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Abstract We construct a functor from the category of p-adic étale local sys-
tems on a smooth rigid analytic variety X over a p-adic field to the category
of vector bundles with an integrable connection on its “base change to BdR”,
which can be regarded as a first step towards the sought-after p-adic Riemann–
Hilbert correspondence. As a consequence, we obtain the following rigidity
theorem for p-adic local systems on a connected rigid analytic variety: if the
stalk of such a local system at one point, regarded as a p-adic Galois repre-
sentation, is de Rham in the sense of Fontaine, then the stalk at every point
is de Rham. Along the way, we also establish some basic properties of the
p-adic Simpson correspondence. Finally, we give an application of our results
to Shimura varieties.
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1 Introduction

We begin with some applications of our theory.

Theorem 1.1 Let X be a geometrically connected algebraic variety over a
number field E and letL be a p-adic étale local system on X. Assume that there
exists a closed point x ∈|X |, such that the stalkLx̄ of Lat somegeometric point
x̄ over x, regarded as a p-adic Galois representation of the residue field of
x, is geometric in the sense of Fontaine–Mazur (i.e. it is unramified almost
everywhere and is de Rham at p), then the stalk Lȳ at every closed point
y ∈ |X |, regarded as the Galois representation of the residue field of y, is
geometric.

Before continuing, let us first make a few remarks.

Remark 1.1 Recall that all p-adic representations coming from étale cohomol-
ogy of algebraic varieties are geometric and the Fontaine–Mazur conjecture
predicts the converse. In light of the above theorem, it seems reasonable to
make the following relative version of the Fontaine–Mazur conjecture.

Conjecture LetL be an étaleQp-local system over a geometrically connected
algebraic variety X over a number field E. Let η be the generic point of X. If
for some x ∈ |X |, Lx̄ is geometric, then there exists some algebraic variety Y
over η such that Lη̄ appears as a subquotient of the étale cohomology of Yη̄

up to Tate twists.

Note that this conjecture holds if the monodromy of L is abelian. Indeed, in
this case, the geometric monodromy must be finite so after passing to a finite
étale cover, L becomes geometrically constant, i.e. a pullback of an abelian
Galois representation (of a finite extension of E). As the Fontaine–Mazur
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Rigidity and a Riemann–Hilbert correspondence... 293

conjecture is known in the abelian case (e.g. see [13]), the above conjecture
also holds in this case.

Remark 1.2 Onemay compare the above theoremwith the followingDeligne’s
result [11] (called Principle B in loc. cit.): Let S be a smooth connected com-
plex algebraic variety and let f : X → S be a proper smooth morphism.
Let {ts}s∈S be a family of Hodge classes parametrized by S (i.e. a global sec-
tion of the relative cohomology R2d f∗Q(d) that restricts to a Hodge class in
H2d(Xs, Q(d)) at every s ∈ S). If it is absolute Hodge for one point, then ts
is absolute Hodge for all s ∈ S.

Here is a concrete application of Theorem 1.1, arising as a discussion with
K.-W. Lan. Let (G, X) be a Shimura datum. For a (sufficiently small) open
compact subgroup K ⊂ G(A f ), let

ShK (G, X) = G(Q)\X × G(A f )/K

be the corresponding Shimura variety. Let V be a Q-rational representation of
G, which is trivial on Zs

G . Here Zs
G is the largest anisotropic subtorus in the

center ofG that isR-split. Then it is known that V induces a Betti local system
LV on ShK (G, X). In addition, the theory of canonical models gives a model
of ShK (G, X) (still denoted by the same notation) defined over the reflex field
E ⊂ C, and for a choice of a prime p, a p-adic étale local system LV,p
over ShK (G, X) (cf. [22, §III.6]). Applying Theorem 1.1 to special points on
Shimura varieties, we obtain the following theorem.

Theorem 1.2 Keep notations and assumptions as above. Then for every closed
point x of ShK (G, X), the stalk (LV,p)x̄ , regarded as a Galois representation
of Gal(E/E(x)), is geometric in the sense of Fontaine–Mazur.

See Sect. 4.2 for the proof and related results.

Remark 1.3 Theorem 1.2 was known if (G, X) is of abelian type (with a
few additional assumptions), as in this case ShK (G, X) parameterizes cer-
tain abelian motives and LV,p is nothing but their p-adic realizations. In the
general case, it gives an evidence of Deligne’s expectation that a Shimura vari-
ety (with a few additional assumptions) should be the moduli space of certain
motives (particularly in light of the conjecture in Remark 1.1).

Now we turn to our main theory. Let k be a finite extension of Qp and let k̄

be an algebraic closure of k and ˆ̄k be its completion. The main ingredient of
Theorem 1.1 is the following theorem.

Theorem 1.3 Let X be a geometrically connected rigid analytic variety over
k and letL be aQp-local system on the étale site Xet. If there exists a classical
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point x of X such that the stalk Lx̄ of L at some geometric point x̄ over x,
regarded as a p-adic representation of the residue field of x, is de Rham, then
the stalk Lȳ is de Rham at every classical point y of X. In addition, Lȳ has
the same Hodge–Tate weights (with multiplicity) as Lx̄ ’s.

Remark 1.4 It is not difficult to see that neither the crystalline nor the semi-
stable version of the statement of Theorem 1.3 holds. In fact, one may consider
a family of abelian varieties, parameterized by a smooth connected rigid ana-
lytic variety over Qp, such that most of the fibers have good reduction at p but
some fibers do not have semi-stable reduction. Then the higher direct images
of the trivial local system Qp on the family give rise to desired counterex-
amples on the base. On the other hand, one would expect that a potentially
semi-stable version of Theorem 1.3 holds. That is, if the family is semi-stable
at one classical point, then it becomes semi-stable at every classical point after
a finite étale extension of X , or even after a finite extension of the base field.

Remark 1.5 A Qp-local system on X can be thought of as a geometric family
of p-adic representations parameterized by X . Onemay compare Theorem 1.3
with the relevant results for arithmetic families of p-adic representations [3,4].
It says that an arithmetic family of p-adic representations is de Rham provided
it is de Rham at a Zariski-dense subset of classical points of the base, and the
corresponding sets of Hodge–Tate weights are uniformly bounded. Moreover,
as showed by families of p-adic representations arising on eigenvarieties, the
uniformly bounded condition is necessary. Therefore, Theorem 1.3 exhibits a
dichotomy between arithmetic families and geometric families. Namely, the
latter are surprisingly rigid.

Remark 1.6 For a prime � �= p, Kisin proved a rigidity theorem for Z�-local
systems in the sense that on a scheme of finite type over a non-archimedean
field of residual characteristic p, a Z�-local system is locally constant in the
p-adic topology [19].

Using resolution of singularities for rigid analytic varieties (cf. [6]), it is
enough to prove Theorem 1.3 for smooth varieties. In this case, we will deduce
it from a version of p-adic Riemann–Hilbert correspondence, which now we
explain.

Let BdR denote Fontaine’s de Rham period ring.We consider a sheaf ofQp-
algebras OX ⊗̂BdR on X ˆ̄k (see Sect. 3.1 for the precise definition); it inherits
a filtration from the filtration on BdR and a BdR-linear derivation from the
derivation on OX . The ringed space (X ˆ̄k,OX ⊗̂BdR) is denoted by X , which

can be thought of as the “generic fiber of a canonical lifting of X ˆ̄k to B+dR”.
We have the following theorem, which can be regarded as a first step towards
the long sought-after Riemann–Hilbert correspondence on p-adic varieties.
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Theorem 1.4 (See Theorem 3.8 for the full and precise statements) Let X be
a smooth rigid analytic variety over k. Then there is a tensor functorRH from
the category ofQp-local systems on Xet to the category of vector bundles onX
(i.e. certain finite locally freeOX ⊗̂BdR-modules), equippedwith a semi-linear
action of Gal(k̄/k), and with a filtration and an integrable connection that
satisfy Griffiths transversality. The functor RH is compatible with pullback
along arbitrary morphisms and (under certain conditions) is compatible with
pushforward under smooth proper morphisms.

Remark 1.7 In [3], the de Rham period sheaf for arithmetic family of Galois
representations is defined as the completed tensor product of the structure
sheaf of X with BdR over the base field. However, due to the non-existence

of the “canonical embedding ˆ̄k → BdR”, the sheaf OX ⊗̂BdR on X ˆ̄k must
be defined by a slightly roundabout way. Another crucial difference is that in
the geometric situation, there is an additional structure on the vector bundle,
namely an integrable connection.Aswe shall see below, thismakes the passage
fromOX ⊗̂BdR-modules toOX -modules simpler and nicer as compared with
arithmetic families.

We regard Theorem 1.4 as a geometric Riemann–Hilbert correspondence
for p-adic étale local systems. Now let ϕ : X ˆ̄k → X be the natural projection.
Since for a local system L on X the vector bundleRH(L) admits an action of
Gal(k̄/k), (informally) one can define

Di
dR(L) = Hi (Gal(k̄/k), ϕ∗RH(L)), i ≥ 0.

See Sect. 3.2 for the more precise definition. Now Theorem 1.3 (for smooth
X ) follows from the following theorem,which can be regarded as an arithmetic
Riemann–Hilbert correspondence.

Theorem 1.5 (See Theorem 3.9 for the full and precise statements) Let X be
a smooth rigid analytic variety over k. Then

(i) Di
dR is a functor from the category of Qp-local systems on Xet to the

category of vector bundles on X with an integrable connection as above.
If X is a point, D0

dR coincides with Fontaine’s DdR functor.
(ii) The functors Di

dR commute with arbitrary pullbacks.
(iii) If X is connected and there exists a classical point x such that Lx̄ is de

Rham, then there is a decreasing filtration Fil on D0
dR(L) by sub-bundles

such that (D0
dR(L),∇L,Fil) is the filteredOX -module with an integrable

connection associated to L in the sense of [25, Definition 7.4]. In other
words, L is a de Rham local system in the sense of [25, Definition 8.3].
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Remark 1.8 (i) Although for most applications (e.g. Theorem 1.3) it is
enough to make use of D0

dR, we need to study all D
i
dR simultaneously in

order to prove the above statements (for D0
dR).

(ii) The local version of D0
dR essentially appeared in the work of Brinon [8].

Remark 1.9 (i) We emphasize that even (X, L) is the analytification of an
étale local system on an algebraic variety over k, the vector bundle
D0
dR(L) in the above theorem is a priori analytic. This is consistent with

the classical story, where the Riemann–Hilbert correspondence is first
established as an equivalence between Betti local systems and complex
vector bundles with a flat connection. However, we expect that D0

dR(L)

extends to a logarithmic connection on some nice compactification X̄ of
X and therefore is an algebraic connection with regular singularities.

(ii) Note that the vector bundle Di
dR(L) may not have the correct rank in

general. So arithmetic Riemann–Hilbert correspondence is only well-
behaved for de Rham local systems. In fact, if X is a (not necessarily
smooth) algebraic variety, there exists a well-defined category PdR(X)

of de Rham perverse sheaves on X andwe hope that D0
dR can be extended

to a functor from PdR(X) to the category of algebraic D-modules on X .
We plan to investigate these extensions in a future work.

We explain the idea of the construction of the functor RH. It is based on
the recent progresses in relative p-adic Hodge theory [17,18,24,25]. We will
follow notations from [25].

First recall that in the classical Riemann–Hilbert correspondence, the func-
tor from local systems to vector bundles with a connection on a complex
analytic variety X is given by tensoring with the sheaf of analytic functions

L 
→ L⊗C OX , ∇ = 1⊗ d.

In p-adic setting, our functor RH is of the same nature, except that it is
well-known that the analytic topology (or even the étale topology) in p-adic
setting is not fine enough and the sheaf of analytic functions on X cannot do the
job. The idea then is to consider some finer topology on X and certain period
sheaf under this topology as the replacement of OX . More precisely, Scholze
[25] introduced the pro-étale site Xproet of X as a refinement of the usual
étale topology on X and therefore admits a natural projection ν : Xproet →
Xet. Let ν′ : Xproet/X ˆ̄k → (X ˆ̄k)et be the restriction of ν. Every Qp-local
system L then gives rise to (roughly speaking via pullback) a locally constant
sheaf of Qp-modules on Xproet, denoted by L̂. In addition, on Xproet, there is
the de Rham period sheaf OBdR, which is a module over the structure sheaf
with an integrable connection and a decreasing filtration satisfying Griffiths
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transversality. Then we define

RH(L) := Rν′∗(L̂⊗Q̂p
OBdR).

It follows from the definition that the connection onOBdR induces an inte-
grable connection ∇L onRH(L). The key point is then to show thatRH(L),
which a priori might be a complex of sheaves, is indeed a finitely generated
OX ⊗̂BdR-module.

To prove this,wefirst replaceOBdR by its 0th graded pieceOC = gr0OBdR.
Then we need to study

H(L) := Rν′∗(L̂⊗Q̂p
OC).

Note that taking the associated graded of the connection on OBdR defines
a Higgs field on OC and therefore a Higgs field ϑL on H(L). It turns out the
functor

H : L 
→ (H(L), ϑL)

is nothing but (a special case of) the p-adic Simpson correspondence, which
was first proposed by Faltings [12] and recently systematically studied by
Abbes-Gros and Tsuji [1,2]1. We note that these works studied a much more
general and subtle theory than what we consider here. But in our special
case, the situation is simpler and nicer. For example, we have the following
statements.

Theorem 1.6 (See Theorem 2.1 for the full and precise statements) Let X be
a smooth rigid analytic variety over k. Then H is a tensor functor from the
category ofQp-local systems on Xet to the category of nilpotent Higgs bundles
on X ˆ̄k . The functorH is compatible with pullback along arbitrary morphisms
and (under certain conditions) is compatible with pushforward under smooth
proper morphisms.

Remark 1.10 Our theorem, compared with the p-adic Simpson correspon-
dence in [2,12], seems to contain the following additional results.

(i) We show that the Higgs field on H(L) is nilpotent. This reflects the fact
that L is defined over X (rather than over X ˆ̄k), and therefore acquires the
extra symmetry by the action of theGalois groupGal(k̄/k). It is analogous
to the following result of Simpson [28, Corollary4.2]: if L is a Betti local
system on a complex smooth projective variety that underlies a variation
ofHodge structure, then the correspondingHiggs bundle (M, ϑ) under the

1 It is pointed out by Abbes the subtlety to compare our construction with the construction of
Abbes-Gros’ in [2], although we believe that they are essentially the same.
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(classical) Simpson correspondence is nilpotent. In fact, the Galois group
of the cyclotomic tower of k should be regarded as the p-adic counterpart
of the Hodge torus C

× (see the proof of Lemma 2.15).
(ii) We establish some functoriality of the functor, e.g. its compatibility with

pullbacks (which is an important ingredient in the proof of Theorem 1.3).

