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Abstract We introduce a one-parameter family of massive Laplacian oper-
ators (�m(k))k∈[0,1) defined on isoradial graphs, involving elliptic functions.
We prove an explicit formula for the inverse of �m(k), the massive Green
function, which has the remarkable property of only depending on the local
geometry of the graph, and compute its asymptotics.We study the correspond-
ing statistical mechanics model of random rooted spanning forests. We prove
an explicit local formula for an infinite volume Boltzmann measure, and for
the free energy of themodel.We show that themodel undergoes a second order
phase transition at k = 0, thus proving that spanning trees corresponding to
the Laplacian introduced by Kenyon (Invent Math 150(2):409–439, 2002) are
critical. We prove that the massive Laplacian operators (�m(k))k∈(0,1) provide
a one-parameter family of Z -invariant rooted spanning forest models. When
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110 C. Boutillier et al.

the isoradial graph is moreover Z2-periodic, we consider the spectral curve
of the massive Laplacian. We provide an explicit parametrization of the curve
and prove that it is Harnack and has genus 1. We further show that every Har-
nack curve of genus 1 with (z, w) ↔ (z−1, w−1) symmetry arises from such
a massive Laplacian.

1 Introduction

An isoradial graph G = (V,E) is a planar embedded graph such that all
faces are inscribable in a circle of radius 1. In this paper we introduce a one-
parameter family of massive Laplacian operators (�m(k))k∈[0,1) defined on
infinite isoradial graphs, and study its remarkable properties. The massive
Laplacian operator �m(k) : CV → C

V involves elliptic functions, it is defined
by

(�m(k) f )(x) =
∑

y∼x

ρ(θxy|k)[ f (x) − f (y)] + m2(x |k) f (x), (1)

where k ∈ [0, 1) is the elliptic modulus, θxy = θ xy
2K
π
, the constant K = K (k)

is the complete elliptic integral of the first kind, and θ xy is an angle naturally
assigned to the edge xy in the isoradial embedding of G. The conductance
ρ(θxy|k) and the mass m2(x |k) are given by

ρ(θxy|k) = sc(θxy|k), (2)

m2(x |k) =
∑

y∼x

[A(θxy|k) − ρ(θxy|k)], (3)

where sc is one of Jacobi’s twelve elliptic functions and the function A, related
to integrals of squared Jacobi elliptic functions, is defined in Eq. (8). More
details are to be found in Sect. 2.2.

The first of the main results is an explicit formula for the inverse operator,
namely for the massive Green function Gm(k), see also Theorem 12 for a
detailed version.

Theorem 1 Let G be an infinite isoradial graph, and let k ∈ (0, 1). Then, for
every pair of vertices x, y of G, the massive Green function Gm(k)(x, y) has
the following explicit expression:

Gm(k)(x, y) = k′

4iπ

∫

Cx,y

e(x,y)(u|k)du, (4)

where k′ = √
1 − k2, e(x,y)(·|k) is the discrete massive exponential function,

Cx,y is a vertical contour on the torus T(k) = C/(4KZ + 4iK′
Z) whose

direction is given by the angle of the ray R−→xy.
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The Z -invariant massive Laplacian on isoradial graphs 111

Before describing the context of Theorem 1, let us give its main features.

• The discrete exponential function e(x,y)(·|k) is defined in Sect. 3.3 using a
path of the embedded graph from x to y. This implies that the expression (4)
for Gm(k)(x, y) is local, meaning that it remains unchanged if the isoradial
graph G is modified away from a path from x to y. This is a remarkable
fact since, when computing the inverse of a discrete operator, one expects
the geometry of the whole graph to be involved.

• There is no periodicity assumption on the graph G.
• The discrete massive exponential function is explicit and has a product
structure; it has identified poles, so that computations can be performed
using the residue theorem, see Appendix B for some examples.

• The explicit expression (4) is suitable for asymptotic analysis. Using a
saddle-point analysis, we prove explicit exponential decay of the Green
function, see Theorem 14.

Context. Local formulas for inverse operators have first been proved in [26].
Kenyon considers two operators on isoradial graphs: the Laplacian with con-
ductances (tan(θe))e∈E and the Kasteleyn operator arising from the bipartite
dimer model with edge-weights (2 sin(θe)). In the same vein, the first two
authors of this paper proved a local formula for the inverse Kasteleyn opera-
tor of a non-bipartite dimer model corresponding to the critical Ising model
defined on isoradial graphs [8].

The two papers [8,26] have the common feature of considering critical
models: the polynomial decay of the inverse Kasteleyn operator proves that
the bipartite dimer model is indeed critical; Ising weights of [8] have recently
been proved to be critical [16,32,33]; Laplacian conductances are called crit-
ical (although it not so clear from [26] why they should be). This led to the
belief that existence of a local formula for an inverse operator is related to
the geometric property of the embedded isoradial graph and criticality of the
underlying model. In this paper, we go further and prove a local formula for a
one-parameter family of non-critical models. Indeed, underlying the massive
Laplacian is the model of rooted spanning forests, which is not critical, as
explained in Sect. 6.

The idea of the proof of the local formula for the inverse of the Laplacian
operator � given in [26] is the following: find a one-parameter family of local
complex-valued functions in the kernel of �, define its inverse G as a contour
integral of these functions against a singular function, and choose the contour
of integration in such a way that �G = Id. The problem is that this proof
neither provides a way of choosing the weights of the operator, nor a criterion
for existence of a one-parameter family of local functions, nor a way to find
them, if they exist. This is why one of the main contributions of this paper is to
actually define a one-parameter family of weights for the massive Laplacian,
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112 C. Boutillier et al.

and to find local functions in its kernel, which allow to prove a local formula
for its inverse.

Note that when the parameter k is equal to 0, the mass (3) is 0, the ellip-
tic function sc(θ) becomes tan(θ), and we recover the Laplacian considered
in [26]. In this case, the discrete massive exponential function becomes the
exponential function introduced in [35] and used in the local formula for the
Green function of [26].
Random rooted spanning forests. The massive Laplacian operator is nat-
urally related to the statistical mechanics model of rooted spanning forests.
Indeed, when the graph G is finite, by Kirchhoff’s matrix-tree theorem, the
determinant of�m(k) is the partition function Zk

forest(G), i.e., the weighted sum
of rooted spanning forests ofG, whoseweights depend on the conductances (2)
and masses (3). In Sect. 6, we prove the following results.

• Theorem 34 proves an explicit expression for an infinite volume rooted
spanning forest Boltzmann measure of the graphG, involving the massive
Laplacian matrix and the massive Green function of Theorem 1. The proof
follows the approach of [13]. This measure inherits the locality property of
Theorem 1, i.e., the probability that a finite subset of edges/vertices belongs
to a rooted spanning forest is unchanged if the graph is modified away from
this subset.

• Assume that the infinite isoradial graphG is Z2-periodic, and consider the
natural exhaustion (Gn = G/nZ2)n�1 of G by toroidal graphs. The free
energy Fk

forest of the spanning forest model is minus the exponential growth
rate of the partition function Zk

forest(Gn), as n tends to infinity. We prove
an explicit formula for Fk

forest, see also Theorem 36. It has the property of
not involving the combinatorics of the graph. Indeed it is a sum over edges
of the graph G1 of quantities only depending on the angle θe assigned to
the edge e in the isoradial embedding.

Theorem 2 For every k ∈ (0, 1), the free energy Fk
forest of the rooted spanning

forest model on the infinite, Z2-periodic, isoradial graph G, is equal to:

Fk
forest = |V1|

∫ K

0
4H ′(2θ) log sc(θ)dθ +

∑

e∈E1

∫ θe

0

2H(2θ) sc′(θ)

sc(θ)
dθ, (5)

where H is the function defined in Eq. (9).

• When k = 0, F0
forest is equal to the normalized determinant of the Laplacian

operator of [26]; it is also, up to sign, the free energy of the corresponding
spanning tree model. Performing an asymptotic expansion around k = 0
of (5), we prove in Theorem 38 that the rooted spanning forest model has
a second order phase transition at k = 0. In particular, this gives a proof
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The Z -invariant massive Laplacian on isoradial graphs 113

that the spanning tree model corresponding to the Laplacian considered in
[26] is indeed critical. Note that the non-analyticity of the free energy at
k = 0 does not come from that of the weights or masses. Indeed, the latter
are analytic around the origin, see Lemma 7.

• Recall that the infinite volume rooted spanning forest Boltzmann measure
inherits the locality property of Theorem 1. From the point of view of
statistical mechanics, this specific feature is expected from models defined
on isoradial graphs that are Z-invariant. Although already present in the
work of Kenelly [24] and Onsager [39], the notion of Z -invariance has
been extensively developed by Baxter, see [5,6] and also [4,27,40]. Z -
invariance imposes a strong locality constraint on the model: invariance of
the partition function under star-triangle moves, see Fig. 3 and Sect. 6.4.1
for definition, or equivalently invariance of the probability measure under
these moves. This suggests a locality property of the measure, but it does
not provide a way of finding explicit local formulas. Using 3-dimensional
consistency of the massive Laplacian operator (Proposition 8), we prove
the following, see also Theorem 41.

Theorem 3 For every k ∈ [0, 1), the statistical mechanics model of rooted
spanning forests on isoradial graphs, with conductances (2) and masses (3),
is Z-invariant.

The case of periodic isoradial graphs, Harnack curves of genus 1. Sup-
pose further that the isoradial graph G is Z2-periodic. The massive Laplacian
characteristic polynomial, denoted P�m(k) (z, w), is the determinant of the
matrix �m(k)(z, w), which is the matrix of the massive Laplacian �m(k)

restricted to the graph G1 with extra weights z±1, w±1 along non-trivial
cycles of the torus. Of particular interest is the zero locus of this poly-
nomial, otherwise known as the spectral curve of the massive Laplacian:
Ck = {(z, w) ∈ (C∗)2 : P�m(k) (z, w) = 0}. We provide an explicit para-
metrization of this curve, and combining Proposition 21 and Theorem 25, we
prove that this curve has remarkable properties.

Theorem 4 For every k ∈ (0, 1), the spectral curve Ck of the massive Lapla-
cian �m(k) is a Harnack curve of genus 1.

This is reminiscent of the rational parametrization of critical dimer spectral
curves on periodic, bipartite, isoradial graphs of [29], corresponding to the
genus 0 case. We further prove the following result, see also Theorem 26.

Theorem 5 Every Harnack curve with (z, w) ↔ (z−1, w−1) symmetry arises
as the spectral curve of the characteristic polynomial of the massive Laplacian
�m(k) on some periodic isoradial graph, for some k ∈ (0, 1).

This can be compared to the fact proved in [29] that any genus 0 Harnack
curve, whose amoeba contains the origin, is the spectral curve of a critical
dimer model on a bipartite isoradial graph.
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114 C. Boutillier et al.

Since the spectral curve Ck has genus 1, the amoeba’s complement has a
single bounded component. In Proposition 28, we prove that the area of the
bounded component grows continuously from 0 to ∞ as k grows from 0 to 1.

Using the Fourier approach, the massive Green function can be expressed
using the characteristic polynomial. This approach alsoworks for other choices
of weights, and one cannot see from the formula that the locality property
is satisfied. In Sect. 5.5.1, we relate the Fourier approach and Theorem 1 by
proving that our choice of weights allow for an astonishing change of variable.
Note that this relation was not understood in the papers [9,21,26].

Outline of the paper.

• Section 2: Generalities. Review of main notions underlying the paper:
isoradial graphs and elliptic functions.

• Section 3: Massive Laplacian on isoradial graphs. Introduction of the
one-parameter family of massive Laplacian operators (�m(k)), depending
on the elliptic modulus k ∈ [0, 1). Proof of 3-dimensional consistency.
Definition of the discretemassive exponential function. Proof that it defines
a family of massive harmonic functions.

• Section 4: Massive Green function on isoradial graphs. Theorem 12
proves the local formula for the massive Green function Gm(k), and Theo-
rem 14 proves asymptotic exponential decay.

• Section 5: The case of Z
2- periodic isoradial graphs. Definition of the

characteristic polynomial of the massive Laplacian operators, of the New-
ton polygon of the characteristic polynomial. Proof of confinement results
for the Newton polygon. Definition of the spectral curve Ck and its amoeba.
Explicit parametrization of the spectral curve andproof that it has geometric
genus 1. Theorem 25 shows that the spectral curve Ck is Harnack and Theo-
rem26proves that every genus 1,Harnack curvewith (z, w) ↔ (z−1, w−1)

symmetry arises from such a massive Laplacian. Consequences of the Har-
nack property on the amoeba of the spectral curve. Growth of the area of
the bounded component of the amoeba’s complement. Derivation of the
local formula of Theorem 12 from the Fourier approach. Asymptotics of
the Green function using the approach of [41].

• Section 6: Random rooted spanning forests on isoradial graphs. Def-
inition of the statistical mechanics model of rooted spanning forests.
Theorem 34 proves an explicit, local expression for an infinite volume
Boltzmann measure involving the Green function of Theorem 12. The-
orem 36 proves an explicit, local expression for the free energy of the
model, and Theorem 38 shows a second order phase transition at k = 0
in the rooted spanning forest model. At k = 0, one recovers the Lapla-
cian considered in [26]. We thus provide a proof that the corresponding
spanning tree model is critical. Theorem 41 proves that our one-parameter
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The Z -invariant massive Laplacian on isoradial graphs 115

family of massive Laplacian defines a one-parameter family of Z -invariant
spanning forest models.

• Sections A, B, C and D. Appendices for elliptic functions, explicit com-
putations of the massive Green function, Z -invariance, rooted spanning
forests and random walks.

2 Generalities

In this section we review two of the main notions underlying this work: isora-
dial graphs and elliptic functions.

2.1 Isoradial graphs

Isoradial graphs, whose name comes from the paper [26], see also [22,34]
are defined as follows. A planar graph G = (V,E) is isoradial, if it can be
embedded in the plane in such a way that all internal faces are inscribable in a
circle, with all circles having the same radius, and such that all circumcenters
are in the interior of the faces, see Fig. 1 (top left). From now on, when we
speak of an isoradial graph G, we mean an isoradial graph together with an
isoradial embedding also denoted by G. Given an infinite isoradial graph G,
an isoradial embedding of the dual graph G∗ is obtained by taking as dual
vertices the circumcenters of the corresponding faces, see Fig. 1 (bottom left).

2.1.1 Diamond graph, angles and train-tracks

The diamond graph, denotedG
, is constructed from an isoradial graphG and
its dual G∗. Vertices of G
 are those of G and those of G∗. A dual vertex of
G∗ is joined to all primal vertices on the boundary of the corresponding face,
see Fig. 1 (top right). Since edges of the diamond graphG
 are radii of circles,
they all have length 1, and can be assigned a direction ±eiα . Note that faces
of G
 are side-length 1 rhombi.

Using the diamond graph, angles can naturally be assigned to edges of the
graphG as follows. Every edge e ofG is the diagonal of exactly one rhombus
ofG
, and we let θe be the half-angle at the vertex it has in commonwith e, see
Fig. 2. Note that we have θe ∈ (0, π

2 ), because circumcircles are assumed to
be in the interior of the faces. From now on, we actually ask more and suppose
that there exists ε > 0, such that θe ∈ (ε, π

2 − ε). We also assign two rhombus

vectors to the edge e, denoted eiαe and eiβe , see Fig. 2, and we assume that

αe, βe satisfy
βe−αe

2 = θe.
A train-track of an infinite isoradial graphG is a bi-infinite chain of adjacent

rhombi ofG
 which does not turn: on entering a face, it exits along the opposite
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116 C. Boutillier et al.

Fig. 1 Top left piece of an infinite isoradial graphG (black) with the circumcircles of the faces.
Top right the same piece of infinite graphGwith its diamond graphG
. Bottom left the isoradial
graph superimposed with its dual graph, whose vertices are the centers of the circumcircles.
Bottom right the diamond graph with a few train-tracks pictured as paths of the dual graph of
G


Fig. 2 An edge e of G is the
diagonal of a rhombus of
G
, defining the angle θe
and the rhombus vectors eiαe

and eiβe

e

eiαe

eiβe

θe

edge [30]. As a consequence, each rhombus in a train-track has an edge parallel
to a fixed direction±eiα , known as the direction of the train-track. Train-tracks
are also known as de Bruijn lines in the field of non-periodic tilings [19,20],
or rapidity lines in integrable systems [6]; the terminology line refers to the
representation of train-tracks as paths of the dual graph of G
, see Fig. 1
(bottom right). In [30], they are used to give a necessary and sufficient condition
for a planar graph to have an isoradial embedding.

A train-track is said to separate two vertices x and y of G
 if every path
connecting x and y crosses this train-track. A path from x to y in G
 is said
to be minimal if all its edges cross train-tracks separating x from y, and each
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The Z -invariant massive Laplacian on isoradial graphs 117

such train-track is crossed exactly once. An example of minimal path and
non-minimal one is given in Fig. 7.

2.1.2 Isoradial graphs as monotone surfaces of the hypercubic lattice

An isoradial graphG is said to be quasicrystalline if the number 	 of possible
directions±eiα assigned to edges of its diamond graphG
 is finite; 	 is known
as the dimension of the isoradial graph. The degree of a vertex of G is at
most 2	, and at a vertex of its diamond graph G
, there can be edges with
direction ±eiα1, . . . , ±eiα	 . The graph G
 can then be seen as the projection
of a monotone surface in Z	, see [42] for 	 = 3, and also for example [10,12],
where the lattice Z	 is spanned by unit vectors e1, . . . , e	, i.e., the image by
the linear map e j �→ eiα j . Rhombic faces of G
 are images of square 2-faces
of Z	. Since the surface is monotone, any path on the graph G
 can be lifted
to a nearest-neighbor path in Z

	.

2.1.3 Natural operations on isoradial graphs

Train-track tilting. Recall that a direction ±eiα is assigned to every train-
track of G. If we slightly change the angle α, so that none of the rhombi of
the train-track becomes flat during the deformation, we get a new isoradial
embedding of the graph G. The structure of the graph has not changed, how-
ever, if quantities are defined through geometric characteristics of the isoradial
embedding (e.g., the angles of the rhombi as is the case in this article), then
this operation provides a continuous one-parameter family of transformations
for these quantities. This operation is called train-track tilting. It is introduced
in [26] and used in the proof of Theorem 36 in Sect. 6.3.
Star-triangle transformation. If G has a star, that is a vertex of degree 3,
it can be replaced by a triangle by removing the vertex and connecting its
three neighbors. The graph obtained in this way is still isoradial: its diamond
graph is obtained by performing a cubic flip in G
, see Fig. 3. This operation
is involutive.

Fig. 3 Star-triangle transformation in an isoradial graph G and underlying cubic-flip in the
diamond graph G
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118 C. Boutillier et al.

The star-triangle transformation is locally transitive in the following sense:
if B is a bounded, connected domain obtained as the union of faces of G
,
then any other tiling of B with rhombi of the same edge-length can be obtained
from the initial one by a sequence of cubic flips [25]. As a consequence, two
isoradial graphs coinciding outside of a bounded domain can be transformed
into one another by a sequence of star-triangle transformations.

This operations has a natural geometric interpretation from the monotone
surface point of view: a cubic flip corresponds to locally deforming the
monotone surface so that it uses different 2-faces to go around the same 3-cube
of Z	.

If G has no location where such an operation can be performed, it means
that there is no triple of train-tracks intersecting eachother. However, if two
train-tracks are going to infinity by staying at distance one in G
∗, then we
can insert a rhombus “at infinity” to create a location where to perform this
transformation.

This operation, connected to the third Reidemeister move in knot theory,
plays an important role in integrable systems in two dimensions, and is closely
related to the Yang–Baxter equations [40].

2.2 Elliptic functions

This article strongly relies on Jacobi elliptic functions, which we now present.
Useful formulas are given in Appendix A, our reference is the book of Lawden
[31] and the one of Abramowitz and Stegun [3].
Elliptic modulus and quarter periods. Let k ∈ [0, 1], referred to as the
ellipticmodulus, and let k′ = √

1 − k2 be the complementary ellipticmodulus.
The complete elliptic integral of the first kind, denoted K = K (k), and the
complete elliptic integral of the second kind, denoted E = E(k), are defined
by:

K = K (k) =
∫ π/2

0

1√
1 − k2 sin2 τ

dτ,

E = E(k) =
∫ π/2

0

√
1 − k2 sin2 τ dτ.

The complementary integrals are K ′ = K ′(k) = K (k′) and E ′ = E ′(k) =
E(k′). They satisfy Legendre’s identity [31, 3.8.29]:

EK ′ + E ′K − KK ′ = π

2
. (6)

Jacobi elliptic functions. There are twelve Jacobi elliptic functions, each of
them corresponds to an arrow drawn from one corner of a rectangle to another,
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The Z -invariant massive Laplacian on isoradial graphs 119

Fig. 4 The rectangle
[0, K ] + [0, iK′] and the four
corners labeled s, c, d, n

s
(0) (K)

(iK ′) (K + iK ′)

c

n d

see Fig. 4. The corners of the rectangle are labeled, by convention, s, c, d and
n. These points respectively correspond to the origin 0, K on the real axis,
K + iK′, and iK′ on the imaginary axis. The numbers K and iK′ are called the
quarter periods. The twelve Jacobi elliptic functions are then pq(·|k), where
each of p and q is a different one of the letters s, c, d, n. The Jacobi elliptic
functions are then the unique doubly periodic, meromorphic functions on C,
satisfying the following properties [3, Chapter 16]:

• There is a simple zero at the corner p, and a simple pole at the corner q.
• The step from p to q is equal to half a period of the function pq(·|k). The
function pq(·|k) is also periodic in the other two directions, with a period
such that the distance from p to one of the other corners is a quarter period.

