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Abstract For an irreducible orientable compact 3-manifold N with empty or
incompressible toral boundary, the full L2–Alexander torsion τ (2)(N , φ)(t)
associated to any real first cohomology class φ of N is represented by a func-
tion of a positive real variable t . The paper shows that τ (2)(N , φ) is continuous,
everywhere positive, and asymptoticallymonomial in both ends.Moreover, the
degree of τ (2)(N , φ) equals the Thurston norm of φ. The result confirms a con-
jecture of J. Dubois, S. Friedl, and W. Lück and addresses a question of W. Li
andW. Zhang. Associated to any admissible homomorphism γ : π1(N ) → G,
the L2–Alexander torsion τ (2)(N , γ, φ) is shown to be continuous and every-
where positive provided thatG is residually finite and (N , γ ) isweakly acyclic.
In this case, a generalized degree can be assigned to τ (2)(N , γ, φ). Moreover,
the generalized degree is bounded by the Thurston norm of φ.

Mathematics Subject Classification Primary 57M27; Secondary 57Q10

1 Introduction

Let N be an irreducible orientable compact 3-manifold with empty or incom-
pressible toral boundary. Given a homomorphism γ : π1(N ) → G to a
countable target group G and a cohomology class φ ∈ H1(N ; R), the triple
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982 Y. Liu

(π1(N ), γ, φ) is said to be admissible if the homomorphism π1(N ) → R

induced by φ factors through γ . Associated to any given admissible triple, the
L2–Alexander torsion has been introduced by Dubois et al. [7]. It is a function

τ (2)(N , γ, φ) : R+ → [0, +∞),

uniquely defined up to multiplication by a function of the form t �→ tr where
r ∈ R. In this paper, we use a dotted equal symbol tomean two functions being
equal to each other up to such a monic power function factor. When γ is taken
to be idπ1(N ) : π1(N ) → π1(N ), the corresponding function is called the full
L2–Alexander torsion with respect to φ, denoted by τ (2)(N , φ)(t). In [7,9],
the following properties about the full L2–Alexander torsion are proved:

1. For all c ∈ R,

τ (2)(N , cφ)(t)
.= τ (2)(N , φ)(tc).

2.

τ (2)(N , −φ)(t)
.= τ (2)(N , φ)(t).

3. For any fibered class φ ∈ H1(N ;Z),

τ (2)(N , φ)(t)
.=
{
1 t ∈ (0, e−h(φ))

t xN (φ) t ∈ (eh(φ), +∞)

where h(φ) denotes the entropy of the monodromy, and xN (φ) denotes the
Thurston norm.

4. Denoting by Vol(N ) the simplicial volume of N ,

τ (2)(N , φ)(1) = e
Vol(N )
6π .

5. If Vol(N ) equals 0,

τ (2)(N , φ)(t)
.=
{
1 t ∈ (0, 1]
t xN (φ) t ∈ [1, +∞)

For knot complements, the full L2–Alexander torsion recovers the
L2–Alexander invariant introduced earlier by Li and Zhang [18,19]. If γ is
virtually abelian, the L2–Alexander torsion is closely related to the twisted
Alexander polynomial through a certain function associated to the Mahler
measure [7]. We refer the reader to the survey [8] for more relations between
the L2–Alexander torsion and other flavors of Alexander-type invariants.
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Degree of L2–Alexander torsion for 3–manifolds 983

It is generally anticipated that the degree of Alexander-type invariants con-
veys topological information about of the cohomology class φ of N . For
example, the degree of twisted Alexander polynomials can be used to detect
the Thurston norm of φ due to Friedl and Vidussi [14]. Various comparison
results are also known, cf. [6,12,15,25,30,31]. For L2–Alexander torsion, a
fundamental problem is to define the degree in the first place. The following
version has been proposed by Dubois et al. [7, Sect. 1.2] (there simply called
the degree):

Definition 1.1 Let f : R+ → [0, +∞) be a function. Suppose that f is
asymptotically monomial in both ends, namely, as t → +∞, the following
asymptotic formula holds for some constants C+∞ ∈ R+ and d+∞ ∈ R:

f ∼ C+∞ · td+∞,

and the same property holds with +∞ replaced by 0+. Here the notation
f ∼ g means that the ratio between the functions on both sides tends to 1. For
such f , the asymptote degree of f is defined to be the value:

dega( f ) = d+∞ − d0+ ∈ R.

The main goal of this paper is to establish the existence of the asymptote
degree for the full L2–Alexander torsion of 3-manifolds, and confirm in this
case that the degree equals the Thurston norm:

Theorem 1.2 Let N be an irreducible orientable compact 3-manifold with
empty or incompressible toral boundary. Given any cohomology class φ ∈
H1(N ; R), the following properties hold true for any representative of the full
L2–Alexander torsion τ (2)(N , φ).

1. The function τ (2)(N , φ)(t) is continuous and everywhere positive, defined
for all t ∈ R+. In fact, the function τ (2)(N , φ)(t) · max{1, t}m is multi-
plicatively convex for any sufficiently large positive constant m, where the
bound depends on N and φ.

2. As the parameter t tends to +∞,

τ (2)(N , φ)(t) ∼ C(N , φ) · td+∞

for some constant d+∞ ∈ R and some constant

C(N , φ) ∈
[
1, eVol(N )/6π

]
.

The same asymptotic formula holds true for with +∞ replaced by 0+.
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3. Hence the asymptote degree of τ (2)(N , φ) is valid. Furthermore,

dega
(
τ (2)(N , φ)

)
= xN (φ).

4. The leading coefficient function

H1(N ;R) →
[
1, eVol(N )/6π

]
φ �→ C(N , φ)

is upper semicontinuous.

In particular, Theorem 1.2 confirms Conjecture 1.1(1) of Dubois–Friedl–
Lück [8]. In fact, many aspects of Theorem 1.2 have also been conjectured,
at least for knot complements, cf. [8, Sect. 5.8]. In particular, the first part of
Theorem 1.2 addresses the question (Q2) of Li–Zhang [19].

The full L2–Alexander torsion apparently loses information about the
fiberedness of cohomology classes in general. In fact,wehave alreadyobserved
that the full L2–Alexander torsion of graph manifolds is completely deter-
mined by the Thurston norm, [7, Theorem 1.2], [17]. However, we exhibit an
example at the end of this paper to indicate that nontrivial leading coefficients
could occur (Sect. 9). The example might suggest that the leading coefficient
C(N , φ) retains some information about the cohomology class φ which is vol-
ume (of the 3-dimensional hyperbolic type) in nature. For a primitive classes
φ ∈ H1(N ;Z), we hence wonder if C(N , φ) measures certain volume of the
guts if one decomposes N along amaximal collection of mutually non-parallel
Thurston-norm-realizing subsurfaces dual to φ.

It is possible to prove an analogous comparison theorem for more general
L2–Alexander torsions. To this end, we introduce another degree under less
strict requirements.

Definition 1.3 Let f : R+ → [0, +∞) be a function. Suppose that the fol-
lowing supremum and infimum exist in R:

degb+∞( f ) = inf

{
D+∞ ∈ R : lim

t→+∞ f (t) · t−D+∞ = 0

}
,

and

degb0+( f ) = sup

{
D0+ ∈ R : lim

t→0+ f (t) · t−D0+ = 0

}
.

For such f , the growth bound degree of f is defined to be the value:

degb( f ) = degb+∞ − degb0+ ∈ R.
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By saying that a pair (N , γ ) is weakly acyclic, we mean that there are no
non-vanishing L2–Betti numbers for the covering space of N that corresponds
to Ker(γ ), regarded as an Im(γ )–space, cf. [23, Sect. 6.5].

Theorem 1.4 Let N be an irreducible orientable compact 3-manifold with
empty or incompressible toral boundary, and γ : π1(N ) → G be a homomor-
phism. Suppose that G is finitely generated and residually finite, and (N , γ ) is
weakly acyclic. Then the following properties hold true for any representative
of the L2–Alexander torsion τ (2)(N , γ, φ) of any admissible triple (N , γ, φ)

over R.

1. The function τ (2)(N , γ, φ)(t) is continuous and everywhere positive,
defined for all t ∈ R+. In fact, the function τ (2)(N , γ, φ)(t) ·max{1, t}m is
multiplicatively convex for any sufficiently large positive constant m, where
the bound depends on (N , γ, φ).

2. The growth bound degree of τ (2)(N , γ, φ) is valid. Furthermore,

degb
(
τ (2)(N , γ, φ)

)
≤ xN (φ).

3. The degree function

H1(G;R) → R

ξ �→ degb
(
τ (2)(N , γ, φ + γ ∗ξ)

)
is Lipschitz continuous.

In a weaker form, Theorem 1.4 generalizes the virtually abelian case which
has been done in [7]. For example, if N is a compact orientable surface bundle
over the circle and γ is a homomorphism of π1(N ) onto a residually finite
group G such that γ ∗ : H1(G;R) → H1(N ;R) is onto, then the assumptions
of Theorem 1.4 are satisfied.

Remark 1.5 Completely independently from work of this paper, Friedl and
Lück have also proved the equality between the (growth bound) degree of
the full L2-Alexander torsion and the Thurston norm [13]. In fact, their work
implies Theorem 1.4 (2) as well. Moreover, their work relies on a systematic
study of twisting L2-invariants by Lück [24]. We point out that both [13,24]
keep track of the Euler structures more closely than this paper does, which
should be important for potential applications. For example, with a fixed Euler
structure, the L2–Alexander torsion becomes a genuine function in the pair
(φ, t), so it would make sense to study its continuity and other properties.

In the rest of the introduction, we discuss some ingredients involved in
the proof of Theorem 1.2. Theorem 1.4 can be proved along the way. After
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choosing some CW complex structure of N convenient for calculation as used
in [7], we may manipulate τ(N , φ)(t) into an alternating product, where the
factors are regular Fuglede–Kadison determinants of the L2–Alexander twist
of square matrices over Zπ1(N ). Except the one coming from the boundary
homomorphism between dimension 2 and dimension 1, the factors are all
very simple and well understood. Therefore, the proof of Theorem 1.2 can
be reduced to the study of the regular Fuglede–Kadison determinant for an
L2–Alexander twist of a single matrix A. Associated to the admissible triple
(π1(N ), idπ1(N ), φ), the factor corresponding to A is a non-negative function
defined for t ∈ R+ of the form

V (t) = detrN (G)

(
κ(φ, idπ1(N ), t)(A)

)
,

where A is a square matrix over Zπ1(N ) (cf. Sect. 2 for the notations).
The first ingredient is to show that V (t) is amultiplicatively convex function

with bounded exponent. See Sect. 4 for the terminology. In fact, we show in
Theorem 5.1 that the asserted property holds true for general admissible triples
(π, γ, φ) over R and square matrices A over Cπ , as long as the target group
G of γ is residually finite. The exponent bound can be easily perceived, and
can be easily proved once the multiplicative convexity is available. When G
is finitely generated and virtually abelian, the multiplicative convexity can
be verified by computation using Mahler measure of multivariable Laurent
polynomials. Therefore, to approach the residually finite case, it is natural to
consider a cofinal tower of virtually abelian quotients G, denoted as

G → · · · → �n → · · · → �2 → �1,

which gives rise to a sequence of L2–Alexander twist homomorphisms
κ(γn, φ, t), where γn : π → �n is the induced homomorphism. For any given
t ∈ R+, the spectra of the matrices An(t) = κ(γn, φ, t)(A) could become
increasingly dense near 0, as n tends to ∞, so it should not be expected in
general that the sequence of functions detrN (�n)(An(t)) converged pointwise
to VG(t) = detrN (G)(A(t)). By introducing a positive ε-pertubation of the
positive operator An(t)∗ An(t), namely,

Hn,ε(t) = An(t)
∗ An(t) + ε · 1,

the issue of small spectrum values can be bypassed. However, one has to be
careful because of the fact that the L2–Alexander twist does not commute
with the operation of taking self-adjoint. For example, Hn,ε(t) is in general
not a family of L2–Alexander twisted operators, so the regular determinant of
Hn,ε(t) does not need to be multiplicatively convex in the parameter t ∈ R+.
Instead of arguing that way, for any fixed T ∈ R+, we look at the functions
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Wn,ε(s, T ) = detrN (�n)

(
κ(γn∗φ, id�n , s)(Hn,ε(T ))

)
in a new parameter s ∈ R+. As n → ∞ and then ε → 0+, we show that
Wn,ε(1, T ) converges to W∞,0(1, T ), while the limit superior of Wn,ε(s, T )

does not exceedW∞,0(s, T ). Using the fact thatWn,ε(s, T ) aremultiplicatively
convex in s ∈ R+, it can be implied that VG(t) is multiplicatively convex as
well.