Let us quickly describe the organization of the paper. Our paper is in fact
written in the reverse order of the introduction. We will first discuss the p-adic
Simpson correspondence in Sect. 2 and then study p-adic Riemann–Hilbert
correspondence in Sect. 3. Finally in Sect. 4, we prove Theorem 1.1 and give
the application to Shimura varieties.

Notations and conventions In the paper, k denotes a p-adic field and ˆ̄k a
completed algebraic closure of k. Let k∞ = ∪km be the cyclotomic extension

of k in k̄. Let K ⊂ ˆ̄k denote a perfectoid field containing k∞. Let K � be the tilt
of K . We fix a compatible system of p-power roots of unit {ζpm }m≥0 in k∞,
which gives ε = (1, ζp, . . .) ∈ OK � .

We regard rigid analytic varieties over L (L = k or K ) as adic spaces locally
of finite type over L . In particular, affinoid spaces are written as Spa(A, A+)

with A+ = A◦. If X = Spa(A, A+) is affinoid over k, we write AK =
A ⊗̂ k K and XK = Spa(AK , A+K ) its base change to K . An étale morphism
between affinoid spaces is called standard étale if it is a composition of rational
localizations and finite étale morphisms. A standard étale morphism from a
rigid analytic variety X over L to the torus

T
n = Spa(L〈T±11 , . . . , T±1n 〉,OL〈T±11 , . . . , T±1n 〉)

is called a toric chart of X .
Let X be a rigid analytic variety over k. Following [25], let Xproet be the

pro-étale site on X , and let

ν : Xproet → Xet

be the natural projection. Let Ẑp (resp. Q̂p) be the constant sheaf on Xproet
associated to Zp (resp. Qp), and for a Zp-local system L (resp. Qp-local
system) on Xet, let L̂ be the Ẑp-module (resp. Q̂p-module) on Xproet associated
to L (cf. [25, §8.2] [17, §9.1]).

2 The p-adic Simpson correspondence

In this section, we prove Theorem 1.6, which (we believe) is part of the p-
adic Simpson correspondence as first proposed by Faltings ([12]) and recently
systematically developed by Abbes-Gros and Tsuji (cf. [1,2]). We use the
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framework systematically developed in [17,18,24,25], and therefore work in
the world of rigid analytic geometry (in particular we make use of the pro-
étale topology à la Scholze). We note that some results in this section have
counterparts in the works of Faltings, Abbes-Gros, but in a different language
and in greater generality. Namely, the works of [1,2,12] use formal schemes
and Faltings topos, and therefore establish the correspondence at the more
subtle integral level. We will try our best to make the translation between
these two settings explicit in the sequel.

2.1 Statement of the theorem

Let X be an n-dimensional smooth rigid analytic variety over Spa(k,Ok).
Faltings introduced the notion of generalized representations on X ˆ̄k , (in the
case when X is the rigid generic fiber of a formal scheme overOk) which is a
generalization of p-adic representations of the geometric fundamental group
of X ˆ̄k . Then the p-adic Simpson correspondence of [12] is an equivalence of
categories between small generalized representations on X ˆ̄k and small Higgs
bundles on X ˆ̄k . Here “small” refers to those objects close to being trivial. Note
that the construction of such a correspondence is not completely canonical. It
depends on a choice of lifting X ˆ̄k to Fontaine’s ring A2, and therefore makes
globalization of the construction not straightforward.

We will consider a small part of this story. Namely, we consider those
generalized representations coming from genuine étale local systems on X
(rather than on X ˆ̄k), but (a priori) without any smallness assumption. It turns
out that the situation is much nicer due to the existence of the extra action of
Gal(k̄/k). We will attach such an étale Qp-local system L on X a nilpotent
Higgs bundle on X ˆ̄k in a completely canonical way. In particular, it globalizes
automatically. Note that we only have one direction functor from local systems
on Xet to Higgs bundles on X ˆ̄k , which is not an equivalence of categories.
Indeed, the functor loses information, as can be already seen in the case X =
Spa(k,Ok) (see Remark 2.2).

Let us be more precise. We denote by OX = ν∗OXet the structural sheaf
on Xproet and ÔX the completed version ([25, §4]). Let 
X = ν∗
Xet . Let
OBdR be the de Rham period sheaf on Xproet ([25, §6] and [26]). This is a
sheaf of OX -algebras, which admits a decreasing filtration Fil•OBdR and an
integrable connection

∇ : OBdR → OBdR ⊗OX 
X , (2.1)

satisfying Griffiths transversality. The main player of this section is the period
sheaf
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OC = gr0OBdR.

Recall that by [25, §6], gr jOBdR is isomorphic to the j th Tate twistOC( j)
of OC. Taking the associated graded connection, we get a Higgs field

gr(∇) : OC → OC⊗
X (−1). (2.2)

Remark 2.1 Alternatively, the period sheafOC can be constructed as follows.
Let

0→ ÔX → E → ÔX ⊗OX 
X (−1) → 0 (2.3)

denote the Faltings’ extension, which is an extension of locally free ÔX -
modules on Xproet. Then

OC = SymÔX
E/(1− 1) = lim−→n Sym

n
ÔX

E,

where the first 1 is the unit of the symmetric algebra SymÔX
E and the second

1 ∈ ÔX ⊂ E = Sym1 E .
Note that the local version of OC first appeared in the work of Hyodo [14]

(under the notation S∞).

To simplify the exposition, we assume that the perfectoid field K is the
completion of aGalois extension of k (in k̄) that contains k∞, and let Gal(K/k)
denote the corresponding Galois group. Let

ν′ : Xproet/XK = (XK )proet → (XK )et

denote the projection from the pro-étale site of XK to the étale site of XK . The
following theorem is a precise version of Theorem 1.6.

Theorem 2.1 (i) LetL be aQp-local systemon Xet of rank r . Then Riν′∗(L̂⊗
OC) = 0 for i > 0 and

H(L) := ν′∗(L̂⊗OC), ϑL = ν′∗(gr∇) : H(L) → H(L)⊗
XK (−1)

is a rank r vector bundle on XK together with a nilpotent Higgs field ϑL

and a natural semi-linear Gal(K/k)-action.
(ii) There is a canonical isomorphism

ν′∗H(L)⊗OXK
OC|(XK )proet � (L̂⊗OC)|(XK )proet ,

compatible with the Higgs fields on both sides.
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(iii) Let f : Y → X be a morphism between smooth rigid analytic varieties
over k and let L be a Qp-local system on Xet. Then there is a canonical
isomorphism

f ∗(H(L), ϑL) � (H( f ∗L), ϑ f ∗L).

(iv) We have H(Qp) = OXK , where Qp denotes the constant local system.
There is a canonical isomorphism

(H(L1⊗L2), ϑL1⊗L2) � (H(L1)⊗OXK
H(L2), ϑL1⊗1+1⊗ϑL2), (2.4)

and
(H(L∨), ϑL∨) � (H(L)∨, ϑ∨

L
). (2.5)

In otherwords,H is a tensor functor from the category ofQp-local systems
on X to the tensor category of nilpotent Higgs bundles with a semi-linear
Gal(K/k)-action on XK .

(v) Let f : X → Y be a smooth proper morphism of rigid analytic varieties
over k and L be a Zp-local system on Xet. Assume that all Ri f∗L are
Zp-local systems on Yet. Then there is a canonical isomorphism

(H(Ri f∗L), ϑRi f∗L) � Ri fHiggs,∗(H(L)⊗
•
X/Y , ϑL).

A few notations need to be explained. A priori,H(L) is a sheaf ofO(XK )et -
modules on XK . Then Part (i) of the theorem asserts that it is locally free of
finite rank on (XK )et. By [25, Lemma 7.3], we may therefore regard it as a
vector bundle on XK (equipped with the analytic topology). In Part (ii), the
Higgs field on the right hand side is given by (2.2) and on the left hand side is
the tensor product of the Higgs field on H(L) and on OC (see the formula in
(2.4)). The pullback functor f ∗ on the left hand side in Part (iii) is the usual
pullback of coherent sheaves on rigid analytic spaces (whereas on the right
hand side is the usual pullback of local systems). The Higgs field induces a
complex of OXK -modules on XK ,

H(L)
ϑ̄L→ H(L)⊗
X/Y (−1) ϑ̄L→ H(L)⊗
2

X/Y (−2) → · · · ,

where ϑ̄L is the composition of ϑL followed by the natural projection

H(L)⊗
X (−1) → H(L)⊗
X/Y (−1),

and Ri fHiggs,∗(H(L), ϑL) in Part (v) is the i th derived pushforward of this
complex with the induced Higgs field.
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Before proving the theorem, let us make a few observations/remarks. We
have the corollary of Part (v).

Corollary 2.2 If X is smooth proper over k, then

Hi
(
X ˆ̄k, L

)
⊗ ˆ̄k � Hi

(
X ˆ̄k, (H(L)⊗
•

X , ϑL)
)

.

In particular, if L = Zp is constant, then (H(L), ϑL) = OX ˆ̄k
with the trivial

Higgs field, and we recover the classical Hodge–Tate decomposition (cf. [25,
Corollary1.8]).

Remark 2.2 Note that if X = {x} = Spa(k,Ok) is a point, then H(L) =
(Lx̄ ⊗ ˆ̄k)Gal( ˆ̄k/K ) with the zero Higgs field.

In addition, Part (iii) implies that for a classical point y of X ,

H(L)|y×k K �
(
IndGal(k̄/k)

Gal(k̄/k(y))
Lȳ ⊗ ˆ̄k

)Gal(k̄/K )

,

where ȳ is a geometric point lying over y and k(y) is the residue field of
y, and the fiber of H(L) at each point of XK lying over y is isomorphic to

(Lȳ ⊗ ˆ̄k)Gal( ˆ̄k/Kk(y)).

Remark 2.3 It appears at the first glance that the assumptions in Theorem
2.1 are weaker than the standard assumptions needed for the p-adic Simpson
correspondence as in [2,12]. However, a closer inspection reveals that it is not
the case.

(i) In both approaches [2,12], the construction of the p-adic Simpson corre-
spondence relies on a choice of a lifting of (an integral model of) X ˆ̄k to

Fontaine’s ring A2(
ˆ̄k). We also implicitly make such a choice. Namely,

since the map k → ˆ̄k canonically factors through k → A2(
ˆ̄k)[1/p] → ˆ̄k,

the base change of X to A2(
ˆ̄k)[1/p] provides such a canonical lifting (in

fact the Faltings extension (2.3) is constructed out of this lifting). See also
Remark 3.1.

(ii) We do notmake any smallness assumption onL. But since the correspond-
ing Higgs field is nilpotent, it follows a posteriori that L is always small
(as a Qp-local system).

Remark 2.4 In order to establish the p-adic Simpson correspondence for all
small generalized representations, Abbes-Gros constructed much more com-
plicated period sheaves (various “overconvergent” versions of OC) under
the name of Higgs–Tate algebras (see [2, III.10]). Since in our situation the
Higgs fields are always nilpotent, we do not need to make use of these more
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complicated sheaves (but it remains a question to compare our functor with
Abbes-Gros’).

Remark 2.5 Let OBHT := grOBdR = ⊕
i OC(i). In [14], Hyodo considered

(the local version of) the functor

L 
→ ν∗(L̂⊗OBHT),

which reduces to the usual DHT functor when X is a point. He defined Hodge–
Tate local systems as those L such that ν∗(L̂ ⊗ OBHT) is a vector bundle
on X of the expected rank. It would be interesting to find a more explicit
characterization of Hodge–Tate local systems on X , similar to Theorem 3.9 in
the sequel.

2.2 Preliminaries

In this subsection, we establish some preliminary facts that will be used in the
sequel.

Recall that an object U ∈ Xproet is called affinoid perfectoid if it admits
a presentation U = lim proji∈I Ui with Ui = Spa(Ai , A

+
i ) such that the

completed direct limit ( Â, Â+) of {(Ai , A
+
i )}i∈I is perfectoid. In this case, we

write Û for the affinoid perfectoid space Spa( Â, Â+), which is independent
of the choice of the presentation.

Proposition 2.3 Let U be affinoid perfectoid in Xproet. Then for any finite

locally free moduleM over ÔX |U , Hi (Xproet/U,M) = 0 for all i > 0.

Remark 2.6 Note that finite locally free ÔX |X ˆ̄k -modules correspond to Falt-
ings’ generalized representations in our setting.

Proof Let OÛ be the adic structure sheaf of the affinoid perfectoid space Û
associated toU . By [17, Theorem 9.2.15],M is isomorphic to the pullback of
some finite locally freeOÛ -module M̂. Namely, there exists an isomorphism

M(V ) � M̂(Û )⊗O(Û )
ÔX (V )

for any object V ∈ Xproet|U , which is functorial in the obvious sense.
We may choose a finite cover {Û j } j∈J of Û by rational subsets so that M̂

is free on each Û j . By virtue of [17, Lemma 2.6.5(a)], for any j ∈ J , Û j is
obtained by pulling back a rational localization of some affinoid adic space
appearing in a pro-étale presentation of U . Let Uj ⊂ U be the pullback of
this localization. Then Uj is affinoid perfectoid and Û j is isomorphic to the
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associated affinoid perfectoid space. In particular,M is free on Xproet/Uj for
each j ∈ J . Using [24, Proposition 7.13], we have

Hi (Xproet/Uj0 ×U · · · ×U U jk ,M) = 0

for any { j0, . . . , jk} ⊂ J and i > 0. Consequently, we obtain

Hi (Xproet/U,M) = Ȟ i ({Uj } j∈J ,M), i ≥ 0

by the Cech-to-derived spectral sequence. The right hand side in turn is
the same as Ȟ i ({Û j } j∈J ,M̂). On the other hand, by [24, Theorem 6.3]
and [17, Theorem 2.7.7], the structure sheaf of a perfectoid space satisfies
the Tate sheaf property in the sense of [17, Definition 2.7.6]. This implies
Ȟ i ({Û j } j∈J ,M̂) = 0 for all i > 0. ��
Corollary 2.4 Let L be a Qp-local system on Xet and let U be affinoid

perfectoid in Xproet. For any −∞ ≤ a ≤ b ≤ ∞, let OB
[a,b]
dR =

Fila OBdR/Filb+1OBdR. Then

Hi
(
Xproet/U, L̂⊗OB

[a,b]
dR

)
= 0, i > 0.

Proof Note that for every Qp-local system L on X , L̂ is locally trivial on
Xproet, and therefore L̂⊗M is a finite locally free ÔX -module if M is so.

