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Abstract We construct a family {Φt }t∈[0,1] of homeomorphisms of the two-
torus isotopic to the identity, for which all of the rotation sets ρ(Φt ) can
be described explicitly. We analyze the bifurcations and typical behavior of
rotation sets in the family, providing insight into the general questions of
toral rotation set bifurcations and prevalence. We show that there is a full
measure subset of [0, 1], consisting of infinitely many mutually disjoint non-
trivial closed intervals, on each of which the rotation set mode locks to a
constant polygon with rational vertices; that the generic rotation set in the
Hausdorff topology has infinitely many extreme points, accumulating on a
single totally irrational extreme point at which there is a unique supporting
line; and that, although ρ(Φt ) varies continuously with t , the set of extreme
points of ρ(Φt ) does not. The family also provides examples of rotation sets
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for which an extreme point is not represented by any minimal invariant set, or
by any directional ergodic measure.

Mathematics Subject Classification 37E30 · 37E45

1 Introduction

In the theory of dynamics on manifolds, rotation vectors are used to describe
the asymptotic motion of orbits: the magnitude of the rotation vector gives
the speed of motion, and its direction gives the homology class which best
approximates the motion. Rotation vectors in this form were introduced by
Schwartzman [31] using invariant measures. A topological version was given
by Fried [11], and an elegant synthesis was provided by Mather [23].

The set of all rotation vectors realized by the orbits of a particular dynamical
system is called its rotation set, and gives a (perhaps coarse) invariant of the
total dynamics. Given a class of dynamical systems, there are four natural
questions one can ask about their rotation sets.

I. Shapes. Which sets can be realized as rotation sets?
II. Representatives.Howmuch of the dynamics is revealed by the rotation
set?Are there gooddynamical representatives of every vector in the rotation
set?
III. Bifurcations. How do rotation sets vary in parameterized families?
IV. Prevalence. What does the typical rotation set look like?

The answers to these questions are most completely understood for home-
omorphisms of the circle (the classical case studied by Poincaré and Denjoy),
for degree-one endomorphisms of the circle, and for homeomorphisms of
the annulus isotopic to the identity. In this paper we study homeomorphisms
Φ : T2 → T

2 of the two-dimensional torus which are isotopic to the iden-
tity. Given such a homeomorphism, fix a lift Φ̃ : R2 → R

2 to the universal
cover. The motion of orbits of Φ is measured by the displacement cocycle
dis : T2 × Z → R

2 given by

dis(z, r) = Φ̃r (z̃) − z̃,

which is independent of the choice z̃ of lift of z. The rotation vector of a point
z ∈ T

2 is given by

ρ(z) = lim
r→∞

dis(z, r)

r
∈ R

2

when this limit exists. The pointwise rotation set of Φ can then be defined by

ρp(Φ) = {ρ(z) : z ∈ T
2, ρ(z) exists}.
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New rotation sets in a family of torus homeomorphisms 897

The effect of changing the lift Φ̃ ofΦ is to translate ρp(Φ) by an integer vector,
but all of the torus homeomorphisms we consider will have natural preferred
lifts, and we suppress this dependence.

The pointwise rotation set is difficult to work with a priori, andMisiurewicz
and Ziemian [25] introduced the now standard definition of what we refer to
as the Misiurewicz–Ziemian rotation set, which in most situations is easier to
work with and has better properties:

ρMZ(Φ) =
{

v ∈ R
2 : dis(zi , ri )

ri
→ v for some sequences (zi ) in T

2

and (ri ) in N with ri → ∞
}

. (1)

For example, it is immediate from the definition that ρMZ(Φ) is a compact
subset of R2.

Misiurewicz and Ziemian also proved that ρMZ(Φ) is convex, giving rise to
a basic trichotomy: ρMZ(Φ) is either a point, or a line segment, or has interior.
Much of the early work on rotation sets focused on the third case, while in
recent years there has been substantial progress on the first two cases. In this
paper we consider only rotation sets ρMZ(Φ) with interior.

Calculating the rotation set of a specific homeomorphism Φ is difficult
in general. For this reason, most work has either concentrated on general
properties of rotation sets, or on the careful construction of examples of home-
omorphisms whose rotation sets have certain properties. In this paper we give
what we believe to be the first construction of a nontrivial family {Φt }t∈[0,1] of
homeomorphisms whose rotation sets can be described explicitly. We classify
and describe all of the (uncountably many) different rotation sets ρMZ(Φt ) and
their bifurcations with the parameter t . We are therefore able to give answers
to the four questions above for the rotation sets in this family. In particular, the
family yields the first new examples of rotation sets in the literature since the
work of Kwapisz in the 1990s. We prove that, in fact, these new rotation sets
are typical in the sense that they contain a residual set in the collection of all
rotation sets in the family with the Hausdorff topology.

While the construction of the family is carried out in such a way as to
make the calculation of rotation sets possible, it is not targeted to produce
any particular behavior. The phenomena which we describe therefore occur
naturally within the family. The systematic study of parametrized families of
maps has led to enormous progress in the study of dynamical systems. The
complete description given here of all the rotation sets in our family provides
valuable insights into the possible structures and bifurcations of torus rotation
sets and motivates questions and conjectures about the answers to the four
questions in the general case: see Sect. 9.
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We now give a summary of the main results of the paper, together with
a description of some relevant results of other authors. In broad outline the
rotation sets in the family conformwith thewell known behavior of the rotation
numbers of generic families of circle homeomorphisms: for parameters that
are buried points in a Cantor setB ⊂ [0, 1], the rotation number is irrational,
while in the closure of each complementary gap of B the rotation number
mode locks at a rational value. The analog of rational rotation number for
rotation sets is for the rotation set to be a polygon with rational vertices, while
the analog of irrational rotation number is for the rotation set to have infinitely
many extreme points, some of which are irrational.

Question I. Shapes. In order to describe the types of rotation set realized by
the family, we need some definitions. An extreme point of a convex subset of
the plane is called a vertex if it hasmultiple supporting lines, and a smooth point
otherwise. A vertex is polygonal if it has a neighborhood in the rotation set
which is isometric to the neighborhood of a vertex of a polygon. An irrational
vector v = (v1, v2) ∈ R

2 is planar totally irrational if v1, v2, and 1 are ratio-
nally independent (i.e. if translation by v induces a minimal homeomorphism
of the torus), and partially irrational otherwise.

There are three types of rotation set ρMZ(Φt ) (see Theorem 5):

– Rational regular: The rotation set is a convex polygon with rational ver-
tices (Fig. 1).

– Irrational regular: The rotation set has infinitely many rational polygonal
vertices, which accumulate on a single irrational extreme point (Fig. 2).
This irrational extreme point can be either a vertex or a smooth point, and
can be either partially or totally irrational.

– Irrational exceptional:The rotation set has infinitelymany rational polyg-
onal vertices, which accumulate on two irrational extreme points (Fig. 3).
The irrational extreme points are the endpoints of an exceptional interval
in the boundary of ρMZ(Φt ), which has the property that, for all s, it is either
contained in, or disjoint from, ρMZ(Φs).

Polygons with rational vertices are the best understood type of rotation set.
Kwapisz proved [20] that every rational polygon in the plane can be realized
as ρMZ(Φ) for some C∞-diffeomorphism Φ : T2 → T

2.
The first example of a rotation set having an irrational extreme point was

also provided by Kwapisz [21]: he constructed a C1-diffeomorphism whose
rotation set has infinitely many rational polygonal vertices accumulating on
two partially irrational vertices. As far as we are aware, our family provides
the first examples of rotation sets with totally irrational extreme points in the
literature (such rotation sets are in fact generic in the family, as discussed under
question IV below). Crovisier and le Roux (personal communication) have
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New rotation sets in a family of torus homeomorphisms 899

previously constructed such an example starting, like Kwapisz’s construction,
with Denjoy examples on the circle.

Question II. Representatives. The simplest version of this question has an
affirmative answer for every homeomorphism in the family: for every v ∈
ρMZ(Φt ), there is some z ∈ T

2 with rotation vector v, so that ρp(Φt ) = ρMZ(Φt )

(see Theorem 5).
Given this, the next question is whether or not every v ∈ ρMZ(Φt ) is rep-

resented by an entire compact invariant set, ideally one which looks like the
invariant set of the rigid rotation of the torus induced by translation by v. Here
the answer is less straightforward, and we require some definitions.

A minimal set D for a torus homeomorphism Φ is called a v-minimal set
if every element of D has rotation vector v. For a rigid rotation by v, we have
that dis(z, r) − rv = 0 for all z ∈ T

2 and r ∈ N. If this quantity is uniformly
bounded over all z in an invariant subset Z of T2 and all r ∈ N, then Z is
said to have bounded deviation. A v-minimal set with bounded deviation is
called a v-rotational set. Jäger [15] showed that a v-rotational set is indeed
dynamically similar to rigid rotation: if v is irrational, then a v-rotational set
is always semi-conjugate to rigid translation on either the torus (if v is totally
irrational) or the circle (if v is partially irrational).

When v is rational, a theorem of Franks [10] states that there is a periodic
point z with ρ(z) = v: in particular, its orbit is a v-rotational set. It follows
from a result of Parwani [29] that this periodic orbit can be chosen to have
the same topological type as a periodic orbit of the rigid rotation induced by
translation by v.

Misiurewicz andZiemian [26] show that everyv in the interior of the rotation
set of an arbitrary homeomorphism is represented by a v-rotational set; and that
there exist homeomorphisms Φ for which ρMZ(Φ) is a polygon with rational
vertices, with the property that some vectors v on the boundary of ρMZ(Φ) are
not represented by any v-minimal set.

In view of these results, the only question remaining concerns the exis-
tence of dynamical representatives of irrational points v in the boundary of
ρMZ(Φt ). The answer to this question depends on the type of the rotation set
(see Theorem 9).

– Rational regular: Every v ∈ ρMZ(Φt ) is represented by a v-rotational set.
– Irrational regular: Every v ∈ ρMZ(Φt ) except perhaps for the irrational
extreme point is represented by a v-rotational set. The irrational extreme
point is always represented by a uniquely ergodic v-minimal set, but this
set sometimes does not have bounded deviation.

– Irrational exceptional: Every v ∈ ρMZ(Φt ) except for elements of the
exceptional interval P is represented by a v-rotational set. There are no
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900 P. Boyland et al.

v-minimal sets for any v ∈ P: however, there is a minimal set D such
that ρMZ(D, Φt ) = P , where ρMZ(D, Φt ) is defined as in (1) but with the
sequence (zi ) in D. As a consequence,Φt |D is not uniquely ergodic, and in
fact it has exactly two ergodic invariant Borel measures. Irrational excep-
tional homeomorphisms therefore provide examples in which there is an
extreme point v of the rotation set with the property that the support of its
representing ergodic measure contains points whose rotation vector differs
from v. Such measures are called lost in the terminology of Geller and
Misiurewicz [13] (cf. [16,17]).

The relationship between these results and recent work of Addas-Zanata [2]
and Le Calvez and Tal [22] is also worth noting: see Remark 9(c).

Question III. Bifurcations. The bifurcation set B ⊂ [0, 1], on which ρMZ(Φt )

is not locally constant, is a Cantor set of Lebesgue measure zero. The set of
rational regular parameters is the union of the closures of the complementary
gaps of B, with different gaps corresponding to different rational polygo-
nal rotation sets. Irrational parameters are buried points of B: both irrational
regular and irrational exceptional parameters are dense in B.

A theorem of Misiurewicz and Ziemian [26] guarantees that ρMZ(Φt ) varies
continuously (in the Hausdorff topology) with t . Tal and Zanata pointed out
that Hausdorff continuity of the set of extreme points of ρMZ(Φt ) is a stronger
property, and asked whether the family {Φt } has this stronger property. It does
not: the map from t to the set of extreme points of ρMZ(Φt ) is discontinuous
exactly at irrational exceptional parameters, and at the right hand endpoints of
the complementary gaps of B (see Theorem 5).

The first example of discontinuity of the set of extreme points of a rotation
set with interior was constructed by Tal (personal communication).

Question IV. Prevalence.From the point of viewof the parameter t , the typical
rotation set is a rational polygon: this is the rational regular case, which occurs
in the union of the closures of the complementary gaps ofB, that is, on a full
measure setwhich contains anopendense subset of [0, 1]. This is in accordwith
a result of Passeggi [30]which states that theC0-typical torus homeomorphism
has a rotation set that is a (perhaps degenerate) rational polygon.

