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Abstract This article constitutes the final and main part of a three-paper
sequence (Ann PDE, 2016. doi:10.1007/s40818-016-0006-4; Oh and Tataru,
2015. arXiv:1503.01561), whose goal is to prove global well-posedness and
scattering of the energy critical Maxwell-Klein-Gordon equation (MKG)
on R'** for arbitrary finite energy initial data. Using the successively
stronger continuation/scattering criteria established in the previous two papers
(Ann PDE, 2016. doi:10.1007/s40818-016-0006-4; Oh and Tataru, 2015.
arXiv:1503.01561), we carry out a blow-up analysis and deduce that the failure
of global well-posedness and scattering implies the existence of a nontrivial
stationary or self-similar solution to MKG. Then, by establishing that such
solutions do not exist, we complete the proof.
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1 Introduction

In this article we prove global well-posedness and scattering of the energy
critical Maxwell-Klein-Gordon equation on R!*# for any finite energy ini-
tial data. In Sect. 1.1, we present some background material concerning the
Maxwell-Klein-Gordon equation on R!**. Readers already familiar with this
equation may skip to Sect. 1.2, where we give a precise statement of the main
theorem (Theorem 1.3). This paper is the main and logically the final part
of the three-paper sequence [26,27]. In Sects. 2 and 3 below, we provide an
overview of the entire proof of Theorem 1.3 spanning the whole sequence.

1.1 (4 4+ 1)-dimensional Maxwell-Klein-Gordon system

Let R!** be the (4 + 1)-dimensional Minkowski space with the metric

m,, :=diag (-1, +1, +1, +1, +1)
in the standard rectilinear coordinates (r = x9, x!,..., x*). Consider the
trivial complex line bundle L = R!** x C over R!™* with structure group
u@) = {ei X e (C}. Global sections of L may be identified with C-valued
functions on R!**. Using the identification u(1) = iR and taking the trivial
connection d as a reference, any connection D on L takes the form

D=d+iA

for some real-valued 1-form A on R!**. The Maxwell-Klein-Gordon system
is a Lagrangian field theory for a pair (A, ¢) of a connection on L and a section
of L with the action functional

1

| —
S[A,d)]:/ —FuF" + =D, ¢DH¢ drdx,
RI+4 4 2

where F, = (dA),, = 9, A, — 03, A, is the curvature 2-form associated to D.
We follow the usual convention of raising/lowering indices by the Minkowski
metric m, and also of summing over repeated upper and lower indices. Com-
puting the Euler-Lagrange equations, we arrive at the Maxwell-Klein-Gordon
equations (MKG)
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GWP and scattering of (4 + 1)-d MKG 783

[a“m = Im(¢D,§) MKG)

Uagp =0,

where [J4 := D#D,, is the (gauge) covariant d’ Alembertian.

A basic feature of (MKG) is gauge invariance. Geometrically, a gauge trans-
form is a change of basis in the fiber C over each point on R'*t# by an element
of the gauge group U(1). Accordingly, we refer to a real-valued function
x : R = R (hence ¢* € U(l)) as a gauge transformation and define
the corresponding gauge transform of a pair (A, ¢) as

(A, ¢) > (A, §) == (A —dy, e'Xe). (1.1)

Observe that D and [4 are covariant under gauge transforms (i.e., XD =
D¢ etc), whereas F and Im(¢m) are invariant. Hence (MKQ) is invariant
under gauge transforms. Since U(1) is an abelian group, (MKG) is said to be
an abelian gauge theory.

We now formulate the initial value problem for (MKG), in a way that is
consistent with the gauge invariance of the system. An initial data set for
(MKG) consists of a pair of 1-forms (a;, e;) and a pair of C-valued functions
(f, g) on R* We say that (a, e, f, g) is the initial data for a solution (A, ¢) at
time 7y if

(Aj, Foj, ¢, D:9) [(1=r)= (aj, e}, [, &).

We usually take the initial time 7y to be zero. Observe that the v = 0 component
of (MKG) imposes a constraint on any initial data for (MKG), namely

e, = Im(f3) (1.2)

This equation is called the Gauss (or constraint) equation.

There is a conserved energy for (MKG), which is one of the basic ingre-
dients of the non-perturbative analysis performed in this paper. We define the
conserved energy of a solution (A, ¢) at time 7 to be

1
EpyxrilAL @] :=5/{} y > Fwl*+ D IDuglfdx. (1.3)
1398

O=<p<v=4 O<p=4

For a suitably regular solution to (MKG) defined on a connected interval /,
this quantity is constant. This conservation law is in fact a consequence of
Nother’s principle (i.e., continuous symmetry of the field theory corresponds
to a conserved quantity) applied to the time translation symmetry of (MKG);
we refer to Sect. 5 for further discussion and a proof.
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784 S.-J. Oh, D. Tataru

Observe that the conserved energy is invariant under the scaling
(A, ), x) = (A 1A, 2719) (W', 27 ) forany A > 0,

which also preserves the system (MKG). Hence (MKG) on R'*# is energy
critical.

1.2 Statement of the main theorem

Our goal now is to give a precise statement of the global well-posedness/scat-
tering theorem proved in this paper. For this purpose, we first borrow some
definitions from [19,26].

We say that a (MKG) initial data set (a, e, f, g) (i.e., a solution to the Gauss
equation) is classical and write (a, ¢, f, g) € H* ifeachof a, e, f, g belongs
to HX° := N> H'. Correspondingly, we say that a smooth solution (A, ¢)
to (MKG) on I x R* (where I C R is an interval) is a classical solution if
Ap, ¢ € N5, _oCl" L HY).

Define the space H! = H!(R*) of finite energy initial data sets to be the
space of (MKG) initial data sets for which the following norm is finite:

Iase ol = sup 1@ el erzms, + 10 ©)ig sz
(1.4)

Given a pair (A, ¢) on I x R*, we define its C,H' (I x R*) norm as

1A Bl prxrsy = esssuprer (IALpcpz + 1910 g2 )

where A[¢] and ¢[t] are shorthands for (A, d;A)(¢) and (¢, d;¢)(t), respec-
tively. We then define the notion of an admissible C;H! solution to (MKG)
via approximation by classical solutions as follows.

Definition 1.1 (Admissible C,H' solutions to (MKG)) Let I C R be an
interval. We say that a pair (A, ¢) € C;/H' (I xR*) is an admissible C,H! (I x
R*) solution to (MKG) if there exists a sequence (A™ ¢y of classical
solutions to (MKG) on I x R* such that

1A, @) — (A™, ¢l sty — 0 asn — oo,

for every compact subinterval J < [.

The necessity of restricting the class of energy solutions under consideration
to the admissible ones as defined above is a relatively standard matter in the
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realm of low regularity solutions for nonlinear dispersive equations. Often
uniqueness statements require additional regularity properties for solutions,
which are then proved to hold for the solutions which are limits of smooth
solutions, but might not be true or straightforward in general. In our case the
difficulties are compounded by the need to have a good notion of finite energy
solution which is gauge invariant.

Remark 1.2 The above definitions can be localized to an open subset O C R*
or @ € R in an obvious manner; see [26, Sects. 3 and 5].

Next, we recall the global Coulomb gauge condition

A, = Z A, = 0. (1.5)

The role of this condition is to fix the ambiguity arising from the gauge invari-
ance of (MKG), which is an immediate formal obstruction for well-posedness.

Finally, given an interval I C R, we borrow the space-time norms Y ! (I x
R*) and S'(1 x R*) from [19,26,27]. We define the S! norm of a solution
(A, ¢)on 1 x R*tobe

ICA, D) stry := 1Aolly 1 (rxrey + 1 Ax g1 (1xr4) + 1D ll51 (1 xRS

In particular, the S' norm captures the dispersive properties of A, and ¢. The
precise definition of the S' norm is rather intricate; instead of the full definition,
in this paper we only rely on a few basic properties of the spaces ¥! and S',
such as those below (see also Remark 4.2).

1@, 3D e, i erzy S N0llst (r)-
(g, 3190)||c,(1;Hxle§) . ||90||Y1(IxR4)'

We are now ready to state our main theorem.

Theorem 1.3 (Main Theorem) Let (a, e, f, g) € H! be a finite energy initial
data set for (MKG) obeying the global Coulomb gauge condition 3‘a; = 0.
Then there exists a unique admissible C H! solution (A, ¢) to the initial value
problem defined on the whole R't* which satisfies the global Coulomb gauge
condition BKAZ = 0. Moreover, the S' norm of (A, @) is finite, i.e.,

||A0||Y1(]R1+4) + ||Ax||51(R1+4) + ||¢||51(R1+4) < 00. (1.6)

Remark 1.4 The a-priori bound above implies scattering towards both 1 —
F00; see Theorem 4.8. It also implies continuity of the data to solution map
on compact time intervals, though not on the full real line.
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786 S.-J. Oh, D. Tataru

Remark 1.5 We do not lose any generality by restricting to initial data sets in
the global Coulomb gauge, since any finite energy initial data set can be gauge
transformed to obey the condition 3‘a; = 0. See [26, Sect. 3].

Remark 1.6 We note that an independent proof of global well-posedness and
scattering of MKG-CG has been recently given by Krieger-Lithrmann [16],
following a version of the Bahouri-Gérard nonlinear profile decomposition [1]
and Kenig-Merle concentration compactness/rigidity scheme [8,9] developed
by Krieger-Schlag [17] for the energy critical wave maps. We refer to Sect. 3.2
for a brief comparison between our work and [16].

1.3 A brief history and broader context

A natural point of view is to place the present papers and results within the
larger context of nonlinear wave equations, of which the starting point is
the semilinear wave equation [Ju = =|u|”u. More accurately, the (MKG)
equation belongs to the class of geometric wave equations, which includes
wave maps (WM), Yang-Mills (YM), Einstein equations, as well as many
other coupled models. Two common features of all these problems are that
they admit a Lagrangian formulation, and have some natural gauge invariance
properties. Following are some of the key developments that led to the present
work.

1. The null condition A crucial early observation in the study of both long
range and low regularity solutions to geometric wave equations was that the
nonlinearities appearing in the equations have a favorable algebraic structure,
which was called null condition, and which can be roughly described as a
cancellation condition in the interaction of parallel waves. In the low regularity
setting, this was first explored in work of Klainerman and Machedon [10], and
by many others later on.

2. The X*" spaces A second advance was the introduction of the X*?
spaces,! also first used by Klainerman and Machedon [13] in the context of
the wave equation. Their role was to provide enough structure in order to
be able to take advantage of the null condition in bilinear and multilinear
estimates. Earlier methods, based on energy bounds, followed by the more
robust Strichartz estimates, had proved inadequate to the task.

3. The null frame spaces To study nonlinear problems at critical regularity
one needs to work in a scale invariant setting. However, it was soon realized
that the homogeneous X*” spaces are not even well defined, not to mention
suitable for this. The remedy, first introduced in work of the second author [41]
in the context of wave maps, was to produce a better description of the fine

! The concept, and also the notation, is due to Bourgain, in the context of KdV and NLS type
problems.
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structure of waves, combining frequency and modulation localizations with
adapted frames in the physical space. This led to the null frame spaces, which
played a key role in subsequent developments for wave maps. We remark that
another scale invariant alternative to X*? spaces are the U? and V7 spaces,
also originally developed by the second author; while these played a role in the
study of other nonlinear dispersive problems at critical regularity, they play no
role in the present story.

4. Renormalization A remarkable feature of all semilinear geometric wave
equations is that while at high regularity (and locally in time) the nonlinearity is
perturbative, this is no longer the case at critical regularity. Precisely, isolating
the non-perturbative component of the nonlinearity, one can see that this is
of paradifferential type; in other words, the high frequency waves evolve on
a variable low frequency background. To address this difficulty, the idea of
Tao [34], also in the wave map context, was to renormalize the paradifferential
problem, i.e., to find a suitable approximate conjugation to the corresponding
constant coefficient problem.

5. Induction of energy The ideas discussed so far seem to suffice for small
data critical problems. Attacking the large data problem generates yet another
range of difficulties. One first step in this direction is Bourgain’s induction
of energy idea [2], which is a convenient mechanism to transfer information
to higher and higher energies. We remark that an alternate venue here, which
sometimes yields more efficient proofs, is the Kenig-Merle idea [9] of con-
structing minimal blow-up solutions. However, the implementation of this
method in problems which require renormalization seems to cause consider-
able trouble.

For a further discussion on this issue, we refer to the work of Krieger-Schlag
[17], where this method was carried out in the case of energy critical wave
maps into the hyperbolic plane. We also mention the recent paper [16], where
an independent proof of global well-posedness and scattering for (MKG) in
the Coulomb gauge was given following the above-mentioned ideas of Kenig-
Merle and Krieger-Schlag. See Sect. 3.2 for a brief comparison between the
approaches in this paper and [16].

6. Energy dispersion One fundamental goal in the study of large data
problems is to establish a quantitative dichotomy between dispersion and con-
centration. The notion of energy dispersion, introduced in joint work [32,33]
of the second author and Sterbenz in the wave map context, provides a con-
venient measure for pointwise concentration. Precisely, at each energy there
is an energy dispersion threshold below which dispersion wins. We remark
that, when it can be applied, the Kenig-Merle method [9] yields more accurate
information; for instance, see [17]. However, the energy dispersion idea, which
is what we follow in the present series of papers, is much easier to implement
in conjunction with renormalization.
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788 S.-J. Oh, D. Tataru

7. The frequency gap One obstacle in the transition from small to large data
in renormalizable problems is that the low frequency background may well
correspond to a large solution. Is this fatal to the renormalized solution? The
answer to that, also originating in [32,33], is that there may be a second hidden
source of smallness, namely a large frequency gap between the high frequency
wave and the low frequency background it evolves on.

8. Morawetz estimates The outcome of the ideas above is a dichotomy
between dispersion and scattering on one hand, and very specific concen-
tration patterns, e.g., solitons, self-similar solutions on the other hand. The
Morawetz estimates, first appearing in this role in the work of Grillakis [6],
are a convenient and relatively simple tool to eliminate such concentration
scenarios.

We now recall some earlier developments on geometric wave equations
related to the present paper. We start our discussion with the (MKG) problem
above the scaling critical regularity. In the two and three dimensional cases,
which are energy subcritical, global regularity of sufficiently regular solu-
tions was shown in the early works [4,5,23]. The former two in fact handled
the more general Yang-Mills-Higgs system. In dimension d = 3, this result
was greatly improved by [11], which established global well-posedness for
any finite energy data. In this work, the quadratic null structure of (MKG)
in the Coulomb gauge was uncovered and used for the first time. Subse-
quent developments were made by [3] and more recently [22], where an
essentially optimal local well-posedness result was established. An impor-
tant observation in [22] is that (MKG) in Coulomb gauge exhibits a secondary
multilinear cancellation feature. The related paper [7] is concerned with global
well-posedness of the same problem at low regularity. We also mention the
work [30], in which finite energy global well-posedness was established in
the Lorenz gauge. In the higher dimensional case d > 4, an essentially
optimal local well-posedness result for a model problem closely related to
(MKG) was obtained in [15]. This was followed by further refinements in
[29,31].

The progress for the closely related Yang-Mills system (YM) in the sub-
critical regularity has largely paralleled that of (MKG), at least for small data.
Indeed, (YM) exhibits a null structure in the Coulomb gauge which is very
similar to (MKG). In particular, the aforementioned work [15] is also relevant
for the small data problem for (YM) in the Coulomb gauge at an essentially
optimal regularity.

However, a new difficulty arises in the large data® problem for (YM):
namely, the gauge transformation law is nonlinear due to the non-abelian

2 More precisely, a suitable scaling critical norm of the connection A (e.g., ||All;q) or the
X

curvature F (e.g., | F|| %)is large.
L
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gauge group. In particular, gauge transformations into the Coulomb gauge
obey a nonlinear elliptic equation, for which no suitable large data regular-
ity theory is available. Note, in comparison, that such gauge transformations
obey a linear Poisson equation in the case of (MKG). In [12], where finite
energy global well-posedness of the 3 + 1 dimensional (YM) problem was
proved, this issue was handled by localizing in space-time via the finite speed
of propagation to gain smallness, and then working in local Coulomb gauges.
An alternative, more robust approach without space-time localizations to the
same problem has been put forth by the first author in [24,25], inspired by
[36—40]. The idea is to use an associated geometric flow, namely the Yang-
Mills heat flow, to select a global-in-space Coulomb-like gauge for data of any
size.

Before turning to the (MKG) and (YM) problems at critical regularity, we
briefly recall some recent developments on the wave map equation (WM),
where many of the methods we implement here have their roots. We confine
our discussion to the energy critical problem in 2+ 1 dimensions, which is both
the most difficult and the most relevant to our present paper. For the small data
problem, global well-posedness was established in [34,35,42]. More recently,
the threshold theorem for large data wave maps, which asserts that global well-
posedness and scattering hold below the ground state energy, was proved in [32,
33] when the target \V is a general compact manifolds. Independently, global
well-posedness and scattering for (WM) were established in [17] when AV is the
hyperbolic plane and in [36-40] when NV is a general hyperbolic space. In both
cases, NV is a non-compact manifold which do not admit any nontrivial finite
energy harmonic maps from R?; moreover, an a-priori bound of the scattering
norm in terms of the energy followed immediately from the proofs of [17,36—
40]. In fact, [17] also established a nonlinear profile decomposition for bounded
(in energy) sequences of wave maps. See also [20] for a sharp refinement in the
case of a two-dimensional target, taking into account an additional topological
invariant (namely, the degree of the wave map). Our present strategy was
strongly influenced by [32,33], which can be seen as the first predecessor of this
work.

Despite the many similarities, there is a key structural difference between
(WM) on the one hand and (MKG), (YM) on the other, whose understanding is
crucial for making progress on the latter two problems. Roughly speaking, all
three equations can be written in a form where the main ‘dynamic variables’,
which we denote by ¢, obey a possibly nonlinear gauge covariant wave equa-
tions¢ = - - -, and the associated curvature F[A] is determined by ¢. In the
case of (WM), this dependence is simply algebraic, whereas for (MKG) and
(YM) the curvature F[A] obeys a wave equation with a nonlinearity depend-
ing on ¢. This difference manifests in the renormalization procedure for each
equation: For (WM) it suffices to use a physical space gauge transformation,
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790 S.-J. Oh, D. Tataru

whereas for (MKG) and (YM) it is necessary to use a microlocal (more pre-
cisely, pseudo-differential) gauge transformation that exploits the fact that A
solves a wave equation in a suitable gauge.

The first (MKG) renormalization argument appeared in [28], in which global
regularity of (MKG) for small critical Sobolev data was established in dimen-
sions d > 6. This work was followed by a similar high dimensional result for
(YM) in [18]. Finally, the small data result in the energy critical dimension
4 + 1 was obtained in [19], which may be viewed as the second direct prede-
cessor to the present work. In particular we borrow a good deal of notations,
ideas and estimates from [19].

We end our introduction with a few remarks on the energy critical (YM)
problem in 4 + 1 dimensions, which is a natural next step after the present
work. The issue of non-abelian gauge group for the large data problem
has already been discussed. Another important difference between (MKG)
and (YM) in 4 + 1 dimensions is that the latter problem admits instan-
tons, which are nontrivial static solutions with finite energy. Therefore, in
analogy with (WM), it is reasonable to put forth the threshold conjecture
for the energy critical (YM) problem, namely that global well-posedness
and scattering hold below the energy of the first instanton. Finally, (YM)
is more ‘strongly coupled’ as a system compared to (MKG), in the sense
that the connection A itself obeys a covariant wave equation. This feature
seems to necessitate a more involved renormalization procedure compared to
(MKG).

2 Overview of the proof I: summary of the first two papers

The basic strategy for proving Theorem 1.3 is by contradiction, following the
scheme successfully developed in [32,33] in the setting of energy critical wave
maps. In the first two papers of the sequence [26,27] we establish successively
stronger continuation and scattering criteria, whose contrapositives provide
precise information about the nature of a finite time blow-up (i.e., failure of
global well-posedness) or non-scattering. In the present paper, we use this
information, as well as conservation laws and Morawetz-type monotonicity
formulae for (MKG), to perform a blow-up analysis and show that the failure
of Theorem 1.3 implies the existence of a nontrivial finite energy stationary
or self-similar solution to (MKG). Since such a solution does not exist (see
Sect. 7 below), Theorem 1.3 must hold.

In this section we review the main results and ideas of the earlier two papers
in the sequence [26,27]. In Sect. 3 we summarize the argument given in the
present paper. To steer away from unnecessary technical details we only con-
sider smooth data and solutions; however we remark that the results also apply

@ Springer



GWP and scattering of (4 + 1)-d MKG 791

to merely finite energy data and admissible C; ' solutions. For the notation,
we refer to Sect. 4.

2.1 Local well-posedness in the global Coulomb gauge and
non-concentration of energy

The main result of the first paper [26] of the sequence is local well-posedness
of (MKG) in the global Coulomb gauge with a lower bound on the lifespan in
terms of the energy concentration scale

re =re(E)la, e, f, gl :=sup {r > 0:Vx € R*, Ep.mla, e, f, 8] < 8o(E, 65)},

where B,(x) denotes the open ball of radius » with center x, §o(E, eﬁ) =
c%e2 min {1, e}E _2} ,c is an absolute constant and €2 is the threshold for
the small energy global well-posedness result in [19] (see Theorem 4.1). A
simplified version of the main theorem of [26] is as follows:

Theorem 2.1 Givenany E > 0 let 5o(E, eﬁ) > 0 be as above. Let (a, e, f, g)
be a smooth finite energy initial data for (MKG) satisfying the global Coulomb
gauge condition jojaj = 0. Then there exists a unique smooth solution

(A, @) to (MKG) in the global Coulomb gauge on [—r¢, rc] X R4

Theorem 2.1 implies that finite time blow-up is always accompanied by con-
centration of energy (i.e., r. — 0 at the end of the maximal lifespan). For
a precise statement, see Theorem 4.3. In what follows we explain the ideas
involved in the proof of local existence, which lies at the heart of Theorem 2.1.

2.1.1 Strategy of proof in model cases

For many other semi-linear equations, such as [u = :I:u% or the wave
map equation, a result analogous to Theorem 2.1 is a rather immediate conse-
quence of small energy global well-posedness and finite speed of propagation.
Roughly speaking, the proof (of local existence) proceeds in the following
three steps:

Step A. One truncates the initial data locally in space to achieve small
energy.

Step B. By small energy global well-posedness, the truncated data give
rise to global solutions. Restricting these global solutions to the domain
of dependence of the truncated regions, one obtains a family of local-in-
spacetime solutions that agree with each other on the intersection of their
domains by finite speed of propagation.
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792 S.-J. Oh, D. Tataru

Step C. One patches together these solutions to obtain a local-in-time solu-
tion to the original initial data.