First assume that a = b so OB
[a,b]
dR = OC(a). We can ignore the Tate

twist. Recall that we may write OC = lim−→ Symn
ÔX

E , where E is the Faltings’

extension. Since |X | is quasi-compact, the site Xproet is coherent by virtue
of [25, Proposition 3.12(vii)]. Thus cohomology commutes with direct limit
of abelian sheaves over Xproet. We therefore deduce that Hi (Xproet/U, L̂ ⊗
OC) = 0 by Proposition 2.3. By induction on b− a, we deduce the corollary
when a, b �= ∞. Using [25, Lemma 3.18] and the coherence of Xproet, we can
also allow a, b = ±∞. ��

Next, we introduce a base B for (XK )et that is useful for computations.
Namely we consider a subcategory B of (XK )et, whose objects consist of
those étale maps to XK that are the base changes of standard étale morphisms
Y → Xk′ defined over some finite extension k′ of k in K where Y is also
required to admit a toric chart after some finite extension of k′, and whose
morphisms are the base changes of étale morphisms over some finite extension
of k in K . Note that B is in fact a small category and we equip B with the
induced topology from (XK )et ([30, 3.1]).

Lemma 2.5 The natural map of the associated topoi (XK )∼et → B∼ is an
equivalence.
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Proof According to [30, Theorem 4.1], it is enough to show that B is a full
subcategory and every object in (XK )et admits a covering by objects from B.
For the second statement, recall that for any Y → X étale and y ∈ Y , there
exists a rational subset U ⊂ Y containing y such that U → X is standard
étale (cf. [10, Proposition3.1.4]). Moreover, by [5, Lemma 2.1.3(i)], any étale
morphism Y → XK is, locally on Y , a base change of an étale morphism
Y ′ → Xk′ = X ×k k′ for some finite extension k′ of k in K . In addition, we
can further cover Y ′ by rational open subsets, each of which admits a toric
chart.

It remains to prove that B is a full subcategory of (XK )et. I.e. we need to
show that if YK → ZK is a morphism in (XK )et with Y = Spa(B, B+),
Z = Spa(C,C+) ∈ Xet, then it is the base change of a morphism Y ′ → Z ′
over some finite extension k′ of k inside K . That is to say, the composite
YK → ZK → Zk′ factors through Yk′ . Note that by the acyclicity of the
structure sheaf of an affinoid space [17, Theorem 8.2.22], it suffices to prove
the assertion étale locally. Thus using [5, Lemma 2.1.3(i)] and [10, Proposition
3.1.4], we may reduce to the case that X = Spa(A, A+) is an affinoid space,
Z → X is a rational localization or a finite étale covering. The case of rational
embedding is clear: YK maps to the rational subset ZK ⊂ XK implies that Y
maps to the rational subset Z ⊂ X .

Now suppose A → C is faithfully flat and finite étale. It amounts to show
that the morphism f : C → CK → BK factors through Bk′ for some finite
extension k′ over k inside K . Now fix c ∈ C , and let F(T ) ∈ A[T ] be the
characteristic polynomial of c over A. Choose ε > 0 so that for any α in the
Shilov boundary of BK and any root x �= f (c) of f (F(T )) in the completed
residue field H(α), |x − f (c)| > ε. On the other hand, it is straightforward
to see that there exists a finite extension k′ over k inside K and b ∈ Bk′ such
that | f (c)− b| < ε. We claim that f (c) is Gal(K/k′)-invariant. Granting the
claim, we see that f (c) ∈ BGal(K/k′)

K = Bk′ by the Ax–Sen–Tate theorem.
This yields the assertion by choosing a finite set of topological generators of
C . To prove the claim, we apply the argument as per Krasner’s lemma. Since b
is Gal(K/k′)-invariant, we get |g( f (c))− f (c)| < ε for any g ∈ Gal(K/k′).
Note that g( f (c)) is also a root of f (F(T )). This forces g( f (c)) = f (c) at
the Shilov boundary of BK by our assumption on ε; thus g( f (c)) = f (c).

��

Corollary 2.6 LetM be a rule to functorially assign every (Y = Spa(B, B+)

→ Xk′) ∈ B afinite projective BK -module M(YK ) such that for every standard
étale map Z = Spa(C,C+) → Y , the natural morphism M(YK )⊗BK CK →
M(ZK ) is an isomorphism (note that (Z → Y → Xk′) ∈ B). ThenM defines
a vector bundle on (XK )et.
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Proof This follows from the above lemma and Tate’s acyclic theorem and
Kiehl’s glueing theorem. ��

2.3 Proof of Theorem 2.1

This subsection is devoted to the proof of this theorem modulo Proposition
2.8, which will be established in the next subsection.

First, by definition, Hi (L) := Riν′∗(L̂ ⊗ OC) is the sheafification of the
presheaf

(Y ∈ (XK )et) 
→ Hi (Xproet/Y, L̂⊗OC).

Therefore by Corollary 2.6, to prove that H(L) = H0(L) is a vector bundle
of rank r = rk L and Hi (L) = 0 for i > 0, it is enough to show that

(a) If X = Spa(A, A+) admits a toric chart, H0(Xproet/XK , L̂ ⊗ OC) is a
finite projective AK -module of rank r ;

(b) If in additionY = Spa(B, B+) ∈ Xet is standard étale, Hi (Xproet/YK , L̂⊗
OC) = 0 for i > 0, and

H0(Xproet/YK , L̂⊗OC) = H0(Xproet/XK , L̂⊗OC)⊗AK BK .

Since these two statements are of local natural, we can in addition assume that
L is a Zp-local system. We will keep these assumptions in the proof.

For m ≥ 0, let

T
n
m = Spa(km〈T±1/p

m

1 , . . . , T±1/p
m

n 〉,Okm 〈T±1/p
m

1 , . . . , T±1/p
m

n 〉),
and

Xm = Spa(Am, A+m) = X ×Tn T
n
m .

Let T̃n∞ = lim←−mT
n
m , and X̃∞ = X ×Tn T̃

n∞ be the affinoid perfectoid in Xproet

represented by the relative toric tower ([18, Definition 7.2.4])

· · · → Xm → · · · → X1 → X0 = X. (2.6)

In particular, let ( Â∞, Â+∞) be the perfectoid affinoid completed direct limit
of the (Am, A+m)’s, then X̂∞ = Spa( Â∞, Â+∞) is the affinoid perfectoid space
associated to X̃∞.

Let XK ,m = Spa(AK ,m, A+K ,m) be the base change of Xm to K over km . Let

X̃K ,∞ be the affinoid perfectoid represented by the toric tower ([18, Definition
7.1.4])

123



Rigidity and a Riemann–Hilbert correspondence... 307

· · · → XK ,m → · · · → XK ,1 → XK ,0 = XK , (2.7)

and X̂K ,∞ = Spa( ÂK ,∞, Â+K ,∞) be the associated affinoid perfectoid space.

The Galois cover X̃K ,∞/X has Galois group, which fits into a splitting exact
sequence

1→ geom →  → Gal(K/k) → 1,

where geom � Zp(1)n is the Galois group of X̃K ,∞ over XK such that the i th

generator γi ∈ geom acts on T 1/pm

i via multiplication by ζpm and on T 1/pm

j
as identity for j �= i . Then Gal(K/k) acts on geom via the p-adic cyclotomic
character

χ : Gal(K/k) → Z
×
p .

Similarly, if f : Y → X is standard étale, we define Ym = Spa(Bm, B+m ),
YK ,m = Spa(BK ,m, B+K ,m), Ỹ∞, Ŷ∞ = Spa(B̂∞, B̂+∞), ỸK ,∞ and ŶK ,∞ =
Spa(B̂K ,∞, B̂+K ,∞) by pulling back along f .

To proceed, we first replace Hi (Xproet/YK , L̂⊗OC) by amore computable
expression. In the rest of the paper, Galois cohomology always means contin-
uous Galois cohomology.

Lemma 2.7 For i ≥ 0, the natural map

Hi (geom, (L̂⊗OC)(ỸK ,∞)) → Hi (Xproet/YK , L̂⊗OC)

is an isomorphism.

Proof UsingCorollary 2.4,wemay proceed as in the proof of [25, Lemma5.6].
Let Ỹ k/YK

K ,∞ be the k-fold fiber product of ỸK ,∞ over YK . As ỸK ,∞ → YK is a

Galois cover with Galois group geom, Ỹ
k/YK
K ,∞ is isomorphic to ỸK ,∞×k−1

geom.
By [25, Lemma 3.16], it follows that

Hi
(
Xproet/Ỹ

k/Y
K ,∞, L̂⊗OC

)
� Homcont(

k−1
geom, Hi (Xproet/ỸK ,∞, L̂⊗OC))

for all k ≥ 1 and i ≥ 0. Now applying the Cartan–Leray spectral sequence to
the Galois cover ỸK ,∞ → YK and using the fact that Hi (Xproet/ỸK ,∞, L̂ ⊗
OC) = 0 for i > 0, we conclude that

Hi (Xproet/YK , L̂⊗OC) � Hi (geom, (L̂⊗OC)(ỸK ,∞))

for all i ≥ 0, yielding the desired isomorphism. ��
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Let us write

M = L̂⊗ ÔX .

Then M(ỸK ,∞) is a finite projective B̂K ,∞-module equipped with a semi-
linear-action.According to [25, §6], over Xproet/ỸK , there is an isomorphism

OC = gr0OBdR � ÔYK [V1, . . . , Vd ], (2.8)

where Vi = t−1 log([T �
i ]/Ti ) and t = log([ε]), and the sth generator γs of

geom acts on Vt by γs(Vt ) = Vt + δst ([25, Lemma 6.17]). Therefore,

(L̂⊗OC)(ỸK ,∞) �M(ỸK ,∞)[V1, . . . , Vn].

Now we may replace Hi (Xproet/YK , L̂ ⊗ OC) by Hi (geom,M(ỸK ,∞)

[V1, . . . , Vn]) in (a) and (b). The key statements that allow one to calculate
them are as follows. We set Bkm = B ⊗k km .

Proposition 2.8 There exists a unique finite projective BK -submodule MK (Y )

of M(ỸK ,∞), which is stable under , such that

(i) MK (Y )⊗BK B̂K ,∞ =M(ỸK ,∞);
(ii) The BK -linear representation of geom on MK (Y ) is unipotent;

In addition, the module MK (Y ) has the following properties:

(P1) There exist some positive integer m0 and some finite projective Bkm0
-

submodule M(Y ) of MK (Y ) stable under  such that M(Y ) ⊗Bkm0
BK = MK (Y ). Moreover, the construction of M(Y ) is compatible
with base change along standard étale morphisms.

(P2) For every i ≥ 0, the natural map

Hi (geom, MK (Y )) → Hi (geom,M(ỸK ,∞))

is an isomorphism.

The proof of Proposition 2.8 will be given in the next subsection. Grant-
ing the proposition, we complete the proof of the theorem in the rest of this
subsection. First, taking the logarithmic defines a Higgs field

(MK (X), ϑ : MK (X) → MK (X)⊗A 
1
A/k(−1)). (2.9)

Since the action of geom on MK (X) is unipotent by Proposition 2.8(ii), fol-
lowing [2, I.3.3.2], we normalize ϑ such that each γi ∈ geom acts on MK (X)

as exp(tϑ(Ti
d
dTi

)).
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Onemay therefore reformulate Proposition 2.8(P2) by saying that the Higgs
cohomology

0→ MK (X)
ϑ→ MK (X)⊗A 
A/k(−1) ϑ∧ϑ→ MK (X)⊗A 
2

A/k(−2) → · · ·

calculates H∗(Xproet/XK , L̂⊗ ÔX ).

Remark 2.7 The above proposition can be regarded (in our setting) as the local
version of the p-adic Simpson correspondence for small affine schemes (see
[2,12] for details). It can also be regarded as a relative version of Sen’s theory.
Our improvement here is that when L is defined over X (rather than XK ),
the Higgs field is nilpotent (we learned from Abbes that a similar nilpotence
statement already appeared in [7, Proposition 5] and [29, Lemma 9.5]). Our
approach is different from loc. cit.

A priori, the BK -module MK (Y ) depends on the choice of the toric chart
Y → X → T

n . But the following lemma says that indeed it does not.

Lemma 2.9 For i ≥ 0, there is a canonical isomorphism

Hi (Xproet/YK , L̂⊗OC) �
{
MK (Y ) i = 0

0 i > 0,
(2.10)

which is Gal(K/k)-equivariant.

Note that this statement completes the proof of (a) and (b), and therefore
implies thatHi (L) = 0 for i > 0 andH(L) = ν′∗(L̂⊗OC) is a vector bundle
on XK of the expected rank.

Proof We first need an elementary lemma.

Lemma 2.10 Let W be a Q-vector space with a linear automorphism γ :
W → W. Put

W gen.inv. = {w ∈ W | (γ − 1)Nw = 0 for some N ∈ N},

i.e. the generalized eigenspace of γ on W with eigenvalue 1. Define an action
of γ on W [V ] as γ (wV j ) = γ (w)(V + 1) j . Then the natural map

W [V ] → W, V 
→ 0

induces an isomorphism from H0(γ,W [V ]) = W [V ]γ=1 to W gen.inv.. More-
over, if W = W gen.inv., then H1(γ,W [V ]) = W [V ]/(γ − 1)W [V ] vanishes.

123



310 R. Liu, X. Zhu

Proof Weconsider the basis ofW [V ]givenby
(
V
i

)
= V (V−1) · · · (V−i+1)

i ! .

It is straightforward to see that

(γ − 1)

(
r∑

i=0
wi

(
V
i

))
=

r∑
i=0

(γ (wi+1)+ γ (wi )− wi )

(
V
i

)
, (2.11)

where wr+1 = 0. Therefore, we see that
∑r

i=0 wi
(V
i

) ∈ H0(γ,W [V ]) if and
only if

wi+1 = γ−1(wi − γ (wi )), i ≥ 0.

That is, all wi are uniquely determined by w0 and (γ − 1)r+1(w0) = 0 for
some r . This yields the first assertion of the lemma.

Now suppose W = W gen.inv.. For w ∈ W , assume that (γ − 1)r+1(w) = 0
for some r ≥ 0. A short computation shows that for any j ≥ 0,

w

(
V
j

)
= (γ − 1)

(
r∑

i=1
γ−i (1− γ )i−1(w)

(
V

i + j

))
.

This yields the second assertion of the lemma. ��
Nowwemay proceed as in the proof of [25, Proposition 6.16(i)]. By Propo-

sition 2.8(P2) and an argument in [25] (given in the paragraph after Lemma
6.17 of [25]), the natural map

Hi (geom, MK (Y )[V1, . . . , Vn]) → Hi (geom,M(Ỹ∞)[V1, . . . , Vn])

is an isomorphism. Note that for 1 ≤ s ≤ n, H•(Zpγs, MK (Y )[V1, . . . , Vs])
is computed by the complex

MK (Y )[V1, . . . , Vs] γs−1→ MK (Y )[V1, . . . , Vs].

By Proposition 2.8(ii), it is straightforward to see that for the action of γs ,

MK (Y )[V1, . . . , Vs−1]gen.inv. = MK (Y )[V1, . . . , Vs−1].

