈ C∞(R) such that

supp(hk) ⊂
[
−1

k
, D + 1

k

]
, μk := hk

·L1 ∈ FK ,N ,D+ 2
k
, ‖hk − h‖L1((0,D)) −→ 0.

Therefore the measures μk converge to μ in total variation sense:

lim
k→∞‖μk − μ‖T V = lim

k→∞ sup
{|μk(A)− μ(A)| : A ⊂ R Borel

} = 0.

At this point we can repeat verbatim the proof of [48, Proposition 6.1] to get

Is
(R,|·|,μ)(v) ≥ lim sup

k
I(R,|·|,μk)(v) ≥ IK ,N ,D(v), for every v ∈ [0, 1].

�

6.2 Sharp lower bounds for the isoperimetric profile

The goal of this section is to prove the following result, which is the heart of
the present work.

Theorem 6.4 Let (X,d,m) be a metric measure space with m(X) = 1,
verifying the essentially non-branching property and CDloc(K , N ) for some
K ∈ R, N ∈ [1,∞). Let D be the diameter of X, possibly assuming the
value∞.

Then for every v ∈ [0, 1],
I(X,d,m)(v) ≥ IK ,N ,D(v),

where IK ,N ,D is the model isoperimetric profile defined in (6.2).
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838 F. Cavalletti, A. Mondino

Proof First of all we can assume D < ∞ and therefore m ∈ P2(X): indeed
from the Bonnet–Myers Theorem if K > 0 then D < ∞, and if K ≤ 0 and
D = ∞ then the model isoperimetric profile (6.2) trivializes, i.e. IK ,N ,∞ ≡ 0
for K ≤ 0.

For v = 0, 1 one can take as competitor the empty set and the whole space
respectively, so it trivially holds

I(X,d,m)(0) = I(X,d,m)(1) = IK ,N ,D(0) = IK ,N ,D(1) = 0.

Fix then v ∈ (0, 1) and let A ⊂ X be an arbitrary Borel subset of X such
that m(A) = v. Consider the m-measurable function f (x) := χA(x)− v and
notice that

∫
X f m = 0. Thus f verifies the hypothesis of Theorem 5.1 and

noticing that f is never null, we can decompose X = Y ∪ T with

m(Y ) = 0, m�T =
∫

Q
mq q(dq),

with mq = g(q, ·)�
(
hq · L1

)
; moreover, for q-a.e. q ∈ Q, the density hq

verifies (4.3) and

∫

X
f (z)mq(dz) =

∫

Dom (g(q,·))
f (g(q, t)) · hq(t)L1(dt) = 0.

Therefore

v=mq(A ∩ {g(q, t) : t ∈R})=(hqL1)(g(q, ·)−1(A)), for q− a.e. q ∈ Q.

(6.7)

For every ε > 0 we then have

m(Aε)−m(A)

ε

= 1

ε

∫

T
χAε\A m(dx) = 1

ε

∫

Q

(∫

X
χAε\A mq(dx)

)
q(dq)

=
∫

Q

1

ε

(∫

Dom (g(q,·))
χAε\A hq(t)L1(dt)

)
q(dq)

=
∫

Q

(
(hqL1)(g(q, ·)−1(Aε))− (hqL1)(g(q, ·)−1(A))

ε

)
q(dq)

≥
∫

Q

(
(hqL1)((g(q, ·)−1(A))ε)− (hqL1)(g(q, ·)−1(A))

ε

)
q(dq),
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where the last inequality is givenby the inclusion (g(q, ·)−1(A))ε∩supp(hq) ⊂
g(q, ·)−1(Aε).

