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Abstract We establish uniformization results for metric spaces that are home-
omorphic to the Euclidean plane or sphere and have locally finite Hausdorff
2-measure. Applying the geometric definition of quasiconformality, we give
a necessary and sufficient condition for such spaces to be QC equivalent to
the Euclidean plane, disk, or sphere. Moreover, we show that if such a QC
parametrization exists, then the dilatation can be bounded by 2. As an appli-
cation, we show that the Euclidean upper bound for measures of balls is a
sufficient condition for the existence of a 2-QC parametrization. This result
gives a new approach to the Bonk–Kleiner theorem on parametrizations of
Ahlfors 2-regular spheres by quasisymmetric maps.
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1 Introduction

1.1 Background

One of the main problems in Analysis in Metric Spaces is to find condi-
tions under which a metric space can be mapped to a Euclidean space by
homeomorphisms with good geometric and analytic properties. In particular,
non-smooth versions of the classical uniformization theorem have found appli-
cations in several different areas of mathematics. This problem is very difficult
in general, and many basic questions remain open.

Without the presence of smoothness, the parametrizations one looks for
are usually quasiconformal (QC) or quasisymmetric (QS) homeomorphisms,
which distort shapes in a controlled manner (see Sects. 1.2 and 16 for def-
initions), or bi-Lipschitz homeomorphisms, which also distort distances in
a controlled manner. We will here concentrate on QC and QS maps. Con-
cerning the existence of bi-Lipschitz parametrizations, we only briefly note
that interesting sufficient conditions and counterexamples have been found
both in the 2-dimensional [13,22,38,44,52,53] and higher-dimensional cases
[4,28,30,32,50].

Uniformization problems concerning QC and QS maps have received con-
siderable attention in recent years, and they have found significant applications
in geometry, complex dynamics, geometric topology and geometric measure
theory, among other areas. In particular, several problems in the theory of
hyperbolic groups can be interpreted as uniformization problems concerning
boundaries of the groups in question, cf. [9,10,12,14,26,37].
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Uniformization of two-dimensional metric surfaces 1303

The theory of QC and QS maps f : Y → R
n can be roughly divided into

two parts depending on the metric space Y . If Y “has dimension n”, meaning
that Y shares some metric or geometric properties with Rn and in particular is
not a fractal, then analytic methods can be used to study such maps f . On the
other hand, if Y has fractal-like behavior, then onemainly has to rely onweaker
methods. Also, the infinitesimal or analytic definitions of quasiconformality
do not give a good theory in this case, and one has to concentrate on QS maps.
See [54] and [27] for the basic properties of QS maps in metric spaces, and
[15,18,41,42] for results on QS parametrizations of fractal spaces.

In this paper we consider the first part described above. A theory of QC
maps between metric spaces equipped with the Hausdorff Q-measure has
been established by Heinonen and Koskela [29], based on two assumptions:
Ahlfors regularity and the Loewner condition. The first assumption requires
balls B(x, r) in the space to havemass comparable r Q . The second assumption
is a certain estimate concerning the Q-modulus of path families (see Sect. 1.2)
resembling change of variables by polar coordinates. These assumptions lead
to strong results and can often be verified assuming purely geometric condi-
tions on the space. Heinonen and Koskela showed that the Loewner condition
is equivalent to a suitable Poincaré inequality. They also proved that the infin-
itesimal QC condition and the QS condition are equivalent under the above
assumptions, at least locally.

We now come back to the uniformization problem. After previous results
by Semmes [48] and David and Semmes [17], Bonk and Kleiner [11] gave
a satisfactory answer in the case Y Ahlfors 2-regular and homeomorphic to
S
2. Namely, they proved that under these assumptions Y is QS equivalent

to S
2 if and only if Y is linearly locally contractible. This is a geometric

condition which in particular rules out cusp-like behavior, see Sect. 16. This
result has been extended in several consequent works cf. [12,40,59,60]. There
theAhlfors regularity condition is combinedwith varyinggeometric conditions
on the space Y .

In higher dimensions, the uniformization problem does not have a satisfac-
tory answer even for Ahlfors regular spaces. Examples by Semmes [49] show
that the result of Bonk and Kleiner mentioned above does not generalize to
dimension 3. Heinonen and Wu [33] and Pankka and Wu [45] gave further
examples of geometrically nice spaces without QS parametrizations.

In this paper we take a slightly different approach to the uniformization
problem in dimension two. We would like to find minimal hypotheses under
which a result resembling the classical uniformization theorem as much as
possible could be proved. This means giving up the geometric conditions such
as Ahlfors regularity and linear local contractibility, and instead of QS maps
seek for parametrizations by conformal or QC maps which do not in general
have good global properties.
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1304 K. Rajala

There are two main reasons for using such an approach. First, while the
geometric conditions are good tools to work with, assuming them and Ahlfors
regularity in particular is too restrictive in many situations. Secondly, if one
knows the existence of QC parametrizations in general spaces, then one can
try to upgrade their properties using QC invariants together with whatever
conditions the underlying spaces satisfy.

We consider metric spaces X homeomorphic toR2. Also, we work with the
Hausdorff 2-measure and assume that it is locally finite on X . This is natural
since the Hausdorff measure is related to the metric in X , but also to plane
topology via coarea estimates and separation properties. This guarantees that
QC maps in X are closely related to the metric and topology. Under these
minimal assumptions, we define conformal and QC maps f : X → R

2 using
the geometric definition. This is a standard definition of quasiconformality
involving conformal modulus of path families, see Sect. 1.2.

QC maps between general metric spaces are often defined using the metric
definition, see Sect. 16. The advantage of the geometric definition is that it
automatically gives a QC invariant that can be used to prove estimates in the
presence of geometric or other conditions. This is not true with the metric
definition which in general implies very few properties by itself. In the case
of Ahlfors regular Loewner spaces the two definitions of quasiconformality
coincide ([29,55]). See [6] and [61] for more general results concerning the
equivalence between different definitions.

The uniformization problem now asks for conditions on X under which
there exists a QC map f : X → R

2. It follows from the results mentioned
above that such a map exists if X is Ahlfors 2-regular and linearly locally
contractible. However, as discussed above, it is of great interest to consider
more general spaces that do not satisfy such strong conditions. One could
hope that a QC map always exists under the minimal assumptions that X be
homeomorphic toR2 with locally finite Hausdorff 2-measure. This is not true,
however, as shown in Example 2.1.

Our main result, Theorem 1.4, gives a necessary and sufficient condition
called reciprocality: whenever Q ⊂ X is a topological square, let M1 be the
modulus of all paths joining two opposite sides in Q, and M2 the modulus of
all paths joining the other two sides in Q. Then we require that M1 · M2 is
bounded from above by κ and below by κ−1, with constant κ depending only
on X . We also assume that the modulus of a point is always zero, in a suitable
sense.

A basic exercise in classical QC theory shows that planar rectangles satisfy
the reciprocality condition with constant 1. Applying the Riemann mapping
theorem, or arguing directly, one sees that this holds for all Jordan domains
in the plane. Then it is easy to deduce that reciprocality is necessary for the
existence of a QC map f : X → R

2. Theorem 1.4 shows that it is also
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Uniformization of two-dimensional metric surfaces 1305

sufficient. Reciprocality of a general space X implies that X cannot be too
“squeezed” and concentrated too much around a small set of zero Hausdorff
measure, cf. Example 2.1.

Methods applying reciprocality in connection with quasiconformality have
previously been used in Euclidean spaces and also in more general situations,
cf. [16,47], although they usually do not appear explicitly. Indeed, reciprocality
is connected to the fact that conjugate functions can be defined for harmonic
functions. Also related is the fact that capacities are dual to the moduli of
separating hypersurfaces, cf. [19,20,23,62]. In this paper we show that the
reciprocality condition can be isolated and applied to prove uniformization
results in a very general setting.

The reciprocality condition is much weaker than Ahlfors regularity.
Although it is sometimes difficult to determine whether the condition holds, it
can be verified in several important cases. In Theorem 1.6, we show that recip-
rocality holds if the measures of balls B(x, r) are bounded from above by a
constant times r2, without assuming further geometric conditions on X . Con-
sequently, such spaces admit QC parametrizations. In Theorem 1.5 we show
that if a QC parametrization exists, it can be always chosen to have dilatation
bounded from above by 2.

As an application of our results, we can reprove the QS uniformization theo-
rem of Bonk andKleiner discussed above. Indeed, it follows from the theory of
Heinonen and Koskela that QCmaps between Ahlfors regular, linearly locally
contractible spaces are QS. Now Theorem 1.6 gives a QC map even without
the connectivity condition, so under its presence the quasiconformality can be
“upgraded” to quasisymmetry.

1.2 Definitions

Throughout this paper, X denotes a metric space homeomorphic toR2. It then
follows that the Hausdorff 2-measure H2 of every ball B ⊂ X is positive
(see Remark 3.4). In this paper we always assume that H2(B) is also finite
whenever B ⊂ X is compact. Notice that X is not assumed to be complete or
proper.

Definition 1.1 Let � be a family of continuous paths in X . The (conformal)
modulus of � is

mod(�) = inf
ρ

∫
X

ρ2 dH2,

where the infimum is taken over all admissible functions for �, i.e., all non-
negative Borel functions ρ satisfying
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1306 K. Rajala

∫
γ

ρ ds � 1

for all locally rectifiable γ ∈ �.

If E, F, G ⊂ X , we denote by �(E, F; G) the family of all continuous
paths joining E and F in G, and mod(E, F; G) := mod�(E, F; G).

Definition 1.2 Let�′ ⊂ X be a domain, and f : �′ → � ⊂ R
2 a homeomor-

phism. We say that f and f −1 are K -quasiconformal, or K -QC (conformal if
K = 1), if

K −1 mod(�) � mod( f �) � K mod(�)

for every path family � in �′. Here f � = { f ◦ γ : γ ∈ �}.
We will abuse terminology by calling an injective map f QC if f is a QC

homeomorphism onto its image. QC maps between metric spaces are usually
defined using the so-called metric definition, see Remark 16.2. It turns out that
in the setting of this paper the so-called geometric definition given above is
more natural.

Definition 1.3 We say that X is κ-reciprocal, if the conditions (1)-(3) hold:
if Q ⊂ X is homeomorphic to a closed square, let ζ1, . . . , ζ4 be the boundary
edges in cyclic order. Then the moduli of opposite edges satisfy

mod(ζ1, ζ3; Q) · mod(ζ2, ζ4; Q) � κ, and (1)

mod(ζ1, ζ3; Q) · mod(ζ2, ζ4; Q) � κ−1. (2)

If a ∈ X and X\B(a, R) �= ∅, then
lim
r→0

mod(B(a, r), X\B(a, R); B(a, R)) = 0. (3)

We say that X is reciprocal if X is κ-reciprocal for some κ .

It follows from theRiemannmapping theorem, or canbeproveddirectly, that
simply connected domains in R2 are 1-reciprocal, as well as smooth surfaces.
R
2 equipped with a non-Euclidean norm is always κ-reciprocal for some κ ,

and 1-reciprocal if and only if the norm is induced by an inner product. We
discuss further examples in the next sections.

1.3 Main results

The main result of this paper reads as follows.
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Uniformization of two-dimensional metric surfaces 1307

Theorem 1.4 There exists a QC homeomorphism f : X → � ⊂ R
2 if and

only if X is reciprocal.

There are spaces X for which the conditions of Theorem 1.4 are not satis-
fied, see Example 2.1. The necessity of reciprocality for the existence of a QC
parametrization follows directly from the 1-reciprocality of Euclidean plane
domains and the definition of quasiconformality. Sufficiency is the actual con-
tent of Theorem 1.4.

Combining results from Sobolev and Lipschitz analysis in metric spaces,
the measurable Riemann mapping theorem, and John’s theorem on symmetric
convex bodies, one can give a universal bound for theQCdilatation in Theorem
1.4.

Theorem 1.5 There exists a QC homeomorphism f : X → � ⊂ R
2 if and

only if there exists a 2-QC homeomorphism f0 : X → � ⊂ R
2. If moreover

X ⊂ RN for some N � 2, then 2 can be replaced by 1.

The constant 2 in Theorem 1.5 is not best possible. The best constant for the
space X = (R2, || · ||∞) is π/2, see Example 2.2. This suggests that π/2 may
also be the sharp constant in the theorem. See Sect. 14 for further discussion.
It follows from Theorems 1.4 and 1.5 that if X is reciprocal then X is always
4-reciprocal and if moreover X ⊂ R

N then X is 1-reciprocal.
Theorems 1.4 and 1.5 can be applied to the class of spaces satisfying upper

Euclidean mass bounds.

Theorem 1.6 Suppose there exists CU > 0 such that

H2(B(x, r)) � CU r2 (4)

for every x ∈ X and r > 0. Then X is reciprocal.

The proofs of Theorems 1.4, 1.5 and 1.6 show that Theorem 1.6 remains
true if (4) is assumed for balls inside compact subsets E of X , such that the
constant CU is allowed to depend on E . Several examples of reciprocal spaces
can be constructed that do not satisfy (4) even locally. Theorems 1.4, 1.5 and
1.6 hold alsowhen X is homeomorphic to theRiemann sphereS2, with obvious
modifications.

Bonk and Kleiner [11] gave an excellent characterization for quasispheres
among the topological spheres satisfying (4). Theorems 1.4 and 1.6 yield a
new proof to their result.

Corollary 1.7 ([11], Theorem 1.1) Assume that Y is homeomorphic to S2 and
satisfies (4). Then there exists a QS homeomorphism f : Y → S

2 if and only
if Y is linearly locally contractible.
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1308 K. Rajala

See Sect. 16 for the definitions of quasisymmetry and linear local con-
tractibility. Again, the actual content of Corollary 1.7 is the existence of the
required quasisymmetric map. Corollary 1.7 is quantitative: f can be chosen
to be η-quasisymmetric with η depending only on CU and the linear local
contractibility constant. In contrast to Theorem 1.4, it is clear that Corollary
1.7 does not hold with a universal quasisymmetry function η.

1.4 Organization of the paper

In Sect. 2 we give two examples illustrating Theorems 1.4 and 1.5. In the
first example we construct a surface X that cannot be parametrized by a QC
map. This is done by fixing a Cantor set of positive Lebesgue measure in R

2,
and choosing a continuous weight vanishing on the Cantor set. Taking the
path metric with respect to this weight yields a non-reciprocal space X . In the
second example we considerR2 equipped with the L∞-norm, and find the best
possible dilatation for QC maps between this space and the Euclidean plane.

Theorem 1.4 is proved in Sects. 3–13. First, in Sect. 3 we apply coarea
estimates to find paths with positive modulus in X . Both the results and the
methods in this section are frequently applied in the following sections.

We construct the map in Theorem 1.4 in several steps. We first show the
existence of a QCmap in a given topological square Q ⊂ X .We start in Sect. 4
by defining the real part u of f . Applying Heinonen and Koskela’s notion of
upper gradients, we show that u can be defined as an energy minimizer among
functions taking value 0 on a fixed edge of ∂ Q and value 1 on the opposite
edge. In R

2 this would mean finding the harmonic function with minimal
energy under such boundary conditions. We also prove a maximum principle
for u that later allows us to develop its main properties. The results in this
section hold in great generality, and at this point we do not assume any of the
reciprocality conditions.

In Sect. 5 we apply the maximum principle, together with conditions (2)
and (3), to prove continuity of the function u in Q. Moreover, in Sect. 6 we
show that under these conditions almost every level set of u is a simple curve.
This helps us define a conjugate function v for u. Indeed, our method for
defining v in R

2 would simply be integrating |∇u| over the level sets of u.
It turns out that a similar approach works also in our generality, although the
actual definition is more involved. In Sect. 7 we carry out the construction of
v and prove continuity. The map f = (u, v) then maps Q onto a rectangle
[0, 1] × [0, M1], where M1 depends on Q.

Once we have constructed the map f , we need to show that it is QC. In
particular, we need to establish some analytic properties for f . Section 8 is
the first step in this direction. There we apply a dyadic decomposition of the
image to show that f maps sets of measure zero to sets of measure zero, and
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Uniformization of two-dimensional metric surfaces 1309

that the change in area is what corresponds to |∇u|2 in R
2. This leads to a

change of variables formula that by itself does not imply quasiconformality of
f but plays a role in the proof. The first application of the formula appears in
Sect. 9 where we prove that f is a homeomorphism.

To prove quasiconformality of f , we need to show the validity of the mod-
ulus inequalities mod(�) � K mod( f �) and mod( f �) � K mod(�). These
depend on the analytic (Sobolev) regularity of f and f −1, respectively. To
prove the regularity of f , we introduce in Sect. 10 a modification of confor-
mal modulus, called variational modulus. Although the variational modulus
is not as easy to work with as the conformal modulus, it has the advantage of
being exactly the dual of conformal modulus, in a suitable sense. In Sect. 11,
we use this duality together with the reciprocality conditions to prove regular-
ity of f , and, consequently, the first of the modulus inequalities. It is worth
noticing that this is the only step in the proof where condition (1) is assumed.

We complete the proof of quasiconformality of f in Sect. 12, by showing
regularity of the map f −1 and the second modulus inequality. To prove The-
orem 1.4, we exhaust the space X with squares Q as above, and give normal
family arguments to show the existence of a QC map from the whole space X
as a limit of maps f constructed above; we do this in Sect. 13.

We prove Theorem 1.5 in Sect. 14. In contrast to other parts of this paper,
which are mostly elementary and self-contained, here we rely on results from
different areas. We apply the differentiability results of Kirchheim [36], the
measurable Riemann mapping theorem, and John’s theorem on convex bodies
to find a QC map in X with small dilatation.