Therefore, using Lemma 2.10, we deduce that

Hi (Zpγs, MK (Y )[V1, . . . , Vs]) �
{
MK (Y )[V1, . . . , Vs−1] i = 0

0 i > 0.
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Using the Hochschild–Serre spectral sequence, we conclude the desired result
by reverse induction. ��

To finish the proof of Part (i), we also need to analyze the Higgs field on
H(L).

Lemma 2.11 Under the identification H(L)(XK ) = MK (X) in Lemma 2.9,
ϑL = ϑ . In particular, it is nilpotent.

Proof First note that the action of geom on MK (X)[V1, . . . , Vn] is unipotent.
Therefore we may endow MK (X)[V1, . . . , Vn] with the Higgs field

� = ϑ ⊗ 1+ 1⊗
∑
i

d

dVi
⊗ t−1 dTi

Ti
: MK (X)[V1, . . . , Vn]

→ MK (X)[V1, . . . , Vn] ⊗
X (−1)

such that γi = exp(t�(Ti
d
dTi

)). Therefore ν′∗(L̂⊗OC)(XK ) is calculated by
the Higgs cohomology of (MK (X)[V1, . . . , Vn], �). On the other hand, since

Vi = t−1 log [T �
i ]
Ti

,

gr∇ = −1⊗ t−1
∑
i

d

dVi
⊗ dTi

Ti
. (2.12)

Therefore, on the space ker�, ϑ = gr∇ = ϑL. ��
We have finished the proof of Part (i). Part (ii) is also clear. Namely, the

map is induced by the adjunction

ν′∗ν′∗(L̂⊗OC) → L̂⊗OC.

By Proposition 2.8, it becomes an isomorphism after tensoring the source with
OC.

Next, we prove Part (iii) of the theorem. We start with a discussion of maps
between period sheaves introduced in [25, §4, §6] induced by a morphism of
rigid analytic varieties.

Let f : Z → X be a morphism of smooth rigid analytic varieties over k
and let fproet : Zproet → Xproet denote the induced map of pro-étale sites2. Let
( f −1proet, fproet,∗) denote the pair of adjoint functors (pullback and pushforward)
between the corresponding topoi. Note that we reserve the notation f ∗proet for
another meaning given in (2.16).

2 We use Z instead of Y as in the statement of the theorem since Y has another meaning
according to our previous convention.
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Now we construct induced maps between period sheaves. First we have
O+

X → fproet,∗O+
Z and by completion obtain

Ô+
X → fproet,∗Ô+

Z , (2.13)

and then by tilting and taking ring of Witt vectors, obtain Ainf,X →
fproet,∗Ainf,Z . Recall from [25,26] that OB

+
dR is the sheafification of the

presheaf that assigns every affinoid perfectoid U = lim←−Uj ∈ Xproet the direct

limit over j of the ker θ -adic completion of (O+
X (Uj ) ⊗̂W (κ)Ainf(U ))[ 1p ],

where κ is the residue field of k, the completed tensor product means the
p-adic completion of the tensor product, and

θ : O+
X (Uj ) ⊗̂W (κ)Ainf(U ) → Ô+

X (Uj )

is the usual map. Therefore, we have OB
+
dR,X → fproet,∗OB

+
dR,Z and by

inverting t ,
OBdR,X → fproet,∗OBdR,Z , (2.14)

which is compatible with filtrations. Finally, taking the associated graded gives

OCX → fproet,∗OCZ . (2.15)

The map (2.13) (after inverting p) allows one to define the pullback functor
f ∗proet from the category of ÔX -modules to the category of ÔZ -modules as

f ∗proetM := f −1proetM⊗ f −1proetÔX
ÔZ . (2.16)

As usual, f ∗proet is the left adjoint of fproet,∗, when regarded as a functor from the

category ÔZ -modules to the category of ÔX -modules. The following lemma
immediately follows from [17, Theorem 9.2.15].

Lemma 2.12 Assume that M is a finite locally free ÔX -module. For every
affinoid perfectoid V → U covering Z → X, i.e. U (resp. V ) is an affinoid
perfectoid in Xproet (resp. in Zproet), and V → U ×X Z is a morphism in
Zproet, there is a canonical isomorphism

( f ∗proetM)(V ) =M(U )⊗ÔX (U )
ÔZ (V ).

Now let L be a Qp-local system on Xet. Note that there is a canonical
isomorphism

f ∗proet(L̂⊗ ÔX ) � f̂ ∗L⊗ ÔZ .

In addition, since L̂ is locally trivial on Xproet, (2.15) induces a map L̂ ⊗
OCX → fproet,∗( f̂ ∗L⊗OCZ ), and therefore the adjunction map
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f ∗proet(L̂⊗OCX ) → f̂ ∗L⊗OCZ . (2.17)

On the other hand, there is a natural adjunction

ν′X,∗(L̂⊗OCX ) → ν′X,∗ fproet,∗ f ∗proet(L̂⊗OCX ) = f∗ν′Z ,∗ f ∗proet(L̂⊗OCX ).

(2.18)
Composing them and by adjunction, we obtain the sought-after map

f ∗H(L) = f ∗ν′X,∗(L̂⊗OCX ) → ν′Z ,∗( f̂ ∗L⊗OCZ ) = H( f ∗L). (2.19)

It remains to show that it is an isomorphism.
The question is local (in étale topology) on the source and target so we can

assume that both X = Spa(A, A+) and Z = Spa(C,C+) are affinoid spaces
admitting toric charts, andL is aZp-local system. By writing a map of affinoid
algebras A → C as the composition A → A〈x1, . . . xn〉 � C , wemay assume
that f : Z → X is either a closed embedding or a smooth projection. In either
case, we can (after further localization on the source and target) arrange their
toric charts to fit into the following (not necessarily Cartesian) commutative
diagram

Z −−−→ T
m

⏐⏐�
⏐⏐�

X −−−→ T
n,

(2.20)

where in the case of closed embedding, T
m → T

n is the embedding of the
subtorus given by Tm+1 = · · · = Tn = 1 and in the case of smooth projection
T
m → T

n is the projection given by Ti 
→ Ti , 1 ≤ i ≤ n. In either case, we
fix a map T̃

m∞ → T̃
n∞ lifting T

m → T
n . Note that this naturally gives rise to a

map Z → X , where X and Z are Galois groups for the towers X̃K ,∞/X
and Z̃K ,∞/Z respectively, and a map Z̃K ,∞ → Z ×X X̃K ,∞.

Let us write M = L̂ ⊗ ÔX and N = f̂ ∗L ⊗ ÔZ so N � f ∗proetM.

Evaluating it at Z̃K ,∞ and by Lemma 2.12, we have

M(X̃K ,∞)⊗ ÂK ,∞ ĈK ,∞ � N (Z̃K ,∞). (2.21)

In addition, under our choice of toric charts and under the isomorphism (2.8),
the adjoint of the map (2.17), evaluated at Z̃K ,∞ is given by

(M(X̃K ,∞)⊗ ÂK ,∞ ĈK ,∞)[V1, . . . , Vn] → N (Z̃K ,∞)[V1, . . . , Vm]

where Vi 
→ Vi for i ≤ n, and Vi 
→ 0 for i > n if Z → X is a closed
embedding.
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Now, it is straightforward to see that the evaluation of (2.19) at ZK is the
same as the composition

H0(X,geom,M(X̃K ,∞)[V1, . . . , Vn])⊗AK CK

→ H0(Z ,geom, (M(X̃K ,∞)⊗AK CK )[V1, . . . , Vn])
→ H0(Z ,geom, (M(X̃K ,∞)⊗ ÂK ,∞ ĈK ,∞)[V1, . . . , Vn])
→ H0(Z ,geom,N (Z̃K ,∞)[V1, . . . , Vm]). (2.22)

To see that (2.22) is an isomorphism, let

MK (X) ⊂M(X̃K ,∞) and NK (Z) ⊂ N (Z̃K ,∞)

be as in Proposition 2.8 for the local systemsL and f ∗L respectively. It follows
that

(MK (X)⊗AK CK )⊗CK ĈK ,∞ = (MK (X)⊗AK ÂK ,∞)⊗ ÂK ,∞ ĈK ,∞
�M(X̃K ,∞)⊗ ÂK ,∞ ĈK ,∞ � N (Z̃K ,∞).

In addition,geom,Z acts onMK (X)⊗AK CK throughgeom,Z → geom,X and
therefore acts unipotently. By Proposition 2.8, we deduce that (2.21) induces
an isomorphism

MK (X)⊗AK CK → NK (Z).

Togetherwith Lemma 2.9 (and its proof), it implies that (2.22) can be identified
with

H0(X,geom, MK (X)[V1, . . . , Vn])⊗AK CK

→ H0(Z ,geom, (MK (X)⊗AK CK )[V1, . . . , Vn])
→ H0(Z ,geom, NK (Z)[V1, . . . , Vm]),

which is an isomorphism (again by Lemma 2.9). This proves (iii).
Next, we prove Part (iv). The first statement follows from

ν′∗OC � OXK , (2.23)

as can be easily seen from the above argument.
Using Part (ii), we have

ν′∗(H(L1)⊗H(L2))⊗OXK
OC � ν′∗H(L1)⊗OXK

L̂2 ⊗OC

� L̂1 ⊗ L2 ⊗OC � ν′∗H(L1 ⊗ L2)⊗OC.

Pushing forward along ν′∗ and using (2.23), we conclude (2.4).
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To prove (2.5), applying (2.4) to L1 = L and L2 = L
∨, we obtain a

canonical map
H(L∨) → H(L)∨. (2.24)

It remains to prove that this is an isomorphism. It follows from the construction
that thismap (2.24) is compatible with the isomorphism in Part (iii). Therefore,
to prove that it is an isomorphism, it is enough to assume that X is a point, in
which case this is clear since the map is injective (see Remark 2.2).

Remark 2.8 By virtue of Part (iii), (2.4) is equivalent to the following Künneth
type formula: Let Li be a local system on Xi for i = 1, 2. Then there is a
canonical isomorphism

H(L1 � L2) � H(L1) � H(L2),

compatible with the Higgs fields on both sides. Here, as usual L1 � L2 (resp.
H(L1) � H(L2)) denotes the external tensor product of local systems (resp.
vector bundles) on X1 ×k X2 (resp. on (X1)K ×K (X2)K ).

Finally, we prove Part (v). We only give a sketch since granting Part (i) the
other ingredients are already in [25, §8]. First, we have an acyclic complex on
Xproet

0→ f ∗proetOCY → OCX
gr(∇)→ OCX ⊗
1

X/Y (−1)
→ OCX ⊗
2

X/Y (−2) → · · · .

This can be deduced using [25, Proposition 8.5] or a direct computation using
the charts (2.20) and Formula (2.12).

Let us tensor this complex with L̂ and push it forward to (YK )et in two ways
appearing in the following commutative diagram

(XK )proet
fproet−−−→ (YK )proet

ν′X
⏐⏐�

⏐⏐�ν′Y

(XK )et
fet−−−→ (YK )et.

On the one hand, by Part (i), we have the quasi-isomorphism

R fet,∗(H(L)⊗
•
X/Y , ϑ̄L) = R fet,∗Rν′X,∗(L̂Y ⊗OCX

gr(∇)→ L̂Y ⊗OCX ⊗
X/Y (−1) → · · · ). (2.25)

On the other hand, we have the following lemma.
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Lemma 2.13 Let f : X → Y be a smooth proper morphism of smooth rigid
analytic varieties. Let M be a locally free OX -module on Xproet. There is a
canonical isomorphism

R fproet,∗M⊗OY OCY � R fproet,∗(M⊗OX f ∗proetOCY ).

Proof By examining [25, Lemma 8.6], one finds that one can replaceOCX by
f ∗proetOCY in the argument. ��
In particular, since we assume that all Ri f∗L are local systems,

ν′Y,∗(R̂ f∗L⊗OCY ) = Rν′Y,∗R fproet,∗(L̂⊗ f ∗proetOCY ). (2.26)

Putting (2.25) and (2.26) together, Part (v) follows.

2.4 Proof of Proposition 2.8

To prove Proposition 2.8, we will employ some key technical ingredients
developed in [18]. By themain results of [18, §7], both toric towers and relative
toric towers are locally decompleting in the sense of [18, Definition 5.6.2].
Roughly speaking, this means that we have an analog of the classical theorem
of Cherbonnier–Colmez for (ϕ, )-modules arising from those towers. More
precisely, we have the following result.

Lemma 2.14 For sufficiently large m, there exists a finite projective Bm-
submodule Mm(Y ) of M(Ỹ∞), which is stable under , such that

Mm(Y )⊗Bm B̂∞ =M(Ỹ∞).

Moreover, for i ≥ 0, the natural maps

Hi (geom, Mm(Y )⊗Bkm BK ) → Hi (geom,M(ỸK ,∞))

are isomorphisms. In addition, the construction of Mm(Y ) is compatible with
base change along standard étale morphisms.

Note that the module Mm(Y ) in the lemma is not unique. E. g. we may
replace Mm(Y ) by Mm′(Y ) = Mm(Y )⊗Bm Bm′ for any m′ ≥ m.

Proof Let ψ, ψ ′ denote the base changes of the relative toric tower (2.6) and
toric tower (2.7) along the standard étale morphism f : Y → X respectively.
By themain results of [18, §7],we have thatψ andψ ′ are locally decompleting.
In particular, one may descend the étale (ϕ, )-module M̃ψ (resp. M̃ψ ′) over
the perfect period ring C̃ψ (resp. C̃ψ ′) associated to f ∗L̂ (resp. the pullback
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of f ∗L̂ to the pro-étale site of YK ) to an étale (ϕ, )-module Mψ (resp. Mψ ′)
over the imperfect period ring Cψ (resp. Cψ ′)3. By their constructions, M̃ψ ′

(resp. Mψ ′) is isomorphic to the base change of M̃ψ (resp. Mψ ) to C̃ψ ′ (resp.
Cψ ′).

Moreover, by [18, Corollary 5.6.5], there exists some r0 > 0 such that for
0 < s ≤ r ≤ r0 and i ≥ 0, the cochain complex computing the analytic
cohomology group ([18, Definition 1.3.7])

Hi
an

(
geom, M̃ [s,r ]

ψ ′ /M [s,r ]
ψ ′

)

is strict exact, where M̃ [s,r ]
ψ ′ and M [s,r ]

ψ ′ are associated ϕ-bundles over C̃
[s,r ]
ψ ′

and C[s,r ]
ψ ′ respectively. We fix such an interval [s, r ] with 0 < s ≤ r/p,

and choose some nonnegative integer m so that pms ≤ 1 ≤ pmr . Since
ϕ−m(M̃ [s,r ]

ψ ′ )) = M̃ [pms,pmr ]
ψ ′ , it follows that the cochain complex computing

Hi
an

(
geom, M̃ [pms,pmr ]

ψ ′ /ϕ−m(M [s,r ]
ψ ′ )

)

is strict exact.
To apply the above results to our context, consider the composition

C̃
[pms,pmr ]
ψ ′ ↪→ C̃

[1,1]
ψ ′

θ→ B̂K ,∞
(
resp.C̃

[pms,pmr ]
ψ ↪→ C̃

[1,1]
ψ

θ→ B̂∞
)

.