Recalling (6.7) together with hqL1 ∈ F s
K ,N ,D , by Fatou’s Lemma we get

m+(A) = lim inf
ε↓0

m(Aε)−m(A)

ε

≥
∫

Q

(
lim inf

ε↓0
(hqL1)((g(q, ·)−1(A))ε)−(hqL1)(g(q, ·)−1(A))

ε

)
q(dq)

=
∫

Q

(
(hqL1)+(g(q, ·)−1(A))

)
q(dq)

≥
∫

Q
Is
K ,N ,D(v) q(dq)

= IK ,N ,D(v),

where in the last equality we used Theorem 6.3. The conclusion follows from
Remark 6.1. �
Proof of Theorems 1.1 and 1.2 SinceRCD∗(K , N )-spaces are essentially non
branching (see [60]) and the CD∗(K , N ) condition is equivalent to CDloc
(K , N ) for N ∈ (1,∞) and for K ≥ 0, N = 1, then we can apply Theorem
6.4 and get Theorem 1.2. As already observed in the introduction, the Levy-
Gromov isoperimetric inequality claimed in Theorem 1.1 is just a special case
of Theorem 1.2 when K > 0 and N is a positive integer. �

6.3 Rigidity in the isoperimetric comparison estimates: proof of
Theorem 1.4

The following lemma will play a key role for proving the rigidity and the
almost rigidity statements.

Lemma 6.5 For every v ∈ (0, 1), N > 1 and ε0 ∈ (0, π) there exist η =
η(v, N , ε0) > 0 such that for every δ ∈ [0, N−1

2

]
and for every D ∈ (0, π−ε0)

it holds
IN−1−δ,N+δ,D(v) ≥ IN−1−δ,N+δ,∞(v)+ η. (6.8)

Proof Fix v ∈ (0, 1), N > 1 and ε0 ∈ (0, π) as above. First of all it is not
difficult to see that

lim
D↓0 IN−1−δ,N+δ,D(v)→+∞ uniformly for δ ∈

[
0,

N − 1

2

]
.

Therefore, in order to establish (6.8), it is enough to consider the case D ∈
(ε1, π−ε0) for some ε1 = ε1(N ) ∈ (0, π−2ε0

)
independent of δ ∈ [0, N−1

2

]
.
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840 F. Cavalletti, A. Mondino

By [48]weknow that there exist A= Aδ,N ,D ⊂ [0, D] andμN−1−δ,N+δ,D ∈
FN−1−δ,N+δ,D such that

μN−1−δ,N+δ,D(A) = v and μ+N−1−δ,N+δ,D(A) = IN−1−δ,N+δ,D(v),

where the minimizer μN−1−δ,N+δ,D is given by

μN−1−δ,N+δ,∞�[0,D] = λ μN−1−δ,N+δ,D, for some

λ = λδ,v,N ∈ [ε2, 1− ε2] ⊂ (0, 1),

for some ε2 = ε2(ε0, ε1) ∈ (0, 1/2). Observe that

μN−1−δ,N+δ,∞(A) = λv and μ+N−1−δ,N+δ,∞(A) = λ μ+N−1−δ,N+δ,D(A),

and that the maps

IN−1−δ,N+δ,∞ : [ε2, 1− ε2] → R
+, t �→ IN−1−δ,N+δ,∞(tv)

are strictly concave functions uniformly with respect to δ ∈ [0, N−1
2

]
. Since

IN−1−δ,N+δ,∞(0) = 0, it follows that there exists η = η(v, N , ε0) > 0 such
that

λ IN−1−δ,N+δ,∞(v) ≤ IN−1−δ,N+δ,∞(λ v)− η ≤ μ+N−1−δ,N+δ,∞(A)− η

= λ μ+N−1−δ,N+δ,D(A)− η = λ IN−1−δ,N+δ,D(v)− η.

Multiplying both sides by λ−1 ∈ [ 1
1−ε2

, 1
ε2

]
we obtain the thesis. �

Proof of Theorem 1.4 First of all we claim that if for some v̄ ∈ (0, 1) one
has I(X,d,m)(v̄) = IN−1,N ,π (v̄) then (X,d) has diameter equal to π ; then the
Maximal Diameter Theorem [43, Theorem 1.4] will imply that X is a spherical
suspension over an RCD∗(N − 2, N − 1) space Y as desired.

