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Abstract Let A/Q be an elliptic curve with split multiplicative reduction at a
prime p.Weprove (an analogue of) a conjecture of Perrin-Riou, relating p-adic
Beilinson–Kato elements to Heegner points in A(Q), and a large part of the
rank-one case of the Mazur–Tate–Teitelbaum exceptional zero conjecture for
the cyclotomic p-adic L-function of A. More generally, let f be the weight-
two newform associated with A, let f∞ be the Hida family of f , and let
L p( f∞, k, s) be theMazur–Kitagawa two-variable p-adic L-function attached
to f∞.We prove a p-adicGross–Zagier formula, expressing the quadratic term
of theTaylor expansion of L p( f∞, k, s) at (k, s) = (2, 1) as a non-zero rational
multiple of the extended height-weight of a Heegner point in A(Q).

1 Introduction

Let A be an elliptic curve over Q of conductor N p, with p > 3 a prime of
split multiplicative reduction. Fix algebraic closures Q and Qp of Q and Qp

respectively, and an embedding i p : Q ↪→ Qp. Assume throughout this paper
that the p-torsion subgroup Ap of A(Q) is an irreducible Fp[GQ]-module,
where GQ := Gal(Q/Q).

For every n ∈ N, write Qn/Q for the cyclic sub-extension of Q(μpn+1)/Q
of degree pn and let Q∞ = ⋃

n∈N Qn be the cyclotomic Zp-extension of
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924 R. Venerucci

Q. Denote by G∞ := Gal(Q∞/Q) the Galois group of Q∞ over Q and by
�cyc := Zp�G∞� the cyclotomic Iwasawa algebra. Associatedwith A/Q (and
i p) there is a p-adic L-function

L p(A/Q) ∈ �cyc,

interpolating the critical values L(A/Q, χ, 1) of the Hasse–Weil L-function
of A/Q twisted by finite order characters χ : G∞ →Q

∗
p. Thanks to the results

of Kato and Coleman–Perrin-Riou, it is known that L p(A/Q) arises from
an Euler system for the p-adic Tate module of A/Q. More precisely, denote
by Qp,∞ = ⋃

n∈N Qp,n the cyclotomic Zp-extension of Qp (with notations
similar to those introduced above), and by Tp(A) the p-adic Tate module of A.
For K = Q orQp, let H1

Iw(K∞, Tp(A)) be the inverse limit of the cohomology
groups H1(Kn, Tp(A)). The work of Coleman–Perrin-Riou yields a big dual
exponential

LA : H1
Iw(Qp,∞, Tp(A)) −→ �cyc.

It is a morphism of �cyc-modules, which interpolates the Bloch–Kato dual
exponential maps attached to the twists of Tp(A) by finite order characters
χ of G∞ (see Sect. 3.1 for the precise definition). Kato [16] constructs a
cyclotomic Euler system for Tp(A), related to L p(A/Q) via LA. In particular
he constructs an element ζBK∞ = (ζBKn )n∈N ∈ H1

Iw(Q∞, Tp(A)) such that

LA(resp(ζ
BK∞ )) = L p(A/Q). (1)

Kato’s Euler system is built out of Steinberg symbols of certain Siegel modular
units, which also appeared in the work of Beilinson. The classes ζBKn are then
called p-adic Beilinson–Kato classes.

1.1 A conjecture of Perrin-Riou

Set Vp(A) := Tp(A)⊗Zp Qp and denote by ζBK the natural image of the class
ζBK0 ∈ H1(Q, Tp(A)) in H1(Q, Vp(A)). We call ζBK the p-adic Beilinson–
Kato class attached to A. According to Kato’s reciprocity law [16]

exp∗
A(resp(ζ

BK)) =
(

1 − 1

p

)
L(A/Q, 1)

