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Abstract This article constitutes the final and main part of a three-paper
sequence (Ann PDE, 2016. doi:10.1007/s40818-016-0006-4; Oh and Tataru,
2015. arXiv:1503.01561), whose goal is to prove global well-posedness and
scattering of the energy critical Maxwell-Klein-Gordon equation (MKG)
on R

1+4 for arbitrary finite energy initial data. Using the successively
stronger continuation/scattering criteria established in the previous two papers
(Ann PDE, 2016. doi:10.1007/s40818-016-0006-4; Oh and Tataru, 2015.
arXiv:1503.01561), we carry out a blow-up analysis and deduce that the failure
of global well-posedness and scattering implies the existence of a nontrivial
stationary or self-similar solution to MKG. Then, by establishing that such
solutions do not exist, we complete the proof.
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1 Introduction

In this article we prove global well-posedness and scattering of the energy
critical Maxwell-Klein-Gordon equation on R

1+4 for any finite energy ini-
tial data. In Sect. 1.1, we present some background material concerning the
Maxwell-Klein-Gordon equation on R1+4. Readers already familiar with this
equation may skip to Sect. 1.2, where we give a precise statement of the main
theorem (Theorem 1.3). This paper is the main and logically the final part
of the three-paper sequence [26,27]. In Sects. 2 and 3 below, we provide an
overview of the entire proof of Theorem 1.3 spanning the whole sequence.

1.1 (4+ 1)-dimensional Maxwell-Klein-Gordon system

Let R1+4 be the (4 + 1)-dimensional Minkowski space with the metric

mμν := diag (−1,+1,+1,+1,+1)

in the standard rectilinear coordinates (t = x0, x1, . . . , x4). Consider the
trivial complex line bundle L = R

1+4 × C over R1+4 with structure group
U(1) = {

eiχ ∈ C
}
. Global sections of L may be identified with C-valued

functions on R
1+4. Using the identification u(1) ≡ iR and taking the trivial

connection d as a reference, any connection D on L takes the form

D = d + i A

for some real-valued 1-form A on R
1+4. The Maxwell-Klein-Gordon system

is a Lagrangian field theory for a pair (A, φ) of a connection on L and a section
of L with the action functional

S[A, φ] =
∫

R1+4

1

4
FμνF

μν + 1

2
DμφDμφ dtdx,

where Fμν = (dA)μν = ∂μAν −∂ν Aμ is the curvature 2-form associated toD.
We follow the usual convention of raising/lowering indices by the Minkowski
metric m, and also of summing over repeated upper and lower indices. Com-
puting the Euler-Lagrange equations, we arrive at the Maxwell-Klein-Gordon
equations (MKG)
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GWP and scattering of (4 + 1)-d MKG 783

{
∂μFνμ = Im(φDνφ)

�Aφ = 0,
(MKG)

where �A := DμDμ is the (gauge) covariant d’Alembertian.
A basic feature of (MKG) is gauge invariance. Geometrically, a gauge trans-

form is a change of basis in the fiberC over each point onR1+4 by an element
of the gauge group U(1). Accordingly, we refer to a real-valued function
χ : R

1+4 → R (hence eiχ ∈ U(1)) as a gauge transformation and define
the corresponding gauge transform of a pair (A, φ) as

(A, φ) �→ ( Ã, φ̃) := (A − dχ, eiχφ). (1.1)

Observe that D and �A are covariant under gauge transforms (i.e., eiχDφ =
D̃φ̃ etc), whereas F and Im(φDμφ) are invariant. Hence (MKG) is invariant
under gauge transforms. Since U(1) is an abelian group, (MKG) is said to be
an abelian gauge theory.

We now formulate the initial value problem for (MKG), in a way that is
consistent with the gauge invariance of the system. An initial data set for
(MKG) consists of a pair of 1-forms (a j , e j ) and a pair of C-valued functions
( f, g) on R4. We say that (a, e, f, g) is the initial data for a solution (A, φ) at
time t0 if

(A j , F0 j , φ,Dtφ)�{t=t0}= (a j , e j , f, g).

Weusually take the initial time t0 to be zero. Observe that the ν = 0 component
of (MKG) imposes a constraint on any initial data for (MKG), namely

∂�e� = Im( f g) (1.2)

This equation is called the Gauss (or constraint) equation.
There is a conserved energy for (MKG), which is one of the basic ingre-

dients of the non-perturbative analysis performed in this paper. We define the
conserved energy of a solution (A, φ) at time t to be

E{t}×R4[A, φ] := 1

2

∫

{t}×R4

∑

0≤μ<ν≤4

|Fμν |2 +
∑

0≤μ≤4

|Dμφ|2 dx . (1.3)

For a suitably regular solution to (MKG) defined on a connected interval I ,
this quantity is constant. This conservation law is in fact a consequence of
Nöther’s principle (i.e., continuous symmetry of the field theory corresponds
to a conserved quantity) applied to the time translation symmetry of (MKG);
we refer to Sect. 5 for further discussion and a proof.
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784 S.-J. Oh, D. Tataru

Observe that the conserved energy is invariant under the scaling

(A, φ)(t, x) �→ (
λ−1A, λ−1φ

) (
λ−1t, λ−1x

)
for any λ > 0,

which also preserves the system (MKG). Hence (MKG) on R
1+4 is energy

critical.

1.2 Statement of the main theorem

Our goal now is to give a precise statement of the global well-posedness/scat-
tering theorem proved in this paper. For this purpose, we first borrow some
definitions from [19,26].

We say that a (MKG) initial data set (a, e, f, g) (i.e., a solution to the Gauss
equation) is classical and write (a, e, f, g) ∈ H∞ if each of a, e, f, g belongs
to H∞

x := ∩∞
n=0H

n
x . Correspondingly, we say that a smooth solution (A, φ)

to (MKG) on I × R
4 (where I ⊆ R is an interval) is a classical solution if

Aμ, φ ∈ ∩∞
n,m=0C

m
t (I ; Hn

x ).
Define the space H1 = H1(R4) of finite energy initial data sets to be the

space of (MKG) initial data sets for which the following norm is finite:

‖(a, e, f, g)‖H1 := sup
j=1,...,4

‖(a j , e j )‖Ḣ1
x ×L2

x (R
4) + ‖( f, g)‖Ḣ1

x ×L2
x (R

4).

(1.4)

Given a pair (A, φ) on I × R
4, we define its CtH1(I × R

4) norm as

‖(A, φ)‖CtH1(I×R4) := ess sup t∈I
(
‖A[t]‖Ḣ1

x ×L2
x
+ ‖φ[t]‖Ḣ1

x ×L2
x

)
,

where A[t] and φ[t] are shorthands for (A, ∂t A)(t) and (φ, ∂tφ)(t), respec-
tively. We then define the notion of an admissible CtH1 solution to (MKG)
via approximation by classical solutions as follows.

Definition 1.1 (Admissible CtH1 solutions to (MKG)) Let I ⊆ R be an
interval.We say that a pair (A, φ) ∈ CtH1(I ×R

4) is an admissibleCtH1(I ×
R
4) solution to (MKG) if there exists a sequence (A(n), φ(n)) of classical

solutions to (MKG) on I × R
4 such that

‖(A, φ) − (A(n), φ(n))‖CtH1(J×R4) → 0 as n → ∞,

for every compact subinterval J ⊆ I .

The necessity of restricting the class of energy solutions under consideration
to the admissible ones as defined above is a relatively standard matter in the
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GWP and scattering of (4 + 1)-d MKG 785

realm of low regularity solutions for nonlinear dispersive equations. Often
uniqueness statements require additional regularity properties for solutions,
which are then proved to hold for the solutions which are limits of smooth
solutions, but might not be true or straightforward in general. In our case the
difficulties are compounded by the need to have a good notion of finite energy
solution which is gauge invariant.

Remark 1.2 The above definitions can be localized to an open subset O ⊆ R
4

or O ⊆ R
1+4 in an obvious manner; see [26, Sects. 3 and 5].

Next, we recall the global Coulomb gauge condition

∂�A� =
∑

�=1,...,4

∂�A� = 0. (1.5)

The role of this condition is to fix the ambiguity arising from the gauge invari-
ance of (MKG), which is an immediate formal obstruction for well-posedness.

Finally, given an interval I ⊆ R, we borrow the space-time norms Y 1(I ×
R
4) and S1(I × R

4) from [19,26,27]. We define the S1 norm of a solution
(A, φ) on I × R

4 to be

‖(A, φ)‖S[I ] := ‖A0‖Y 1(I×R4) + ‖Ax‖S1(I×R4) + ‖φ‖S1(I×R4).

In particular, the S1 norm captures the dispersive properties of Ax and φ. The
precise definition of the S1 norm is rather intricate; instead of the full definition,
in this paper we only rely on a few basic properties of the spaces Y 1 and S1,
such as those below (see also Remark 4.2).

‖(ϕ, ∂tϕ)‖Ct (I ;Ḣ1
x ×L2

x )
� ‖ϕ‖S1(I×R4),

‖(ϕ, ∂tϕ)‖Ct (I ;Ḣ1
x ×L2

x )
� ‖ϕ‖Y 1(I×R4).

We are now ready to state our main theorem.

Theorem 1.3 (Main Theorem) Let (a, e, f, g) ∈ H1 be a finite energy initial
data set for (MKG) obeying the global Coulomb gauge condition ∂�a� = 0.
Then there exists a unique admissible CtH1 solution (A, φ) to the initial value
problem defined on the whole R1+4 which satisfies the global Coulomb gauge
condition ∂�A� = 0. Moreover, the S1 norm of (A, φ) is finite, i.e.,

‖A0‖Y 1(R1+4) + ‖Ax‖S1(R1+4) + ‖φ‖S1(R1+4) < ∞. (1.6)

Remark 1.4 The a-priori bound above implies scattering towards both t →
±∞; see Theorem 4.8. It also implies continuity of the data to solution map
on compact time intervals, though not on the full real line.
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786 S.-J. Oh, D. Tataru

Remark 1.5 We do not lose any generality by restricting to initial data sets in
the global Coulomb gauge, since any finite energy initial data set can be gauge
transformed to obey the condition ∂�a� = 0. See [26, Sect. 3].

Remark 1.6 We note that an independent proof of global well-posedness and
scattering of MKG-CG has been recently given by Krieger-Lührmann [16],
following a version of the Bahouri-Gérard nonlinear profile decomposition [1]
and Kenig-Merle concentration compactness/rigidity scheme [8,9] developed
by Krieger-Schlag [17] for the energy critical wave maps. We refer to Sect. 3.2
for a brief comparison between our work and [16].

1.3 A brief history and broader context

A natural point of view is to place the present papers and results within the
larger context of nonlinear wave equations, of which the starting point is
the semilinear wave equation �u = ±|u|pu. More accurately, the (MKG)
equation belongs to the class of geometric wave equations, which includes
wave maps (WM), Yang-Mills (YM), Einstein equations, as well as many
other coupled models. Two common features of all these problems are that
they admit a Lagrangian formulation, and have some natural gauge invariance
properties. Following are some of the key developments that led to the present
work.

1. The null condition A crucial early observation in the study of both long
range and low regularity solutions to geometric wave equations was that the
nonlinearities appearing in the equations have a favorable algebraic structure,
which was called null condition, and which can be roughly described as a
cancellation condition in the interaction of parallel waves. In the low regularity
setting, this was first explored in work of Klainerman andMachedon [10], and
by many others later on.

2. The Xs,b spaces A second advance was the introduction of the Xs,b

spaces,1 also first used by Klainerman and Machedon [13] in the context of
the wave equation. Their role was to provide enough structure in order to
be able to take advantage of the null condition in bilinear and multilinear
estimates. Earlier methods, based on energy bounds, followed by the more
robust Strichartz estimates, had proved inadequate to the task.

3. The null frame spaces To study nonlinear problems at critical regularity
one needs to work in a scale invariant setting. However, it was soon realized
that the homogeneous Xs,b spaces are not even well defined, not to mention
suitable for this. The remedy, first introduced in work of the second author [41]
in the context of wave maps, was to produce a better description of the fine

1 The concept, and also the notation, is due to Bourgain, in the context of KdV and NLS type
problems.
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structure of waves, combining frequency and modulation localizations with
adapted frames in the physical space. This led to the null frame spaces, which
played a key role in subsequent developments for wave maps. We remark that
another scale invariant alternative to Xs,b spaces are the U p and V p spaces,
also originally developed by the second author; while these played a role in the
study of other nonlinear dispersive problems at critical regularity, they play no
role in the present story.

4. Renormalization A remarkable feature of all semilinear geometric wave
equations is thatwhile at high regularity (and locally in time) the nonlinearity is
perturbative, this is no longer the case at critical regularity. Precisely, isolating
the non-perturbative component of the nonlinearity, one can see that this is
of paradifferential type; in other words, the high frequency waves evolve on
a variable low frequency background. To address this difficulty, the idea of
Tao [34], also in the wave map context, was to renormalize the paradifferential
problem, i.e., to find a suitable approximate conjugation to the corresponding
constant coefficient problem.

5. Induction of energy The ideas discussed so far seem to suffice for small
data critical problems. Attacking the large data problem generates yet another
range of difficulties. One first step in this direction is Bourgain’s induction
of energy idea [2], which is a convenient mechanism to transfer information
to higher and higher energies. We remark that an alternate venue here, which
sometimes yields more efficient proofs, is the Kenig-Merle idea [9] of con-
structing minimal blow-up solutions. However, the implementation of this
method in problems which require renormalization seems to cause consider-
able trouble.

For a further discussion on this issue, we refer to the work of Krieger-Schlag
[17], where this method was carried out in the case of energy critical wave
maps into the hyperbolic plane. We also mention the recent paper [16], where
an independent proof of global well-posedness and scattering for (MKG) in
the Coulomb gauge was given following the above-mentioned ideas of Kenig-
Merle and Krieger-Schlag. See Sect. 3.2 for a brief comparison between the
approaches in this paper and [16].

6. Energy dispersion One fundamental goal in the study of large data
problems is to establish a quantitative dichotomy between dispersion and con-
centration. The notion of energy dispersion, introduced in joint work [32,33]
of the second author and Sterbenz in the wave map context, provides a con-
venient measure for pointwise concentration. Precisely, at each energy there
is an energy dispersion threshold below which dispersion wins. We remark
that, when it can be applied, the Kenig-Merle method [9] yields more accurate
information; for instance, see [17]. However, the energy dispersion idea, which
is what we follow in the present series of papers, is much easier to implement
in conjunction with renormalization.
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788 S.-J. Oh, D. Tataru

7. The frequency gap One obstacle in the transition from small to large data
in renormalizable problems is that the low frequency background may well
correspond to a large solution. Is this fatal to the renormalized solution? The
answer to that, also originating in [32,33], is that there may be a second hidden
source of smallness, namely a large frequency gap between the high frequency
wave and the low frequency background it evolves on.

8. Morawetz estimates The outcome of the ideas above is a dichotomy
between dispersion and scattering on one hand, and very specific concen-
tration patterns, e.g., solitons, self-similar solutions on the other hand. The
Morawetz estimates, first appearing in this role in the work of Grillakis [6],
are a convenient and relatively simple tool to eliminate such concentration
scenarios.

We now recall some earlier developments on geometric wave equations
related to the present paper. We start our discussion with the (MKG) problem
above the scaling critical regularity. In the two and three dimensional cases,
which are energy subcritical, global regularity of sufficiently regular solu-
tions was shown in the early works [4,5,23]. The former two in fact handled
the more general Yang-Mills-Higgs system. In dimension d = 3, this result
was greatly improved by [11], which established global well-posedness for
any finite energy data. In this work, the quadratic null structure of (MKG)
in the Coulomb gauge was uncovered and used for the first time. Subse-
quent developments were made by [3] and more recently [22], where an
essentially optimal local well-posedness result was established. An impor-
tant observation in [22] is that (MKG) in Coulomb gauge exhibits a secondary
multilinear cancellation feature. The related paper [7] is concerned with global
well-posedness of the same problem at low regularity. We also mention the
work [30], in which finite energy global well-posedness was established in
the Lorenz gauge. In the higher dimensional case d ≥ 4, an essentially
optimal local well-posedness result for a model problem closely related to
(MKG) was obtained in [15]. This was followed by further refinements in
[29,31].

The progress for the closely related Yang-Mills system (YM) in the sub-
critical regularity has largely paralleled that of (MKG), at least for small data.
Indeed, (YM) exhibits a null structure in the Coulomb gauge which is very
similar to (MKG). In particular, the aforementioned work [15] is also relevant
for the small data problem for (YM) in the Coulomb gauge at an essentially
optimal regularity.

However, a new difficulty arises in the large data2 problem for (YM):
namely, the gauge transformation law is nonlinear due to the non-abelian

2 More precisely, a suitable scaling critical norm of the connection A (e.g., ‖A‖Ld
x
) or the

curvature F (e.g., ‖F‖
L

d
2
x

) is large.
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gauge group. In particular, gauge transformations into the Coulomb gauge
obey a nonlinear elliptic equation, for which no suitable large data regular-
ity theory is available. Note, in comparison, that such gauge transformations
obey a linear Poisson equation in the case of (MKG). In [12], where finite
energy global well-posedness of the 3 + 1 dimensional (YM) problem was
proved, this issue was handled by localizing in space-time via the finite speed
of propagation to gain smallness, and then working in local Coulomb gauges.
An alternative, more robust approach without space-time localizations to the
same problem has been put forth by the first author in [24,25], inspired by
[36–40]. The idea is to use an associated geometric flow, namely the Yang-
Mills heat flow, to select a global-in-space Coulomb-like gauge for data of any
size.

Before turning to the (MKG) and (YM) problems at critical regularity, we
briefly recall some recent developments on the wave map equation (WM),
where many of the methods we implement here have their roots. We confine
our discussion to the energy critical problem in 2+1 dimensions, which is both
the most difficult and the most relevant to our present paper. For the small data
problem, global well-posedness was established in [34,35,42]. More recently,
the threshold theorem for large data wavemaps, which asserts that global well-
posedness and scattering hold below the ground state energy,was proved in [32,
33] when the target N is a general compact manifolds. Independently, global
well-posedness and scattering for (WM)were established in [17]whenN is the
hyperbolic plane and in [36–40] whenN is a general hyperbolic space. In both
cases, N is a non-compact manifold which do not admit any nontrivial finite
energy harmonic maps from R

2; moreover, an a-priori bound of the scattering
norm in terms of the energy followed immediately from the proofs of [17,36–
40]. In fact, [17] also established anonlinear profile decomposition for bounded
(in energy) sequences of wavemaps. See also [20] for a sharp refinement in the
case of a two-dimensional target, taking into account an additional topological
invariant (namely, the degree of the wave map). Our present strategy was
strongly influenced by [32,33],which can be seen as the first predecessor of this
work.

Despite the many similarities, there is a key structural difference between
(WM) on the one hand and (MKG), (YM) on the other, whose understanding is
crucial for making progress on the latter two problems. Roughly speaking, all
three equations can be written in a form where the main ‘dynamic variables’,
which we denote by φ, obey a possibly nonlinear gauge covariant wave equa-
tion�Aφ = · · · , and the associated curvature F[A] is determined by φ. In the
case of (WM), this dependence is simply algebraic, whereas for (MKG) and
(YM) the curvature F[A] obeys a wave equation with a nonlinearity depend-
ing on φ. This difference manifests in the renormalization procedure for each
equation: For (WM) it suffices to use a physical space gauge transformation,
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790 S.-J. Oh, D. Tataru

whereas for (MKG) and (YM) it is necessary to use a microlocal (more pre-
cisely, pseudo-differential) gauge transformation that exploits the fact that A
solves a wave equation in a suitable gauge.

Thefirst (MKG) renormalization argument appeared in [28], inwhich global
regularity of (MKG) for small critical Sobolev data was established in dimen-
sions d ≥ 6. This work was followed by a similar high dimensional result for
(YM) in [18]. Finally, the small data result in the energy critical dimension
4 + 1 was obtained in [19], which may be viewed as the second direct prede-
cessor to the present work. In particular we borrow a good deal of notations,
ideas and estimates from [19].

We end our introduction with a few remarks on the energy critical (YM)
problem in 4 + 1 dimensions, which is a natural next step after the present
work. The issue of non-abelian gauge group for the large data problem
has already been discussed. Another important difference between (MKG)
and (YM) in 4 + 1 dimensions is that the latter problem admits instan-
tons, which are nontrivial static solutions with finite energy. Therefore, in
analogy with (WM), it is reasonable to put forth the threshold conjecture
for the energy critical (YM) problem, namely that global well-posedness
and scattering hold below the energy of the first instanton. Finally, (YM)
is more ‘strongly coupled’ as a system compared to (MKG), in the sense
that the connection A itself obeys a covariant wave equation. This feature
seems to necessitate a more involved renormalization procedure compared to
(MKG).

2 Overview of the proof I: summary of the first two papers

The basic strategy for proving Theorem 1.3 is by contradiction, following the
scheme successfully developed in [32,33] in the setting of energy critical wave
maps. In the first two papers of the sequence [26,27] we establish successively
stronger continuation and scattering criteria, whose contrapositives provide
precise information about the nature of a finite time blow-up (i.e., failure of
global well-posedness) or non-scattering. In the present paper, we use this
information, as well as conservation laws and Morawetz-type monotonicity
formulae for (MKG), to perform a blow-up analysis and show that the failure
of Theorem 1.3 implies the existence of a nontrivial finite energy stationary
or self-similar solution to (MKG). Since such a solution does not exist (see
Sect. 7 below), Theorem 1.3 must hold.

In this section we review the main results and ideas of the earlier two papers
in the sequence [26,27]. In Sect. 3 we summarize the argument given in the
present paper. To steer away from unnecessary technical details we only con-
sider smooth data and solutions; however we remark that the results also apply
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to merely finite energy data and admissible CtH1 solutions. For the notation,
we refer to Sect. 4.

2.1 Local well-posedness in the global Coulomb gauge and
non-concentration of energy

The main result of the first paper [26] of the sequence is local well-posedness
of (MKG) in the global Coulomb gauge with a lower bound on the lifespan in
terms of the energy concentration scale

rc = rc(E)[a, e, f, g] := sup
{
r > 0 : ∀x ∈ R

4, EBr (x)[a, e, f, g] < δ0(E, ε2∗)
}
,

where Br (x) denotes the open ball of radius r with center x, δ0(E, ε2∗) =
c2ε2∗ min

{
1, ε4∗E−2

}
, c is an absolute constant and ε2∗ is the threshold for

the small energy global well-posedness result in [19] (see Theorem 4.1). A
simplified version of the main theorem of [26] is as follows:

Theorem 2.1 Given any E > 0 let δ0(E, ε2∗) > 0 be as above. Let (a, e, f, g)
be a smooth finite energy initial data for (MKG) satisfying the global Coulomb
gauge condition

∑
j ∂ j a j = 0. Then there exists a unique smooth solution

(A, φ) to (MKG) in the global Coulomb gauge on [−rc, rc] × R
4.

Theorem 2.1 implies that finite time blow-up is always accompanied by con-
centration of energy (i.e., rc → 0 at the end of the maximal lifespan). For
a precise statement, see Theorem 4.3. In what follows we explain the ideas
involved in the proof of local existence, which lies at the heart of Theorem 2.1.

2.1.1 Strategy of proof in model cases

For many other semi-linear equations, such as �u = ±u
d+2
d−2 or the wave

map equation, a result analogous to Theorem 2.1 is a rather immediate conse-
quence of small energy global well-posedness and finite speed of propagation.
Roughly speaking, the proof (of local existence) proceeds in the following
three steps:

Step A. One truncates the initial data locally in space to achieve small
energy.
Step B. By small energy global well-posedness, the truncated data give
rise to global solutions. Restricting these global solutions to the domain
of dependence of the truncated regions, one obtains a family of local-in-
spacetime solutions that agree with each other on the intersection of their
domains by finite speed of propagation.
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Step C. One patches together these solutions to obtain a local-in-time solu-
tion to the original initial data.

In particular, the lifespan of the solution constructed by this scheme depends
on the size of spatial truncation in Step A, which in turn is dictated by the
energy concentration scale rc of the initial data.

2.1.2 Non-locality of (MKG) in the global Coulomb gauge

When carrying out the above strategy in our setting, however, we face difficul-
ties arising from non-local features of (MKG) in the global Coulomb gauge.
One source of non-locality is the Gauss (or the constraint) equation

∂�e� = Im( f g), (2.1)

which must be satisfied by every (MKG) initial data set. Another source is
the presence of the elliptic equation for A0 in the global Coulomb gauge (cf.
(2.4)); in particular, finite speed of propagation fails in the global Coulomb
gauge.

In the remainder of this subsection, we give an overview of the techniques
developed in [26] for overcoming these issues, and explain how these can be
used to essentially execute Steps A-C above to obtain Theorem 2.1 from the
small energy global well-posedness theorem proved in [19] (see Theorem 4.1).

2.1.3 Execution of step A: initial data excision and gluing

Consider the problem of truncating a (MKG) initial data set3 (a, e, f, g) to a
ball B. A naive way to proceed would be to apply a smooth cutoff to each of
a, e, f, g. However, integrating the Gauss equation (2.1) by parts over balls
of large radius, we see that e j must in general be nontrivial on the boundary
spheres outside B, even if f and g are supported in B.

Instead, the idea of initial data excision and gluing4 is as follows: rather
than just excising the unwanted part, we glue it to another initial data set (i.e.,
solution to the Gauss equation) which has an explicit description, so that the

3 In application a obeys the global Coulomb gauge condition ∂�a� = 0, but this fact is irrelevant
for the discussion here.
4 We remark that similar techniques have been developed in mathematical general relativity,
as a means to construct a large class of interesting initial data sets for the Einstein equations.
Our setting involves a simpler constraint equation, but we require sharp techniques which are
applicable at the critical regularity.
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Gauss equation is still satisfied. For example, in the exterior of a ball B we
may glue to the data

(
e(q) j = q

2π2

x j
|x |4 , 0, 0, 0

)

with an appropriate q. Note that e(q) is precisely the electric field of an electric
monopole of charge q placed at the origin.

Using this ideawemay truncate (a, e, f, g) to balls tomake the energy suffi-
ciently small. Theminimum size of these balls, which later dictates the lifespan
of the solution, can be chosen to be proportional to the energy concentration
scale. This procedure is our analogue of step A.

2.1.4 Execution of step B: geometric uniqueness of admissible solution
to (MKG)

Though finite speed of propagation fails for (MKG) in certain gauges such
as the global Coulomb gauge, it is still true up to gauge transformations. We
refer to this statement as local geometric uniqueness for (MKG), and use it as
a substitute for the usual finite speed of propagation property.

Applying a suitable gauge transformation to each truncated initial data set
to impose the global Coulomb gauge condition, we are in position to apply the
small energy global well-posedness theorem (Theorem 4.1) and construct a
family of global smooth solutions. Restricting these solutions to the domain of
dependence of the truncated regions and appealing to local geometric unique-
ness, we obtain local-in-spacetime Coulomb solutions (i.e., obey ∂�A� = 0 on
the domains) which are gauge equivalent to each other on the intersection of
their domains. We refer to such solutions as compatible pairs5; geometrically,
these are precisely local descriptions of a globally defined pair of a connection
and a section on local trivializations of the bundle L .