The growth bound degree is applicable to any (nowhere zero) multi-
plicatively convex function with bounded exponent. It can be equivalently
characterized as the width of the range of all possible exponents (or ‘multi-
plicative slopes’) between pairs of points. As a consequence of Theorem 5.1,
we are able to show that the growth bound degree degb(V ) depends Lipschitz-
continuously on the cohomology class φ ∈ H1(N ;R) (Theorem 6.1).

The second ingredient is a criterion to confirm that V (t) is asymptotically
monomial as t tends to +∞ or 0+, or in other words, that dega(V ) equals
degb(V ). To motivate the conditions, consider the sequence of determinant
functions

Vn(t) = detrN (�n)(κ(γn, φ, t)(A))

associated to the cofinal tower of virtually abelian quotients �n above. Using
techniques of [22], what one can show is that for every t ∈ R+, as n → ∞,
the supremum limit of Vn(t) does not exceed V (t). On the other hand, the
functions Vn(t) are all multiplicatively convex and asymptotically monomial
in both ends. As t → +∞, suppose

Vn(t) ∼ C+∞,n · td+∞,n ,

and similarly we introduce the notations C0+,n and d0+,n for t → 0+. As
n → ∞, if the degrees degb(Vn) = dega(Vn) = d+∞,n − d0+,n converge to
the growth bound degree degb(V ), and if the coefficientsC+∞,n andC0+,n are
uniformly bounded below by some constant L ∈ R+, then it can be implied
by the geometry of the log–log plots of the functions that V (t)must be asymp-
totically monomial in both ends as well (Lemma 7.3).

For our proof of Theorem 1.2, the convergence of growth bound degrees
can be guaranteed by the virtual RFRS property of 3-manifold groups, at least
after excluding the case of graph manifolds, which has been treated by [7,
Theorem 1.2], [17]. In fact, combined with the continuity of degree that we
have already mentioned, the method of [7, Theorem 9.1] can be applied to
produce a cofinal tower of virtually abelian quotients such that the growth
bound degree of each Vn(t) and V (t) is equal to the Thurston norm of φ.
On the other hand, based on the fact that A is a square matrix over Zπ1(N ),
computation shows that the coefficients C+∞,n and C0+,n are all radicals of
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the Mahler measure of certain multivariable Laurent polynomial over Z. This
yields a uniform lower bound 1 for all the coefficients. Therefore, the criterion
is applicable to our situation, and we can complete the proof of Theorem 1.2.

The reader may find a compact package of key technical results, includ-
ing Theorems 5.1, 6.1, and Lemma 7.4, which are specific about the regular
Fuglede–Kadison determinant function for L2–Alexander twists of square
matrices over group rings. We have endeavored to formulate those results
in an encapsulated, adaptable fashion, in order to facilitate further study of
L2–Alexander invariants in various other situations.
The organization of this paper is as follows. In Sect. 2, we recall some

terminology that is used in this paper. In Sect. 3, we introduce regular Fuglede–
Kadison determinants and discuss its limiting behavior. In Sect. 4,we introduce
multiplicatively convex functions and mention some basic properties. After
these preparing sections, we study the regular Fuglede–Kadison determinants
of matrices under L2–Alexander twists in Sects. 5, 6, and 7: The multiplicative
convexity and the existence of the growth bound degree is shown in Sect. 5.
The continuity of degree is derived in Sect. 6. The criterion for monomial
asymptotics is introduced in Sect. 7. In Sect. 8, we apply the ingredients to
L2–Alexander torsions of 3-manifolds, and prove Theorems 1.2 and 1.4. In
Sect. 9, we give an example regarding nontrivial leading coefficients.

2 Preliminaries

In this section, we recall some terminology of Dubois et al. [7]. We also briefly
recall some fundamental facts in 3-manifold topology. For background in
L2-invariants, including group von Neumann algebras and Fuglede–Kadison
determinants, we refer the reader to the book of Lück [23].

2.1 Admissible triples

Admissibility conditions have been introduced by S. Harvey for study of
higher-order Alexander polynomials [16, Definition 1.4]. In this paper, we
adopt the following notations, according to [7].

Definition 2.1 Let L ⊂ R be any additive group of real numbers, for example,
Z,Q, orR. Given a countable groupπ , and a homomorphism φ ∈ Hom(π, L),
and a homomorphism γ : π → G to any countable group G, we say that
(π, φ, γ ) forms an admissible triple over L if φ factors through γ . That is, for
some homomorphism G → L , the following diagram commutes:
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π
γ ��

φ ���
��

��
��

� G

��
L

Given any positive real parameter t ∈ R+, there is a homomorphism of
rings:

κ(φ, γ, t) : Zπ −→ RG

defined uniquely by

κ(φ, γ, t)(g) = tφ(g)γ (g)

for all g ∈ π via linear extension over Z. Then for any positive integer p,
κ(φ, γ, t) naturally extends to be a homomorphism of algebras:

κ(φ, γ, t) : Mat p×p(Cπ) → Mat p×p(CG)

by applying κ(φ, γ, t) to entries accordingly.
Note that κ(φ, γ, t) is not a homomorphism of ∗-algebras in general. In

fact,

κ(φ, γ, t)(A)∗ = κ(φ, γ, t−1)(A∗).

Recall that for any square matrix A = (ai j )p×p over CG, as an operator of

2(G)⊕p, the adjoint operator can be given by A∗ = (a∗

j i )p×p, where the

involution of an element a = ∑
k ak gk ∈ CG is given by a∗ = ∑

k āk g−1
k ∈

CG.
Every admissible triple (π, φ, γ ) over L sits naturally in an affine family

of admissible triples parametrized by Hom(G, L). Specifically, for any homo-
morphism

ξ ∈ Hom(G, L),

we have a new admissible triple (π, φ + γ ∗ξ, γ ), where φ + γ ∗ξ : π → L is
the homomorphism defined by

(φ + γ ∗ξ)(g) = φ(g) + ξ(γ (g))

for all g ∈ π . To speak of continuity, we consider the space Hom(G, L) to be
equipped with the compact-open topology, regarding G to be a discrete group
and L have the subspace topology of R.
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990 Y. Liu

Lemma 2.2 If γ : π → G induces an isomorphism γ∗ : H1(π; R) →
H1(G; R), then (π, γ, φ) is admissible for every homomorphism φ : π → R.

Proof In this case, the composition

π
γ−→ G −→ H1(G; R)

γ −1∗−→ H1(π; R)
φ∗−→ R

recovers the homomorphism φ. ��

2.2 L2–Alexander torsion

Let X be a connected finite CW complex. The universal cover X̂ of X is a
CW complex equipped with a free action of the deck transformation group
π1(X). We equip the chain complex C∗(X̂) with a left Zπ1(X) action induced
by the deck transformation. On the other hand, given any admissible triple
(π1(X), γ, φ) over R, and given a parameter value t ∈ R+, we may equip the
Hilbert space 
2(G) with a right Zπ1(X)–module structure via the represen-
tation:

κ(φ, γ, t) : Zπ1(X) −→ RG.

In this paper, we treat 
2(G) as a right RG–module and a left HilbertN (G)–
module. Here we denote by

N (G) = B (
2(G)
)G

the group von Neumann algebra of G which consists of all the bounded oper-
ators that commutes with the right multiplication by elements of G. Twisting
the chain complex of X̂ by the module 
2(G) via the representation κ(φ, γ, t)
gives rise to a (left) Hilbert N (G)–chain complex:


2(G) ⊗Zπ1(X) C∗(X̂)

and the twisted boundary homomorphism is defined by 1 ⊗ ∂∗. In fact, the
twisted complex is finitely generated and free over N (G). In other words, by
choosing a lift of each cell of X in X̂ , each chain module of the complex can
be identified with a direct sum of the regular Hilbert N (G)-modules:


2(G) ⊗Zπ1(X) Ck(X̂) ∼= 
2(G)⊕pk .

In this paper, we restrict ourselves to finitely generated, free Hilbert N (G)–
chain complexes which are weakly acyclic and of determinant class. This
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means that the 
2-Betti numbers are all trivial and all the Fuglede–Kadison
determinants of the boundary homomorphisms take values in (0, +∞). In such
case, the L2–Alexander torsion of X at t with respect to γ andφ is defined to be
the multiplicatively alternating product of the Fuglede–Kadison determinants
of the boundary homomorphisms:

τ (2)(X, γ, φ)(t)
.=
∏
k∈Z

detN (G) (1 ⊗ ∂k)
(−1)k

.

Here the dotted equal means that we treat the L2–Alexander torsion as a func-
tion in the parameter t ∈ R+. In fact, choosing another collection of lifts may
result in a change of the value of the right-hand side by a multiplicative factor
tr , for some exponent r ∈ R independent of t , so the function τ (2)(X, γ, φ) is
well defined only up to amonic power function factor.We remark that our nota-
tional convention follows [7], and the exponential of the L2-torsion according
to [23, Definition 3.29] is the multiplicative inverse of the τ (2) above. To be
convenient, a value 0 is artificially assigned to τ (2)(X, γ, φ)(t) if the twisted
complex fails to be weakly acyclic or of determinant class. With this conven-
tion, the L2–Alexander torsion associated to (X, γ, φ) is a function determined
up to a monic power function factor:

τ (2)(X, γ, φ) : R+ → [0, +∞).

Let N be a compact smooth manifold, possibly with boundary, and
γ : π1(N ) → G be a homomorphism. The L2–Alexander torsion of N with
respect to any admissible triple (π1(N ), γ, φ), denoted as τ (2)(N , γ, φ), is
understood to be the L2–Alexander torsion of any finite CW complex struc-
ture of N . This notion does not depend on the choice of the CW structure
[7, Sect. 4.2]. When γ is taken to be idπ1(N ) : π1(N ) → π1(N ), the triple
(π1(N ), γ, φ) is admissible for every class φ ∈ H1(N ;R). The correspond-
ing L2–Alexander torsion is called the full L2–Alexander torsion with respect
to φ, denoted as τ (2)(N , φ).

2.3 Thurston norm and virtual fibering

Let N be an irreducible compact orientable 3-manifold with empty or incom-
pressible toral boundary. The Thurston norm, named after Thurston who
discovered it in [29], is a seminorm of the vector space:

xN : H2(N , ∂ N ; R) → [0, +∞),

which takes Z values on the integral lattice H2(N , ∂ N ; Z). It measures cer-
tain complexity of second relative homology classes. The precise definition
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of xN is not needed for the discussion of this paper, but we briefly recall it
here for the reader’s reference. For a possibly disconnected, compact, oriented
surface �, the complexity χ−(�) is defined to be the sum of the quantities
χ−(�i ) = max{−χ(�), 0} over all the components �i of �. For an inte-
gral class φ ∈ H2(N , ∂ N ; Z), the Thurston norm xN (φ) is defined to be
the minimum of the complexities χ−(�) for � running over all the properly
embedded compact oriented subsurfaces of N whose fundamental cycles rep-
resent φ. In this case, it is known that the properties xN (kφ) = |k| xN (φ) and
xN (φ) + xN (ψ) ≤ xN (φ + ψ) hold for all k ∈ Z and φ, ψ ∈ H2(N , ∂ N ; Z).
Therefore, xN extends linearly over H2(N , ∂ N ; Q) and then continuously
over H2(N , ∂ N ; R) to become a seminorm. In general, the definition works
for any orientable compact 3-manifold with possibly empty boundary, and the
Thurston norm xN may vanish on a subspace of H2(N , ∂ N ; R). However,
it is known to be non-degenerate if the 3-manifold N supports a complete
hyperbolic structure of finite volume in its interior.