So suppose by contradiction (X,d) has diameter equal to π − ε0 < π then
by Lemma 6.5 there exists δ > 0 such that

IN−1,N ,π (v̄) ≤ IN−1,N ,D(v̄)− δ, ∀D ∈ (0, π − ε0].

At this point we could already conclude by observing that we reached the
contradiction

IN−1,N ,π (v̄) = I(X,d,m)(v̄) ≥ IN−1,N ,π−ε0(v̄) ≥ IN−1,N ,π (v̄)+ δ,
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Sharp and rigid isoperimetric inequalities 841

where in the first inequality we applied Theorem 6.4. Let us also give a more
direct argument using 1-d localization. Let A ⊂ X be such that

m(A) = v̄ and m+(A) ≤ I(X,d,m)(v̄)+ δ

2
= IN−1,N ,π (v̄)+ δ

2
.

Repeating the proof of Theorem 6.4, we obtain the contradiction

IN−1,N ,π (v̄)+ δ

2
≥ m+(A) ≥

∫

Q

(
(hqL1)+(g(q, ·)−1(A))

)
q(dq)

≥
∫

Q
IN−1,N ,|supp(hq )|(v̄) q(dq)

≥ IN−1,N ,π (v̄)+ δ,

where |supp(hq)| denotes the length of the segment supp(hq) ⊂ R and we
made use that, since by Theorem 5.1 we know that supp(hq) is isometric to a
geodesic Xq of (X,d) for q-a.e. q, then |supp(hq)| ≤ π − ε0.

This concludes the first part of the proof. We now proceed to characterize
the isoperimetric sets.

Step 1.
If there exists a Borel subset A ⊂ X with m(A) = v̄ such that m+(A) =
I(X,d,m)(v̄) = IN−1,N ,π (v̄) then we have just proved that (X,d,m) is a spher-
ical suspension, i.e. X ! [0, π ] ×N−1

sin Y .
Now we claim that the following more precise picture holds:

(1) (Y,dY ,mY ) is an RCD∗(N − 2, N − 1) space and (Q, q) is isomorphic
as measure space to (Y,mY );

(2) for q-a.e. q it holds hq(t) = c (sin t)N−1, where c > 0 is a normalizing
constant.

Indeed, consider the 1-Lipschitz function ϕ inducing the 1-d localization
associated to A. By the discussion right before Step 1 we know that for q-a.e.
q ∈ Q the ray Xq has length π and m+q (A ∩ Xq) = IN−1,N ,π (v̄).
Let us now fix one of those rays Xq and call N , S ∈ Xq the endpoints of the
geodesic Xq . Then d(S, N ) = length(Xq) = π and by the Maximal Diameter
Theorem [43] X is a spherical suspension, i.e. X ! [0, π ] ×N−1

sin Y for some
RCD∗(N − 2, N − 1) space (Y,dY ,mY ) and N , S correspond respectively to
the north and south pole of such a suspension structure that is S = (0, y0),
N = (π, y0), for some y0 ∈ Y .
For the rest of the proof wewill identify X with [0, π ]×N−1

sin Y andwith a slight
abuse of notation we will write J × E meaning {(t, y) ∈ [0, π ]×N−1

sin Y : t ∈
J and y ∈ E}. By the choice of N , S we infer that

ϕ(S)− ϕ(N ) = d(S, N ) = π,
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842 F. Cavalletti, A. Mondino

and with no loss of generality, just adding a constant to ϕ, we can assume
ϕ(S) = π and ϕ(N ) = 0.
Take now any other element (t, y) ∈ [0, π ] ×N−1

sin Y . Since the curve [0, π ] �
t �→ (t, y) is a geodesic from S to N , from Lemma 3.1 it follows that

π − ϕ((t, y)) = ϕ(S)− ϕ((t, y)) = d(S, (t, y)) = t.

Therefore for any (t, y) ∈ [0, π ]×N−1
sin Y it holds ϕ((t, y)) = π− t . It follows

that for q-a.e. q ∈ Q there exists yq ∈ Y such that Xq = [0, π ] × {yq}.
We deduce that T = (0, π) × Y and Q((t, y)) = (1/2, y) is a quotient map
yielding (Q, q) ! (Y,mY ) as measure spaces; in particular claims (1) and (2)
are proved.

