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Abstract We establish the Fourier–Jacobi case of the local Gross–Prasad con-
jecture for unitary groups, by using local theta correspondence to relate the
Fourier–Jacobi case with the Bessel case established by Beuzart-Plessis. To
achieve this, we prove two conjectures of Prasad on the precise description
of the local theta correspondence for (almost) equal rank unitary dual pairs in
terms of the local Langlands correspondence. The proof uses Arthur’s multi-
plicity formula and thus is one of the first examples of a concrete application
of this “global reciprocity law”.
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1 Introduction

In [15,16,23,24], a restriction problem in the representation theory of classical
groups was studied and a precise conjecture was formulated for this restriction
problem. This so-called Gross–Prasad (GP) conjecture has generated much
interest in recent years.

1.1 Restriction problem

In this paper, we shall focus on the restriction problem for unitary groups.
Thus, let F be a nonarchimedean local field of characteristic 0 and residue
characteristic p, and let E be a quadratic field extension of F . Let Vn+1 be
a Hermitian space of dimension n + 1 over E and Wn a skew-Hermitian
space of dimension n over E . Let Vn ⊂ Vn+1 be a nondegenerate subspace
of codimension 1, so that we have a natural inclusion of their corresponding
unitary groups U(Vn) ↪→ U(Vn+1). In particular, if we set

Gn = U(Vn)× U(Vn+1) or U(Wn)× U(Wn)

and

Hn = U(Vn) or U(Wn),

then we have a diagonal embedding

Δ : Hn ↪→ Gn.

Let π be an irreducible smooth representation of Gn . In the Hermitian case,
one is interested in determining

dimCHomΔHn (π,C).

We shall call this the Bessel case (B) of the GP conjecture. In the skew-
Hermitian case, the restriction problem requires another piece of data: a Weil
representation ωψ,χ,Wn , where ψ is a nontrivial additive character of F and
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The Gross–Prasad conjecture and local theta correspondence 707

χ is a character of E× whose restriction to F× is the quadratic character
ωE/F associated to E/F by local class field theory. Then one is interested in
determining

dimCHomΔHn (π, ωψ,χ,Wn ).

We shall call this the Fourier–Jacobi case (FJ) of the GP conjecture. To unify
notation, we shall let ν = C or ωψ,χ,Wn in the respective cases.

By surprisingly recent results of Aizenbud–Gourevitch–Rallis–Schiffmann
[1] and Sun [56], it is known that the above Hom spaces have dimension at
most 1. Thus the main issue is to determine when the Hom space is nonzero.
In [15], an answer for this issue is formulated in the framework of the local
Langlands correspondence, in its enhanced form due to Vogan [58] which
takes into account all pure inner forms.

1.2 Local Langlands correspondence

More precisely, a pure inner form of U(Vn) is simply a group of the form
U(V ′

n), where V ′
n is a Hermitian space of dimension n over E ; likewise in the

skew-Hermitian case. Thus, a pure inner form of Gn is a group of the form

G ′
n = U(V ′

n)× U(V ′
n+1) or U(W ′

n)× U(W ′′
n ).

We say that such a pure inner form is relevant if

V ′
n ⊂ V ′

n+1 or W ′
n = W ′′

n ,

and

V ′
n+1/V ′

n
∼= Vn+1/Vn

in the Hermitian case. If G ′
n is relevant, we set

H ′
n = U(V ′

n) or U(W ′
n),

so that we have a diagonal embedding

Δ : H ′
n ↪→ G ′

n.

Now suppose that φ is an L-parameter for the group Gn . Then φ gives rise to
a Vogan L-packetΠφ consisting of certain irreducible smooth representations
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708 W. T. Gan, A. Ichino

of Gn and its (not necessarily relevant) pure inner forms G ′
n . Moreover, after

fixing a Whittaker datum for Gn , there is a natural bijection

Πφ ←→ Irr(Sφ),

where Sφ is the component group associated to φ. Thus an irreducible smooth
representation of Gn is labelled by a pair (φ, η), where φ is an L-parameter
for Gn and η is an irreducible character of Sφ .

By the recent work of Arthur [2], Mok [44], and Kaletha–Mínguez–
Shin–White [33], together with the stabilization of the twisted trace formula
established by Waldspurger and Mœglin–Waldspurger [43], the local Lang-
lands correspondence for unitary groups is now unconditional, except that the
general case of the weighted fundamental lemma has not been written; the
work of Chaudouard–Laumon [8] is limited to the case of split groups.

1.3 Gross–Prasad conjecture

With this short preparation, the GP conjecture can be loosely stated as follows:

Gross–Prasad conjecture (i) Given a generic L-parameter φ for Gn, there
is a unique representation π(φ, η) in the Vogan L-packet Πφ such that
π(φ, η) is a representation of a relevant pure inner form G ′

n and such that

HomΔH ′
n
(π(φ, η), ν) 	= 0.

(ii) There is a precise recipe for the distinguished character η (which we will
recall in Sect. 3.2 below).

In a stunning series of papers [61–64], Waldspurger has established the
Bessel case of the GP conjecture for special orthogonal groups in the case of
tempered L-parameters; the case of general generic L-parameters is then dealt
with by Mœglin–Waldspurger [42]. Beuzart-Plessis [4–6] has since extended
Waldspurger’s techniques to settle the Bessel case of the GP conjecture for
unitary groups in the tempered case.

1.4 Purpose of this paper

The purpose of this paper is to establish the Fourier–Jacobi case of the GP
conjecture, as well as two conjectures of Prasad concerning local theta corre-
spondence in the (almost) equal rank case.

Let us describe the main idea of the proof. For simplicity, we restrict
ourselves to the case of tempered L-parameters here. The Bessel and Fourier–
Jacobi cases of theGP conjecture are related by the local theta correspondence.
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The Gross–Prasad conjecture and local theta correspondence 709

More precisely, there is a see-saw diagram

U(Wn)× U(Wn)

�������������� U(Vn+1)

U(Wn)

��������������
U(Vn)× U(V1)

and the associated see-saw identity reads:

HomU(Wn)(Θψ,χ,Vn,Wn (σ ) ⊗ ωψ,χ,V1,Wn , π)∼= HomU(Vn)(Θψ,χ,Vn+1,Wn (π), σ )

for irreducible smooth representations π of U(Wn) and σ of U(Vn). Hence the
left-hand side of the see-saw identity concerns the Fourier–Jacobi case (FJ)
whereas the right-hand side concerns the Bessel case (B). It is thus apparent
that precise knowledge of the local theta correspondence for unitary groups of
(almost) equal rank will give the precise relation of (FJ) to (B).

More precisely, one would need to know:

(Θ) For irreducible tempered representations π and σ , the big theta lifts
Θψ,χ,Vn+1,Wn (π) and Θψ,χ,Vn,Wn (σ ) are irreducible (if nonzero).

(P1) If σ has parameter (φ, η) andΘψ,χ,Vn,Wn (σ ) has parameter (φ′, η′), then
(φ′, η′) can be precisely described in terms of (φ, η).

(P2) Likewise, if π has parameter (φ, η) and Θψ,χ,Vn+1,Wn (π) has parameter
(φ′, η′), then (φ′, η′) can be precisely described in terms of (φ, η).

In fact, in [47,48], Prasad has formulated precise conjectures regarding
(P1) and (P2) for the theta correspondence for U(Vn)×U(Wn) and U(Vn+1)×
U(Wn) respectively; we shall recall his conjectures precisely in Sect. 4. We
shall also denote by (weak P1) the part of the conjecture (P1) concerning only
the correspondence of L-parameters φ �→ φ′; likewise we have (weak P2).
Then we recall that in our earlier paper [17], we have shown:

Proposition 1.1 The statements (Θ), (weak P1) and (weak P2) hold.

Using Proposition 1.1, the first observation of this paper is:

Proposition 1.2 Assume (B) and (P2). Then (FJ) and (P1) follow.

In view of Proposition 1.2 and the work of Beuzart-Plessis [4–6], it remains
to show the statement (P2), and our main result is:

Theorem 1.3 The conjecture (P2), and hence (FJ) and (P1), holds.

Let us make a few comments about the results:
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710 W. T. Gan, A. Ichino

• In fact,we prove (P1) and (P2) for all (not necessarily tempered nor generic)
L-parameters.

• We mention a related result of Mœglin [41] about the local theta cor-
respondence for symplectic-orthogonal dual pairs of arbitrary rank. She
considered A-packets for a large class of A-parameters, including all tem-
pered L-parameters, and then determined the analog of the correspondence
(φ, η) �→ (φ′, η′) in the sense of Arthur, assuming that the correspondence
is known for supercuspidal (and slightly more general) representations.

• It is interesting to note that in Proposition 1.2, the roles of (P1) and (P2)
can be switched. In other words, it is also sufficient to prove (P1) in order
to prove (FJ). We shall explain in the next subsection why we prefer to
prove (P2).

• In [15], both the Bessel (B) and Fourier–Jacobi (FJ) cases of the GP con-
jecture were formulated for pairs of spaces Vn ⊂ Vn+2k+1 or Wn ⊂ Wn+2k
for any nonnegative integer k and for any generic L-parameters for
U(Vn)×U(Vn+2k+1) or U(Wn)×U(Wn+2k). Beuzart-Plessis [4–6] has in
fact verified (B) for all tempered L-parameters for U(Vn) × U(Vn+2k+1).
In §9, we check that the argument as in [42] gives (B) for all generic
L-parameters for U(Vn) × U(Vn+2k+1) and then show that Theorem 1.3
continues to hold for all generic L-parameters for U(Wn)× U(Wn).

• On the other hand, it was shown in [15, Theorem 19.1] that the GP con-
jecture in the case of generic L-parameters for U(Wn) × U(Wn+2k) (for
all k > 0) follows from that for U(Wn)×U(Wn). Namely, we can deduce
from Theorem 1.3 the following:

Corollary 1.4 The Fourier–Jacobi case of the GP conjecture holds for all
generic L-parameters for U(Wn)× U(Wn+2k) for any k ≥ 0.

1.5 Prasad’s conjectures

Given Proposition 1.1, themain work is to determine how η′ depends on (φ, η)
in (P1) and (P2). In fact, the precise determination of η′ in (P1) is a very subtle
issue, as it depends on certain local roots numbers. In the case of (P2), the
dependence of η′ on (φ, η) is more simplistic.

The proof of (P2) proceeds by the following steps:

• First, by our results in [17], the nontempered case can be reduced to the
tempered case on smaller unitary groups.

• Next, we show that the tempered case can be reduced to the square-
integrable case on smaller unitary groups. This is achieved by a nontrivial
extension of the techniques in the PhD thesis of the second author [31] and
uses the delicate details of the normalization of the intertwining operators
involved in the local intertwining relation [2,33,44].
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The Gross–Prasad conjecture and local theta correspondence 711

• Finally, we show the square-integrable case by a global argument. More
precisely,we shall globalize an irreducible square-integrable representation
π of U(Wn) to an irreducible cuspidal automorphic representation Π =
⊗vΠv such that
– Πv is not square-integrable for all places outside the place of interest,
so that (P2) is known for Πv outside the place of interest,

– Π has tempered A-parameter whose global component group is equal
to the local component group of the L-parameter of π ,

– Π has nonzero global theta lift to a unitary group which globalizes
U(Vn+1).

The desired result then follows for the place of interest by applyingArthur’s
multiplicity formula for the automorphic discrete spectrum, which can be
viewed as a sort of product formula (see (6.3)).

We can now explain why we prefer to prove (P2) rather than (P1). Note
that one could attempt to follow the same strategy of proof for the statement
(P1). However, in the globalization step above, we need to ensure that Π
has nonzero global theta lift to a certain unitary group. For the case of (P1),
the nonvanishing of this global theta lift is controlled by the nonvanishing
of L(12 ,Π), and it is well-known that the nonvanishing of this central critical
value is a very subtle issue with arithmetic implications. On the other hand, for
the statement (P2), the nonvanishing of the global theta lift of Π is governed
by the nonvanishing of L(1,Π). Now it is certainly much easier to ensure
the nonvanishing of L(1,Π) compared to L(12 ,Π). For example, if Π has
tempered A-parameter, then one knows that L(1,Π) 	= 0. It is for this reason
that we prove (P2) rather than (P1).

1.6 3 Birds and 2 stones

To summarise, in proving our main theorem, we have killed “3 birds” [i.e. (FJ),
(P1) and (P2)] with “2 stones” [i.e. (B) and Arthur’s multiplicity formula],
though it is probably more accurate to describe the latter as two cannon balls.
We stress however that no animals (besides the two authors) have suffered in
the preparation of this article.

Notation

Let F be a nonarchimedean local field of characteristic 0 and residue char-
acteristic p. We fix an algebraic closure F̄ of F . Let Γ = Gal(F̄/F) be the
absolute Galois group of F and WF the Weil group of F . Let | · |F be the
normalized absolute value on F . We fix a nontrivial additive characterψ of F .
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712 W. T. Gan, A. Ichino

Let E be a quadratic field extension of F and ωE/F the quadratic character
of F× associated to E/F by local class field theory. Let c denote the nontrivial
Galois automorphism of E over F . Let TrE/F and NE/F be the trace and norm
maps from E to F . We choose an element δ ∈ E× such that TrE/F (δ) = 0.
We write | · | = | · |E for the normalized absolute value on E . Let ψE be the
nontrivial additive character of E defined by ψE = ψ ◦ TrE/F .

If G is a linear algebraic group over F , we identify G with its group of F-
rational pointsG(F). For any totally disconnected locally compact groupG, let
1G be the trivial representation of G and Irr(G) the set of equivalence classes
of irreducible smooth representations of G. For any set X , let 1X be the identity
map of X . For any positive integer n, let 1n be the identity matrix in GLn .

2 Local Langlands correspondence

In this section, we summarize some properties of the local Langlands corre-
spondence for unitary groups.

2.1 Hermitian and skew-Hermitian spaces

Fix ε = ±1. Let V be a finite dimensional vector space over E equipped with
a nondegenerate ε-Hermitian c-sesquilinear form

〈·, ·〉V : V × V −→ E .

Thus we have

〈av, bw〉V = abc〈v,w〉V ,

〈w, v〉V = ε · 〈v,w〉c
V

for v,w ∈ V and a, b ∈ E . Put n = dim V and disc V = (−1)(n−1)n/2 ·det V ,
so that

disc V ∈
{

F×/NE/F (E×) if ε = +1;
δn · F×/NE/F (E×) if ε = −1.

We define ε(V ) = ±1 by

ε(V ) =
{
ωE/F (disc V ) if ε = +1;
ωE/F (δ

−n · disc V ) if ε = −1.

Given a positive integer n, there are precisely two isometry classes of n-
dimensional ε-Hermitian spaces V , which are distinguished from each other
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The Gross–Prasad conjecture and local theta correspondence 713

by their signs ε(V ). Note that ε(V ) depends on the choice of δ if ε = −1
and n is odd. Let U(V ) be the unitary group of V , i.e. the connected reductive
linear algebraic group over F defined by

U(V ) = {g ∈ GL(V ) | 〈gv, gw〉V = 〈v,w〉V for v,w ∈ V }.

If n = 0, we interpret U(V ) as the trivial group {1}.

2.2 L-parameters and component groups

Let WE be the Weil group of E and WDE = WE × SL2(C) the Weil–Deligne
group of E . We say that a continuous homomorphism φ : WDE → GLn(C)

is a representation of WDE if

• φ is semisimple,
• the restriction of φ to SL2(C) is algebraic.

We say that φ is tempered if the image of WE is bounded. Let φ∨ be the
contragredient representation of φ defined by φ∨(w) = tφ(w)−1. Fix s ∈
WF �WE and define a representationφc ofWDE byφc(w) = φ(sws−1). Then
the equivalence class of φc is independent of the choice of s. We say that φ is
conjugate self-dual if there is a nondegenerate bilinear form B : C

n ×C
n → C

which satisfies

B(φ(w)x, φc(w)y) = B(x, y)

for all w ∈ WDE and x, y ∈ C
n . Namely, φ is conjugate self-dual if and only

if φc is equivalent to φ∨. For b = ±1, we say that φ is conjugate self-dual
with sign b if there is a nondegenerate bilinear form B : C

n × C
n → C which

satisfies the above condition and the condition that

B(y, x) = b · B(x, φ(s2)y)

for all x, y ∈ C
n . Note that the sign b depends not only on φ but also on B.

We also say that φ is conjugate orthogonal (resp. conjugate symplectic) if it is
conjugate self-dual with sign +1 (resp. −1). If φ is conjugate self-dual with
sign b (with respect to a bilinear form B), then det φ is conjugate self-dual
with sign bn . By [15, Lemma 3.4], a character χ of E× (or rather the character
of WDE associated to χ by local class field theory) is conjugate orthogonal
(resp. conjugate symplectic) if and only if χ |F× = 1F× (resp. χ |F× = ωE/F ).

By [15, Sect. 8], an L-parameter for the unitary group U(V ) is an n-
dimensional conjugate self-dual representation φ of WDE with sign (−1)n−1.
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714 W. T. Gan, A. Ichino

We may decompose φ into a direct sum

φ =
⊕

i

miφi

with pairwise inequivalent irreducible representations φi of WDE and multi-
plicities mi . We say that φ is square-integrable if it is multiplicity-free (so that
mi = 1 for all i) and φi is conjugate self-dual with sign (−1)n−1 for all i .

For an L-parameter φ for U(V ), fix a bilinear form B as above and let
Aut(φ, B) be the group of elements in GLn(C) which centralize the image of
φ and preserve B. Let

Sφ = Aut(φ, B)/Aut(φ, B)0

be the component group of φ, where Aut(φ, B)0 is the identity component
of Aut(φ, B). As shown in [15, Sect. 8], Sφ has an explicit description of the
form

Sφ =
∏

j

(Z/2Z)a j

with a canonical basis {a j }, where the product ranges over all j such that φ j
is conjugate self-dual with sign (−1)n−1. In particular, Sφ is an elementary
abelian 2-group. We shall let zφ denote the image of −1 ∈ GLn(C) in Sφ .
More explicitly, we have

zφ = (m j a j ) ∈
∏

j

(Z/2Z)a j .

2.3 Local Langlands correspondence

The local Langlands correspondence for general linear groups, which was
established by Harris–Taylor [26], Henniart [29], and Scholze [51], is a cer-
tain bijection between Irr(GLn(E)) and equivalence classes of n-dimensional
representations ofWDE . This bijection satisfies natural propertieswhich deter-
mine it uniquely. For example, if π is an irreducible smooth representation of
GLn(E) with central character ωπ and φ is the n-dimensional representation
of WDE associated to π , then
• ωπ = det φ,
• π is essentially square-integrable if and only if φ is irreducible,
• π is tempered if and only if φ is tempered.
The local Langlands correspondence (as enhanced by Vogan [58]) for uni-

tary groups says that there is a canonical partition
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The Gross–Prasad conjecture and local theta correspondence 715

Irr(U(V +)) � Irr(U(V −)) =
⊔
φ

Πφ,

where V + and V − are the n-dimensional ε-Hermitian spaces with ε(V +) =
+1 and ε(V −) = −1, the disjoint union on the right-hand side runs over all
equivalence classes of L-parameters φ for U(V ±), and Πφ is a finite set of
representations known as a Vogan L-packet. We may decompose Πφ as

Πφ = Π+
φ �Π−

φ ,

where for ε = ±1, Πε
φ consists of the representations of U(V ε) in Πφ .

2.4 Whittaker data

To describe the L-packetΠφ more precisely, it is necessary to choose a Whit-
taker datum, which is a conjugacy class of pairs (N , ψN ), where

• N is the unipotent radical of a Borel subgroup of the quasi-split unitary
group U(V +),

• ψN is a generic character of N .

Then relative to this datum, there is a canonical bijection

JψN : Πφ ←→ Irr(Sφ).

When n is odd, such a datum is canonical. When n is even, as explained in [15,
Sect. 12], it is determined by the choice of an NE/F (E×)-orbit of nontrivial
additive characters {

ψ E : E/F → C
× if ε = +1;

ψ : F → C
× if ε = −1.

According to this choice, we write{
JψE if ε = +1;
Jψ if ε = −1

for JψN . We formally adopt the same notation when n is odd. Suppose that
ε = +1, so that V + and V − are Hermitian spaces. Let W + = δ · V + be the
space V + equipped with the skew-Hermitian form δ · 〈·, ·〉V + . Similarly, we
define the skew-Hermitian space W − = δ · V −. Then for ε = ±1, U(V ε)

and U(W ε) are physically equal. For a given φ, let JψE and Jψ be the above
bijections for U(V ±) and U(W ±) respectively. One has:
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716 W. T. Gan, A. Ichino

• if n is even, then

JψE = Jψ ⇐⇒ ψ E (x) = ψ
(
1
2 TrE/F (δx)

)
,

• if n is odd, then JψE = Jψ .

Havingfixed theWhittaker datum (N , ψN ), we shallwriteπ(φ, η)or simply
π(η) for the irreducible smooth representation in Πφ corresponding to η ∈
Irr(Sφ) under the bijection JψN . If φ is tempered, then for anyWhittaker datum
(N , ψ ′

N ), there is a unique (N , ψ ′
N )-generic representation of U(V +) in Πφ

by [5, Lemme 7.10.1], and the irreducible characters of Sφ associated to these
generic representations under the bijection JψN are described as follows:

• The unique (N , ψN )-generic representation of U(V +) in Πφ corresponds
to the trivial character of Sφ .

• When n is even, there are precisely twoWhittaker datum. If (N , ψ ′
N ) is not

conjugate to (N , ψN ), then by [32, Sect. 3], the unique (N , ψ ′
N )-generic

representation of U(V +) inΠφ corresponds to the character η− of Sφ given
by

η−(a j ) = (−1)dim φ j .

The character η− has a role evenwhen n is odd. Indeed, if n is odd, wemay take
V − = a · V +, i.e. the space V + equipped with the Hermitian form a · 〈·, ·〉V + ,
where a ∈ F×

� NE/F (E×). Then U(V +) and U(V −) are physically equal.
Under this identification, we have

Π+
φ = Π−

φ

for anyφ. Letπ = π(φ, η) be a representation of U(V +) inΠφ . If we regardπ
as a representation of U(V −) via the above identification, then it has associated
characterη·η−. In particular, ifφ is tempered, then the unique (N , ψN )-generic
representation of U(V −) in Πφ corresponds to η−.

2.5 Properties of the local Langlands correspondence

We highlight some properties of the local Langlands correspondence which
are used in this paper:

• π(φ, η) is a representation of U(V ε) if and only if η(zφ) = ε.
• π(φ, η) is square-integrable if and only if φ is square-integrable.
• π(φ, η) is tempered if and only if φ is tempered.
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The Gross–Prasad conjecture and local theta correspondence 717

• If φ is tempered but not square-integrable, then we can write

φ = φ1 ⊕ φ0 ⊕ (φc
1)

∨,

where

– φ1 is a k-dimensional irreducible representation of WDE for some positive
integer k,

– φ0 is a tempered L-parameter for U(V ±
0 ), where V ±

0 are the ε-Hermitian
spaces of dimension n − 2k over E .

Note that there is a natural embedding Sφ0 ↪→ Sφ . Let η0 ∈ Irr(Sφ0) and put
ε = η0(zφ0). We can write

V ε = X ⊕ V ε
0 ⊕ X∗,

where X and X∗ are k-dimensional totally isotropic subspaces of V ε such that
X⊕X∗ is nondegenerate and orthogonal to V ε

0 . Let P be themaximal parabolic
subgroup of U(V ε) stabilizing X and M its Levi component stabilizing X∗,
so that

M ∼= GL(X)× U(V ε
0 ).