2.1.5 Execution of step C: patching local Coulomb solutions

The final task is to patch together the local-in-spacetime descriptions of a solu-
tion (i.e., compatible pairs) to produce a global-in-space solution (A, φ) in the
global Coulomb gauge. We first adapt a patching argument of Uhlenbeck [43]
to produce a single global-in-space solution (A′, φ′) obeying an appropriate
S1 norm bound. The fact that a gauge transformation χ between Coulomb
gauges obeys the Laplace equation �χ = 0, and hence possesses improved
regularity, is important for this step. The solution (A′, φ′) obtained by this

5 See also Sect. 6.3 of the present paper, where this notion arises naturally from local limits of
a sequence of solutions.
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patching process is not necessarily in the global Coulomb gauge; it is however
approximately Coulomb (i.e., ∂�A′

� obeys an improved bound), since it arose
from patching together local Coulomb solutions. It is thus possible to find a
nicely behaved gauge transformation into the exact global Coulomb gauge,
leading us to the desired local-in-time solution.

2.2 Continuation of energy dispersed solutions

We now describe the content of [27]. The main theorem of [27] is a con-
tinuation/scattering criterion in the global Coulomb gauge for a large energy
solution (A, φ) to (MKG) in terms of its energy dispersion ED[φ](I ), defined
as

ED[φ](I ) = sup
k

(
2−k‖Pkφ‖L∞

t,x (I×R4) + 2−2k‖∂t Pkφ‖L∞
t,x (I×R4)

)
(2.2)

for any time interval I ⊆ R. A simple version is as follows:

Theorem 2.2 Given any E > 0, there exist positive numbers ε = ε(E) > 0
and F = F(E) such that the following holds. Let (A, φ) be a smooth solution
to (MKG) in the global Coulomb gauge (MKG-CG) on I × R

4 with energy
≤ E. If ED[φ](I ) ≤ ε(E), then the following a-priori S1 norm bound holds:

‖A0‖Y 1[I ] + ‖Ax‖S1[I ] + ‖φ‖S1[I ] ≤ F(E). (2.3)

Moreover, (A, φ) extends as a smooth solution past finite endpoints of I .

Theorem 2.2 is analogous to the main result in [32] for energy critical wave
maps. Thanks to the a-priori bound (2.3), the solution (A, φ) scatters towards
each infinite endpoint in the sense of Remark 1.4. For a more precise formu-
lation, see Theorems 4.7 and 4.8.

We now describe the main ideas of the proof of Theorem 2.2. In what
follows, we only consider solutions to (MKG) in the global Coulomb gauge.

2.2.1 Decomposition of the nonlinearity

We begin by describing the structure of the Maxwell-Klein-Gordon system in
the global Coulomb gauge (MKG-CG), which take the form

⎧
⎪⎨

⎪⎩

�A0 = Im(φ∂tφ) + (cubic terms)

�A j =P j Im(φ∂xφ) + (cubic terms)

�φ = − 2i Aμ∂μφ + (cubic terms)

(2.4)
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where P is the Leray L2-projection to the space of divergence-free vector
fields. We omitted cubic terms as they are strictly easier to handle. The elliptic
equation for A0 allows us to obtain the appropriate Y 1 bound oncewe establish
S1 bounds for Ax and φ; henceforth we focus on the wave equations for Ax
and φ.

As in the case of small energy global well-posedness [19], the null structure
of (MKG) in the global Coulomb gauge plays an essential role in the proof of
Theorem 2.2. All quadratic terms in the wave equations exhibit null structure,
i.e., cancellation in the angle between inputs in Fourier space. There is also
a secondary multilinear null structure in the term 2i Aμ∂μφ which arises by
plugging in the equations for A0, A j . All of this structure is necessary for
controlling the S1 norm of (A, φ), but it is by no means sufficient as we
discuss below.

2.2.2 Renormalization for large energy

Even in the case of small energy global well-posedness [19], the null structure
alone is not enough to bound the S1 norm of (A, φ) due to the paradifferential
term in the φ-equation

−
∑

k

2i P<k A
free · ∂x Pkφ.

Here Afree
j is the free wave evolution of A j [0] := (A j , ∂t A j ) �{t=0}. As in

[19,28], we handle this term by a renormalization argument. More precisely,
we treat the problematic term as a part of the linear operator and construct a
paradifferential parametrix. The construction in [19,28], however, relied on
smallness of the energy, which we lack in our setting. Instead we consider the
linear operator with a frequency gap m

�p,m
Afreeψ := �ψ +

∑

k

2i P<k−m Afree
x · ∂x Pkψ,

and gain smallness by takingm sufficiently large. This idea is akin to the gauge
renormalization procedure for wave maps in [32], where a large frequency gap
was used to control the large paradifferential term.

2.2.3 Role of energy dispersion

We now describe the role of small energy dispersion ED[φ]. Roughly speak-
ing, small energy dispersion allows us to gain in transversal balanced frequency
interactions. This complements the gain in parallel interactions, due to the null
condition, and the gain in the high × high → low interactions due to the
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favorable frequency balance. For instance, by interpolation with (non-sharp)
Strichartz norms controlled by the S1 norm, we have6

‖Pk(Pk1φPk2ψ)‖L2
t,x (I×R4) � 2− 1

2 min{k1,k2}ED[φ]θ‖Pk1φ‖1−θ

S1[I ]‖Pk2ψ‖S1[I ],
(2.5)

which is useful when k1 = k + O(1), k2 = k + O(1) and φ, ψ are at a large
angle so that the output modulation is high.

To see how this gain is useful, we return to the full nonlinear system (MKG)
in the global Coulomb gauge. Upon decomposing the inputs and output into
Littlewood-Paley pieces, most of the nonlinearity exhibits an off-diagonal
exponential decay in frequency. For example, the nonlinearity in the Ax -
equation obeys

‖PkPx (Pk1φ∂x Pk2φ)‖N [I ] � 2−δ(|k−k1|+|k−k2|)‖Pk1φ‖S1[I ]‖Pk2φ‖S1[I ].
Introducing again a large frequency gap m, we gain smallness except when
k1 = k + Om(1) and k2 = k + Om(1). Furthermore, thanks to the null
structure, we also gain extra smallness except for angled interaction; then we
are precisely in position to use ED[φ]. In conclusion, we gain smallness from
ED[φ] ≤ ε for the nonlinearity in the Ax -equation.

2.2.4 Linear well-posedness of �Aψ = f

Unfortunately the a-priori estimate (2.3) does not close yet, as there exists a
nonlinear term in the φ-equation with no off-diagonal exponential decay. This
part is precisely the low × high → high frequency and high × low → low
modulation interaction7 in the term −2i A · ∂xφ, i.e.,

− 2i
∑

k1<k
k2=k+O(1)

∑

j<k1

PkQ< j (Pk1Q j A · ∂x Pk2Q< jφ). (2.6)

Nevertheless, this term has the redeeming feature that it can be bounded by
a divisible norm: Given any ε > 0 the interval I can be split into smaller
pieces Ik on each of which the N norm of the above expression is bounded by
≤ ε2‖Pk2φ‖S1[I ], where the number of such intervals is O‖φ‖S1[I ],ε(1). For a

6 Note that (2.5) is symmetric in φ and ψ , so we may choose to use the energy dispersion norm
of either. Note also that all nonlinearity of (MKG) involve at least one factor of φ. This is why
it suffices to assume smallness of just ED[φ] and not A.
7 We note that this term is where the secondary multilinear cancellation structure of MKG-CG
is needed.

123



GWP and scattering of (4 + 1)-d MKG 797

solution (A, φ) to (MKG), this observation leads to linear well-posedness of
the magnetic wave equation8 �Aψ = f with bound

‖ψ‖S1[I ] �‖(Ax ,φ)‖S1[I ] ‖ψ[0]‖Ḣ1
x ×L2

x
+ ‖ f ‖N [I ], (2.7)

whereψ[0] := (ψ, ∂tψ)�{t=0}. The bound (2.7) allows us to setup an induction
on energy scheme to establish (2.3), which we now turn to explain.

2.2.5 Induction on energy

The starting point of our induction is the small energy global well-posedness
theorem [19], which implies that (2.3) holds with F(E) = C

√
E when the

energy E is sufficiently small. Our goal is to show the existence of a non-
increasing positive function c0(·) on the whole interval [0,∞) such that if the
conclusion of Theorem 2.2 holds for energy up to E , then it also holds for
energy up to E + c0(E). Monotonicity of c0(·) implies that it has a uniform
positive lower bound on every finite interval; thus the continuous induction
works for all energy.

In what follows, we describe the construction of c0(E), F := F(E+c0(E))

and ε := ε(E+c0(E)) under the induction hypothesis that Theorem 2.2 holds
up to energy E for some F(E) and ε(E). For the scheme to work, it is crucial
to let c0(E) depend only on E and not on F(E) or ε(E). On the other hand,
F and ε may depend on F(E) and ε(E).
Let (A, φ) be a solution on I ×R

4 with energy E + c0(E) and ED[φ] ≤ ε.
To prove (2.3) for (A, φ), we compare it with another solution ( Ã, φ̃) with
frequency truncated initial data9

( Ã j [0], φ̃[0]) = (P≤k∗ A j [0], P≤k∗φ[0])

where the ‘cut frequency’ k∗ ∈ R is chosen so that ( Ã, φ̃) has energy E . By
taking c0(E) and ε sufficiently small, we aim for the following two goals:

Goal A. The energy dispersion ED[φ̃](I ) is sufficiently small so that the
induction hypothesis applies to ( Ã, φ̃). Hence

‖ Ã0‖Y 1[I ] + ‖ Ãx‖S1[I ] + ‖φ̃‖S1[I ] ≤ F(E). (2.8)

8 More precisely, the observation regarding (2.6), combined with the paradifferential para-
metrix construction mentioned above, implies well-posedness of the equation �p,m

A ψ :=
�ψ + 2i

∑
k P<k−m Aμ∂μPkψ = f for sufficiently large m with bound (2.7). The terms in

�A − �p,m
A also turn out to be bounded by divisible norms, which leads to the well-posedness

of �Aψ = f .
9 In the global Coulomb gauge, Ax [0] = (Ax , ∂t Ax )(0) and φ[0] = (φ, ∂tφ)(0) determine the
whole initial data set (a, e, f, g), as we can solve for A0 in the constraint equation −�A0 =
Im(φ∂tφ) − |φ|2A0.
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Goal B. The difference (Bhigh, ψhigh) := (Aμ − Ãμ, φ − φ̃) obeys

‖Bhigh
0 ‖Y 1[I ] + ‖Bhigh

x ‖S1[I ] + ‖ψhigh‖S1[I ] ≤ CE,F(E). (2.9)

Adding (2.8) and (2.9), the desired bound (2.3) would follow with F :=
F(E) + CE,F(E).
Goal A is accomplished by showing that if ε is sufficiently small, then

( Ã, φ̃) is arbitrarily close (i.e., within εδ) to the frequency truncated solution
(P≤k∗ A, P≤k∗φ) which has small energy dispersion. For Goal B, the idea is
to view (Bhigh, ψhigh) as a perturbation around ( Ã, φ̃). To ensure that c0(E)

is independent of F(E), we rely on two observations: First, by the weak
divisibility10 of the S1 norm, the interval I can be split into OF(E)(1) many
subintervals Ik on each of which we have

‖ Ã0‖Y 1[Ik ] + ‖ Ãx‖S1[Ik ] + ‖φ̃‖S1[Ik ] �E 1. (2.10)

Second, by conservation of energy for (A, φ) and ( Ã, φ̃), as well as the approx-
imation ( Ã, φ̃) ≈ (P≤k∗ A, P≤k∗φ), it follows that the Ḣ1

x × L2
x norm of the

data for (Bhigh, ψhigh) can be reinitialized to be of size � c0(E) on each Ik .
With these two observations in hand, we claim that (Bhigh, ψhigh) obeys

the following S1 norm bound on each Ik :

‖Bhigh
0 ‖Y 1[Ik ] + ‖Bhigh

x ‖S1[Ik ] + ‖ψhigh‖S1[Ik ] �E c0(E) + OF
(
εδ

)
.

(2.11)

Indeed, in the equation for (Bhigh, ψhigh), all nonlinear terms in (Bhigh, ψhigh)

can be handled by taking c0(E) �E 1 and ε �F 1. Furthermore, exploit-
ing small energy dispersion, all linear terms can be made appropriately small
except −2i Aμ∂μψhigh . Nevertheless, the S1 norm of (A, φ) on I can be
assumed to be �E 1 by (2.10) and a bootstrap assumption11; hence we can
group this term with � and use (2.7) (linear well-posedness of �A ψhigh) to
arrive at (2.11). Goal B now follows by summing up this bound on OF(E)(1)
intervals.

10 This terminology should be compared with full divisibility, which means that I can be split
into a controlled number of subintervals, on each ofwhich the restricted norm is arbitrarily small.
Weak divisibility of the S1 norm is a quick consequence of the energy inequality ‖ψ‖S1[I ] �
‖ψ[0]‖Ḣ1

x ×L2
x
+ ‖�ψ‖N [I ] and (full) divisibility of the N norm.

11 More precisely, in proving (2.11) we may assume, using a continuous induction in time, that
the same bound holds with a worse constant. Combined with (2.10) this bound is sufficient for
ensuring that the S1 norm of (A, φ) is �E 1.
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3 Overview of the proof II: content of the present paper

This section is a continuation of the previous section. Section 3.1 provides
an overview of the argument in the present paper, thereby completing the
summary of our entire proof of Theorem 1.3. In Sect. 3.2, we give a brief com-
parison of our approachwith that of the recentwork [16] ofKrieger-Luḧrmann.
Finally, Sect. 3.3 contains an outline of the structure of the remainder of the
paper.

3.1 Blow-up analysis

Here we give an overview of the final blow-up analysis of (MKG), which
is carried out in the present paper. This part is analogous to [33] for energy
critical wave maps. We refer to Sect. 4 for the notation used below.

3.1.1 Main ingredients

In addition to the continuation/scattering criteria established in [26,27] (see
Theorems 2.1 and 2.2), our blow-up analysis of (MKG) relies on the following
three key ingredients:

– Monotonicity formula for (MKG) Besides the conservation of energy, we
use the following monotonicity (or Morawetz) formula for (MKG). Let
ρ := √

t2 − |x |2 and

X0 := 1

ρ
(t∂t + x · ∂x )

be the normalized scaling vector field. To avoid the degeneracy of ρ on
∂C = {t = |x |}, we also define the translates

ρε :=
√

(t + ε)2 − |x |2, Xε := 1

ρε

((t + ε)∂t + x · ∂x ).

Given a smooth solution (A, φ) to (MKG) on the truncated cone C[ε,1]
satisfying

ES1[A, φ] ≤ E, F∂C[ε,1] [A, φ] ≤ ε
1
2 E, GS1[φ] ≤ ε

1
2 E,

where F∂C[t0,t1] := ESt1 − ESt0 is the energy flux through ∂C[t0,t1] and
GSt := 1

t

∫
St

|φ|2, we have
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∫

S1

(Xε)PT [A, φ] dx +
∫∫

C[ε,1]

1

ρε

|ιXε F |2 + 1

ρε

∣
∣
∣
∣

(
DXε + 1

ρε

)
φ

∣
∣
∣
∣

2

dtdx

�
∫

Sε

(Xε)PT [A, φ] dx + E .

(3.1)

Here (Xε)PT [A, φ] is a non-negative weighted energy density; we refer
to Lemma 5.10 for an explicit formula for (Xε)PT [A, φ]. We remark that
the entire right-hand side of (3.1) is bounded by � E . Finiteness of the
space-time integral term ‘breaks the scaling’ and implies that ιXε F and
(DXε + 1

ρε
)φ decay near the tip of the cone C .

– Strong local compactness result Given a sequence (A(n), φ(n)) of solutions
whose energy is uniformly small and ιX F (n) → 0 and (D(n)

X +b)φ(n) → 0
in L2

t,x on a space-time cube for some smooth time-like vector field X
and smooth function b, we show that there exists a subsequence which
converges strongly in (essentially) H1

t,x in a smaller subcube; see Proposi-
tion 6.1 for more details. The proof relies on the initial data excision/gluing
technique and the small energy global well-posedness theorem.

– Triviality of finite energy stationary/self-similar solutions We say that
(A, φ) is a stationary solution to (MKG) if for some constant time-like
vector field Y

ιY F = 0, DYφ = 0,

and that (A, φ) is a self-similar solution if

ιX0F = 0,

(
DX0 + 1

ρ

)
φ = 0.

Using the method of stress tensor, we show that every smooth station-
ary or self-similar solution with finite energy is trivial (i.e., F = 0 and
φ = 0); see Propositions 7.1 and 7.2. We also establish a regularity result
(Proposition 7.3), which says that all stationary and self-similar solutions
arising from the above strong local compactness result (Proposition 6.1)
are smooth.

With these in mind, we now sketch the blow-up analysis of (MKG), which
is performed in full detail in Sect. 8.

3.1.2 Finite time blow-up/non-scattering scenarios and initial reduction

Suppose that the conclusion of Theorem 1.3 fails for a smooth finite energy
data (a, e, f, g) in the forward time direction. Then the corresponding smooth
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solution either blows up in finite time, or does not scatter as t → ∞. The
first step of the blow-up analysis is to construct in both scenarios a sequence
of global Coulomb solutions (A(n), φ(n)) on [εn, 1] × R

4 (where εn → 0)
obeying the following properties:

– Bounded energy in the cone ESt [A(n), φ(n)] ≤ E for every t ∈ [εn, 1]
– Small energy outside the cone E({t}×R4)\St [A(n), φ(n)] � E for every t ∈

[εn, 1]
– Decaying flux on ∂C F[εn,1][A(n), φ(n)] + GS1[φ(n)] ≤ ε

1
2
n E ,

– Pointwise concentration at t = 1 There exist kn ∈ Z and xn ∈ R
4 such

that

2−kn |ζ2−kn ∗ φ(n)(1, xn)| + 2−2kn |ζ2−kn ∗ D(n)
t φ(n)(1, xn)| > e (3.2)

for some e = e(E) > 0.

Here ζ is a smooth function supported in the unit ball B1(0) and ζ2−k (x) :=
24kζ(2k x). In view of the next step, we require ζ to be non-negative. See
Lemma 8.4 for details.

Key to this construction are Theorems 2.1 and 2.2, which provide detailed
information about finite time blow-up or non-scattering scenarios. In partic-
ular, the tip of the cone C is the point of energy concentration (which exists
by Theorem 2.1) in the finite time blow-up case. Pointwise concentration at
t = 1 follows from the failure of the energy dispersion bound in Theorem 2.2.
Decaying flux on ∂C is a consequence of the local conservation of energy and
localized Hardy’s inequality; see Lemma 5.2 and Corollary 5.3. Smallness of
the energy outside the cone is achieved using the initial data excision/gluing
technique in the finite time blow-up case; in the non-scattering case, this prop-
erty is trivial to establish.

3.1.3 Elimination of the null concentration scenario

Thanks to the above properties, we may apply the monotonicity formula (3.1)
to each solution in the sequence (A(n), φ(n)). Using the weighted energy term
(i.e., the first term on the left-hand side) in (3.1), we show in Lemma 8.7 that
the null concentration scenario (i.e., |xn| → 1 and kn → ∞) is impossible.
Unlike in the case of wave maps [33], however, the weighted energy involves
the covariant derivativesD(n)

μ φ(n) = ∂μφ(n)+i A(n)
μ φ(n), and the term involving

A(n) could be problematic. We avoid this issue by first working with the gauge
invariant amplitude |φ(n)|, for which we have the diamagnetic inequality

|Xμ∂μ|φ(n)|| ≤ |DXφ(n)|
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in the sense of distributions, for any smooth vector field X . We then transfer
the bound to φ(n) using the inequality

|ζ2−k ∗ φ(n)| ≤ ζ2−k ∗ |φ(n)|,

which holds if ζ is chosen to be non-negative.

3.1.4 Nontrivial energy in a time-like region

The absence of the null concentration scenario implies the following uniform
lower bound for φ(n) away from the boundary at t = 1: There exist E1 =
E1(E) > 0 and γ1 = γ1(E) ∈ (0, 1) such that

∫

S
1−γ1
1

4∑

μ=0

|D(n)
μ φ(n)|2 + 1

r2
|φ(n)|2 dx ≥ E1. (3.3)

See Lemma 8.9. Using a localized version of the monotonicity formula (3.1),
this lower bound can be propagated towards t = 0. More precisely, there exist
E2 = E2(E) and γ2 = γ2(E) ∈ (0, 1) and E2 = E2(E) > 0 such that

∫

S
(1−γ2)t
t

(X0)PT
[
A(n), φ(n)

]
dx ≥ E2 for all t ∈

[
ε
1
2
n , ε

1
4
n

]
. (3.4)

3.1.5 Final rescaling

Thanks to the space-time integral term in (3.1), (A(n), φ(n)) obeys

∫∫

C[εn ,1]

1

ρεn

|ιXεn
F (n)|2 + 1

ρεn

∣
∣
∣
∣

(
D(n)

Xεn
+ 1

ρεn

)
φ(n)

∣
∣
∣
∣

2

dtdx � E .

which implies an integrated decay of ιXεn
F (n) and (D(n)

Xεn
+ 1

ρεn
)φ(n) near the

tip of the coneC . Applying the pigeonhole principle and rescaling, we obtain a
newsequence of solutionswhich is asymptotically self-similar.More precisely,
there exist a sequence of solutions on [1, Tn]×R

4 (where Tn → ∞) to (MKG),
which we still denote by (A(n), φ(n)), obeying the following properties (see
Lemma 8.11):

– Bounded energy in the cone ESt [A(n), φ(n)] ≤ E for every t ∈ [1, Tn],
– Small energy outside the cone E{t}×R4\St [A(n), φ(n)] � E for every t ∈

[1, Tn],
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– Nontrivial energy in a time-like region For every t ∈ [1, Tn] we have
∫

S
(1−γ2)t
t

(X0)PT
[
A(n), φ(n)

]
dx ≥ E2, (3.5)

– Asymptotic self-similarity For every compact subset K of the interior of
C[1,∞), we have

∫∫

K
|ιX0F

(n)|2 +
∣
∣
∣
∣

(
D(n)

X0
+ 1

ρ

)
φ(n)

∣
∣
∣
∣

2

dtdx → 0 as n → ∞. (3.6)

3.1.6 Extraction of concentration scales and compactness/rigidity argument

Let (A(n), φ(n)) be a sequence obtained by the final rescaling argument. Using
a combinatorial argument, we show in Lemma 8.12 that one of the following
two scenarios holds:

A. Either we can identify a sequence of points and decreasing scales at which
energy concentrates, or

B. There is a uniform non-concentration of energy.

In Scenario A we obtain a fixed number r > 0 and a sequence of times
tn → t0, points xn → x0 and scales rn → 0 such that

sup
x∈Br (xn)

E{tn}×Brn (x)

[
A(n), φ(n)

]

is uniformly small but nontrivial, and

1

4rn

∫ tn+2rn

tn−2rn

∫

Br (xn)
|ιY F (n)|2 + |D(n)

Y φ(n)|2 dtdx → 0 as n → ∞.

where Y = X0(t0, x0). Applying Proposition 6.1, we obtain as a limit a non-
trivial finite energy solution to (MKG) which is stationary with respect to Y .
As discussed above, however, such solutions do not exist.

In Scenario B we can cover each truncated cone C̃ j := C1/2
[1/2,∞) ∩

{
2 j ≤ t < 2 j+1

}
with spatial balls of radius r = r( j), on each of which

the energy of (A(n), φ(n)) is uniformly small and

∫∫

C̃ j

|ιX0F
(n)|2 +

∣
∣
∣
∣

(
D(n)

X0
+ 1

ρ

)
φ(n)

∣
∣
∣
∣

2

dtdx → 0 as n → ∞.

Hence we are again in position to apply Proposition 6.1 and extract a finite
energy self-similar solution to (MKG) on C1/2

[1/2,∞). By self-similarity, this
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804 S.-J. Oh, D. Tataru

limit easily extends to the whole forward cone C . By (3.5) this limit is nec-
essarily nontrivial, which contradicts the triviality of finite energy self-similar
solutions.

In conclusion, we have seen that neither of the two scenarios can hold, which
is a contradiction. This completes the proof of the main theorem.

3.2 Comparison with the approach of [16]

The principal difference between the present work and [16] is that the latter
follows the Kenig-Merle concentration compactness/rigidity scheme [9] for
establishing global well-posedness and scattering. Roughly, this scheme con-
sists of two steps: First, assuming that the conclusion fails, one constructs a
blow-up solution with theminimal energy. Second, one derives a contradiction
by playing various conservation laws and monotonicity formulae of (MKG)
against special compactness properties of the minimal blow-up solution. As an
immediate corollary, this approaches yields some additional information about
the solutions, such as an a-priori bound on the S1 norm in terms of the energy.
On the other hand, as we explain below, the execution of this scheme in the
presence of a non-perturbative paradifferential nonlinearity faces considerable
difficulty, a large part of which is avoided in the present work.

The main ingredient for construction of a minimal blow-up solution is the
concentration compactness phenomenon, or nonlinear profile decomposition,
for (MKG) in the global Coulomb gauge, whose proof takes up the majority of
[16]. This concept was first introduced in the context of elliptic PDEs by Lions
[21] and was adapted to the semilinear wave equation �u = |u|4u on R

1+3

by Bahouri-Gérard [1]. It roughly states that any sequence of solutions with
uniformly bounded energy can be decomposed (after passing to a subsequence,
on a suitable time interval) into the superposition of solutionsmodulated by the
non-compact symmetries of the problem (called profiles) and an error which
can be made arbitrarily small in an appropriate norm weaker than energy.

Key to the proof of concentration compactness in [1] is the asymptotic
vanishing of the interaction among different profiles, whose frequency and
space-time supports are diverging from each other. However, such a statement
partly fails for (MKG), due to the non-perturbative effect of the low frequency
part of the solution on the high frequency part through the paradifferential
nonlinearity. In [16], this difficulty is overcome by performing an induction
on frequency, where one carefully builds a profile decomposition in the order
of increasing frequency. This delicate procedure, which originated from the
earlier work of Krieger-Schlag [17], necessitates several ideas not used in our
approach, such as a process for extracting linear profiles using the paradiffer-
ential magnetic wave equation and a uniform dispersive estimate for such a
equation (see [16, Sect. 7.5]).
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Another notable difference between this paper and [16] is the con-
servation laws and monotonicity formulae used in the proof. While the
present paper relies only on the energy conservation and the Morawetz-type
monotonicity formula (3.1), [16] uses in addition momenta conservation and
a virial-type monotonicity formula for (MKG), which are of independent
interest.

3.3 Structure of the present paper

The remainder of the paper is structured as follows.