An alternative point of view on the relative abundance of the various types
of rotation set is provided by examining the collection of all rotation sets
in the family with the Hausdorff topology. This space is homeomorphic to
a compact interval R. Each of the three types of rotation set is dense in R.
However the typical rotation set (in the sense that the collection of such rotation
sets contains a dense Gδ subset of R) is of irrational regular type, having
an irrational extreme point which is both totally irrational and smooth (see
Theorem 5).
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New rotation sets in a family of torus homeomorphisms 901

2 Outline of the paper

The family {Φt } is constructed from a family { ft } of continuous self-maps of
the figure eight space, in such a way that the rotation sets ofΦt and ft agree for
all t . The rotation sets of the maps ft can in turn be described in terms of digit
frequency sets of associated symbolic β-shifts, which were analysed in [7].

We will therefore study rotation sets in three different contexts: torus home-
omorphisms, maps of the figure eight space, and symbolic β-shifts. In Sect. 3
we briefly cover relevant definitions and results from general rotation theory.
Necessary results from [7] about digit frequency sets are summarized in Sect. 4.

In Sect. 5 the family { ft } is constructed, and the rotation sets ρMZ( ft ) are
calculated.Theorem3 is themain statement about the structure of these rotation
sets (and hence about the structure of the rotation sets ρMZ(Φt ) = ρMZ( ft )).

In Sect. 6 we use a theorem from [5] to unwrap the family { ft } to the family
of torus homeomorphisms {Φt }. Results about dynamical representatives are
contained in Sect. 7 (dealing with symbolic β-shifts) and Sect. 8 (dealing
with the families { ft } and {Φt }). Finally, in Sect. 9, we pose some questions
motivated by the phenomena observed in the family.

For each n ≥ 3, similar techniques can be used to construct families of
homeomorphisms of the n-torus Tn whose rotation sets behave analogously
to those of the family {Φt }: see Remark 4.

The rotation set ρMZ(Φt ) can be calculated explicitly for each value of the
parameter t , using the algorithm given in [7] for determining digit frequency
sets. In the irrational case, this means that the sequences of (rational) extreme
points around the boundary of ρMZ(Φt ), moving either clockwise or counter-
clockwise from the extreme point (0, 0), can be listed as far as computational
accuracy permits. Figure 1 depicts the rational regular rotation set at t = 3/4,
which is a quadrilateral with vertices (0, 0), (2/3, 0), (3/5, 1/5), and (0, 1/2)
(the dotted lines indicate the rotation set ρMZ(Φ1), which has extreme points
(0, 0), (1, 0) and (0, 1/2)). Figure 2 depicts an irrational regular rotation set at
t � 0.4093, with a single limiting extreme point which is smooth and totally
irrational (the generic case). Finally, Fig. 3 depicts an irrational exceptional
rotation set at t � 0.0811, which has two limiting irrational extreme points
bounding an exceptional interval.

3 Preliminaries

3.1 Convex subsets of Rn

We start by fixing some terminology and notation associated with compact
convex subsets of Rn , since there is considerable variance in the literature.

H (Rn) will denote the set of all non-empty compact subsets of Rn with
the Hausdorff topology. The convex hull, topological boundary, and interior
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0

1/2

1

Fig. 1 The rational regular rotation set ρMZ(Φ3/4)

0

1/2

1

Fig. 2 An irrational regular rotation set at t � 0.4093

0

1/2

1

Fig. 3 An irrational exceptional rotation set at t � 0.0811

of an element Λ of H (Rn) will be denoted Conv(Λ), Bd(Λ), and Int(Λ)

respectively.
A point v of Bd(Λ) is said to be extreme if Λ − {v} is also a convex set; the

set of all extreme points of Λ will be denoted Ex(Λ). A point v ∈ Ex(Λ) is a
polyhedral vertex if Bd(Λ) is locally isometric to the vertex of a polytope at
v. A limit extreme point is a limit point of Ex(Λ).

In the case n = 2, a point v ∈ Ex(Λ) is said to be smooth if Λ has a unique
supporting line at v; and to be a vertex otherwise.
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New rotation sets in a family of torus homeomorphisms 903

3.2 Rotation theory

In order to determine the rotation sets of the family {Φt } of torus homeomor-
phisms, we will also need to study the collection of all averages of observables
on two other dynamical systems: symbolic β-shifts, and continuous maps of
the figure eight space. This study was termed rotation theory by Misiurewicz
[24]. In this section we summarize the basic definitions and results which we
will need.

Let Z be a compact metric space, with dynamics given by a continuous map
g : Z → Z . We will be interested in asymptotic averages of a bounded and
Borel measurable observableφ : Z → R

k . To this end, we define an associated
dynamical cocycle over g, denoted φg : Z × N → R

k , by

φg(z, r) = φ(z) + φ(g(z)) + · · · + φ(gr−1(z)).

The Birkhoff average of the observable, when it exists, is given by

φ̂g(z) = lim
r→∞

φg(z, r)

r
,

and the pointwise rotation set of g with respect to the observable φ is defined
by

rot p(Z , g, φ) = {φ̂g(z) : z ∈ Z , φ̂g(z) exists}.

Misiurewicz and Ziemian [25] gave an alternative definition of the rotation
set, which takes into account asymptotic averages along subsequences:

rotMZ(Z , g, φ) =
{

v ∈ R
k : φg(zi , ri )

ri
→ v

for some sequences (zi ) in Z and (ri ) in N with ri →∞
}

.

It is evident that rotMZ(Z , g, φ) is compact, whereas rot p(Z , g, φ) need not be.
Let M (g) denote the set of g-invariant Borel probability measures on Z ,

and Me(g) the subset of ergodic measures. Given μ ∈ M (g), we write
rot(μ, g, φ) = ∫

φ dμ for the μ-average of φ. The measure rotation set
and ergodic measure rotation set are defined by

rotm(Z , g, φ) = {rot(μ, g, φ) : μ ∈ M (g)}, and

rotem(Z , g, φ) = {rot(μ, g, φ) : μ ∈ Me(g)}.
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904 P. Boyland et al.

There are inclusions

rotem(Z , g, φ) ⊂ rot p(Z , g, φ) ⊂ rotMZ(Z , g, φ), (2)

the former coming from the pointwise ergodic theorem.We shall also use that

rotm(Z , g, φ) = Conv (rotem(Z , g, φ)) . (3)

The proof of the following lemma, which relates the different definitions
of the rotation set in the case of continuous observables, uses arguments and
techniques from [25] which carry over without substantial change to the more
general context considered here. Brief details are provided for the reader’s
convenience. We write R(g) for the set of recurrent points of g: that is, the set
of points z ∈ Z with the property that gri (z) → z for some sequence ri → ∞.

Lemma 1 (Misiurewicz and Ziemian) Let Z be a compact metric space, and
suppose that g : Z → Z and φ : Z → R

k are continuous.

(a) For each extreme point v of Conv(rotMZ(Z , g, φ)), there is some μ ∈
Me(g) with v = rot(μ, g, φ). In particular, there is a point z ∈ R(g)

with φ̂g(z) = v.

(b) If rot p(Z , g, φ) is convex, then

rotm(Z , g, φ) = rot p(Z , g, φ) = rotMZ(Z , g, φ).

(c)

Conv(rot p(R(g), g, φ)) = Conv(rotMZ(Z , g, φ)).

In particular, if W is a g-invariant subset of Z containing R(g), and
rot p(W, g, φ) is convex, then

rot p(W, g, φ) = rotMZ(Z , g, φ).

Proof The first statement of (a) is proved in exactly the same way as Theo-
rem 2.4 of [25], and the second statement follows from the pointwise ergodic
theorem and Poincaré recurrence.

Part (b) follows from the observation that, if rot p(Z , g, φ) is convex, then

rotm(Z , g, φ) ⊂ rot p(Z , g, φ) ⊂ rotMZ(Z , g, φ) ⊂ Conv(rotMZ(Z , g, φ))

⊂ rotm(Z , g, φ),

where the first inclusion comes from taking convex hulls in (2) and using
(3) and the convexity of rot p(Z , g, φ); the second comes from (2); the third is
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New rotation sets in a family of torus homeomorphisms 905

trivial; and the last comes from part (a), the convexity of rotm(Z , g, φ), and the
fact that, since rotMZ(Z , g, φ) is a compact subset of Rk , Conv(rotMZ(Z , g, φ))

is equal to the convex hull of its extreme points.
For the first statement of (c), we have that Conv(rotMZ(Z , g, φ)) ⊂

Conv(rot p(R(g), g, φ)) by part (a). The reverse inclusion holds because
rot p(R(g), g, φ) ⊂ rot p(Z , g, φ) ⊂ rotMZ(Z , g, φ). In particular, if R(g) ⊂
W ⊂ Z and rot p(W, g, φ) is convex, then

Conv(rotMZ(Z , g, φ)) = Conv(rot p(R(g), g, φ)) ⊂ Conv(rot p(W, g, φ))

= rot p(W, g, φ) ⊂ rotMZ(Z , g, φ),

so that rotMZ(Z , g, φ) is also convex, and the second statement follows. �	
Two observables φ, ψ : Z → R

k (and their cocycles φg and ψg) are said to
be cohomologous with respect to g if there is a bounded measurable function
b : Z → R

k satisfying

φ(z) − ψ(z) = b(g(z)) − b(z) for all z ∈ Z (4)

(in other contexts additional regularity conditions are imposed on b, but here
boundedness suffices). This is equivalent (see Theorem 2.9.3 of [18]) to the
existence of a constant C with

‖φg(z, r) − ψg(z, r)‖ < C for all z ∈ Z and r ∈ N. (5)

If φ and ψ are cohomologous then it is immediate from (4) that
rotm(Z , g, φ) = rotm(Z , g, ψ); and from (5) that rot p(Z , g, φ)

= rot p(Z , g, ψ) and rotMZ(Z , g, φ) = rotMZ(Z , g, ψ).
Suppose that g : Z → Z is semi-conjugate to f : Y → Y by the surjective

function h : Z → Y , so that h ◦ g = f ◦ h. Then any observable φ : Y → R
k

on Y can be pulled back to the observable ψ = φ ◦ h on Z , and φ f (h(z), r) =
ψg(z, r) for all z ∈ Z and r ∈ N. Since h is surjective, it follows that

rot p(Z , g, ψ) = rot p(Y, f, φ) and rotMZ(Z , g, ψ) = rotMZ(Y, f, φ). (6)

We will need to understand how rotation sets transform under a very simple
example of an induced (or return) map. Suppose that W ⊂ Z , and that there
is a natural number K with the property that, for every z ∈ Z , there is some
r with 1 ≤ r ≤ K such that gr (z) ∈ W . Define an observable N : W → R

taking values in {1, 2, . . . , K }, by
N (w) = min{r ≥ 1 : gr (w) ∈ W },

and let the return map R : W → W be given by R(w) = gN (w)(w).
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Given an observable φ : Z → R
k , define a corresponding observable

Φ : W → R
k by Φ(w) = φg(w, N (w)). Then for all w ∈ W and r ∈ N

we have ΦR(w, r) = φg(w, NR(w, r)).
Since N is bounded, it follows that the Birkhoff average φ̂g(w) exists if and

only if the limit limn→∞ ΦR(w, n)/NR(w, n) exists, and in this case the two
are equal. Since, moreover, the g-orbit of every point of Z enters W , we have

rot p(Z , g, φ) =
{
lim

r→∞
ΦR(w, r)

NR(w, r)
: w ∈ W, the limit exists

}
. (7)

The following lemma uses this to calculate rot p(Z , g, φ) explicitly in the
simple case of interest here.

Lemma 2 In the situation above, suppose that there is an observable β : W →
Δ ⊂ R


 for some compact convex set Δ; and that there are linear maps
L : R
 → R

k and M : R
 → R such that Φ = L ◦ β and N = M ◦ β.
Let Q : R
 → R

k be given by Q(v) = L(v)/M(v), and suppose that Q|Δ is
injective. Then

rot p(Z , g, φ) = Q (rot p(W, R, β)).

Proof By linearity of L and M we have ΦR(w, r) = L(βR(w, r)) and
NR(w, r) = M(βR(w, r)) for all w ∈ W and r ∈ N. Therefore, by (7),
rot p(Z , g, φ) is the set of all limits of the form limr→∞ Q(βR(w, r)); or,
equivalently, since Q is homogeneous of degree 0, the set of all limits of the
form limr→∞ Q(βR(w, r)/r). On the other hand, rot p(W, R, β) ⊂ Δ is the
set of all limits of the form limr→∞ βR(w, r)/r . Since Q|Δ is injective and
continuous, it is a homeomorphism onto its image, and the result follows. �	

4 Digit frequency sets of β-shifts

In this section we state some results from [7] about the possible frequencies
of symbols (or digits) which can arise for elements of symbolic β-shifts.