In Sect. 15 we prove Theorem 1.6 by checking that spaces satisfying (4)
satisfy the reciprocality conditions. In Sect. 16 we consider quasisymmetric
maps and apply Theorems 1.4 and 1.6 to prove Corollary 1.7. Finally, in
Sect. 17 we briefly discuss the absolute continuity properties of QC maps in
the current generality, as well as the reciprocality conditions.

2 Examples

We first introduce some basic notation and terminology. If Y = (Y, d) is a
metric space, k ∈ {1, 2}, and E ⊂ Y , the Hausdorff k-measure Hk(E) of E
is

Hk(E) = lim
δ→0

inf

⎧⎨
⎩

∞∑
j=1

ak diam(A j )
k : E ⊂

∞⋃
j=1

A j , diam(A j ) < δ

⎫⎬
⎭ ,

where a1 = 1 and a2 = π/4. H2 coincides with the Lebesgue measure | · |
in R

2. We always assume that X = (X, d) is homeomorphic to R
2 and that
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1310 K. Rajala

the Hausdorff 2-measure of every compact E ⊂ X is finite. If x ∈ X and
r > 0, we denote B(x, r) = {y ∈ X : d(x, y) < r}, and S(x, r) = {y ∈ X :
d(x, y) = r}. We denote the image of a continuous path γ by |γ |. We call a
continuous, injective path γ : [a, b] → Y simple. Moreover, a simple curve is
the image of a simple path. We call a connected set a domain if it is open, and
a continuum if it is compact. A continuum is non-trivial if it contains more
than one point.

In this section we give the following examples to illustrate the sharpness of
our main results.

Example 2.1 Let C ⊂ R
2 be aCantor set defined as follows:At the first stepwe

divide the unit square Q0 = [0, 1]2 to four congruent subsquares with disjoint
interiors. For each of these subsquares Q̂, we choose a square Q with the same
center as Q̂ andwith sidelength (1−a1)/2. Thenwe remove everything except
for the four squares Q.

At the second step, we repeat the process with the unit square replaced by
each of the squares Q remaining after the first step. Continuing this way, after
n steps we have 4n squares remaining, each of sidelength

2−n
n∏

j=1

(1 − a j ).

Taking the intersection of all the remaining squares gives the Cantor set C. We
choose the sequence (a j ) such that C has positive Lebesgue measure.

Now let 0 � ω � 1 be a continuous function in R
2 such that ω(x) = 0 if

and only if x ∈ C and ω = 1 near infinity. Define d = dω in R
2 by setting

d(x, y) = inf
∫

γx,y

ω ds,

where the infimum is taken over all rectifiable paths inR2 joining x and y. We
check that d is a metric inR2. First, since 0 � ω � 1, d(x, y) is finite for every
x and y. Also, the triangle inequality follows directly from the definition. It
remains to show that d(x, y) > 0 if x �= y.

Let x �= y be points in R
2. If x /∈ C or y /∈ C, then there exists an ε > 0

such that ω � ε on some disc B(x, δ) or B(y, δ), with 0 < δ < |x − y|/2.
Consequently,

d(x, y) � εδ.

If both x, y ∈ C, then there is some step n remaining square Q in the construc-
tion of C such that x ∈ Q but y /∈ Q. It follows that there is a slightly larger
square Q̂ with same center as Q, such that
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Uniformization of two-dimensional metric surfaces 1311

(Q̂\Q) ∩ C = ∅.

Since ω is continuous and positive on Q̂\Q, there exists ε > 0 such that for
every path γ joining the two boundary components,

∫
γ

ω ds � ε.

Consequently,

d(x, y) � ε > 0.

We conclude that d is a metric on R
2. Moreover, d(x, y) � |x − y| for all

x, y ∈ R
2, so the identity map I : R2 → (R2, d) is a homeomorphism and

d is a length metric. Recalling that ω = 1 near infinity and applying the
Hopf–Rinow theorem, we conclude that (R2, d) is a geodesic metric space.

We have shown that (R2, d) is a geodesicmetric space homeomorphic toR2.
The 1-Lipschitz continuity of the identity map I also shows that the Hausdorff
2-measure H2

d in the space (R2, d) is locally finite. In fact,

∫
A

g dH2
d =

∫
A

gω2 dx

for all Borelmeasurable A ⊂ R
2 and g � 0.Here and inwhat follows dx refers

to integration with respect to Lebesgue measure in R2. We show that there are
no QC maps from (R2, d) into R

2 by proving that (R2, d) is not reciprocal.
Indeed, let M > 0. Since C has density points, we can choose a square Q such
that |Q\C| � M−1|Q|. Without loss of generality, Q = [0, 1]2. In (R2, d), we
give a lower bound for the modulus mod(�1) of all paths joining the vertical
edges of Q in Q. Namely, if ρ is an admissible function, we integrate ρ over
the horizontal segments of height t ;

1 �
∫

[0,1]×{t}
ρω ds.

We then integrate over t and apply Hölder’s inequality to get

1 �
∫

Q
ρω dx =

∫
Q\C

ρω dx � |Q\C|1/2
(∫

Q
ρ2ω2 dx

)1/2

� M−1/2
(∫

Q
ρ2 dH2

d

)1/2

.
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Minimizing over ρ, we get mod(�1) � M . Similarly, if �2 is the family of
paths joining the horizontal edges, we get mod(�2) � M . Therefore,

mod(�1) · mod(�2) � M2.

Letting M → ∞, we conclude that (R2, d) is not reciprocal.

Example 2.2 We equipR2 with the �∞-norm ||(x1, x2)||∞ = max{|x1|, |x2|}.
If H2 denotes Hausdorff measure on (R2, || · ||∞) and | · | the Lebesgue
2-measure, then H2(A) = π |A|/4 for every Borel set A ⊂ R

2, see [36,
Lemma 6]. We now claim that the identity map f : (R2, || · ||∞) → R

2 is
π/2-QC, where it is understood that the image is equipped with Euclidean
norm || · ||. We have

L f = L f (x) := lim sup
r→0

sup
||x−y||∞�r

|| f (x) − f (y)||
||x − y||∞ = √

2 and

J f = J f (x) = 4

π

for every x ∈ R
2, for the maximal stretching L f and volume derivative J f of

f . A standard change of variables argument now shows that

mod(�) �
L2

f

J f
mod( f �) = π

2
mod( f �) (5)

whenever � is a path family in (R2, || · ||∞). Indeed, if ρ is an admissible
function for f �, then the function L f (ρ◦ f ) is admissible for�, andmoreover

∫
L2

f (ρ ◦ f )2 dH2 �
L2

f

J f

∫
ρ2 dx .

Since this holds true for all admissible functions ρ, (5) follows. Similarly, we
see that mod( f �) � 4

π
mod(�), so

2

π
mod(�) � mod( f �) � 4

π
mod(�)

for every path family �. We conclude that f is π/2-QC.
We next show that there are no K -QC maps with K < π/2. Denote by φ

the counterclockwise rotation of R2 by π/4, and let Q = φ([0, 1]2). We give
a lower bound for the modulus mod(�1) in (R2, || · ||∞) of the family of paths
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Uniformization of two-dimensional metric surfaces 1313

�1 joining φ({0} × [0, 1]) and φ({1} × [0, 1]) in Q. Let ρ be an admissible
function. Then

1 �
∫

φ({t}×[0,1])
ρ dH1.

Integrating over t and applying the co-area formula [1, Theorem 9.4] (with the
co-area factor of L∞), we see that

1 �
∫ 1

0

∫
φ({t}×[0,1])

ρ dH1 dt = 4√
2π

∫
Q

ρ dH2

� 4√
2π

( ∫
Q

ρ2 dH2
)1/2H2(Q)1/2 =

√
2√
π

( ∫
Q

ρ2 dH2
)1/2

.

Minimizing overρ givesmod(�1) � π/2. Similarly, if�2 is the family of paths
joining the other two sides of Q, then mod(�2) � π/2. Hence, if f : Q → R

2

is K -QC, then using the 1-reciprocality of R2 we get

π2

4
� mod(�1) · mod(�2) � K 2 mod( f �1) · mod( f �2) = K 2,

i.e., K � π/2.

3 Existence of rectifiable paths

Recall that we assume that X is homeomorphic to R
2 and has locally finite

2-measure. In this section we show that under these mild conditions one can
find large families of rectifiable paths in X (see [51] for much deeper results
along these lines).We will later prove qualitative estimates, such as continuity,
using such families.Wewill frequently use the following results. These are [51,
Proposition 15.1] and [2, Proposition 3.1.5] (slightly modified), respectively.

Proposition 3.1 Let x, y ∈ X be given, x �= y. Suppose that E ⊂ X is
a continuum with H1(E) < ∞ and x, y ∈ E. Then there is an L > 0,
L � H1(E), and an injective 1-Lipschitz mapping γ : [0, L] → X such that
γ (t) ∈ E for all t , γ (0) = x, γ (L) = y, and H1(γ (F)) = H1(F) for all
measurable sets F ⊂ [0, L].
Proposition 3.2 Let A ⊂ X be Borel measurable. If m : X → R is L-
Lipschitz and g : A → [0, ∞] Borel measurable, then

∫
R

∫
A∩m−1(t)

g(s) dH1(s) dt � 4L

π

∫
A

g(x) dH2(x).
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1314 K. Rajala

We next show that the family of paths joining two continua always has
positive modulus. We need the following topological lemma, cf. [43, IV The-
orem 26].

Lemma 3.3 Let U, V ⊂ R
2 be disjoint continua, and suppose that a compact

set F ⊂ R
2\(U ∪ V ) separates U and V in R

2. Then F contains a continuum
G separating U and V in R

2.

Remark 3.4 Let x ∈ X . Then, by Lemma 3.3, there exists r0 > 0 such that
H1(S(x, r)) > 0 for almost every 0 < r < r0. Applying Proposition 3.2 with
m = d(·, x), we see thatH2(B) > 0 for every ball B ⊂ X . See [35] for further
connections between topological dimension and Hausdorff measures.

Proposition 3.5 Let α and β be two nontrivial continua in a topological closed
square Q ⊂ X. Then

mod(α, β; Q) > 0.

Proof We first assume that both α and β lie in the interior of Q, henceforth
denoted by int Q. Fix points a ∈ α and b ∈ β, and a continuous path η :
[0, 1] → int Q joining a and b. Let m(x) = dist(x, |η|), where |η| is the
image of η. Then m is 1-Lipschitz. Moreover, there exists ε > 0 such that
Ft := m−1(t) ⊂ Q and Ft separates ∂ Q and |η| for every 0 < t < ε. Applying
Proposition 3.2 to m and g = 1, we see thatH1(Ft ) is finite for almost every t .
Therefore, since Q is homeomorphic to a planar square, Lemma 3.3 shows that
Ft contains a continuum Gt which also separates. Since α and β are nontrivial
continua, there exists 0 < ε′ < ε such that for every 0 < t < ε′ there are
points at ∈ α ∩ Gt and bt ∈ β ∩ Gt . Applying Proposition 3.1, we find for
almost every 0 < t < ε′ a rectifiable, injective path γt joining at and bt in Gt .
Denote by � the family of all such γt . Then

� ⊂ �(α, β; Q).

Now let g : Q → [0, ∞] be admissible for �. Then, applying Proposition
3.2 and Hölder’s inequality, we have

ε′ �
∫ ε′

0

∫
γt

g ds dt � 4

π

∫
Q

g(x) dH2(x) � 4

π
H2(Q)1/2

(∫
Q

g(x)2 dH2(x)

)1/2

.

Since the estimate holds for all admissible functions g, we conclude that

mod(α, β; Q) � mod(�) �
( πε′

4H2(Q)1/2

)2
> 0.
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Uniformization of two-dimensional metric surfaces 1315

If α touches the boundary of Q but β does not, then we modify the proof as
follows: if α contains a point in int Q, then we can find a subcontinuum in the
interior and the proof above applies. Otherwise, α contains a topological line
segment I ⊂ ∂ Q. Now, we can choose the point a to be the center of I , and we
can choose η : [0, 1] → int Q ∪ {a} such that the ε-neighborhood of |η| does
not intersect ∂ Q\I when ε is small enough. Now the proof above applies. We
proceed similarly if both α and β touch the boundary of Q. ��

4 Energy minimizer u on a topological square

In this section we define a suitable energy minimizing, “harmonic” function u
in our general setting. We also develop some basic properties for u. Later, we
define a “conjugate function” v of u, and show that, under our reciprocality
assumption, the resulting map f = (u, v) is QC.

Let � ⊂ X . Recall that a Borel function g � 0 is an upper gradient of a
function u in �, if

|u(y) − u(x)| �
∫

γ

g ds (6)

for every x and y ∈ � and every locally rectifiable path γ joining x and y in
�. Here by joining we mean that both x and y ∈ |γ |. Also, we agree that the
left term in (6) equals ∞ if |u(x)| = ∞ or |u(y)| = ∞. We say that g is a
weak upper gradient of u, if there exists a path family �0 with modulus zero
such that (6) holds for every x and y and every γ /∈ �0. Similarly, we say that a
property holds for almost every path in a path family �, if there exists �0 ⊂ �

of modulus zero such that the property holds for all γ ∈ �\�0. Furthermore,
we say that a Borel function ρ is weakly admissible for �, if the integral of ρ

over γ is at least 1 for almost every γ ∈ �.
We now construct the function u. Let Q ⊂ X be homeomorphic to a closed

square in R
2, and ζ1, . . . , ζ4 the boundary edges as in (1) and (2). At this

point we do not assume any of the reciprocality conditions. We consider the
modulus

M1 = mod(ζ1, ζ3; Q).

Astandardmethod now shows that there exists aweakly admissible function
realizing M1. More precisely, let (ρ j ) be a minimizing sequence of admissible
functions. Then, after passing to a subsequence, ρ j converges to ρ ∈ L2(Q)

weakly in L2. Moreover, by Mazur’s lemma [34, Page 19], there exists a
sequence (ρk) of convex combinations of the ρ j ;
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1316 K. Rajala

ρk =
N (k)∑
j=1

λ jρ
j ,

N (k)∑
j=1

λ j = 1, λ j � 0,

such that ρk → ρ strongly in L2.
Now it follows by Fuglede’s lemma [34, Page 131] that∫

γ

ρk ds →
∫

γ

ρ ds < ∞ (7)

for almost every γ in Q. In particular,∫
γ

ρ ds � 1 (8)

for almost every γ joining ζ1 and ζ3 in Q, so∫
Q

ρ2 dH2 = M1.

We would now like to define the function u by integrating the minimizing
function ρ over paths. This is possible although some technicalities arise.
Denote by �0 the family of paths in Q that have a subpath for which (7) does
not hold. Then mod(�0) = 0.

We will be working with paths that do not belong to the exceptional family
�0. For instance, we show in Lemma 4.3 that the upper gradient inequality
(6) holds for the function u, weak upper gradient ρ, and all paths γ outside
�0. Since ρ is integrable on such paths γ , it follows that u will be absolutely
continuous there. The subpath property in the definition of �0 is given to
guarantee that paths outside �0 can be concatenated succesfully.

Define u as follows: For x ∈ Q, first assume there exists

γ ∈ �(ζ1, ζ3; Q)\�0

such that some subpath γx of γ joins ζ1 and x . Then define

u(x) = inf
γx

∫
γx

ρ ds, (9)

where the infimum is taken over all possible γ and γx . If u(x) cannot be defined
this way for x ∈ Q, let

u(x) = lim inf
y∈E,y→x

u(y),

where E is the set of points y for which u(y) is already defined.
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Uniformization of two-dimensional metric surfaces 1317

Lemma 4.1 The function u : Q → [0, ∞] is well-defined.

Proof We have to show that for every x ∈ Q and every ε > 0 there exists
y ∈ B(x, ε) such that u(y) is defined by (9). First notice that B(x, ε) ∩ Q
contains a non-trivial continuum G. Therefore, by Proposition 3.5, there exists
a family � of paths joining ζ1 and G in Q, such that mod(�) > 0. Then
Fuglede’s lemma guarantees that for some γa ∈ � (7) holds for all subpaths
of γa . Let F be a non-trivial component of |γa| ∩ B(x, ε). Then, applying
Proposition 3.5 and Fuglede’s lemma again gives a path γb joining F and ζ3
such that (7) holds for all subpaths ofγb. Nowwe can define γ by concatenating
a suitable subpath of γa with γb. Then γ joins ζ1 and ζ3 and |γ | intersects
B(x, ε).Moreover, all subpaths of γ satisfy (7). Therefore, u(y) can be defined
by (9) for all y ∈ |γ |. ��
Lemma 4.2 Let γ ′ /∈ �0 be a rectifiable path in Q. Then for every x ∈ |γ ′|
there exists a path γ /∈ �0 joining ζ1 and ζ3 such that x ∈ |γ |. In particular,
u(x) is defined by (9).

Proof The argument is similar to the previous lemma. Proposition 3.5 gives
path families �1 and �2 of positive modulus joining ζ1 and |γ ′|, and ζ2 and
|γ ′|, respectively. Moreover, Fuglede’s lemma gives paths γa ∈ �1\�0 and
γb ∈ �2\�0. Now γ can be defined by concatenating γa , γb, and a suitable
subpath of γ ′. That γ /∈ �0 follows because γa , γb and γ ′ all have the same
property. ��
Lemma 4.3 The function ρ is a weak upper gradient of u in Q. In fact, (6)
holds (with ρ) for all rectifiable paths γ /∈ �0.

Proof Let x and y ∈ Q. Since we only require the upper gradient inequality
outside a set of modulus zero, we may assume that there is a rectifiable path
γ /∈ �0 joining x and y in Q. Then, by Lemma 4.2, u(x) and u(y) are defined
by (9). We may assume that u(y) > u(x). Then, by the definition of u,

u(y) � inf
γx

( ∫
γ

ρ ds +
∫

γx

ρ ds
)

�
∫

γ

ρ ds + u(x),

where the infimum is taken as in (9). ��
We need the following auxiliary result to prove further properties for u.