Let τ be the irreducible (unitary) square-integrable representation of GL(X)
associated to φ1, and let π0 = π(φ0, η0) be the irreducible tempered represen-
tation of U(V ε

0 ) in Πφ0 corresponding to η0. Then the induced representation

IndU(V
ε)

P (τ ⊗ π0) has a decomposition

IndU(V
ε)

P (τ ⊗ π0) =
⊕
η

π(φ, η),

where the sum ranges over all η ∈ Irr(Sφ) such that η|Sφ0
= η0. Moreover, if

φ1 is conjugate self-dual, let

R(w, τ ⊗ π0) ∈ EndU(V ε)(Ind
U(V ε)
P (τ ⊗ π0))

be the normalized intertwining operator defined in Sect. 7.3 below, where w
is the unique nontrivial element in the relative Weyl group for M . Then the
restriction of R(w, τ ⊗ π0) to π(φ, η) is the scalar multiplication by

{
εk · η(a1) if φ1 has sign (−1)n−1;
εk if φ1 has sign (−1)n,

(2.1)
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718 W. T. Gan, A. Ichino

where a1 corresponds to φ1. These properties follow from the definition of
η, induction in stages [33, Sect. 2.7], and the local intertwining relation [44,
Theorem 3.4.3], [33, Theorem 2.6.2]. We also remark that the factor εk arises
from the splitting s′ : Wψ(M,G) → π0(Nψ(M,G)) defined in [33, Sect.
2.4.1], which can be explicated by using an analog of Lemma 7.2 below for
the dual group.

• In general, we can write

φ = φ1 ⊕ · · · ⊕ φr ⊕ φ0 ⊕ (φc
r )

∨ ⊕ · · · ⊕ (φc
1)

∨,

where

– for i = 1, . . . , r , φi is a ki -dimensional representation of WDE of the form
φi = φ′

i ⊗ | · |ei for some tempered representation φ′
i of WDE and real

number ei such that

e1 > · · · > er > 0,

– φ0 is a tempered L-parameter for U(V ±
0 ), where V ±

0 are the ε-Hermitian
spaces of dimension n − 2(k1 + · · · + kr ) over E .

Note that the natural map Sφ0 → Sφ is an isomorphism. Let η ∈ Irr(Sφ) and
put ε = η(zφ). We can write

V ε = X1 ⊕ · · · ⊕ Xr ⊕ V ε
0 ⊕ X∗

r ⊕ · · · ⊕ X∗
1,

where Xi and X∗
i are ki -dimensional totally isotropic subspaces of V ε such

that Xi ⊕ X∗
i are nondegenerate, mutually orthogonal, and orthogonal to V ε

0 .
Let P be the parabolic subgroup of U(V ε) stabilizing the flag

X1 ⊂ X1 ⊕ X2 ⊂ · · · ⊂ X1 ⊕ · · · ⊕ Xr

and M its Levi component stabilizing the flag

X∗
1 ⊂ X∗

1 ⊕ X∗
2 ⊂ · · · ⊂ X∗

1 ⊕ · · · ⊕ X∗
r ,

so that

M ∼= GL(X1)× · · · × GL(Xr )× U(V ε
0 ).

Then π(φ, η) is the unique irreducible quotient of the standard module

IndU(V
ε)

P (τ1 ⊗ · · · ⊗ τr ⊗ π0),
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The Gross–Prasad conjecture and local theta correspondence 719

where for i = 1, . . . , r , τi is the irreducible essentially tempered representation
of GL(Xi ) associated to φi , and π0 = π(φ0, η0) is the irreducible tempered
representation of U(V ε

0 ) in Πφ0 corresponding to η0 := η|Sφ0
∈ Irr(Sφ0).

• If π = π(φ, η), then the contragredient representation π∨ of π has L-
parameter φ∨ and associated character ηπ∨ = η · ν, where

ν(a j ) =
{
ωE/F (−1)dim φ j if n is even;

1 if n is odd.

Note that the component groups Sφ and Sφ∨ are canonically identified. In
the case of unitary groups, this property follows from a result of Kaletha
[32, Sect. 4].

3 Gross–Prasad conjecture

In this section, we explicate the statement of the Gross–Prasad conjecture
for unitary groups. In particular, we recall the definition of the distinguished
character η of the component group.

3.1 Pairs of spaces

For ε = ±1, let V ε
n denote the n-dimensional Hermitian space with ε(V ε

n ) = ε

and W ε
n the n-dimensional skew-Hermitian space with ε(W ε

n ) = ε, so that
W ε

n = δ ·V ε
n . For the Gross–Prasad conjecture, we consider the pair of spaces:

V +
n ⊂ V +

n+1 or W +
n = W +

n .

Then the relevant pure inner form (other than itself) is

V −
n ⊂ V −

n+1 or W −
n = W −

n

and observe that

V ε
n+1/V ε

n
∼= L(−1)n ,

where for a ∈ F×, La denotes the Hermitian line with form a · NE/F . We
have the groups

Gε
n = U(V ε

n )× U(V ε
n+1) or U(W ε

n )× U(W ε
n )
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720 W. T. Gan, A. Ichino

and

H ε
n = U(V ε

n ) or U(W ε
n ),

and the embedding

Δ : H ε
n ↪→ Gε

n.

We also have the Langlands–Vogan parametrization (depending on the
choice of the Whittaker datum) relative to the fixed pair of spaces. For an
L-parameter φ = φ♦ × φ♥ for G±

n , the component group is:

Sφ = Sφ♦ × Sφ♥ .

In particular, under the local Langlands correspondence, the representation
π(η) ∈ Πφ is a representation of a relevant pure inner form if and only if

η(zφ♦, zφ♥) = 1,

and π(η) is a representation of Gε
n if and only if

η(zφ♦, 1) = η(1, zφ♥) = ε.

3.2 The distinguished character η

We shall now define a distinguished character η ∈ Irr(Sφ)when φ = φ♦×φ♥.
Writing

Sφ♦ =
∏

i

(Z/2Z)ai and Sφ♥ =
∏

j

(Z/2Z)b j ,

we thus need to specify the signs η(ai ) = ±1 and η(b j ) = ±1. We consider
the Bessel and Fourier–Jacobi cases separately.

• Bessel case. We fix a nontrivial character ψ E of E/F which determines
the local Langlands correspondence for the even unitary group in Gε

n =
U(V ε

n )× U(V ε
n+1). We set ψ E−2(x) = ψ E (−2x) and define:

⎧⎨
⎩
η♠(ai ) = ε

(
1
2 , φ

♦
i ⊗ φ♥, ψ E−2

)
;

η♠(b j ) = ε
(
1
2 , φ

♦ ⊗ φ
♥
j , ψ

E−2

)
.
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The Gross–Prasad conjecture and local theta correspondence 721

• Fourier–Jacobi case. In this case, we need to fix a nontrivial character ψ
of F and a character χ of E× with χ |F× = ωE/F to specify the Weil
representation ν = ωψ,χ,W ε

n
of U(W ε

n ). The recipe for the distinguished
character η♣ of Sφ depends on the parity of n = dim W ε

n .
– If n is odd, recall that det W +

n ∈ δ · NE/F (E×) and define⎧⎨
⎩
η♣(ai ) = ε

(
1
2 , φ

♦
i ⊗ φ♥ ⊗ χ−1, ψ E

2

)
;

η♣(b j ) = ε
(
1
2 , φ

♦ ⊗ φ
♥
j ⊗ χ−1, ψ E

2

)
,

where

ψ E
2 (x) = ψ(TrE/F (δx)).

– If n is even, the fixed character ψ is used to fix the local Langlands
correspondence for U(W ε

n ). We set⎧⎨
⎩
η♣(ai ) = ε

(
1
2 , φ

♦
i ⊗ φ♥ ⊗ χ−1, ψ E

)
;

η♣(b j ) = ε
(
1
2 , φ

♦ ⊗ φ
♥
j ⊗ χ−1, ψ E

)
,

where the ε-factors are defined using any nontrivial additive character
ψ E of E/F . (The result is independent of this choice.)

We refer the reader to [15, Sect. 18] for a discussion of the various subtleties
in the definition of η♠ or η♣.

3.3 Conjectures (B) and (FJ)

Let us formally state the statements (B)n and (FJ)n:
(B)n Given a tempered L-parameter φ for G±

n = U(V ±
n ) × U(V ±

n+1) and a
representation π(η) ∈ Πφ of a relevant pure inner form Gε

n ,

HomΔH ε
n
(π(η),C) 	= 0 ⇐⇒ η = η♠.

(FJ)n Given a tempered L-parameter φ for G±
n = U(W ±

n ) × U(W ±
n ) and a

representation π(η) ∈ Πφ of a relevant pure inner form Gε
n ,

HomΔH ε
n
(π(η), ν) 	= 0 ⇐⇒ η = η♣.

We shall denote by (B) the collection of statements (B)n for all n ≥ 0, and
by (FJ) the collection of statements (FJ)n for all n ≥ 0. We stress that both
(B) and (FJ) are considered only for tempered representations in this paper
(except in Sect. 9 where we treat the case of generic L-parameters).
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4 Local theta correspondence and Prasad’s conjectures

In this section, we explicate the statement of Prasad’s conjectures on the local
theta correspondence for unitary groups of (almost) equal rank.

4.1 Weil representations

Let V be a Hermitian space and W a skew-Hermitian space. To consider the
theta correspondence for the reductive dual pair U(V ) × U(W ), one requires
certain additional data:

(i) a nontrivial additive character ψ of F ;
(ii) a pair of characters χV and χW of E× such that

χV |F× = ωdim V
E/F and χW |F× = ωdim W

E/F .

One way to fix such a pair is simply to fix a character χ of E× such that
χ |F× = ωE/F and then set

χV = χdim V and χW = χdim W .

(iii) a trace zero element δ ∈ E×.

To elaborate, the tensor product V ⊗ W has a natural symplectic form defined
by

〈v1 ⊗ w1, v2 ⊗ w2〉 = TrE/F (〈v1, v2〉V · 〈w1, w2〉W ).

Then there is a natural map

U(V )× U(W ) −→ Sp(V ⊗ W ).

One has themetaplectic S1-coverMp(V ⊗W ) of Sp(V ⊗W ), and the character
ψ (together with the form 〈·, ·〉 on V ⊗ W ) determines a Weil representation
ωψ of Mp(V ⊗ W ). The data (ψ, χV , χW , δ) then allows one to specify a
splitting of the metaplectic cover over U(V )×U(W ), as shown in [25,37]. In
fact, by construction and [25, Lemma A.7], it does not depend on the choice
of δ.

Hence, we have a Weil representation ωψ,χV ,χW ,V,W of U(V ) × U(W ).
The Weil representation ωψ,χV ,χW ,V,W depends only on the orbit of ψ under
NE/F (E×).
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4.2 Local theta correspondence

Given an irreducible smooth representation π of U(W ), the maximal π -
isotypic quotient of ωψ,χV ,χW ,V,W is of the form

Θψ,χV ,χW ,V,W (π)� π

for some smooth representation Θψ,χV ,χW ,V,W (π) of U(V ) of finite length.
By the Howe duality, which was proved by Waldspurger [59] for p 	= 2 and
by the first author and Takeda [20,21] for any p (so that the assumption p 	= 2
can be removed from the results of [17] stated below), themaximal semisimple
quotient θψ,χV ,χW ,V,W (π) of Θψ,χV ,χW ,V,W (π) is either zero or irreducible.
If χV and χW are clear from the context, we simply write Θψ,V,W (π) =
Θψ,χV ,χW ,V,W (π) and θψ,V,W (π) = θψ,χV ,χW ,V,W (π).

In this paper, we consider the theta correspondence for U(V )×U(W )with

| dim V − dim W | ≤ 1.

We will state two conjectures of Prasad which describe the local theta corre-
spondence in terms of the local Langlands correspondence.

4.3 Equal rank case

We first consider the case dim V = dim W = n. We shall consider the theta
correspondence for U(V ε

n )×U(W ε′
n ). The following summarises some results

of [17]:

Theorem 4.1 Let φ be an L-parameter for U(W ±
n ). Then we have:

(i) For any fixed π ∈ Πε′
φ , exactly one of Θ

ψ,V +
n ,W ε′

n
(π) or Θ

ψ,V −
n ,W ε′

n
(π)

is nonzero.
(ii) Θ

ψ,V ε
n ,W

ε′
n
(π) 	= 0 if and only if

ε
(
1
2 , φ ⊗ χ−1

V , ψ E
2

)
= ε · ε′,

where

ψ E
2 (x) = ψ(TrE/F (δx)).

(iii) If Θ
ψ,V ε

n ,W
ε′
n
(π) is nonzero, then θ

ψ,V ε
n ,W

ε′
n
(π) has L-parameter

θ(φ) = φ ⊗ χ−1
V χW .
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(iv) The theta correspondence π �→ θ
ψ,V ε

n ,W
ε′
n
(π) gives a bijection

Πφ ←→ Πθ(φ).

(v) If φ is tempered and Θ
ψ,V ε

n ,W
ε′
n
(π) is nonzero, then Θ

ψ,V ε
n ,W

ε′
n
(π) is

irreducible.

4.4 Conjecture (P1)

After the above theorem, the remaining question is to specify the bijection of
Vogan L-packets given in (iv). We shall do this using the bijections

Jψ : Πφ ←→ Irr(Sφ) and JψE : Πθ(φ) ←→ Irr(Sθ(φ)),

where
ψ E (x) = ψ

(
1
2 TrE/F (δx)

)
. (4.1)

Note that the bijections Jψ and JψE are independent of ψ and ψ E when n is
odd, but when n is even, they do depend on these additive characters and it is
crucial for ψ and ψ E to be related as in (4.1) for what follows to hold.

Having fixed the bijections Jψ and JψE , we need to describe the bijection

Irr(Sφ) ←→ Irr(Sθ(φ))

η ←→ θ(η)

induced by the theta correspondence. Note that the component groups Sφ and
Sθ(φ) are canonically identified, since θ(φ) is simply a twist ofφ by a conjugate
orthogonal character.

Now the first conjecture of Prasad states the following.

(P1)n Let φ be an L-parameter for U(W ±
n ) and let η ∈ Irr(Sφ). Suppose that

Sφ = Sθ(φ) =
∏

i

(Z/2Z)ai .

Then, relative to Jψ and JψE as above,

θ(η)(ai )/η(ai ) = ε
(
1
2 , φi ⊗ χ−1

V , ψ E
2

)
,

where

ψ E
2 (x) = ψ(TrE/F (δx)).
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We shall denote by (P1) the collection of all statements (P1)n for all n ≥ 0.
Note that we consider (P1) for all L-parameters, and not just tempered ones.
However, we note:

Proposition 4.2 Suppose that (P1)k holds for all tempered L-parameters for
all k < n. Then (P1)k holds for all nontempered L-parameters for all k ≤ n.

Proof This follows from the analog of [19, Theorem 8.1(iii)] for unitary
groups. ��

Moreover, the following is a corollary of Theorem 4.1(ii):

Corollary 4.3 The statement (P1)n holds if φ is irreducible.

4.5 Almost equal rank case

Now we consider the case dim V = n + 1 and dim W = n. We shall consider
the theta correspondence for U(V ε

n+1) × U(W ε′
n ). The following summarises

some results of [17]:

Theorem 4.4 Let φ be an L-parameter for U(W ±
n ). Then we have:

(i) Suppose that φ does not contain χV .
(a) For any π ∈ Πε′

φ , Θ
ψ,V ε

n+1,W
ε′
n
(π) is nonzero and θ

ψ,V ε
n+1,W

ε′
n
(π) has

L-parameter

θ(φ) = (φ ⊗ χ−1
V χW )⊕ χW .

(b) For each ε = ±1, the theta correspondence π �→ θ
ψ,V ε

n+1,W
ε′
n
(π) gives

a bijection

Πφ ←→ Πε
θ(φ).

(ii) Suppose that φ contains χV .
(a) For any fixedπ ∈ Πε′

φ , exactly one ofΘ
ψ,V +

n+1,W
ε′
n
(π)orΘ

ψ,V −
n+1,W

ε′
n
(π)

is nonzero.
(b) If Θ

ψ,V ε
n+1,W

ε′
n
(π) is nonzero, then θ

ψ,V ε
n+1,W

ε′
n
(π) has L-parameter

θ(φ) = (φ ⊗ χ−1
V χW )⊕ χW .

(c) The theta correspondence π �→ θ
ψ,V ε

n+1,W
ε′
n
(π) gives a bijection

Πφ ←→ Πθ(φ).

(iii) If φ is tempered and Θ
ψ,V ε

n+1,W
ε′
n
(π) is nonzero, then Θ

ψ,V ε
n+1,W

ε′
n
(π) is

irreducible.
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4.6 Conjecture (P2)

After the above theorem, it remains to specify the bijections given in (i)(b) and
(ii)(c). As in the case of (P1), we shall do this using the bijections

Jψ : Πφ ←→ Irr(Sφ) and JψE : Πθ(φ) ←→ Irr(Sθ(φ)),

where

ψ E (x) = ψ
(
1
2 TrE/F (δx)

)
.

Note that Jψ is independent of ψ when n is odd, whereas JψE is independent
of ψ E when n is even.

Observe that:

• If φ does not contain χV , then

Sθ(φ) = Sφ × (Z/2Z)a0,

where the extra copy of Z/2Z arises from the summand χW in θ(φ). Thus,
for each ε, one has a canonical bijection

Irr(Sφ) ←→ Irrε(Sθ(φ))

η ←→ θ(η)

induced by the theta correspondence, where Irrε(Sθ(φ)) is the set of irre-
ducible characters η′ of Sθ(φ) such that η′(zθ(φ)) = ε.

• On the other hand, if φ contains χV , then φ⊗χ−1
V χW contains χW , so that

Sθ(φ) = Sφ.

Thus, one has a canonical bijection

Irr(Sφ) ←→ Irr(Sθ(φ))

η ←→ θ(η)

induced by the theta correspondence.

Now we can state the second conjecture of Prasad.

(P2)n Let φ be an L-parameter for U(W ±
n ) and let η ∈ Irr(Sφ). Fix the bijec-

tions Jψ and JψE as above.
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• If φ does not contain χV , then θ(η) is the unique irreducible character in
Irrε(Sθ(φ)) such that

θ(η)|Sφ = η.

• On the other hand, if φ contains χV , then

θ(η) = η.

We shall denote by (P2) the collection of all the statements (P2)n for all
n ≥ 0. Note that we consider (P2) for all L-parameters, and not just tempered
ones. However, we note:

Proposition 4.5 Suppose that (P2)k holds for all tempered L-parameters for
all k < n. Then (P2)k holds for all nontempered L-parameters for all k ≤ n.

Proof This follows from [17, Proposition C.4(ii)]. ��

5 (B) + (P2) �⇒ (FJ) + (P1)

In this section, we shall show that Conjectures (FJ) and (P1) follow from
Conjectures (B) and (P2), together with Theorems 4.1 and 4.4.

Suppose that we are given tempered L-parameters φ♦ and φ♥ for U(W ±
n ).

Let

π♦ = π(η♦) ∈ Πε′
φ♦ and π♥ = π(η♥) ∈ Πε′

φ♥

be representations such that

HomU(W ε′
n )
(π♦ ⊗ π♥, ω

ψ,χ,W ε′
n
) 	= 0.

We first show that

η♦ ⊗ η♥ = η♣.

Since the representations involved are unitary (as φ♦ and φ♥ are tempered),

HomU(W ε′
n )
(π♦ ⊗ π♥, ω

ψ,χ,W ε′
n
) 	= 0

if and only if

HomU(W ε′
n )
((π♦)∨ ⊗ ω

ψ,χ,W ε′
n
, π♥) 	= 0.
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5.1 See-Saw

Now we consider the see-saw diagram (for an ε to be determined soon):

U(W ε′
n )× U(W ε′

n )

���������������
U(V ε

n+1)

U(W ε′
n )

����������������
U(V ε

n )× U(L(−1)n )

.

We shall consider the local theta correspondence for the above see-saw dia-
gram. For this, we need to specify precisely the data used in setting up the
theta correspondence. More precisely, for the dual pair U(V ε

n+1) × U(W ε′
n ),

we shall use the characters

χV ε
n+1

= χn+(−1)n and χW ε′
n

= χn,

and for the dual pair U(V ε
n )× U(W ε′

n ), we use

χV ε
n

= χW ε′
n

= χn.

Then for the dual pair U(L(−1)n )× U(W ε′
n ), we have no choice but to use

χL(−1)n = χ(−1)n and χW ε′
n

= χn.

In particular, the restriction of ω
ψ,χL(−1)n

,χ
Wε′

n
,L(−1)n ,W ε′

n
to U(W ε′

n ) is equal to

{
ω
ψ,χ,W ε′

n
if n is even;

ω∨
ψ,χ,W ε′

n
if n is odd.

In any case, having fixed these normalizations, we shall suppress them from
the notation for simplicity.

Because of the above differences for even and odd n, it will now be conve-
nient to treat the even and odd cases separately.

5.2 Even case

Assume first that n is even. By Theorem 4.1, we may choose σ ∈ Irr(U(V ε
n ))

such that

Θ
ψ,V ε

n ,W
ε′
n
(σ ) = (π♦)∨.
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This uniquely determines ε. Moreover, by Theorem 4.1, we know that σ has
L-parameter

φσ = (φ♦)∨,

since the L-parameter of (π♦)∨ is (φ♦)∨.
Taking the representationπ♥ onU(W ε′

n ) and the representationσ onU(V ε
n ),

the resulting see-saw identity reads:

0 	= HomU(W ε′
n )
((π♦)∨ ⊗ ω

ψ,χ,W ε′
n
, π♥)

= HomU(V ε
n )
(Θ

ψ,V ε
n+1,W

ε′
n
(π♥), σ ).

By Theorem 4.4,

τ := Θ
ψ,V ε

n+1,W
ε′
n
(π♥)

has L-parameter

φτ = (φ♥ ⊗ χ−1)⊕ χn.

Recall that we have used the character ψ to fix the local Langlands corre-
spondence for U(W ε′

n ). The component group Sφ♥ is of the form

Sφ♥ =
∏

j

(Z/2Z)b j

and there is a natural embedding Sφ♥ ↪→ Sφτ . Now, by (P2), the representation
τ has associated character ητ ∈ Irr(Sφτ ) which satisfies:

ητ = η♥ on Sφ♥ .

On the other hand, by (B), one knows exactly what ητ is. Namely, (B) gives:

ητ (b j ) = ε
(
1
2 , φ

∨
σ ⊗ φ

♥
j ⊗ χ−1, ψ E

)
= ε

(
1
2 , φ

♦ ⊗ φ
♥
j ⊗ χ−1, ψ E

)
= η♣(b j ),

where ψ E is any nontrivial character of E/F . Thus, we deduce that

η♥ = η♣ on Sφ♥ .
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Now of course we could reverse the role of π♦ and π♥ in the above argument.
Then we conclude that

η♦ ⊗ η♥ = η♣

as desired.

5.3 Odd case

Now suppose that n is odd. Then we use the character

ψ E (x) = ψ
(
1
2 TrE/F (δx)

)
of E/F to specify the local Langlands correspondence for U(V ε

n+1). By The-
orem 4.1, we may choose σ ∈ Irr(U(V ε

n )) such that

Θ
ψ,V ε

n ,W
ε′
n
(σ ) = π♦.

