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Abstract We consider the Fibonacci Hamiltonian, the central model in the
study of electronic properties of one-dimensional quasicrystals, and estab-
lish relations between its spectrum and spectral characteristics (namely, the
optimal Hölder exponent of the integrated density of states, the dimension of
the density of states measure, the dimension of the spectrum, and the upper
transport exponent) and the dynamical properties of the Fibonacci trace map
(such as dimensional characteristics of the non-wandering hyperbolic set and
its measure of maximal entropy as well as other equilibrium measures, topo-
logical entropy, multipliers of periodic orbits). We also exhibit a connection
between the spectral quantities and the thermodynamic pressure function. As
a result, a detailed description of the spectral properties for all values of the
coupling constant is obtained (in contrast to all previous quantitative results,
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which could be established only in the regime of small or large coupling). In
particular, we show that the spectrum of this operator is a dynamically defined
Cantor set and that the density of states measure is exact-dimensional; this
implies that all standard fractal dimensions coincide in each case. We show
that all the gaps of the spectrum allowed by the gap labeling theorem are open
for all values of the coupling constant. Also, we establish strict inequalities
between the four spectral characteristics in question, and provide the exact
large coupling asymptotics of the dimension of the density of states measure
(for the other three quantities, the large coupling asymptotics were known
before).
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1 Introduction

In this paperwe study the FibonacciHamiltonian.Alongwith the almostMath-
ieu operator, this particular operator is the most heavily studied Schrödinger
operator, with dozens of mathematics papers and hundreds of physics papers
devoted to it. There are several reasons for this extensive interest in the spectral
properties of the Fibonacci Hamiltonian. The first and perhaps most important
reason is that this operator is a central model in mathematical physics. Namely
it is relevant in the study of electronic properties of quasicrystals. Quasicrystals
are materials that were first discovered by Shechtman in 1982, and this discov-
ery led to a paradigm shift in materials science. In diffraction experiments they
produce patterns consisting of sharp bright spots, the so-called Bragg peaks,
while at the same time these diffraction patterns display symmetries that con-
clusively prove that the arrangement of atoms in the sample cannot be periodic.
This came as a surprise as it had been believed that Bragg peaks can only be
observed in the diffraction of materials for which the arrangement of atoms is
periodic. It therefore took the scientific community a while until this discovery
was properly digested and accepted, and it was finally published in the 1984
paper [93]. Shechtman has received numerous honors and distinctions for this
discovery, including the 2011 Nobel Prize in Chemistry.
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The Fibonacci Hamiltonian 631

Since the 1980s mathematicians have studied appropriate models of qua-
sicrystals. Naturally, the choice of these models is guided by the distinctive
property of real-life quasicrystals, namely that of having a pure point diffrac-
tion which in turn displays symmetries that rule out periodicity. The central
examples of the commonly accepted mathematical quasicrystal models are the
Fibonacci tilings or sequences in one dimension and the Penrose tilings in two
dimensions. Indeed, these examples belong to all classes of models that are
typically considered in their respective dimension. In particular, they may be
generated both by inflation and by a cut-and-project scheme.

Mathematical quasicrystal models are studied from many perspectives,
including dynamical systems, harmonic analysis, spectral theory, discrete
geometry, combinatorics, and algebra; compare [5,7,82]. The study of elec-
tronic or quantum transport in quasicrystals, which is the perspective we take
in this paper, naturally leads to the consideration of Schrödinger operators
with potentials modeling a quasicrystalline environment. Choosing the envi-
ronment given by the Fibonacci tiling or sequence, this leads to the discrete
one-dimensional Schrödinger operator

[Hλ,ωu](n) = u(n + 1)+ u(n − 1)+ λχ[1−α,1)(nα + ω mod 1)u(n), (1)

acting in �2(Z), where λ > 0 is the coupling constant, α =
√
5−1
2 is the

frequency, and ω ∈ T = R/Z is the phase. In particular, α is the inverse of the
golden ratio

ϕ =
√
5+ 1

2
. (2)

Alternatively, the potential can be generated by the Fibonacci substitution
a �→ ab, b �→ a; compare [25,27,29]. The operator family (1) is what is
usually called the Fibonacci Hamiltonian. It was proposed and initially studied
by Kohmoto et al. [65] and by Ostlund et al. [84], prior to the publication of
[93], as a quasi-periodic model that can be solved exactly by renormalization
group techniques. The relevance to quasicrystals was only established and
discussed later. The first papers on the model in the mathematics literature
belong to Casdagli [21] and Sütő [100].

The second reason for the extensive interest in this operator family is that it
has exciting spectral properties. Independently of the relevance of themodel to
physics, the FibonacciHamiltonian also serves as a paradigm formany spectral
phenomena that had been considered exotic prior to the 1980s. For example, it
persistently displays Cantor spectrum, zero-measure spectrum, purely singu-
lar continuous spectral measures, and anomalous transport. Moreover, the fact
that these properties can be rigorously established only adds to the importance
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of the model. Specifically, it is often difficult to answer questions about the
spectrum and the spectral type for a given Schrödinger operator with an ape-
riodic and non-decaying potential (periodic and decaying potentials are well
understood; compare, e.g., [97] and [48]). In many cases one rather resorts
to statements about members in families of operators that hold generically or
with probability one. The operator families corresponding to the Fibonacci
and almost Mathieu cases are special in that quite detailed and difficult ques-
tions about these operators can be answered for all members of the respective
family. Establishing this has been the objective of many publications in the
past three decades focusing on these two operator families; see, for example,
the surveys [25,27–29,61,63].

In this paper we show that the spectrum of the Fibonacci Hamiltonian is a
dynamically defined Cantor set and that the density of states measure is exact-
dimensional; this implies that all standard fractal dimensions coincide in each
case. We show that all the gaps of the spectrum allowed by the gap labeling
theorem are open for all values of the coupling constant. Also, we consider
the optimal Hölder exponent of the integrated density of states, the dimension
of the density of states measure, the dimension of the spectrum, and the upper
transport exponent, establish strict inequalities between them, and provide the
exact large coupling asymptotics of the dimension of the density of states
measure (for the other three quantities, the large coupling asymptotics were
known before). We also provide the explicit relations between these spectral
characteristics and the dynamical properties of the Fibonacci trace map (such
as dimensional characteristics of the non-wandering hyperbolic set and its
measure ofmaximal entropy aswell as other equilibriummeasures, topological
entropy, multipliers of periodic orbits). We establish exact identities relating
the spectral and dynamical quantities, and show the connection between the
spectral quantities and the thermodynamic pressure function. Our results not
just improve but complete our understanding of many spectral characteristics
and properties of Fibonacci Hamiltonian. In the rest of the introduction we
provide the exact statement of the results and discuss them in the context of
previously known facts.

1.1 The spectrum of the Fibonacci Hamiltonian

The spectrum of the Fibonacci Hamiltonian Hλ,ω is independent ofω and may
therefore by denoted by �λ. This follows from strong operator convergence
and the minimality of an irrational rotation of the circle. It was shown by Sütő
in [101] that�λ is a Cantor set of zero Lebesgue measure for every λ > 0. The
zero-measure property in turn rules out any absolutely continuous spectrum
for Hλ,ω. Complementing this, Damanik and Lenz showed that Hλ,ω has no
eigenvalues [39], and hence for all parameter values, all spectral measures
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are purely singular continuous. This answers the basic qualitative spectral
questions about this operator family.

Our first result shows that actually �λ is a dynamically defined1 Cantor set,
that is, it belongs to a special and heavily studied class of Cantor sets that
have strong self-similarity properties (see [85] for the formal definition and a
detailed discussion of the properties of dynamically defined Cantor sets).

Theorem 1.1 For every λ > 0, �λ is a dynamically defined Cantor set. In
particular, for every E ∈ �λ and every ε > 0, we have

dimH ((E − ε, E + ε) ∩�λ) = dimB ((E − ε, E + ε) ∩�λ)

= dimH �λ = dimB �λ.

Here, dimH (S) (resp., dimB(S)) denotes theHausdorff (resp., box counting)
dimension of the Borel set S ⊂ R. Stating the identities above contains the
implicit assertion that the box counting dimension of the set in question exists.

This result was previously known for λ ≥ 16 [21] and λ > 0 sufficiently
small [32]. Knowing that the spectrum is a dynamically defined Cantor set
not only establishes the equality of all standard fractal dimensions of the set
(and shows that this common dimension is bounded away from zero and one),
it also serves as the starting point for further studies. For example, higher-
dimensional separable models may be considered and their spectra turn out to
be given by the sum of the one-dimensional spectra; compare, for example,
[33,37]. This leads to a study of sums of dynamically defined Cantor sets,
which is an extensively investigated problem about which much is known
(see, e.g., [57,83] and references therein).

1.2 Transport exponents

Given that the operator Hλ,ω has purely singular continuous spectrum for all
parameter values, the RAGE Theorem (see, e.g., [89, Theorem XI.115]) sug-
gests that when studying the Schrödinger time evolution for this Schrödinger
operator, that is, e−i t Hλ,ωψ for some initial state ψ ∈ �2(Z), one should con-
sider time-averaged quantities. For simplicity, let us consider initial states of
the form δn , n ∈ Z. Since a translation in space simply results in an adjust-
ment of the phase, we may without loss of generality focus on the particular
case ψ = δ0. The time-averaged spreading of e−i t Hλ,ωδ0 is usually captured
on a power-law scale as follows; compare, for example, [47,70]. For p > 0,
consider the p-th moment of the position operator,

1 Sometimes the term “regular” is also used.
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〈|X |pδ0〉(t) =
∑

n∈Z
|n|p|〈e−i t Hλ,ωδ0, δn〉|2

We average in time as follows. If f (t) is a function of t > 0 and T > 0 is
given, we denote the time-averaged function at T by 〈 f 〉(T ):

〈 f 〉(T ) = 2

T

∫ ∞

0
e−2t/T f (t) dt.

Then, the corresponding upper and lower transport exponents β̃+δ0(p) and

β̃−δ0(p) are given, respectively, by

β̃+δ0(p) = lim sup
T→∞

log〈〈|X |pδ0〉〉(T )

p log T
,

β̃−δ0(p) = lim inf
T→∞

log〈〈|X |pδ0〉〉(T )

p log T
.

The transport exponents β̃±δ0(p) belong to [0, 1] and are non-decreasing in p
(see, e.g., [47]), and hence the following limits exist:

α̃±l = lim
p→0

β̃±δ0(p),

α̃±u = lim
p→∞ β̃±δ0(p).

Ballistic transport corresponds to transport exponents being equal to one,
diffusive transport corresponds to the value 1

2 , and vanishing transport expo-
nents correspond to (some weak form of) dynamical localization. In all other
cases, transport is called anomalous. The Fibonacci Hamiltonian has long been
the primary candidate for a model exhibiting anomalous transport, going back
at least to the work of Abe and Hiramoto [1]. Many papers have been devoted
to a study of the transport properties of the Fibonacci Hamiltonian; see, for
example, [16,24,26,38,42–46,62,68]. For example, it is known that all the
transport exponents defined above are strictly positive for all λ > 0, ω ∈ T;
see [38]. On the other hand, upper bounds for all the transport exponents were
shown in [45] for λ > 8 (see also [16] for a somewhat weaker result). The
exact large coupling asymptotics of α̃±u were identified in [46], where is was
shown that

lim
λ→∞ α̃±u · log λ = 2 logϕ, (3)
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uniformly in ω ∈ T. In particular, the Fibonacci Hamiltonian indeed gives
rise to anomalous transport for sufficiently large coupling. The behavior in the
weak coupling regime was studied in [36], where it was shown that there is a
constant c > 0 such that for λ > 0 sufficiently small, we have

1− cλ2 ≤ α̃±u ≤ 1,

uniformly in ω ∈ T.
While it is of clear interest to identify the asymptotic behavior of α̃±u in the

large and small coupling regimes, and in particular show that the asymptotic
behavior of α̃+u coincides with that of α̃−u , the following questions remain.
What can we say for a given value of λ? Can we for example give an explicit
expression for α̃+u or α̃−u ? Can we even show that α̃+u and α̃−u coincide for the
given value of λ (and ω)?

We will address these questions in this paper. An explicit description of
α̃±u will be given in Theorem 1.6 stated later in this introduction (it will
require the trace map formalism, which will be recalled in Sect. 1.4). A par-
ticular consequence of the description given there is that the desired identity
holds:

Theorem 1.2 For every λ > 0, α̃+u (λ) and α̃−u (λ) are equal and independent
of ω ∈ T.

The interpretation of this statement is that, for all values of the coupling
constant and the phase, the fastest part of the wavepacket travels uniformly on
a power-law scale. That is, there aren’t two different sequences of time scales
along which the “front of the wavepacket” moves at two different power-law
rates. To the best of our knowledge this is the first time this phenomenon
has been rigorously established for a model for which α̃+u (λ) and α̃−u (λ) take
fractional values. The reason for this is that it is usually very difficult to identify
transport exponents exactly (if they take fractional values) and hence most
results only establish estimates for them.

The independence of ω is also of interest as it confirms what had been
expected based on the following intuition. Due to the general ballistic upper
bound, the evolution of δ0 explores only finite regions of space, up to super-
polynomially small tails that do not contribute to the moments of the evolution
that aremeasured via transport exponents, for any bounded time interval. Since
the local structure (often called the subwords or the factors) of the potential is
the same for allω’s, the quantum state cannot determine the phaseω and hence
the transport exponents should indeed be independent of it. Nevertheless, this
is the first time such a result has been established rigorously in a case where
transport exponents take fractional values.
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1.3 Density of states measure and gap labeling

Let us recall the definition of the density of states measure and some derived
quantities. By the spectral theorem, there are Borel probability measures μλ,ω

on R such that

〈δ0, g(Hλ,ω)δ0〉 =
∫

g(E) dμλ,ω(E)

for all bounded measurable functions g. The density of states measure νλ is
given by the ω-average of these measures with respect to Lebesgue measure,
that is,

∫

T

〈δ0, g(Hλ,ω)δ0〉 dω =
∫

g(E) dνλ(E)

for all bounded measurable functions g. By general principles, the density of
statesmeasure is non-atomic and its topological support is�λ. The fact that�λ

has zero Lebesgue measure therefore implies that νλ is singular continuous for
everyλ > 0. The density of statesmeasure can also be obtained by counting the
number of eigenvalues per unit volume, in a given energy region, of restrictions
of the operator to finite intervals (which explains the terminology). Indeed, for
any real a < b,

νλ(a, b) = lim
L→∞

1

L
#
{
eigenvalues of Hλ,ω|[1,L] that lie in (a, b)

}
,

uniformly inω; compare [58]. Here, for definiteness, Hλ,ω|[1,L] is definedwith
Dirichlet boundary conditions.

We will be interested in the optimal Hölder exponent γλ of νλ. That is, γλ

is the unique number in [0, 1] such that the following two properties hold.
1. For any γ < γλ and any sufficiently small interval I ⊂ R, we have ν(I ) <

|I |γ ;
2. For any γ̃ > γλ and any ε > 0, there exists an interval I ⊂ R such that
|I | < ε and ν(I ) > |I |γ̃ .
The optimal Hölder exponent of the density of states measure is studied

for other popular discrete Schrödinger operators in numerous papers; see, for
example, [3,15,54–56] and references therein. For the Fibonacci case in the
regime of small or large coupling, it was studied in [35]. In particular, it was
shown that γλ → 1/2 as λ → 0 and γλ → 0 as λ → ∞ (the explicit rate at
which it does so is recalled in Theorem 1.10 below). In all these works only
estimates and asymptotics for the optimal Hölder exponent were established.
In this paper, we will express the optimal Hölder exponent in the Fibonacci
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case explicitly, for any value of the coupling constant, in terms of dynamical
quantities related to the Fibonacci trace map (the explicit formula is provided
in Theorem 1.6 below). For small values of the coupling constant λ, this will
allow us to give an exact formula for γλ as a function of λ; see Corollary 6.2.