By the construction given in [18], the image of ϕ−m(C[s,r ]
ψ ′ ) (resp. ϕ−m(C[s,r ]

ψ ))

in B̂K ,∞ (resp. B̂∞) is BK ,m (resp. Bm), and the base change of M̃ [pms,pmr ]
ψ ′

(resp. M̃ [pms,pmr ]
ψ ) to B̂K ,∞ (resp. B̂∞) via θ is isomorphic to (L⊗ÔY )(ỸK ,∞)

(resp. (L⊗ ÔY )(Ỹ∞)). Moreover, the commutative diagrams

ϕ−m(C[s,r ]
ψ ′ )

��

�� BK ,m

��

C̃
[pms,pmr ]
ψ ′ �� B̂K ,∞,

ϕ−m(C[s,r ]
ψ )

��

�� Bm

��
C̃
[pms,pmr ]
ψ

�� B̂∞

(2.27)

are co-Cartesian. We set

Mm(Y ) = ϕ−m(M [s,r ]
ψ )⊗

ϕ−m(C[s,r]
ψ )

Bm .

3 In relative p-adic Hodge theory, the C̃ and C types of rings refer to relative version of the
perfect and imperfect Robba rings in classical p-adic Hodge theory respectively.
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Clearly, the base change of Mm(Y ) to B̂∞ is isomorphic to (L̂ ⊗ ÔY )(Ỹ∞);
this yields the first assertion of the proposition. Moreover, it follows that

Mm(Y )⊗Bkm BK = ϕ−m(M [s,r ]
ψ ′ )⊗

ϕ−m(C[s,r]
ψ ′ )

BK ,m .

We therefore deduce that the cochain complex computing

Hi
an(geom, (L̂⊗ ÔY )(ỸK ,∞)/(Mm(Y )⊗Bkm BK ))

is strict exact. Note that by [18, Theorem 1.3.8], all the analytic cohomolgy
groups are isomorphic to the corresponding continuous cohomology groups in
our context. This yields the second assertion of the lemma. It remains to show
the base change property for Mm(Y ). For rational localizations, this is part of
the definition of locally decompleting towers. For finite étale extensions, this
follows from [18, Corollary 5.6.7]. ��

We denote Mm(Y ) ⊗Bkm BK = Mm(Y ) ⊗̂ km K by MK ,m(Y ). This is a
BK ,m-module and in particular a BK -module. It follows that

MK ,m(Y )⊗BK ,m B̂K ,∞ =M(Ỹ∞)⊗B̂∞ B̂K ,∞ =M(ỸK ,∞).

The following lemma is a crucial observation. The argument is a variation
of Grothendieck’s proof of �-adic local monodromy theorem.

Lemma 2.15 The BK -linear representation of geom on MK ,m(Y ) is quasi-
unipotent, i.e. there is a finite index subgroup ′geom ⊂ geom that acts on
MK ,m(Y ) unipotently.

Proof Recall that MK ,m(Y ) is the base change to K of the -module Mm(Y )

and that Gal(K/k) acts on geom � Zp(1)d via χ . Thus for any γ ∈ geom
which is sufficiently close to 1 and δ ∈ , a short computation shows that
δ(log γ )δ−1 = χ(δ) log γ . This implies that all the coefficients of the char-
acteristic polynomial of log γ must vanish because χ(Gal(K/k)) has finite
cokernel in Z

×
p . Therefore, log γ is nilpotent. This clearly implies the lemma.

��
According to Lemma 2.15, we have a decomposition

MK ,m(Y ) =
⊕

MK ,m(Y )τ , (2.28)

where τ are characters of geom of finite order, and

MK ,m(Y )τ = {m ∈ MK ,m(Y ) | (γ − τ(γ ))Nm = 0 for N � 0},
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is the corresponding generalized eigenspace. Then being a direct sum decom-
position of finite projective BK -modules, each summand is a finite projective
BK -module stable under the action of geom. Possibly replacing Mm(Y ) by
Mm(Y ) ⊗Bm Bm′ for some large m′, we may assume that the order of every
τ appearing in the above decomposition is less than or equal to pm . So for
every τ , there is a monomial T i1

1 . . . T in
n in BK ,m on which geom acts via the

character τ . Let

MK (Y ) = MK ,m(Y )1

be the unipotent part, i.e. the summand corresponding to the trivial character.
Then we see that MK (Y )⊗BK BK ,m → MK ,m(Y ) is surjective and therefore
is an isomorphism. It follows that

MK (Y )⊗BK B̂K ,∞ = (MK (Y )⊗BK BK ,m)⊗BK ,m B̂K ,∞
= MK ,m(Y )⊗BK ,m B̂K ,∞ =M(ỸK ,∞).

Note that MK (Y ) is in fact stable under the action of . This gives the con-
struction of MK (Y ) as in the proposition. The uniqueness is clear since if

M ′
K (Y ) ⊂M(ỸK ,∞) = MK (Y )⊗BK B̂K ,∞

is another such BK -module, by considering the action of geom, it must be
contained in MK (Y ) and therefore must coincide with MK (Y ).

Similarly, we have a decomposition

Mm(Y ) =
⊕

Mm(Y )τ .

Note that

M(Y ) := Mm(Y )1

is a -stable Bkm -submodule of MK (Y ) such that M(Y )⊗Bkm BK = MK (Y ).
The compatibility with standard étale base change follows from Lemma 2.14.
This proves (P1). For any τ �= 1, there exists some 1 ≤ s ≤ n such that γs − 1
is invertible on MK ,m(Y )τ ; this implies that

Hi (geom, MK ,m(Y )τ ) = 0

for all i ≥ 0 by Hochschild-Serre spectral sequence. Thus the natural maps

Hi (geom, MK (Y )) → Hi (geom, MK ,m(Y ))

are isomorphisms. By Lemma 2.14, (P2) also follows.
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Example 2.16 We illustrate Proposition 2.8 and its proof by the following two
examples. Let X = T

1 = Spa(k〈T±1〉,Ok〈T±1〉) with the toric chart given
by the identity map.

(i) Assume that L = Zp is the rank one constant local system. Then
M(X̃K ,∞) = ÂK ,∞ with the natural -action and MK (X) = AK .

(ii) Assume that ζpm ∈ k. We have a Z/pm-torsor π : T
1
m → T

1. Let L =
π∗Zp. This is not a small local system in the sense of [12]. As a geom-
module,

M(X̃K ,∞) �
⊕

τ :geom/pm→k×
ÂK ,∞ ⊗ τ.

If we write τ(γ ) = ζ
a(γ )
pm for a(γ ) ∈ Z/pm , then

MK (X) =
⊕

τ

AK · T−a(γ )/pm ⊗ τ.

Note that although L is non-trivial, the action of geom on MK (X) is still
trivial.

3 A p-adic Riemann–Hilbert correspondence

In this section, we discuss several functors from the category of p-adic local
systems to the category of vector bundles with an integrable connection, which
can be regarded as a first step towards the p-adic Riemann–Hilbert correspon-
dence.

3.1 A geometric Riemann–Hilbert correspondence

We continue with the notations as in the previous section. So X is a smooth

rigid analytic variety over k and K ⊂ ˆ̄k is a perfectoid field containing k∞. We
will first deduce a geometric version of the Riemann–Hilbert correspondence
from Theorem 2.1 after introducing some period sheaves on (XK )et. By abuse
of notations, we use B+dR and BdR to denote B

+
dR(K ,OK ) and BdR(K ,OK )

respectively (so they are the Gal( ˆ̄k/K )-invariants of the classical Fontaine’s
rings). Recall that if k′/k is a finite extension in K , there is a canonical map
k′ → B+dR.

Recall by Lemma 2.5, giving a sheaf on (XK )et is the same as giving a sheaf
on B. Then we define OX ⊗̂(B+dR/t i ) by assigning

(Y = Spa(B, B+) → Xk′) ∈ B 
→ B ⊗̂ k′(B
+
dR/t i ), (3.1)
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and set

OX ⊗̂B+dR = lim←−iOX ⊗̂(B+dR/t i )

and

OX ⊗̂BdR = (OX ⊗̂B+dR)[t−1].

WehaveTate’s acyclicity theorem forOX⊗̂(B+dR/t i ). In particular, this verifies
that OX ⊗̂(B+dR/t i ) is indeed a sheaf.

Lemma 3.1 If X = Spa(A, A+) is affinoid, then

Hi ((XK )et,OX ⊗̂(B+dR/t i )) =
{
A ⊗̂ k(B

+
dR/t i ) i = 0

0 i > 0

Proof In fact, using a Schauder basis of B, we have the following exact
sequence

0→ B ⊗̂ k′
(
t iB+dR/t i+1

)
→ B ⊗̂ k′

(
B+dR/t i+1

)
→ B ⊗̂ k′

(
B+dR/t i

)
→ 0,

where B ⊗̂ k′(t iB
+
dR/t i+1) � B ⊗̂ k′(B

+
dR/t)(i) = BK (i). We deduce the

claim by the acyclicity of the structure sheaf OXK and induction on i . ��
We equip OX ⊗̂B+dR with the decreasing filtration

Fili (OX ⊗̂B+dR) = t iOX ⊗̂B+dR,

and OX ⊗̂BdR with the decreasing filtration

Fili (OX ⊗̂BdR) =
∑
j∈Z

t− jFili+ j (OX ⊗̂B+dR) = t− jFili+ j (OX ⊗̂B+dR)

for j ≥ −i . Using Schauder basis of affinoid algebras, it is straightforward to
see the following lemma.

Lemma 3.2 For i ∈ Z, we have gri (OX ⊗̂BdR) � O(XK )et(i).

Let λ : Xet → Xan be the natural projection from the étale site to
the analytic site of X . By abuse of notations, we again denote the sheaves
λ∗(OX ⊗̂(BdR/t i )), λ∗(OX ⊗̂B+dR) and λ∗(OX ⊗̂BdR) by OX ⊗̂(BdR/t i ),
OX ⊗̂B+dR and OX ⊗̂BdR respectively.

Proposition 3.3 Let X = Spa(A, A+) be an affinoid space over k. Then the
following categories are naturally equivalent.
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(i) The category of finite projective A ⊗̂ k(B
+
dR/t i )-modules (resp. A ⊗̂ kB

+
dR-

modules).
(ii) The category of finite locally free OX ⊗̂ (B+dR/t i )-modules (resp. OX ⊗̂

B+dR-modules) on (XK )et.
(iii) The category of finite locally free OX ⊗̂ (B+dR/t i )-modules (resp. OX ⊗̂

B+dR-modules) on (XK )an.

Proof First observe that for a finite projective A ⊗̂ k(B
+
dR/t i )-module M , it is

free if and only if M/tM is free over A ⊗̂ k K . In fact, since t is nilpotent, any
lift of a basis of M/tM to M is a basis of M over A ⊗̂ k(B

+
dR/t i ). It follows

that if M is a finite projective A ⊗̂ kB
+
dR-module, then it is free if and only if

M/tM is free over A ⊗̂ k K . Consequently, to prove the lemma, it suffices to
treat the case of finite projective A ⊗̂ k(B

+
dR/t i )-modules.

(i) ⇒ (ii), (iii). If M is a finite projective A ⊗̂ k(B
+
dR/t i )-module, by

Lemma 3.1, the presheaf

M̃(U ) = M ⊗A ⊗̂ k(B
+
dR/t i ) OX ⊗̂ (B+dR/t i )(U )

is an acyclic sheaf on both (XK )et and (XK )an. Moreover, by the above obser-
vation, it is locally free.

(iii) ⇒ (i). This amounts to show that the sheaf of algebrasOX ⊗̂ (B+dR/t i )
on (XK )an satisfies the Kiehl glueing property [17, Definition 2.7.6]. To
this end, we may apply [17, Proposition 2.4.20] to our set up. Then it suf-
fices to show that one can glue for any simple Laurent covering M(BK ) =
M((B1)K ) ∪M((B2)K ) by Berkovich spectrums. Now we employ the for-
malism of glueing square [17, Definition 2.7.3] and [17, Proposition 2.7.5] to
conclude. The only nontrivial part is to verify that the map

M(B1 ⊗̂ (B+dR/t i ))⊕M(B2 ⊗̂ (B+dR/t i )) →M(B ⊗̂ (B+dR/t i ))

is surjective. But as t is nilpotent, we haveM(Bj ⊗̂ (B+dR/t i )) =M((Bj )K ),
j = 1, 2, andM(B ⊗̂ (B+dR/t i )) =M(BK ).

(ii) ⇒ (i). First note that by [17, Lemma 2.6.5(a), Proposition 2.6.8], the
basisB is stable in the sense of [17,Definition 8.2.19]. That is, it is closed under
rational localizations and finite étale extensions. Thus by [17, Proposition
8.2.20], it reduces to show that one can glue for any rational covering and any
morphismwhich is faithfully flat and finite étale. The case of rational coverings
is already proved in the previous paragraph. Now suppose Spa(B, B+) →
Spa(A, A+) is a faithful finite étale morphism. By [17, Lemma 2.2.12], B⊗A
(A ⊗̂ (B+dR/t i )) is a complete Banach algebra and thus naturally isomorphic
to B ⊗̂ (B+dR/t i ). We therefore use faithfully flat descent to conclude. ��
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Corollary 3.4 The pushforward λ∗ induces an equivalence of categories
between sheaves of OX ⊗̂B+dR-modules which are locally free of finite rank
on (XK )et and on (XK )an.

By this corollary,wewill not specify the topology in the followingdefinition.

Definition 3.5 We denote the ringed space (XK ,OX ⊗̂B+dR) by X+ and
(XK ,OX ⊗̂BdR) by X . Thus we may regard OX ⊗̂B+dR as the structure sheaf
OX+ on X+. Similarly we have OX . By a vector bundle on X+ we mean a
locally freeOX+-module of finite rank, and by a vector bundle on X we mean
a sheaf of OX -modules obtained from a vector bundle on X+ by extension
of scalars. By a filtered vector bundle on X we mean a vector bundle E on X
equipped with a decreasing filtration Fil•E such that t iFil jE = Fili+ jE .
Remark 3.1 One may think X+ as the base change of X along the canonical
embedding k → B+dR, which provides a canonical lifting of XK to B+dR. We
hope to elaborate the geometric meaning of this construction in the future.

By Proposition 3.3, there is a natural “base change” functor E 
→ E ⊗̂ kBdR
from the category of vector bundles on X to the category of vector bundles on
X . This is an exact functor. In particular, we denote



j
X+/B+dR

:= 

j
Xet
⊗̂ kB

+
dR, 


j
X /BdR

:= 

j
Xet
⊗̂ kBdR.