This uniquely determines ε. Moreover, by Theorem 4.1, we know that σ has
L-parameter

φσ = φ♦.

Taking the representation (π♥)∨ on U(W ε′
n ) and the representation σ on

U(V ε
n ), the resulting see-saw identity reads:

0 	=HomU(W ε′
n )
(π♦ ⊗ ω∨

ψ,χ,W ε′
n
, (π♥)∨)

=HomU(V ε
n )
(Θ

ψ,V ε
n+1,W

ε′
n
((π♥)∨), σ ).

By Theorem 4.4,

τ := Θ
ψ,V ε

n+1,W
ε′
n
((π♥)∨)

has L-parameter

φτ = ((φ♥)∨ ⊗ χ)⊕ χn.

Now by (P2), the representation τ has associated character ητ ∈ Irr(Sφτ )
satisfying:

ητ = η♥ on Sφ♥ = S(φ♥)∨⊗χ .
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On the other hand, by (B), we know that

ητ (b j ) = ε
(
1
2 , φ

∨
σ ⊗ (φ

♥
j )

∨ ⊗ χ,ψ E−2

)
= ε

(
1
2 , φ

♦ ⊗ φ
♥
j ⊗ χ−1, ψ E

2

)
= η♣(b j ).

Hence, we conclude that

η♥ = η♣ on Sφ♥ .

Reversing the role of π♦ and π♥ in the above argument, we conclude that

η♦ ⊗ η♥ = η♣

as desired.

5.4 Proof of (FJ)

At this point, we have shown that if

HomU(W ε′
n )
(π♦ ⊗ π♥, ω

ψ,χ,W ε′
n
) 	= 0,

then η♦ ⊗η♥ is equal to the distinguished character η♣. To complete the proof
of (FJ), it remains to show that the above Hom space is nonzero for some ε′
and pair of representations (π♦, π♥) ∈ Πε′

φ♦ × Πε′
φ♥ . This will follow from

the above see-saw diagram, Theorems 4.1 and 4.4. Let us illustrate this in the
case when n is even; the case when n is odd is similar.

Consider the tempered L-parameters φ := (φ♥ ⊗ χ−1)⊕ χn for U(V ±
n+1)

and φ′ := (φ♦)∨ for U(V ±
n ). By (B), there is a pair of representations

(τ, τ ′) ∈ Πε
φ ×Πε

φ′

such that

HomU(V ε
n )
(τ, τ ′) 	= 0.

By Theorem 4.4, we can find a unique π♥ ∈ Πε′
φ♥ (which determines ε′) such

that

τ = Θ
ψ,V ε

n+1,W
ε′
n
(π♥).
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Now the see-saw identity gives

0 	= HomU(V ε
n )
(Θ

ψ,V ε
n+1,W

ε′
n
(π♥), τ ′)

= HomU(W ε′
n )
(Θ

ψ,V ε
n ,W

ε′
n
(τ ′)⊗ ω

ψ,χ,W ε′
n
, π♥).

In particular,

π♦ := Θ
ψ,V ε

n ,W
ε′
n
(τ ′)∨ 	= 0

and by Theorem 4.1, it has L-parameter (φ′)∨ = φ♦. Thus we see that for
some (π♦, π♥) ∈ Πε′

φ♦ ×Πε′
φ♥ , we have

HomU(W ε′
n )
((π♦)∨ ⊗ ω

ψ,χ,W ε′
n
, π♥) 	= 0

as desired. This completes the proof of (FJ).

5.5 Proof of (P1)

Now we come to the proof of (P1). In particular, we consider the theta
correspondence for U(V ε

n ) × U(W ε′
n ) relative to the Weil representation

ω
ψ,χV ,χW ,V ε

n ,W
ε′
n
. Given an L-parameter φ for U(W ±

n ), we would like to expli-
cate the bijection

θ : Irr(Sφ) ←→ Irr(Sθ(φ))

furnished by Theorem 4.1, with θ(φ) = φ ⊗ χ−1
V χW . Here, recall that

Sφ = Sθ(φ) =
∏

i

(Z/2Z)ai .

Since we now have (B), (FJ) and (P2) at our disposal, we shall be able to
determine θ using the see-saw diagram.

More precisely, we start with a tempered L-parameter φ and consider an
irreducible tempered representationπ = π(η) ∈ Πε′

φ . One knows by Theorem
4.1 that Θ

ψ,V ε
n ,W

ε′
n
(π) ∈ Πε

θ(φ) is a nonzero irreducible tempered representa-
tion of U(V ε

n ) for a unique ε. By the analog of [19, Lemma 12.5] for unitary
groups, one can find an irreducible tempered representation σ of U(V ε

n−1) such
that

HomU(V ε
n−1)

(Θ
ψ,V ε

n ,W
ε′
n
(π), σ ) 	= 0.
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By (B), one has

θ(η)(ai ) = ε
(
1
2 , φ

∨
σ ⊗ φi ⊗ χ−1

V χW , ψ E−2

)
,

where φσ is the L-parameter of σ .
On the other hand, one has the see-saw diagram

U(W ε′
n )× U(W ε′

n )

���������������
U(V ε

n )

U(W ε′
n )

�������������������
U(V ε

n−1)× U(L(−1)n−1)

.

We consider the theta correspondence for U(L(−1)n−1) × U(W ε′
n ) relative to

the pair of characters (χ(−1)n−1
, χW ), so that the theta correspondence for

U(V ε
n−1)× U(W ε′

n ) is with respect to the pair (χVχ
(−1)n , χW ). We shall sup-

press these pairs of characters from the notation in the following. By Theorem
4.4, the representation

τ := Θ
ψ,V ε

n−1,W
ε′
n
(σ ) 	= 0

is irreducible and tempered. Moreover, τ has L-parameter

φτ = (φσ ⊗ χVχ
−1
W χ(−1)n )⊕ χVχ

(−1)n . (5.1)

It will now be convenient to consider the even and odd cases separately.

5.6 Even case

Assume first that n is even. By the see-saw identity, one has

0 	= HomU(W ε′
n )
(Θ

ψ,V ε
n−1,W

ε′
n
(σ )⊗ ω∨

ψ,χ,W ε′
n
, π)

= HomU(W ε′
n )
(τ ⊗ π∨, ω

ψ,χ,W ε′
n
).

It follows by (FJ) that

η(ai ) · ωE/F (−1)dim φi = ηπ∨(ai ) = ε
(
1
2 , φτ ⊗ φ∨

i ⊗ χ−1, ψ E
2

)
,

where the local root number appearing here is independent of the choice of
the additive character of E/F used since dim φτ = n is even. Hence, by (5.1),
one has
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η(ai ) = ε
(
1
2 , φσ ⊗ φ∨

i ⊗ χVχ
−1
W , ψ E

2

)
×ε

(
1
2 , φ

∨
i ⊗ χV , ψ

E
2

)
· ωE/F (−1)dim φi .

Noting that φi is conjugate symplectic, we may compute:

θ(η)(ai )/η(ai ) = ε
(
1
2 , φ

∨
i ⊗ χV , ψ

E
2

)
· ωE/F (−1)dim φi

= ε
(
1
2 , φ

∨
i ⊗ χV , ψ

E−2

)
= ε

(
1
2 , φi ⊗ χ−1

V , ψ E
2

)

as desired.

5.7 Odd case

Now suppose that n is odd. By the see-saw identity, one has

HomU(W ε′
n )
(τ ⊗ ω

ψ,χ,W ε′
n
, π) 	= 0,

so that

HomU(W ε′
n )
(τ∨ ⊗ π,ω

ψ,χ,W ε′
n
) 	= 0.

By (FJ), one has

η(ai ) = ε
(
1
2 , φ

∨
τ ⊗ φi ⊗ χ−1, ψ E

2

)
= ε

(
1
2 , φ

∨
σ ⊗ φi ⊗ χ−1

V χW , ψ E
2

)
· ε

(
1
2 , φi ⊗ χ−1

V , ψ E
2

)
,

where the second equality follows from (5.1). On the other hand, we have seen
that

θ(η)(ai ) = ε
(
1
2 , φ

∨
σ ⊗ φi ⊗ χ−1

V χW , ψ E−2

)
= ε

(
1
2 , φ

∨
σ ⊗ φi ⊗ χ−1

V χW , ψ E
2

)
,

where the second equality follows because dim φ∨
σ = n − 1 is even. Hence,

we conclude that
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θ(η)(ai )/η(ai ) = ε
(
1
2 , φi ⊗ χ−1

V , ψ E
2

)
as desired.

We have thus shown Conjecture (P1) for tempered L-parameters. For non-
tempered L-parameters, (P1) follows from the tempered case by Proposition
4.2.

To summarise, we have shown the following proposition:

Proposition 5.1 Assume that (B)k and (P2)k hold for all tempered L-
parameters for all k ≤ n. Then (FJ)k and (P1)k also hold for all tempered
L-parameters for all k ≤ n.

5.8 (B) + (P1) �⇒ (FJ) + (P2)

Instead of assuming (B) and (P2) as we have done above, one may assume (B)
and (P1). Using the same arguments as above, together with Theorems 4.1 and
4.4, one can then deduce (FJ) and (P2). We state this formally as a proposition
and leave the details of the proof to the reader.

Proposition 5.2 Assume that (B)k and (P1)k hold for all tempered L-
parameters for all k ≤ n. Then (FJ)k and (P2)k also hold for all tempered
L-parameters for all k ≤ n.

6 Proof of (P2)

After the previous section, and in view of the results of Beuzart-Plessis [4–6]
(who proves (B)), it remains to prove (P2)n . We shall prove (P2)n by using
induction on n.

6.1 The base cases

For (P2)0, there is nothing to prove. By [16,25] and [5], we know that (B)1
and (P1)1 hold. Hence it follows by Proposition 5.2 that (P2)1 holds.

For (P2)2, the nontempered case follows from the tempered case by Propo-
sition 4.5. To show (P2)2 for tempered L-parameters, it follows by Proposition
5.2 that it suffices to show (P1)2 for tempered L-parameters. Now (P1)2 was
shown in [16, Theorem 11.2] by a global argument, appealing to the analog of
(P1)2 at archimedean places. However, we can also give a purely local proof
here.

Suppose that φ is a tempered L-parameter for U(W ±
2 ) and we are consid-

ering the theta correspondence for U(V ε
2 ) × U(W ε′

2 ) with respect to a pair of
characters (χV , χW ). If φ is irreducible, then Corollary 4.3 guarantees that
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(P1)2 holds. Hence we shall assume that φ = φ1 ⊕ φ2 with 1-dimensional
characters φi . If φ1 or φ2 is not conjugate symplectic, then Sφ is trivial and
(P1)2 follows from Theorem 4.1. Thus, we shall further assume that both φ1
and φ2 are conjugate symplectic, so that

Sφ =
{
(Z/2Z)a1 × (Z/2Z)a2 if φ1 	= φ2;
((Z/2Z)a1 × (Z/2Z)a2)/ΔZ/2Z if φ1 = φ2.

To unify notation in the two cases, we shall regard Irr(Sφ) as a subset of the
irreducible characters of (Z/2Z)a1 × (Z/2Z)a2 even when φ1 = φ2.

Let π = π(η) ∈ Πε′
φ . By Theorem 4.1, we know that the theta lift of π to

U(V ε
2 ) is nonzero for a uniquely determined ε given by

ε = ε
(
1
2 , φ ⊗ χ−1

V , ψ E
2

)
· ε′,

and has L-parameter

θ(φ) = φ ⊗ χ−1
V χW .

Set

σ = Θ
ψ,V ε

2 ,W
ε′
2
(π) ∈ Πε

θ(φ)

and let θ(η) ∈ Irr(Sθ(φ)) be the irreducible character associated to σ . Then we
need to compute θ(η)(ai )/η(ai ).

Consider the decomposition

V ε
2 = V ε

1 ⊕ L−1,

and choose a character μ ∈ Irr(U(V ε
1 )) such that

HomU(V ε
1 )
(σ, μ) 	= 0.

Then by (B)1, one sees that

θ(η)(ai ) = ε
(
1
2 , μ

−1
E φiχ

−1
V χW , ψ E−2

)
= ε

(
1
2 , μ

−1
E φiχ

−1
V χW , ψ E

2

)
· ωE/F (−1),

(6.1)

where μE is the character of E× given by μE (x) = μ(x/xc).
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On the other hand, consider the see-saw diagram

U(W ε′
2 )× U(W ε′

2 )

��������������
U(V ε

2 )

U(W ε′
2 )

����������������
U(V ε

1 )× U(L−1)

.

For a conjugate symplectic character χ of E×, we consider the theta corre-
spondences for

U(V ε
1 )× U(W ε′

2 ) with respect to (χVχ, χW )

and

U(L−1)× U(W ε′
2 ) with respect to (χ−1, χW ).

Set

τ := Θ
ψ,χV χ,χW ,V ε

1 ,W
ε′
2
(μ) on U(W ε′

2 ).

Then Theorem 4.4 implies that τ has L-parameter

φτ = μEχVχ
−1
W χ ⊕ χVχ.

Now the see-saw identity then gives

0 	= HomU(V ε
1 )
(σ, μ) = HomU(W ε′

2 )
(τ ⊗ ω∨

ψ,χ,W ε′
2
, π).

Since we do not know (FJ)2 at this point, this nonvanishing does not give us
the desired information about η. However, we note that

HomU(W ε′
2 )
(τ ⊗ ω∨

ψ,χ,W ε′
2
, π) = HomU(W ε′

2 )
(π∨ ⊗ ω∨

ψ,χ,W ε′
2
, τ∨).

This allows one to exchange the roles of π and τ in a variant of the above
see-saw diagram.

More precisely, since φ = φ1 ⊕ φ2 with conjugate symplectic characters
φi , it follows by (P2)1 (which we have shown) that the L-packet Πφ∨ can
be constructed via theta lifts from U(V ±

1 ). Namely, if we start with the L-
parameter

φ′ := φ−1
1 φ2χW for U(V ±

1 )
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and consider the theta correspondence for U(V ε′′
1 )×U(W ε′

2 )with respect to the
pair (φ−1

2 , χW ), then the theta lifts ofΠφ′ give the L-packetΠφ∨ . In particular,
we see that

π∨ = Θ
ψ,φ−1

2 ,χW ,V ε′′
1 ,W ε′

2
(μ′)

for a unique μ′ ∈ Πε′′
φ′ (which determines ε′′). Indeed, (P2)1 says that

ε′′ = ηπ∨(a1) = η(a1) · ωE/F (−1). (6.2)

Thus, we may consider the see-saw diagram

U(W ε′
2 )× U(W ε′

2 )

��������������
U(V ε′′

2 )

U(W ε′
2 )

����������������
U(V ε′′

1 )× U(L−1)

,

and the theta correspondences for

U(V ε′′
1 )× U(W ε′

2 ) with respect to (φ−1
2 , χW )

and

U(L−1)× U(W ε′
2 ) with respect to (χ−1, χW ),

so that the theta correspondence for

U(V ε′′
2 )× U(W ε′

2 )

is with respect to (φ−1
2 χ−1, χW ). The see-saw identity then reads:

0 	= HomU(W ε′
2 )
(π∨ ⊗ ω∨

ψ,χ,W ε′
2
, τ∨)

= HomU(V ε′′
1 )

(Θ
ψ,φ−1

2 χ−1,χW ,V ε′′
2 ,W ε′

2
(τ∨), μ′).

In particular,Θ
ψ,φ−1

2 χ−1,χW ,V ε′′
2 ,W ε′

2
(τ∨) 	= 0 on U(V ε′′

2 ). By Theorem 4.1(ii),

one deduces that
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ε′′ · ε′ = ε
(
1
2 , φ

∨
τ ⊗ φ2χ,ψ

E
2

)
= ε

(
1
2 , μ

−1
E φ2χ

−1
V χW , ψ E

2

)
· ε

(
1
2 , φ2χ

−1
V , ψ E

2

)
.

By (6.1) and (6.2), and noting that ε′ = η(a1) · η(a2), we see that

η(a2) = θ(η)(a2) · ε
(
1
2 , φ2χ

−1
V , ψ E

2

)

as desired. It then follows by Theorem 4.1(ii) that

η(a1) = θ(η)(a1) · ε
(
1
2 , φ1χ

−1
V , ψ E

2

)

as well.
Thus, we have demonstrated (P1)2, and hence (P2)2.

6.2 Inductive step

Now we assume that n ≥ 3 and (P2)k holds for all k < n. Proposition 4.5
implies that (P2)n holds for all nontempered L-parameters.Weare thus reduced
to the case of tempered L-parameters. Then we have the following theorem
whose proof will be given in the next two sections:

Theorem 6.1 If (P2)k holds for all tempered L-parameters for all k < n, then
(P2)n holds for all tempered but non-square-integrable L-parameters.

The proof of this theorem is an elaborate extension of the techniques devel-
oped in the PhD thesis of the second author [31]. Assuming this theorem for the
moment, we are thus reduced to the case of square-integrable L-parameters.

6.3 Square-integrable case

We now consider (P2)n for a square-integrable L-parameter

φ = φ1 ⊕ · · · ⊕ φr

for U(W ±
n ). Thus φ is multiplicity-free and each φi is an ni -dimensional irre-

ducible conjugate self-dual representation of WDE with sign (−1)n−1. Recall
that the component group Sφ is of the form
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Sφ =
r∏

i=1

(Z/2Z)ai .

We shall first assume that r > 1. Then either r ≥ 3 or else r = 2 in which
case we may assume that n1 = dim φ1 ≥ 2.

Let π = π(η) ∈ Πε′
φ be an irreducible square-integrable representation of

U(W ε′
n ) with associated character η ∈ Irr(Sφ). We consider the theta corre-

spondence for U(V ε
n+1) × U(W ε′

n ) with respect to the data (ψ, χV , χW ), and
suppose that

π ′ := Θ
ψ,V ε

n+1,W
ε′
n
(π) 	= 0.

Then by Theorem 4.4, π ′ = π ′(η′) ∈ Πε
θ(φ) is an irreducible tempered rep-

resentation of U(V ε
n+1) with associated character η′ ∈ Irr(Sθ(φ)). We want to

determine η′ in terms of η. Indeed, recall that there is a natural embedding

Sφ ↪→ Sθ(φ)

and we need to show that η′(ai ) = η(ai ). We shall do so by a global argument.

6.4 Globalization

Let us begin the process of globalization which is the most delicate part of the
argument. Choose a number field F and a quadratic field extensionE of F such
that

• F is totally complex;
• Ev0/Fv0 = E/F for a finite place v0 of F;
• there is a fixed finite place w of F which is split in E.

Fix:

• a nontrivial additive character Ψ of A/F such that Ψv0 = ψ (in its
NE/F (E×)-orbit);

• a conjugate symplectic Hecke character χ of A
×
E
;

• a trace zero element δ ∈ E
× so that the signs of the skew-Hermitian spaces

W ±
n at the place v0 are defined using δ.

Let S be a sufficiently large finite set of inert finite places of F, not containing
v0, such that for all v /∈ S ∪ {v0}, either v is split in E or else Ev/Fv , Ψv and
χv are all unramified. Moreover, S can be made arbitrarily large.

If Σ = �r
i=1Σi is an isobaric sum of irreducible cuspidal automorphic

representations of GLni (AE), we say that Σ is a tempered A-parameter for
U(Wn), where Wn is an n-dimensional skew-Hermitian space over E, if
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• ∑r
i=1 ni = n,

• Σi 	= Σ j if i 	= j ,

• the (twisted) Asai L-function L(s,Σi ,As(−1)n−1
) has a pole at s = 1 for

all i .

We shall globalize the L-parameter φ to a tempered A-parameterΣ as follows.

(i) At v0, consider the given irreducible representation φi of WDE . Since φi
is conjugate self-dual with sign (−1)n−1, it may not be an L-parameter
for U(W ±

ni
). Instead, the representation

φ′
i,v0 := φi ⊗ χni −n

v0

is conjugate self-dual with sign (−1)ni −1, and thus defines an L-
parameter for U(W ±

ni
).

(ii) At v ∈ S, choose a representation φi,v of WDE which is the multiplicity-
free sum of 1-dimensional conjugate self-dual characters with sign
(−1)n−1. As above, φi,v is conjugate self-dual with sign (−1)n−1 and
thus may not be an L-parameter for U(W ±

ni ,v
), where W ±

ni ,v
are the ni -

dimensional skew-Hermitian spaces over Ev . We set

φ′
i,v := φi,v ⊗ χni −n

v ,

so that φ′
i,v is an L-parameter for U(W ±

ni ,v
). The local component group

Sφ′
i,v

of φ′
i,v is of the form

Sφ′
i,v

= (Z/2Z)ni

and the Vogan L-packet Πφ′
i,v

consists of 2ni irreducible square-

integrable representations of U(W ±
ni ,v

).
(iii) We require in addition that, for all v ∈ S,

φv := φ1,v ⊕ · · · ⊕ φr,v

is not multiplicity-free, i.e. φv is not a square-integrable L-parameter for
U(W ±

n,v). To achieve this, we pick a character μv contained in φ1,v and
then ensure that μv is also contained in φiv,v for some iv ≥ 2. It is here
that we use the assumption that r > 1. Moreover, we may ensure that

iv 	= iv′

for some distinct v, v′ ∈ S if r > 2.

123



742 W. T. Gan, A. Ichino

(iv) For each v ∈ S, there is a natural map

(Z/2Z)r =
r∏

i=1

(Z/2Z)ai −→ Sφv

which sends ai to the image of the element−1φi,v in Sφv . In view of (iii),
for #S large enough (indeed, for #S ≥ 2), the induced diagonal map

(Z/2Z)r −→
∏
v∈S

Sφv

is injective.
(v) Now for each i = 1, . . . , r , we have a collection of square-integrable

L-parameters φ′
i,v for v ∈ S ∪ {v0}. For each v ∈ S ∪ {v0}, pick an

irreducible square-integrable representation πv ∈ Π+
φ′

i,v
. Let W

+
ni
be the

ni -dimensional skew-Hermitian space over Ewhose localization at each
inert v is W +

ni ,v
, where we have used the trace zero element δ ∈ E

× to
define the sign of a skew-Hermitian space over Ev . Then by a result of
Shin [55, Theorem 5.13] (proved using the trace formula), one can find
an irreducible cuspidal automorphic representation Π ′

i of U(W+
ni
)(A)

such that
• Π ′

i,v = πv for all v ∈ S ∪ {v0};
• Π ′

i,v is unramified for all inert v /∈ S ∪ {v0};
• Π ′

i,w is an irreducible supercuspidal representation of U(W+
ni ,w

) ∼=
GLni (Fw).

(vi) By results of Mok [44], the representationΠ ′
i has tempered A-parameter

Σ ′
i , which is an irreducible cuspidal automorphic representation of

GLni (AE) such that L(s,Σ ′
i ,As

(−1)ni −1
) has a pole at s = 1. The cus-

pidality of Σ ′
i is a consequence of the fact that Π

′
i,w is supercuspidal at

the split place w. If we set

Σi = Σ ′
i ⊗ χn−ni ,

then Σi is an irreducible cuspidal automorphic representation of
GLni (AE) such that L(s,Σi ,As(−1)n−1

) has a pole at s = 1. In par-
ticular, setting

Σ =
r

�
i=1

Σi ,
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we see that Σ is a tempered A-parameter for U(Wn), where Wn is an
n-dimensional skew-Hermitian space over E.

6.5 Properties of Σ

We have completed the construction of a global tempered A-parameterΣ . Let
us examine some crucial properties of Σ .