�+
A

∈ Q, (2)

where �+
A ∈ R∗ is the real Néron period of A and exp∗

A : H1(Qp, Vp(A))→
Fil0DdR(Vp(A)) ∼= Qp is the Bloch–Kato dual exponential map (see Sect. 2.6
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for the last isomorphism). In particular this implies that the complex Hasse–
Weil L-function L(A/Q, s) vanishes at s = 1 precisely if ζBK is a Selmer
class, i.e. if it belongs to the Bloch–Kato Selmer group H1

f (Q, Vp(A)) ⊂
H1(Q, Vp(A)) of Vp(A).
When L(A/Q, 1) = 0, it is natural to ask whether ζBK is still related to

the special values of L(A/Q, s). Perrin-Riou addresses this question in [32]
for elliptic curves with good reduction at p. In that setting, she conjectures
that the logarithm of the p-adic Beilinson–Kato class equals the square of the
logarithm of a Heegner point on the elliptic curve, up to a non-zero rational
factor. In particular, she predicts that the Beilinson–Kato class is non-zero
precisely if the Hasse–Weil L-function has a simple zero at s = 1. The first
aim of this paper is to prove the analogue of Perrin-Riou’s conjecture in our
multiplicative setting.

Since A/Qp is splitmultiplicative, Tate’s theory provides aGQp -equivariant
p-adic uniformisation

�Tate : Q∗
p/qZ

A
∼= A(Qp), (3)

where qA ∈ pZp is the Tate period of A/Qp. Denote by logqA
: Q∗

p/qZ
A →Qp

the branch of the p-adic logarithm which vanishes at qA and by

logA = logqA
◦�−1

Tate : A(Qp) −→ Qp

the formal group logarithm on A/Qp. It induces on p-adic completions an
isomorphism logA : A(Qp)⊗̂Qp

∼= Qp.

Theorem A Assume that L(A/Q, 1) = 0, i.e. that ζBK is a Selmer class.

1. There exist a non-zero rational number �1 ∈ Q∗ and a rational point
P ∈ A(Q) ⊗ Q such that

logA(resp(ζ
BK)) = �1 · log2A(P).

2. P is non-zero if and only if L(A/Q, s) has a simple zero at s = 1.

In particular: resp(ζ
BK) 
= 0 if and only if L(A/Q, s) has a simple zero at

s = 1.

The point P ∈ A(Q)⊗Qwhich appears in the statement is a Heegner point,
coming from a certain Shimura curve parametrisation of A (see Sect. 2.5).
Theorem A then compares two Euler systems of a different nature: Kato’s
Euler system, belonging to the cyclotomic Iwasawa theory of A, and the Euler
systemofHeegner points, which pertains to the anticyclotomic Iwasawa theory
of A (and a suitable quadratic imaginary field).
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926 R. Venerucci

The proof of Theorem A relies on Hida’s theory of p-adic families of
modular forms. Together with the work of Kato and Coleman–Perrin-Riou
mentioned above, the exceptional zero formula proved by Bertolini and
Darmon [2], and Nekovář’s theory of Selmer complexes [25] are the key ingre-
dients in our proof.

Remark 1 1. Assume that L(A/Q, s) has a simple zero at s = 1. By the
theorem of Gross–Zagier–Kolyvagin, A(Q) has rank one and A(Q) ⊗
Qp = H1

f (Q, Vp(A)) is generated by P. By Theorem A, ζBK is equal
to logA(P) · P, up to a non-zero rational factor. According to [5, Corol-
laire 2], logA(P) ∈ Q∗

p is transcendental overQ, so that ζBK /∈ A(Q)⊗Q.
In particular, ζBK does not come from a rational point in A(Q) ⊗ Q.

2. Bertolini andDarmon have recently announced [3] a proof of Perrin-Riou’s
conjecture for elliptic curves with good ordinary reduction at p. Their
approach, based on the p-adic Beilinson formula proved in loc. cit. and
the p-adic Gross–Zagier formula proved in [4], is markedly different from
ours.

Combining Theorem A, the results of Kato and Kolyvagin’s method, we
deduce the following result.