• The coefficient of the leading term in the expansion of pq(u|k) in ascending
powers of u about u = 0 is 1. In other words, the leading term is u, 1/u or
1, according to whether u = 0 is a zero, a pole or an ordinary point.

For instance, the function sc(·|k) (which is themost important Jacobi elliptic
function here) has a simple zero at 0 (with residue 1), a simple pole at K , and
is doubly periodic with periods 2K and 4iK′.

Jacobi functions pq(·|k) also satisfy anti-periodicity relations: if 2L ∈
{2K , 2iK′, 2K + 2iK′} is not a period, then pq(· + 2L|k) = − pq(·|k), see
[3, 16.2 and 16.8].
Degenerate elliptic functions. Elliptic functions contain as limiting cases
trigonometric functions (k = 0) and hyperbolic functions (k = 1). For
instance, sc degenerates for k = 0 into tan and for k = 1 into sinh; dn
degenerates for k = 0 to 1, see [3, 16.6]. Note that one of the periods goes to
infinity: for k = 0 we have K = π/2 and K ′ = ∞, while for k = 1, K = ∞
and K ′ = π/2; explainingwhy the limit functions are periodic in one direction
only.

From now on, we suppose that the elliptic modulus k is in [0, 1).
Integrals of squared Jacobi elliptic functions. Following [3, 16.25.1], we
introduce

∀ u ∈ C, Dc(u|k) =
∫ u

0
dc2(v|k) dv. (7)
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120 C. Boutillier et al.

Since dc2(·|k) has no residue at its poles, the function Dc(·|k) is meromor-
phic on C. It is related to Jacobi epsilon function [3, 16.26.7].

The definition of the massive Laplacian of Sect. 3 involves the function
A(·|k), defined as

∀ u ∈ C, A(u|k) = 1

k′

(
Dc(u|k) + E − K

K
u

)
. (8)

The function A(·|k) is periodic in the direction 2K and quasi-periodic in
2i K ′, see (62) and (63).

The explicit expression of the Green function of Theorem 12 involves the
function H(·|k), defined from the function A(·|k) by

∀ u ∈ C, H(u|k) = −ikK ′

π
A

(
iu

2

∣∣∣k′
)

. (9)

Properties and identities satisfied by the functions A(·|k) and H(·|k) are
stated in Lemmas 44 and 45 of Appendix A.2.
One-parameter family of angles. Finally, we define a one-parameter family
of angles, depending on the elliptic modulus. For every k ∈ [0, 1) and every
edge e of G,

θe = θe
2K

π
∈ (0, K ), αe = αe

2K

π
, βe = βe

2K

π
.

Since the elliptic modulus is fixed, the dependence in k is not made explicit
in the notation θe, αe, βe.

3 Massive Laplacian on isoradial graphs

In Sect. 3.1, we introduce a one-parameter family (�m(k))k∈[0,1) of massive
Laplacian operators defined on an infinite isoradial graphG, involving elliptic
functions. We prove that the mass is non-negative and that the conductances
and mass are analytic at k = 0. Then, in Sect. 3.2, we show that the equation
�m(k) f = 0 satisfies 3-dimensional consistency. Finally, in Sect. 3.3, we
introduce the discrete k-massive exponential function, which induces a family
ofmassive harmonic functions. The latter play a key role in the explicit formula
for the massive Green function.

In the whole of this section, we let G be an infinite isoradial graph, and we
fix an elliptic modulus k ∈ [0, 1). Let us introduce some notation for edges and
angles around a vertex x ofG of degree n: denote by e1 = xx1, . . . , en = xxn
edges incident to x ; for every edge e j , denote by θ j its rhombus half-angle
and by eiα j , eiα j+1 its two rhombus vectors, see Fig. 5.
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The Z -invariant massive Laplacian on isoradial graphs 121

Fig. 5 Notation for edges
and angles around a vertex x
of G of degree n

eiα2

eiα1

eiαn

e1

e2

en

x1

x2

xnx θn

θ1

3.1 Definitions

Definition 3.1 Suppose that edges of the graph G are assigned positive
conductances (ρ(e))e∈E and that vertices are assigned (squared) masses
(m2(x))x∈V. Then, themassive Laplacian operator �m : CV → C

V is defined
by:

(�m f )(x) =
∑

y∼x

ρ(xy)[ f (x) − f (y)] + m2(x) f (x),

= d(x) f (x) −
∑

y∼x

ρ(xy) f (y), (10)

where d(x) = m2(x) + ∑
y∼x ρ(xy). The massive Laplacian operator is rep-

resented by an infinite matrix, also denoted �m , whose rows and columns are
indexed by vertices of G, and whose coefficients are given by:

∀ x, y ∈ V, �m(x, y) =

⎧
⎪⎨

⎪⎩

−ρ(xy) if y ∼ x,

d(x) if y = x,

0 otherwise.

A function f in C
V is massive harmonic on G if �m f = 0.

We now introduce a one-parameter family of conductances and masses,
indexed by the elliptic modulus k ∈ [0, 1).
Definition 3.2 To every edge e ofG, assign the conductance ρ(e) = ρ(θe|k),
defined by:

ρ(θe|k) = sc(θe|k). (11)

To every vertex x of degree n of G, assign the mass m2(x) = m2(x |k),
defined by:

m2(x |k) =
n∑

j=1

[A(θ j |k) − ρ(θ j |k)] ⇔ d(x |k) =
n∑

j=1

A(θ j |k), (12)
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where d(x |k) is the diagonal term at the vertex x , and A(·|k) is given by
Eq. (8).

The main object studied in this paper is the corresponding k-massive Lapla-
cian operator denoted by �m(k), defined by:

(�m(k) f )(x) =
n∑

j=1

[A(θ j |k) f (x) − sc(θ j |k) f (x j )]. (13)

Notation. From now on, to simplify notation, we only keep the dependence
in k in statements and omit it in proofs, writing �m , ρ(θe) = sc(θe), m2(x),
d(x) = ∑n

j=1 A(θ j ).
From Definition 3.2, it is not clear that the mass is non-negative and that

the conductance and mass are analytic at k = 0. This is proved in the next two
results.

Proposition 6 For every k ∈ [0, 1) and every vertex x of G, m2(x |k) � 0; it
is equal to 0 if and only if k = 0.

Proof Returning to the definition of m2(x), see (12), it suffices to show that
each term A(θ j ) − sc(θ j ) is positive when k > 0 and equal to 0 when k = 0,
for θ j ∈ (0, K ). Consider the function f (u) := A(u)− sc(u) on [0, K ]. Then
f (0) = 0 by definition (8). To prove that f (K ) = 0, we observe that as
u → 0, using (51) and (60),

f (K − u) = A(K − u) − sc(K − u)

= −A(u) + dc(u) − cn(u)

k′ sn(u)
= O(u) + O(u2)

u + O(u3)
→ 0.

Moreover, using formulas (57) and (64), we have

d2 f (u)

du2
= d

du

(
dc2(u)

k′ − K − E

k′K
− dc(u) nc(u)

)
= − sn(u)

cn3(u)
(k′ − dn(u))2.

When k > 0, the second derivative of f is negative on (0, K ) implying
that f is strictly concave on (0, K ) and thus positive. When k = 0, the first
derivative of f is identically 0 so that f is constant and equal to 0. ��

Lemma 7 For every edge e and every vertex x ofG, the conductance ρ(θe|k)
and the mass m2(x |k) are analytic at k = 0.
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Proof We use the expansion [3, 16.23.9] of sc in terms of the nome q =
exp(−πK ′/K ):

ρ(θe|k) = sc

(
θe

2K (k)

π
|k
)

= π

2k′K (k)
tan(θe)

+ 2π

k′K (k)

∞∑

n=1

(−1)n
q2n

1 + q2n
sin(2nθe).

Since 1/k′, K and q are analytic at k = 0 (see [3, 17.3.11 and 17.3.21] for
K and q, respectively) we obtain the analyticity of the conductances.
The addition formula (61) for A reduces the analyticity of the masses to

those of the conductances, thereby concluding the proof. ��
Example: G = Z

2. For every edge e, we have θe = π
4 , i.e., θe = K

2 , implying
by [31, 2.4.10] that ρ(e) = sc( K2 ) = 1√

k′ . Moreover, using (12) we have, for
every vertex x ,

m2(x) = 4

(
A

(
K

2

)
− sc

(
K

2

))
= 2

(
1 − 1√

k′

)2

,

where to derive A( K2 ) we have used (60) with u = K
2 and again [31, 2.4.10].

In particular, the analyticity of the conductances and masses around k = 0
(k′ = 1) proved in Lemma 7 is straightforward in this case.

3.2 Massive harmonic functions and the star-triangle transformation

Proposition 8 below proves that the equation �m(k) f = 0 satisfies 3-
dimensional consistency [15], meaning that massive harmonic functions are
compatible under star-triangle transformations of the underlying graph defined
in Sect. 2.1.3.

Let us denote by GY a finite or infinite isoradial graph containing a star,
and byG� the isoradial graph obtained fromGY by performing a star-triangle
transformation. The vertex set ofGY is the vertex set ofG� plus x0, see Fig. 6.

Proposition 8 • Let f be a function on GY. If f is massive harmonic at x0,
then for all vertices x of G�, (�

m(k)
GY

f )(x) = (�
m(k)
G�

f )(x).
• Conversely, let f be a function on G�. Then there is a unique way of
extending it to the vertex x0 in such a way that f is massive harmonic at
x0 and (�

m(k)
GY

f )(x) = (�
m(k)
G�

f )(x) for all vertices x of G�.
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ρ(θ1)
ρ(θ2)

ρ(K − θ1)

ρ(K − θ3)

m2(x0)

ρ(K − θ2)θ̄3

θ̄1

θ̄2

ρ(θ3)

π
2 − θ̄2

π
2 − θ̄1

π
2 − θ̄3

x1

x3

x1

x0

x3

x2 x2

m′2(x1) m′2(x2)

m′2(x3)m2(x3)

m2(x1) m2(x2)

Fig. 6 Star-triangle transformation and notation. If an isoradial graph GY has a star (left),
i.e., a vertex x0 of degree 3, it can be transformed into a new isoradial graph G� having a
triangle (right) connecting the three neighbors x1, x2, x3 of x0, by performing a cubic-flip on
the underlying diamond graph G
, and vice-versa

Proof Refer to Fig. 6 for notation of vertices and weights of the star/triangle.
Consider a function f onGY, and also denote by f its restriction toG�. Every
vertex x which is not one of x1, x2, x3, x0 has the same neighbors in GY and
G�, so that:

(
�m

GY
f
)

(x) =
(
�m

G�
f
)

(x).

Therefore, we only need to consider what happens at vertices x1, x2, x3, x0.
Suppose that we have proved the following:

∀ i ∈ {1, 2, 3}, ρ(θ j )ρ(θk)
(
�m

G�
f − �m

GY
f
)

(xi ) = �m
GY

f (x0), (14)

where {i, j, k} = {1, 2, 3}. Then, the first part of Proposition 8 immediately
follows.

For the second part, consider a function f onG�. Asking that its extension
to GY is massive harmonic at x0 requires that

�m
GY

f (x0) =
[
m2(x0) +

3∑

	=1

ρ(θ	)

]
f (x0) −

3∑

	=1

ρ(θ	) f (x	) = 0,

which determines the value of f at x0. But then, by Eq. (14), the Laplacian on
GY of f coincides with the one of f on G� at the vertices x1, x2, x3, which
concludes the proof of the second part.

We are thus left with proving Eq. (14). Fix i ∈ {1, 2, 3}, and let Oi be the
contribution to the massive Laplacian evaluated at xi , coming from vertices
outside of the triangle/star. It is common to both graphs, and returning to
Expression (10), we have
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(
�m

GY
f
)

(xi ) = [m2(xi ) + ρ(θi )] f (xi ) − ρ(θi ) f (x0) + Oi ,

(
�m

G�
f
)

(xi ) =
⎡

⎣m′2(xi ) +
∑

	�=i

ρ(K − θ	)

⎤

⎦ f (xi )

− ρ(K − θ j ) f (xk) − ρ(K − θk) f (x j ) + Oi .

Using Eq. (72) of Appendix A,

m′2(xi ) − m2(xi ) = ρ(θi ) −
∑

	�=i

ρ(K − θ	) − k′ρ(K − θ j )ρ(K − θk)ρ(θi ),

and taking the difference yields that (�m
G�

f )(xi ) − (�m
GY

f )(xi ) is equal to

−ρ(K − θ j ) f (xk) − ρ(K − θk) f (x j ) − k′ρ(K − θ j )

ρ(K − θk)ρ(θi ) f (xi ) + ρ(θi ) f (x0).

Multiplying this equation by k′ρ(θ j )ρ(θk), using the fact that k′ρ(K −
θ	)ρ(θ	) = 1 (see Identity (51)), and k′ ∏3

	=1 ρ(θ	) = m2(x0) + ∑3
	=1 ρ(θ	)

(see Eq. (71)), we conclude:

k′ρ(θ j )ρ(θk)
(
�m

G�
f − �m

GY
f
)

(xi )

=
[
m2(x0) +

3∑

	=1

ρ(θ	)

]
f (x0) −

3∑

	=1

ρ(θ	) f (x	) = (�GY f )(x0). ��

When extending f from G� to GY, we have four equations which could
individually determine the value of f (x0): the massive harmonicity condi-
tion at x0, and the three equations from (14). The remarkable fact, proved
in Proposition 8, is that all these conditions give the same result; this is also
known as 3-dimensional consistency of the equation �m(k) f = 0, because of
the geometric interpretation of the star-triangle transformation on quasicrys-
talline isoradial graphs seen as monotone surfaces inZ	 [15]. This condition is
then sufficient to ensure 	-dimensional consistency, in the following sense: let
(Gn)n be a sequence of isoradial graphs where two successive graphs differ by
a star-triangle transformation, representing a discrete sequence of monotone
surfaces in Z

	. Then, by Proposition 8, from a massive harmonic function f0
on G0 one can construct, in a consistent way, a harmonic function fn on Gn ,
for every n. In particular, if the sequence (Gn)n spans the whole 	-dimensional
lattice Z	 (namely, for every vertex of Z	, there exists an n such that this ver-
tex is in the monotone surface Gn), then a massive harmonic function on G0
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can uniquely be extended to Z
	, and its restriction to any monotone surface,

viewed as an isoradial graph, is again massive harmonic.
This property is in the spirit of integrable equations on quad-graphs dis-

cussed in [1,15].OurmassiveLaplacian satisfies a so-called three-leg equation,
using the terminology of [1], as shown in the forthcoming Eq. (17), but it does
not fit in their classification of three-leg integrable equations, because it does
not satisfy their symmetry requirement and does not allow to define values on
G∗.

3.3 The discrete k-massive exponential function

In this section we introduce the discrete k-massive exponential function. In
Proposition 11,we prove that it defines a family ofmassive harmonic functions.
This is one of the key facts needed to prove the local formula for the massive
Green function of Theorem 12.

3.3.1 Definition

Definition 3.3 The discrete k-massive exponential function or simplymassive
exponential function, denoted e(·,·)(·|k), is a function from V
 ×V
 ×C to C.
Consider a pair of vertices x, y of G
, and an edge-path x = x1, . . . , xn = y
of the diamond-graph G
 from x to y; let eiα j be the vector corresponding to
the edge x j x j+1, see Fig. 7. Then e(x,y)(·|k) is defined inductively along the
edges of the path as follows. For every u ∈ C,

e(x j ,x j+1)(u|k) = i
√
k′ sc(uα j |k), e(x,y)(u|k) =

n−1∏

j=1

e(x j ,x j+1)(u|k),

(15)

where uα = u−α
2 , and recall that α j = α j

2K
π
.

xj+1

xj
xj+1

xj
eiᾱjeiᾱj

y y

xx

Fig. 7 Examples of paths ofG
 from x to y used to compute the discrete massive exponential
function e(x,y)(·|k). The path on the right is minimal, whereas the one on the left is not
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Note thatwhen k = 0, one recovers the discrete exponential function of [35],
see also [26] after the change of variable z = eiu .

Lemma 9 The discrete k-massive exponential function is well defined, that
is, for every pair of vertices x, y of G
, and for every u ∈ C, e(x,y)(u|k) is
independent of the choice of edge-path from x to y.

Proof If (x, y) is an edge of G
 corresponding to a vector eiα , then the edge
(y, x) corresponds to the vector eiα+π = eiα+2K . Observing that uα+2K =
uα − K , we deduce by (51):

e(y,x)(u|k) = i
√
k′ sc(uα+2K |k) = i

√
k′ × −1

k′ sc(uα|k) = e(x,y)(u|k)−1.

This implies that the product of the local factors around any rhombus is
equal to 1. Indeed, the contribution of a side of the rhombus comes with its
inverse, which is the contribution of the opposite side. Therefore, the product
of every closed path in G
 is equal to 1. ��
Remark 10 A consequence of Definition 3.3 and Lemma 9 is that the zeros
(resp. poles) of e(x,y)(·|k) are encoded by the steps of a minimal path from
x to y. Specifically, if the steps of a minimal path from x to y are {eiα	}	,
then the zeros (resp. poles) are {α	}	 and {α	 + 4iK′}	 (resp. {α	 + 2K }	 and
{α	 + 2K + 4iK′}	).

The construction of a discrete massive harmonic function from a start-
ing point, by successive multiplication by local factors along any path is
called a discrete zero curvature representation of the solutions of the equa-
tion �m(k) f = 0, see [15, Chapter 6] for analogous constructions. This
property, together with 3-dimensional consistency proved in Proposition 8,
means that the massive Laplacian �m(k) is discrete integrable.

3.3.2 Restriction of the domain of definition

Recall from Sect. 2.2 that the elliptic function sc(·|k) is doubly-periodic with
period 2K and 4iK′. Therefore the parameter u of the massive exponential
functione(x,y)(u|k)defined in (15) canbe seen as livingon the torusC/(4KZ+
8iK′

Z). However, on this torus, the function u �→ sc(uα|k) satisfies sc((u +
4iK′)α|k) = sc(uα + 2iK′|k) = − sc(uα|k).

If both vertices x and y belong to G, the number of sc factors in the def-
inition of e(x,y)(u|k) is even, implying that e(x,y)(·|k) is an elliptic function
with periods 4K and 4iK′. In the following, when working with the massive
exponential function restricted to pairs of vertices of G, we suppose that the
parameter u belongs to the torus T(k) := C/(4KZ + 4iK′

Z).
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3.3.3 Massive exponential functions are massive harmonic functions

The next proposition proves the key property of the discrete massive expo-
nential function, i.e., that it defines a family of massive harmonic functions.

Proposition 11 For every u ∈ T(k), the massive exponential function
e(x,y)(u|k) is massive harmonic on G in each variable x and y. Namely,

∀ x ∈ V, �m(k) e(·,x)(u|k) = �m(k) e(x,·)(u|k) = 0.

Proof Let y be a vertex of G. Since �m is symmetric and e(x,y)(u + 2K ) =
e(y,x)(u), it is enough to prove that for every vertex x ofG, (�m e(·,y)(u))(x) =
0. Suppose that x has degree n and denote by x1, . . . , xn the vertices inci-
dent to x , by e1, . . . , en and θ1, . . . , θn , the corresponding edges and rhombus
angles, see Fig. 5. By definition of the massive exponential function, we have
e(x j ,y)(u) = e(x j ,x)(u)e(x,y)(u). As a consequence, using (13),

(�m e(·,y)(u))(x) =
⎛

⎝
n∑

j=1

[A(θ j ) − sc(θ j )e(x j ,x)(u)]
⎞

⎠ e(x,y)(u).

It thus suffices to prove that the prefactor

n∑

j=1

[A(θ j ) − sc(θ j )e(x j ,x)(u)] = 0. (16)

Replacing the exponential function by its definition, and referring to Fig. 5
for the notation of the rhombus vectors, we have for every j

A(θ j ) − sc(θ j ) e(x j ,x)(u) = A

(
α j+1 − α j

2

)

+ k′ sc(θ j ) sc(uα j+2K ) sc(uα j+1+2K )

= A(uα j+2K ) − A(uα j+1+2K ), by (61) of Lemma 44.
(17)

By Sect. 2.1.1, the angles α j , α j+1 are such that
α j+1−α j

2 = θ j . This implies
that

(αn+1 + 2K ) − (α1 + 2K ) =
n∑

j=1

α j+1 − α j = 2
n∑

j=1

θ j = 4K .
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We thus have uα1+2K = uαn+1+2K + 2K . Summing over j we obtain:

n∑

j=1

[A(θ j ) − sc(θ j )e(x j ,x)(u)] =
n∑

j=1

[A(uα j+2K ) − A(uα j+1+2K )]

= A(uαn+1+2K + 2K ) − A(uαn+1+2K ) = 0,

where in the last equalitywe have used Eq. (62) of Lemma 44 inAppendixA.2.
��

4 Massive Green function on isoradial graphs

In the whole of this section, we let G be an infinite isoradial graph, and fix
an elliptic modulus k ∈ (0, 1). We consider the inverse Gm(k) of the massive
Laplacian operator�m(k), that is themassive Green function, whose definition
we recall in Sect. 4.1. In Theorem 12 of Sect. 4.2, we prove an explicit local
formula for the massive Green function. Then, in Theorem 14 of Sect. 4.3,
using a saddle-point analysis, we prove explicit asymptotic exponential decay
of the Green function.