Let �+ = {0, 1, 2}N be the one-sided sequence space over the digits 0, 1,
and 2, ordered lexicographically and endowed with the product topology; and
let σ : �+ → �+ be the shift map.

An element w of �+ is said to be maximal if w0 = 2 and σ r (w) ≤ w for
all r ≥ 0. Let Max ⊂ �+ denote the set of all maximal sequences. For each
w ∈ Max, the symbolic β-shift associated to w is the subshift σ : B(w) →
B(w), where

B(w) = {s ∈ �+ : σ r (s) ≤ w for all r ≥ 0}. (8)
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The (continuous) observable of interest is κ : �+ → R
3, defined by κ(w) =

ew0 where {e0, e1, e2} is the standard basis of R3. Therefore κ̂σ (w) ∈ Δ gives
the asymptotic frequency of the digits in w, if it exists. Here

Δ =
{

α ∈ R
3≥0 :

2∑
i=0

αi = 1

}

is the standard 2-simplex.
The collection of digit frequencies realized in the symbolic β-shift B(w) is

DF(w) := rot p(B(w), σ, κ) ⊂ Δ.

We write

D = {DF(w) : w ∈ Max} ⊂ H (Δ)

for the set of all digit frequency sets, equipped (anticipating Theorem 1(a)
below) with the Hausdorff topology and ordered by inclusion.

A vector v ∈ Δ is called irrational if v /∈ Q
3; and is called totally irrational

if there is no non-zero n ∈ Z
3 with n · v = 0.

The following theorem is a summary of results from [7] (see Corollary 17
and Theorems 27, 33, 37, 38, 51, and 54 of that paper).

Theorem 1 (a) DF(w) is a compact, convex subset of Δ for all w ∈ Max.
(b) The map DF : Max → D is continuous and non-decreasing.
(c) There is a partition Max = M1 	 M2 	 M3 with the following properties:

(i) If w ∈ M1, then DF(w) is a polygon with rational vertices and there is
an interval Iw = [u(w), v(w)] ⊂ M1 in Max, with DF(w) = DF(w′)
if and only if w′ ∈ Iw.

(ii) If w ∈ M2, then Ex(DF(w)) consists of infinitely many rational poly-
hedral vertices together with a single irrational limit extreme point.

(iii) If w ∈ M3, then Ex(DF(w)) consists of infinitely many rational poly-
hedral vertices together with two irrational limit extreme points, which
are endpoints of a line segment in Bd(DF(w)).

(iv) Each of M2 and M3 is uncountable, and if w ∈ M2 ∪ M3 then w is not
eventually periodic, and DF(w) �= DF(w′) for all w′ �= w.

(v) The bifurcation set

M2 ∪ M3 ∪
⋃

w∈M1

{u(w), v(w)}

is a Cantor set.

123



908 P. Boyland et al.

(d) D is order-preserving homeomorphic to a compact interval, and each
DF(Mi ) is dense in D .

(e) There is a dense Gδ subset of D, contained in DF(M2), consisting of digit
frequency sets whose limit extreme point is smooth and totally irrational.

(f) The map Ex ◦DF : Max → H (Δ) is discontinuous at each point of M3
and at v(w) for each w ∈ M1; and is continuous elsewhere.

Remark 1 DF(w) = rot p(B(w), σ, κ) = rotMZ(B(w), σ, κ) = rotm(B(w),

σ, κ) by part (a) of the theorem and Lemma 1(b).

5 Rotation sets of a family of maps of the figure eight space

5.1 The family of maps ft : X → X

Let X = S1 ∨ S2 be a wedge of two oriented circles S1 and S2, with respective
lengths 5 and 3, meeting at a vertex v. We use the orientation to define an order
on each of the circles: if x and y belong to the same circle Si , then we say that
x ≤ y if the oriented arc of Si from v to y contains x .

Subdivide the circles S1 and S2 into five and three oriented compact subin-
tervals (edges) of length 1, so that they can be written as edge-paths (see
Fig. 4)

S1 = C c D E e, and

S2 = A B b

(themotivation for this labelling is that the images of edges will be orientation-
preserving or orientation-reversing according as they are denoted with upper
or lower case letters). Define a map f : X → X homotopic to the identity,
which expands each edge uniformly by a factor of either 5 or 3 (depending on
whether its image is S1 or S2), with the oriented edge images given by

Edges in S1 : f (C) = S2, f (c) = S−1
2 , f (D) = S1, f (E) = S1, f (e) = S−1

1 ,

Edges in S2 : f (A) = S2, f (B) = S1, f (b) = S−1
1 , (9)

where S−1
i denotes the circle Si traversed with reversed orientation. See the

upper part of Fig. 4, in which the circles S1 and S2 are drawn horizontally and
vertically respectively, and the images of each circle have been separated for
clarity.

Let p denote the common endpoint of the edges E and e. The parameterized
family of maps ft : X → X is defined by “cutting off” the tip of the transition
E e �→ S1 S−1

1 , as depicted in the lower part of Fig. 4: it is an analog of the
stunted tent family on the interval which, in contrast to the standard tent family,
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v
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Fig. 4 The maps f : X → X and ft : X → X

is full. Define 
, r : [0, 1] → X so that 
(t) and r(t) are the points of E and e
respectively which are distance (5 − 3t)/10 from p: thus f (
(t)) = f (r(t))
for all t; f (
(0)) is the fixed point of f in D; and f (
(1)) = p. Then for each
t ∈ [0, 1], let It = [
(t), r(t)] ⊂ S1. The maps ft : X → X are defined for
t ∈ [0, 1] by

ft (x) =
{

f (x) if x /∈ It ,

f (
(t)) if x ∈ It .

Points of X canbe assigned (perhapsmultiple) itineraries under ft belonging
to the set

�+
8 = {k ∈ {A, B, b, C, c, D, E, e}N : for all r ≥ 0, kr+1 ∈ {A, B, b}

if and only if kr ∈ {A, C, c}}

in the standard way: an element k of �+
8 is an ft -itinerary of x ∈ X if and

only if f r
t (x) ∈ kr for each r ∈ N. (The condition that kr+1 ∈ {A, B, b} if and

only if kr ∈ {A, C, c} comes from the transitions specified in (9).) A point x
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910 P. Boyland et al.

has more than one ft -itinerary if and only if its orbit under ft passes through
an endpoint of one of the defining intervals.

Every k ∈ �+
8 is an f -itinerary of a unique x ∈ X , by the standard argument:

the sets of points of X which have an f -itinerary agreeing with k to r symbols
form a decreasing sequence of non-empty compact sets, whose diameter goes
to zero because of the expansion of f .

5.2 Rotation sets of the maps ft

Let p : X̃ → X be the universal Abelian cover of X , which we represent
as X̃ = (R × Z) ∪ (Z × R) ⊂ R

2, with the coordinates chosen so that
p(R × Z) = S1 and p(Z × R) = S2. For each t ∈ [0, 1], let f̃t : X̃ → X̃ be
the unique lift of ft which fixes each integer lattice point.

The rotation set of ft is defined using the continuous observable γ t : X →
R
2 defined by γ t (x) = f̃t (x̃) − x̃ , where x̃ ∈ X̃ is an arbitrary lift of x ∈ X :

we will study the sets

ρ8(t) = rot p(X, ft , γ
t )

(which will be shown in Theorem 3 below to be equal to rotMZ(X, ft , γ
t ) and

to rotm(X, ft , γ
t )).

In order to calculate rotation sets using symbolic techniques, it is convenient
to use a discrete versionΓ : X → Z

2 ⊂ R
2 of γ t , defined (except at preimages

of v) by

Γ (x) = (0, 0) for x ∈ A ∪ C ∪ c ∪ D,

Γ (x) = (0, 1) for x ∈ B ∪ b, and

Γ (x) = (1, 0) for x ∈ E ∪ e.

For each (m, n) ∈ Z
2, let D(m, n) ⊂ X̃ be the fundamental domain con-

sisting of the points with coordinates (m + x, n) for x ∈ [0, 1) and (m, n + y)

for y ∈ [0, 1). Then (again with the exception of preimages of v, for which the
rotation vector is (0, 0)), if x̃ ∈ D(m, n) then f̃t (x̃) ∈ D((m, n)+Γ (x)), and
hence f̃ r

t (x̃) ∈ D((m, n)+Γ ft (x, r)). It follows that ‖Γ ft (x, r)−γ t
ft
(x, r)‖ is

uniformly bounded over t ∈ [0, 1], x ∈ X , and r ∈ N. Therefore γ t and Γ are
cohomologous with respect to ft , and in particular ρ8(t) = rot p(X, ft , Γ ).

5.3 Invariant subsets

In order to compute the rotation sets ρ8(t) we will make use of successively
smaller ft -invariant subsets of X which carry the entire rotation set, andwenow
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New rotation sets in a family of torus homeomorphisms 911

introduce these subsets. For each t ∈ [0, 1], write o(x, ft ) = { f r
t (x) : r ≥ 0}

for the orbit of x under ft . Let

W = {x ∈ X : o(x, f ) ⊂ B ∪ C ∪ D ∪ E},
the set of points whose orbits do not enter the interiors of the orientation
reversing intervals or of the interval A. For each t ∈ [0, 1] set

Xt = {x ∈ X : o(x, ft ) ⊂ X − (
(t), r(t))},
the maximal ft -invariant set on which ft = f ; and define

Yt = W ∩ Xt .

Then W , Xt , and Yt are compact subsets of X ; and ft and f are equal on Xt
and Yt .

It is convenient to reduce the size of the intervals B, C , and D so as to
remove common endpoints. Let B ′ and D′ be the initial segments of B and D
of length 4/5 (so f (B ′) = f (D′) = C ∪ c ∪ D∪ E), and letC ′ be the segment
of C with f (C ′) = B ′. Clearly if x ∈ W then o(x, f ) ⊂ B ′ ∪ C ′ ∪ D′ ∪ E .

Since every point x of Yt ∩ C ′ has f (x) ∈ B ′ and f 2(x) ∈ Yt ∩ S1, we can
study the dynamics of ft on Yt using the first return map Rt : Zt → Zt to the
subset

Zt = Yt ∩ S1

of Yt . Define F : C ′ ∪ D′ ∪ E → X by F = f 2 on C ′ and F = f on D′ ∪ E ;
then Rt : Zt → Zt is given by Rt = F |Zt .

Define an itinerary map ht : Zt → �+ for Rt by

ht (x)r =
⎧⎨
⎩
0 if Rr

t (x) ∈ C ′,
1 if Rr

t (x) ∈ D′, and
2 if Rr

t (x) ∈ E .

We emphasize again that, since Yt and Zt are subsets of Xt , we have ft = f
on Yt , Rt = R1 = F on Zt , and ht = h1 on Zt .

Define

C = {t ∈ [0, 1] : 
(t) ∈ Zt },
the set of parameters for which 
(t) ∈ W and 
(t) is the greatest point of S1
on its f -orbit. It follows that

L := 
(C ) = {x ∈ [
(0), 
(1)] : o(x, f ) ⊂ B ∪ C ∪ D ∪ E − (x, p]} ⊂ Z1.
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912 P. Boyland et al.

Since L is evidently compact and 
 is affine, C is also compact. We can
therefore define a function a : [0, 1] → C by

a(t) = max{t ′ ∈ C : t ′ ≤ t}.

Finally, let K : C → �+ be the “kneading sequence” map defined by
K (t) = h1(
(t)).

Lemma 3 (a) Z1 is a Cantor set of Lebesgue measure zero, and h1 is an order-
preserving topological conjugacy between R1 : Z1 → Z1 and σ : �+ →
�+.

(b) C has Lebesgue measure zero.
(c) K is an order-preserving homeomorphism onto its image

K (C ) = {w ∈ Max : w ≥ 21},

where the overbar denotes infinite repetition.
(d) Let t ∈ [0, 1]. Then Zt = Za(t), and ht is an order-preserving topo-

logical conjugacy between Rt : Zt → Zt and the symbolic β-shift
σ : B(K (a(t))) → B(K (a(t))).

Proof (a) F : C ′ ∪ D′ ∪ E → X maps each of the three disjoint compact
intervals C ′, D′ and E affinely over all three of the intervals, with slope at
least 5. Since Z1 is the set of points whose F-orbits are contained in these
intervals, and R1 is the restriction of F to Z1, the result follows by standard
arguments.