In particular, the lifespan of the solution constructed by this scheme depends
on the size of spatial truncation in Step A, which in turn is dictated by the
energy concentration scale r. of the initial data.

2.1.2 Non-locality of (MKG) in the global Coulomb gauge

When carrying out the above strategy in our setting, however, we face difficul-
ties arising from non-local features of (MKG) in the global Coulomb gauge.
One source of non-locality is the Gauss (or the constraint) equation

3 = Im(f3), (2.1)

which must be satisfied by every (MKG) initial data set. Another source is
the presence of the elliptic equation for Ag in the global Coulomb gauge (cf.
(2.4)); in particular, finite speed of propagation fails in the global Coulomb
gauge.

In the remainder of this subsection, we give an overview of the techniques
developed in [26] for overcoming these issues, and explain how these can be
used to essentially execute Steps A-C above to obtain Theorem 2.1 from the
small energy global well-posedness theorem proved in [19] (see Theorem 4.1).

2.1.3 Execution of step A: initial data excision and gluing

Consider the problem of truncating a (MKG) initial data set® (a, e, f,g)toa
ball B. A naive way to proceed would be to apply a smooth cutoff to each of
a, e, f, g. However, integrating the Gauss equation (2.1) by parts over balls
of large radius, we see that e; must in general be nontrivial on the boundary
spheres outside B, even if f and g are supported in B.

Instead, the idea of initial data excision and gluing* is as follows: rather
than just excising the unwanted part, we glue it to another initial data set (i.e.,
solution to the Gauss equation) which has an explicit description, so that the

3In application a obeys the global Coulomb gauge condition 9ay = 0, but this fact is irrelevant
for the discussion here.

4 We remark that similar techniques have been developed in mathematical general relativity,
as a means to construct a large class of interesting initial data sets for the Einstein equations.
Our setting involves a simpler constraint equation, but we require sharp techniques which are
applicable at the critical regularity.
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Gauss equation is still satisfied. For example, in the exterior of a ball B we
may glue to the data

q Xj
i =—5—7,0,0,0
(e(‘”’ 272 || )

with an appropriate g. Note that e(y) is precisely the electric field of an electric
monopole of charge ¢ placed at the origin.

Using this idea we may truncate (a, e, f, g) to balls to make the energy suffi-
ciently small. The minimum size of these balls, which later dictates the lifespan
of the solution, can be chosen to be proportional to the energy concentration
scale. This procedure is our analogue of step A.

2.1.4 Execution of step B: geometric uniqueness of admissible solution
to (MKG)

Though finite speed of propagation fails for (MKGQG) in certain gauges such
as the global Coulomb gauge, it is still true up to gauge transformations. We
refer to this statement as local geometric uniqueness for (MKG), and use it as
a substitute for the usual finite speed of propagation property.

Applying a suitable gauge transformation to each truncated initial data set
to impose the global Coulomb gauge condition, we are in position to apply the
small energy global well-posedness theorem (Theorem 4.1) and construct a
family of global smooth solutions. Restricting these solutions to the domain of
dependence of the truncated regions and appealing to local geometric unique-
ness, we obtain local-in-spacetime Coulomb solutions (i.e., obey 9tA; = Oon
the domains) which are gauge equivalent to each other on the intersection of
their domains. We refer to such solutions as compatible pairs’; geometrically,
these are precisely local descriptions of a globally defined pair of a connection
and a section on local trivializations of the bundle L.

2.1.5 Execution of step C: patching local Coulomb solutions

The final task is to patch together the local-in-spacetime descriptions of a solu-
tion (i.e., compatible pairs) to produce a global-in-space solution (A, ¢) in the
global Coulomb gauge. We first adapt a patching argument of Uhlenbeck [43]
to produce a single global-in-space solution (A’, ¢’) obeying an appropriate
S! norm bound. The fact that a gauge transformation y between Coulomb
gauges obeys the Laplace equation Ax = 0, and hence possesses improved
regularity, is important for this step. The solution (A’, ¢’) obtained by this

5 See also Sect. 6.3 of the present paper, where this notion arises naturally from local limits of
a sequence of solutions.
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patching process is not necessarily in the global Coulomb gauge; it is however
approximately Coulomb (i.e., BKA’Z obeys an improved bound), since it arose
from patching together local Coulomb solutions. It is thus possible to find a
nicely behaved gauge transformation into the exact global Coulomb gauge,
leading us to the desired local-in-time solution.

2.2 Continuation of energy dispersed solutions

We now describe the content of [27]. The main theorem of [27] is a con-
tinuation/scattering criterion in the global Coulomb gauge for a large energy
solution (A, ¢) to (MKG) in terms of its energy dispersion E D[¢](1]), defined
as

EDIBID) = sup (271 Pl oy + 210 Pl ) 22)

for any time interval / C R. A simple version is as follows:

Theorem 2.2 Given any E > 0, there exist positive numbers € = €(E) > 0
and F = F(E) such that the following holds. Let (A, ¢) be a smooth solution
to (MKG) in the global Coulomb gauge (MKG-CG) on I x R* with energy
< E.IfED[¢](I) < €(E), then the following a-priori S' norm bound holds:

lAollyiy + 1Axllsipry + l@llsipy < F(E). (2.3)
Moreover, (A, @) extends as a smooth solution past finite endpoints of 1.

Theorem 2.2 is analogous to the main result in [32] for energy critical wave
maps. Thanks to the a-priori bound (2.3), the solution (A, ¢) scatters towards
each infinite endpoint in the sense of Remark 1.4. For a more precise formu-
lation, see Theorems 4.7 and 4.8.

We now describe the main ideas of the proof of Theorem 2.2. In what
follows, we only consider solutions to (MKG) in the global Coulomb gauge.

2.2.1 Decomposition of the nonlinearity

We begin by describing the structure of the Maxwell-Klein-Gordon system in
the global Coulomb gauge (MKG-CG), which take the form

AAg =Im(¢d;¢) + (cubic terms)
OA; =P;Im(¢d,$) + (cubic terms) 2.4
O¢ = —2iA,0"¢ + (cubic terms)
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where P is the Leray L2-projection to the space of divergence-free vector
fields. We omitted cubic terms as they are strictly easier to handle. The elliptic
equation for Ag allows us to obtain the appropriate ¥ ! bound once we establish
S! bounds for A, and ¢; henceforth we focus on the wave equations for A,
and ¢.

As in the case of small energy global well-posedness [19], the null structure
of (MKG) in the global Coulomb gauge plays an essential role in the proof of
Theorem 2.2. All quadratic terms in the wave equations exhibit null structure,
i.e., cancellation in the angle between inputs in Fourier space. There is also
a secondary multilinear null structure in the term 2i A, 0" ¢ which arises by
plugging in the equations for Ao, A;. All of this structure is necessary for
controlling the S! norm of (A, ¢), but it is by no means sufficient as we
discuss below.

2.2.2 Renormalization for large energy

Even in the case of small energy global well-posedness [19], the null structure
alone is not enough to bound the S' norm of (A, ¢) due to the paradifferential
term in the ¢-equation

— > 2iP AT 3, P
k

Here AT is the free wave evolution of A;[0] := (A}, 0;Aj) [4=0}- As in
[19,28], we handle this term by a renormalization argument. More precisely,
we treat the problematic term as a part of the linear operator and construct a
paradifferential parametrix. The construction in [19,28], however, relied on
smallness of the energy, which we lack in our setting. Instead we consider the
linear operator with a frequency gap m

0%y = Oy + > 2i P AT - 0, Py,
k

and gain smallness by taking m sufficiently large. This idea is akin to the gauge
renormalization procedure for wave maps in [32], where a large frequency gap
was used to control the large paradifferential term.

2.2.3 Role of energy dispersion
We now describe the role of small energy dispersion E D[¢]. Roughly speak-
ing, small energy dispersion allows us to gain in transversal balanced frequency

interactions. This complements the gain in parallel interactions, due to the null
condition, and the gain in the high x high — low interactions due to the
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favorable frequency balance. For instance, by interpolation with (non-sharp)
Strichartz norms controlled by the S! norm, we have®

. _
| Pe(Pey Pl 2 sy S 2 2mln{kl’kz}ED[¢]9||Pk1¢||§ [01]||Pk2‘/’||51[1],
(2.5)

which is useful when k; = k + O(1), k> = k + O(1) and ¢, ¥ are at a large
angle so that the output modulation is high.

To see how this gain is useful, we return to the full nonlinear system (MKG)
in the global Coulomb gauge. Upon decomposing the inputs and output into
Littlewood-Paley pieces, most of the nonlinearity exhibits an off-diagonal
exponential decay in frequency. For example, the nonlinearity in the A,-
equation obeys

| Pe Py (Pry pd P ) llvpry S 270 WRIH=RD ) pe ooy 1 Pyl s

Introducing again a large frequency gap m, we gain smallness except when
ki = k+ O0,() and kr» = k + O,,(1). Furthermore, thanks to the null
structure, we also gain extra smallness except for angled interaction; then we
are precisely in position to use E D[¢]. In conclusion, we gain smallness from
ED|[¢] < € for the nonlinearity in the A,-equation.

2.2.4 Linear well-posedness of U = f

Unfortunately the a-priori estimate (2.3) does not close yet, as there exists a
nonlinear term in the ¢-equation with no off-diagonal exponential decay. This
part is precisely the low x high — high frequency and high x low — low
modulation interaction’ in the term —2i A - 0x @, i.e.,

=2 D> D PQ<(Py QA 0:Pu0<jd). (2.6)
ki <k J<ki
ko=k+0(1)

Nevertheless, this term has the redeeming feature that it can be bounded by
a divisible norm: Given any ¢ > 0 the interval / can be split into smaller
pieces I on each of which the N norm of the above expression is bounded by

< €2||Pk2¢||51[1], where the number of such intervals is 0”‘1’”51[1]’5(1)' For a

6 Note that (2.5) is symmetric in ¢ and v, so we may choose to use the energy dispersion norm
of either. Note also that all nonlinearity of (MKG) involve at least one factor of ¢. This is why
it suffices to assume smallness of just £ D[¢] and not A.

7 We note that this term is where the secondary multilinear cancellation structure of MKG-CG
is needed.
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solution (A, ¢) to (MKGQG), this observation leads to linear well-posedness of
the magnetic wave equation® (4 = f with bound

I llsiin Sy, WO g1z + 1 v, 2.7)

where ¥[0] := (¥, 9;%) [{+=0}. The bound (2.7) allows us to setup an induction
on energy scheme to establish (2.3), which we now turn to explain.

2.2.5 Induction on energy

The starting point of our induction is the small energy global well-posedness
theorem [19], which implies that (2.3) holds with F(E) = C~/E when the
energy E is sufficiently small. Our goal is to show the existence of a non-
increasing positive function co(-) on the whole interval [0, co) such that if the
conclusion of Theorem 2.2 holds for energy up to E, then it also holds for
energy up to £ + co(E). Monotonicity of cg(-) implies that it has a uniform
positive lower bound on every finite interval; thus the continuous induction
works for all energy.

In what follows, we describe the construction of co(E), F := F(E+co(E))
and € := €(E + co(E)) under the induction hypothesis that Theorem 2.2 holds
up to energy E for some F(E) and €(E). For the scheme to work, it is crucial
to let co(E) depend only on E and not on F(E) or €(E). On the other hand,
F and € may depend on F(E) and €(E).

Let (A, ¢) be a solution on I x R* with energy E +co(E) and ED[¢] < €.
To prove (2.3) for (A, ¢), we compare it with another solution (A, (]3) with
frequency truncated initial data’

(4,101, p0]) = (P<x+A;[0], P<t+¢[0])

where the ‘cut frequency’ k* € R is chosen so that (A, ¢) has energy E. By

taking co(E) and € sufficiently small, we aim for the following two goals:
Goal A. The energy dispersion £ D [¢](]) is sufficiently small so that the
induction hypothesis applies to (A, ¢). Hence

IAolly1ry + I Axlsipy + I@ligiy < F(E). (2.8)

8 More precisely, the observation regarding (2.6), combined with the paradifferential para-
metrix construction mentioned above, implies well-posedness of the equation Dz’mw =
Oy +2i > Pok—mApd* Py = f for sufficiently large m with bound (2.7). The terms in
Oy — Dﬁ’m also turn out to be bounded by divisible norms, which leads to the well-posedness
of sy = f.

9 In the global Coulomb gauge, Ax[0] = (Ay, 9:Ax)(0) and ¢[0] = (¢, 9;¢)(0) determine the
whole initial data set (a, e, f, g), as we can solve for Ag in the constraint equation —AAg =

Im(¢9,p) — |1 Ag.
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Goal B. The difference (B"igh, yhishy .— (A — AM, b — @) obeys

”Bhlgh

Iy + B sy + 19" g1y < Cery. (29)
Adding (2.8) and (2.9), the desired bound (2.3) would follow with F :=
F(E) + Cg,F(E)-

Goal A is accomplished by showing that if € is sufficiently small, then
(A (Z)) is arbitrarily close (i.e., within €%) to the frequency truncated solution
(P<¢+A, P<g+¢) which has small energy dlspersmn For Goal B, the idea is
to view (B"8" yhighy ag a perturbation around (A, ¢). To ensure that co(E)
is independent of F(FE), we rely on two observations: First, by the weak
divisibility' of the S norm, the interval 7 can be split into Op(g)(1) many
subintervals /; on each of which we have

1Aolly1pzg + 1Axlsipy + 1@l Se 1. (2.10)

Second, by conservation of energy for (A, ¢) and (A, ¢), as well as the approx-
imation (A, ¢~5) ~ (P<kxA, P<i+¢), it follows that the Hx1 X L)ZC norm of the
data for (B"8"  y/highy can be reinitialized to be of size < ¢o(E) on each I.

With these two observations in hand, we claim that (B"8" yhish) obeys
the following S!' norm bound on each I;:

high

high i
1By " ly11y + 1B g1 + 19" 511y SE co(E) + OF (€°).

2.11)

Indeed, in the equation for (Bhish, whigh), all nonlinear terms in (Bhigh, whigh)
can be handled by taking co(E) < 1 and € < 1. Furthermore, exploit-
ing small energy dispersion, all linear terms can be made appropriately small
except —2i A awhigh Nevertheless, the S! norm of (A, ¢) on I can be
assumed to be <g 1 by (2.10) and a bootstrap assumption''; hence we can
group this term with [J and use (2.7) (linear well-posedness of [14 dfhlgh) to
arrive at (2.11). Goal B now follows by summing up this bound on O g g)(1)
intervals.

10" This terminology should be compared with full divisibility, which means that / can be split
into a controlled number of subintervals, on each of which the restricted norm is arbitrarily small.
Weak divisibility of the S! norm is a quick consequence of the energy inequality ||y [| g1 <
IWIOMl 31 2 + IV Il vy and (full) divisibility of the N norm.

1 More precisely, in proving (2.11) we may assume, using a continuous induction in time, that
the same bound holds with a worse constant. Combined with (2.10) this bound is sufficient for
ensuring that the S! norm of (A, ¢) is <eg L
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3 Overview of the proof II: content of the present paper

This section is a continuation of the previous section. Section 3.1 provides
an overview of the argument in the present paper, thereby completing the
summary of our entire proof of Theorem 1.3. In Sect. 3.2, we give a brief com-
parison of our approach with that of the recent work [16] of Krieger-Luhrmann.
Finally, Sect. 3.3 contains an outline of the structure of the remainder of the

paper.

3.1 Blow-up analysis

Here we give an overview of the final blow-up analysis of (MKG), which
is carried out in the present paper. This part is analogous to [33] for energy
critical wave maps. We refer to Sect. 4 for the notation used below.

3.1.1 Main ingredients

In addition to the continuation/scattering criteria established in [26,27] (see
Theorems 2.1 and 2.2), our blow-up analysis of (MKG) relies on the following
three key ingredients:

— Monotonicity formula for (MKG) Besides the conservation of energy, we
use the following monotonicity (or Morawetz) formula for (MKG). Let

p = +/t? — |x|? and
1
X() = ;(ta; +x- ax)

be the normalized scaling vector field. To avoid the degeneracy of p on
oC = {t = |x|}, we also define the translates

1
ps =Vt +)?—|x]2, Xg:= p—((t +8)0 + x - 0y).
&

Given a smooth solution (A, ¢) to (MKG) on the truncated cone Cig 1)
satisfying

Es[A, ¢l < E, Focp[A, ¢l <e?E, Gslp] <s?E,

where Fycy, ., = Es, — &, is the energy flux through 9Cy, ;) and
Gs, := 1 [s, 1¢|*, we have
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(X.) 1 2 1 1
¢ PrlA, ¢ldx + _|LX5F| + — ng—f—— ¢
S1 Cle, 1 Pe Pe Pe

< / Xe) prlA, ¢p]dx + E.

2
drdx

3.1

Here X¢) Pr[A, ¢] is a non-negative weighted energy density; we refer
to Lemma 5.10 for an explicit formula for X)Pr[A, ¢]. We remark that
the entire right-hand side of (3.1) is bounded by < E. Finiteness of the
space-time integral term ‘breaks the scaling’ and implies that ¢y, F and
(Dx, + é)q& decay near the tip of the cone C.

— Strong local compactness result Given a sequence (A, ¢™) of solutions
whose energy is uniformly small and tx F — 0 and (Dg?) +b)p"™ — 0

in Ltzv . on a space-time cube for some smooth time-like vector field X
and smooth function b, we show that there exists a subsequence which
converges strongly in (essentially) Ht{ . in a smaller subcube; see Proposi-
tion 6.1 for more details. The proof relies on the initial data excision/gluing
technique and the small energy global well-posedness theorem.

— Triviality of finite energy stationary/self-similar solutions We say that
(A, ¢) is a stationary solution to (MKG) if for some constant time-like
vector field Y

tyF =0, Dy¢ =0,

and that (A, ¢) is a self-similar solution if
1
LX0F=0, (DX0+;)¢=0.

Using the method of stress tensor, we show that every smooth station-
ary or self-similar solution with finite energy is trivial (i.e., /' = 0 and
¢ = 0); see Propositions 7.1 and 7.2. We also establish a regularity result
(Proposition 7.3), which says that all stationary and self-similar solutions
arising from the above strong local compactness result (Proposition 6.1)
are smooth.

With these in mind, we now sketch the blow-up analysis of (MKG), which
is performed in full detail in Sect. 8.

3.1.2 Finite time blow-up/non-scattering scenarios and initial reduction

Suppose that the conclusion of Theorem 1.3 fails for a smooth finite energy
data (a, e, f, g) in the forward time direction. Then the corresponding smooth
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solution either blows up in finite time, or does not scatter as t — oo. The
first step of the blow-up analysis is to construct in both scenarios a sequence
of global Coulomb solutions (A™, ™) on [g,, 1] x R* (where &, — 0)
obeying the following properties:

— Bounded energy in the cone &g, [AW ™) < E forevery t € [&,, 1]
— Small energy outside the cone &y piy s, [A™, "] « E forevery t €
[gn’ 1]

1

— Decaying flux on 9C Fis, 1][A™, ¢™M] + Gs,[¢™] < e/ E,

— Pointwise concentration at t = 1 There exist k, € Z and x,, € R* such
that

27K 00y % ™ (1, x)| + 2720 0y DIV (1, 1) > € (3.2)

for some e = e(E) > 0.

Here ¢ is a smooth function supported in the unit ball B1(0) and {,—«(x) :=
2%z (2%x). In view of the next step, we require ¢ to be non-negative. See
Lemma 8.4 for details.

Key to this construction are Theorems 2.1 and 2.2, which provide detailed
information about finite time blow-up or non-scattering scenarios. In partic-
ular, the tip of the cone C is the point of energy concentration (which exists
by Theorem 2.1) in the finite time blow-up case. Pointwise concentration at
t = 1 follows from the failure of the energy dispersion bound in Theorem 2.2.
Decaying flux on dC is a consequence of the local conservation of energy and
localized Hardy’s inequality; see Lemma 5.2 and Corollary 5.3. Smallness of
the energy outside the cone is achieved using the initial data excision/gluing
technique in the finite time blow-up case; in the non-scattering case, this prop-
erty is trivial to establish.

3.1.3 Elimination of the null concentration scenario

Thanks to the above properties, we may apply the monotonicity formula (3.1)
to each solution in the sequence (A", ¢™). Using the weighted energy term
(i.e., the first term on the left-hand side) in (3.1), we show in Lemma 8.7 that
the null concentration scenario (i.e., |x,| — 1 and k,, — 00) is impossible.
Unlike in the case of wave maps [33], however, the weighted energy involves
the covariant derivatives fo)q&(”) = 9,0 +i A,(f)¢(”) ,and the term involving
A" could be problematic. We avoid this issue by first working with the gauge
invariant amplitude |¢™|, for which we have the diamagnetic inequality

1X"8,1p™|| < [Dxo™|
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in the sense of distributions, for any smooth vector field X. We then transfer
the bound to ¢ using the inequality

G %8| < Gk w10,
which holds if ¢ is chosen to be non-negative.

3.1.4 Nontrivial energy in a time-like region

The absence of the null concentration scenario implies the following uniform
lower bound for ¢ away from the boundary at r = 1: There exist E| =
E{(E) > 0and y; = y1(E) € (0, 1) such that

4
1
[y DR+ s P dx = £, (33)
5,7 r
1 n=0

See Lemma 8.9. Using a localized version of the monotonicity formula (3.1),
this lower bound can be propagated towards ¢t = 0. More precisely, there exist
E> = E>(E) and y» = y»(E) € (0, 1) and Ey = E>(E) > 0 such that

1 1

/ (Xo) p. [A<">, ¢<">] dx > E, forallt e [g,g, e;t] (3.4)
St(l—yz)f

3.1.5 Final rescaling

Thanks to the space-time integral term in (3.1), (A™, ¢™) obeys

1 1 2
/ / ey, FOP + (Dﬁ?) +—) o
C[gn 1] Ioé‘n 108” en pSn

which implies an integrated decay of tx, F ™ and (Dg?j + p%)gb(”) near the
tip of the cone C. Applying the pigeonhole principle and ;escalﬁlg, we obtain a
new sequence of solutions which is asymptotically self-similar. More precisely,
there exist a sequence of solutions on [1, 7;,] x R4 (where T,, — o0) to (MKQG),
which we still denote by (A", ™), obeying the following properties (see
Lemma 8.11):

drdx < E.