4.1 Definition

The space of functions on V with finite support is endowed with a natural
scalar product: 〈 f, g〉 = ∑

x∈V f (x)g(x), which can be completed into the
Hilbert space L2(V).

The operator (�m(k)), defines a symmetric bilinear form on L2(V), called
the energy form or Dirichlet form E(·, ·|k):

E( f, g|k) = 1

2
〈 f, (�m(k))g〉

= 1

2

∑

x∈V
m2(x |k) f (x)g(x)

+
∑

y∼x

ρ(θxy|k)( f (x) − f (y))(g(x) − g(y)).

Note that the condition imposed on rhombus half-angles, namely that they
are in (ε, π

2 −ε) for some ε > 0, implies that the degree of vertices is uniformly
bounded, and that conductances (ρ(θe)) are uniformly bounded away from
0 and infinity. Moreover, since k > 0, masses (m2(x)) are also uniformly
bounded. Therefore, there exist two constants c,C > 0 such that for all f ∈
L2(V),
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c〈 f, f 〉 � 〈 f, (�m(k)) f 〉 � C〈 f, f 〉.
As a consequence, the inverse of �m(k), called the massive Green function

anddenotedbyGm(k), iswell defined, and canbe expressed from the semigroup
(e−t�m(k)

)t�0 as:

Gm(k) =
∫ ∞

0
e−t�m(k)

dt.

For every f ∈ L2(V), Gm(k) f ∈ L2(V), and Gm(k) is uniquely character-
ized by the fact that for any functions f, g in L2(V), E(Gm(k) f, g|k) = 〈 f, g〉.

Like the massive Laplacian, the massive Green function can be seen as an
infinite symmetric matrix with rows and columns indexed by vertices of G as
follows:

∀ x, y ∈ V, Gm(k)(x, y) = (Gm(k)δy)(x).

Note that for any vertex y of G, x �→ Gm(k)(x, y) belongs to L2(V). In
particular,

lim
x→∞Gm(k)(x, y) = 0.

4.2 Local formula for the massive Green function

Theorem 12 proves an explicit formula for the massive Green function Gm(k).
Notable features of this theorem are explained in the introduction and briefly
recalled in Remark 13.

Theorem 12 Let G be an infinite isoradial graph. Then, for every pair of
vertices x, y of G, the massive Green function Gm(k)(x, y) has the following
explicit expression:

Gm(k)(x, y) = k′

4iπ

∫

Cx,y

e(x,y)(u|k)du, (18)

where the contour of integration Cx,y is the vertical closed path ϕx,y +
[0, 4iK′(k)] on T(k), winding once vertically and directed upwards, and
ϕx,y = π

2K ϕx,y is the angle of the ray R
−→xy, see Fig. 8.

Alternatively, the massive Green function Gm(k)(x, y) can be expressed as

Gm(k)(x, y) = k′

4iπ

∮

γx,y

H(u|k)e(x,y)(u|k)du, (19)

where the function H is defined in Eq. (9), γx,y is a trivial contour on the torus,
not crossing Cx,y and containing in its interior all the poles of e(x,y)(·|k) and
the pole of H(·|k), see Fig. 8.
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•

−2K

−2K − 2iK ′ u0

u0 •

•
ϕx,y

ϕx,y−2K + 2iK ′ 2K + 2iK ′

2K − 2iK ′−2iK ′

�

�
Cx,y γx,y

���� � �

�

�

�

�

�

C′
x,y

�

◦◦◦ ◦ ◦ ◦

��length < 2K

Fig. 8 The fundamental rectangle [−2K , 2K ] + i[−2K ′, 2K ′] with a representation of the
integration contours Cx,y and γx,y of the Green function in (18) and (19), the poles of the
exponential function e(x,y)(·|k) (white squares), the zeros of e(x,y)(·|k) (white bullets), the
pole of the function H(·|k) in (19) (black square), the saddle point u0 and the steepest descent
contour C′

x,y used in the proof of Theorem 14

Remark 13

• Formula (18) has the remarkable feature of being local, meaning that the
Green function Gm(k)(x, y) is computed using geometric information of a
path from x to y only. This feature is inherited from themassive exponential
function, see Definition 3.3. Note also that there is no periodicity assump-
tion on the graphG, and that explicit computations can be performed using
the residue theorem, see Formulas (20), (21) and (22). More details and
a description of the context, in particular the papers [26] and [9], can be
found in the introduction.

• In the limiting case k → 0, the torus becomes an infinite cylinder (K →
π/2 and K ′ → ∞), the contour of integration γx,y becomes an infinite
(vertical) straight line, and one has H(u) → u/(2π) thanks to Lemma 45
of Appendix A.2. In this way, we formally obtain the following expression
for the massless Green function:

Gm(0)(x, y) = 1

8iπ2

∫

γx,y

u e(x,y)(u|0)du.

This expression, after the change of variable z = −eiu , is exactly the one
given by Kenyon in [26, Theorem 7.1]. Strictly speaking, the limit of (18)
when k goes to 0 is infinite, which can be expected, since when k = 0, the
mass vanishes and the corresponding randomwalk is recurrent. However, if
the diagonal is subtracted, one can take the limit, make sense of the change
of variable, and recover Kenyon’s expression.

• Note that we can add to H in (19) any elliptic function f on T(k) without
changing the result. Indeed, the sum of residues of f e(x,y) onT(k) is equal
to zero.
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Proof Let us first prove the equality between expressions (18) and (19). The
function H is multivalued because of a horizontal period. By Lemma 45 of
Appendix A.2, a determination of H on T(k)\Cx,y is meromorphic on this
domain, it has a single pole at 2iK′, and the jump across Cx,y is constant and
equal to 1. We start from expression (19). On the torus T(k) deprived of Cx,y
and from the poles of H e(x,y), γx,y is homologically equivalent to two vertical
contours, one on each side ofCx,y , with different orientations. The sum of the
integrals of H e(x,y) on these two vertical contours is equal to the integral
along Cx,y of the jump of H e(x,y) across Cx,y , which is equal to e(x,y). We
thus obtain expression (18).

The vertex y is considered fixed. Denote by f (x) the common value of
the right hand side of (18) and (19). Using the idea of the argument of [26],
we now prove that f (x) is the Green function Gm(x, y). We first show that
(�m f )(x) = δy(x). The argument is separated into two cases.

Case x �= y. Denote by eiα1, . . . , eiαn the unit vectors coding the edges ofG

around x , and by x1, . . . , xn the neighbors of x in G listed counterclockwise,
such that x j = x + eiα j + eiα j+1 . For definiteness, we choose eiα1 to be the
first vector when going counterclockwise around x , starting from the segment
[y, x], and we have α j+1 = α j +2θ j , where θ j ∈ (ε, π/2−ε) is the rhombus
half-angle of the edge xx j .

The poles of the function e(x,y)(u) are encoded by the steps of a minimal
path from x to y. If the steps of the minimal path are {eiα	}, the poles are
{α	 + 2K }, see Remark 10 and Fig. 8. According to [9, Lemma 17], the steps
are contained in a sector of angle not larger than π , avoiding the half-line
R

+−→yx . As a consequence, the poles {α	 + 2K } can be chosen in an interval
of length not larger than 2K and not touching the contour Cx,y used for the
integration in (18) (see again Fig. 8). The contour Cx,y can be moved to the
left or to the right as long as it does not cross any of these poles.

In the function e(x j ,y)(u) = e(x j ,x)(u)e(x,y)(u), we have (at most) a subset
of the poles of e(x,y)(u) (since one of the poles of e(x,y)(u) can be canceled by
a zero of e(x j ,x)(u)), plus those associated to e(x j ,x)(u), which are α j , α j+1.
The whole set of poles {α	 +2K , α j } avoids a sector to which we can move all
the contours Cx,y and Cx1,y, . . . ,Cxn,y , without crossing any pole, and thus
use the same contour of integration C for f (x) and f (x j ). By linearity of the
integral, we thus have

(�m f )(x) =
(

k′

4iπ
�m

∫

C
exp(·,y)(u)du

)
(x)= k′

4iπ

∫

C
[�m exp(·,y)(u)](x)du.

By Proposition 11, the term in square brackets on the right-hand side is zero,
and we conclude that f is massive harmonic outside of y.
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Case x = y. By definition of the massive Laplacian, we have

(�m f )(x) = d(x) f (x) −
n∑

j=1

ρ(θ j ) f (x j ).

The values of f at x and its neighbors x j are obtained by a direct computation
of the integral defining f with the residue theorem, explicited in Lemma 46
of Appendix B:

f (x j ) = H(α j ) − H(α j+1) + k′K ′

π
e(x j ,x)(2iK

′), f (x) = k′K ′

π
,

with the convention that αn+1 = α1 + 4K . By Eq. (16),

k′K ′

π

⎛

⎝d(x) −
n∑

j=1

ρ(θ j )e(x j ,x)(2iK
′)

⎞

⎠ = 0,

so that the remaining terms are

(�m f )(x) =
n∑

j=1

H(α j+1) − H(α j ) = H(α1 + 4K ) − H(α1) = 1,

where in the last equality, we used the first point of Lemma 45.
In the forthcomingProposition 18,weprove that f (x)decays (exponentially

fast) to zero. Since Gm(x, y) also goes to zero when x goes to infinity, and has
the same massive Laplacian as f , the difference Gm(·, y) − f tends to zero
at infinity and is harmonic: by the maximum principle, f has to be equal to
Gm(·, y). ��
Examples.Formula (19) of Theorem12 allows for explicit computations using
the residue theorem. We now list a few special values. Details are given in
Lemma 46 of Appendix B.

• For every vertex x of G,

Gm(k)(x, x) = k′K ′

π
. (20)

Note that this value does not depend on x , and is a function of k only.
• Let x, y be two adjacent vertices ofG, and let θ be the rhombus half-angle
of the edge xy, then

Gm(k)(x, y) = K ′ dn(θ)

π
− H(2θ)

sc(θ)
. (21)
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• In the limit k → 0,

lim
k→0

(Gm(k)(x, x) − Gm(k)(x, y)) = θ

π tan θ
, (22)

which is the value obtained by Kenyon [26, Sect. 7.2] in the critical case.

4.3 Asymptotics of the Green function

In this section, we suppose that the graph G is quasicrystalline and compute
asymptotics of the Green function Gm(k)(x, y) when the graph distance inG

between x and y is large.

Under the quasicrystalline assumption, the number of directions ±eiα

assigned to edges of the diamond graph G
 is finite, and G
 can be seen
as the projection of a monotone surface in Z

	, see Sect. 2.1.2. The distance
between two vertices x and y ofG, measured as the length of a minimal path,
is thus the graph distance between x and y seen as vertices of G
. It is also
the graph distance in Z

	 between the corresponding points on the monotone
surface, and we denote it by |x − y|, where x − y ∈ Z

	 is the vector between
the points on the surface.

In order to state Theorem 14, we need the following notation. By [9, Lemma
17], the set {α1, . . . , αp} of zeros of e(x,y)(u) is contained in an interval of
length 2K − 2ε, for some ε > 0. Let us denote by α the midpoint of this
interval. We also need the function χ defined by

χ(u) = 1

|x − y| log{e(x,y)(u + 2iK′)},

which is analytic in the cylinder R/(4KZ) + (−2iK′, 2iK′).

Theorem 14 Let G be a quasicrystalline isoradial graph. When the distance
|x − y| between vertices x and y of G is large, we have

Gm(k)(x, y) = k′

2
√
2π |x − y|χ ′′(u0|k)

e|x−y|χ(u0|k) · (1 + o(1)), (23)

where u0 is the unique u ∈ α + (−K + ε, K − ε) such that χ ′(u|k) = 0, and
χ(u0|k) < 0.

For periodic isoradial graphs, a geometric interpretation of u0 is provided
in Sect. 5.5.2.

The proof consists in applying the saddle-point method to the contour inte-
gral expression (18) given in Theorem 12. Note that the approach is different
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from [26], where the author obtains asymptotics of the Green function by the
Laplace method, as there are no saddle-points in the critical case. The proof
of Theorem 14 is split as follows. In Lemma 15, we first show that there is a
unique u ∈ α + (−K + ε, K − ε) such that χ ′(u|k) = 0. Then, in Lemma 16
we prove that χ(u0|k) < 0, implying exponential decay of the Green function.
Finally, we conclude the proof of Theorem 14. Note that Lemmas 15 and 16
do not use the quasicrystalline assumption.

Let us introduce some notation. Denote by N j the number of times a step
eiα j is taken in a minimal path from x to y, so that N1 + · · · + Np = |x − y|.
Using Eq. (15), one has

e(x,y)(u) =
{
i
√
k′ sc

(
u − α1

2

)}N1

× · · · ×
{
i
√
k′ sc

(
u − αp

2

)}Np

.

With n j = N j/|x − y|, the function χ is equal to

χ(u) = n1 log

{√
k′ nd

(
u − α1

2

)}
+ · · · + n p log

{√
k′ nd

(
u − αp

2

)}
,

(24)
where we used (54) to simplify e(x,y)(u + 2iK′). Because of the logarithm,
χ is not meromorphic on T(k), but is meromorphic (and even analytic) in the
cylinder R/(4KZ) + (−2iK′, 2iK′).

Lemma 15 There is a unique u0 inα+(−K+ε, K−ε) such thatχ ′(u|k) = 0.

Proof Rotating G, we assume that α = 0. Using [31, 2.5.8], the equation of
Lemma 15 is equivalent to:

n1
sn · cn
dn

(
u − α1

2

)
+ · · · + n p

sn · cn
dn

(
u − αp

2

)
= 0. (25)

The above function is meromorphic on the torusT(k). By Landen’s ascend-
ing transformation (see (58) of Appendix A), Eq. (25) can be rewritten in a
simpler way, as follows:

n1 sn(v − γ1|	) + · · · + n p sn(v − γp|	) = 0, (26)

where 	 and μ are defined in (58), and we have noted v = (1+μ)u
2 and γi =

(1+μ)αi
2 .
Using the relation (59) between K , K ′ and K (	), K ′(	), and the identity

(1 + μ)(1 + 	) = 2, under the change of variable, the torus T(k) becomes
T̃(	) = C/(4K (	)Z+ 2iK′(	)Z), and the γi ’s are in (−K (	) + ε̃, K (	) − ε̃ ).
Hereafter we shall replace ε̃ by ε.
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Let f be the function f (v) = 2(1+μ)χ ′( 2v
1+μ

) defined on the left-hand side
of Eq. (26). We now show that f has a unique zero on the interval (−K (	) +
ε, K (	) − ε).

First notice that in the degenerate case 	 = 0 this is obvious: the
addition formula for the sine function gives the unique solution v =
arctan

(∑p
j=1 n j sin(γ j )∑p
j=1 n j cos(γ j )

)
∈ (−π/2, π/2). In the other degenerate case 	 = 1,

sn becomes the hyperbolic tangent function, and (26) is a sum of p increasing
functions onR, which obviously has a unique zero onR. The situation is more
complicated in the remaining cases 	 ∈ (0, 1), where we show that:

1. f has 2p simple poles in T̃(	) (and thus also 2p zeros in T̃(	), counted
with multiplicities);

2. f has at least one zero in the interval (−K (	) + ε, K (	) − ε) ⊂ T̃(	), and
at least one zero in (K (	) + ε, 3K (	) − ε) ⊂ T̃(	);

3. f has at least 2p − 2 zeros on −iK′(	) + R/(4K (	)Z).

From 1, 2 and 3 it immediately follows that the zero of (26) on (−K (	) +
ε, K (	) − ε) is unique.

Point 1 is clear: each function ni sn(v−γi |	) has two simple poles, at points
congruent to γi −iK′(	) and γi −iK′(	)+2K (	). The poles cannot compensate
for different values of i , since the γi ’s are in an interval whose length is strictly
less than 2K (	).

The intermediate value theorem yields Point 2. At v = −K (	) + ε (resp.
v = K (	) − ε), each sn(v − γi |	) is negative (resp. positive). We thus have
at least one solution in (−K (	) + ε, K (	) − ε). Since sn(v + 2K (	)|	) =
− sn(v|	), the same holds in the interval (K (	) + ε, 3K (	) − ε).

We now prove Point 3. In an interval of the form−iK′(	)+[γi , γ j ], where γi
and γ j are consecutive, the function f has at least one zero. Indeed, evaluating
f at −iK′ + v and using the addition formula (55) for sn by a quarter-period,
we obtain

1

	

(
n1

sn(v − γ1|	) + · · · + n p

sn(v − γp|	)
)

.

As v → γi + 0 (resp. v → γ j − 0) the above function goes to +∞ (resp.
−∞). We conclude with the intermediate value theorem.We thus obtain p−1
zeros. The same reasoning on −i K ′(	) + [γi + 2K (	), γ j + 2K (	)] provides
p − 1 zeros. These zeros are mutually disjoint. ��
Lemma 16 One has the following inequality, implying exponential decay of
the Green function,

χ(u0) = min{χ(u) : u ∈ α + (−K + ε, K − ε)} � log{√k′ nd(ε/2)} < 0.
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Proof First recall fromLemma 15 and its proof that, on the interval α+(−K+
ε, K − ε), in the neighborhood of which χ is analytic, χ ′ has a unique zero. It
is negative at α − K + ε and positive at α + K − ε. This implies that χ(u0)
is the minimum of χ on α + (−K + ε, K − ε).

We now compute the value of χ(α):

χ(α) = n1 log

{√
k′ nd

(
α − α1

2

)}
+ · · · + n p log

{√
k′ nd

(
α − αp

2

)}
.

For u ∈ (−K/2, K/2) one has nd(u) ∈ [1, 1/√k′), see [3, 16.5.2]. Further,
nd is decreasing (resp. increasing) on (−K/2, 0] (resp. [0, K/2)). This implies
that each term above satisfies

n j log

{√
k′ nd

(
α − α j

2

)}
� n j log{

√
k′ nd(ε/2)}.

��
Proof of Theorem 14 Starting from Eq. (18) defining Gm(x, y), performing
the change of variable u + 2iK′ → u and using the definition of χ , the Green
function between x and y is rewritten as

Gm(x, y) = k′

4iπ

∫

Cx,y

e|x−y|χ(u)du,

where Cx,y is the vertical closed loop defined in Theorem 12, and is thus
invariant by vertical translation. Our aim is to compute asymptotics of this
integral when |x − y| is large. We use the saddle-point method (for classical
facts our reference is [17, Chapter 8]), with some particularities coming from
the fact the n j ’s involved in the function χ depend on |x − y| and do not
necessarily converge as |x − y| → ∞. For this reason, we will typically have
to apply the saddle-point method in a uniform way.

When the graph G is periodic, however, this is the classical saddle-point
method. Indeed, we can write e(x,y)(u) = e(x,y′)(u)e(y′,y)(u), where y′ is
the point congruent to y in the same fundamental domain as x . Then the
periodicity allows to write e(y′,y)(u) as e(y′,y′′)(u)L . We thus have to compute
the asymptotics of

∫
Cx,y

e(x,y′)(u)e(y′,y′′)(u)Ldu for large values of L , all
functions in the integral being independent of L . Although the periodic case
could be considered more classically, and thus apart, we choose to treat both
the periodic and non-periodic cases at the same time. We move the contour
Cx,y = ϕx,y + [−2iK′, 2iK′] into a new one C′

x,y , directed upwards, going
through u0 and satisfying some further properties, to be specified now. See
Fig. 8 for a representation of the contours Cx,y and C′

x,y .
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Neighborhood of the saddle-point. Near u0 we choose C′
x,y to be [u0 −

iη, u0 + iη], where η = |x − y|−α , α > 0 being fixed later on. Hereafter
we write χ(u) = χ(u0) + ∑∞

j=2 a j (u − u0) j , and define F(u) = χ(u) −
χ(u0)− a2(u − u0)2 = ∑∞

j=3 a j (u − u0) j . This function is analytic on a disc
centered at u0 and with some radius r ; M denotes its maximum on the disc.
Simple computations lead to the upper bound (see [17, Equation (36.3)] for
full details)

|F(u)| � M |u − u0|3
r2(r − |u − u0|) � 2M

r3
|x − y|−3α � C · |x − y|−3α. (27)

In the last inequality we can choose C to be independent of |x − y|, thanks
to the fact that χ depends continuously on the n j ’s. With the above estimation
one can write

∫

[u0−iη,u0+iη]
e|x−y|χ(u)du

= e|x−y|χ(u0)
∫

[u0−iη,u0+iη]
e|x−y|a2(u−u0)2du · (1 + O(|x − y|1−3α))

= ie|x−y|χ(u0)

√|x − y|a2
∫

[−√|x−y|a2η,
√|x−y|a2η]

e−t2dt · (1 + O(|x − y|1−3α))

= i
√

πe|x−y|χ(u0)

√|x − y|a2 · (1 + O(|x − y|1−3α)) · (1 + O(e−|x−y|a2η2)). (28)

We now show that a2 = χ ′′(u0)/2 remains bounded away from 0 indepen-
dently of |x − y|. First, it comes from the analytic implicit function theorem
that u0 is an analytic function of the n j ’s. Accordingly, a2 is positive and
continuous on {(n1, . . . , n p) : n j � 0 and n1+· · ·+n p = 1}. Under the qua-
sicrystalline hypothesis this set is compact, and thus a2 can be bounded from
below by its (positive) minimum. To conclude, we take any 1/3 < α < 1/2
to obtain that the contribution of the neighborhood of u0 to the integral gives
the result stated in Theorem 14.