One may regard them as sheaves of relative differentials. It is straightforward
to see that OX+ admits a unique continuous B+dR-linear derivation OX+ →

1

X+/B+dR
extending the one on OXet ; it extends to a BdR-linear derivation

OX → 
1
X /BdR

by inverting t .

Definition 3.6 Let E be a vector bundle on X . By a connection on E we mean
a BdR-linear map

∇ : E → E ⊗OX 
X /BdR

of sheaves, which satisfies the Leibniz rule with respect to the derivation on
OX . The connection ∇ is called integrable if ∇2 = 0. In this case, we have
the de Rham complex of E defined in the usual way

DR(E,∇) : E ∇→ E ⊗OX 
X /BdR

∇→ E ⊗OX 
2
X /BdR

→ · · · .

If E is in addition a filtered vector bundle onX , we say the connection satisfies
the Griffiths transversality if

∇(Fil j E) ⊂ Fil j−1 E ⊗OX+ 
1
X+/B+dR

.
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Note that if f : X → Y is a morphism of smooth rigid analytic varieties
over k, there is a natural map f −1OY+ → OX+ and therefore there is a well-
defined pullback functor f ∗ of vector bundles from Y toX . In addition, if E is
a vector bundle on Y with an integrable connection ∇, f ∗E admits a pullback
connection in the usual way. Assume that f is smooth. Then we have a short
exact sequence

0→ f ∗
Y/BdR → 
X /BdR → 
X/Y ⊗̂ kBdR → 0.

Note that the last term can be regarded as the sheaf of relative differentials

X /Y . If (E,∇) is a vector bundle with an integrable connection on X , one
can form the relative deRhamcomplexDRX /Y(E,∇) as usual. Thenwedefine

R fdR,∗(E,∇) = R f∗(DRX /Y(E,∇)).

Lemma 3.7 For any −∞ ≤ a ≤ b ≤ ∞, let O[a,b]
X = Fila OX /Filb+1OX .

(i) We have Rν′∗OB
[a,b]
dR � O[a,b]

X compatible with the natural filtrations.

(ii) We have Rν′∗(OBdR ⊗OX 

j
X ) � 


j
X /BdR

as OX -modules.

Proof For Part (i), we first construct a morphismOX+ → ν′∗OB
+
dR of filtered

sheaves. For any (Y = Spa(B, B+) → Xk′) ∈ B, let U = lim←− j∈JU j be an

affinoid perfectoid over YK . By construction,OB
+
dR(U ) is the direct limit over

j of the ker θ -adic completion of (O+
X (Uj )⊗̂W (κ)Ainf(U ))[1/p], where κ is

the residue field of k. It is clear to see that

OX+(YK ) = lim←−i B ⊗̂ k′(B
+
dR/t i ) = lim←−i (B

+ ⊗̂W (OK �))[1/p]/ξ i

naturallymaps toOB
+
dR(U ).Moreover, for any two affinoid perfectoidsU1,U2

over YK , it is clear to see that the maps OX+(YK ) → OB
+
dR(Ui ), i = 1, 2,

coincide on the overlap U1 ×YK U2. Thus we obtain a morphism OX+(Y ) →
OB

+
dR(YK ). It is straightforward to check that these morphisms on sections

give rise to a natural morphism μ : OX+ → ν′∗OB
+
dR on B, and thus on

(XK )et, which respects filtrations on both sides.
Thus μ induces a morphism O[a,b]

X → ν′∗OB
[a,b]
dR . We will show that it is

an isomorphism and Riν′∗OB
[a,b]
dR = 0 for i > 0. In fact, using results in the

previous section, Lemma 3.2 and by induction on b − a, we deduce that for
Y ∈ B and a, b ∈ Z, Hi (Xproet/YK ,OB

[a,b]
dR ) = 0 for i > 0, and

μ : O[a,b]
X (YK ) → ν′∗OB

[a,b]
dR (YK )
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is an isomorphism.This proves (i)whena, b are finite.We conclude the general
case by using [25, Lemma 3.18] and the coherence of Xproet [25, Proposition
3.12(vii)].

For Part (ii), we may apply the adjunction formula to this situation. The
subtlety is that the restriction of OX on XK is “smaller” than the struc-
ture sheaf O(XK )et due to the fact that XK is actually the “completion” of
the corresponding object in Xproet. But this is already enough to deduce

that Riν′∗(OBdR ⊗OX 

j
X ) = 0 for i > 0 by using (i). Moreover, for

(Y = Spa(B, B+) → Xk′) ∈ B, by adjunction, we have

ν′∗(OBdR ⊗OX 

j
X )(YK ) = ν′∗OBdR(YK )⊗B 


j
B � 


j
X /BdR

(YK ).

by (i). One easily checks that these isomorphisms on sections give rise to an
isomorphism on B, and thus on (XK )et, as sheaves of OX -modules. ��

Now we can state a geometric version of the p-adic Riemann–Hilbert cor-
respondence.

Theorem 3.8 (i) Let L be a Qp-local system on Xet. Then Riν′∗(L̂ ⊗
OB

[a,b]
dR ) = 0 for i > 0, and the functor RH(L) := ν′∗(L̂ ⊗ OBdR)

is a tensor functor from the category of Qp-étale local system on X to
the category of filtered vector bundles on X , equipped with a semi-linear
Gal(K/k)-action, and with an integrable connection

∇L : RH(L) → RH(L)⊗OX 
X /BdR

that satisfy the Griffiths transversality.
(ii) There is a canonical isomorphism

(gr0RH(L), gr0(∇L)) � (H(L), ϑL),

compatible with Higgs fields on both sides.
(iii) There is a canonical isomorphism

ν′∗RH(L)⊗ν′∗OX OBdR|(XK )proet � (L̂⊗OBdR)|(XK )proet ,

compatible with the filtrations and connections on both sides.
(iv) If f : X → Y is amorphismof smooth rigid analytic varieties over k, then

there is a natural isomorphism f ∗(RH(L),∇L) � (RH( f ∗L),∇ f ∗L).
(v) Let f : X → Y be a smooth proper morphism of smooth rigid analytic

varieties over k, and L be a Zp-local system on Xet. Assume that all
Ri f∗L are Zp-local systems on Y . Then there is a natural isomorphism

(RH(Ri f∗L),∇Ri f∗L) � Ri fdR,∗(RH(L),∇L).
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Proof First, applying Theorem 2.1 we may proceed as in the proof of Lemma
3.7 to conclude that Rν′∗(L̂ ⊗ OB

[a,b]
dR ) = ν′∗(L̂ ⊗ OB

[a,b]
dR ), that ν′∗(L̂ ⊗

Fil0OBdR) is a locally free OX+-module of finite rank, and that Rν′∗(L̂ ⊗
OBdR) = ν′∗(L̂ ⊗ OBdR) is the extension of scalars of ν′∗(L̂ ⊗ Fil0OBdR).
In particular, the filtration on RH(L) defined by Fila RH(L) := ν′∗(L̂ ⊗
Fila OBdR) makes RH(L) a filtered vector bundle on X .

Note that there is an integrable connection

∇ : L̂⊗OBdR → L̂⊗OBdR ⊗
1
X , (3.2)

by tensoring the natural integrable connection onOBdR (2.1). Pushing forward
via ν′, and by Lemma 3.7, we have

ν′∗(L̂⊗OBdR ⊗
1
X ) = ν′∗(L̂⊗OBdR)⊗OX 
1

X /BdR
,

and therefore a connection

∇L : RH(L) → RH(L)⊗OX 
X /BdR .

That it is integrable and satisfies the Griffiths transversality follows from the
corresponding statements for the connection (3.2). In addition, since ϑL is
defined as ν′∗(gr(∇)), Part (ii) also follows. Then arguing as in Theorem 2.1
(iv),RH is a tensor functor. The semi-linear action by Gal(K/k) is clear. We
have established Part (i).

The map in Part (iii) comes from the adjunction ν′∗ν′∗ → id and that it is
an isomorphism follows from Part (ii) and Theorem 2.1 (ii).

To prove Part (iv), first note that the map of period sheaves (2.14) induces
a natural map

f ∗RH(L)= f ∗ν′X,∗(L̂⊗OBdR,X )→RH( f ∗L)=ν′Y,∗( f̂ ∗L⊗OBdR,Y )

(3.3)
by a similar procedure as before. It remains to prove that it is an isomorphism.
But this follows from Part (ii) and Theorem 2.1 (iii).

Finally Part (v) follows from the same argument for Theorem 2.1 (v), with
OC replaced by OBdR. ��

Remark 3.2 One can reformulate the above theorem using Deligne’s notion
of t-connections. Namely, let

RH+(L) = Rν′∗(L̂⊗OB
[0,∞]
dR ).
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This is a vector bundle on X+, equipped with a B+dR-linear connection

∇+ = t∇ : RH+(L) → RH+(L)⊗O+
X


X+/B+dR
.

Then ∇+ is a t-connection ofRH+(L) in the sense that

∇+( f m) = m ⊗ td f + f∇+(m), (∇+)2 = 0.

Note that its base change along B+dR → BdR recovers (RH(L),∇) and its
base change along B+dR → K , t 
→ 0 recovers (H(L), ϑL).

In fact, this is just part of the full picture.Namely, one should be able to attach
a local system L on X a variation of p-adic twistors4, which roughly speaking
is a vector bundle on X×FF,where FF is the Fargues–Fontaine curve, equipped
with a t-connection along X direction. Restricting to the formal neighborhood
of the∞-point of FF then should recover the above theorem.

3.2 An arithmetic Riemann–Hilbert correspondence

We continue with the notations as in the previous subsection. But instead of
studying Rν′∗(L̂⊗OBdR), we consider

Di
dR(L) := Riν∗(L̂⊗OBdR).

By the Cartan–Leray spectral sequence,

Di
dR(L) = Hi (Gal(K/k), ϕ∗RH(L)),

whereϕ : XK → X is the natural projection. Similar to (and even simpler than)
the previous subsection, by pushing forward (3.2), we obtain an integrable
connection

∇L : Di
dR(L) → Di

dR(L)⊗
Xet .

Theorem 3.9 (i) The pair (Di
dR(L),∇L) is a vector bundle with an inte-

grable connection on X. It vanishes if i ≥ 2.
(ii) If f : Y → X is a morphism of smooth rigid analytic varieties over k,

then there is a canonical isomorphism

f ∗(Di
dR(L),∇L) � (Di

dR( f ∗L),∇ f ∗L),

4 We learned that L. Fargues independently observed this.
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where the pullback on the left hand side is understoodas the usual pullback
of vector bundles with a connection whereas on the right hand side as the
pullback of étale local systems.
We further assume that X is connected and there exists a classical point
x of X such that Lx̄ is de Rham.

(iii) The spectral sequence computing Di
dR(L) associated to the natural fil-

tration of OBdR degenerates at E1-term, which induces a decreasing
filtration Fil on Di

dR(L) by sub-bundles such that the connection satis-
fies Griffiths transversality with respect to this filtration. In this case the
isomorphism in (ii) respects this filtration.

(iv) The local systemL is a deRham local system in the sense of [25,Definition
8.3] such that (D0

dR(L),∇L,Fil) is the associated filteredOX-modulewith
an integrable connection in the sense of [25, Definition 7.4]. In addition,
D1
dR(L) � D0

dR(L).
(v) The functor DdR = D0

dR is a tensor functor from the category of de Rham
local systems to the category of filtered OX -modules with an integrable
connection satisfying the Griffiths transversality.

Remark 3.3 Note that Parts (iii) and (iv) give a more practical way to check
the de Rham property of a local system in the sense of [25, Definition 8.3].

Proof We start with the proof of Part (i). Note that since there exists an inte-
grable connection on Di

dR(L), it is enough to prove that Di
dR(L) is a coherent

OXet -module. Then it follows from the classical argument (cf. [15, §1.2]) that
Di
dR(L) is automatically a vector bundle.
To prove the coherence, we can assume that X = Spa(A, A+) admits a

toric chart as in the previous section, and let K = k̂∞ be the completion of the
cyclotomic tower. Note that by definition, Di

dR(L) is the sheafification of the
presheaf

Y 
→ Hi (Xproet/Y, L̂⊗OBdR) = Hi (Gal(k∞/k),RH(L)(YK )), Y ∈ Xet.

Note that gr jRH(L) � H(L)( j) by Theorem 3.8. Therefore by (a variant of)
Corollary 2.6, to prove Part (i), it is enough to show that

(a) For i ≥ 0, the cohomology group Hi (Gal(k∞/k),H(L)( j)(XK )) is a
finite A-module. Moreover, it vanishes if | j | � 0 or i ≥ 2.

(b) For any standard étale map Y = Spa(B, B+) → X , the natural base
change map

Hi (Gal(k∞/k),H(L)( j)(XK ))⊗A B → Hi (Gal(k∞/k),H(L)( j)(YK ))

is an isomorphism.

It remains to apply the following lemma.
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Lemma 3.10 Let M be a finite Am0-module endowed with a semi-linear con-
tinuous Gal(k∞/k)-action. If m ≥ m0 is sufficiently large, then for any
γ ∈ Gal(k∞/k) with vp(χ(γ ) − 1) ≥ m, γ − 1 is continuously invertible
on (M⊗̂km0

K )/(M ⊗km0
km). Consequently, for i ≥ 0, the natural map

Hi (Gal(k∞/k), M ⊗km0
km) → Hi (Gal(k∞/k), M⊗̂km0

K )

is an isomorphism.

Proof This is a simple consequence of the Tate-Sen formalism. For m ∈ N,
let Xm be the kernel of Tate’s normalized trace map K → km . Then we have
Xm ⊕ km � K . By the Tate-Sen conditions for the cyclotomic tower (cf. [4,
Proposition 4.1.1]), there exists c > 0 such that for sufficiently large m, if
γ ∈ Gal(k∞/k) satisfying vp(χ(γ )− 1) ≥ m, then γ − 1 is invertible on Xm
and

|(γ − 1)−1x | ≤ c|x |, x ∈ Xm .

It follows that |(γ − 1)x | ≥ 1
c |x | for x ∈ Xm .

Since Am0 is an affinoid algebra over k, it is naturally endowed with a
k-Banach algebra structure. Moreover, since M is finite over Am0 , we may
regard it as a Banach module over Am0 . Note that it suffices to treat the case
that vp(χ(γ )−1) = m. In this case, it remains to show that ifm is sufficiently
large, then γ − 1 is invertible on M⊗̂km0

Xm . In fact, using [16, Lemma 5.2],
if m is sufficiently large, then for any a ∈ Am0 ,

|(γ − 1)a| ≤ 1

2c
|a|.

Using a finite set of generators of M over Am0 and enlarging m if necessary,
we may further suppose that

|(γ − 1)y| ≤ 1

2c
|y|

for any y ∈ M . Now for y ∈ M, x ∈ Xm , write

γ (y ⊗ x)− y ⊗ x = (γ − 1)(y)⊗ γ (x)+ y ⊗ (γ − 1)x .