Section 4

We provide the setup for our arguments to follow. In particular, we precisely
state the results that we need from the other papers of the series [26,27] in
Sect. 4.5.

Section 5

We state and prove all the conservation laws and monotonicity formulae that
are used in this paper.

Section 6

We use the small energy global well-posedness theorem (Theorem 4.1) and
the technique of initial data excision/gluing to prove a strong local compact-
ness statement (Proposition 6.1) that we rely on in our blow-up analysis.
We also formulate a notion of weak solutions to (MKG) and their local
descriptions (weak compatible pairs), which naturally arise as limits from
Proposition 6.1.

Section 7

We show that there does not exist any nontrivial stationary or self-similar
solutions to (MKG) with finite energy. We also prove regularity theorems for
weak stationary or self-similar solutions to (MKG) considered in Sect. 6.

Section 8

We finally carry out the blow-up analysis as outlined in Sect. 3.1, thereby
completing the proof of global well-posedness and scattering of (MKG).
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4 Preliminaries

4.1 Notation for constants and asymptotics

Throughout the paper we use C for a general positive constant, which may
vary from line to line. For a constant C that depends on, say, E , we write
C = C(E). We write A � B when there exists a constant C > 0 such that
A ≤ CB. When the implicit constant should be regarded as small, we write
A � B. The dependence of the constant is specified by a subscript, e.g.,
A �E B. We write A ≈ B when both A � B and B � A hold.

4.2 Coordinate systems on R
1+4

Several different coordinate systems onR1+4 will be used in this paper. A basic
choice, which has already beenmentioned in the introduction, is the rectilinear
coordinates (x0, x1, . . . , x4) on R

1+4, in which the Minkowski metric takes
the diagonal formm = −(dx0)2+(dx1)2+· · ·+(dx4)2. Alternatively, wewill
often write t = x0 and x = (x1, . . . , x4) as well. We reserve the greek indices
μ, ν, . . . for expressions in the rectilinear coordinates, and the latin indices
j, k, �, . . . expressions only in terms of the spatial coordinates x1, x2, x3, x4.
We also introduce the polar coordinates (t, r, �) on R

1+4, where

r = |x |, � = x

|x | ∈ S
3,

and the null coordinates (u, v, �), defined by

u = t − r, v = t + r.

We can furthermore specify a spherical coordinate system for �, but it will
not be necessary. We also define the null vector fields L , L as

L = ∂t + ∂r = 2∂v, L = ∂t − ∂r = 2∂u .

In these coordinates, the metric takes the form

m = −dt2 + dr2 + r2gS3 = −dudv + r2(u, v)gS3 .

where gS3 is the standard metric on S
3 in the coordinates �.

Finally, we will also use the hyperbolic polar coordinates (in short,
hyperbolic coordinates) (ρ, y, �) on the future light cone C(0,∞) =
{(t, r, �) : 0 ≤ r < t} (see below), where
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ρ =
√
t2 − r2, y = tanh−1(r/t).

The Minkowski metric takes the form

m = −dρ2 + ρ2 (
dy2 + sinh2 y gS3

)
.

Every constant ρ hypersurfaceHρ is isometric to the simply connected space
of constant sectional curvature − 1

ρ2 ; in particular, H1 is the hyperboloidal

model for the hyperbolic 4-spaceH4. Using the coordinates (y, �), the metric
on H

4 can be written as

gH4 = dy2 + sinh2 y gS3 .

4.3 Geometric notation

To ease the transition from one coordinate system to another, we shall use
the tensor formalism. We will denote by ∇ the Levi-Civita connection on
R
1+4 to distinguish from coordinate vector fields ∂μ. The gauge covariant

connection associated to A for C-valued tensors takes the form D = ∇ + i A.
Similarly, we shall denote the Levi-Civita connection on H

4 by ∇H4 , and the
gauge covariant connection byDH4 = ∇H4 + i A. We use the bold latin indices
a,b, . . . for expressions in a general coordinate system. We also employ the
usual convention of raising and lowering indices using the Minkowski metric
m, and summing up repeated upper and lower indices.

We now introduce some notation for geometric subsets of R1+4 and R
4.

The forward light cone

C := {(t, x) : 0 < t < ∞, |x | ≤ t}

will play a central role in this paper. For t0 ∈ R and I ⊂ R, we define

CI := {(t, x) : t ∈ I, |x | ≤ t} , ∂CI := {(t, x) : t ∈ I, |x | = t} ,

St0 := {(t, x) : t = t0, |x | ≤ t} , ∂St0 := {(t, x) : t = t0, |x | = t} .

For δ ∈ R, we define the translated cones

Cδ := {(t, x) : max {0, δ} ≤ t < ∞, |x | ≤ t − δ} .

The corresponding objects Cδ
I , ∂C

δ
I , S

δ
t0 and ∂Sδ

t0 are defined in the obvious
manner.

We also define Br (x) to be the ball of radius r centered at x in R
4.
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4.4 Frequency projections and function spaces

Let m≤0 be a smooth cutoff that equals 1 on {r ≤ 1} and 0 on {r ≥ 2}. For
k ∈ Z, we define

m≤k(r) := m≤0(r/2
k), mk(r) := m≤k(r) − m≤k−1(r).

so that suppmk ⊆ {
2k−1 ≤ r ≤ 2k+1

}
and

∑
k mk(r) = 1. We introduce the

Littlewood-Paley projections Pk, Q j and S�, which are used in this paper:

Pkϕ = F−1[mk(|ξ |)F[ϕ]],
Q jϕ = F−1[m j (||τ | − |ξ ||)F[ϕ]],
S�ϕ = F−1[m�(|(τ, ξ)|)F[ϕ]],

where F [resp. F−1] is the [resp. the inverse] space-time Fourier transform.
Given a normed space X of function on R

1+4, we define the restriction
space X (O) on a measurable subset O ⊆ R

1+4 by the norm

‖ϕ‖X (O) := inf
ψ=ϕ on O

‖ψ‖X (R1+4).

In application, the setO is often an open set with (piecewise) smooth boundary,
and hence there exists a bounded linear extension operator from X (O) to
X (R1+4) for many standard function spaces X (e.g., X = H1).

4.5 Results from previous papers

Here we give precise statements of results from [19] and the first two papers in
the sequence [26,27], which are used in the present paper. Given a measurable
subset S ⊆ {t}×R

4 for some t , we define the energy of a pair (A, φ) on S by

ES[A, φ] :=
∫

S

1

2

∑

0≤μ<ν≤4

|Fμν |2 + 1

2

4∑

μ=0

|Dμφ|2 dx .

Accordingly, for a measurable subset S ⊆ R
4, we define

ES[a, e, f, g] :=
∫

S

1

2

∑

1≤ j<k≤4

|(da) jk |2 + 1

2

4∑

j=1

|e j |2

+1

2

4∑

j=1

|D j f |2 + 1

2
|g|2 dx .

The following is the main theorem of [19].
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Theorem 4.1 (Small energy global well-posedness in global Coulomb gauge)
There exists ε∗ > 0 such that the following holds. Let (a, e, f, g) be an H1

initial data set onR4 satisfying the global Coulomb gauge condition ∂�a� = 0,
whose energy does not exceed ε2∗ , i.e.,

ER4[a, e, f, g] ≤ ε2∗ . (4.1)

(1) Then there exists a unique CtH1 admissible solution (A, φ) to (MKG)
on R

1+4 satisfying the global Coulomb gauge condition ∂�A� = 0 with
(a, e, f, g) as its initial data at t = 0, i.e., (A j , F0 j , φ,Dtφ) �{t=0}=
(a j , e j , f, g).

(2) Moreover, (A, φ) obeys the S1 norm bound

‖A0‖Y 1(R1+4) + ‖Ax‖S1(R1+4) + ‖φ‖S1(R1+4) � ‖(a, e, f, g)‖H1 . (4.2)

(3) If the initial data set (a, e, f, g) is more regular, then so is the solution
(A, φ); in particular, if (a, e, f, g) is classical, then (A, φ) is a classical
solution to (MKG).

(4) Finally, given a sequence (a(n), e(n), f (n), g(n)) ∈ H1(R4) of Coulomb
initial data sets such that E[a(n), e(n), f (n), g(n)] ≤ ε2∗ and (a(n), e(n),

f (n), g(n)) → (a, e, f, g) in H1(R4), we have

‖A(n)
0 − A0‖Y 1(I×R4) + ‖A(n)

x − Ax‖S1(I×R4) + ‖φ(n) − φ‖S1(I×R4) → 0

(4.3)

as n → ∞, for every compact interval I ⊆ R.

The first statement can be found directly in the main theorem of [19]. For the
proof of the remaining statements, see [19, Sect. 5].

Remark 4.2 For the purpose of the present paper, the precise structure of the
norm S1 is not necessary. Instead, we rely on the following embedding prop-
erty:

‖∂t,xφ‖L∞
t L2

x
+ ‖�φ‖

L2
t Ḣ

− 1
2

x

�‖φ‖S1,

where all norms are taken on R
1+4; see [19, Sect. 3] or [27, Sect. 3]. On the

other hand, the definition of the Y 1 norm is rather simple:

‖A‖2Y 1 := ‖∂t,x A‖2L∞
t L2

x
+ ‖∂t,x A‖2

L2 Ḣ
1
2
x
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where all norms are again taken on R
1+4. Furthermore, S1 and Y 1 are closed

under multiplication by η ∈ C∞
0 (R1+4), i.e., ηS1(R1+4) ⊆ S1(R1+4) and

ηY 1(R1+4) ⊆ Y 1(R1+4); we refer to [26, Sects. 6 and 7].

Given a positive number E � ε∗ and an H1 initial data set (a, e, f, g)
on R

4 with energy E[a, e, f, g] ≤ E , we define its energy concentration
scale rc = rc[a, e, f, g] (with respect to energy E), in terms of the function
δ0(E, ε2∗) = cε2∗ min

{
1, ε4∗E−2

}
with a small universal constant c, by

rc = rc(E)[a, e, f, g] := sup
{
r ≥ 0 : ∀x ∈ R

4, EBr (x)[a, e, f, g]
< δ0

(
E, ε2∗

)}
. (4.4)

The following is the main result of [26].

Theorem 4.3 (Large energy local well-posedness theorem in global Coulomb
gauge) Let (a, e, f, g) be anH1 initial data set satisfying the global Coulomb
gauge condition ∂�a� = 0 with energy E[a, e, f, g] ≤ E. Let rc =
rc[a, e, f, g] be defined as above. Then the following statements hold:
(1) Existence and uniqueness. There exists a unique admissibleCtH1 solution

(A, φ) to (MKG) on [−rc, rc] ×R
4 satisfying the global Coulomb gauge

condition with (a, e, f, g) as its initial data.
(2) A-priori S1 regularity. We have the additional regularity properties

A0 ∈ Y 1[−rc, rc], Ax , φ ∈ S1[−rc, rc].
(3) Persistence of regularity. If the initial data set (a, e, f, g) is more regular,

then so is the solution (A, φ); in particular, the solution (A, φ) is classical
if (a, e, f, g) is classical.

(4) Continuous dependence. Consider a sequence (a(n), e(n), f (n), g(n))

of H1 Coulomb initial data sets such that (a(n), e(n), f (n), g(n)) →
(a, e, f, g) in H1. Then the lifespan of (A(n), φ(n)) eventually contains
[−rc, rc], and we have

‖A0 − A(n)
0 ‖Y 1[−rc,rc] + ‖

(
Ax − A(n)

x , φ − φ(n)
)
‖S1[−rc,rc] → 0

as n → ∞.

We also state the initial data excision/gluing result from [26], which is used
in several places in the present paper. Given a measurable subset O ⊆ R

4, the
H1(O) norm is defined as the restriction of the H1(R4) norm to O , and the
spaceH1(O) consists of all initial data sets on O with finiteH1(O) norm.

Proposition 4.4 (Excision and gluing of initial data sets) Let B = Br0(x0) ⊆
R
4. Then there exists anoperator Eext fromH1(2B\B) toH1(R4\B) satisfying

the following properties.

123



GWP and scattering of (4 + 1)-d MKG 811

(1) Extension property:

Eext[a, e, f, g] = (a, e, f, g) on the annulus
3

2
B\B.

(2) Uniform bounds:

‖Eext[a, e, f, g]‖H1(R4\B) � ‖(a, e, f, g)‖H1(2B\B) (4.5)

E
R4\B[Eext[a, e, f, g]] � ‖ 1

|x − x0| f ‖
2
L2
x (2B\B)

+ E2B\B[a, e, f, g].
(4.6)

(3) Regularity: Theoperator Eext is continuous fromH1(2B\B) toH1(R4\B).
Moreover, if (a, e, f, g) is classical, then so is Eext[a, e, f, g].

In order to gain control of the first norm on the right in (4.6), wewill repeatedly
use the following improvement of the classical Hardy inequality, which is a
consequence of a result proved in [26], Lemma 6.5:

Lemma 4.5 Let σ ≥ 2. Then for any ball B of radius r in R
4 we have the

bounds

r−1‖ f ‖L2
x (2B) � ‖Dx f ‖L2

x (σ B) + σ−1‖Dx f ‖L2
x (R

4\σ B) (4.7)

r−1‖ f ‖L2
x (2B\B) � ‖Dx f ‖L2

x (σ B\B) + σ−1‖Dx f ‖L2
x (R

4\σ B) (4.8)

Furthermore, we state the local geometric uniqueness result from [26],
which we use in this paper to construct compatible pairs. For a ball B =
{t0}× Br0(x0) ⊆ {t0}×R

4, we define its future domain of dependenceD+(B)

to be the set

D+(B) := {
(t, x) ∈ R

1+4 : t0 ≤ t < r0, |x − x0| < t − t0
}
.

Given a measurable subset O ⊆ R
4, the space G2(O) consists of locally

integrable gauge transformations such that the following semi-norm is finite:

‖χ‖G2(O) := ‖∂xχ‖L4
x (O) + ‖∂(2)

x χ‖L2
x (O).

Given a measurable subset O ⊆ R
1+4, define Ot := O ∩ ({t} × R

4) and
I (O) := {t ∈ R : Ot �= ∅}. Note that I (O) ismeasurable andOt ismeasurable
for almost every t . Accordingly, we define the space CtG2(O) by the semi-
norm
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‖χ‖CtG2(O) := ess sup
t∈I (O)

(
‖χ‖Ḣ2

x ∩Ẇ 1,4
x ∩BMO(Ot )

+‖∂tχ‖Ḣ1
x ∩L4

x (Ot )
+ ‖∂2t χ‖L2

x (Ot )

)
.

Proposition 4.6 (Local geometric uniqueness among admissible solutions)
Let T0 > 0 and let B ⊂ R

4 be an open ball. Consider CtH1 admissible
solutions (A, φ), (A′, φ′) on the region

D := D+({0} × B) ∩ ([0, T0) × R
4).

Suppose that the respective initial data (a, e, f, g) and (a′, e′, f ′, g′) are
gauge equivalent on B, i.e., there exists χ ∈ G2(B) such that (a, e, f, g) =
(a′ − dχ, e′, eiχ f ′, eiχg′). Then there exists a unique gauge transformation

CtG2(D) such that χ �{0}×B= χ and

(A, φ) = (A′ − dχ, eiχφ′) on D.

We now pass to results from [27]. Given an interval I ⊆ R, we define the
energy dispersion of a function φ on I × R

4 by

ED[φ](I ) := sup
k∈Z

(
2−k‖Pkφ‖L∞

t,x (I×R4) + 2−2k‖Pk(∂tφ)‖L∞
t,x (I×R4)

)
(4.9)

The main theorem of [27] is as follows.

Theorem 4.7 (Energy dispersed regularity theorem) For each E > 0 there
exist positive numbers ε = ε(E) and F = F(E) such that the following holds.
Let I ⊆ R be an open interval, and let (A, φ) be an admissible CtH1 solution
to (MKG) on I ×R

4 in the global Coulomb gauge ∂�A� = 0 with energy not
exceeding E, i.e.,

E{t}×R4[A, φ] ≤ E for every t ∈ I. (4.10)

If, furthermore, the energy dispersion of φ on I × R
4 is less than or equal to

ε(E), i.e.,

ED[φ](I ) ≤ ε(E), (4.11)

then the following a-priori estimate for (A, φ) on I × R
4 holds:

‖A0‖Y 1[I ] + ‖Ax‖S1[I ] + ‖φ‖S1[I ] ≤ F(E). (4.12)
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We also state an continuation and scattering result for Coulomb solutions
with finite S1 norm, which is proved in [27].

Theorem 4.8 (Continuation and scattering of solutions with finite S1 norm)
Let 0 < T+ ≤ ∞ and (A, φ) an admissible CtH1 solution to (MKG) on
[0, T+) × R

4 in the global Coulomb gauge which obeys the bound

‖A0‖Y 1([0,T+)×R4) + sup
j=1,...,4

‖A j‖S1([0,T+)×R4) + ‖φ‖S1([0,T+)×R4) < ∞.

Then the following statements hold.

(1) If T+ < ∞, then (A, φ) extends to an admissible CtH1 solution with finite
S1 norm past T+.

(2) If T+ = ∞, then (Ax , φ) scatters as t → ∞ in the following sense: There
exist a solution (A(∞)

x , φ(∞)) to the system

⎧
⎨

⎩

�A(∞)
j = 0,

(
� + 2i A f ree

� ∂�
)

φ(∞) = 0,

with initial data A(∞)
x [0], φ(∞)[0] ∈ Ḣ1

x × L2
x such that

sup
j=1,...,4

‖A j [t] − A(∞)
j [t]‖Ḣ1

x ×L2
x

+‖φ[t] − φ(∞)[t]‖Ḣ1
x ×L2

x
→ 0 as T → ∞.

The above statement holds with A f ree
x the solution to the homogeneous

wave equation with any of the data Ax [0] or A(∞)
x [0].

Analogous statements hold in the past time direction as well.

5 Conservation laws and monotonicity formulae

In this section, we derive key conservation laws and monotonicity formulae
that will serve as a basis for proving regularity and scattering. We begin by
describing the main results, deferring their proofs until later in the section.
We emphasize that all statements in this section apply to admissible CtH1

solutions to (MKG), unless otherwise stated.
One of the fundamental conservation laws for (MKG) is that of the standard

energy: Given an admissible CtH1 solution (A, φ) to (MKG) on I × R
4, for

t0, t1 ∈ I we have

E{t0}×R4[A, φ] = E{t1}×R4[A, φ]. (5.1)
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For self-similar solutions, finite energy condition translates to a weighted L2

estimate on Hρ . This estimate will be used to show that they must in fact be
trivial.

Proposition 5.1 Let (A, φ) be a smooth solution to (MKG) on C(0,∞) with
finite energy, i.e., there exists E > 0 such that

sup
t∈(0,∞)

ESt [A, φ] ≤ E < ∞.

Suppose furthermore that (A, φ) is self-similar, i.e., ιX0F = 0 and (DX0 +
1
ρ
)φ = 0, where X0 = ∂ρ in the hyperbolic coordinates (ρ, y, �). Then we

have
∫

Hρ

1

2

(
cosh y

ρ2 |φ|2 + 2
sinh y

ρ2 Re(φDyφ)+cosh y
(
|Dφ|2Hρ

+ |F |2Hρ

))
≤ E,

(5.2)

where |Dφ|2Hρ
, |F |2Hρ

are to be defined in (5.27).

The next statement concerns the quantities

F∂C[t0,t1] [A, φ] := ESt1 [A, φ] − ESt0 [A, φ],G∂St1
[φ] := 1

t1

∫

∂St1

|φ|2.
(5.3)

Here,F∂C[t0,t1] is the energy flux of (A, φ) through ∂C[t0,t1]. Forφ ∈ Ct (I ; Ḣ1
x )

and t1 ∈ I , observe that G∂St1
[φ] is well-defined by the trace theorem. In fact,

φ �∂St1
∈ H1/2(∂St1).

Lemma 5.2 Let (A, φ) be an admissible CtH1 solution to (MKG) on I ×R
4

where I ⊂ R
4 is an open interval. Then for every t0, t1 ∈ I with t0 ≤ t1, the

following statements hold:

(1) The energy flux on F∂C[t0,t1] [A, φ] is non-negative and additive, i.e.,

F∂C[t0,t1] [A, φ] = F∂C[t0,t ′] [A, φ] + F∂C[t ′,t1] [A, φ] for t ′ ∈ [t0, t1].
(5.4)

(2) The following local Hardy’s inequality holds on ∂C[t0,t1]:

G∂St0
[φ] +

∫ t1

t0
G∂St [φ] dt

t
≤ G∂St1

[φ] + F∂C[t0,t1] [A, φ]. (5.5)
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Moreover, we also have

G∂St1
[φ] ≤ E({t}×R4)\St1 [A, φ] (5.6)

A consequence of Lemma 5.2 is a simple but crucial decay result for the
two quantities defined in (5.3).

Corollary 5.3 Let (A, φ) be an admissible CtH1 solution to (MKG) on I×R
4

where I ⊂ R
4 is an open interval. Then the following statements hold.

(1) If (0, δ] ⊆ I for some δ > 0, then we have

lim
t1→0

F∂C(0,t1] [A, φ] = 0, lim
t1→0

G∂St1
[φ] = 0. (5.7)

where F∂C(0,t1] [A, φ] := limt0→0 F∂C[t0,t1] [A, φ].
(2) If [δ,∞) ⊆ I for some δ > 0, then we have

lim
t0,t1→∞F∂C[t0,t1] [A, φ] = 0, lim

t1→∞G∂St1
[φ] = 0. (5.8)

The statements concerningF∂C[t0,t1] follow from the monotonicity and bound-
edness of ESt , whereas those concerning G∂St1

follow from (5.5), (5.6); we
omit the straightforward details.

The decay statements (5.7) and (5.8) imply that the energy flux and the
quantity G∂St [φ] vanish as one approaches (0, 0) or t → ∞. In the ideal case
when F∂C[t0,t1] = 0 and G∂St1

= 0, the solution (A, φ) enjoys an additional
monotonicity formula, namely

∫

St1

(X0)PT [A, φ] dx +
∫∫

C[t0,t1]

1

ρ
|ιX0F |2

+ 1

ρ

∣
∣
∣
∣

(
DX0 + 1

ρ

)
φ

∣
∣
∣
∣

2

dtdx =
∫

St0

(X0)PT [A, φ] dx (5.9)

where X0 = ∂ρ in the hyperbolic coordinate system (ρ, y, �), |ιX0F |2 :=
m(ιX0F, ιX0F) (observe that |ιX0F |2 ≥ 0) and (X0)PT [A, φ] is to be defined
below inLemma5.10. It turns out that the right-hand side is uniformly bounded
by the conserved energy as t0 → 0, thereby breaking the scaling invariance.
More precisely, the first term on the left-hand side precludes null concentra-
tion of energy, whereas the second term implies that rescalings of (A, φ) are
asymptotically self-similar.

In application, however, the quantities F and G will be small but not neces-
sarily zero. Hence we will rely on the following approximate version of (5.9)
instead. Define
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ρε =
√

(t + ε)2 − r2, Xε = ρ−1
ε ((t + ε)∂t + r∂r ),

|ιXε F |2 := m(ιXε F, ιXε F).

Proposition 5.4 Let (A, φ) be an admissible CtH1 solution to (MKG) on
[ε, 1] × R

4, where ε ∈ (0, 1). Suppose furthermore that (A, φ) satisfies

ES1[A, φ] ≤ E, F∂C[ε,1] [A, φ] ≤ ε
1
2 E, G∂S1[φ] ≤ ε

1
2 E . (5.10)

Then

∫

S1

(Xε)PT [A, φ] dx +
∫∫

C[ε,1]

1

ρε

|ιXε F |2 + 1

ρε

∣
∣
∣
∣

(
DXε + 1

ρε

)
φ

∣
∣
∣
∣

2

dtdx � E

(5.11)

where the implicit constant is independent of ε, E. We refer to Lemma 5.10 for
the computation of (Xε)PT [A, φ].

Using Proposition 5.4, we can also establish a version of (5.9) that is local-
ized away from the boundary of the cone. This statement will be useful for
propagating lower bounds in a time-like region towards (0, 0).

Proposition 5.5 Let (A, φ) be an admissible CtH1 solution to (MKG) on
[ε, 1]×R

4, where ε ∈ (0, 1). Suppose furthermore that (A, φ) satisfies (5.10).
Then for 2ε ≤ δ0 < δ1 ≤ t0 ≤ 1, we have

∫

S
δ1
1

(X0)PT [A, φ] dx ≤
∫

S
δ0
t0

(X0)PT [A, φ] dx

+C
(
(δ1/t0)

1
2 + | log(δ1/δ0)|−1

)
E . (5.12)

The rest of this section is devoted to the proofs of the above statements,
and is organized as follows. In Sect. 5.1, we discuss ways of generating diver-
gence identities for proving the above conservation laws and monotonicity
formulae. We also introduce null decomposition, which will assist our com-
putations below. In Sect. 5.2, we use them to prove (5.1) and Proposition 5.1.
In Sect. 5.3, we introduce and prove a local version of Hardy’s inequality and
use it establish Lemma 5.2. Lastly, Sect. 5.4 is devoted to the proof of (5.9)
and Propositions 5.4 and 5.5.

5.1 Divergence identities and null decomposition

The goal of this subsection is two-fold. First, we introduce methods for gener-
ating useful divergence identities for solutions to (MKG) that essentially arise
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from Nöther’s principle. Second, we define the notion of a null frame and
the associated null decomposition of F and Dφ, which will be useful for the
computations below.

We first present the energy-momentum tensor formalism for generating
divergence identities. This formalism is a way to exploit Nöther’s principle
(continuous symmetries lead to conserved quantities in a Lagrangian field
theory) for external symmetries, i.e., symmetries of the base manifold R

1+4

of (MKG). Let (A, φ) be a smooth solution to (MKG) on an open subset
O ⊆ R

1+4. We define the energy-momentum tensor associated to (A, φ) as

Qab[A, φ] = (M)Qab[A]ab + (KG)Qab[A, φ] (5.13)

where

(M)Qab[A] = F c
a Fbc − 1

4
mabFcdF

cd (5.14)

(KG)Qab[A, φ] = Re(DaφDbφ) − 1

2
mabDcφDcφ (5.15)

Note thatQ is a symmetric 2-tensor, which is gauge invariant at each point.
Moreover, since (A, φ) is a smooth solution to (MKG), the energy-momentum
tensor satisfies

∇aQab[A, φ] = 0. (5.16)

Given a vector field X on O, we define its deformation tensor to be the Lie
derivative of the metric with respect to X , i.e., (X)π := LXm. Using covariant
derivatives, (X)π also takes the form

(X)πab = ∇aXb + ∇aXb

We will denote the metric dual of (X)π by (X)π�, i.e., ((X)π�)ab =
macmbd(X)πcd. From its Lie derivative definition, the following formula for
(X)πμν in coordinates can be immediately derived:

(X)πμν = X (mμν) + ∂μ(Xα)mαν + ∂ν(X
α)mαμ (5.17)

Using the deformation tensor,wenowdefine the associated 1- and0-currents
of (A, φ) as
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(X) Ja[A, φ] :=Qab[A, φ]Xb,

(X)K [A, φ] :=Qab[A, φ]
(
1

2
(X)π�

)ab

.
(5.18)

Then by (5.16) and the symmetry of Q[A, φ]ab, we obtain

∇a
(

(X) Ja[A, φ]
)

= (X)K [A, φ]. (5.19)

Remark 5.6 Taking X = T = ∂t in the rectilinear coordinates (t, x1, . . . , x4),
we have (T )π = 0 (in other words, T is a Killing vector field) and hence
(T )K = 0. In fact, (5.19) is a local form of the standard conservation of energy
(5.1). We refer to Sect. 5.2 for more details.