— Bounded energy in the cone Es, [AM) qb(”)] < E forevery t € [1, T,],
— Small energy outside the cone &y, g4\, [AW, ¢™] <« E forevery t €
[1, 71,
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— Nontrivial energy in a time-like region For every t € [1, T,,] we have
L ©0Pr [0 ax = £, (3.5)
S[(l—yz)t

— Asymptotic self-similarity For every compact subset K of the interior of
C[l,oo)a we have

1
J[ ror | (04 ) o
K o

3.1.6 Extraction of concentration scales and compactness/rigidity argument

2
dtdx - 0 asn — o0. (3.6)

Let (A", ™) be a sequence obtained by the final rescaling argument. Using
a combinatorial argument, we show in Lemma 8.12 that one of the following
two scenarios holds:

A. Either we can identify a sequence of points and decreasing scales at which
energy concentrates, or
B. There is a uniform non-concentration of energy.

In Scenario A we obtain a fixed number r > 0 and a sequence of times
t, — to, points x,, — xo and scales r, — 0 such that

sup - &, 1x By, (x) [A(")’ ¢(")]

X€EBy (xp)
is uniformly small but nontrivial, and

1 th+2r,
— / iy F 12 + |D§,")¢(”)|2dtdx — 0 asn — oo.
4]’,, tn—2ry r (Xn)

where Y = X (#9, x0). Applying Proposition 6.1, we obtain as a limit a non-
trivial finite energy solution to (MKG) which is stationary with respect to Y.
As discussed above, however, such solutions do not exist.~

. 1/2
In Scenario B we can cover each truncated cone C; = C /

. 4 [1/2,00) [
{2J <t<?2 “} with spatial balls of radius » = r(j), on each of which

the energy of (A", ¢() is uniformly small and

1
J[L e+ (0 + 1) 6
Cj 1Y

Hence we are again in position to apply Proposition 6.1 and extract a finite

2
dtdx — 0 asn — oo.

energy self-similar solution to (MKG) on C[ll//zz’ o0)- BY self-similarity, this
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limit easily extends to the whole forward cone C. By (3.5) this limit is nec-
essarily nontrivial, which contradicts the triviality of finite energy self-similar
solutions.

In conclusion, we have seen that neither of the two scenarios can hold, which
is a contradiction. This completes the proof of the main theorem.

3.2 Comparison with the approach of [16]

The principal difference between the present work and [16] is that the latter
follows the Kenig-Merle concentration compactness/rigidity scheme [9] for
establishing global well-posedness and scattering. Roughly, this scheme con-
sists of two steps: First, assuming that the conclusion fails, one constructs a
blow-up solution with the minimal energy. Second, one derives a contradiction
by playing various conservation laws and monotonicity formulae of (MKG)
against special compactness properties of the minimal blow-up solution. As an
immediate corollary, this approaches yields some additional information about
the solutions, such as an a-priori bound on the S norm in terms of the energy.
On the other hand, as we explain below, the execution of this scheme in the
presence of a non-perturbative paradifferential nonlinearity faces considerable
difficulty, a large part of which is avoided in the present work.

The main ingredient for construction of a minimal blow-up solution is the
concentration compactness phenomenon, or nonlinear profile decomposition,
for (MKG) in the global Coulomb gauge, whose proof takes up the majority of
[16]. This concept was first introduced in the context of elliptic PDEs by Lions
[21] and was adapted to the semilinear wave equation Ou = |u|*u on R!*3
by Bahouri-Gérard [1]. It roughly states that any sequence of solutions with
uniformly bounded energy can be decomposed (after passing to a subsequence,
on a suitable time interval) into the superposition of solutions modulated by the
non-compact symmetries of the problem (called profiles) and an error which
can be made arbitrarily small in an appropriate norm weaker than energy.

Key to the proof of concentration compactness in [1] is the asymptotic
vanishing of the interaction among different profiles, whose frequency and
space-time supports are diverging from each other. However, such a statement
partly fails for (MKG), due to the non-perturbative effect of the low frequency
part of the solution on the high frequency part through the paradifferential
nonlinearity. In [16], this difficulty is overcome by performing an induction
on frequency, where one carefully builds a profile decomposition in the order
of increasing frequency. This delicate procedure, which originated from the
earlier work of Krieger-Schlag [17], necessitates several ideas not used in our
approach, such as a process for extracting linear profiles using the paradiffer-
ential magnetic wave equation and a uniform dispersive estimate for such a
equation (see [16, Sect. 7.5]).
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Another notable difference between this paper and [16] is the con-
servation laws and monotonicity formulae used in the proof. While the
present paper relies only on the energy conservation and the Morawetz-type
monotonicity formula (3.1), [16] uses in addition momenta conservation and
a virial-type monotonicity formula for (MKG), which are of independent
interest.

3.3 Structure of the present paper

The remainder of the paper is structured as follows.

Section 4

We provide the setup for our arguments to follow. In particular, we precisely
state the results that we need from the other papers of the series [26,27] in
Sect. 4.5.

Section 5

We state and prove all the conservation laws and monotonicity formulae that
are used in this paper.

Section 6

We use the small energy global well-posedness theorem (Theorem 4.1) and
the technique of initial data excision/gluing to prove a strong local compact-
ness statement (Proposition 6.1) that we rely on in our blow-up analysis.
We also formulate a notion of weak solutions to (MKG) and their local
descriptions (weak compatible pairs), which naturally arise as limits from
Proposition 6.1.

Section 7
We show that there does not exist any nontrivial stationary or self-similar

solutions to (MKG) with finite energy. We also prove regularity theorems for
weak stationary or self-similar solutions to (MKG) considered in Sect. 6.

Section 8

We finally carry out the blow-up analysis as outlined in Sect. 3.1, thereby
completing the proof of global well-posedness and scattering of (MKG).
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4 Preliminaries
4.1 Notation for constants and asymptotics

Throughout the paper we use C for a general positive constant, which may
vary from line to line. For a constant C that depends on, say, E, we write
C = C(E). We write A < B when there exists a constant C > 0 such that
A < CB. When the implicit constant should be regarded as small, we write
A « B. The dependence of the constant is specified by a subscript, e.g.,
A <pg B.We write A ~ B when both A < B and B < A hold.

4.2 Coordinate systems on R+

Several different coordinate systems on R'+t# will be used in this paper. A basic
choice, which has already been mentioned in the introduction, is the rectilinear
coordinates (xo, xt x4) on R in which the Minkowski metric takes
the diagonal formm = —(dx?)2+(dx")2+- - -+ (dx*)%. Alternatively, we will
often write = x% and x = ! .., x4) as well. We reserve the greek indices
WU, v, ... for expressions in the rectilinear coordinates, and the latin indices
Jj,k, £, ...expressions only in terms of the spatial coordinates xl %2 %3, x4,

We also introduce the polar coordinates (z, r, ®) on R!'**, where

X
r=|X|, ®=—ES3,
|x]

and the null coordinates (u, v, ®), defined by
u=t—r, v=t-4r.

We can furthermore specify a spherical coordinate system for ®, but it will
not be necessary. We also define the null vector fields L, L as

L=0+40 =20,, L=20,— 09, =20,.
In these coordinates, the metric takes the form
m = —dr? + dr? + r’gs = —dudv 4 r>(u, v) g,
where ggs is the standard metric on S? in the coordinates ©.
Finally, we will also use the hyperbolic polar coordinates (in short,

hyperbolic coordinates) (p,y, ®) on the future light cone C o) =
{(t,r,®) : 0 <r <t} (see below), where
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p=+vt>—r2, y=tanh~'(r/1).

The Minkowski metric takes the form

m= —dp2 + p? (dy2 + sinh? y ggs) .

Every constant p hypersurface H, is isometric to the simply connected space
of constant sectional curvature —%; in particular, H; is the hyperboloidal

model for the hyperbolic 4-space H*. Using the coordinates (y, ®), the metric
on H* can be written as

gt = dy? + sinh? y gs3-

4.3 Geometric notation

To ease the transition from one coordinate system to another, we shall use
the tensor formalism. We will denote by V the Levi-Civita connection on
R!** to distinguish from coordinate vector fields du. The gauge covariant
connection associated to A for C-valued tensors takes the formD =V + i A.
Similarly, we shall denote the Levi-Civita connection on H* by Vi, and the
gauge covariant connection by D4 = V4 i A. We use the bold latin indices
a, b, ... for expressions in a general coordinate system. We also employ the
usual convention of raising and lowering indices using the Minkowski metric
m, and summing up repeated upper and lower indices.

We now introduce some notation for geometric subsets of R!** and R*.
The forward light cone

C:={(t,x):0<t <oo,|x|] <t}
will play a central role in this paper. For #p € R and I C R, we define

Cr ={t,x):tel,|x| <t}, o0C; :={(t,x):tel,|x| =t},
Sfo :={(t’-x) 1 =1, |x| = t}, 8Sl‘() :={(t’-x) =1y, |x| =t}

For § € R, we define the translated cones
Co :={(t,x) : max {0,8} <1 < oo, |x| <t —8}.
The corresponding objects C?, BC}S, Sfo and BS% are defined in the obvious

manner.
We also define B, (x) to be the ball of radius r centered at x in R*.
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4.4 Frequency projections and function spaces

Let m<p be a smooth cutoff that equals 1 on {r < 1} and 0 on {r > 2}. For
k € Z, we define
m(r) = m<o(r/25), mi(r) ;= ma(r) —ma1(r).

so that suppmy € {2571 < <21} and 3", mi(r) = 1. We introduce the
Littlewood-Paley projections Py, Q; and S, which are used in this paper:

Pep = F Ime (1) Flell,
Qo = F ' m;(lIr| — EIDFlell,
Sep = F me(I(z, £)DFlell,

where F [resp. F —11is the [resp. the inverse] space-time Fourier transform.
Given a normed space X of function on R!™*, we define the restriction
space X (O) on a measurable subset © € R!** by the norm

= inf .
ol x o) s o 1Y | x m1+4)

In application, the set O is often an open set with (piecewise) smooth boundary,
and hence there exists a bounded linear extension operator from X (O) to
X (R'**) for many standard function spaces X (e.g., X = H').

4.5 Results from previous papers
Here we give precise statements of results from [19] and the first two papers in

the sequence [26,27], which are used in the present paper. Given a measurable
subset S C {r} x R* for some 7, we define the energy of a pair (4, ¢) on S by

4
. ! 2 1 2
EslA, #] = /S D SRR WIS
O<p<v<4 n=0
Accordingly, for a measurable subset § € R*, we define

4
1 1
sfare. figli= [ 5 3 |<da>jk|2+5j§|ej|2

1<j<k<4

4
1 2 1 2
+5 Z} ID; /17 + - lgl dx.

J:

The following is the main theorem of [19].
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Theorem 4.1 (Small energy global well-posedness in global Coulomb gauge)
There exists €, > 0 such that the following holds. Let (a, e, f, g) be an H!
initial data set on R* satisfying the global Coulomb gauge condition 3*a; = 0,
whose energy does not exceed ez, ie.,

Epala.e. f.g] < €. 4.1)

(1) Then there exists a unique C/H! admissible solution (A, ¢) to (MKG)
on R4 satisfying the global Coulomb gauge condition 3¢Ay = 0 with
(a,e, f,g) as its initial data at t = 0, i.e, (A}, Foj, ¢, D) [1=0)=
(aj,ej, f, ).

(2) Moreover, (A, ¢) obeys the S U norm bound

[Aolly1i+4y + 1 Axlls1 wi+4y + 1Bllg1m1+4) S (@, e, £ @)llgr. (4.2)

(3) If the initial data set (a, e, f, g) is more regular, then so is the solution
(A, @), in particular, if (a, e, f, g) is classical, then (A, ¢) is a classical
solution to (MKQG).

(4) Finally, given a sequence (a™,e™, f™ ¢y e HYR*Y) of Coulomb
initial data sets such that E[a™, ™, f("), g(”)] < ei and (a(”), e™,
f(”), g(”)) — (a,e, f,g)in HI(RA'), we have

HASY — Aollyt s xmey + IA™ — Acllgirwmsy + 18 — Gligi sy = O
4.3)

as n — oo, for every compact interval I C R.

The first statement can be found directly in the main theorem of [19]. For the
proof of the remaining statements, see [19, Sect. 5].

Remark 4.2 For the purpose of the present paper, the precise structure of the
norm S'! is not necessary. Instead, we rely on the following embedding prop-
erty:

2

18 bl ez + 1000 1 SIglig,
LH

t Hx

where all norms are taken on R!*4; see [19, Sect. 3] or [27, Sect. 3]. On the
other hand, the definition of the ¥! norm is rather simple:

2 . 2 2
IANY1 = 10rxAlljoo 2 + 10 x AT 4
r Hx 72
L2H;
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where all norms are again taken on R'**. Furthermore, S' and Y'! are closed
under multiplication by n € CP(R™), ie., nSIR!T) < SY(R!**) and
nY (R4 C YI(R!*); we refer to [26, Sects. 6 and 7].

Given a positive number E > ¢, and an ! initial data set (a, e, f, g)
on R* with energy Ela, e, f,g]l < E, we define its energy concentration
scale r. = r¢la, e, f, g] (with respect to energy E), in terms of the function
80(E, €2) = ce2 min {1, ei’E‘Q} with a small universal constant c, by

re =rc(E)la,e, f, gl :==sup {r >0:Vx e ]R4, Ep,wla,e, f, gl
< 8o (E, e,f)} . 4.4)

The following is the main result of [26].

Theorem 4.3 (Large energy local well-posedness theorem in global Coulomb

gauge) Let (a, e, f, g) be an H' initial data set satisfying the global Coulomb

gauge condition 3ta; = 0 with energy Ela,e, f,gl < E. Let ro =
rela, e, f, gl be defined as above. Then the following statements hold:

(1) Existence and uniqueness. There exists a unique admissible C;H' solution
(A, ¢) to (MKG) on [—re, re] x R* satisfying the global Coulomb gauge
condition with (a, e, f, g) as its initial data.

(2) A-priori S' regularity. We have the additional regularity properties

Ao € Y =re,r], A ¢ € SU=re el

(3) Persistence of regularity. If the initial data set (a, e, f, g) is more regular,
then so is the solution (A, ¢); in particular, the solution (A, @) is classical
if (a,e, f, g) is classical.

(4) Continuous dependence. Consider a sequence (a™,e™, (V) )
of H' Coulomb initial data sets such that (a(”), e™, f(”), g(”)) —
(a,e, f,g) in H'. Then the lifespan of (A™, $™) eventually contains
[—r¢, rel, and we have

140 = ANy re o + 1 (A = AL 6 = ) 511y, g = O
asn — OoQ.

We also state the initial data excision/gluing result from [26], which is used
in several places in the present paper. Given a measurable subset O C R*, the
H1(0) norm is defined as the restriction of the H!(R*) norm to O, and the
space H!(0) consists of all initial data sets on O with finite !(O) norm.

Proposition 4.4 (Excision and gluing of initial data sets) Let B = By, (xo) C
R?. Then there exists an operator E from H' (2B\ B) to H' (R*\ B) satisfying
the following properties.
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(1) Extension property:
ext 3 55}
E*[a,e, f,gl = (a,e, f,g) on the annulus EB\B.

(2) Uniform bounds:

||E6Xt[a» e, f, g]”Hl(R“\E) S, l(a,e, f, g)”Hl(ZB\E) 4.5)

5R4\E[E6Xt[a’ e, f’ g]] /S “

FI220p5 + Eampla-e. f.gl.
(4.6)

[x — xo]

(3) Regularity: The operator E* is continuous from H' (2B\B) to H' (R*\B).
Moreover, if (a, e, f, g) is classical, then so is E¥'[a, e, f, g].

In order to gain control of the first norm on the right in (4.6), we will repeatedly
use the following improvement of the classical Hardy inequality, which is a
consequence of a result proved in [26], Lemma 6.5:

Lemma 4.5 Let 0 > 2. Then for any ball B of radius r in R* we have the
bounds

r U e S D flzes +0 D fll2@ees @D

r U 2ees S D fl2ees +0 D flaenes  48)

Furthermore, we state the local geometric uniqueness result from [26],

which we use in this paper to construct compatible pairs. For a ball B =

{to} x By, (x0) € {to} x R*, we define its future domain of dependence D (B)
to be the set

DT(B) == {(t,x) e R"™ 119 <t <1y, |x —x0l <t —10}.

Given a measurable subset O C R*, the space 92(0) consists of locally
integrable gauge transformations such that the following semi-norm is finite:

X lg2c0y = 19xx I 30y + 107 Xl 120y
Given a measurable subset @ C R!** define O; := O N ({r} x R*) and
1(O) :={t e R: O; # ¥}.Note that I (O) is measurable and O; is measurable

for almost every 7. Accordingly, we define the space C;G*(0) by the semi-
norm
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I1lleg0) = esssup (111l gy
1G°(0) Ll () H2NW, "NBMO(O;)
9 s o, + 10220 )
Proposition 4.6 (Local geometric uniqueness among admissible solutions)
Let Ty > 0 and let B C R* be an open ball. Consider C;H' admissible
solutions (A, ¢), (A, ¢') on the region
D =D ({0} x B) N ([0, Tp) x R*).

Suppose that the respective initial data (a,e, f,g) and (a', ¢, f', g') are
gauge equivalent on B, i.e., there exists x € G*(B) such that (a, e, f,g) =

(@' —dy,¢, e'X f' e'Xg"). Then there exists a unique gauge transformation
C,G*(D) such that x l{0}xB= X and

(A, ¢) = (A —dyx, eX¢’) onD.

We now pass to results from [27]. Given an interval / C R, we define the
energy dispersion of a function ¢ on I x R* by

EDIgI(I) = sup (2"‘||Pk¢||L,o<;C (x4 + 2—2k||Pk<at¢>>||LtooxuxR4>) (4.9)
€Z ' ’

The main theorem of [27] is as follows.

Theorem 4.7 (Energy dispersed regularity theorem) For each E > 0 there
exist positive numbers € = €(E) and F = F (E) such that the following holds.
Let I € R be an open interval, and let (A, ¢) be an admissible C “H solution
to (MKG) on I x R* in the global Coulomb gauge 3* Ay = 0 with energy not
exceeding E, i.e.,

EpyxrelA, @l < E foreveryt € I. (4.10)

If, furthermore, the energy dispersion of ¢ on I x R* is less than or equal to
€(E), ie.,

ED[¢](I) < €(E), (4.11)
then the following a-priori estimate for (A, ¢) on I x R* holds:

lAollyriry + 1Ax sty + 1@ lls1pr) = FCE). (4.12)
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We also state an continuation and scattering result for Coulomb solutions
with finite S! norm, which is proved in [27].

Theorem 4.8 (Continuation and scattering of solutions with finite S! norm)
Let 0 < T4 < oo and (A, ¢) an admissible C/H! solution to (MKG) on
[0, T}) x R* in the global Coulomb gauge which obeys the bound

1 Aolly1(jo,7,) xR + SIUP y 1A 1ls1 0,7, xr4y + 115110, 7, ) xRE) < O©-
j=l,

Then the following statements hold.

(1) If T+ < oo, then (A, @) extends to an admissible C,H! solution with finite
S' norm past Ty.

(2) If T4 = oo, then (Ay, @) scatters ast — o0 in the following sense: There
exist a solution (A)(COO), #)) to the system

DA =0,
(0+2ia]") > =0,

with initial data AS[0], $©[0] € H! x L2 such that

sup [|Aj[] = AVl 1 g2
j=1,...4

+lglt] = ¢ Ll 12 > 0 as T — oo,

The above statement holds with A,{ "““ the solution to the homogeneous
wave equation with any of the data A,[0] or A)(Coo) [0].

Analogous statements hold in the past time direction as well.

5 Conservation laws and monotonicity formulae

In this section, we derive key conservation laws and monotonicity formulae
that will serve as a basis for proving regularity and scattering. We begin by
describing the main results, deferring their proofs until later in the section.
We emphasize that all statements in this section apply to admissible C;H!
solutions to (MKG), unless otherwise stated.

One of the fundamental conservation laws for (MKG) is that of the standard
energy: Given an admissible C,H! solution (A, ¢) to (MKG) on I x R*, for
to, t1 € 1 we have

E{to}XR“[A’ ¢l = 5{t1}><R4[A’ @l (5.1
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For self-similar solutions, finite energy condition translates to a weighted L2
estimate on H,. This estimate will be used to show that they must in fact be
trivial.

Proposition 5.1 Let (A, ¢) be a smooth solution to (MKG) on Cy,c0) With
finite energy, i.e., there exists E > 0 such that

sup &g, [A, 9] < E < oo.

te(0,00)

Suppose furthermore that (A, ¢) is self-similar, i.e., tx,F = 0 and (Dx, +
}%)qﬁ = 0, where Xo = 0, in the hyperbolic coordinates (p, y, ®). Then we
ave

I (coshy sinh y - , ,
/'H 5( ,02 |¢| +2 p2 R3(¢Dy¢)+COShy(|D¢|Hp_|_|F|Hp) <E,

p

5.2)
where |D¢|${p, |F|%1p are to be defined in (5.27).
The next statement concerns the quantities
1
Faciyu 4 81 := &5, 14, 1 = €5, [A. 91, Gas, 9] = - / 1.
35,
(5.3)

Here, Ficy, ,,, is the energy flux of (A, ¢) through dCyy, 1. For¢ € C;(I; Hy)
and 11 € I, observe that %5[l [¢] is well-defined by the trace theorem. In fact,

¢ las, € H'/2(@5S,).
Lemma 5.2 Let (A, ¢) be an admissible C;/H! solution to (MKG) on I x R*

where I C R* is an open interval. Then for every ty, t; € I with ty < t, the
following statements hold:

(1) The energy fiux on Fycy, ,\[A, @] is non-negative and additive, i.e.,

FacyymlA @1 = Facy, 4[A. 1+ Facy,, | [A. @] fort" €1, 11].
54

(2) The following local Hardy’s inequality holds on 0Cly, 1):
n dr
Gos,, [¢] +/ Gos (6] — = Gos, [6]+ Facyy,[4. 4. (5:5)
fo
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Moreover, we also have
Gos, [#] = 5({t}><R4)\5,1 [A, ¢] (5.6)

A consequence of Lemma 5.2 is a simple but crucial decay result for the
two quantities defined in (5.3).

Corollary 5.3 Let (A, ¢) be an admissible C;H' solution to (MKG) on I x R*
where I C R* is an open interval. Then the following statements hold.

(1) If (0, 8] < I for some § > 0O, then we have

t}iino FacomlA, #1 =0, t}iino Gos, [¢1 = 0. (5.7)

Where faC(oytl] [Av ¢] = 1imt()—>0 faclto,[IJ[Aa d)]
2) If 18, 00) C I for some & > 0, then we have

lim  Fycy,. [A,#1=0, lim Gy, [¢] = 0. (5.8)
(0¢] f1—>00

10,11—>

The statements concerning Fjcy, ., follow from the monotonicity and bound-
edness of &s,, whereas those concerning gasll follow from (5.5), (5.6); we
omit the straightforward details.