Lemma 4.4 Let L > 0 and ε > 0, and denote the interior of {u > L} by E.
If η is a rectifiable path in {u � L + ε}, then

H1(|η|\E) = 0.
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Proof First, let y ∈ |η| and 0 < r < diam |η|/2. Assume that u(z) � L at
some z ∈ B(y, r/2). Then, by the definition of u, there exists a curve α joining
B(y, r/2) and Q\B(y, 2r) such that u � L everywhere on α. Moreover,
Lemma 3.3 implies that for every r/2 < s < r some continuum C(s) ⊂
S(y, s) intersects both |η| and α. That is, there are as, bs ∈ C(s) such that
u(bs) − u(as) � ε. Therefore, Proposition 3.5 and Lemma 3.1 show that for
almost every such s there are rectifiable curves in C(s) joining as and bs .
Furthermore, for almost every such s, the upper gradient inequality gives

ε �
∫

S(y,s)
ρ dH1.

Integrating from r/2 to r and applying Proposition 3.2, we have

rε � 8

π

∫
B(y,r)

ρ dH2. (10)

Now for every δ > 0 and every y ∈ |η|\E there exists ry < δ such that
(10) holds for every r < ry . By the 5r -covering lemma, among all such balls
B(y, r) we can find a finite or countable subcollection {B j = B(y j , r j )} such
that the balls B j are pairwise disjoint and

(
|η|\E

)
⊂

⋃
j

B(y j , 5r j ).

Applying (10) in all B j and summing the estimates gives

H1
5δ(|η|\E) � 10

∑
j

r j � 80

επ

∑
j

∫
B j

ρ dH2.

By the disjointness of the balls B j , the sum on the right can be estimated from
above by

∫
N5δ(|η|)

ρ dH2,

where N5δ(|η|) is the closed 5δ-neighborhood of |η|. Since η is rectifiable, this
integral converges to zero when δ → 0. Combining the estimates gives the
claim. ��
Lemma 4.5 We have 0 � u(x) � 1 for every x ∈ Q.
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Proof Suppose to the contrary that u(x0) � 1+3ε for some ε > 0 and x0 ∈ Q.
Then, by the definition of u, we find a curve α in the interior of Q such that
u � 1 + 2ε everywhere on α. Proposition 3.5 shows that

mod(ζ1, α; Q) > 0. (11)

Given η′ : [0, 1] → Q in �(ζ1, α; Q)\�0 such that η′(0) ∈ α, let

t0 = inf{t : u(η′(t)) � 1 + ε} and η = η′|[0, t0].

By the upper gradient inequality and the absolute continuity of u on η′, 0 <

t0 < 1 and

∫
η

ρ ds � ε.

Combining with Lemma 4.4, we conclude that ρχE/ε is weakly admissible
for �(ζ1, α; Q), where E is the interior of {u > 1}. In particular

∫
E

ρ2 dH2 > 0 (12)

by (11). On the other hand, the function

ρ0 := ρχ{Q\E}

is weakly admissible for �(ζ1, ζ3; Q) by the definition of u. But now (12)
gives

∫
Q

ρ2
0 dH2 <

∫
Q

ρ2 dH2.

This contradicts the minimizing property of ρ. The proof is complete. ��
We next establish a maximum principle. Let � ⊂ X be open. We denote

∂∗� = (∂� ∩ Q) ∪ (� ∩ (ζ1 ∪ ζ3)).

Lemma 4.6 Let � ⊂ X be open. Then

sup
x∈�∩Q

u(x) = sup
y∈∂∗�

u(y) and inf
x∈�∩Q

u(x) = inf
y∈∂∗�

u(y).
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Proof To prove the second equality, let x0 ∈ � ∩ Q and u(x0) = m. Then
there is x ∈ � ∩ Q such that u(x) � m + ε is defined by (9). Moreover, there
exists a path γx joining ζ1 and x such that u � m + 2ε on |γx |. But |γx | must
intersect ∂∗�. The second equality follows.

The proof of the first equality is similar to the proof of Lemma 4.5. Let
M = supy∈∂∗� u(y) � 1, and suppose there is δ > 0 such that u(x) � M +2δ
for some x ∈ � ∩ Q. Then, by the definition of u, we can choose a curve α

in � ∩ Q such that u > M + δ on α. Applying Proposition 3.5, we see that
mod(α, ζ1; Q) > 0. Arguing as in the proof of Lemma 4.5, we see that

∫
E

ρ2 dH2 > 0,

where E is the interior of � ∩ {u > M}. On the other hand, ρχQ\E is weakly
admissible for the minimizing problem, because u � M on ∂∗�. This contra-
dicts the minimality of ρ. ��

5 Continuity of u

Let u be the function defined in Sect. 4. In this section we show that u is
continuous, assuming conditions (2) and (3).

Theorem 5.1 Suppose that X satisfies (2) and (3). Then u : Q → [0, 1] is
continuous. Moreover, u = 0 on the boundary component ζ1 and u = 1 on the
boundary component ζ3.

The rest of this section is devoted to the proof of Theorem 5.1. We say that
D ⊂ X is a half-annulus, if D is homeomorphic to

{(s, ϕ) : 1 � s � 2, 0 � ϕ � π} ⊂ R
2,

defined in polar coordinates. The boundary of D consists of inner and outer
circles, and the two flat components.

Lemma 5.2 Suppose X satisfies (2) and (3), and fix x ∈ X and R > 0.
Moreover, let r < R/2 and assume that D is a half-annulus with inner circle
Tr ⊂ B(x, r), outer circle TR ⊂ X\B(x, R), and flat components I and J .
Then

mod(I, J ; D) � �(r) → ∞ as r → 0, (13)

where � depends on r, R, κ and x.

Proof By condition (3),

mod(TR, Tr ; D) � mod(S(x, R), S(x, r); B(x, R)) � ε(x, r, R) → 0
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as r → 0. On the other hand, by (2),

mod(TR, Tr ; D) · mod(I, J ; D) � κ−1.

The lemma follows by combining the estimates. ��
Remark 5.3 For future reference, we note that Lemma 5.2 holds if the assump-
tions are replaced by assumption (4). See Sect. 15 for further details.

Lemma 5.4 Suppose X satisfies (13). Then u is continuous in (ζ1∪ζ2∪ζ4)\ζ3.

Proof Without loss of generality, x ∈ (ζ1∪ζ2)\(ζ3∪ζ4), otherwise we replace
ζ2 by ζ4. We choose a topological closed disk D′ ⊂ X such that x ∈ int D′.
Moreover, we require that D′ does not intersect ζ4 or ζ3. Then the boundary
circle T ′ of D′ satisfies T ′ ⊂ X\B(x, R) for some R > 0. Let r < R/2, and
choose another topological disk D′′ ⊂ B(x, r) containing x , with boundary
circle T ′′. Then the two boundary circles and ∂ Q bound a half-annulus A in
Q. Denote by TR and Tr the circular boundary components (the restrictions of
T ′ and T ′′, respectively), and by I, J ⊂ ∂ Q the flat components. Moreover,
let γ ∈ �(I, J ; A). Then, γ and ∂ Q bound a domain �γ in Q containing
B(x, r) ∩ Q. Moreover, since γ does not intersect ζ4, Lemma 4.6 shows that

sup
y∈B(x,r)∩Q

u(y) � sup
y∈�γ

u(y) � sup
y∈|γ |∪ζ1

u(y),

inf
y∈B(x,r)∩Q

u(y) � inf
y∈�γ

u(y) � inf
y∈|γ |∪ζ1

u(y).

But u = 0 on ζ1, so the first estimate above holds true without ζ1 on the last
term. Also, if ζ1 intersects the boundary of �γ , then γ intersects ζ1. So also
the second estimate holds without ζ1. In other words,

δr := sup
y,z∈B(x,r)

|u(y) − u(z)| � sup
y,z∈|γ |

|u(y) − u(z)|.

Since ρ is a weak upper gradient of u, it follows that

δr �
∫

γ

ρ ds

for almost every γ ∈ �(I, J ; A). Consequently, we have

mod(I, J ; A) � δ−2
r

∫
Q

ρ2 dH2.
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On the other hand, by (13) we have

mod(I, J ; A) � �(r) → ∞ as r → 0.

We conclude that δr → 0 as r → 0, showing that u is continuous at x . ��
Lemma 5.5 Suppose X satisfies (13). Then u is continuous in ζ3 and equals
1 there.

Proof Let x ∈ ζ3. In view of Lemma 4.5, it suffices to show that

lim inf
y→x

u(y) � 1. (14)

Without loss of generality, x /∈ ζ4. If (14) does not hold, there exists ε > 0
and a sequence of points x j → x in Q such that u(x j ) � 1 − 3ε for every j .

We choose a topological closed disk D′ such that x ∈ int D′. Moreover,
we require that D′ does not intersect ζ4. Then the boundary circle T ′ of D′
satisfies T ′ ⊂ X\B(x, R) for some R > 0. Let r < R/2, and choose another
topological disk D′′ ⊂ B(x, r) containing x , with boundary circle T ′′ such
that x ∈ D′′.

By the definition of u and Lemma 3.1, there is a simple path η /∈ �0 joining
ζ1 and D′′ in Q such that ∫

η

ρ ds � 1 − 2ε. (15)

Wemay assume thatη does not intersect ζ3, since otherwise (15) violates (8).
Now |η|, T ′, T ′′ and ζ3 bound a half-annulus A with flat boundary components
I ⊂ |η| and J ⊂ ζ3. We claim that when r is small enough there exists a path
γ ∈ �(I, J ; A)\�0 satisfying ∫

γ

ρ ds < ε. (16)

Indeed, otherwise we would have

mod(I, J ; A) � ε−2
∫

Q
ρ2 dH2.

But this contradicts (13) when r is small enough, so (16) holds.
Concatenating γ with a subpath of η and applying (15) and (16) now gives

a path γ ′ /∈ �0 joining ζ1 and ζ3 in Q such that∫
γ ′

ρ ds � 1 − ε.

This contradicts (8), and so (14) holds. The proof is complete. ��
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Continuity of u in the interior of Q is proved using the methods above.
However, the proof is more technical and we need an auxiliary lemma.

Lemma 5.6 Suppose X satisfies (13), and fix x ∈ int Q. Moreover, suppose
there is a simple, rectifiable path γ : [0, 1] → int Q, γ /∈ �0 such that
γ (c) = x for some 0 < c < 1. Then u is continuous at x.

Proof Fix ε > 0. We choose a topological closed disk D′ ⊂ int Q such that
x ∈ int D′. Then the boundary circle T ′ of D′ satisfies T ′ ⊂ X\B(x, R) for
some R > 0. Mapping |γ | to a segment in R

2 if necessary, we can choose
D′ so that |γ | separates D′ into two components D′

1 and D′
2. Also, since∫

γ
ρ ds < ∞, we can choose D′ small enough such that

∫
γ

ρχD′ ds < ε.

It then follows from the definition of u and Lemma 4.2 that

|u(y) − u(x)| � ε for every y ∈ |γ | ∩ D′. (17)

Let r < R/2, and choose another topological disk D′′ ⊂ B(x, r) with bound-
ary circle T ′′, such that x ∈ D′′. Again, we can choose D′′ such that |γ |
separates D′′ into two components D′′

1 ⊂ D′
1 and D′′

2 ⊂ D′
2. We control the

oscillation of u in D′′
1 and D′′

2 separately. Since the estimates are identical, we
only consider the case D′′

1 .
Now D′

1 contains a half-annulus A1 bounded by T ′, T ′′, and |γ |. The flat
boundary components are I, J ⊂ |γ |. Then, if

u(z) � u(x) + 2ε or u(z) � u(x) − 2ε

for some z ∈ D′′
1 , then Lemma 4.6 and (17) yield

sup
a,b∈|η|

|u(a) − u(b)| � ε

for every η ∈ �(I, J ; A1). Since ρ is a weak upper gradient of u, wemoreover
have

∫
η

ρ ds � ε

for η /∈ �0, so

mod(I, J ; A1) � ε−2
∫

Q
ρ2 dH2.
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This contradicts (13). Applying the same argument to A2, we conclude that

sup
z∈D′′

|u(z) − u(x)| � ε(r) → 0 as r → 0.

We conclude that u is continuous at x . ��
Lemma 5.7 Suppose X satisfies (13). Then u is continuous in int Q.

Proof Fix x ∈ int Q and let ε > 0. Choose a topological disk D ⊂ Q
containing x , with boundary circle T ′. Moreover, let r > 0 and let D′ ⊂
B(x, r) ⊂ D be another disk containing x . Denote the boundary circle of D′
by T ′

r . Then, by the definition of u, there exists a rectifiable path γ ′ /∈ �0
joining ζ1 and D′ such that

u(y) � u(x) + ε (18)

for every y ∈ |γ ′|. Moreover, by Lemma 3.1, we find a simple path γ /∈ �0
joining ζ1 and D′ with |γ | ⊂ |γ ′|. By Lemma 5.6, u is continuous on |γ |. We
would like to repeat the argument used in the previous lemmas, applying the
maximum principle, (18) and Lemma 4.6 in the domain bounded by T ′, T ′

r ,
and |γ |. But this domain is not a half-annulus, so Lemma 4.6 does not apply
directly.

To correct this, notice that by the uniform continuity of u on |γ | and (18)
there is a neighborhood V of |γ | ∩ D such that

u(y) � u(x) + 2ε (19)

for all y ∈ V . We choose simple paths I and J in V connecting T ′ and T ′
r

such that |γ | separates I and J in V .
Now I , J , T ′ and T ′

r bound a half-annulus A, with flat boundary components
I and J . As before, the maximum principle and (19) imply that if u(y) �
u(x) + 3ε for some y ∈ D′, then

sup
a,b∈|η|

|u(a) − u(b)| � ε (20)

for every η joining I and J in A. Applying (20) to all such paths, together with
the weak upper gradient property of ρ, gives

mod(I, J ; A) � ε−2
∫

Q
ρ2 dH2.

This contradicts (13) when r is small enough.We conclude that u is continuous
in x . ��
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Proof of Theorem 5.1 Combine Lemmas 4.5, 5.4, 5.5 and 5.7. ��

6 Level sets of u

In this section we examine the properties of the level sets of u, and in particular
show that almost every level set is a rectifiable curve. This helps us define the
conjugate function v in the next section.

Proposition 6.1 Suppose that X satisfies (2) and the minimizer u satisfies the
conclusions of Theorem 5.1. Then for H1-almost every t the level set u−1(t)
is a simple rectifiable curve |γt | joining ζ2 and ζ4.

Wewill later show thatu is the real part of a homeomorphism, so in particular
u−1(t) is a simple curve for all 0 < t < 1. The rest of this section is devoted
to the proof of Proposition 6.1.

Recall our notation M1 = mod(ζ1, ζ3; Q). Moreover, for 0 � s < t � 1
we denote As,t = {x ∈ Q : s < u(x) < t} and

Ms,t := mod(u−1(s), u−1(t); As,t ).

Lemma 6.2 Suppose 0 � s < t � 1, and that u satisfies the conclusions of
Theorem 5.1. Then

Ms,t = (t − s)−2
∫

As,t

ρ2 dH2 = (t − s)−1M1. (21)

Proof First, we have

Ms,t � (t − s)−2
∫

As,t

ρ2 dH2,

since (t −s)−1ρ is weakly admissible. The reverse inequality also holds, since
if there was an admissible function g such that

∫
As,t

g2 dH2 < (t − s)−2
∫

As,t

ρ2dH2,

then

ρ′ = ρχA0,s∪At,1
+ (t − s)gχAs,t

123
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would be weakly admissible for �(ζ1, ζ3; Q) (because u = 0 in ζ1 and u = 1
in ζ3), and

∫
Q
(ρ′)2 dH2 <

∫
Q

ρ2 dH2.

This contradicts the minimizing property of ρ. Therefore, the first equality in
(21) holds. To prove the second equality, we denote

Is,t :=
∫

As,t

ρ2 dH2.

Let δ > 0, and

ρδ = (1 + δ)ρχAs,t + ρχQ\As,t

1 + δ(t − s)
.

Then ρδ is weakly admissible for �(ζ1, ζ3; Q), and

∫
Q

ρ2
δ dH2 = (1 + δ)2 Is,t + M1 − Is,t

(1 + δ(t − s))2
.

If Is,t < (t − s)M1, then the right term is strictly smaller than M1 when δ > 0
is small enough. This contradicts the minimizing property of ρ. Similarly, if
Is,t > (t − s)M1, we get a contradiction by the above argument, replacing
As,t with Q\As,t . ��
Lemma 6.3 Suppose 0 < s < t < 1, and that u satisfies the conclusions of
Theorem 5.1. Then As,t and u−1(t) are connected and simply connected sets
connecting ζ2 and ζ4 in Q. Moreover, the sets ζ2 ∩ As,t , ζ2 ∩ u−1(t), ζ4 ∩ As,t
and ζ4 ∩ u−1(t) are all connected.

Proof First, if there is a simple loop γ not contractible in As,t , then γ bounds
a domain V ⊂ Q containing points outside As,t . But then ∂V ⊂ As,t . This
violates the maximum principle, Lemma 4.6, and so As,t must be simply
connected. The same argument shows that u−1(t) is simply connected.

Next, suppose W is a connected component of As,t . We claim that W has
to intersect both ζ2 and ζ4. Notice that by the maximum principle, W has to
intersect either ζ2 or ζ4. We lose no generality by assuming that W intersects
ζ2. To show that W also intersects ζ4, suppose to the contrary that this was not
the case.