Theorem B ζBK is non-zero if and only if ords=1L(A/Q, s) ≤ 1.

1.2 p-adic Gross–Zagier formulae

Let χcyc : G∞ ∼= 1 + pZp denote the p-adic cyclotomic character. For
every s ∈ Zp, set L p(A/Q, s) := χ s−1

cyc (L p(A/Q)). Then L p(A/Q, s) is
a p-adic analytic function on Zp. Since A has split multiplicative reduction
at p, the phenomenon of exceptional zeros discovered in [23] implies that
L p(A/Q, 1) = 0 independently of whether L(A/Q, s) vanishes or not at
s = 1. The exceptional zero conjecture formulated in loc. cit. states that
ords=1L p(A/Q, s) = ords=1L(A/Q, s) + 1, and that the leading term in the
Taylor expansion of L p(A/Q, s) at s = 1 equals, up to a non-zero rational
factor, the determinant of the lattice A†(Q)/torsion, computed with respect to
the extended cyclotomic p-adic height pairing. Here A†(Q) is the extended
Mordell–Weil group, whose elements are pairs (P, yP) ∈ A(Q) × Q∗

p such
that�Tate(yP) = P; it is an extension of A(Q) by the Z-module generated by
the Tate period qA = (0, qA) ∈ A†(Q). When L(A/Q, 1) 
= 0 the conjecture
predicts

d

ds
L p(A/Q, s)s=1 = Lp(A)

L(A/Q, 1)

�+
A

,
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Exceptional zero formulae and a conjecture of Perrin-Riou 927

where Lp(A) = logp(qA)/ordp(qA) is the L -invariant of A/Qp. This for-
mula was proved by Greenberg and Stevens [10]. (We give a slightly different
proof of it in Theorem 5.2 below.)

Our second aim in this paper is to prove (a large part of) the above excep-
tional zero conjecture when ords=1L(A/Q, s) = 1 and, more generally, a
two-variable p-adic Gross–Zagier formula for theMazur–Kitagawa p-adic L-
function of the Hida family attached to A/Q. Let f ∈ S2(	0(N p),Z) be the
weight-two newform associated with A/Q by the modularity theorem, and let
f∞ = ∑∞

n=1 an(k) · qn ∈ AU �q� be the Hida family passing through f . Here
U ⊂ Zp is a p-adic disc centred at 2, and AU ⊂ Qp�k − 2� is the subring
of power series in the variable k − 2 which converge for k ∈ U . For every
k ∈ U ∩ Z≥2, the q-expansion fk := ∑∞

n=1 an(k) · qn ∈ Sk(	1(N p),Zp) is
an N -new p-ordinary Hecke eigenform of weight k, and f2 = f (cf. Sect.
2.4). Thanks to the work of Mazur and Kitagawa [17] and Greenberg and
Stevens [10], the p-adic L-functions of the forms fk , for k ∈ U ∩Z≥2, can be
packaged into a single two-variable p-adic L-function L p( f∞, k, s) ∈ A ,

where A ⊂ Qp�k − 2, s − 1� is the ring of formal power series con-
verging for every (k, s) ∈ U × Zp (cf. Sect. 2.4). In particular one has
L p( f∞, 2, s) = L p(A/Q, s) and the exceptional zero phenomenon implies
that L p( f∞, k, s) ∈ J , whereJ ⊂ A is the ideal of functions vanishing at
(k, s) = (2, 1).

Let H̃1
f (Q, Vp(A)) be Nekovář’s extended Selmer group. It is aQp-module,

equipped with a natural inclusion A†(Q) ⊗ Qp ↪→ H̃1
f (Q, Vp(A)), which is

an isomorphism precisely when the p-primary part of the Tate–Shafarevich
group of A/Q is finite. In general H̃1

f (Q, Vp(A)) is canonically isomorphic

to the direct sum of the Bloch–Kato Selmer group H1
f (Q, Vp(A)) and the 1-

dimensional vector space Qp · qA generated by the Tate period of A/Qp (see
Sect. 4.2). Using Nekovář’s results and ideas (especially [25, Section 11]), we
introduce in Sect. 4 a canonical Qp-bilinear form