The decay statements (5.7) and (5.8) imply that the energy flux and the
quantity Gy, [¢] vanish as one approaches (0, 0) or t — oc. In the ideal case
when fac[to,tﬂ = 0 and Qagtl = 0, the solution (A, ¢) enjoys an additional
monotonicity formula, namely

1
/ X0 pr[A, ¢]dx +// —lix, FI?
Sfl Cffo’ll] P
1 1
+—={Dx, +—]¢
Io P

where X( = 0, in the hyperbolic coordinate system (p, y, ®), [tx,F 1> =
m(tx, F, tx, F) (observe that |LX0F|2 > 0) and Xo) pr[A, ¢] is to be defined
below in Lemma 5.10. It turns out that the right-hand side is uniformly bounded
by the conserved energy as o — 0, thereby breaking the scaling invariance.
More precisely, the first term on the left-hand side precludes null concentra-
tion of energy, whereas the second term implies that rescalings of (A, ¢) are
asymptotically self-similar.

In application, however, the quantities 7 and G will be small but not neces-
sarily zero. Hence we will rely on the following approximate version of (5.9)
instead. Define

2
drdx = / Xo) pr[A, ¢]dx (5.9)

Sig
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Pe =\/m, Xe =,08_1((l‘+8)31+r8r),

|LX8F|2 =my, F,x, F).

Proposition 5.4 Let (A, ¢) be an admissible C/H! solution to (MKG) on
[e, 1] x R?*, where ¢ € (0, 1). Suppose furthermore that (A, ¢) satisfies

EqlA, 1 < E, FacpylA, ¢l < e2E, Gos,[p]l <e?E.  (5.10)

(DXE + i) ¢
Pe

where the implicit constant is independent of ¢, E. We refer to Lemma 5.10 for
the computation of X¢) Pr[A, ¢.

Then

1 1
/(X6>PT[A,¢]dx+// —lux, FI? + —
M Cle.1) Ps Pe

2
drdx < E

(5.11)

Using Proposition 5.4, we can also establish a version of (5.9) that is local-
ized away from the boundary of the cone. This statement will be useful for
propagating lower bounds in a time-like region towards (0, 0).

Proposition 5.5 Let (A, ¢) be an admissible C/H' solution to (MKG) on
[e, 1] x R*, where e € (0, 1). Suppose furthermore that (A, ¢) satisfies (5.10).
Then for2e < §g < 81 <ty < 1, we have

/ X0 pr[A, p]dx < / (X0) pr[A, ¢]dx
551 30

1 o

+c((51/z0)% 4 |10g(81/80)|_1)E. (5.12)

The rest of this section is devoted to the proofs of the above statements,
and is organized as follows. In Sect. 5.1, we discuss ways of generating diver-
gence identities for proving the above conservation laws and monotonicity
formulae. We also introduce null decomposition, which will assist our com-
putations below. In Sect. 5.2, we use them to prove (5.1) and Proposition 5.1.
In Sect. 5.3, we introduce and prove a local version of Hardy’s inequality and
use it establish Lemma 5.2. Lastly, Sect. 5.4 is devoted to the proof of (5.9)
and Propositions 5.4 and 5.5.

5.1 Divergence identities and null decomposition

The goal of this subsection is two-fold. First, we introduce methods for gener-
ating useful divergence identities for solutions to (MKG) that essentially arise
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from Nother’s principle. Second, we define the notion of a null frame and
the associated null decomposition of F and D¢, which will be useful for the
computations below.

We first present the energy-momentum tensor formalism for generating
divergence identities. This formalism is a way to exploit Nother’s principle
(continuous symmetries lead to conserved quantities in a Lagrangian field
theory) for external symmetries, i.e., symmetries of the base manifold R!**
of (MKG). Let (A, ¢) be a smooth solution to (MKG) on an open subset
O < R!**. We define the energy-momentum tensor associated to (A, ¢) as

QablA, p1 = M Qup[Alap + K9 Qup[A, ¢] (5.13)
where
M@mmza%u—}%ﬂww (5.14)
_ 1 _
KQQ%MMNZRﬂD@DWU—Em%D%D@ (5.15)

Note that Q is a symmetric 2-tensor, which is gauge invariant at each point.
Moreover, since (A, ¢) is a smooth solution to (MKG), the energy-momentum
tensor satisfies

V*Qan[A, ¢] = 0. (5.16)

Given a vector field X on O, we define its deformation tensor to be the Lie
derivative of the metric with respect to X, i.e., ¥z := £xm. Using covariant
derivatives, @ 7 also takes the form

O 7ah = VaXp + VaXp

We will denote the metric dual of Xz by Ot e, (Ophab —
m?*mP4® 74, From its Lie derivative definition, the following formula for
X )n,w in coordinates can be immediately derived:

(X)T[p.v = X(muv) + apL(Xa)mav + 8v(Xa)map. (5.17)

Using the deformation tensor, we now define the associated 1- and O-currents
of (A, ¢) as
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N L[A, ] := QuplA, $1X",

1 ab (5.18)

WKIA, ¢] := QublA, ¢] (Emnﬁ) :

Then by (5.16) and the symmetry of Q[A, ¢]ap, We obtain
va ((X)Ja[A, ¢]) — OKI[A, ¢]. (5.19)
Remark 5.6 Taking X = T = 0, in the rectilinear coordinates (¢, xb XY,

we have M = 0 (in other words, T is a Killing vector field) and hence
(T K = 0.1In fact, (5.19) is a local form of the standard conservation of energy
(5.1). We refer to Sect. 5.2 for more details.

For a (smooth) scalar field ¢ satisfying the gauge covariant wave equation
Ua¢ = 0, we introduce another way of generating divergence identities.
This method corresponds to using Nother’s principle for the symmetry of the
equation under the action of C viewed as the complexification of the gauge
group U(1). Given a C-valued function w on an open subset of R'*#, we
define its associated 1- and O-currents by

) Ja[A, ] = (Re w)Re(¢pDag) — (Im w)Im(¢pDagp) — %va<Rew>|¢|2,

KA, ¢] = (Re w)DapDa¢p — %D(Re w)|¢]* — Va(Im w)Im(#D3e).
(5.20)

A simple computation'? shows that the following conservation law holds:

va ((w)Ja[A, d)]) — (w)K[A’ ol. (5.21)

Remark 5.7 Taking w = —i, we have
W) J, = Im(¢Dagp), WK =0,

and (5.21) reduces to the well-known local conservation of charge.

Finally, we introduce the notion of a null frame and the associated null
decomposition of D¢ and F, which are useful for computations concerning

12 Alternatively, the identity below can be derived by multiplying the covariant wave equation
for ¢ by w¢, taking the real part and differentiating by parts.
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the energy-momentum tensor. At each point p = (fg, x9) € R'*%, consider
orthonormal vectors {eq},—1 3 which are orthogonal to L and L. Observe
that each e is tangent to the sphere 0 By, ,, := {to} x d B,,(0) where ro = |xo|.
The set of vectors {L, L,ey, e, e3} at p is called a null frame at p associated
tolL, L.

The C-valued 1-form D¢ can be decomposed with respect to the null frame
{L.L,eq} asDrp,Dr¢ and D¢ := D, ¢, which is the null decomposition
of D¢. A simple computation shows that

KOQrA, ¢1(L, L) = |DLg|?,
KGOQ[A, ¢1(L, L) = IDL¢>, KOQ[A, ¢I(L, L) = |Dp> (5.22)

where [P =3 5 Padl.

Next, we define the null decomposition of the 2-form F with respect to
{L,L, eq}as

1
aq:=F(L,eq), a,:=F(L,eq), 0:= EF(L,L), oap ;= F(eq, ep).

Note that ¢ is a function, o, o are 1-forms on 0 By, , and ogp is a 2-form on
0By, We define their pointwise absolute values as

2 2. 2
oo o= > ok

a=1,..., 3 a=1,...,3 1<a<b<3

B
[\S)
I
M
2o
B
[\)
[
M
IR

This decomposition leads to the following simple formulae for the L, L
components of ™ Q:

MOrANL, L) = o>, ™MQIAI(L, L) = |a|?,
MOIAY(L, L) = |o]* + |o|*. (5.23)

5.2 The standard energy identity and proof of Proposition 5.1

Consider the vector field 7', which is equal to the coordinate vector field o;
in the rectilinear coordinates (7, b, x4). It can be easily checked that T
is Killing, i.e., ™7 = 0. Contracting 7 with the energy-momentum tensor

Q[ A, ¢], we then obtain the local conservation of energy, i.e., given a smooth
solution (A, ¢) to (MKG) on an open subset O C R'**, we have

V3D L[A,¢]) =0 onO. (5.24)
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Since T = %(L + L), we have

D JLIA, ¢] = Q

—

1
A QNT, L) = 5 (IDL¢I* + |Do|?)

(le* + lo* + 1o1%) (5.25)

| =

+

1
M LA, ¢] = Q[A, $)(T, L) = 3 (IDLI* + Do)

—

+= (lal* + lof* + | |?) . (5.26)

N =

Given a (measurable) subset S C {t} x R* for some ¢ € R, the above compu-
tation implies

EsIA, 6] =/(T)JT[A,¢]dx.
S

We are now ready to give a quick proof of (5.1). For a classical solution
(A, ¢) in the class C/H ([19, 111 x RY), the standard energy conservation (5.1)
follows by integrating (5.24) over (fo, 1) x R* and applying the divergence
theorem. The case of an admissible solution then easily follows by approxi-
mation.

We conclude this subsection with a proof of Proposition 5.1.

Proof of Proposition 5.1 Note that Xo = 9, and T = cosh yd,—sinh y(p~! dy)
in the hyperbolic coordinates (o, y, ®). In the following computation, we use
the orthonormal frame {8,,, o} dy, ea} at each point, where {eq},—1 3 is an
orthonormal frame tangent to the constant p, y sphere as before. Then we
compute

1
K9 QLA 91(05. 9) = 5 (D46 +107'D, 01> + D9 )
KD Q[A, §1(3,. p'8y) = Re(D,¢p~1Dy),

1 _ 1
MWOIA, §1(Bp. 8)) = SF @, 0710 + 5 D, F(3).ea)’
a=1,..., 3

1 -2 2
+5 123;) F(3y, ¢a)
a=1,...,

1
+5 D Fleaen?,

1<a<b<3

MOIA, ¢1(3p, p~'0) = D F(Bp, e F(p™ "0y, €q).
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Fig. 1 Domain of t

integration for the proof of
X%

Proposition 5.1

By the self-similarity conditions ¢y, F' = F(d,,-) = 0 and (D, + %)(P =0,
we have

M J,[A, ¢] = cosh yQ[A, 1(3,, d,) — sinh yO[A, p1(p~ 'y, 3,)

1 [/cosh sinh N
(—y|¢|2 + 27 Y Re(¢D, )

) 02 02

+coshy (IDgIR,, + |F|$1p))

where

2 . ab _ ) 1 Z1\2¢ _ bd
Do 15, == (7)) Da#Dud. IF5, =3 (g7)) (¢r)) FanFea. (527)
and g;{l = ,0_28y -0y + Za=1,2,3 eq - €q is the induced metric on H,.
We are ready to complete the proof. Denote by H-. , the region {(p’, y', ®’) :
p’ > p}. Integrate (5.24) over the region R := C(q ;) N 'H =, Whose boundary
18 (S N'H~p) U (H, N Coo,r)), and apply the divergence theorem; see Fig. 1.
Then taking 1 — o0, the desired estimate (5.2) on 'H,, follows. |

5.3 A localized Hardy’s inequality and proof of Lemma 5.2

We begin by stating a very general identity (valid for any dimension d > 3),
which can be thought of as Hardy’s inequality with all the errors terms explicit.

Lemma 5.8 Let ¢ be a smooth C-valued function and A be a smooth 1-form
onR? (d > 3). Then for 0 < r1 < rp, we have
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mn 1
/ /—2|¢|2rd_1d0'8d—ldr

r
A=
(de) / /lDr¢|2rd Vdog—1 dr

2 _ r
+m/|¢|2rd 2 doga-1

r=ri

rd-! doga-1 dr

(5.28)

We omit the proof, which is a simple algebra plus an application of the
fundamental theorem of calculus in r. Specializing to d = 4 and rearranging
some terms, we obtain

191 3 2
r dog + 2|¢| r dUS3 dr
{r=r1} T
+/ /|r—1D,(r¢)|2r3 dogs dr
rl

2
:/ [l ridog +/ /|D,¢|2r dogs dr. (5.29)
{r=ry} T

The last term on the left-hand side of (5.29) is always non-negative; more-
over, for ¢ € S(R*), the first term on the right-hand side vanishes as r; — oo.
By approximation, the following gauge invariant version of Hardy’s inequality
on R* follows.

Corollary 5.9 Let ¢, A € H'(R*) N L*R*Y). Then r'¢ € L*R*) and
¢ loB, € Lz(aBr)for every r > 0. Moreover, we have

¢ 2 L D62
|| ||L2(]R4) + Sup ||¢||L2(8B ) S || r¢||L2(R4)- (530)
r r>07 d

We are ready to establish Lemma 5.2.

Proof of Lemma 5.2 We first consider the case when (A, ¢) is smooth. Then
by local conservation of energy, we have

Foci, o1 = ! D 1A, ¢1r> dvdos
[19.11] 2 aC[ » L ) S’
10,11

and hence the non-negativity and additivity are obvious. The first local
Hardy’s inequality (5.5) is a consequence of (5.29) applied to the hypersurface
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0Cl1,1,) = {u =0, r € [19, t1]} in the coordinate system (u, r, ®), whereas the
second local Hardy’s inequality (5.6) follows from a similar argument used to
derive Corollary 5.9.

Now we turn to the general case. Since (A, ¢) is an admissible C/H!
solution, there exists a sequence of smooth solutions converging to (A, ¢)
in C;H' (I x R*). Since all quantities in the conclusions of the lemma are con-
tinuous with respect to the C,H!(I x R*) topology, the general case follows
from the smooth case by approximation. O

5.4 Monotonicity formulae and proofs of Propositions 5.4, 5.5

Here we derive monotonicity formulae associated with the vector fields X,
which are defined in the polar coordinates as

Xe = i((l‘ +)0 +710,), pe= \/(t+8)—2_r2v (5.31)

&

where ¢ > 0,1 > —e.

The starting point for derivation of the monotonicity formula (5.9), as well
as Propositions 5.4 and 5.5, is to contract the energy-momentum tensor Q
with one of the vector fields X,. Due to the unfavorable contribution of KG) g,
however, several additional modifications are necessary. To simplify the dis-
cussion, we first restrict to the case ¢ = 0. The reader should keep in mind
that the general case follows simply by translating in time by ¢.

Using the formula (5.17), we compute

1 1
~(Xo) ¥ —(ay S+

_ L, _
2 PE 1)):;(m1+X0-X0).

1
sinh? y (gS3

Hence we have

1 ab 1 ab
Xog — Mg (E(Xo)nﬁ) 4+ KG g (E(Xwnn)

1 , 1 S P —
= —[ix F|I” + —[Dx,0|” — —DagD?*¢. (5.32)
P P P

where |tx, F|? = m(ix, F, tx, F) > 0, since X is time-like. The first term on
(5.32) is satisfactory in view of our goal (5.9), but the rest is not. To remove
the last term, we use the currents “) J and 0 K with wy = % and compute

1 1 1
(Xo) g 4 (wo) g =;ILX0F|2 + ;|DX0¢|2 — F|¢|2. (5.33)
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Now we introduce an auxiliary divergence identity, which is related to
Hardy’s inequality in the p variable. Define (70) J[¢] in the hyperbolic coor-
dinates (p, y, ®) by

(Ho) |¢|2
Y Jpldl = ——-, (5.34)
Jo;
where the remaining components are set to be zero. Define also
(Ho) 2,0, 1 2
VK[P] = I + —0plpl> (5.35)
P o
Then a simple computation shows that
V(T La[¢]) = TOK (). (5.36)

Since 8,0|¢|2 = 2Re(¢pD,¢) and Xo = 9d,,, we arrive at
KXo g 4 wo g 4 Ho g _ L 2, 1 AP
VK 4+ VK 4 0K=;|LX0F| +;| DXO—I-; ol°, (5.37)

which is precisely the integrand in the space-time integral in (5.9).

The preceding computation suggests that we should define a new 1- and O-
currents by (X0) j 4 (o) j 4 (Ho) j and K0 g 4 wo) g 4 (Ho) K respectively. To
make the L and L components of the 1-current look more favorable, however,
it turns out to be convenient to add in an auxiliary current o) J defined by

1 t
AU EEY (r3—r|¢|2) :

1 (5.38)
o) g, [¢] = ( — 9| )

2r3_

where the remaining components are set to be zero. By equality of mixed
partials LL = 40,0, = 40,0, = LL, it follows that

va ((NO)Ja[qb]) —0. (5.39)

For X0 p .= (X0) j 4 o) j 4 (Ho) j 4 (No) 7 we claim that

1

(=) (|r*1DL(r</)>|2 + la?)

L (2

1
Xo)p, — -
L =

2
+

(IDd)I + +|Q| +|0’|) (5.40)
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1

(Xo)p = ( ) (|r_1DL(V¢)|2+|Q|2)
+5 (2 )* (1wor? +'¢|

We will prove (5.40), leaving the task of verifying (5.41) to the reader. Using
the relations

+ o>+ |o] ) (5.41)

5 1 /v u
P =Uuv, XO:_ _L+_L )
2\p P

and the null decomposition formulae (5.22), (5.23), we have

1 1 fv u
X0 gL 1A, ¢] = ( Do +—|D¢>| ) 5(;|a|2+;(|g|2+|a|2)).
On the other hand, we compute

1 — 11 1
WO LA, ¢] = —Re(@DLd) + =—[¢*, TOUL[p] = ——|¢]*.
P 2 pv PV
To prove (5.40), it suffices to verify

1lv
5—|DL¢>|2 + @0 g 1A, ¢+ O g [¢] + N L [4]

_ | u g’
_——|r D, (ro)I? +§;r_2 (5.42)

For this purpose, it is convenient to work with ¢ = r¢. We have

1 1 -
LHS of (5.42) — 5%u)L(zp/r)F + — Re(UDLG/)

11|y 1 |1ﬁ| 1 Lo 2
¥ o
+2pv r2 ov r2 +2r3 plwl

v, s, 1fv 2 1 1 [y |2
=Dy Pt (= - —+-Lt/p) )
2p 2 \ pr pr pv r r

Since r_lL(t/,o) = 1/(pr) —t/(prv) = 1/(pv), we see that

v 2 1 1 v 2 u
- — 4oL/ =— - —=—
or pr  pv r or 0

which establishes (5.42), and hence (5.40).
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We now return to the general case ¢ > 0. Define (Xe) j, (we) j (He) We)
and their O-current counterparts by pulling back the ¢ = 0 versions defined
above along the map (¢,r, ®) — (¢t + ¢,r, ®). For (Xe) g, we) j (Xe) K and
(e) K note that this definition agrees with that from Sect. 5.1 using X, as in
(5.31) and w, := 1/p,. Let

KIOPA, 91 := CVT[A, ¢+ T[4, 91+ T T[]+ A T[],
XD Q[A, 9] := XIK[A, o1 + “IK[A, 9] + T K[g]. (5.43)

We summarize the discussion so far in the following lemma, which follows
easily by pulling back the above computations along (¢, r, ®) — (t+¢,r, ©).

Lemma 5.10 Let (A, ¢) be a smooth solution to (MKG) on an open subset
O C C(0,00)- The 1- and O-currents XIPIA, ¢] and X< Q obeys the diver-
gence identity

v (P14, 61) = X9 014, 91, (5.44)

where X0 Q = Xe) Q[ A, @] takes the form

1 1 1
X9 = —|ix, FI* + —| (DXE + —) o1 (5.45)
Pe P Pe

&

Here, |LX£F|2 =m(yx, F,x,F) > 0. Moreover, the L and L components of
Xe) p — (XS)P[A, @] take the form

1

1 fv.\2
Xe)p = 5 (u—) (Ir""DLr)* + |al?)
£

1 oF
() (ID¢| + 2+ lol? +|o|) (5.46)

1

gy =3 (”—) (I " DLe ) + lel’)
Ve
1 (v |¢|2
+3 (u—) (|D¢I +— +lol*+1o| ) (5.47)
where vy, == (t +&)+randuy, == (t +¢€) —r.

Here we give a quick proof of (5.9) for a smooth solution (A, ¢) on RI+4,
By ‘7:3C[t0,t1] =0, gas,l = (0 and Lemma 5.2, note that ¢ and the tangential
components of F' (i.e., «, 0, o) vanish on the boundary dCy; . Integrate
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(5.44) with e = O over Cy, 1,1 and apply the divergence theorem. The boundary
term on dCJy, ;] vanishes thanks to ¢, o, 0, 0 = 0, and thus (5.9) follows.

In the preceding proof, however, note from (5.40) that there is a weight
(5) 172 in the boundary term, which would blow up if Dy (r¢) and a4 were not
exactly zero on dCpy, ;1. We now turn to the proof of Proposition 5.4, whose
goal is exactly to deal with this issue.

Proof of Proposition 5.4 As the hypothesis (5.10) and the conclusion (5.11)
only involve quantities which are continuous with respect to the C,H! (I x R*)
topology, it suffices to consider the case when (A, ¢) is smooth. Integrating
(5.44) with ¢ > 0 over C|¢ 1] and integrating by parts, we obtain

X.) 1 1
¢ PrlA, ¢]dx + —|LX5F| + — DX8 +— )¢
S Cley Pe Pe Pe

_ / X0 Pr(A, gldx + 3 / X p[A, $1r dudogs.  (5.48)
o 0Ce. 1]

2
drdx

We claim that the right-hand side is bounded from above by < E. We begin
with the first term. On S, we have the pointwise bound

1
X pr(A, ¢ ST Pr(A, ¢] + r—2|¢>|2,

since ug/ve ~ 1 and v./u, >~ 1 on Sg. By (5.10), Lemma 5.2 and (5.29)
applied to ¢ on S; with r; = 0, = ¢, it follows that the first term on the
right-hand side of (5.48) is bounded by < E.

We now consider the last term in (5.48). On 9Cg, 1), we have

1 1
XOPLIA. 91 S 672 (DLl + 191 + [al?) + T[4, 1

Then by (5.10), Lemma 5.2 and the fact that + = r on dC, the last term in
(5.48) is bounded by < E as desired.

We end this section with a proof of Proposition 5.5.