Then, by Lemma 3.3, there is a continuum Y ⊂ ∂∗W separating W and ζ4,
where ∂∗ is as in Lemma 4.6. Now, if s < u(x) < t at some point x ∈ Y ,
there is a neighborhood B of x such that s < u < t everywhere on B. This
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contradicts the definition of W . Therefore, u only takes values s and t on Y .
But Y is connected, so u is constant on Y . On the other hand, Y and ζ2 bound
a domain in Q that includes W , and the maximum principle implies that u
equals either t or s everywhere in this domain This is a contradiction, since
W ⊂ As,t belongs to this domain. We conclude that W intersects ζ4.

Now let V1 and V2 be disjoint connected components of As,t . Then, since
both separate ζ1 and ζ3, there exists x ∈ Q\As,t such that As,t separates x
from both ζ1 and ζ3. This contradicts the maximum principle, Lemma 4.6. We
conclude that As,t is connected. To show that u−1(t) is connected and connects
ζ2 and ζ4, it suffices to notice that the same holds for At−1/j,t+1/j and express
u−1(t) as the intersection.

The remaining claims can be proved by applying the maximum principle as
in the previous paragraphs. We leave the details to the reader. ��

To prove Proposition 6.1, we recall the compactness property of a family
of paths with bounded length, and lower semicontinuity of path length under
uniform convergence. The first property follows from the Arzela–Ascoli the-
orem, while the second property is a simple consequence of the definition of
path length.

Lemma 6.4 Let γ j : [0, 1] → Q, j ∈ N, be rectifiable paths with

A = lim inf
j→∞ �(γ j ) < ∞.

Then the paths γ j can be reparametrized so that the sequence of the repara-
metrized paths has a subsequence converging uniformly to a rectifiable path
γ : [0, 1] → Q with �(γ ) � A.

The following differentiation result will be frequently applied, see [21, The-
orem 3.22] for the proof. Suppose A ⊂ Q is a Borel set. Moreover, suppose
φ : A → [0, ∞] is Borel measurable and integrable, and ψ : A → R Borel
measurable. Define

ϕ(B) =
∫

ψ−1(B)

φ dH2

for Borel sets B ⊂ R. We say that ϕ′(t) is the differential of ϕ at t ∈ R, if

ϕ′(t) = lim
j→∞

ϕ((a j , b j ))

|b j − a j |
whenever t ∈ (a j , b j ) and |b j − a j | → 0.
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Lemma 6.5 Suppose ϕ is defined as above. Then the differential ϕ′(t) < ∞
exists for almost every t ∈ R and defines a measurable function such that

∫
B

ϕ′(t) dt � ϕ(B) (22)

for all Borel sets B ⊂ R. If moreover ϕ(B) = 0 whenever H1(B) = 0, then
equality holds in (22).

Towards the proof of Proposition 6.1, we first show that almost every level
set of u has finite 1-measure and contains a rectifiable path as in the statement
of the proposition.

Lemma 6.6 Suppose that X satisfies (2) and the minimizer u satisfies the
conclusions of Theorem 5.1. Then for H1-almost every t the level set u−1(t)
has finite H1-measure and contains a simple rectifiable curve |γt | joining ζ2
and ζ4.

Proof We apply Lemma 6.5 with ψ = u, φ = 1, and choose 0 < t < 1
such that ϕ′(t) exists. ThenH2(u−1(t)) = 0, so u−1(t) does not have interior
points.

Let h > 0 such that [t − h, t + h] ⊂ (0, 1). By Lemma 6.3, At−h,t−h/2 and
At−h/4,t−h/8 contain simple paths α and α′, respectively, both joining ζ2 and
ζ4. Let Dh be the Jordan domain bounded by α, α′, β β ′, where β is a subpath
of ζ2 and β ′ is a subpath of ζ4. Then

At−h/2,t−h/4 ⊂ Dh ⊂ At−h,t−h/8. (23)

Hence, by Lemma 6.2,

mod(α, α′; Dh) � Mt−h/2,t−h/4 = 4h−1M1.

Here we use notation Ms,t introduced before Lemma 6.2. Combining with (2),
we have

κ−1 � mod(α, α′; Dh) · mod(β, β ′; Dh) � 4h−1M1 · mod(β, β ′; Dh),

i.e.,

mod(β, β ′; Dh) � h

4κM1
.

On the other hand, by (23),

mod(β, β ′; Dh) � �−2
h H2(At−h,t+h) = �−2

h ϕ((t − h, t + h)),
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where �h is the length of a shortest path γh joining β and β ′ in Dh . Notice that
γh is simple, since otherwise we could find a shorter path inside |γh| with the
same property.

Combining the estimates, we have

�2h � 4κh−1ϕ((t − h, t + h))M1. (24)

We take a sequence h j → 0. Then, by (24) and our choice of t ,

lim inf
j→∞ �2h j

� 8κϕ′(t)M1 < ∞.

Hence, by Lemma 6.4, there is a subsequence of the simple paths (γh j ) con-
verging uniformly to a rectifiable path γ̃t,−. Moreover, by Lemma 3.1, |γ̃t,−|
contains a simple rectifiable path γt joining ζ2 and ζ4 in u−1(t). This proves
the second claim in the lemma.

We found the path γ̃t,− as a limit of paths converging “from left”. With the
same argument, replacing t −h/q by t +h/q everywhere, we get a sequence of
simple rectifiable paths converging uniformly to a rectifiable path γ̃t,+. Thus
γ̃t,+ is a limit of paths converging “from right”. Notice that both |γ̃t,−| and
|γ̃t,+| are subsets of u−1(t). The first claim in the lemma follows if we can
show that

u−1(t) = |γ̃t,−| ∪ |γ̃t,+|. (25)

Let (γ −
k ) and (γ +

k ) be the sequences of simple paths constructed above,
such that γ −

k → γ̃t,− and γ +
k → γ̃t,+ uniformly as k → ∞, and let �k be the

domain bounded by |γ −
k |, |γ +

k |, ζ2 and ζ4. Then u−1(t) = ∩k�k . Since u−1(t)
does not have interior points, it follows that for every x ∈ u−1(t) there is a
sequence (x−

k ) such that x−
k ∈ |γ −

k | for every k and x−
k → x , or a sequence

(x+
k ) such that x+

k ∈ |γ +
k | for every k and x+

k → x , or both. Thus, by the
uniform convergence of the paths γ −

k and γ +
k , x ∈ |γ̃t,−| or x ∈ |γ̃t,+|. We

conclude that (25) holds. The proof is complete. ��
Proof of Proposition 6.1 Again, we apply Lemma 6.5 with ψ = u, φ = 1,
and choose 0 < t < 1 such that ϕ′(t) exists and the claims of Lemma 6.6 hold.
So u−1(t) contains a simple rectifiable path γt . We need to show that u−1(t)
does not contain points outside |γt |.

To prove this, it is convenient to use Euclidean coordinates. In other
words, we now think of d as a metric in R

2. Then we may assume that
Q = [−1, 1]2 and moreover that |γt | = {0} × [−1, 1]. Suppose there is a
point a ∈ u−1(t)\|γt |. Then we may assume that a ∈ int Q removing, if
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necessary, at most countably many values of t for which u−1(t) contains a
non-trivial subcontinuum of ∂ Q.

Now we may assume that a = (−1/2, 0). Since H1(u−1(t)) < ∞ by
Lemma 6.6, Proposition 3.1 allows us to find a point b ∈ |γt | and a simple
path η, |η| ⊂ u−1(t), joining a and b in Q. Without loss of generality, |η| =
[−1/2, 0] × {0}.

Next let I be the line segment {−1/4} × [−1, 1]. Then, when h is small
enough and u−1(t − h) contains a simple path γt−h , this path together with I
bounds a simply connected domain U , a ∈ ∂U , whose boundary is the union
of a subcurve J1 of |γt−h|, the subsegment J ′

0 = [−1/2, −1/4] × {0} of |η|,
and two subsegments J2 and J3 of I .

Now we slightly modify U in order to have a Jordan domain V ⊂ U to
which condition (2) can be applied. Since u is continuous and u = t on J ′

0,
we can choose a simple path η′ in U , depending on h, close to J ′

0 as follows:
u � t − h/2 on J0 = |η′| and J0, J1, J2 and J3 bound a Jordan domain V
such that a ∈ ∂V . What is important to us is that J0 can be chosen so that
there exists a constant c > 0 not depending on h such that whenever γ is a
path connecting J2 and J3 in V , then �(γ ) � c. Also, since V ⊂ At−h,t and

H2(At−h,t ) � 4hϕ′(t)

for h small enough, we have

mod(J2, J3; V ) � 4c−2hϕ′(t) = 4Ah, (26)

where A does not depend on h. Applying (2) and (26) shows that

mod(J0, J1; V ) � 1

4κ Ah
. (27)

On the other hand, since u = t − h on J1 and u � t − h/2 on J0, the function
2h−1ρ is weakly admissible for �(J0, J1; V ). Thus, by (27) we have

h

16Aκ
�

∫
V

ρ2 dH2. (28)

Notice that there is ε > 0 not depending on h such that dist(I, |γt |) � ε.
We claim that the function

ρ′ = ρχQ\V + ε−1hχAt−h,t

is weakly admissible for �(ζ1, ζ3; Q). To see this, let γ : [0, 1] → Q be
a rectifiable path, γ /∈ �0, such that γ (0) ∈ ζ1 and γ (1) ∈ ζ3. Denote by
0 < T < 1 the largest number such that u(γ (T )) = t − h.
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Then, if γ (S) /∈ V for every S > T , we have

∫
γ

ρχQ\V ds � 1.

On the other hand, if γ (S) ∈ V for some S > T , then

∫
γ

ρχQ\V ds � 1 − h,

but also
∫

γ

ε−1hχAt−h,t ds � h

since a subpath of γ joins I and γt in At−h,t . We conclude that ρ′ is indeed
weakly admissible.

Now, by (28) and Hölder’s inequality,

∫
Q
(ρ′)2 dH2 =

∫
Q\V

ρ2 dH2 + ε−2h2H2(At−h,t ) + 2ε−1h
∫

Q
χAt−h,t \V ρ dH2

� − h

16Aκ
+

∫
Q

ρ2 dH2 + 4ε−2h3ϕ′(t) + 2ε−1M1/2
1 ϕ′(t)1/2h3/2.

We conclude that when h is small enough,

∫
Q
(ρ′)2 dH2 <

∫
Q

ρ2 dH2.

This contradicts the minimizing property of ρ. The proof is complete. ��

7 Conjugate function v

In this section we construct a “conjugate function” v for our minimizing func-
tion u and prove continuity. Then f = (u, v) is the desired QC map in
Q if X is reciprocal; this will be shown in the next sections. We note that
the conjugate function is easier to find if X is 1-reciprocal. Indeed, if we
construct v as u but replacing ζ1 and ζ3 with ζ2 and ζ4, respectively, then
f = (u, v) : int Q → (0, 1)2 is a conformal homeomorphism. In the general
case of κ-reciprocal X we have to work more to find v. The idea behind the
construction is that v should be defined integrating the minimizer ρ over the
level sets of u in a suitable way.
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Recall the notation

As,t = {x ∈ Q : s < u(x) < t}.
Lemma 7.1 Suppose 0 < t < 1, and that the minimizer u satisfies the con-
clusions of Theorem 5.1. Then for every ε > 0 there exists h > 0 such that
At−h,t is contained in the ε-neighborhood Nε(u−1(t)) of u−1(t).

Proof If the claim is not true, then for some 0 < t < 1 and ε > 0, Fh =
At−h,t\Nε(u−1(t)) is non-empty for all h. But the sets Fh are nested and
compact, and

⋂
h>0

Fh = u−1(t)\Nε(u
−1(t)) = ∅

by the continuity of u. This is a contradiction since the intersection of the sets
Fh cannot be empty. ��
We denote

F = {0 < t < 1 : u−1(t) is a simple curve |γt |},
where γt : [0, 1] → Q, γt (0) ∈ ζ2, γt (1) ∈ ζ4, and

U = {x ∈ Q : u(x) = t for some t ∈ F}.
Recall that, by Proposition 6.1, the set F has full 1-measure in (0, 1). Now let
x = γt (T ) ∈ U and denote

Nε,T (γt ) = Q ∩
(

∪0�s�T B(γt (s), ε)
)
.

We define v : U → [0, M1] such that

v(x) = lim
ε→0

lim inf
h→0

∫
Nε,T (γt )∩At−h,t

ρ2

h
dH2 (29)

when x ∈ U and

v(x) = lim inf
y∈U,y→x

v(y)

when x ∈ U\U . That 0 � v � M1 follows from Lemmas 6.2 and 7.1. Also,
notice that ζ1 ∪ ζ3 ⊂ U .

The following proposition allows us to extend v to all of Q. Recall the
notation ∂∗ from Lemma 4.6.
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Proposition 7.2 Suppose X satisfies (2) and (3). Let V be a connected com-
ponent of Q\U. Then v is constant on ∂∗V .

Proof Let V be a connected component of Q\U . We will argue by contra-
diction, assuming that v is not constant on ∂∗V . First, notice that there exists
0 < t0 < 1 such that V ⊂ u−1(t0), by Proposition 6.1. Therefore, Lemma 6.2
implies that ρ(x) = 0 for almost every x ∈ V .

Now let a, b ∈ ∂∗V , such that v(a) � v(b) − 8μ, μ > 0. Then, by the
definition of v we can find a radius r > 0 and points x ∈ B(a, r) ∩ U ,
y ∈ B(b, r) ∩ U such that v(x) � v(y) − 7μ. Let x = γt (T ) and y = γs(S).
Then we furthermore find 0 < ε < r and h > 0 such that

v(x) �
∫

Nε,T (γt )∩At−h,t

ρ2

h
dH2 − μ, (30)

v(y) �
∫

Nε,S(γs)∩As−h,s

ρ2

h
dH2 + μ. (31)

Moreover, by Lemma 7.1 we may choose h so that At−h,t ⊂ Nε(γt ) and
As−h,s ⊂ Nε(γs). In particular, (31) and Lemma 6.2 give

∫
As−h,s\Nε,S(γs)

ρ2

h
dH2 � M1 − v(y) + μ � M1 − v(x) − 6μ. (32)

We denote

� = (Nε,T (γt ) ∩ At−h,t ) ∪ (As−h,s\Nε,S(γs)).

Then combining (30) and (32) gives

∫
�

ρ2

h
dH2 � M1 − 5μ. (33)

Now choose points p ∈ B(a, r) ∩ V , q ∈ B(b, r) ∩ V , and a simple path
η joining p and q in V . Moreover, choose δ > 0 small enough such that
Nδ(|η|) ⊂ V . By condition (3) we can choose r > 0 small enough to begin
with so that there are Borel functions g1 and g2 such that g1 is admissible for
�(ζ1, B(a, 2r); Q), g2 is admissible for �(ζ1, B(b, 2r); Q), and

∫
Q
(g1 + g2)

2 dH2 � μ2

M1
. (34)

We now define a function g by setting

g = h−1ρχ� + g1 + g2 + δ−1χV .
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This definition of g is motivated by the fact that g is weakly admissible for
�(ζ1, ζ3; Q). Indeed, let γ ∈ �(ζ1, ζ3; Q)\�0. If |γ | intersects B(a, 2r) then∫
γ

g1 ds � 1. Similarly, if |γ | intersects B(b, 2r) then
∫
γ

g2 ds � 1. If |γ |
intersects |η|, then ∫

γ
δ−1χV ds � 1.Otherwise γ either passes through At−h,t

or As−h,s , in which case
∫
γ

ρχ�/h ds � 1.
Now, for 0 < m < 1, also the function

wm = (1 − m)ρ + mg

is weakly admissible for �(ζ1, ζ3; Q). By the minimizing property of ρ, we
have ∫

Q
ρ2 dH2 �

∫
Q

w2
m dH2. (35)

Differentiating in (35) with respect to m and setting m = 0 then gives
∫

Q
ρ2 dH2 �

∫
Q

ρg dH2. (36)

Toconclude the proof,we show that this is a contradiction.Recall thatρ(x) = 0
for almost every x ∈ V . In particular,

∫
Q

ρδ−1χV dH2 = 0. (37)

Also, Hölder’s inequality, (34) and the minimizing property of ρ give
∫

Q
ρ(g1 + g2) dH2 � μ. (38)

Therefore, combining the definition of g with (33), (37) and (38) gives
∫

Q
ρg dH2 � M1 − 4μ =

∫
Q

ρ2 dH2 − 4μ.

This contradicts (36). The proof is complete. ��
By Proposition 7.2, we can extend v to all of Q: if V is a connected com-

ponent of Q\U and x ∈ V , then v(x) = v(y), where y is any point on ∂∗V .

Proposition 7.3 Suppose X satisfies (2) and (3). Then v is continuous in Q.
Moreover, v(x) = 0 for every x ∈ ζ2, and v(x) = M1 for every x ∈ ζ4.

Proof The proof is similar to the proof of Proposition 7.2. In view of the
definition of v and Proposition 7.2, it suffices to show that v|U is continuous.
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Fix a ∈ U . Moreover, let μ, r > 0, x, y ∈ B(a, r) ∩ U , and suppose v(x) �
v(y) − 7μ. Using the notation of Proposition 7.2 for v(x) and v(y), we then
conclude that (33) holds. This time we choose r > 0 small enough and a Borel
function g1 which is admissible for �(ζ1, B(a, r); Q), such that (34) holds
with g2 removed from the estimate. Then we define

g = h−1ρχ� + g1,

and conclude as above that g is weakly admissible for �(ζ1, ζ3; Q). This then
leads to a contradiction precisely as in the proof of Proposition 7.2. So we
conclude that, when r > 0 is small enough, v(y) � v(x) + 7μ. Interchanging
the roles of x and y, and recalling the definition of v, we then have

sup
p,q∈B(a,r)∩U

|v(p) − v(q)| → 0 as r → 0.