The distribution function of the density of states measure is called the inte-
grated density of states and denoted by Nλ. Thus, for E ∈ R, we have

Nλ(E) =
∫

χ(−∞,E] dνλ

= lim
L→∞

1

L
#
{
eigenvalues of Hλ,ω|[1,L] that are ≤ E

}
,

uniformly in ω.
Since �λ is the topological support of νλ, it follows that Nλ is constant on

each gap of �λ, where any connected component of R\�λ is called a gap
of �λ. This value may be used as the label of the gap in question. The gap
labeling theorem (see, e.g., [11,64]) provides a set that is defined purely in
terms of the underlying dynamical system generating the ergodic family of
potentials in question (in our case this is either the irrational rotation of the
circle by the (inverse of the) golden ratio, or the shift transformation on the
subshift generated by the Fibonacci substitution), to which all gap labels must
belong. This general gap labeling theorem specializes in the Fibonacci case to
the following statement (see, e.g., [12, Eq. (6.7)]):

{Nλ(E) : E ∈ R\�λ} ⊆ {{mϕ} : m ∈ Z} ∪ {1} (4)

for every λ > 0. Here {mϕ} denotes the fractional part of mϕ, that is, {mϕ} =
mϕ−�mϕ�. Notice that the set of possible gap labels is indeed λ-independent
and only depends on the value of ϕ from the underlying circle rotation. Since
ϕ is irrational, the set of gap labels is dense.

In general, a dense set of possible gap labels is indicative of a Cantor spec-
trum and hence a common (and attractive) stronger version of proving Cantor
spectrum is to show that the operator “has all its gaps open.” For example, the
Ten Martini Problem for the almost Mathieu operator is to show Cantor spec-
trum, while the Dry Ten Martini Problem is to show that all labels correspond
to gaps in the spectrum. The former problem has been completely solved [2],
while the latter has not yet been completely settled (it remains open for the case
of critical coupling and non-Liouville frequency; see [2,4,22] and references
therein). Indeed, it is in general a hard problem to show that all labels given
by the gap labeling theorem correspond to gaps and there are only few results
of this kind.

Here we show the stronger (or “dry”) form of Cantor spectrum for the
Fibonacci Hamiltonian and establish complete gap labeling:
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Theorem 1.3 For every λ > 0, all gaps allowed by the gap labeling theorem
are open. That is,

{Nλ(E) : E ∈ R\�λ} = {{mϕ} : m ∈ Z} ∪ {1}. (5)

Raymond proved (5) for λ > 4 [88] and Damanik and Gorodetski proved
(5) for λ > 0 sufficiently small [33]. In [33] it was also shown that all gaps
open linearly as the coupling constant is turned on. It was conjectured in [33]
that (5) holds for every λ > 0, and Theorem 1.3 proves this conjecture.

Our next result concerns the exact-dimensionality of the density of states
measure for every value of the coupling constant.

Theorem 1.4 For every λ > 0, the density of states measure νλ is exact-
dimensional. Namely, for every λ > 0, the limit (called the scaling exponent
of νλ at E)

lim
ε↓0

log νλ(E − ε, E + ε)

log ε

νλ-almost everywhere exists and is constant (and equal to dimH νλ). The
dimension dimH νλ is a real-analytic function of λ ∈ (0,∞).

Notice that the analyticity of dimH �λ was previously established in [19].
In [34] Damanik and Gorodetski had shown the exact-dimensionality of νλ for
λ > 0 sufficiently small. A particular consequence of the exact-dimensionality
of νλ is that virtually all the known characteristics of dimension type of the
measure coincide. In particular, the following four dimensions associated with
the measure νλ, those most relevant to quantum dynamics, coincide (namely
with the almost everywhere value of the limit above):

dimH νλ = inf{dimH (S) : νλ(S) = 1},
dim−H νλ = inf{dimH (S) : νλ(S) > 0},
dimP νλ = inf{dimP(S) : νλ(S) = 1},
dim−P νλ = inf{dimP(S) : νλ(S) > 0}.

Here, dimP(S) denotes the packing dimension of the Borel set S ⊂ R. These
four dimensions are called the upper and lower Hausdorff dimension and the
upper and lower packing dimension of νλ, respectively; compare, for example,
[52].

1.4 Trace map dynamics and transversality

There is a fundamental connection between the spectral properties of the
Fibonacci Hamiltonian and the dynamics of the trace map
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T : R3 → R
3, T (x, y, z) = (2xy − z, x, y). (6)

The function G(x, y, z) = x2 + y2 + z2 − 2xyz − 1 is invariant2 under the
action of T , and hence T preserves the family of cubic surfaces3

Sλ =
{
(x, y, z) ∈ R

3 : x2 + y2 + z2 − 2xyz = 1+ λ2

4

}
. (7)

It is therefore natural to consider the restriction Tλ of the trace map T to the
invariant surface Sλ. That is, Tλ : Sλ → Sλ, Tλ = T |Sλ . We denote by �λ the
set of points in Sλ whose full orbits under Tλ are bounded (it is known that �λ

is equal to the non-wandering set of Tλ; e.g. see Lemma 4.3 from [80]).
Denote by �λ the line

�λ =
{(

E − λ

2
,
E

2
, 1

)
: E ∈ R

}
. (8)

It is easy to check that �λ ⊂ Sλ. The key to the fundamental connection between
the spectral properties of the Fibonacci Hamiltonian and the dynamics of the
tracemap is the following result of Sütő [100]. An energy E ∈ R belongs to the
spectrum�λ of the Fibonacci Hamiltonian if and only if the positive semiorbit
of the point ( E−λ

2 , E
2 , 1) under iterates of the trace map T is bounded. This

connection shows that spectral properties of the Fibonacci Hamiltonian can
be studied via an analysis of the dynamics of the trace map.

Another very important ingredient is the following. For every λ > 0, �λ

is a locally maximal compact transitive hyperbolic set of Tλ : Sλ → Sλ;
see [19,21,32]. This fact allows one to use powerful tools from hyperbolic
dynamics in exploring the connection between the operator and the trace map.
Actually, this realization is the driving force behind all of the recent advances
(roughly those dating back to 2008, starting with [30]). To fully exploit this,
one needs that the stable manifolds of points in �λ intersect the line of initial
conditions, �λ, transversally. This crucial fact was known for λ sufficiently
large [21] or sufficiently small [32], but open in the intermediate regime. As a
consequence, many of the recent results could only be shown in the regimes
of small and large coupling.

Theorem 1.5 For every λ > 0, �λ intersects Ws(�λ) transversally.

Here, �λ denotes the line of initial conditions given in (8) and Ws(�λ)

denotes the collection of stable manifold of points in the locally maximal
compact transitive hyperbolic set �λ of Tλ : Sλ → Sλ.

2 It is usually called the Fricke–Vogt invariant.
3 The surface S0 is known as Cayley cubic.
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Theorems 1.1, 1.3, and 1.4 are consequences of Theorem 1.5. In fact, each of
the statements in Theorems 1.1, 1.3, and 1.4 was previously known for λ > 0
sufficiently small [32–34]; but more precisely, these statements were shown in
each case to hold for all values of the coupling constant between zero and the
specific valuewhere a breakdown of transversality first occurs (or∞ if no such
value exists). Since transversality is easily seen to hold for λ > 0 sufficiently
small [32], one could derive the desired statements unconditionally in the
small coupling regime. For this reason, proving the absence of a breakdown
of transversality had been one of the major goals in the study of the Fibonacci
Hamiltonian, and Theorem 1.5 finally accomplishes this goal.

It is interesting to note that the proof of Theorem 1.5 is not a straightforward
construction of an invariant cone field but rather uses the fact that the trace
map is polynomial as well as spectral arguments (the fact that �λ does not
have isolated points).

1.5 Connections between spectral characteristics and dynamical
quantities

Recall that we are primarily interested in the following four quantities asso-
ciated with the Fibonacci Hamiltonian: the upper transport exponents α̃±u (λ),
the dimension of the spectrum dimH �λ, the dimension of the density of states
measure dimH νλ, and the optimal Hölder exponent of the integrated density
of states γλ. Our next main result establishes explicit identities connecting the
four spectral/quantum dynamical quantities of interest with dynamical quanti-
ties associated with the trace map. In this theorem,μλ,max denotes the measure
of maximal entropy of Tλ|�λ andμλ denotes the equilibriummeasure of Tλ|�λ

that corresponds to the potential− dimH �λ · log ‖DTλ|Eu‖. By Lyapu(p) we
will denote the unstable (positive) Lyapunov exponent of the periodic point
p, and by Lyapuμλ (or Lyapuμλ,max) we will denote the unstable Lyapunov
exponent of the ergodic invariant measure μλ (respectively, μλ,max). Recall
from (2) that ϕ denotes the golden ratio.

Theorem 1.6 For every λ > 0, we have

α̃±u (λ) = logϕ

inf p∈Per(Tλ) Lyapu(p)
, (9)

dimH �λ = hμλ

Lyapuμλ

, (10)

dimH νλ = dimH μλ,max = htop(Tλ)

Lyapuμλ,max
= logϕ

Lyapuμλ,max
, (11)

γλ = logϕ

supp∈Per(Tλ) Lyap
u(p)

. (12)
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Fig. 1 The two bounds for α̃±u (λ) and γλ from Corollary 1.7

As mentioned earlier, Theorem 1.2 is a direct consequence of (9). Another
consequence of (9) is that we can derive explicit lower bounds for α̃±u (λ) by
simply estimating inf p∈Per(Tλ) Lyapu(p) from above using specific choices of
periodic points. By the same token, these specific choices of periodic points
will also lead to upper bounds for γλ due to (12). For example, this leads to the
following pair of explicit lower and upper bounds (the period p of the periodic
point leading to this bound is given in parentheses).

Corollary 1.7 For every λ > 0, we have

γλ ≤ 4 logϕ

log(4λ2 +√16λ4 + 56λ2 + 45+ 7)− log 2
≤ α̃±u (λ) (p = 6) (13)

γλ ≤ 6 logϕ

log(λ4 +√(λ4 + 8λ2 + 18)2 − 4+ 8λ2 + 18)− log 2
≤ α̃±u (λ) (p = 4)

(14)

The graphs of these two functions are shown in Fig. 1.We see that for α̃±u (λ),
(13) is better for small λ, while (14) is better for large λ, whereas the opposite
is true for γλ.

In fact, a better upper bound for γλ can be derived via a different family of
periodic points (of period two). The associated Lyapunov exponents can also
be given explicitly; for the corresponding expression, see Corollary 6.2. The
upper bounds resulting from the Lyapunov exponents of the families of period
two (left implicit here) and period six (given above) are given in Fig. 2.
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Fig. 2 Upper bounds for γλ via periodic points of period 2 and 6

1.6 Thermodynamical formalism and relations between spectral
characteristics

By general principles, we have

γλ ≤ dimH νλ ≤ dimH �λ.

This is obvious since�λ supports themeasure νλ, and the almost everywhere
scaling exponent of νλ is at least as big as one that works at every point. On the
other hand, there is no inequality that relates α̃±u (λ) to one of the other three
quantities, which holds for general operators.4 The following theorem shows
that for the Fibonacci Hamiltonian and every value of the coupling constant,
the four quantities satisfy strict inequalities.

Theorem 1.8 For every λ > 0, we have

γλ < dimH νλ < dimH �λ < α̃±u (λ). (15)

The particular inequality dimH νλ < dimH �λ in (15) establishes a con-
jecture of Barry Simon, which was made based on an analogy with work of
Makarov and Volberg [75,76,102]; see [34] for a more detailed discussion.
This inequality was shown in [34] for λ > 0 sufficiently small, and hence the

4 For example, in our case at hand it turns out that α̃±u (λ) is strictly larger than the other three
quantities, while for random potentials, α̃±u (λ) is strictly smaller than each of them.
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conjecture had been partially established there. Our result here settles it in the
generality in which it was stated.5

Theorem 1.8 places α̃±u (λ) in relation to the other three quantities. As men-
tioned above, it is in general not clear how it relates to them and in this case
it turns out to be strictly larger. This also realizes the hope expressed in [34]
that phased-averaged spectral measures bound phase-averaged transport from
below, which is a result known for the critical almost Mathieu operator due
to work of Bellissard, Guarneri and Schulz-Baldes [13], but which was not
known for the Fibonacci Hamiltonian. Indeed, the density of states measure is
the phase-average of the δ0-spectral measures and the transport exponents are
phase-independent by Theorem 1.2, and hence are equal to their phase aver-
age. Through the particular inequality dimH νλ < α̃±u (λ) in (15), we therefore
establish here the analogue of the Bellissard–Guarneri–Schulz–Baldes result
for the almost Mathieu operator in the case of the Fibonacci Hamiltonian.

Moreover, the inequality

dimH �λ < α̃±u (λ) (16)

in (15) is related to a question of Yoram Last. He asked in [70] whether in
general dimH �λ bounds α̃±u (λ) from above and conjectured that the answer
is no. The inequality (16) confirms this. This realization is not new. It was
shown in [46] (resp., [36]) that (16) holds for λ > 0 sufficiently large (resp.,
for λ > 0 sufficiently small). What we add here is that it holds for all λ > 0.

The identities in Theorem 1.6 are instrumental in our proof of Theorem 1.8.
Indeed, once the identities (9)–(12) are established, Theorem 1.8 can be proved
using the thermodynamic formalism, which we will describe next. Define φ :
�λ → R by φ(x) = − log ‖DTλ(x)|Eu‖ and consider the pressure function
(sometimes called the Bowen function) P : t �→ P(tφ), where P(ψ) is
the topological pressure.6 This function has been heavily studied; the next
statement summarizes some known results; compare [17,67,86,91,103,104].

Proposition 1.9 Suppose that σA : �A → �A is a topological Markov chain
defined by a transitive 0−1matrix A, andφ : �A → R is aHölder continuous
function. Then, the following statements hold.

1. Variational principle: P(tφ) = supμ∈M{hμ + t
∫

φ dμ}.
2. For every t ∈ R, there exists a unique σA-invariant Borel probability

measure μt (the equilibrium state) such that P(tφ) = hμt + t
∫

φ dμt .
3. P(tφ) is a real analytic function of t .

5 The conjecture does not appear anywhere in print, but it was popularized by Barry Simon in
many talks given by him in the past 4 years.
6 There aremany classical books on the thermodynamical formalism; for example, [17,91,103].
We also refer the reader to the recent introductory texts [8,60,92].
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4. If φ is cohomological to a constant, then P(tφ) is a linear function; if
φ is not cohomological to a constant, then P(tφ) is strictly convex and
decreasing.

5. For every t0 ∈ R, the line hμt0
+ t
∫

φ dμt0 is tangent to the graph of the
function P(tφ) at the point (t0, P(t0φ)).

6. Denote by M the space of σA-invariant Borel probability measures. The
following limits exist:

lim
t→∞

∫
φ dμt = sup

μ∈M

∫
φ dμ, lim

t→−∞

∫
φ dμt = inf

μ∈M

∫
φ dμ.

The graph of the function t �→ P(tφ) lies strictly above each of the lines
t · supμ∈M

∫
φ dμ and t · infμ∈M

∫
φ dμ.