Step 2.
Let A ⊂ X be as in Step 1. Called μN−1,N := (sin(t))N−1 L1�[0, π ], we
claim that there exists a subinterval Iv̄ ⊂ [0, π ] with μN−1,N (Iv̄) = v̄ such
that A = Iv̄ ×Y . Recall that A = Iv̄ ×Y has to be intended in the coordinates
(t, y) of [0, π ] ×N−1

sin Y ; in other words it is not a product as m.m.s. but just a
short-hand notation we are using to denote the set

A = {(t, q) ∈ [0, π ] ×N−1
sin Y : t ∈ Iv̄}.

In order to prove such a claim we first recall that by [48] (this is actually a
classical result going back to Lévy and Gromov at least for integer N ) there
exists a Borel set Jv̄ ⊂ [0, π ] with μN−1,N (Jv̄) = v̄ such that μ+N−1,N (Jv̄) =
IN−1,N ,∞(v̄), and such a Borel set must be an interval either of the form [0, rv̄]
or [π − rv̄, π ] for a suitable rv̄ ∈ (0, π).
By the previous discussion, for q-a.e. q ∈ Q, we know that g(q, ·)−1(A) must
be either equal to [0, rv̄] or to [π − rv̄, π ]. But now the configuration where
both

q({q : g(q, ·)−1(A) = [0, rv̄]}) > 0 and

q({q : g(q, ·)−1(A) = [π − rv̄, π ]}) > 0,

creates an interface between the two corresponding subsets of A which
will cost a higher Minkowski content than the configuration where either
g(q, ·)−1(A) = [0, rv̄] for q-a.e. q or g(q, ·)−1(A) = [π − rv̄, π ] for q-a.e. q.
Let us give a rigorous proof of the last intuitive statement.Assumebycontradic-
tion that there exist Q1, Q2 Borel subsets of Y withmY (Q1) = 1−mY (Q2) ∈
(0, 1), such that A = A1 ∪ A2 where

A1 := [0, rv̄] × Q1, A2 = [π − rv̄, π ] × Q2.

123



Sharp and rigid isoperimetric inequalities 843

Calling A = A1 ∪ A2, clearly m(A) = v̄. Suppose by contradiction
that m+(A) = I(X,d,m)(v̄) = IN−1,N ,π (v̄). Notice that if (t, p), (t, q) ∈
[0, π ] ×N−1

sin Y then their distance d((t, p), (t, q)) = sin(t)N−1dY (p, q) ≤
dY (p, q). Therefore

Aε
1 ⊃ [0, rv̄ + ε] × Q1 ∪ [0, rv̄] × Qε

1, (6.9)

with analogous inclusion for Aε
2. Using (6.9) it is not difficult to check that,

thanks to the symmetry of the space, it holds

m(Aε)−m(A) ≥ m
([rv̄, rv̄ + ε] × Q1

)+m
([π − rv̄ − ε, π − rv̄] × Q2

)

+
∑

i=1,2
m
([0,min{rv̄, π − rv̄}] × (Qε

i \Qi )
)
. (6.10)

Along the same lines of the proof of Theorem 6.4 and using that from Step 1
we know (Y,mY ) ! (Q, q), it is not hard to show that

lim inf
ε↓0

m
([rv̄, rv̄ + ε] × Q1

)

ε
= q(Q1) IN−1,N ,π (v̄)

= mY (Q1) IN−1,N ,π (v̄), (6.11)

lim inf
ε↓0

m
([π − rv̄ − ε, π − rv̄] × Q2

)

ε
= q(Q2) IN−1,N ,π (v̄)

= mY (Q2) IN−1,N ,π (v̄). (6.12)

Moreover, since from Step 1 for q-a.e. q it holds hq(t) = c (sin t)N−1 and
(Y,mY ) ! (Q, q), we also get

lim inf
ε↓0

m
([0,min{rv̄, π − rv̄}] × (Qε

i \Qi )
)