〈〈−,−〉〉p : H̃1
f (Q, Vp(A)) ⊗Qp H̃1

f (Q, Vp(A)) −→ J /J 2,

called the cyclotomic height-weight pairing. One can write

〈〈−,−〉〉p = 〈−,−〉cycp · {s − 1} + 〈−,−〉wtp · {k − 2},

where 〈−,−〉cycp and 〈−,−〉wtp are canonical Qp-valued pairings defined on
H̃1

f (Q, Vp(A)) and {·} : J � J /J 2 denotes the projection. It turns out
that the restriction

〈−,−〉cycp : H1
f (Q, Vp(A)) ⊗Qp H1

f (Q, Vp(A)) −→ Qp
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928 R. Venerucci

of 〈−,−〉cycp to the Bloch–Kato Selmer group is the cyclotomic canonical
p-adic height pairing, as defined, e.g. in [24, Section 7] (see Sect. 4.3.3 for
more details). On the other hand, the weight pairing 〈−,−〉wtp is intrinsically
associated with Hida’s p-ordinary deformation of Tp(A) (cf. Sect. 2.2). For
every Selmer class x ∈ H1

f (Q, Vp(A)), define its extended p-adic height-
weight

h̃ p(x) := det

⎛

⎝
〈〈qA, qA〉〉p 〈〈qA, x〉〉p

〈〈x, qA〉〉p 〈〈x, x〉〉p

⎞

⎠ ∈ J 2/J 3. (4)

Let sign(A/Q) ∈ {±1} be the sign in the functional equation of L(A/Q, s),
and consider the condition

(Loc) L(A/Q, 1) = 0 and the restriction map

resp : H1
f (Q, Vp(A))→ A(Qp)⊗̂Qp is non-zero.

Thework ofGross–Zagier–Kolyvagin guarantees that this condition is satisfied
when A(Q) is infinite and (in particular) when L(A/Q, s) has a simple zero
at s = 1. We can finally state the two-variable p-adic Gross–Zagier formula
mentioned above.

Theorem C Assume that sign(A/Q) = −1 and that (Loc) holds true. Let
P ∈ A(Q)⊗Q be as in Theorem A. Then L p( f∞, k, s) ∈ J 2 and there exists
a non-zero rational number �2 ∈ Q∗ such that

L p( f∞, k, s) mod J 3 = �2 · h̃ p(P).

Moreover, L p( f∞, k, s) ∈ J 3 if and only if P = 0 (i.e. L(A/Q, s) vanishes
to order greater than one at s = 1).

1.2.1 Application to the exceptional zero conjecture

Recalling that logp(qA) 
= 0 by [7], define the Schneider height

〈−,−〉Schp : H1
f (Q, Vp(A)) ⊗Qp H1

f (Q, Vp(A)) −→ Qp

as the symmetric, Qp-bilinear form which for x, y ∈ H1
f (Q, Vp(A)) is given

by the formula

〈x, y〉Schp := 〈x, y〉cycp − logA(resp(x)) · logA(resp(y))

logp(qA)
.

The terminology is justified by the fact that 〈−,−〉Schp is the norm-adapted
height constructed in [38] (cf. Section 7.14 of [25] and Chapter II, §6 of
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[23]). As a consequence of Theorem C and the properties of 〈〈−,−〉〉p, one
deduces the following p-adicGross–Zagier formula for L p(A/Q, s), predicted
by Conjecture BSD(p)-exceptional case in [23, Chapter II, §10].

Theorem D Assume that (Loc) holds true and let P ∈ A(Q) ⊗ Q be as in
Theorem A. Then L p(A/Q, s) vanishes to order at least 2 at s = 1, and there
exists a non-zero rational number �3 ∈ Q∗ such that

d2

ds2
L p(A/Q, s)s=1 = �3 · Lp(A) · 〈P,P〉Schp .