Outside a neighborhood of the saddle-point. We prove that the rest of the
integral does not contribute in the limit. For this, we show that C′

x,y can be
chosen such that:

∀u ∈ C′
x,y\[u0 − iη, u0 + iη], |eχ(u)| � |eχ(u0±iη)|. (29)

Recall that the exponential function e(x,y)(u + 2iK′) has its zeros on the
interval ±2iK′ + R/(4KZ), see Fig. 8. Consider the steepest descent path
starting from u0 ± iη until it hits one of the zeros of the exponential function
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(note that obviously it cannot cross the line [−2K , 2K ] + 2iK′ before). The
resulting contour C′

x,y is a deformation of Cx,y and is symmetric (the level

lines and hence the steepest descent paths of eχ(u) are symmetric with respect
to the horizontal axis, this comes from properties of the nd(·) function, see [3,
16.21.4]).

On C′
x,y\[u0 − iη, u0 + iη], we have |e|x−y|χ(u)| � e|x−y|χ(u0)e−|x−y|a2η2

eC |x−y|1−3α
by (27) and (29), which readily implies that

∫

C′
x,y\[u0−iη,u0+iη]

e|x−y|χ(u)du = O(e|x−y|χ(u0)e−|x−y|a2η2eC |x−y|1−3α
),

(30)
since we can take the supremum of the lengths of C′

x,y bounded, because of
the continuity of the level lines with respect to the parameters.

The integral (30) is exponentially negligible with respect to the integral (28)
on [u0 − iη, u0 + iη]. The proof of Theorem 14 is complete. ��
Remark 17 If there were an infinite number of directions α j (non-
quasicrystalline case), the Green function would still exponentially decay to
0, see Proposition 18 and Lemma 16. However, our conjecture is that the
asymptotic behavior is exactly the same as in Theorem 14. The technical issue
is to prove that χ ′′(u0) remains bounded away from 0 as |x − y| becomes
large. From our analysis, we only know that the second derivative at u0 is
non-negative.

Proposition 18 Let G be any infinite isoradial graph (not necessarily qua-
sicrystalline). When the distance |x − y| between vertices x and y of G is
large, we have

Gm(k)(x, y) = O
(
e|x−y|χ(u0|k)

)
,

where u0 is the unique u ∈ α + (−K + ε, K − ε) such that χ ′(u|k) = 0, and
χ(u0|k) < 0.

Proof The proof is the same as the one of Theorem 14: there exists a con-
tour C′

x,y such that (29) holds with η = 0. In this way, the upper bound of
Proposition 18 immediately follows.

5 The case of periodic isoradial graphs

In this section, we suppose that the isoradial graphG is Z2-periodic, meaning
thatG is embedded in the plane so that it is invariant under translations of Z2.
The massive Laplacian �m(k) is a periodic operator. It is described through
its Fourier transform �m(k)(z, w), which is the massive Laplacian matrix of
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the toric graph G1 = G/Z2, with modified edge-weights on edges crossing a
horizontal and vertical cycle. Objects of interest are: the characteristic poly-
nomial, P�m(k) (z, w), equal to the determinant of the matrix �m(k)(z, w); the
zero locus of this polynomial, known as the spectral curve and denoted Ck ,
and its amoeba Ak .

In Sect. 5.2, we prove confinement results for the Newton polygon of the
characteristic polynomial P�m(k) (z, w). In Sect. 5.3, we provide an explicit
parametrization of the spectral curve Ck by discrete massive exponential func-
tions. This allows us to prove that Ck is a curve of genus 1 (Proposition 21),
and to recover the Newton polygon using the homology of the train-tracks
only. In Theorem 25, we prove that the curve Ck is a Harnack curve. Fur-
thermore, in Theorem 26, we prove that every genus 1, Harnack curve with
(z, w) ↔ (z−1, w−1) symmetry arises from the massive Laplacian �m(k) on
some isoradial graph for some k ∈ (0, 1).

Using Fourier techniques, the massive Green function can be expressed
using the characteristic polynomial. In Sect. 5.5, we explain how to recover
the local formula of Theorem12 for themassiveGreen function (in the periodic
case) from its Fourier expression. A priori, the two approaches are completely
different; it is an astonishing change of variable which works with our specific
choice of weights and allows us to relate the two. Note that this relationwas not
understood in [9,21,26]. Then, we also explain how to recover asymptotics of
the Green function obtained in Theorem 14 from the double integral formula
of Eq. (36), using analytic combinatorics techniques from [41].

5.1 Isoradial graphs on the torus and their train-tracks

IfG is aZ2-periodic isoradial graph, then the graphG1 = G/Z2 is an isoradial
graph embedded in the torusT. LetG


1 be the diamond graph ofG1. Properties
of train-tracks of planar isoradial graphs discussed in Sect. 2.1.1 have to be
adapted to the toroidal case, see also [30].

We need the notion of intersection form for closed paths on the torus T. Let
A and B be two oriented closed paths on the torus T having a finite number
of intersections. Then A ∧ B denotes the algebraic number of intersections
between A and B, where an intersection is counted positively (resp. negatively)
if when following A, we see B crossing from right to left (resp. from left to
right). In particular,

|A ∧ B| � #{intersection points of A and B}.

The quantity A ∧ B only depends on the homology classes [A] and [B]
in H1(T,Z2). If ([U ], [V ]) is a homology basis, and [A] = hA[U ] + vA[V ],
[B] = hB[U ] + vB[V ], then
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A ∧ B = hAvB − hBvA. (31)

Recall from Sect. 2.1.1 that train-tracks can be seen as unoriented paths on
the dual of the diamond graph, and that they are assigned the common edge
direction ±eiα of the rhombi. A train-track T can also be seen as an oriented
path. In this case we associate the angle α of the unit vector eiα , with the
convention that when walking along T , the unit vector eiα crosses T from
right to left. If T is oriented in the other direction, it is associated the angle
α + 2K (modulo 4K ) of eiα+2K = ei(α+π) = −eiα . Seeing train-tracks as
unoriented paths amounts to considering angles modulo 2K .
Train-tracks on the torus. Train-tracks of G1 form non-trivial self-avoiding
cycles onG


1
∗. Contrary to what happens in the planar (either finite or infinite)

case, two train-tracks T and T ′ can cross more than once, but the number of
intersections is minimal, and thus equal to |T ∧ T ′|.

Any vertex of G

1
∗ is at the intersection of two train-tracks, and edges of

G

1
∗ are in bijection with pieces of train-tracks between two successive inter-

sections. As in the planar case, G

1 is bipartite, the two classes of vertices

corresponding to vertices of G1 and of G∗
1, respectively. In particular, any

closed path on G

1 has even length. Conversely, any graph on the torus con-

structed from a collection of self-avoiding cycles with the minimal number
of intersections, and whose dual is bipartite, is the dual of the diamond graph
of an isoradial graph on the torus, which can then be lifted to a Z

2-periodic
isoradial graph. An example is provided in Fig. 9 (left and middle).
Minimal closed paths. A closed path on G


1 is said to be minimal if it
does not cross a train-track in two opposite directions. Paths in G


1 obtained

γx

γx

e

c

b

a

e

c

e

c
d

c

b

a

e

e

d

γy

e
γy

de

c

a, b

ab

c

d

e

Fig. 9 Left a set of non-trivial cycles on the torus with the minimum number of intersections.
Middle the diamond graph of an isoradial graph on the torus, whose train-tracks have the same
combinatorics as cycles on the left.Right cyclic ordering of the homology class of the train-tracks
and of the corresponding angles, represented on the trigonometric circle

123



142 C. Boutillier et al.

by following the boundary of a train-track are examples of minimal closed
paths.

Let 2p be the number of edges ofG

1 used by aminimal closed path γ . Then

p is the number of vertices of G1 (and also of G∗
1) visited by γ . The length

2p of γ is a function of its homology class and of those of the train-tracks. It
is equal to:

2p =
∑

T∈T
|T ∧ γ |,

where T denotes the set of train-tracks of G1, picking for each of them a
particular orientation.
Choice of basis, ordering of train-tracks. Fix a representative of a basis of
the first homology group of the torus H1(T,Z2), by taking γx and γy to be
two minimal oriented closed paths on G


1. Define 2px (resp. 2py) to be the
number of edges of G


1 used by γx (resp. γy). These numbers depend only on
the homology classes of γx and γy .

An (oriented) train-track T has primitive homology class [T ] = hT [γx ] +
vT [γy] in H1(T,Z) � Z

2, i.e., the two integers hT and vT are coprime, since it
is a non-trivial, self-avoiding cycle. We can therefore cyclically order all train-
tracks (oriented in the two possible directions), following the cyclic order of
coprime numbers inZ2 around the origin. Angles of the train-tracks are also in
the same order in R/4KZ, this being guaranteed by the fact that we can place
a rhombus at each intersection of two train-tracks, with the correct orientation,
see Fig. 9 (right).

5.2 Quasiperiodic functions, characteristic polynomial

Define γ̃x and γ̃y to be closed paths onG∗
1, obtained from γx and γy as follows:

replace any sequence of steps x∗ → y → z∗ of dual, primal, dual vertices
visited by γx (resp. γy) by a sequence x∗ = x∗

0 → x∗
1 → · · · → x∗

n = z∗
of dual vertices around y, “bouncing” over y on top of γx (resp. on the right
of γy), and remove backtracking steps if necessary. In other words, γ̃x goes
around every vertex of G1 visited by γx in the clockwise order, see Fig. 10.

The cycles γ̃x and γ̃y delimit a fundamental domain of G. To simplify
notation, we will write γ̃x and γ̃y for the cycles and their lifts in G, and write
G1 = (V1,E1) for the toroidal graph and the fundamental domain.

For (m, n) in Z
2, and x a vertex of G (resp. G
, resp. G∗), denote by

x + (m, n) the vertex x +mγ̃x + nγ̃y . For (z, w) ∈ C
2, define CV

(z,w) to be the
space of functions f on vertices of G which are (z, w)-quasiperiodic:

∀ x ∈ V, ∀ (m, n) ∈ Z
2, f (x + (m, n)) = z−mw−n f (x).
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Fig. 10 The paths γ̃x and γ̃y
(dashed lines) constructed
from γx and γy (plain lines)
delimiting the fundamental
domain G1. Edges crossing
the dashed path γ̃x (resp. γ̃y)
get an extra weight z, z−1

(resp. w, w−1) in �m(z, w)

γ̃y

γ̃x

γy

γx

The vector space C
V
(z,w) is finite dimensional, isomorphic to C

V1 , since
quasiperiodic functions are completely determined by their values in the fun-
damental domain V1. For every vertex x of G1, define δx (z, w) to be the
(z, w)-quasiperiodic function equal to zero on vertices which are not trans-
lates of x , and equal to 1 at x . Then the collection {δx (z, w)}x∈V1 is a natural
basis for CV

(z,w).

Since �m is periodic, the vector space CV
(z,w) is invariant under the action

of this operator. We denote by �m(z, w) the matrix of the restriction of �m to
the space CV

(z,w) in the basis (δx (z, w))x . The matrix �m(z, w) can be seen as

the matrix of the massive Laplacian on G1 with extra weight z±1 (resp. w±1)
for edges crossing1 γ̃x (resp. γ̃y), the sign of the exponent depending on the
orientation of the edge with respect to γ̃x or γ̃y . By construction, these edges
with extra weight z (resp. w) are connected to vertices of G1 visited by γy
(resp. γx ).

The characteristic polynomial of the massive Laplacian on G is the bivari-
ate Laurent polynomial P�m (z, w) equal to the determinant of the matrix
�m(z, w). The Newton polygon of P�m is the convex hull of the exponents
(i, j) ∈ Z

2 of the monomials ziw j of P�m (z, w).
The characteristic polynomial plays an important role in understanding the

massive Laplacian on periodic isoradial graphs. We now study some of its
properties.

1 An oriented edge crossing γ̃y gets the extraweight z if it goes from a vertex in one fundamental
domain to a vertex in the fundamental domain on the right of γ̃y , and z−1 otherwise. An oriented
edge crossing γ̃x gets the extra weight w if it goes from a vertex in one fundamental domain to
a vertex in the fundamental domain above, i.e., on the left of γ̃x .
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Lemma 19 • The polynomial P�m is reciprocal: ∀ (z, w) ∈ (C∗)2,
P�m (z, w) = P�m (z−1, w−1).

• The Newton polygon of P�m is contained in a rectangle [−py, py] ×
[−px , px ], where px (resp. py) is the number of vertices of G∗ on γx
(resp. γy).

Proof The operator �m is symmetric, thus �m(z, w)T = �m(z−1, w−1),
which implies the first part. For the second part, let us first prove that the
Newton polygon is contained in a vertical strip [−py, py] × R. Since P�m is
reciprocal, it is enough to show that the degree of z in any monomial of P�m

cannot exceed py .
The determinant of �m(z, w) can be expanded as a sum over permutations

σ of the vertices of G1. In this sum, the monomials with highest degree in z
come from bijections σ where as many vertices v as possible are connected
to σ(v) with an edge crossing the path γ̃y , hence having an extra weight z
in �m(z, w). However, there are at most py vertices with this property, since
they must be chosen among the py vertices visited by γy .

The fact that the Newton polygon is also contained in a horizontal strip
R × [−px , px ] follows from the same argument, by exchanging the role of z
and w. ��

The confinement result for the Newton polygon in the previous lemma is
highly dependent on the homology class of the cycles γx and γy . If instead
we use paths γ

x
, γ

y
representing another basis of the first homology group

H1(T,Z2), then we obtain that the Newton polygon is included in another
parallelogram. More precisely, suppose that the paths γ

x
, γ

y
are oriented so

that [γ
x
] = a[γx ] + b[γy], and [γ

y
] = c[γx ] + d[γy], where M = (

a b
c d

) ∈
SL2(Z). Define also z = zawb, and w = zcwd . Then we can do the same
construction as above with the variables z andw across the paths γ

y
and γ

x
, to

get a new polynomial P�m (z, w). The polynomials P�m and P�m are related
by the formula:

P�m (z, w) = P�m (zawb, zcwd) = P�m (z, w).

The Newton polygon of P�m (in the (z, w) variables) is obtained as the
image of that of P�m (in the (z, w) variables) by the linear map M .

We can apply the previous lemma to P�m , and get that its Newton polygon
is included in a rectangle. The Newton polygon of P�m is therefore included in
the parallelogram, obtained as the image by M of that rectangle. In particular,
it bounds the width of the Newton polygon of P�m between two parallel lines
with any rational slope, this width being related to the number of edges of the
minimal paths with a certain homology.
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Of particular interest is the case where (z, w) = (z, w/z), i.e., where M =( 1 −1
0 1

)
. Indeed, the horizontal width of the Newton polygon of the polynomial

P�m is directly related to the degree of P�m , computed as the sum of the
degrees in z and w.

Corollary 20 Let γ be a minimal closed path onG1 such that [γ ] = −[γx ]+
[γy], visiting p vertices ofG1 (andhaving2p edges). Then, theNewton polygon
of P�m is contained in a band delimited by the straight lines: y + x ± p = 0.
In particular, the highest (resp. lowest) degree of a monomial of P�m is not
greater than p (resp. not less than −p).

5.3 The spectral curve and the amoeba of the massive Laplacian

The zero set of the characteristic polynomial P�m(k) of the massive Laplacian
defines a curve, known as the spectral curve, denoted Ck :

Ck = {(z, w) ∈ C
2 : P�m(k) (z, w) = 0}.

In Proposition 21, we show that the spectral curve has geometric genus 1
and in Theorem 25, we prove that it is Harnack. In Theorem 26, we prove
that every genus 1 Harnack curve with (z, w) ↔ (z−1, w−1) symmetry is
the spectral curve of the massive Laplacian of a periodic isoradial graph, for
a certain value of k ∈ (0, 1). These two points are reminiscent of what has
been done in [29] for the correspondence between genus 0 Harnack curves
and critical dimer spectral curves on isoradial graphs.

The real locus of the spectral curve consists of the set of points of Ck that
are invariant under complex conjugation:

{
(z, w) ∈ Ck | (z, w) = (z, w)

}
= {

(x, y) ∈ R
2 | P�m(k) (x, y) = 0

}
,

apart from isolated singularities.
The amoeba Ak of the curve Ck is the image of Ck under Log : (z, w) →

(log |z|, log |w|).
General geometric features of the amoeba can be described from the New-

ton polygon of the characteristic polynomial, see [23,43] for an overview.
It reaches infinity by several tentacles, which are images by Log of neigh-
borhoods of the curve Ck where z and/or w is 0 or infinite. Each tentacle
(counted with multiplicity) corresponds to a segment between two succes-
sive integer points on the boundary of the Newton polygon, and the direction
of the asymptote is the outward normal to the segment. The amoeba’s
complement consists of components between the tentacles, and bounded com-
ponents. Components of the amoeba’s complement are convex. Bounded (resp.
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Fig. 11 Left the Newton polygon of the massive Laplacian of the graph pictured in Fig. 9. Right
the amoeba Ak of its spectral curve Ck , when k2 = 0.8

unbounded) components correspond to integer points inside (resp. on the
boundary of) the Newton polygon. The maximal number of bounded com-
ponents is thus the number of inner integer points of the Newton polygon.
Amoebas are unbounded, but their area is boundedbyπ2 the area of theNewton
polygon.

Using our explicit parametrization of the spectral curve Ck allows us to
prove properties of the amoeba Ak , see Lemmas 23 and 27. We show that its
complement has a single bounded component and prove in Proposition 28 that
its area is increasing as a function of the elliptic modulus k.

Figure 11 shows the Newton polygon and the amoeba of the spectral curve
of the massive Laplacian of the graph depicted in Fig. 9, for k2 = 0.8.

5.3.1 Explicit parametrization of the spectral curve

For u in the torus T(k), define

z(u|k) =
∏

eiα∈γx

(
i
√
k′ sc(uα)

)
=

∏

T train-track in T

(
i
√
k′ sc(uαT )

)−vT
,

w(u|k) =
∏

eiα∈γy

(
i
√
k′ sc(uα)

)
=

∏

T train-track in T

(
i
√
k′ sc(uαT )

)hT
, (32)

where αT is the angle associated to the oriented train-track T , and [T ] =
hT [γx ]+vT [γy] is its homology class in H1(T,Z2). There are 2px (resp. 2py)
terms in the product defining z(u|k) (resp. w(u|k)). Note that for every vertex

123



The Z -invariant massive Laplacian on isoradial graphs 147

x of G1, we have z(u|k) = e(x,x+(1,0))(u|k) and w(u|k) = e(x,x+(0,1))(u|k).
Define ψ(·|k) to be the map:

ψ(·|k) : T(k) → C
2

u �→ ψ(u|k) = (z(u|k), w(u|k)).

Proposition 21 The map ψ provides a complete parametrization of the spec-
tral curve Ck of the massive Laplacian. In particular, Ck is an irreducible curve
with geometric genus 1.

Proof For every u ∈ T(k), the function e(·,y)(u) is massive harmonic by
Proposition 11; it is (z(u), w(u))-quasiperiodic, since for every (m, n) ∈ Z

2

and every vertex x of G1,

e(x+(m,n),y)(u) = e(x+(m,n),x)(u)e(x,y)(u) = z(u)−mw(u)−n e(x,y)(u).

(33)
As a consequence, for every u, the function e(·,y)(u) belongs to the kernel of
�(z(u), w(u)), and P�m (z(u), w(u)) = 0.

The image of the application ψ is necessarily an irreducible component of
the curve Ck , corresponding to the zeros of an irreducible factor R of P�m . But
from the definition (32) of z(u), we see that it has order 2px : it takes the value 0
(and thus any value) 2px times. This means for example that the degree of the
polynomial R(1, w) is 2px : indeed, if u1, . . . , u2px are the distinct values of u
forwhich z(u) = 1, thenw(u1), . . . , w(u2px ) are the roots of R(1, w). But this
degree is not greater than the height of the Newton polygon of R. Applying
the same argument to w(u), which has order 2py , we get that the smallest
rectangle containing the Newton polygon of R has height (resp. width) 2px
(resp. 2py). But if the quotient of P�m by R is not reduced to a monomial, then
the Newton polygon of P�m has width strictly larger than the one of R and
doesn’t fit in a 2py ×2px rectangle, which is in contradiction with Lemma 19.
Therefore R and P�m define the same curve in C

2 and ψ parametrizes the
whole spectral curve.