ε

= lim inf
ε↓0

1

ε

∫

Qε
i \Qi

[
c
∫ min{rv̄ ,π−rv̄}

0
(sin t)N−1dt

]
q(dq)

= lim inf
ε↓0 λv̄

mY (Qε
i )−mY (Qi )

ε
= λv̄ m

+
Y (Qi ), i = 1, 2, (6.13)

where we set λv̄ := c
∫ min{rv̄ ,π−rv̄}
0 (sin t)N−1dt . Notice that λv̄ > 0 for v̄ ∈

(0, 1). Recalling that, from Step 1, (Y,dY ,mY ) is an RCD∗(N − 2, N − 1)
space, from Theorem 6.4 it follows that

m+Y (Q1) ≥ IN−2,N−1,π (mY (Q1)) > 0,

m+Y (Q2) ≥ IN−2,N−1,π (mY (Q2)) > 0. (6.14)
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Since by construction mY (Q1) + mY (Q2) = 1, the combination of (6.10),
(6.11), (6.12), (6.13) and (6.14) yields

m+(A) := lim inf
ε↓0

m(Aε)−m(A)

ε
> IN−1,N ,π (v̄),

contradicting that m+(A) = I(X,d,m)(v̄) = IN−1,N ,π (v̄).

Step 3.
We claim that if (X,d,m) = [0, π ]×N−1

sin Y for some m.m.s. (Y,d1,m1) with
m(Y ) = 1 then, calling

A = {(t, q) ∈ [0, π ] ×N−1
sin Y : t ∈ [0, rv̄]}

where rv̄ is such that μN−1,N ([0, rv̄]) = v̄, we have

m(A) = v̄ and m+(A) = IN−1,N ,π (v̄).

The fact thatm(A) = v̄ is clear by Fubini’s Theorem, so let us show the second
statement. For every ε > 0 observe that the geometry of A implies that

m(Aε)−m(A)

ε
= 1

ε

∫

Y
μN−1,N ({t ∈ [0, π ] : (t, q) ∈ Aε\A})mY (dq)

= μN−1,N ([0, rv̄ + ε])− μN−1,N ([0, rv̄])
ε

. (6.15)

Now observe that

lim
ε↓0

μN−1,N ([0, rv̄ + ε])− μN−1,N ([0, rv̄])
ε

= lim inf
ε↓0

μN−1,N ([0, rv̄ + ε])− μN−1,N ([0, rv̄])
ε

= μ+N−1,N ([0, rv̄]) = IN−1,N ,π (v̄).

Therefore, taking a sequence εi ↓ 0 such that

m+(A) = lim inf
ε↓0

m(Aε)−m(A)

ε
= lim

i→∞
m(Aεi )−m(A)

εi
,

we can pass to the limit in (6.15) over the sequence εi ↓ 0 and conclude the
proof. �

123



Sharp and rigid isoperimetric inequalities 845

6.4 Almost equality in Lévy-Gromov implies almost rigidity

Let us start by the following lemma.

Lemma 6.6 For every N > 1 and every v ∈ [0, 1], the map
[0, N − 1) � δ �→ IN−1−δ,N−δ,∞(v) ∈ R

+ is continuous.

In particular for every η > 0 there exists δ̄ = δ̄(N , η) > 0 such that

∣∣IN−1,N ,∞(v)− IN−1−δ,N+δ,∞(v)
∣∣ ≤ η, ∀v ∈ [0, 1], ∀δ ∈ [0, δ̄].

Proof By [48] we know that, called

μN−1−δ,N+δ,∞ := cN ,δ

[
sin

(√
N − 1− δ

N + δ − 1
t

)]N+δ−1

×χ[
0,
√

N+δ−1
N−1−δ

π
](t)L1(dt) ∈ FN−1−δ,N+δ,∞,

where cN ,δ > 0 is the normalizing constant, there exists A = Aδ,N ,v of the
form (−∞, aδ,N ,v) such that for every v ∈ [0, 1]
μN−1−δ,N+δ,∞(A) = v and μ+N−1−δ,N+δ,∞(A) = IN−1−δ,N+δ,∞(v).