The unit ball Bx (N ) of xN in H2(N , ∂ N ; R) is a (possibly noncompact)
convex polyhedron, symmetric about the origin, and supported by finitely
many linear faces carried by rational affine hyperplanes. If N fibers over the
circle via a map N → S1, any fiber of the fibration represents a homology
class [�] ∈ H2(N , ∂ N ;Z), which depends only on the fibration. We can
canonically identify [�] with a cohomology class φ ∈ H1(N ;Z) ∼= [N , S1],
by Poincaré Duality (after fixing an orientation of N ). As we have assumed N
to be irreducible with incompressible boundary, xN (φ) equals −χ(�). Any
such φ is called a fibered class. Thurston has shown that every fibered class is
contained in the open cone over a top-dimensional face of ∂ Bx (N ), and every
integral class of that cone is a fibered class. Such open cones are hence called
the fibered cones of xN .

In general, N may possess no fibered cones at all. However, given any
class φ ∈ H1(N ;R), we can usually pass to a finite cover p : Ñ → N , so that
p∗φ ∈ H1(Ñ ;R) is quasi-fibered, namely, p∗φ lies on the (point-set theoretic)
boundary of a fibered cone possessed by Ñ . To be precise, the virtual quasi-
fibering property holds true for every class φ ∈ H1(N ;R) if π1(N ) is virtually
residually finite rationally solvable (or RFRS), due to a theorem of Ian Agol
[1]. Based on the confirmations of theVirtual HakenConjecture and theVirtual
Fibering Conjecture due to the works of Ian Agol [2], Daniel Wise [32], and
many other authors, it has been known thatπ1(N ) is virtually RFRS if and only
if N supports a complete Riemannian metric of nonpositive curvature in its
interior [20,26,27]. For example, if the simplicial volume Vol(N ) is positive,
or in other words, if N contains at least one hyperbolic piece in its geometric
decomposition, then the virtual quasi-fibering property is possessed by N . We
refer the reader to the survey [3] for more background about virtual properties
of 3-manifolds.
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3 Regular Fuglede–Kadison determinant

Let G be a countable discrete group. For any p × p matrix A overN (G), the
regular Fuglede–Kadison determinant of A is defined to be

detrN (G)(A) =
{
detN (G)(A) if A is full rank of determinant class

0 otherwise

This gives rise to a function:

detrN (G) : Mat p×p(N (G)) → [0, +∞).

Regular Fuglede–Kadison determinants have been used in [7]. In the rest
of the section we study the semicontinuity of this quantity under two kinds of
limiting processes.

Lemma 3.1 If a sequence of p × p matrices {An}n∈N over N (G) converges
to A ∈ Mat p×p(N (G)) with respect to the norm topology, then

lim sup
n→∞

detrN (G)(An) ≤ detrN (G)(A).

Moreover, if A is a positive operator, then

lim
ε→0+ detrN (G)(A + ε · 1) = detrN (G)(A).

Proof Since detrN (G)(A∗ A) equals detrN (G)(A)2, it suffices to show the
inequality for positive operators {An}n∈N and A. For any arbitrary constant
ε > 0, the positive operators (An + ε · 1) and (A + ε · 1) are invertible, so
the regular Fuglede–Kadison determinant agrees with the Fuglede–Kadison
determinant. Since the Fuglede–Kadison determinant is continuous on the sub-
group of invertible matrices GL(p,N (G)) with respect to the norm topology
[5, Theorem 1.10(d)],

lim
n→∞ detrN (G)(An + ε · 1) = detrN (G)(A + ε · 1).

On the other hand, by [23, Lemma 3.15(6)], or as a trivial fact if An fails to be
injective,

detrN (G)(An) ≤ detrN (G)(An + ε · 1).

Therefore,

lim sup
n→∞

detrN (G)(An) ≤ lim sup
n→∞

detrN (G)(An + ε · 1) = detrN (G)(A + ε · 1).
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As ε > 0 is arbitrary, it suffices to prove

lim
ε→0+ detrN (G)(A + ε · 1) = detrN (G)(A).

In fact, if A is injective, the last limit follows from [23, Lemma 3.15(5)].
Otherwise, detrN (G)(A) equals 0. Denoting by b ∈ (0, p] the von Neumann
dimension dimN (G) Ker(A), it is easy to estimate

0 ≤ detrN (G)(A + ε · 1) ≤ εb(‖A‖ + ε)p−b.

We again have:

lim
ε→0+ detrN (G)(A + ε · 1) = 0 = detrN (G)(A).

This completes the proof. ��
Lemma 3.2 Let

G → · · · → �n → · · · → �2 → �1,

be a cofinal tower of quotients of G, and denote by ψn : G → �n the quotient
homomorphisms. Suppose that all the target groups �n are finitely generated
and residually finite. Let AG be a square matrix over CG. Then

lim sup
n→∞

detrN (�n)(ψn∗ AG) ≤ detrN (G)(AG).

Moreover, for any constant ε > 0,

lim
n→∞ detrN (�n)

(
ψn∗

(
A∗

G AG + ε · 1
)) = detrN (G)

(
A∗

G AG + ε · 1
)
.

Here the tower being cofinal means that

⋂
n∈N

Kerψn = { idG }.

Proof Assuming that the ‘moreover’ part has been proved, we can derive the
first inequality as follows. For any constant ε > 0,

detrN (�n)(ψn∗ AG) = detrN (�n)

(
ψn∗

(
A∗

G AG
))1/2

≤ detrN (�n)

(
ψn∗

(
A∗

G AG + ε · 1
))1/2

.
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The last expression tends to the regular Fuglede–Kadison determinant of AG
as ε tends to 0+, by Lemma 3.1. This implies the asserted inequality

lim sup
n→∞

detrN (�n) (ψn∗ AG) ≤ detrN (G)(AG).

It remains to prove the asserted limit in the ‘moreover’ part. For simplicity,
given any constant ε > 0, we rewrite the matrices as

H∞ = A∗
G AG + ε · 1 ∈ Mat p×p(CG)

and

Hn = ψn∗H∞ ∈ Mat p×p(C�n).

Note that the self-adjoint operators Hn acting on 
2(�n)
⊕p are positive with

spectra bounded uniformly ε from 0 and the same holds for H∞. In this case,
approximation of determinants should follow from well known techniques. In
the rest of the proof, we derive the approximation

lim
n→∞ detrN (�n)(Hn) = detrN (G)(H∞).

from a theorem of W. Lück [22, Theorem 3.4(3)], which is originally done for
cofinal towers of finite quotients.

It is convenient to argue by contradiction, assuming that the limit of the
left-hand side did not exist or did not equal to the right-hand side. In either
case, possibly after passing to a subsequence, we assume that there exists a
constant δ > 0 such that the following gap estimate holds for all n ∈ N:∣∣∣detrN (�n)(Hn) − detrN (G)(H∞)

∣∣∣ ≥ 2δ.

By induction, we show that there exists a cofinal tower of finite quotients
of G

G → · · · → �′
n → · · · → �′

2 → �′
1,

with the following properties: For all n ∈ N, we have that �′
n is a further

quotient of �n , and moreover,∣∣∣detrN (�′
n)

(
H ′

n

)− detrN (�n) (Hn)

∣∣∣ < δ,

where H ′
n is the inducedmatrix of Hn overC�′

n . For n equal to 1, take a cofinal
tower of finite quotients of �1:
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�1 → · · · → �1, j → · · · → �1,2 → �1,1.

Denote the induced matrix of Hn over C�1, j by H1, j . Since H1, j is positive
with spectrum bounded at least ε from 0, Lück’s theorem implies

lim
j→∞ detrN (�1, j )

(
H1, j

) = detrN (�1)
(H1) ,

so we choose �′
1 to be the quotient �1, j for a sufficiently large j . Suppose by

induction that �′
n has been constructed for some n ∈ N. To construct �′

n+1,
we take a tower of finite quotients

�n+1 → · · · → �n+1, j → · · · → �n+1,2 → �n+1,1.

in the same fashion as above, but also require the first term �n+1,1 to be �′
n .

The same construction thus yields some sufficiently large j such that �n+1, j
can be chosen as �′

n+1. This completes the induction.
Provided with the new tower, Lück’s theorem again implies

lim
n→∞ detrN (�′

n)

(
H ′

n

) = detrN (�∞) (H∞) .

Therefore, for sufficiently large n,∣∣∣detrN (�n) (Hn) − detrN (�∞) (H∞)

∣∣∣ < 2δ.

This contradicts the assumed gap estimation, and hence completes the proof.
��

4 Multiplicatively convex function

In this section, we give an introduction to multiplicatively convex functions.
In subsequent sections, such functions arise naturally as we take the regular
Fuglede–Kadison determinants of matrices under L2–Alexander twists.

Definition 4.1 Let (a, b) ⊂ R+ be an interval of positive real numbers. A
function f : (a, b) → [0, +∞) is said to be multiplicatively convex if for all
points t0, t1 ∈ (a, b) and every constant λ ∈ (0, 1),

f
(

tλ0 · t1−λ
1

)
≤ f (t0)

λ · f (t1)
1−λ.

The product of two multiplicatively convex functions is again multiplica-
tively convex. Furthermore, if f (t) is multiplicatively convex, then for any
constant r ∈ R+, both f (t±r ) and f (t)r are multiplicatively convex as well.
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Lemma 4.2 If a function f : R+ → [0, +∞) is multiplicatively convex, then
f is continuous. Moreover, f is either the constant function 0 or nowhere zero.

Proof If f equals zero at some point c, it is clear from the definition that f
has to be the constant function 0. When f is nowhere zero, then log ◦ f ◦ exp
is a convex function on R. In either case, f is continuous. ��
Lemma 4.3 If f : R+ → [0, +∞) is multiplicatively mid-point convex and
upper semi-continuous, namely,

• For every pair of points t0, t1 ∈ R+, f (
√

t0t1 ) ≤ √
f (t0) · f (t1), and

• For every point t0 ∈ R+, lim supt→t0 f (t) ≤ f (t0),

then f is multiplicatively convex.

Proof Given any t0 ∈ R+, let {tn ∈ R+}n∈N be a sequence of points such that
tn converges to t0 and f (tn) converges to lim inf t→t0 f (t). We have

f (t0)
2 ≤ lim sup

n→∞
f (tn) f

(
t20/tn

) ≤ lim inf
t→t0

f (t) · lim sup
t→t0

f (t) ≤ f (t0)
2.

Then lim inf t→t0 f (t) = lim supt→t0 f (t) = f (t0). It follows that f is contin-
uous. It is clear that f is everywhere positive unless f is constantly zero.When
f is everywhere positive, we may take F = log ◦ f ◦ exp which is mid-point
convex and continuous, so it is well known that F is convex, or equivalently,
that f is multiplicatively convex. ��
Definition 4.4 Let (a, b) ⊂ R+ be an interval of positive real numbers. A
nowhere zero multiplicatively convex function f : (a, b) → (0, +∞) is said
to have bounded exponent if there exists some positive constant R such that
for all pairs of distinct points t0, t1 ∈ (a, b),

∣∣∣∣ log f (t1) − log f (t0)

log t1 − log t0

∣∣∣∣ ≤ R.

For multiplicatively convex functions, the growth bound degree (Defini-
tion 1.3) can be characterized by the limit exponents:

Lemma 4.5 Suppose that f : R+ → [0, +∞) is a nowhere zero multiplica-
tively convex function. Then the growth bound degree degb( f ) ∈ R exists if
and only if f has bounded exponent. Moreover, in this case, the following
equalities hold true:

degb+∞( f ) = lim
t0,t1→+∞

log f (t0) − log f (t1)

log t0 − log t1
,
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and

degb0+( f ) = lim
t0,t1→0+

log f (t0) − log f (t1)

log t0 − log t1
.

Proof We show that the equalities hold if degb ∈ R+ exists. If there exists
D+∞ ∈ R such that limt→+∞ f (t) · t−D+∞ = 0, then log f (t) is less than
or equal to D+∞ log t for all sufficiently large t ∈ R+. For all t0, t1 ∈ R+, by
the multiplicative convexity of f ,

log f (t0) − log f (t1)

log t0 − log t1
≤ lim sup

t→+∞
log f (t) − log f (t1)

log t − log t1

≤ lim sup
t→+∞

D+∞ log t − log f (t1)

log t − log t1
= D+∞.