(b) Since 
 is an affine map and 
(C ) ⊂ Z1, the result follows from (a).
(c) K = h1 ◦ 
 is an order-preserving homeomorphism onto its image since

both h1 and 
 are order-preserving, continuous, and injective, and C is
compact. K (C ) ⊂ Max, since if w = K (t) for some t ∈ C then we have
σ r (w) = σ r (h1(
(t)) = h1(Rr

1(
(t))) = h1(Rr
t (
(t))) ≤ h1(
(t)) = w,

using 
(t) ∈ Zt for t ∈ C . Moreover K (0) = 21, since f (
(0)) is the
fixed point of f in D, so that K (t) ≥ 21 for all t ∈ C .
It therefore only remains to show that every maximal sequence w ≥ 21 is
in the image of K . Let k ∈ �+

8 be the sequence obtained from w by the
substitution 0 �→ C B, 1 �→ D, and 2 �→ E , and let x ∈ X be a point with
itinerary k. Since K (0) = 21 ≤ w ≤ 2 = K (1) we have x ∈ [
(0), 
(1)],
so that there is some t ∈ [0, 1] with 
(t) = x . Then x ∈ Zt by maximality
of w, so that t ∈ C and w = K (t).

(d) Since a(t) ≤ t we have Za(t) ⊂ Zt . To show equality, suppose for a
contradiction that there is some x ∈ Zt − Za(t). Since Zt is compact and
Rt -invariant, y = sup{Rr

t (x) : r ≥ 0} is also an element of Zt , so that
y ≤ 
(t). Moreover, Rr

t (y) ≤ y for all r ≥ 0 by continuity of Rt , so
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that y ∈ L and hence y = 
(t ′) for some t ′ ∈ C . On the other hand,
y > 
(a(t)) since x /∈ Za(t). Therefore t ′ ∈ (a(t), t] ∩ C , contradicting
the definition of a(t).
Since ht = h1|Zt and Rt = R1|Zt , it follows from part (a) that ht con-
jugates Rt : Zt → Zt and σ : ht (Zt ) → ht (Zt ). We therefore need only
show that ht (Zt ) = B(K (a(t))). Now given x ∈ Z1 we have

x ∈ Zt ⇐⇒ x ∈ Za(t)

⇐⇒ Rr
1(x) ≤ 
(a(t)) for all r ≥ 0

⇐⇒ σ r (h1(x)) ≤ h1(
(a(t))) for all r ≥ 0

⇐⇒ h1(x) ∈ B(h1(
(a(t)))) = B(K (a(t))).

Here the first equivalence is what we have just proved; the second is the
definition of Za(t) (or, more particularly, of Xa(t)); the third follows from
part (a); and the fourth is by the definition (8) of B(h1(
(a(t)))). Therefore
h1(Zt ) = B(K (a(t))), and so ht (Zt ) = B(K (a(t))) as required, since ht
and h1 agree on Zt . �	

5.4 Calculation of the rotation sets ρ8(t)

In this section we apply Lemma 3(d) to relate the rotation set ρ8(t) to the digit
frequency set DF(K (a(t))), and use this relationship together with Theorem 1
to describe the collection of rotation sets ρ8(t).

Theorem 2 Let t ∈ [0, 1]. Then ρ8(t) = Π(DF(K (a(t)))), where Π : Δ →
R
2 is defined by

Π(α0, α1, α2) =
(

α2

1 + α0
,

α0

1 + α0

)
.

Remark 2 Π is a projective homeomorphism onto its image, with inverse
Π−1 : Π(Δ) → Δ given by

Π−1(x, y) =
(

y

1 − y
,
1 − x − 2y

1 − y
,

x

1 − y

)
.

Proof We will prove in successive steps that

ρ8(t) = rot p(X, ft , Γ ) = rot p(Xt , f, Γ ) = rot p(Yt , f, Γ )

= Π(rot p(Zt , F, β)) = Π(DF(K (a(t)))),
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where β : Zt → Δ ⊂ R
3 is the observable which takes the values e0, e1, and

e2 in the intervals C , D, and E respectively. The first of these equalities, that
ρ8(t) = rot p(X, ft , Γ ), was established in Sect. 5.2.

Step 1: rot p(X, ft , Γ ) = rot p(Xt , f, Γ )

Suppose that x ∈ X − Xt and that Γ̂ ft (x) exists. We will find a point
y ∈ Xt with Γ̂ ft (y) = Γ̂ ft (x). This will establish that rot p(X, ft , Γ ) =
rot p(Xt , ft , Γ ), and the result follows since f = ft on Xt .

Since x ∈ X − Xt there is some r ∈ N for which f r
t (x) ∈ (
(t), r(t)),

and hence Γ̂ ft (x) = Γ̂ ft (
(t)). If o(
(t), ft ) ∩ (
(t), r(t)) = ∅ then we can
take y = 
(t) ∈ Xt . Suppose, therefore, that there is some least r ≥ 1 with
qt := f r

t (
(t)) ∈ (
(t), r(t)). Then ft (qt ) = ft (
(t)), so that qt is a period
r point of ft . Since ft is locally constant at qt , we have index(qt , f r

t ) = +1.
Therefore qt can be continued to fixed points qs of f r

s for s in a neighborhood
of t . Since Γ̂ fs (qs) = γ̂ s

fs
(qs) has rational coordinates with denominator at

most r , and varies continuously with s, we have Γ̂ fs (qs) = Γ̂ ft (x) for all s.
Let s be the smallest parameter for which the continuation qs exists. Then

qs must be an endpoint of Is , so that qs ∈ Xs ⊂ Xt . Taking y = qs ∈ Xt we
have Γ̂ ft (y) = Γ̂ fs (qs) = Γ̂ ft (x) as required, since ft = fs on Xs .

Step 2: rot p(Xt , f, Γ ) = rot p(Yt , f, Γ )

Suppose that x ∈ Xt and that Γ̂ f (x) exists. We will find a point y ∈ Yt with
Γ̂ f (y) = Γ̂ f (x), which will establish the result.

Let k ∈ �+
8 be an itinerary of x , and let k′ ∈ �+

8 be obtained by replacing
every occurrence of b, c, or e in k with its orientation-preserving counterpart
B, C , or E . Let z ∈ X be a point with itinerary k′. Then we have

(a) o(z, f ) ⊂ A ∪ B ∪ C ∪ D ∪ E ;
(b) Γ̂ f (z) = Γ̂ f (x); and
(c) z ∈ Xt .

Both (a) and (b) are obvious from the replacements which have been carried
out. For (c), observe that for each r , the points f r (x) and f r (z) lie on the
same circle S1 or S2. Moreover f r (z) ≤ f r (x). For suppose f r (z) �= f r (x),
and let s ≥ 0 be least such that k′

r+s �= kr+s . Then f r+i (z) and f r+i (x)

pass through the same orientation-preserving intervals for 0 ≤ i < s, and
f r+s(z) < f r+s(x).
It follows that f r (z) /∈ (
(t), r(t)) for all r ; for otherwise we would have

f r (x) ∈ E ∪e−(
(t), r(t)), and hence f r+1(z) > f r+1(x). Therefore z ∈ Xt
as required.

To complete the proof of step 2 we need to remove all occurrences of the
symbol A from k′. We can assume that there are infinitely many such, since
otherwise we can take y = f r (z) for some r large enough that σ r (k′) contains
no symbol A, and then y ∈ Yt with Γ̂ f (y) = Γ̂ f (z) = Γ̂ f (x). We can
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New rotation sets in a family of torus homeomorphisms 915

also assume that k′ contains infinitely many symbols distinct from A, since
otherwise Γ̂ f (x) = (0, 0) and we can choose y ∈ Yt to have itinerary D.

Write

k′ = u1 C AL1 B u2 C AL2 B u3 C AL3 B · · ·

where each Li ≥ 1 and the ui are (possibly empty) words which do not contain
the symbol A. Since k′ doesn’t contain the symbols b, c, and e, there is a unique
way to do this: each maximal subword of the form AL must be preceded by C
and followed by B, and the ui are the subwords which separate the subwords
C AL B.

Let k′′ be the sequence obtained by replacing each word ui C ALi B with
the word

– ui C B DLi if ui does not contain the symbol E ;
– w1 D w2 E C B DLi −1 if ui = w1 E w2 for some words w1 and w2
for which w2 does not contain the symbol E (so that ui C ALi B =
w1 E w2 C ALi B).

Then k′′ ∈ �+
8 by choice of the replacement words, so that there is a unique

y ∈ X with f -itinerary k′′. By the choice of the replacement words we have
‖Γ f (y, r) − Γ f (z, r)‖ ≤ 1 for all r ∈ N, so that Γ̂ f (y) = Γ̂ f (z) = Γ̂ f (x).
Since y ∈ W , it only remains to show that y ∈ Xt ; that is, that f r (y) ≤ 
(t)
whenever f r (y) ∈ E .

Suppose then that k′′
r = E . This symbol E must be contained in one of the

replacement blocksw1 D w2 E C B DLi −1 of the second kind. If it is contained
in the word w1 then f r (y) ≤ f r (z) ≤ 
(t), since the itineraries of f r (y) and
f r (z) agree (and contain only orientation-preserving symbols) up to the point
where f r+s(y) ∈ D and f r+s(z) ∈ E . If it is not contained in the word w1
then, sincew2 does not contain the symbol E , we have f r+1(y) ∈ C . Therefore
f r (y) ≤ 
(0) ≤ 
(t), since f (
(0)) ∈ D.

Step 3: rot p(Yt , f, Γ ) = Π(rot p(Zt , F, β))

We use Lemma 2 applied to the return map F : Zt → Zt induced by
f : Yt → Yt . The return time N : Zt → R is given by N = 2 on C and N = 1
on D ∪ E ; and the observable Φ : Zt → R

2 corresponding to Γ : Yt → R
2

takes values (0, 1) on C , (0, 0) on D, and (1, 0) on E .
Now Φ = L ◦ β, where L : R3 → R

2 is given by L(x, y, z) = (z, x); and
N = M ◦β, where M : R3 → R is given by M(x, y, z) = 2x + y + z. Now if
v ∈ Δ then Π(v) = L(v)/M(v) (since 2v0 + v1 + v2 = 1 + v0). Since Π is
injective, it follows from Lemma 2 that rot p(Yt , f, Γ ) = Π(rot p(Zt , F, β))

as required.

Step 4: Π(rot p(Zt , F, β)) = Π(DF(K (a(t))))
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This is immediate from Lemma 3(d) and the definition DF(K (a(t))) =
rot p(B(K (a(t))), σ, κ), since the observables β on Zt and κ on B(K (a(t)))
correspond under the conjugacy ht . �	

We now apply Theorem 2 in conjunction with Theorem 1 to describe the
rotation sets ρ8(t). Write R = {ρ8(t) : t ∈ [0, 1]} ⊂ H (R2), ordered by
inclusion. We say that a vector v = (v1, v2) ∈ R

2 is planar totally irrational
if v1, v2, and 1 are rationally independent. This condition is equivalent to
minimality of the translation of the torus whose lift is z �→ z + v.

Theorem 3 (a) Let t ∈ [0, 1]. Then ρ8(t) = rot p(X, γ t , ft )= rotMZ(X, γ t , ft )

= rotm(X, γ t , ft ) is compact and convex.
(b) The map ρ8 : [0, 1] → R is continuous and non-decreasing.
(c) The bifurcation set B ⊂ [0, 1] of parameters t at which ρ8 is not locally

constant is a measure zero Cantor set. There is a partitionB = B1	B2	B3
with the following properties:
(i) The set B1 consists of the endpoints of the complementary gaps of B.

On each such gap, ρ8(t) is a constant polygon with rational vertices.
(ii) If t ∈ B2 then Ex(ρ8(t)) consists of infinitely many rational polyhedral

vertices together with a single irrational limit extreme point.
(iii) If t ∈ B3 then Ex(ρ8(t)) consists of infinitely many rational polyhedral

vertices together with two irrational limit extreme points, which are
endpoints of a line segment in Bd(ρ8(t)).

(iv) Each of B2 and B3 is uncountable, and if t ∈ B2∪B3 then ρ8(t) �= ρ8(t ′)
for all t ′ �= t .

(d) R is order-preserving homeomorphic to a compact interval, and each
ρ8(Bi ) is dense in R.

(e) There is a dense Gδ subset of R, contained in ρ8(B2), consisting of rota-
tion sets whose limit extreme point is smooth and planar totally irrational.

(f) The map Ex ◦ ρ8 : [0, 1] → H (R2) is discontinuous at each point of B3
and at the right-hand endpoints of the complementary gaps of B, and is
continuous elsewhere.