The application ψ is a birational map between T(k) and the spectral curve
Ck . The torus T(k) is thus the normalization of Ck , and these curves have the
same geometric genus, equal to 1. ��

The proof of Proposition 21 shows that the bound on the width and height
of the Newton polygon obtained in Lemma 19 is tight, and that the extension
to other families of closed paths allows one to completely reconstruct the
Newton polygon of P�m(k) , as the intersection of bands contained between
lines ay − bx ± p = 0.

The explicit parametrization ψ of the spectral curve Ck allows us to show
that it is maximal, meaning that its real locus has the largest possible number
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of components, given by the geometric genus of the curve plus 1. In our case,
it is 1 + 1 = 2.

Lemma 22 The real locus of the spectral curve Ck is the image by ψ of
R/4KZ + {0, 2iK′}; it thus has two components, and the spectral curve is
maximal. The connected component with ordinate 0 is unbounded; the other
one is bounded away from 0 and infinity.

Proof Since the number of factors in the products defining z(u) and w(u)

is even, and since sc(u) = sc(u), the map ψ commutes with complex con-
jugation. As a consequence, the real locus of Ck is the image by ψ of the
points of the torus T(k) invariant by complex conjugation: this is exactly
R/4KZ+ {0, 2iK′}. The connected component with ordinate 0 is unbounded,
since it contains the zeros and poles of z(u) and w(u). On the other one, z(u)

and w(u) are bounded away from 0 and ∞. ��
The parametrization ψ also has consequences on the geometry of the

amoeba Ak .

Lemma 23 For every train-track T of G1, the amoeba Ak has two tentacles,
which are symmetric with respect to the origin; their asymptote is orthogonal
to the vector of coordinates (hT , vT ) of the homology class [T ]. Moreover,
every tentacle (counted with multiplicity) arises from a train-track T of G1.

Proof From the definition of the parametrization ψ , all the zeroes/poles of
z(u) and w(u) correspond to parameters of the train-tracks. Let T be a train-
track. Choose an orientation, fixing the parameter αT ∈ R/4KZ and the sign
of the homology (hT , vT ). When u is close to αT , there are some non-zero
constants c1 and c2 such that

z(u) = c1(u − αT )−vT (1 + o(1)), w(u) = c2(u − αT )hT (1 + o(1)),

so that log |z(u)| or log |w(u)| go to ±∞ and

hT log |z(u)| + vT log |w(u)| = hT log |c1| + vT log |c2| + o(1),

which means exactly that for u close to αT , the unbounded component of the
boundary has an asymptote with a normal (hT , vT ). ��
Remark 24 UsingLemma23and theduality between the amoeba and theNew-
ton polygonmentioned in the beginning of Sect. 5.3, we know that the Newton
polygon of P�m(k) is the only convex polygon centered at the origin whose
boundary consists of the lattice vectors representing the homology classes of
all the oriented train-tracks of the graph G1, in cyclic order. In particular,
every vector comes with its opposite, corresponding to the same train-track
with reverse orientation. For example, the Newton polygon of Fig. 11 (right)
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is obtained from the homology classes of the train-tracks pictured in Fig. 9
(top right).

5.3.2 Spectral curve of the massive Laplacian and genus 1 Harnack curves

A curve defined as the zero set of a 2-variables complex polynomial with
real coefficients, is said to be Harnack if it is maximal, and if only one of its
real connected components meets the coordinate axes (including the line at
infinity), in cyclic order, and the number of intersection points with the axis is
maximal. Although this definition seems to be weaker than the one of [36,43],
it is equivalent by [14, Theorem 10]. We now prove that the spectral curve
Ck of the massive Laplacian is Harnack and that every symmetric, genus 1
Harnack curve arises in this way.

Theorem 25 The spectral curve Ck of the massive Laplacian �m(k) is a Har-
nack curve.

Proof The curve Ck is maximal, by Lemma 22.When u runs throughR/4KZ,
(z(u), w(u)) visits the axes in the right order, namely that when u increases, the
slopes of the asymptotes of the tentacles of the amoeba Ak are also increasing
in the counterclockwise order. But, by Lemma 23, the slope of an asymptote at
u = α is orthogonal to the homology class of a train-track with angle α. Since
the homology classes of the train-tracks and the angles associated to them are
in the same cyclic order, the cyclic order property of intersections with axes
is satisfied. Moreover, from the explicit definition (32) of z(u) and w(u), we
see that the number of real intersections with the axes is maximal. Therefore
the curve is Harnack. ��
Theorem 26 Every genus1Harnack curvewith (z, w) ↔ (z−1, w−1) symme-
try arises as the spectral curve of the characteristic polynomial of the massive
Laplacian �m(k) on some periodic isoradial graph for some k ∈ (0, 1).

Proof Let C be a Harnack curve with geometric genus 1 and (z, w) ↔
(z−1, w−1) symmetry. Since C is a genus 1 maximal real curve, it can be
parametrized by a torus of pure imaginary modulus [38, p. 59]. This torus,
after maybe a dilation, is a T(k), for some k ∈ (0, 1). Let ψ be the birational
map fromT(k) to C. The symmetry (z, w) ↔ (z−1, w−1) preserves each of the
two components of the real locus of C, with their orientation. It is thus conju-
gated byψ to a real translation u �→ u+u0 onT(k). But since it is a non-trivial
involution, then u0 is equal to 2K , the horizontal half-period of the torus T(k).

Let us denote by α1, . . . , α2	 the values of u ∈ R/4KZ corresponding to a
pole or a zero of z(u) or w(u), ordered cyclically. For j ∈ {1, . . . , 	}, denote
by a j (resp. b j ) the order of α j in z(u) (resp. w(u)). Because of the symmetry
of the curve, we have α j+	 = α j , a j+	 = −a j , b j+	 = −b j . Moreover,∑	

j=1 a j and
∑	

j=1 b j are even.
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Knowing the zeros and poles of z(u) is enough to reconstruct the whole
function: z(u) and

∏	
j=1 sc(u−α j )

a j are meromorphic functions onT(k) and
have the same zeros and poles, with the same multiplicities. Therefore they
are equal up to a multiplicative constant. The constant is determined by the
symmetry z(u + 2K ) = z(u)−1 and the identity (51) for sc; we obtain

z(u) =
	∏

i=1

(
i
√
k′ sc(u − α j )

)a j
.

The same argument for w(u) yields:

w(u) =
	∏

i=1

(
i
√
k′ sc(u − α j )

)b j
.

We now want to construct a periodic isoradial graph G (or equivalently an
isoradial graph G1 on the torus), on which the spectral curve of the massive
Laplacian is C. First we construct the graph of train-tracksG


1
∗, as explained in

Sect. 5.1, by drawing on the torus for every j ∈ {1, . . . , 	} a self-avoiding cycle
with homology class (b j , −a j ), such that the total number of intersections is
minimal. The arrangement of the train-tracks is not unique, but because of 3-
dimensional consistency (Sect. 3.2), all of them should yield the same result.
The graph G


1
∗ determines the graph structure of G1 once we decide which is

the primal and the dual graph. Now remains to determine the embedding, i.e.,
to attribute to every train-track a direction for the common sides of the rhombi
on the train-track.

Every value of α j corresponds to a tentacle of the amoeba of C, with an
asymptotic slope given by (a j , b j ). Since the curve C is Harnack, the slopes of
the tentacles are in the same cyclic order as the α j . This implies that if we asso-
ciate to every oriented train-track Tj with homology (b j , −a j ) the unit vector
eiα j , we can place a rhombus with the correct orientation at each intersection
of two train-tracks, so that we get a proper isoradial embedding of the graphG.
According to Proposition 21, the spectral curve of the massive Laplacian on
G for the value of k chosen above, is also parametrized by u �→ (z(u), w(u)),
and is therefore equal to C. ��
5.3.3 Consequence of the Harnack property on the amoeba

The spectral curve Ck has genus 1 and is Harnack, so the complement of
the amoeba in R

2 has a unique bounded component, denoted by DAk . Since
the characteristic polynomial is reciprocal, the amoeba Ak is invariant under
central symmetry about the origin. Therefore, the component DAk contains
the origin, and corresponds to the integer point (0, 0) of the Newton polygon
of the characteristic polynomial P�m(k) , see Fig. 11.
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The Harnack property also implies that the boundary of the amoeba
coincides with its real locus [36,37]. Combining this with the explicit para-
metrization of the real locus of the spectral curve proved in Lemma 22 yields
the following.

Lemma 27 The outer boundary of the amoeba is the image by Log ◦ψ of
R/4KZ. The boundary of DAk is the image by Log ◦ ψ of R/4KZ + 2iK′.

Since the spectral curve is Harnack, we know by [37] that the area of the
amoeba Ak is π2 times the area of the Newton polygon of P�m(k) (z, w). It
is thus independent of k and only depends on the geometry of the isoradial
graph. A quantity which does depend on the elliptic modulus k is the area of
the hole DAk . We now prove the following.

Proposition 28 As k varies from 0 to 1, the area of DAk grows continuously
from 0 to ∞.

Proof According to Lemma 27, the boundary of DAk is parametrized by
(log |z(u)|, log |w(u)|), for u ∈ [0, 4K ] + 2iK′.

The area of DAk is computed by integrating the form x dy along the bound-
ary of DAk :

Area(DAk ) =
∫ 4K

0
log |z(u + 2iK′)|w

′(u + 2iK′)
w(u + 2i K ′)

du. (34)

Using the definition (32) of z(u) and w(u), and the fact that sc(u + iK′) =
i nd(u) (54), we have

log |z(u + 2iK′)| =
∑

S train-track ∈T
vS log{

√
k′ nd(uαS )}

and

w′(u + 2iK′)
w(u + 2i K ′)

= −
∑

T train-track ∈T
hT

nd′(uαT )

nd(uαT )
= −

∑

T train-track ∈T
hT k

2 sn · cn
dn

(uαT ).

Thus, Eq. (34) can be rewritten as

∑

S,T∈T
(−k2vShT )

∫ 4K

0
log{√k′ nd(uαS )}

sn · cn
dn

(uαT )du.

First notice that terms in the sum for which S = T do not contribute to the
sum, by antisymmetry under the change of variable v = 2αT − u.
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The contribution of the two terms corresponding to the same (unordered)
pair of train-tracks {S, T } in the sum is:

k2(S ∧ T )

∫ 4K

0
log{√k′ nd(uαT )}sn · cn

dn
(uαS )du,

where, by (31), S ∧ T = hSvT − vShT , equals the number of intersections
between S and T , with a sign + (resp. −) if αT − αS ∈ (0, 2K ) (resp. in
(−2K , 0)).

Fix α, β and θ = β−α
2 , and define

I (k) =
∫ 4K

0
log{√k′ nd(uα)}sn · cn

dn
(uβ)du

= 2K

π

∫ π

0
log

{
dn( K

π
(−v + 2θ))

dn( K
π

(v + 2θ))

}
sn · cn
dn

(
K

π
v

)
dv.

To prove that the area (34) is an increasing function of k ∈ (0, 1), it is
sufficient to prove that if θ ∈ (0, π

2 ), the integral I (k) is an increasing function
of k ∈ (0, 1).

Using the addition formula for the dn function [3, 16.17.3] one can write

dn( K
π

(−u + 2θ))

dn( K
π

(u + 2θ))
= 1 + k2 sn · cn

dn (2K θ
π

) sn · cn
dn ( Ku

π
)

1 − k2 sn · cn
dn (2K θ

π
) sn · cn

dn ( Ku
π

)
.

The function X �→ log
{
1+X
1−X

}
is increasing. Moreover, for a fixed u ∈

[0, π ], the quantity sn · cn
dn ( K

π
u|k) is non-negative and increasing in k ∈ (0, 1),

as can be checked by Landen transformation (see (58) in Appendix A) and
[31, Figure 2.1]. Thus the non-negative functions k �→ K (k), k �→ sn cn

dn ( Ku
π

)

and k �→ k2 sn · cn
dn ( Ku

π
) sn · cn

dn (2K θ
π

), are also increasing functions of k. Thus, so
is I .

The limits of the area when k → 0 and k → 1 are obtained by noticing that
I (0) = 0 since the integrand is zero (we recall that dn(·|0) = 1). Moreover,
we have just proved that I (k)/K (k) is positive and increasing on (0, 1). Since
K (k) goes to infinity, when k → 1, so does I (k).

5.4 Further properties

Since the spectral curve Ck has geometric genus 1, the space of holomorphic
differential 1-forms on Ck has dimension 1. It turns out that we can explicitly
compute one of these forms from thematrix�m(k)(z, w). Before doing this, we
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need two lemmas about the dimension of the kernel of the matrix �m(k)(z, w)

and the structure of the adjugate matrix, denoted Qk(z, w).

Lemma 29 For every (z, w) ∈ Ck , the dimension of the kernel of the matrix
�m(k)(z, w) is:

dim
[
ker�m(k)(z(u), w(u))

]{
= 1 if (z, w) is a simple point of Ck,

� 2 if (z, w) is a solitary node of Ck .

Moreover, when (z, w) is a simple point, every (z, w)-quasiperiodicmassive
harmonic function is proportional to e(·,x0)(u), where u ∈ T(k) is such that
(z(u), w(u)) = (z, w).

Remark: Since Ck is Harnack, all isolated singularities are solitary nodes [14,
36,37].

Proof Let u ∈ T(k). We have seen in the proof of Proposition 21 that the func-
tion e(·,x0)(u) is a non-zero (z(u), w(u))-quasiperiodic and massive harmonic
function. Therefore, it is in the kernel of �m(z(u), w(u)).

Suppose that (z, w) is a simple point of C. The fact that the kernel of
P�m (z, w) has dimension 1 for a simple point (z, w) follows from [18]. Let
us quickly recall the argument here. The following identity holds for every z′
and w′:

Q(z′, w′)�m(z′, w′) = P�m (z′, w′) · Id. (35)

Since the point (z, w) is simple, ( ∂P
∂z (z, w), ∂P

∂w
(z, w)) �= (0, 0). Suppose we

have ∂P
∂z (z, w) �= 0. Differentiating (35) with respect to z′, and evaluating at

(z′, w′) = (z, w), we get:

∂Q(z, w)

∂z
�m(z, w) + Q(z, w)

∂�m(z, w)

∂z
= ∂P�m (z, w)

∂z
Id.

If ker�m(z, w) had dimension strictly greater than 1, the matrix Q(z, w)

would be identically zero. But ∂Q(z,w)
∂z �m(z, w) cannot be equal to a non-zero

multiple of the identity, because (z, w) is on the curve Ck and thus �m(z, w)

is non-invertible. Therefore dim ker�m(z, w) = 1, and if u ∈ T(k) is such
that (z(u), w(u)) = (z, w), then by the remark above, the function e(·,x0)(u)

spans the kernel of �m(z, w).
Suppose now that (z, w) is a solitary node of the curve. This point has

two2 distinct conjugated preimages u �= u by ψ on T(k). The two functions
exp(·,x0)(u) and exp(·,x0)(u) are in the kernel of �m(z, w), but are not propor-
tional. The kernel of �m(z, w) is thus at least two-dimensional. ��
2 Since the spectral curve is Harnack, u and u are the only two points of T(k) giving the value
(z, w).

123



154 C. Boutillier et al.

Lemma 30 There exists a meromorphic function gk on T(k) such that:

∀ u ∈ T(k), ∀ x, y vertices of G1, Qk
x,y(z(u), w(u)) = gk(u)e(x,y)(u).

In particular, gk(u) is the diagonal coefficient Qk
x,x (u) for every vertex x of

G1. When u is such that (z(u), w(u)) is a solitary node, we have gk(u) = 0.

Proof Let u ∈ T(k). Suppose that (z(u), w(u)) is not a solitary node
of Ck . Then, by Lemma 29, dim ker�m(z(u), w(u)) = 1, implying that
Q(z(u), w(u)) has rank 1, and can be written

Q(z(u), w(u)) = V · WT ,

withV ∈ker�m(z(u), w(u)) andW ∈coker�m(z(u), w(u))=ker�(z(u)−1,

w(u)−1) = ker�m(z(u + 2K ), w(u + 2K )). So V and W are (non-zero)
multiples of e(·,x0)(u) and e(·,x0)(u+2K ) = e(x0,·)(u) respectively. Therefore
there exists a non-zero coefficient g(u) such that for any vertices x and y of
G1,

Qx,y(z(u), w(u)) = VxWy = g(u)e(x,x0)(u)e(x0,y)(u) = g(u)e(x,y)(u).

For x = y, we get g(u) = Qx,x (z(u), w(u)), which is meromorphic as
the composition of a polynomial with meromorphic functions. In particu-
lar, Qx,x (z(u), w(u)) does not depend on x . If u corresponds to a solitary
node, Q(z(u), w(u)) vanishes because the kernel of dim ker�m(z, w) � 2.
Therefore, g extends analytically to u, and g(u) = 0. ��

Since the spectral curve has geometric genus 1, the space of holomorphic
differential 1-forms on Ck has dimension 1. The next proposition states that
we can explicitly compute one of these forms using the matrices �m(k)(z, w)

and Qk(z, w). Any other holomorphic 1-form is a multiple of this one.

Proposition 31 The differential form
Qk

x,x(z, w)

∂P
�m(k)

∂w
(z, w)wz

dz is a holomorphic

1-form on Ck .

Proof According to classical theory of algebraic curves [2], all holomorphic
differential forms on Ck are of the form

R(z, w)

∂P�m

∂w
(z, w)

dz,

with R a polynomial of degree not greater than deg P�m − 3 and vanishing on
solitary nodes of the curve Ck .
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Let us prove that the polynomial R(z, w) = Qx,x (z, w)/zw satisfies
these two properties. The fact that R vanishes on nodes is a consequence
of Lemma 30.

To control the degree of Qx,x , we apply the argument of the proof of
Lemma 19 to Qx,x , for paths (γx , γ ) as in Corollary 20. Recall that Qx,x(z, w)

is computed as the determinant of the matrix �m(z, w) from which the row
and the column indexed by x are removed, and recall that any choice for
the vertex x yields the same result. If x is a vertex of G1 visited by γ , then
the degree counting argument in the variable z (along γ ) in the expansion of
the determinant of the minor of �m(z, w) shows that the maximal degree of
Qx,x(z, w) is strictly less than that of P�m (z, w). When dividing by zw, we
get a polynomial of degree not higher than deg P�m − 3. ��

5.5 Green function on periodic isoradial graphs

When the graphG is periodic, themassiveGreen functionGm can be expressed
as a double integral involving the Fourier transform. Indeed, the matrix
�m(z, w) is invertible for generic values of z and w, and the Green func-
tion is obtained as Fourier coefficients of �m(z, w)−1: if x and y are two
vertices of G1 and (m, n) ∈ Z

2,

Gm(x + (m, n), y) =
∫∫

|z|=|w|=1
z−mw−n(�m(z, w)

−1
)x,y

dz

2iπ z

dw

2iπw

=
∫∫

|z|=|w|=1
z−mw−n Qx,y(z, w)

P�m (z, w)

dz

2iπ z

dw

2iπw
. (36)

In Sect. 5.5.1, we give an alternative proof of the local formula (18) of The-
orem 12 for the massive Green function Gm(x, y), starting from the double
integral formula of Eq. (36). In Sect. 5.5.2, we explain how to recover asymp-
totics of the Green function of Theorem 14 from the double integral formula
of Eq. (36), using the approach of [41]. This yields a geometric interpretation
of the exponential rate of decay in terms of the amoeba Ak .

5.5.1 Recovering the local formula for the massive Green function

We now give an alternative proof of the local formula (18) for the massive
Green function, starting from the double integral formula (36).We can assume
that x + (m, n) is “below” the vertex y, i.e., that n � −1, after maybe having
to change the boundary of the fundamental domain, and exchanging the axes
and their directions.

We first transform the integral (36) defining Gm(x + (m, n), y), by comput-
ing at fixed z the integral over w by residues. For a generic value of z on the
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unit circle S
1, the function P�m (z, ·) has 2dx distinct non-zero roots, which

all have modulus different from 1, because (0, 0) is not in the amoeba of Ck .
Since P�m is reciprocal, if w(z) is a root, then w(z)

−1
is also a root, meaning

that dx of them are inside the unit disk: w1(z), . . . , wdx (z), and dx of them
outside: wdx+1(z), . . . , w2dx (z). Since n � −1, there is no pole at 0, and by
application of the residue theorem,

∫

|w|=1

Qx,y(z, w)

P�m (z, w)
w−n−1 dw

2iπ
=

dx∑

i=1

Qx,y(z, wi (z))
∂P�m (z,w)

∂w
(z, wi (z))

wi (z)
−n−1.