Denote by

d+∞ = lim
t0,t1→+∞

log f (t0) − log f (t1)

log t0 − log t1
∈ R.

It is easy to see that for any constant δ > 0,

lim
t→+∞ f (t) · t−(d+∞+δ) = 0.

Consequently,

degb+∞( f ) = d+∞.

The equality for 0+ can be proved in a similar way. We have shown the
‘only-if’ direction. The existence of exponent bound leads to the existence of
d+∞ and d0+ in R, so

d0+ − 1 < degb0+( f ) ≤ degb+∞( f ) < d+∞ + 1.

This shows the ‘if’ direction. ��
Example 4.6

1. A monomial function on an interval (a, b) is a function of the form
f (t) = Ctr for some constants C ∈ R+ and r ∈ R. Such a function
is multiplicatively linear in the sense that for all points t0, t1 ∈ (a, b) and
for every constant λ ∈ (0, 1),

f
(

t1−λ
0 · tλ1

)
= f (t0)

1−λ · f (t1)
λ.
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2. A piecewise monomial function on an interval (a, b) is a continuous func-
tion f : (a, b) → (0, +∞) such that for finitely many points a = c0 <

c1 < · · · < cn−1 < cn = b, the function is a monomial Ci tri on the subin-
terval (ci−1, ci ) where i runs over 1, . . . , n. Such a continuous function is
multiplicatively convex if and only if r1 ≤ r2 ≤ · · · ≤ rn .

3. Given any Laurent polynomial

p(z) = D · zn ·
l∏

i=1

(z − bi ) ∈ C[z, z−1],

with a leading coefficient D ∈ C
× and nontrivial zeros bi ∈ C

×, the
function

M(p(z); t) = |D| · tn ·
l∏

i=1

max(t, |bi |),

of the variable t ∈ R+, is piecewisemonomial andmultiplicatively convex.

5 Multiplicative convexity and exponent bound

In this section, we show that residually finite L2–Alexander twists result in
multiplicatively convex determinant functions with bounded exponents.

Theorem 5.1 Given any admissible triple (π, φ, γ ) over R and any square
matrix A over Cπ , denote by V : R+ → [0, +∞) the regular Fuglede–
Kadison determinant function

V (t) = detrN (G) (κ(φ, γ, t)(A)) ,

where G is the target group of γ and κ(φ, γ, t) is the induced change of
coefficients.

Suppose that G is finitely generated and residually finite. Then V (t) is either
constantly zero or multiplicatively convex with exponent bounded. Moreover,
there exists a constant R(A, φ) ∈ [0, +∞) depending only on A and φ so
that

degb(V ) ≤ R(A, φ).

The rest of this section is devoted to the proof of Theorem 5.1.
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5.1 The degree bound

For any p × p matrix A over Cπ , we can decompose A as a unique sum:

A =
∑
g∈π

g · Ag

where Ag are p × p matrices over C and only finitely many Ag are nonzero.
Given any homomorphism φ ∈ Hom(π,R), we define

R(A, φ) = p ·
(
max
Ag �=0

φ(g) − min
Ag �=0

φ(g)

)
.

The quantity R(A, φ) behaves well under operations of the matrix and the
cohomology class. In fact, we observe the following elementary properties.
The proof is straightforward so we omit it in this paper.

Lemma 5.2 1. For all A ∈ Mat p×p(C) ⊂ Mat p×p(Cπ), R(A, φ) = 0.
2. For all A, B ∈ Mat p×p(Cπ),

R(AB, φ) ≤ R(A, φ) + R(B, φ)

and

R(A + B, φ) ≤ max(R(A, φ), R(B, φ))

3. For all A ∈ Mat p×p(Cπ), and c ∈ R, and φ, ψ ∈ Hom(π,R),

R(A, cφ) = |c| · R(A, φ)

and

R(A, φ + ψ) ≤ R(A, φ) + R(A, ψ).

4. Let γ : π → G be a group homomorphism. For all A ∈ Mat p×p(Cπ) and
ξ ∈ H1(G;R),

R
(

A, γ ∗ξ
) ≥ R (γ∗ A, ξ)

The following lemma can be combined with Lemma 4.5 to yield the degree
bound, once we have shown that V (t) is multiplicatively convex.

Lemma 5.3 Given any admissible triple (π, φ, γ ) over R and any square
matrix A over Cπ , write
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V (t) = detrN (G) (κ(φ, γ, t)(A))

where G is the target group of γ . Then the following statement holds true.
For every constant R′ > R(A, φ), there exist constants D+∞, D0+ ∈ R

such that D+∞ − D0+ < R′. Moreover,

lim
t→+∞ V (t) · t−D+∞ = 0,

and

lim
t→0+ V (t) · t−D0+ = 0.

Proof We adopt the notations at the beginning of this subsection. Given R′ >

R(A, φ), we denote by 5δ the difference R′ − R(A, φ). Take

D+∞ = 2δ + p · max
Ag �=0

φ(g),

and

D0+ = −2δ + p · min
Ag �=0

φ(g).

For sufficiently large t ∈ R+, the operator norm of t−D+∞+δ · κ(φ, γ, t)(A)

is bounded by 1. Therefore,

0 ≤ lim sup
t→+∞

V (t) · t−D+∞ ≤ 1p · lim
t→+∞ detrN (G)

(
t−δ · 1

)
= lim

t→+∞ t−pδ = 0.

This yields the asserted limit for t → +∞. The limit for t → 0+ can be
proved in a similar way. ��

5.2 Multiplicative convexity for virtually abelian twists

In this section, we prove Theorem 5.1 under the assumption that G is finitely
generated and virtually abelian.

Given an admissible triple (π, φ, γ ) over R and a parameter value t ∈ R+,
for any p × p matrix A of Cπ , we define

AG(t) = κ(φ, γ, t)(A) ∈ Mat p×p(CG)
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and write

V (t) = detrN (G)(AG(t)).

Proposition 5.4 Let (π, φ, γ ) is an admissible triple over R. Suppose that
G is finitely generated and virtually abelian. Then for every matrix A ∈
Mat p×p(Cπ), the function V (t) is multiplicatively convex.

The following lemma treats the essential case where G is finitely generated
and free abelian.

Lemma 5.5 Let (π, φ, γ ) be an admissible triple over R. Suppose that γ is
an isomorphism onto a finitely generated free abelian group G. Then for every
A ∈ Mat p×p(Cπ), the function V (t) is multiplicatively convex.

Proof For any admissible triple (π, φ, γ ) over R, the image φ(π) is finitely
generated as G is finitely generated and free abelian. Take a basis r1, . . . , rd ∈
R+ of theQ-vector space spanned by φ(π) ⊂ R. Possibly after dividing each
ri by a positive integer, we can decompose φ as a sum:

φ = r1φ1 + · · · + rdφd

where φi are homomorphisms in Hom(π,Z). We fix such a basis for the rest
of the proof. Consider a multivariable version of twist as follows. Given any
vector �t = (t1, . . . , td) ∈ R

d+, there is a homomorphism of rings:

κ
(
φ, γ, �t) : Zπ −→ RG

defined uniquely by

κ
(
φ, γ, �t) (g) = tφ1(g)

1 . . . tφd (g)
d γ (g)

for all g ∈ π via linear extension over Z. There are induced homomorphisms
between matrix algebras over Cπ and CG as before. We define

AG
(�t) = κ

(
φ, γ, �t) (A) ∈ Mat p×p(CG).

Denote

W
(�t) = detrN (G)

(
AG(�t)) .

Then

V (t) = W
((

tr1, . . . , trd
))

.
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On the other hand, we identify AG
(�t) as a family of p × p matrices over

the multivariable Laurent polynomial ring C

[
z±1
1 , . . . , z±1

l

]
, where l is the

rank of G. Denote by �1 the diagonal vector (1, . . . , 1) ∈ R
d+. If we write the

Laurent polynomial matrix at �1 as:

AG

(�1) = AG

(�1) (z1, . . . , zl),

then at �t the Laurent polynomial matrix can be computed by:

AG
(�t) = AG

(�1) (t̃1z1, . . . , t̃l zl
)

where, for j running over 1, . . . , l,

t̃ j = t
φ1(z j )

1 · · · t
φd (z j )

d .

In fact, the relation can be checked by looking at the monomials in each entry
of AG(�1). The effect of the twist is that in any monomial, each z j that appears
contributes an exponent φi (z j ) to the associated coefficient ti .

The value of W
(�t) can be computed by the (multiplicative)Mahler measure

of the usual determinant of the Laurent polynomial matrix AG
(�t). Precisely,

the usual determinant gives rise to a Laurent polynomial for the square matrix
at �1:

pA(z1, . . . , zl) = Det
C

[
z±1
1 ,...,z±1

l

] (AG

(�1)) ,

so

pA
(
t̃1z1, . . . , t̃l zl

) = Det
C

[
z±1
1 ,...,z±1

l

] (AG
(�t)) .

By [7, Lemma 2.6], (cf. [23, Exercise 3.8] and [28, Sect. 1.2]), if pA is not the
zero polynomial,

W
(�t) = M

(
pA
(
t̃1z1, . . . , t̃l zl

))
= exp

[
1

(2π)l
·
∫ 2π

0
. . .

∫ 2π

0
log
∣∣∣pA

(
t̃1eiθ1, . . . , t̃l e

iθl
)∣∣∣ dθ1, . . . dθl

]
.

Note that if pA is the zero polynomial, then W
(�t) and V (t) are constantly

zero, so the multiplicative convexity of V (t) holds in this trivial case. We
assume in the rest of the proof that pA is not the zero polynomial.
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First consider the case when (π, φ, γ ) is an admissible triple overQ. In this
case, d is at most 1. We can assume that d equals 1, since otherwise V (t) is
a constant function. There is a splitting short exact sequence of free abelian
groups:

1 −→ γ (Ker(φ)) −→ G
φ◦γ −1

−→ φ(π) −→ 1.

We may choose a basis of the free abelian group G such that φ(zl) = mr1 for
some nonzero integer m and φ(zi ) = 0 for all other zi . For any given values
θ1, . . . , θl−1 ∈ [0, 2π ], we introduce the notations

qθ1,...,θl−1(z) = pA

(
eiθ1, . . . , eiθl−1, z

)
∈ C[z, z−1],

and

vθ1,...,θl−1(t) = log M
(
qθ1,...,θl−1

(
tmr1z

))
.

Then

log V (t) = log W (tr1)

= 1

(2π)l
·
∫ 2π

0
. . .

∫ 2π

0
log
∣∣∣pA

(
eiθ1, . . . , eiθl−1, tmr1eiθl

)∣∣∣ dθ1 . . . dθl

= 1

(2π)l−1 ·
∫ 2π

0
. . .

∫ 2π

0
vθ1,...,θl−1(t) dθ1 . . . dθl−1.

For any one-variable Laurent polynomial q ∈ C[z, z−1], the Mahler measure
can be computed using Jensen’s formula:

M(q(z)) = |D| ·
l∏

i=1

max(1, |bi |),

where the constants D ∈ C and n ∈ Z and bi ∈ C are given by any factoriza-
tion

q(z) = D · zn ·
l∏

i=1

(z − bi ) ∈ C[z, z−1].

It is evident that for any such q, the following function in t ∈ R+ is multi-
plicatively convex:
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M
(
q
(
tmr1z

)) = |D| · tnmr1 ·
l∏

i=1

max
(
tmr1, |bi |

)
,

possibly constantly zero if q is 0. Therefore, for all pairs of distinct points
T0, T1 ∈ R+, and all constants 0 < λ < 1, we have the comparison:

(1 − λ) · vθ1,...,θl−1(T0) + λ · vθ1,...,θl−1(T1) ≥ vθ1,...,θl−1

(
T 1−λ
0 · T λ

1

)
.

Integrating both sides and taking the exponential yields

V (T0)
1−λ · V (T1)

λ ≥ V
(

T 1−λ
0 · T λ

1

)
.