Weconclude that v|U is continuous ata, and furthermore that v is continuous at
every b ∈ Q by the discussion above. The claims of the proposition now follow
directly from the definition and continuity of v, Lemma 6.2, and Proposition
7.2. ��

We orient X so that winding around ∂ Q starting from ζ1 and ending at ζ4
defines positive orientation.

Corollary 7.4 Suppose X satisfies (2) and (3). Then

f := (u, v) : Q → [0, 1] × [0, M1]
is continuous and surjective. Moreover, for every z ∈ (0, 1)×(0, M1) we have

deg(z, f, Q) = 1,

where deg(z, f, Q) is the topological degree of z with respect to f and the
domain Q.

Proof First, f is continuous byTheorem5.1 and Proposition 7.3.Also, f maps
∂ Q onto ∂([0, 1] × [0, M1]) winding around once with positive orientation,
so the topological degree deg(z, f, Q) = 1 for all z ∈ (0, 1) × (0, M1). In
particular, f is surjective (see [46, Chapter II]). ��

8 Change of variables with f = (u, v)

In order to prove quasiconformality, we need to establish analytic properties
for f . In this section we prove a change of variables formula by employ-
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ing decompositions of the rectangle [0, 1] × [0, M1] and the corresponding
preimages.

We decompose the interval [0, 1] × [0, M1] as follows. We first choose
k0 ∈ Z and 2−1 < m1 � 1 such that

m12
k0 = M1. (39)

Let k ∈ N, k � −k0 + 2, and consider the rectangles

R(i, j, k) = [i2−k, (i + 1)2−k] × [ j2−km1, ( j + 1)2−km1], (40)

where 0 � i � 2k − 1, 0 � j � 2k+k0 − 1. Then two rectangles either
coincide or have disjoint interiors, and the union of all the rectangles covers
all of [0, 1] × [0, M1]. We denote

Q(i, j, k) = f −1(R(i, j, k)),

and by Q̃(i, j, k) the interior of Q(i, j, k). Also, when (i, j, k) is fixed, and
0 � s < t � 1, we use the notation

As,t (i, j, k) = As,t ∩ Q̃(i, j, k).

Lemma 8.1 Suppose X satisfies (2) and (3). Then we have

∫
Q(i, j,k)

ρ2 dH2 = 2−2km1 and
∫

∂ Q(i, j,k)

ρ2 dH2 = 0 (41)

for every (i, j, k) as above.

Proof Fix k � −k0 + 2. We claim that

∫
Q̃(i, j,k)

ρ2 dH2 � 2−2km1 (42)

for every (i, j). Suppose to the contrary that (42) does not apply for some
(i, j). Setting

ϕ(E) =
∫

u−1(E)∩Q̃(i, j,k)

ρ2 dH2,

we get a set function for which Lemma 6.5 can be applied. Since (42) does
not hold, Lemma 6.5 shows that there exists a set G ⊂ (i2−k, (i + 1)2−k) of
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positive 1-measure such that for every t ∈ G

lim
h→0

∫
At−h,t (i, j,k)

ρ2

h
dH2 < 2−km1. (43)

In particular, for some t ∈ G the level set u−1(t) is a simple curve γt . By
the definition of Q(i, j, k), we find a = γt (T ) and b = γt (S) such that
v(a) = j2−km1, v(b) = ( j + 1)2−km1, and γt (q) ∈ Q(i, j, k) for every
T � q � S. The definition of v now implies

2−km1 = v(b) − v(a) � lim
h→0

∫
At−h,t (i, j,k)

ρ2

h
dH2,

contradicting (43) (the detailed proof of the last inequality involves the argu-
ment used in the proof of Proposition 7.2 and is left to the reader).We conclude
that (42) holds.

Now we can apply (39) and (42) to all (i, j) to estimate

M1 =
2k−1∑
i=0

2k+k0−1∑
j=0

2−2km1

�
2k−1∑
i=0

2k+k0−1∑
j=0

∫
Q̃(i, j,k)

ρ2 dH2 �
∫

Q
ρ2 dH2 = M1.

This gives (41). The proof is complete. ��

Applying Lemma 8.1 gives the desired change of variables formula.

Proposition 8.2 Suppose X satisfies (2) and (3). If g : [0, 1] × [0, M1] →
[0, ∞] is Borel measurable, then

∫
[0,1]×[0,M1]

g(y) dy =
∫

Q
g( f (x))ρ2(x) dH2(x).

Proof ByMonotone Convergence, we may assume that g is bounded. Let first
gk be of the form

gk =
∑

j

a jχR j , (44)
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where a j � 0 and R j is a rectangle of the form (40) for every j , such that the
rectangles have disjoint interiors. Then (41) gives

∫
[0,1]×[0,M1]

gk(y) dy =
∑

j

a j |R j | =
∑

j

∫
Q j

a jρ
2(x) dH2(x)

=
∫

Q
gk( f (x))ρ2(x) dH2(x).

In general, the boundedBorel function g can be approximated in L1([0, 1]×
[0, M1]) by continuous functions and furthermore by uniformly bounded func-
tions gk of the form (44) such that

gk(y) → g(y) for almost every y ∈ [0, 1] × [0, M1].

Now it suffices to show that

lim
k→∞

∫
Q

gk( f (x))ρ2(x) dH2(x) =
∫

Q
g( f (x))ρ2(x) dH2(x).

We claim that the set E = {x ∈ Q : gk( f (x)) → g( f (x))} satisfies
∫

Q\E
ρ2(x) dH2(x) = 0. (45)

The proposition follows from (45), the definition of E , and Dominated Con-
vergence.

To prove (45), notice that | f (Q\E)| = 0. Hence, applying (41) again shows
that, given ε > 0, the set f (Q\E) can be covered by rectangles R� of the form
(44) such that

∫
Q\E

ρ2(x) dH2(x) �
∑

�

∫
Q�

ρ2(x) dH2(x)

=
∑

�

|R�| < ε.

So (45) follows. The proof is complete. ��
Remark 8.3 In the next section we show that f is one-to-one. Combining this
with Proposition 8.2 shows that f satisfies Condition (N ): If E ⊂ Q and
H2(E) = 0, then | f (E)| = 0. To see this, apply the change of variables
formula to the function g = χ f (E).
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9 Invertibility of f

In this section we show that the map f : Q → [0, 1] × [0, M1] is a homeo-
morphism. In particular, v is then defined by (29) in every x ∈ Q.

Proposition 9.1 Suppose X satisfies (2) and (3). Then f : Q → [0, 1] ×
[0, M1] is a homeomorphism.

The rest of this section is devoted to the proof of Proposition 9.1. We first
show that f −1(z) does not contain non-trivial continua for any z ∈ [0, 1] ×
[0, M1].

Suppose F ⊂ f −1(z) is a non-trivial continuum. There exists a non-trivial
continuum E ⊂ int Q such that E ∩ f −1(z) = ∅.

We first give an estimate resembling a lower modulus bound. Let τ :
[0, 1] → Q be a simple path such that τ(T ) ∈ E if and only if T = 0
and τ(T ) ∈ F if and only if T = 1. If there exists a ∈ F ∩ int Q, then we
choose τ so that τ(1) = a. Otherwise F is a simple curve in ∂ Q, and we
choose τ so that τ(1) is not a boundary point of F in ∂ Q.

Consider the distance function

ψ(x) = dist(x, |τ |).

Now ψ is 1-Lipschitz, and there exists δ > 0 such that ψ−1(δ) intersects both
E and F . Moreover, by Lemma 3.3 we can choose a connected component G
of

X\(E ∪ F ∪ |τ | ∪ ψ−1(δ))

such that |τ | ⊂ ∂G. Notice that G ⊂ ψ−1((0, δ)) ∩ Q.
By Propositions 3.1 and 3.2, for almost every 0 < s < δ the preimage

ψ−1(s) contains a simple rectifiable path

βs : [0, 1] → ψ−1(s), βs /∈ �0,

in G such that βs(T ) ∈ E if and only if T = 0 and βs(T ) ∈ F if and only if
T = 1 (recall that �0 is an exceptional path family of modulus zero). Then, if
0 < s − h < s, there exists a unique component Vs−h,s ⊂ G of

X\(E ∪ F ∪ |βs | ∪ ψ−1(s − h))

such that |βs | ⊂ ∂Vs−h,s .
For the rest of this section, we use the notation B ′(r) = f −1(B(z, r)).
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Lemma 9.2 Suppose X satisfies (2) and (3). Fix 0 < s < δ as above. More-
over, let R > r > 0 such that B ′(2R) ∩ E = ∅. Then

1

4
log2

R

r
�

∫
|βs |

ρχQ\B′(r)

| f − z| dH1 + lim inf
h→0

∫
Vs−h,s

ρχQ\B′(r)

h| f − z| dH2. (46)

Proof We may assume that there exists L ∈ N such that R = 2Lr . Let j ∈ N,
j � L . Now denote

m j = max{T ∈ [0, 1] : βs(T ) ∈ A( j + 1)},
M j = min{S ∈ [0, 1] : βs(S) ∈ A( j − 1)},

and γ j = βs |[m j , M j ]. Here

A( j) = f −1(B(z, 2 j+1r)\B(z, 2 j r)).

Then m1 � M1 � m2 � M2...., and

| f (βs(m j )) − f (βs(M j ))| = 2 j r.

Therefore, either

|u(βs(m j )) − u(βs(M j ))| � 2 j−1r, (47)

or
|v(βs(m j )) − v(βs(M j ))| � 2 j−1r. (48)

If (47) occurs, then, since βs /∈ �0, (6) is satisfied with γ j . In other words,

2 j−1r �
∫

γ j

ρ ds =
∫

|γ j |
ρ dH1. (49)

We claim that if (48) occurs, then

2 j−1r � lim inf
h→0

∫
Vs−h,s∩A( j)

ρχQ\B′(r)

h
dH2. (50)

Suppose for the moment that (50) holds. Then, applying (49) and (50), we
have

1 �
∫

|γ j |
ρ

2 j−1r
dH1 + lim inf

h→0

∫
Vs−h,s∩A( j)

ρχQ\B′(r)

h2 j−1r
dH2

� 4
( ∫

|γ j |
ρ

| f − z| dH1 + lim inf
h→0

∫
Vs−h,s∩A( j)

ρχQ\B′(r)

h| f − z| dH2
)
.
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Summing over j and recalling L = log2 R/r yields (46).
It remains to prove (50), assuming that (48) holds. The argument is almost

identical to what we have already seen in the proof of Proposition 7.2. Fix
ε > 0. Recall that v is constant on every component of Q\U by the remark
after Proposition 7.2, where U is as defined in Sect. 7. Therefore, taking a
subpath of γ j if necessary, we may assume that

γ j (m j ), γ j (M j ) ∈ U .

Nowwe find 0 < a, b < 1 and points xa, xb ∈ U such that u−1(a) and u−1(b)

are simple paths γa and γb joining ζ2 and ζ4, and

xa = γa(T ) ∈ B(βs(m j ), ε), xb = γb(S) ∈ B(βs(M j ), ε).

From now on the argument proceeds exactly as the proof of Proposition 7.2, so
we only recall the main points. We choose a small h > 0, and define a weakly
admissible function for�(ζ1, ζ3; Q) as follows. First, near γa and γb, we apply
the function ρ the same way as in the definition of v(xa) and v(xb). Then, near
γ j we use the function ψ/h. Finally, in Q\(B(xa, ε) ∪ B(xb, ε)) we apply
(3) to construct an admissible function pε for �(∂ Q, B(xa, ε) ∪ B(xb, ε); Q)

such that the integral of p2ε is small. We take the sum g of these functions, and
test the minimizing property of ρ for M1 = mod(ζ1, ζ3; Q) with the function
(1 − α)ρ + αg. Taking ε → 0 and α → 0, we arrive at (50). ��
Lemma 9.3 For every z ∈ [0, 1] × [0, M1] the set f −1(z) is totally discon-
nected.

Proof We prove that the continuum F above is trivial. Fix R > 0 as in Lemma
9.2. For the moment, we denote φ = ρχQ\B′(r)

| f −z| , and

ϕ((s − h, s)) :=
∫

Vs−h,s

φ dH2.

Then applying the coarea inequality, Proposition 3.2 to the distance function
ψ (recall that |βs | ⊂ ψ−1(s)), we have

∫ δ

0

∫
|βs |

φ dH1 ds � 4

π

∫
Q\B′(r)

ρ

| f − z| dH2. (51)

On the other hand, ϕ extends to a set function with differential ϕ′(s) at almost
every s, and

∫ δ

0
ϕ′(s) ds � ϕ((0, δ))
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by Lemma 6.5. Therefore,

∫ δ

0
lim inf

h→0

∫
Vs−h,s

φ

h
dH2 ds �

∫
Q\B′(r)

ρ

| f − z| dH2. (52)

Combining (46), (51) and (52), we have

δ log2
R
r

4
� 3

∫
Q\B′(r)

ρ

| f − z| dH2.

Furthermore, applying Hölder’s inequality and Proposition 8.2, we have

δ log2
R
r

12
� H2(Q)1/2

( ∫
Q\B′(r)

ρ2

| f − z|2 dH2
)1/2

� H2(Q)1/2
( ∫

([0,1]×[0,M1])\B(z,r)

1

|y − z|2 dy
)1/2

� 2πH2(Q)1/2
(
log2

max{2, 2M1}
r

)1/2
.

But this is a contradiction when r → 0. The lemma follows. ��
Proof of Proposition 9.1 We know that f is continuous and surjective by
Corollary 7.4. We use the notation of Sect. 7;

F = {t ∈ [0, 1] : u−1(t) is a simple curve |γt |},

and

U = {x ∈ Q : u(x) ∈ F}.

Then for every t ∈ F the conjugate function v is increasing on |γt | by con-
struction, so f −1(t, s) is a continuum for all s. But then f −1(t, s) has to be a
point by Lemma 9.3. We conclude that if z = (t, s), t ∈ F, then f −1(t) is a
point. It remains to prove that the same property holds when t /∈ F. Fix such
t , and z = (t, s).

We now claim that f −1(z) contains a point xz with the following property:
for every ε > 0 the xz-component V of f −1B(z, ε) contains points a, b ∈ U
such that u(a) < t and u(b) > t . Indeed, we know that the set u−1(t) separates
A = {u < t} and B = {u > t} in Q. Consider the set

C = A ∩ B.
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Recall that u−1(t) does not contain interior points by Proposition 7.2 and
Lemma 9.3. Therefore C is non-empty and also separates A and B in Q, since
A\C and B\C are open and disjoint in Q. We conclude that C contains a
continuum joining ζ2 and ζ4, so in particular v takes all values between 0 and
M1 in C . The claim follows.
Notice that by Proposition 7.2 and Lemma 9.3, U is dense in Q. Suppose

there exists a point x0 ∈ f −1(z), x0 �= xz , and let ε > 0. Then by the
density of U , the x0-component W of f −1B(z, ε) contains a point a0 ∈ U
such that u(a0) < t or u(a0) > t . Without loss of generality, assume that
u(a0) < t . Connecting a0 to x0 in W and a to xz in V , we may assume that
u(a0) = u(a) = t0 < t .

We now have components V and W of f −1B(z, ε), and points a ∈ V and
a0 ∈ W , such that

f (a) = (t0, r) ∈ B(z, ε), f (a0) = (t0, s) ∈ B(z, ε).

Recall that the restriction of f to |γt0 | is injective. In particular, a and a0 can be
connected by a subcurve η of |γt0 | such that f (η) ⊂ B(z, ε). So we conclude
that in fact V = W . But this is a contradiction when ε is small enough, since
f −1(z) is not connected by Lemma 9.3. The proof is complete. ��

10 Variational modulus

In the next section we prove perhaps the most intricate property of our map
f , showing that under the reciprocality assumption the function Cρ is a weak
upper gradient of f whenC is large enough. To accomplish this, we now intro-
duce a modified version of the conformal modulus called variational modulus,
and prove a reciprocality result connecting the variational modulus to con-
formal modulus. The variational modulus appears, though implicitly, in the
work of Gehring [23] in Euclidean space, where it coincides with conformal
modulus.

Let Q0 ⊂ X be homeomorphic to a closed square, with boundary segments
ζ 0
1 , ζ 0

2 , ζ 0
3 , ζ 0

4 . Denote by � the family of simple paths joining ζ 0
2 and ζ 0

4 in
Q0\ζ 0

1 . Fix γ ∈ �, and let Nε(γ ) be the closed ε-neighborhood of |γ |. Then,
when ε > 0 is small enough, Nε(γ ) ∩ ζ 0

1 = ∅. We denote by F(γ ) the
connected component of Q0\|γ | containing ζ 0

1 . Moreover, we denote

�ε(γ ) := �(|γ |, F(γ )\ int Nε(γ ); F(γ ) ∩ Nε(γ )),

Fε(γ ) := {g : g is weakly admissible for �ε(γ )}.
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We say that a Borel function H � 0 is V-admissible for �, if

inf
γ∈�

lim inf
ε→0

inf
g∈Fε(γ )

∫
Q0

gH dH2 � 1, (53)

and define the variational modulus mod(�) by

mod(�) = inf
H

∫
Q0

H2 dH2,

where the infimum is taken over all V -admissible functions H .

Lemma 10.1 Suppose X satisfies (2) and (3). Then

mod(ζ 0
1 , ζ 0

3 ; Q0) · mod(�) = 1.