Now let us return to our case where σA : �A → �A is conjugate to
Tλ|�λ and the potential is given by φ(x) = − log ‖DTλ(x)|Eu‖ (suppressing
the conjugacy). In Sect. 7 we prove that this potential is not cohomologi-
cal to a constant. For any t ∈ R, consider the tangent line to the graph of
P(t) at the point (t, P(tφ)). Since P(t) is decreasing, there exists exactly
one point of intersection of the tangent line with the t-axis, at the point
t0 = − hμt∫

φ dμ
= hμt

Lyapu μt
= dimHμt . The last equality here is due to [77]. In

particular, dimHμmax = dimHνλ is given by the point of intersection of the
tangent line to the graph of P(t) at the point (0, htop(Tλ))with the t-axis. Also,
due to Theorem 1.6 the line htop(Tλ)+ t · infμ∈M

∫
φ dμ intersects the t-axis

at the point γλ, and the line htop(Tλ)+ t · supμ∈M
∫

φ dμ intersects the t-axis
at the point α̃±u (λ). Finally, due to [79], the graph of P(t) intersects the t-axis
at the point dimH�λ. These observations are illustrated in Fig. 3 and explain
where the strict inequalities in Theorem 1.8 come from once it is shown that
φ is not cohomological to a constant (we do that in Sect. 7).

1.7 Large coupling asymptotics

For each of the four quantities in question, the large coupling asymptotics are
given in the following theorem.

Theorem 1.10 We have

lim
λ→∞ α̃±u (λ) · log λ = 2 logϕ, (17)

lim
λ→∞ dimH �λ · log λ = log(1+√2) ≈ 1.83156 logϕ, (18)

lim
λ→∞ dimH νλ · log λ = 5+√5

4
logϕ ≈ 1.80902 logϕ, (19)
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Fig. 3 Pressure function and spectral characteristics of the Fibonacci Hamiltonian

lim
λ→∞ γλ · log λ = 1.5 logϕ. (20)

Only (19) is new here, the other results are stated for completeness and
comparison purposes. Indeed, (17) was shown in [45,46], (18) was shown
in [30], and (20) was shown in [35]. Thus, our proof of (19) in this paper
completes our understanding of the large coupling asymptotics of the four
quantities of interest.

Our results open the door for numerous extensions and generalizations. We
briefly discuss some of them in Sect. 8.

2 Preliminaries

For the convenience of the reader we recall in this section briefly how the trace
map formalism arises naturally in the study of the Fibonacci Hamiltonian via
the transfer matrix formalism and the self-similar structure of the potential,
and how this gives rise to dynamical descriptions of spectral quantities. A
reader familiar with the recent papers on the Fibonacci Hamiltonian may skip
this section.

Consider the operator family Hλ,ω defined in (1) and recall that α =
√
5−1
2 .

The spectral analysis of one-dimensional Schrödinger operators is often carried
out through the analysis of the solutions of the associated difference equation
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u(n + 1)+ u(n − 1)+ λχ[1−α,1)(nα + ω mod 1)u(n) = Eu(n) (21)

for E ∈ C.
While (21) looks like the eigenvalue equation for the operator H , we empha-

size that the solutions of (21) we consider do not have to belong to �2(Z). Thus,
for each E ∈ C, the solutions of (21) form a two-dimensional vector space.
Indeed, as soon as we fix two consecutive values of u, the whole solution is
completely determined by (21). For example, suppose we fix u(0) and u(1),
then any u(n) is obtained by solving the difference equation “from the origin
to n.” This can be formalized using transfer matrices as follows. If we set

T (m; E) =
(
E − λχ[1−α,1)(mα + ω mod 1) −1

1 0

)

and

A(n; E) =

⎧
⎪⎨

⎪⎩

T (n; E)× · · · × T (1; E) n ≥ 1

I n = 0

T (n + 1; E)−1 × · · · × T (0; E)−1 n ≤ −1,
then u solves (21) for every n ∈ Z if and only if

(
u(n + 1)
u(n)

)
= A(n; E)

(
u(1)
u(0)

)

for every n ∈ Z.
Consider for a moment the special case ω = 0. With the Fibonacci numbers

{Fk} given by F0 = F1 = 1, Fk+1 = Fk + Fk−1, k ≥ 1, the matrices
Mk = A(Fk, E) obey a remarkable recursion [100]:

Mk+1 = Mk−1Mk . (22)

This recursion holds initially for k ≥ 2, but notice that one can invert it in order
to define Mk for k < 1 via the recursion, so that (22) will then hold for arbitrary
k ∈ Z. For our purposes it suffices to compute the following matrices:

M−1 =
(
1 −λ

0 1

)
, M0 =

(
E −1
1 0

)
, M1 =

(
E − λ −1
1 0

)
. (23)

The matrix Mk acts as the transfer matrix from 0 to Fk , and it is defined
via the values the potential takes on {1, . . . , Fk}. Imagining repeating this
block of length Fk periodically in both directions, we would obtain an Fk-
periodic potential. Floquet theory shows that the spectrum σk of this periodic
Schrödinger operator is given by
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σk = {E : Tr(Mk) ∈ [−2, 2]}.
The map E �→ Tr(Mk) is called the discriminant of the given periodic oper-
ator, and this identity shows that the discriminant determines the spectrum
completely.

In other words, if we define xk = 1
2TrMk , then σk is the preimage of the

interval [−1, 1]under the polynomial xk . These periodic Schrödinger operators
serve as periodic approximations of the Fibonacci Hamiltonian, and it is a
natural question how the spectrum �λ of the latter operator may be related to
the periodic spectra σk . It turns out that [100]

�λ =
⋂

k≥1
σk ∪ σk+1. (24)

The identity (24) is obtained as follows. Via the Cayley–Hamilton Theorem,
it follows from (22) that the xk’s obey the following recursion:

xk+1 = 2xkxk−1 − xk−2. (25)

We see from (23) that

x−1 = 1, x0 = E

2
, x1 = E − λ

2
. (26)

This shows how the trace map arises naturally from the self-similar structure
of the potential.7 Namely, with the map T from (6), we have

T (xk, xk−1, xk−2) = (xk+1, xk, xk−1),

due to (25). In particular, appealing to (26), we see that the iteration of T
on the initial point ( E−λ

2 , E
2 , 1) generates the sequence {xk}. Recall from (8)

that we denote the line of initial conditions by �λ. That definition is obviously
motivated by the observations above.

All these quantities depend on the coupling constantλ and the energy E . The
questionwhether a given energy E belongs to the spectrum�λ = σ(Hλ,ω)was
shown in [100] to be equivalent to the boundedness of the sequence {xk}k≥−1,
which by the correspondence above is in turn equivalent to the boundedness
of the forward orbit of ( E−λ

2 , E
2 , 1) under iterations of T . Thus, a spectral

7 The discussion above is based on the self-similar structure of the potential in the special case
ω = 0, expressed through (22). However, the potential corresponding to a general ω is locally
indistinguishable from the potential in the special case, that is, it contains the exact same set of
finite blocks. This gives rise to the partition-based approach to the general case introduced in
[39].
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question can be connected to a dynamical question. In fact, all of the spectral
quantities associatedwith the FibonacciHamiltonian thatwere discussed in the
previous section can be connected to some dynamical quantity associated with
the dynamical system generated by the trace map T . This correspondence is
fundamental to the detailed quantitative analysis of the Fibonacci Hamiltonian
we perform in this paper.

This connection can be taken one step further. As was pointed out in the
introduction,T leaves eachof the surfaces Sλ in (7) invariant, andmay therefore
be restricted to it; we denote this restriction by Tλ. It is easy to check that
�λ ⊂ Sλ. We denote by �λ the set of points in Sλ whose full orbits under Tλ

are bounded.
Recall that an invariant closed set � of a diffeomorphism f : M → M is

hyperbolic if there exists a splitting of the tangent space TxM = Eu
x ⊕ Eu

x at
every point x ∈ � such that this splitting is invariant under Df , the differential
Df exponentially contracts vectors from the stable subspaces {Es

x }, and the
differential of the inverse, Df −1, exponentially contracts vectors from the
unstable subspaces {Eu

x }.Ahyperbolic set�of a diffeomorphism f : M → M
is locally maximal if there exists a neighborhood U of � such that

� =
⋂

n∈Z
f n(U ).

It is known that for λ > 0, �λ is a locally maximal hyperbolic set of Tλ :
Sλ → Sλ; see [19,21,32].
As discussed above, an energy E ∈ R belongs to the spectrum �λ of

the Fibonacci Hamiltonian if and only if the positive semiorbit of the point
( E−λ

2 , E
2 , 1) under iterates of the trace map T is bounded. Thus, while the

dynamical characterization above does not force ( E−λ
2 , E

2 , 1) to belong to
�λ, as only the forward orbit needs to be bounded, it actually does force
it to be forward-asymptotic to an orbit on �λ. More precisely, E ∈ �λ if
and only if ( E−λ

2 , E
2 , 1) belongs to the stable manifold of a point in �λ. Via

the identification of E and its associated point on �λ, the stable manifolds
therefore “transport” information from �λ to the energy axis. This identifies
the spectrum dynamically, and this also identifies the density of states measure
as a suitable push-forward of a natural dynamical measure associated with
Tλ|�λ [34].

3 Transversality

It is known that the stable manifolds of points in �λ intersect the line �λ

transversally if λ > 0 is sufficiently small [32] or if λ ≥ 16 [21]. It is also
known, based on [10], that if tangential intersections occur in the intermediate
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regime, they cannot occur at more than finitely many points. This, however, is
not sufficient to state uniformly for all values of the coupling constant some of
the results that are known to hold in the small and the large coupling regimes.
The purpose of this section is to prove that transversality holds for all values
of the coupling constant, and some of the immediate consequences; namely,
we prove Theorem 1.5, and its consequences—Theorems 1.1, 1.3, and 1.4.

Proof of Theorem 1.5 In what follows, given a curve η : K → Kn , with
K = R or K = C and n ∈ N, η∗ denotes the image of the curve.
As we have already mentioned, transversality is known for all λ > 0 suffi-

ciently small. Let us now assume that λ0 > 0 is such that for all λ ∈ (0, λ0),
transversality holds, while at λ0, �λ0 ∩ Ws(�λ0) contains tangential inter-
sections. From [10] it is known that such tangencies must be isolated; by
compactness of �λ ∩Ws(�λ), there is at most a finite number of such tangen-
cies.

Let p be a point of such a tangency and letU be an open neighborhood of p
in Sλ0 such that all the points of �λ0 ∩Ws(�λ0)∩U except p are transversal.
Notice that for each λ, the sets Ws(�λ) and �λ lie on the surface Sλ.

Now we want to complexify this picture, including the coupling constant
λ. Let us consider the complexified surfaces Ŝλ, λ ∈ U , where U is a small
neighborhood of λ0 in C (notice that here we do not restrict λ only to real
values, as we did before). That is,

Ŝλ
def=
{
(x, y, z) ∈ C

3 : x2 + y2 + z2 − 2xyz − 1 = λ2

4

}
. (27)

Given a real λ and the real surface Sλ as before, let us write Ŝλ for the
complexification of Sλ, namely (27).

The point p of tangency between �λ0 andW
s(�λ0) can nowbe considered as

a point inC3. By the complex-analytic version of the implicit function theorem,
there exists a family of biholomorphismsπ(·, λ) : Ŝλ → Ŝλ0 in a neighborhood
of p in C3 such that π(·, λ0) is the identity, π depends holomorphically on λ,
and for all real λ, π(·, λ) maps the real part of Ŝλ, namely Sλ, to Sλ0 .

Now let O be an open neighborhood of p in R
3 (recall that p ∈ Sλ0 is an

assumed point of tangency between �λ0 and Ws(�λ0)), and let Uλ = Sλ ∩ O .
With λ real, Ws(�λ) ∩ Uλ is smoothly projected into Uλ0 by π(·, λ). Let us
denote the resulting laminations byFλ, and the laminationWs(�λ0)∩Uλ0 by
Fλ0 . By abuse of notation, let us denote the projection of �λ via π(·, λ) by the
same symbol, �λ.

Notice that the laminations Fλ consist of real-analytic leaves (see [9, Sec-
tion 5]), and can be included into a C1+ε invariant foliation. Let κ be a
parameter in the space of leaves of this foliation, such that the leaves of Fλ

depend continuously on κ in the C2 topology. Moreover, each leaf of Fλ has
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a canonical continuation in λ that depends holomorphically on λ (for further
details, see [18, Section 2]).

Let us denote by φ
(κ)
λ the leaves of Fλ. By φ

(κ0)
λ0

∈ Fλ0 we denote the leaf
that admits the tangency with �λ0 at p. We will verify that the laminations Fλ

satisfy the following properties.

(i) The leaves φ
(κ)
λ as well as �λ admit holomorphic continuations, φ̂(κ)

λ and
�̂λ, respectively, in such a way that for all λ, all intersections between �̂λ

and φ̂
(κ)
λ are real.

(ii) For every λ in a neighborhood of λ0, the lamination Fλ is locally home-
omorphic to a product of an interval by a Cantor set.

(iii) Let γ be a transversal to the lamination Fλ. For all κ1, κ2, there exists
�(κ1, κ2) > 0 such that for all λ sufficiently close to λ0 and the leaves
φ

(κ1)
λ , φ

(κ2)
λ in Fλ, the distance along γ between γ ∩ φ

(κ1)
λ and γ ∩ φ

(κ2)
λ

is not smaller than �.

Verification of (i) The curves �λ are complexified in a natural way (i.e. first
complexify the original line of initial conditions, �λ, before applying the pro-
jection π(·, λ), and then project). As for the leaves of the foliation: it is known
that stable manifolds admit a suitable complexification as complex submani-
folds of the complexified invariant surface Ŝλ(see [9]).

To verify that all intersections should be real, we appeal to the argument
given by Sütő in [100]: an energy E belongs to the spectrum if and only if
the forward orbit of the corresponding point on the line of initial conditions
is bounded under the trace map. In fact, we only need the implication one
way: boundedness of the forward orbit implies inclusion in the spectrum. Sütő
considered only real values for the energy (the parameter of the line of initial
conditions), since the spectrum is real. But the same argument applies verbatim
to complex-valued energies.

On the other hand, a point has a bounded forward orbit if and only if it
belongs to a stable manifold of �λ (this is known and has been used since
Casdagli’swork [21]; an explicit proofwas given in [40,Corollary 2.5], see also
[80]). Since the spectrum is real and the (complexified) line of initial conditions
maps R into the real subspace of the invariant surface, all intersection points
must be real. Now use the fact that π preserves the real subspace. ��
Verification of (ii) This holds since the nonwandering set�λ for the trace map
restricted to Sλ, λ real and positive, is a hyperbolic horseshoe (see [19,21,32]).

��
Verification of (iii) This follows froma compactness argument (the lamination
depends continuously on λ; restrict λ to some compact interval around λ0, and
note that, by definition, no two distinct leaves of the laminationFλ0 intersect).��
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We will need the following simple lemma, stated here without proof, that
could be derived from, for example, [59, Theorem 1.14].

Lemma 3.1 Suppose that φ, � : R → R
2 are real-analytic, admitting

complex-analytic continuations φ̂, �̂ : C→ C
2, such that φ̂ and �̂ are injective

immersions. Suppose further that at some q ∈ φ̂∗ ∩ �̂∗, the curve φ̂∗ is tangent
to �̂∗ and this tangency is isolated. Then there exists an open neighborhood U
of q in C2 and a biholomorphism ζ : U → D

2 = D×D with D being the unit
disc centered at the origin in C, with the following properties:
1. ζ(q) = (0, 0).
2. ζ(�e(U )) ⊆ �e(D2).
3. ζ maps the connected component of �̂∗ ∩U that contains q onto D×{0}.
4. There exists a holomorphic function f : D → C, such that the image of

the connect component of φ̂∗ ∩U that contains q is the graph of f .

We will consider separately the case when the tangency at p is quadratic,
and when it is of higher order.

Lemma 3.2 If the tangency at p between φ̂
(κ0)
λ0

and �̂λ0 is of order greater than
two, then there exists λ ∈ (0, λ0) such that �λ contains a point of tangency
with some leaf of the lamination Fλ.