In other words, V (t) is multiplicatively convex.
For the general case overR, denote by �r the vector (r1, . . . , rd) ∈ R

d+. Take
a sequence of rational vectors

{ �r (n) ∈ Q
d+
}
which converges to �r in R

d+ as n
tends to infinity. Observe that for each �r (n), the function

Vn(t) = W
((

tr (n)
1 , . . . , tr (n)

d

))

is equal to the regular Fuglede–Kadison determinant of the matrix

κ(φ(n), γ, t)(A) ∈ Mat p×p(CG),

where

φ(n) = r (n)
1 φ1 + · · · + r (n)

d φd

is a homomorphism in Hom(π,Q). Then Vn(t) are multiplicatively convex by
the rational case thatwe have proved.On the other hand, as �t varies overRd+, the
coefficients of the Laurent polynomials pA(t̃1z1, . . . , t̃l zl) varies continuously,
so theMahlermeasures of the Laurent polynomials vary continuously byBoyd
[4]. In particular, for every t ∈ R+,

lim
n→∞ Vn(t) = V (t).

Given any constants T0, T1 ⊂ R+ and 0 < λ < 1, we have shown the
multiplicative convexity for the rational case:
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Vn(T0)
1−λ · Vn(T1)

λ ≥ Vn

(
T 1−λ
0 · T λ

1

)
.

Taking the limit as n → ∞,

V (T0)
1−λ · V (T1)

λ ≥ V
(

T 1−λ
0 · T λ

1

)
.

In other words, the function V (t) is multiplicatively convex. This completes
the proof. ��

Proof of Proposition 5.4 Take a free abelian subgroup G̃ of π̃ of finite index,
which is hence finitely generated. Denote by π̃ the preimage γ −1(G̃). Take
restrictions φ̃, γ̃ of given homomorphisms to π̃ accordingly. The restriction
of A to Cπ̃ , denoted as resπ̃π A, is a square matrix over Cπ̃ of size p · [π : π̃].
We observe that the operation of restriction commutes with κ(γ, φ, t) and ∗.
Denote by Ṽ (t) the corresponding determinant function for the admissible
triple (π̃, φ̃, γ̃ ) and the matrix resπ̃π A. By basic properties of regular Fuglede–
Kadison determinants,

V (t) = detrN (G)(AG(t))

= detrN (γ (π))

(
resγ (π)

G (AG(t))
)

= detrN (G̃)

(
resG̃

G (AG(t))
)1/[γ (π):G̃]

= detrN (G̃)

((
resπ̃π A

)
G̃

(t)
)1/[π :π̃ ]

= Ṽ (t)1/[π :π̃ ].

Note that Ṽ (t) is constantly zero if and only if V (t) is constantly zero.
Suppose that Ṽ (t) is not constantly zero. By Lemma 5.4, the function Ṽ (t)
is multiplicatively convex, so V (t) is multiplicatively convex as well. This
completes the proof. ��

5.3 Multiplicative convexity for residually finite twists

Let (π, φ, γ ) be an admissible triple over R. Suppose that the target group G
of γ is finitely generated and residually finite. Take a cofinal tower of normal
finite index subgroups of G:

G ≥ N1 ≥ N2 ≥ · · · ≥ Nn ≥ · · · .
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Here the tower being cofinal means that

∞⋂
n=1

Nn = { idG }.

Fix a homomorphism G → R via which φ factors through γ . Denote by Kn
the kernel of Nn → H1(Nn;Q), which remains normal in G. Let

�n = G/Kn.

There are induced homomorphisms by the composition of γ and the quotient
G → �n , denoted as

γn : π → �n.

It is clear that �n are all finitely generated and virtually abelian. Therefore, we
obtain a tower of admissible triples over R:

{(π, φ, γn)}n∈N

with finitely generated virtually abelian targets.
Given any p × p matrix A over Cπ , and any value of parameter T ∈ R+,

and any constant ε ∈ [0, +∞), we introduce a positive operator on 
2(�n)
⊕p:

Hn,ε(T ) = (κ(φ, γn, T )(A))∗ (κ(φ, γn, T )(A)) + ε · 1

which is expressed as a p×pmatrix overC�n .When the subscript n is replaced
with the symbol ∞, we adopt the convention that �∞ = G and γ∞ = γ .

Proof of Theorem 5.1 Given an admissible triple (π, φ, γ ) overR and a square
matrix A overCπ . We adopt the assumptions and notations of this subsection.
Possibly after replacing G with the image of γ , which does not affect the value
of the determinant, we may further assume that γ is surjective. Then there are
uniquely induced homomorphisms γn∗φ ∈ Hom(�n,R) whose pull-backs
through γ are φ, and (�n, id�n , γn∗φ) are admissible triples. For parameters
s, T, t ∈ R+, we write

Wn,ε(s, T ) = detrN (�n)

(
κ(γn∗φ, id�n , s)(Hn,ε(T ))

)
,

and

Vn(t) = detrN (�n)( κ(φ, γn, t)(A) ).
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Observe that κ(γn∗φ, id�n , s) ◦ κ(φ, γn, t) equals κ(φ, γn, st). Therefore, for
any given T0, T1 ∈ R+, we have the relations:

Wn,0

(
1,
√

T0T1
)

= Vn

(√
T0T1

)2
and

Wn,0

(√
T1/T0,

√
T0T1

)
= Vn(T0)Vn(T1),

which hold for both n ∈ N and ∞. Note that Wn,ε(1, T ) is always the regular
Fuglede–Kadison determinant for a positive operator, but the twisted matrix
in the expression of Wn,ε(s, T ) is not self-adjoint in general.

We claim that the following comparison holds for all s, T ∈ R+:

W∞,0(1, T ) ≤ W∞,0(s, T ).

In fact, by Lemma 5.4, the function Wn,ε(s, T ) is multiplicatively convex in
s ∈ R+ for all n ∈ N and ε ∈ [0, +∞). Observe that Hn,ε(T ) is self-adjoint, so
the anti-commutativity ofκ(φ, γn, s) and∗yieldsWn,ε(s, T ) = Wn,ε(s−1, T ).
This implies that for all ε ∈ [0, +∞) and n ∈ N,

Wn,ε(1, T ) ≤ Wn,ε(s, T ).

Given any arbitrary ε > 0, Lemma 3.2 and the above imply

W∞,ε(1, T ) = lim
n→∞ Wn,ε(1, T ) ≤ lim sup

n→∞
Wn,ε(s, T ) ≤ W∞,ε(s, T ).

As ε tends to 0+, Lemma 3.1 and the above imply

W∞,0(1, T ) = lim
ε→0+ W∞,ε(1, T ) ≤ lim sup

ε→0+
W∞,ε(s, T ) ≤ W∞,0(s, T ).

This proves the claim.
Note that the family of operators κ(φ, γ, s)(A) is continuous in s ∈ R+

with respect to the norm topology. Lemma 3.1 implies that V∞(t) is upper
semicontinuous in t ∈ R+. On the other hand, the claim implies that V∞(t)
is multiplicatively mid-point convex in t ∈ R+. By Lemma 4.3, the function
V∞(t), or V (t) as in the statement of Theorem 5.1, is multiplicatively convex.

Provided with the multiplicative convexity, assuming that V (t) is nowhere
zero, the exponent bound and the degree estimate

degb(V ) ≤ R(A, φ)
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follow from Lemmas 4.5 and 5.3. This completes the proof of Theorem 5.1.
��

6 Continuity of degree

In this section, we show that the growth bound degree of the regular Fuglede–
Kadison determinant of L2–Alexander twists varies continuously aswedeform
the cohomology class.

Theorem 6.1 Given any admissible triple (π, φ, γ ) over R and any square
matrix A over Cπ , denote by G the target group of γ . For any vector ξ ∈
H1(G; R), denote by

Vξ (t) = detrN (G)

(
κ
(
φ + γ ∗ξ, γ, t

)
(A)

)
the determinant function of A associated with the deformed admissible triple
(π, φ + γ ∗ξ, γ ).

Suppose that G is finitely generated and residually finite. Then the function
Vξ (t) is constantly zero at every vector ξ ∈ H1(G; R)whenever it is constantly
zero somewhere. Apart from that exception, for all pairs of vectors ξ, η ∈
H1(G;R),

∣∣degb(Vξ ) − degb(Vη)
∣∣ ≤ 2R

(
A, γ ∗ (ξ − η)

)
.

In particular, the assignment with the degree ξ �→ degb(Vξ (t)) defines a
Lipschitz continuous function on H1(G; R) valued in [0, +∞).

The continuity of degree is a consequence of Theorem 5.1. The rest of this
section is devoted to the proof of Theorem 6.1.

We may assume without loss of generality that η ∈ H1(G; R) is trivial. In
fact, otherwise we can replace the reference class φ by φ + γ ∗η. Hence ξ and
η are replaced by ξ − η and 0 respectively.

We adopt the following notations. Given any matrix A ∈ Mat p×p(Cπ),
denote

AG(t) = κ(φ, γ, t)(A) ∈ Mat p×p(CG).

For any vector ξ ∈ H1(G;R) ∼= Hom(G; R), we consider the canonical
admissible triple (G, ξ, idG), so for every constant s ∈ R+, there is a matrix
deformed from AG(t), namely:

AG(t, s) = κ(ξ, idG, s)(AG(t)) ∈ Mat p×p(CG).
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We introduce

W (t, s) = detrN (G) (AG(t, s)) .

Note that

W (t, 1) = V0(t)

and

W (t, t) = Vξ (t).

Lemma 6.2 If the function V0(t) is constantly zero, then for all vectors ξ ∈
H1(G; R), the function Vξ (t) is constantly zero as well.

Proof Suppose V0(t) is constantly zero. Given any constant T0 ∈ R+, apply
Theorem 5.1 to the family of matrices AG(T0, s), we see that W (T0, s) is
multiplicatively convex in the parameter s ∈ R+. At s = 1, we have
W (T0, 1) = V0(T0) = 0. This implies that W (T0, s) is constantly zero in
s by Lemma 4.2. In particular, Vξ (T0) = W (T0, T0) = 0. As T0 ∈ R+ is
arbitrary, it follows that Vξ (t) is constantly zero. ��

Now it suffices to assume that the functions Vξ (t) are nowhere zero, for all
ξ ∈ H1(G; R). By Theorem 5.1, Vξ (t) are multiplicatively convex and have
bounded exponent.

Lemma 6.3

1.
∣∣degb+∞(Vξ ) − degb+∞(V0)

∣∣ ≤ R(A, γ ∗ξ);
2.
∣∣degb0+(Vξ ) − degb0+(V0)

∣∣ ≤ R(A, γ ∗ξ).

Proof We prove the first estimate and the second can be proved in the same
way.

Given any constant T0 ∈ R+ and K > 0, it follows from the multiplicative
convexity of W (T 1+K

0 , s) in the parameter s ∈ R+ that

∣∣∣∣∣∣
log W

(
T 1+K
0 , T 1+K

0

)
− log W

(
T 1+K
0 , 1

)
log T 1+K

0 − log 1

∣∣∣∣∣∣ ≤ R
(

AG

(
T 1+K
0

)
, ξ
)

≤ R
(

A, γ ∗ξ
)
,

so∣∣∣log W
(

T 1+K
0 , T 1+K

0

)
− log W

(
T 1+K
0 , 1

)∣∣∣ ≤ R
(

A, γ ∗ξ
) · (1 + K ) log T0.
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Similarly,

|log W (T0, T0) − log W (T0, 1)| ≤ R
(

A, γ ∗ξ
) · log T0.

By the multiplicative convexity of W (t, 1) = V0(t), for any arbitrary δ > 0,
the following estimate holds for sufficiently large T0 > 1 and any arbitrary
K > 0: ∣∣∣∣∣∣

log W
(

T 1+K
0 , 1

)
− log W (T0, 1)

log T 1+K
0 − log T0

− degb+∞(V0)

∣∣∣∣∣∣ < δ,

so∣∣∣log W
(

T 1+K
0 , 1

)
− log W (T0, 1) − degb+∞(V0)K log T0

∣∣∣ < δ · K log T0.