The preceding result enriches our repertoire of p-adic Gross–Zagier formu-
lae for cyclotomic and anticyclotomic p-adic L-functions of elliptic curves,
which already includes the main results of [1,18,30].

As Lp(A) 
= 0, Theorem D implies that ords=1L p(A/Q, s) = 2 precisely
if ords=1L(A/Q, s) = 1 and 〈−,−〉Schp is non-zero. On the other hand, it is
not known that the Schneider height is non-zero when L(A/Q, s) has a simple
zero at s = 1.

1.2.2 The derivative of the improved p-adic L-function

As explained in [10], the restriction of L p( f∞, k, s) to the vertical line s = 1
admits a factorisation L p( f∞, k, 1) = (

1 − ap(k)−1
) · L∗

p( f∞, k) inAU . The
results of [7,10] imply that the function 1 − ap(k)−1 has a simple zero at
k = 2. The following p-adic Gross–Zagier formula for the improved p-adic
L-function L∗

p( f∞, k) is again a consequence of TheoremC and the properties
of the height-weight pairing.

Theorem E Assume that hypothesis (Loc) holds and that sign(A/Q) = −1.
Let P ∈ A(Q) ⊗Q be as in Theorem A. Then L∗

p( f∞, 2) = 0 and there exists
a non-zero rational number �4 ∈ Q∗ such that

−�4 · 〈P,P〉cycp = d

dk
L∗

p( f∞, k)k=2 = 2�4 · 〈P,P〉wtp .

1.3 Outline of the proofs

We briefly sketch the strategy of the proofs of Theorems A and C, assuming
for simplicity that L(A/Q, s) has a simple zero at s = 1.

Denote by Lcc
p ( f∞, k) := L p( f∞, k, k/2) ∈ AU the restriction of

L p( f∞, k, s) to the central critical line s = k/2. According to the excep-
tional zero formula proved by Bertolini and Darmon [2], Lcc

p ( f∞, k) has order
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930 R. Venerucci

of vanishing 2 at k = 2 and

d2

dk2
Lcc

p ( f∞, k)k=2 = � · log2A(P), (5)

where � ∈ Q∗ and P ∈ A(Q) ⊗ Q is a Heegner point. (See Sect. 2.5 for more
details).

On the algebraic side, write h̃cc
p : H1

f (Q, Vp(A))→Qp for the composition

of the extended height-weight h̃ p with the morphism J 2/J 3 � Qp which

on the class of α(k, s) ∈ J 2 takes the value d2

dk2
α(k, k/2)k=2. The properties

satisfied by the height-weight pairing (cf. Theorem 4.2) yield

h̃cc
p (x) = 1

2
log2A(resp(x)), (6)

for every Selmer class x . Equation (5) can then be rephrased as the p-adic
Gross–Zagier formula

d2

dk2
Lcc

p ( f∞, k)k=2 = 2� · h̃cc
p (P). (7)

This shows that the formula displayed in Theorem C holds true, once one
restricts both L p( f∞, k, s) and h̃ p(P) to the central critical line s = k/2.
Instead of trying to extend (7) to the (k, s)-plane directly, we first prove an
analogue of Theorem C, in which the Heegner point P is replaced by the
Beilinson–Kato class ζBK. Precisely, making use of the work of Kato and
Ochiai, we prove in Sect. 5 the equality in J 2/J 3:

logA(resp(ζ
BK))·L p( f∞, k, s) modJ 3= −1

ordp(qA)

(

1− 1

p

)−1

· h̃ p(ζ
BK).