For a (smooth) scalar field φ satisfying the gauge covariant wave equation
�Aφ = 0, we introduce another way of generating divergence identities.
This method corresponds to using Nöther’s principle for the symmetry of the
equation under the action of C viewed as the complexification of the gauge
group U (1). Given a C-valued function w on an open subset of R1+4, we
define its associated 1- and 0-currents by

(w) Ja[A, φ] = (Rew)Re(φDaφ) − (Imw)Im(φDaφ) − 1

2
∇a(Rew)|φ|2,

(w)K [A, φ] = (Rew)DaφDaφ − 1

2
�(Rew)|φ|2 − ∇a(Imw)Im(φDaφ).

(5.20)

A simple computation12 shows that the following conservation law holds:

∇a
(

(w) Ja[A, φ]
)

= (w)K [A, φ]. (5.21)

Remark 5.7 Taking w = −i , we have

(w) Ja = Im(φDaφ), (w)K = 0,

and (5.21) reduces to the well-known local conservation of charge.

Finally, we introduce the notion of a null frame and the associated null
decomposition of Dφ and F , which are useful for computations concerning

12 Alternatively, the identity below can be derived by multiplying the covariant wave equation
for φ by wφ, taking the real part and differentiating by parts.
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the energy-momentum tensor. At each point p = (t0, x0) ∈ R
1+4, consider

orthonormal vectors {ea}a=1,...,3 which are orthogonal to L and L . Observe
that each ea is tangent to the sphere ∂Bt0,r0 := {t0}×∂Br0(0)where r0 = |x0|.
The set of vectors

{
L , L, e1, e2, e3

}
at p is called a null frame at p associated

to L , L .
TheC-valued 1-formDφ can be decomposed with respect to the null frame{

L , L, ea
}
as DLφ,DLφ and �Daφ := Deaφ, which is the null decomposition

of Dφ. A simple computation shows that

(KG)Q[A, φ](L , L) = |DLφ|2,
(KG)Q[A, φ](L, L) = |DLφ|2, (KG)Q[A, φ](L , L) = | �Dφ|2 (5.22)

where | �Dφ|2 := ∑
a=1,...,3 | �Daφ|2.

Next, we define the null decomposition of the 2-form F with respect to{
L , L, ea

}
as

αa := F(L , ea), αa := F(L, ea), � := 1

2
F(L , L), σab := F(ea, eb).

Note that � is a function, αa, αb are 1-forms on ∂Bt0,r0 and σab is a 2-form on
∂Bt0,r0 . We define their pointwise absolute values as

|α|2 :=
∑

a=1,...,3

α2
a, |α|2 :=

∑

a=1,...,3

α2
a, |σ |2 :=

∑

1≤a<b≤3

σ 2
ab.

This decomposition leads to the following simple formulae for the L , L
components of (M)Q:

(M)Q[A](L , L) = |α|2, (M)Q[A](L, L) = |α|2,
(M)Q[A](L , L) = |�|2 + |σ |2. (5.23)

5.2 The standard energy identity and proof of Proposition 5.1

Consider the vector field T , which is equal to the coordinate vector field ∂t
in the rectilinear coordinates (t, x1, . . . , x4). It can be easily checked that T
is Killing, i.e., (T )π = 0. Contracting T with the energy-momentum tensor
Q[A, φ], we then obtain the local conservation of energy, i.e., given a smooth
solution (A, φ) to (MKG) on an open subset O ⊆ R

1+4, we have

∇a((T ) Ja[A, φ]) = 0 on O. (5.24)
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Since T = 1
2 (L + L), we have

(T ) JL [A, φ] = Q[A, φ](T, L) = 1

2

(|DLφ|2 + | �Dφ|2)

+1

2

(|α|2 + |�|2 + |σ |2) , (5.25)

(T ) JL [A, φ] = Q[A, φ](T, L) = 1

2

(|DLφ|2 + | �Dφ|2)

+1

2

(|α|2 + |�|2 + |σ |2) . (5.26)

Given a (measurable) subset S ⊆ {t} ×R
4 for some t ∈ R, the above compu-

tation implies

ES[A, φ] =
∫

S

(T ) JT [A, φ] dx .

We are now ready to give a quick proof of (5.1). For a classical solution
(A, φ) in the classCtH1([t0, t1]×R

4), the standard energy conservation (5.1)
follows by integrating (5.24) over (t0, t1) × R

4 and applying the divergence
theorem. The case of an admissible solution then easily follows by approxi-
mation.

We conclude this subsection with a proof of Proposition 5.1.

Proof of Proposition 5.1 Note that X0 = ∂ρ and T =cosh y∂ρ−sinh y(ρ−1∂y)

in the hyperbolic coordinates (ρ, y, �). In the following computation, we use
the orthonormal frame

{
∂ρ, ρ−1∂y, ea

}
at each point, where {ea}a=1,2,3 is an

orthonormal frame tangent to the constant ρ, y sphere as before. Then we
compute

(KG)Q[A, φ](∂ρ, ∂ρ) = 1

2

(
|Dρφ|2 + |ρ−1Dyφ|2 + | �Dφ|2

)

(KG)Q[A, φ](∂ρ, ρ−1∂y) = Re(Dρφρ−1Dyφ),

(M)Q[A, φ](∂ρ, ∂ρ) = 1

2
F(∂ρ, ρ−1∂y)

2 + 1

2

∑

a=1,...,3

F(∂ρ, ea)
2

+1

2

∑

a=1,...,3

ρ−2F(∂y, ea)
2

+1

2

∑

1≤a<b≤3

F(ea, eb)
2,

(M)Q[A, φ](∂ρ, ρ−1∂y) =
∑

a=1,...,3

F(∂ρ, ea)F(ρ−1∂y, ea).
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Fig. 1 Domain of
integration for the proof of
Proposition 5.1

By the self-similarity conditions ι∂ρ F = F(∂ρ, ·) = 0 and (Dρ + 1
ρ
)φ = 0,

we have

(T ) Jρ[A, φ] = cosh yQ[A, φ](∂ρ, ∂ρ) − sinh yQ[A, φ](ρ−1∂y, ∂ρ)

= 1

2

(
cosh y

ρ2 |φ|2 + 2
sinh y

ρ2 Re(φDyφ)

+ cosh y
(
|Dφ|2Hρ

+ |F |2Hρ

))

where

|Dφ|2Hρ
:=

(
g−1
Hρ

)ab
DaφDbφ, |F |2Hρ

:= 1

2

(
g−1
Hρ

)ac (
g−1
Hρ

)bd
FabFcd, (5.27)

and g−1
Hρ

= ρ−2∂y · ∂y + ∑
a=1,2,3 ea · ea is the induced metric on Hρ .

We are ready to complete the proof. Denote byH>ρ the region {(ρ′, y′, �′) :
ρ′ > ρ}. Integrate (5.24) over the regionR := C(0,t) ∩H>ρ , whose boundary
is (St ∩ H>ρ) ∪ (Hρ ∩ C(0,t)), and apply the divergence theorem; see Fig. 1.
Then taking t → ∞, the desired estimate (5.2) on Hρ follows. ��

5.3 A localized Hardy’s inequality and proof of Lemma 5.2

We begin by stating a very general identity (valid for any dimension d ≥ 3),
which can be thought of as Hardy’s inequality with all the errors terms explicit.

Lemma 5.8 Let φ be a smooth C-valued function and A be a smooth 1-form
on R

d (d ≥ 3). Then for 0 < r1 < r2, we have
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∫ r2

r1

∫
1

r2
|φ|2rd−1 dσ

Sd−1 dr

+
∫ r2

r1

∫ ∣
∣
∣
∣

2

d − 2
Drφ + 1

r
φ

∣
∣
∣
∣

2

rd−1 dσ
Sd−1 dr

=
(

2

d − 2

)2 ∫ r2

r1

∫
|Drφ|2rd−1 dσ

Sd−1 dr

+ 2

d − 2

∫
|φ|2rd−2 dσ

Sd−1

∣
∣
∣
r2

r=r1
. (5.28)

We omit the proof, which is a simple algebra plus an application of the
fundamental theorem of calculus in r . Specializing to d = 4 and rearranging
some terms, we obtain

∫

{r=r1}
|φ|2
r

r3dσS3 +
∫ r2

r1

∫
1

r2
|φ|2r3 dσS3 dr

+
∫ r2

r1

∫
|r−1Dr (rφ)|2r3 dσS3 dr

=
∫

{r=r2}
|φ|2
r

r3dσS3 +
∫ r2

r1

∫
|Drφ|2r3 dσS3 dr. (5.29)

The last term on the left-hand side of (5.29) is always non-negative; more-
over, for φ ∈ S(R4), the first term on the right-hand side vanishes as r2 → ∞.
By approximation, the following gauge invariant version of Hardy’s inequality
on R

4 follows.

Corollary 5.9 Let φ, A ∈ Ḣ1(R4) ∩ L4(R4). Then r−1φ ∈ L2(R4) and
φ �∂Br∈ L2(∂Br ) for every r > 0. Moreover, we have

||φ
r
||2L2(R4)

+ sup
r>0

1

r
‖φ‖2L2(∂Br )

≤ ‖Drφ‖2L2(R4)
. (5.30)

We are ready to establish Lemma 5.2.

Proof of Lemma 5.2 We first consider the case when (A, φ) is smooth. Then
by local conservation of energy, we have

F∂C[t0,t1] = 1

2

∫

∂C[t0,t1]

(T ) JL [A, φ]r3 dvdσS3

and hence the non-negativity and additivity are obvious. The first local
Hardy’s inequality (5.5) is a consequence of (5.29) applied to the hypersurface
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∂C[t0,t1] = {u = 0, r ∈ [t0, t1]} in the coordinate system (u, r, �), whereas the
second local Hardy’s inequality (5.6) follows from a similar argument used to
derive Corollary 5.9.

Now we turn to the general case. Since (A, φ) is an admissible CtH1

solution, there exists a sequence of smooth solutions converging to (A, φ)

inCtH1(I ×R
4). Since all quantities in the conclusions of the lemma are con-

tinuous with respect to the CtH1(I × R
4) topology, the general case follows

from the smooth case by approximation. ��

5.4 Monotonicity formulae and proofs of Propositions 5.4, 5.5

Here we derive monotonicity formulae associated with the vector fields Xε,
which are defined in the polar coordinates as

Xε = 1

ρε

((t + ε)∂t + r∂r ), ρε =
√

(t + ε)2 − r2, (5.31)

where ε ≥ 0, t > −ε.
The starting point for derivation of the monotonicity formula (5.9), as well

as Propositions 5.4 and 5.5, is to contract the energy-momentum tensor Q
with one of the vector fields Xε. Due to the unfavorable contribution of (KG)Q,
however, several additional modifications are necessary. To simplify the dis-
cussion, we first restrict to the case ε = 0. The reader should keep in mind
that the general case follows simply by translating in time by ε.

Using the formula (5.17), we compute

1

2
(X0)π� = 1

ρ3

(
∂y · ∂y + 1

sinh2 y

(
g−1
S3

) )
= 1

ρ

(
m−1 + X0 · X0

)
.

Hence we have

(X0)K = (M)Qab

(
1

2
(X0)π�

)ab

+ (KG)Qab

(
1

2
(X0)π�

)ab

= 1

ρ
|ιX0F |2 + 1

ρ
|DX0φ|2 − 1

ρ
DaφDaφ. (5.32)

where |ιX0F |2 = m(ιX0F, ιX0F) ≥ 0, since X0 is time-like. The first term on
(5.32) is satisfactory in view of our goal (5.9), but the rest is not. To remove
the last term, we use the currents (w0) J and (w0)K with w0 = 1

ρ
and compute

(X0)K + (w0)K = 1

ρ
|ιX0F |2 + 1

ρ
|DX0φ|2 − 1

ρ3 |φ|2. (5.33)
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Now we introduce an auxiliary divergence identity, which is related to
Hardy’s inequality in the ρ variable. Define (H0) J [φ] in the hyperbolic coor-
dinates (ρ, y, �) by

(H0) Jρ[φ] := −|φ|2
ρ2 , (5.34)

where the remaining components are set to be zero. Define also

(H0)K [φ] := 2

ρ3 |φ|2 + 1

ρ2 ∂ρ |φ|2. (5.35)

Then a simple computation shows that

∇a((H0) Ja[φ]) = (H0)K [φ]. (5.36)

Since ∂ρ |φ|2 = 2Re(φDρφ) and X0 = ∂ρ , we arrive at

(X0)K + (w0)K + (H0)K = 1

ρ
|ιX0F |2 + 1

ρ
|
(
DX0 + 1

ρ

)
φ|2, (5.37)

which is precisely the integrand in the space-time integral in (5.9).
The preceding computation suggests that we should define a new 1- and 0-

currents by (X0) J+ (w0) J+ (H0) J and (X0)K + (w0)K + (H0)K , respectively. To
make the L and L components of the 1-current look more favorable, however,
it turns out to be convenient to add in an auxiliary current (N0) J defined by

(N0) JL [φ] = 1

2r3
L

(
r3

t

ρr
|φ|2

)
,

(5.38)
(N0) JL [φ] = − 1

2r3
L

(
r3

t

ρr
|φ|2

)
,

where the remaining components are set to be zero. By equality of mixed
partials LL = 4∂v∂u = 4∂u∂v = LL , it follows that

∇a
(

(N0) Ja[φ]
)

= 0. (5.39)

For (X0)P := (X0) J + (w0) J + (H0) J + (N0) J , we claim that

(X0)PL = 1

2

(v

u

) 1
2 (|r−1DL(rφ)|2 + |α|2)

+1

2

(u
v

) 1
2
(
| �Dφ|2 + |φ|2

r2
+ |�|2 + |σ |2

)
, (5.40)
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(X0)PL = 1

2

(u
v

) 1
2 (|r−1DL(rφ)|2 + |α|2)

+1

2

(v

u

) 1
2
(
| �Dφ|2 + |φ|2

r2
+ |�|2 + |σ |2

)
. (5.41)

We will prove (5.40), leaving the task of verifying (5.41) to the reader. Using
the relations

ρ2 = uv, X0 = 1

2

(
v

ρ
L + u

ρ
L

)
,

and the null decomposition formulae (5.22), (5.23), we have

(X0) JL [A, φ] = 1

2

(
v

ρ
|DLφ|2 + u

ρ
| �Dφ|2

)
+ 1

2

(
v

ρ
|α|2 + u

ρ

(|�|2 + |σ |2)
)

.

On the other hand, we compute

(w0) JL [A, φ] = 1

ρ
Re(φDLφ) + 1

2

1

ρv
|φ|2, (H0) JL [φ] = − 1

ρv
|φ|2.

To prove (5.40), it suffices to verify

1

2

v

ρ
|DLφ|2 + (w0) JL [A, φ] + (H0) JL [φ] + (N0) JL [φ]

= 1

2

v

ρ
|r−1DL(rφ)|2 + 1

2

u

ρ

|φ|2
r2

. (5.42)

For this purpose, it is convenient to work with ψ = rφ. We have

LHS of (5.42) = 1

2

v

ρ
|DL(ψ/r)|2 + 1

ρr
Re(ψDL(ψ/r))

+1

2

1

ρv

|ψ |2
r2

− 1

ρv

|ψ |
r2

+ 1

2r3
L

(
t

ρ
|ψ |2

)

= 1

2

v

ρ
|r−1DLψ |2 + 1

2

(
v

ρr2
− 2

ρr
− 1

ρv
+ 1

r
L(t/ρ)

) |ψ |2
r2

Since r−1L(t/ρ) = 1/(ρr) − t/(ρrv) = 1/(ρv), we see that

v

ρr2
− 2

ρr
− 1

ρv
+ 1

r
L(t/ρ) = v

ρr2
− 2

ρr
= u

ρr2
,

which establishes (5.42), and hence (5.40).
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We now return to the general case ε ≥ 0. Define (Xε) J, (wε) J, (Hε) J, (Nε) J
and their 0-current counterparts by pulling back the ε = 0 versions defined
above along the map (t, r, �) �→ (t + ε, r, �). For (Xε) J, (wε) J, (Xε)K and
(wε)K , note that this definition agrees with that from Sect. 5.1 using Xε as in
(5.31) and wε := 1/ρε. Let

(Xε)P[A, φ] := (Xε) J [A, φ] + (wε) J [A, φ] + (Hε) J [φ] + (Nε) J [φ],
(Xε)Q[A, φ] := (Xε)K [A, φ] + (wε)K [A, φ] + (Hε)K [φ]. (5.43)

We summarize the discussion so far in the following lemma, which follows
easily by pulling back the above computations along (t, r, �) �→ (t+ε, r, �).

Lemma 5.10 Let (A, φ) be a smooth solution to (MKG) on an open subset
O ⊆ C(0,∞). The 1- and 0-currents (Xε)P[A, φ] and (Xε)Q obeys the diver-
gence identity

∇a
(

(Xε)Pa[A, φ]
)

= (Xε)Q[A, φ], (5.44)

where (Xε)Q = (Xε)Q[A, φ] takes the form

(Xε)Q = 1

ρε

|ιXε F |2 + 1

ρε

|
(
DXε + 1

ρε

)
φ|2. (5.45)

Here, |ιXε F |2 = m(ιXε F, ιXε F) ≥ 0. Moreover, the L and L components of
(Xε)P = (Xε)P[A, φ] take the form

(Xε)PL = 1

2

(
vε

uε

) 1
2 (|r−1DL(rφ)|2 + |α|2)

+1

2

(uε

vε

) 1
2
(
| �Dφ|2 + |φ|2

r2
+ |�|2 + |σ |2

)
, (5.46)

(Xε)PL = 1

2

(
uε

vε

) 1
2 (|r−1DL(rφ)|2 + |α|2)

+1

2

(
vε

uε

) 1
2
(
| �Dφ|2 + |φ|2

r2
+ |�|2 + |σ |2

)
, (5.47)

where vε := (t + ε) + r and uε := (t + ε) − r .

Here we give a quick proof of (5.9) for a smooth solution (A, φ) on R
1+4.

By F∂C[t0,t1] = 0,G∂St1
= 0 and Lemma 5.2, note that φ and the tangential

components of F (i.e., α, �, σ ) vanish on the boundary ∂C[t0,t1]. Integrate
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(5.44)with ε = 0 overC[t0,t1] and apply the divergence theorem. The boundary
term on ∂C[t0,t1] vanishes thanks to φ, α, �, σ = 0, and thus (5.9) follows.

In the preceding proof, however, note from (5.40) that there is a weight
( v
u )1/2 in the boundary term, which would blow up ifDL(rφ) and αA were not
exactly zero on ∂C[t0,t1]. We now turn to the proof of Proposition 5.4, whose
goal is exactly to deal with this issue.

Proof of Proposition 5.4 As the hypothesis (5.10) and the conclusion (5.11)
only involve quantities which are continuous with respect to theCtH1(I ×R

4)

topology, it suffices to consider the case when (A, φ) is smooth. Integrating
(5.44) with ε > 0 over C[ε,1] and integrating by parts, we obtain

∫

S1

(Xε)PT [A, φ] dx +
∫∫

C[ε,1]

1

ρε

|ιXε F |2 + 1

ρε

∣
∣
∣
∣

(
DXε + 1

ρε

)
φ

∣
∣
∣
∣

2

dtdx

=
∫

Sε

(Xε)PT [A, φ] dx + 1

2

∫

∂C[ε,1]

(Xε)PL [A, φ]r3 dvdσS3 . (5.48)

We claim that the right-hand side is bounded from above by � E . We begin
with the first term. On Sε, we have the pointwise bound

(Xε)PT [A, φ] � (T )PT [A, φ] + 1

r2
|φ|2,

since uε/vε � 1 and vε/uε � 1 on Sε. By (5.10), Lemma 5.2 and (5.29)
applied to φ on Sε with r1 = 0, r2 = ε, it follows that the first term on the
right-hand side of (5.48) is bounded by � E .

We now consider the last term in (5.48). On ∂C[ε,1], we have

(Xε)PL [A, φ] � ε− 1
2

(
|DLφ|2 + 1

r2
|φ|2 + |α|2

)
+ (T ) JL [A, φ],

Then by (5.10), Lemma 5.2 and the fact that t = r on ∂C , the last term in
(5.48) is bounded by � E as desired.

We end this section with a proof of Proposition 5.5.

Proof of Proposition 5.5 As before, by approximation, it suffices to consider
the case when (A, φ) is smooth. Let δ ∈ [δ0, δ1] be a number to be determined
below. Integrating (5.44) with ε = 0 over Cδ[t0,1] and using the divergence
theorem, we see that (5.12) would follow if there exists δ ∈ [δ0, δ1] such that
∫

∂Cδ[t0,1]

(X0)PL [A, φ] r3 dvdσS3 �
(
(δ1/t0)

1
2 + | log(δ1/δ0)|−1

)
E . (5.49)
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The contribution of the term with the weight (u0/v0)1/2 in (5.46) is easy to
treat; indeed, using localized Hardy’s inequality and local conservation of
energy, we have

∫

∂Cδ[t0,1]

1

2

(u
v

) 1
2
(
| �Dφ|2 + |φ|2

r2
+ |�|2 + |σ |2

)
r3 dvdσS3

�
(

δ1

t0

)1/2
(∫

∂Cδ[t0,1]

(T ) JL [A, φ] r3 dvdσS3

+ ES1\Sδ
1
[A, φ] + GS1[φ]

)

�
(

δ1

t0

)1/2

E .

It remains to treat the term with the weight (v0/u0)1/2 in (5.46). Note that

r−1DL(rφ) =
(
DL + 1

r

)
φ = 2

(
uε

vε

) 1
2
(
DXε + 1

ρε

)
φ

−
(
uε

vε

)
DLφ +

(
uε

vε

)
1

r
φ,

αa = F(L , ea) = 2

(
uε

vε

) 1
2

F(Xε, ea) −
(
uε

vε

)
F(L, ea).

Note that u ≤ uε and v ≤ vε. Furthermore uε ≤ 2u on ∂Cδ[t0,1] since
2ε ≤ δ0. Hence,

∫

∂Cδ[t0,1]

1

2

(v

u

) 1
2 (|r−1DL(rφ)|2 + |α|2) r3 dvdσS3

�
∫

∂Cδ[t0,1]

u

ρε

(∣
∣
∣
∣

(
DXε + 1

ρε

)
φ

∣
∣
∣
∣

2

+ |ιXε F |2
)

+ u
3
2

v
3
2

(
|DLφ|2 + 1

r2
|φ|2 + |α|2

)
r3 dvdσS3 . (5.50)

We claim that the integral of the right-hand side over δ0 ≤ u ≤ δ1 with
respect to u−1du is bounded by E . Then by the pigeonhole principle, there
would exist δ ∈ [δ0, δ1] such that the left-hand side of (5.50) is bounded by
� | log(δ1/δ0)|−1E , as desired.

For the contribution of the first term, the claim follows directly from Propo-
sition 5.4. For the second term, we have
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∫∫

C
δ0[t0,1]\C

δ1[t0,1]

u
1
2

v
3
2

(
|DLφ|2 + 1

r2
|φ|2 + |α|2

)
dtdx

�
∫∫

C
δ0[t0,1]\C

δ1[t0,1]

δ
1
2
1

t
3
2

(T ) JT [A, φ] dtdx �
(δ1

t0

) 1
2
E,

which is sufficient to prove the claim since δ1 ≤ t0. ��

6 Local strong compactness and weak solutions to (MKG)

The first goal of this section is to establish the following local strong com-
pactness result for asymptotically stationary (see (6.2) below) sequences of
solutions to (MKG) with small energy.

Proposition 6.1 There exists a universal constant ε0 > 0 such that the fol-
lowing holds. Let B = B1(x0) ⊆ R

4 be an open ball of unit radius centered at
x0, and let (A(n), φ(n)) be a sequence of admissible CtH1 solutions to (MKG)
in (−2, 2) × 8B such that

E{0}×8B

[
A(n), φ(n)

]
+ ‖φ(n)(0, x)‖2L2

x (8B)
≤ ε20 . (6.1)

Suppose furthermore that (A(n), φ(n)) is asymptotically stationary in the sense
that

∫∫

(−2,2)×2B
|ιX F (n)|2 + |(D(n)

X + b)φ(n)|2 dtdx → 0 as n → ∞, (6.2)

where X is a smooth time-like vector field and b is a smooth real-valued
function. Then there exists a pair (A, φ) in L2

t,x ((−1, 1) × B) such that the
following statements hold:

(1) There exists a sequence of gauge transforms χ(n) ∈ CtG2((−1, 1) × B)

such that, after passing to a subsequence, we have

(
A(n)

μ − ∂μχ(n), eiχ
(n)

φ(n)
)

→ (Aμ, φ) strongly in L2
t,x ((−1, 1) × B),

(6.3)
(
F (n)

μν , eiχ
(n)

D(n)
μ φ(n)

)
→ (Fμν,Dμφ) strongly in L2

t,x ((−1, 1) × B),

(6.4)

where Fμν = ∂μAν − ∂ν Aμ and Dμφ = ∂μφ + i Aμφ are defined in the
sense of distributions.
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(2) The limiting pair (A, φ) is a weak solution to (MKG) on (−1, 1) × B, in
the sense of Definition 6.6 below. The connection 1-form A obeys, in the
sense of distributions, the Coulomb gauge condition

∂�A� = 0 on (−1, 1) × B. (6.5)

(3) The pair (A, φ) possesses the following additional regularity:

A ∈ H1
t,x ((−1, 1) × B), Fμν,∈ H

1
2
t,x ((−1, 1) × B),

φ ∈ H
3
2
t,x ((−1, 1) × B). (6.6)

(4) Moreover, the pair (A, φ) is stationary with respect to X, in the sense that

ιX F = 0, (DX + b)φ = 0 on (−1, 1) × B. (6.7)

As a result of taking limits, the notion of weak solutions to (MKG) arises
naturally from Proposition 6.1. For our application in Sect. 8, we also need to
formulate the notion of locally defined weak solutions (A[α], φ[α]) that can be
pieced together to form a global pair (weak compatible pairs). Developing a
theory of these objects is another goal of this section.