Proof We first prove

mod(ζ 0
1 , ζ 0

3 ; Q0) · mod(�) � 1. (54)

Let u0 be the minimizing function in Q0 constructed exactly as u in Sect. 4,
with minimizing weak upper gradient ρ0. Moreover, let H be V -admissible
for �, and γt = u−1

0 (t), 0 < t < 1. Denote

ϕ((s, t)) =
∫

As,t

Hρ0 dH2,

where

As,t = {x ∈ Q0 : s < u0(x) < t}
as before. By Lemma 6.5 and the V -admissibility of H ,

1 � ϕ′(t) = lim
h→0

ϕ((t − h, t))

h

exists for almost every 0 < t < 1, and moreover

1 �
∫ 1

0
ϕ′(t) dt � ϕ((0, 1)) =

∫
Q0

Hρ0 dH2. (55)

Recall also that
∫

Q0
ρ2
0 dH2 = mod(ζ 0

1 , ζ 0
3 ; Q0).
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Therefore, (54) follows from (55) by applying Hölder’s inequality and mini-
mizing over H .

To conclude the proof, we show that

mod(ζ 0
1 , ζ 0

3 ; Q0) · mod(�) � 1. (56)

We claim that the function ρ0 · mod(ζ 0
1 , ζ 0

3 ; Q0)−1 is V -admissible for �.
This immediately implies (56). Let γ , ε and g ∈ Fε(γ ) be as in (53). Then, g is
in particular weakly admissible for �(ζ 0

1 , ζ 0
3 ; Q0). Applying the minimizing

property of ρ0, we have

mod(ζ 0
1 , ζ 0

3 ; Q0) =
∫

Q0
ρ2
0 dH2 �

∫
Q0

((1 − s)ρ0 + sg)2 dH2, 0 < s < 1.

Subtracting the left integral fromboth sides of the inequality and letting s → 0,
we have

mod(ζ 0
1 , ζ 0

3 ; Q0) �
∫

Q0
gρ0 dH2,

verifying our claim. ��
We can apply the variational modulus to estimate conformal modulus in

the rectangles Q(i, j, k) defined in Sect. 8. Recall that assuming reciprocality
means that we assume the conditions (1), (2) and (3). Lemma 10.2 is the only
step in the proof of Theorem 1.4 where condition (1) is needed.

Lemma 10.2 Suppose X is reciprocal, and let f : Q → [0, 1] × [0, M1]
be the mapping constructed in the previous sections. Let 0 � a1 < b1 � 1,
0 � a2 < b2 � M1, and

Q0 = {x ∈ Q : f (x) ∈ [a1, b1] × [a2, b2]},
ζ 0
1 = {x ∈ Q : f (x) ∈ {a1} × [a2, b2]},

ζ 0
2 = {x ∈ Q : f (x) ∈ [a1, b1] × {a2}},

ζ 0
3 = {x ∈ Q : f (x) ∈ {b1} × [a2, b2]},

ζ 0
4 = {x ∈ Q : f (x) ∈ [a1, b1] × {b2}}.

Then

mod(ζ 0
1 , ζ 0

3 ; Q0) = b2 − a2
b1 − a1

, and (57)

b1 − a1
κ(b2 − a2)

� mod(ζ 0
2 , ζ 0

4 ; Q0) � κ(b1 − a1)

b2 − a2
. (58)
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Remark 10.3 Notice that in the case [a1, a2] = [0, 1], [b1, b2] = [0, M1],
Lemma 10.2 follows from Proposition 9.1 and conditions (1) and (2). The
main content of the lemma is the second inequality in (58), as we will see in
Section 11.

Proof We claim that

mod(�) � b1 − a1
b2 − a2

. (59)

The lemma follows from (59). Indeed,� in (57) follows from (59) and Lemma
10.1, and � from Proposition 8.2 and the fact that ρ/(b1 − a1) is weakly
admissible for �(ζ 0

1 , ζ 0
3 ; Q0). The estimates in (58) then follow directly from

(57) and conditions (1) and (2).
To prove (59), we again apply the same argument as in the proof of Propo-

sition 7.2. Namely, let γ : [0, 1] → Q0 ∈ �, ε > 0, and g ∈ Fε(γ ) as in the
definition of mod(�). Then

f (γ (0)) = (t, a2), f (γ (1)) = (s, b2), a1 � t, s � b1.

Also, γ (0) = γt (T ) and γ (1) = γs(S) for some T and S. Here |γt | = u−1(t)
as before. We claim that

∫
Q0

gρ dH2 � b2 − a2 − μ, μ → 0 as ε → 0, (60)

i.e., that ρ/(b2 − a2) is V -admissible. This implies (59) by Proposition 8.2.
Fix μ > 0. Then, by the definition of v and Lemma 7.1, we can choose

ε > 0 and h > 0 small enough such that At−h,t ⊂ Nε(γt ), and

a2 �
∫

Nε,T (γt )∩At−h,t

ρ2

h
dH2 − μ

4
. (61)

Similarly, we can assume As−h,s ⊂ Nε(γs), and

M1 − b2 �
∫

As−h,s\Nε,S(γs)

ρ2

h
dH2 − μ

4
. (62)

We denote

� = (Nε,T (γt ) ∩ At−h,t ) ∪ (As−h,s\Nε,S(γs)).

Combining (61) and (62) then gives

∫
�

ρ2

h
dH2 � M1 + a2 − b2 + μ

2
. (63)

123



Uniformization of two-dimensional metric surfaces 1347

By condition (3), when ε is small enough, we can choose an admissible
function p for �(ζ1, B(γ (0), 2ε) ∪ B(γ (1), 2ε); Q) such that

∫
Q

pρ dH2 �
( ∫

Q
p2 dH2

)1/2
M1/2

1 � μ

2
. (64)

Recall that M1 = mod(ζ1, ζ3; Q). Now

g = h−1ρχ� + p + gχQ0

is admissible for �(ζ1, ζ3; Q), so testing the minimizing property of ρ with
(1 − m)ρ + mg, m → 0, it follows that

M1 =
∫

Q
ρ2 dH2 �

∫
Q

gρ dH2 =
∫

�

ρ2

h
dH2 +

∫
Q

pρ dH2 +
∫

Q0
gρ dH2.

(65)
Combining (65) with (63) and (64) gives (60). The proof is complete. ��

11 Regularity of f

By Proposition 9.1, our map f : Q → [0, 1] × [0, M1] is a homeomorphism,
assuming (2) and (3). In this section we show that if we also assume condition
(1), then we have one of the modulus inequalities required for quasiconfor-
mality.

Upper gradients for maps are defined similarly to upper gradients of func-
tions. We say that a Borel function g � 0 is an upper gradient of a map
F : (Y, dY ) → (Z , dZ ) between metric spaces, if

dZ (F(a), F(b)) �
∫

γ

g ds (66)

for every a, b ∈ Y and every locally rectifiable path γ joining a and b in Y .
If moreover Y is equipped with locally finite H2-measure, then g is a weak
upper gradient of F if there exists an exceptional set �′ of modulus zero such
that (66) holds for every γ /∈ �′.

Furthermore, if g ∈ L2(Y ) is a weak upper gradient of F , then there exists
an exceptional set �′′ of modulus zero such that if h � 0 is a Borel function
in Z , then ∫

F◦γ

h ds �
∫

γ

(h ◦ F)g ds (67)

for every γ /∈ �′′. See [34] for the proof of this property and more information
on upper gradients and absolute continuity.
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Proposition 11.1 Suppose X is κ-reciprocal. Then 2000κ1/2ρ is a weak upper
gradient of f .

Remark 11.2 Proposition 11.1 and Lemma 4.3 imply in particular that f
belongs to the Newtonian Sobolev space N 1,2(Q,R2). See [34] for the theory
of Sobolev spaces in metric measure spaces.

Before provingProposition 11.1,we apply it to prove themodulus inequality
discussed above.

Corollary 11.3 Suppose X is κ-reciprocal. Then

mod(�) � 4 · 106κ mod( f �)

for every path family � in Q.

Proof Let g be an admissible function for f �. By Proposition 11.1, the func-
tion ρ′ = 2000κ1/2ρ is a weak upper gradient of f . Therefore, for almost
every rectifiable path γ ∈ �,

1 �
∫

f ◦γ

g ds �
∫

γ

(g ◦ f )ρ′ ds

by (67). Thus (g ◦ f )ρ′ is weakly admissible for �. By Proposition 8.2, we
have

∫
[0,1]×[0,M1]

g2 dx =
∫

Q
(g ◦ f )2ρ2 dH2

� 1

4 · 106κ
∫

Q
(g ◦ f )2(ρ′)2 dH2 � 1

4 · 106κ mod(�).

Taking infimum over admissible functions g gives the claim. ��
Proof of Proposition 11.1 We use the notation R(i, j, k) and Q(i, j, k) intro-
duced in Sect. 8. We fix k and denote

Q̂(i, j, k) =
⋃

|i ′−i |�1,| j ′− j |�1

Q(i ′, j ′, k).

In other words, Q̂(i, j, k) is the preimage under f of a rectangle R̂(i, j, k)with
the same center as R(i, j, k), so that R̂(i, j, k) is a scaled copy of R(i, j, k)

with scaling factor 3, except when Q(i, j, k) intersects ∂ Q. We will consider
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four subsets of Q̂(i, j, k) together with their boundaries. We denote

P1(i, j, k) =
⋃

| j ′− j |�1

Q(i − 1, j ′, k), P2(i, j, k) =
⋃

|i ′−i |�1

Q(i ′, j − 1, k)

P3(i, j, k) =
⋃

| j ′− j |�1

Q(i + 1, j ′, k), P4(i, j, k) =
⋃

|i ′−i |�1

Q(i ′, j + 1, k).

Then the union of the sets P� forms a topological annulus around Q(i, j, k),
except when Q(i, j, k) intersects ∂ Q.

The rectangles f (P�(i, j, k)) have two opposite sides three times as long
as the two other sides; we say that the long boundary curves of P� are the
preimages of the longer sides. We denote by

�� = ��(i, j, k)

the family of rectifiable paths joining the long boundary curves of P�(i, j, k)

in P�(i, j, k). Then Lemma 10.2 gives

mod(��) � 3κ

for all �. Therefore, we can choose a weakly admissible function ν�(i, j, k) :
Q → [0, ∞] for �� such that

∫
P�(i, j,k)

ν�(i, j, k)2 dH2 � 6κ. (68)

We now define σk : Q → [0, ∞],

σk = 2−k
2k−1∑
i=0

2k+k0−1∑
j=0

4∑
�=1

ν�(i, j, k)χP�(i, j,k).

Notice that if x ∈ int Q(i, j, k) for some (i, j), then there are at most 8 triples
(i ′, j ′, �) such that x ∈ P�(i ′, j ′, k). Therefore, applying (68) and Lemma 8.1,
we see that

∫
Q(i, j,k)

σ 2
k dH2 � 384κ · 2−2k � 768κ

∫
Q(i, j,k)

ρ2 dH2. (69)

In particular, the sequence (σk) is bounded in L2(Q), so there exists a subse-
quence (σkn ) converging weakly to σ ∈ L2. Furthermore, by Mazur’s lemma,
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there exists a sequence (σ̂n) of convex combinations of the functions σkn con-
verging to σ strongly in L2. Notice that (69) then holds with σk replaced by σ

and for every (i, j, k).
Now, if � ⊂ Q is open in Q, then we can take a “Whitney decomposition”

of f (�) and cover it with the sets R(i, j, k) ⊂ f (�) with disjoint interiors
(and varying k). Then � is covered by the corresponding sets Q(i, j, k) ⊂ �,
and applying Lemma 8.1 and (69) with σ gives

∫
�

σ 2 dH2 � 768κ
∫

�

ρ2 dH2.

Since this holds for every open � ⊂ Q, we conclude that

σ(x) �
√
768κρ(x)

for H2-almost every x ∈ Q. So the proposition follows if we can show that
64σ is a weak upper gradient of f .

First, notice that since the functions ν�(i, j, k) are weakly admissible for
the path families ��(i, j, k), we can choose an exceptional set �̂ of zero
modulus such that the following holds: whenever γ contains a subpath γ̃

in ��(i, j, k)\�̂, then
∫

γ

ν�(i, j, k)χP�(i, j,k) ds � 1.

Now fix k � 1 and a non-constant γ : [0, 1] → Q, γ /∈ �̂. Then, if

|γ | ∩ Q(i, j, k) �= ∅, γ (0), γ (1) /∈ Q̂(i, j, k), (70)

we have ∫
γ

σkχQ̂(i, j,k)
ds � 2−km1. (71)

Indeed, if (70) holds, then there exists � ∈ {1, 2, 3, 4} and a simple γ� ∈
��(i, j, k) such that |γ�| ⊂ |γ |, so (71) holds by the weak admissibility of
ν�(i, j, k) and the definition of σk .

On the other hand, the triangle inequality gives

| f (γ (1)) − f (γ (0))| �
∑

|γ |∩Q(i, j,k)�=∅
max

x,y∈Q(i, j,k)
| f (y) − f (x)|

� 22−k card{(i, j) : |γ | ∩ Q(i, j, k) �= ∅}.
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Therefore, applying (71) and recalling the bounded overlap of the sets
Q̂(i, j, k), we have

| f (γ (1)) − f (γ (0))| � 8 lim
k→∞

∑
|γ |∩Q(i, j,k)�=∅

∫
γ

σkχQ̂(i, j,k)
ds

� 64 lim
k→∞

∫
γ

σk ds.

Finally recall that, by Fuglede’s lemma,

∫
γ

σ ds = lim
k→∞

∫
γ

σk ds

for almost every γ . We conclude that

64σ � 64 · √
768κρ � 2000κ1/2ρ

is a weak upper gradient of f . The proof is complete. ��

12 Regularity of f−1 and quasiconformality of f

In this section we conclude the proof of the quasiconformality of f .

Theorem 12.1 Suppose X is κ-reciprocal. Then f : int Q → (0, 1)×(0, M1)

is a 8 · 106κ2-QC homeomorphism.

Theorem 12.1 follows from Proposition 9.1, Corollary 11.3, and Corollary
12.3 below. In this sectionweproveSobolev regularity for the inversemap f −1.
This leads to the last modulus inequality in the definition of quasiconformality,
finishing the proof of Theorem 12.1.

We formulate the next results in slightly greater generality than what is
needed to prove Theorem 12.1. Notice that the results can be applied to our
map f , thanks to Proposition 9.1 and Corollary 11.3.

Suppose F : � → �′ ⊂ R
2 is a homeomorphism, � ⊂ X a domain. If

y = (y1, y2) ∈ �′, we define

JF−1(y) = lim sup
r→0

H2(F−1(R(y, r)))

4r2
,

where R(y, r) = [y1 − r, y1 + r ]× [y2 − r, y2 + r ]. We will use the following
facts from real analysis (cf. [39, Theorem 2.12], [21, Theorem 3.22]): if h � 0
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is a Borel function in X , then
∫

�′
(h ◦ F−1)JF−1 dy �

∫
�

h dH2. (72)

Also, if F is our map f , then (see Proposition 8.2)

J f −1(y) = (ρ( f −1(y)))−2

for Lebesgue almost every y ∈ (0, 1) × (0, M1).

Proposition 12.2 Suppose X satisfies (2) with constant κ , and let F : � →
�′ ⊂ R

2 be a homeomorphism, � ⊂ X a domain. If there exists K such that

mod(�) � K mod(F�) (73)

for every path family � in �, then (2κK JF−1)1/2 is a weak upper gradient of
F−1.

Corollary 12.3 Suppose X and F are as in Proposition 12.2. Then

mod(F�) � 2κK mod(�) (74)

for every path family � in �.

Proof Let � be a path family in �, and let h be admissible for �. Then, by
Proposition 12.2 and (67),

(2κK )1/2(h ◦ F−1)J 1/2
F−1

is weakly admissible for F�, and moreover by (72)

mod(F�) � 2κK
∫

�′
(h ◦ F−1)2 JF−1 dy � 2κK

∫
�

h2 dH2.

Minimizing over h gives (74). The proof is complete. ��
The rest of this section is devoted to the proof of Proposition 12.2. The

basic idea for the proof is classical in QC mapping theory, see [57, Theo-
rem 31.2]. However, here we replace the classical geometric conditions by the
reciprocality condition (2).

We say that a continuous function w : �′ → R is ACL, if w is absolutely
continuous on H1-almost every line segment parallel to the coordinate axes.
Notice that if w is ACL, then it has partial derivatives at almost every point,
defining the gradient ∇w.
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For the rest of this section, we denote H = F−1. Let a ∈ X , and denote

Ha(y) = dist(H(y), a).

We will use the following fact, cf. [34, Theorems 7.1.20 and 7.4.5] for the
proof: If there exists a Borel function g ∈ L2(�′) such that, for every a ∈ X ,
Ha is ACL and

|∇ Ha(y)| � g(y) for almost every y ∈ �′, (75)

then g is a weak upper gradient of H .

Proof of Proposition 12.2 In viewof the previous discussion it suffices to show
that Ha is ACL and that the function

g = (2κK JF−1)1/2 (76)

satisfies (75) for every a ∈ X . Notice that by assumption it suffices to consider
the restriction of H to an arbitrary cube Q′ ⊂ �′, and that by scaling and
translating �′ if necessary we may assume Q′ = [0, 1]2. We denote

ϕ(G) := H2(H(G × [0, 1])), G ⊂ [0, 1].
Recall from Lemma 6.5 that

ϕ′(t) = lim
h→0

ϕ([t − h, t + h])
2h

exists and is finite for almost every 0 < t < 1. We fix such a t , and let

E ⊂ It = {(t, b) : 0 � b � 1}
withH1(E) < ε. We will prove

H1(H(E)) � Cε1/2, (77)

where C may depend on t but not on E . This suffices for the ACL-property
since H is a homeomorphism and since we can apply the same argument to
the horizontal segments.