• (Local components) It follows by construction that the local components
of the A-parameter Σ are given as follows:
– at the place v0, Σv0 has L-parameter φ;
– at all places v ∈ S, Σv has L-parameter φv;
– at all inert places v /∈ S ∪ {v0}, Σv is unramified.
In particular, we have found a globalization Σ of the given local L-
parameter φ so that at all inert places v 	= v0 of F, Σv defines a
non-square-integrable L-parameter for U(W ±

n,v).• (Whittaker data) We shall use the additive character Ψ = ⊗vΨv to fix
the Whittaker datum at each place v. Together with the fixed trace zero
element δ ∈ E

×, we have thus fixed the local Langlands correspondence
for U(W ±

n,v) for each v.• (Component groups) The global component group SΣ of the A-parameter
Σ admits a natural map SΣ → SΣv for each place v. For v = v0, this
natural map is an isomorphism, so that we have a canonical identification:

SΣ = SΣv0
=

r∏
i=1

(Z/2Z)ai .

On the other hand, in view of (iv) above, we see that the diagonal map

SΣ −→
∏
v 	=v0

SΣv

is injective. Thus, given any η ∈ Irr(Sφ) = Irr(SΣv0
), one can find ηv ∈

Irr(SΣv) for v 	= v0 so that(
η ⊗

(⊗
v 	=v0

ηv

))
◦Δ = 1SΣ ,

where

Δ : SΣ −→
∏
v

SΣv

123



744 W. T. Gan, A. Ichino

is the diagonal map.
• (Arthur’s multiplicity formula) Consider the global A-packet associated to
Σ . For any collection ηv ∈ Irr(SΣv) of irreducible characters with associ-

ated representations π(ηv) of local unitary groups U(W
ε′
v

n,v), consider the
representation

Π :=
⊗
v

π(ηv)

of the adelic unitary group
∏′

v U(W
ε′
v

n,v). Arthur’s multiplicity formula [33,
Theorem 1.7.1] then states that the following are equivalent:

– the adelic unitary group
∏′

v U(W
ε′
v

n,v) is equal to U(Wn)(A) for a skew-
Hermitian space Wn over E and Π occurs in the automorphic discrete
spectrum

L2
disc(U(Wn)(F)\U(Wn)(A));

– the character (⊗vηv) ◦Δ of SΣ is trivial.

By the above discussion combined with a result of Wallach [65], [9, Propo-
sition 4.10], we may find an n-dimensional skew-Hermitian space Wn over
E and an irreducible cuspidal automorphic representationΠ of U(Wn)(A) in
the global A-packet associated to Σ such that Πv0 = π(η). For each v, we
shall write the local component Πv as π(ηv).

6.6 Global theta correspondence

Now we shall construct a Hermitian space Vn+1 of dimension n + 1 over E,
and consider the global theta correspondence for U(Vn+1)×U(Wn). To define
such a global theta correspondence, we shall use the fixed additive character
Ψ of A/F, and we also need to fix a pair of Hecke characters χV and χW of
A

×
E
such that

χV|A× = ωn+1
E/F and χW|A× = ωn

E/F,

whereωE/F is the quadratic Hecke character ofA
× associated toE/F by global

class field theory. We pick these so that, in addition:

(a) at the place v0, we have

χV,v0 = χV and χW,v0 = χW ;
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(b) at some place v1 ∈ S, χV,v1 is not contained in the L-parameter associated
to Σv1 .

Indeed, sinceE
×/F× ∼= Ker(NE/F) is anisotropic, for given conjugate orthog-

onal characters μi of E
×
vi
, there is a conjugate orthogonal Hecke character μ

of A
×
E
such that μvi = μi for i = 0, 1. Thus, we can achieve (a) and (b) by

replacing χV and χW by their twists by conjugate orthogonal Hecke characters
of A

×
E
if necessary. The condition (b) guarantees that at the place v1, the repre-

sentationΠv1 has nonzero local theta lift to bothU(V
+
n+1,v1

) andU(V −
n+1,v1

) by
Theorem 4.4(i)(a). Moreover, the conservation relation (proved by Sun–Zhu
[57]) implies that the theta lifts ofΠv1 to U(V

+
n−1,v1

) and U(V −
n−1,v1

) are both
zero.

Now we note:

Lemma 6.2 There is a Hermitian space Vn+1 of dimension n +1 over E such
that:

• at the place v0, Vn+1,v0 is equal to the given Hermitian space V ε
n+1;

• for all places v, the representation Πv has nonzero local theta lift to
U(Vn+1,v) with respect to the theta lift defined by the data (Ψv, χVv , χWv ).

Proof For all v 	= v0, v1, we may pick Vn+1,v so that the local theta lift ofΠv

to U(Vn+1,v) is nonzero, and then complete these to a coherent collection of
Hermitian spaces by picking V ε

n+1 at v0 and the uniquely determinedHermitian
space at v1. ��

6.7 Completion of the proof

Consider the global theta lift Π ′ := ΘΨ,Vn+1,Wn (Π) to U(Vn+1)(A). The
condition (b) above ensures that Π ′ is cuspidal. To show that Π ′ is nonzero,
we consider the standard L-function L(s,Π) of Π defined using the dou-
bling zeta integral of Piatetski-Shapiro–Rallis [40,46]. Observe that the
partial L-function L S∪{v0}(s,Π) agrees with the partial standard L-function
L S∪{v0}(s,Σ) of Σ , so that

L S∪{v0}(1,Π) = L S∪{v0}(1,Σ) =
r∏

i=1

L S∪{v0}(1,Σi ) 	= 0

since Σi is unitary and cuspidal. By [40, Proposition 5], the local standard
L-factor L(s,Πv) at v ∈ S ∪ {v0} is holomorphic and nonzero at s = 1 since
Πv is tempered. Hence

L(1,Π) 	= 0
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and it followsby [18,Theorem1.4] thatΠ ′ is nonzero.ThusΠ ′ is an irreducible
cuspidal automorphic representation of U(Vn+1)(A) such that Π ′

v0
= π ′(η′).

Recall that we have fixed the local Langlands correspondence for U(Wn,v)

for each v using the Whittaker datum determined by the additive character Ψv

together with the trace zero element δ. To fix the local Langlands correspon-
dence for U(Vn+1,v) for each v, we shall use the Whittaker datum determined

by the additive character Ψ Ev
v = Ψv

(
1
2 TrEv/Fv (δ · )

)
. Then we may write

Π =
⊗
v

π(ηv) and Π ′ =
⊗
v

π ′(η′
v)

with associated irreducible charactersηv and η′
v of the local component groups.

Recall that Π has tempered A-parameter. By Theorem 4.4, Π ′ also has
tempered A-parameter. Hence, applying Arthur’s multiplicity formula [33,
Theorem 1.7.1] to Π and Π ′, we see that

∏
v

ηv(ai,v) = 1 and
∏
v

η′
v(ai,v) = 1 (6.3)

for all i , where ai,v is the image of ai in SΣv . However, for all places v 	= v0,
either v is split, or else the L-parameter of Πv is not square-integrable. Thus,
for all inert v 	= v0, one knows that (P2)n holds. In particular,

η′
v(ai,v) = ηv(ai,v)

for all v 	= v0. Thus, we conclude that at the place v0, we have

η′(ai ) = η(ai )

as desired.
We have thus completed the proof of (P2)n when r > 1, i.e. when φ is

reducible. To deal with the case when φ is irreducible, with r = 1, we can
again appeal to a variation of the global argument as above. Namely, in the
globalization step above, we may now take the L-parameter φv for v ∈ S to
be square-integrable L-parameters which are reducible. Then the rest of the
argument is the same, using the fact that we have shown (P2)n for every place
v 	= v0. This completes the proof of (P2)n .

7 Preparations for the proof of Theorem 6.1

To finish the proof of (P2), it now remains to prove Theorem 6.1. For this,
we need to introduce more notation. Fix ε = ±1. In this and next sections,
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The Gross–Prasad conjecture and local theta correspondence 747

we shall let V and W be an ε-Hermitian space and a (−ε)-Hermitian space
respectively. Put

m = dim V and n = dim W.

7.1 Parabolic subgroups

Let r be the Witt index of V and Van an anisotropic kernel of V . Choose a
basis {vi , v

∗
i | i = 1, . . . , r} of the orthogonal complement of Van such that

〈vi , v j 〉V = 〈v∗
i , v

∗
j 〉V = 0, 〈vi , v

∗
j 〉V = δi, j

for 1 ≤ i, j ≤ r . Let k be a positive integer with k ≤ r and set

X = Ev1 ⊕ · · · ⊕ Evk, X∗ = Ev∗
1 ⊕ · · · ⊕ Ev∗

k .

Let V0 be the orthogonal complement of X ⊕ X∗ in V , so that V0 is an ε-
Hermitian space of dimensionm0 = m −2k over E . We shall write an element
in the unitary group U(V ) as a block matrix relative to the decomposition
V = X ⊕ V0 ⊕ X∗. Let P = MPUP be the maximal parabolic subgroup of
U(V ) stabilizing X , where MP is the Levi component of P stabilizing X∗ and
UP is the unipotent radical of P . We have

MP = {m P(a) · h0 | a ∈ GL(X), h0 ∈ U(V0)},
UP = {u P(b) · u P(c) | b ∈ Hom(V0, X), c ∈ Herm(X∗, X)},

where

m P(a) =
⎛
⎝a

1V0

(a∗)−1

⎞
⎠ ,

u P(b) =
⎛
⎝1X b −1

2bb∗
1V0 −b∗

1X∗

⎞
⎠ ,

u P(c) =
⎛
⎝1X c

1V0

1X∗

⎞
⎠ ,

and

Herm(X∗, X) = {c ∈ Hom(X∗, X) | c∗ = −c}.
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Here, the elements a∗ ∈ GL(X∗), b∗ ∈ Hom(X∗, V0), and c∗ ∈ Hom(X∗, X)
are defined by requiring that

〈ax, x ′〉V =〈x, a∗x ′〉V ,

〈bv, x ′〉V = 〈v, b∗x ′〉V ,

〈cx ′, x ′′〉V = 〈x ′, c∗x ′′〉V

for x ∈ X , x ′, x ′′ ∈ X∗, and v ∈ V0. In particular, MP
∼= GL(X) × U(V0)

and

1 −→ Herm(X∗, X) −→ UP −→ Hom(V0, X) −→ 1.

Put

ρP = m0 + k

2
, wP =

⎛
⎝ −IX

1V0

−ε I −1
X

⎞
⎠ ,

where IX ∈ Isom(X∗, X) is defined by IXv
∗
i = vi for 1 ≤ i ≤ k.

Similarly, let r ′ be the Witt index of W and choose a basis {wi , w
∗
i | i =

1, . . . , r ′} of the orthogonal complement of an anisotropic kernel of W such
that

〈wi , w j 〉W = 〈w∗
i , w

∗
j 〉W = 0, 〈wi , w

∗
j 〉W = δi, j

for 1 ≤ i, j ≤ r ′. We assume that k ≤ r ′ and set

Y = Ew1 ⊕ · · · ⊕ Ewk, Y ∗ = Ew∗
1 ⊕ · · · ⊕ Ew∗

k .

Let W0 be the orthogonal complement of Y ⊕ Y ∗ in W , so that W0 is a (−ε)-
Hermitian space of dimension n0 = n − 2k over E . Let Q = MQUQ be the
maximal parabolic subgroup of U(W ) stabilizing Y , where MQ is the Levi
component of Q stabilizing Y ∗ and UQ is the unipotent radical of Q. Then
MQ

∼= GL(Y )× U(W0) and

1 −→ Herm(Y ∗, Y ) −→ UQ −→ Hom(W0, Y ) −→ 1,

where

Herm(Y ∗, Y ) = {c ∈ Hom(Y ∗, Y ) | c∗ = −c}.
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For a ∈ GL(Y ), b ∈ Hom(W0, Y ), and c ∈ Herm(Y ∗, Y ), we define elements
m Q(a) ∈ MQ and uQ(b), uQ(c) ∈ UQ as above. Put

ρQ = n0 + k

2
, wQ =

⎛
⎝ −IY

1W0

ε I −1
Y

⎞
⎠ ,

where IY ∈ Isom(Y ∗, Y ) is defined by IYw
∗
i = wi for 1 ≤ i ≤ k.

7.2 Haar measures

We need to choose Haar measures on various groups. In particular, we shall
define Haar measures on UP and UQ in the following.

Recall the symplectic form

〈·, ·〉 = TrE/F (〈·, ·〉V ⊗ 〈·, ·〉W )

on V ⊗ W over F . We consider the following spaces and pairings:

• (x, y) �→ ψ(〈x, I −1
Y y〉) for x, y ∈ V ⊗ Y ;

• (x, y) �→ ψ(〈x, IY y〉) for x, y ∈ V0 ⊗ Y ∗;
• (x, y) �→ ψ(〈I −1

X x, y〉) for x, y ∈ X ⊗ W0;
• (x, y) �→ ψ(〈IX x, y〉) for x, y ∈ X∗ ⊗ W0;
• (x, y) �→ ψ(〈I −1

X x, IY y〉) for x, y ∈ X ⊗ Y ∗;
• (x, y) �→ ψ(〈IX x, I −1

Y y〉) for x, y ∈ X∗ ⊗ Y ;
• (x, y) �→ ψ(〈IX x, IY y〉) for x, y ∈ X∗ ⊗ Y ∗.

On these spaces, we take the self-dual Haar measures with respect to these
pairings. Put

e∗∗ = v∗
1 ⊗ w∗

1 + · · · + v∗
k ⊗ w∗

k ∈ X∗ ⊗ Y ∗.

• We transfer the Haar measure on V0 ⊗ Y ∗ to Hom(X∗, V0) via the isomor-
phism x �→ xe∗∗ for x ∈ Hom(X∗, V0).

• We transfer the Haar measure on Hom(X∗, V0) to Hom(V0, X) via the
isomorphism x �→ x∗ for x ∈ Hom(V0, X).

• Similarly, we define the Haar measure on Hom(W0, Y ).

Furthermore:

• We transfer the Haar measure on X ⊗ Y ∗ to Hom(X∗, X) via the
isomorphism x �→ xe∗∗ for x ∈ Hom(X∗, X). This Haar measure
on Hom(X∗, X) is self-dual with respect to the pairing (x, y) �→
ψ(〈I −1

X xe∗∗, IY ye∗∗〉).
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• We take the Haar measure |2|−k2/2
F dx on Herm(X∗, X), where dx is

the self-dual Haar measure on Herm(X∗, X) with respect to the pairing
(x, y) �→ ψ(〈I −1

X xe∗∗, IY ye∗∗〉).
• Similarly, we define the Haar measure on Herm(Y ∗, Y ).

Then:

• We take the Haar measure du = db dc on UP for u = u P(b)u P(c) with
b ∈ Hom(V0, X) and c ∈ Herm(X∗, X).

• Similarly, we define the Haar measure on UQ .

We note the following Fourier inversion formula:

Lemma 7.1 For ϕ ∈ S (X ⊗ Y ∗), we have

∫
Herm(Y ∗,Y )

(∫
Hom(X∗,X)

ϕ(xe∗∗)ψ(〈xe∗∗, ce∗∗〉)dx

)
dc

=
∫
Herm(X∗,X)

ϕ(ce∗∗) dc.

Proof We consider the nondegenerate symmetric bilinear form (x, y) �→
〈I −1

X x, IY y〉 on X ⊗ Y ∗ over F , and the subspaces

Herm(X∗, X)e∗∗ and IX I −1
Y Herm(Y ∗, Y )e∗∗

of X ⊗ Y ∗ = Hom(X∗, X)e∗∗. For x ∈ Hom(X∗, X) and y ∈ Herm(Y ∗, Y ),
we have

〈I −1
X xe∗∗, IY IX I −1

Y ye∗∗〉 = 〈I −1
X xe∗∗, IX ye∗∗〉

= 〈I ∗
X I −1

X xe∗∗, ye∗∗〉
= ε · 〈xe∗∗, ye∗∗〉

since I ∗
X = ε IX . For x ∈ Herm(X∗, X) and y ∈ Herm(Y ∗, Y ), noting that

x∗ = −x , y∗ = −y, and x commutes with y, we have

〈xe∗∗, ye∗∗〉 = 〈y∗e∗∗, x∗e∗∗〉
= 〈ye∗∗, xe∗∗〉
= −〈xe∗∗, ye∗∗〉,

so that

〈xe∗∗, ye∗∗〉 = 0.
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Since Hom(X∗, X)e∗∗ is nondegenerate with respect to the above bilinear
form, we see that X ⊗ Y ∗ decomposes as the orthogonal direct sum

X ⊗ Y ∗ = Herm(X∗, X)e∗∗ ⊕ IX I −1
Y Herm(Y ∗, Y )e∗∗.

These yield the desired Fourier inversion formula. ��

7.3 Normalized intertwining operators

In this subsection, we define the normalized intertwining operator which is
used to describe the local Langlands correspondence.

Let τ be an irreducible (unitary) square-integrable representation of GL(X)
on a space Vτ with central character ωτ . For any s ∈ C, we realize the rep-
resentation τs := τ ⊗ | det |s on Vτ by setting τs(a)v := | det a|sτ(a)v for
a ∈ GL(X) and v ∈ Vτ . Let σ0 be an irreducible tempered representation of
U(V0) on a space Vσ0 . We consider the induced representation

IndU(V )P (τs ⊗ σ0)

of U(V ), which is realized on the space of smooth functions Φs : U(V ) →
Vτ ⊗ Vσ0 such that

Φs(um P(a)h0h) = | det a|s+ρP τ(a)σ0(h0)Φs(h)

for all u ∈ UP , a ∈ GL(X), h0 ∈ U(V0), and h ∈ U(V ). Let AP be the
split component of the center of MP and W (MP) = NormU(V )(AP)/MP the
relative Weyl group for MP . Noting that W (MP) ∼= Z/2Z, we denote by w
the nontrivial element in W (MP). For any representative w̃ ∈ U(V ) of w, we
define an unnormalized intertwining operator

M(w̃, τs ⊗ σ0) : IndU(V )P (τs ⊗ σ0) −→ IndU(V )P (w(τs ⊗ σ0))

by (the meromorphic continuation of) the integral

M(w̃, τs ⊗ σ0)Φs(h) =
∫

UP

Φs(w̃
−1uh) du,

where w(τs ⊗ σ0) is the representation of MP on Vτ ⊗ Vσ0 given by

(w(τs ⊗ σ0))(m) = (τs ⊗ σ0)(w̃
−1mw̃)

for m ∈ MP .
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Now, following [2,33,44], we shall normalize the intertwining operator
M(w̃, τs ⊗ σ0), depending on the choice of the Whittaker datum. Having
fixed the additive character ψ and the trace zero element δ, we define the sign
ε(V ) and use the Whittaker datum relative to

{
ψ E = ψ

(
1
2 TrE/F (δ · )

)
if ε = +1;

ψ if ε = −1.

The definition of the normalized intertwining operator is very subtle because
one has to choose the following data appropriately:

• a representative w̃;
• a normalizing factor r(w, τs ⊗ σ0);
• an intertwining isomorphism Aw.

Following the procedure of [39, Sect. 2.1], [2, Sect. 2.3], [44, Sect. 3.3],
[33, Sect. 2.3], we take the representative w̃ ∈ U(V ) of w defined by

w̃ = wP · m P((−1)m
′ · κV · J ) · (−1V0)

k,

where wP is as in Sect. 7.1, m′ = [m
2 ],

κV =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−δ if m is even and ε = +1;
1 if m is even and ε = −1;
−1 if m is odd and ε = +1;
−δ if m is odd and ε = −1,

and

J =

⎛
⎜⎜⎜⎝

(−1)k−1

. . .

−1
1

⎞
⎟⎟⎟⎠ ∈ GLk(E).

Here, we have identified GL(X) with GLk(E) using the basis {v1, . . . , vk}.
This element w̃ arises as follows.

First assume that ε(V ) = +1. In particular, U(V ) is quasi-split. We have
Van = {0} if m is even and Van = Evan for some van ∈ Van such that

〈van, van〉V =
{
1 if ε = +1;
δ if ε = −1
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if m is odd. Via the decomposition

V = Ev1 ⊕ · · · ⊕ Evr ⊕ Van ⊕ Ev∗
r ⊕ · · · ⊕ Ev∗

1 ,

we regard U(V ) as a subgroup of GLm(E), which induces an isomorphism
U(V )(F̄) ∼= GLm(F̄). Let spl = (B, T, {Xi }) be the F-splitting of U(V )
consisting of the Borel subgroup B stabilizing the flag

Ev1 ⊂ Ev1 ⊕ Ev2 ⊂ · · · ⊂ Ev1 ⊕ · · · ⊕ Evr ,

the maximal torus T of diagonal matrices, and the set {Xi | i = 1, . . . ,m − 1}
of simple root vectors given as follows:

• Xi = Ei,i+1 for 1 ≤ i ≤ r − 1;
• Xi = −Ei,i+1 for m − r + 1 ≤ i ≤ m − 1;
• if m is even, then

Xr =
{
δ−1 · Er,r+1 if ε = +1,

Er,r+1 if ε = −1;

• if m is odd, then Xr = Er,r+1 and

Xr+1 =
{

−Er+1,r+2 if ε = +1,

δ−1 · Er+1,r+2 if ε = −1.

Here, Ei, j ∈ Lie U(V )(F̄) ∼= Mm(F̄) is the matrix with one at the (i, j)th
entry and zero elsewhere. Then spl and ψ give rise to the above Whittaker
datum, whose restriction to MP is preserved by the representative w̃LS of w
defined in [39, Sect. 2.1], [2, Sect. 2.3], [44, Sect. 3.3] with respect to spl.

Lemma 7.2 We have w̃LS = w̃.

Proof First, we review the case of SL2. We take an F-splitting of SL2 con-
sisting of the Borel subgroup of upper triangular matrices, the maximal torus
of diagonal matrices, and a simple root vector

X =
(
0 a
0 0

)
.

Let {H, X, Y } be the sl2-triple containing X , so that

Y =
(

0 0
a−1 0

)
.
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If s is the simple reflection with respect to X , then the representative of s
defined in [39, Sect. 2.1] is

exp(X) exp(−Y ) exp(X) =
(

a
−a−1

)
.

Now we compute w̃LS. Let ιi : GL(Evi ⊕ Evi+1) ↪→ GL(X) and ι′j :
U(Ev j ⊕ Ev∗

j ) ↪→ U(V ) be the natural embeddings. Let si be the simple
reflection with respect to Xi and s̃i the representative of si as above. Put
wi = si sm−i and w̃i = s̃i s̃m−i for 1 ≤ i ≤ r − 1, and

wr =
{

sr if m is even,

sr sr+1sr if m is odd
and w̃r =

{
s̃r if m is even,

s̃r s̃r+1s̃r if m is odd.

More explicitly, we have

w̃i = m P

(
ιi

(
1

−1

))

for 1 ≤ i ≤ r − 1 and

w̃r = ι′r
((

1
ε

) (
κV

(κc
V )

−1

))
· (−1Van).

Put

xi = wk−1 · · ·wi+1wi , y j = w jw j+1 · · ·wr−1wrwr−1 · · ·w j+1w j ,

x̃i = w̃k−1 · · · w̃i+1w̃i , ỹ j = w̃ j w̃ j+1 · · · w̃r−1w̃r w̃r−1 · · · w̃ j+1w̃ j

for 1 ≤ i ≤ k − 1 and 1 ≤ j ≤ k. Let wT be the representative of w in the
Weyl group for T which preserves the set of roots of T in B ∩ MP . Then wT
has a reduced expression

wT = yk x1yk x2 · · · yk xk−1yk

and hence w̃LS is defined by

w̃LS = ỹk x̃1 ỹk x̃2 · · · ỹk x̃k−1 ỹk .