Remark 6.2 We remark that weak solutions and their gauge structure play
only an auxiliary role in our work. Indeed, the stationarity equation (6.7),
combined with (MKG) and the additional regularity (6.6) of (A, φ), allow us
to infer smoothness of (A, φ) via elliptic regularity. This issue is considered
in Sect. 7, where we study stationary and self-similar solutions to (MKG).

Remark 6.3 It is in fact possible to obtain stronger convergence than (6.3)
namely A(n)

μ − ∂μχ(n) → Aμ and eiχ
(n)

φ(n) → φ in H1
t,x ((−1, 1) × B).

Moreover, the limit Aμ obeys the additional regularity H3/2−ε
t,x ((−1, 1) × B)

for any ε > 0. As these facts are not necessary for the proof of our main
theorem, we omit their proofs to avoid lengthening the paper.

The rest of this section is structured as follows. We first give a proof of
Proposition 6.1 in Sect. 6.1, except the statement that the limit (A, φ) is a
weak solution to (MKG). In Sect. 6.2, we formulate a notion of weak solutions
to (MKG) that will be used in our proof. Finally, in Sect. 6.3, we introduce
and discuss the notions of smooth and weak compatible pairs, which are local
descriptions of smooth and weak solutions to (MKG), respectively.
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6.1 Proof of Proposition 6.1

Here we prove Proposition 6.1 modulo the assertion that the limit (A, φ) is a
weak solution to (MKG), which would be clear once we define the notion of
a weak solution in Definition 6.6 below.

Proof The basic idea behind proof is as in [33, Proposition 5.1]: Small energy
(6.1) implies local uniform S1 bound on (−2, 2)×2B, which can be combined
with asymptotic stationarity (6.2) via a microlocal decomposition to conclude
strong convergence in (−1, 1) × B. In implementing this strategy, we need to
take into account the presence of the constraint equation and the system nature
of (MKG) (especially the Maxwell part). Our proof proceeds in several steps.
Step 1 In this step, we use the excision and gluing technique to produce gauge
equivalent Coulomb solutions on the smaller region (−2, 2)×2B, which enjoy
a uniform S1 bound.

Let (a(n)
j , e(n)

j , f (n), g(n)) = (A(n)
j , F0 j , φ(n),D(n)

t φ(n)) �{t=0} be the data

for (A, φ) on {t = 0}. Applying Proposition 4.4 to 8B\4B, we obtain an initial
data set (̃a(n), ẽ(n), f̃ (n), g̃(n)) ∈ H1(R4) such that (̃a(n), ẽ(n), f̃ (n), g̃(n)) =
(a(n), e(n), f (n), g(n)) on 4B and

E
[
ã(n), ẽ(n), f̃ (n), g̃(n)

]
� ε20 .

by (4.6) and (6.1). Choosing ε0 appropriately, wemay ensure that the left-hand
side is smaller than ε2∗ , which is the threshold for Theorem 4.1.

To pass to the global Coulomb gauge, consider the gauge transformation
χ(n) ∈ G2(R4) defined by χ(n) = �−1∂�ã(n)

� and let
(
ǎ(n), ě(n), f̌ (n), ǧ(n)

)
:=

(
ã(n) − dχ(n), ẽ(n), eiχ

(n)

f̃ (n), eiχ
(n)

g̃(n)
)

.

This initial data set agrees with (a(n), e(n), f (n), g(n)) on 4B up to a gauge
transformation, i.e.,
(
ǎ(n), ě(n), f̌ (n), ǧ(n)

)
=

(
a(n) − dχ(n), e(n), eiχ

(n)

f (n), eiχ
(n)

g(n)
)

on 4B,

(6.8)

and furthermore obeys the small energy condition

E
[
ǎ(n), ě(n), f̌ (n), ǧ(n)

]
< ε2∗ . (6.9)

By small energy global well-posedness (Theorem 4.1), it follows that there
exists a unique CtH1 admissible solution ( Ǎ(n), φ̌(n)) on R

1+4 with initial
data (ǎ(n), ě(n), f̌ (n), ǧ(n)), which obeys
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‖ Ǎ(n)
0 ‖Y 1(R1+4) + ‖ Ǎ(n)

x ‖S1(R1+4) + ‖φ̌(n)‖S1(R1+4) � ε∗. (6.10)

Moreover, by geometric uniqueness (Proposition 4.6) and the simple fact that

(−2, 2) × 2B ⊆ D+({0} × 4B) ∪ D−({0} × 4B),

there exists χ(n) ∈ CtG2((−2, 2) × 2B) such that

(
Ǎ(n), φ̌(n)

)
=

(
A(n) − dχ(n), eiχ

(n)

φ(n)
)

on (−2, 2) × 2B. (6.11)

Let η0, . . . , η3 ∈ C∞
0 (R1+4) be such that

η j = 1 on (−1, 1) × B, supp η j ⊆ (−2, 2) × 2B, η jη j+1 = η j .

for j = 0, 1, 2, 3 (except for the last property, for which j = 0, 1, 2), which
will be fixed for the rest of the proof. We will also often write η = η0 and
η̃ = η3. By (6.10) and Remark 4.2, the solution ( Ǎ(n), φ̌(n)) satisfies

‖∂t,x
(
η j Ǎ

(n)
)
‖L∞

t L2
x
+ ‖∂t,x

(
η j φ̌

(n)
)
‖L∞

t L2
x

�η j ε0, (6.12)

‖∂t,x
(
η j Ǎ

(n)
0

)
‖
L2
t Ḣ

1
2
x

+ ‖�
(
η j Ǎ

(n)
x

)
‖
L2
t Ḣ

− 1
2

x

+‖�
(
η j φ̌

(n)
)
‖
L2
t Ḣ

− 1
2

x

�η j ε0. (6.13)

for any j = 0, 1, 2, 3. In particular, in view of (6.12) and Hölder’s inequality,
the sequence (̃η Ǎ(n), η̃φ̌(n)) is uniformly bounded in H1

t,x . By the Rellich-
Kondrachov theorem, there exists a subsequence, which we still denote by
(̃η Ǎ(n), η̃φ̌(n)), and a pair (A, φ) ∈ H1

t,x such that

(
η̃ Ǎ(n), η̃φ̌(n)

)
⇀ (A, φ) in H1

t,x ,
(
η̃ Ǎ(n), η̃φ̌(n)

)
→ (A, φ) in L2

t,x ,

(6.14)

as n → ∞, where the notation ⇀ refers to weak convergence.

Step 2 In this preparatory step, we make a microlocal decomposition of η that
will allows us to combine (6.2) with the bound (6.13) on the sequence; see
(6.15).

We use the classical pseudo-differential calculus. Let q0(τ, ξ) ∈ S0 be a
smooth cutoff such that q0 = 1 to the region {(τ, ξ) : |τ | ≤ (1 − δ)|ξ |} in
Fourier space and supp q0 ⊆ {(τ, ξ) : |τ | ≤ (1 − δ/2)|ξ |}, where δ > 0 is to
be chosen shortly. On the support of q0, the norm on the left-hand side of (6.13)
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is effective. On the other hand, since X = Xμ∂μ is a time-like vector field, we
have |X0(t, x)|2 >

∑4
j=1 |X j (t, x)|2 everywhere. As supp η is compact, we

may choose δ > 0 sufficiently small so that

(1 − δ)2|X0(t, x)| ≥
⎛

⎝
4∑

j=1

|X j (t, x)|2
⎞

⎠

1
2

for (t, x) ∈ supp η.

With such a choice of δ > 0, the symbol X0(t, x)τ + X�(t, x)ξ� ∈ S1 is
elliptic on the phase space support of η(t, x)(1 − q0)(τ, ξ), in the sense that

|X0(t, x)τ + X�(t, x)ξ�| ≥ |X0(t, x)τ | − |X�(t, x)ξ�| ≥ cδ,η,X0(|τ | + |ξ |)
for (t, x) ∈ supp η and (τ, ξ) ∈ supp (1 − q0), where we may take

cδ,η,X0 = δ(1 − δ)

2
inf

supp η
|X0| > 0.

Using the standard construction of a pseudo-differential elliptic parametrix,
we may write

η(1 − q0)(Dt,x ) = q−1(t, x, Dt,x ) ηXμ∂μ + r̃−1(t, x, Dt,x )

where q−1, r̃−1 ∈ S−1. Rearranging the terms, commuting η(t, x)with q0 and
applying multiplication by η1 on the right, we arrive at the decomposition

η = q−1(t, x, Dt,x )ηX
μ∂μ + q0η + r−1(t, x, Dt,x )η1, (6.15)

where r−1 ∈ S−1 is the sum of r̃−1 and the commutator between η and q0.
Step 3 Here we show the strong convergence ηF (n)

μν → ηFμν in L2
t,x , where

we remind the reader that Fμν = F̂μν by gauge invariance of the curvature
2-form. By (6.15), we may write

ηF (n)
μν = q−1(t, x, Dt,x )ηX

λ∂λF
(n)
μν + q0(Dt,x )ηF

(n)
μν + r−1(t, x, Dt,x )η1F

(n)
μν .

Using dF (n) = 0, we rewrite ηXλ∂λF
(n)
μν as

ηXλ∂λF
(n)
μν = ∂μ

(
ηXλF (n)

λν

)
− ∂ν(ηX

λF (n)
λμ )

− ∂μ(ηXλ)F (n)
λν + ∂ν

(
ηXλ

)
F (n)

λμ ,

and hence we arrive at

ηF (n)
μν = q−1(t, x, Dt,x )

[
∂μ(η(ιX F

(n))ν) − ∂ν(η(ιX F
(n))μ)

] + RM[F (n)]μν

(6.16)
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where

RM[F (n)]μν = q0(Dt,x )ηF
(n)
μν − q−1(t, x, Dt,x )

[
∂μ(ηXλ)F (n)

λν

−∂ν(ηX
λ)F (n)

λμ

] + r−1(t, x, Dt,x )η1F
(n)
μν .

By (6.2), it follows that

‖q−1(t, x, Dt,x )
[
∂μ

(
η(ιX F

(n))ν

)
− ∂ν

(
η(ιX F

(n))μ

)]
‖L2

t,x
→ 0.

Moreover, we claim that RM[F (n)]μν enjoys improved regularity, i.e.,

‖RM[F (n)]μν‖
H

1
2
t,x

� ε0 uniformly in n. (6.17)

By the Rellich-Kondrachov theorem, after passing to a subsequence of
( Ǎ(n), φ̌(n)), the sequence η̃RM[F (n)]μν is strongly convergent in L2

t,x ; more-

over, we can also ensure that the limit belongs to H
1
2
t,x . Combining these facts,

as well as the identity ηη̃ = η, we see that ηF (n)
μν is strongly convergent in L2

t,x

to a limit that belongs to H
1
2
t,x . Since η̃ Ǎμ → Aμ in L2

t,x , the limit is equal to
ηFμν . Hence the statements regarding F in (6.4) and (6.6) follow.

It remains to verify the claim (6.17); it is at this point we use the uniform
bounds (6.12) and (6.13). Using the formula ηF (n) = η(d Ǎ(n)) = d(η Ǎ(n))−
dη ∧ Ǎ(n) and the support property of the symbol q0, we obtain

‖q0(Dt,x )ηF
(n)‖

H
1
2
t,x

� ‖q0(Dt,x )d
(
η Ǎ(n)

)
‖
H

1
2
t,x

+ ‖q0(Dt,x )
(
dη ∧ Ǎ(n)

)
‖
H

1
2
t,x

.

The second term on the right-hand side is bounded by ε0 thanks to (6.12). To
handle the first term, we divide the space-time Fourier space into the regions
{|τ | + |ξ | ≤ 1} and {|τ | + |ξ | > 1}. Also distinguishing the temporal and spa-
tial components of Ǎ(n), we may estimate

‖q0(Dt,x )d
(
η Ǎ(n)

)
‖
H

1
2
t,x

� ‖∂t,x
(
η Ǎ(n)

0

)
‖
L2
t Ḣ

1/2
x

+‖�(η Ǎ(n)
x )‖

L2
t Ḣ

−1/2
x

+ ‖η Ǎ(n)‖L2
t,x

Using (6.13) for the first two terms and (6.12) for the last, the entire right-hand
side is bounded by ε0.
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For the remainder RM[F (n)]μν −q0(Dt,x )ηF
(n)
μν , we begin by observing that

‖η2F (n)‖L2
t,x

� ε0 by the formula F (n) = d Ǎ(n) and (6.12). Then we have

‖RM[F (n)]μν − q0(Dt,x )ηF
(n)
μν ‖H1

t,x
� ‖η2F (n)‖L2

t,x
� ε0,

which proves the claim (6.17).

Step 4 In this intermediate step, we use strong L2
t,x convergence of F (n)

μν to
prove

η Ǎ(n)
μ → ηAμ strongly in L2

t H
1
x , (6.18)

as n → ∞, up to a subsequence. We also prove improved regularity for the
limit Aμ, i.e.,

∂x (ηAμ) ∈ H
1
2
t,x . (6.19)

To begin with, observe that � Ǎ(n)
μ = ∂�F (n)

�μ by the Coulomb gauge condi-
tion. Therefore, for each spatial component μ = k ∈ {1, 2, 3, 4}, we have

η Ǎ(n)
k = �−1

(
∂�

(
ηF (n)

�k

)
+ [�, η] Ǎ(n)

k +
[
η, ∂�

]
F (n)

�k

)
. (6.20)

For any j ∈ {1, 2, 3, 4}, note that ∂ j�−1∂�(ηF (n)
�k ) is strongly convergent in

L2
t,x , thanks to the previous step.Writing out F (n) = d Ǎ(n) and using the strong

L2
t,x convergence of η̃ Ǎ(n)

k , it follows that the remainder ∂ j�−1([�, η] Ǎ(n)
k +

[η, ∂�]F (n)
�k ) is strongly convergent in L2

t,x as well. Hence (6.18) holds for
μ ∈ {1, 2, 3, 4}.

In the case μ = 0, note that (6.12) and (6.13) already imply

‖∂x
(
η̃ Ǎ(n)

0

)
‖
H

1
2
t,x

� ε0 uniformly in n. (6.21)

Therefore, after taking a suitable subsequence, the desired convergence (6.18)
(by the Rellich-Kondrachov theorem) as well as the improved regularity (6.19)
follow.

It only remains to prove the improved regularity (6.19) for μ = k ∈
{1, 2, 3, 4}. First, by (6.20) and the improved regularityηF ∈ H

1
2
t,x , η̃ Ǎ ∈ H1

t,x ,

it follows that η Ǎk ∈ L2
t H

3
2
x . Then using the identity

∂t (ηAk) − ∂k(ηA0) = ηF0k + [∂ j , η]Ak − [∂k, η]A0,
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and the improved regularity ∂x(ηA0) ∈ H
1
2
t,x , aswell asηF ∈ H

1
2
t,x , η̃ Ǎ ∈ H1

t,x ,

we have ∂t (η Ǎk) ∈ H
1
2
t,x . It follows that η Ǎk ∈ H

3
2
t,x , which is better than what

we need.

Step 5 In this step, we show that ηĎ(n)φ̌(n) → ηDφ in L2
t,x and ηφ ∈ H

3
2
t,x .

For the former, from the decomposition

ηĎ(n)
μ φ̌(n) = η∂μφ̌(n) + iη Ǎ(n)

μ φ̌(n),

the convergence η Ǎ(n)
μ → ηA in L2

t H
1
x and (6.12), we see that it suffices to

prove

η∂μφ̌(n) → η∂μφ in L2
t,x . (6.22)

By (6.15), we have

ηφ̌(n) = q−1(t, x, Dt,x )ηX
μ∂μφ̌(n) + q0ηφ̌(n) + r−1(t, x, Dt,x )η1φ̌

(n)

To use (6.2), we rewrite ηXμ∂μφ̌(n) as

ηXμ∂μφ̌(n) = η(Ď(n)
X + b)φ̌(n) − i Xν Ǎ(n)

ν ηφ̌(n) − ηbφ̌(n).

where Ď(n) = d + i Ǎ(n). Expanding η Ǎ(n) = η( Ǎ(n) − A(n)) + ηA(n), we
arrive at

ηφ̌(n) = q−1(t, x, Dt,x )η
(
Ď(n)

X + b
)

φ̌(n)

− iq−1(t, x, Dt,x )X
νη

(
Ǎ(n)

ν − Aν

)
φ̌(n)

− iq−1(t, x, Dt,x )X
νηAνφ̌

(n) + RKG

[
φ̌(n)

]
(6.23)

where

RKG[φ̌(n)] := q0ηφ̌(n) + r−1(t, x, Dt,x )η1φ̌
(n) − q−1(t, x, Dt,x )bηφ̌(n).

As in Step 2, for the first term we have

‖q−1(t, x, Dt,x )η(Ď(n)
X + b)φ̌(n)‖H1

t,x
→ 0
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as n → ∞, thanks to (6.2). For the second term, we have

‖q−1(t, x, Dt,x )X
νη( Ǎ(n)

ν − Aν)φ̌
(n)‖H1

t,x

� ‖η( Ǎ(n)
ν − Aν)‖L2

t L4
x
‖φ̌(n)‖L∞

t L4
x
→ 0

as n → ∞, by Hölder, Sobolev in x, L2
t H

1
x convergence of η Ǎ(n)

ν to ηAν and
(6.12). On the other hand, for the third term, we have

‖q−1(t, x, Dt,x )X
νηAνφ̌

(n)‖
H

3
2
t,x

�ε0‖〈Dx 〉〈Dt,x 〉 1
2 (ηA)‖L2

t,x
uniformly in n.

where we used Lemma 6.4 below with f = ηAν and g = φ̌(n). We also used
the obvious bound ‖ηAνφ̌

(n)‖L2
t,x

� ε0‖〈Dx 〉(ηA)‖L2
t,x
, which follows from

Hölder, Sobolev in x and (6.12), to control the L2
t,x norm of the left-hand side.

Finally, for RKG[φ̌(n)] we have, as in Step 3,

‖RKG

[
φ̌(n)

]
‖
H

3
2
t,x

� ε0 uniformly in n.

By the Rellich-Kondrachov theorem, there exists a subsequence (which we
still denote by φ̌(n)) such that

η̃
(
−iq−1(t, x, Dt,x )X

νηAνφ̌
(n) + RKG

[
φ̌(n)

])

is strongly convergent in H1
t,x to a limit that belongs to H

3
2
t,x . As a consequence

of these facts, as well as the identity ηη̃ = η, it follows that ηφ̌(n) is strongly

convergent in H1
t,x to a limit in H

3
2
t,x . Finally, since η̃φ̌(n) → φ in L2

t,x , the
limit is equal to ηφ. ��
Lemma 6.4 For f, g ∈ S(R1+4), we have

‖ f g‖
Ḣ

1
2
t,x

� ‖|Dt,x | 12 f ‖L2
t Ḣ1

x
‖Dt,x g‖L∞

t L2
x
. (6.24)

Proof Weuse the Littlewood-Paley projections
{
S j

}
inR1+4. For every j ∈ Z,

we decompose

S j ( f g) = S j
((
S> j−10 f

)
g
) + S j

(
S≤ j−10 f S[ j−5, j+5]g

)

Using Sobolev and Hölder, we estimate each term on the right-hand side as
follows:
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‖S j ((S> j−10 f )g)‖
Ḣ

1
2
t,x

�
∑

j1> j−10

2
1
2 j‖S j1 f ‖L2

t L4
x
‖g‖L∞

t L4
x

� ‖Dt,x g‖L∞
t L2

x

∑

j1> j−10

2
1
2 ( j− j1)‖|Dt,x | 12 S j1 f ‖L2

t Ḣ1
x
,

‖S j (S≤ j−10 f S[ j−5, j+5]g)‖
Ḣ

1
2
t,x

�
∑

j1≤ j−10

2
1
2 j‖S j1 f ‖L2

t L∞
x
‖S[ j−5, j+5]g‖L∞

t L2
x

� ‖Dt,x g‖L∞
t L2

x

∑

j1≤ j−10

2
1
2 ( j1− j)‖|Dt,x | 12 S j1 f ‖L2

t Ḣ1
x
.

Thanks to the exponential gain 2− 1
2 | j− j1|, we have

∑

j

‖S j ( f g)‖2
Ḣ

1
2
t,x

� ‖Dt,x g‖2L∞
t L2

x

∑

j1

‖|Dt,x | 12 S j1 f ‖2L2
t Ḣ1

x
.

The desired estimate is now a consequence of almost orthogonality of
{
S j

}
j∈Z

in L2
t,x . ��

6.2 Weak solutions to (MKG)

We first define a function space that is suitable for a weak formulation of
(MKG).

Definition 6.5 LetO ⊆ R
1+4 be an open set.WedefineXw(O) to be the linear

space of pairs (A, φ), where A is a real-valued 1-form and φ is a C-valued
function on O, such that

Aμ, φ ∈ L2
t,x (O), Fμν,Dμφ ∈ L2

t,x (O) for all μ, ν = 0, 1, . . . , 4, (6.25)

where Fμν = ∂μAν − ∂ν Aμ and Dμφ = ∂μφ + i Aμφ in the sense of distrib-
utions.

We may now define a notion of weak solutions to (MKG) as follows.

Definition 6.6 (Weak solutions to (MKG)) LetO ⊆ R
1+4 be an open set, and

let (A, φ) ∈ Xw(O). We say that (A, φ) is a weak solution to (MKG) on
O if for every real-valued 1-form ω ∈ C∞

0 (O) and complex-valued function
ϕ ∈ C∞

0 (O), we have
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∫∫

O
Fνμ∂μων + Im(φDνφ)ων dtdx = 0, (6.26)

∫∫

O
Re(Dμφ∂μϕ) + Im(AμDμφϕ) dtdx = 0. (6.27)

By an integration by parts argument, it may be readily verified that admissi-
ble and classical solutions to (MKG) are indeedweak solutions. In the converse
direction, if (A, φ) is a weak solution to (MKG) that is furthermore smooth,
then (A, φ) solves (MKG) in the usual, classical sense.

Next, we discuss the gauge structure of weak solutions to (MKG). We first
define the space of gauge transformations between pairs in Xw.

Definition 6.7 Given an open set O ⊆ R
1+4, let Yw(O) be the space of real-

valued functions χ on O such that χ ∈ H1
t,x (O).

Indeed, note that if (A, φ) ∈ Xw and χ ∈ Yw, then the gauge transform
( Ã, φ̃) := (A − dχ, eiχ) also belongs to Xw. Moreover, if (A, φ) is a weak
solution to (MKG) then so is ( Ã, φ̃), as the next lemma demonstrates.

Lemma 6.8 Let O ⊆ R
1+4 be an open set, and let (A, φ) ∈ Xw(O) be a

weak solution to (MKG). Then for every χ ∈ Yw(O), the gauge transform
( Ã, φ̃) := (A − dχ, eiχφ) also belongs to Xw(O) and is a weak solution to
(MKG).

Proof Weneed to verify (6.26) and (6.27) for ( Ã, φ̃). For (6.26) there is nothing
to verify, as both F and Im(φDφ) are invariant under gauge transformation.
For (6.27), we have

∫∫

O
Re

(
D̃μφ̃ ∂μϕ

) + Im
(
ÃμD̃μφ̃ ϕ

)
dtdx

=
∫∫

O
Re

(
Dμφ∂μ(e−iχϕ)

)
+ Im

(
AμDμφ e−iχϕ

)
dtdx .

Observe that if χ ∈ C∞(O), then the last line would be equal to zero by (6.27)
for (A, φ). Considering a sequence χ(n) ∈ C∞(O) such that χ(n) → χ in the
H1
t,x (O) topology and also pointwise almost everywhere, it can be seen that

the last line is indeed zero, by the dominated convergence theorem, Leibniz’s
rule and Hölder’s inequality. ��

6.3 Local description of solutions to (MKG)

Here we discuss how to describe a solution to (MKG) by local data. More
precisely, given an open coverQ = {Qα} of an open setO ⊆ R

1+4, we would
like to describe a solution to (MKG) onO by local solutions on Qα satisfying
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certain compatibility conditions, which ensure that the local solutions combine
to form a single solution on O. This idea is made precise by the ensuing
definition.

Definition 6.9 (Smooth compatible pairs) Let O ⊆ R
1+4 be an open set and

letQ = {Qα} be a locally finite open covering ofO. For each indexα, consider
a pair (A[α], φ[α]) ∈ C∞

t,x (Qα), where A[α] is a real-valued 1-form and φ[α] is a
C-valued function on Qα .We say that (A[α], φ[α]) are smooth compatible pairs
if for every α, β, there exists a gauge transformation χ[αβ] ∈ C∞

t,x (Qα ∩ Qβ)

such that the following properties hold:

(1) For every α, we have χ[αα] = 0.
(2) For every α, β, we have

(A[β], φ[β]) = (A[α] − dχ[αβ], eiχ[αβ]φ[α]) on Qα ∩ Qβ. (6.28)

(3) For every α, β, γ , the following cocycle condition is satisfied:

χ[αβ] + χ[βγ ] + χ[γα] ∈ 2πZ on Qα ∩ Qβ ∩ Qγ . (6.29)

The notion of (gauge-)equivalence of compatible pairs is defined as follows.

Definition 6.10 (Equivalence of smooth compatible pairs) LetO ⊆ R
1+4 be

an open set, and letQ = {Qα} ,Q′ =
{
Q′

β

}
be locally finite open coverings of

O. Consider two sets of smooth compatible pairs (A[α], φ[α]) and (A′[β], φ′[β])
onQ andQ′, respectively.WhenQ′ is a refinement ofQ (i.e., for every β there
exists α(β) such that Q′

β ⊆ Qα), we say that (A[α], φ[α]) and (A′[β], φ′[β])
are (gauge-)equivalent if for every β there exists χ[β] ∈ C∞

t,x (Q
′
β) such that

(A′[β], φ′[β]) = (A[α] − dχ[β], φ[α]eiχ[β]). In the general case, we say that
(A[α], φ[α]) and (A′[β], φ′[β]) are (gauge-)equivalent if there exists a common
refinement Q′′ of Q,Q′ and a set of smooth compatible pairs (A′′[γ ], φ′′[γ ]) on
Q′′ which is equivalent to both (A[α], φ[α]) and (A′[β], φ′[β]).

Remark 6.11 In more geometric terms, compatible pairs (A[α], φ[α]) on Qα

are precisely expressions of a connection A and a section φ of a complex line
bundle L in local trivializations L �Qα� Qα × C. Moreover, equivalent sets
of compatible pairs are alternative expressions of the same global pair (A, φ).

In fact, expression of connections and sections in local trivializations in
the fashion of Definition 6.9 is necessary if the complex line bundle L under
consideration is topologically nontrivial (i.e., L is not homeomorphic to the
product of C and the base space). In our setting, however, there is no loss
of generality in simply identifying connections and sections of L with real-
valued 1-forms and complex-valued functions, respectively, as all base spaces
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we consider (e.g.,O = I ×R
4 orCT

[T,∞) for some T > 0) are contractible and
hence all complex line bundles over such spaces are topologically trivial. In
this case, every smooth compatible pairs onO is equivalent to a global smooth
pair (A, φ) on O.