(8)
Combined with (5) and (6), this gives

log2A(resp(ζ
BK)) = �1 · log2A(P) · logA(resp(ζ

BK)),

where �1 := −2� ·ordp(qA)(1− p−1). We then show that resp(ζ
BK) 
= 0 and

deduce Theorem A. Now, thanks to the theorem of Gross–Zagier–Kolyvagin,
one has ζBK = λ · P, with λ = logA(resp(ζ

BK))/ logA(P) ∈ Q∗
p. Then

h̃ p(ζ
BK) = λ2 · h̃ p(P). If one sets �2 := 2�, Theorem A and Eq. (8) yield

Theorem C, namely

L p( f∞, k, s) mod J 3 = �2 · h̃ p(P).
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Organisation of the paper. Section 2 recalls the known results needed in the
rest of the paper. This includes some basic facts from Hida’s theory, the main
result of [2] mentioned above, Ochiai’s construction of a two variable big
dual exponential and a general version of Kato’s reciprocity law. In Sect. 3 we
compute the derivative of Ochiai’s big dual exponential. Section 4 introduces
the height-weight pairing 〈〈−,−〉〉p and discusses its basic properties. In Sect. 5,
we use the computations carried out in Sect. 3 to prove certain exceptional
zero Rubin’s formulae, relating the big dual exponential and the height-weight
pairing. Combining these formulae with Kato’s work, we are able to prove a
variant of the main result of [10] and to prove the key equality (8) appearing
above. Finally, in Sect. 6 we prove the results stated above.

2 Hida families, exceptional zeros and Euler systems

2.1 The Hida family

Set 	 := 1 + pZp and � := Zp�	�. Let C be a finite, flat �-algebra. A
continuousZp-algebra morphism ν : C →Qp is an arithmetic point of weight
k and character χ if its restriction to 	 under the structural morphism is of
the form γ �→ γ k−2 · χ(γ ), for an integer k ≥ 2 and a character χ : 	 →Q

∗
p

of finite order. Denote by X arith(C) the set of arithmetic points of C .
Let f = ∑∞

n=1 an(A) · qn ∈ S2(	0(N p),Z) be the weight-two newform
attached to A/Q by the modularity theorem of Wiles, Taylor–Wiles et alii.
According to the work of Hida [13,14] there exists an R-adic eigenform of
tame level N :

f =
∞∑

n=1

an · qn ∈ R�q�

passing through f . Here R = R f is a normal local Noetherian domain, finite
and flat over�, and f is a formal power series with coefficients in R satisfying
the following properties. For every arithmetic point ν ∈ X arith(R) of weight
k ≥ 2 and character χ , the ν-specialisation

fν :=
∞∑

n=1

ν(an) · qn ∈ Sk(	0(N pr ), χω2−k)

is the q-expansion of an N -new p-ordinary Hecke eigenform of level N pr ,
weight k, and character χ · ω2−k . Here r is the smallest positive integer such
that 1 + prZp ⊂ ker(χ) and ω is the Teichmüller character. Moreover, there
exists a distinguished arithmetic point ψ = ν f ∈ X arith(R) of weight 2 and
trivial character such that
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932 R. Venerucci

f = fψ.

With the notations of Section 1 of [13], let ho(N ;Zp) be the universal p-
ordinary Hecke algebra of tame level N . Diamond operators give a morphism
of Zp-algebras [·] : �→ ho(N ;Zp), making ho(N ;Zp) a free, finitely gen-
erated �-module [14, Theorem 3.1]. (We assume here that [·] is normalised
as in Section 1.4 of [26].) The ring R, denoted I (K ) in [13], is the integral
closure of� in the primitive componentK = K f of ho(N ;Zp)⊗� Frac(�)

to which f belongs [13, Corollary 1.3].
Let ν ∈ X arith(R). By [13, Corollary 1.4] the localisation of R at the kernel

of ν is a discrete valuation ring, unramified over the localisation of � at � ∩
ker(ν). In particular, fix a topological generator γ0 ∈ 	, let� := γ0 − 1 ∈ �

and write p = pψ := ker(ψ). Then

pRp = � · Rp, (9)

i.e. � is a prime element of Rp.