If we put x̃ ′
i = w̃−1

k−1 · · · w̃−1
i+1w̃

−1
i , then we have ỹk x̃i = x̃ ′

i ỹi , so that

w̃LS = x̃ ′
1 ỹ1 x̃ ′

2 ỹ2 · · · x̃ ′
k−1 ỹk−1 ỹk .
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On the other hand, we have

x̃ ′
i = m P

⎛
⎝1i−1

−1k−i
1

⎞
⎠

and

ỹ j = ι′j
((

1
ε

) (
κV

(κc
V )

−1

))
· m P

⎛
⎝1 j−1

(−1)r− j

−1k− j

⎞
⎠ · (−1V0).

In particular, x̃ ′
i commutes with ỹ j if i > j , so that

w̃LS = x̃ ′
1 x̃ ′

2 · · · x̃ ′
k−1 ỹ1 ỹ2 · · · ỹk−1 ỹk .

Since x̃ ′
1 · · · x̃ ′

k−1 = m P(J ) and

ỹ1 · · · ỹk =
k∏

j=1

ι′j
((

1
ε

) (
κV

(κc
V )

−1

))
· m P((−1)r−1 · 1k) · (−1V0)

k

=
k∏

j=1

ι′j
(

1
ε

)
· m P((−1)r−1 · κV · 1k) · (−1V0)

k,

the assertion follows. ��
Next, we consider the case ε(V ) = −1. Let V + be the m-dimensional ε-

Hermitian space with ε(V +) = +1. We may assume that V + = X ⊕ V +
0 ⊕

X∗ for some m0-dimensional ε-Hermitian space V +
0 with ε(V +

0 ) = +1. Let
P+ be the maximal parabolic subgroup of U(V +) stabilizing X and MP+
its Levi component stabilizing X∗, so that MP+ ∼= GL(X) × U(V +

0 ). Fix an
isomorphism V +

0 ⊗F F̄ ∼= V0 ⊗F F̄ as ε-Hermitian spaces over E ⊗F F̄
and extend it to an isomorphism V + ⊗F F̄ ∼= V ⊗F F̄ whose restriction to
(X ⊗F F̄) ⊕ (X∗ ⊗F F̄) is the identity map. This induces a pure inner twist
(ξ, z), i.e. ξ : U(V +) → U(V ) is an inner twist and z ∈ Z1(Γ,U(V +))
is a 1-cocyle such that ξ−1 ◦ σ ◦ ξ ◦ σ−1 = Ad(z(σ )) for all σ ∈ Γ . Then
P+ = ξ−1(P) and ξ induces an inner twist ξ : MP+ → MP whose restriction
to GL(X) is the identity map.Moreover, z satisfies the assumption in [33, Sect.
2.4.1]. Let w+ be the nontrivial element in the relative Weyl group for MP+
and w̃+ ∈ U(V +) the representative of w+ as above. Then the representative
of w defined in [33, Sect. 2.3] is ξ(w̃+), which is equal to w̃.
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We use the normalizing factor r(w, τs ⊗ σ0) defined as follows. Let
λ(E/F, ψ) be the Langlands λ-factor (see [14, Sect. 5]) and put

λ(w,ψ) =
{
λ(E/F, ψ)(k−1)k/2 if m is even;

λ(E/F, ψ)(k+1)k/2 if m is odd.

Let φτ and φ0 be the L-parameters of τ and σ0 respectively. Let As+ be the
Asai representation of the L-group of ResE/F GLk and As− = As+ ⊗ ωE/F
its twist (see [15, Sect. 7]). If we set

r(w, τs ⊗ σ0) = λ(w,ψ) · γ (s, φτ ⊗ φ∨
0 , ψE )

−1 · γ (2s,As(−1)m ◦ φτ , ψ)−1,

then by [33, Lemmas 2.2.3 and 2.3.1], the normalized intertwining operator

R(w, τs ⊗ σ0) := |κV |kρP · r(w, τs ⊗ σ0)
−1 · M(w̃, τs ⊗ σ0)

is holomorphic at s = 0 and satisfies

R(w,w(τs ⊗ σ0)) ◦ R(w, τs ⊗ σ0) = 1.

Here, the factor |κV |kρP arises because the Haar measure on UP defined in
[33, Sect. 2.2] with respect to spl is equal to |κV |kρP du.

Now assume that w(τ ⊗ σ0) ∼= τ ⊗ σ0, which is equivalent to (τ c)∨ ∼= τ .
We may take the unique isomorphism

Aw : Vτ ⊗ Vσ0 −→ Vτ ⊗ Vσ0

such that:

• Aw ◦ (w(τ ⊗ σ0))(m) = (τ ⊗ σ0)(m) ◦ Aw for all m ∈ MP ;
• Aw = A′

w⊗1Vσ0 with an isomorphismA′
w : Vτ → Vτ such thatΛ◦A′

w =
Λ. Here, Λ : Vτ → C is the unique (up to a scalar) Whittaker functional
with respect to the Whittaker datum (Nk, ψNk ), where Nk is the group
of unipotent upper triangular matrices in GLk(E) and ψNk is the generic
character of Nk given by ψNk (x) = ψE (x1,2 + · · · + xk−1,k).

Note that A2
w = 1Vτ⊗Vσ0

. We define a self-intertwining operator

R(w, τ ⊗ σ0) : IndU(V )P (τ ⊗ σ0) −→ IndU(V )P (τ ⊗ σ0)

by

R(w, τ ⊗ σ0)Φ(h) = Aw(R(w, τ ⊗ σ0)Φ(h)).
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By construction,

R(w, τ ⊗ σ0)
2 = 1.

7.4 Weil representations

In this subsection, we recall some explicit formulas for the Weil representa-
tions.

Let W be a finite dimensional vector space over F equipped with a nonde-
generate symplectic form 〈·, ·〉W : W × W → F . Let H (W) = W ⊕ F be
the associated Heisenberg group, i.e. the multiplication law is given by

(w, t) · (w′, t ′) =
(
w + w′, t + t ′ + 1

2
〈w,w′〉W

)

for w,w′ ∈ W and t, t ′ ∈ F . Fix maximal totally isotropic subspaces X and
X

∗ of W such that W = X ⊕ X
∗. Let ρ be the Heisenberg representation of

H (W) on S (X∗) with central character ψ . Namely,

ρ((x + x ′, t))ϕ(x ′
0) = ψ

(
t + 〈x ′

0, x〉W + 1
2 〈x ′, x〉W

)
ϕ(x ′

0 + x ′)

for ϕ ∈ S (X∗), x ∈ X, x ′, x ′
0 ∈ X

∗, and t ∈ F .
In Sect. 4.1, we have introduced theWeil representations for unitary groups.

To define these representations, we have fixed the additive characterψ and the
pair of characters (χV , χW ). For simplicity, we write:

• ω for the Weil representation ωψ,χV ,χW ,V,W of U(V ) × U(W ) on a space
S ;

• ω0 for theWeil representationωψ,χV ,χW ,V,W0 of U(V )×U(W0) on a space
S0;

• ω00 for the Weil representation ωψ,χV ,χW ,V0,W0 of U(V0) × U(W0) on a
spaceS00.

We take a mixed model

S = S (V ⊗ Y ∗)⊗ S0

of ω, where we regard S as a space of functions on V ⊗ Y ∗ with values in
S0. Similarly, we take a mixed model

S0 = S (X∗ ⊗ W0)⊗ S00

of ω0, where we regardS0 as a space of functions on X∗ ⊗ W0 with values in
S00. Also, we write:
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758 W. T. Gan, A. Ichino

• ρ0 for the Heisenberg representation of H (V ⊗ W0) on S0 with central
character ψ ;

• ρ00 for the Heisenberg representation ofH (V0 ⊗ W0) onS00 with central
character ψ .

Using [37, Theorem 3.1], we can derive the following formulas for theWeil
representations ω and ω0. PutΔ = δ2 ∈ F×. As in [49, Appendix], let γF (ψ)

be the Weil index of the character x �→ ψ(x2) of second degree and set

γF (a, ψ) = γF (ψa)

γF (ψ)

for a ∈ F×, where ψa(x) = ψ(ax). Note that γF (Δ,ψ) = λ(E/F, ψ)−1.
For ϕ ∈ S and x ∈ V ⊗ Y ∗, we have

(ω(h)ϕ)(x) = ω0(h)ϕ(h
−1x), h ∈ U(V ),

(ω(g0)ϕ)(x) = ω0(g0)ϕ(x), g0 ∈ U(W0),

(ω(m Q(a))ϕ)(x) = χV (det a)| det a|m/2ϕ(a∗x), a ∈ GL(Y ),

(ω(uQ(b))ϕ)(x) = ρ0((b
∗x, 0))ϕ(x), b ∈ Hom(W0, Y ),

(ω(uQ(c))ϕ)(x) = ψ
(
1
2 〈cx, x〉

)
ϕ(x), c ∈ Herm(Y ∗, Y ),

(ω(wQ)ϕ)(x) = γ−k
V

∫
V ⊗Y

ϕ(−I −1
Y y)ψ(〈y, x〉) dy,

where

γV =
{
ωE/F (det V ) · γF (−Δ,ψ)m · γF (−1, ψ)−m if ε = +1;
χV (δ)

−1 · ωE/F (δ
−m · det V ) · γF (−Δ,ψ)m · γF (−1, ψ)−m if ε = −1.

Also, for ϕ0 ∈ S0 and x ∈ X∗ ⊗ W0, we have

(ω0(g0)ϕ0)(x) = ω00(g0)ϕ0(g
−1
0 x), g0 ∈ U(W0),

(ω0(h0)ϕ0)(x) = ω00(h0)ϕ0(x), h0 ∈ U(V0),

(ω0(m P (a))ϕ0)(x) = χW (det a)| det a|n0/2ϕ0(a∗x), a ∈ GL(X),

(ω0(u P (b))ϕ0)(x) = ρ00((b
∗x, 0))ϕ0(x), b ∈ Hom(V0, X),

(ω0(u P (c))ϕ0)(x)=ψ
(
1
2 〈cx, x〉

)
ϕ0(x), c ∈ Herm(X∗, X),

(ω0(wP )ϕ0)(x) = γ−k
W

∫
X⊗W0

ϕ0(−I −1
X y)ψ(〈y, x〉) dy,
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where

γW =
{
χW (δ)−1 · ωE/F (δ

−n · det W ) · γF (−Δ,ψ)n · γF (−1, ψ)−n if ε=+1;
ωE/F (det W ) · γF (−Δ,ψ)n · γF (−1, ψ)−n if ε= −1,

and

(ρ0((y + y′, 0))ϕ0)(x) = ψ
(
〈x, y〉 + 1

2 〈y′, y〉
)
ϕ0(x + y′), y ∈ X ⊗ W0,

y′ ∈ X∗ ⊗ W0,

(ρ0((y0, 0))ϕ0)(x), = ρ00((y0, 0))ϕ0(x), y0 ∈ V0 ⊗ W0.

7.5 Zeta integrals of Godement–Jacquet

In this subsection, we review the theory of local factors for GLk developed by
Godement–Jacquet [22].

Let τ be an irreducible smooth representation of GLk(E) on a spaceVτ with
central character ωτ . For any character χ of E×, we realize the representation
τχ := τ ⊗ (χ ◦ det) on Vτ by setting (τχ)(a)v := χ(det a)τ (a)v for a ∈
GLk(E) and v ∈ Vτ . Put τs := τ | · |s for s ∈ C. Let τ c be the representation
of GLk(E) on Vτ defined by τ c(a) = τ(ac). We write

L(s, τ ) = L(s, φτ ) and ε(s, τ, ψE ) = ε(s, φτ , ψE )

for the standard L-factor and ε-factor of τ , where φτ is the k-dimensional rep-
resentation of WDE associated to τ and ψE is the nontrivial additive character
of E defined by ψE = ψ ◦ TrE/F . Then the standard γ -factor of τ is defined
by

γ (s, τ, ψE ) = ε(s, τ, ψE ) · L(1 − s, τ∨)
L(s, τ )

,

where τ∨ is the contragredient representation of τ .
For s ∈ C, φ ∈ S (Mk(E)), and a matrix coefficient f of τ , put

Z(s, φ, f ) =
∫
GLk(E)

φ(a) f (a)| det a|s da,

where we have fixed a Haar measure da onGLk(E). This integral is absolutely
convergent for Re(s) � 0 and admits a meromorphic continuation to C.
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Moreover,

Z
(

s + k−1
2 , φ, f

)
L(s, τ )

is an entire function of s. If τ is square-integrable, then Z(s, φ, f ) is absolutely
convergent for Re(s) > k−1

2 by [22, Proposition 1.3].
Let φ̂ ∈ S (Mk(E)) be the Fourier transform of φ defined by

φ̂(x) =
∫
Mk(E)

φ(y)ψE (Tr(xy)) dy,

where dy is the self-dual Haar measure on Mk(E) with respect to the pairing
(x, y) �→ ψE (Tr(xy)). Let f̌ be the matrix coefficient of τ∨ given by f̌ (a) =
f (a−1). Then the local functional equation asserts that

Z
(
−s + k+1

2 , φ̂, f̌
)

= γ (s, τ, ψE ) · Z
(

s + k−1
2 , φ, f

)
.

8 Proof of Theorem 6.1

Nowwe can begin the proof of Theorem 6.1. This will be proved by an explicit
construction of an equivariant map which realizes the theta correspondence.
Recall from Sect. 7 that we have fixed ε = ±1, an m-dimensional ε-Hermitian
space V = X ⊕ V0 ⊕ X∗, and an n-dimensional (−ε)-Hermitian space W =
Y ⊕ W0 ⊕ Y ∗.

8.1 Construction of equivariant maps

Recall thatwehave identifiedGL(X)withGLk(E)using thebasis {v1, . . . , vk}.
Similarly, we identifyGL(Y )withGLk(E) using the basis {w1, . . . , wk}. Thus
we can define an isomorphism i : GL(Y ) → GL(X) via these identifications.
Put

e = v1 ⊗ w∗
1 + · · · + vk ⊗ w∗

k ∈ X ⊗ Y ∗,
e∗ = v∗

1 ⊗ w1 + · · · + v∗
k ⊗ wk ∈ X∗ ⊗ Y.

Then i(a)ce = a∗e and (i(a)c)∗e∗ = ae∗ for a ∈ GL(Y ).
For ϕ ∈ S = S (V ⊗Y ∗)⊗S0, we define functions f(ϕ), f̂(ϕ) on U(W )×

U(V ) with values in S0 by
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f(ϕ)(gh) = (ω(gh)ϕ)

⎛
⎝e
0
0

⎞
⎠ ,

f̂(ϕ)(gh) =
∫

X⊗Y ∗
(ω(gh)ϕ)

⎛
⎝x
0
0

⎞
⎠ψ(ε〈x, e∗〉) dx

for g ∈ U(W ) and h ∈ U(V ). Here, we write an element in V ⊗ Y ∗ as a block
matrix ⎛

⎝y1
y2
y3

⎞
⎠

with y1 ∈ X ⊗Y ∗, y2 ∈ V0 ⊗Y ∗, and y3 ∈ X∗ ⊗Y ∗. We also define functions
f (ϕ), f̂ (ϕ) on U(W )× U(V ) with values inS00 by

f (ϕ)(gh) = ev(f(ϕ)(gh)),

f̂ (ϕ)(gh) = ev(f̂(ϕ)(gh)),

where ev : S0 = S (X∗⊗W0)⊗S00 → S00 is the evaluation at 0 ∈ X∗⊗W0.
If f = f (ϕ) or f̂ (ϕ), then

f (uu′gh)= f (gh), u ∈ UQ,

u′ ∈ UP ,

f (g0h0gh)=ω00(g0h0) f (gh), g0 ∈ U(W0),

h0 ∈ U(V0),

f (m Q(a)m P(i(a)
c)gh)=(χVχ

c
W )(det a)| det a|ρP+ρQ f (gh), a ∈ GL(Y ).

Let τ be an irreducible (unitary) square-integrable representation ofGLk(E)
on a spaceVτ . Wemay regard τ as a representation of GL(X) or GL(Y ) via the
above identifications. Let π0 and σ0 be irreducible tempered representations
of U(W0) and U(V0) on spaces Vπ0 and Vσ0 respectively. Fix nonzero invariant
nondegenerate bilinear forms 〈·, ·〉 onVτ ×Vτ∨ ,Vπ0×Vπ∨

0
, andVσ0×Vσ∨

0
. Let

〈·, ·〉 : (Vτ ⊗ Vσ∨
0
)× Vτ∨ −→ Vσ∨

0

be the induced map.
Now assume that

σ0 = Θψ,V0,W0(π0).

We fix a nonzero U(V0)× U(W0)-equivariant map

T00 : ω00 ⊗ σ∨
0 −→ π0.
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For ϕ ∈ S , Φs ∈ IndU(V )P (τ c
s χ

c
W ⊗ σ∨

0 ), g ∈ U(W ), v̌ ∈ Vτ∨ , and v̌0 ∈ Vπ∨
0
,

put

〈Ts(ϕ ⊗Φs)(g), v̌ ⊗ v̌0〉
= L

(
s − s0 + 1

2 , τ
)−1

×
∫

UPU(V0)\U(V )
〈T00( f̂ (ϕ)(gh)⊗ 〈Φs(h), v̌〉), v̌0〉 dh,

where we have fixed Haar measures on U(V ) and U(V0), and set

s0 = m − n

2
= m0 − n0

2
.

Note that 〈Φs(h), v̌〉 ∈ Vσ∨
0
.

Lemma 8.1 The integral 〈Ts(ϕ⊗Φs)(g), v̌⊗ v̌0〉 is absolutely convergent for
Re(s) > s0 − 1

2 and admits a holomorphic continuation to C.

Proof We may assume that ϕ = ϕ′ ⊗ ϕ0 and Φs(1) = v ⊗ v0, where ϕ′ ∈
S (V ⊗Y ∗), ϕ0 ∈ S0, v ∈ Vτ , and v0 ∈ Vσ∨

0
. By the Iwasawa decomposition,

it suffices to consider the integral∫
GL(X)

〈T00( f̂ (ϕ)(m P(a))⊗ 〈Φs(m P(a)), v̌〉), v̌0〉| det a|−2ρP da. (8.1)

Put

φ(y) =
∫

X⊗Y ∗
ϕ′

⎛
⎝x
0
0

⎞
⎠ψ(ε〈x, y〉) dx

for y ∈ X∗ ⊗ Y . Then we have

f̂ (ϕ)(m P(a)) = χW (det a)| det a|k+n0/2φ(a∗e∗) · ev(ϕ0)

for a ∈ GL(X). Hence we have

(8.1) = 〈T00(ev(ϕ0)⊗ v0), v̌0〉
×

∫
GL(X)

φ(a∗e∗)〈τ(ac)v, v̌〉| det a|s−s0+k/2 da.

This completes the proof, in view of Sect. 7.5. ��
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Thus we obtain a U(V )× U(W )-equivariant map

Ts : ω ⊗ IndU(V )P (τ c
s χ

c
W ⊗ σ∨

0 ) −→ IndU(W )
Q (τsχV ⊗ π0).

Lemma 8.2 If Re(s) < s0 + 1
2 , then we have

〈Ts(ϕ ⊗Φs)(g), v̌ ⊗ v̌0〉
= L

(
s − s0 + 1

2 , τ
)−1 · γ

(
s − s0 + 1

2 , τ, ψE

)−1

×
∫

UPU(V0)\U(V )
〈T00( f (ϕ)(gh)⊗ 〈Φs(h), v̌〉), v̌0〉 dh.

Proof We may assume that ϕ = ϕ′ ⊗ ϕ0 and Φs(1) = v ⊗ v0, where ϕ′ ∈
S (V ⊗ Y ∗), ϕ0 ∈ S0, v ∈ Vτ , and v0 ∈ Vσ∨

0
. Put f (a) = 〈τ(a)v, v̌〉 for

a ∈ GL(X). Let φ ∈ S (X∗ ⊗ Y ) be as in the proof of Lemma 8.1. We define
its Fourier transform φ̂ ∈ S (X ⊗ Y ∗) by

φ̂(x) =
∫

X∗⊗Y
φ(y)ψ(−ε〈x, y〉) dy.

By the Fourier inversion formula, we have

φ̂(x) = ϕ′
⎛
⎝x
0
0

⎞
⎠ .

Hence we have

f (ϕ)(m P(a)) = χW (det a)| det a|n0/2φ̂(a−1e) · ev(ϕ0)
for a ∈ GL(X). If s0 − 1

2 < Re(s) < s0 + 1
2 , then by the local functional

equation of the zeta integrals of Godement–Jacquet (see Sect. 7.5), we have∫
GL(X)

〈T00( f̂ (ϕ)(m P(a))⊗ 〈Φs(m P(a)), v̌〉), v̌0〉| det a|−2ρP da

= 〈T00(ev(ϕ0)⊗ v0), v̌0〉 ·
∫
GL(X)

φ(a∗e∗) f (ac)| det a|s−s0+k/2 da

= 〈T00(ev(ϕ0)⊗ v0), v̌0〉
× γ

(
s − s0 + 1

2 , τ, ψE

)−1 ·
∫
GL(X)

φ̂(ae) f̌ (ac)| det a|−s+s0+k/2 da

= 〈T00(ev(ϕ0)⊗ v0), v̌0〉
× γ

(
s − s0 + 1

2 , τ, ψE

)−1 ·
∫
GL(X)

φ̂(a−1e) f (ac)| det a|s−s0−k/2 da
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= γ
(

s − s0 + 1
2 , τ, ψE

)−1

×
∫
GL(X)

〈T00( f (ϕ)(m P(a))⊗ 〈Φs(m P(a)), v̌〉), v̌0〉| det a|−2ρP da.

This completes the proof. ��
Lemma 8.3 Assume that m ≥ n. Let Φ ∈ IndU(V )P (τ cχc

W ⊗ σ∨
0 ). If Φ 	= 0,

then there exists ϕ ∈ S such that

T0(ϕ ⊗Φ) 	= 0.

Proof Fix a special maximal compact subgroup K of U(V ). We extendΦ to a
holomorphic section Φs of Ind

U(V )
P (τ c

s χ
c
W ⊗ σ∨

0 ) so that Φs |K is independent
of s. We have

L
(

s − s0 + 1
2 , τ

)−1 · γ
(

s − s0 + 1
2 , τ, ψE

)−1 = L
(

− s + s0 + 1
2 , τ

∨)−1

up to an invertible function. Since τ is square-integrable and s0 ≥ 0, the right-
hand side is holomorphic and nonzero at s = 0. By Lemma 8.2, it suffices to
show that there exist ϕ ∈ S , v̌ ∈ Vτ∨ , and v̌0 ∈ Vπ∨

0
such that

∫
UPU(V0)\U(V )

〈T00( f (ϕ)(h)⊗ 〈Φs(h), v̌〉), v̌0〉 dh (8.2)

is nonzero and independent of s for Re(s) " 0.
Let ϕ = ϕ′ ⊗ ϕ0, where ϕ′ ∈ S (V ⊗ Y ∗) and ϕ0 ∈ S0. Then we have

(8.2) =
∫

UPU(V0)\U(V )
ϕ′(h−1x0)Ψs(h) dh,

where

x0 =
⎛
⎝e
0
0

⎞
⎠ , Ψs(h) = 〈T00(ev(ω0(h)ϕ0)⊗ 〈Φs(h), v̌〉), v̌0〉.