Therefore, for any arbitrary δ > 0, the following estimate holds for sufficiently
large T0 > 1 and any arbitrary K > 0:∣∣∣log W

(
T 1+K
0 , T 1+K

0

)
− log W (T0, T0) − degb+∞(V0)K log T0

∣∣∣
< R

(
A, γ ∗ξ

) · (2 + K ) log T0 + δ · K log T0,

or equivalently, ∣∣∣∣∣∣
log Vξ

(
T 1+K
0

)
− log Vξ (T0)

log T 1+K
0 − log T0

− degb+∞(V0)

∣∣∣∣∣∣
< R(A, γ ∗ξ) ·

(
1 + 2

K

)
+ δ.

Take the limit as T0 → +∞, and then take the limit as K → +∞:∣∣degb+∞(Vξ ) − degb+∞(V0)
∣∣ ≤ R

(
A, γ ∗ξ

)+ δ.

As δ > 0 is an arbitrary constant, the estimate∣∣degb+∞(Vξ ) − degb+∞(V0)
∣∣ ≤ R

(
A, γ ∗ξ

)
follows. The second estimate can be done similarly using 1/T0 instead
of T0. ��

Combining the estimates of Lemma 6.3, we obtain∣∣degb(Vξ ) − degb(V0)
∣∣ ≤ 2R(A, γ ∗ξ).

This completes the proof of Theorem 6.1.
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7 Asymptotics for integral matrices

In this section,wegive a criterion for checking under special circumstances that
the regular Fuglede–Kadison determinant of L2–Alexander twists is asymp-
totically monomial.

Definition 7.1 Let (π, γ, φ) be an admissible triple with a countable target
group G, and

G → · · · → �n → · · · → �2 → �1

be a cofinal tower of quotients of G. Denote by ψn : G → �n the quotient
homomorphisms. A sequence of admissible triples

{(π, γn, φ)}n∈N

with target groups {�n}n∈N is said to form a cofinal tower of quotients of
(π, γ, φ) if γn = ψn ◦ γ holds for every n ∈ N. For simplicity, we often
speak of cofinal towers of admissible triples without explicitly mentioning the
cofinal tower of quotients of G.

In the statement of the theorem below, we adopt the notation

Vn(t) = detrN (�n) (κ(φ, γn, t)(A)) .

The notation VG(t) is understood similarly.

Theorem 7.2 Let (π, γG, φ) be an admissible triple over R with a finitely
generated target group G. Let A be a square matrix over Zπ .

Suppose that there exists a sequence of admissible triples {(π, γn, φ)}n∈N
over R satisfying all the following conditions:

• The target groups �n of γn are finitely generated and virtually abelian.
• The sequence of admissible triples {(π, γn, φ)}n∈N forms a cofinal tower

of quotients of (π, γG, φ).
• The sequence of degrees {degb(Vn)}n∈N converges todegb(VG) in [0, +∞).

In particular, note that VG(t) should not be constantly zero. Then, as t → +∞,

VG(t) ∼ C+∞ · tdeg
b+∞(VG)

for some constant

C+∞ ∈ [1, VG(1)].
The same statement holds true with +∞ replaced by 0+.
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We point out that among the three conditions the convergence of degrees
is usually the hardest to satisfy or to verify. The Zπ–matrix assumption is
responsible for the lower bound 1 of the coefficients C+∞ and C0+ in an
essential way. In particular, the argument does not apply to matrices over Cπ

to yield similar monomial asymptoticity.
The rest of this section is devoted to the proof of 7.2.

Lemma 7.3 Let f̂ be a nowhere zero multiplicatively convex function on R+
with bounded exponent. Suppose that there exists a sequence of nowhere zero
multiplicatively convex functions on R+ with bounded exponent { fn}n∈N sat-
isfying all the following conditions:

• There exists a uniform constant L ∈ R such that for all n ∈ N and for all
pairs of distinct points t0, t1 ∈ R+,

log fn(t0) log t1 − log fn(t1) log t0
log t1 − log t0

≥ L .

• For every point t ∈ R+,

lim sup
n→∞

fn(t) ≤ f̂ (t).

•

lim
n→∞ degb( fn) = degb( f̂ ).

Then as t → +∞,

f̂ (t) ∼ C+∞ · tdeg
b+∞( f̂ )

for some constant

C+∞ ∈
[
eL , f̂ (1)

]
.

The same statement holds true with +∞ replaced by 0+.

Proof To understand the geometric meaning of the terms in presence, consider
the log–log plot of a function f : R+ → R+, namely, the parametrized curve

P f (t) = (log t, log f (t)), t ∈ R+
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on the Cartesian XY plane. The line through a pair of distinct points P f (t0)
and P f (t1) has the slope

α f (t0, t1) = log f (t1) − log f (t0)

log t1 − log t0
,

and it has the Y-intercept

β f (t0, t1) = log f (t0) log t1 − log f (t1) log t0
log t1 − log t0

.

If f is multiplicatively convex with bounded exponent, then P f is a convex
graph. The constants degb+∞( f ) and degb0+( f ) are exactly the supremum and
the infimum for slope of chords ofP f , respectively (Lemma 4.5). For any such
f , it is easy to see that for t → +∞, the asymptotic formula

f (t) ∼ C+∞ · tdeg
b+∞( f )

holds for some constant C+∞ ∈ R+ if and only if the following limit exists in
R:

β+∞( f ) = lim
t0,t1→+∞ β f (t0, t1),

(which otherwise diverges to −∞). Moreover, logC+∞ must be β+∞( f )

if the asymptotic formula holds. The same criterion holds for 0+ in place
of +∞. We also observe that if β f (t0, t1) is uniformly bounded below by
some constant L ∈ R for all pairs of distinct parameters t0, t1 ∈ R+, then
equivalently, the curve P f is contained entirely in the wedge region V(L , f )

supported on the two rays emanating from the point (0, L) along the directions
(−1, −degb0+( f )) and (1, degb+∞( f )).

To prove Lemma 7.3, we observe from the geometric meaning that the limit
Y-intercept C+∞ is at most f̂ (1). It remains to bound C+∞ from below by eL ,
or equivalently, to show that the log–log plot of the function f̂ is contained in
the wedge region V(L , f̂ ).

We argue by contradiction, supposing that there were a point P = P f̂ (T0)

lying outside V(L , f̂ ). By the first condition, the curves Pn of fn are all con-
tained in their ownwedge regionsV(L , fn). In particular, the second condition
implies that T0 �= 1. Let 3δ·| log T0| be the vertical distance of P fromV(L , f̂ ).
For all sufficiently large n, the second condition implies that the right side of
V(L , fn) is at most δ · | log T0| above P . Then the third condition forces the
slope of the left side of V(L , fn) to be at least δ less than that of V(L , f̂ ) for
all sufficiently large n. Consequently, for some parameter value T1 ∈ R+ that
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is sufficiently close to 0+, the curve point Q = P f̂ (T1) must stay uniformly
below the left sides of all those V(L , fn), for instance, of distance at least 1.
However, we see that the second condition is violated at the point Q: We have
shown that the curves Pn would have been at least distance 1 above Q for all
sufficiently large n. The contradiction completes the proof. ��
Lemma 7.4 Let (π, φ, γ ) be an admissible triple over R with a target group
G. Let A be a square matrix over Zπ . Suppose that G is finitely generated and
virtually abelian. Then for all pairs of distinct points t0, t1 ∈ R+,

log VG(t0) log t1 − log VG(t1) log t0
log t1 − log t0

≥ 0,

unless VG(t) is constantly zero.

Proof By Theorem 5.1, the function VG(t) is either constantly zero or mul-
tiplicatively convex with bounded exponent. It suffices to consider the latter
case. By the geometric meaning of the expression explained in the proof of
Lemma 7.3, we can equivalently prove that VG(t) is asymptotically monomial
in both ends with the coefficient no less than 1.

We start by a few reductions. Observe that whether or not the asserted
inequality holds true does not change under passage from G to any finite index
subgroup G̃ of γ (π). Indeed, by basic properties of regular Fuglede–Kadison
determinants,

VG(t) = detrN (G)(κ(γ, φ, t)(A))

= detrN (γ (π))(κ(γ, φ, t)(A))

= detrN (G̃)

(
κ(γ, φ, t)

(
resG̃

γ (π)(A)
)) 1

[γ (π):G̃]

= VG̃(t)
1

[γ (π):G̃] .

Therefore, possibly after replacing G with a finite index subgroup G̃ of γ (π),
and replacing π with γ (π), we may assume without loss of generality that γ
is an isomorphism, and G is a finitely generated free abelian group.

After these reductions,we denote by l the rank ofG and identifyCG with the

Laurent polynomial ring C

[
z±1
1 , . . . , z±1

l

]
. Choose a basis r1, . . . , rd ∈ R+

of theQ-vector space spanned byφ(π) such that elements ofφ(π) areZ-linear
combinations of ri . Then we can uniquely decompose φ as a sum:

φ = r1φ1 + · · · + rdφd

where φi are homomorphisms in Hom(π,Z).
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As in the proof of Lemma 5.5, the function VG(t) can be expressed in terms
of a multivariable determinant function:

VG(t) = W
((

tr1, . . . , trd
))

,

where for any vector �t = (t1, . . . , td) ∈ R
d+,

W
(�t) = detrN (G)

(
AG
(�t))

= M
(

pA
(
t̃1z1, . . . , t̃l zl

))
= exp

[
1

(2π)l
·
∫ 2π

0
. . .

∫ 2π

0
log
(∣∣∣pA

(
t̃1eiθ1, . . . , t̃l e

iθl
)∣∣∣) dθ1, . . . dθl

]
,

and for each j ,

t̃ j = t
φ1(z j )

1 · · · t
φd (z j )

d .

Recall the notations there that the Laurent polynomial matrix

AG
(�t) = κ

(
φ, γ, �t) (A) ∈ Mat p×p

(
C

[
z±1
1 , . . . , z±1

l

])
.

is defined using the homomorphism of matrix algebras κ
(
φ, γ, �t) determined

by the formula

κ
(
φ, γ, �t) (g) = tφ1(g)

1 . . . tφd (g)
d γ (g)

for all g ∈ π . Theusual determinant of theLaurent polynomialmatrix AG
(�t) at

the diagonal vector �1 = (1, . . . , 1) ∈ Z
d gives rise to the Laurent polynomial

pA(z1, . . . , zl) = Det
C

[
z±1
1 ,...,z±1

l

] (AG

(�1)) .

The idea is to govern the asymptotics of VG(t) by the fact that pA is a
Laurent polynomial over Z, since A is assumed to be over Zπ . To this end,
expand the Laurent polynomial pA as

pA(z1, . . . , zl) =
∑
�v∈Zl

a�vzv1
1 . . . zvl

l

where vi are the entries of �v ∈ Z
l . Only finitely many coefficients a�v in the

summation are nonzero. For any vector �v ∈ Z
l , denote

��v = (
φ1
(
zv1
1 . . . zvl

l

)
, . . . , φd

(
zv1
1 . . . zvl

l

)) ∈ Z
d .
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Denote by �r ∈ R
d+ the vector (r1, . . . , rd). Let �wtop ∈ Z

d be the unique vector
at which the maximum of the following set is achieved:{

〈 �r , �w 〉 ∈ R :
∑

��v= �w
a�vzv1

1 . . . zvl
l �= 0

}
.

The uniqueness is a consequence of the linear independence of r1, . . . , rd over

Q. The integrand for VG(t), denoted as ω
(

t, �θ
)
, can be calculated by:

ω
(

t, �θ
)

= log
∣∣∣pA

(
tr1φ1(z1)+···+rdφd (z1)eiθ1, . . . , tr1φ1(zl )+···+rdφd (zl )eiθl

)∣∣∣
= log

∣∣∣∣∣∣
∑
�w∈Zd

∑
��v= �w

a�v t 〈�r ,��v〉ei �〈θ,�v〉
∣∣∣∣∣∣

= log

∣∣∣∣∣∣
∑

��v= �wtop

a�v t〈�r , �wtop〉ei �〈θ,�v〉 +
∑

��v �= �wtop

a�v t 〈�r ,��v〉ei �〈θ,�v〉
∣∣∣∣∣∣

= log

∣∣∣∣∣∣
∑

��v= �wtop

a�vei �〈θ,�v〉 +
∑

��v �= �wtop

a�v t〈�r ,��v− �wtop〉ei �〈θ,�v〉
∣∣∣∣∣∣

+ 〈�r , �wtop
〉 · log t.