If m is sufficiently large, then

|(γ − 1)y ⊗ γ (x)| ≤ 1

2c
|y ⊗ x |, |y ⊗ (γ − 1)x | ≥ 1

c
|y ⊗ x |.
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Thus |(γ −1)(y⊗x)| ≥ 1
c |y⊗x |. This yields the desired result. Consequently,

for i ≥ 0, we get

Hi (Gal(k∞/k), M⊗̂km0
Xm) = 0,

by Hochschild-Serre spectral sequence. This proves the lemma. ��
Now replacing the Am0-module M(X) as in Proposition 2.8(P1) by

M(X)⊗Am0
Am if necessary, we can conclude using Lemma 3.10 that

Hi (Gal(k∞/k),H(L)( j)(XK )) � Hi (Gal(k∞/k), M(X)( j))

Clearly, Hi (Gal(k∞/k), M(X)( j)) is a finite A-module, and vanishes if | j | �
0. Moreover, it vanishes if i ≥ 2 because Gal(k∞/k) has cohomological
dimension 1.

ByProposition 2.8,M(X) is compatiblewith standard étale base extensions.
Note that standard étale morphisms are flat. Hence it is straightforward (cf.
[21, Lemma 1.4.3]) to see that Hi (Gal(k∞/k), M(X)( j)) is compatible with
standard étale base extensions. This yields (a) and (b), and therefore finishes
the proof of Part (i) of the theorem.

Next we prove Part (ii). First note that the map of period sheaves (2.14)
induces a natural map

f ∗Di
dR(L) = f ∗RiνX,∗(L̂⊗OBdR,X ) → Di

dR( f ∗L)

= RiνY,∗( f̂ ∗L ⊗OBdR,Y ) (3.4)

by a similar procedure as before. Namely, we have a similar map (2.17) with
OC replaced by OBdR and a similar map (2.18) with ν′ replaced by ν and all
functors replaced by their derived version. Then we obtain a derived version of
(2.19) in the current context. Note that since Di

dR(L) = RiνX,∗(L̂⊗OBdR,X )

is already locally free of finite rank, we can replace L f ∗ by f ∗ and therefore
obtain (3.4). It remains to prove that it is an isomorphism.

Before proceeding, we introduce some notations. For −∞ ≤ a ≤ b ≤ ∞,
write

RH[a,b](L) = Fila RH(L)/Filb+1RH(L).

Then ν′∗(L⊗OB
[a,b]
dR ) = RH[a,b](L) by virtue of Theorem 3.8. Without loss

of generality, we may assume that X = Spa(A, A+) and Y = Spa(B, B+)

are affinoid spaces admitting toric charts, and L is a Zp-local system. From
the proof of Part (i) we have seen that under this situation there exist a, b ∈ Z
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such that

Di
dR(L)(X) = Hi (Gal(k∞/k),RH[a,b](L)(XK )),

and

Di
dR( f ∗L)(Y ) = Hi (Gal(k∞/k),RH[a,b]( f ∗L)(YK )).

It follows that Hi (Gal(k∞/k),RH[a,b](L)(XK )) for i = 0, 1 are flat A-
modules by Part (i). Note that in addition the standard complex computing

H∗(Gal(k∞/k),RH[a,b](L)(XK ))

is a complex of flat A-modules (since AK is flat over A). This implies that

Hi (Gal(k∞/k),RH[a,b](L)(XK ))⊗A B

� Hi (Gal(k∞/k),RH[a,b](L)(XK )⊗A B). (3.5)

Therefore, to see that (3.3) is an isomorphism, by (3.5) it is enough to apply
the following result.

Lemma 3.11 Let X = Spa(A, A+) and Y = Spa(B, B+) be smooth affinoid
spaces admitting toric charts, and let f : X → Y be a morphism of rigid
analytic varieties. Let L be a Zp-local system on Xet. Then for any a, b ∈ Z

and i ≥ 0, the natural map

Hi (Gal(k∞/k),RH[a,b](L)(XK )⊗A B)

→ Hi (Gal(k∞/k),RH[a,b]( f ∗L)(YK ))

is an isomorphism.

Proof It is enough to prove that for j ∈ [a, b], the natural map

Hi (Gal(k∞/k),H(L)(XK )( j)⊗A B) → Hi (Gal(k∞/k),H( f ∗L)(YK )( j))

is an isomorphism. Now let M(X) be as in Proposition 2.8 (P1) for the local
system L. Then M(X) is a finite projective Am0-module for some sufficiently
large m0 such thatH(L)(XK ) = M(X)⊗Am0

AK . Let M(Y ) = M(X)⊗A B.
It follows that

M(Y )⊗Bm0
BK = (M(X)⊗Am0

AK )⊗AK BK = H(L)(XK )⊗AK BK

= H( f ∗L)(YK )
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by Theorem 2.1(iii). Now we apply Lemma 3.10 to get some sufficiently large
m, so that γ − 1 is continuously invertible on both

H(L)(XK )( j)/(M(X)( j)⊗km0
km)

and

H( f ∗L)(YK )( j)/(M(Y )( j)⊗km0
km)

whenever vp(χ(γ )− 1) ≥ m. Thus γ − 1 is continuously invertible on

(H(L)(XK )( j)⊗A B)/((M(X)( j)⊗km0
km)⊗A B).

Therefore, we deduce that

Hi (Gal(k∞/k),H(L)(XK )( j)⊗A B))

= Hi (Gal(k∞/k), (M(X)( j)⊗km0
km)⊗A B)

= Hi (Gal(k∞/k), M(Y )( j)⊗km0
km)

= Hi (Gal(k∞/k),H( f ∗L)(YK )( j)).

Next, we prove Part (iii). Again let K = k̂∞. The question is local, so
we may assume that X = Spa(A, A+) is an affinoid space admitting a toric
chart. To proceed, first note that by assumption and Parts (i), (ii), Lȳ is de
Rham for any classical point y. Now we fix a sufficiently large b so that
Rν∗(L̂⊗ grb

′OBdR) = 0 whenever b′ ≥ b. Now for every interval [a, b], we
have the six-term exact sequence

0→ ν∗(L̂⊗OB
[a+1,b]
dR ) → ν∗(L̂⊗OB

[a,b]
dR ) → ν∗(L̂⊗ graOBdR)

→ R1ν∗(L̂⊗OB
[a+1,b]
dR ) → R1ν∗(L̂⊗OB

[a,b]
dR )

→ R1ν∗(L̂⊗ graOBdR) → 0. (3.6)

We will show that each term in the exact sequence is a finite locally freeOXet -
module, and the connecting map ν∗(L̂⊗ graOBdR) → R1ν∗(L̂⊗OB

[a+1,b]
dR )

is zero. Note that for a � 0, Rν∗(L̂⊗ graOBdR) = 0 and

Rν∗
(
L̂⊗OB

[a+1,b]
dR

)
= Rν∗

(
L̂⊗OB

[a,b]
dR

)
= Rν∗

(
L̂⊗OBdR

)

Thus the claim holds automatically in this case. Thereforewemay do induction
on a and assume that the claim holds for a − 1.
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For simplicity, write M [a,b] = RH[a,b](L)(XK ) and M = H(L)(XK ).
Then instead of (3.6), wemay consider the following exact sequence of Galois
cohomology

0→ H0(Gal(k∞/k), M [a+1,b]) → H0(Gal(k∞/k), M [a,b])
→ H0(Gal(k∞/k), M(a)) → H1(Gal(k∞/k), M [a+1,b])
→ H1(Gal(k∞/k), M [a,b]) → H1(Gal(k∞/k), M(a)) → 0. (3.7)

Note that taking H1 always commutes with base change to a classical point
y. Therefore, in the following commutative diagram of the connecting maps

H0(Gal(k∞/k), M(a))⊗ k(y) −−−→ H1(Gal(k∞/k), M [a+1,b])⊗ k(y)⏐⏐�
⏐⏐��

H0(Gal(k∞/k), M(a)⊗ k(y)) −−−→ H1(Gal(k∞/k), M [a+1,b] ⊗ k(y)),

the right vertical arrow is an isomorphism.
Note that by Lemma 3.11 and Remark 2.2, the bottom line coincides with

H0(Gal(k∞/k), (L′̄y ⊗ ˆ̄k(a))Gal(
ˆ̄k/k∞))

→ H1

(
Gal(k∞/k),

(
L
′̄
y ⊗ B[a+1,b]dR

)Gal( ˆ̄k/k∞)
)

with L
′̄
y = IndGal(k̄/k)

Gal(k̄/k(y))
Lȳ . Here BdR stands for Fontaine’s de Rham period

ring (rather than BdR(K ,OK ) considered in § 3.1). Since Lȳ is de Rham, L
′̄
y

is de Rham as well. Thus it is a zero map. So the map in the top row is also
zero. Since this is true that every classical point, the connecting map

H0(Gal(k∞/k), M(a)) → H1(Gal(k∞/k), M [a+1,b])

must be zero. In particular, (3.7) breaks into two short exact sequences

0→ H0(Gal(k∞/k), M [a+1,b]) → H0(Gal(k∞/k), M [a,b])
→ H0(Gal(k∞/k), M(a)) → 0 (3.8)

and

0→ H1(Gal(k∞/k), M [a+1,b]) → H1(Gal(k∞/k), M [a,b])
→ H1(Gal(k∞/k), M(a)) → 0. (3.9)
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Similarly, using Lemma 3.11 and Remark 2.2 again, the base change of (3.9)
to y coincides with the sequence

0→ H1(Gal(k∞/k), (L′̄y ⊗ B[a+1,b]dR )Gal(
ˆ̄k/k∞)) →

H1(Gal(k∞/k), (L′̄y ⊗ B[a,b]
dR )Gal(

ˆ̄k/k∞)) → H1(Gal(k∞/k), (L′̄y ⊗ ˆ̄k(a))Gal(
ˆ̄k/k∞) → 0,

(3.10)

which remains exact because L
′̄
y is de Rham. Since H1(Gal(k∞/k), M [a,b])

is projective over A by induction, we deduce that H1(Gal(k∞/k), M(a)) is
flat over A, and therefore projective over A. Thus H1(Gal(k∞/k), M [a+1,b])
is a projective A-module as well.

For terms in (3.8), first note that the cohomology of M(a) is computed by
the complex

M(a)�
γ−1→ M(a)�,

where� is the torsion subgroup ofGal(k∞/k), and γ is a topological generator
of Gal(k∞/k)/�. Since� is a finite group andM is flat over A,M� is flat over
A as well. Thus the flatness of H1(Gal(k∞/k), M(a)) ensures the flatness of
H0(Gal(k∞/k), M(a)). Thus H0(Gal(k∞/k), M [a+1,b]) is flat as well since
H0(Gal(k∞/k), M [a,b]) is flat by induction.
Let us record the following corollary of the proof.

Corollary 3.12 Assume that L is a de Rham local system on X. Then

(i) L is Hodge–Tate in the sense of Remark 2.5;
(ii) (RH(L),∇L) � (DdR(L),∇L) ⊗̂ kBdR.

Remark 3.4 Note that Part (ii) of the above corollary together with Theorem
3.8 recover [25, Theorem 1.10].

It remains to prove Parts (iv) and (v). To prove that L is a de Rham local
system in the sense of [25], we need to show that the natural map

ν∗DdR(L)⊗OX OBdR → L̂⊗OBdR

is an isomorphism compatible with connection and filtration. But this follows
from Part (ii) of the above corollary and Theorem 3.8 (iii).

The remaining statements are clear. ��

4 Applications

In this section, we give some applications of our results. In particular, we prove
Theorem 1.1 and Theorem 1.2.
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4.1 Rigidity of geometric p-adic representations

Having established Theorem 1.3, to prove Theorem 1.1 it remains to show the
following proposition.

Proposition 4.1 Let X be a geometrically connected algebraic variety over
a number field E and let L be a rank n Zp-local system on X. If for some
point x ∈ X (F) where F is a finite extension of E, the Galois representation
Lx̄ is unramified almost everywhere, then for every point ȳ ∈ X (Ē), Lȳ is
unramified almost everywhere (as a Galois representation of the field of the
definition of ȳ).

Proof Using resolution of singularities, we may assume that X is smooth. Let
us choose a smooth projective compactification X̄ of X and let D = X̄ − X
denote the boundary divisor. We choose N large enough such that

• we can spread X̄ out as a smooth projective scheme X over OE [1/N ],
where OE is the ring of integers of E ;

• the extension OF [1/N ]/OE [1/N ] is unramified;
• the order |GLn(Fp)| = pn(n−1)/2(p − 1)(p2 − 1) · · · (pn − 1) divides N .

Now for a place v of OE [1/N ], let Xv denote the special fiber of X at v. Let
sv be the generic point of Xv , and ηv be the generic point of the henselization
X(sv) of X at sv . We have the following standard exact sequence of Galois
groups for the trait (X(sv), sv, ηv)

1→ Jv → Gal(ηv/ηv) → Gal(sv/sv) → 1. (4.1)

Let J tv denote the tame quotient of Jv . Since X → OE [1/N ] is smooth, it
induces an isomorphism from J tv to the tame inertia I tv of Ev (by choosing a
map from ηv to Spec Eh

v , where Eh
v is the fractional field of the henselization

of OE at v).
Let D denote the Zariski closure of D in X. The the Z/pm-local system

L/pm defines a finite étale cover Xm → X with Galois group GLn(Z/pm).
Let Xm denote the normalization of X in the fractional field of Xm . By the
Zariski–Nagata purity, the branch locus of Xm → X is a divisor Dm on X,
pure of codimension one. So

Dm =
∑

avXv + Bm

where Xv is regarded as a vertical divisor and Bm is a horizontal divisor
supported in D. Let Sm be the set of places v of OE [1/N ] such that av �= 0.
Here is the lemma.

Lemma 4.2 The set S = ∪m≥1Sm is finite.
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Proof By the valuative criterion, the point x : Spec F → X extends to an
arithmetic curve Spec(OF [1/N ]) → X, still denoted by x . Let T ⊂ S be
the subset consisting of those v such that x(Spec OF [1/N ]) intersects with
Xv outside the divisor Dv . Note that S \ T is finite. We claim that the Galois
representation Gal(F/F) → GL(Lx̄ ) is ramified above v ∈ T . Since it is
unramified almost everywhere, it implies that T (and therefore S) is finite.