Proof of Proposition 5.5 As before, by approximation, it suffices to consider
the case when (A, ¢) is smooth. Let § € [g, § 1] be a number to be determined
below. Integrating (5.44) with ¢ = 0 over C o] and using the divergence
theorem, we see that (5.12) would follow if there exists § € [8g, 81] such that

o

0 P14, §1r dvdoss S (61/10)7 + [ log(61/80)| ™) E. (5.49)
C
[1011
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The contribution of the term with the weight (uq/ v0)1/2 in (5.46) is easy to

treat; indeed, using localized Hardy’s inequality and local conservation of
energy, we have

1 1
/ac5 2( ) (]')¢| +|¢| +|Q| +|G|)r3dUdGS3

[r9.11

5 1/2
< (—) / D JL[A, 17 dvdogs
fo acgolu

81 1/2
S \35[14 ¢l + gSl [¢] ( ) E.
Iy

It remains to treat the term with the weight (vg/ u0)/? in (5.46). Note that

o= (ou)o=2(2) (s )
r - Dprd)=\Dr+-)op=2|— Dx, + — )¢
r Ve /08
Ug ug\ 1
(o)
Vg ve ) r
Ug > Ug
ozazF(L,ea)=2(v—) F(Xg, eq) — (v_) F(L,eq).

Note that u < u, and v < v,. Furthermore u, < 2u on 8C€ZO 1 since
2e < §p. Hence,

1

1 /vN\3,
/ 5 5(;)2(Ir D) + laf?) r dvdogs
aC

2
u 1
g/ ‘(DXSJF—) + lix, FI?
acs . Pe Pe

[19,1]
(IDL¢| + —|¢| + o ) r3 dvdogs. (5.50)

3

UZ

We claim that the integral of the right-hand side over §o < u < §; with
respect to #~'du is bounded by E. Then by the pigeonhole principle, there
would exist § € [dg, §1] such that the left-hand side of (5.50) is bounded by
< |1log(81/80)| " E, as desired.

For the contribution of the first term, the claim follows directly from Propo-
sition 5.4. For the second term, we have
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| <
o] —

w

1
(|DL¢|2 + 1ol + Iglz) drdx
c A\ 3 r2
19,11\ 19,11 U

5 1
< //
~ S )
Clig.11\Cry

8 4
D j7[A, ¢ldrdx < (—1)215,
.11 fo

(S]]
—o—

[SV8)

which is sufficient to prove the claim since §; < fg. O

6 Local strong compactness and weak solutions to (MKG)

The first goal of this section is to establish the following local strong com-
pactness result for asymptotically stationary (see (6.2) below) sequences of
solutions to (MKG) with small energy.

Proposition 6.1 There exists a universal constant €y > 0 such that the fol-
lowing holds. Let B = By (xo) € R* be an open ball of unit radius centered at
xo, and let (A", ™)) be a sequence of admissible C;H! solutions to (MKG)
in (—2,2) x 8B such that

Eorxsn [ A, ]+ 190,013 g = €. (6.1)

Suppose furthermore that (A", ™) is asymptotically stationary in the sense
that

// ix 12+ DY +b)p™ P dtdx — 0 asn — oo, (6.2)
(—2,2)x2B

where X is a smooth time-like vector field and b is a smooth real-valued
function. Then there exists a pair (A, @) in Ltz’x((—l, 1) x B) such that the
following statements hold:

(1) There exists a sequence of gauge transforms x ™ € C;G*((—1,1) x B)
such that, after passing to a subsequence, we have

(Ag” — ™, eiX(n)(b(")) — (A, ¢) stronglyin L2 ((—1,1) x B),

(6.3)

FO X" pme®Y  (F D¢y stronglyin L* .((—1,1) x B
yAv n Hys> gty mn t,x ’ X )’
(6.4)

where F, = 0, A, — A, and D¢ = 0,0 + i A, ¢ are defined in the
sense of distributions.
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(2) The limiting pair (A, ¢) is a weak solution fo (MKG) on (—1, 1) x B, in
the sense of Definition 6.6 below. The connection 1-form A obeys, in the
sense of distributions, the Coulomb gauge condition

A, =0 on(—1,1) x B. (6.5)

(3) The pair (A, ¢) possesses the following additional regularity:

1
Ae Hll,x((_l’ 1) S B)’ F,uv, € Ht?x((_l’ 1) X B),

3
¢ € HL.((~1,1) x B). (6.6)
(4) Moreover, the pair (A, ¢) is stationary with respect to X, in the sense that
ixF=0, Dx+b)p=0 on(-1,1) x B. (6.7)

As a result of taking limits, the notion of weak solutions to (MKG) arises
naturally from Proposition 6.1. For our application in Sect. 8, we also need to
formulate the notion of locally defined weak solutions (A[«], ¢[«]) that can be
pieced together to form a global pair (weak compatible pairs). Developing a
theory of these objects is another goal of this section.

Remark 6.2 We remark that weak solutions and their gauge structure play
only an auxiliary role in our work. Indeed, the stationarity equation (6.7),
combined with (MKG) and the additional regularity (6.6) of (A, ¢), allow us
to infer smoothness of (A, ¢) via elliptic regularity. This issue is considered
in Sect. 7, where we study stationary and self-similar solutions to (MKG).

Remark 6.3 1t is in fact possible to obtain stronger convergence than (6.3)
namely A,(f) — 3MX(”) — A, and eiX(n)q&(”) — ¢ in Htl,x((—l, 1) x B).

Moreover, the limit A, obeys the additional regularity H,3’)/62_8( (—1,1) x B)
for any ¢ > 0. As these facts are not necessary for the proof of our main
theorem, we omit their proofs to avoid lengthening the paper.

The rest of this section is structured as follows. We first give a proof of
Proposition 6.1 in Sect. 6.1, except the statement that the limit (A, ¢) is a
weak solution to (MKG). In Sect. 6.2, we formulate a notion of weak solutions
to (MKG) that will be used in our proof. Finally, in Sect. 6.3, we introduce
and discuss the notions of smooth and weak compatible pairs, which are local
descriptions of smooth and weak solutions to (MKG), respectively.
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6.1 Proof of Proposition 6.1

Here we prove Proposition 6.1 modulo the assertion that the limit (A, ¢) is a
weak solution to (MKG), which would be clear once we define the notion of
a weak solution in Definition 6.6 below.

Proof The basic idea behind proof is as in [33, Proposition 5.1]: Small energy
(6.1) implies local uniform S I'bound on (=2, 2) x 2B, which can be combined
with asymptotic stationarity (6.2) via a microlocal decomposition to conclude
strong convergence in (—1, 1) x B. In implementing this strategy, we need to
take into account the presence of the constraint equation and the system nature
of (MKG) (especially the Maxwell part). Our proof proceeds in several steps.
Step 1 In this step, we use the excision and gluing technique to produce gauge
equivalent Coulomb solutions on the smaller region (—2, 2) x 2 B, which enjoy
a uniform S! bound.

Let (@, (", f™, g™y = (A", Fy;, ™. D" ¢™) [(;—o) be the data

for (A, ¢) on {t = 0}. Applying Prop051t10n4 4to 8B\ 4B, we obtain an initial
data set (@™, 2™, f(”) g™y e H'(R* such that @™, ™, f(”) g™y =
(@m, e, fm, g(”)) on 4B and

5[ ) gm Fo, (n)} < e,

by (4.6) and (6.1). Choosing € appropriately, we may ensure that the left-hand
side is smaller than €2, which is the threshold for Theorem 4.1.
To pass to the global Coulomb gauge, consider the gauge transformation

L(”) € G%(R*) defined by i(”) = A—laeaé’” and let
(5(:1), ORI} g(n)) — (am) —dx™, 3, fx" F, eiﬁ”g(n)).

This initial data set agrees with (a, e™, f ¢y on 4B up to a gauge
transformation, i.e.,

(gl(n)’ s f(n)g,(n)) _ (am) —dy™, e, e g eil(”)g(n)> on 4B,
(6.8)

and furthermore obeys the small energy condition
£ [5(:1) s fo (n)] (6.9)
By small energy global well-posedness (Theorem 4.1), it follows that there

exists a unique QHI admissible solution (A(”), qs(”)) on R'** with initial
data (@™, ™ £ 50y which obeys
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IAG” Iy1 sy + 1A s sy + 167 1148y S €. (6.10)
Moreover, by geometric uniqueness (Proposition 4.6) and the simple fact that
(—2,2) x 2B € DT ({0} x 4B) UD™ ({0} x 4B),
there exists x ™ € C,G>((—2, 2) x 2B) such that

(AW,qE(")) = (A<"> —dx®, 1" p™) on (=2,2) x 2B. (6.11)

Let 1, ..., n3 € C°(R'™) be such that
nj=1on(=1,1) x B, suppn; € (=2,2) x 2B, n;jnj+1 =n;.
for j = 0,1, 2,3 (except for the last property, for which j = 0, 1, 2), which

will be fixed for the rest of the proof. We will also often write n = 7o and
7 = n3. By (6.10) and Remark 4.2, the solution (A, ¢) satisfies

10 (1 A7) Niorz + 10 (0,6) lizor2 Sy 0. (6.12)
I (A7) 1, g 410 (A1)

+10 (n;6)

[
L?H, 2

<, €. (6.13)

=

[
LH.
forany j =0, 1, V2, 3. Inv particular, in view of (6.12) and Holder’s inequality,
the sequence (7A™, 7¢™) is uniformly bounded in Hll’ .- By the Rellich-
Kondrachov theorem, there exists a subsequence, which we still denote by

(@AM 79™), and a pair (A, ¢) € Htl’x such that

(FAD. 7Y = (A,¢) in L, (TAD,5) > (4.9) L2,
(6.14)

as n — oo, where the notation — refers to weak convergence.

Step 2 In this preparatory step, we make a microlocal decomposition of 1 that
will allows us to combine (6.2) with the bound (6.13) on the sequence; see
(6.15).

We use the classical pseudo-differential calculus. Let go(t, £) € S° be a
smooth cutoff such that g9 = 1 to the region {(z,&) : |7] < (1 —3)|&]} in
Fourier space and suppgo C {(7, &) : |t] < (1 — §/2)|&|}, where § > 0 is to
be chosen shortly. On the support of g, the norm on the left-hand side of (6.13)
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is effective. On the other hand, since X = X*9,, is a time-like vector field, we
have | X°(, x)|* > Z‘}:l |X7 (1, )| everywhere. As supp n is compact, we
may choose § > 0 sufficiently small so that

4 2
1 =8)2X0. 0 = | D 1X/ (. 0))? for (7, x) € supp 7.
j=1

With such a choice of § > 0, the symbol X0, )1 + X4, x)E € St s
elliptic on the phase space support of n(¢, x)(1 — go)(z, &), in the sense that

X0, )T+ Xt 0)E| = X0, x0)T] = X 0)E] = cs, xo(lT] + E])

for (¢, x) € suppn and (7, &) € supp (1 — gp), where we may take
5(1 —96)

inf |X° > 0.

c 0 =
S X supp 7]

Using the standard construction of a pseudo-differential elliptic parametrix,
we may write

n(1 —qo)(D; x) = q—1(t, x, Dy x) n X", +7_1(t, x, Dt 1)

where g_1,7_1 € S~!. Rearranging the terms, commuting 7(z, x) with g and
applying multiplication by 1 on the right, we arrive at the decomposition

n=q-1(t,x, D; , )nX"0, + qon +r_1(t, x, D; ,)n1, (6.15)

where r_; € S7! is the sum of 7_; and the commutator between n and qo.

Step 3 Here we show the strong convergence r]F,%) — nFy, in Ltzy +» Where

we remind the reader that F,, = F wv by gauge invariance of the curvature
2-form. By (6.15), we may write

nEY) = q 1(t,x, Dy n X", F2) + qo(Di)nFY) + ro1(t, x, Dy )mi F).

Using dF™ = 0, we rewrite nXkaka(f,ﬂ) as
nX 0, F) = 0, (1XFL) = (X FLY)

— du (XM ED + 8, (nX*) FL

and hence we arrive at

nF = q_1(t,x, Dy [0, (n(tx F™)y) — 8y (n(x F™),) ] + RmlF ™1
(6.16)
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where
RMIF™ 1 = qo(DynE® — q_1(t, x, Dy o) [0, (X" FLY
—0y XM F ]+ roi(t.x, D om FY.
By (6.2), it follows that

g1, %, Do) [ (nex FO)) = a0 (nex F)) |12, = 0.
Moreover, we claim that Ry[F ] wv enjoys improved regularity, i.e.,

I RMIF ™70l 1 Seo uniformly in . (6.17)
Ht

i

By the Rellich-Kondrachov theorem, after passing to a subsequence of

(A(”), qvﬁ(”)), the sequence 7 Rv[F ] v 18 strongly convergent in Ltz’ » more-
1

over, we can also ensure that the limit belongs to fo. Combining these facts,
as well as the identity 7] = n, we see that n F, ,Yf,) is strongly convergent in Ltz’ N
1 .

to a limit that belongs to H,”,. Since 7A, — A, in Ltz’ . the limit is equal to
nFy,.. Hence the statements regarding F in (6.4) and (6.6) follow.

It remains to verify the claim (6.17); it is at this point we use the ugiform
bounds (6.12) and (6.13). Using the formula n ) = n(dA™) = d(nA™) —
dn A A" and the support property of the symbol ¢o, we obtain

l0(DenF @I S lao(Deod (nA®) 11
e, .

1.

+ llao(Dr.0) (dn A A |

Hf.ZX
The second term on the right-hand side is bounded by € thanks to (6.12). To
handle the first term, we divide the space-time Fourier space into the regions
{Iz] + 1] < 1} and {|7| + |&€] > 1}. Also distinguishing the temporal and spa-
tial components of AM we may estimate

lgo(Ds.0d (RAD) 1y % 0 (nAS) 1,20

l
H

HIO@AI 21 + 1AM 2

Using (6.13) for the first two terms and (6.12) for the last, the entire right-hand
side is bounded by €.
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For the remainder Ry [ F™] w —qo(Dy N F, ,%) , we begin by observing that
i F®| 12, S €o by the formula F® = dA™ and (6.12). Then we have

IRMLE ™y = qo(DrnE) gy S I F™ 2 S eo,

which proves the claim (6.17).

Step 4 In this intermediate step, we use strong Ltzy . convergence of F,%) to
prove

nA" — nA, stonglyin L>H], (6.18)

as n — 00, up to a subsequence. We also prove improved regularity for the
limit A, i.e.,

1
3, (nA,) € H,. (6.19)

To begin with, observe that AA,(L") =d'F K(Z) by the Coulomb gauge condi-
tion. Therefore, for each spatial component u = k € {1, 2, 3, 4}, we have

ndf" = o7t (0 (nF) + 16, AL + [n, a‘f] FY).  (620)

For any j € {1, 2, 3, 4}, note that ajA—laé(an,?)) is strongly convergent in
Lzz’ .~ thanks to the previous step. Writing out F" = dA™ and using the strong
le’ . convergence of 7AM it follows that the remainder AT, n]fi,((") +
[n, BZ]FE(Z) ) is strongly convergent in L? _ as well. Hence (6.18) holds for

t,x
ne{l, 2, 3,4}
In the case u = 0, note that (6.12) and (6.13) already imply

19, (mg@) L Seo uniformly in . 6.21)

[N
HT,X

Therefore, after taking a suitable subsequence, the desired convergence (6.18)
(by the Rellich-Kondrachov theorem) as well as the improved regularity (6.19)
follow.

It only remains to prove the improved regularity (6.19) f]or u =k €

{1, 2, 3, 4}. First, by (6.20) and the improved regularity n F' € fo, ﬁ/{ € Ht{ o
v 3
it follows that nA; € L? H_?. Then using the identity

9 (mAx) — k(mAo) = nkor + [9;, n]Ax — [0k, n]Ao,
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1

Lo
and the 1mpr0vedregu1ar1ty8 (nAg) € H/,,as well asnF € H \, A € H/

1,x°
we have 0, (nAk) € H/ . Itfollows that 77Ak € Ht > which is better than what
we need.

Step 5 In this step, we show that D™ @™ — nD¢ in L7, and ng € H,
For the former, from the decomposition

.\)‘-A)

DG = ndu @™ +inAD P,

the convergence n/i,(f) — nAin L?H] and (6.12), we see that it suffices to
prove

na,@s“” — ndu¢ in L?

t,x*

(6.22)
By (6.15), we have
™ = g1t x, Dy )nX"8,6" + qond™ + r-1(t, x, Dy )™
To use (6.2), we rewrite nX“BMgﬁ(”) as
nX“anB(") = n(f)g?) +b)p™ — iXVA]()”)nqvb(”) — nbp™.

where D™ = d +iA™. Expanding nfi(”) = n(/i(”) — AM) 4+ nA™ | we
arrive at

28 = 10,5, Do (BY +5) 6
—iqo1x, D)Xy (AP - 4,) 6

—ig1(t.x, D)X 14" + R [ 4] (6.23)
where

RkG[6™] := qong™ + r_1(t, x, D; )ni¢p™ — q_1(t, x, Dy 1)bng™.

As in Step 2, for the first term we have

lg-1(t. x, D)y O + &) | — 0
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as n — o0, thanks to (6.2). For the second term, we have

lg-1(t, x, De, )X n(AJ — AN 1.
S A = Al 21416 Nl ors — 0

as n — oo, by Holder, Sobolev in x, L,ZHXl convergence of nﬁf,") tonA, and
(6.12). On the other hand, for the third term, we have

v 1 . .
lg-1(t. %, Dr) X nAvd ™| 3 Seoll(Dx){Dy.x)2 (Al 2 uniformly in n.

t,x

where we used Lemma 6.4 below with f =nA, and g = ¢v>(”). We also used
the obvious bound |[nA,¢™ | 2. S €l(Dx) (@A) 2, which follows from

Holder, Sobolev in x and (6.12), to control the Lzzv . horm of the left-hand side.
Finally, for Rxg[¢"™] we have, as in Step 3,

| RkG [ds(")]

| 3 <e uniformly in n.
H

X

By the Rellich-vKondrachov theorem, there exists a subsequence (which we
still denote by ¢) such that

7 (~ig-100 %, D)X 1A + R [67])

3
is strongly convergent in Ht{ . to alimit that belongs to H,”,. As a consequence

of these facts, as well as the identity n7 = n, it follows that nqg(”) is strongly
3

convergent in Ht{ . to a limit in H,?. Finally, since P — ¢ in Ltzy > the

limit is equal to n¢. O

Lemma 6.4 For f, g € SR'*), we have

1
IIfgIIH% S MDexl fll 2 1 Dexgllppor2- (6.24)
r,x

Proof We use the Littlewood-Paley projections {S i } inR!** Forevery j € Z,
we decompose

Si(f8) =58; ((S=j-10f) &) + Sj (S<j—10/S(j-5.j+518)

Using Sobolev and Holder, we estimate each term on the right-hand side as
follows:
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STl

15 ((S>j—10)Il . 1
HT

S X

l.
< Z 22f||Sj1f||Lt2L§||g||L,°°L§
J1>j—10

e 1
SUDxglpers > 22970NID 1285, £l 2401,
J1>j—10
||Sj(S§j—10fS[j—5,j+5]g)||H
t

1
2
X

1.
S D0 2085 fll e IS-s j4sigllzer2
J1<j—10

Lei—i 1
SIDagllper D 297D 178 fll 21
1=j-10
. N TP
Thanks to the exponential gain 272/ 7/1! we have
. 2 2 Lo 22
Z IS;FOI° y < IDwxglpe Z 11Dex|2 S, 11721
J Lx J1
The desired estimate is now a consequence of almost orthogonality of {S j}

JEL
i 72
inLy,. O

6.2 Weak solutions to (MKG)

We first define a function space that is suitable for a weak formulation of
(MKG).

Definition 6.5 Let © C R!*™* be an open set. We define X' () to be the linear
space of pairs (A, ¢), where A is a real-valued 1-form and ¢ is a C-valued
function on O, such that

A, ¢ € L} (O0), Fuy, D¢ € L7 (O) forallp,v=0,1,...,4, (6.25)

where F,, = 0, A, — 0,A, and D¢ = 0,¢ + i A, ¢ in the sense of distrib-
utions.

We may now define a notion of weak solutions to (MKG) as follows.

Definition 6.6 (Weak solutions to (MKG)) Let © € R!* be an open set, and
let (A, ¢) € XY(O). We say that (A, ¢) is a weak solution to (MKG) on
O if for every real-valued 1-form w € C§°(O) and complex-valued function
¢ € C°(O), we have
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/ / Fudto’ + Im(¢D,¢)w" dtdx =0, (6.26)

O

/ / Re(D,¢dk @) + Im(A*D,,¢g) dtdx = 0. (6.27)
@]

By an integration by parts argument, it may be readily verified that admissi-
ble and classical solutions to (MKG) are indeed weak solutions. In the converse
direction, if (A, ¢) is a weak solution to (MKG) that is furthermore smooth,
then (A, ¢) solves (MKG) in the usual, classical sense.

Next, we discuss the gauge structure of weak solutions to (MKG). We first
define the space of gauge transformations between pairs in A" .

Definition 6.7 Given an open set O C R4 let Y (O) be the space of real-
valued functions x on O such that x € Ht{ L(O).

Indeed, note that if (A, ¢) € X" and x € Y%, then the gauge transform
(A, ¢) := (A —dx, e'X) also belongs to X'. Moreover, if (A, ¢) is a weak
solution to (MKG) then so is (A, ¢), as the next lemma demonstrates.

Lemma 6.8 Ler O C R be an open set, and let (A, ¢) € X*(O) be a
weak solution to (MKG). Then for every x € Y"(O), the gauge transform
(A, ¢) := (A —dy, e'X¢) also belongs to X™ (O) and is a weak solution to
(MKG).

Proof We need to verity (6.26) and (6.27) for (Z , (Z). For (6.26) there is nothing
to verify, as both F and Im(¢D¢) are invariant under gauge transformation.
For (6.27), we have

// Re (ﬁua 8“(,0) + Im (Av“]/);a@) drdx
@]
= // Re (DM¢8“(e_iX<p)) +Im (A“Dﬂqb e_ixw) drdx.
@
Observe that if x € C*°(0), then the last line would be equal to zero by (6.27)
for (A, ¢). Considering a sequence x ™ € C*°(©) such that x ™ — x in the
Hz{ . (O) topology and also pointwise almost everywhere, it can be seen that

the last line is indeed zero, by the dominated convergence theorem, Leibniz’s
rule and Holder’s inequality. O

6.3 Local description of solutions to (MKG)
Here we discuss how to describe a solution to (MKG) by local data. More

precisely, given an open cover Q = {Q,} of an open set O C R!**, we would
like to describe a solution to (MKG) on O by local solutions on Q satisfying
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certain compatibility conditions, which ensure that the local solutions combine
to form a single solution on O. This idea is made precise by the ensuing
definition.