Proof Let us assume that the tangency at p between φ̂
(κ0)
λ0

and �̂λ0 is of order
k > 2. Let ζ0 be a rectifying biholomorphism as in Lemma 3.1. Then in
a neighborhood of p, ζ0 maps �̂∗λ0 onto D and ζ0(φ̂

(κ0)
λ0

) is the graph of a

holomorphic function over D. Let us denote this function by f̂ (κ0)
λ0

and its

restriction onto R by f (κ0)
λ0

. Then f (κ0)
λ0

has a root of multiplicity k at the
origin.

Now by holomorphic dependence on λ of each leaf of the family Fλ, as
well as of �̂λ, we can construct a family of rectifying biholomorphisms {ζλ}
depending holomorphically on λ for every λ sufficiently close to λ0 with the
same properties as ζ0 (less the tangency).

Thus ζλ(Fλ) gives a family of laminations in a neighborhood of the origin in
R
2, such that for each leaf φ

(κ)
λ ∈ ζλ(Fλ), its complexification φ̂

(κ)
λ is given as

the graph of an analytic function f̂ (κ)
λ overD. Notice that the resulting functions

f (κ)
λ depend analytically on λ and continuously on κ in the C2 topology. In

particular, f̂ (κ0)
λ → f̂ (κ0)

λ0
uniformly as λ → λ0.

Hurwitz’s theorem implies that for every λ sufficiently close to λ0, f̂ (κ0)
λ

has precisely k > 2 zeros (counting multiplicity) in a neighborhood of the
origin, and these zeros approach the origin as λ→ λ0. Since, by our standing
assumptions, for λ < λ0 these zeros form transverse intersections, they all
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Fig. 4 a Some λ ∈ [λ′, λ1), b some λ ∈ (λ2, λ0)

must be simple. Thus when λ < λ0, there are precisely k > 2 distinct zeros of
f̂ (κ0)
λ in a neighborhood of the origin which approach the origin as λ ↗ λ0.

Furthermore, due to property (i) above, these zeros are all real.
The biholomorphism ζλ maps R2 to R

2, so we obtain a family of analytic
functions f (κ)

λ : J → R over an open interval J ⊂ R with 0 ∈ J . Since
k ≥ 3, for all λ < λ0 and sufficiently close to λ0, there exist two nondegenerate
compact intervals, J (1)

λ and J (2)
λ with disjoint interiors, such that the endpoints

of each are given by zeros of f (κ0)
λ , on the interior of J (1)

λ , f (κ0)
λ < 0 and on

the interior of J (2)
λ , f (κ0)

λ > 0, and |J (i)
λ | → 0 as λ↗ λ0, i = 1, 2.

By continuity, the derivative of f (κ0)
λ is bounded uniformly in λ on the

interval J . In particular it follows that if M (i)
λ denotes the maximum of | f (κ0)

λ |
over J (i)

λ , then M (i)
λ → 0 as λ↗ λ0.

Now fix some λ′ < λ0 sufficiently close to λ0 as above. There exists α

among the parameters κ such that if f (α)
λ is the continuation of f (α)

λ0
, then we

have the following. By assumption (iii), there exists �0 > 0 such that for all
λ ∈ [λ′, λ0], we have | f (κ0)

λ − f (α)
λ | > �0 on the interval J (i)

λ . Furthermore,

there exists i ∈ {1, 2} such that for all λ ∈ [λ′, λ0), either f (κ0)
λ is negative on

the interior of J (i)
λ and f (α)

λ > f (κ0)
λ on J (i)

λ , or f (κ0)
λ is positive on the interior

of J (i)
λ and f (α)

λ < f (κ0)
λ on J (i)

λ . Let us consider the latter case, the former
being completely similar.

It follows that there exists λ1 < λ2 ∈ (λ′, λ0) such that for all λ ∈ [λ′, λ1),
the maximum of f (α)

λ over J (i)
λ is positive and for all λ ∈ (λ2, λ0), the maxi-

mum of f (α)
λ over J (i)

λ is negative. As a result, there exists λ ∈ (λ′, λ0) such
that f (α)

λ is nonpositive on J (i)
λ and has a zero q ∈ J (i)

λ , and hence q is a point
of tangency (see Fig. 4). ��

We can now apply Lemma 3.2 to conclude that the tangency at pmust either
be quadratic, or for some λ < λ0, �λ intersects Fλ tangentially at some point.
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λ0

φλ0

(a)

λ0

φλ0

(b)

λ0

φλ0

λ0

φλ0

λ0

φλ0

λ0

φλ0

λ0

φλ0

λ0

φλ0

(c) (d)

(e) (f)

(g) (h)

Fig. 5 a λ = λ0, b λ < λ0, c λ = λ0, d λ < λ0, e λ = λ0, f λ < λ0, g λ = λ0, h λ < λ0

On the other hand, by assumption, tangencies cannot occur for λ < λ0. Thus
the tangency at p must be quadratic.

Assume that we have a quadratic tangency at p between �λ0 and some leaf
φλ0 of the Cantor laminationWs(�λ0). Assume for a moment that the leaf φλ0

is not a boundary of the lamination. Since for λ < λ0 the tangency unfolds, it
could either unfold as shown in Fig. 5a, b, or as in c, d; in either case, arbitrarily
close to φλ0 there exists a leaf of the foliation such that for some λ < λ0, this
leaf intersects the line tangentially.
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Assume now that φλ0 is a boundary of the lamination. Since there are no
isolated points in the spectrum, in this case we either have an unfolding shown
in Fig. 5e, f or g, h.

If the tangency unfolds as shown in Fig. 5e, f, then as before, arbitrarily
close to φλ0 there exists a leaf such that for some λ < λ0, the intersection of
the line with this leaf is tangential.

Now suppose that the tangency unfolds as shown in Fig. 5g, h. In this case
the interval along �λ bounded by the intersection points φλ ∩ �λ, as shown
in the picture, corresponds to a gap in the spectrum. We know that for all
sufficiently small couplings λ, all the gaps allowed by the gap labeling theorem
are open (see the discussion preceding the statement of Theorem 1.3). On the
other hand, by assumption, for all λ < λ0, the line �λ intersects the stable
lamination transversally; this allows for continuation of the open gaps from
the small coupling regime to all λ < λ0 with all gaps remaining open; see
[33, Theorem 4.3]. In particular, this also guarantees that for any gap in the
spectrum at λ < λ0, its two boundary points correspond to the intersection of
�λ with two stable manifolds of two distinct periodic points (for further details
on gap opening, see [33, Section 3]). Thus an intersection of �λ for λ < λ0 with
a stable manifold cannot form a gap, precluding the unfolding of a tangency
as shown in Fig. 5g, h.

This shows that the tangency at p cannot be quadratic. Together with
Lemma 3.2, this proves Theorem 1.5. ��
Proof of Theorem 1.1 Given Theorem 1.5, the result follows from [32, Corol-
lary 2] and its proof. ��
Proof of Theorem 1.3 The result is a consequence of Theorem 1.5 and [33,
Theorem 4.3]. ��
Proof of Theorem 1.4 The assertion of the theorem can be obtained from The-
orem 1.5 and [34, Theorem 1.1]; compare the discussion in Remark (e) on
[34, p. 978] of the role of λ0 in the formulation of [34, Theorem 1.1]. The
analyticity of dimH νλ follows from [87] combined with Theorem 1.5. ��

4 Transport exponents

In this section we prove the identity (9). We begin by establishing some results
about the dynamics of the trace map.

Proposition 4.1 For every λ > 0, all unstable manifolds of Tλ : Sλ → Sλ are
transversal to the circle Cλ := {z = 0} ∩ Sλ.

Proof We know that for every λ > 0 and every k ∈ Z+, the curve T k
λ (�λ) has

the following properties:
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1. T k
λ (�λ) is transversal to the plane {z = c} for any c ∈ (−1, 1);

2. If we consider �λ as a complex line in C
3, then T k

λ (�λ) ∩ {z = 0} consists
of Fk−1 points, and all of them are in the real subspace.

Indeed, both statements follow from standard results in Floquet theory.
Namely, the z-component of T k

λ (�λ(E)) is, as a function of E ∈ C, equal
to one-half times the discriminant of a discrete Schrödinger operator with a
periodic potential of period Fk−1 (see, e.g., [100]).8 Thus, the values of E
for which T k

λ (�λ(E)) ∈ {z = c} are precisely the E’s for which one-half the
discriminant takes on the value c. If c ∈ (−1, 1), then due to, for example, [97,
Theorem5.4.2], there are precisely Fk−1 manyof them, say E1, . . . , EFk−1 , and
for every j ∈ {1, . . . , Fk−1}, E j is real, and the derivative of the discriminant
at E j is non-zero.

It is known that all unstable manifolds of Tλ : Sλ → Sλ are transversal
to Cλ if λ is sufficiently small. Indeed, this is true for λ = 0 and extends to
small values of λ by continuity. Suppose that Proposition 4.1 does not hold and
denote by λ∗ > 0 the smallest value of the coupling constant such that one of
the unstablemanifolds of Tλ∗ has a tangencywithCλ. Notice that this tangency
cannot be quadratic. Namely, due to Theorem 1.5 the line �λ is transversal to
the stable manifolds of Tλ∗ , and therefore for any sufficiently large k ∈ Z+,
the curve T k

λ∗(�λ∗) contains an arc that is C2-close to an arc of the unstable
manifold near the point of tangency. But in this case this arc would have a
point of quadratic tangency with a plane {z = ε} for some small ε, and this
contradicts the properties of the curve T k

λ∗(�λ∗) above.
Therefore the tangency between T k

λ∗(�λ∗) and Cλ∗ must be of order m > 2.
There exists a (complex) neighborhood U ⊂ Sλ∗ of the point of tangency and
a biholomorphic change of coordinates F : U → D×D, whereD is a unit disc
in C, such that F(U ∩ {z = 0}) = D × {0}, the point of tangency is mapped
into 0, and the arc of the unstable manifold in U is mapped into the graph of
a holomorphic function g : D → C such that g(0) = 0 is a zero of order
m > 2. A holomorphic version of the Inclination Lemma (which follows,
for example, from the graph transform construction from [59, Lemma 7.5])
implies that for each sufficiently large k ∈ Z+, there is a connected component
of the intersection T k

λ∗(�λ∗) ∩ U such that its image under F is a graph of a
holomorphic function fk : D→ C and fk ⇒ g. Due to the Hurwitz Theorem,
for all large k ∈ Z+, the function fk must have m > 2 zeros in D, and due
to the properties of T k

λ∗(�λ∗), all these zeros must be simple and real. But this
once again leads to the existence of a tangency between the curve T k

λ∗(�λ∗)
and the plane {z = ε} for some small ε (due to the same arguments that were
used in the proof of Lemma 3.2 above), which is a contradiction. ��
8 In the theory of periodic Schrödinger operators, the discriminant is the trace of the transfer
matrix over one period.
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For E ∈ C and k ∈ Z, define xk(E) by

T k
(
E − λ

2
,
E

2
, 1

)
= T k(�λ(E)) = (xk+1(E), xk(E), xk−1(E)) .

Then, for k ≥ 0, xk is a polynomial of degree Fk , where F0 = F1 = 1,
Fk+1 = Fk + Fk−1, k ≥ 1. For δ > 0, set

σ δ
k = {E ∈ C : |xk(E)| ≤ 1+ δ}.

Lemma 4.2 For every λ > 0, there exists δ(λ) > 0 such that for every
δ ∈ [0, δ(λ)) and every k ≥ 0, σ δ

k has precisely Fk connected components.

Denote these connected components by B( j)
k (δ), j = 1, . . . , Fk. Each B( j)

k (δ)

is symmetric about the real line, intersects R in a compact non-degenerate
interval, and contains precisely one E ( j)

k ∈ R such that xk(E
( j)
k ) = 0.

Remark 4.3 (a) We will choose a consistent labeling, namely the one which

ensures that B( j)
k (δ)∩R lies to the left of B( j ′)

k (δ)∩R if j < j ′. In particular,
we have E (1)

k < E (2)
k < · · · < E (Fk)

k .

(b) Clearly, the zero E ( j)
k does not depend on δ ∈ [0, δ(λ)).

Proof of Lemma 4.2 Since the coefficients of the polynomial xk are real, we
have xk(Ē) = xk(E), and hence in particular |xk(Ē)| = |xk(E)|. This shows
that σ δ

k , and hence each of its connected components, is symmetric about the
real line.

Recall that the free spectrum �0 is equal to the interval [−2, 2], which
corresponds to the line segment

�b0 =
{(

E

2
,
E

2
, 1

)
: E ∈ [−2, 2]

}
⊂ �0.

To study the evolution of �b0 under the trace map, let us recall the following.
The surface

S = S0 ∩ {(x, y, z) ∈ R
3 : |x | ≤ 1, |y| ≤ 1, |z| ≤ 1}

is homeomorphic to the two-dimensional real sphere, invariant under T ,
smooth everywhere except at the four points P1 = (1, 1, 1), P2 = (−1,−1, 1),
P3 = (1,−1,−1), and P4 = (−1, 1,−1), where S has conic singularities,
and the trace map T restricted to S is a factor of the hyperbolic automorphism
of T2 = R

2/Z2 given by

A(θ1, θ2) = (θ1 + θ2, θ1) (mod 1). (28)
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The semi-conjugacy is given by the map

F : (θ1, θ2) �→ (cos 2π(θ1 + θ2), cos 2πθ1, cos 2πθ2). (29)

The map A is hyperbolic, and is given by the matrix A =
(
1 1
1 0

)
.

From the explicit form (29) of the semi-conjugacy F , we see that

�̃b0 =
{
(θ1, θ2) : θ2 = 0, θ1 ∈

[
0, 1

2

]} ⊂ T
2

is mapped by F onto �b0. Since T k(�b0) = F(Ak(�̃b0)) and Ak(�̃b0) is the line
segment from

Ak
(
0
0

)
=
(
0
0

)

to

Ak
(

1
2
0

)
= 1

2

(
Fk
Fk−1

)

(modulo Z2), we see that T k(�b0) wraps Fk/2 times around S. Now turn on λ.
Since the surfaces Sλ and the lines of initial conditions �λ change continuously,
T k(�bλ) still wraps Fk/2 times around the central part of Sλ. Here, �bλ is the
line segment on �λ that corresponds to the convex hull of �λ via the map
E �→ ( E−λ

2 , E
2 , 1). Moreover, the extremal values reached during each turn-

around (of the second coordinate, say) are now at least 1 + λ2

4 in absolute
value. This implies that (again considering the second coordinate, say, which
determines xk(E)) the value of xk(E) runs at least from −1 − λ2

4 to 1 + λ2

4

and vice versa. In particular, for every δ ∈ (0, λ2

4 ), the preimage of [−1 −
δ, 1+δ] under xk consists of precisely Fk compact mutually disjoint intervals.
This shows that σ δ

k ∩R has exactly Fk connected components, each of which
contains precisely one zero of xk . Let us denote these Fk real zeros of xk by
E (1)
k < E (2)

k < · · · < E (Fk)
k .

Let us argue that each E ( j)
k is also the only zero of xk in the complex con-

nected component B( j)
k (δ) ofσ δ

k , which contains the real connected component

that contains E ( j)
k . Suppose this fails. Since σ δ

k is symmetric with respect to

the reflection about the real axis, we can infer that if B( j)
k (δ) contains another

zero of xk , and hence another connected component of σ δ
k ∩ R, we find that

the boundary of this connected component, on which xk has constant modulus
1+ δ, contains a closed curve that bounds a bounded region containing points
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at which xk has modulus strictly larger than 1+ δ (e.g., points on the real line
strictly between the two connected components of σ δ

k ∩R in question). Thus,
we obtain a contradiction due to the maximum modulus principle. It follows
that σ δ

k , too, has precisely Fk connected components, each of which contains
precisely one root of xk , which is real. ��
Proposition 4.4 For every λ > 0 and every ε > 0, there exists k0 ∈ Z+
such that for every k > k0 and every p ∈ �λ, there exists Ek ∈ R such that
xk(Ek) = 0 and

1

k
log ‖DT k(p)|Eu

p
‖ − ε ≤ 1

k
log |x ′k(Ek)| ≤ 1

k
log ‖DT k(p)|Eu

p
‖ + ε.