In the remaining integral over z of Eq. (36), we perform the change of
variable from z to u ∈ T(k). There are on the spectral curve Ck two disjoint
simple paths on which the first coordinate z is in the unit circle. They project
onto the amoeba to two vertical segments obtained as the intersection of the
amoeba and the vertical axis x = 0, one of the two segments is below the
horizontal axis, the other one is above. The preimage byψ : u �→ (z(u), w(u))

of those two segments are two “vertical” loops on T(k), denoted by � and �′,
respectively. The loops � and �′ are assumed to be oriented in such a way that
when u moves in the positive direction, z(u) winds counterclockwise around
the unit circle. The map u ∈ � �→ z(u) ∈ S

1 has degree dx : along �, there are
exactly dx values of u such that z(u) = z, the corresponding value of w(u)

being equal to one of the wi (z), i ∈ {1, . . . , dx }. We can therefore rewrite

∫

|z|=1

dx∑

i=1

f (z, wi (z))dz =
∮

u∈�

f (z(u), w(u))z′(u)du,

for any measurable function f . In particular, for
f (z, w) = z−m−1w−n−1 Qx,y(z,w)

∂P�m
∂w

(z,w)
, one gets the following expression for the

massive Green function:

Gm(x + (m, n), y)

=
∮

u∈�

z(u)−mw(u)−n Qx,y(z(u), w(u))

z(u)w(u)
∂P�m

∂w
(z(u), w(u))

z′(u)
du

2iπ
.

But according to Lemma 30 and Eq. (33),

z(u)−mw(u)−nQx,y(z(u), w(u)) = e(x+(m,n),y)(u)g(u),

and the differential form

g(u)

z(u)w(u)
∂P�m

∂w
(z(u), w(u)

z′(u)du
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is the pullback by the biholomorphicmapψ of the holomorphic 1-formdefined
in Lemma 31. Therefore it is a holomorphic form on T(k), and as such, equal
to du, up to a multiplicative constant A to be determined by other means:

Gm(x + (m, n), y) = A ×
∮

�

e(x+(m,n),y)(u)du.

One then checks that the position of the contour � with respect to the poles
of the exponential function is indeed the one described in Theorem 12. In order
to determine the numerical value of the constant A, one needs to compute the
Laplacian of the Green function Gm(·, y) at the vertex y, as in the proof of
Theorem 12.

5.5.2 Recovering asymptotics of the massive Green function

Let x and y be two vertices of the fundamental domainG1, and let (m, n) ∈ Z
2.

We now explain how to recover the asymptotic formula of Theorem 14. In
the periodic case, we can let the vertex x + (m, n) tend to infinity with an
asymptotic direction: for r = (m, n) ∈ Z

2\{0, 0}, denote by r̂ the unit vector
in the direction of r, and |r| its norm. The asymptotic regime we consider
corresponds to |r| → ∞ and r̂ → r̂∗, where r̂∗ is a fixed direction.

The double integral formula (36) is the coefficient ar = am,n of zmwn in the

(multivariate) series expansion of the rational fraction Qx,y
P�m

in a neighborhood
of |z| = |w| = 1, and the domain of convergence of this expansion is exactly
the set

Log−1(DAk ) = {
(z, w) : (log |z|, log |w|) ∈ DAk

}
.

In particular, the general term am,nzmwn should go to zero for Log(z, w) ∈
DAk , and should be unbounded if Log(z, w) is in the interior of the amoeba.
Define the exponential rate of the series coefficients (ar) in the direction r̂∗

as in [41]:

β(̂r∗) = inf
N

lim sup
r→∞,
r̂∈N

|r|−1 log |ar|,

whereN varies over a system of open neighborhoods of r̂∗ whose intersection
is the singleton {̂r∗}. Then, for every r̂, β(̂r) = inf{−̂r · s : s ∈ DAk },
see [41, Chapter 8]. The compact oval DAk is strictly convex, because the
spectral curve is Harnack. So the infimum is obtained at a single point on the
boundary of the amoeba, corresponding to a unique value of the parameter
u0 + 2iK′ ∈ 2i K ′ + R/4Z. This gives, in the periodic case, a geometric
interpretation of the parameter u0 in Theorem 14 in terms of the spectral curve.
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Using a little further the formalism developed by Pemantle and Wilson [41,
Chapter 9], one can recover in the periodic case the precise asymptotics we
obtain in Theorem 14 in the general quasicrystalline setting, with the exact
prefactor.

6 Random rooted spanning forests on isoradial graphs

In this section we study random rooted spanning forests on isoradial graphs. In
Sect. 6.1 we define the statistical mechanics model of rooted spanning forests.
Then, in Sect. 6.2 we prove an explicit, local expression for an infinite volume
Boltzmann measure involving the Green function of Theorem 12. In Sect. 6.3
we show an explicit, local expression for the free energy of the model; we
also show a second order phase transition at k = 0 in the rooted spanning
forest model. At k = 0, one recovers the Laplacian considered in [26], and we
thus provide a proof that the corresponding spanning tree model is critical. In
Sect. 6.4 we prove that our one-parameter family of massive Laplacian defines
a one-parameter family of Z -invariant spanning forest models.

6.1 Rooted spanning forest model and related spanning trees

LetG = (V,E)be a (not necessarily isoradial) graph.A treeofG is a connected
subgraph ofG containing no cycle. A rooted tree is a tree with a distinguished
vertex, known as the root. The root of a generic treeT is denoted xT. A spanning
tree is a tree spanning all vertices of the graph.

A rooted spanning forest of G is a subgraph of G, spanning all vertices of
the graph, such that every connected component is a rooted tree. Let F(G)

denote the set of rooted spanning forests of the graph G.
Assume that edges of the graph G are assigned positive conductances

(ρ(e))e∈E and that vertices are assigned positive masses (m2(x))x∈V. This
is equivalent to defining a massive Laplacian �m on G, through Eq. (10).

Suppose now that G is finite. Then we can define a model of statistical
mechanics, by constructing the rooted spanning forest Boltzmann probability
measure, denoted Pforest, defined by:

∀F ∈ F(G), Pforest(F) = 1

Zforest(G, ρ,m)

∏

T∈F

(
m2(xT)

∏

e∈T
ρ(e)

)
,

where the normalizing constant Zforest(G, ρ,m) = ∑
F∈F(G)

∏
T∈F

(
m2(xT)∏

e∈T ρ(e)
)
is the rooted spanning forest partition function.

There is a direct and useful bijection between weighted rooted spanning
forests of G and weighted spanning trees of the graph Gr, obtained from G
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by adding a vertex r, and by joining every vertex of G to r. Given a spanning
tree of Gr, removing every edge connecting a vertex of G to the vertex r, and
replacing it by a root, yields a rooted spanning forest of G. This bijection is
weight preserving if edges of Gr have conductances ρm defined by:

ρm(e)=
{

ρ(e) if e is an edge of the graph G,

m2(x) if e = xr is an edge of Gr\G connecting the vertex x to r.
(37)

Let T(Gr) denote the set of spanning trees of the graph Gr. The spanning
tree Boltzmann probability measure on Gr, denoted Ptree, is defined by:

∀T ∈ T(Gr), Ptree(T) = 1

Z tree(Gr, ρm)

∏

e∈T
ρm(e),

where Z tree(Gr, ρm) = ∑
T∈T(Gr)

∏
e∈T ρm(e) is the spanning tree partition

function. Ptree is the image measure of Pforest by the bijection above.
From the above bijection, we know that Zforest(G, ρ,m) = Z tree(Gr, ρm),

and also that Ptree and Pforest are transported one into the other by the bijection.
By Kirchhoff’s matrix-tree theorem [28], there is an explicit expression

of the spanning tree partition function as a determinant, and by the work of
Burton and Pemantle [13] (see also [11]), under Ptree the edges of the random
spanning tree onGr form a determinantal process. Restating these results from
the point of view of spanning forests on G yields:

Theorem 32 (Matrix-Forest Theorem [28]) The rooted spanning forest par-
tition function of the graph G is equal to:

Zforest(G, ρ,m) = det(�m).

With the same notation as before, we let Gm be the massive Green function
onG, i.e., the inverse of themassive Laplacian�m . Fix an arbitrary orientation
of the edges of G, so that every edge e = (e−, e+) is now oriented from one
of its ends e− to the other one e+.

Theorem 33 (Transfer Impedance Theorem [13]) For any distinct edges
e1, . . . , e j and vertices x1, . . . , xk ofG, the probability that these edges belong
to a random rooted spanning forest and that these vertices are roots, is:

Pforest({e1, . . . , ek, x1, . . . , x j })

= det

( (
Hk(ei , e	)

)
1�i,	� j

(
Hk(ei , x	)

)
1�i� j,1�	�k(

Hk(xi , e	)
)
1�i�k,1�	� j

(
Hk(xi , x	)

)
1�i,	�k

)
,
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where

H(e, e′) = ρ(e′)(Gm(e−, e′−) − Gm(e+, e′−) − Gm(e−, e′+) + Gm(e+, e′+)),

H(e, x) = m2(x)(Gm(e−, x) − Gm(e+, x)),

H(x, e) = ρ(e′)(Gm(x, e−) − Gm(x, e+),

H(x, x ′) = m2(x ′)Gm(x, x ′).

The quantity H(e, e′) is the transfer impedance through e′, with a source at
the end points of e. We extend the name transfer impedance to the whole of
H, even when arguments are possibly not edges, but vertices.

The derivation of Theorems 32 and 33 from their classical versions is
detailed in Appendix D.3.

6.2 Infinite volume measure

From now on, suppose that G is an infinite isoradial graph, whose faces are
covering the whole plane, with conductances ρ and masses m2 of Eqs. (11)
and (12), for some k ∈ (0, 1). In the next theorem, we prove that the natural
infinite volume Gibbs measure on the set F(G) of all rooted spanning forests
ofG is expressed using the impedance transfer matrixHk involving the Green
function Gm(k) on G of Theorem 12.

Theorem 34 Let k ∈ (0, 1). There exists a unique measure Pk
forest on rooted

spanning forests of G such that for any distinct edges e1, . . . , e j , and any
distinct vertices x1, . . . , xk of G:

P
k
forest({e1, . . . , e j , x1, . . . , xk}) = det

( (
Hk(ei , e	)

) (
Hk(ei , x	)

)
(
Hk(xi , e	)

) (
Hk(xi , x	)

)
)

where Hk is the transfer impedance on G.
The measure P

k
forest is the weak limit of the sequence (P

k,(n)
forest) on rooted

spanning forests of any exhaustion (Gn)n�1 of G by finite graphs. Under
P
k
forest, the connected components of the random rooted spanning forests are

finite almost surely.

Proof Let (Gn)n�1 be an exhaustion of G by finite graphs. By Theorem 33,
the determinantal process on edges of Gn with kernel given by the transfer
impedance matrix on Gn is a probability measure on rooted spanning forests
of Gn . Moreover, by Lemma 50 of Appendix D.4, the sequence of Green
functions onGn converges pointwise to theGreen functionGm ofG. Therefore
Hk is the limit of the sequence of transfer impedance matrices on Gn .
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The convergence of the kernel of a determinantal process implies the con-
vergence of the finite dimensional laws, which are consistent, as limits of
probabilitymeasures.ByKolmogorov’s extension theorem, there exists a prob-
abilitymeasurePk

forest on the set of edgesG, which has those finite dimensional
marginals. Moreover, this measure is unique, since G has countably many
edges.

The random spanning forest on Gn can be sampled by Wilson’s algorithm,
by creating the branches from the loop erasure of killed random walks, with
transition probabilities naturally defined from the conductances and masses,
see Sect. D.3. Since (Gn) is an exhaustion of G, we can take the limit in the
loop erasure procedure and also sample the random configuration from the
Gibbs measure onG by Wilson’s algorithm onG with the killed random walk
(X j ) j �0 defined in Sect. D.4, in the same manner as it is done in [11, Theo-
rem 5.1] to construct the wired uniform spanning forests on infinite graphs.

We now show that the support is the set of rooted spanning forests with
finite size components. From the convergence of finite dimensional marginals,
it is clear that the limiting objects are rooted spanning forests. But what could
happen is that as n goes to infinity, some tree components onGn grow infinite,
and the root of these components either stay at finite distance, or are sent
to infinity (and thus disappear). To prove the statement about the support of
P
k
forest, one has to rule out the presence with positive probability of an infinite

component in G, with or without a root.
Fix a vertex x0. For every 	 � 1, define S	 to be the set of vertices of G at

distance 2	 from x0. If there is in the random rooted spanning forest an infinite
component T , then T has to intersect infinitely many S	 (in fact all except
maybe a finite number of them). The root of T is either at infinity, or at finite
distance from x0. There is thus an infinite number of 	 for which there exists
a vertex x	 ∈ S	 ∩ T ⊂ S	 at distance at least 	 of the root of T . However,
fromWilson’s algorithm, the path from x	 to its root is the loop erasure of the
killed random walk (X j ) j �0 starting from x	. The distance to the root is thus
not larger than the length of the trajectory of the random walk starting from
x	 before being absorbed. Since the random walk has a probability of being
absorbed at each vertex which is uniformly bounded from below by a positive
quantity, the length is dominated by a geometric variable. The probability that
it is greater than 	 is thus exponential small in 	. Since there are O(	) vertices
on S	, by Borel–Cantelli’s lemma, we see that the probability that the infinite
sequence (x	) exists is zero. In other words, with probability 1, there is no
infinite component. ��
Remark 35 By Remark 13, when k goes to 0, the impedance transfer matrix
Hk converges to the impedance transfer matrix defined from Kenyon’s critical
Green function [26], which is the kernel of the determinantal process on edges
corresponding to the spanning tree measure Ptree = P

0
forest with conductances
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(tan(θe))e∈E. Therefore, as k → 0, the measure P
k
forest on spanning forests

converges weakly to the measure Ptree.

Using the computations for the Green function of Eqs. (20) and (21), we
can write down the probability under Pk

forest of a single edge e = xy to be in
the random rooted spanning forest

P
k
forest({e}) = sc(θe)(G

m(x, x) + Gm(y, y) − 2Gm(x, y))

= 2 sc(θe)K ′

π
(k′ − dn(θe)) + 2H(2θe), (38)

and that of a vertex x to be a root:

P
k
forest({x}) = m2(x)Gm(x, x) = m2(x)K ′k′

π
. (39)

6.3 Free energy of rooted spanning forests on periodic isoradial graphs

Suppose that the isoradial graphG isZ2-periodic and let (Gn)n�1 be the natural
exhaustion by toroidal graphs:Gn = (Vn,En) := G/nZ2. Since conductances
and masses only depend on the elliptic modulus k, we denote by Zk

forest(Gn)

the partition function of rooted spanning forests of Gn .
Define the free energy of rooted spanning forests, denoted by Fk

forest, to
be minus the exponential growth rate of the rooted spanning forest partition
functions of the graphs Gn:

Fk
forest = − lim

n→∞
1

n2
log Zk

forest(Gn)

Then, we obtain the following result.

Theorem 36 For every k ∈ (0, 1), the free energy of the rooted spanning
forest model on G admits the following formula in terms of the angles of the
isoradial embedding:

Fk
forest = −|V1|

∫ K

0
4H ′(2θ) log sc(θ)dθ −

∑

e∈E1

∫ θe

0

2H(2θ) sc′(θ)

sc(θ)
dθ

= −|V1|
∫ K

0
4H ′(2θ) log sc(θ)dθ

+
∑

e∈E1

(
−2H(2θe) log sc(θe) +

∫ θe

0
4H ′(2θ) log sc(θ)dθ

)
, (40)

where H is the function defined in Eq. (9).
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Proof For every n � 1, let �m
n be the massive Laplacian matrix of the graph

Gn .
Using symmetries of the graph Gn under the group (Z/nZ)2, the matrix

�m
n can be block diagonalized, and by Theorem 32,

1

n2
log Zforest(Gn, ρ,m2) = − 1

n2
log det�m

n

= − 1

n2

n−1∑

j,	=0

log P�m

(
e
2iπ j
n , e

2iπ	
n

)
,

where P�m (z, w) = det�m(z, w) is the characteristic polynomial, see
Sect. 5.2. Since it does not vanish on the torus T2, this quantity converges
to

Fforest = −
∫∫

|z|=|w|=1
log det�m(z, w)

dz

2π i z

dw

2π iw
.

This formula is true for any biperiodic weighted graphs, as long as the mass
is strictly positive at one vertex at least. When all the masses are zero, this
expression is the free energy of the spanning tree model of the graph.

When conductances become infinite, the free energy blows up. A relevant,
related quantity is the entropy of the model:

Sforest = −Fforest −
∑

e∈E1

Pforest({e}) log ρ(θe) −
∑

x∈V1

Pforest({x}) logm2(x).

Note that in a rooted spanning forest, the number of roots plus the number
of edges is equal to the number of vertices. Therefore,

∑

e∈E1

Pforest({e}) +
∑

x∈V1

Pforest({x}) = |V1|.

As a consequence, if we multiply all conductances and squared masses by
the same factor λ, Fforest gets an extra additive constant −|V1| log λ, whereas
Sforest stays unchanged. In particular, it always gives a finite result.
To find the formula for the free energy, following ideas of [26], we study its

variation as the embedding of the graph is modified by tilting the train-tracks,
see Sect. 2.1.3.

Let us consider a smooth deformation of the isoradial graphG, i.e., a contin-
uous family of isoradial graphs (G(t))t∈[0,1] obtained by varying the directions
αT (t) of the train-tracks smoothly with t , in such a way that G(1) = G and
G(0) = Gflat, where Gflat is an isoradial graph whose edges have half-angles
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equal to3 0 or π
2 . More precisely, every vertex ofGflat has two incident vertices

with angle θe = π
2 and infinite conductance (called the short edges), the other

incident edges (called the long edges) having θe = 0, thus zero conductance.
The short edges form nontrivial disjoint cycles on the fundamental domain
Gflat

1 . At a vertex x of degree n of Gflat, the mass becomes:

m2(x) = lim
θi ,θ j→K

θk→0, k �=i, j

n∑

	=1

(A(θ	) − sc(θ	)) = 0,

since the function A − sc vanishes at 0 and K , see the proof of Proposition 6.
Let us first compute the entropy Sflatforest, when the graph becomes flat, by divid-
ing all the conductances and masses by the largest conductance. After this
renormalization, all edge-weights and masses on Gflat are zero, except for the
short edges: the entropywewant to compute is thus the entropy of the spanning
tree model on the degenerate periodic graph only made of copies of the short
edges, forming infinite lines. Since the number of spanning trees on a cycle
does not grow exponentially with its size, the number of spanning trees on
Gflat

N does not grow exponentially with N 2, and thus the entropy of the model
on Gflat is equal to zero.

One could then follow the variation of the entropy along the deformation.
However, it is simpler to use a twisted definition of the entropy, which does not
really have a physical interpretation, but whose variation is easier to analyze.
Let us define:

S̃forest = −Fforest −
∑

e∈E1

2H(2θe) log ρ(θe)

= Sforest +
∑

e∈E1

[Pforest({e}) − 2H(2θe)] log sc(θe)

+
∑

x∈V1

Pforest({x}) logm2(x). (41)

As the graph becomes flat, S̃forest tends to zero, since its difference with Sforest
becomes negligible, as can be checked from Eqs. (38) and (39).

Denote by Fforest(t) and S̃forest(t) the free energy and the twisted entropy
for the rooted spanning forest model on the graph G(t). As the angles of the
train-tracks are supposed to vary smoothly with t , one can write:

3 This is in contradiction with our hypothesis that all the angles θe are bounded away from 0
and π

2 . We can still make sense of it. In particular, we can suppose that the condition of bounded
angles is true for G(ε), as soon as ε > 0.
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dFforest(t)

dt
= −

∫∫

|z|=|w|=1

d

dt
log det�m(z, w)

dz

2π i z

dw

2π iw

dFforest(t)

dt
=−

∫∫

|z|=|w|=1

∑

x,y∈V1

∂ log det�m(z, w)

∂�m(z, w)x,y

d�m(z, w)x,y

dt

dz

2π i z

dw

2π iw

= −
∑

x,y∈V1

∫∫

|z|=|w|=1
(�m(z, w)−1)y,x

d�m(z, w)x,y

dt

dz

2π i z

dw

2π iw
,

since for an invertible matrix M = (Mi, j ), one has
∂ log det M

∂Mi, j
= (M−1) j,i .

By definition of the massive Laplacian matrix �m , the nonzero contribu-
tions of the entries of its Fourier transform �m(z, w)x,y can be split into two
categories:

• If (x, y) defines a directed edge e ofG1, then�m(z, w)x,y has a term equal
to −ρ(θe), possibly multiplied by a nontrivial power of z and w if the lifts
of x and y in G belong to different fundamental domains. In that case,
if the contribution is −ρ(θe)ziw j , then its derivative with respect to t is
−dρ(θe)

dt ziw j .
• If x = y, there is also in�m(z, w)x,x a termd(x), coming from the diagonal
of �m .

Note that in some cases, in particular for graphsGwith a small fundamental
domain, the two types of contributions can appear on the diagonal. However,
if that happens, the term d(x) is the only one with no extra power of z or w.
The other terms on the diagonal come by pair with opposite exponents for z
and w, corresponding to the two possible directions of the edge crossing γ̃x
and/or γ̃y .

From Eq. (36) and using also the symmetry of the Green function we thus
obtain:

dFforest(t)

dt
= −

∑

x∈V1

Gm(x, x)
d(d(x))

dt
+ 2

∑

e=xy∈E1

Gm(x, y)
dρ(θe)

dt
.