Definition 6.9 (Smooth compatible pairs) Let © € R!'** be an open set and
let @ = {Qq} be alocally finite open covering of O. For each index «, consider
apair (Afg], #1a1) € C75(Qa), Where Ajg is areal-valued 1-form and ¢ye is a
C-valued function on Q. We say that (A[4], ¢[«]) are smooth compatible pairs
if for every a, B, there exists a gauge transformation x[ug) € Ctojc (Qa N Op)
such that the following properties hold:

(1) For every o, we have x[qq] = 0.
(2) For every «, 8, we have

(A1, d181) = (Afe) — dxjap)s €11 ¢rq))  on O N Qp.  (6.28)

(3) Forevery a, B, y, the following cocycle condition is satisfied:

Xiepl + X8yl + Xiyel € 2n7Z on Qy N Qﬂ N Qy. (6.29)

The notion of (gauge-)equivalence of compatible pairs is defined as follows.

Definition 6.10 (Equivalence of smooth compatible pairs) Let © € R4 be
anopenset,andlet Q = {Q,}, Q' = { Q:g } be locally finite open coverings of

O. Consider two sets of smooth compatible pairs (A[q], ¢1o) and (AE Bl ¢E ﬁ])
on Q and Q’, respectively. When Q' is arefinement of Q (i.e., for every  there
exists a(B) such that Q:g C Qg), we say that (Aq], ¢ja)) and (Afﬁ], ¢Eﬁ])
are (gauge-)equivalent if for every B there exists x(g) € C;fj’c(Q’[j) such that
(Al @p) = (Al — dxipy: Paje’ ). In the general case, we say that
(Ala]s ¢1a1) and (Abg], qﬁEﬁ]) are (gauge-)equivalent if there exists a common

refinement Q" of Q, Q" and a set of smooth compatible pairs (A’[/y], E;,]) on

Q" which is equivalent to both (A[y], ¢[o]) and (Afﬁ], d’fﬂ])'

Remark 6.11 In more geometric terms, compatible pairs (A[q], Po]) on Qo
are precisely expressions of a connection A and a section ¢ of a complex line
bundle L in local trivializations L [p,~ Q, x C. Moreover, equivalent sets
of compatible pairs are alternative expressions of the same global pair (A, ¢).

In fact, expression of connections and sections in local trivializations in
the fashion of Definition 6.9 is necessary if the complex line bundle L under
consideration is topologically nontrivial (i.e., L is not homeomorphic to the
product of C and the base space). In our setting, however, there is no loss
of generality in simply identifying connections and sections of L with real-
valued 1-forms and complex-valued functions, respectively, as all base spaces
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we consider (e.g., O = I x R*or C[TT o) for some 7' > 0) are contractible and
hence all complex line bundles over such spaces are topologically trivial. In
this case, every smooth compatible pairs on O is equivalent to a global smooth

pair (A, ¢) on O.

Remark 6.12 We emphasize that no delicate patching is needed for smooth
compatible pairs in this paper, since all we need is merely the soft fact that the
energy argument in Sect. 5 and the stress tensor argument in Sect. 7 (which are
both gauge invariant) can be justified. In contrast, in [26] an elaborate patching
argument had to be developed in order to control the S! norm of the equivalent
global pair in the Coulomb gauge.

Based on the spaces introduced for the weak formulation of (MKG) dis-
cussed above, we can also formulate the notion of weak compatible pairs.

Definition 6.13 (Weak compatible pairs) Let © C R be an open set and let
Q = {Q,} be alocally finite covering of O. For each index «, consider a pair
(Afa]s Pa)) € X*(Qq). We say that (A[q], ¢[o]) are weak compatible pairs
if for every «, B, there exists a gauge transformation y[eg] € V" (Qq N Qp)
such that the properties (1)—(3) in Definition 6.9 hold almost everywhere.

The notion of equivalent sets of weak compatible pairs is defined as in
Definition 6.10, where the space C/, (Q ) is replaced by yw(Q ).

Geometrically, weak compatlble palrs (A[«]s o)) may be thought of as
local descriptions of a connection and a section defined on a rough complex
line bundle L. A simple but crucial observation is that smoothness of the pairs
(Ala], $[«)) implies smoothness of the gauge transformations x[qg;. Indeed,
simply note that d o8] = A[«] — A[g] by the property (2) in Definition 6.9.
As this fact will play an important role in our argument (see Proposition 7.3),
we record it as a separate lemma.

Lemma 6.14 Ler Q = {Q4} be an open cover of © € R and let
(Afa]s Pra)) on Qq be weak compatible pairs. If Afa], o] € C*(Qqy) for
every o, then (Ajq], $a]) form smooth compatible pairs in the sense of Defi-
nition 6.9.

We end this subsection with another simple lemma, which will be used later
to show that the local solutions obtained from Proposition 6.1 in the limit form
weak compatible pairs.

Lemma 6.15 Ler Q1, Q> € Rt pe open sets such that Q1 N Q2 # O is
an open bounded set with a piecewise smooth boundary. Consider sequences

(A ¢ € X¥(Qa) (@ = 1,2) and x5, € V" (Q1 N Q2) such that

(Al o)) = (A(”) axy ¢fi’f€"‘““) ae.on Q1N Qs (630)
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In other words, (AEZ%, ¢[(2]) ) are weak compatible pairs for each n. Suppose

Sfurthermore that each sequence (AEZ} , (,b[(;l]) ) has a limit (A{q), ja]) in X" (Qq)
asn — oo. Then the limits (Ajq, $[a]) (o = 1, 2) also form weak compatible

pairs, i.e., there exists x(12) € Y (Q1 N Q2) such that
(A, 21 = (Apy — dxpiag, dpe’ ™2y ae.on Q1N Qr.  (6.31)

Moreover, there exists a subsequence of X[(lnz)] that converges' to x[12) in
YY(Q1 N Q) up to integer multiples of 2.

Proof Let 7{’3] = | 01105 X[(fz)] denote the mean of X[(flz)]. By Poincaré’s
inequality, the identity d X[(Fz)] = AET]) — AE;]) and the L? _ convergence of

t,x
AEZ} (¢ = 1,2), the mean-zero part )2[({12)] = X[(flz)] — 7%’31 converges to a

limit x[12) in Y*(Q1 N Q) = Htl,x(Ql N Q»). On the other hand, we can
-—(n)
easily extract a convergent subsequence from the bounded sequence e'*1121;

.—(n)
abusing the notation a bit, we denote the subsequence still by e'*121, and
the limit by e’X1121 for some X121 € R. It follows that X[(lnz)] converges to
X(12] := X121+ X121 in V¥ (Q1N Q2) asn — oo up to integer multiples of 27.
The desired gauge equivalence in the limit (6.31) is now an easy consequence

of (6.30) and the above convergences.

7 Stationary/self-similar solutions with finite energy

In the context of the blow-up analysis to be performed in Sect. 8, the local strong
compactness result (Proposition 6.1) will give rise to two types of solutions to
(MKG):

e A stationary solution (A, ¢), which is defined by the property
tyF =0, Dyp=0 (7.1)

for some constant time-like vector field Y; or
e A self-similar solution (A, ¢), defined by the property

I
1x,F =0, (on + ;) ¢ =0. (7.2)

In Sects. 7.1 and 7.2, we show that such solutions must be trivial under
the finite energy assumption. We use the method of stress tensor, which is the

13 That is, there exists k, € Z such that X[(flz"i) + 27k — X121 in YY(Q1 N Q7).
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elliptic version of the energy-momentum-stress tensor considered in Sect. 5.
In Sect. 7.3, we establish an elliptic regularity result for these solutions under
the improved regularity assumption (6.6) ensured by Proposition 6.1.

7.1 Triviality of finite energy stationary solutions

As any unit constant time-like vector field Y can be Lorentz transformed to the
vector field T = 9; in the rectilinear coordinates, we may assume that Y = T'.
Our main result in this case is as follows.

Proposition 7.1 Let (A, ¢) be a smooth solution to (MKG) on R wirh
ttF = 0 and D¢ = 0. Suppose furthermore that (A, ¢) has finite energy,
ie., S{O}XR4[A’ ¢] < 00. Then g{O}XR4[A’ d)] =0.

Proof We use the rectilinear coordinates (r = x° x!, ..., x%), in which

T = 0;. By the stationarity assumptions (t7F)(d;) = Fp; = 0 and
Dr¢p = Do¢p = 0, (MKG) reduces to the following elliptic system on each
constant ¢ hypersurface:

(7.3)

3'Fjp = Im(¢D; ),
DDy = 0.

Henceforth, we work with F, ¢ restricted to the hypersurface {r = 0}.
For the purpose of showing £[A, ¢] = 0, consider the following stress
tensor associated to (7.3):

- 1 —
QjklA, ¢]:= Re(D;¢pDrp) — 58 jkRe(DxgpD*¢)

1
+FjF,t - Zsijng@m. (7.4)

Given a vector field S on R*, we define as before the associated 1-and 0-
currents

S Ji1A, ¢] 1= Qjk[A, $15F,
KA, ) := Qjr[A, )k

which, thanks to (7.3), satisfy the divergence identity
VA IIA, ¢la) = P KIA, ¢1. (7.5)

Choosing S to be the scaling vector field on R* so that, in the rectilinear
coordinates
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gk — xk’ (8) ik — 28jk’
we have

OKIA, ¢l = —2[Dg|*, |DJ[A, ¢1| < |x|[Dp|* + |x||F|*.

where [Dg|? = 3%_ ID;g|? and [F|? =3 _; oy |[Fjsl*
We now integrate (7.5) by parts on a ball Bg € R* of radius R > 1 centered
at 0. Then we see that

14

—2/ |D¢|2dx:/ () J[A, ¢plan®, wheren = —d,. (7.6)
Bg 3Bg | x|

By the finite energy condition, we have |[D¢|, | F| € L?(R*); this fact is enough
to deduce the existence of a sequence of radii R, — oo along which the
boundary integral vanishes. Hence it follows that D, ¢ = 0.

It only remains to show that F = 0. Note that F' is now a harmonic 2-form
in L2(R*), as dF = d’A = 0 and the right-hand side of the first equation
in (7.3) vanishes. Therefore, each component F i is a harmonic function. By
the non-existence!* of nontrivial harmonic functions in L2(R%), it follows that
F = 0, which completes the proof. O

7.2 Triviality of finite energy self-similar solutions

In the case of a self-similar solution with finite energy, our main result is as
follows.

Proposition 7.2 Let (A, ¢) be a smooth solution to (MKG) on the forward
light cone C 0,00y With txyF = 0 and Dx,¢ + %(15 = 0. Suppose furthermore
that (A, @) has finite energy, i.e., Sup; ¢ o) €5, [A, ¢1 < 00. Then Es,[A, ] =
Oforallt > 0.

Proof We use the hyperbolic coordinates (p, y, ®), in which Xo = d,. By
the self-similarity assumption tx, F'(-) = F(dp,:) = 0 and Dy, ¢ = —%q&, it
follows that the pullback of (A, ¢) to H; = {p = 1} = H*, which we still
denote by (A, ¢), solves the system

[ — divige F = Im(¢Dyig). (1.7)

(=Aps 4 —2)9 =0,

14 This fact can be proved using the monotonicity (7.14), which holds for all 0 < | < rp for
harmonic functions on R*.
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where F = dA, (divgs F)a = VP, Fia,Dgs = Vpgs +iA and Aga , =
D%14 Dy ,. Furthermore, by Proposition 5.1 applied to H; = H*, we have
1 2
—coshy | F | dops < oo, (7.8)
H4 2

1 S
/ E[cosh y|¢|> + 2 sinh yRe[¢Dy¢p] + cosh y|D¢|§H4]daH4 < 00. (7.9)
H4
where |FI2, = 3(854) (834)"d Fab Fea and [Dg|%, = (271)*"DagpDp.

In order to proceed, we reformulate the system on D* using the conformal
equivalence of D* and H*. Consider the following map from D* to H*:

®:D* > HY, (,0)r (y,0) = (2tanh™' 1, ©)
The map @ is a conformal isometry, i.e.,
OF g = OF (dy2 + sinh? y gs3) = Q2 (dr2 +r? gs3) = Qgpa,

where ®* denotes the pullback along ® to D*, and 2 := —2. For the pulled-

back pair (®*A, Q ®*¢) on D*, which (slightly abusing the notatlon) we will
denote by (A, u), we have

[ 9 Fjp = Im(uD,u) 7.10)

D‘Dyu = 0.

where F = dA and D = V + i A. Moreover, the bounds (7.8) and (7.9) then
translate to

11472
- 21 2|F|]D)4 dUD4 < 00, (711)
1 1 1
[z [Tt 2w
1472
+W|D | dO’D4 < Q. (712)

where |Du|? = (853 Habp. uDyu. Indeed, note that

1+ 2 , 2r
T2 ®*(sinh y) = 2

d*doge = Q*dops, D*(coshy) =
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From these identities and (7.8), we immediately see that (7.11) holds. More-
over, (7.12) follows from (7.9) and the following computation:

1 -
/ z[cosh y|¢|> + 2 sinh yRe[¢Dy¢p] + cosh )’|D¢|H2.H4]dGH4
H4

| l—i—r 4r S
= [ PJuf? + ——RelQuED, (2]
]D)42 1— 1
1+ r2
o (|QD,(Q u)|2+r—2|Du|2)]daD4
4r rf+1
= [l + s retDan + S
]D)42 1—7‘
1+ r2
+W|Du| ]dO'D4
_ D4§[1— 3 1rDyu + 2uf’ 4+ ———5Dyul
1 +r?
+m|m| ]daD4

We will now show that (7.10), (7.11) and (7.12) imply ¥ = 0 on D*. Since
the system (7.10) coincides with (7.3) restricted to D*, the divergence identity
(7.5) can be used in the present context as well. Integrating (7.5) by parts on
aball B C D* of radius R < 1 centered at 0, we see that

12
- 2/ |Du|* dope :/ () J[A, ulan®, wheren = ~—d;. (7.13)
Bg 9Bg x|

Observe that (7.11) and (7.12) imply the existence of a sequence R, — 1 such
that

/ | J[A, ulan?| — 0,
dBR,

which shows that Du = 0 on D*. Plugging this information into (7.12), it
follows that u = 0 on D*, as desired.

To complete the proof, it only remains to show that F = 0. As before, F
is now a harmonic 2-form in L?(D%*) by (7.7); hence each component Fj is
a harmonic function on D*. Fix J.-k €{1,2,3,4} and observe that ¢ := Fjy,
viewed as a real-valued function, obeys the following monotonicity property:

1 2 1 2
= lp|” < —3/ lp|* where0 <r; <rp < 1. (7.14)
ry JoBy, ry Ja
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Indeed, (7.14) is a consequence of interpolating the inequalities

1 1
i |¢|§—3/ gl suplgl < suplpl whereO <r <7 <1,
i Jos, ry Jos,, 2B, 98,

which follow from the mean-value property and the weak maximum principle
for the subharmonic function |¢| on D*, respectively. By (7.11), it follows that
ij:(p:OOnD4. O

7.3 Regularity of stationary and self-similar weak solutions to (MKG)

We end this section with a regularity result, which applies to weak solutions
obtained by Proposition 6.1.

Proposition 7.3 Let (A, ¢) be a weak solution to (MKG) on an open set
O C R such that

3
Ay € H(0), ¢ e H(O). (7.15)

Suppose furthermore that one of the following holds:

(1) Either (A, ¢) is stationary on O in the sense of (7.1); or
(2) The set O is a subset of the cone Co,o0) = {0 <r <t} and (A, @) is
self-similar on O in the sense of (7.2).

Then for every p € O, there exists an open neighborhood p € Q, € O
and a gauge transformation x(p) € V" (Qp) such that (Arp), ¢rp) = (A —
dx(p), pe'X1P)) is smooth on Q .

Proof The idea is to derive an elliptic system as in (7.3) [resp. (7.7)] using
stationarity [resp. self-similarity], and then use its regularity theory. To get rid

of the non-local operator (D, x)% in the norm, we begin with the following
simple maneuver: For any open bounded subset 0 € O with smooth boundary,
by Sobolev and (7.15), we have

A€ H (), ¢eW'i(0) (7.16)

where g = % The important point is that ¢ > 2, which will make this bound
subcritical. Hence we would be able to conclude regularity via a simple elliptic
bootstrap argument.

We first treat Case 1. Applying a suitable Lorentz transformation, it suffices
to consider the case Y = 0, in the rectilinear coordinates (r = X0t x4).
Moreover, applying an appropriate space-time translation, we may assume that
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p is the origin. Let Q, := (=6, §) x § B, where § B is the open ball of radius
8 centered at the origin. Choosing § > 0 small enough, we have Q, € O. By
(7.16) and Fubini, there exists f € (—§, §) such that

Alivsp€ H'(BB), o l7xs5€ WH(SB), (7.17)

where the shorthand 7 = {f} is used for simplicity. We claim that there exists
Xip] € YV (=8, 8) x 8B) so that x[p l;xsp€ H>(8B) and

dxip1 = Ao in (—8,8) x 8B, Axp) lrxsn= 0" (Alrxsp)e. (7.18)

Indeed, we may simply deﬁnei[p] = A"19t(nA f{[:;})z, where n € C8°(]R4)
satisfies n = 1 on 6B and suppn < O, then solve the transport equation
d X[(p) = Ao in (=4, §) x § B with initial data x[p] [7xsp= X That this x

belongs to Y ((—46, 8) x §B) and x(p] [7xsp € H? (8 B) easily follow from the
bounds for A in (7.16) and (7.17).

Consider now the gauge transform (A}, ¢[p)) = (A — dx(p), pe' 7). By
(7.18), we have

Appio =0in (=8,8) x 8B, 3° (A(p) lixsp), =0indB.  (7.19)
By the stationarity assumption ¢, /' = 0 and Dy, ¢ = 0, it follows that
8,A[p]j = F()J' = 0, 3,(]5[17] =01n (—(3, 5) X §B.

Hence to prove that (Afp, ¢[p)) is smooth in Q,, it suffices to show that
(Arp1> D1p1) l7xsp 1s smooth. Abusing the notation slightly for simplicity, we
will henceforth write A = A[p) [7xsp and ¢ = @[ [7455- By (7.3) and (7.19)
(in particular, the Coulomb condition for A), (A, ¢) satisfies an elliptic system
on § B of the schematic form

AA = Qop + PAg,
A = Adp + AAd.

Moreover, (A, ¢) belongs to A € H'(8B) and ¢ € W'4(§B), thanks to
(7.17) and x[p] l7xsB€E H2(8B). As this system is H!-critical and every
nonlinear term has at least one factor of ¢, which obeys a subcritical bound
¢ € WH4(8B), we can perform a standard elliptic bootstrap argument to con-
clude that (A, ¢) is smooth on § B with uniform bounds on compact subsets.
This concludes the proof in Case 1.

The proof in Case 2 is entirely analogous to Case 1, so we only give a brief
outline. Here, instead of the rectilinear coordinates, we use the hyperbolic
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coordinates (p, y, ®),in which X = d,. Applying a suitable Lorentz transfor-
mation and scaling transformation, we may assume that p coincides with the
pointp =1,y = 0.Let @, = (=4, 8) x Ds, where Ds := {(y, ©) : |y| < 8},
which is contained in O if § > 0 is sufficiently small. By (7.16) and Fubini,
there exists p € (=46, §) such that

Alsxp,€ H' (Ds), & l5xpy€ WHP(Dy). (7.20)

Proceeding as before, we can find x[,) € V¥ ((—6, ) x Ds) sothat x[p] [5xD; €
H?(D;s) and

a,oX[p] =0 1in (-4,6) x Ds, AH; X[pl [EXD5= V;‘—[ﬁ (A rﬁng)a .
Then the gauge transform (A[p), ¢[p1) = (A — dx(p1, petXin) obeys
A[p1(3,) = 0in (-8, 8) x Ds, v;‘{ﬁ (A1p) I5xDs), = 0'in D;.

By self-similarity, we have £, A[ ) = 0 and 9, (p¢(p)) = 0, soitonly remains
to prove that the pullback of (Af,, ¢pp1) on o x Ds, which we will refer to
as (A, ¢), is smooth. As in the previous case, this is a consequence of the fact
that (A, ¢) obeys an elliptic system (thanks to (7.7) and the Coulomb gauge
condition on M), the bounds A € H'(Ds) and ¢ € W9 (Ds) withg > 2 (by
(7.20) and x[p) [5xDs€ H 2(Ds)), and a standard elliptic bootstrap argument.

O

8 Proof of global well-posedness and scattering

Here we carry out the proof of Theorem 1.3 using the tools developed in the
earlier parts.

8.1 Finite time blow-up/non-scattering scenarios and initial reduction

Our overall strategy for proving Theorem 1.3 is by contradiction. Suppose
that Theorem 1.3 fails for an initial data set (a, e, f, g) € H! in the global
Coulomb gauge. By time reversal symmetry, it suffices to consider the forward
evolution. Let (A, ¢) be the admissible C; ' solution to the Cauchy problem
in the global Coulomb gauge defined on the maximal forward time interval
I = [0, T}) for some T > 0 constructed by Theorem 4.3. By Theorem 4.8,
the solution (A, ¢) exhibits one of the following behaviors:

(1) Finite time blow-up We have T < oo and

1 Aollyio,7,) + 1Axllsio, 7,y + 1@lls1(0,7,) = 00. (8.1)
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(2) Non-scattering We have T = o0, but

1Aolly1[0.00) T 1 Ax1l$1[0.00) T 1Pl 51[0.00) = O©- (8.2)

In the case of finite time blow-up, we may use the energy concentration
scale r. in Theorem 4.3 to show that the energy must concentrate at a point.

Lemma 8.1 Let (A, ¢) be an admissible C;/H' solution to (MKG) on
[0, T) x R* with Ty < oo in the global Coulomb gauge. Then either
(A, ¢) can be continued past Ty as an admissible C;H" solution in the global
Coulomb gauge (as in Theorem 4.3), or there exists a point xo € R* such that

lim sup 5{,}XB(T+_0(X0)[A, ¢] > 0. (8.3)

t—T4
Proof Fort < Ty and x € R* we define the function

E(tv X) = g{t()}xB(T+_,)(x) [A9 ¢]

This is continuous in x, and, by the non-negativity of the flux in the energy
relation (5.3), it is non-increasing in ¢. Further, by the same relation, we have

lim E(t,x) =0, uniformly in ¢ € [0, 7). (8.4)

|x]—o00

Then we have two alternatives:

(i) Either lim,_, 7, sup,cps E(t,x) < 8o(E, €2), which implies that there
exists 7o so that energy concentration scale r. at ¢t = fg as in (4.4) is
greater than 7y — f9. By Theorem 4.3 we can then extend (A, ¢) past T4,
as claimed.