Proof Denote as before Cλ = {z = 0} ∩ Sλ. Fix a small δ > 0. Then there
exists k′ ∈ Z+ such that T k′(Wu

δ (p))∩Cλ �= ∅ and T−k′(Ws
δ (p))∩�λ �= ∅ for

any p ∈ �λ. Choose any p ∈ �λ and pick any point p̃ ∈ T−k′(Ws
δ (p)) ∩ �λ.

Let τ ⊂ �λ be an interval that contains p̃ and such that T k′(τ ) is a connected
component of T k′(�λ) ∩ Uδ(p). We will denote τk′ = T k′(τ ) and τk′+n =
Uδ(T n(p)) ∩ T (τk′+n−1) for n ≥ 1.

Let k be sufficiently large, set n = k − 2k′. Then T k′(τk′+n) must have
some intersections with Cλ. Take any point p∗∗ ∈ Cλ ∩ T k′(τk′+n). Then,
p∗ := T−k(p∗∗) ∈ �λ, so p∗ = �λ(Ek) for some Ek ∈ R. Let us esti-
mate log |x ′k(Ek)|. Since Wu(�λ) is transversal to Cλ by Proposition 4.1, and
T k′(τk′+n) is C1-close to T k′(Wu

δ (T n(p))),

∣∣∣log |x ′k(Ek)| − log ‖DT k(p∗)|�λ‖
∣∣∣ < C1,

where C1 is some constant independent of k. On the other hand,
∣∣∣log ‖DT k(p∗)|�λ‖ − log ‖DTn(T k′(p∗))|τk′ ‖

∣∣∣ < C2,

where C2 is also independent of k. Using [66, Proposition 6.4.16] and the fact
that τk′+ j is C1-close to Wu

δ (T j (τk′)) (see [81]) we conclude that

∣∣∣log ‖DTn(T k′(p∗))|τk′ ‖ − log ‖DTn(p)|Eu
p
‖
∣∣∣ < C3,

also with a k-independent constant C3. But this implies that for large enough
k = n + 2k′, we have

∣∣∣∣
1

k
log |x ′k(Ek)| − 1

k
log ‖DT k(p)|Eu

p
‖
∣∣∣∣ < ε.

��
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Proposition 4.5 For every λ > 0 and every ε > 0, there exists k0 ∈ N such
that for every k > k0 and every Ek ∈ Rwith xk(Ek) = 0, one can find p ∈ �λ

such that

1

k
log ‖DT k(p)|Eu

p
‖ − ε ≤ 1

k
log |x ′k(Ek)| ≤ 1

k
log ‖DT k(p)|Eu

p
‖ + ε.

Proof Let us choose a ball Bλ ⊂ R
3 of sufficiently large radius so that �λ ⊂

Bλ,Ws(�λ) ∩ �λ ⊂ Bλ, and Cλ := {z = 0} ∩ Sλ ⊂ Bλ. There exist a
neighborhood U (�λ) and k1 ∈ N such that

1. if x ∈ Bλ and O+(x) ∩U (�λ) = ∅, then T n(x) /∈ Bλ for all n > k1;
2. if x ∈ U (�λ) and T (x) /∈ U (�λ), then O+(T (x)) ∩U (�λ) = ∅;
3. U (�λ) is inside of δ-neighborhood of �λ, where δ small enough so

that Anosov Closing Lemma type arguments (more specifically, Propo-
sition 6.4.16 from [66]) can be applied.

Such a neighborhood U (�λ) can be constructed by taking a union of open
rectangles around elements of aMarkov partition for�λ so that the usual prop-
erties ofMarkov partitions that allow one to use coding can be applied. Slightly
abusing terminology we will refer to those rectangles as the elements of a
Markov partition. This will ensure that property (2) holds. Property (1) holds
for sufficiently large k1 since �λ is the set of bounded orbits of the map Tλ.
Indeed, Bλ\U (�λ) is compact, and if (1) does not hold, one can find a sequence
of points in Bλ\U (�λ) whose long finite orbits (both positive and negative)
are also in that set. Any limit point would have to have a bounded orbit, but
this is a contradiction since �λ is the set of bounded orbits of the map Tλ.

Let k′ ∈ Z+ be such that
⋂
−k′≤n≤k′ T n(Bλ ∩ Sλ) ⊂ U (�λ). In this

case if xk(Ek) = 0 for k � max(k1, k′), then T k′(�λ(Ek)) ∈ Uλ, and also
T n(�λ(Ek)) ∈ Uλ for n = k′ + 1, . . . , k − k1. By the choice of Bλ, we have
Cλ ⊂ Bλ, and since xk(Ek) = 0, we also have T k(�λ(Ek)) ∈ Cλ ⊂ Bλ.
Set P = T k′(�λ(Ek)), T i (P) ∈ U (�λ) for all 0 ≤ i ≤ k − k1 − k′.
Let p̄ ∈ �λ be any point that has the same symbolic dynamics over the
finite time interval of length k − k1 − k′. In other words, p̄ is such that
T i ( p̄) and T i (P) belong to the same element of the Markov partition of
�λ for i = 0, 1, . . . , k − k′ − k1. In this case dist(T i ( p̄), T i (P)) ≤ δ for
i = 0, 1, . . . , k − k′ − k1. This implies (see Proposition 6.4.16 from [66])
that in fact dist(T j ( p̄), T j (P)) ≤ Cρmin( j,m− j)δ for some ρ < 1, where
m = k − k′ − k1 and 0 ≤ j ≤ m. Distortion estimates imply now that

∣∣∣log ‖DTm( p̄)|Eu
p̄
‖ − log ‖DTm(P)|T k′+k1 (�λ)

‖
∣∣∣ ≤ C,

where the constant C is independent ofm. Take p = T−k′( p̄). Then, for some
C ′ independent of m, we have
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∣∣∣log ‖DT k(p)|Eu
p
‖ − log ‖DTm( p̄)|Eu

p̄
‖
∣∣∣

+
∣∣∣log ‖DT k(�λ(Ek))|�λ‖ − log ‖DTm(P)|T k′+k1 (�λ)

‖
∣∣∣ ≤ C ′

and hence
∣∣∣∣
1

k
log ‖DT k(p)|Eu

p
‖ − 1

k
log ‖DT k(�λ(Ek))|�λ‖

∣∣∣∣ ≤
(C + C ′)

k
≤ ε

if k is sufficiently large. Together with the fact that

∣∣∣log |x ′k(Ek)| − log ‖DT k(�λ(Ek))|�λ‖
∣∣∣ < C1

with C1 independent of k, this proves Proposition 4.5. ��
Lemma 4.6 We have

lim
k→∞

1

k
inf
p∈�λ

log ‖DT k(p)|Eu
p
‖ = inf

p∈�λ

Lyapu(p) = inf
p∈Per(�λ)

Lyapu(p).

That is, the limit on the left-hand side exists and equals the other two expres-
sions.

Proof Notice that we certainly have

lim inf
k→∞

1

k
inf
p∈�λ

log ‖DT k(p)|Eu
p
‖ ≤ inf

p∈�λ

Lyapu(p) ≤ inf
p∈Per(�λ)

Lyapu(p).

Let us show that

A := lim inf
k→∞

1

k
inf
p∈�λ

log ‖DT k(p)|Eu
p
‖ ≥ inf

p∈Per(�λ)
Lyapu(p). (30)

Fix an arbitrarily small ε > 0. There exist k j →∞ and p j ∈ �λ such that

1

k j
log ‖DT k j (p j )|Eu

p j
‖ ≤ A + ε.

The specification property (see, for example, [66, Theorem 18.3.9]) implies
that for any δ > 0, we can find a sequence of periodic orbits {q j } such that
1. T k j+M(q j ) = q j , where M ∈ N is independent of j ∈ N;
2. dist(T i (q j ), T i (p j )) ≤ δ for i = 0, . . . , k j − 1.
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Now the quantitative version of the Anosov Closing Lemma (see, e.g., [66,
Proposition 6.4.16]) implies that in fact for some ρ < 1,

dist(T i (q j ), T
i (p j )) ≤ Cρmin(i,k j−i)δ.

The stable and unstable distributions of a two dimensional horseshoe areC1,
see [66, Corollary 19.1.11]. Now smoothness of the unstable bundle {Eu

x }x∈�λ

allows us to use standard distortion estimates and hence to deduce that

log ‖DT k j (q j )|Eu
q j
‖ ≤ log ‖DT k j (p j )|Eu

p j
‖ + C ′,

where the constantC ′ is independent of j . Hence for large enough k j , we have

Lyapu(q j ) = 1

k j + M
log ‖DT k j+M(q j )|Eu

q j
‖

≤ 1

k j
log ‖DT k

j (p j )|Eu
p j
‖ + ε + C ′

k j
≤ A + 3ε.

This implies that

inf
p∈Per(�λ)

Lyapu(p) ≤ A + 3ε,

and since ε > 0 can be chosen arbitrary small, we have

inf
p∈Per(�λ)

Lyapu(p) ≤ A.

This completes the proof of the inequality (30).
Now we need to show that

B := lim sup
k→∞

1

k
inf
p∈�λ

log ‖DT k(p)|Eu
p
‖ ≤ inf

p∈Per(�λ)
Lyapu(p). (31)

Once again, fix an arbitrarily small ε > 0. Take a periodic point p0 ∈ Per(�λ),
Tm(p0) = p0, such that

Lyapu(p0) ≤ inf
p∈Per(�λ)

Lyapu(p)+ ε.

For all sufficiently large k, we have

1

k
log ‖DT k(p0)|Eu

p0
‖ ≤ Lyapu(p0)+ ε ≤ inf

p∈Per(�λ)
Lyapu(p)+ 2ε,
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hence

1

k
inf
p∈�λ

log ‖DT k(p)|Eu
p
‖ ≤ 1

k
log ‖DT k(p0)|Eu

p0
‖

≤ Lyapu(p0)+ ε ≤ inf
p∈Per(�λ)

Lyapu(p)+ 2ε.

Therefore

B = lim sup
k→∞

1

k
inf
p∈�λ

log ‖DT k(p)|Eu
p
‖ ≤ inf

p∈Per(�λ)
Lyapu(p)+ 2ε,

and since ε > 0 is arbitrary, we have B ≤ inf p∈Per(�λ) Lyapu(p). Together
with (30) this completes the proof of Lemma 4.6. ��

As a direct corollary of Propositions 4.4 and 4.5 and Lemma 4.6 we get the
following statement:

Proposition 4.7 We have

lim
k→∞

1

k
log min

j=1,...,Fk

∣∣∣x ′k(E
( j)
k )

∣∣∣ = inf
p∈Per(�λ)

Lyapu(p).

That is, we have that the limit on the left-hand side exists and that it is equal
to the right-hand side.

Recall that we considered above the sets σ δ
k and their connected components

B( j)
k (δ). Define further

r ( j)
k (δ) = sup{r > 0 : B(E ( j)

k , r) ⊆ B( j)
k (δ)}, rk(δ) = max

j=1,...,Fk
r ( j)
k (δ),

R( j)
k (δ) = inf{R > 0 : B(E ( j)

k , R) ⊇ B( j)
k (δ)}, Rk(δ) = max

j=1,...,Fk
R( j)
k (δ).

The identity (9)will follow fromProposition 4.7 and the following proposition.

Proposition 4.8 (a) For every λ > 0 and δ ∈ (0, δ(λ)), we have

α̃−u ≥
logϕ

lim supk→∞ 1
k log

1
rk(δ)

(32)

and

α̃+u ≤
logϕ

lim infk→∞ 1
k log

1
Rk(δ)

. (33)
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(b) For every λ > 0 and δ ∈ (0, δ(λ)/2), we have

1

Rk(δ)
≥ δ2

(2+ δ)(2+ 2δ)2

(
min
j
|x ′k(E ( j)

k )|
)

(34)

and

1

rk(δ)
≤ (4+ 3δ)2

(2+ δ)(2+ 2δ)2

(
min
j
|x ′k(E ( j)

k )|
)

(35)

for every k ≥ 0.
(c) For λ > 0 and δ ∈ (0, δ(λ)/2), we have

α̃−u ≥
logϕ

lim supk→∞ 1
k log

(
min j=1,...,Fk

∣∣∣x ′k(E
( j)
k )

∣∣∣
) .

and

α̃+u ≤
logϕ

lim infk→∞ 1
k log

(
min j=1,...,Fk

∣∣∣x ′k(E
( j)
k )

∣∣∣
) .

Proof (a) The strategy of proving (32) and (33) is inspired by [36,45,46]. The
Parseval identity implies (see, e.g., [68, Lemma 3.2])

2π
∫ ∞

0
e−2t/T |〈δn, e−i t Hδ0〉|2 dt =

∫ ∞

−∞
∣∣〈δn, (H − E − i

T )−1δ0〉
∣∣2 dE,

(36)

and hence for the time averaged outside probabilities, defined by

〈P(N , ·)〉(T ) = 2

T

∫ ∞

0
e−2t/T

∑

|n|≥N

|〈δn, e−i t Hδ0〉|2 dt, (37)

we have

〈P(N , ·)〉(T ) = 1

πT

∑

|n|≥N

∫ ∞

−∞
∣∣〈δn, (H − E − i

T )−1δ0〉
∣∣2 dE. (38)

The right-hand side of (38) may be studied by means of transfer matrices at
complex energies, which are defined as follows. For z ∈ C, n ∈ Z, we set

M(n;ω, z) =
{
T (n;ω, z) · · · T (1;ω, z) n ≥ 1,

T (n;ω, z)−1 · · · T (−1;ω, z)−1 n ≤ −1,
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664 D. Damanik et al.

where

T (�;ω, z) =
(
z − λχ[1−α,1)(�α + ω mod 1) −1

1 0

)
.

The following statement follows from [46, Proposition 2]: For every λ, δ > 0,
there are constants C, ξ such that for every k, every z ∈ σ δ

k , and every ω ∈ T,
we have

‖M(n;ω, z)‖ ≤ Cnξ . (39)

for 1 ≤ |n| ≤ Fk . Combining ideas from the proof of [46, Proposition 2] and
the proof of [33, Theorem 5.1], one can show the following for the exponent
ξ in (39). If we denote the largest root of the polynomial x3− (2+λ)x − 1 by
aλ (note that for small λ > 0, we have aλ ≈ ϕ + cλ with a suitable constant
c), then for any

ξ > 2
log[(5+ 2λ)1/2(3+ λ)aλ]

logϕ
, (40)

there is a constant C such that (39) holds for z ∈ σ δ
k and ω ∈ T.

Let us now consider λ > 0, δ ∈ (0, δ(λ)), and ε > 0. Consider the value of
j ∈ {1, . . . , Fk} with r ( j)

k (δ) = rk(δ). By definition, E ( j)
k is the only zero of

xk in B( j)
k (δ).

For ρ > 0 arbitrary, consider

s = lim supk→∞ 1
k log

1
rk(δ)

logϕ
+ ρ. (41)

Clearly, s is strictly positive. By definition of s, for suitably chosen Cδ > 0,
we have

CδF
s
k ≥

2

rk(δ)
(42)

for every k ≥ 0.
Take N = Fk and consider T ≥ CδNs (which in turn implies T ≥ 2

rk(δ)
by (42)). Due to the Parseval formula (36), we can bound the time-averaged
outside probabilities from below as follows,

〈P(N , ·)〉(T )

� 1

T

∫

R

(max {‖M(N ;ω, E + i/T )‖, ‖M(−N ;ω, E + i/T )‖})−2 dE.

(43)
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The Fibonacci Hamiltonian 665

See, for example, the proof of [43, Theorem 1] for an explicit derivation of
(43) from (36).