Wemay assume that E is a Borel set. Furthermore, since H(E) is an increas-
ing limit of compact subsets, we may assume that E is compact. Now there
exists δ > 0 and a covering

I j = {{t} × [a j , b j ]}L
j=1, b j − a j = δ,
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of E by segments with pairwise disjoint interiors such that Lδ < ε. Indeed,
since E is compact, given a small open cover of E , there exists a subcover
{I j }, j = 1, . . . , p, consisting of open intervals. Finally, for a large enough
integer �, we cover ∪ j I j with dyadic intervals of length 2−�, increasing the
measure only slightly.

For ν > 0, denote

� j (ν) = �([t − ν, t + ν] × {a j }, [t − ν, t + ν] × {b j }; Tj (ν)) and

� j (ν) = �(It−ν |[a j , b j ], It+ν |[a j , b j ]; Tj (ν)),

where Tj (ν) = [t − ν, t + ν] × [a j , b j ], and
It±ν |[a j , b j ] = {(t ± ν, a) ∈ It : a j � a � b j }.

By Lemma 6.4, for every α > 0 there exists ν < δ such that

�(γ ) � (1 − α)�(H(It |[a j , b j ])) for every γ ∈ H� j (ν). (78)

For now we choose α = 1/2. Also, choosing ν smaller if necessary we may
assume that

ϕ([t − ν, t + ν]) � 4νϕ′(t).

Now, the moduli of � j (ν) and � j (ν) are easy to calculate. Combining with
assumption (73), we then have

mod(H� j (ν)) � K mod(� j (ν)) = K δ

2ν
.

By condition (2),

mod(H� j (ν)) � 1

κ mod(H� j (ν))
.

Moreover, by (78), the constant function 2/�(H(It |[a j , b j ])) is admissible for
H� j (ν), so

mod(H� j (ν)) � 4H2(H(Tj (ν)))

�(H(It |[a j , b j ]))2 .

Combining the estimates, we get

�(H(It |[a j , b j ]))2 � 2κK δH2(H(Tj (ν)))

ν
. (79)
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Summing over j and applying Hölder’s inequality yields

H1(H(E)) �
L∑

j=1

�(H(It |[a j , b j ])) �
(2κK δ

ν

)1/2 L∑
j=1

(
H2(H(Tj (ν)))

)1/2

�
(2LκK δ

ν

)1/2( L∑
j=1

H2(H(Tj (ν)))
)1/2

.

Recalling the disjointness of the interiors of the segments I j and that Lδ < ε,
we see that the right hand term is bounded by

(
4εκKϕ([t − ν, t + ν])

ν

)1/2

� 4(εκKϕ′(t))1/2,

so (77) follows. We conclude that H is ACL.
To conclude the proof we have to show that H = F−1 satisfies (75) with

the function g in (76). Let y = (y1, y2) ∈ �′, and

Q0 = [y1 − δ, y1 + δ] × [y2 − δ, y2 + δ] ⊂ �′.

We denote Et = {t} × [y2 − δ, y2 + δ]. Let a ∈ X . Then, since H is ACL, so
is Ha = dist(·, a). Now

∣∣∣∣
∫ y1+δ

y1−δ

∫ y2+δ

y2−δ

∂2Ha(t, s) ds dt

∣∣∣∣ =
∣∣∣∣
∫ y1+δ

y1−δ

Ha(t, y2 + δ) − Ha(t, y2 − δ) dt

∣∣∣∣
�

∫ y1+δ

y1−δ

�(H(Et )) dt. (80)

Notice that choosing α arbitrarily small in (78) and showing (79) with this
sharper bound yields

�(H(Et )) � lim
ν→0

(2κK δH2(H([t − ν, t + ν] × [y2 − δ, y2 + δ]))
2ν

)1/2

� (2κδKϕ′(t))1/2

whenever ϕ′(t) exists, where now

ϕ(G) = H2(H(G × [y2 − δ, y2 + δ])).
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Combining with (80), Hölder’s inequality and Lemma 6.5, we have

∣∣∣∣
∫ y1+δ

y1−δ

∫ y2+δ

y2−δ

∂2Ha(t, s) ds dt

∣∣∣∣ � 2(κK )1/2δϕ((y1 − δ, y1 + δ))1/2

= 4(κK )1/2δ2
(H2(H(Q0))

4δ2

)1/2
.

Dividing both sides by 4δ2, taking δ → 0 and applying the Lebesgue differ-
entiation theorem then gives

|∂2Ha(y)| � (κK JH )1/2(y)

for almost every y ∈ �′. Repeating the argument gives the same estimate for
∂1Ha . Combining the estimates, we conclude (76). ��

13 Existence of QC maps f0 : X → R
2 and → S

2

Theorem 12.1 shows the existence of QCmaps on subsets of a reciprocal space
X . In this section we finish the proof of Theorem 1.4 by showing the existence
of a QC map on the whole space X . This is done by exhausting X with a
sequence of subsets for which Theorem 12.1 can be applied, and then using
normal family arguments.

Recall that if (Fj ) is a sequence of K -QC maps Fj : U → Vj between
planar domains containing 0 and 1 such that Fj (0) = 0 and Fj (1) = 1
for every j , then (Fj ) is a normal family and there exists a subsequence (Fj�)

converging locally uniformly to a K -QCmap F , cf. [57, 20.5,21.3,37.2]. Also,
notice that if F and G are K1- and K2-QC homeomorphisms, respectively, and
if the composition F ◦ G is a well-defined homeomorphism, then F ◦ G is
K1K2-QC; this follows from the definition of quasiconformality.
Theorem 1.4 is a direct consequence of the following.

Theorem 13.1 Suppose X is κ-reciprocal. Then there is a 512 · 1018κ6-QC
homeomorphism from X onto either R2 or D.

Proof Let {X j }, X j ⊂ X j+1 for all j , be an exhaustion of X by open topologi-
cal squares such that the closures X j are closed topological squares.Moreover,
fix a, b ∈ X1, a �= b.

By Theorem 12.1 and the Riemann mapping theorem, there exists for
every j ∈ N a 8 · 106κ2-QC homeomorphism f j : X j → B j , where
B j = B(0, r j ) ⊂ R

2 is a disk, normalized such that f j (a) = 0 and f j (b) = 1.
We denote the inverse map by h j = f −1

j : B j → X j .
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Now fix k ∈ N, and let

gk
j = f j ◦ hk : Bk → B j , j � k.

Then gk
j is 64 · 1012κ4-QC for all j � k. Moreover, gk

j (0) = 0 and gk
j (1) = 1.

Thus (gk
j )

∞
j=k is a normal family, so there exists a subsequence (gk

jk
) converging

locally uniformly to a 64 · 1012κ4-QC map gk : Bk → R
2. It follows that

f jk |Xk = gk
jk ◦ fk → gk ◦ fk : Xk → R

2.

Taking a diagonal subsequence ( f�), we see that ( f�|Xk) converges for every
k ∈ N to a 512 · 1018κ6-QC map. We conclude that the pointwise limit map
f : X → R

2 is 512 · 1018κ6-QC. Applying the Riemann mapping theorem if
necessary, we see that the image f (X) can be chosen to be either R2 or D. ��

We now consider the case where Y is homeomorphic to the Riemann sphere
S
2. The reciprocality conditions now easily generalize; we assume H2(Y ) <

∞, that (1) and (2) hold for all topological squares in S2, and (3) for all points
and topological annuli.

Theorem 13.2 With the above assumptions, there exists a 512 × 1018κ6-QC
homeomorphism f : Y → S

2.

Proof For y0 ∈ Y , denote X := Y\{y0}. Then X satisfies the assumptions
of Theorem 13.1, so there exists a 512 × 1018κ6-QC map f : X → R

2. For
ε > 0 small, consider

�ε = �(B(y0, ε), Y\B(y0, diam(Y )/10); B(y0, diam(Y )/10)\B(y0, ε)).

Now mod(�ε) → 0 as ε → 0 by condition (3). Then also mod( f �ε) → 0
by the quasiconformality of f . Applying Proposition 3.5, we conclude that
f (X) does not have boundary in R2, and f extends continuously, mapping y0
to ∞ on the Riemann sphere. Moreover, the extension is 512 × 1018κ6-QC.
The proof is complete. ��

14 Minimizing dilatation

In this section we prove Theorem 1.5. Note that the corresponding result also
holds when Y is homeomorphic to S2; this follows from the proof given below.

The constant 2 in Theorem 1.5 is not best possible. In fact, in view of
Example 2.2 and the results of Behrend [8] (see also [5] and [7]) on the area
ratios of symmetric convex bodies, it is natural to ask if the sharp constant is
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π/2, or even if there always exists a QC map f0 satisfying

2

π
mod(�) � mod( f0�) � 4

π
mod(�). (81)

Both inequalities would be best possible by Example 2.2. The results men-
tioned above together with the arguments in this section guarantee that there
exists a QC map satisfying the first inequality in (81), and also there exists a
QCmap satisfying the second inequality. However, we do not know if a single
map satisfies both inequalities.

In the proof of Theorem 1.5, we apply certain differentiability properties
of Sobolev maps with values in metric spaces, together with the measurable
Riemann mapping theorem and John’s theorem on convex bodies. Instead of
relying on the measurable Riemann mapping theorem, one could reprove it
with the methods used in this paper.

We now begin the proof of Theorem 1.5. We will not consider the case
X ⊂ R

N separately since it follows from the general arguments below. We
assume f is QC, and denote

h := f −1 : � → X.

We will use some Lipschitz analysis. The following lemma is a special case
of a statement concerning metric-valued Sobolev functions. See [34, Theo-
rem 8.1.49] for the proof.

Lemma 14.1 There exist measurable, pairwise disjoint sets G j , j =
0, 1, 2, . . ., covering �, such that |G0| = 0 and h|G j is j-Lipschitz con-
tinuous for all j = 1, 2, . . ..

Recall that every metric space Z isometrically embeds to the Banach space
L∞(Z). Fix j � 1. Then h|G j can be extended to a Lipschitz map

h j : R2 → L∞(X).

By Kirchheim [36, Theorem 2], h j is metrically differentiable; for almost
every x ∈ R

2 there exists a seminorm M D(h j , x) on R
2 such that

||h j (z) − h j (y)|| − M D(h j , x)(z − y) = o(|z − x | + |y − x |). (82)

We denote by |M D(h j , x)| the operator norm

sup
|z|=1

|M D(h j , x)z|,
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and define

g′(x) =
∑

j

|M D(h j , x)|χG j

Lemma 14.2 (i) The function g′ is a weak upper gradient of h.
(ii) M D(h j , x) is a non-zero norm for almost every x ∈ �.

Proof The first claim follows from [34, Proposition 6.3.22]. Towards the
second claim, recall that Jh denotes the volume derivative of h. Then, by
Proposition 8.2, Jh(x) > 0 for almost every x ∈ �. Now (82) and a density
point argument shows that M D(h j , x) has to be a non-zero norm at almost
every x ∈ �. ��

By Lemma 14.2, we can define in � a field G = Gh of norms which are
non-zero at almost every point, as follows. Let

Gx = M D(h j , x)

if x is a point of metric differentiability for h j for which Lemma 14.2 (ii)
holds, and Gx = 0 otherwise.

We would like to apply the measurable Riemann mapping theorem in order
to make the distortion of h smaller. To this end, recall that the unit ball in a
norm in R

2 is a symmetric convex body in the Euclidean plane. In the points
x where Gx is a non-trivial norm, denote the unit ball by

Cx = {y ∈ R
2 : Gx (y) � 1}.

Let Ex be an ellipse, Ex ⊂ Cx , whose Lebesguemeasure is maximized among
all such ellipses. We can now define an ellipse field G̃ by setting

G̃x = Ex

whenever defined, and G̃x = B(0, 1) otherwise. Also, it follows from the
construction that the complex dilatation associated to the ellipse field G̃ is
measurable. Thus the measurable Riemann mapping theorem gives a QC
homeomorphism ν : � → � such that for almost every x ∈ � there exists
some rx > 0 so that

Dν(x)(Ex ) = B(0, rx ) (83)

We denote

H = h ◦ ν−1.
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Also, let C ′
x = Dν(Cx ). Then, since Dν(x) is linear, B(0, rx ) has maximal

Lebesgue area among all ellipses that are subsets of the symmetric convex set
C ′

x .
We have now applied the measurable Riemann mapping theorem to con-

struct a new map H : � → X . We decompose H to Lipschitz pieces
Hj = H |D j according to Lemma 14.1. Then, replacing h with H in Lemma
14.2, we see that

g(x) =
∑

j

|M D(Hj , x)|χD j (84)

is a weak upper gradient of H . Moreover, since ν−1 is differentiable almost
everywhere with non-zero Jacobian determinant, we can apply (83) to estimate
the dilatation of H .

Recall John’s theorem (cf. [34, Theorem 2.4.25]): if V is a symmetric con-
vex body in R

n , and D an ellipsoid contained in V with maximal Lebesgue
measure, then

D ⊂ V ⊂ √
nD.

Combining John’s theorem and the previous construction, we have

B(0, rx ) ⊂ C ′
x ⊂ B(0,

√
2rx ). (85)

Also,

C ′
x := {y ∈ R

2 : M D(Hj , x)(y) � Rx }

for some Rx > 0. Then, by (85),

R2
x

r2x
� JH (x) = H2

M D(C ′
x )

|C ′
x |

= π R2
x

|C ′
x |

� R2
x

2r2x
, (86)

where H2
M D is the Hausdorff measure with respect to the norm M D(Hj , x).

That H2
M D(C ′

x ) = π R2
x is proved in [36, Lemma 6]. Also, recalling (83), we

have

|M D(Hj , x)| = Rx

rx
.

Combining the estimates, we have

|M D(Hj , x)|2
JH (x)

� 2.
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This together with (84) and the proof of Corollary 11.3 gives the inequality

mod(�) � 2mod(H�)

for every path family � in R
2.

For the reverse inequality, first notice that

�(M D(Hj , x)) := inf|z|=1
|M D(Hj , x)z| � Rx√

2rx
. (87)

Now let ρ be admissible for �, and γ ∈ �. Removing an exceptional set of
modulus zero if needed, we may assume that H−1 is absolutely continuous
on H ◦ γ , and that the Hj are differentiable with non-zero volume derivative
H1- almost everywhere on |γ |. Then we have

∫
H◦γ

ρ ◦ H−1

�(M D(Hj , ·)) ◦ H−1 ds �
∫

γ

ρ ds � 1,

showing that

ρ ◦ H−1

�(M D(Hj , ·)) ◦ H−1

is admissible for H�. Applying Proposition 8.2, we have

mod(H�) �
∫

X

(ρ ◦ H−1)2

�((M D(Hj , ·)) ◦ H−1)2
dH2 �

∫
�

ρ2 JH

�(M D(Hj , ·))2 dx .

On the other hand, (86) and (87) imply

JH

�(M D(Hj , ·))2 � 2,

so

mod(H�) � 2mod(�).

The proof of Theorem 1.5 is complete.

15 Existence of QC maps under mass upper bound

In this section we prove Theorem 1.6. In other words, we show that the mass
upper bound (4) implies the three conditions of reciprocality. We prove each
condition separately in Lemma 15.1, Propositions 15.5 and 15.8, respectively.
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That (4) implies (3) is well-known, see [27, Lemma 7.18]. We give a proof
for completeness.

Lemma 15.1 Suppose X satisfies (4). Moreover, let x ∈ X and R > 10r > 0
such that X\B(x, R) �= ∅. Then

mod(B(x, r), X\B(x, R); B(x, R)) � 8CU log−1
2

R

r
.

In particular, (3) holds.

Proof Define

g(y) = 1

d(y, x) log2
R
r

(88)

when r � d(y, x) � R, and g = 0 elsewhere. Then g is admissible for

�(B(x, r), X\B(x, R); B(x, R)).

We denote T = �log2 R/r�. Then, applying (4) yields
mod(B(x, r), X\B(x, R); B(x, R))

�
∫

X
g2 dH2 � log−2

2
R

r

T∑
j=1

∫
B(x,2 j r)\B(x,2 j−1r)

d(y, x)−2 dH2(y)

� 4CU log−2
2

R

r

T∑
j=1

1 � 8CU log−1
2

R

r
.

��
Now we notice that the continuity of the energy minimizer u holds under

condition (4). We need a slight modification of Proposition 3.2.

Proposition 15.2 Let A ⊂ X be Borel measurable. Assume that w : A → R

is Lipschitz, and g : A → [0, ∞] continuous such that

|w(a) − w(b)| �
(

sup
c∈B(a,d(a,b))

g(c)
)

d(a, b)

for every a, b ∈ A. If h : A → [0, ∞] is Borel measurable, then

∫
R

∫
A∩w−1(t)

h(s) dH1(s) dt � 4

π

∫
A

g(x)h(x) dH2(x).

Proposition 15.2 is proved almost exactly as Proposition 3.2.
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Lemma 15.3 Suppose X satisfies (4). Then u satisfies the conclusions of The-
orem 5.1.

Proof The proof of Theorem 5.1 shows that it suffices to establish (13). Let
x ∈ X and R > 0 such that X\B(x, R) �= ∅. For 0 < r < R, consider
the family �r of all rectifiable paths separating B(x, r) and X\B(x, R) in X .
Then (13) follows if we can show that

mod(�r ) → ∞ as r → 0. (89)

Consider the function

w(y) = log R
d(y,x)

log R
r

χB(x,R)\B(x,r).

Then w = 0 on S(x, R), w = 1 on S(x, r), and w is Lipschitz continuous.
More precisely,

|w(a) − w(b)| �
(

sup
c∈B(a,d(a,b))

g(c)
)

d(a, b) (90)

for every a, b ∈ B(x, R)\B(x, r), where g is the continuous function in (88).
Notice that the level sets ofw separate B(x, r) and X\B(x, R) in X .Moreover,
by (90) together with Propositions 15.2, and 3.1, w−1(t) contains a separating
rectifiable curve ηt ∈ �r for almost every 0 < t < 1.