Accordingly, the integral

log VG(t) = 1

(2π)l

∫ 2π

0
· · ·
∫ 2π

0
ω
(

t, �θ
)
dθ1 · · · dθl

breaks into the sum of two terms. The first term gives rise to the logarithmic
Mahler measure of the Laurent polynomial

qt (z1, . . . , zl) =
∑

��v= �wtop

a�vzv1
1 . . . zvl

l +
∑

��v �= �wtop

a�v t〈�r ,��v− �wtop〉zv1
1 . . . zvl

l .

By the way �wtop is selected, as t tends to +∞, the coefficients of qt converge
to those of its chief part

q+∞(z1, . . . , zl) =
∑

��v= �wtop

a�vzv1
1 . . . zvl

l .

Thus, by the continuity of Mahler measure [4], the first term of log VG(t)
approximates the logarithmic Mahler measure of q+∞ as t → +∞. The
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second term is just the integration against
〈�r , �wtop

〉 · log t , which is constant
with respect to �θ . Putting together, as t → +∞,

log VG(t) = log M(q+∞) + 〈�r , �wtop
〉 · log t + o(1).

The calculation yields the asymptotic formula:

VG(t) ∼ C+∞ · t〈�r , �wtop〉

as t → +∞. The coefficient satisfies the asserted estimation

C+∞ = M(q+∞) ≥ 1,

because q+∞ is a Laurent polynomial over Z, cf. [10, Lemma 3.7]. The same
argument works for VG(t−1) as well, which proves the 0+ direction. We con-
clude that VG(t) is asymptotically monomial in both ends with the coefficient
greater than or equal to 1. This completes the proof. ��
Proof of Theorem 7.2 We adopt the notations of the statement. By Theo-
rem 5.1 and Lemma 4.2, the third assumption implies that the function VG(t)
is positive for all t ∈ R+. By Lemma 3.2, the second condition of Lemma 7.3
is satisfied for VG(t) and {Vn(t)}n∈N. By Lemma 7.4, the functions {Vn(t)}n∈N
satisfy the first condition of Lemma 7.3. The third condition of Lemma 7.3 has
been guaranteed by the assumption of Theorem 7.2. Therefore, Lemma 7.3
implies that VG(t) is asymptoticallymonomial in both endswith the coefficient
lying in the interval [1, VG(1)]. This completes the proof of Theorem 7.2. ��

8 L2–Alexander torsion of 3-manifolds

In this section, we study the L2–Alexander torsion of 3-manifolds using the
tools that we have developed. In Sect. 8.1, we recall a formula for calculation
used by [7]. We prove Theorem 1.4 in Sect. 8.2, and Theorem 1.2 in Sect. 8.3.

8.1 Efficient cellular presentation

To calculate L2–Alexander torsion of 3-manifolds, the following formula has
been used by [7, Proposition 9.1], and we state it in some more details.

Lemma 8.1 Suppose that N is an irreducible orientable compact 3-manifold
with empty or incompressible toral boundary. There exist a (possibly empty)
collection of elements u1, v1, . . . , ul, vl ∈ π1(N ) and a square matrix A
over Zπ1(N ) such that the following holds true. The homological classes
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[ui ] − [vi ] are nontrivial in H1(N ;Q). Furthermore, for every homomor-
phism γ : π1(N ) → G which induces an isomorphism under H1(−;R), and
for every cohomology class φ ∈ H1(N ; R),

τ (2)(N , γ, φ)(t)
.= detrN (G)(κ(γ, φ, t)(A)) ·

l∏
i=1

detrN (G)(κ(γ, φ, t)(ui−vi ))
−1

= detrN (G)(κ(γ, φ, t)(A)) ·
l∏

i=1

max
{

tφ(ui ), tφ(vi )
}−1

.

The products are considered to be 1 if l equals zero. Moreover, given any
primitive cohomology φ0 ∈ H1(N ; Z) ∼= Hom(π1(N ),Z) in the first place,
we may require in addition that φ0(ui ) �= φ0(vi ) for i = 1, . . . , l, and that A
has the form:

A0 + μ ·
(

1k×k 0
0 0

)
,

where A0 is a square matrix over ZKer(φ0), and φ0(μ) = 1, and

k − l = xN (φ0).

Proof We may assume that H1(N ; R) is nontrivial since otherwise the L2–
Alexander torsion is constant. Take any primitive cohomology class φ0 ∈
H1(N ; Z), for example, as specified in the moreover part. We employ the
construction of Friedl in [11, Sect. 4] to produce a π1(N )–equivariant CW
complex structure on the universal cover of N . To be precise, there exist
finitely many properly embedded oriented compact subsurface �1, . . . , �s
and accordingly r1, . . . , rs ∈ N, satisfying the following properties:

• r1[�1] + · · · + rs[�s] ∈ H2(N , ∂ N ; Z) is dual to φ0.
• −r1χ(�1) − · · · − rsχ(�s) = x(φ0).
• �i are mutually disjoint and the complement of their union in N is con-
nected.

The calculation here is the same as [7, Proposition 9.1] except that instead of
computing square matrices induced by κ(γ, φ0, t) there, we compute those
induced by κ(γ, φ, t) for any class φ ∈ H1(N ; R). For example, the deter-
minant contribution from a block[

1 −νi
1 −zi

]
∈ Mat2×2 (Zπ1(N )) ,
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where i runs over 1, . . . , s becomes:

detrN (G)

(
κ(γ, φ, t)

[
1 −νi

1 −zi

])
= detrN (G)

[
1 −tφ(νi )γ (νi )

1 −tφ(zi )γ (zi )

]
= detrN (G)

×
⎡
⎣ 1 − t

φ
(
νi z−1

i

)
γ
(
νi z

−1
i

)
−tφ(νi )γ (νi )

0 −tφ(zi )γ (zi )

⎤
⎦

= detrN (G) (κ(γ, φ, t)(zi − νi )) .

The elements νi and zi arising from Friedl’s construction satisfy φ0(νi ) = ri
and φ0(zi ) = 0. Since (π, γ, φ0) is an admissible triple and φ0(νi )−φ0(zi ) =
ri �= 0, the element γ (νi z

−1
i ) must have infinite order in G. Then [7,

Lemma 2.8] yields

detrN (G) (κ(γ, φ, t)(zi − νi )) = detrN (G)

(
tφ(zi )γ (zi ) − tφ(νi )γ (νi )

)
= tφ(zi ) · max

{
1, t

φ
(
νi z−1

i

)}

= max
{

tφ(zi ), tφ(νi )
}

.

The point here is that we do not need to require φ(νi ) − φ(zi ) �= 0 for all φ.
With the modification above, we see that

u1, v1, . . . , us, vs ∈ π1(N )

can be taken to be z1, ν1, . . . , zs, νs . Similarly, we take

us+1, vs+1, . . . , u2s, v2s ∈ π1(N )

to be x1, ν1, . . . , xs, νs in the notations of [7, Proposition 9.1], where φ0(xi ) =
0 for all i = 1, . . . , s. This gives rise to a total number of l = 2s pairs of ui
and vi . The matrix A is a square matrix over Zπ1(N ) of the form

⎡
⎢⎢⎢⎣

1n1×n1 −ν1 · 1n1×n1 0 0 · · · 0 0

0 0
. . .

. . . 0 0 0
0 · · · 0 0 1ns×ns −νs · 1ns×ns 0
∗ · · · · · · ∗ ∗ ∗ ∗

⎤
⎥⎥⎥⎦ ,

where ni = −χ(�i ) + 2, and ∗ stand for (not necessarily square) blocks with
entries in ZKer(φ0), and φ0(νi ) = ri .
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One can further manipulate the matrix A into the asserted form without
affecting the regular Fuglede–Kadison determinant under κ(φ, γ, t). This
can be done by adding diagonal 11×1 blocks and performing elementary
transformations using well known tricks, so we omit the details, cf. [7, Propo-
sition 9.3]. ��

8.2 Degree for residually finite twists

In this subsection, we prove Theorem 1.4. Throughout this subsection, let N
be an irreducible orientable compact 3-manifold with empty or incompressible
toral boundary, and γ : π1(N ) → G be a homomorphism. Suppose that G is
finitely generated and residually finite and (N , γ ) is weakly acyclic.

For any admissible triple (π1(N ), γ, φ) over R, denote by

τ (2)(N , γ, φ) : R+ → [0, +∞)

any representative of the associated L2–Alexander torsion.

Lemma 8.2 Given any admissible triple (π1(N ), γ, φ) over R,

τ (2)(N , γ, φ)(1) > 0.

Proof As (N , γ ) is weakly acyclic, it follows from the definition that
τ (2)(N , γ, φ)(1) is the L2–torsion of the pair (N , γ ), namely, the L2–torsion
of the covering space of N which corresponds to Ker(γ ) equipped with the
action of Im(γ ). The latter can be computed through a weakly acyclic Hilbert
chain complex of which the boundary operators are represented by matri-
ces over ZIm(γ ). As G is residually finite, [22, Theorem 3.4(2)] implies that
τ (2)(N , γ ) is a multiplicatively alternating product of positive constants which
are no smaller than 1, hence must be nonzero. ��
Lemma 8.3 Let u1, v1, . . . , ul , vl ∈ π1(N ) be a collection of elements and
A be a square matrix over Zπ1(N ) as asserted by Lemma 8.1. Given any
admissible triple (π1(N ), γ, φ) over R, the following formula holds valid and
true:

degb(τ (2)(N , γ, φ))=degb
(
detrN (G)(κ(φ, γ, t)(A))

)
−

l∑
i=1

|φ(ui ) − φ(vi )|.

Proof The function detrN (G)(κ(φ, γ, t)(A)) of t ∈ R+ is multiplicatively con-
vex by Theorem 5.1. In fact, it is nowhere zero and hence with bounded
exponent by Lemmas 4.2, 8.1, and 8.2. Thus it is valid to speak of
degb(τ (2)(N , γ, φ)) and the formula follows immediately from Lemma 8.1.

��
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Proof of Theorem 1.4 We continue to adopt the assumptions of this subsec-
tion. It follows from Lemmas 8.1, 8.2, and Theorem 5.1 that τ (2)(N , γ, φ) is
everywhere positive and continuous in t ∈ R+. For any constants a, b ∈ R,
note that the function max{ta, tb}−1 can always be turned into a multiplica-
tively convex function by multiplying a sufficiently high power of max{1, t},
for example, by making the power at least |a − b|. It further follows that
τ (2)(N , φ) · max{1, t}m is multiplicatively convex with bounded exponent
for any sufficiently large positive constant m. The Lipschitz continuity of
degb(τ (2)(N , γ, φ + γ ∗ξ)) as a function of ξ ∈ H1(G;R) is a consequence
of Theorem 6.1. Therefore, it remains to show that for all admissible triple
(N , γ, φ), the following comparison holds true:

degb(τ (2)(N , γ, φ)) ≤ xN (φ).

To this end, we first prove the comparison for any admissible triple
(N , γ, φ0) where φ0 is a primitive class in H1(N ;Z). Let u1, v1, . . . , ul, vl ∈
π1(N ) be a collection of elements and A be a square matrix over Zπ1(N )

as guaranteed by the ‘moreover’ part of Lemma 8.1. It is clear that for any
arbitrary δ > 0,

lim
t→0+ detrN (G)(κ(γ, φ0, t)(A)) · tδ = 0,

and
lim

t→+∞ detrN (G)(κ(γ, φ0, t)(A)) · t−k−δ = 0,

so
degb

(
detrN (G)(κ(γ, φ0, t)(A))

)
≤ k.

On the other hand, the integrality of φ0 and the property that φ0(ui ) �= φ0(vi )

imply
l∑

i=1

|φ0(ui ) − φ0(vi )| ≥ l.

Then Lemma 8.3 yields the comparison

degb
(
τ (2)(N , γ, φ0)

)
≤ k − l = xN (φ0).