To bound the integral from below, we integrate only over those E ∈ (E ( j)
k −

rk(δ), E
( j)
k + rk(δ)) for which E + i/T ∈ B(E ( j)

k , rk(δ)) ⊂ B( j)
k (δ). Since

1
T ≤ rk(δ)

2 , the length of such an interval Ik is larger than crk(δ) for some
suitable c > 0. For E ∈ Ik , we have

‖M(N ;ω, E + iε)‖ � N ξ � T
ξ
s .

Therefore, (43) together with (39) gives

〈P(N , ·)〉(T ) � rk
T

T−
2ξ
s � T−2−

2ξ
2 , (44)

where N = Fk , T ≥ CδNs , for any k ≥ k0.
Now let us take any sufficiently large T and choose k maximal withCδFs

k ≤
T . Then,

CδF
s
k ≤ T < CδF

s
k+1 ≤ 2sCδF

s
k .

It follows from (44) that

〈
P

(
1

2C1/s
δ

T
1
s , ·
)〉

(T ) ≥ 〈P(Fk, ·)〉(T ) � T−2−
2ξ
s

for all sufficiently large T . It follows from the definition of β̃−(p) and α̃−u that

β̃−δ0(p) ≥
1

s
− 2

p

(
1+ ξ

s

)

and

α̃−u ≥
1

s
=
(
lim supk→∞ 1

k log
1

rk(δ)

logϕ
+ ρ

)−1
,

by (41). Since ρ > 0 can be taken arbitrarily small, this proves (32).
Let us recall [45, Lemma 4]: Given any δ > 0 and E ∈ C, a necessary and

sufficient condition for {xk(E)}k≥−1 to be unbounded is that

|xK−1(E)| ≤ 1+ δ, |xK (E)| > 1+ δ, |xK+1(E)| > 1+ δ (45)
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for some K ≥ 0. This K is unique. Moreover, in this case we have

|xK+k(E)| ≥ (1+ δ)Fk for k ≥ 0. (46)

By definition of Rk(δ), we have

σ δ
k ⊆ {z ∈ C : |Im z| ≤ Rk(δ)}.

We set

s′ = lim infk→∞ 1
k log

1
Rk(δ)

logϕ
− ρ′ (47)

for ρ′ > 0 small enough so that s′ > 0 (Proposition 4.7 shows that it is possible
to find such a ρ′ since the right-hand side in that proposition is positive as �λ

is a hyperbolic set), and then choose some suitable C ′δ > 0, so that we have

Rk(δ) < C ′δF−s
′

k ,

for every k ≥ 0. In particular,

σ δ
k ∪ σ δ

k+1 ⊆ {z ∈ C : |Im z| < C ′δF−s
′

k }. (48)

For each ε = Im z > 0, one obtains lower bounds on |xk(E + iε)| which
are uniform for E ∈ [−K , K ] ⊆ R. Namely, given ε > 0, choose k minimal
with the propertyC ′δF

−s′
k < ε. By (48), we infer that |xk(E+ iε)| > 1+δ and

|xk+1(E + iε)| > 1+ δ. Since |x−1(E + iε)| = 1 ≤ 1+ δ, we must have the
situation of [45, Lemma 4] (as recalled above) for some K ≤ k. In particular,
for k′ > k, (46) shows that

|xk′(E + iε)| ≥ (1+ δ)Fk′−k .

This motivates the following definitions. Fix some small δ > 0. For T > 1,
denote by k(T ) the unique integer with

Fs′
k(T )−1
C ′δ

≤ T <
Fs′
k(T )

C ′δ

and let

N (T ) = Fk(T )+�√k(T )�.
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The Fibonacci Hamiltonian 667

Thus, for every ν̃ > 0, there is a constant Cν̃ > 0 such that

N (T ) ≤ Cν̃T
1
s′ T ν̃ . (49)

It follows from [45, Theorem 7] and the argument above that9

〈P(N (T ), ·)〉(T ) � exp(−cN (T ))

+ T 3
∫ K

−K

(
max

3≤n≤N (T )

∥∥M
(
n;ω, E + i

T

)∥∥2
)−1

dE

� exp(−cN (T ))+ T 3(1+ δ)
−2F�√k(T )� .

(We can estimate the norm on the left half-line in a completely analogousway.)
From this bound, we see that 〈P(N (T ), ·)〉(T ) goes to zero faster than any
inverse power of T . Therefore we can apply [45, Theorem 1] and obtain from
(49) that

α̃+u ≤
1

s′
+ ν̃ =

(
lim infk→∞ 1

k log
1

Rk(δ)

logϕ
− ρ′

)−1
+ ν̃.

Since we can take ρ′ > 0 and ν̃ > 0 arbitrarily small, (33) follows.
(b) Let λ > 0 and choose δ ∈ (0, δ(λ)/2). Fix k and j , and consider the

connected component B( j)
k (2δ) of σ 2δ

k . Since B( j)
k (2δ) contains exactly one

zero of xk , it follows from the maximum modulus principle and Rouché’s
Theorem that

xk : int(B( j)
k (2δ))→ B(0, 1+ 2δ)

is univalent, and hence

x−1k : B(0, 1+ 2δ)→ int(B( j)
k (2δ))

is well-defined and univalent as well. Consequently, the following mapping is
a Schlicht function:

F : B(0, 1)→ C, F(z) = x−1k ((1+ 2δ)z)− E ( j)
k

(1+ 2δ)[(x−1k )′(0)] .

9 This estimate obviously works forω = 0 since then the trace and the norm are directly related.
For general ω, one can use the arguments developed in [26]. The central idea is that the trace
of words of length Fk occurring in the Fibonacci sequence is the same for all but one word and
is given by 2xk . If the word in question is the “bad” one, we can simply shift by one to see a
good word, derive the estimate there and divide by C2, where C bounds the norm of a one-step
transfer matrix.
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That is, F is a univalent function on B(0, 1) with F(0) = 0 and F ′(0) = 1.
The Koebe Distortion Theorem (see [23, Theorem 7.9]) implies that

|z|
(1+ |z|)2 ≤ |F(z)| ≤ |z|

(1− |z|)2 for |z| ≤ 1. (50)

Evaluate the bound (50) on the circle |z| = 1+δ
1+2δ . For such z, we obtain

(1+ δ)(1+ 2δ)

(2+ 3δ)2
≤ |F(z)| ≤ (1+ δ)(1+ 2δ)

δ2
.

By definition of F this means that

|x−1k ((1+ 2δ)z)− E ( j)
k | ≤ (1+ δ)(1+ 2δ)

δ2
(1+ 2δ)|(x−1k )′(0)|

and

|x−1k ((1+ 2δ)z)− E ( j)
k | ≥ (1+ δ)(1+ 2δ)

(2+ 3δ)2
(1+ 2δ)|(x−1k )′(0)|

for all z with |z| = 1+δ
1+2δ . In other words, if |z| = 1+ δ, then

|x−1k (z)− E ( j)
k | ≤ (1+ δ)(1+ 2δ)2

δ2
|(x−1k )′(0)| (51)

and

|x−1k (z)− E ( j)
k | ≥ (1+ δ)(1+ 2δ)2

(2+ 3δ)2
|(x−1k )′(0)|. (52)

Note that as z runs through the circle of radius 1 + δ around zero, the point
x−1k (z) runs through the entire boundary of B( j)

k (δ). Thus, since |(x−1k )′(0)| =
|x ′k(E ( j)

k )|−1, (51) and (52) yield

B

(
E ( j)
k ,

(1+ δ)(1+ 2δ)2

(2+ 3δ)2
|x ′k(E ( j)

k )|−1
)

⊆ B( j)
k (δ) ⊆ B

(
E ( j)
k ,

(
(1+ δ)(1+ 2δ)

δ

)2

|x ′k(E ( j)
k )|−1

)
.
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The Fibonacci Hamiltonian 669

In particular, it follows that

(1+ δ)(1+ 2δ)2

(2+ 3δ)2
|x ′k(E ( j)

k )|−1

≤ r ( j)
k (δ) ≤ R( j)

k (δ) ≤
(

(1+ δ)(1+ 2δ)

δ

)2

|x ′k(E ( j)
k )|−1.

Thus,

(
δ

(1+ δ)(1+ 2δ)

)2

|x ′k(E ( j)
k )| ≤ 1

R( j)
k (δ)

≤ 1

r ( j)
k (δ)

≤ (2+ 3δ)2

(1+ δ)(1+ 2δ)2
|x ′k(E ( j)

k )|,

which in turn implies

(
δ

(1+ δ)(1+ 2δ)

)2 (
min
j
|x ′k(E ( j)

k )|
)
≤ 1

Rk(δ)
≤ 1

rk(δ)

≤ (2+ 3δ)2

(1+ δ)(1+ 2δ)2

(
min
j
|x ′k(E ( j)

k )|
)

.

This shows (34)–(35).
(c) The estimates in this part follow immediately from the estimates in parts

(a) and (b). This concludes the proof. ��
Proof of (9) in Theorem 1.6 The identity is a direct consequence of Proposi-
tions 4.7 and 4.8. ��

5 The density of states measure

In this section we discuss the density of states measure νλ. Specifically, we
establish the identity (11) and the large coupling asymptotics (19).

The identity (11) was established in [34] for λ > 0 sufficiently small. An
inspection of the proof given there shows that all that is needed to extend the
identity to all λ > 0 is the transversality statement provided by Theorem 1.5.
Thus, given that Theorem 1.5 has now been established, the identity (11) for
all λ > 0 follows as an immediate consequence.

Proving (19) will require significantly more work. We begin with the fol-
lowing alternative identity for dimH νλ, which we can prove for λ sufficiently
large. Recall that each connected component of σk contains precisely one zero
of xk , denoted by E (i)

k , 1 ≤ i ≤ Fk .
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Proposition 5.1 For every λ > 0 we have

dimH νλ = logϕ

limk→∞ 1
kFk

log
(∏Fk

i=1
∣∣∣x ′k(E

(i)
k )

∣∣∣
) . (53)

Proof Due to (11), we need to show that

Lyapu
(
μλ,max

) = lim
k→∞

1

kFk
log

⎛

⎝
Fk∏

i=1

∣∣∣x ′k(E
(i)
k )

∣∣∣

⎞

⎠ ,

which is equivalent to

Lyapu
(
μλ,max

) = lim
k→∞

1

kFk−1
log

⎛

⎝
Fk−1∏

i=1

∣∣∣x ′k−1(E
(i)
k−1)

∣∣∣

⎞

⎠ .

Recall that T k
λ (�λ(E)) = (xk+1(E), xk(E), xk−1(E)), and hence the z-

component of T k
λ (�λ(E)) is xk−1(E). Let li ∈ �λ be the points such that

�λ(E
(i)
k−1) = li . Due to the transversality of T k

λ (�λ) to the plane {z = 0}, which
holds uniformly in k and follows fromProposition 4.1 combinedwith the Incli-
nation Lemma, we have C−1‖DT k

λ (vi )‖ ≤ |x ′k−1(E (i)
k−1)| ≤ C‖DT k

λ (vi )‖ for
some uniform C > 1, where vi is a unit vector tangent to �λ at the point li .
Therefore the statement can be reduced to the claim that

Lyapu
(
μλ,max

) = lim
k→∞

1

kFk−1
log

⎛

⎜⎝
∏

{li∈�λ:T k
λ (li )∈{z=0}}

∥∥∥DT k
λ (vi )

∥∥∥

⎞

⎟⎠ . (54)

We will need the following statement from hyperbolic dynamics.

Lemma 5.2 Let f : M2 → M2 be a C2-diffeomorphism such that f (�) =
� is a topologically mixing locally maximal totally disconnected hyperbolic
set, and an open set U = U (�) be such that

⋂
n∈Z f n(U (�)) = �. Let

γ1, γ2 ⊂ U be C1-smooth curves such that γ1 is transversal to Ws(�), and
γ2 is transversal to Wu(�). For each k ∈ N denote by {li }i=1,...,Nk ⊂ γ1 the
set f −k( f k(γ1) ∩ γ2). Then,

Lyapu(μmax) = lim
k→∞

1

kNk
log

⎛

⎝
∏

{li∈γ1: f k(li )∈γ2}

∣∣∣Df k(vi )
∣∣∣

⎞

⎠ , (55)

where μmax is the measure of maximal entropy for f |� : �→ �, and vi is a
unit vector tangent to γ1 at the point li .
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Proof First of all, let us notice that if γ1 is represented as a disjoint union of
curves γ ′1 and γ ′′1 , and (55) holds for both γ ′1 and γ ′′1 , then it also holds for the
initial curve γ1. Indeed, this just follows from the fact that if {an}, {bn}, {xn},
and {yn} are sequences of positive numbers such that an

bn
→ c and xn

yn
→ c

then an+xn
bn+yn

→ c. The same statement (due to the same argument) holds for
the curve γ2.

Next, let us notice that if (55) holds for some γ1, then it also holds for
f (γ1) ∩ U (and vice versa). Indeed, Nk(γ1) = Nk−1( f (γ1) ∩ U ), and
the expression log(

∏
{li∈γ1: f k(li )∈γ2} |Df k(vi )|) differs from the expression

log(
∏
{li∈ f (γ1): f k−1(li )∈γ2} |Df k(vi )|) by no more than const · Nk(γ1). Com-

bining these two observations, we see that it is enough to prove (55) for the
case when γ1 is a curve that is C1-close to a piece of unstable manifold of �

inside a rectangle of a Markov partition, and γ2 is a curve that is C1-close to
a piece of stable manifold of � inside a rectangle of a Markov partition.

Moreover, we can further reduce the statement to the case when γ1 is a piece
of an unstable manifold in some element of Markov partition, and γ2 is a piece
of a stable manifold in some element of Markov partition. Indeed, let us con-
siderC1-invariant stable andunstable foliations inU (�) that include stable and
unstable laminationsWs(�) andWu(�) and the curvesγ1 andγ2, respectively.
For the existence of these foliations, see [103]. Since the diffeomorphism f is
C2-smooth, its differential is C1, and hence the restriction of the differential
of f to the unit tangent bundle over a leaf of the unstable foliation is also C1-
smooth. The exponential instability of orbits near a hyperbolic set (see Propo-
sition 6.4.16 from [66]) now implies that if (55) holds for pieces of stable and
unstablemanifolds asγ1 andγ2, then it also holds for the initial curvesγ1 andγ2
that were sufficiently C1-close to the pieces of stable and unstable manifolds.

From now on we can assume that γ1 is a piece of an unstable manifold in
someelement ofMarkovpartition, andγ2 is a piece of a stablemanifold in some
element of Markov partition. The restriction f |� is conjugate to a topological
Markov shiftσA : �A → �Awith some transitive 0−1matrix A of size N×N .

Lemma 5.3 Let σA : �A → �A be a transitive topological Markov chain
over the alphabet {1, . . . , N }, and denote by νP the measure of maximal
entropy (Parry measure). Fix any ω′, ω′′ ∈ {1, 2, . . . , N }, and admissible
sequences

. . . sequence1 ω′—infinite to the left, and
ω′′ sequence2 . . .—infinite to the right.
We assume that at least one of the two one-sided sequences is not eventually

periodic.
For each k ∈ N, consider the collection Xk of all the sequences from �A of

the form
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. . . sequence1
∗
ω′ . . . . . . ω′′︸ ︷︷ ︸

k+1
sequence2 . . .

(where ∗ indicates the origin) and set Sk =⋃k−1
j=0 σ

j
A(Xk). Then

νk := 1

#Sk

∑

x∈Sk
δx → νP as k →∞.