Along the deformation, the graph G(t) stays isoradial, so the formulas for
the conductances, the diagonal term of the massive Laplacian and the Green
function in terms of the elliptic functions hold. Let us handle the first term.
The diagonal term d(x) by Eq. (12) is:

d(x) =
∑

e∼x

A(θe).

Moreover, by Eq. (70) of Appendix B, Gm(x, x) = k′K ′
π

, which does not
depend on x . We can therefore rewrite the first term as
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∑

x∈V1

Gm(x, x)
d(d(x))

dt
= k′K ′

π

∑

x∈V1

∑

e∼x

dA(θe)

dt

= 2
k′K ′

π

∑

e∈E1

dA(θe)

dt
64=

∑

e∈E1

2
K ′

π

dn2(θe)

cn2(θe)

dθe
dt

. (42)

We now handle the second term. By definition, ρ(θe) = sc(θe) and sc′ =
dn · cn−2. By Formula (c) of Lemma 46 proved in Appendix B, Gm(x, y) =
K ′ dn(θe)

π
− H(2θe)

sc(θe)
. The second term can therefore be rewritten as

2
∑

e=xy∈E1

Gm(x, y)
dρ(θe)

dt
= 2

∑

e∈E1

[
K ′ dn2(θe)
π cn2(θe)

− H(2θe) dn(θe)

cn(θe) sn(θe)

]
dθe
dt

.

(43)
Combining Eqs. (42) and (43), we deduce

dFforest(t)

dt
=

∑

e∈E1

f (θe)
dθe
dt

,with

f (θ) = −2
H(2θ) dn(θ)

cn(θ) sn(θ)
= −2

H(2θ) sc′(θ)

sc(θ)
. (44)

Similarly,

dS̃forest(t)

dt
=

∑

e∈E1

s̃(θe)
dθe
dt

,

with s̃(θ) = − f (θ) − d

dθ
2H(2θ) log sc(θ) = −4H ′(2θ) log sc(θ).

Therefore to compute S̃forest for the graph G, it suffices to integrate dS̃forest
dt

along the deformation:

S̃forest = S̃forest(1) − S̃forest(0) =
∫ 1

0

∑

e∈E1

s̃(θe(t))
dθe
dt

dt =
∑

e∈E1

∫ θe

θflate

s̃(θ)dθ.

Among the parameters (θflate )e∈E1 , exactly |V1| are equal to K , the others
being 0. Using moreover that S̃forest(0) = S̃flatforest = 0, we then have:

S̃forest =
∑

e∈E1

∫ θe

0
s̃(θ)dθ − |V1|

∫ K

0
s̃(θ)dθ.
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Finally, one can compute the free energy from (41):

Fforest = −S̃forest −
∑

e∈E1

2H(2θe) log sc(θe)

= |V1|
∫ K

0
s̃(θ)dθ +

∑

e∈E1

∫ θe

0
f (θ)dθ, (45)

which is exactly the expression given in Theorem 36. The equality between
the two expressions follows from an integration by parts. ��
Remark 37 Formulas (40) of Theorem 36 are a continuous expression of k.
When k goes to zero, H ′ becomes constant, sc becomes tan, and the first
integral becomes up to some multiplicative constant

∫ π
2

0
log tan(θ)dθ,

which is zero by antisymmetry. Splitting log tan θ = log sin θ − log cos θ in
the remaining integral of the second formula yields the following value: when
k → 0:

F0
forest = −

∑

e∈E1

2

π
(L(θe) + L(π/2 − θe)) + 2θe

π
log tan θe, (46)

where L is the Lobachevsky function, i.e., L(x) = − ∫ x
0 log(2 sin t)dt . This

is up to a negative sign, the logarithm of the normalized determinant of the
Laplacian operator of [26]. By slightly adapting the proof above, one sees
that (46) actually is the free energy of the spanning tree model on G with
conductances (tan(θe))e∈E.

The next result proves a second order phase transition at k = 0 in the
rooted spanning forest model. This shows that the spanning tree model with
conductances (tan(θe))e∈E, corresponding to the Laplacian introduced in [26],
is a critical model; thus giving full meaning to the terminology critical used
in the paper [26]. Note that the conductances and masses behave smoothly in
the neighborhood of k = 0, see Lemma 7.

Theorem 38 Let F0
forest be the free energy of spanning trees with critical con-

ductances (tan(θe))e∈E. The free energy Fk
forest admits the following expansion

around k = 0:

Fk
forest = F0

forest − k2 log k−1|V1| + O(k2).
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As a consequence the model of rooted spanning forests on G exhibits a
phase transition of order two at k = 0.

Proof We start from the terms involving f in the second equality of Eq. (45),
in which we perform the change of variable from θ to θ = πθ

2K :

Fe :=
∫ θe

0
f (θ) dθ = −4K

π

∫ θe

0
H

(
4K θ

π

)
dn

sn · cn

(
2K θ

π

)
dθ.

We use the expansion of H in terms of the nome q = e−πK ′/K :

H

(
4K θ

π

)
= θ

π
+ 2K ′

K

∞∑

s=1

qs

1 − q2s
sin(2sθ)

= θ

π
− 2

π
log q

∞∑

s=1

qs

1 − q2s
sin(2sθ). (47)

In order to prove (47), we use the expression of H in terms of E, see (66), as
well as the expansion of E in terms of the nome, which can be obtained from
[3, 17.4.28 and 17.4.38]. The following expansion near k = 0 holds (see [3,
17.3.14 and 17.3.21])

q = k2

16
+ k4

32
+ O(k6).

We obtain that

H

(
4K θ

π

)
= θ

π
− k2 log k

sin(2θ)

4π
+ O(k2).

We now multiply by dn
sn · cn (

2K θ
π

), which is analytic in k2 and admits the
expansion 1

sin θ cos θ
+ O(k2), see [3, 16.13.1–16.13.3], and we integrate. In

this way, we obtain

Fe = − 2

π

∫ θe

0

θ

sin θ cos θ
dθ + k2 log k

θe

π
+ O(k2),

where we have made use of the standard identity sin 2θ = 2 sin θ cos θ . The
constant coefficient of Fe is integrated by parts to get:

2

π

∫ θe

0

θ

sin θ cos θ
dθ = 2

π

(
L(θe) + L

(π

2
− θe

))
− 2θe

π
log tan(θe),
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with L equal to the Lobachevsky function. Similar computations as above give
that

∫ K
0 s̃(θ)dθ admits the following expansion when the parameter k goes to

0:
∫ K

0
s̃(θ)dθ = k2 log k

2
+ O(k2).

When summing all the contributions to the free energy, the constant coeffi-
cient is exactly F0

forest from Eq. (46), and the coefficient in front of k2 log k is:

|V1|
2

+ 1

π

∑

e∈E1

θe.

But since around every vertex of G1, the half-angles of the rhombi sum to
π , we have:

1

π

∑

e∈E1

θe = 1

2π

∑

x∈V1

∑

e∼x

θe = |V1|
2

.

��

6.4 Z-invariance of the spanning forest model

Theorem12 proves an explicit, local expression for themassiveGreen function
of an isoradial graph with the choice of weights (2). From the point of view of
statistical mechanics, this feature is expected frommodels defined on isoradial
graphs that are Z-invariant. Although already present in the papers [24,39],
the notion of Z -invariance has been fully developed by Baxter in the context
of the integrable 8-vertex model [5], in connection with the Ising model and
the q-Potts model [6], and is directly related to the Yang–Baxter equations
satisfied by the weights of integrable models [7,27,40].

In this section, we define Z -invariance for rooted spanning forests, explain
why one expects local expressions for probabilities, and make explicit the
Yang–Baxter equations. Then inTheorem41, using 3-dimensional consistency
of the massive Laplacian (Proposition 8), we prove that with the choice of
conductances and masses of Definition 3.2, the model of rooted spanning
forests is indeed Z -invariant.

6.4.1 Definition

Let GY and G� be finite isoradial graphs differing by a star-triangle trans-
formation, as defined in Sect. 2.1.3. For convenience of the reader, we
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ρ(θ1)
ρ(θ2)

ρ(K − θ1)

ρ(K − θ3)

m2(x0)

ρ(K − θ2)θ̄3

θ̄1

θ̄2

ρ(θ3)

π
2 − θ̄2

π
2 − θ̄1

π
2 − θ̄3

x1

x3

x1

x0

x3

x2 x2

m′2(x1) m′2(x2)

m′2(x3)m2(x3)

m2(x1) m2(x2)

Fig. 12 Star-triangle transformation and notation. If an isoradial graph GY (left) has a star,
i.e., a vertex x0 of degree 3, it can be transformed into a new isoradial graphG� (right) having
a triangle connecting the three neighbors x1, x2, x3 of x0, by shifting around the three rhombi
of the underlying rhombus graph G
, and vice-versa

repeat Fig. 6, fixing notation for vertices and weights around the star/triangle
(Fig. 12).

Z -invariance imposes strong relations on the partition functions of GY and
G�. They are more easily expressed using the bijection of Sect. 6.1: instead
of considering the rooted spanning forest partition functions of GY and G�,
we take the spanning tree partition functions of Gr

Y and Gr
�.

LetG′ be the graph obtained fromGr
Y by removing the vertex x0, the edges

xi x0, xi r, i ∈ {1, 2, 3} and x0r. Note that G′ is also obtained from Gr
� by

removing the edges xi r and xi xi+1 (in cyclic notations), i ∈ {1, 2, 3}.
Denote by T̃(G′) the set of edge-configurations ofG′, which can be extended

to spanning trees onGr
� andGr

Y. For T̃ ∈ T̃(G′), let Z(GY |̃T) (resp. Z(G� |̃T))
be the restricted spanning tree partition function of Gr

Y (resp. Gr
�) coinciding

with T̃ outside the location of the star-triangle transformation, i.e., the sum of
the weights of the local configurations used to extend T̃ to a full spanning tree
of the whole graph Gr

Y (resp. Gr
�).

Definition 6.1 The rooted spanning forest model is Z-invariant, if the con-
ductances assigned to edges andmasses assigned to vertices are such that there
exists a constant C, such that for every T̃ ∈ T̃(G′), we have:

Z(GY |̃T) = CZ(G� |̃T).

Remark 39 Since the probability of an event can be written as the ratio of the
partition function restricted to the event and the full partition function, the
condition of Z -invariance is equivalent to asking that this probability is not
affected by star-triangle transformations performed away from the event. In
particular, this suggests that formulas for probabilities should have the locality
property.
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6.4.2 Yang–Baxter equations of rooted spanning forests

Actually, Z(GY |̃T) and Z(G� |̃T) only depend on the connection properties
of T̃ outside of the star-triangle, so that we can partition T̃(G′) according to
whether the configuration T̃ satisfies:

• R{x1,x2,x3}: vertices x1, x2, x3 are connected to r,
• R{xi ,x j }: vertices xi , x j are connected to r, xk is not; i, j, k distinct, {i, j} ⊂

{1, 2, 3},
• R{xi }: the vertex xi is connected to r, x j , xk are not; i ∈ {1, 2, 3},
• R∅: none of the vertices x1, x2, x3 is connected to r.
Denote by R any condition above. With a slight abuse of notation, if T̃

satisfies the condition R, we will write Z(GY|R) for Z(GY |̃T) and the same
for G�. The model is thus Z -invariant if and only if there exists a constant C,
such that:

∀ condition R, Z(GY|R) = C Z(G�|R) (Yang–Baxter equations). (48)

Classically Z -invariance is proved by showing that the weights satisfy the
Yang–Baxter equations. In this paper we provide an alternative, shorter proof,
see Theorem 41,4 which does not require making the equations explicit. We
nevertheless write them down for three reasons: first, the first equation allows
to explicitly compute the constantC; second, they are not present in the physics
literature and might be of interest to this community; third, it is quite remark-
able that such rather complicated looking equations have a one-parameter
family of solutions.

Writing the Yang–Baxter equations amounts to making explicit the contri-
butions Z(GY|R) and Z(G�|R) in the four cases above.

• CaseR{x1,x2,x3} illustrated in Fig. 13. If all the x	’s are connected to r, then
in Gr

�, one can add (exactly) one edge to connect x0 to r through one of
the three vertices x	, (and have a weight ρ(θ	)), or directly connect x0 to
r through an edge with weight m2(x0). On Gr

�, there is nothing to do, so
the total weight is 1. This yields the following identities

Z(GY|R{x1,x2,x3}) =
3∑

	=1

ρ(θ	) + m2(x0), (49)

Z(G�|R{x1,x2,x3}) = 1. (50)

4 A direct proof showing that our choice of weights satisfy the Yang–Baxter equations can be
found on the first arXiv version of this paper.
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Fig. 13 Top left (with the analog containing either ρ(θ1) or ρ(θ2)) and bottom left: possible
configurations for Z(GY|R{x1,x2,x3}). Right possible configuration for Z(G�|R{x1,x2,x3})

Similar considerations for the other three cases lead to the following expres-
sions of Z(GY|R) and Z(G�|R). The expressions are longer because the
number of possible situations increases.

• Case R{xi ,x j }:

Z(GY|R{xi ,x j }) = ρ(θk)

⎡

⎣
∑

	�=k

ρ(θ	)

⎤

⎦ + m2(x0)ρ(θk)

+ m2(xk)

[
3∑

	=1

ρ(θ	) + m2(x0)

]
,

Z(G�|R{xi ,x j }) =
∑

	�=k

ρ(K − θ	) + m′2(xk).

• Case R{xi }:

Z(GY|R{xi }) =
3∏

	=1

ρ(θ	) + m2(x0)
∏

	�=i

ρ(θ	)

+
∑

	�=i

m2(x	)ρ(θ{i,	}c)

⎡

⎣
∑

	′∈{i,	}
ρ(θ	′)

⎤

⎦

+ m2(x0)[m2(xk)ρ(θ j ) + m2(x j )ρ(θk)]
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+
⎡

⎣
∏

	�=i

m2(x	)

⎤

⎦
[

3∑

	=1

ρ(θ	) + m2(x0)

]
,

Z(G�|R{xi }) =
3∑

	=1

∏

	′ �=	

ρ(K − θ	′)

+
∑

	�=i

m′2(x	)

⎡

⎣
∑

	′∈{i,	}
ρ(K − θ	′)

⎤

⎦ +
∏

	�=i

m′2(x	).

Above, {i, 	}c denotes the complementary set of {i, 	}, i.e., the unique index
k which is not i and 	.

• Case R∅:

Z(GY|R∅) =
[

3∑

i=0

m2(xi )

][
3∏

i=1

ρ(θi )

]
+ m2(x0)

3∑

i=1

m2(xi )
∏

	�=i

ρ(θ	)

+
3∑

i=1

⎡

⎣
∏

	�=i

m2(x	)

⎤

⎦ ρ(θi )

⎡

⎣
∑

	�=i

ρ(θ	)

⎤

⎦

+ m2(x0)
3∑

i=1

⎡

⎣
∏

	�=i

m2(x	)

⎤

⎦ ρ(θi )

+
[

3∏

i=1

m2(xi )

][
3∑

i=1

ρ(θi ) + m2(x0)

]
,

Z(G�|R∅) =
[

3∑

i=1

m′2(xi )
]⎡

⎣
3∑

i=1

∏

	�=i

ρ(K − θ	)

⎤

⎦

+
3∑

i=1

⎡

⎣
∏

	�=i

m′2(x	)

⎤

⎦

⎡

⎣
∑

	�=i

ρ(K − θ	)

⎤

⎦

+
3∏

i=1

m′2(xi ).

Remark 40 When k = 0, the equations drastically simplify since all themasses
are 0. They are the Yang–Baxter equations of the spanning tree model, and
reduce to the so-called Kennelly’s theorem [24], linking the conductances
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so that the electric networks GY and G� are equivalent. When eliminating
ρ(K − θi ) from the equations, one is left with a single equation:

ρ(θ1) + ρ(θ2) + ρ(θ3) = ρ(θ1)ρ(θ2)ρ(θ3), θ1 + θ2 + θ3 = π,

which, when parametrized by taking ρ(θ) = tan(θ) is the triple tangent iden-
tity. This expression for ρ(θ) coincides with the critical conductances for trees
on isoradial graphs introduced in [26].

6.4.3 Z-invariance of the rooted spanning forests model

The next theorem proves that, with the choice of conductances and masses of
Eqs. (11) and (12), the rooted spanning forest model is Z -invariant.

Theorem 41 Let k ∈ [0, 1). Suppose that conductances assigned to edges,
and masses assigned to vertices are given by Eqs. (11) and (12). Then,
the model of rooted spanning forests is Z-invariant with constant C(k) =
k′ sc(θ1) sc(θ2) sc(θ3).

Remark 42 We conjecture that the conductances and masses from Eqs. (11)
and (12) provide a complete parametrization of the Yang–Baxter equations of
rooted spanning forests.

Remark 43 In the actual state of knowledge, Z -invariance does not provide
a way of finding local expressions, but it gives a framework for choosing the
parameters of the model. In some cases though (not including ours), there are
some elements in that direction in the work by [1] through the link between
3-dimensional consistency of some classes of equations on isoradial graphs,
and existence of solutions of these equations with a product structure.

Proof Let usfirst suppose that Z -invariance is proved and compute the constant
C(k). From Eqs. (49) and (50), we know that C(k) = ∑3

	=1 ρ(θ	) + m2(x0).
Using Eq. (71), we deduce that C(k) = k′ ∏3

	=1 sc(θ	).
Using Remark 39, proving Z -invariance is equivalent to proving invari-

ance of the probability measure under star-triangle transformations. Using the
transfer-impedance theorem [13] (see also Theorem 33) it suffices to show
that the Green functions Gm

G�
(x, y) and Gm

GY
(x, y) are equal on all common

vertices (that is different than x0). Let us fix x , then Gm
G�

(x, ·) is harmonic
everywhere except at x . By Proposition 8, there is a unique way of extending
Gm

G�
(x, ·) toGY in such a way that its massive Laplacian takes the same value

at every vertices other than x0, and is equal to 0 at x0. This new function is
massive harmonic everywhere except at x , it is thus equal to Gm

GY
(x, ·). By

construction it is equal to Gm
G�

(x, ·) on all common vertices thus concluding
the proof.
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A Useful identities involving elliptic functions

In this section we list required identities satisfied by elliptic functions. We also
derive properties and identities satisfied by the functions A and H defined in
Sect. 2.2.

A.1 Identities for Jacobi elliptic functions

Change of argument. Jacobi elliptic functions satisfy various addition for-
mulas by quarter-periods and half-periods, among which:

sc(u − K |k) = − 1

k′ sc(u|k)−1, [31, 2.2.17–2.2.18] (51)

dn(u + K |k) = k′ dn(u|k)−1, [31, 2.2.19] (52)

sc(u + 2iK′|k) = − sc(u + 2K |k) = − sc(u|k), [31, 2.2.11–2.2.12] (53)

sc(u + i K ′|k) = idn(u|k)−1, [31, 2.2.17–2.2.18] (54)

sn(u − i K ′|k) = 1

k
sn(u|k)−1, [31, 2.2.11–2.2.17]. (55)

Jacobi imaginary transformation. These transformations, which are proved
in [31, 2.6.12], refer to the substitution of u by iu in the argument of Jacobi
elliptic functions:

sn(iu|k) = i sc(u|k′), cs(iu|k) = −i ns(u|k′), dn(iu|k) = dc(u|k′).
(56)

Derivatives of Jacobi functions.These derivatives are computed in [3, 16.16]:

sn′ = cn dn, cn′ = − sn dn, dn′ = −k2 sn cn. (57)

Ascending Landen transformation. This allows to express the ratio sn · cn
dn as

an sn function, with a different elliptic modulus:
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sn · cn
dn

(u|k) = sn((1 + μ)u|	)
1 + μ

,

with 	 = 2 − k2 − 2
√
1 − k2

k2
and μ = 1 − 	

1 + 	
. (58)

It is stated in [31, 3.9.19]. Furthermore, the values of K (k), K ′(k) are related
to those of K (	), K ′(	) as follows (this can be noticed indirectly, by comparing
the periods of the above functions):

K (k) = (1 + 	)K (	), K ′(k) = K ′(	)
1 + μ

. (59)

A.2 Identities for the functions A and H

Recall the definition of the function A(·|k), see Eq. (8) of Sect. 2.2,

A(u|k) = 1

k′

(
Dc(u|k) + E − K

K
u

)
, where Dc(u|k) =

∫ u

0
dc2(v|k) dv.