Now let h be admissible for �r . Then, by (90) together with Proposition
15.2 applied to w, and Hölder’s inequality, we have

1 �
∫ 1

0

∫
ηt

h dH1 dt � 4

π

∫
Q

hg dH2 � 4

π

( ∫
Q

h2 dH2
)1/2( ∫

Q
g2 dH2

)1/2
.

By Lemma 15.1, the latter integral tends to zero when r → 0. Minimizing
over h gives (89). The proof is complete. ��

We use a simple modification of the Hardy–Littlewood maximal function.

Lemma 15.4 Let g ∈ L2(Q), and define

Mg(x) = sup
r>0

1

H2(B(x, 5r))

∫
Q∩B(x,r)

g(y) dH2(y).

Then
∫

Q
Mg(y)2 dH2(y) � 8

∫
Q

g(y)2 dH2(y).
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The lemma is provedby slightlymodifying the standard proof for theHardy–
Littlewood maximal function on doubling spaces. More precisely, one can
follow the proof given in [27, Theorem 2.2] step by step, but when the doubling
property is used there we apply our current definition of the maximal function
instead.

Proposition 15.5 Suppose X satisfies (4). Then X satisfies (1).

Proof Fix Q, the boundary paths ζ1, . . . , ζ4, and the minimizer ρ as in Sect. 4.
Recall

∫
Q

ρ2 dH2 = mod(ζ1, ζ3; Q) = M1.

Wewould like to show that M2 = mod(ζ2, ζ4; Q) � C/M1. In viewof Lemma
15.4, it is sufficient to show that the function C1(Mρ)/M1 is admissible for
M2, for large enough C1 depending only on the constant CU in (4). Let γ be
a rectifiable path in Q joining ζ2 and ζ4, and ε > 0. We may assume that γ is
simple. Then, testing the modulus of �(ζ1, ζ3; Q) with the function

x �→ ε−1 dist(x, |γ |)χNε(γ )

as in the proof of Proposition 7.2, we notice that
∫

Nε(γ )

ρ dH2 � εM1. (91)

Here Nε(γ ) is the closed ε-neighborhood of |γ | as before. We now choose a
covering of Nε(γ ) by balls B(x j , 5ε) such that each x j ∈ |γ | and the balls
B(x j , ε) are pairwise disjoint. By (91) and (4), we have

εM1 �
∑

j

∫
B(x j ,5ε)

ρ dH2 =
∑

j

H2(B(x j , 31ε))

H2(B(x j , 31ε))

∫
B(x j ,5ε)

ρ dH2

� 961CU ε2
∑

j

inf
x∈B(x j ,ε)

Mρ(x) � 961CU ε
∑

j

∫
|γ |∩B(x j ,ε)

Mρ dH1

� 961CU ε

∫
γ

Mρ ds.

We conclude that 961CU (Mρ)/M1 is admissible for M2, as desired. ��
To conclude the proof of Theorem 1.6, we show that the lower bound (2) fol-

lows from (4). The proof is an application of Proposition 3.2 and the following
estimate for the minimizer u.
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Lemma 15.6 Suppose B(x, 2r) ⊂ Q. Then

rH1(u(B(x, r))) �
∫

B(x,2r)

ρ dH2.

Proof Applying Proposition 3.2 with the distance function from x shows that
H1(S(x, s)) < ∞ for almost every r < s < 2r . Similarly, the upper gradient
inequality for u and ρ holds for every path η with |η| ⊂ S(x, s), for almost
every s. Fix such s, and let E j (s) be a connected component of S(x, s) such
that E j (s) separates X . Then E j (s) contains a curve γ j that bounds a domain
U j (s). Moreover, B(x, r) ⊂ ∪ jU j (s), so

H1(u(B(x, r))) �
∑

j

diam u(U j (s)).

By the maximum principle (Lemma 4.6),

diam u(U j (s)) � max
y,z∈γ j

|u(y) − u(z)|

for every j . On the other hand, the upper gradient inequality gives

max
y,z∈γ j

|u(y) − u(z)| �
∫

γ j

ρ dH1.

Combining the estimates, we have

H1(u(B(x, r))) �
∑

j

diam u(U j (s)) �
∫

∪ j γ j (s)
ρ dH1 �

∫
S(x,s)

ρ dH1.

Integrating over s and applying Proposition 3.2 again gives the desired
estimate. ��

We need a version of the coarea inequality for our minimizer u. We will
follow the proof of Proposition 3.2 given in [2, Proposition 3.1.5], replacing
the Lipschitz condition assumed there with Lemma 15.6.

Proposition 15.7 Suppose X satisfies (4). Let g : Q → [0, ∞] be a Borel
function. Then the function t �→ ∫

u−1(t) g dH1 is measurable, and

∫ 1

0

∫
u−1(t)

g dH1 dt � 8000CU

∫
Q

g(Mρ) dH2. (92)
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Proof Fix � ∈ Z, and denote E = {x ∈ Q : 2� < g(x) � 2�+1}. Then, for
j ∈ Z, let

E j = {x ∈ E : 2 j < Mρ(x) � 2 j+1}.

It then suffices to show that

∫ 1

0
H1(u−1(t) ∩ E j ) dt � 4000CU

∫
E j

Mρ dH2. (93)

Let ε > 0 and choose a finite or countable covering of E j by balls Bi =
B(xi , ri ), xi ∈ E j , such that 2ri < ε for every i , and

∑
i

r2i � 10H2(E j ). (94)

We denote λBi = B(xi , λri ). Notice that removing ∂ Q does not affect the left
side of (92), so we may and will assume that 2Bi ⊂ Q for every i . Now, by
Lemma 15.6,

∑
i

riH1(u(Bi )) �
∑

i

∫
2Bi

ρ dH2.

On the other hand, by (4) and (94),

∑
i

∫
2Bi

ρ dH2 � 100CU

∑
i

r2i
1

H2(10Bi )

∫
2Bi

ρ dH2

� 100CU

∑
i

r2i Mρ(xi ) � 1000CU2 j+1H2(E j )

� 2000CU

∫
E j

Mρ dH2.

Combining the estimates yields

∑
i

riH1(u(Bi )) � 2000CU

∫
E j

Mρ dH2. (95)

We now define

gε(t) =
∑

i

riχu(Bi )(t).
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Integrating over t and taking the integral inside the sum then yields

∫ 1

0
gε(t) dt �

∑
i

riH1(u(Bi )).

On the other hand, by the definition of ε-content,

H1
ε(u

−1(t) ∩ E j ) � 2gε(t)

for every 0 < t < 1. Combining the estimates with (95) yields

∫ 1

0
H1

ε(u
−1(t) ∩ E j ) dt � 4000CU

∫
E j

Mρ dH2

(measurability follows by standard real analysis). Letting ε → 0, (93) follows
by monotone convergence. ��
Proposition 15.8 Suppose X satisfies (4). Then X satisfies (2).

Proof By Proposition 15.7 applied to the constant function 1, we know that
H1(u−1(t)) < ∞ for almost every t . Also, by Lemmas 15.3 and 6.3, u−1(t)
is connected for all t . Therefore, by Proposition 3.1, u−1(t) contains a simple
path γt joining ζ2 and ζ4 in Q for almost every t . Now, if g is admissible for
mod(ζ2, ζ4; Q), then

∫
γt

g dH1 � 1 for almost every 0 < t < 1. Integrating
over t and applying Proposition 15.7, we have

1 �
∫ 1

0

∫
γt

g dH1 dt � 8000CU

∫
Q

g(Mρ) dH2.

Moreover, by Hölder’s inequality and Lemma 15.4,
∫

Q
g(Mρ) dH2 � 3

( ∫
Q

g2 dH2
)1/2 ·

( ∫
Q

ρ2 dH2
)1/2

= 3
( ∫

Q
g2 dH2

)1/2 · mod(ζ1, ζ3; Q)1/2.

Minimizing over g gives the claim. ��

16 Existence of QS maps

In this section we prove Corollary 1.7 as an application of Theorems 1.4 and
1.6. Recall that Corollary 1.7 is proved in [11] using different methods. The-
orem 1.6 can be seen as a generalization of Corollary 1.7. In [11] another
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generalization of Corollary 1.7 is given for quasisymmetric (QS) maps in gen-
eral, possibly fractal, topological spheres. Wildrick [59] extended Corollary
1.7 to surfaces homeomorphic to R

2.

Definition 16.1 Suppose η : [0, ∞) → [0, ∞) is a homeomorphism. A
homeomorphism F : (Y, d) → (Z , d ′) between metric spaces is η-quasisym-
metric, if

d ′(F(x1), F(x2))

d ′(F(x1), F(x3))
� η(t) whenever

d(x1, x2)

d(x1, x3)
� t (96)

for distinct points x1, x2, x3.

Remark 16.2 (1) The metric definition of quasiconformality requires for (96)
to hold with t = 1 infinitesimally at every point x1 ∈ Y .

(2) Notice that if F is η-quasisymmetric, then the inverse F−1 is η′-quasisym-
metric, where

η′(s) = 1

η−1(1s )
.

Definition 16.3 A metric space Y is λ′-linearly locally contractible, if every
ball B(a, r) in Y with radius 0 < r < diam(Y )/λ′ is contractible inside
B(a, λ′r), i.e., there exists a continuousmap H : B(a, r)×[0, 1] → B(a, λ′r)

such that H(·, 0) is the identity and H(·, 1) is a constant map.

Weuse the chordal distance d(a, b) = |a−b| inS2.We have nowdefined the
concepts in the statement ofCorollary 1.7. Themethod in the proof ofCorollary
1.7 assuming Theorem 1.4 is nowadays standard in QC mapping theory and
can be found in [29]. The argument is repeated here for completeness. We
need three facts. First, if E and F are disjoint continua in S

2 and

dist(E, F) � T min{diam E, diam F}, 0 < T < ∞,

then
mod(E, F; S2) � φ(T ) > 0, φ(T ) → ∞ as T → 0. (97)

This estimate is proved integrating a given admissible function over suitably
chosen concentric circles intersecting both E and F , and then integrating over
the radius, cf. [57, Section 10], and [29, Section 3]. Metric measure spaces
satisfying (97) are called Loewner spaces, see [29].

Secondly, if X isλ′-linearly locally contractible, then it satisfies the so-called
L LC-conditions for all λ > λ′, cf. [11]:
(1) if B(x, r) is a ball in X and a, b ∈ B(x, r), then there exists a continuum

E ⊂ B(a, λr) joining a and b.
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(2) if B(x, r) is a ball in X anda, b ∈ X\B(x, r), then there exists a continuum
F ⊂ X\B(a, r/λ) joining a and b.

Finally, applying Proposition 3.2 and linear local contractibility as in
Remark 3.4, we get the lower bound

CLr2 � H2(B(x, r)) whenever r � diam(X),

for measures of balls, where CL depends only on λ′. Combining with (4),
we see that a space X satisfying the conditions of Corollary 1.7 is Ahlfors
2-regular. In particular, X is then a doubling metric space.

Proof of Corollary 1.7 By Theorem 1.6 and the proof of Theorem 13.2, there
exists a 2-quasiconformal map f : Y → S

2. Then by Remark 16.2 it suffices
to show that f −1 is η-QS with η depending only on CU and λ′. Moreover
by Ahlfors regularity and a theorem of Väisälä, see [27, Theorem 10.19], it
suffices to show that f −1 is weakly QS, i.e., that (96) holds with t = 1.

We first choose points a1, a2, a3 ∈ Y such that

d(ai , a j ) � diam(Y )

2
for all i �= j.

We denote b j = f (a j ). Precomposing f −1 with a Möbius transformation, if
necessary, we may then assume that

|bi − b j | � 1

4
for all i, j.

Now take distinct points y1, y2, y3 ∈ S
2 such that

|y1 − y2| � |y1 − y3|. (98)

We denote xk = f −1(yk), k = 1, 2, 3. Then, by triangle inequality,

d(x1, a j ) � diam(Y )

4

for at least two indices j . Among them we can then choose one of the indices,
say j = 1, such that also

|y2 − b1| � 1

8
. (99)

The L LC-conditions now guarantee the existence of a continuum

E ⊂ B(x1, λd(x1, x3))
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joining x1 and x3, and a continuum

F ⊂ Y\B(x1, A/λ), A = min{d(x1, x2), diam(Y )/4},

joining a1 and x2.
Then, by (98) and (99), the continua f (E) and f (F) satisfy the conditions

in (97) with T = 16, so

φ(16) � mod( f (E), f (F); S2) � 2mod(E, F; Y ). (100)

We may assume that

2λd(x1, x3) � A/λ,

since otherwise there is nothing to prove. Then, by (4) and Lemma 15.1,

mod(E, F; Y ) � mod(B(x1, λd(x1, x3)), Y\B(x1, A/λ); B(x1, A/λ)

� 8CU

(
log

A

2λ2d(x1, x3)

)−1
, (101)

where CU is the constant in (4). Combining (100) and (101) gives

d(x1, x2)

d(x1, x3)
� 4A

d(x1, x3)
� 8λ2 exp(16CU /φ(16)).

We conclude that f −1 is QS. ��

17 Concluding remarks

We briefly discuss the absolute continuity properties of QC maps between X
and R

2. It follows from Proposition 8.2, and the fact that planar QC maps
satisfy Condition (N ), that every QC map f : X → R

2 satisfies condition
(N ). One could hope for Condition (N ) to hold also for the inverse. Then
it would follow from Lemma 14.1 that a reciprocal X is always countably
2-rectifiable. However, we show that this is not the case in general.

Proposition 17.1 There exists a reciprocal X ⊂ R
3 that is not countably

2-rectifiable. In fact, X satisfies (4).

Proof We only briefly describe the construction of X and leave the details to
the interested reader. We choose a self-similar Cantor set C ⊂ [0, 1]3 such that

C−1r2 � H2(B(x, r) ∩ C) � Cr2 (102)
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for all x ∈ C and 0 < r < 1, cf. [39, pp. 65–67]. Then, we construct a “tree”
consisting of tubes that follow the construction of the set C. More precisely,
each new step in the construction of C corresponds to a branching of the tree
such that several tubes grow from every already existing tube. We can arrange
the tubes such that the limiting set X includes the whole set C so that X is
not rectifiable, and such that there is no overlapping so X is homeomorphic
to R

2. Also, we can choose the area of each tube to be as small as we wish.
Therefore, combining with (102) we can guarantee that the mass upper bound
(4) holds. Reciprocality then follows from Theorem 1.6. ��

Our discussion is related to the so-called inverse absolute continuity problem
for QS maps: if f : X → R

2 is QS, does f satisfy condition (N )? See
[24,25,31,58]. There are several similar unsolved problems in QC mapping
theory, see [3] for an overview. From Theorem 1.4 and the fact that planar QC
maps preserve sets of measure zero, it follows that the answer is affirmative if
X is reciprocal. This fact can be also proved directly employing condition (1),
as we now demonstrate.

Proposition 17.2 Suppose X satisfies (1), and let f : X → R
2 be QS. If

E ⊂ X, then H2(E) = 0 if and only if | f (E)| = 0.

Proof That | f (E)| = 0 implies H2(E) = 0 is well-known to hold even
without assumption (1) by the works of Gehring, Väisälä and Tyson, see [56].
Suppose H2(E) = 0 and | f (E)| > 0. Since f is QS, by [56] we know that
there exists K � 1 such that

mod(�) � K mod( f −1�)

for every path family � in R
2. Moreover, an examination of the proof given

there shows that in fact

mod(�) � K mod( f −1�), (103)

where mod(�) is defined as mod(�) except for the definition of admissibility;
we say that a Borel function g is admissible for mod(�) if g is admissible for
� and g = 0 almost everywhere on the set f (E).

Fix a density point x0 of f (E) and ε > 0. Then choose a square Q =
Q(x0, r) such that

|Q\ f (E)|
4r2

< ε. (104)

We may assume x0 = 0. Let � = {γt } be the family of horizontal segments
joining the vertical sides of Q, and similarly let � be the family of vertical
segments joining the horizontal sides of Q. Then, if g is admissible formod(�),
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Fubini’s theorem gives

2r �
∫ r

−r

∫
γt

g(s, t) dsdt =
∫

Q
g(x) dx .

Also, since g = 0 almost everywhere in f (E), (104) and Hölder’s inequality
give

∫
Q

g(x) dx � |Q\ f (E)|1/2
( ∫

Q
g(x)2 dx

)1/2
� 2εr

( ∫
Q

g(x)2 dx
)1/2

.

Combining the estimates and minimizing over admissible functions, we con-
clude

mod(�) � ε−2.

The same estimate holds with � replaced by �. Now, by (103),

ε−4 � mod(�) · mod(�) � K 2 mod( f −1�) · mod( f −1�).

But this contradicts (1) when ε > 0 is small enough. The proof is complete. ��
The following related question immediately arises from [24] and [25].

Question 17.3 Suppose f : X → R
2 isQS. Is f QC(in the sense ofDefinition

1.2)?

Notice that a QS f is automatically QC in the sense of the metric definition.
The answer to Question 17.3 is affirmative if in addition X satisfies (4); this
follows from [29] and also from Theorems 1.4 and 1.6.

To finish, we discuss the three conditions in the definition of reciprocality.
Although used only once in the proof of Theorem 1.4, we feel that the most
important of the conditions is (1). For instance, it is the failure of (1) that
prevents the existence of a QC map in Example 2.1.

Question 17.4 Does condition (1), or somemodification of it, imply (2) and/or
(3)?

It is not difficult to give examples of spaces that do not satisfy (3), but we
do not know if such an example satisfying (1) exists. It can be proved that if
X satisfies (1), then mod({x}, E; Q) = 0 for every Q ∈ X , x ∈ Q and every
compact E ⊂ Q\{x}. Concerning condition (2), it seems that this condition
should hold in great generality.

Question 17.5 Does condition (2) hold for all X?
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