Proof Let t ∈ [0, 1]. DF(K (a(t))) is compact and convex for each t by
Theorem 1(a). It follows from Theorem 2 and Lemma 3(c) that ρ8(t) :=
rot p(X, γ t , ft ) is also compact and convex, since Π is a projective homeo-
morphism onto its image. Equality with rotMZ(X, γ t , ft ) and rotm(X, γ t , ft )

follows from Lemma 1(b) and the continuity of γ t . This establishes part (a).
If t ∈ C then ρ8(t) = Π(DF(K (t))) by Theorem 2 and the definition

of a. Moreover, if J = (t1, t2) is a complementary component of C , then
ρ8(t) = ρ8(t1) for all t ∈ J . Since K : C → {w ∈ Max : w ≥ 21} is an
order-preserving homeomorphism by Lemma 3(c), it follows that ρ8(t2) =
ρ8(t1) also. In particular, because K (t1) �= K (t2), Theorem 1(c)(iv) and (c)(i)
give that ρ8(t) is a constant polygon with rational vertices for t ∈ [t1, t2]. In
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New rotation sets in a family of torus homeomorphisms 917

particular, K (t1) and K (t2) are consecutive maximal sequences contained in
one of the intervals of Theorem 1(c)(i).

Thus ρ8 is constant on the closure of each complementary interval of C ;
while ρ8|C = Π ◦ DF ◦K is continuous and non-decreasing by Lemma 3(c)
and Theorem 1(b). This establishes part (b).

The bifurcation set B of ρ8 is therefore contained in C , and in particular
has measure zero by Lemma 3(b). B is the preimage of the bifurcation set of
DF, and can therefore be partitioned as B = B1 	 B2 	 B3, where (using the
notation of Theorem 1) B2 = K −1(M2), B3 = K −1(M3), and

B1 = K −1

⎛
⎝ ⋃

w∈M1

{u(w), v(w)}
⎞
⎠ .

It is a Cantor set by Theorem 1(c)(v) and Lemma 3(c). The remaining state-
ments of the theorem are just translations of the corresponding statements
of Theorem 1, using the fact that Π is a projective homeomorphism onto its
image and the observation that an element α of Δ is totally irrational if and
only Π(α) is planar totally irrational. �	

6 Rotation sets of a family of torus homeomorphisms

In this section we will construct a continuously varying family {Φt } of self-
homeomorphisms of the torus whose rotation sets ρ(t) satisfy ρ(t) = ρ8(t)
for all t ∈ [0, 1]. To do this, we use Theorem 3.1 of [5] to “unwrap” the
family ft . This theorem is a generalization of a result of Barge and Martin [4]
to parameterized families. It states (using definitions given below) that if { ft } is
a continuously varying family of continuous self-maps of a boundary retract X
of a manifold M , satisfying a certain topological condition (unwrapping), then
there is a continuously varying family {ϕt} of self-homeomorphisms of M such
that ft and ϕt share their essential dynamical properties for each t .

In Sect. 6.1 we state a version of the theorem which is customized to the
requirements of this paper. The theorem will then be applied in Sect. 6.2 to
construct the family of torus homeomorphisms {Φt } and show that ρ(Φt ) =
ρ8(t) for all t . All parameterized families of maps in this section will be
assumed to have parameter t varying over [0, 1].

6.1 Unwrapping parameterized families

Definition 1 (Boundary retraction) Let M be a compact manifold with non-
empty boundary ∂M and X be a compact subset of M . A continuous map
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918 P. Boyland et al.

Ψ : ∂M × [0, 1] → M is said to be a boundary retraction of M onto X if it
satisfies the following properties:

1. Ψ restricted to ∂M × [0, 1) is a homeomorphism onto M − X ,
2. Ψ (η, 0) = η for all η ∈ ∂M , and
3. Ψ (∂M × {1}) = X .

Therefore Ψ decomposes M into a continuously varying family of arcs
{γη}η∈∂ M defined by γη(s) = Ψ (η, s), whose images are mutually disjoint
except perhaps at their final points, which cover X . In particular, every point
of M − X can be written uniquely as Ψ (η, s) with η ∈ ∂M and s ∈ [0, 1).
Definition 2 (Unwrapping of a family, Associated family of near-
homeomorphisms) Let Ψ : ∂M × [0, 1] → M be a boundary retraction of M
onto X , and R : M → X be the retraction defined by R(Ψ (η, s)) = Ψ (η, 1).
An unwrapping of a continuously varying family { ft } of continuous maps
ft : X → X is a continuously varying family { f t } of self-homeomorphisms
of M with the property that, for each t ,

1. R ◦ f t |X = ft , and
2. f t is the identity on ∂M .

Suppose that { f t } is an unwrapping of { ft }. Let λ : [0, 1] → [0, 1] be
given by λ(s) = 2s for s ∈ [0, 1/2] and λ(s) = 1 for s ∈ [1/2, 1], and
define ϒ : M → M by ϒ(Ψ (η, s)) = Ψ (η, λ(s)), which is well defined since
λ(1) = 1. Write N (E) = Ψ (∂M × [1/2, 1]), a compact neighborhood of X
which is homeomorphic to M by the homeomorphism S : M → N (E) defined
by S(Ψ (η, s)) = Ψ (η, (s+1)/2), and satisfiesϒ(N (E)) = X . Let {Ft } be the
family of self-homeomorphisms of M which is defined by Ft = S ◦ f t ◦ S−1

in N (E), and Ft = id in M − N (E).
The family of near-homeomorphisms {Ht } associated to the unwrapping

{ f t } is defined by
Ht = ϒ ◦ Ft : M → M.

Remark 3 (a) Ht |X = R ◦ f t |X = ft .
(b) Ht |∂ M is the identity.
(c) If C is a compact subset of M disjoint from ∂M then there is some N ≥ 0

with H N
t (C) ⊂ X for all t , since Ht (Ψ (η, s)) = Ψ (η, 2s) if s ≤ 1/2 and

Ht (Ψ (η, s)) ∈ X if s ≥ 1/2.

Theorem 4 [5] Let M be a compact manifold with boundary ∂M, Ψ be a
boundary retraction of M onto a subset X, and { ft } be a continuously varying
family of continuous surjections X → X. Suppose that an unwrapping { f t }
of { ft } exists, and let {Ht } be the associated family of near-homeomorphisms.
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New rotation sets in a family of torus homeomorphisms 919

Then for every ε > 0 there is a continuously varying family {ϕt } of self-
homeomorphisms of M, and a Hausdorff-continuously varying family {Λt } of
compact ϕt -invariant subsets of M having the following properties for each
t ∈ [0, 1].
(a) There is a continuous map gt : M → M within C0 distance ε of the

identity, with gt (Λt ) = X, such that Ht ◦ gt = gt ◦ ϕt . In particular,
ft ◦ gt |Λt = gt ◦ ϕt |Λt .

(b) ϕt |Λt is topologically conjugate to the natural extension f̂t acting on the
inverse limit space lim←−(X, ft ).

(c) ϕt is the identity on ∂M.
(d) The non-wandering set Ω(ϕt ) of ϕt is contained in Λt ∪ ∂M.

Thus ϕt |Λt is semi-conjugate to ft , and Λt contains all of the non-trivial
recurrent dynamics of ϕt .

That Ht ◦ gt = gt ◦ ϕt is not contained in Theorem 3.1 of [5], but is
explicitly stated in its proof. Statement (d) of Theorem 4 is slightly stronger
than the corresponding statement in [5], and we now sketch its proof.

For each t , let Mt∞ = lim←−(M, Ht ) ⊂ MN be the inverse limit of Ht : M →
M , and Ĥt : Mt∞ → Mt∞ be the natural extension of Ht . Corollary 2.3 of [5]
provides a family of homeomorphisms ht : Mt∞ → M . In the proof of The-
orem 3.1 of [5], the homeomorphisms ϕt are defined by ϕt = ht ◦ Ĥt ◦ h−1

t ,
and the subsets Λt are given by Λt = ht (Kt ), where

Kt = {x ∈ Mt∞ : xk ∈ X for all k ≥ 0}.

It therefore suffices to show that, for all t , Ω(Ĥt ) is contained in the union of
Kt and

∂Mt∞ = {x ∈ Mt∞ : x0 ∈ ∂M} = {x ∈ Mt∞ : xk ∈ ∂M for all k ≥ 0}.

Now if x ∈ Mt∞ −(Kt ∪∂Mt∞) then there is some k with xk ∈ M −(X ∪∂M).
Let C be a compact neighborhood of xk in M which is disjoint from X ∪ ∂M ,
and define

U = {y ∈ Mt∞ : yk ∈ C},

a neighborhood of x in Mt∞. Let N be large enough that H N
t (C) ⊂ X (see

Remark 3(c)): then Ĥr
t (y)k ∈ X for all y ∈ U and r ≥ N , so that Ĥr

t (U )∩U =
∅ for all r ≥ N as required.
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S1

S2

D

Fig. 5 Unwrapping the family { ft } in T2 − S

6.2 The family of torus homeomorphisms

Let π : R2 → T
2 be the universal cover of the torus T2 = R

2/Z2, and let
M ⊂ T

2 be the torus with a hole obtained by excising an open square S of
side length 1/2 centred in the fundamental domain of the torus: that is,

M = T
2 − S, where S = π({(x, y) ∈ R

2 : x mod 1 ∈ (1/4, 3/4)

and y mod 1 ∈ (1/4, 3/4)}).

We regard X = S1 ∨ S2 as the subset of M given by S1 = π([0, 1] × {0})
and S2 = π({0} × [0, 1]). For each η ∈ ∂M , let γη : [0, 1] → M be the arc
in M whose image is a segment of the straight line passing through the centre
of the fundamental domain and η, parameterized proportionally to arc length,
so that γη(0) = η and γη(1) ∈ X (see the dotted lines on Fig. 5). These arcs
define a boundary retraction Ψ : ∂M × [0, 1] → M of M onto X , each point
of X being the endpoint of two of the arcs, with the exception of the vertex v

which is an endpoint of four arcs. The associated retraction R : M → X is
defined by R(Ψ (η, s)) = Ψ (η, 1).

Let f 1 : M → M be a homeomorphism unwrapping f1 : X → X as
depicted in Fig. 5: the images of S1 and S2 under f 1 are shown with solid
and dashed lines respectively, so that R ◦ f 1|X = f1, and f 1 is then extended
arbitrarily to a homeomorphism M → M which is the identity on ∂M . (Note
that f 1 is injective on X , since f1(p) = p, where p is the common endpoint
of the edges E and e of S1 as depicted in Fig. 4.) Postcomposing f 1 with a
suitable isotopy supported in the disk D of Fig. 5 yields an unwrapping { f t }
of the family { ft }.
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New rotation sets in a family of torus homeomorphisms 921

Let {Ht } be the family of near-homeomorphisms associated with the
unwrapping { f t }. Each Ht is homotopic to the identity, since Ht |X = ft .
Let ε < 1/10 be small enough that d(Ht (x), Ht (y)) < 1/10 for all t and all
x, y ∈ M with d(x, y) < ε.

Applying Theorem 4 with this value of ε yields

– A continuously varying family {ϕt } of homeomorphisms M → M , each
the identity on ∂M ;

– A continuously varying family {Λt } of compact ϕt -invariant subsets of M
with the property that the non-wandering set Ω(ϕt ) of ϕt is contained in
Λt ∪ ∂M for each t ; and

– A continuous map gt : M → M for each t , within C0-distance ε of the
identity, satisfying gt (Λt ) = X and Ht ◦ gt = gt ◦ ϕt . In particular,
ft ◦ gt |Λt = gt ◦ ϕt |Λt .

By choice of ε and the relationship Ht ◦ gt = gt ◦ ϕt , the homeomorphism
ϕt is within C0 distance 1/5 of the near-homeomorphism Ht , and is therefore
isotopic to the identity.

Definition 3 (The family {Φt }, the displacement functions δt , and the rotation
sets ρ(t)) For each t ∈ [0, 1], let
– Φt : T2 → T

2 be the homeomorphism obtained by extending ϕt : M → M
as the identity across the excised square S;

– Φ̃t : R2 → R
2 be the lift of Φt which fixes the points of π−1(S);

– δt : T2 → R
2 be the function defined by δt (x) = Φ̃t (x̃)− x̃ , where x̃ is an

arbitrary lift of x ; and
– ρ(t) = rot p(T

2, Φt , δ
t ) be the pointwise rotation set of Φt with respect to

the lift Φ̃t .