We can choose ϕ0, v̌, and v̌0 so that Ψs |K is nonzero and independent of s.
Since h �→ h−1x0 induces a homeomorphism

UPU(V0)\U(V ) ∼−→ U(V )x0

and U(V )x0 is locally closed in V ⊗ Y ∗, there exists ϕ′ such that

suppϕ′ ∩ U(V )x0 = K x0
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and such that ϕ′(k−1x0) = Ψs(k) for all k ∈ K . Hence we have

(8.2) =
∫

UPU(V0)\UPU(V0)K
ϕ′(h−1x0)Ψs(h) dh

=
∫
(UPU(V0)∩K )\K

|Ψs(k)|2 dk 	= 0.

Since Ψs |K is independent of s, so is this integral. This completes the proof. ��

8.2 Compatibilities with intertwining operators

Nowwe shall prove a key property of the equivariantmapwe have constructed.
Letw ∈ W (MP) andw′ ∈ W (MQ) be the nontrivial elements in the relative

Weyl groups. As in Sect. 7.3, we take the representatives w̃ ∈ U(V ) of w and
w̃′ ∈ U(W ) of w′ defined by

w̃ = wP · m P((−1)m
′ · κV · J ) · (−1V0)

k,

w̃′ = wQ · m Q((−1)n
′ · κW · J ) · (−1W0)

k,

where m′ = [m
2 ] and n′ = [n

2 ]. Having fixed τ , π0, and σ0, we shall write

M(w̃, s) = M(w̃, τ c
s χ

c
W ⊗ σ∨

0 ),

M(w̃′, s) = M(w̃′, τsχV ⊗ π0)

for the unnormalized intertwining operators, which are defined by the integrals

M(w̃, s)Φs(h) =
∫

UP

Φs(w̃
−1uh) du,

M(w̃′, s)Ψs(g) =
∫

UQ

Ψs(w̃
′−1ug) du

for Φs ∈ IndU(V )P (τ c
s χ

c
W ⊗ σ∨

0 ) and Ψs ∈ IndU(W )
Q (τsχV ⊗ π0). By the Howe

duality, the diagram

ω ⊗ IndU(V )P (τ c
s χ

c
W ⊗ σ∨

0 )
Ts ��

1⊗M(w̃,s)
��

IndU(W )
Q (τsχV ⊗ π0)

M(w̃′,s)
��

ω ⊗ IndU(V )P (w(τ c
s χ

c
W ⊗ σ∨

0 ))
T−s �� IndU(W )

Q (w′(τsχV ⊗ π0))

commutes up to a scalar. The following proposition determines this constant
of proportionality explicitly.
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Proposition 8.4 For ϕ ∈ S and Φs ∈ IndU(V )P (τ c
s χ

c
W ⊗ σ∨

0 ), we have

M(w̃′, s)Ts(ϕ ⊗Φs)

=
[
γ−1

V · γW · χV ((−1)n
′ · ε · κ−1

W ) · χW ((−1)m
′−1 · κ−1

V ) · (χ−n
V χm

W )(δ)
]k

× ωτ ((−1)m
′+n′−1 · κc

V κ
−1
W ) · |κV |k(s+ρP ) · |κW |−k(s+ρQ)

× L
(

s−s0+ 1
2 , τ

)−1 · L
(

− s − s0+ 1
2 , (τ

c)∨
)

· γ
(

− s − s0+ 1
2 , (τ

c)∨, ψE

)
× T−s(ϕ ⊗ M(w̃, s)Φs).

Proof We may assume that Re(s) � 0. Let v̌ ∈ Vτ∨ and v̌0 ∈ Vπ∨
0
. Noting

that det J = 1, we have by definition

〈M(w̃′, s)Ts(ϕ ⊗Φs)(g), v̌ ⊗ v̌0〉
= ωτ ((−1)n

′ · κ−1
W ) · χV ((−1)n

′ · κ−1
W )k · |κW |−k(s+ρQ) · ωπ0(−1)k

× 〈M(wQ, s)Ts(ϕ ⊗Φs)(g), τ
∨(J )v̌ ⊗ v̌0〉

and

〈T−s(ϕ ⊗ M(w̃, s)Φs)(g), v̌ ⊗ v̌0〉
= ωτ ((−1)m

′ · (κc
V )

−1) · χW ((−1)m
′ · κV )

k · |κV |−k(s+ρP ) · ωσ0(−1)k

× 〈T−s(ϕ ⊗ M(wP , s)Φs)(g), τ
∨(J )v̌ ⊗ v̌0〉,

where ωπ0 and ωσ0 are the central characters of π0 and σ0 respectively. Since
σ0 = Θψ,χV ,χW ,V0,W0(π0), we know that

ωσ0 = ν · ωπ0,

where ν is the character of Ker(NE/F ) defined by

ν(x/xc) = (χ
−n0
V χ

m0
W )(x)

for x ∈ E×. In particular, we have

ωπ0(−1) · ωσ0(−1) = (χ
−n0
V χ

m0
W )(δ)

= (χ−n
V χm

W )(δ) · χV (−1)k · χW (−1)k .
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The Gross–Prasad conjecture and local theta correspondence 767

Thus it suffices to show that

L
(

s − s0 + 1
2 , τ

)
· M(wQ, s)Ts(ϕ ⊗Φs)

= (χV (−ε) · γ−1
V · γW )k · ωτ (−1)

× L
(

− s − s0 + 1
2 , (τ

c)∨
)

· γ
(

− s − s0 + 1
2 , (τ

c)∨, ψE

)
× T−s(ϕ ⊗ M(wP , s)Φs).

We have

L
(

s − s0 + 1
2 , τ

)
· 〈M(wQ, s)Ts(ϕ ⊗Φs)(g), v̌ ⊗ v̌0〉

= L
(

s − s0 + 1
2 , τ

)
·
∫

UQ

〈Ts(ϕ ⊗Φs)(w
−1
Q ug), v̌ ⊗ v̌0〉 du

=
∫

UQ

∫
UPU(V0)\U(V )

〈T00( f̂ (ϕ)(w−1
Q ugh)⊗ 〈Φs(h), v̌〉), v̌0〉 dh du

=
∫

UPU(V0)\U(V )

∫
UQ

〈T00( f̂ (ϕ)(w−1
Q ugh)⊗ 〈Φs(h), v̌〉), v̌0〉 du dh.

In Lemma 8.6(i) below, we shall show that these integrals are absolutely con-
vergent, so that this manipulation is justified. By Lemma 8.2, we have

L
(

− s − s0 + 1
2 , (τ

c)∨
)

· γ
(

− s − s0 + 1
2 , (τ

c)∨, ψE

)
× 〈T−s(ϕ ⊗ M(wP , s)Φs)(g), v̌ ⊗ v̌0〉

=
∫

UPU(V0)\U(V )
〈T00( f (ϕ)(gh)⊗ 〈M(wP , s)Φs(h), v̌〉), v̌0〉 dh

=
∫

UPU(V0)\U(V )

∫
UP

〈T00( f (ϕ)(gh)⊗ 〈Φs(w
−1
P uh), v̌〉), v̌0〉 du dh

=
∫
U(V0)\U(V )

〈T00( f (ϕ)(gh)⊗ 〈Φs(w
−1
P h), v̌〉), v̌0〉 dh

=
∫
U(V0)\U(V )

〈T00( f (ϕ)(gwP h)⊗ 〈Φs(h), v̌〉), v̌0〉 dh

=
∫

UPU(V0)\U(V )

∫
UP

〈T00( f (ϕ)(gwPuh)⊗ 〈Φs(h), v̌〉), v̌0〉 du dh

=
∫

UPU(V0)\U(V )

∫
UP

× 〈T00( f (ϕ)(gwPum P(−1X )h)⊗ 〈Φs(m P(−1X )h), v̌〉), v̌0〉 du dh
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= ωτ (−1) · χW (−1)k

×
∫

UPU(V0)\U(V )

∫
UP

× 〈T00( f (ϕ)(gwPum P(−1X )h)⊗ 〈Φs(h), v̌〉), v̌0〉 du dh.

In Lemma 8.6(ii) below, we shall show that these integrals are absolutely
convergent, so that this manipulation is justified. Thus it remains to show that

χV (−ε)k · γ k
V ·

∫
UQ

f̂ (ϕ)(w−1
Q u) du

= χW (−1)k · γ k
W ·

∫
UP

f (ϕ)(wPum P(−1X )) du.
(8.3)

We may assume that ϕ = ϕ′ ⊗ ϕ0, where ϕ′ ∈ S (V ⊗ Y ∗) and ϕ0 ∈ S0.
We have w−1

Q = m Q(−ε1Y ) · wQ and

f̂(ϕ)(w−1
Q )

=
∫

X⊗Y ∗
(ω(w−1

Q )ϕ)

⎛
⎝x
0
0

⎞
⎠ψ(ε〈x, e∗〉) dx

= χV (−ε)k ·
∫

X⊗Y ∗
(ω(wQ)ϕ)

⎛
⎝−εx

0
0

⎞
⎠ψ(ε〈x, e∗〉) dx

= χV (−ε)k ·
∫

X⊗Y ∗
(ω(wQ)ϕ)

⎛
⎝x
0
0

⎞
⎠ψ(−〈x, e∗〉) dx

= χV (−ε)k · γ−k
V

×
∫

X⊗Y ∗

⎛
⎝∫

X⊗Y ∗

∫
V0⊗Y ∗

∫
X∗⊗Y ∗

ϕ

⎛
⎝y1

y2
y3

⎞
⎠ψ(−〈IY y3, x〉) dy3 dy2 dy1

⎞
⎠

× ψ(−〈x, e∗〉) dx

= χV (−ε)k · γ−k
V

×
∫

X⊗Y ∗

⎛
⎝∫

X⊗Y ∗

∫
V0⊗Y ∗

∫
X∗⊗Y ∗

ϕ

⎛
⎝y1

y2
y3

⎞
⎠ψ(〈x, IY y3〉) dy3 dy2 dy1

⎞
⎠

× ψ(−〈x, e∗〉) dx

= χV (−ε)k · γ−k
V ·

∫
X⊗Y ∗

∫
V0⊗Y ∗

ϕ

⎛
⎝ y1

y2
I −1
Y e∗

⎞
⎠ dy2 dy1.
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The Gross–Prasad conjecture and local theta correspondence 769

Hence, noting that I −1
X e = I −1

Y e∗ = e∗∗, we have

χV (−ε)k · γ k
V ·

∫
Herm(Y ∗,Y )

f̂(ϕ)(w−1
Q uQ(c)) dc

=
∫
Herm(Y ∗,Y )

⎛
⎝∫

X⊗Y ∗

∫
V0⊗Y ∗

ϕ

⎛
⎝ y1

y2
e∗∗

⎞
⎠ψ

(
〈cy1, e∗∗〉 + 1

2 〈cy2, y2〉
)

dy2 dy1

⎞
⎠ dc.

We change the variables

y1 = x1e∗∗ ∈ X ⊗ Y ∗, x1 ∈ Hom(X∗, X),

y2 = x2e∗∗ ∈ V0 ⊗ Y ∗, x2 ∈ Hom(X∗, V0).

Then the inner integral is equal to

∫
Hom(X∗,X)

∫
Hom(X∗,V0)

ϕ

⎛
⎝x1e∗∗

x2e∗∗
e∗∗

⎞
⎠

× ψ

(
〈cx1e∗∗, e∗∗〉 + 1

2
〈cx2e∗∗, x2e∗∗〉

)
dx2 dx1

=
∫
Hom(X∗,X)

∫
Hom(X∗,V0)

ϕ

⎛
⎝x1e∗∗

x2e∗∗
e∗∗

⎞
⎠

× ψ
(

− 〈x1e∗∗, ce∗∗〉 − 1
2 〈x∗

2 x2e∗∗, ce∗∗〉
)

dx2 dx1

=
∫
Hom(X∗,X)

∫
Hom(X∗,V0)

ϕ

⎛
⎜⎝

(
x1 − 1

2 x∗
2 x2

)
e∗∗

x2e∗∗
e∗∗

⎞
⎟⎠ψ(−〈x1e∗∗, ce∗∗〉) dx2 dx1.

By Lemma 7.1, the integral over c ∈ Herm(Y ∗, Y ) of this integral is equal to

∫
Herm(X∗,X)

∫
Hom(X∗,V0)

ϕ

⎛
⎜⎝

(
c − 1

2 x∗
2 x2

)
e∗∗

x2e∗∗
e∗∗

⎞
⎟⎠ dx2 dc.
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Hence the left-hand side of (8.3) is equal to

χV (−ε)k · γ k
V ·

∫
Hom(W0,Y )

∫
Herm(Y ∗,Y )

f̂ (ϕ)(w−1
Q uQ(c)uQ(b)) dc db

=
∫
Hom(W0,Y )

∫
Herm(X∗,X)

∫
Hom(X∗,V0)

× ev
(
(ω(uQ(b))ϕ)

⎛
⎜⎝

(
c − 1

2 x∗
2 x2

)
e∗∗

x2e∗∗
e∗∗

⎞
⎟⎠)

dx2 dc db

=
∫
Hom(W0,Y )

∫
Herm(X∗,X)

∫
Hom(X∗,V0)

ϕ′

⎛
⎜⎝

(
c − 1

2 x∗
2 x2

)
e∗∗

x2e∗∗
e∗∗

⎞
⎟⎠

× ψ
(
1
2 〈b∗e∗∗, b∗(c − 1

2 x∗
2 x2)e

∗∗〉
)
ρ00((b

∗x2e∗∗, 0))ϕ0(b∗e∗∗) dx2 dc db

=
∫
Hom(W0,Y )

∫
Herm(X∗,X)

∫
Hom(X∗,V0)

ϕ′

⎛
⎜⎝

(
c − 1

2 x∗
2 x2

)
e∗∗

x2e∗∗
e∗∗

⎞
⎟⎠

× ψ
(

− 1
2 〈cb∗e∗∗, b∗e∗∗〉

)
ρ00((x2b∗e∗∗, 0))ϕ0(b∗e∗∗) dx2 dc db.

Note that 〈b∗e∗∗, b∗x∗
2 x2e∗∗〉 = 〈bb∗e∗∗, x∗

2 x2e∗∗〉 = 0.
On the other hand, the right-hand side of (8.3) is equal to the product of

χW (−1)k · γ k
W and

∫
Hom(V0,X)

∫
Herm(X∗,X)

f (ϕ)(wPu P(c
′)u P(b

′)m P(−1X )) dc′ db′

=
∫
Hom(V0,X)

∫
Herm(X∗,X)

ϕ′

⎛
⎜⎝−

(
c′ + 1

2b′b′∗
)

e∗∗

−b′∗e∗∗
e∗∗

⎞
⎟⎠

× ev(ω0(wPu P(c
′)u P(b

′)m P(−1X ))ϕ0) dc′ db′.

We have

ev(ω0(wPu P(c
′)u P(b

′)m P(−1X ))ϕ0)

= γ−k
W ·

∫
X∗⊗W0

(ω0(u P(c
′)u P(b

′)m P(−1X ))ϕ0)(y) dy

= γ−k
W ·

∫
X∗⊗W0

ψ
(
1
2 〈c′y, y〉

)
(ω0(u P(b

′)m P(−1X ))ϕ0)(y) dy
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= γ−k
W ·

∫
X∗⊗W0

ψ
(
1
2 〈c′y, y〉

)
ρ00((b

′∗y, 0))(ω0(m P(−1X ))ϕ0)(y) dy

= χW (−1)k · γ−k
W ·

∫
X∗⊗W0

ψ
(
1
2 〈c′y, y〉

)
ρ00((b

′∗y, 0))ϕ0(−y) dy.

Changing the variables

b′ = −x∗
2 ∈ Hom(V0, X), x2 ∈ Hom(X∗, V0),

c′ = −c ∈ Herm(X∗, X), c ∈ Herm(X∗, X),

y = −b∗e∗∗ ∈ X∗ ⊗ W0, b ∈ Hom(W0, Y ),

we see that the equality (8.3) holds. This completes the proof. ��
Let φτ , φ0, and φ′

0 be the L-parameters of τ , π0, and σ0 respectively. As a
consequence of Proposition 8.4, we deduce:

Corollary 8.5 For ϕ ∈ S and Φs ∈ IndU(V )P (τ c
s χ

c
W ⊗ σ∨

0 ), we have

R(w′, τsχV ⊗ π0)Ts(ϕ ⊗Φs)

= α · β(s) · T−s(ϕ ⊗ R(w, τ c
s χ

c
W ⊗ σ∨

0 )Φs),

where

α =
[
γ−1

V · γW · χV ((−1)n
′ · ε · κ−1

W ) · χW ((−1)m
′−1 · κ−1

V ) · (χ−n
V χm

W )(δ)
]k

× ωτ ((−1)m
′+n′−1 · κc

V κ
−1
W ) · λ(w,ψ) · λ(w′, ψ)−1

and

β(s) = L
(

s − s0 + 1
2 , φτ

)−1 · L
(

− s − s0 + 1
2 , (φ

c
τ )

∨)
× γ

(
− s − s0 + 1

2 , (φ
c
τ )

∨, ψE

)
· |κV κ

−1
W |ks

× γ (s, φc
τ ⊗ φ′

0 ⊗ χc
W , ψE )

−1 · γ (s, φτ ⊗ φ∨
0 ⊗ χV , ψE ).

Proof The corollary immediately follows from Proposition 8.4 and the fol-
lowing facts:

• γ (s,As+ ◦ φτ c , ψ) = γ (s,As+ ◦ φτ , ψ);
• for any conjugate self-dual character χ of E×,

γ (s,As+ ◦ φτχ , ψ) =
{
γ (s,As+ ◦ φτ , ψ) if χ |F× = 1F×;
γ (s,As− ◦ φτ , ψ) if χ |F× = ωE/F .

��
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8.3 Convergence of integrals

To finish the proof of Proposition 8.4, it remains to show the following con-
vergence of the integrals.

Lemma 8.6 Let ϕ ∈ S , Φs ∈ IndU(V )P (τ c
s χ

c
W ⊗σ∨

0 ), v̌ ∈ Vτ∨ , and v̌0 ∈ Vπ∨
0

.
Assume that Re(s) � 0.

(i) The integral∫
UQ

∫
UPU(V0)\U(V )

〈T00( f̂ (ϕ)(w−1
Q uh)⊗ 〈Φs(h), v̌〉), v̌0〉 dh du (8.4)

is absolutely convergent.
(ii) The integral∫

UPU(V0)\U(V )

∫
UP

〈T00( f (ϕ)(h)⊗ 〈Φs(w
−1
P uh), v̌〉), v̌0〉 du dh (8.5)

is absolutely convergent.

Proof Put t = Re(s) � 0. Fix a special maximal compact subgroup K of
U(V ). We may assume that

• ϕ = ϕ′ ⊗ ϕ0 for some ϕ′ ∈ S (V ⊗ Y ∗) and ϕ0 ∈ S0;
• Φs |K is independent of s;
• Φs is K0-fixed for some open compact subgroup K0 of K ;
• suppΦs = Pk0K0 for some k0 ∈ K ;
• Φs(k0) is a pure tensor in Vτ ⊗ Vσ∨

0
.

In particular, there exist maps v : K → Vτ and v0 : K → Vσ∨
0
such that

Φs(k) = v(k)⊗ v0(k)

for all k ∈ K .
Recall that τ ,π0, andσ0 are tempered and hence unitarizable.We can choose

invariant Hilbert space norms ‖ · ‖ on Vτ and Vτ∨ so that

|〈v, v̌〉| ≤ ‖v‖‖v̌‖
for all v ∈ Vτ and v̌ ∈ Vτ∨ . Similarly, we choose invariant Hilbert space norms
on Vπ0 , Vσ0 , and so on. We may regard T00 as a U(V0) × U(W0)-equivariant
map T00 : S00 → Vσ0 ⊗ Vπ0 , i.e.

〈T00(ϕ00), v0 ⊗ v̌0〉 = 〈T00(ϕ00 ⊗ v0), v̌0〉
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The Gross–Prasad conjecture and local theta correspondence 773

for ϕ00 ∈ S00, v0 ∈ Vσ∨
0
, and v̌0 ∈ Vπ∨

0
. Then we have

‖T00(ω00(g0h0)ϕ00)‖ = ‖T00(ϕ00)‖
for g0 ∈ U(W0) and h0 ∈ U(V0), and

|〈T00(ϕ00 ⊗ v0), v̌0〉| ≤ ‖T00(ϕ00)‖‖v0‖‖v̌0‖.
Fix v̌ ∈ Vτ∨ and v̌0 ∈ Vπ∨

0
, and put

C = ‖v̌‖‖v̌0‖max
k∈K

‖v(k)‖‖v0(k)‖.

Let Ψt be the K -fixed element in IndU(V )P (| det |t ⊗ 1U(V0)) such that
Ψt (1) = 1. Let ! denote the representation of U(V ) on S (V ⊗ Y ∗) defined
by (!(h)ϕ′)(x) = ϕ′(h−1x). Recall that ev : S0 → S00 is the evaluation at
0.

First, we prove the absolute convergence of (8.4). We have

f̂ (ϕ)(h) = φ(!(h)ϕ′)(e∗) · ev(ω0(h)ϕ0),

where φ : S (V ⊗ Y ∗) → S (X∗ ⊗ Y ) is defined by

φ(ϕ′)(y) =
∫

X⊗Y ∗
ϕ′

⎛
⎝x
0
0

⎞
⎠ψ(ε〈x, y〉) dx .

Put

ξ̂s(g, h) = 〈T00( f̂ (ϕ)(gh)⊗ 〈Φs(h), v̌〉), v̌0〉
= χc

W (det a)| det a|s+ρP 〈τ c(a)v(k), v̌〉
× 〈T00( f̂ (ϕ)(gh)⊗ σ∨

0 (h0)v0(k)), v̌0〉
for g ∈ U(W ), h = um P(a)h0k ∈ U(V ), u ∈ UP , a ∈ GL(X), h0 ∈ U(V0),
and k ∈ K . Then we have

|ξ̂s(g, h)| ≤ | det a|t+ρP ‖v(k)‖‖v̌‖ · ‖T00( f̂ (ϕ)(gh))‖‖v0(k)‖‖v̌0‖
≤ C · Ψt (h) · ‖T00( f̂ (ϕ)(gh))‖

and

‖T00( f̂ (ϕ)(h))‖ = ‖T00( f̂ (ϕ)(m P(a)k))‖
= | det a|k+n0/2|φ(!(k)ϕ′)(a∗e∗)| · ‖T00(ev(ω0(k)ϕ0))‖.
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Hence we have∫
UPU(V0)\U(V )

|ξ̂s(g, h)| dh

≤ C ·
∫

UPU(V0)\U(V )
Ψt (h)‖T00( f̂ (ϕ)(gh))‖ dh

= C ·
∫
GL(X)

∫
K

| det a|t−ρP ‖T00( f̂ (ϕ)(gm P(a)k))‖ dk da

< ∞
since the last integral is the zeta integral of Godement–Jacquet associated to
the trivial representation of GL(X). Put

Ξ̂t (g) = C ·
∫

UPU(V0)\U(V )
Ψt (h)‖T00( f̂ (ϕ)(gh))‖ dh.