(i1) Or, lim;_, 7, sup,ps E(f,x) > So(E, e,%). Then the sets D, = {x € R*:
E(t,x) > %SO(E , ez)} are nonempty and decreasing in t. Moreover, they
are compact by (8.4). Thus they must intersect. Any xg in the intersection
will provide the second alternative in the lemma. O

Theorem 4.7 provides additional information about the nature of the singu-
larity in both scenarios, which is crucial to our proof of Theorem 1.3. To utilize
this information, we introduce a smooth function ¢ satisfying the following
properties:

e supp¢ € Bi(0)and [ = 1. ~ o
e There exists a function ¢ € C°(R*) with ¢ > 0 such that ¢ = ¢ * ¢.
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Then we define the physical space version of energy dispersion as follows:

ED[A, $1(1) := sup (271020 @ 0 1ty + 27 Nt # DB D) 151k )
€

(8.5)

where ¢, := 2% ¢ (2%.), and the convolution # is defined with respect to only
the spatial variables (x', ..., x*). The first property makes ED[A, ¢] simpler
to use in physical space arguments; on the other hand, the second property is
helpful in connection with the diamagnetic inequality, which we state here.

Lemma 8.2 (Diamagnetic inequality) Let O C R* be an open setand ¢, A €
H'(0). Then for any smooth vector X, |9x|¢|| < |Dx¢| in the sense of
distributions. More precisely, for any smooth n > 0 with suppn C O, we
have

/nl8x|¢>||dx §/n|DX¢|dx.

The key to the proof is the formal computation |0x|¢|| = ||¢|_1 (¢, Dx )| <
IDx¢|; we omit the standard details. We fix the choice of functions ¢, ¢ here,
and henceforth we will suppress the dependence of constants on these functions
for simplicity.

The physical space version ED[A, ¢] is related to the earlier Littlewood-
Paley version E D[¢] defined in (4.9) as follows.

Lemma 8.3 Let (A, ¢) be an admissible C “H! solution to MKG) on I x R*
in the global Coulomb gauge with Ey r4lA, @1 < E. Then there exists C =
C(E) such that

1
ED[¢](I) < CEDI[A, ¢1(I) + mE(E),

where €(E) is as in Theorem 4.7.

Proof All norms in this proof will be taken over I x R*. The following esti-
mates are straightforward to establish:

sup2 Pl S sup2 16r-s Bl (8.6)

sup2 | (D)l S sup 27 gk D)L (8.T)
u : :

As these two estimates are proved in the same manner, we only consider (8.6).
Fix k € Z, and let my > 0 be an absolute constant to be chosen. We have
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27K Peoplince < 275180 kmg * Pedllroe + 27511 (1 = &y kmo®) Pedpll o0

S 2m027 Km0y gk llLe+27027 sup 19) Pedpll oo
j=1,...,4

The last term can be bounded by < 2_m02_k||Pk¢||L$o, which can be
absorbed into the left-hand side by taking mq sufficiently large. Hence (8.6)
follows.

In view of (8.6) and (8.7), the lemma would follow once we prove that, for
any mp > 10,

sup 2~ || Pl S 2™ sup (2‘2"||Pk<Dt¢>||L,og
k ' k v
+ 27 Pl ) +27M

By the relation d; = D; — i A, it suffices to show that

1 3
sup2 | Pu(Aod)ll s, S 2" E2 sup2 7| gl +27" (E + EF).
k ’ k ’
(8.8)
Thanks to the global Coulomb condition, we have
Aol ey S EV?, Nl pepy S EV? + E.

For each k € Z, we split ¢ = P<jym, P + P~k+m,¢. For the former, we have

2 P(AoPatrm Dl S D 2 N Aoll e a2 1 PedllLox
L<k+m

S2MET sup2 || Pyl oo
; .

For the latter, by the properties of frequency supports, note that

Pi(AoPoiim @) = D Pu(Pie—3.e131A0Peg).
C>k+m

Hence (8.8) follows from the estimate

— 2
2 P (Ao Pokm Dl S D 2K NP3 esmAoll oo | Pedll o2
>k+m

<27IM(E 4 B3,
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As a result, there exists a function e = e(£) > 0 such that Theorem 4.7
holds with the condition (4.11) replaced by

ED[A, ¢](1) < e(E). (4.11)
Let ¢ > 0 be a small parameter to be chosen below. We have the following

result, which unifies the proof of Theorem 1.3 in both finite time blow-up and
non-scattering scenarios from here on.

Lemma 8.4 Suppose that Theorem 1.3 fails for some initial data (a, e, f, g)
of energy E. Then for every ¢ > 0 there exists a sequence €, — 0 and a
sequence of admissible C/H! solutions (A", qb(”)) on [e,, 1] x R* in the
global Coulomb gauge that satisfy the following properties:

(1) Bounded energy in the cone
&s, [A<">, ¢<">] <2E foreveryt € [en, 1], (8.9)
(2) Small energy outside the cone
Eixrins [A® 60| < &°E foreveryr € e, 11, (8.10)

(3) Decaying flux on 0C

1
Flen1] [A(”), ¢(”)] +Gs, [¢(")] <& E, (8.11)
(4) Pointwise concentration att = 1

27K 0yt 5+ (1, )| + 270 |25y x DIV (1, x,)| > €(E)
(8.12)

for some ky, € Z and x, € R*.

Remark 8.5 The small parameter ¢ > 0 will be specified near the end of the
proof of Theorem 1.3, precisely in Lemma 8.11, depending only on E.

Remark 8.6 By the global Coulomb gauge condition BzAén) = 0, the follow-
ing gauge dependent uniform bounds for A® and ¢ hold:

1 1 1
180 A o ) S EE 00060leqeriny S (1+EF) E2.
(8.13)
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Proof Suppose that Theorem 1.3 fails. Then by the discussion at the beginning
of the section, there exists an admissible C; ! solution (A, ¢) of energy E to
(MKG) on [0, Ty) x R* which satisfies either 0 < Ty < oo and (8.1) (finite
time blow-up) or 7+ = oo and (8.2) (non-scattering). We treat these two cases
separately.

Case 1: Finite time blow-up By Lemma 8.1, there exists a point xo € R*
such that (8.3) holds. By translation in space-time and reversing time, we may
assume that xop = 0 and we have energy concentration at the space-time origin
ast — 0,1i.e.,

lim sup &, [A, ¢] > 0. (8.14)

t—0
Our next course of action is to use the excision and gluing technique (Propo-
sition 4.4) to cut away the part of (A, ¢) outside the cone of influence of (0, 0).
In what follows, we denote the ball B1(0) by B, so that r B = B,(0) for any

r>0.
By Corollary 5.3 there exists #p > O such that

FoC . As #] < min {80(E, €2), e*E}

where 8o (FE, eﬁ) is as in (4.4). Furthermore, we can find a collar of radius
ro > 0 around S;, = {to} x foB with small energy, i.e.,

Ettox (to+r0) B\1oBY [ A, @] < min {80 (E, ), SSE} .
By local conservation of energy, we then have
5{t}><((t+r0)B\tB) [A, ] < min {80 (E, 65) , 88E} for every t € (0, #o].

Observe that the ratio (t +rg)/t goes to oo as t — 0. Hence, by the improved
Hardy estimate in Lemma 4.5, for sufficiently small 0 < 7 < ry we also obtain

1 .
||m¢(t, -)||i§(2[-B\t-B) <« min {50 (E, eﬁ) , 88E} for every t € (0, 1o].

We may now apply Proposition 4.4 to (a, e, f, g) = (A}, Fo;j, ¢, D;9) [{,=,—}

to obtain a new data set (a, e, f, 2) that coincides with (a, e, f, g) on B and
obeys

= 1
Er\ipld, € [, 81 = 5 min {8 (E, e2), e E}.
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To pass to the global Coulomb gauge, we define the gauge transformation
x € GER*) by x = A~19%G, and let (d, &, f, &) be the gauge transform of
@e 1.2 by x. Let (A, $) be the admissible C,H! solution to the Cauchy
problem in the global Coulomb gauge given by Theorem 4.3, defined on the
maximal time interval I > 7.

As a consequence of the construction and local conservation of energy, the
energy outside the cone C is always tiny, i.e.,

11
Er1 xRS, [A, ¢] < 5 min {80 (E,€2),e%E} foreveryt e l. (8.15)

Then by an argument similar to the proof of Lemma 8.1, it follows that (A, é)
can be always continued to the past until 0, i.e., (0, 7] € I. Furthermore, there
exist sequences (¢, x,) € I X R* and k,, € Z with ,, — 0 such that

27k 8yt B tny x0)| 4 2720 gty % Dy (10, x0)| > €(E).  (8.16)

For otherwise, there exists § > 0 such that (4.11") holds on (0, §). Then by
T}vleovrem 4.7 (with (4.11) replaced by (4.11")) and Theorerg 4;8, the solution
(A, ¢) can be extended past ¢+ = 0. Hence lim sup,_, &s,[A, ¢] = 0, but this
fact contradicts (8.14) as &, [A, (E] = &Es,[A, ¢] foreveryt e I.

Applying Corollary 5.3 to (A, ), we may choose a sequence ¢, — 0 such
that

FlentnallAs 91+ Gs, [#] < &7 E.

By the scaling properties of £, F and G, as well as scale invariance of (8.16)
(which is immediate from definition), it follows that the sequence of rescaled
solutions

(A<”>, ¢<")) (t,x) =ty (A, Js) (it 1)

obeys the desired properties.
Case 2: Non-scattering This case follows by a simple rescaling argument. Let
Ry > 0 be a large radius such that &, g4\ Br, oplA, ¢1 < e8E. Translating

in time by R( and using the local conservation of energy, we may assume that
(A, @) obeys

E({,}XR4)\& [A, p] < eSE  for every t € [Rp, 00).

By Theorem 4.7 with (4.11) replaced by (4.11") and (8.2), there exist sequences
(tn, xp) € [Ro, 00) x R* and k,, € Z with t, — oo such that
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27k 12yt B (1, X0) |+ 2720 |0yt 5 Dy (£, X0)| > €(E)

By Corollary 5.3, we may then choose a sequence ¢, — O such thate,t, — oo
and

1

FlentninllA, @1+ Gs, [¢] < e, E.

Defining (A™  pM™Y (1, x):=1,(A, @) (t,t, t,x), we obtain a desired sequence.

8.2 Elimination of the null concentration scenario

Using Proposition 5.4, in particular the weighted energy estimate on S;, we
show that null concentration cannot happen. The precise statement is as fol-
lows.

Lemma 8.7 (Nonull concentration) Let (A", ") bea sequence of admissi-
ble C;H" solutions to (MKG) satisfying the conclusions of Lemma 8.4 with the
sequences &y, k, and x,. There exist K = K(E) > 0andy = y(E) € (0, 1)
such that ifk, > K(E) and |x,| > y (E) for all sufficiently large n, and ¢ > 0
is sufficiently small depending on E, then

limsup 279 [0yt % & (1, x2)| 4+ 272 Zyty DG (1, x,)| < e(E).

n—oo

(8.17)

Remark 8.8 Note that K(F) in Lemma 8.7 can be replaced a posteriori by
any number greater than K (E). Hence given any m = m(E) depending only
on E, we may assume in addition to the statement of Lemma 8.7 that

27K < ;(1 — ). (8.18)
100 m(E)

This observation will be useful in the proof of Lemma 8.9 below.

Proof Theidea of the proofis similar to that of [33, Lemma 6.2] with additional
ideas to deal with the presence of covariant derivatives.

Step 1 The starting point is Proposition 5.4 applied to (A, ¢) = (A™, ™)
with ¢ = g,, more precisely the first term on the left-hand side of (5.11). Using
Lemma 5.10 to write out Xea) P we see that the following a-priori estimate
holds on S;:

1
/ ————— (D)7 + DV WP) dx S B (8.19)
St (1 — |x[ +en)2
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By the smallness of the energy outside S|, we then obtain the global bound

1
/ ——(IDf 92 + IPWgR) dx S E,

(=1) (1 =[x D) + )2 + €
(8.20)

where (-)4+ := max {-, 0}.
Step 2 We claim that for any non-negative k € Z the following estimate holds:

1
lim sup 27%¢, 4 # [¢™](1, 1) < (2*%" + (= Jxhs +2797 + 84)E%.

n—oo

(8.21)

The point of (8.21) is that |¢™| is gauge invariant, and hence we can avoid
estimating A. Henceforth, we will denote ¢ := |¢™|(1, -). We use the rota-
tional symmetry to bring x to the x L_axis, so that x = (Jx], 0, 0, 0). Henceforth
we will write x = (x!, x') where x’ = (x2, x3, x%).

By the diamagnetic inequality (Lemma 8.2), conservation of energy implies

/lVI//(”)|2dx <E. (8.22)

where |Vy|? = Zée‘:l |9¢y|>. Note that (8.22) and Young’s inequality
implies the trivial bound 2%y« * ¥ Lo < E'2, which allows us to

restrict our attention to x = (x!, 0, 0, 0) with 1 /2 < xl < 2.

We claim that for n sufficiently large so that 8,1,/ 2 < ﬁeg, the directional

derivatives other than d; obey an improved estimate
4
Z/wk|ajw<">|2dx <E, (8.23)
j=1

where w; > 0 is defined as

1
(1= x|+ X2+ 2707 468

wi(x) 1= (8.24)

To prove (8.23) under the assumption 8,1/ 2 < ﬁeg, it suffices to prove

>/ 1
S xR e 46

19,9 ™*dx SE. (825)
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The estimate (8.25) is a consequence of (8.20). Indeed, the latter estimate
combined with the diamagnetic inequality implies

| Wy ™Pdx < E. (8.26)

/«1 —Ix)y + )7 + 8

Atx = (1, 0,0, 0) we have rizgS}] = 24}22 d; - 0. Therefore, by smoothness,
we have

4
19> =D 109 P S (11— x' 1+ 1) IV .

j=2

On the other hand, (1 — |x|)4 < |1 —x!'| + |x/]%
Combining these facts, we may now bound the left-hand side of (8.25) by

4
/ : DN A7

1
(1 =x+ [X]> + )2 + 68 15
1

+ 1 | W™ dx
(1= |xD+ +€,)7 + &8
1— 1 l
5/ | x|+|x|1 VR dx
(11— x|+ [x/]2 + £,)7 + &8
1
+/ — S
(1= x4+ +&2)2 + &8

Then using (8.22) and (8.26), the desired estimate (8.25) follows.

Compared to the weight in the preceding expression, observe that we have
absorbed ¢, into &3 and added 2% in wy. This maneuver ensures that wy is
slowly varying at scale 27K x 27%/2 x ... x 27%/2 je. forany x, y € R* we
have

W) | o Sl gkl < 2R (g7
wi(x —y)

We now turn to the task of deriving (8.21) from (8.22) and (8.23). We
introduce the notation Zyyr := {,—« * ¢ and write zx (&) for the symbol of the
integral operator Z; of course, z is nothing but the (spatial) Fourier transform
of ¢,—«. Given a smooth cut-off  on IR? adapted to the unit ball, we furthermore
decompose

Zi=Zih + Zih + -+ Z}0y
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where the symbols z,{ &)of Z ,ﬁ are given by

1 k) L
h® = @n (273)
F© =@ (1 -0 (278)) 2y forj=2.3.4

where £’ = (&2, &3, &4).
The contribution of Z ,181 to (8.21) is easy to treat. Observe that z,i (&)i&; is

a smooth symbol which is rapidly decaying at scale 2% in the &;-direction, i.e.,
for every N > 0 we have

—100
&)Y (hig) | Sw (1+27818)

Moreover, 7 ,i (&)i&, is compactly supported in the set {|§ | < 2K/ 2} in the other
directions. For any N > 0, these facts immediately imply the kernel bound

5 k
IF @ign] Sy 22 A+ 24 TN a 22 Y,
where F, denotes the inverse (spatial) Fourier transform. In particular,
IIJ:;l(z,li“;‘l)H 4 < 28k, By Young’s inequality, we have
Ly
27 M ZE ™ 0 S 275 [y < 278 ES,

which is acceptable. . .
It remains to treat the contribution of Z,ﬁ dj for j = 2, 3, 4. Denote by ;“kj (x)

the integral kernel of z! , which is simply the inverse Fourier transform of
zlj{. A straightforward computation shows that ||z,j<|| L2 < 2k, Therefore, by
Plancherel,

g/ 12 <25 (8.28)
Next, for any N, My, M3, M4 > 0, we have

4
(&10:)"Y (52062 (£30,) "0 €40 ) ™ | D ik 2]

j=2
i\~ 100
Sy (14271
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In addition, the left-hand side is supported in {|€"| < 2%/2}if Mo+ M3+ My #
0. Taking the inverse Fourier transform, we obtain

4
. —-N —N
> 95/ 0| Sw min{zi", (2§|x/|) }(1+2k|xl|> 23 (8.29)

=2

where the implicit constant is independent of k.
Hence we can split ;k = ;k near T ;‘k far> Where

& e @) 1= £ (D)1 E o,

x2k|x1|<L, 22 |x'|<L

and L > 0 is chosen large enough (independent of k) so that, by (8.29), we
have

4
>0 g = ket (8.30)

L}

We denote the corresponding splitting of Z; J by z! knear T z! ke far-
We are now ready to complete the proof of (8.21). The contribution of

Z;i’fara j 1s acceptable, thanks to (8.22), (8.30) and the Sobolev embedding

H! C L* For >

=22k, nwa,, we have

4
27+ sz neardi V0] =277 / 18 near 3,9 ™ (x = y)| dy
j=2

_1 1
< Mw 2@ [wiojy ™ e

where, by (8.27), (8.28) and the definition of f/éi,near’ M obeys the bound

4
[ o2k wy (x)
M= |2 Zi/ e =) ‘ck near (y>dy

12
< Z/ . glPdy| <1
— [ZklyllfL,ZZ\y’lsL]

j=
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_1
Note that w, x) < (1= |xDs + 2-ky1/4 4 ¢4 since we have chosen
x = (x1,0,0,0); this proves (8.21).
Step 3 In this step we upgrade (8.21) to the following gauge dependent esti-
mate:

lim sup2~ 2|z, % D™ (1, x)| < ( (= Dy +279)7 + )E%.
(8.31)

The idea is that (8.21) has already broken the scaling invariance, so we can
easily incorporate A using the trivial bound ||A|| LA < EV 2,

We begin by applying Step 2 to Ez k, where we recall that ¢ = C#C. We
again introduce the shorthand Zi() = ;2 k * (-). By the simple pointwise
inequality | Zx¢™| < | Zi|¢™)]|, which holds since £ > 0, we have

~ 3 1
limsup 2751 Zep™ (1, 1)| < (2—%k (= xDy 42797 + 84)E7.
n— o0
(8.32)

Note furthermore that Z; = Z,% For j =1,...,4, we may write

271D (1, 1) < 271249, (1, 1)
+2721 2, (A9 (1, x)|

S27F sup 1 Zkg™ (1, 1)
lx—x'| <27k

+2712,(AV ) (1, ).
The first term on the last line is acceptable, thanks to (8.32). To treat the second

term, we insert 1 = (1— Zk+m) ~+ Zk1m in front of both A™ and ™ for some
m > 0 to be determined. By the simple inequalities | Z f (x)| < 23%| £l 143

and ||(1 — Zk+m)f||L§ < 27k7m||f||H1, as well as the Sobolev embedding
H! € L%, we have

274124 ((1 = Zig) AT - ") (A, 0OL S 27 A AL )l ™ (1, )

which can be made < ¢*E > by choosing m large enough. Proceeding similarly,

the same upper bound can be proved for Zk(Zker A;”) (1- Zk+m)¢(”)).
For the remaining term, we have

2 M7 (Zirm A Zim ™) (1, 0)
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S2MZken AT Az sup 1 Zemg™ (1,20
Jx—x"| <2~

SEm 275 sup | Zgymd™ (1, X))
[x—x'| <2k

which is acceptable in view of (8.32).

Step 4 We are ready to conclude the proof of the lemma. By (8.21) and the
pointwise inequality |{,—« * @| < {r—« * |@|, we can achieve the desired small-
ness as in (8.17) of ¢ by taking K very large, y close enough to 1 and ¢ > 0
sufficiently small. For Dt("), we have

2725, « D™ (1, x)] < 27|z, DM (1, 0)|
+ > 27K gy DE.")¢>(”)(1, 0l (8.33)
j=1

For the first term, we begin by estimating

1/2
D™, y)Pdy ) .
yily—x[<27K)

2715y x DV (1, 0] S ( /
{
Then by (8.20), the right-hand side is bounded by
1
(((1 —xl)y +27H) 7 + 84)E1/2

provided that 8,1/2 < 1—1088. Using (8.31) to estimate the second term in (8.33),
(8.17) now follows after adjusting K, y and ¢ if necessary. O

8.3 Nontrivial energy in a time-like region

An important consequence of Lemma 8.7 is that there is a uniform lower bound
for ¢™ in a time-like region at = 1.

Lemma 8.9 Ler (A™, ¢™) be a sequence of admissible C;H" solutions to
(MKG) satisfying the conclusions of Lemma 8.4. Let K(E) > 0 and y(E) €
(0, 1) be as in Lemma 8.7 and Remark 8.8. Assume that either (1) k, < K(E)
or (2) k, > K(E) and |x,| < y(E). Then there exist E; = E1(E) > 0 and
y1 = y1(E) € (0, 1) such that if ¢ > 0 is sufficiently small depending on E,
then
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4
1

/ L 2L DM+ S1g™ P dx = Ei(E). (8.34)
s, =0 r

Proof Since the whole proof will take place on {r = 1}, we will ignore the

difference between {t = 1} and R*. In this case, note that S 11 7V ={1}x B, (0)
for any y € (0, 1). Furthermore, as the argument is the same for each n, we
will henceforth suppress n for simplicity.

There are two scenarios to consider:

A. Nontrivial kinetic energy. 2_2k|§2—k * D (x)] > %e(E ), or
B. Nontrivial potential energy. 2*k|§27k * ¢ (x)| > %e(E ).

We first treat Scenario A. By Cauchy-Schwarz,

1/2
1 _
5es/z 2";2k(y>|Dt¢(x—y>|dys(/ |Dt¢|2dJ’) ,
Bsz(x)

where we also used supp¢ C Bj(0). Hence in Case 2, (8.34) immediately
follows by taking y; > y + 27k 5o that {1} x By« (x) C Sll_yl. Note that we
may still ensure that y; < 1 thanks to (8.18).