Theorem 5 ρ(t) = ρ8(t) for each t ∈ [0, 1].
In particular, ρ(t) = rot p(T

2, Φt , δ
t ) = rotMZ(T

2, Φt , δ
t ) = rotm(T2,

Φt , δ
t ), and all of the statements of Theorem 3 hold when ρ8(t) is replaced

with ρ(t).

Proof Since ϕt is the identity on ∂M , it follows that gt (∂M) ⊂ ∂M . For if
x ∈ ∂M then Ht (gt (x)) = gt (ϕt (x)) = gt (x), so that gt (x) is a fixed point of
Ht . However Ht has no fixed points outside of ∂M ∪ X by construction; and
gt (x) /∈ X since d(x, gt (x)) < ε < 1/10.

We can therefore extend gt to a continuous map gt : T2 → T
2 by coning

off its action on ∂M . We also extend Ht as the identity across the excised
square S, to a continuous map Ht : T2 → T

2. Henceforth we use the symbols
gt and Ht to refer to these continuous self-maps of the torus, rather than to the
original self-maps of M . Since gt (S) ⊂ S and Φt |S = Ht |S = id|S , we have

Ht ◦ gt = gt ◦ Φt for all t ∈ [0, 1].
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Note also that, since Ω(ϕt ) ⊂ Λt ∪ ∂M , we have Ω(Φt ) ⊂ Λt ∪ S.
For each t , let H̃t : R2 → R

2 be the lift of Ht which fixes the points of
π−1(S). Then H̃t also fixes the set π−1(v) of integer lattice points, since the
vertex v of X is in the same Ht -Nielsen class as the points of S by construction
of Ht . Let ηt : T2 → R

2 be the displacement for Ht : that is,

ηt (x) = H̃t (x̃) − x̃,

where x̃ is an arbitrary lift of x . Finally, let g̃t : R2 → R
2 be the lift of gt

which is ε-close to idR2 , so that

H̃t ◦ g̃t = g̃t ◦ Φ̃t for all t ∈ [0, 1].
We will prove in successive steps that

rot p(X, ft , γ
t )= rot p(Λt , Φt , η

t ◦ gt )= rot p(Λt , Φt , δ
t ) = rot p(T

2, Φt , δ
t ),

which will establish the equality of ρ8(t) = rot p(X, ft , γ
t ) and ρ(t) =

rot p(T
2, Φt , δ

t ). The equality of the pointwise, Misiurewicz–Ziemian, and
measure rotation sets then follows from Lemma 1(b) and the convexity of
ρ8(t), completing the proof of the theorem.

Step 1: rot p(X, ft , γ
t ) = rot p(Λt , Φt , η

t ◦ gt )

Since gt (Λt ) = X and ft ◦ gt |Λt = gt ◦ Φt |Λt , it follows from (6) that

rot p(X, ft , γ
t ) = rot p(Λt , Φt , γ

t ◦ gt ).

However ηt |X = γ t , since Ht |X = ft and the lifts H̃t and f̃t both fix points
above the vertex v of X , so that γ t ◦ gt |Λt = ηt ◦ gt |Λt .

Step 2: rot p(Λt , Φt , η
t ◦ gt ) = rot p(Λt , Φt , δ

t )

For all x ∈ T
2, x̃ ∈ π−1(x), and r ∈ N we have

(ηt ◦ gt )Φt (x, r) =
r−1∑
i=0

ηt (gt (Φ
i
t (x)))

=
r−1∑
i=0

(H̃t (g̃t (Φ̃
i
t (x̃))) − g̃t (Φ̃

i
t (x̃)))

=
r−1∑
i=0

(H̃ i+1
t (g̃t (x̃)) − H̃ i

t (g̃t (x̃)))

= H̃r
t (g̃t (x̃)) − g̃t (x̃)

= g̃t (Φ̃
r
t (x̃)) − g̃t (x̃).
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New rotation sets in a family of torus homeomorphisms 923

Since δt
Φt

(x, r) = Φ̃r
t (x̃) − x̃ and g̃t is ε-close to the identity, ηt ◦ gt and δt

are cohomologous with respect to Φt , and the equality follows.

Step 3: rot p(Λt , Φt , δ
t ) = rot p(T

2, Φt , δ
t )

We have rot p(Λt , Φt , δ
t ) = rot p(Λt ∪ S, Φt , δ

t ), since δ̂t
Φt (x) = (0, 0)

for all x ∈ S, and the rotation vector (0, 0) is realized by any point y ∈
Λt satisfying gt (y) = v. Since rot p(Λt , Φt , δ

t ) = ρ8(t) is convex, and the
recurrent set R(Φt ) satisfies R(Φt ) ⊂ Ω(Φt ) ⊂ Λt ∪ S, the equality follows
from Lemma 1(c). �	
Remark 4 The results about digit frequency sets of symbolic β-shifts on three
symbols summarized in Theorem 1 have analogs for symbolic β-shifts defined
over arbitrarily many symbols [7]. These can be used to compute the rotation
sets of families of self-maps of the wedge X = S1∨ S2∨· · ·∨ Sn of arbitrarily
many circles defined analogously to the family { ft }. These families can then
be unwrapped to yield families of homeomorphisms of n-dimensional tori
whose rotation sets agree with those of the self-maps of X . The pointwise (or
Misiurewicz–Ziemian, or measure) rotation sets of these higher-dimensional
families then have properties analogous to those of the family {Φt } given in
Theorem 3. The only differences are: the rotation sets are n-dimensional, and
statements about polygons should be replacedwith statements about polytopes;
in the case t ∈ B3, there can be between 2 and n irrational extreme points;
the authors have not proved a statement analogous to the genericity of smooth
limit extreme points; and neither have we proved the discontinuity of the set
of extreme points at parameters in B3.

Here we sketch the changes which are required in the case n ≥ 3. We
subdivide the circle S1 into 2n + 1 oriented edges and the other Si into 3
oriented edges:

S1 = C2 c2 C3 c3 · · · Cn cn DE e and

Si = Ai Bi bi (2 ≤ i ≤ n).

The map f : X → X is defined by

f (Ai ) = Si , f (Bi ) = S1, f (bi ) = S−1
1 ,

f (Ci ) = Si , f (ci ) = S−1
i , f (D) = S1, f (E) = S1, f (e) = S−1

1 ,

for 2 ≤ i ≤ n. The family of maps ft : X → X is then defined by cutting off
the tip of the transition E e �→ S1 S−1

1 . Pointwise rotation sets rot p(X, ft , γ
t )

are defined by lifting to the abelian cover X̃ .
The analogs of Lemma 3 and Theorem 2 are proved in exactly the same

way. In particular, when calculating rotation sets, it suffices to restrict to those
points whose orbits lie entirely in the edges Bi (2 ≤ i ≤ n), Ci (2 ≤ i ≤ n),
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D and E . Associating the symbol i to the word Ci+2 Bi+2 for 0 ≤ i ≤ n − 2,
the symbol n − 1 to D, and the symbol n to E , reduces the calculation of
these rotation sets to that of digit frequency sets of symbolic β-shifts on n + 1
symbols.

Constructing a family {Φt }t∈[0,1] of self-homeomorphisms of Tn with the
same rotation sets proceeds exactly as in Sect. 6.2, using for the manifold M
a tubular neighborhood of X .

We thank the referee for pointing out that other useful generalizations can be
obtained using an embedded wedge of arbitrarily many non-homotopic circles
in T

2. On such a wedge, one could define a family of maps which unwraps;
or one could use Denjoy examples as in [21].

7 Dynamical representatives of rotation vectors in symbolic β-shifts

In this section and the nextwewill study dynamical representatives of elements
of the rotation sets DF(w), ρ8(t), and ρ(t): that is, how elements of these sets
are represented by invariant sets and invariant measures of the underlying
dynamical systems. The simplest case, of digit frequency sets of symbolic
β-shifts, will be treated in this section, and the results applied in Sect. 8 to the
families { ft } and {Φt } of maps of the figure eight space and the torus.

7.1 Types of dynamical representatives of rotation vectors

We start with some definitions and preliminary observations in the general
situation of Sect. 3.2.

Let Z be a compact metric space, g : Z → Z be continuous, and
φ : Z → R

k be a continuous observable. Given an element v of the rotation
set rot p(Z , g, φ), we first consider invariant subsets in which every element z
has rotation vector φ̂g(z) = v. We define three types of such subsets, with
increasingly strong properties: v-sets; v-minimal sets; and v-rotational sets.

Definition 4 (v-set; v-minimal set; bounded deviation; v-rotational set)

(a) A v-set for g with respect to φ is a non-empty g-invariant subset Y of Z
with φ̂g(y) = v for all y ∈ Y . We say also that Y represents the rotation
vector v.

(b) A v-minimal set for g with respect to φ is a compact g-minimal v-set.
(c) A point z ∈ Z with φ̂g(z) = v is said to have bounded deviation (or

bounded mean motion) if there is a constant M such that

‖φg(z, r) − rv‖ < M for all r ≥ 0. (10)
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A v-set Y for g with respect to φ has bounded deviation if there is an M
such that (10) holds for all z ∈ Y .

(d) A v-rotational set for g with respect to φ is a v-minimal set with bounded
deviation.

Remark 5 (a) Any compact v-set contains a minimal subset Y , which is there-
fore a v-minimal set.

(b) A straightforward consequence of the continuity of g and φ is that if z ∈ Z
is any point for which (10) holds, its omega-limit setω(z, g) is a v-set with
bounded deviation (cf. [26]). Hence, by (a), the existence of such a point
z implies the existence of a v-rotational set.

(c) The papers of Jäger [14,15] explore the implications of bounded and
unbounded deviation, showing in particular that if v is irrational then the
dynamics on any v-rotational set is semi-conjugate to rigid translation on
a torus of some dimension. See Remark 9(b).

We next consider the representation of rotation vectors by ergodic invariant
measures.

Definition 5 (Representation by ergodic invariant measures; directional and
lost) Let μ ∈ Me(g).

(a) The measure μ represents v if v = rot(μ, g, φ). (That is, if v = ∫
φ dμ.)

(b) The measure μ is (v-)directional (for g with respect to φ) if its support
supp(μ) is a v-set, where v = rot(μ, g, φ); it is lost otherwise ([13], cf.
[16,17]).

Remark 6 (a) Using this terminology, Oxtoby’s theorem [27] states that
supp(μ) is uniquely ergodic if and only ifμ is directional for g with respect
to every continuous observableφ. For ameasure to be directional can there-
fore be interpreted as an analog of unique ergodicity with respect to a single
preferred observable.

(b) Every v-minimal set Y is the support of a directional measure (namely any
μ ∈ Me(g|Y )); and, conversely, the support of any directional measure
contains a v-minimal set by Remark 5(a).

7.2 Infimax minimal sets

In the remainder of Sect. 7 we restrict to the situation of Sect. 4, where
Z = �+ = {0, 1, 2}N ordered lexicographically, the dynamics is given
by the shift map σ , and the observable of interest is κ : �+ → Δ ⊂ R

3

defined by κ(w) = ew0 . We adopt the abbreviated notation κ̂(w) := κ̂σ (w),
DFp(X) := rot p(X, σ, κ), and DFMZ(X) := rotMZ(X, σ, κ), where X is a com-
pact shift-invariant subset of �+. Recall that if w ∈ Max, we write DF(w) for
DFp(B(w)), where B(w) is given by (8).
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Themain tool used to analyse the digit frequency sets of symbolicβ-shifts is
the infimax sequences introduced in [6]. We now summarize necessary results
from that paper and from [7]. Define

Δ′ = {α = (α0, α1, α2) ∈ Δ : α2 > 0}.

Given α ∈ Δ′, write I (α) ∈ �+ for the infimum of the set of maximal
sequences w ∈ Max with κ̂(w) = α. Note that I (α) is necessarily maximal,
since Max is closed in �+, but need not satisfy κ̂(I (α)) = α. The infimax
sequencesI (α), which can be calculated using a multidimensional continued
fraction algorithm, have the additional property (Lemma 19 of [6]) that

sup(o(w, σ )) ≥ I (α) for all w ∈ �+ with κ̂(w) = α. (11)

A consequence of this (Lemma 16 of [7]) is that

α ∈ DF(w) ⇐⇒ I (α) ≤ w. (12)

Write

J = Cl({I (α) : α ∈ Δ′}) ⊂ Max,

the closure in �+ of the set of infimax sequences. It is shown in Lemmas 12
and 13 of [7] thatJ is a Cantor set, and that the only elements ofJ which are
not limits of both strictly increasing and strictly decreasing sequences in J
are

– the elements added in the closure, which are not limits of any strictly
increasing sequence in J , and

– the elements I (α) with α ∈ Q
3, which are not limits of any strictly

decreasing sequence in J .