For admissible triples overQ, the comparison follows immediately from the
integral case by considering an integral multiple of φ. For admissible triples
over R, the comparison follows from the continuity of degree together with
the continuity of Thurston norm.

This completes the proof of Theorem 1.4. ��
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8.3 Degree for the full twist

In this subsection, we prove Theorem 1.2. Suppose that N is an irreducible
orientable compact 3-manifold with empty or incompressible toral boundary.
When N contains no hyperbolic piece in its geometric decomposition, N is a
graph manifold, possibly a Seifert fibered space. Theorem 1.2 in this case is
an immediate consequence of [7, Theorem 1.2], [17].

Therefore, throughout this section, we assume that N contains at least one
hyperbolic piece, or in other words, N is either hyperbolic or so-called mixed.
Note that N is aspherical so the 
2–Betti numbers of N all vanish, byLott–Lück
[21]. For any class φ ∈ H1(π1(N );R), any representative of the associated
full L2–Alexander torsion

τ (2)(N , φ) : R+ → [0, +∞)

is everywhere positive and continuous, and degb(τ (2)(N , φ)) ∈ R is at most
xN (φ) (Theorem 1.4). It remains to determine the asymptotics as the parameter
t tends to +∞ or 0+.

Recall that a class φ ∈ H1(N ;R) is said to be quasi-fibered if φ is the limit
of a sequence of fibered classes in H1(N ;Q).

Lemma 8.4 Let G be a finitely generated, residually finite group. For every
homomorphism γ : π1(N ) → G which induces an isomorphism under
H1(−;R), and for every quasi-fibered class φ ∈ H1(N ;R),

degb
(
τ (2)(N , γ, φ)

)
= xN (φ).

Proof Note that (π1(N ), γ, φ) is always admissible regardless of φ by
Lemma 2.2. If φ ∈ H1(N ;Q) is a rational, fibered class, the conclusion fol-
lows from [7, Theorem 1.3]. In fact, for such φ, the L2–Alexander torsion
τ (2)(N , γ, φ) is known to be asymptotically monomial, (indeed, eventually
monomial, by [7, Theorem 1.3]) so in this case,

degb
(
τ (2)(N , γ, φ)

)
= dega

(
τ (2)(N , γ, φ)

)
= xN (φ),

cf. Definitions 1.1 and 1.3.
For any quasi-fibered class φ ∈ H1(N ;R), we take a sequence of rational,

fibered classes {φn}n∈N which converges to φ. Then by the continuity of degree
(Theorem 1.4 (3)) and the formula of Lemma 8.1, we see that

degb
(
τ (2)(N , γ, φn)

)
= lim

n→∞ degb
(
τ (2)(N , γ, φn)

)
= lim

n→∞ xN (φn) = xN (φ).
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This completes the proof. ��
Let u1, v1, . . . , ul , vl ∈ π1(N ) be a collection of elements and A be a square

matrix over Zπ1(N ) as asserted by Lemma 8.1.

Lemma 8.5 Given any class φ ∈ H1(N ;R), there exists a tower of quotients
of π1(N )

π1(N ) → · · · → �n → · · · → �2 → �1

with all the following properties:

• The quotients �n are finitely generated and virtually abelian.
• The homomorphisms γn : π1(N ) → �n induce isomorphisms under

H1(−;R).
• The sequence of admissible triples {(π1(N ), γn, φ)}n∈N forms a cofinal

tower of quotients of (π1(N ), γ∞, φ), whereγ∞ denotes idπ1(N ) : π1(N ) →
π1(N ).

Furthermore, the tower can be required to satisfy:

degb(Vn) = degb(V∞)

for all n ∈ N, where

Vn(t) = detrN (�n)(κ(φ, γn, t)(A)),

and the notation V∞(t) is understood similarly.

Proof As we have assumed for this section that N is either hyperbolic or
mixed, there exists a regular finite cover p : Ñ → N which corresponds to a
finite index subgroup π̃ of π1(N ), such that p∗φ ∈ H1(Ñ ;R) is quasi-fibered.
This follows from a combination of Agol’s RFRS criterion for virtual fibering
[1] and the virtual specialness of hyperbolic and mixed 3-manifolds [2,27,32],
cf. [7, Sect. 10.1]. Observe that for any further subgroup of finite index in π̃

which is normal in π1(N ), the corresponding finite cover again carries the
pull-back of φ as a quasi-fibered class.

Take a cofinal tower of normal finite-index subgroups of π1(N ),

π1(N ) ≥ �1 ≥ �2 ≥ · · · ≥ �n ≥ · · · .

Possibly after intersecting the terms with π̃ , we may require that �n are all
contained in π̃ . For all n ∈ N, define

�n = π1(N )/ (Ker (�n → H1 (�n;Q))) .
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All the asserted properties of Lemma 8.5 hold obviously true for the tower of
quotients {�n}, except maybe the ‘furthermore’ part.

To check the equality of degree, denote by

pn : Ñn → N

the finite cover corresponding to the image of �n in �n . Taking restriction
to π1(Ñn) gives rise to new admissible triples (π1(Ñ ), γ̃n, p∗

nφ). By the dot-
ted equality of Lemma 8.1, and basic properties of regular Fuglede–Kadison
determinants, and Lemma 8.4, for all n ∈ N,

degb
(
τ (2)(N , γn, φ)

)
= 1

[Ñ : N ] · degb
(
τ (2)

(
Ñn, γ̃n, p∗φ

))

= 1

[Ñ : N ] · xÑn

(
p∗

nφ
) = xN (φ).

Note that the calculation above does not require the target group to be virtually
abelian. Therefore, the same calculation for τ (2)(N , γ∞, φ) yields the equality

degb
(
τ (2)(N , γ∞, φ)

)
= xN (φ).

It follows from Lemma 8.3 that

degb(Vn) = degb(V∞)

for all n ∈ N. ��
Proof of Theorem 1.2 Wecontinue to adopt the assumptions of this subsection.
It suffices to prove the statements (2)–(4).

Given N hyperbolic or mixed and any φ ∈ H1(N ;R), we take a tower
of quotients as guaranteed by Lemma 8.5. By Theorem 7.2, we see that the
function (now dropping the subscript ∞)

V (t) = detrN (�n)

(
κ
(
φ, idπ1(N ), t

)
(A)

)
is asymptotically monomial in both ends. In fact, as t → +∞,

V (t) ∼ C+∞ · tdeg
b+∞(V )

for some constant

C+∞ ∈
[
1, eVol(N )/6π

]
,
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and the same statement holds true with +∞ replaced by 0+. Here the upper
bound comes from

V (1) = τ (2)(N , φ)(1) = τ (2)(N ) = eVol(N )/6π .

Therefore, τ (2)(N , φ) is also asymptotically monomial in both ends with
the same estimation of coefficients. In particular, the asymptote degree of
τ (2)(N , φ) is valid, and

dega
(
τ (2)(N , φ)

)
= degb

(
τ (2)(N , φ)

)
= xN (φ).

By the symmetry of L2–Alexander torsion for 3-manifolds [9], we further
imply

C+∞ = C0+.

This allows us to refer to both of them by one notation:

C(N , φ) ∈
[
1, eVol(N )/6π

]
.

It remains to argue that C(N , φ) depends upper semi-continuously on
φ ∈ H1(N ;R). In fact, suppose that {φn ∈ H1(N ;R)}n∈N is a sequence
of cohomology classes which converges to φ. We write

V (φn, t) = detrN (�n)

(
κ
(
φn, idπ1(N ), t

)
(A)

)
.

By Lemma 3.1, for all t ∈ R+,

lim sup
n→∞

V (φn, t) ≤ V (t).

By the continuity of degree (Theorem 6.1),

lim
n→∞ degb (V (φn, t)) = degb (V (t))

Then it follows from Lemma 7.3 that

C(N , φ) ≥ lim sup
n→∞

C(N , φn).

In other words, the leading coefficient C(N , φ) is upper semicontinuous as a
function of φ ∈ H1(N ;R).

This completes the proof of Theorem 1.2. ��
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9 Example

Weconclude our discussionwith an example regarding nontrivial leading coef-
ficients. Specifically, we construct an oriented closed 3-manifold N such that
the leading coefficient C(N , φ) of the full L2–Alexander torsion τ (2)(N , φ)

gives rise to values other than the asserted bounds, as φ varies over H1(N ;R).
The oriented closed 3-manifold

N = K ∪
⋃

i∈Z/3Z

Ji

is constructed by gluing a product piece K and three figure-eight knot com-
plements Ji as follows. Let

K ∼= �0,3 × S1

be the product of the thrice holed sphere and the circle. We mark the boundary
components of �0,3 in cyclic order. For each i ∈ Z/3Z, denote by ∂i K ∼=
∂i�0,3×S1 the i-th boundary component of K accordingly. For each i ∈ Z/3Z,
take a copy of a figure-eight knot complement

Ji
∼= S3\Nhd◦(41).

We remind the reader that the interior of the figure-eight complement Ji is
a punctured torus bundle over the circle with a pseudo-Anosov monodromy,
and it has a unique complete hyperbolic structure of volume Vol(Ji ) = 2v3,
where v3 ≈ 1.01494 is the volume of the regular ideal hyperbolic tetrahedron.
Denote by μi and λi the longitude and the meridian of Ji accordingly, so that
the boundary of Ji has a canonical product structure ∂ Ji

∼= λi ×μi . Endow K
and Ji with canonical orientations so that the boundary is oriented accordingly.
The oriented closed 3-manifold N is obtained by gluing K and Ji along the
boundary in such a way that ∂i K is identified with −∂ Ji via an isomorphism
that takes the factor ∂i�0,3 to λi and the factor S1 to −μi .

Note that the inclusion maps induce an embedding

H1(N ;R) → H1(J0;R) ⊕ H1(J1;R) ⊕ H1(J2;R)

φ �→ (φ0, φ1, φ2)

By identifying H1(Ji ;R) with R, we can identify H1(N ;R) with the 2-
subspace of the 3-space given by the linear equation:

φ0 + φ1 + φ2 = 0.
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By the fibration structure of the figure-eight complement, it is easy to argue
topologically that the Thurston norm of any cohomology class φ in H1(N ;R)

is given by the formula:

xN (φ) = |φ0| + |φ1| + |φ2|.

The unit ball Bx (N ) of xN is hence the region bounded by the regular hexagon
whose vertices are (±1

2 , ∓1
2 , 0), (0, ±1

2 , ∓1
2 ), and (∓1

2 , 0, ±1
2 ). There are no

fibered cones because the restriction of every primitive class φ ∈ H1(N ;Z) to
K vanishes on the Seifert fiber [S1] ∈ H1(K ;Z), which means no subsurface
that is dual to φ could be transverse to the Seifert fibration everywhere (or
so-called horizontal) restricted to K .

The full L2–Alexander torsion of N associated with any cohomology class
φ ∈ H1(N ;R) can calculated by the formula:

τ (2)(N , φ)
.=τ (2)(J0, φ0) · τ (2)(J1, φ1) · τ (2)(J2, φ2).

This follows from [23, Theorem 3.35(1)] (see [23, Theorem 3.93(2)] for a
similar calculation). Note that in our case, the pieces K and Ji are weakly
acyclic glued along tori which contribute nothing to the L2–torsion of the
twisted chain complex. There ought to be a factor τ (2)(K , φK ) corresponding
to the restriction of φ to K on the right-hand side, but that factor is represented
by 1 according to [17], cf. [7, Theorem1.2]. For each i ∈ Z/3Z, it follows from
the fiberedness of the figure-eight knot complement that the leading coefficient

C(Ji , φi ) =
{

ev3/3π φi = 0

1 φi �= 0

Therefore, for any cohomology class φ = (φ1, φ2, φ3) ∈ H1(N ;R), the
leading coefficient of τ (2)(N , φ) is given by the formula:

C(N , φ) = e
δ(φ)·v3
3π

where δ(φ) denotes the number of zero coordinates in (φ0, φ1, φ2) subject
to the constraint φ0 + φ1 + φ2 = 0. To summarize, the leading coefficient
C(N , φ) equals eVol(N )/6π at the origin, and eVol(N )/18π along the six radial
rays through the vertices of Bx (N ) (except at the origin), and 1 in the rest part
of H1(N ;R).
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