Now let v ∈ Sm ∩ T . Note that the residue characteristic of v is coprime to
N . Therefore, by our assumption on N , the composition of the maps

Jv → Gal(ηv/ηv) → π1(X× Eh
v , ηv) → GLn(Z/pmZ)

factors through the tame inertia

J tv → GLn(Z/pmZ). (4.2)

By our assumption, this is a non-trivial map. Let w be a place of OF [1/N ]
lying over v. Note that we have the following commutative diagram

I tw ←−−− Iw −−−→ Gal(Fw/Fw)⏐⏐�
⏐⏐�

⏐⏐�
J tv ←−−− Jv −−−→ π1(X× Eh

v , ηv)

and the left vertical map is an isomorphism (since both map isomorphically to
I tv). It follows that the Galois representation Lx̄ is ramified at w. ��
Now every y : Spec F ′ → X extends to an arithmetic curve y :

Spec OF ′ [1/N ] → X that can only intersect with D at finite many points.
Therefore, away from the places underlying these points, the places dividing
N and the places in S, Lȳ is unramified. ��

4.2 An application to Shimura varieties

Now we turn to Shimura varieties. As usual, for a number field E , let Eab

denote its maximal abelian extension in (a fixed) algebraic closure E . Let AE
(resp. AE, f ) denote the adèles (resp. finite adèles) of E . If E = Q, we drop E
from the subscripts of these notations.

Let T be a Q-torus and μ : Gm → T be a cocharacter defined over a
number field F , i.e. an F-homomorphism μ : Gm → TF . It then induces a
homomorphism between Q-tori

Nμ : ResF/QGm −→ ResF/QTF
Nm−→ T,

where the second map is the usual norm map.
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Example 4.3 Let (E, �) be a CM type. It gives rise to a Q-torus ResE/QGm
whose cocharacter group is the free abelian group with a basis [τ ] labelled by
embeddings τ : E → C, and a cocharacter μ� = ∑

τ∈�[τ ] defined over the
reflex field E∗. Then

Nμ� : ResE∗/QGm → ResE/QGm

is usually called the reflex norm ([23, §11]).

Let K ⊂ T (A f ) be an open compact subgroup. Recall that the double coset
T (Q)\T (A f )/K = T (Q)\T (A)/KT (R) is always finite and therefore the
homomorphism

F×\A×
F

Nμ−→ T (Q)\T (A) → T (Q)\T (A f )/K

factors through

F×\A×
F

ArtF−→ Gal(Fab/F)
r(μ)K−→ T (Q)\T (A f )/K , (4.3)

where the firstmap is the globalArtinmap, normalized such that for every finite
place v of F and a uniformizer πv of Fv ⊂ AF , its image in Gal(Fab

v /Fv) ⊂
Gal(Fab/F) projects to the geometric Frobenius. Taking the inverse limit over
all open compact subgroups K ⊂ T (A f ), we obtain

r(μ) : Gal(Fab/F) → T (Q)−\T (A f ),

where T (Q)− = lim←−K T (Q)/(T (Q) ∩ K ) denotes the closure of T (Q) in
T (A f ).

Let FK /F be the finite abelian extension inside Fab such that Gal(Fab/FK )

is the kernel of the map r(μ)K in (4.3). By definition, r(μ)K restricts to a
continuous homomorphism

Gal(Fab/FK ) → K/(K ∩ T (Q)−),

still denoted by r(μ)K . Now, let ρ : T → GL(V ) be a Q-rational representa-
tion of T satisfying

ρ|T (Q)−∩K = 1. (4.4)

It induces a Galois representation

r(μ, ρ)K : Gal(Fab/FK ) → K/(K ∩ T (Q)−) → GL(V ⊗ A f ).

Let p be a finite prime. By projecting to the p-component, we obtain a p-adic
representation
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r(μ, ρ)K ,p : Gal(Fab/FK ) → GL(V ⊗Qp).

Lemma 4.4 The p-adic representationr(μ, ρ)K ,p is unramifiedalmost every-
where and is potentially crystalline at every place v of FK above p.

Proof It is clear that the representation r(μ, ρ)K ,p is unramified almost every-
where since it factors as Gal(Fab/FK ) → K/(K ∩ T (Q)−)K p, where K p is
the prime-to-p component of K . We prove that it is potentially crystalline.

Let L ⊂ F be a splitting field of T , containing all the embeddings of FK to
F . Note that ρ ⊗ L splits into 1-dimensional characters of TL . Therefore, we
may assume that ρ = χ |T where χ is a character of TL and T ⊂ ResL/QTL is
the natural inclusion. In addition, we can choose a place λ of L above p. It is
enough to show that the induced λ-adic representation

r(μ, ρ)K ,λ : Gal(Fab/FK ) → L×λ

is potentially crystalline.
Note that the restriction of r(μ, ρ)K ,λ to F×K ,v ⊂ Gal(Fab

K ,v/FK ,v) ⊂
Gal(Fab/FK ) is given by

F×K ,v

μ→ T (FK ,v)
Nm→ T (Qp)

χ→ L×λ ,

which can be written as
∏

τ ◦ [aτ ] : F×K ,v → L×λ , where τ ranges over all

embeddings from FK ,v to Lλ, aτ ∈ Z, and [n] : F×K ,v → F×K ,v is the nth power

map. Therefore, on a finite index subgroup of Gal(Fab
K ,v/FK ,v),

r(μ, ρ)K ,λ =
∏
τ

τ ◦ LTaτ ,

where LT : Gal(Fab
K ,v/FK ,v) → O×

FK ,v
is the Lubin–Tate character. It is well-

known that such a representation is crystalline (cf. [9, Proposition B.4]). The
lemma follows. ��

We make a digression to discuss Condition (4.4). For a Q-torus T , let T a

be the maximal anisotropic subtorus over Q, i.e. T a is the neutral connected
component of the intersection of all kernels of Q-rational characters of T . Let
T s ⊂ T a be the maximal subtorus of T a that is R-split. Let T c = T/T s .

Lemma 4.5 Let ρ be an algebraic representation of T .

(i) Ifρ is trivial on T (Q)−∩K for some open compact subgroup K ⊂ T (A f ),
then ρ|T s is trivial.

(ii) If ρ|T s is trivial, then for some small enough open compact subgroup
K ⊂ T (A f ), ρ|T (Q)−∩K is trivial.
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Proof Note that T s(Q)\T s(A) is compact since T s is anisotropic. Therefore
(K ∩T s(Q))\T s(R) is also compact. Since T s(R) � (R×)r , K ∩T s(Q)must
contain a lattice of rank r , and therefore is Zariski dense in T s . Therefore,
(4.4) implies that ρ|T s = 1.

On the other hand, (T c)s = 1 implies that T c(Q) is discrete in T c(A f ) (e.g.
[23, Theorem 5.26]). Therefore for K small enough, π(K ) ∩ T c(Q) is trivial
where π : T → T c is the projection, giving (ii). ��
Example 4.6 Let (E, �) be a CM type, and let E∗ be the reflex field. Let A be
an abelian variety defined over a number field F over E∗ such that End(A)⊗
Q � E with � the induced CM type. Let E0 ⊂ E be the maximal totally real
subfield, and let T ⊂ ResE/QGm be the subtorus which is the preimage of Gm
under the norm map ResE/QGm → ResE0/QGm . Then T = T c and μ� is a
cocharacter of T . Let V = E and let ρ be the natural representation

ρ : T ⊂ ResE/QGm � GL1(E) ⊂ GL(V ).

Then the theory of complex multiplication implies that the above representa-
tion r(μ�, ρ)K ,p appears as the Galois representation of the rational p-adic
Tate module of A.

Now let (G, X) be a Shimura datum. This means thatG is a reductive group
defined over Q, X is a G(R)-conjugacy class of homomorphisms

h : S = ResC/RGm → GR

satisfyingDeligne’s axioms (SV1)-(SV3) [23, Definition 5.5] and the quotient

G(Q)\X × G(A f )/K

is the set of C-points of a quasi-projective algebraic variety ShK (G, X) over
C ([23, §5]).

We recall the definition of the reflex field E = E(G, X). Let us fix the
isomorphism SC = Gm ×Gm given as follows: for any C-algebra R,

(C⊗R R)× � R× × R×, z ⊗ r 
→ (zr, z̄r).

Let Gm → SC be the inclusion of the first factor. Then the map h induces a
homomorphism (usually called the Hodge cocharacter)

μh : Gm → SC → GC. (4.5)

As h varies in X , μh form a conjugacy class of 1-parameter subgroups of
G over C. Then E(G, X) is the field of definition of this conjugacy class. In

123



340 R. Liu, X. Zhu

particular, if G = T is a torus, then X = {h} is a single homomorphism and
E(T, {h}) is the field of the definition of the cocharacter μh .
Next we recall the definition of the canonical model of ShK (G, X), i.e.

the unique descent from C to E = E(G, X) of ShK (G, X) subject to certain
properties. We first assume that G = T is a torus. Then T (Q)\T (A f )/K
is a finite set. To describe it as an algebraic variety over E is equivalent to
describing the action of Gal(E/E) on this set. But this is defined as the action
of Gal(Eab/E) via r(μh)K with the natural multiplication of T (Q)\T (A f )/K
on itself.

For general G, recall that a point h ∈ X is called special if there exists
a Q-torus T ⊂ G such that h factors as h : S → TR → GR. Then such a
point gives an embedding of Shimura data (T, {h}) → (G, X). Let E(h) be
the field of the definition of μh . It follows that E = E(G, X) ⊂ E(h). Then
the canonical model is the descent from C to E of ShK (G, X) equipped with
the G(A f )-action, such that for every special point x ∈ X , the natural map

T (Q)\{h} × T (A f )/(K ∩ T (A f )) → G(Q)\X × G(A f )/K

is defined over E(h). It is known that the canonical model exists and is unique
(e.g. see [22]). By abuse of notation, let ShK (G, X) denote the canonicalmodel
in the rest of the paper.

Following [22], let Zs
G denote the maximal anisotropic subtorus of ZG that

is split over R, and let Gc = G/Zs
G .

Now let ρ : Gc → GL(V ) be a Q-rational representation of Gc. Then for
K sufficiently small, it gives a Betti local system on ShK (G, X)(C) as

LV := V ×G(Q) (X × G(A f ))/K ,

which, after tensoring with Qp, in fact descends to an étale local system LV,p
over ShK (G, X). We recall the construction of LV,p in the below (see also
[22, §III.6]).

Write K = KpK p where Kp ⊂ G(Qp) and K p ⊂ G(A
p
f ), and consider

the representation

ρ : Kp → G(Qp) → GL(VQp).

As Kp is compact, we can find a lattice �p ⊂ VQp fixed by Kp. Let

K (n)
p = Kp ∩ ρ−1({g ∈ GL(�p) | g ≡ 1 mod pn}).

Then {K (n)
p }n≥1 form a system of open neighborhoods of G(Qp). Note that

we have a representation
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ρ̄ : Kp/K
(n)
p → GL(�p/p

n),

and Sh
K (n)

p K p(G, X) → SkKpK p(G, X) is finite étale with the deck transfor-

mation group Kp/K
(n)
p . Therefore, we obtain an étale Z/pnZ-local system on

ShKpK p(G, X)(C) as

LV,p,n = Sh
K (n)

p K p(G, X)(C)×Kp/K
(n)
p (�p/p

n).

Then

LV,p =
(
lim proj

n
LV,p,n

)
⊗Q

is an étaleQp-local systemonShKpK p(G, X)(C). It is straightforward to check
that LV,p only depends on VQp as a Qp-representation of Gc and is indepen-
dent of the choice of the lattice �p. Note that since all the ShKn

pK
p(G, X)’s

are defined over E , LV,p also descends to E . Therefore, V 
→ LV,p is a
well-defined tensor functor from the category Rep

Qp
(Gc) of Qp-rational rep-

resentations of Gc to the category of étale Qp-local systems on ShK (G, X).

Example 4.7 If (G, X) = (GSp(V ), S±) is the Siegel Shimura datum, then
LV is the Betti local system of the first de Rham homology of the universal
abelian scheme A, and LV,p is the p-adic Tate module of A.

The following lemma is clear from the construction.

Lemma 4.8 Let x = [h, a]K ∈ ShK (G, X) be a special point and let Th ⊂
G be a Q-subtorus containing h(S). Let ρ′ denote the restriction to Th of
the rational representation V . Then the p-adic representation LV,p at x is
r(μh, ρ

′)K ,p.

Now Theorem 1.2 follows from Theorem 1.1, Lemma 4.4, Lemma 4.8 and
the well-known fact that the set of special points is non-empty (in fact dense)
in every connected component of ShK (G, X) (e.g. see [23, Lemma 13.5]).

We also have the following corollary, by Theorem 3.9. Let v be a place of
E above p, and let ShK (G, X)adEv

denote the adic space associated to the base
change of ShK (G, X) to Ev.

Corollary 4.9 The functor V 
→ DdR(LV,p) is a tensor functor from the
category Rep

Qp
(Gc) to the category of vector bundles on ShK (G, X)adEv

, and

therefore defines a Gc-torsor E on ShK (G, X)adEv
.

Remark 4.1 (i) The conjugacy class of Hodge cocharacters {μh} defines a
conjugacy class P of parabolic subgroups of Gc. The Gc-torsor E then
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defines an associated bundle EP → ShK (G, X)adEv
with fibers isomorphic

to Pad
Ev
. Note that since V 
→ DdR(LV,p) is in fact a tensor functor

from Rep
Qp

(Gc) to filtered vector bundles on ShK (G, X)adEv
, it defines a

section of EP .
(ii) The Gc-torsor E should be the base change of the standard principal

Gc-torsor on ShK (G, X) [22, §III.4]. Concretely, if V is a Q-rational
representation of Gc, then there is a vector bundle with a flat connection
on ShK (G, X) whose base change to C corresponds to LV under the
classical Riemann–Hilbert correspondence [22, §III.6]. It is natural to
conjecture that DdR(LV,p) is the analytification of the base change to Ev

of this vector bundle with connection.
(iii) Let x be a classical point of ShK (G, X)adEv

. Then DdR((LV,p)x̄ ) ⊗ B+dR
provides a B+dR-lattice in (LV,p)x̄ ⊗ BdR as (LV,p)x̄ is de Rham. There-
fore by Fargues’ work on Breuil–Kisin modules over Ainf [27] and the
Tannakian formalism, one can associate to x an isocrystal with additional
structure bx ∈ B(GQp) [20], which should be the crystalline realization
of the mod p fiber of the motive parameterised by x (say the motive has
a good reduction).

Remark 4.2 As a final remark, we point out that one can use Theorem 1.3 to
give an alternative proof of Fontaine’s CdR-conjecture for all abelian varieties
and all smooth hypersurfaces in P

n simultaneously. Namely, for every p, we
choose a quadratic imaginary field K such that p splits in K . Let E be an
elliptic curve with CM by K . Then its p-adic Tate module is isomorphic to
Qp ⊕ Qp(1) when restricted to the inertia and therefore is de Rham. Note
that Eg gives rise to a point in an appropriate moduli space of g-dimensional
abelian varieties. Then we apply Theorem 1.3 to conclude the abelian variety
case. Using the fact that the motives of the Fermat hypersurfaces appear in the
motives generated by abelian varieties, CdR holds for them and therefore also
holds for all hypersurfaces, again by Theorem 1.3.
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