Notice that Lemma 5.3 immediately implies (55) in the case when γ1 and
γ2 are pieces of stable and unstable manifolds. Indeed, we can assume without
loss of generality that γ1, γ2 do not contain any periodic points (otherwise we
deform them slightly). Let H : �A → � be the conjugacy between σA and
f |�. Then H∗(νP) = μmax, and if φ : �→ R is a continuous function, then

∫
φ d (H∗(νk)) = 1

#Sk

∑

x∈Sk
φ(H(x))→

∫
φ dμmax ,

and hence for φ(x) = log |Dfx (v̄x )|, where v̄x is a unit vector tangent to a leaf
of the unstable foliation at the point x , we have

∫
φ d (H∗(νk)) = 1

kNk
log

⎛

⎝
∏

{li∈γ1: f k(li )∈γ2}

∣∣∣Df k(vi )
∣∣∣

⎞

⎠

→
∫

φ dμmax

= Lyapu(μmax )

as k →∞, and therefore (55) holds.

Proof of Lemma 5.3 First of all, let us recall the construction of the Parrymea-
sure νP . Due to the Perron–Frobenius Theorem, thematrix A = (Ai j ) has only
one eigenvector v̄ = (v1, . . . , vN ) with positive entries, up to multiplication
by a positive number. The eigenvalue λ > 1 that corresponds to v̄ is larger than
the absolute value of any other eigenvalue of A. Denote by ū = (u1, . . . , uN )

the eigenvector of the transposed matrix AT that corresponds to the eigen-
value λ. Without loss of generality we can normalize v̄ and ū in such a way
that v1u1+v2u2+· · ·+vNuN = 1. The Parry measure is theMarkovmeasure
with the stationary probability vector p̄ = (p1, . . . , pN ), pi = vi ui , and the
transition matrix (pi j ), pi j = Ai jv j

λv j
. An equivalent way to introduce the Parry

measure is to define it on a cylinder C = {ω ∈ �A : ω0 = i0, . . . , ωn = in}
by
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νP(C) =
{
0 if i0 · · · in is not an admissible sequence;
ui0vin

λn
if i0 · · · in is admissible.

We need to show that for any continuous function φ : �A → R, we have
∫

φ dνk = 1

#Sk

∑

x∈Sk
φ(x)→

∫
φ dνP as k →∞. (56)

It is enough to establish this convergence for functions of the form φC = χC ,
where C = {ω ∈ �A : ωr = ir , ωr+1 = ir+1, . . . , ωs = is} for some r < s
and i j ∈ {1, 2, . . . , N } since the linear combinations of these functions are
dense in C(�A).

Lemma 5.4 Consider a topological Markov chain σA : �A → �A and fix
some finite admissible sequence [i0, i1, . . . , it ], i j ∈ {1, . . . , N }, andω′, ω′′ ∈
{1, . . . , N }. For a given k ∈ N, consider the collection of all admissible
sequences ω0, . . . , ωk of length k + 1 such that ω0 = ω′ and ωk = ω′′, and
denote by I[i0,i1,...,it ](ω′, ω′′) the number of times the string [i0, i1, . . . , it ] can
be encountered in these sequences (counting different encounters in the same
sequence as separate). If we denote Ak = (A(k)

i j ), then

I[i0,i1,...,it ](ω′, ω′′)
k A(k)

ω′ω′′
→ ui0vit

λt
as k →∞.

Proof Let us take k � t and represent

I[i0,i1,...,it ](ω′, ω′′) = I bound[i0,i1,...,it ](ω
′, ω′′)+ I int[i0,i1,...,it ](ω

′, ω′′),

where I bound[i0,i1,...,it ](ω
′, ω′′) is the number of encounters of [i0, i1, . . . , it ] starting

in the beginning or in the tail part of length [ln k] of the sequences ω0, . . . , ωk ,
and I int[i0,i1,...,it ](ω

′, ω′′) is the number of encounters of [i0, i1, . . . , it ] starting
in the middle part (of length k− 2[ln k]) of these sequences. A rough estimate
on I bound[i0,i1,...,it ](ω

′, ω′′) gives

I bound[i0,i1,...,it ](ω
′, ω′′) ≤ Ckln N ln k,

and hence in

I[i0,i1,...,it ](ω′, ω′′)
k A(k)

ω′ω′′
= I bound[i0,i1,...,it ](ω

′, ω′′)

k A(k)
ω′ω′′

+ I int[i0,i1,...,it ](ω
′, ω′′)

k A(k)
ω′ω′′

,

we have
I bound[i0,i1,...,it ](ω

′,ω′′)
k A(k)

ω′ω′′
→ 0 as k →∞.
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For a given l between [ln k] and k − [ln k], denote by I l the number of
admissible sequences ω0, . . . , ωk such that [ωlωl+1 · · ·ωl+t ] = [i0i1 · · · it ].
We have

I l

A(k)
ω′ω′′

=
∑

ω0=ω′,ωk=ω′′,
[ωlωl+1···ωl+t ]=[i0i1···it ]

Aω0ω1 Aω1ω2 · · · Aωk−1ωk

A(k)
ω′ω′′

= (Ai0i1 Ai1i2 · · · Ait−1it )
A(l)

ω′i0 A
(k−l−t)
itω′′

A(k)
ω′ω′′

.

Notice that Ai0i1 Ai1i2 · · · Ait−1it = 1 since i0i1 · · · it is an admissible sequence.

We also know that limk→∞ A(k)
i j λ−k = u jvi (see, e.g., [103, Theorem 0.17]).

Since there are only finitely many pairs (i j), the limit here is uniform in i, j ,
and therefore we have

I l

A(k)
ω′ω′′

=
(
A(l)

ω′i0λ
−l
) (

A(k−l−t)
itω′′ λ−(k−l−t)

)

A(k)
ω′ω′′λ

−kλt
≈ ui0vω′ · uω′′vit

uω′′vω′λt
= ui0vit

λt
,

uniformly for large k, and hence

I int[i0,i1,...,it ](ω
′, ω′′)

k A(k)
ω′ω′′

= 1

k

k−ln[k]∑

l=[ln k]

I l

A(k)
ω′ω′′

→ ui0vit
λt

as k →∞.

This proves Lemma 5.4. ��
Notice that Lemma 5.4 implies (56) for the function φC . Indeed, if ln k �

max(|s|, |r |), then

I int[ir ,i1,...,is ](ω
′, ω′′) ≤

∑

x∈Sk
φC(x) ≤ I int[ir ,i1,...,is ](ω

′, ω′′)+ Ckln N ln k,

and (56) follows since #Sk = k A(k)
ω′ω′′ by the assumption that at least one of

the one-sided sequences (. . . sequence1 ω′,ω′′ sequence2 . . .) is not eventually
periodic. This proves Lemma 5.3. ��

This concludes the proof of Lemma 5.2. ��
Now (54) follows directly from Lemma 5.2, and this proves Proposition 5.1.

��
For λ sufficiently large, the modulus of x ′k(E

(i)
k ) may be estimated with the

help of [30, Lemmas 5 & 6]. Namely, if m denotes the number of spectra σ j ,

1 ≤ j ≤ k − 1, E (i)
k belongs to, then
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Sl(λ)m ≤ |x ′k(E (i)
k )| ≤ Su(λ)m, (57)

where

Sl(λ) = 1

2

(
(λ− 4)+

√
(λ− 4)2 − 12

)
and Su(λ) = 2λ+ 22. (58)

Here, the first inequality in (57) requires λ ≥ 8 and the second requires λ > 4.
Through the end of this section let us assume that λ > 4. In this case the

Fricke–Vogt invariant implies that

σk ∩ σk+1 ∩ σk+2 = ∅. (59)

The identity (59) is the basis for work done by Raymond [88]. Following
[68], we call a band Ik ⊂ σk a “type A band” if Ik ⊂ σk−1 (and hence
Ik ∩ (σk+1∪σk−2) = ∅). We call a band Ik ⊂ σk a “type B band” if Ik ⊂ σk−2
(and therefore Ik ∩σk−1 = ∅). Then we have the following result (Lemma 5.3
of [68], essentially Lemma 6.1 of [88]).

Lemma 5.5 For every λ > 4 and every k ≥ 1,

(a) Every type A band Ik ⊂ σk contains exactly one type B band Ik+2 ⊂ σk+2,
and no other bands from σk+1, σk+2.

(b) Every type B band Ik ⊂ σk contains exactly one type A band Ik+1 ⊂ σk+1
and two type B bands from σk+2, positioned around Ik+1.

We denote by ak the number of bands of type A in σk and by bk the number
of bands of type B in σk . By Raymond’s work, it follows immediately that
ak + bk = Fk for every k. In fact, we have the following result, which follows
from Lemma 5.5 by an easy induction.

Lemma 5.6 The constants {ak} and {bk} obey the relations

ak = bk−1, bk = ak−2 + 2bk−2 (60)

with initial values a0 = 1, a1 = 0, b0 = 0, and b1 = 1. Consequently, for
k ≥ 2,

ak = bk−1 = Fk−2. (61)

Let us also denote by ak,m the number of bands b of type A in σk with
#{0 ≤ j < k : b ∩ σ j �= ∅} = m and by bk,m the number of bands b of type
B in σk with #{0 ≤ j < k : b ∩ σ j �= ∅} = m. Then, [30, Lemma 4] reads as
follows:
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Lemma 5.7 We have

ak,m = bk−1,m−1, bk,m = ak−2,m−1 + 2bk−2,m−1 (62)

with initial values a0,m = 0 for m > 0, a0,0 = 1, a1,m = 0 for m ≥ 0,
b0,m = 0 for m ≥ 0, b1,m = 0 for m > 0, and b1,0 = 1. Consequently,

ak,m = bk−1,m−1 =
{
22k−3m−1 m

k−m
( k−m
2m−k

)
when ! k2" ≤ m ≤ �2k3 �;

0 otherwise.
(63)

In fact, for our purposes here the recursion (62) will be sufficient, and we
won’t make use of the explicit solution (63). Verifying the recursion (62) using
the definition and Lemma 5.5 is straightforward.

Set

Ak =
∑

m

mak,m, Bk =
∑

m

mbk,m, and Ck = Ak + Bk .

Lemma 5.8 We have

Ak = Bk−1 + Fk−2, (64)

Bk = Ak−2 + 2Bk−2 + Fk−1, (65)

Ck = Ck−1 + Ck−2 + 2Fk−2. (66)

Proof We have

Ak =
∑

m

mak,m

=
∑

m

mbk−1,m−1

=
∑

m

(m − 1+ 1)bk−1,m−1

= Bk−1 + bk−1
= Bk−1 + Fk−2.

Here we used (62) in the second step, (61) in the fifth step, and the definitions
in the other steps. This establishes (64).

Similarly, we have

Bk =
∑

m

mbk,m

=
∑

m

m(ak−2,m−1 + 2bk−2,m−1)
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=
∑

m

(m − 1+ 1)ak−2,m−1 + 2
∑

m

(m − 1+ 1)bk−2,m−1

= Ak−2 + ak−2 + 2Bk−2 + 2bk−2
= Ak−2 + Fk−4 + 2Bk−2 + 2Fk−3
= Ak−2 + 2Bk−2 + Fk−1.

Here we used (62) in the second step, (61) in the fifth step, the Fibonacci
number recursion twice in the sixth step, and the definitions in the other steps.
This establishes (65).

Finally, we have

Ck = Ak + Bk

= Bk−1 + Fk−2 + Ak−2 + 2Bk−2 + Fk−1
= Bk−1 + Ck−2 + Bk−2 + Fk
= Ck−1 − Ak−1 + Ck−2 + Bk−2 + Fk
= Ck−1 − Fk−3 + Ck−2 + Fk
= Ck−1 + Ck−2 + 2Fk−2.

Here we used (64) and (65) in the second step, the definition and the Fibonacci
number recursion in the third step, (64) in the fourth step, and the Fibonacci
number recursion twice in the sixth step. This establishes (66). ��
Proposition 5.9 We have

lim
k→∞

Ck

kFk
= 4

5+√5
. (67)

In particular,

logϕ

limk→∞ Ck
kFk

= 5+√5

4
logϕ ≈ 1.80902 logϕ.

Proof Set

β = 4

5+√5
= 2

ϕ + 2

and Rk = Ck − βkFk . Then,

Rk−Rk−1−Rk−2 = Ck−Ck−1−Ck−2−βkFk+β(k−1)Fk−1+β(k−2)Fk−2
= 2Fk−2 − βFk−1 − 2βFk−2

= 2Fk−2
(
1− β

2

Fk−1
Fk−2

− β

)
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= 2Fk−2
(
1− β

2

(
ϕ +

(
Fk−1
Fk−2

− ϕ

))
− β

)

= 2Fk−2
β

2

(
ϕ − Fk−1

Fk−2

)

= β (Fk−2ϕ − Fk−1)

For the fifth step, note that

1− 1

ϕ + 2
ϕ − 2

ϕ + 2
= 0.

By a standard estimate from the theory of continued fractions, this shows that

|Rk − Rk−1 − Rk−2| < β

Fk−1
. (68)

Set C = max{|R1|, |R2|} and apply (68) repeatedly to obtain

|R1| ≤ C

|R2| ≤ C

|R3| < 2C + β

F2

|R4| < 3C + β

F2
+ β

F3

|R5| < 5C + 2
β

F2
+ β

F3
+ β

F4

|R6| < 8C + 3
β

F2
+ 2

β

F3
+ β

F4
+ β

F5
...

|Rk | < Fk−1C + Fk−2
β

F2
+ Fk−3

β

F3
+ Fk−4

β

F4
+ · · · + F0

β

Fk

= Fk

(
Fk−1
Fk

C + Fk−2
Fk

β

F2
+ Fk−3

Fk

β

F3
+ Fk−4

Fk

β

F4
+ · · · + F0

Fk

β

Fk

)
.

This implies |Rk | = O(Fk), and in particular

lim
k→∞

Rk

kFk
= 0.

In view of Rk = Ck − βkFk , this establishes (67) and concludes the proof of
the proposition. ��
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We are now in a position to prove (19). This result will be an easy conse-
quence of Proposition 5.1, the estimates (57), and Proposition 5.9.

Proof of (19) By (53), we have

dimH νλ = logϕ

limk→∞ 1
kFk

log
(∏Fk

i=1
∣∣∣x ′k(E

(i)
k )

∣∣∣
)

for λ ≥ 16. By (57), we have

Sl(λ)m(E (i)
k ) ≤ |x ′k(E (i)

k )| ≤ Su(λ)m(E (i)
k ),

wherem(E (i)
k ) denotes the number of spectra σ j , 1 ≤ j ≤ k− 1, E (i)

k belongs
to, and Sl(λ), Su(λ) are given in (58). Thus,

log

⎛

⎝
Fk∏

i=1

∣∣∣x ′k(E
(i)
k )

∣∣∣

⎞

⎠ =
Fk∑

i=1
log
∣∣∣x ′k(E

(i)
k )

∣∣∣ =
� 2k3 �∑

m=! k2 "

∑

m(E (i)
k )=m

log
∣∣∣x ′k(E

(i)
k )

∣∣∣ ,

and hence

lim
k→∞

1

kFk
log

⎛

⎝
Fk∏

i=1

∣∣∣x ′k(E
(i)
k )

∣∣∣

⎞

⎠ ∈
[

4

5+√5
log Sl(λ),

4

5+√5
log Su(λ)

]

by (67) in Proposition 5.9. We obtain

lim
λ→∞ dimH νλ · log λ = lim

λ→∞
logϕ · log λ

limk→∞ 1
kFk

log
(∏Fk

i=1
∣∣∣x ′k(E

(i)
k )

∣∣∣
)

= 5+√5

4
logϕ,

which concludes the proof. ��

6 The optimal Hölder exponent

In this section we provide an explicit expression for the optimal Hölder expo-
nent of the integrated density of states for the Fibonacci Hamiltonian.