Remark 6.12 We emphasize that no delicate patching is needed for smooth
compatible pairs in this paper, since all we need is merely the soft fact that the
energy argument in Sect. 5 and the stress tensor argument in Sect. 7 (which are
both gauge invariant) can be justified. In contrast, in [26] an elaborate patching
argument had to be developed in order to control the S1 norm of the equivalent
global pair in the Coulomb gauge.

Based on the spaces introduced for the weak formulation of (MKG) dis-
cussed above, we can also formulate the notion of weak compatible pairs.

Definition 6.13 (Weak compatible pairs) LetO ⊆ R
1+4 be an open set and let

Q = {Qα} be a locally finite covering of O. For each index α, consider a pair
(A[α], φ[α]) ∈ Xw(Qα). We say that (A[α], φ[α]) are weak compatible pairs
if for every α, β, there exists a gauge transformation χ[αβ] ∈ Yw(Qα ∩ Qβ)

such that the properties (1)–(3) in Definition 6.9 hold almost everywhere.

The notion of equivalent sets of weak compatible pairs is defined as in
Definition 6.10, where the space C∞

t,x (Q
′
β) is replaced by Yw(Q′

β).
Geometrically, weak compatible pairs (A[α], φ[α]) may be thought of as

local descriptions of a connection and a section defined on a rough complex
line bundle L . A simple but crucial observation is that smoothness of the pairs
(A[α], φ[α]) implies smoothness of the gauge transformations χ[αβ]. Indeed,
simply note that dχ[αβ] = A[α] − A[β] by the property (2) in Definition 6.9.
As this fact will play an important role in our argument (see Proposition 7.3),
we record it as a separate lemma.

Lemma 6.14 Let Q = {Qα} be an open cover of O ⊆ R
1+4, and let

(A[α], φ[α]) on Qα be weak compatible pairs. If A[α], φ[α] ∈ C∞(Qα) for
every α, then (A[α], φ[α]) form smooth compatible pairs in the sense of Defi-
nition 6.9.

We end this subsection with another simple lemma, which will be used later
to show that the local solutions obtained from Proposition 6.1 in the limit form
weak compatible pairs.

Lemma 6.15 Let Q1, Q2 ⊆ R
1+4 be open sets such that Q1 ∩ Q2 �= ∅ is

an open bounded set with a piecewise smooth boundary. Consider sequences
(A(n)

[α], φ
(n)
[α]) ∈ Xw(Qα) (α = 1, 2) and χ

(n)
[12] ∈ Yw(Q1 ∩ Q2) such that

(
A(n)

[2] , φ
(n)
[2]

)
=

(
A(n)

[1] − dχ(n)
[12], φ

(n)
[1] e

iχ(n)
[12]

)
a.e. on Q1 ∩ Q2. (6.30)

123



842 S.-J. Oh, D. Tataru

In other words, (A(n)
[α], φ

(n)
[α]) are weak compatible pairs for each n. Suppose

furthermore that each sequence (A(n)
[α], φ

(n)
[α]) has a limit (A[α], φ[α]) inXw(Qα)

as n → ∞. Then the limits (A[α], φ[α]) (α = 1, 2) also form weak compatible
pairs, i.e., there exists χ[12] ∈ Yw(Q1 ∩ Q2) such that

(A[2], φ[2]) = (A[1] − dχ[12], φ[1]eiχ[12]) a.e. on Q1 ∩ Q2. (6.31)

Moreover, there exists a subsequence of χ
(n)
[12] that converges13 to χ[12] in

Yw(Q1 ∩ Q2) up to integer multiples of 2π .

Proof Let χ
(n)
[12] := ∫

Q1∩Q2
χ

(n)
[12] denote the mean of χ

(n)
[12]. By Poincaré’s

inequality, the identity dχ(n)
[12] = A(n)

[1] − A(n)
[2] and the L2

t,x convergence of

A(n)
[α](α = 1, 2), the mean-zero part χ̂

(n)
[12] := χ

(n)
[12] − χ

(n)
[12] converges to a

limit χ̂[12] in Yw(Q1 ∩ Q2) = H1
t,x (Q1 ∩ Q2). On the other hand, we can

easily extract a convergent subsequence from the bounded sequence eiχ
(n)
[12] ;

abusing the notation a bit, we denote the subsequence still by eiχ
(n)
[12] , and

the limit by eiχ [12] for some χ [12] ∈ R. It follows that χ
(n)
[12] converges to

χ[12] := χ̂[12]+χ [12] inYw(Q1∩Q2) as n → ∞ up to integermultiples of 2π .
The desired gauge equivalence in the limit (6.31) is now an easy consequence
of (6.30) and the above convergences.

7 Stationary/self-similar solutions with finite energy

In the context of the blow-up analysis to be performed inSect. 8, the local strong
compactness result (Proposition 6.1) will give rise to two types of solutions to
(MKG):

• A stationary solution (A, φ), which is defined by the property

ιY F = 0, DYφ = 0 (7.1)

for some constant time-like vector field Y ; or
• A self-similar solution (A, φ), defined by the property

ιX0F = 0,

(
DX0 + 1

ρ

)
φ = 0. (7.2)

In Sects. 7.1 and 7.2, we show that such solutions must be trivial under
the finite energy assumption. We use the method of stress tensor, which is the

13 That is, there exists km ∈ Z such that χ(nm)
[12] + 2πkm → χ[12] in Yw(Q1 ∩ Q2).
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elliptic version of the energy-momentum-stress tensor considered in Sect. 5.
In Sect. 7.3, we establish an elliptic regularity result for these solutions under
the improved regularity assumption (6.6) ensured by Proposition 6.1.

7.1 Triviality of finite energy stationary solutions

As any unit constant time-like vector field Y can be Lorentz transformed to the
vector field T = ∂t in the rectilinear coordinates, we may assume that Y = T .
Our main result in this case is as follows.

Proposition 7.1 Let (A, φ) be a smooth solution to (MKG) on R
1+4 with

ιT F = 0 and DTφ = 0. Suppose furthermore that (A, φ) has finite energy,
i.e., E{0}×R4[A, φ] < ∞. Then E{0}×R4[A, φ] = 0.

Proof We use the rectilinear coordinates (t = x0, x1, . . . , x4), in which
T = ∂t . By the stationarity assumptions (ιT F)(∂ j ) = F0 j = 0 and
DTφ = D0φ = 0, (MKG) reduces to the following elliptic system on each
constant t hypersurface:

{
∂�Fj� = Im(φD jφ),

D�D�φ = 0.
(7.3)

Henceforth, we work with F, φ restricted to the hypersurface {t = 0}.
For the purpose of showing E[A, φ] = 0, consider the following stress

tensor associated to (7.3):

Q jk[A, φ] := Re(D jφDkφ) − 1

2
δ jkRe(DkφDkφ)

+Fj�F
�

k − 1

4
δ jk F�mF

�m . (7.4)

Given a vector field S on R
4, we define as before the associated 1-and 0-

currents

(S) J j [A, φ] := Q jk[A, φ]Sk,
(S)K [A, φ] := Q jk[A, φ](S)π jk

which, thanks to (7.3), satisfy the divergence identity

∇a((S) J[A, φ]a) = (S)K [A, φ]. (7.5)

Choosing S to be the scaling vector field on R
4 so that, in the rectilinear

coordinates
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Sk = xk, (S)π jk = 2δ jk,

we have

(S)K [A, φ] = −2|Dφ|2, |(S) J j [A, φ]| � |x ||Dφ|2 + |x ||F |2.

where |Dφ|2 = ∑4
j=1 |D jφ|2 and |F |2 = ∑

1≤ j<k≤4 |Fjk |2.
We now integrate (7.5) by parts on a ball BR ⊆ R

4 of radius R > 1 centered
at 0. Then we see that

− 2
∫

BR

|Dφ|2 dx =
∫

∂BR

(S) J [A, φ]ana, where n = x�

|x |∂�. (7.6)

By the finite energy condition, we have |Dφ|, |F | ∈ L2(R4); this fact is enough
to deduce the existence of a sequence of radii Rn → ∞ along which the
boundary integral vanishes. Hence it follows that Dxφ = 0.

It only remains to show that F = 0. Note that F is now a harmonic 2-form
in L2(R4), as dF = d2A = 0 and the right-hand side of the first equation
in (7.3) vanishes. Therefore, each component Fjk is a harmonic function. By
the non-existence14 of nontrivial harmonic functions in L2(R4), it follows that
F = 0, which completes the proof. ��

7.2 Triviality of finite energy self-similar solutions

In the case of a self-similar solution with finite energy, our main result is as
follows.

Proposition 7.2 Let (A, φ) be a smooth solution to (MKG) on the forward
light cone C(0,∞) with ιX0F = 0 and DX0φ + 1

ρ
φ = 0. Suppose furthermore

that (A, φ) has finite energy, i.e., supt∈(0,∞) ESt [A, φ] < ∞. Then ESt [A, φ] =
0 for all t > 0.

Proof We use the hyperbolic coordinates (ρ, y, �), in which X0 = ∂ρ . By
the self-similarity assumption ιX0F(·) = F(∂ρ, ·) = 0 and D∂ρφ = − 1

ρ
φ, it

follows that the pullback of (A, φ) to H1 = {ρ = 1} = H
4, which we still

denote by (A, φ), solves the system

{
− divH4F = Im(φDH4φ),

(−�H4,A − 2)φ = 0,
(7.7)

14 This fact can be proved using the monotonicity (7.14), which holds for all 0 < r1 < r2 for
harmonic functions on R4.
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where F = dA, (divH4F)a = ∇b
H4Fba,DH4 = ∇H4 + i A and �H4,A =

Da
H4DH4,a. Furthermore, by Proposition 5.1 applied to H1 = H

4, we have

∫

H4

1

2
cosh y |F |2

H4 dσH4 < ∞, (7.8)
∫

H4

1

2

[
cosh y|φ|2 + 2 sinh yRe[φDyφ] + cosh y|Dφ|2

H4

]
dσH4 < ∞. (7.9)

where |F |2
H4 = 1

2 (g
−1
H4 )ac(g−1

H4 )bdFabFcd and |Dφ|2
H4 = (g−1

H4 )abDaφDbφ.
In order to proceed, we reformulate the system on D

4 using the conformal
equivalence of D4 and H

4. Consider the following map from D
4 to H

4:

� : D4 → H
4, (r, �) �→ (y, �) = (

2 tanh−1 r, �
)

The map � is a conformal isometry, i.e.,

�∗gH4 = �∗ (
dy2 + sinh2 y gS3

) = �2 (
dr2 + r2 gS3

) = �2gD4,

where �∗ denotes the pullback along � toD4, and � := 2
1−r2

. For the pulled-

back pair (�∗A, � �∗φ) on D4, which (slightly abusing the notation) we will
denote by (A, u), we have

{
∂�Fj� = Im(uD j u)

D�D�u = 0.
(7.10)

where F = dA and D = ∇ + i A. Moreover, the bounds (7.8) and (7.9) then
translate to

∫

D4

1

2

1 + r2

1 − r2
|F |2

D4 dσD4 < ∞, (7.11)
∫

D4

1

2

[
1

1 − r2
|rDr u + 2u|2 + 1

1 − r2
|Dr u|2

+ 1 + r2

(1 − r2)r2
| �Du|2

]
dσD4 < ∞. (7.12)

where | �Du|2 = (g−1
S3

)abDauDbu. Indeed, note that

�∗dσH4 = �4dσD4, �∗(cosh y) = 1 + r2

1 − r2
, �∗(sinh y) = 2r

1 − r2
.
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From these identities and (7.8), we immediately see that (7.11) holds. More-
over, (7.12) follows from (7.9) and the following computation:

∫

H4

1

2

[
cosh y|φ|2 + 2 sinh yRe[φDyφ] + cosh y|Dφ|2

H4

]
dσH4

=
∫

D4

1

2

[1 + r2

1 − r2
�2|u|2 + 4r

1 − r2
Re[�u�Dr (�−1u)]

+1 + r2

1 − r2

(
|�Dr (�

−1u)|2 + 1

r2
| �Du|2

)]
dσD4

=
∫

D4

1

2

[ 4

1 − r2
|u|2 + 4r

1 − r2
Re[uDr u] + r2 + 1

1 − r2
|Dr u|2

+ 1 + r2

(1 − r2)r2
| �Du|2

]
dσD4

=
∫

D4

1

2

[ 1

1 − r2
|rDr u + 2u|2 + 1

1 − r2
|Dr u|2

+ 1 + r2

(1 − r2)r2
| �Du|2

]
dσD4 .

We will now show that (7.10), (7.11) and (7.12) imply u = 0 on D
4. Since

the system (7.10) coincides with (7.3) restricted toD4, the divergence identity
(7.5) can be used in the present context as well. Integrating (7.5) by parts on
a ball BR ⊆ D

4 of radius R < 1 centered at 0, we see that

− 2
∫

BR

|Du|2 dσD4 =
∫

∂BR

(S) J [A, u]ana, where n = x�

|x |∂�. (7.13)

Observe that (7.11) and (7.12) imply the existence of a sequence Rn → 1 such
that

∫

∂BRn

|(S) J [A, u]ana| → 0,

which shows that Du = 0 on D
4. Plugging this information into (7.12), it

follows that u = 0 on D
4, as desired.

To complete the proof, it only remains to show that F = 0. As before, F
is now a harmonic 2-form in L2(D4) by (7.7); hence each component Fjk is
a harmonic function on D

4. Fix j, k ∈ {1, 2, 3, 4} and observe that ϕ := Fjk ,
viewed as a real-valued function, obeys the following monotonicity property:

1

r31

∫

∂Br1

|ϕ|2 ≤ 1

r32

∫

∂Br2

|ϕ|2 where 0 < r1 < r2 < 1. (7.14)
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Indeed, (7.14) is a consequence of interpolating the inequalities

1

r31

∫

∂Br1

|ϕ| ≤ 1

r32

∫

∂Br2

|ϕ|, sup
∂Br1

|ϕ| ≤ sup
∂Br2

|ϕ| where 0 < r1 < r2 < 1,

which follow from the mean-value property and the weak maximum principle
for the subharmonic function |ϕ| onD4, respectively. By (7.11), it follows that
Fjk = ϕ = 0 on D

4. ��

7.3 Regularity of stationary and self-similar weak solutions to (MKG)

We end this section with a regularity result, which applies to weak solutions
obtained by Proposition 6.1.

Proposition 7.3 Let (A, φ) be a weak solution to (MKG) on an open set
O ⊆ R

1+4 such that

Aμ ∈ H1
t,x (O), φ ∈ H

3
2
t,x (O). (7.15)

Suppose furthermore that one of the following holds:

(1) Either (A, φ) is stationary on O in the sense of (7.1); or
(2) The set O is a subset of the cone C(0,∞) = {0 ≤ r < t} and (A, φ) is

self-similar on O in the sense of (7.2).

Then for every p ∈ O, there exists an open neighborhood p ∈ Qp ⊆ O
and a gauge transformation χ[p] ∈ Yw(Qp) such that (A[p], φ[p]) = (A −
dχ[p], φeiχ[p]) is smooth on Qp.

Proof The idea is to derive an elliptic system as in (7.3) [resp. (7.7)] using
stationarity [resp. self-similarity], and then use its regularity theory. To get rid

of the non-local operator 〈Dt,x 〉 3
2 in the norm, we begin with the following

simplemaneuver: For any open bounded subset Q ⊆ Owith smooth boundary,
by Sobolev and (7.15), we have

Aμ ∈ H1
t,x (Q), φ ∈ W 1,q

t,x (Q) (7.16)

where q = 5
2 . The important point is that q > 2, which will make this bound

subcritical. Hence wewould be able to conclude regularity via a simple elliptic
bootstrap argument.

We first treat Case 1. Applying a suitable Lorentz transformation, it suffices
to consider the case Y = ∂t in the rectilinear coordinates (t = x0, x1, . . . , x4).
Moreover, applying an appropriate space-time translation, wemay assume that
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p is the origin. Let Qp := (−δ, δ) × δB, where δB is the open ball of radius
δ centered at the origin. Choosing δ > 0 small enough, we have Qp ⊆ O. By
(7.16) and Fubini, there exists t ∈ (−δ, δ) such that

A �t×δB∈ H1(δB), φ �t×δB∈ W 1,q(δB), (7.17)

where the shorthand t = {
t
}
is used for simplicity. We claim that there exists

χ[p] ∈ Yw((−δ, δ) × δB) so that χ[p] �t×δB∈ H2(δB) and

∂tχ[p] = A0 in (−δ, δ) × δB, �χ[p] �t×δB= ∂�(A �t×δB)�. (7.18)

Indeed, wemay simply defineχ [p] = �−1∂�(ηA �{t=t})�, where η ∈ C∞
0 (R4)

satisfies η = 1 on δB and supp η ⊆ O, then solve the transport equation
∂tχ[p] = A0 in (−δ, δ)× δB with initial data χ[p] �t×δB= χ [p]. That this χ[p]
belongs to Yw((−δ, δ)× δB) and χ[p] �t×δB∈ H2(δB) easily follow from the
bounds for A in (7.16) and (7.17).

Consider now the gauge transform (A[p], φ[p]) = (A − dχ[p], φeiχ[p]). By
(7.18), we have

A[p]0 = 0 in (−δ, δ) × δB, ∂�
(
A[p] �t×δB

)
�
= 0 in δB. (7.19)

By the stationarity assumption ι∂t F = 0 and D∂tφ = 0, it follows that

∂t A[p] j = F0 j = 0, ∂tφ[p] = 0 in (−δ, δ) × δB.

Hence to prove that (A[p], φ[p]) is smooth in Qp, it suffices to show that
(A[p], φ[p]) �t×δB is smooth. Abusing the notation slightly for simplicity, we
will henceforth write A = A[p] �t×δB and φ = φ[p] �t×δB . By (7.3) and (7.19)
(in particular, the Coulomb condition for A), (A, φ) satisfies an elliptic system
on δB of the schematic form

�A = φ∂φ + φAφ,

�φ = A∂φ + AAφ.

Moreover, (A, φ) belongs to A ∈ H1(δB) and φ ∈ W 1,q(δB), thanks to
(7.17) and χ[p] �t×δB∈ H2(δB). As this system is H1-critical and every
nonlinear term has at least one factor of φ, which obeys a subcritical bound
φ ∈ W 1,q(δB), we can perform a standard elliptic bootstrap argument to con-
clude that (A, φ) is smooth on δB with uniform bounds on compact subsets.
This concludes the proof in Case 1.

The proof in Case 2 is entirely analogous to Case 1, so we only give a brief
outline. Here, instead of the rectilinear coordinates, we use the hyperbolic
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coordinates (ρ, y, �), in which X = ∂ρ . Applying a suitable Lorentz transfor-
mation and scaling transformation, we may assume that p coincides with the
point ρ = 1, y = 0. Let Qp = (−δ, δ)×Dδ, where Dδ := {(y, �) : |y| < δ},
which is contained in O if δ > 0 is sufficiently small. By (7.16) and Fubini,
there exists ρ ∈ (−δ, δ) such that

A �ρ×Dδ∈ H1(Dδ), φ �ρ×Dδ∈ W 1,p(Dδ). (7.20)

Proceeding as before,we canfindχ[p] ∈ Yw((−δ, δ)×Dδ) so thatχ[p] �ρ×Dδ∈
H2(Dδ) and

∂ρχ[p] = 0 in (−δ, δ) × Dδ, �Hρ
χ[p] �ρ×Dδ= ∇a

Hρ

(
A �ρ×Dδ

)
a .

Then the gauge transform (A[p], φ[p]) = (A − dχ[p], φeiχ[p]) obeys

A[p](∂ρ) = 0 in (−δ, δ) × Dδ, ∇a
Hρ

(
A[p] �ρ×Dδ

)
a = 0 in Dδ.

By self-similarity, we haveL∂ρ A[p] = 0 and ∂ρ(ρφ[p]) = 0, so it only remains
to prove that the pullback of (A[p], φ[p]) on ρ × Dδ , which we will refer to
as (A, φ), is smooth. As in the previous case, this is a consequence of the fact
that (A, φ) obeys an elliptic system (thanks to (7.7) and the Coulomb gauge
condition onHρ), the bounds A ∈ H1(Dδ) and φ ∈ W 1,q(Dδ)with q > 2 (by
(7.20) and χ[p] �ρ×Dδ∈ H2(Dδ)), and a standard elliptic bootstrap argument.

��

8 Proof of global well-posedness and scattering

Here we carry out the proof of Theorem 1.3 using the tools developed in the
earlier parts.

8.1 Finite time blow-up/non-scattering scenarios and initial reduction

Our overall strategy for proving Theorem 1.3 is by contradiction. Suppose
that Theorem 1.3 fails for an initial data set (a, e, f, g) ∈ H1 in the global
Coulomb gauge. By time reversal symmetry, it suffices to consider the forward
evolution. Let (A, φ) be the admissible CtH1 solution to the Cauchy problem
in the global Coulomb gauge defined on the maximal forward time interval
I = [0, T+) for some T+ > 0 constructed by Theorem 4.3. By Theorem 4.8,
the solution (A, φ) exhibits one of the following behaviors:

(1) Finite time blow-up We have T+ < ∞ and

‖A0‖Y 1[0,T+) + ‖Ax‖S1[0,T+) + ‖φ‖S1[0,T+) = ∞. (8.1)
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(2) Non-scattering We have T+ = ∞, but

‖A0‖Y 1[0,∞) + ‖Ax‖S1[0,∞) + ‖φ‖S1[0,∞) = ∞. (8.2)

In the case of finite time blow-up, we may use the energy concentration
scale rc in Theorem 4.3 to show that the energy must concentrate at a point.

Lemma 8.1 Let (A, φ) be an admissible CtH1 solution to (MKG) on
[0, T+) × R

4 with T+ < ∞ in the global Coulomb gauge. Then either
(A, φ) can be continued past T+ as an admissible CtH1 solution in the global
Coulomb gauge (as in Theorem 4.3), or there exists a point x0 ∈ R

4 such that

lim sup
t→T+

E{t}×B(T+−t)(x0)[A, φ] > 0. (8.3)

Proof For t < T+ and x ∈ R
4 we define the function

E(t, x) = E{t0}×B(T+−t)(x)[A, φ].

This is continuous in x , and, by the non-negativity of the flux in the energy
relation (5.3), it is non-increasing in t . Further, by the same relation, we have

lim|x |→∞ E(t, x) = 0, uniformly in t ∈ [0, T+). (8.4)

Then we have two alternatives:

(i) Either limt→T+ supx∈R4 E(t, x) < δ0(E, ε2∗), which implies that there
exists t0 so that energy concentration scale rc at t = t0 as in (4.4) is
greater than T+ − t0. By Theorem 4.3 we can then extend (A, φ) past T+,
as claimed.

(ii) Or, limt→T+ supx∈R4 E(t, x) ≥ δ0(E, ε2∗). Then the sets Dt = {x ∈ R
4 :

E(t, x) ≥ 1
2δ0(E, ε2∗)} are nonempty and decreasing in t . Moreover, they

are compact by (8.4). Thus they must intersect. Any x0 in the intersection
will provide the second alternative in the lemma. ��

Theorem 4.7 provides additional information about the nature of the singu-
larity in both scenarios, which is crucial to our proof of Theorem 1.3. To utilize
this information, we introduce a smooth function ζ satisfying the following
properties:

• supp ζ ⊆ B1(0) and
∫

ζ = 1.
• There exists a function ζ̃ ∈ C∞

0 (R4) with ζ̃ ≥ 0 such that ζ = ζ̃ ∗ ζ̃ .
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Then we define the physical space version of energy dispersion as follows:

ED[A, φ](I ) := sup
k∈Z

(
2−k‖ζ2−k ∗ φ(t, x)‖L∞

t,x (I×R4) + 2−2k‖ζ2−k ∗ Dtφ(t, x)‖L∞
t,x (I×R4)

)

(8.5)

where ζ2−k := 24kζ(2k ·), and the convolution ∗ is defined with respect to only
the spatial variables (x1, . . . , x4). The first property makes ED[A, φ] simpler
to use in physical space arguments; on the other hand, the second property is
helpful in connection with the diamagnetic inequality, which we state here.

Lemma 8.2 (Diamagnetic inequality) Let O ⊆ R
4 be an open set and φ, A ∈

H1(O). Then for any smooth vector X, |∂X |φ|| ≤ |DXφ| in the sense of
distributions. More precisely, for any smooth η ≥ 0 with supp η ⊆ O, we
have

∫
η|∂X |φ|| dx ≤

∫
η|DXφ| dx .

The key to the proof is the formal computation |∂X |φ|| = ||φ|−1〈φ,DXφ〉| ≤
|DXφ|; we omit the standard details. We fix the choice of functions ζ, ζ̃ here,
and henceforthwewill suppress the dependence of constants on these functions
for simplicity.

The physical space version ED[A, φ] is related to the earlier Littlewood-
Paley version ED[φ] defined in (4.9) as follows.

Lemma 8.3 Let (A, φ) be an admissible CtH1 solution to (MKG) on I ×R
4

in the global Coulomb gauge with E{t}×R4[A, φ] ≤ E. Then there exists C =
C(E) such that

ED[φ](I ) ≤ C ED[A, φ](I ) + 1

100
ε(E),

where ε(E) is as in Theorem 4.7.

Proof All norms in this proof will be taken over I × R
4. The following esti-

mates are straightforward to establish:

sup
k

2−k‖Pkφ‖L∞
t,x

� sup
k

2−k‖ζ2−k ∗ φ‖L∞
t,x

, (8.6)

sup
k

2−2k‖Pk(Dtφ)‖L∞
t,x

� sup
k

2−2k‖ζ2−k ∗ (Dtφ)‖L∞
t,x

. (8.7)

As these two estimates are proved in the same manner, we only consider (8.6).
Fix k ∈ Z, and let m0 > 0 be an absolute constant to be chosen. We have
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2−k‖Pkφ‖L∞
x

≤ 2−k‖ζ2−k−m0 ∗ Pkφ‖L∞
x

+ 2−k‖(1 − ζ2−k−m0∗)Pkφ‖L∞
x

� 2m02−k−m0‖ζ2−k−m0 ∗ φ‖L∞
x

+2−m02−2k sup
j=1,...,4

‖∂ j Pkφ‖L∞
x

The last term can be bounded by � 2−m02−k‖Pkφ‖L∞
x
, which can be

absorbed into the left-hand side by taking m0 sufficiently large. Hence (8.6)
follows.

In view of (8.6) and (8.7), the lemma would follow once we prove that, for
any m1 > 10,

sup
k

2−2k‖Pk∂tφ‖L∞
t,x

�E 2m1 sup
k

(
2−2k‖Pk(Dtφ)‖L∞

t,x

+ 2−k‖Pkφ‖L∞
t,x

)
+ 2−m1 .

By the relation ∂t = Dt − i A0, it suffices to show that

sup
k

2−2k‖Pk(A0φ)‖L∞
t,x

� 2m1E
1
2 sup

k
2−k‖Pkφ‖L∞

t,x
+ 2−m1

(
E + E

3
2

)
.