Lemma 44 The function A(·|k) is odd and satisfies the following identities:

• A(K − u|k) = −A(u|k) + 1

k′ ns(u|k) dc(u|k), (60)

• A(v − u|k) = A(v|k) − A(u|k) − k′ sc(u|k) sc(v|k) sc(v − u|k), (61)

• A(u + 2K |k) = A(u|k), (62)

• A(u + 2iK′|k) = A(u|k) + iπ

k′K
, (63)

• dA

du
(u|k) = dc2(u|k)

k′ − K − E

k′K
. (64)

Proof Consider Jacobi epsilon function E(·|k), see also [31, 3.4.25],

∀ u ∈ C, E(u|k) =
∫ u

0
dn2(v|k) dv. (65)

Performing the change of variable u → iu in E(iu|k′) and using Jacobi
imaginary transformation (56), the function A can be expressed as

A(u|k) = − i

k′E(iu|k′) + E − K

k′K
u. (66)
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The function A is odd because E is. Moreover, Jacobi epsilon function
satisfies the following:

• E(−u + iK′|k) = −E(u|k) + i(K ′ − E ′) − cs(u|k) dn(u|k), [31, 3.6.17]
(67)

• E(v − u|k)=E(v|k) − E(u|k)+k2 sn(u|k) sn(v|k) sn(v − u|k), [31, 3.5.14]
(68)

• E(2K |k) = 2E, E(2iK′|k) = 2i(K ′ − E ′), [31, 3.6.22] (69)

We first prove (60). From Identities (66) and (67), we have

A(−u + K |k) + A(u|k) = − i

k′ (E(−iu + iK|k′) + E(iu|k′)) + E − K

k′

= − i

k′ (i(K − E) − cs(iu|k′) dn(iu|k′)) + E − K

k′

= i

k′ cs(iu|k′) dn(iu|k′).

The proof is concluded using Jacobi imaginary transformation (56). We
turn to the proof of (61). Using the definition of A(v − u|k) and Identity (68)
evaluated at k′, we have:

A(v − u|k) = A(v|k) − A(u|k) − ik′ sn(iu|k′) sn(iv|k′) sn(i(v − u)|k′).

The proof is again concluded using Jacobi imaginary transformation (56).
We now move to the proof of (62) and (63). From (69) used with k′ instead of
k, we have

A(2K |k) = − i

k′E(2iK|k′) + 2
E − K

k′ = − i

k′ 2i(K − E) + 2
E − K

k′ = 0,

A(2iK′|k) = − i

k′ (E(−2K ′|k′)) + 2iK′(E − K )

k′K

= − i

k′ (−2E ′) + 2iK′(E − K )

k′K
= iπ

k′K
,

where the last equality is a consequence of Legendre’s identity (6). The proof
of (62) (resp. (63)) is concluded using (61) evaluated at −u and 2K (resp. −u
and 2iK′).

Finally, Eq. (64) readily follows from (66). ��

Recall the definition of the function H(u|k) = −ikK ′
π

A( iu2 |k′), see (9).
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Lemma 45 The function H(·|k) satisfies the following properties:
• H(u + 4K |k) = H(u|k) + 1,

• H(u + 4iK′|k) = H(u|k),
• limk→0 H(u|k) = u

2π ,

• H has a simple pole in the rectangle [0, 4K ] + [0, 4iK′], at 2iK′, with

residue
2K ′

π
.

Proof The first two properties of Lemma 45 immediately follow from using
(62) and (63) in (9). The limit of H as k → 0 is computed using the alternative
expression (66):

H(u|k) = −ikK ′

π
A

(
iu

2

∣∣k′
)

= K ′

π

(
E
(u
2

∣∣k
)

+ E ′ − K ′

K ′
u

2

)
.

We conclude using the fact that limk→0 E(u|k) = u, see (65) and Sect. 2.2,
together with limk→0 E ′(k) = 1.

Finally, dc has a simple pole at K with residue 1, hence by (7) the same holds
true for Dc. Accordingly Dc( iu2 |k′) has a pole of order 1 at −2iK′ with residue
−2i . Using the expression (8) as well as the fact that H is odd completes the
proof. ��

B Explicit computations of the Green function

In this section, we explicitly compute values of the Green function along
the diagonal and for incident vertices. We use the explicit formula (19) of
Theorem 12 and the residue theorem. The second formula for incident vertices
uses the symmetry of the Green function. Note that it is not immediate that the
two formulas (b) and (c) are indeed equal. The first is more useful in the proof
of Theorem 12, the third is more attractive since it only involves the half-angle
θ .

Lemma 46 1. Let x be a vertex ofG. Then, theGreen function on the diagonal
at x is equal to:

Gm(x, x) = k′K ′

π
. (70)

2. Let x and y be neighboring vertices in G, endpoints of an edge e in a
rhombus spanned by eiα , and eiβ , of half-angle θ = β−α

2 ∈ (0, K ) with

y = x + eiα + eiβ , then we have the following expressions for the Green
function evaluated at (x, y):
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(a) Gm(x, y) = H(α + 2K ) − H(β + 2K )

sc(θ)
+ k′K ′

π
e(x,y)(2iK

′),

(b) Gm(x, y) = H(α) − H(β)

sc(θ)
+ K ′

π
dn

(α

2

)
dn

(
β

2

)
,

(c) Gm(x, y) = −H(2θ)

sc(θ)
+ K ′

π
dn(θ).

Proof of Point 1. Using expression (18), we have

Gm(x, x) = k′

4iπ

∮

C
1du,

where C is any contour winding once vertically on T(k) (the contour can be
anywhere, since the integrand has no pole). Take for C a vertical segment and
parametrize it by the ordinate w = Im(u). Using that the length of C is 4K ′
and that du = idw, one readily gets

Gm(x, x) = k′

4iπ
(i4K ′) = k′K ′

π
.

��

Proof of Point 2. We first prove (a). Using expression (19) and replacing the
exponential function by its definition, we need to compute

Gm(x, y) = − k′2

4iπ

∮

γx,y

H(u) sc

(
u − α

2

)
sc

(
u − β

2

)
du,

where γx,y is a trivial contour containing the pole 2iK′ of H and the poles
α + 2K , β + 2K of the exponential function. The residue of sc at K is −1/k′,
see (51) or [3, Table 16.7], from which we deduce that:

Resu=α+K

[
sc

(
u − α

2

)]
= − 2

k′ .
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By the residue theorem, we thus have:

Gm(x, y) = −k′2

2

⎛

⎜⎜⎝ − 2

k′ [H(α + 2K ) sc(K − θ) + H(β + 2K ) sc(K + θ)]
︸ ︷︷ ︸

residues at α+2K and β+2K

+ −2K ′

k′π
ex,y(2iK′)

︸ ︷︷ ︸
residue at 2iK′

.

⎞

⎟⎟⎠

51= H(β + 2K ) − H(α + 2K )

sc(θ)
+ k′K ′

π
ex,y(2iK′),

which concludes the proof of (a). Note that by Identity (54), e(x,y)(2iK′) =
k′

dn( α
2 ) dn( β

2 )
.

Expression (b) is obtained by symmetry of Gm , by exchanging the role of
x and y, transforming α and β into α + 2K and β + 2K , respectively. Using
Identity (52), one gets

e(y,x)(2iK
′) = k′

dn(α+2K
2 ) dn(β+2K

2 )
= dn(α

2 ) dn(β
2 )

k′ .

To obtain (c) we again use Eq. (19) but instead of the function H , we use
the function H̃ :

H̃(u) = H(u − α).

Indeed, since H̃−H is an elliptic function, it satisfies the conditions required
for Eq. (19) to hold, see Remark 13. After a change of variable v = u − α in
the integral, we get

Gm(x, y) = − k′2

4iπ

∮

γ

H(v) sc
(v

2

)
sc

(
v − 2θ

2

)
dv,

which would be the integral expression giving (b) when α = 0, and β = 2θ .
Expression (c) is then obtained using the fact that H(0) = 0 and dn(0) = 1.

��

C Identities for weights of the star-triangle transformation

In this section we prove identities for weights involved in the star-triangle
transformation, used in Sects. 3.2 and 6.4. We refer to Fig. 6 for notation.
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Lemma 47 We have the following identities for weights involved in the star-
triangle transformation:

k′
3∏

	=1

ρ(θ	) = m2(x0) +
3∑

	=1

ρ(θ	), (71)

m′2(xk) − m2(xk)=ρ(θk) −
∑

	�=k

ρ(K − θ	) − k′ρ(K − θi )ρ(K − θ j )ρ(θk).

(72)

Proof Equation (71) is a consequence of (61) and (62) using that θ1+θ2+θ3 =
2K . We now prove Eq. (72). Note that the star-triangle transformation implies
that m′2(xk) − m2(xk) only depends on three angles, that we call θi , θ j , θk .
We have:

m′2(xk) − m2(xk)

= A(K − θi ) + A(K − θ j ) − sc(K − θi ) − sc(K − θ j ) − A(θk) + sc(θk)

= A(K − θi ) + A(K − θ j ) − A(2K − (θi + θ j )) − sc(K − θi ) − sc(K − θ j )

+ sc(θk)

= −k′ sc(K − θi ) sc(K − θ j ) sc(2K − (θi + θ j )) − sc(K − θi )

− sc(K − θ j ) + sc(θk),

by Point (61) of Lemma 44

= −k′ sc(K − θi ) sc(K − θ j ) sc(θk) − sc(K − θi ) − sc(K − θ j ) + sc(θk),

thus ending the proof. ��

D Random walks and rooted spanning forests

In this Appendix, we collect some facts about rooted spanning forests, killed
random walks and their link to network randomwalks and spanning trees, that
are useful for Sect. 6.

Suppose for the moment that G is a finite connected (not necessarily
isoradial) graph, with a massive Laplacian �m . Equivalently, by Eq. (10),
G is endowed with positive conductances (ρ(e))e∈E and positive masses
(m2(x))x∈V. Consider the graph Gr = (Vr,Er) obtained from G by adding a
root vertex r and joining every vertex of G to r, as in Sect. 6.1. The graph Gr

is weighted by the function ρm , see (37).
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D.1 Massive harmonicity on G and harmonicity on Gr

There is a natural (non-massive) Laplacian �r on Gr, acting on functions f
defined on vertices of Gr:

∀ x ∈ Vr, �r f (x) =
∑

xy∈Er

ρm(xy)[ f (x) − f (y)].

Then the restriction �
(r)
r of the matrix of �r to vertices of G, obtained by

removing the row and column corresponding to r, is exactly the matrix �m .
Functions on vertices of G are in bijection with functions on vertices of Gr

taking value 0 on r (by extension/restriction). This bijection is compatible with
the Laplacians on G and Gr: if f is a function on G and f̃ is its extension to
Gr such that f̃ (r) = 0, then �m f = �r f̃ on G.

The operator �m is invertible, and its inverse is Gm , the massive Green
function of G. The matrix �r is not invertible: its kernel is exactly the space
of constant functions on Gr, but its restriction to functions on Gr vanishing at
r is invertible, and its inverse is exactly G̃m , the extension of Gm toGr, taking
the value 0 at r:

∀ x, y ∈ Vr, G̃m(x, y) = G̃m(y, x)

=
{
Gm(x, y) if x and y are vertices of G,

0 if x or y is equal to r.

D.2 Random walks

The network random walk (Y j ) j�0 on Gr with initial state x0 is defined by
Y0 = x0 and jumps

∀ x, y ∈ Vr, Px,y = Px0[Y j+1 = y|Y j = x] =
⎧
⎨

⎩

ρm(xy)

ρm(x)
if y ∼ x,

0 otherwise,

where

ρm(x) =
∑

y∈Vr :y∼x

ρm(xy) =

⎧
⎪⎨

⎪⎩

∑
y∈V:y∼x

ρ(xy) + m2(x) if x �= r,

∑
y∈V

m2(y) if x = r.
(73)

The Markov matrix P = (Px,y) is related to the Laplacian �r as follows:
if Ar denotes the diagonal matrix whose entries are the diagonal entries of the
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Laplacian �r, then
P = I − (Ar)

−1�r. (74)

This randomwalk is positive recurrent. Thepotential Vr(x, y)of this random
walk is defined as the difference in expectation of the number of visits at y
starting from x and from y:

Vr(x, y) = Ex

⎡

⎣
∞∑

j=0

I{Y j=y}

⎤

⎦ − Ey

⎡

⎣
∞∑

j=0

I{Y j=y}

⎤

⎦ .

Although both sums separately are infinite, the difference makes sense and
is finite, as can be seen by computing Vr(x, y) with a coupling of the random
walks starting from x and y, where they evolve independently until they meet
(in finite time a.s.), and stay together afterward.

Because (Y j ) is (positive) recurrent, the time τr for (Y j ) to hit r is finite a.s.
We can define the killed random walk (X j ) = (Y j∧(τr−1)), absorbed at the
root r. The process (X j ) visits only a finite number of vertices of G before
being absorbed: every vertex is thus transient. If x and y are two vertices ofG,
then we can define the potential of (X j ), Vm(x, y), as the expected number
of visits at y of (X j ) starting from x , before it gets absorbed. Vm and Vr are
linked by the formula below, which directly follows from the strong Markov
property:

∀ x, y ∈ G, Vm(x, y) = Vr(x, y) − Vr(r, y). (75)

As a matrix, Vm is equal to (I − Qm)−1 where Qm is the substochastic
transitionmatrix for the killed process (X j ).Given that Qm = I−(Am)−1·�m ,
where Am is the diagonal matrix extracted from�m , Vm is related to the Green
function by the following formula:

Vm(x, y) = 1

Am
x,x

(�m)−1
x,y = Gm(x, y)

ρm(x)
. (76)

Another quantity related to the potential is the transfer impedance matrix
H, whose rows and columns are indexed by oriented edges of the graph. If
e = (x, y) and e′ = (x ′, y′) are two directed edges of Gr, the coefficient
H(e, e′) is the expected number of times that this random walk (Y j ), started
at x and stopped the first time it hits x , crosses the edge (x ′, y′) minus the
expected number of times that it crosses the edge (y′, x ′):

H(e, e′) = [Vr(x, x ′) − Vr(y, x
′)]Px ′,y′ − [Vr(x, y′) − Vr(y, y

′)]Py′,x ′ .

The quantity H(e, e′)/ρ(e′) is symmetric in e and e′, and is changed to its
opposite if the orientation of one edge is reversed.
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When e and e′ are in fact edges of G, by (75) and the definition of the
transition probabilities for the processes (Y j) and (X j ), Vr(x, x ′)−Vr(y, x ′) =
Vm(x, x ′) − Vm(y, x ′) and Px ′,y′ = Qx ′,y′ = ρ(x ′y′)/ρm(x) (and similarly
when exchanging the roles of x ′ and y′). Therefore,

H(e, e′) = [Vm(x, x ′) − Vm(y, x ′)]Qx ′,y′ − [Vm(x, y′) − Vm(y, y′)]Qy′,x ′

= ρ(x ′y′)[Gm(x, x ′) − Gm(y, x ′) − Gm(x, y′) − Gm(y, y′)].
(77)

If one of the vertices of e or e′ is r, then the same formula holds if we replace
Gm by G̃m , i.e., if we put to 0 all the terms involving the root r.

D.3 Spanning forests on G and spanning trees on Gr

Recall the definition of rooted spanning forests onG and spanning trees ofGr

from Sect. 6.1. Kirchhoff’s matrix-tree theorem [28] states that spanning trees
of Gr are counted by the determinant of �

(r)
r , obtained from �r by deleting

the row and column corresponding to r:

Theorem 48 [28] The spanning forest partition function of the graph G is
equal to:

Zforest(G, ρ,m) = det�(r)
r .

Using the fact stated in Sect. D.1 that �(r)
r = �m , we exactly obtain Theo-

rem 32.
The explicit expression for the Boltzmann measure of spanning trees is due

to Burton and Pemantle [13]. Fix an arbitrary orientation of the edges of Gr.

Theorem 49 [13] For any distinct edges e1, . . . , ek ofGr, the probability that
these edges belong to a spanning tree of Gr is:

Ptree(e1, . . . , ek) = det(H(ei , e j ))1�i, j�k .

Using the correspondence between edges (connected to r, or not) in the
spanning tree ofGr and edges and roots for the corresponding rooted spanning
forest of G, together with the expression of the transfer impedance matrix H
in terms of the massive Green function on G from Eq. (77), one exactly gets
the statement of Theorem 33.

Due to the bijection between spanning trees on Gr and rooted spanning
forests on G, the latter can be generated by Wilson’s algorithm [44] from the
killed random walk (X j ). Indeed, if we take r as starting point of the spanning
tree, and construct its branches by loop erasing the random walk (Y j ), the
obtained trajectories are exactly loop erasures of (X j ).
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D.4 Killed random walk on infinite graphs and convergence of the Green
functions along exhaustions

In this section we define the killed randomwalk on an infinite graphG, as well
as its associated potential and Green function. We then prove (Lemma 50)
that the Green functions associated to an exhaustion (Gn)n�1 of G converge
pointwise to the Green function of G. Lemma 50 is an important preliminary
result to Theorem 34.

In the case where G is infinite, it is not possible to consider the network
random walk (Y j ) on Gr, the graph obtained from G by adding the root r
connected to the other vertices, because the degree of r is infinite and the
conductances associated to edges connected to r are bounded from below by a
positive quantity, and are thus not summable. However, it is possible to directly
define the walk (X j ), killed when it reaches r. Its transition probabilities are:

Qm
x,y = P(X j+1 = y|X j = x)

=
⎧
⎨

⎩

ρ(xy)∑
z∼x ρ(xz) + m2(x)

if y and x are neighbors,

0 otherwise,
(78)

and the probability of being absorbed at x is Qm
x = P(X j+1 = r|X j = x) =

1 − ∑
xy∈E Qm

x,y .
Under the condition that the conductances and masses are uniformly

bounded away from 0 and infinity (which is the case on isoradial graphs,
as soon as k > 0 and the angles of the rhombi are bounded away from 0 and
π
2 ), the probability of being absorbed at any given site is bounded from below
by some uniform positive quantity. The process (X j ) is thus absorbed in finite
time, and vertices of G are transient. We will assume that this condition is
fulfilled.

There is the same link (74) as in Sect. D.2 between the substochastic matrix
Qm = (Qm

x,y) and the Laplacian �m .
The potential Vm of the discrete random walk (X j ) is a function onG×G

defined at (x, y) as the expected time spent at vertex y by the discrete random
walk (X j ) started at x before being absorbed (below, τr is defined as the first
hitting time of r, as in Sect. D.2):

Vm(x, y) = Ex

⎡

⎣
τr−1∑

j=0

I{y}(X j )

⎤

⎦ . (79)

In Sect. D.5 we give the standard interpretation of the Green function in
terms of continuous time random processes.
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We nowcome to the convergence of theGreen functions along an exhaustion
of the graph. Let (Gn)n�1 be an exhaustion of the infinite graph G. Let (Yn

j )

be the network random walk of Gn and (X j ) be the killed random walk of G.
We introduce τ nr = inf{ j > 0 : Yn

j = r} and (Xn
j ) = (Yn

j∧(τr−1)), the random
walk on Gn , killed at the vertex r. It is absorbed in finite time by r. Finally,
τ∂Gn = inf{ j > 0 : Xn

j /∈ Gn} = inf{ j > 0 : X j /∈ Gn} (if the starting point
belongs to Gn) is the first exit time from the domain Gn .

Lemma 50 For any x, y ∈ V, one has limn→∞ Gm
n (x, y) = Gm(x, y).

Proof To use an interpretation with random walks, we prove Lemma 50 for
the potential instead of the Green function; this is equivalent by (76). The
potential function for the killed walk (Xn

j ) is

Vm
n (x, y) = Ex

⎡

⎣
∞∑

j=0

I{y}(Xn
j )

⎤

⎦ = Ex

⎡

⎣
τ nr −1∑

j=0

I{y}(Yn
j )

⎤

⎦ .

The potential Vm(x, y) for (X j ) is the same as above without the subscript
n, see (79). One has

Vm
n (x, y) = Ex

⎡

⎣
τ nr −1∑

j=0

I{y}(Xn
j ); τ nr < τ∂Gn

⎤

⎦

+Ex

⎡

⎣
τ nr −1∑

j=0

I{y}(Xn
j ); τ nr > τ∂Gn

⎤

⎦ .

In the first term we replace Xn
j by X j (as x ∈ Gn), τ nr by τr, and we use

the monotone convergence theorem (as n → ∞, τ∂Gn → ∞ monotonously).
The first term goes to Vm(x, y). We now prove that the second term goes to 0
as n → ∞. It is less than Ex [τ nr ; τ nr > τ∂Gn ]. Conductances and masses are
bounded away from 0 and∞, so τ nr is integrable and dominated by a geometric
random variable not depending on n. We conclude since τ∂Gn → ∞.

D.5 Laplacian operators and continuous time random processes

In this section we briefly recall the probabilistic interpretation of the Lapla-
cian �m on the infinite graph G (introduced in (10) of Sect. 3.1). A similar
interpretation holds for Laplacian operators on other graphs (like on the finite
graphs of Sect. D.2).

The Laplacian �m is the generator of a continuous time Markov process
(Xt ) onG, augmented with an absorbing state (the root r): when at x at time t ,
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the process waits an exponential time (with parameter equal to the diagonal
coefficient dx ), and then jumps to a neighbor of x with probability (78). For the
same reasons as for (X j ) and under the same hypotheses, the random process
(Xt ) will be absorbed by the vertex r in finite time.

The matrix Qm in (78) is a substochastic matrix, corresponding to the
discrete time counterpart (X j ) of (Xt ), just tracking the jumps. The Green
function Gm(x, y) represents the total time spent at y by the process (Xt )

started at x at time t = 0 before being absorbed.
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