In particular, the supremum of any non-empty set of infimax sequences is itself
an infimax sequence.

It follows from (12) (see Lemma 19 of [7]) that for all w ∈ Max,

DF(w) = DF(I (α)), where

I (α) = max{I (α′) : α′ ∈ Δ′ with I (α′) ≤ w}. (13)

It is then immediate from Theorems 2 and 5 that, for all t ∈ [0, 1], the rotation
sets ρ8(t) = ρ(t) are of the form Π(DF(I (α))) for some α = α(t) ∈ Δ′.

The three types of rotation sets which are described in Theorems 1 and 3
correspond to a fundamental trichotomy for elements of Δ′:
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– Rational regular: When α ∈ Q
3, the infimax sequenceI (α) is periodic,

and the digit frequency set DF(I (α)) is a polygon with rational vertices,
one of which is α.

– Irrational regular: Regular α /∈ Q
3 are characterized by the property that

I (α) �= I (α′) for all α′ �= α. In this caseI (α) is aperiodic, κ̂(I (α)) =
α, and DF(I (α)) has infinitely many rational polyhedral vertices limiting
on the single irrational extreme point α.

– Irrational exceptional: Exceptional α /∈ Q
3 are characterized by the exis-

tence of a non-trivial exceptional interval Pα ⊂ Δ′ with the property that
I (α) = I (α′) if and only if α′ ∈ Pα . In this case I (α) is aperiodic,
κ̂(I (α)) does not exist, and DF(I (α)) has infinitely many rational poly-
hedral vertices limiting on the two irrational endpoints of Pα .

The partition Max = M1 	 M2 	 M3 of Theorem 1 is connected to this
trichotomy as follows: w ∈ M2 (respectively w ∈ M3) if and only if w =
I (α) for some irrational regular (respectively exceptional) α; and w ∈ M1
otherwise. The left hand endpoints of the intervals Iw in M1 are exactly the
sequences I (α) for α ∈ Q

3; and the right hand endpoints are exactly the
non-infimax elements of J .

The following result, which is proved in Remark 23(b) of [6], will play a
central rôle.

Lemma 4 For every α ∈ Δ′, the infimax sequence I (α) is almost periodic,
and hence its orbit closure is a minimal set.

This motivates the following definition.

Definition 6 (Infimax minimal sets) For each α ∈ Δ′, we define the α-infimax
minimal set

Cα = Cl( o(I (α), σ ) ) ⊂ �+.

By the definition of B(w), the maximality of I (α), and (12), we have

Cα ⊂ B(w) ⇐⇒ I (α) ≤ w ⇐⇒ α ∈ DF(w). (14)

Therefore the infimax minimal set Cα detects whether or not the vector α

belongs to a given digit frequency set, and a natural question is how well these
sets represent α. It is already clear that Cα is not an α-rotational set when α

is exceptional (since it is not even an α-set), and Example 1 below shows that
this can be the case also when α is irrational regular.

The sets Cα were studied in the context of attractors of interval translation
maps by Bruin and Troubetzkoy [9], and their results about unique ergodicity
are included in the following lemma.
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Lemma 5
(a) If α is regular, then Cα is uniquely ergodic. In particular, Cα is an α-

minimal set, and the unique ergodic measure is α-directional.
(b) If α is exceptional, then Cα has exactly two ergodic invariant measures

μ1 and μ2, and rot(μ1, σ, κ) and rot(μ2, σ, κ) are the endpoints of the
exceptional interval Pα . In particular, Cα is not an α-set, and μ1 and μ2
are both lost.

(c) If α is exceptional, then DFMZ(Cα) = Pα .

Proof Parts (a) and (b) are proved by Bruin and Troubetzkoy (Corollary 14
and Lemma 17 of [9]).

For part (c), we have Conv(DFMZ(Cα)) = Pα by part (b) and Lemma 1(a),
so that DFMZ(Cα) ⊂ Pα . For the reverse inclusion, Theorem 57 of [7] states
that there are subsequences of (κσ (I (α), r)/r)r≥1 converging to every point
of Pα , so that Pα ⊂ DFMZ(Cα). �	
Example 1 This example (cf. Lemma 52 of [7]) shows that there exist totally
irrational regular values of α for which Cα does not have bounded deviation,
and hence is not an α-rotational set.

Fix an integer n ≥ 1, and let Λn : �+ → �+ be the substitution defined
by 0 �→ 1, 1 �→ 20n+1, and 2 �→ 20n , with abelianization

An =
⎛
⎝0 n + 1 n
1 0 0
0 1 1

⎞
⎠ ,

which is a Perron–Frobenius matrix since A3
n is strictly positive. Let α be the

positive Perron–Frobenius eigenvector of An which satisfies ‖α‖1 = 1. Then
we have
(a) I (α) is the fixed point limr→∞ Λr

n(2) of the substitutionΛn (Theorem 22
of [6]);

(b) α is irrational regular (Theorem 27 of [6]);
(c) α is totally irrational (Lemma 52 of [7]); and
(d) An has real eigenvalues λ1, λ2, λ3 with |λ3| < 1 < |λ2| < λ1 (proof of

Lemma 52 of [7]).
Write ri = ‖Ai

ne2‖1, so that κσ (I (α), ri ) = Ai
ne2. Let v2 be an eigenvector

of An corresponding to the eigenvalue λ2. Then the magnitude of the compo-
nent of κσ (I (α), ri ) in the direction of v2 grows like |λ2|i , and in particular

‖κσ (I (α), ri ) − riα‖ → ∞ as i → ∞,

so that I (α) does not have bounded deviation as required. In fact, we can
be more explicit. By the Perron–Frobenius theorem, ri grows like λi

1. Writing
ν = log(|λ2|)/ log(λ1) > 0 so that |λ2| = λν

1, we have
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‖κσ (I (α), ri ) − riα‖ > C1|λ2|i > C2rν
i

for some positive constants C1 and C2.
That Cα does not have bounded deviation also follows from the much more

general Theorem 1 of [1].

7.3 Representation of elements of DF(I (α))

Recall that every digit frequency setDF(w) is equal toDF(I (α)) for someα ∈
Δ′; and hence every rotation set ρ8(t) = ρ(t) is equal to Π(DF(I (α))) for
some α ∈ Δ′.

In this section we consider representations of elements of DF(I (α)) in
B(I (α)). We prove two results: Theorem 6, concerning representations of α

and points on the exceptional interval Pα; and Theorem 7, concerning repre-
sentations of other elements of DF(I (α)).

We will need a preliminary lemma about infimaxes.

Lemma 6 Let α ∈ Δ′, and let X be a compact shift-invariant subset of �+
with α ∈ DFMZ(X). Then max X ≥ I (α).

Proof Suppose for a contradiction that max X < I (α). Then X ⊂ B(I (α))

by definition of the symbolic β-shift, and hence

α ∈ DFMZ(X) ⊂ Conv(DFMZ(X)) ⊂ Conv(DFMZ(B(I (α)))) = DF(I (α))

by definition of the convex set DF(I (α)) := rot p(B(I (α)), σ, κ) =
rotMZ(B(I (α)), σ, κ).

ByCarathéodory’s theorem,we can find three extreme pointsβi (1 ≤ i ≤ 3)
of Conv(DFMZ(X))which contain α in their convex hull. By Lemma 1(a), there
are elements wi of X with κ̂(wi ) = βi for each i .

Since βi ∈ Conv(DFMZ(X)) ⊂ DF(I (α)), and α is either an extreme point
of DF(I (α)) (in the regular case), or lies in the exceptional interval Pα on the
boundary of DF(I (α)), at least one of the points βi is either equal to α, or
lies in Pα . In either case, we have I (βi ) = I (α). Therefore, since wi ∈ X
has κ̂(wi ) = βi , (11) gives

max X ≥ sup(o(wi , σ )) ≥ I (βi ) = I (α),

which is the required contradiction. �	
Remark 7 Since Cα is a minimal subset of �+ with α ∈ DFMZ(Cα), Lemma 6
gives the characterisation

I (α) = min{max(C) : C ⊂ �+ is a minimal set with α ∈ DFMZ(C)}.
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Theorem 6 Let α ∈ Δ′. Then any minimal subset C of B(I (α)) which satis-
fies

DFMZ(C) ∩ DFMZ(Cα) �= ∅

is equal to Cα . In particular,

(a) if α is regular, then Cα is the unique α-minimal set in B(I (α)); and
(b) If α is exceptional, then there are no α′-minimal sets in B(I (α)) for any

α′ ∈ Pα .

Proof By Lemma 5, DFMZ(Cα) is equal either to {α} (in the regular case), or
to Pα . In either case, every element α′ of DFMZ(Cα) has I (α′) = I (α).

Therefore if C is any minimal subset of B(I (α)) for which DFMZ(C) inter-
sects DFMZ(Cα), then there is some α′ ∈ DFMZ(C) with I (α′) = I (α). By
Lemma 6, it follows that maxC ≥ I (α).

On the other hand, maxC ≤ I (α), since C ⊂ B(I (α)). Therefore
maxC = I (α), i.e. I (α) ∈ C . By minimality, it follows that C = Cα

as required.
The statements (a) and (b) are immediate consequences, using the facts that

DFMZ(Cα) is either {α} or Pα; and that Cα is not an α-set in the exceptional
case. �	

By Theorem 6, and in view of Example 1, we cannot expect every irrational
α, or any element of an exceptional interval Pα, to be represented by a rotational
set in B(I (α)). The next theorem says that all other v can be represented by
a v-rotational set. Write Qα = ∅ if α is rational regular; Qα = {α} if α is
irrational regular; and Qα = Pα if α is irrational exceptional.

Theorem 7 Let α ∈ Δ′. Then every v ∈ DF(I (α)) − Qα is represented by a
v-rotational set in B(I (α)).

Proof If v ∈ DF(I (α)) is rational, then Cv = o(I (v), σ ) is a periodic orbit
(and hence a v-rotational set) which is contained in B(I (α)) by (14).

For a rational element u of Δ′, let Wu be the repeating block of the periodic
sequence I (u). Lemma 7 of [7] states that if (ui ) is a sequence of rational
elements of Δ′ with ui ∈ DF(I (α)) for each i , then the sequence

w = Wu0 Wu1 Wu2 · · · ∈ �+

is an element of B(I (α)).
Therefore if v ∈ Int(DF(I (α))) then we can choose rational elements u0,

u1, and u2 of DF(I (α)), with the same denominator, which contain v in their
convex hull. The concatenation scheme of the blocks Wu0 , Wu1 , and Wu2 used
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by Ziemian in the proof of Lemma 4.4 of [32] can then be used to construct a
v-rotational set in B(I (α)).

It therefore only remains to consider the case where v ∈ Bd(DF(I (α))) −
Qα is irrational. Then either v is contained in an interval I in Bd(DF(I (α)))

whose endpoints are rational polyhedral vertices, or α is irrational regular
and v is contained in an interval I in Bd(DF(I (α))) for which one endpoint
is a rational polyhedral vertex, and the other endpoint is α. However, in the
latter case, where the vertices of DF(I (α)) limit on α from one side only, the
interval I is contained in an interval with rational endpoints (see Example 36c)
of [7]). Therefore, in either case, we can find rational elements u0 = p0/q and
u1 = p1/q of DF(I (α)), having the same denominator q, such that

v = (1 − λ)
p0

q
+ λ

p1

q

for some irrational λ ∈ [0, 1]. These rational vectors pi/q need not be in
reduced form: let k0 and k1 be the positive integers with the property that
when pi/q is written in reduced form it has denominator q/ki (so that the
word W ki

ui has length q).
Let s ∈ {0, 1}N be the Sturmian sequence [3] of slope λ, and let w ∈

B(I (α)) be the element of�+ obtained from s by the substitution 0 �→ W k0
u0 ,

1 �→ W k1
u1 . Since s is Sturmian, we have |ar − rλ| < 1 for all r ∈ N, where ar

denotes the number of 1s in the first r symbols of s. Therefore, for each r ∈ N,

‖κσ (w, qr) − qrv‖ = ‖ar p1 + (r − ar )p0 − qrv‖
= ‖(ar − rλ)(p1 − p0)‖ < ‖p1 − p0‖ < q.

If s is any natural number then, writing s = qr + t with 0 ≤ t < q, we have

‖κσ (w, s) − sv‖ ≤ ‖κσ (w, qr) − qrv‖ + ‖κσ (σ qr (w), t) − tv‖ < 2q.