Now assume that Case 1 holds, i.e., k < K. Splitting the convolution integral
into fsll—yl + fsl\sll—yl —|—fR4\S1, applying Cauchy-Schwarz and using (8.9),
(8.10), we have

1/2
es (/ |Dt¢|2dy) +eo(E? + e B2,
Sl

where

12
co(y1) == (/S s g F )2 dy)
1

< 272 (Sl\s}‘”) N By« (x)[/2,

By elementary geometry and the assumption k < K, it follows that the last
term is bounded by < (1 — y1)!/227%/2 uniformly in x. Taking y; sufficiently
close to 1, the desired conclusion follows.

We now consider Scenario B. We repeat the above argument with D;¢
replaced by ¢, while putting ¢, [resp. ¢] in L43 [resp. L*] instead of L?
[resp. L?]. Then in Case 1,
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1/4
es / lpl*dy ) . (8.35)
Bz—k (x)

1

7
[ S (/Slyl |¢|4 dy) + Cl(yl)”(bllLi(Rﬂ + ”¢”L§(R4\Sl)’ (836)
1

whereas in Case 2,

with c1(y1) < (1 — y1)3/4273K/4 The desired conclusion then follows

from (8.9), (8.10), the diamagnetic inequality (Lemma 8.2) and the localized
Sobolev inequalities

s 1/2
2
I lzsca.on S { 2209 W20 |+
j=1
1/2

2
1/l 24 @\, 0 S Z 19; FII72 w4\ 5, 0 ;
j=1

1

|x|

L%(B,(0)) ’

which hold with a uniform constant for any r > 0.

To prove the preceding two inequalities, it suffices to consider the case r = 1
by scaling invariance. The first inequality is an immediate consequence of the
standard inequality || f || .4 (5, (o)) < ||f||H1(Bl(O)) + 1 /1l 2(B, (0y)- To prove the
second inequality, we extend f to R*. Using the standard extension operator
from f on B3(0)\Bi(0), the global extension f on R* can be chosen so that
f = f onR*\B;(0) and

1A e s0n S W et syonsi0) S I @By 0)) T ”ﬁf”LZ(R“\Bl(m)-

Using localized Hardy’s inequality in Lemma 5.8, the second term on the right-
hand side may be bounded by the first term. The desired localized Sobolev
inequality now follows from the usual Sobolev embedding H' € L*. O

Combining Lemmas 8.7 and 8.9, it follows that any sequence (A, ¢)
of admissible C;H! solutions to (MKG) constructed by Lemma 8.4 obeys the

uniform lower bound (8.34) in a time-like region § 11 " forsome y; = y1(E) €
(0, 1). The uniform lower bound in a time-like region can be propagated
towards ¢ = 0 using the localized monotonicity formula in Proposition 5.5.

Lemma 8.10 Ler (A™, ¢™) be a sequence of admissible C;H' solutions to
(MKG) satisfying the conclusions of Lemma 8.4. Assume furthermore that
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each (A(n), ¢(")) obeys (8.34). Then there exist Ey = E>(E) > 0 and y» =
v (E) € (0, 1) such that

1 1

/ . X pr[AM oM dx > Ey(E) foreveryt € [s,% , g,;‘]. (8.37)
St

Proof Fixnand tg € [8,1,/ 2, 8,1,/ 4]. Applying Proposition 5.5 with e = ¢,,, 8o =
(1 —y2)to and 61 = Mg, where y» € (0, 1) and M > 1 will be chosen below,
we obtain

(Xo) (Xo)
/Sil'l(l—yz)to PriA. ¢ldx = / Pr[A, ¢]dx

S(l 210

+ C((M(l — )2 + |log M|—1)E. (8.38)

On the other hand, by Lemma 5.10 (in particular, the expression for (X0) Py =
%((X") P + X)) and (8.34), we have

ELS-mt [ pria glds
Sl

Hence choosing M sufficiently large and y» close enough to 1 to make the last

term in (8.38) small, (8.37) follows with E, = cE(1 — yl)% for some ¢ > 0.
O

8.4 Final rescaling

So far, under the assumption that Theorem 1.3 fails, we have shown the exis-
tence of a sequence of solutions (A™, gb(”)) that satisfies the conclusions of
Lemma 8.4 and a uniform lower bound (8.37) in a time-like region. By Propo-
sition 5.4, the sequence moreover obeys the uniform space-time bound

1 1 2
J[ ot R - (D§?3 + —) o
C[sn 1] 105n 8n n Pen

Our next goal is to upgrade (8.39) to asymptotic self-similarity by a rescaling
argument.

drdx < E.  (8.39)

Lemma 8.11 Suppose that Theorem 1.3 fails. Then there exists a sequence
of admissible C/H! solutions (A™, qb(”)) on [1,T,] x R* with T, — o0
satisfying the following properties:
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(1) Bounded energy in the cone
Es, [A(”), ¢<">] <E, foreveryt €[l,T,], (8.40)

(2) Small energy outside the cone

1
Eupeanns, [T 0] = oE foreveryr (LT, 84D

(3) Nontrivial energy in a time-like region
/(1 L, Xopy [A(”),qﬁ(”)] dx > Ey foreveryt € [1,T,], (8.42)
s,
(4) Asymptotic self-similarity

1
[ ixoror+ ‘(Dﬁ?g + —) "
K o

for every compact subset K of the interior of C[ o)

Proof Let (A™ | ¢™) be a sequence of solutions satisfying the conclusions
of Lemmas 8.4 and 8.10. Consider the time interval [sn/ 2 el 4] on which
(8.37) applies. Given T, > 1, we partition &, in to dyadic 1nterva1s of the
form I = [T} ey, T/ e 1/2] there are roughly |log ¢,,|/ log T, many such
intervals. We choose T}, so that log 7, ~ |loge,|'/%. Observe that T, — oo.

Also, by the pigeonhole principle applied to (8.39), there exists j (n) such that

1 1 2
/ / Lo, FOP 4L (DE?) +—) 9"
o Pey Pey en Pey,

log Ty, 1
<2 pa E,
| log &n| |log e, |/

drdx

(8.44)

which decays to 0 as n — oo.
We now rescale C o to Cyy,7,,1; abusing the notation a bit (but conforming

to the statement of the lemma), we denote the rescaled solutions again by
(A, ™). From (8.9) and (8.10) with &% < 15, (8.40) and (8.41) follow.
Also, (8.42) is a consequence of (8.37). Furthermore, (8.44) implies
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1 1
[l e 2o )
C[1 Tnl 108 Pe! én pé‘,@

n
1
where &), le, obeys e < sn/ — 0. For any compact subset

K of the interior of Cj ), Which is in particular situated away from the
boundary 9C[1, o), we claim that

1
// (_ILX%G PO |LX°F(H)|2)
2
1 1 1 2
(oo o)
n 8’/1

Indeed, in the coordinates (x° = 7, x!, ..., x*), the left-hand side can be
written in the form

2

dtdx—0 asn— o0

(8.45)

j 1/2 —
= (Tn](n)gn/ )

1
+ | —
Pe!

n

drdx — 0O

// d"" WP+ dS DGO P 4 a1 2 dedx
K

where dl(n)“ Y(t, x), dé")“ (t,x) and dé") are continuous functions which tend

to 0 pointwisely (hence uniformly) on K, whereas |F),, |, |Dl(f)¢(”)| and |p™|
are uniformly in L2(K) by (8.40), (8.41) and Hardy’s inequality. By Holder’s
inequality, the claim follows. Then combining the claim with (8.45), we arrive
at the desired asymptotic self-similarity (8.43). O

8.5 Concentration scales

Let (A", ™) be a sequence of solutions given by Lemma 8.11. We now
present a combinatorial result that establishes the following dichotomy: Either
there is a uniform non-concentration of energy, or we can identify a sequence
of points and decreasing scales at which energy concentrates.

To state the result, we need few definitions. Foreach j = 1, 2, ... we define

Cji={t.0) € Cli 2 =1 <271,
C

{e.oecy, 2 =<2,
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In words, C; [resp. C ;1 1s the set of points in the truncated cone C [2/,2i+1y at
distance > 1 [resp. > 1/2] from the lateral boundary. For each j > 1, we have
the following lemma.

Lemma 8.12 Let (A™, ¢™) be a sequence of admissible C,H! solutions on
(1, T,] x R* with T, — oo satisfying (8.40)—(8.43) for some E > 0. Let
€o be as in Proposition 6.1. Then for each j = 1,2, ---, after passing to a
subsequence, one of the following alternatives holds:

(1) Concentration of energy. There exist points (t,, X,) € C j» scalesr, — 0
and 0 < r =r(j) < 1/4 such that the following bounds hold:

1
Elty)x By (x) [A(”), ¢(”>] = 5. (8.46)
CO
1
sup (1, }x By, (x) [A("), ¢(")] < —268, (8.47)
xX€B,(x,) CO
th+2ry 2
lexo FYV
4”',1 —2ry /r(xn) ’
- (Dggg + —) ¢<"> drdx — 0 asn — oo, (8.48)
0

(2) Uniform non-concentration of energy. There exists0 <r =r(j) < 1/4
such that the following bounds hold:

(Xo) OIG
/s,“—yz)’ Py [A b ]dx

1
sup  Eqr)x B, (x) [A(")’ ¢ ] < €
(1,x)eC; O

1 2
[l o] o )
Cj P

Here Co > 0 is a universal constant much larger than the implicit constants
in Lemma 4.5.

v

Ey forte[2/,2/%h),  (8.49)

(8.50)

dtdx — 0 asn — oo.

(8.51)

Proof This lemma is essentially [33, Lemma 6.3]; for completeness we give
a self-contained alternative proof, which relies on the use of the Hardy-
Littlewood maximal function theorem to establish (8.48).

Step I Fix j € {1,2,...}. We begin by identifying a ‘low energy barrier’
around C; inside C;. Let N > 0 be a large integer to be determined later. We
first partition the time interval [2/,2/ Jr1) into smaller intervals I, where
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k=1 _. k
Ik::[Zf—i- 20 +

k=1,...,10N2/.
10N 10N

Accordingly, define C(/? =C; N x R*) and 6? = 6,- N (I x R*). Next,
we partition C’;\C’; into UQ’ZI CI;’Z, where
1 -1 1 12

~k,l ~k
=l xyelh: -+~ <i- S be=1,. N
j {( NeCiiyt oy < |x|<2+2N}

For each n and k, we claim that there exists 1 < £(n, k) < N such that

3
SUp € ik [A(”), ¢(”)] < E (8.52)
rel, S,ﬂCj N

Indeed, for each k consider the left endpoint 7;, := 204+ k=1 /(10N). The
set Sy, N (6§\C§) is partitioned into N annuli of the form §;, N che. By the
pigeonhole principle and the energy bound (8.40), there exists 1 < £(n, k) <
N — 2 such that

0(n,k)+2

3
_ n) 4 (n)
E gStJ(ﬂCf’[ |:A , ¢ ] < NE.
=L(n,k)

As CX40) Jies in the domain of dependence of Uﬁféﬁﬁ?SQ N 5?’6, (8.52)
now fjollows by the local conservation of energy.
We choose N large enough so that

31,
—F < —260.
NT T

Hence, by (8.52), Ef’e(n’k) serves as a ‘low energy barrier’ that separates the
~k,<l(n,k) L(n,k)—1

behavior of the solution in the interior C i = (U, Ejﬁ) U Cf

from the outside. Fix ro = ﬁ, sothat) < ry < 1/4 and

~k,<l(n,k) ~k,<l(n,k) , , ~k.L(n.k) 1/2
(1,%) € C; = {t} X By (x) € C; UC; < Cli/2.00)

(8.53)

Step 2 For each n and k, define f, x : [0, ro] x Ix — [0, 00) by
Fok 1) = sup { €m0 A®, 601 1 (1, x) € 0L
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We then define the lowest energy concentration scale r, (¢) as

: . 1 21 1 2
ro otherwise.
(8.54)

We claim that each r,  is Lipschitz continuous with a universal constant
cr > 0,1.e.,

[rnk(t1) — rak(to)] < cplti —to| forty, t1 € Ii.

The key idea is to use the finite speed of propagation, or equivalently, local
conservation of energy. Let 7, t; € Ix with 1y < t;. Consider first the case
when 7, x(fo) > r,.k(t1). For convenience, we introduce the shorthand r :=
rm.k(t1). When 7 = rg, then necessarily r, (f9) = ro and (8.5) holds trivially.

If 7 < rg, then there ex1sts x; € R?* such that (11, x]) € Ck <t and

Eir)x B~ [AW pM] = C2 60 By local conservation of energy, it follows that

1
g{t<)}><37+(t1—t0)(x1) [A(n)’ d’(n)] = S{fl}X37 [A(n)’ ¢(n)] = C—62
0

~k,<t(n, k)

If (9, x1) € c" <t00) then ry x(fo) < F + (11 — t0). If (19, x1) ¢ ct

~k,<€(n,k)

then by elementary geometry there exists (¢, xo) € C such that |x1 —

xo| < t; — to. Hence the energy of (A™, qb(”)) on {to} X Brio(t—19)(X0) 18
bounded from below by 260, which implies r, x(f0) < 7 + 2(t; — tp) in

general. Treating the other case r,, (o) > ry x(f1) in a similar way, it follows
that (8.5) holds with ¢;, = 2.

We now proceed to the proof of of the lemma. We first treat the case when
there exists a common lower bound 0 < r(j) < ro of ryx, i.e., rp k() >
r(j) for all n, k and ¢ € I. Unraveling the definition of r, ;, we see that
(8.50) holds. Moreover, (8.49) and (8.51) follow directly from (8.42) and
(8.43), respectively. Thus we conclude that the second scenario (uniform non-
concentration of energy) holds.

To complete the proof, it only remains to consider the alternative case and
show that the first scenario (concentration of energy) holds. After passing to a

subsequence, we may assume that there exists k € {1, ..., 10N 21} such that
lim infr,, =0. (8.55)
n—o0 [
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Then we claim that there exist (¢,,, x,,) and r;, such that (8.46)—(8.48) hold with
r(j) = ro, up to passing to a subsequence.

Define
2j+2
o? :=/. B2(1)dt,
2i-1
1 2
B2 (1) ;:/ o FOP+ (DY) + =) o™ dx.

s,nc/? o p

1 [1/2,00)

Note that @2 — 0 by (8.43). By the Hardy-Littlewood maximal function
theorem, for every « > 0 we have

te27 2 M B (0) > af| S laﬁ, (8.56)
o

where M[B,](t) is the Hardy-Littlewood maximal function on [2/~!, 27%2),
given by

1
M[B,1(1) := sup — - Br)Hdr.
a>0 24 J(t—a,1+a)n[2i-1,2i+2)

Roughly speaking (8.56) says that the desired conclusion (8.48) holds for
‘mostof” ¢ € Ir. This fact, combined with the flexibility of the choice of #,, such
that lim,, o0 7k (t,) = 0, will lead to the desired conclusions (8.46)—(8.48).

More precisely, define the intervals J,,, K, € I by

— 1/2 - 1/2
Jo={t € I : MIB21() < @}, Ky i= (n — a2 T+ an/) N I,

where 7, € Iy is a minimum of r,, i, i.e., rp k(t,) = infy, r, x. By the uniform
Lipschitz continuity of r, x and the fact that oz,zl — 0 asn — oo, we have

sup rp x(t) = 0 asn — oo.
tek,

Note that |It\J,| < o, by (8.56) with & = a,, whereas |K,| = 2>, Using
again the fact that oz% — 0asn — oo and passing to a subsequence, it follows
that J, N K, # @ for all n. Choosing ¢, so thatt#, € J,NK, and r, := r, k(t,),
we have

th+a

sup — B2(t)dr — 0, ry=rui(ty) = 0 asn — oo.
a>0 2a th—a
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With the choice r(j) = rg, (8.48) follows from (8.53) and the previous state-
ment. Passing to a subsequence if necessary, we may assume thatr, x(f,) < ro;
then there exists (¢,, x,) € Ch =400 guch that (8.46) holds for all n as well.
Finally, thanks to the low energy barrier (8.53) and the definition of r,, ¢, (8.47)
follows with r(j) = ryp. |

8.6 Compactness/rigidity argument

We are now ready to complete the proof of Theorem 1.3, by using the tools
developed in Sects. 6 and 7.

Completion of proof of Theorem 1.3 Let (A, ¢™) be a sequence of admis-
sible C,H! solutions on [1, 7,,] x R* given by Lemma 8.11. We consider two
cases according to Lemma 8.12, and show that both lead to contradictions.

Case 1 Suppose that there exists j € {1, 2, ...} such that the first scenario
(concentration of energy) in Lemma 8.12 holds. We need to set things up so
that we can use Proposition 6.1, and for that we also need local control of the
L? norm of ¢. This is achieved via the improved form of Hardy’s inequality
in Lemma 4.5. From (8.47), we obtain

@) 1" @l (s

) < ce% + CU_ZE,

80— 1ry

with a universal constant ¢ < 1 and a parameter o > 2 to be specified. To
eliminate the second term, we choose o so that

CoE = c€}.

Thus we have insured that the hypothesis of Proposition 6.1 are satisfied with
respect to the rescaled ball B, -1 . (x) with x as in (8.47), i.e.,

— -2
g{tn}Xngflrn (x) I:A(”l)’ ¢(n)] + (O— lrn) ||¢(I‘l) (tl’l)”i%(Bg 1. (x) = E(%
(8.57)

for every x € By () (xn).
As C;j is pre-compact, we may assume that (z,, x,,) has a limit (7o, xp) in
the closure of C; after passing to a subsequence. Consider the sequence

(A™ ™Y1, x) =01 r,(A™, ™) (U_Irnt +tp, 0 trax + Xn) .
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By (8.46), there is always a nontrivial amount of energy at the origin, i.e.,

S |
E(0)x B, (0) [A("’, ¢(”)] = FE‘%' (8.58)
0

Fix any x € R*. As r, — 0, observe that the point o lrpx + x, belongs to
B, (j)(xy) for sufficiently large n. Hence, by (8.57), we have

E(0}x By (x) [Av("), 5(")] + [l (O)Hiﬁ(Bg(x)) < eg for sufficiently large n.
(8.59)

Finally, by (8.48), the convergence (,, x,) — (o, Xxo) and smoothness of Xy,
it follows that

// — iy FOP2 + DWW ™ PP drdx — 0 asn — oo, (8.60)
(=2,2)x B2 (x)

where Y = X(to, xo) is a constant time-like vector field. Note that the con-
tribution of the term %qb(”) drops out by scaling.

As a consequence, for each x € R* we can apply Proposition 6.1 to obtain
a weak solution (A[x], ¢x) € X*((—1, 1) x Bi(x)) to (MKG) such that

tyFix) =0, Dpyyong =0,

and (A™, ™) converges to (A[x], ¢1x]) up to gauge transformations on
(—1,1) x By(x) as in (6.3), (6.4). By Lemma 6.15, the weak solutions
(Ax], @1x)) form weak compatible pairs (as in Definition 6.13) on the open
cover {(—1, 1) x B1(x)},¢q1/2)z4 of (=1, 1) x R*. Furthermore, by Proposi-
tion 7.3, there exists an equivalent set of smooth compatible pairs (A4, P[«])
on some refined open cover Q = {Qg} of (—1, 1) x R*.

Let (A, ¢) be a global smooth pairon (—1, 1) x R4 equivalent to (A, P[a])-
We then extend (A, ¢) to R!** as a smooth solution to (MKG) satisfying
ty FF =0 and Dy¢ = 0 by pulling back along the flow of Y.

Note that (A, ¢) has finite energy (in fact, bounded by < E), as we have

T T T T <ol 4

™ g [A<">, ¢><">] — M A, ¢] locallyin L] on (1, 1) x R
(8.61)
by (6.4) and the gauge invariance of the energy density (7) J7. After applying
a suitable Lorentz transform, we may furthermore assume that Y = 7. By

Proposition 7.1, it follows that £[A, ¢] = 0, but this contradicts (8.58) and
(8.61).
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Case 2 Suppose that for every j € {1,2,...} the second scenario (uniform
non-concentration of energy) in Lemma 8.12 holds. The goal in this case is
to apply results in Sect. 6 to extract a smooth nontrivial self-similar solution
with finite energy, which would contradict Proposition 7.2.

Fix j € {1,2, ...} and consider any point (¢, x) € C[Zz’oo) N C;. By (8.50)
and Lemma 4.5, where o > 2 is chosen as in Case 1, we obtain the following
analogue of (8.57):

EreByy 1,0 [ AP |+ @GN 1 e =€
X o r(j
(8.62)

Since (¢, x) belongs to the smaller cone C [22700), we have

Kl = (=207 ()t + 20717 ()) X Bgomip(j) @)
CCj-1UC;jUCjyy.

Therefore, by (8.51) we have

fl ol

[t x]

— 0 asn — oo.

Applying Proposition 6.1 to (A™, ™) on the space-time cylinder K.
we obtain a limit (A ], @[r,x]) € Xw(K

[£.x]°
]) (up to gauge transformations

[t,x
and passmg to a subsequence) on a smaller space-time cylinder K[t x =
(t— r(]), t+o~ r(])) X Bg_lr(j)(x), which is a weak solution to (MKG)

obeying
1
txoFli,x1 =0, | Dpoxixe + - Orr,x) = 0.

The cylinders {K[J;x]} forj e {1,2,...}and (¢, x) € C[227OO)OC]- form an open
cover of the cone C[22,oo)‘ By Lemma 6.15, the weak solutions (A x1, @[z,x])

form weak compatible pairs on {K I, x]}. Then by Proposition 7.3, these pairs
are equivalent to a set of smooth compatible pairs in some refined open cover
of Cpy z 00)? which in turn is equivalent to a single global smooth pair (A, ¢) on
C 22 o)’ thanks to the fact that C2 2.00) is contractible. By construction, the pair
(A ¢) satisfies the following propertles
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e The pair (A, ¢) is a smooth solution to (MKG) obeying the self-similarity
condition

1 1
LX()F =0, (DXO + _) ¢ = _DXO(,O¢) = 0.
P P
e The following local convergences hold:

2,00)°

@ yr [Av("), 5(”)] DA, ¢] locally in Ltl’x on C[2
(8.63)

Xo) p,. [Z(”), (E(”)] — X Pr[A, ¢] locally in L,{x on C[Zz,oo).
(8.64)

We extend (A, ¢) to a smooth self-similar solution to (MKG) on the whole
cone C(0,00) = {0 <r <t} by pulling back (A, p¢) along the flow of Xj.
Note that (A, ¢) has finite energy (again bounded by < E), thanks to the local
convergence (8.63). Hence by Proposition 7.2, it follows that £s,[A, ¢] = 0
forevery t € (0, co). However, this is a contradiction with (8.49) (in particular,

for large enough ¢ so that St(l_n)t - C[22 Oo)) and (8.64). |
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