(8.8)

Thanks to the global Coulomb condition, we have

‖A0‖L∞
t Ḣ1

x
� E1/2, ‖φ‖L∞

t Ḣ1
x

� E1/2 + E .

For each k ∈ Z, we split φ = P≤k+m1φ + P>k+m1φ. For the former, we have

2−2k‖Pk(A0P≤k+m1φ)‖L∞
t,x

�
∑

�≤k+m1

2�−k‖A0‖L∞
t L4

x
2−�‖P�φ‖L∞

t,x

� 2m1E
1
2 sup

�

2−�‖P�φ‖L∞
t,x

.

For the latter, by the properties of frequency supports, note that

Pk(A0P>k+m1φ) =
∑

�>k+m1

Pk(P[�−3,�+3]A0P�φ).

Hence (8.8) follows from the estimate

2−2k‖Pk(A0P>k+m1φ)‖L∞
t,x

�
∑

�>k+m1

22k‖P[�−3,�+3]A0‖L∞
t L2

x
‖P�φ‖L∞

t L2
x

� 2−2m1(E + E3/2).

��
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As a result, there exists a function e = e(E) > 0 such that Theorem 4.7
holds with the condition (4.11) replaced by

ED[A, φ](I ) ≤ e(E). (4.11′)

Let ε > 0 be a small parameter to be chosen below. We have the following
result, which unifies the proof of Theorem 1.3 in both finite time blow-up and
non-scattering scenarios from here on.

Lemma 8.4 Suppose that Theorem 1.3 fails for some initial data (a, e, f, g)
of energy E. Then for every ε > 0 there exists a sequence εn → 0 and a
sequence of admissible CtH1 solutions (A(n), φ(n)) on [εn, 1] × R

4 in the
global Coulomb gauge that satisfy the following properties:

(1) Bounded energy in the cone

ESt
[
A(n), φ(n)

]
≤ 2E for every t ∈ [εn, 1] , (8.9)

(2) Small energy outside the cone

E({t}×R4)\St
[
A(n), φ(n)

]
≤ ε8E for every t ∈ [εn, 1] , (8.10)

(3) Decaying flux on ∂C

F[εn,1]
[
A(n), φ(n)

]
+ GS1

[
φ(n)

]
≤ ε

1
2
n E, (8.11)

(4) Pointwise concentration at t = 1

2−kn |ζ2−kn ∗ φ(n)(1, xn)| + 2−2kn |ζ2−kn ∗ D(n)
t φ(n)(1, xn)| > e(E)

(8.12)

for some kn ∈ Z and xn ∈ R
4.

Remark 8.5 The small parameter ε > 0 will be specified near the end of the
proof of Theorem 1.3, precisely in Lemma 8.11, depending only on E .

Remark 8.6 By the global Coulomb gauge condition ∂�A(n)
� = 0, the follow-

ing gauge dependent uniform bounds for A(n) and φ(n) hold:

‖∂t,x A(n)‖L∞
t ([εn,1];L2

x )
� E

1
2 , ‖∂t,xφ(n)‖L∞

t ([εn,1];L2
x )

�
(
1 + E

1
2

)
E

1
2 .

(8.13)
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Proof Suppose that Theorem 1.3 fails. Then by the discussion at the beginning
of the section, there exists an admissible CtH1 solution (A, φ) of energy E to
(MKG) on [0, T+) × R

4 which satisfies either 0 < T+ < ∞ and (8.1) (finite
time blow-up) or T+ = ∞ and (8.2) (non-scattering). We treat these two cases
separately.
Case 1: Finite time blow-up By Lemma 8.1, there exists a point x0 ∈ R

4

such that (8.3) holds. By translation in space-time and reversing time, we may
assume that x0 = 0 and we have energy concentration at the space-time origin
as t → 0, i.e.,

lim sup
t→0

ESt [A, φ] > 0. (8.14)

Our next course of action is to use the excision and gluing technique (Propo-
sition 4.4) to cut away the part of (A, φ) outside the cone of influence of (0, 0).
In what follows, we denote the ball B1(0) by B, so that r B = Br (0) for any
r > 0.

By Corollary 5.3 there exists t0 > 0 such that

F∂C(0,t0] [A, φ] � min
{
δ0(E, ε2∗), ε8E

}

where δ0(E, ε2∗) is as in (4.4). Furthermore, we can find a collar of radius
r0 > 0 around St0 = {t0} × t0B with small energy, i.e.,

E{t0}×((t0+r0)B\t0B)[A, φ] � min
{
δ0(E, ε2∗), ε8E

}
.

By local conservation of energy, we then have

E{t}×((t+r0)B\t B)[A, φ] � min
{
δ0

(
E, ε2∗

)
, ε8E

}
for every t ∈ (0, t0].

Observe that the ratio (t + r0)/t goes to ∞ as t → 0. Hence, by the improved
Hardy estimate in Lemma 4.5, for sufficiently small 0 < t̄ < r0 we also obtain

‖ 1

|x |φ(t̄, ·)‖2L2
x (2t̄ B\t̄ B)

� min
{
δ0

(
E, ε2∗

)
, ε8E

}
for every t ∈ (0, t0].

We may now apply Proposition 4.4 to (a, e, f, g) = (A j , F0 j , φ,Dtφ)�{t=t̄}
to obtain a new data set (̃a, ẽ, f̃ , g̃) that coincides with (a, e, f, g) on t̄ B and
obeys

ER4\t̄ B [̃a, ẽ, f̃ , g̃] ≤ 1

2
min

{
δ0

(
E, ε2∗

)
, ε8E

}
.
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To pass to the global Coulomb gauge, we define the gauge transformation
χ ∈ G2(R4) by χ = �−1∂�ã� and let (ǎ, ě, f̌ , ǧ) be the gauge transform of

(̃a, ẽ, f̃ , g̃) by χ . Let ( Ǎ, φ̌) be the admissible CtH1 solution to the Cauchy
problem in the global Coulomb gauge given by Theorem 4.3, defined on the
maximal time interval I " t̄ .

As a consequence of the construction and local conservation of energy, the
energy outside the cone C is always tiny, i.e.,

E({t}×R4)\St
[
Ǎ, φ̌

]
≤ 1

2
min

{
δ0

(
E, ε2∗

)
, ε8E

}
for every t ∈ I. (8.15)

Then by an argument similar to the proof of Lemma 8.1, it follows that ( Ǎ, φ̌)

can be always continued to the past until 0, i.e., (0, t̄] ⊆ I . Furthermore, there
exist sequences (tn, xn) ∈ I × R

4 and kn ∈ Z with tn → 0 such that

2−kn |ζ2−kn ∗ φ̌(tn, xn)| + 2−2kn |ζ2−kn ∗ Ďt φ̌(tn, xn)| > e(E). (8.16)

For otherwise, there exists δ > 0 such that (4.11′) holds on (0, δ). Then by
Theorem 4.7 (with (4.11) replaced by (4.11′)) and Theorem 4.8, the solution
( Ǎ, φ̌) can be extended past t = 0. Hence lim supt→0 ESt [ Ǎ, φ̌] = 0, but this
fact contradicts (8.14) as ESt [ Ǎ, φ̌] = ESt [A, φ] for every t ∈ I .

Applying Corollary 5.3 to ( Ǎ, φ̌), we may choose a sequence εn → 0 such
that

F[εntn,tn][A, φ] + GStn [φ] ≤ ε
1
2
n E .

By the scaling properties of E,F and G, as well as scale invariance of (8.16)
(which is immediate from definition), it follows that the sequence of rescaled
solutions

(
A(n), φ(n)

)
(t, x) := tn

(
Ǎ, φ̌

)
(tnt, tnx)

obeys the desired properties.
Case 2: Non-scattering This case follows by a simple rescaling argument. Let
R0 > 0 be a large radius such that E{0}×(R4\BR0 (0))[A, φ] ≤ ε8E . Translating
in time by R0 and using the local conservation of energy, we may assume that
(A, φ) obeys

E({t}×R4)\St [A, φ] ≤ ε8E for every t ∈ [R0,∞).

ByTheorem4.7with (4.11) replaced by (4.11′) and (8.2), there exist sequences
(tn, xn) ∈ [R0,∞) × R

4 and kn ∈ Z with tn → ∞ such that
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2−kn |ζ2−kn ∗ φ(tn, xn)| + 2−2kn |ζ2−kn ∗ Dtφ(tn, xn)| > e(E)

ByCorollary 5.3, wemay then choose a sequence εn → 0 such that εntn → ∞
and

F[εntn,tn][A, φ] + GStn [φ] ≤ ε
1
2
n E .

Defining (A(n), φ(n))(t, x) := tn(A, φ)(tnt, tnx), we obtain a desired sequence.

8.2 Elimination of the null concentration scenario

Using Proposition 5.4, in particular the weighted energy estimate on S1, we
show that null concentration cannot happen. The precise statement is as fol-
lows.

Lemma 8.7 (Nonull concentration) Let (A(n), φ(n))be a sequence of admissi-
ble CtH1 solutions to (MKG) satisfying the conclusions of Lemma 8.4with the
sequences εn, kn and xn. There exist K = K (E) > 0 and γ = γ (E) ∈ (0, 1)
such that if kn > K (E) and |xn| > γ (E) for all sufficiently large n, and ε > 0
is sufficiently small depending on E, then

lim sup
n→∞

2−kn |ζ2−kn ∗ φ(1, xn)| + 2−2kn |ζ2−kn ∗ D(n)
t φ(n)(1, xn)| ≤ e(E).

(8.17)

Remark 8.8 Note that K (E) in Lemma 8.7 can be replaced a posteriori by
any number greater than K (E). Hence given any m = m(E) depending only
on E , we may assume in addition to the statement of Lemma 8.7 that

2−K ≤ 1

100m(E)
(1 − γ ). (8.18)

This observation will be useful in the proof of Lemma 8.9 below.

Proof The idea of the proof is similar to that of [33, Lemma6.2]with additional
ideas to deal with the presence of covariant derivatives.
Step 1 The starting point is Proposition 5.4 applied to (A, φ) = (A(n), φ(n))

with ε = εn , more precisely the first term on the left-hand side of (5.11). Using
Lemma 5.10 to write out (Xεn )PT , we see that the following a-priori estimate
holds on S1:

∫

S1

1

(1 − |x | + εn)
1
2

(
|D(n)

L φ(n)|2 + | �D(n)φ(n)|2
)
dx � E . (8.19)
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By the smallness of the energy outside S1, we then obtain the global bound

∫

{t=1}
1

((1 − |x |)+ + εn)
1
2 + ε8

(
|D(n)

L φ(n)|2 + | �D(n)φ(n)|2
)
dx � E,

(8.20)

where (·)+ := max {·, 0}.
Step 2 We claim that for any non-negative k ∈ Z the following estimate holds:

lim sup
n→∞

2−k |ζ2−k ∗ |φ(n)|(1, x)| �
(
2− 3

8 k + (
(1 − |x |)+ + 2−k) 1

4 + ε4
)
E

1
2 .

(8.21)

The point of (8.21) is that |φ(n)| is gauge invariant, and hence we can avoid
estimating A. Henceforth, we will denoteψ(n) := |φ(n)|(1, ·). We use the rota-
tional symmetry to bring x to the x1-axis, so that x = (|x |, 0, 0, 0). Henceforth
we will write x = (x1, x ′) where x ′ = (x2, x3, x4).

By the diamagnetic inequality (Lemma 8.2), conservation of energy implies

∫
|∇ψ(n)|2 dx � E . (8.22)

where |∇ψ |2 := ∑4
�=1 |∂�ψ |2. Note that (8.22) and Young’s inequality

implies the trivial bound 2−k‖ζ2−k ∗ ψ(n)‖L∞
x

� E1/2, which allows us to
restrict our attention to x = (x1, 0, 0, 0) with 1/2 < x1 < 2.

We claim that for n sufficiently large so that ε
1/2
n ≤ 1

100ε
8, the directional

derivatives other than ∂1 obey an improved estimate

4∑

j=1

∫
wk |∂ jψ

(n)|2 dx � E, (8.23)

where wk > 0 is defined as

wk(x) := 1

(|1 − x1| + |x ′|2 + 2−k)
1
2 + ε8

. (8.24)

To prove (8.23) under the assumption ε
1/2
n ≤ 1

100ε
8, it suffices to prove

4∑

j=2

∫
1

(|1 − x1| + |x ′|2 + εn)
1
2 + ε8

|∂ jψ
(n)|2 dx � E . (8.25)
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The estimate (8.25) is a consequence of (8.20). Indeed, the latter estimate
combined with the diamagnetic inequality implies

∫
1

((1 − |x |)+ + εn)
1
2 + ε8

| �∇ψ(n)|2 dx � E . (8.26)

At x = (1, 0, 0, 0)we have 1
r2
g−1
S3

= ∑4
j=2 ∂ j ·∂ j . Therefore, by smoothness,

we have

∣
∣| �∇ψ |2 −

4∑

j=2

|∂ jψ |2∣∣ �
(|1 − x1| + |x ′|) |∇ψ |2.

On the other hand, (1 − |x |)+ � |1 − x1| + |x ′|2.
Combining these facts, we may now bound the left-hand side of (8.25) by

∫
1

(|1 − x1| + |x ′|2 + εn)
1
2 + ε8

∣
∣

4∑

j=2

|∂ jψ
(n)|2 − | �∇ψ |2∣∣

+ 1

((1 − |x |)+ + εn)
1
2 + ε8

| �∇ψ(n)|2 dx

�
∫ |1 − x1| + |x ′|

(|1 − x1| + |x ′|2 + εn)
1
2 + ε8

|∇ψ |2 dx

+
∫

1

((1 − |x |)+ + εn)
1
2 + ε8

| �∇ψ(n)|2 dx .

Then using (8.22) and (8.26), the desired estimate (8.25) follows.
Compared to the weight in the preceding expression, observe that we have

absorbed εn into ε8 and added 2−k in wk . This maneuver ensures that wk is
slowly varying at scale 2−k × 2−k/2 × · · · × 2−k/2, i.e., for any x, y ∈ R

4 we
have

| wk(x)

wk(x − y)
| � e

∑4
j=1 |y j |‖∂ j logwk‖L∞ � e2

k |y1|+2k/2|y′|. (8.27)

We now turn to the task of deriving (8.21) from (8.22) and (8.23). We
introduce the notation Zkψ := ζ2−k ∗ ψ and write zk(ξ) for the symbol of the
integral operator Zk ; of course, zk is nothing but the (spatial) Fourier transform
of ζ2−k . Given a smooth cut-off η onR3 adapted to the unit ball, we furthermore
decompose

Zk = Z1
k∂1 + Z2

k∂2 + · · · + Z4
k∂4
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where the symbols z jk (ξ) of Z j
k are given by

z1k(ξ) = zk(ξ)η
(
2− k

2 ξ ′) 1

iξ1
,

z jk (ξ) = zk(ξ)
(
1 − η

(
2− k

2 ξ ′)) ξ j

i |ξ ′|2 for j = 2, 3, 4,

where ξ ′ = (ξ2, ξ3, ξ4).
The contribution of Z1

k∂1 to (8.21) is easy to treat. Observe that z
1
k(ξ)iξ1 is

a smooth symbol which is rapidly decaying at scale 2k in the ξ1-direction, i.e.,
for every N ≥ 0 we have

|(ξ1∂ξ1)
N (

z1kiξ1
) | �N

(
1 + 2−k |ξ1|

)−100
.

Moreover, z1k(ξ)iξ1 is compactly supported in the set
{|ξ ′| � 2k/2

}
in the other

directions. For any N ≥ 0, these facts immediately imply the kernel bound

|F−1
x (z1kiξ1)| �N 2

5
2 k(1 + 2k |x1|)−N (1 + 2

k
2 |x ′|)−N ,

where Fx denotes the inverse (spatial) Fourier transform. In particular,

‖F−1
x (z1kiξ1)‖

L
4
3
x

� 2
5
8 k . By Young’s inequality, we have

2−k |Z1
k∂1ψ

(n)(x)| � 2− 3
8 k‖ψ(n)‖Ḣ1

x
� 2− 3

8 k E
1
2 ,

which is acceptable.
It remains to treat the contribution of Z j

k ∂ j for j = 2, 3, 4. Denote by ζ
j
k (x)

the integral kernel of Z j
k , which is simply the inverse Fourier transform of

z jk . A straightforward computation shows that ‖z jk‖L2
ξ

� 2k . Therefore, by

Plancherel,

‖ζ j
k ‖L2

x
� 2k . (8.28)

Next, for any N , M2, M3, M4 ≥ 0, we have

∣
∣
∣
∣
∣
∣
(ξ1∂ξ1)

N (ξ2∂ξ2)
M2(ξ3∂ξ3)

M3(ξ4∂ξ4)
M4

⎛

⎝
4∑

j=2

iξ j z
j
k

⎞

⎠

∣
∣
∣
∣
∣
∣

�N ,M2,M3,M4

(
1 + 2−k |ξ |

)−100
.
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In addition, the left-hand side is supported in
{|ξ ′| � 2k/2

}
ifM2+M3+M4 �=

0. Taking the inverse Fourier transform, we obtain

∣
∣
∣
∣
∣
∣

4∑

j=2

∂ jζ
j
k (x)

∣
∣
∣
∣
∣
∣
�N min

{
2

3
2 k,

(
2

k
2 |x ′|

)−N
}(

1 + 2k |x1|
)−N

2
5
2 k (8.29)

where the implicit constant is independent of k.
Hence we can split ζ j

k = ζ
j
k,near + ζ

j
k,far, where

ζ
j
k,near(x) := ζ

j
k (x)1{

x :2k |x1|≤L , 2
k
2 |x ′|≤L

}(x),

and L > 0 is chosen large enough (independent of k) so that, by (8.29), we
have

∥
∥
∥
∥
∥
∥

4∑

j=2

∂ jζ
j
k,far

∥
∥
∥
∥
∥
∥
L
4
3
x

≤ 2kε4. (8.30)

We denote the corresponding splitting of Z j
k by Z j

k,near + Z j
k,far.

We are now ready to complete the proof of (8.21). The contribution of
Z j
k,far∂ j is acceptable, thanks to (8.22), (8.30) and the Sobolev embedding

Ḣ1
x ⊆ L4

x . For
∑4

j=2 Z
j
k,near∂ j , we have

2−k

∣
∣
∣
∣
∣
∣

4∑

j=2

Z j
k,near∂ jψ

(n)(x)

∣
∣
∣
∣
∣
∣
≤ 2−k

4∑

j=2

∫
|ζ j
k,near(y)||∂ jψ

(n)(x − y)| dy

� Mw
− 1

2
k (x)‖w

1
2
k ∂ jψ

(n)‖L2
x

where, by (8.27), (8.28) and the definition of ζ
j
k,near, M obeys the bound

M :=
⎛

⎝2−2k
4∑

j=2

∫
wk(x)

wk(x − y)

∣
∣
∣ζ j
k,near

∣
∣
∣
2
(y) dy

⎞

⎠

1
2

�L

⎛

⎝2−2k
4∑

j=2

∫
{
2k |y1|≤L , 2

k
2 |y′|≤L

} |ζ j
k |2 dy

⎞

⎠

1
2

� 1.
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Note that w
− 1

2
k (x) � ((1 − |x |)+ + 2−k)1/4 + ε4, since we have chosen

x = (x1, 0, 0, 0); this proves (8.21).
Step 3 In this step we upgrade (8.21) to the following gauge dependent esti-
mate:

lim sup
n→∞

2−2k |ζ2−k ∗ D jφ
(n)(1, x)| �

(
2− 3

8 k+(
(1 − |x |)+ + 2−k) 1

4 + ε4
)
E

1
2 .

(8.31)

The idea is that (8.21) has already broken the scaling invariance, so we can
easily incorporate A using the trivial bound ‖A‖L∞

t Ḣ1
x

� E1/2.

We begin by applying Step 2 to ζ̃2−k , where we recall that ζ = ζ̃ ∗ ζ̃ . We
again introduce the shorthand Z̃k(·) := ζ̃2−k ∗ (·). By the simple pointwise
inequality |Z̃kφ

(n)| ≤ |Z̃k |φ(n)||, which holds since ζ̃ ≥ 0, we have

lim sup
n→∞

2−k |Z̃kφ
(n)(1, x)| �

(
2− 3

8 k + (
(1 − |x |)+ + 2−k) 1

4 + ε4
)
E

1
2 .

(8.32)

Note furthermore that Zk = Z̃2
k . For j = 1, . . . , 4, we may write

2−2k |ZkD
(n)
j φ(n)(1, x)| ≤ 2−2k |Zk∂ jφ

(n)(1, x)|
+ 2−2k |Zk(A

(n)
j φ(n))(1, x)|

� 2−k sup
|x−x ′|�2−k

|Z̃kφ
(n)(1, x ′)|

+ 2−2k |Zk(A
(n)
j φ(n))(1, x)|.

The first term on the last line is acceptable, thanks to (8.32). To treat the second
term, we insert 1 = (1− Z̃k+m)+ Z̃k+m in front of both A(n) and φ(n) for some
m > 0 to be determined. By the simple inequalities |Zk f (x)| � 23k‖ f ‖

L4/3
x

and ‖(1 − Z̃k+m) f ‖L2
x

� 2−k−m‖ f ‖Ḣ1
x
, as well as the Sobolev embedding

Ḣ1
x ⊆ L4

x , we have

2−2k |Zk((1 − Z̃k+m)A(n)
j · φ(n))(1, x)| � 2−m‖A(n)(1, ·)‖Ḣ1

x
‖φ(n)(1, ·)‖Ḣ1

x

which can bemade≤ ε4E
1
2 by choosingm large enough. Proceeding similarly,

the same upper bound can be proved for Zk(Z̃k+m A(n)
j (1 − Z̃k+m)φ(n)).

For the remaining term, we have

2−2k |Zk

(
Z̃k+m A(n)

j Z̃k+mφ(n)
)

(1, x)|
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� 2−k‖Z̃k+m A(n)
j (1, ·)‖L∞

x
2−k sup

|x−x ′|�2−k
|Z̃k+mφ(n)(1, x ′)|

�E,m 2−k+m sup
|x−x ′|�2−k

|Z̃k+mφ(n)(1, x ′)|

which is acceptable in view of (8.32).

Step 4 We are ready to conclude the proof of the lemma. By (8.21) and the
pointwise inequality |ζ2−k ∗φ| ≤ ζ2−k ∗ |φ|, we can achieve the desired small-
ness as in (8.17) of φ(n) by taking K very large, γ close enough to 1 and ε > 0
sufficiently small. For D(n)

t , we have

2−2k |ζ2−k ∗ D(n)
t φ(n)(1, x)| ≤ 2−2k |ζ2−k ∗ D(n)

L φ(n)(1, x)|
+

∑

j=1

2−2k |ζ2−k ∗ D(n)
j φ(n)(1, x)|. (8.33)

For the first term, we begin by estimating

2−2k |ζ2−k ∗ D(n)
L φ(n)(1, x)| �

(∫

{y:|y−x |�2−k}
|D(n)

L φ(n)(1, y)|2 dy
)1/2

.

Then by (8.20), the right-hand side is bounded by

((
(1 − |x |)+ + 2−k) 1

4 + ε4
)
E1/2

provided that ε1/2n ≤ 1
10ε

8. Using (8.31) to estimate the second term in (8.33),
(8.17) now follows after adjusting K , γ and ε if necessary. ��

8.3 Nontrivial energy in a time-like region

An important consequence of Lemma 8.7 is that there is a uniform lower bound
for φ(n) in a time-like region at t = 1.

Lemma 8.9 Let (A(n), φ(n)) be a sequence of admissible CtH1 solutions to
(MKG) satisfying the conclusions of Lemma 8.4. Let K (E) > 0 and γ (E) ∈
(0, 1) be as in Lemma 8.7 and Remark 8.8. Assume that either (1) kn ≤ K (E)

or (2) kn > K (E) and |xn| ≤ γ (E). Then there exist E1 = E1(E) > 0 and
γ1 = γ1(E) ∈ (0, 1) such that if ε > 0 is sufficiently small depending on E,
then
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∫

S
1−γ1
1

4∑

μ=0

|D(n)
μ φ(n)|2 + 1

r2
|φ(n)|2 dx ≥ E1(E). (8.34)

Proof Since the whole proof will take place on {t = 1}, we will ignore the
difference between {t = 1} andR4. In this case, note that S1−γ

1 = {1}× Bγ (0)
for any γ ∈ (0, 1). Furthermore, as the argument is the same for each n, we
will henceforth suppress n for simplicity.

There are two scenarios to consider:

A. Nontrivial kinetic energy. 2−2k |ζ2−k ∗ Dtφ(x)| ≥ 1
2e(E), or

B. Nontrivial potential energy. 2−k |ζ2−k ∗ φ(x)| ≥ 1
2e(E).

We first treat Scenario A. By Cauchy-Schwarz,

1

2
e ≤

∫
2−2kζ2−k (y)|Dtφ(x − y)| dy �

(∫

B2−k (x)
|Dtφ|2 dy

)1/2

,

where we also used supp ζ ⊆ B1(0). Hence in Case 2, (8.34) immediately
follows by taking γ1 ≥ γ + 2−k so that {1} × B2−k (x) ⊆ S1−γ1

1 . Note that we
may still ensure that γ1 < 1 thanks to (8.18).

Nowassume that Case 1 holds, i.e., k ≤ K . Splitting the convolution integral
into

∫
S
1−γ1
1

+ ∫
S1\S1−γ1

1
+ ∫

R4\S1 , applying Cauchy-Schwarz and using (8.9),

(8.10), we have

e �
(∫

S
1−γ1
1

|Dtφ|2 dy
)1/2

+ c0(γ1)E
1/2 + ε8E1/2,

where

c0(γ1) :=
(∫

S1\S1−γ1
1

|ζ(2−k y)|22−4k dy

)1/2

� 2−2k |
(
S1\S1−γ1

1

)
∩ B2−k (x)|1/2.

By elementary geometry and the assumption k ≤ K , it follows that the last
term is bounded by � (1−γ1)

1/22−K/2 uniformly in x . Taking γ1 sufficiently
close to 1, the desired conclusion follows.