Then we have

Ξ̂t (um Q(a)g0g) = | det a|t+ρQ Ξ̂t (g)

for u ∈ UQ , a ∈ GL(Y ), g0 ∈ U(W0), and g ∈ U(W ), i.e. Ξ̂t ∈
IndU(W )

Q (| det |t ⊗ 1U(W0)). Hence we have∫
UQ

∫
UPU(V0)\U(V )

|ξ̂s(w
−1
Q u, h)| dh du ≤

∫
UQ

Ξ̂t (w
−1
Q u) du < ∞.

Next, we prove the absolute convergence of (8.5). We have

f (ϕ)(h) = φ̂(!(h)ϕ′)(e) · ev(ω0(h)ϕ0),

where φ̂ : S (V ⊗ Y ∗) → S (X ⊗ Y ∗) is defined by

φ̂(ϕ′)(x) = ϕ′
⎛
⎝x
0
0

⎞
⎠ .

Put

ξs(h, h′) = 〈T00( f (ϕ)(h′)⊗ 〈Φs(h), v̌〉), v̌0〉
= χc

W (det a)| det a|s+ρP 〈τ c(a)v(k), v̌〉
× 〈T00( f (ϕ)(h′)⊗ σ∨

0 (h0)v0(k)), v̌0〉
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for h = um P(a)h0k, h′ ∈ U(V ), u ∈ UP , a ∈ GL(X), h0 ∈ U(V0), and
k ∈ K . Then we have

|ξs(h, h′)| ≤ | det a|t+ρP ‖v(k)‖‖v̌‖ · ‖T00( f (ϕ)(h′))‖‖v0(k)‖‖v̌0‖
≤ C · Ψt (h) · ‖T00( f (ϕ)(h′))‖.

Hence we have∫
UP

|ξs(w
−1
P uh, h′)| du ≤ C · ‖T00( f (ϕ)(h′))‖ ·

∫
UP

Ψt (w
−1
P uh) du < ∞.

Put

Ξt (h) = C · ‖T00( f (ϕ)(h))‖ · M(wP , t)Ψt (h),

where

M(wP , t)Ψt (h) =
∫

UP

Ψt (w
−1
P uh) du.

Then we have

Ξt (um P(a)h0h) = C · | det a|−t+ρP+n0/2|φ̂(!(h)ϕ′)(a−1e)|
× ‖T00(ev(ω0(h)ϕ0))‖ · M(wP , t)Ψt (h)

for u ∈ UP , a ∈ GL(X), h0 ∈ U(V0), and h ∈ U(V ). Hence, putting

C ′ = C · max
k∈K

‖T00(ev(ω0(k)ϕ0))‖ · M(wP , t)Ψt (1),

we have∫
UPU(V0)\U(V )

∫
UP

|ξs(w
−1
P uh, h)| du dh

≤
∫

UPU(V0)\U(V )
Ξt (h) dh

≤ C ′ ·
∫
GL(X)

∫
K

| det a|−t−ρP+n0/2|φ̂(!(k)ϕ′)(a−1e)| dk da

< ∞

since the last integral is the zeta integral of Godement–Jacquet associated to
the trivial representation of GL(X). ��
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8.4 Completion of the proof

Now assume that ε = +1 and m = n +1. Let φ be a tempered but non-square-
integrable L-parameter for U(W ±

n ). Since φ is not square-integrable, we can
write

φ = (φτ ⊗ χV )⊕ φ0 ⊕ ((φτ ⊗ χV )
c)∨

for some irreducible (unitary) square-integrable representation τ of GLk(E)
and tempered L-parameter φ0 for U(W ±

n0), where k is a positive integer and

n0 = n − 2k. Fix ε′ = ±1, and set W = W ε′
n and W0 = W ε′

n0 . Let π =
π(η) ∈ Πφ be an irreducible tempered representation ofU(W )with associated

character η ∈ Irr(Sφ). Then π is an irreducible constituent of IndU(W )
Q (τχV ⊗

π0) for some irreducible tempered representation π0 = π0(η0) ∈ Πφ0 of
U(W0) with associated character η0 ∈ Irr(Sφ0) such that

η|Sφ0
= η0.

Fix ε = ±1, and set V = V ε
n+1 and V0 = V ε

n0+1. Suppose that σ :=
Θψ,V,W (π) 	= 0. By the argument as in [19, pp. 1674–1676], we see that σ0 :=
Θψ,V0,W0(π0) 	= 0 and σ is an irreducible constituent of IndU(V )P (τχW ⊗ σ0).

This implies that σ∨ is an irreducible constituent of IndU(V )P (τ cχc
W ⊗ σ∨

0 ).
By Theorem 4.4, σ = σ(η′) ∈ Πφ′ and σ0 = σ0(η

′
0) ∈ Πφ′

0
are irreducible

tempered representations of U(V ) and U(V0) respectively, with L-parameters

φ′ = (φ ⊗ χ−1
V χW )⊕ χW and φ′

0 = (φ0 ⊗ χ−1
V χW )⊕ χW ,

and associated characters η′ ∈ Irr(Sφ′) and η′
0 ∈ Irr(Sφ′

0
) such that

η′|Sφ′
0

= η′
0.

We need to show that η′|Sφ = η.
Consider a commutative diagram

Sφ �� Sφ′

Sφ0

��

�� Sφ′
0

��
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of natural embeddings. Since n0 < n, we know that (P2)n0 holds by assump-
tion, so that

η′
0|Sφ0

= η0.

Hence, we conclude that

η′|Sφ0
= (η′|Sφ′

0
)|Sφ0

= η′
0|Sφ0

= η0 = η|Sφ0
.

In particular, if Sφ0 = Sφ , then η′|Sφ = η as desired.
Finally, we assume that Sφ0 	= Sφ , which is the case if and only if φτ is

conjugate orthogonal and φτ ⊗χV is not contained in φ0. Then the component
group Sφ is of the form

Sφ = Sφ0 × (Z/2Z)a1,

where the extra copy of Z/2Z arises from the summand φτ ⊗ χV in φ. Since
we already know that η′|Sφ0

= η|Sφ0
, it suffices to show that η′(a1) = η(a1).

To see this, we recall the U(V )× U(W )-equivariant map

T0 : ω ⊗ IndU(V )P (τ cχc
W ⊗ σ∨

0 ) −→ IndU(W )
Q (τχV ⊗ π0).

Since T0(ϕ ⊗ Φ) ∈ π for ϕ ∈ S and Φ ∈ σ∨, it follows by (2.1), Lemma
8.3, and Corollary 8.5 that

ε(W )k · η(a1) = α · β(0) · ε(V )k · ησ∨(a1),

whereα andβ(s) are as inCorollary 8.5, andησ∨ ∈ Irr(S(φ′)∨) is the irreducible
character associated to σ∨. But we know that

ησ∨(a1) = η′(a1)×
{
1 if n is even;

ωE/F (−1)k if n is odd.

Thus it remains to show that

ε(V )k · ε(W )k · α · β(0) =
{
1 if n is even;

ωE/F (−1)k if n is odd.

First, we compute ε(V )k ·ε(W )k ·α when n is even. In this case, we see that
γV = ε(V ) ·λ(E/F, ψ) and γW = ε(W ) ·χW (δ)−1. Hence ε(V )k · ε(W )k ·α
is equal to
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[
λ(E/F, ψ)−1 · χW (δ)−1 · χV (−1)n

′ · χW (−1)n
′ · (χ−n

V χn+1
W )(δ)

]k

× ωτ (−1)2n′ · λ(E/F, ψ)(k+1)k/2 · λ(E/F, ψ)−(k−1)k/2

= 1.

Next, we compute ε(V )k · ε(W )k · α when n is odd. In this case, we see that
γV = ε(V ) and γW = ε(W ) ·χW (δ)−1 ·λ(E/F, ψ). Hence ε(V )k · ε(W )k ·α
is equal to[
χW (δ)−1 · λ(E/F, ψ) · χV ((−1)n

′−1 · δ−1) · χW ((−1)n
′−1 · δ−1) · (χ−n

V χn+1
W )(δ)

]k

× ωτ (−1)2n′−1 · λ(E/F, ψ)(k−1)k/2 · λ(E/F, ψ)−(k+1)k/2

= ωE/F (−1)k · ωτ (−1)

= ωE/F (−1)k,

where the last equality follows because ωτ |F× = 1F× .
Finally, we compute β(0). Noting that s0 = 1

2 , (φ
c
τ )

∨ = φτ , and φ′
0 =

(φ0 ⊗ χ−1
V χW )⊕ χW , we see that

β(s) = L(s, φτ )
−1 · L(−s, φτ ) · γ (−s, φτ , ψE ) · γ (s, φτ , ψE )

−1

= ε(−s, φτ , ψE )

ε(s, φτ , ψE )
· L(1 + s, φ∨

τ )

L(1 − s, φ∨
τ )
.

Since τ is square-integrable, L(s, φ∨
τ ) is holomorphic and nonzero at s = 1,

and hence

β(0) = 1.

Thus, we have shown the desired formula for ε(V )k · ε(W )k · α · β(0) and
completed the proof of Theorem 6.1.

Remark 8.7 Using Theorem 4.1 (instead of Theorem 4.4) and the above argu-
ment, one can also prove the analog of Theorem 6.1 for (P1). Indeed, this can
be reduced to the computation of ε(V )k · ε(W )k · α · β(0) when ε = +1,
m = n, and φτ is conjugate symplectic, in which case one sees that

ε(V )k · ε(W )k · α =
{
ωτ (δ) · ωE/F (−1)k if n is even;

ωτ (δ) if n is odd,

and

β(0) = ε

(
1
2 , φτ , ψE

)
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as desired.

9 Generic case

So far, we have verified the Fourier–Jacobi case (FJ) of the Gross–Prasad
conjecture for tempered L-parameters for U(Wn)×U(Wn). As in the proof of
[15, Theorem 19.1], this implies (FJ) for tempered L-parameters for U(Wn)×
U(Wn+2k) with k > 0. In this section, we extend (FJ) to the case of generic
L-parameters.

9.1 Generic L-parameters

Let V be an n-dimensional ε-Hermitian space. Recall that an L-parameter
φ for U(V ) is generic if, by definition, its associated L-packet Πφ contains
generic representations (i.e. those which possess some Whittaker models). In
Proposition B.1 below, we shall show that φ is generic if and only if its adjoint
L-factor L(s,Ad ◦ φ) = L(s,As(−1)n ◦ φ) is holomorphic at s = 1.
Let φ be an L-parameter for U(V ), so that we may write

φ = ρ ⊕ φ0 ⊕ (ρc)∨ with ρ =
r⊕

i=1

ρi | · |si ,

where

• ρi is a ki -dimensional tempered representation of WDE ,
• si is a real number such that s1 > · · · > sr > 0,
• φ0 is a tempered L-parameter for U(V0), where V0 is the ε-Hermitian space
of dimension n − 2(k1 + · · · + kr ) such that ε(V0) = ε(V ).

As mentioned in Sect. 2.5, by the construction of the local Langlands cor-
respondence, the representations in the Vogan L-packet Πφ are given by the
unique irreducible quotient of the standard module

Ind

(( r⊗
i=1

τi | · |si

)
⊗ π0

)
(9.1)

for π0 ∈ Πφ0 , where Ind is the appropriate parabolic induction and τi is
the irreducible tempered representation of GLki (E) associated to ρi . If φ is
generic, then we have the following result of Heiermann [27], which extends
a result of Mœglin–Waldspurger [42, Corollaire 2.14] for special orthogonal
groups and symplectic groups.
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780 W. T. Gan, A. Ichino

Proposition 9.1 Let φ be a generic L-parameter for U(V ). Then the standard
modules as in (9.1) are all irreducible, so that the L-packet Πφ consists of
standard modules.

9.2 Local theta correspondence

Proposition 9.1 has consequences for the local theta correspondence. Let V be
an m-dimensional Hermitian space and W an n-dimensional skew-Hermitian
space. Consider the theta correspondence for U(V )×U(W ) relative to a pair of
characters (χV , χW ). Letφ be an L-parameter forU(W ) andπ a representation
of U(W ) inΠφ . If m = n, then by Theorem 4.1, we have θψ,V,W (π) ∈ Πθ(φ)

(if nonzero) with

θ(φ) = φ ⊗ χ−1
V χW ,

so that L(s,Ad ◦ θ(φ)) = L(s,Ad ◦ φ). Thus θ(φ) is generic if and only
if φ is. On the other hand, if m = n + 1, then by Theorem 4.4, we have
θψ,V,W (π) ∈ Πθ(φ) (if nonzero) with

θ(φ) = (φ ⊗ χ−1
V χW )⊕ χW .

In this case, it is possible that θ(φ) is nongeneric even if φ is. More precisely,
since

L(s,Ad ◦ θ(φ)) = L(s,Ad ◦ φ) · L(s, φ ⊗ χ−1
V ) · L(s, ωE/F ),

θ(φ) is generic if and only if φ is generic and does not contain χV | · |± k+1
2 �

Symk−1 for any positive integer k, where Symk−1 is the unique k-dimensional
irreducible representation of SL2(C). Hence we see that for all but finitely
many choices of χV (depending on φ), θ(φ) is generic if φ is.

Proposition 9.2 Let φ be an L-parameter for U(W ) and π a representation
of U(W ) in Πφ . Then we have:

(i) Assume that m = n. If φ is generic (so that θ(φ) is also generic), then

Θψ,V,W (π) = θψ,V,W (π).

(ii) Assume that m = n +1. If φ is generic and does not contain χV | · |± k+1
2 �

Symk−1 for any positive integer k (so that θ(φ) is also generic), then

Θψ,V,W (π) = θψ,V,W (π).
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Proof We shall give the proof of (ii) since the proof of (i) is similar. We may
assume thatΘψ,V,W (π) 	= 0. If φ is tempered, thenΘψ,V,W (π) is irreducible
and tempered by [17, Proposition C.4(i)]. In general, by Proposition 9.1, π is
a standard module of the form

Ind

(( r⊗
i=1

τi | · |si

)
⊗ π0

)

as in (9.1). Then by [17, Proposition C.4(ii)], Θψ,V,W (π) is a quotient of the
standard module

Ind

(( r⊗
i=1

τiχ
−1
V χW | · |si

)
⊗Θψ,V0,W0(π0)

)
.

Since θ(φ) is generic as well, Proposition 9.1 implies that this standardmodule
is irreducible, so that Θψ,V,W (π) is irreducible. ��

9.3 (B) for generic L-parameters

For special orthogonal groups, Mœglin–Waldspurger [42] extended the Bessel
case (B) of the Gross–Prasad conjecture from tempered L-parameters to
generic L-parameters.We carry out the analogous extension for unitary groups.

Proposition 9.3 The statement (B) holds for all generic L-parameters for
U(Vn)× U(Vn+2k+1).

To prove Proposition 9.3, we adapt the proof of Mœglin–Waldspurger [42]
to the case of unitary groups. For any (not necessarily irreducible) smooth
representations π and π ′ of U(Vn) and U(Vn+2k+1) respectively, we write
m(π, π ′) or m(π ′, π) for

dimCHomH (π ⊗ π ′, ν)

with the subgroup H of U(Vn) × U(Vn+2k+1) and the character ν of H as
in [15, Sect. 12]. Then as explained in [42, Sect. 3], Proposition 9.3 follows
from (B) for all tempered L-parameters (which was proved by Beuzart-Plessis
[4–6]), together with Proposition 9.1 and the following proposition:

Proposition 9.4 Letπ = Ind((
⊗r

i=1 τi |·|si )⊗π0) be a smooth representation
of U(Vn), where

• τi is an irreducible tempered representation of GLki (E),• si is a real number such that s1 ≥ · · · ≥ sr ≥ 0,
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• π0 is an irreducible tempered representation of U(Vn−2(k1+···+kr )).

Likewise, let π ′ = Ind((
⊗r ′

j=1 τ
′
j | · |s′

j ) ⊗ π ′
0) be a smooth representation of

U(Vn+2k+1) with analogous data τ ′
j , k′

j , s′
j , π

′
0. Then we have

m(π, π ′) = m(π0, π
′
0).

Proof Since the proof is similar to that of [42, Proposition 1.3], we shall only
give a sketch of the proof. First, we prove that m(π, π ′) ≤ m(π0, π

′
0).

(i) Let σ = Ind(τ0| · |s0 ⊗σ0) be a smooth representation of U(Vn+1), where
• τ0 is an irreducible (unitary) square-integrable representation of
GLk0(E),• s0 is a real number,

• σ0 is a smooth representation of U(Vn−2k0+1) of finite length.
Assume that s0 ≥ s1 (which is interpreted as s0 ≥ 0 when r = 0). Then
as in [42, Lemme 1.4], we have

m(π, σ ) ≤ m(π, σ0).

(ii) Let σ be as in (i). Assume that
• τ0 is supercuspidal;
• if a representation τ# ⊗ π# with

– an irreducible smooth representation τ# of a general linear group;
– an irreducible smooth representation π# of a general linear group
or a unitary group

intervenes in a Jacquet module of τ∨
i , τ c

i , or π
∨
0 as a subquotient, then

τ0| · |s does not intervene in the supercuspidal support of τ# for any
s ∈ R.

Then by [15, Theorem 15.1] (see also [42, Lemme 1.5]), we have

m(π, σ ) = m(π, σ0).

(iii) To provem(π, π ′) ≤ m(π0, π
′
0) in general, wemay assume that τi , τ ′

j are
square-integrable for all i , j . As in [42, Sect. 1.6], we argue by induction
on

l :=
∑
1≤i≤r
si 	=0

ki +
∑

1≤ j≤r ′
s′

j 	=0

k′
j .

If l = 0, then it follows by [6, Sects. 14–15] combined with (ii) that
m(π, π ′) = m(π0, π

′
0). Suppose that l 	= 0.
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(a) If k = 0 and s′
1 ≥ s1 (in particular r ′ ≥ 1), then by (i), we have

m(π, π ′) ≤ m(π, π ′′), where π ′′ = Ind((
⊗r ′

j=2 τ
′
j | · |s′

j ) ⊗ π ′
0). By

induction hypothesis, we have m(π, π ′′) ≤ m(π0, π
′
0).

(b) If s1 ≥ s′
1 (in particular r ≥ 1), then we can reduce to (a) by using (ii).

(c) If s′
1 ≥ s1 (in particular r ′ ≥ 1), then we can reduce to (b) by using (ii).

This proves the assertion (see [42, Sect. 1.6] for details).

Next, we prove that m(π, π ′) ≥ m(π0, π
′
0). By (ii), we may assume that

k = 0. If m(π0, π
′
0) = 0, then there is nothing to prove. If m(π0, π

′
0) 	= 0,

then by [1], [15, Corollary 15.3], it suffices to show that

m(π, π ′) ≥ 1.

Put

πz = Ind

(( r⊗
i=1

τi | · |zi

)
⊗ π0

)

and

π ′
z′ = Ind

(( r ′⊗
j=1

τ ′
j | · |z′

j

)
⊗ π ′

0

)

for z = (z1, . . . , zr ) ∈ C
r and z′ = (z′

1, . . . , z′
r ′) ∈ C

r ′
. As in [42, Lemme

1.7], we can define a Δ(U(Vn)× U(Vn))-equivariant map

Lz,z′ : πz ⊗ (πz)
∨ ⊗ π ′

z′ ⊗ (π ′
z′)∨ −→ C

by (meromorphic continuation of) an integral of matrix coefficients, which
is absolutely convergent for (z, z′) near (

√−1R)r × (
√−1R)r

′
. Since

m(π0, π
′
0) 	= 0, it follows by [6, Théorème 14.3.1, Proposition 15.2.1, Propo-

sition 15.3.1] that the map (z, z′) �→ Lz,z′ is not identically zero. In particular,
the leading term of Lz,z′ at z = (s1, . . . , sr ) and z′ = (s′

1, . . . , s′
r ′) is nonzero

and hence m(π, π ′) ≥ 1 (see [42, Sect. 1.8] for details). This completes the
proof. ��

9.4 (FJ) for generic L-parameters

In view of Propositions 9.2 and 9.3, one may repeat the see-saw argument in
Sect. 5 for generic L-parameters, using (P1) and (P2) (which were shown for
all L-parameters) to prove:
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Proposition 9.5 The statement (FJ) holds for all generic L-parameters for
U(Wn)× U(Wn).

Here, in repeating the see-saw argument, one may choose a character χV so
that the condition of Proposition 9.2(ii) holds. Finally, Proposition 9.5 together
with [15, Theorem 19.1] implies:

Corollary 9.6 The statement (FJ) holds for all generic L-parameters for
U(Wn)× U(Wn+2k).
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Appendix A: Addendum to [17]

In this appendix, we elaborate on some results of [17, Appendix C] which are
used in the proof of Theorem 4.4. In particular,

• we fill in some missing details in the proof of [17, Proposition C.1(ii)] and
streamline its proof by exploiting the recently established Howe duality
conjecture [20,21];

• we extend some results of Muić [45, Lemma 4.2 and Theorem 5.1(i)]
(used in the proof of [17, Proposition C.1(ii)]), which were written only
for symplectic-orthogonal dual pairs, to cover all dual pairs considered in
[17], streamlining some of his proofs in the process.

A.1 The issues

Let us be more precise. We freely use the notation of [17, Sect. C.1].
Let π be an irreducible square-integrable representation of G(W ) such that

σ0 := ΘṼ ,W,χ ,ψ(π) 	= 0.

By the bullet point on [17, p. 645], together with the Howe duality, σ0 is
irreducible and square-integrable. Then we showed that

(i) any irreducible subquotient ofΘV,W,χ,ψ(π) is tempered in the first bullet
point on [17, p. 646];

(ii) σ := θV,W,χ ,ψ(π) is an irreducible constituent of I H(V )
Q(Y1)

(χW ⊗σ0) in the
the second bullet point on [17, p. 646],

and claimed that
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(iii) any irreducible subquotient of ΘV,W,χ ,ψ(π) is not square-integrable in
the third bullet point on [17, p. 646];

(iv) any irreducible subquotient of ΘV,W,χ ,ψ(π) is a subrepresentation of

I H(V )
Q(Y1)

(χW ⊗ σ ′
0) for some irreducible smooth representation σ ′

0 of H(Ṽ )
in the fourth bullet point on [17, p. 646].

However, in the third and fourth bullet points on [17, p. 646], we have used
results of Muić [45, Lemma 4.2 and Theorem 5.1(i)], which were written only
for symplectic-orthogonal dual pairs. Moreover, we have not given the proof
of (iv): we have simply asserted that it is true as if it is obvious (which it is
not). Thus, we need to give the details of the proof of (iii) and (iv), as well as
that of the results of Muić for all dual pairs considered in [17].

A.2 Proof of (iii)

First, we address (iii). Our original argument in [17] used [45, Lemma 4.2
and Theorem 5.1(i)], which we state and prove in Lemma A.1 and Corollary
A.5 below. Here, we give a more streamlined argument using the recently
established Howe duality conjecture [20,21].

Let σ ′ be an irreducible subquotient of ΘV,W,χ,ψ(π). Suppose that σ ′ is
square-integrable. SinceΘV,W,χ ,ψ(π) is of finite length and tempered by (i), it
follows by [60, Corollaire III.7.2] that σ ′ is in fact a quotient ofΘV,W,χ ,ψ(π).
Hence we must have σ ′ ∼= σ by the Howe duality. But σ is not square-
integrable by (ii), which is a contradiction. This completes the proof of (iii).

A.3 Proof of [45, Lemma 4.2]

For the proof of (iv),wewill need the following result ofMuić [45, Lemma4.2].