Theorem 6.1 Let T : M2 → M2 be a C1+α-diffeomorphism with a (topo-
logically) zero-dimensional basic set �, and μmax be the measure of maximal
entropy for T�. Let L ⊂ M be a smooth curve transversal to Ws(�) with
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680 D. Damanik et al.

parametrization L : R→ M2 such that L ∩ Ws(�) is compact. Let R be an
element of a Markov partition for �, and let π : �∩ R → L be a continuous
projection along the stable manifolds. Set ν = L−1 ◦ π(μmax |R), and denote
by γ the optimal Hölder exponent of ν. Then,

γ = htop(T |�)

supp∈Per(T |�) Lyap
u(p)

.

In other words, we have the following:
1. For any γ0 < γ and any sufficiently small interval I ⊂ R, we have

ν(I ) < |I |γ0;
2. For any γ1 > γ and any ε > 0, there exists an interval I ⊂ R such that
|I | < ε and ν(I ) > |I |γ1 .

Proof Fix any γ0 ∈ (0, γ ) and suppose that I = [E0, E1] ⊂ R is sufficiently
small (we will determine the appropriate smallness condition later). Without
loss of generality we can assume that L(E0), L(E1) ∈ Ws(�) (otherwise we
can decrease the size of I without changing its measure).

Consider the rectangle RI = π−1(L(I )) ⊂ R. Then, μmax(RI ) = ν(I ).
Let N ∈ Z+ be the smallest value such that T N (RI ) ∩ � is not a subset of
just one element of the Markov partition (and hence has size of order one). We
claim that

C−1 ≤
∣∣∣∣

μmax(RI )

e−Nhtop(T |�)

∣∣∣∣ ≤ C

with C uniform for all sufficiently small I . Indeed, consider the topological
Markov chain σA : �A → �A conjugate to T |� : �→ �. Then,

μmax(RI ) = lim
M→∞

#(Fix(T M) ∩ RI )

#Fix(T M)
.

But for large M and N , we have

#Fix(T M) = Tr(AM) = eMhtop(T |�)(1+ o(1)),

since the largest eigenvalue of A is equal to ehtop(T |�λ
). At the same time the

number of periodic orbits of periodM with prescribed initial segment of length
N < M is given by

#(Fix(T M) ∩ RI ) = e(M−N )htop(T |�) · O(1),

where O(1) is bounded from above and away from zero uniformly in all
1$ N $ M , and hence μmax(RI ) = e−Nhtop(T |�) · O(1).
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On the other hand, |I | = E1 − E0 is of order of the width of RI . Pick any
point p ∈ � ∩ RI and consider Wu

loc(p) ∩ RI . Since a holonomy map along
stable manifolds is C1, we have

|I | = |Wu
loc(p) ∩ RI | · O(1).

The usual distortion argument shows also that

|Wu
loc(p) ∩ RI | = 1

‖DT N (p)|Eu‖ · O(1),

and hence for any ε > 0, ε < γ − γ0,

log ν(I )

log |I | =
−Nhtop(T |�)+ O(1)

− log ‖DT N (p)‖ + O(1)

>
htop(T |�)

Lyapu(p)
− ε

≥ htop(T |�)

supp Lyap
u(p)

− ε

= γ − ε > γ0

if N is large enough (which can be guaranteed by choosing sufficiently small
|I |). Therefore ν(I ) < |I |γ0 .

Let us now take an arbitrary γ1 > γ . There exists a periodic point q ∈ R
such that

htop(T |�)

Lyapu(q)
< γ1.

For a given ε ∈ (0, γ1 − γ ), consider a narrow rectangle RI ⊂ R, I ⊂ R,
RI = π−1(L(I )), such that |I | < ε and q ∈ RI . If N ∈ Z+ is the smallest
number such that T N (RI ) does not belong to one element of the Markov
partition, then

|I | = O(1)

‖DT N (q)|Eu
q
‖

and

ν(I ) = μmax(RI ) = e−Nhtop(T |�) · O(1).
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Hence,

log ν(I )

log |I | =
−Nhtop(T |�)+ O(1)

−N ( 1
N log ‖DT N (q)|Eu

q
‖ + O(1)

≤ htop(T |�)

Lyapu(q)
+ ε < γ1,

and therefore ν(I ) > |I |γ1 . ��

Proof of (12) The theorem follows as a special case from Theorem 6.1 since
the density of states measure arises from the measure of maximal entropy
for the trace map in the way required for Theorem 6.1 to be applicable. This
was shown in [34] for small values of the coupling constant λ, and due to
Theorem 1.5 the same holds for all λ > 0. ��

For small values of the coupling constant, supp∈Per( f |�) Lyap
u(p) is

attained in the periodic points (of period 2 and 6) born from the singulari-
ties of the Cayley cubic, and therefore it can be calculated explicitly (see, e.g.,
the proof of [35, Lemma 3.3]). Hence we get the following

Corollary 6.2 For λ > 0 sufficiently small, we have

γλ =
2 log

(√
5+1
2

)

log

⎛

⎝
√
2

√
256I 2+16

(
2A+3√2B+√2AB+35

)
I+22A+75√2B+21√2AB+250+16I+A+2√2B+√2AB+23

2A+2√2B−2

⎞

⎠

,

where I = λ2

4 , A = A(I ) = √
16I + 25, and B = B(I ) =√

8I −√16I + 25+ 5.

These periodic points of period 2 lead to the curve in Fig. 2 that is labeled
as “Period two”.

7 Strict inequalities between spectral characteristics

In this sectionwe prove Theorem 1.8, that is, we establish the strict inequalities
in (15). They will be a consequence of the following general result.

Proposition 7.1 Suppose that σA : �A → �A is a topological Markov chain
defined by a transitive 0 − 1 matrix A (i.e., some power of A has only pos-
itive entries), and φ : �A → R is a Hölder continuous function. If φ is not
cohomological to zero (in other words, there are periodic orbits with different
values of averages of φ over those orbits), then
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inf
p∈Per( f )

⎛

⎝ 1

π(p)

π(p)−1∑

i=0
φ( f i (p))

⎞

⎠ = inf
μ∈M

∫
φ dμ <

∫
φ dμmax

< sup
μ∈M

∫
φ dμ = sup

p∈Per( f )

⎛

⎝ 1

π(p)

π(p)−1∑

i=0
φ( f i (p))

⎞

⎠ , (69)

whereμmax is themeasure ofmaximal entropy,M is the space of all probability
Borel σA-invariant measures, and π(p) is the period of a periodic point p.

Proof First of all, due to Sigmund’s Theorem [94], the ergodic measures sup-
ported on periodic orbits are (weak-*) dense inM, which implies the equalities
in (69). In order to show the strict inequalities in (69), we apply Proposition 1.9
in the case where σA : �A → �A is conjugate to Tλ|�λ and the potential is
given by φ = − log ‖DTλ|Eu‖.

Since by (5) the line htop(σA)+ t
∫

φ dμmax is tangent to the graph of P(tφ)

at (0, htop(σA)), the strict convexity, which follows from (4), together with (6)
implies Proposition 7.1. ��

In order to prove Theorem 1.8, we will show that Proposition 7.1 applies
to the case at hand. This amounts to proving that there are periodic orbits in
�λ with different values of the averaged unstable multipliers [66, Proposi-
tion 20.3.10]. An averaged unstable multiplier of a periodic point p of period
n is defined to be the nth root of the largest (in absolute value) eigenvalue of the
differential DTn|p. Henceforth, we shall write simplymultiplier for averaged
unstable multiplier.

Proposition 7.2 For every λ > 0, there exist two periodic points (not neces-
sarily of the same period) in�λ, such that their corresponding multipliers are
distinct.

This result is known for all λ > 0 sufficiently close to zero. Indeed, in
that case one computes the multipliers for the period-six periodic point p =
(0, 0, a), with suitable a ∈ R such that p ∈ S0, and for the fixed point q =
(1, 1, 1) explicitly. These multipliers are distinct, and a perturbation argument
shows that for all λ > 0 sufficiently small, there exist a period-two periodic
point and a period-six periodic point with different multipliers; see [34] for
details.

Proof of Proposition 7.2 In [90] Baake and Roberts calculated a few periodic
orbits, among which are two families of periodic points of period two and four,
respectively. These are given, respectively, by

Pa
def=
(
a,

a

2a − 1
, a

)
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and

Qb
def=
(
−1

2
, b,−1

2

)
.

Here, a, b ∈ R. On each level surface Sλ, we can find points from these
families. Namely, a and b simply need to be chosen in such a way that

I (Pa) = I (Qb) = λ2

4
, (70)

where I is the Fricke–Vogt invariant. Note that I (P1) = I (Q1) = 0 and that
lima→∞ I (Pa) = ∞ and limb→∞ I (Pb) = ∞. Thus, by continuity, for each
λ ≥ 0, it is possible to find a, b ∈ [1,∞) so that (70) holds.

We claim that for every λ ≥ 0, the multipliers of Pa and Qb on Sλ are
different. The proposition obviously follows from this claim.

Assume that this claim fails. Then there exist a, b ∈ [1,∞) so that I (Pa) =
I (Qb) ≥ 0 and the multipliers of Pa and Qb coincide. The identity I (Pa) =
I (Qb) implies that

2a2 + a2

(2a − 1)2
− 2a3

2a − 1
= 1

2
+ b2 − b

2
. (71)

On the other hand, it was shown by Baake and Roberts that the unstable
eigenvalue of DT 2|Pa is a root of the equation

μ2 − 8a2 − 2a + 1

2a − 1
μ+ 1 = 0, (72)

while the unstable eigenvalue of DT 4|Qb is a root of the equation

μ2 − (8(1− 2b)b + 1)μ+ 1 = 0; (73)

see [90, p. 850]. Due to Vieta’s formulas, the roots of the equation μ2+ (v2−
2)μ+ 1 = 0 are squares of the roots of the equation μ2 + vμ+ 1 = 0. Thus,
if the two multipliers in question coincide, it follows from (72) and (73) that

(
8a2 − 2a + 1

2a − 1

)2

− 2 = −8(1− 2b)b − 1,

or, equivalently,

(
8a2 − 2a + 1

2a − 1

)2

− 2 = 16

(
b2 − b

2

)
− 1. (74)

123



The Fibonacci Hamiltonian 685

It follows from (71) and (74) that

(8a2 − 2a + 1)2

(2a − 1)2
+ 7 = 16

4a4 − 6a3 + 3a2

(2a − 1)2
,

which in turn implies that

8a3 − 4a + 1 = 0.

Write P(a) = 8a3 − 4a + 1. The critical numbers of this polynomial of
degree 3 are ± 1√

6
. Thus, P is strictly increasing on [1,∞). Since P(1) = 5,

P does not vanish for any a ∈ [1,∞); contradiction. This shows that the two
multipliers cannot be equal, and the claim follows. ��
Remark 7.3 The two families of periodic points of period two and four, respec-
tively, used in the proof of Proposition 7.2 are the ones that lead to the curves
in Figs. 1 and 2 which are labeled with period two and four, respectively.

Proof of Theorem 1.8 The strict inequalities γλ < dimH νλ < α̃±u (λ) fol-
low directly from Theorem 1.6, Propositions 1.9, and 7.2. The inequalities
dimH νλ < dimH �λ < α̃±u (λ) follow from the strict convexity of the pres-
sure function P(tφ) with φ = − log ‖DTλ|Eu‖, the fact that dimH �λ is the
only zero of P(tφ) (see [79]), and the expression for α̃±u (λ) from Theorem 1.6.

��

8 Extensions and generalizations

While we have focused up to this point on the classical Fibonacci Hamiltonian,
much of what we do extends either partly or fully to other types of operators.
Also, we strongly believe that the results presented here provide an insight
toward and an opportunity to approach some other more complicated mod-
els as well. In this section we briefly address some of these extensions and
generalizations.

• The Off-Diagonal Model. In the present paper we consider the Fibonacci
Hamiltonian in the form (1), which is usually called the diagonal model
and which is the one most popular in the mathematics literature. In the
physics literature the so-called off-diagonal model is usually considered.
The spectral properties of the off-diagonal operator as well as the relation
to the dynamics of the Fibonacci trace map are not any different from the
diagonal one; see the appendix in [33] for a detailed discussion of the off-
diagonal model. All the results presented in this paper for the diagonal
model also hold for the off-diagonal one.
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• Potentials Generated by Primitive Invertible Substitutions. Discrete
Schrödinger operators with potentials generated by primitive invertible
substitutions have spectral properties that are very much similar to the
spectral properties of the Fibonacci Hamiltonian. For some of the spectral
properties this was justified in [53,80]. We expect that all the qualitative
statements (i.e., all the statements mentioned in the introduction except
Corollary 1.7 and Theorem 1.10) of this paper can be generalized to this
case also. As for the large coupling asymptotics, the calculations can be
more complicated, but can likely be carried out for particular potentials
(given the results obtained in [72–74,78]).

• Sturmian Potentials. Sturmian potentials are natural generalizations of the
Fibonacci potential. Namely, one simply replaces the specific value of α

in (1) by a general irrational α ∈ (0, 1). It is known that the spectrum of a
discrete Schrödinger operator with a Sturmian potential is a Cantor set of
zeromeasure [14], but in most cases this Cantor set will not be dynamically
defined [72,73]. Nevertheless, there is a dynamical presentation of the
spectrum in this case as well [14,74,88], and it would be interesting to see
whether the dynamical approach can add something to the recent results in
[72–74,78] that were obtained via the periodic approximation technique.

• Jacobi Matrices. In general, discrete Schrödinger operators form a partic-
ular case of the operators given by Jacobi matrices. In the case where the
coefficients of a Jacobi matrix are modulated by the Fibonacci sequence,
their spectral properties were studied in [105]. Interestingly enough, the
spectrum in this case does not have to be dynamically defined. Never-
theless, the relation to the dynamics of the Fibonacci trace map allows
one to give a detailed description of the spectrum in this case, at least in
some regimes, and our results can be used to provide a complete descrip-
tion throughout the entire parameter space. For another model with similar
dynamical description see [106].

• CMV Matrices. CMV matrices are the unitary analog of Jacobi matrices.
That is, they are canonical models of unitary operators (just as Jacobi
matrices are canonical models of self-adjoint operators) and they arise
naturally in the study of orthogonal polynomials on the unit circle (while
Jacobi matrices arise in the study of orthogonal polynomials on the real
line); compare [95,96]. In addition, CMV matrices have been effectively
used to study quantum walks and the Ising model in one dimension; see
[20,41]. Choosing the coefficients defining a CMVmatrix according to the
Fibonacci sequence one obtains an interesting model that can be studied
using the trace map formalism as well. Several results for this model were
obtained in [40,41], both from the perspective of orthogonal polynomials
and the perspective of quantum walks and the Ising model. The results and
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tools developed in the present paper will allow one to take the analysis of
the CMV case further.

• ContinuumModels.ContinuumSchrödinger operatorswith Fibonacci-type
potentials were considered in [6,31,69,71]. In this case there are many
models (depending on the choice of single-site potentials). The trace map
description of the spectrum is also available in this case (see [31]), and
hence it is reasonable to expect that our results can be used.

• Higher-Dimensional Separable Models. Understanding the spectral prop-
erties of the operators associated with the standard two- and three-
dimensional quasicrystal models is a major problem in the field which
is currently out of reach. One of the ways to get some insight into the
problem is to consider operators with separable potentials; for example,
the Square (and Cubic) Fibonacci Hamiltonian and the labyrinth model
[49–51,98,99]. In these models the spectrum of the higher dimensional
operator is the sum (or product) of the spectra of the one dimensional ones.
Since studying the sum of dynamically defined Cantor sets is a classical
problemwhich has been extensively studied (see, for example, [57,83] and
references therein), we expect that the current results will be instrumen-
tal in understanding the spectral properties of separable models. There is
recent work on these models that relies on the one-dimensional results in
the small and large coupling regimes [33,37], and the results of this paper
will pave the way for a study of separable models that does not rely on the
small and large coupling theory.
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100. Sütő, A.: The spectrum of a quasiperiodic Schrödinger operator. Commun. Math. Phys.
111, 409–415 (1987)
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