We now consider Scenario B. We repeat the above argument with Dtφ

replaced by φ, while putting ζ2−k [resp. φ] in L4/3 [resp. L4] instead of L2

[resp. L2]. Then in Case 1,
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e �
(∫

B2−k (x)
|φ|4 dy

)1/4

, (8.35)

whereas in Case 2,

e �
(∫

S
1−γ1
1

|φ|4 dy
) 1

4

+ c1(γ1)‖φ‖L4
x (R

4) + ‖φ‖L4
x (R

4\S1), (8.36)

with c1(γ1) � (1 − γ1)
3/42−3K/4. The desired conclusion then follows

from (8.9), (8.10), the diamagnetic inequality (Lemma 8.2) and the localized
Sobolev inequalities

‖ f ‖L4
x (Br (0))

�

⎛

⎝
4∑

j=1

‖∂ j f ‖2L2
x (Br (0))

⎞

⎠

1/2

+
∥
∥
∥
∥
1

|x | f
∥
∥
∥
∥
L2(Br (0))

,

‖ f ‖L4
x (R

4\Br (0)) �

⎛

⎝
4∑

j=1

‖∂ j f ‖2L2
x (R

4\Br (0))

⎞

⎠

1/2

,

which hold with a uniform constant for any r > 0.
To prove the preceding two inequalities, it suffices to consider the case r = 1

by scaling invariance. The first inequality is an immediate consequence of the
standard inequality ‖ f ‖L4(B1(0)) � ‖ f ‖Ḣ1(B1(0)) +‖ f ‖L2(B1(0)). To prove the
second inequality, we extend f to R

4. Using the standard extension operator
from f on B2(0)\B1(0), the global extension f̃ on R

4 can be chosen so that
f̃ = f on R

4\B1(0) and

‖ f̃ ‖H1(B1(0)) � ‖ f ‖H1(B2(0)\B1(0)) � ‖ f ‖Ḣ1(R4\B1(0)) + ‖ 1

|x | f ‖L2(R4\B1(0)).

Using localizedHardy’s inequality in Lemma 5.8, the second term on the right-
hand side may be bounded by the first term. The desired localized Sobolev
inequality now follows from the usual Sobolev embedding Ḣ1 ⊆ L4. ��

Combining Lemmas 8.7 and 8.9, it follows that any sequence (A(n), φ(n))

of admissible CtH1 solutions to (MKG) constructed by Lemma 8.4 obeys the
uniform lower bound (8.34) in a time-like region S1−γ1

1 for some γ1 = γ1(E) ∈
(0, 1). The uniform lower bound in a time-like region can be propagated
towards t = 0 using the localized monotonicity formula in Proposition 5.5.

Lemma 8.10 Let (A(n), φ(n)) be a sequence of admissible CtH1 solutions to
(MKG) satisfying the conclusions of Lemma 8.4. Assume furthermore that
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each (A(n), φ(n)) obeys (8.34). Then there exist E2 = E2(E) > 0 and γ2 =
γ2(E) ∈ (0, 1) such that

∫

S
(1−γ2)t
t

(X0)PT [A(n), φ(n)] dx ≥ E2(E) for every t ∈
[
ε
1
2
n , ε

1
4
n

]
. (8.37)

Proof Fix n and t0 ∈ [ε1/2n , ε
1/4
n ]. Applying Proposition 5.5 with ε = εn, δ0 =

(1−γ2)t0 and δ1 = Mδ0, where γ2 ∈ (0, 1) and M > 1 will be chosen below,
we obtain
∫

S
M(1−γ2)t0
1

(X0)PT [A, φ] dx ≤
∫

S
(1−γ2)t0
t0

(X0)PT [A, φ] dx

+C
(
(M(1 − γ2))

1
2 + | logM |−1

)
E . (8.38)

On the other hand, by Lemma 5.10 (in particular, the expression for (X0)PT =
1
2 (

(X0)PL + (X0)PL) and (8.34), we have

E1 � (1 − γ1)
− 1

2

∫

S
1−γ1
1

(X0)PT [A, φ] dx .

Hence choosing M sufficiently large and γ2 close enough to 1 to make the last

term in (8.38) small, (8.37) follows with E2 = cE1(1− γ1)
1
2 for some c > 0.

��

8.4 Final rescaling

So far, under the assumption that Theorem 1.3 fails, we have shown the exis-
tence of a sequence of solutions (A(n), φ(n)) that satisfies the conclusions of
Lemma 8.4 and a uniform lower bound (8.37) in a time-like region. By Propo-
sition 5.4, the sequence moreover obeys the uniform space-time bound

∫∫

C[εn ,1]

1

ρεn

|ιXεn
F (n)|2 + 1

ρεn

∣
∣
∣
∣

(
D(n)

Xεn
+ 1

ρεn

)
φ(n)

∣
∣
∣
∣

2

dtdx � E . (8.39)

Our next goal is to upgrade (8.39) to asymptotic self-similarity by a rescaling
argument.

Lemma 8.11 Suppose that Theorem 1.3 fails. Then there exists a sequence
of admissible CtH1 solutions (A(n), φ(n)) on [1, Tn] × R

4 with Tn → ∞
satisfying the following properties:
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(1) Bounded energy in the cone

ESt
[
A(n), φ(n)

]
≤ E, for every t ∈ [1, Tn], (8.40)

(2) Small energy outside the cone

E{t}×R4\St
[
A(n), φ(n)

]
≤ 1

100
E for every t ∈ [1, Tn], (8.41)

(3) Nontrivial energy in a time-like region

∫

S
(1−γ2)t
t

(X0)PT
[
A(n), φ(n)

]
dx ≥ E2 for every t ∈ [1, Tn], (8.42)

(4) Asymptotic self-similarity

∫∫

K
|ιX0F

(n)|2 +
∣
∣
∣
∣

(
D(n)

X0
+ 1

ρ

)
φ(n)

∣
∣
∣
∣

2

dtdx → 0 as n → ∞ (8.43)

for every compact subset K of the interior of C[1,∞).

Proof Let (A(n), φ(n)) be a sequence of solutions satisfying the conclusions
of Lemmas 8.4 and 8.10. Consider the time interval [ε1/2n , ε

1/4
n ], on which

(8.37) applies. Given Tn > 1, we partition εn in to dyadic intervals of the
form I jn = [T j

n ε
1/2
n , T j+1

n ε
1/2
n ]; there are roughly | log εn|/ log Tn many such

intervals. We choose Tn so that log Tn ∼ | log εn|1/2. Observe that Tn → ∞.
Also, by the pigeonhole principle applied to (8.39), there exists j (n) such that

∫∫

C
I
j (n)
n

1

ρεn

|ιXεn
F (n)|2 + 1

ρεn

∣
∣
∣
∣

(
D(n)

Xεn
+ 1

ρεn

)
φ(n)

∣
∣
∣
∣

2

dtdx

� log Tn
| log εn|E ∼ 1

| log εn|1/2 E, (8.44)

which decays to 0 as n → ∞.
We now rescale C

I j (n)
n

to C[1,Tn]; abusing the notation a bit (but conforming
to the statement of the lemma), we denote the rescaled solutions again by
(A(n), φ(n)). From (8.9) and (8.10) with ε8 ≤ 1

100 , (8.40) and (8.41) follow.
Also, (8.42) is a consequence of (8.37). Furthermore, (8.44) implies
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∫∫

C[1,Tn ]

1

ρε′
n

|ιXε′n
F (n)|2 + 1

ρε′
n

∣
∣
∣
∣
∣

(

D(n)
Xε′n

+ 1

ρε′
n

)

φ(n)

∣
∣
∣
∣
∣

2

dtdx→0 as n→∞
(8.45)

where ε′
n := (T j (n)

n ε
1/2
n )−1εn obeys ε′

n ≤ ε
1/2
n → 0. For any compact subset

K of the interior of C[1,∞), which is in particular situated away from the
boundary ∂C[1,∞), we claim that

∫∫

K

(
1

ρε′
n

|ιXε′n
F (n)|2 − 1

ρ
|ιX0F

(n)|2
)

+
⎛

⎝ 1

ρε′
n

∣
∣
∣
∣
∣

(

D(n)
Xε′n

− 1

ρε′
n

)

φ(n)

∣
∣
∣
∣
∣

2

− 1

ρ

∣
∣
∣
∣

(
D(n)

X0
+ 1

ρ

)
φ(n)

∣
∣
∣
∣

2
⎞

⎠ dtdx → 0

Indeed, in the coordinates (x0 = t, x1, . . . , x4), the left-hand side can be
written in the form

∫∫

K
d(n)μν
1 |F (n)

μν |2 + d(n)μ
2 |D(n)

μ φ(n)|2 + d(n)
3 |φ(n)|2 dtdx

where d(n)μν
1 (t, x), d(n)μ

2 (t, x) and d(n)
3 are continuous functions which tend

to 0 pointwisely (hence uniformly) on K , whereas |Fμν |, |D(n)
μ φ(n)| and |φ(n)|

are uniformly in L2(K ) by (8.40), (8.41) and Hardy’s inequality. By Hölder’s
inequality, the claim follows. Then combining the claim with (8.45), we arrive
at the desired asymptotic self-similarity (8.43). ��

8.5 Concentration scales

Let (A(n), φ(n)) be a sequence of solutions given by Lemma 8.11. We now
present a combinatorial result that establishes the following dichotomy: Either
there is a uniform non-concentration of energy, or we can identify a sequence
of points and decreasing scales at which energy concentrates.

To state the result, we need few definitions. For each j = 1, 2, . . .we define

C j :=
{
(t, x) ∈ C1

[1,∞) : 2 j ≤ t < 2 j+1
}

,

C̃ j :=
{
(t, x) ∈ C1/2

[1/2,∞) : 2 j ≤ t < 2 j+1
}

.
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In words, C j [resp. C̃ j ] is the set of points in the truncated cone C[2 j ,2 j+1) at
distance≥ 1 [resp.≥ 1/2] from the lateral boundary. For each j ≥ 1, we have
the following lemma.

Lemma 8.12 Let (A(n), φ(n)) be a sequence of admissible CtH1 solutions on
[1, Tn] × R

4 with Tn → ∞ satisfying (8.40)–(8.43) for some E > 0. Let
ε0 be as in Proposition 6.1. Then for each j = 1, 2, · · · , after passing to a
subsequence, one of the following alternatives holds:

(1) Concentration of energy. There exist points (tn, xn) ∈ C̃ j , scales rn → 0
and 0 < r = r( j) < 1/4 such that the following bounds hold:

E{tn}×Brn (xn)

[
A(n), φ(n)

]
= 1

C2
0

ε20 , (8.46)

sup
x∈Br (xn)

E{tn}×Brn (x)

[
A(n), φ(n)

]
≤ 1

C2
0

ε20 , (8.47)

1

4rn

∫ tn+2rn

tn−2rn

∫

Br (xn)
|ιX0F

(n)|2

+
∣
∣
∣
∣

(
D(n)

X0
+ 1

ρ

)
φ(n)

∣
∣
∣
∣

2

dtdx → 0 as n → ∞. (8.48)

(2) Uniformnon-concentration of energy. There exists 0 < r = r( j) < 1/4
such that the following bounds hold:

∫

S
(1−γ2)t
t

(X0)PT
[
A(n), φ(n)

]
dx ≥ E2 for t ∈ [2 j , 2 j+1), (8.49)

sup
(t,x)∈C j

E{t}×Br (x)

[
A(n), φ(n)

]
≤ 1

C2
0

ε20 , (8.50)

∫∫

C̃ j

|ιX0F
(n)|2 +

∣
∣
∣
∣

(
D(n)

X0
+ 1

ρ

)
φ(n)

∣
∣
∣
∣

2

dtdx → 0 as n → ∞.

(8.51)

Here C0 > 0 is a universal constant much larger than the implicit constants
in Lemma 4.5.

Proof This lemma is essentially [33, Lemma 6.3]; for completeness we give
a self-contained alternative proof, which relies on the use of the Hardy-
Littlewood maximal function theorem to establish (8.48).

Step 1 Fix j ∈ {1, 2, . . .}. We begin by identifying a ‘low energy barrier’
around C j inside C̃ j . Let N > 0 be a large integer to be determined later. We
first partition the time interval [2 j , 2 j+1) into smaller intervals Ik , where
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Ik :=
[
2 j + k − 1

10N
, 2 j + k

10N

)
k = 1, . . . , 10N2 j .

Accordingly, define Ck
j := C j ∩ (Ik × R

4) and C̃k
j := C̃ j ∩ (Ik × R

4). Next,

we partition C̃k
j \Ck

j into ∪N
�=1C̃

k,�
j , where

C̃k,�
j =

{
(t, x) ∈ C̃k

j : 1
2

+ � − 1

2N
≤ t − |x | <

1

2
+ �

2N

}
, � = 1, . . . , N .

For each n and k, we claim that there exists 1 ≤ �(n, k) ≤ N such that

sup
t∈Ik

E
St∩C̃k,�(n,k)

j

[
A(n), φ(n)

]
≤ 3

N
E . (8.52)

Indeed, for each k consider the left endpoint tk := 2 j + (k − 1)/(10N ). The
set Stk ∩ (C̃k

j \Ck
j ) is partitioned into N annuli of the form Stk ∩ C̃k,�

j . By the
pigeonhole principle and the energy bound (8.40), there exists 1 ≤ �(n, k) ≤
N − 2 such that

�(n,k)+2∑

�=�(n,k)

EStk∩C̃k,�
j

[
A(n), φ(n)

]
≤ 3

N
E .

As C̃k,�(n,k)
j lies in the domain of dependence of ∪�(n,k)+2

�=�(n,k)Stk ∩ C̃k,�
j , (8.52)

now follows by the local conservation of energy.
We choose N large enough so that

3

N
E ≤ 1

C2
0

ε20 .

Hence, by (8.52), C̃k,�(n,k)
j serves as a ‘low energy barrier’ that separates the

behavior of the solution in the interior C̃k,<�(n,k)
j := (∪�(n,k)−1

�=1 C̃k,�
j ) ∪ Ck

j

from the outside. Fix r0 = 1
4N , so that 0 < r0 < 1/4 and

(t, x) ∈ C̃k,<�(n,k)
j ⇒ {t} × B4r0(x) ⊆ C̃k,<�(n,k)

j ∪ C̃k,�(n,k)
j ⊆ C1/2

[1/2,∞).

(8.53)

Step 2 For each n and k, define fn,k : [0, r0] × Ik → [0,∞) by

fn,k(r, t) := sup
{
E{t}×Br (x)[A(n), φ(n)] : (t, x) ∈ C̃k,<�(n,k)

j

}
.
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We then define the lowest energy concentration scale rn,k(t) as

rn,k(t) :=
⎧
⎨

⎩
inf

{
r ∈ [0, r0] : fn,k(t, r) ≥ 1

C2
0
ε20

}
if fn,k(t, r0) ≥ 1

C2
0
ε20 ,

r0 otherwise.

(8.54)

We claim that each rn,k is Lipschitz continuous with a universal constant
cL > 0, i.e.,

|rn,k(t1) − rn,k(t0)| ≤ cL |t1 − t0| for t0, t1 ∈ Ik .

The key idea is to use the finite speed of propagation, or equivalently, local
conservation of energy. Let t0, t1 ∈ Ik with t0 < t1. Consider first the case
when rn,k(t0) ≥ rn,k(t1). For convenience, we introduce the shorthand r :=
rn,k(t1). When r = r0, then necessarily rn,k(t0) = r0 and (8.5) holds trivially.
If r < r0, then there exists x1 ∈ R

4 such that (t1, x1) ∈ C̃k,<�(n,k)
j and

E{t1}×Br [A(n), φ(n)] = 1
C2
0
ε20 . By local conservation of energy, it follows that

E{t0}×Br+(t1−t0)(x1)

[
A(n), φ(n)

]
≥ E{t1}×Br

[
A(n), φ(n)

]
= 1

C2
0

ε20 .

If (t0, x1) ∈ C̃k,<�(n,k)
j , then rn,k(t0) ≤ r + (t1 − t0). If (t0, x1) /∈ C̃k,<�(n,k)

j ,

then by elementary geometry there exists (t0, x0) ∈ C̃k,<�(n,k)
j such that |x1 −

x0| < t1 − t0. Hence the energy of (A(n), φ(n)) on {t0} × Br+2(t1−t0)(x0) is
bounded from below by 1

C2
0
ε20 , which implies rn,k(t0) ≤ r + 2(t1 − t0) in

general. Treating the other case rn,k(t0) > rn,k(t1) in a similar way, it follows
that (8.5) holds with cL = 2.

We now proceed to the proof of of the lemma. We first treat the case when
there exists a common lower bound 0 < r( j) ≤ r0 of rn,k , i.e., rn,k(t) ≥
r( j) for all n, k and t ∈ Ik . Unraveling the definition of rn,k , we see that
(8.50) holds. Moreover, (8.49) and (8.51) follow directly from (8.42) and
(8.43), respectively. Thus we conclude that the second scenario (uniform non-
concentration of energy) holds.

To complete the proof, it only remains to consider the alternative case and
show that the first scenario (concentration of energy) holds. After passing to a
subsequence, we may assume that there exists k ∈ {

1, . . . , 10N2 j
}
such that

lim
n→∞ inf

Ik
rn,k = 0. (8.55)
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Then we claim that there exist (tn, xn) and rn such that (8.46)–(8.48) hold with
r( j) = r0, up to passing to a subsequence.

Define

α2
n :=

∫ 2 j+2

2 j−1
β2
n (t) dt,

β2
n (t) :=

∫

St∩C1/2
[1/2,∞)

|ιX0F
(n)|2 +

∣
∣
∣
∣

(
D(n)

X0
+ 1

ρ

)
φ(n)

∣
∣
∣
∣

2

dx .

Note that α2
n → 0 by (8.43). By the Hardy-Littlewood maximal function

theorem, for every α > 0 we have

∣
∣
∣
{
t ∈ [2 j−1, 2 j+1) : M [

β2
n

]
(t) > α

}∣∣
∣ � 1

α
α2
n, (8.56)

where M[βn](t) is the Hardy-Littlewood maximal function on [2 j−1, 2 j+2),
given by

M[βn](t) := sup
a>0

1

2a

∫

(t−a,t+a)∩[2 j−1,2 j+2)

β2
n (t

′) dt ′.

Roughly speaking (8.56) says that the desired conclusion (8.48) holds for
‘most of’ t ∈ Ik . This fact, combinedwith the flexibility of the choice of tn such
that limn→∞ rn,k(tn) = 0, will lead to the desired conclusions (8.46)–(8.48).

More precisely, define the intervals Jn, Kn ⊆ Ik by

Jn := {
t ∈ Ik : M[β2

n ](t) ≤ αn
}
, Kn := (tn − α

1/2
n , tn + α

1/2
n ) ∩ Ik,

where tn ∈ Ik is a minimum of rn,k , i.e., rn,k(tn) = inf Ik rn,k . By the uniform
Lipschitz continuity of rn,k and the fact that α2

n → 0 as n → ∞, we have

sup
t∈Kn

rn,k(t) → 0 as n → ∞.

Note that |Ik\Jn| � αn by (8.56) with α = αn , whereas |Kn| = 2α1/2
n . Using

again the fact that α2
n → 0 as n → ∞ and passing to a subsequence, it follows

that Jn ∩Kn �= ∅ for all n. Choosing tn so that tn ∈ Jn ∩Kn and rn := rn,k(tn),
we have

sup
a>0

1

2a

∫ tn+a

tn−a
β2
n (t) dt → 0, rn = rn,k(tn) → 0 as n → ∞.
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With the choice r( j) = r0, (8.48) follows from (8.53) and the previous state-
ment. Passing to a subsequence if necessary, wemay assume that rn,k(tn) < r0;
then there exists (tn, xn) ∈ C̃k,<�(n,k)

j such that (8.46) holds for all n as well.
Finally, thanks to the low energy barrier (8.53) and the definition of rn,k , (8.47)
follows with r( j) = r0. ��

8.6 Compactness/rigidity argument

We are now ready to complete the proof of Theorem 1.3, by using the tools
developed in Sects. 6 and 7.

Completion of proof of Theorem 1.3 Let (A(n), φ(n)) be a sequence of admis-
sible CtH1 solutions on [1, Tn] ×R

4 given by Lemma 8.11. We consider two
cases according to Lemma 8.12, and show that both lead to contradictions.

Case 1 Suppose that there exists j ∈ {1, 2, . . .} such that the first scenario
(concentration of energy) in Lemma 8.12 holds. We need to set things up so
that we can use Proposition 6.1, and for that we also need local control of the
L2 norm of φ. This is achieved via the improved form of Hardy’s inequality
in Lemma 4.5. From (8.47), we obtain

(σ−1rn)
−2‖φ(n)(tn)‖2

L2
x

(
B8σ−1rn

) ≤ cε20 + Cσ−2E,

with a universal constant c � 1 and a parameter σ ≥ 2 to be specified. To
eliminate the second term, we choose σ so that

Cσ−2E = cε20 .

Thus we have insured that the hypothesis of Proposition 6.1 are satisfied with
respect to the rescaled ball Bσ−1rn (x) with x as in (8.47), i.e.,

E{tn}×B8σ−1rn
(x)

[
A(n), φ(n)

]
+ (

σ−1rn
)−2 ‖φ(n)(tn)‖2L2

x (B8σ−1rn
(x)) ≤ ε20

(8.57)

for every x ∈ Br( j)(xn).
As C̃ j is pre-compact, we may assume that (tn, xn) has a limit (t0, x0) in

the closure of C̃ j after passing to a subsequence. Consider the sequence

( Ã(n), φ̃(n))(t, x) := σ−1rn(A
(n), φ(n))

(
σ−1rnt + tn, σ

−1rnx + xn
)
.
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By (8.46), there is always a nontrivial amount of energy at the origin, i.e.,

E{0}×Bσ (0)

[
Ã(n), φ̃(n)

]
= 1

C2
0

ε20 . (8.58)

Fix any x ∈ R
4. As rn → 0, observe that the point σ−1rnx + xn belongs to

Br( j)(xn) for sufficiently large n. Hence, by (8.57), we have

E{0}×B8(x)

[
Ã(n), φ̃(n)

]
+ ‖φ̃(n)(0)‖2L2

x (B8(x))
≤ ε20 for sufficiently large n.

(8.59)

Finally, by (8.48), the convergence (tn, xn) → (t0, x0) and smoothness of X0,
it follows that

∫∫

(−2,2)×B2(x)
|ιY F̃ (n)|2 + |D̃(n)

Y φ̃(n)|2 dtdx → 0 as n → ∞. (8.60)

where Y = X0(t0, x0) is a constant time-like vector field. Note that the con-
tribution of the term 1

ρ
φ(n) drops out by scaling.

As a consequence, for each x ∈ R
4 we can apply Proposition 6.1 to obtain

a weak solution (A[x], φ[x]) ∈ Xw((−1, 1) × B1(x)) to (MKG) such that

ιY F[x] = 0, D[x]Yφ[x] = 0,

and ( Ã(n), φ̃(n)) converges to (A[x], φ[x]) up to gauge transformations on
(−1, 1) × B1(x) as in (6.3), (6.4). By Lemma 6.15, the weak solutions
(A[x], φ[x]) form weak compatible pairs (as in Definition 6.13) on the open
cover {(−1, 1) × B1(x)}x∈(1/2)Z4 of (−1, 1) × R

4. Furthermore, by Proposi-
tion 7.3, there exists an equivalent set of smooth compatible pairs (A[α], φ[α])
on some refined open cover Q = {Qα} of (−1, 1) × R

4.
Let (A, φ) be a global smooth pair on (−1, 1)×R

4 equivalent to (A[α], φ[α]).
We then extend (A, φ) to R

1+4 as a smooth solution to (MKG) satisfying
ιY F = 0 and DYφ = 0 by pulling back along the flow of Y .

Note that (A, φ) has finite energy (in fact, bounded by ≤ E), as we have

(T ) JT
[
Ã(n), φ̃(n)

]
→ (T ) JT [A, φ] locally in L1

t,x on (−1, 1) × R
4

(8.61)

by (6.4) and the gauge invariance of the energy density (T ) JT . After applying
a suitable Lorentz transform, we may furthermore assume that Y = T . By
Proposition 7.1, it follows that E[A, φ] = 0, but this contradicts (8.58) and
(8.61).
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Case 2 Suppose that for every j ∈ {1, 2, . . .} the second scenario (uniform
non-concentration of energy) in Lemma 8.12 holds. The goal in this case is
to apply results in Sect. 6 to extract a smooth nontrivial self-similar solution
with finite energy, which would contradict Proposition 7.2.

Fix j ∈ {1, 2, . . .} and consider any point (t, x) ∈ C2
[2,∞) ∩ C j . By (8.50)

and Lemma 4.5, where σ ≥ 2 is chosen as in Case 1, we obtain the following
analogue of (8.57):

E{t}×B8σ−1r( j)(x)

[
A(n), φ(n)

]
+ (σ−1r( j))−2‖φ(n)‖2L2

x (B8σ−1r( j)(x))
≤ ε20 .

(8.62)

Since (t, x) belongs to the smaller cone C2
[2,∞), we have

K̃ j
[t,x] := (

t − 2σ−1r( j), t + 2σ−1r( j)
) × B8σ−1r( j)(x)

⊆ C̃ j−1 ∪ C̃ j ∪ C̃ j+1.

Therefore, by (8.51) we have

∫∫

K̃ j
[t,x]

|ιX0F
(n)|2 +

∣
∣
∣
∣

(
DX0 + 1

ρ

)
φ(n)

∣
∣
∣
∣

2

→ 0 as n → ∞.

Applying Proposition 6.1 to (A(n), φ(n)) on the space-time cylinder K̃ j
[t,x],

we obtain a limit (A[t,x], φ[t,x]) ∈ Xw(K j
[t,x]) (up to gauge transformations

and passing to a subsequence) on a smaller space-time cylinder K j
[t,x] :=

(t−σ−1r( j), t+σ−1r( j))×Bσ−1r( j)(x), which is a weak solution to (MKG)
obeying

ιX0F[t,x] = 0,

(
D[t,x]X0 + 1

ρ

)
φ[t,x] = 0.

The cylinders
{
K j

[t,x]
}
for j ∈ {1, 2, . . .} and (t, x) ∈ C2

[2,∞)∩C j formanopen

cover of the cone C2
[2,∞). By Lemma 6.15, the weak solutions (A[t,x], φ[t,x])

form weak compatible pairs on
{
K[t,x]

}
. Then by Proposition 7.3, these pairs

are equivalent to a set of smooth compatible pairs in some refined open cover
of C2

[2,∞), which in turn is equivalent to a single global smooth pair (A, φ) on

C2
[2,∞), thanks to the fact that C

2
[2,∞) is contractible. By construction, the pair

(A, φ) satisfies the following properties:
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• The pair (A, φ) is a smooth solution to (MKG) obeying the self-similarity
condition

ιX0F = 0,

(
DX0 + 1

ρ

)
φ = 1

ρ
DX0(ρφ) = 0.

• The following local convergences hold:

(T ) JT
[
Ã(n), φ̃(n)

]
→(T ) JT [A, φ] locally in L1

t,x on C
2
[2,∞),

(8.63)

(X0)PT
[
Ã(n), φ̃(n)

]
→(X0)PT [A, φ] locally in L1

t,x on C
2
[2,∞).

(8.64)

We extend (A, φ) to a smooth self-similar solution to (MKG) on the whole
cone C(0,∞) = {0 ≤ r < t} by pulling back (A, ρφ) along the flow of X0.
Note that (A, φ) has finite energy (again bounded by≤ E), thanks to the local
convergence (8.63). Hence by Proposition 7.2, it follows that ESt [A, φ] = 0
for every t ∈ (0,∞). However, this is a contradictionwith (8.49) (in particular,
for large enough t so that S(1−γ2)t

t ⊆ C2
[2,∞)) and (8.64). ��
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