Lemma A.1 (Muić) Let G(W ) × H(V ) be an arbitrary reductive dual pair
as in [17, Sect. 3]. Let π be an irreducible smooth representation of G(W ).
Then all irreducible subquotients ofΘV,W,χ,ψ(π)have the same supercuspidal
support.

Proof Wemay assume thatΘV,W,χ ,ψ(π) 	= 0. SinceΘV,W,χ ,ψ(π) is of finite
length, it follows by the theory of the Bernstein center [3] that

ΘV,W,χ ,ψ(π) = σ1 ⊕ · · · ⊕ σr

for some smooth representations σi of H(V ) of finite length such that

• for each i , all irreducible subquotients of σi have the same supercuspidal
support, say, supp σi ;

• if i 	= j , then supp σi 	= supp σ j .
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Of course, ifwewerewilling to appeal to theHoweduality, then itwould follow
immediately that r = 1, so that the lemma is proved. However, we may appeal
to an older result of Kudla. Namely, Kudla’s supercuspidal support theorem
[36] (see also [17, Proposition 5.2] and the references therein) says that the
supercuspidal support of θV,W,χ ,ψ(π) is determined by that of π . Hence we
must have r = 1. ��

A.4 Plancherel measures

To prove (iv), wewill also need the following property of Plancherel measures.
We freely use the convention of [17, Appendix B].

Lemma A.2 Let G(W ) be an arbitrary classical group as in [17, Sect. 2]. Let
π be an irreducible tempered representation of G(W ) such that

π ⊂ I G(W )
P (τ1 ⊗ · · · ⊗ τr ⊗ π0),

where P is a parabolic subgroup of G(W ) with Levi component GLk1(E) ×
· · · × GLkr (E) × G(W0), τi is an irreducible (unitary) square-integrable
representation of GLki (E), and π0 is an irreducible square-integrable rep-
resentation of G(W0). Let τ be an irreducible (unitary) square-integrable
representation of GLk(E) and put

I(τ ) = {i | τi
∼= τ }.

Then we have

ord
s=0

μ(τs ⊗ π) = 2 · #I(τ )+ 2 · #I((τ c)∨)+ ord
s=0

μ(τs ⊗ π0).

Moreover, we have

ord
s=0

μ(τs ⊗ π0) =
{
0 or 2 if (τ c)∨ ∼= τ ;
0 if (τ c)∨ � τ.

Proof By the multiplicativity of Plancherel measures (see [17, Sect. B.5]), we
have

μ(τs ⊗ π) =
(

r∏
i=1

μ(τs ⊗ τi ) · μ(τs ⊗ (τ c
i )

∨)
)

· μ(τs ⊗ π0).
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For any irreducible (unitary) square-integrable representation τ ′ of GLk′(E),
we have

μ(τs ⊗ τ ′) = γ (s, τ × (τ ′)∨, ψE ) · γ (−s, τ∨ × τ ′, ψ̄E )

and hence

ord
s=0

μ(τs ⊗ τ ′) =
{
2 if τ ∼= τ ′;
0 if τ � τ ′,

which reflects the triviality of R-groups for general linear groups. This proves
the first assertion. The second assertion follows from [60, Corollaire IV.1.2] if
(τ c)∨ ∼= τ and [60, Proposition IV.2.2] if (τ c)∨ � τ . ��

A.5 Proof of (iv)

Now we prove (iv). Let σ ′ be an irreducible subquotient of ΘV,W,χ ,ψ(π). By
(i) and (iii), we have

σ ′ ⊂ I H(V )
Q (τ1 ⊗ · · · ⊗ τr ⊗ σ ′

0)

for some r ≥ 1 and irreducible square-integrable representations τi and σ ′
0 of

GLki (E) and H(V0) respectively, where Q is a parabolic subgroup of H(V )
with Levi component GLk1(E)× · · · × GLkr (E)× H(V0). We need to show
that τi = χW for some i .

By Lemma A.1 and the multiplicativity of Plancherel measures, we have

μ((χW )s ⊗ σ ′) = μ((χW )s ⊗ σ).

By (ii) and Lemma A.2, the right-hand side has a zero at s = 0 of order at
least 4. Hence, by Lemma A.2 again, we must have τi = χW for some i . This
completes the proof of (iv).

Remark A.1 In the proof of (iii) and (iv), we have used some results of Wald-
spurger [60], which were written only for connected reductive linear algebraic
groups. However, it is straightforward to extend them to the cases of (discon-
nected) orthogonal groups and (nonlinear) metaplectic groups.

A.6 Proof of [45, Theorem 5.1(i)]

Aswenoted above,we have used [45, Theorem5.1(i)] besides [45, Lemma4.2]
in our original argument in [17]. Although it is not necessary for the proof of
(iii) and (iv) (because of the use of theHoweduality),we shall give a proof here.
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In fact, we prove the following more general result by refining the argument
in the proof of (iv).

Lemma A.4 Let G(W ) be an arbitrary classical group as in [17, Sect. 2]. Let
π be an irreducible tempered representation of G(W ) such that

π ⊂ I G(W )
P (τ1 ⊗ · · · ⊗ τr ⊗ π0),

where P is a parabolic subgroup of G(W ) with Levi component GLk1(E) ×
· · · × GLkr (E) × G(W0), τi is an irreducible (unitary) square-integrable
representation of GLki (E), and π0 is an irreducible square-integrable repre-
sentation of G(W0). Likewise, letπ ′ be an irreducible tempered representation
of G(W ) such that

π ′ ⊂ I G(W )

P ′ (τ ′
1 ⊗ · · · ⊗ τ ′

r ′ ⊗ π ′
0)

with analogous data P ′, r ′, τ ′
i , π ′

0. Assume that

μ(τs ⊗ π) = μ(τs ⊗ π ′)

for all irreducible (unitary) square-integrable representations τ of GLk(E)
for all k ≥ 1. Then we have r = r ′ and

{τ1, . . . , τr , (τ
c
1 )

∨, . . . , (τ c
r )

∨} = {τ ′
1, . . . , τ

′
r , ((τ

′
1)

c)∨, . . . , ((τ ′
r )

c)∨}

as multi-sets. Moreover, we have

μ(τs ⊗ π0) = μ(τs ⊗ π ′
0)

for all irreducible (unitary) square-integrable representations τ of GLk(E)
for all k ≥ 1.

Proof Note that the second assertion is an immediate consequence of the first
assertion and the multiplicativity of Plancherel measures. To prove the first
assertion, it suffices to show that

#I(τ )+ #I((τ c)∨) = #I ′(τ )+ #I ′((τ c)∨) (A.1)

for any irreducible (unitary) square-integrable representation τ of GLk(E),
where I(τ ) = {i | τi

∼= τ } and I ′(τ ) = {i | τ ′
i

∼= τ }. If (τ c)∨ ∼= τ , then by
Lemma A.2, we have

4 · #I(τ )+ α = 4 · #I ′(τ )+ α′
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for some 0 ≤ α, α′ ≤ 2. This forces #I(τ ) = #I ′(τ ), so that (A.1) holds. If
(τ c)∨ � τ , then (A.1) is a direct consequence of Lemma A.2. This completes
the proof. ��

The following corollary (which is [45, Theorem 5.1(i)]) is now immediate:

Corollary A.5 (Muić) Suppose that π and π ′ are irreducible tempered rep-
resentations of G(W ) which have the same supercuspidal support. If π is
square-integrable, then so is π ′.

Proof If π and π ′ have the same supercuspidal support, then the multiplica-
tivity of Plancherel measures implies that

μ(τs ⊗ π) = μ(τs ⊗ π ′)

for all irreducible (unitary) square-integrable representations τ of GLk(E) for
all k ≥ 1. The assertion then follows from Lemma A.4. ��

A.7 Some variant

Finally, admitting the local Langlands correspondence, we shall state a variant
of Lemma A.4 in terms of L-parameters.

Let G(W ) be an arbitrary classical group as in [17, Sect. 2]. To each
irreducible tempered representation π of G(W ), the local Langlands cor-
respondence assigns an L-parameter φ, which we regard as a semisimple
representation of WDE as described in [15, Sect. 8]. Moreover, for any irre-
ducible tempered representation τ of GLk(E)with associated L-parameter φτ ,
Langlands’ conjecture on Plancherel measures [38, Appendix II] says that

μ(τs ⊗ π) = γ (s, φτ ⊗ φ∨, ψE ) · γ (−s, φ∨
τ ⊗ φ, ψ̄E )

× γ (2s, R ◦ φτ , ψ) · γ (−2s, R ◦ φ∨
τ , ψ̄),

(A.2)

where

R =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
Sym2 if G(W ) is odd orthogonal or metaplectic;

∧2 if G(W ) is even orthogonal or symplectic;

As+ if G(W ) is even unitary;

As− if G(W ) is odd unitary.

In fact, (A.2) immediately follows from [2, Proposition 2.3.1], [44, Proposi-
tion 3.3.1], [33, Lemma 2.2.3] (together with induction in stages) for classical
groups considered there. (See also §7.3 in the case of unitary groups.) In other
words, recalling the definitions of of Plancherel measures and normalized
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intertwining operators, we see that (A.2) is a consequence of a property of
normalized intertwining operators. Also, in the case of metaplectic groups,
(A.2) follows from the case of odd orthogonal groups combined with [19,
Proposition 10.1].

Lemma A.6 Let π and π ′ be irreducible tempered representations of G(W )

with associated L-parameters φ and φ′ respectively. Assume that

μ(τs ⊗ π) = μ(τs ⊗ π ′)

for all irreducible (unitary) square-integrable representations τ of GLk(E)
for all k ≥ 1. Then we have

φ = φ′.

Proof For any irreducible (unitary) square-integrable representation τ of
GLk(E) with associated L-parameter φτ , we have

γ (s, φτ ⊗ φ∨, ψE ) · γ (−s, φ∨
τ ⊗ φ, ψ̄E )

= γ (s, φτ ⊗ (φ′)∨, ψE ) · γ (−s, φ∨
τ ⊗ φ′, ψ̄E )

by assumption and (A.2). Comparing the orders of zero at s = 0, we see that
the multiplicities of φτ in φ and φ′ are equal (see also [19, Lemma 12.3]). This
completes the proof. ��

A.8 Erratum to [17]

On this occasion, we also correct some typos in [17].

• Lemma C.2: Isom(Y ′
a, Xa) should be read as the set of invertible conjugate

linear maps from Y ′
a to Xa .

• Bottom of p. 650: Asai should be read as As+ (resp. As−) if G(W •) is even
unitary (resp. odd unitary).

Appendix B: Generic L-packets and adjoint L-factors

In this appendix, we prove a conjecture of Gross–Prasad and Rallis [23, Con-
jecture 2.6] under a certain working hypothesis.

B.1 Notation

Let G be a connected reductive algebraic group defined and quasi-split over F .
Fix a Borel subgroup B of G over F and a maximal torus T in B over F . Let
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The Gross–Prasad conjecture and local theta correspondence 791

N be the unipotent radical of B, so that B = T N . If P is a parabolic subgroup
of G over F , we say that P is standard (relative to B) if P ⊃ B. If P is a
standard parabolic subgroup of G over F , then we have a Levi decomposition
P = MU , where M is the unique Levi component of P such that M ⊃ T and
U is the unipotent radical of P . We call M a standard Levi subgroup of G. Let
W M = NormM(T )/T be the Weyl group of M and wM

0 the longest element
in W M . Put

a∗
M = Rat(M)⊗Z R, aM = HomZ(Rat(M),R),

where Rat(M) is the group of algebraic characters of M defined over F . We
write 〈·, ·〉 : a∗

M × aM → R for the natural pairing. Let a∗
M,C = a∗

M ⊗R C

be the complexification of a∗
M . Let AM be the split component of the center

of M and Σ(P) the set of reduced roots of AM in P . We may regard Σ(P)
as a subset of a∗

M
∼= Rat(AM) ⊗Z R. For α ∈ Σ(P), let α∨ ∈ aM denote its

corresponding coroot. Put

(a∗
M)

+ = {λ ∈ a∗
M | 〈λ, α∨〉 > 0 for all α ∈ Σ(P)}.

We define a homomorphism HM : M → aM by requiring that

|χ(m)|F = q−〈χ,HM (m)〉

for all χ ∈ Rat(M) and m ∈ M , where q is the cardinality of the residue field
of F .

Let π be an irreducible smooth representation of M . For λ ∈ a∗
M,C, we

define a representation πλ of M by πλ(m) = q−〈λ,HM (m)〉π(m). We write

I G
P (πλ) := IndG

P (πλ)

for the induced representation of G. If π is tempered and Re(λ) ∈ (a∗
M)

+,
then I G

P (πλ) has a unique irreducible quotient J G
P (πλ).

Let M̂ be the dual group of M and L M = M̂ � WF the L-group of M .
Let Z(M̂) be the center of M̂ . We write ιM : L M ↪→ L G for the natural
embedding. If φ : WDF → L M is an L-parameter, we say that φ is tempered
if the projection of φ(WF ) to M̂ is bounded. For λ ∈ a∗

M,C, we define an

L-parameter φλ : WDF → L M by φλ = aλ · φ, where aλ ∈ Z1(WF , Z(M̂))

is a 1-cocycle which determines the character m �→ q−〈λ,HM (m)〉 of M .
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B.2 Hypothesis

In this appendix,we admit the localLanglands correspondence for any standard
Levi subgroup M of G:

Irr(M) =
⊔
φ

Πφ,

where the disjoint union on the right-hand side runs over all equivalence classes
of L-parameters φ for M and Πφ is a finite set of representations of M , the
so-called L-packet. More precisely, we will use the following properties of the
local Langlands correspondence:

(i) π ∈ Πφ is tempered if and only if φ is tempered.
(ii) Πφλ = {πλ |π ∈ Πφ} for λ ∈ a∗

M,C.
(iii) If φ is an L-parameter for G, then replacing φ by its Ĝ-conjugate if

necessary, we can write

φ = ιM ◦ (φM)λ0,

where
• M is a standard Levi subgroup of G,
• φM is a tempered L-parameter for M ,
• λ0 ∈ (a∗

M)
+.

Then we have

Πφ = {J G
P (πλ0) |π ∈ ΠφM },

where P is the standard parabolic subgroup of G with Levi component
M . Note that π ∈ ΠφM is tempered by (i) and πλ0 has L-parameter
(φM)λ0 by (ii).

(iv) If φ is a tempered L-parameter for M , then for any generic characterψNM

of NM := N ∩ M , Πφ contains a (NM , ψNM )-generic representation π
of M (see [53, Conjecture 9.4]). Moreover, we have

γ Sh(s, πλ, rM , ψ) = γ (s, rM ◦ φλ,ψ),

where the left-hand side is Shahidi’s γ -factor [53] and rM is the adjoint
representation of L M on Lie(LU ). In fact, we only need the equality up
to an invertible function.

The above hypothesis is known to hold for general linear groups by [26,29,
51] and for classical groups by [2,44].
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B.3 A conjecture of Gross–Prasad and Rallis

If φ is an L-parameter for G, we say that φ is generic if its associated L-packet
Πφ contains a (N , ψN )-generic representation of G for some generic character
ψN of N .

Proposition B.1 Let φ be an L-parameter for G. Then, under the hypothesis
in Sect. B.2 , φ is generic if and only if L(s,Ad ◦ φ) is holomorphic at s = 1.
Here, Ad is the adjoint representation of L G on its Lie algebra Lie(L G).

B.4 Proof of Proposition B.1

Fix an L-parameter φ for G and write φ = ιM ◦(φM)λ0 as in (iii). Then by (iii),
φ is generic if and only if J G

P (πλ0) is (N , ψN )-generic for some π ∈ ΠφM and
some generic characterψN of N , inwhich caseπ is necessarily (NM , ψN |NM )-
generic by a result of Rodier [50], [7, Corollary1.7]. Here, we have also used
the fact that for any element w in W G , there exists a representative w̃ of w
(depending on ψN ) such that ψN is compatible with w̃ (see [54, Sect. 2],
[12, Sect. 1.2]). Now we invoke the following result of Heiermann–Muić [28,
Proposition 1.3].

Lemma B.2 Let ψN be a generic character of N and π an irreducible tem-
pered (NM , ψN |NM )-generic representation of M. Then J G

P (πλ0) is (N , ψN )-
generic if and only if γ Sh(0, πλ, rM , ψ) is holomorphic at λ = λ0.

Proof Since the assertion in [28, Proposition 1.3] is slightly different, we
include a proof for the convenience of the reader. We realize the representation
I G

P (πλ) by using the unique (up to a scalar) Whittaker functional on π with
respect to (NM , ψN |NM ). Then we can define a Whittaker functional

Λ(πλ) : I G
P (πλ) −→ C

with respect to (N , ψN ) by (holomorphic continuation of) the Jacquet integral
(see [52, Proposition 3.1]). By [50], [7, Corollary 1.7], Λ(πλ) is a basis of
HomN (I G

P (πλ), ψN ) for all λ ∈ a∗
M,C. Put w = wG

0 w
M
0 and choose its repre-

sentative w̃ so that ψN is compatible with w̃. As in Sect. 7.3, we can define an
unnormalized intertwining operator

M(w̃, πλ) : I G
P (πλ) −→ I G

w(P)(w(πλ))

by (meromorphic continuation of) an integral which is absolutely convergent
for Re(λ) ∈ (a∗

M)
+ (see [60, Proposition IV.2.1]), wherew(P) is the standard

parabolic subgroup of G with Levi component wMw−1. Then we have
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Λ(πλ) = C(w̃, πλ) ·Λ(w(πλ)) ◦ M(w̃, πλ) (B.1)

for somemeromorphic functionC(w̃, πλ), the so-called local coefficient.Here,
C(w̃, πλ) depends on the choice of Haar measures in the definitions ofΛ(πλ),
Λ(w(πλ)), M(w̃, πλ), but we ignore the normalization of Haar measures
since it does not affect the proof. Since J G

P (πλ0) is isomorphic to the image
of M(w̃, πλ0) and the functor HomN ( · , ψN ) is exact, J G

P (πλ0) is (N , ψN )-
generic if and only if the restriction ofΛ(w(πλ0)) to the image ofM(w̃, πλ0) is
nonzero. By (B.1), this condition is equivalent to the holomorphy of C(w̃, πλ)
at λ = λ0. On the other hand, by the definition of Shahidi’s γ -factor, we have

C(w̃, πλ) = γ Sh(0, πλ, rM , ψ)

up to an invertible function. (Note that the convention in [53] is different from
ours: the homomorphism HM is normalized so that |χ(m)|F = q〈χ,HM (m)〉 in
[53]. This is why we have γ Sh(0, πλ, rM , ψ) on the right-hand side rather than
γ Sh(0, πλ, r∨

M , ψ̄).) This completes the proof. ��
Now it follows by Lemma B.2 combined with (iv) that φ is generic if and

only if
L(1, r∨

M ◦ (φM)λ)

L(0, rM ◦ (φM)λ)
(B.2)

is holomorphic at λ = λ0. We consider the analytic property of (B.2). For
α ∈ Σ(P), let Aα be the identity component of Ker(α), Mα the centralizer
of Aα in G, and Uα the root subgroup associated to α. Then Mα is a Levi
subgroup of G (but not necessarily a Levi component of a standard parabolic
subgroup of G) and MUα is a maximal parabolic subgroup of Mα . We may
regard aMα as a subspace of aM . Put

(a
Mα

M )∗ = {λ ∈ a∗
M | 〈λ, H〉 = 0 for all H ∈ aMα }.

For λ ∈ a∗
M,C, let λ

Mα denote its orthogonal projection to (aMα

M )∗ ⊗R C. We
can write

λMα = sα(λ) ·$α

for some sα(λ) ∈ C, where $α ∈ (a
Mα

M )∗ is the unique element such that
〈$α, α

∨〉 = 1. Then we have

(B.2) =
∏

α∈Σ(P)

L(1 − sα(λ), r∨
α ◦ φM)

L(sα(λ), rα ◦ φM)
,
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where rα is the adjoint representation of L M on Lie(LUα). Note that L(s, rα ◦
φM) is holomorphic and nonzero for Re(s) > 0 since φM is tempered. Since
λ0 ∈ (α∗

M)
+, sα(λ0) is a positive real number for all α ∈ Σ(P). Hence (B.2)

is holomorphic at λ = λ0 if and only if∏
α∈Σ(P)

L(1 − sα(λ)− sα(λ0), r∨
α ◦ φM)

is holomorphic at λ = 0. Since the L-factors have no zeros, this condition
is equivalent to the holomorphy of L(s − sα(λ0), r∨

α ◦ φM) at s = 1 for all
α ∈ Σ(P), which in turn is equivalent to the holomorphy of

L(s, r∨
M ◦ (φM)λ0) =

∏
α∈Σ(P)

L(s − sα(λ0), r∨
α ◦ φM)

at s = 1. Thus, we have shown thatφ is generic if and only if L(s, r∨
M ◦(φM)λ0)

is holomorphic at s = 1.
On the other hand, we have

L(s,Ad ◦ φ) = L(s, rM ◦ (φM)λ0) · L(s,AdM ◦ (φM)λ0) · L(s, r∨
M ◦ (φM)λ0),

where AdM is the adjoint representation of L M on Lie(L M). Since φM is
tempered and sα(λ0) > 0 for all α ∈ Σ(P),

L(s, rM ◦ (φM)λ0) =
∏

α∈Σ(P)

L(s + sα(λ0), rα ◦ φM)

and L(s,AdM ◦ (φM)λ0) = L(s,AdM ◦ φM) are holomorphic and nonzero
for Re(s) > 0. Hence L(s,Ad ◦ φ) is holomorphic at s = 1 if and only
if L(s, r∨

M ◦ (φM)λ0) is holomorphic at s = 1. This completes the proof of
Proposition B.1.

Remark B.3 If G is a classical group, then one has the following variant of
Proposition B.1 which does not rely on the local Langlands correspondence.
Fix a generic characterψN of N . If π is an irreducible (N , ψN )-generic repre-
sentation of G, letΠ be its functorial lift to the general linear group established
in [10,11,13,34,35] (see [11, Definition 7.1] for the precise definition in the
case when G is split over F). Put

LSh(s, π,Ad) := LSh(s,Π, R),

where the right-hand side is Shahidi’s L-factor [53] and
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R =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
Sym2 if G is odd special orthogonal;

∧2 if G is even special orthogonal or symplectic;

As+ if G is even unitary;

As− if G is odd unitary.

If π is tempered, then so isΠ (see [11, Proposition 7.4] when G is split over F
and [35, Proposition 8.6] when G is even unitary) and hence LSh(s, π,Ad) is
holomorphic andnonzero forRe(s) > 0 (see [53, Proposition 7.2]). Ifwe admit
the local Langlands correspondence, then by [30], we have LSh(s, π,Ad) =
L(s,Ad ◦ φ), where φ is the L-parameter of π .
Now let P be a standard parabolic subgroup of G with Levi component

M and π an irreducible tempered (NM , ψN |NM )-generic representation of M .
For any λ ∈ a∗

M,C, one has the L-factor LSh(s, I G
P (πλ),Ad) as above since the

set of λ such that I G
P (πλ) is irreducible and (N , ψN )-generic is Zariski dense

in a∗
M,C. Then by the above argument (together with the multiplicativity), one

can show that for λ0 ∈ (a∗
M)

+, J G
P (πλ0) is (N , ψN )-generic if and only if

LSh(s, I G
P (πλ0),Ad) is holomorphic at s = 1.
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