The existence of a v-rotational set follows by Remark 5(b). (In fact, since w

is almost periodic by construction, its orbit closure is equal to its omega-limit
set, and hence is itself a v-rotational set.) �	

8 Dynamical representatives of rotation vectors in the figure eight and
torus families

8.1 Representatives in the figure eight family

Because the return map Rt : Zt → Zt of the restriction of the figure eight
map ft to the subset Zt of the figure eight space X is topologically conjugate
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to a symbolic β-shift (Lemma 3d), translating results about the existence of
v-sets and directional measures to this context is straightforward. On the other
hand, uniqueness and non-existence results need an additional result (Lemma 8
below) to rule out invariant subsets which are not contained in Zt .

Recall thatC ⊂ [0, 1] is the compact set of parameters t forwhich 
(t) ∈ Zt ;
and that there is a “kneading sequence” map K : C → �+, which is an order-
preserving homeomorphism onto the set {w ∈ Max : w ≥ 21} of sufficiently
large maximal sequences. It is a consequence of Theorem 22 of [6] that an
infimax sequenceI (α) lies in this set if and only if α0 < α2, and we therefore
restrict attention to the subset

Δ′′ = {α ∈ Δ : α0 < α2}
of Δ′. Given α ∈ Δ′′, let

t (α) = K −1(I (α)) ∈ C

be the unique parameter t for which K (t) = I (α).
Recall that the function a : [0, 1] → C is defined by a(t) = max{t ′ ∈ C :

t ′ ≤ t}. We now define b : [0, 1] → C by

b(t) =
{
max{t ′ ∈ C : t ′ ≤ t and K (t ′) is an infimax sequence} if t > 0,
0 if t = 0.

The maximum exists since the set of infimax sequences which are less than
or equal to K (t) has a maximum (as in (13)) and K is an order-preserving
homeomorphism. It is immediate from thedefinitions thatb(a(t)) = a(b(t)) =
b(t) for all t .

Lemma 7 Let t ∈ [0, 1]. Then ρ8(t) = ρ8(b(t)) = Π(DF(K (b(t)))).

Proof Let I (α) be the greatest infimax sequence which is not greater than
K (a(t)). Then we have I (α) = K (b(a(t))) = K (b(t)) by definition of the
function b and the injective monotonicity of K .

It follows that

ρ8(t) = ρ8(a(t)) = Π(DF(K (a(t)))) = Π(DF(I (α)))

= Π(DF(K (b(t)))) = ρ8(b(t)),

as required. Here the first, second, and last equalities are given by Theorem 3;
the third is by (13); and the fourth is by the first paragraph of the proof. �	
Remark 8 Lemma 7 shows that the bifurcation set B of parameters at which
ρ8 is not locally constant (see Theorem 3) is given by B = K −1(J ).
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For each α ∈ Δ′′, define Dα ⊂ X by

Dα = Cl(o (
(t (α)), ft (α))).

Since the return map Rt (α) : Zt (α) → Zt (α) and σ : B(I (α)) → B(I (α))

are conjugate by Lemma 3(d) and the definition of t (α), Dα is conjugate to a
two step tower over the σ -minimal set Cα , and is therefore a minimal set for
ft (α).

Lemma 8 Let α ∈ Δ′′, and D be a minimal set for ft (α) with the property
that Π(α) ∈ rotMZ(D, ft (α), Γ ). Then D = Dα.

Proof Recall from Sect. 5.3 that Xt ⊂ X is defined for each t ∈ [0, 1] by
Xt = {x ∈ X : o(x, ft ) ⊂ X − (
(t), r(t))}.

Suppose that t < t (α). Then b(t) < t (α), so that K (b(t)) < I (α), and
hence Π(DF(K (b(t)))) does not contain Π(α) by (12). It follows that D
cannot be contained in Xt , since this would yield the contradiction

Π(α) ∈ rotMZ(D, ft (α), Γ ) ⊂ rotMZ(Xt , f, Γ ) = ρ8(t) = Π(DF(K (b(t)))),

using Lemma 7 and that ft (α) = ft = f on Xt .
It follows then by the compactness of D that it contains a point x ∈

[
(t (α)), r(t (α))]. Since ft (α)(x) = ft (α)(
(t (α))) ∈ D ∩ Dα , the minimal
sets D and Dα are equal as required. �	

Since all of the rotation sets ρ8(t) are of the form Π(DF(I (α))) for some
α ∈ Δ′′, and Π is projective, they can be classified as either rational regu-
lar (i.e. polygonal), irrational regular (i.e. having a single irrational extreme
point ut = Π(α)), or irrational exceptional (i.e. having two irrational extreme
points which are the endpoints of an exceptional interval Pt = Π(Pα) in the
boundary of ρ8(t)).

Theorem 8 Let t ∈ [0, 1].
(a) If ρ8(t) is rational regular, then every v ∈ ρ8(t) is represented by a v-

rotational set for ft . Thus, ρem(t) = ρ8(t).
(b) If ρ8(t) is irrational regular then:

(i) Every v ∈ ρ8(t) is represented by a v-minimal set for ft . In particular,
ρem(t) = ρ8(t).

(ii) Every v ∈ ρ8(t) − {ut } is represented by a v-rotational set for ft .
There exist irrational regular ρ8(t) for which ft has no ut -rotational set.

(c) If ρ8(t) is irrational exceptional then:
(i) Every v ∈ ρ8(t) − Pt is represented by a v-rotational set for ft .
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(ii) There is a unique ft -minimal set D such that rotMZ(D, ft , Γ ) intersects
Pt , namely D = Dα where t = t (α). In particular, if v ∈ Pt then there
is no v-minimal set for ft .

(iii) Any ergodic invariant measure for ft representing any vector v ∈ Pt
is lost. In particular, the two ergodic invariant measures on Dα, which
represent the endpoints of Pt , are lost.

Proof Let α ∈ Δ′′, and write t := t (α), so that K (t) = I (α), and ρ8(t) =
Π(DF(I (α))) by Lemma 7.

Lemma 3(d) states that ht : Zt → B(I (α)) conjugates the return map
Rt : Zt → Zt and the symbolic β-shift σ : B(I (α)) → B(I (α)). There
is therefore a bijection Mt from the set of minimal sets of σ : B(I (α)) →
B(I (α)) to the set of minimal sets of ft : Yt → Yt , which sends the minimal
set containing w to the minimal set containing h−1

t (w). Moreover, C is a
v-minimal set (respectively v-rotational set) for σ if and only if Mt (C) is a
Π(v)-minimal set (respectively Π(v)-rotational set) for ft .

If t ∈ [0, 1] is not of the form t (α) for any α ∈ Δ′′, then ρ8(t) = ρ8(b(t))
is rational regular. Since b(t) < t , we have that ft = fb(t) on Yb(t), and hence
any fb(t)-minimal set in Yb(t) is also an ft -minimal set.

Parts (a), (b)(ii), and (c)(i) therefore follow from Theorem 7, and part (b)(i)
follows from Theorem 6(a).

For the final statement of part (b), pick α to be the normalized Perron–
Frobenius eigenvalue of A1 as in Example 1. This α does not lie in Δ′′, but
β = (α1, α0, α1+α2)/(1+α1) ∈ Δ′′ has analogous properties (in the language
of [6],β has itinerary 01). In particular,β is totally irrational regular, andI (β)

is obtained by applying Λ0 to the fixed point of the substitution Λ1; and, by
the same argument as in Example 1, Cβ is not a β-rotational set. Therefore
Dβ = Mt (β)(Cβ) is not a ut (β)-rotational set for ft (β). Since Dβ is the unique
ut (β)-minimal set for ft (β) by Lemma 8, the result follows.

Parts (c)(ii) and (c)(iii) follow from Lemma 8, Theorem 6(b), and
Lemma 5(b). �	

8.2 Representatives in the torus family

Recall from Theorem 4 and the construction of Sect. 6.2 that the homeomor-
phismΦt : T2 → T

2 has non-wandering set contained inΛt ∪S; that S consists
of fixed points of Φt ; and that Φt |Λt is topologically conjugate to the natural
extension f̂t : lim←−(X, ft ) → lim←−(X, ft ) of the figure eight map ft .

In order to extend the results of Theorem 8 to the torus family, it is there-
fore only necessary to understand the relationship between minimal sets and
ergodic invariant measures of a map and its natural extension. Given a contin-
uous map g : Z → Z of a compact metric space, we write ĝ : lim←−(Z , g) →
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lim←−(Z , g) for its natural extension, and π0 : lim←−(Z , g) → Z for the projection
(z0, z1, . . .) �→ z0. We also denote by MS(g) the collection of g-invariant
minimal subsets of Z .

The following result is folklore: see page 28 of [12], Theorem 3.2 of [28],
[8,19].

Lemma 9 Let g : Z → Z be a continuous map of a compact metric space.
Then the maps C �→ π0(C) and μ �→ (π0)∗(μ) are bijections MS(ĝ) →
MS(g) and Me(ĝ) → Me(g) respectively.

We then immediately have:

Theorem 9 All of the statements of Theorem 8 hold when ft is replaced by
Φt and ρ8(t) is replaced by ρ(t).

Remark 9 (a) Theorem 9 was proved directly as a translation of Theorems 6
and 7 about rotation sets of symbolicβ-shifts.Much is already known, how-
ever, about representatives for rotation vectors in the interior of the rotation
set of a torus homeomorphism Φ : T2 → T

2 isotopic to the identity. Mis-
iurewicz and Ziemian show that every v ∈ Int(ρMZ(Φ)) is represented by
a v-rotational set (proof of Theorem A(a) of [26]). When v is rational,
these v-rotational sets can be chosen to be periodic orbits, by a theorem of
Franks [10]; and to have the topological type of a periodic orbit of a rigid
rotation of the torus by the vector v, using a result of Parwani [29].

(b) The significance of the existence ofv-rotational sets is illustrated by Jäger’s
result [15], that if v is irrational and Φ has a v-rotational set Z , then there
is a semi-conjugacy, homotopic to the inclusion, onto a minimal set of
rigid rotation by v. Therefore if v is totally irrational then Φ : Z → Z is
semi-conjugate to a minimal rigid rotation of T2, while if v is partially
irrational then Φ : Z → Z is semi-conjugate to a minimal rigid rotation
of a circle.

(c) The relationship between Theorem 9 and recent results of Zanata [2] and
Le Calvez and Tal [22] is also important to note. If Φ : T2 → T

2 is
a homeomorphism and μ ∈ Me(Φ) represents an extreme point v of
ρMZ(Φ), then
(i) if ρMZ(Φ) has multiple supporting lines at v, then μ is directional and

its support has bounded deviation; and
(ii) if ρMZ(Φ) has a unique supporting line at v which does not intersect

ρMZ(Φ) in a non-trivial segment, then μ is directional.
These statements were proved by Zanata in the case where Φ is a C1+ε

diffeomorphism, and were subsequently improved to C0 by Le Calvez
and Tal. The examples which we have presented show that these results
are in some sense sharp. Specifically, in Theorem 9(b), the examples with
unbounded deviation, based on Example 1, have a unique supporting line;
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and in Theorem 9(c)(iii), where there are lost measures, at least in the
cases we have been able to analyze, the unique supporting line intersects
the rotation set in a non-trivial segment.

9 Questions raised by the family

The following properties hold for the rotation sets ρ(t) of the family {Φt }
constructed here. Are they true in general? If not, are there natural conditions
under which they hold?

(a) A point on the boundary of ρ(t) is a polygonal vertex if and only if it is a
rational extreme point, and is a limit extreme point if and only if it is an
irrational extreme point.

(b) ρ(t) has only finitely many irrational extreme points.
(c) For every point v ∈ ρ(t), including points on the boundary, there is a point

z ∈ T
2 with δ̂t (z) = v, so that ρp(Φt ) = ρMZ(Φt ).

(d) At least generically, totally irrational extreme points are smooth.
(e) If ρ(t1) �= ρ(t2), then the function t �→ Ex(ρ(t)) is discontinuous at some

t ∈ (t1, t2) (the Tal–Zanata property).

At least one of the properties of the family {Φt } does not hold in general,
namely that every v belonging to an interval with rational endpoints contained
in ρ(t) is represented by a v-rotational set. This property does not hold in an
example of Misiurewicz and Ziemian [26, Section 3].

The proof of Theorem 4, which was used to unwrap the family of maps on
the figure eight space, is essentiallyC0. Do the phenomena observed here hold
with more smoothness? What can one say about generic rotation sets, and the
rotation sets in generic one-parameter families, in the Cr category?
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