It is straightforward to check that the maps

δ �→
[
sin

(√
N − 1− δ

N + δ − 1
(·)
)]N+δ−1

χ[
0,
√

N+δ−1
N−1−δ

π
](·) ∈ C(R, ‖ · ‖∞),

δ �→ aδ,N ,v ∈ R
+, δ �→ cN ,δ ∈ R

+

are continuous. Since by the Fundamental Theorem of Calculus

μ+N−1−δ,N+δ,∞(Aδ,N ,v) = cN ,δ

[
sin

(√
N − 1− δ

N + δ − 1
aδ,N ,v

)]N+δ−1
,

the claim follows. �
We can now prove the almost rigidity theorem.

Proof of Theorem 1.5 Let η = η(v, N , ε0) > 0 be given by Lemma 6.5 so
that for every δ ∈ [0, N−1

2

]
and every D ∈ (0, π − ε0) it holds

IN−1−δ,N+δ,D(v) ≥ IN−1−δ,N+δ,∞(v)+ 3η. (6.16)
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Moreover Lemma 6.6 ensures that for δ > 0 small enough it holds

IN−1−δ,N+δ,∞(v) ≥ IN−1,N ,∞(v)− η. (6.17)

Assume by contradiction there exists ε0 > 0 such that for every δ > 0 there
is an RCD∗(N − 1 − δ, N + δ) space (X,d,m) containing a Borel subset
A ⊂ X satisfying

m(A) = v and m+(A) ≤ IN−1,N ,∞(v)+ η (6.18)

and such that diam ((X,d)) ≤ π − ε0.
If we argue analogously to the proof of Theorem 1.4 using (6.16), (6.17)

and (6.18), we reach the contradiction

IN−1−δ,N+δ,∞(v)+ 2η ≥ IN−1,N ,∞(v)+ η ≥ m+(A)

≥
∫

Q

(
(hqL1)+(g(q, ·)−1(A))

)
q(dq)

≥
∫

Q
IN−1−δ,N+δ,|supp(hq )|(v̄) q(dq)

≥ IN−1−δ,N+δ,∞(v̄)+ 3η.

�
Corollary 1.6 is a straightforward consequence of Theorem 1.5 combined

with the Maximal Diameter Theorem [43] and the compactness/stability of
RCD∗(K , N ) spaces with respect to the mGH convergence. Let us briefly
outline the arguments for completeness.

Proof of Corollary 1.6 Fix N ∈ [2,∞), v ∈ (0, 1) and assume by contradic-
tion there exist ε0 > 0 and a sequence (X j ,d j ,m j )ofRCD∗(N−1− 1

j , N+ 1
j )

spaces such that I(X j ,d j ,mj )(v) ≤ IN−1,N ,∞(v)+ 1
j but

dmGH (X j , [0, π ] ×N−1
sin Y ) ≥ ε0 for every j ∈ N (6.19)

and everyRCD∗(N −2, N −1) space (Y,dY ,mY ) withmY (Y ) = 1. Observe
that Theorem 1.5 yields

diam ((Xj,dj)) → π. (6.20)

By the compactness/stability property ofRCD∗(K , N ) spaces recalled in The-
orem 2.6 we get that, up to subsequences, the spaces X j mGH-converge to a
limit RCD∗(N − 1, N ) space (X∞,d∞,m∞). Since the diameter is continu-
ous under mGH convergence of uniformly bounded spaces, (6.20) implies that
diam ((X∞,d∞)) = π . But then by the Maximal Diameter Theorem [43] we
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get that (X∞,d∞,m∞) is isomorphic to a spherical suspension [0, π ]×N−1
sin Y

for some RCD∗(N − 2, N − 1) space (Y,dY ,mY ) with mY (Y ) = 1. Clearly
this contradicts (6.19) and the thesis follows. �
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