2.2 Hida’s R-adic representation

Let T = Tf be the p-ordinary R-adic representation attached by Hida to f
in [13, Theorem 2.1]. More precisely, let J o∞[p∞] be the ‘big’ p-divisible
group appearing in Section 8 of [13], which is a ho(N ;Zp)-module of co-
finite rank. We define T := HomZp(J o∞[p∞], μp∞)⊗ho(N ;Zp) R. It is a rank-
two R-module, equipped with a continuous R-linear action of GQ, which is
unramified at every rational prime l�N p. According to Théorème 7 of [22] our
assumption on the irreducibility of Ap implies that T is a free R-module of
rank two and that

Trace(Frobl |T) = al; det(Frobl |T) = l[〈l〉]
for every l�N p, where Frobl is an arithmetic Frobenius at l, [·] : 	 ⊂ �→ R is
the structuralmorphism, and 〈·〉 : Z∗

p � 	 is the projection to principal units. 1

2.2.1 Ramification at p

Let G p := GQp ↪→ GQ be the decomposition group determined by our choice
of i p : Q ↪→ Qp and let Ip := IQp be its inertia subgroup. By loc. cit. (see
also [26, Section 1.5]) there exists an exact sequence of R[G p]-modules

1 Théorème 7 of [22] proves these facts assuming that the residual Galois representation ρf of
T is absolutely irreducible. As pointed out to us by J. Nekovář, loc. cit. also requires ρf to be
p-distinguished (see [9]). As ρf ∼= A p and p 
= 2, this hypothesis is automatically satisfied in
our case, by Tate’s theory of p-adic uniformisation.
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Exceptional zero formulae and a conjecture of Perrin-Riou 933

0 −→ T
+ i+−→ T

p−
−→ T

− −→ 0, (10)

where T
+ and T

− are free R-modules of rank 1 and T
− is unramified. More-

over, write ãp : G p � G p/Ip → R∗ for the unramified character sending the
arithmetic Frobenius Frobp ∈ G p/Ip to the p-th Hecke operator ap. Then G p
acts on T

− via ãp and on T
+ via ã−1

p χcyc
[
κcyc

]
, i.e.

T
+ ∼= R(χcyc

[
κcyc

]
ã−1

p ); T
− ∼= R(̃ap). (11)

As in the introduction, χcyc : GQ � Z∗
p is the p-adic cyclotomic character,

and κcyc : GQ � 	 is the composition of χcyc with the projection to principal
units.

2.2.2 Specialisations

Let ν ∈ X arith(R), let Kν := Frac(ν(R)) and let Vν be the contragredient
of the Kν-adic Deligne representation of GQ attached to the eigenform fν . It
follows from [29, Theorem 1.4.3] that the representation Tν := T ⊗R,ν ν(R)

is canonically isomorphic to a Galois-stable ν(R)-lattice in Vν ; in particular
there is a natural isomorphism

Tν ⊗Zp Qp
∼= Vν. (12)

We identify from now on Tν with a Galois-stable ν(R)-lattice in Vν .
Considering the arithmetic point ψ ∈ X arith(R) corresponding to f , one

has Tψ ⊗Zp Qp
∼= Vp(A). Indeed, the irreducibility of Ap implies that ψ

induces a canonical isomorphism of Zp[GQ]-modules

π f : Tψ
∼= Tp(A). (13)

Recall the Tate parametrisation �Tate introduced in (3). As qA has positive
valuation,�Tate induces on the p-adic Tate modules a short exact sequence of
Zp[G p]-modules

0 −→ Zp(1)
i+−→ Tp(A)

p−
−→ Zp −→ 0. (14)

We also write Tp(A)+ := Zp(1) and Tp(A)− := Zp. By (11) there are
isomorphisms of G p-modules

π+
f : T

+
ψ := T

+ ⊗R,ψ Zp
∼= Zp(1); π−

f : T
−
ψ := T

− ⊗R,ψ Zp
∼= Zp. (15)
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934 R. Venerucci

We can, and will, normalise π±
f in such a way that they are compatible with

π f .

2.3 p-adic L-functions

Let G∞ and �cyc be as in the introduction, and define R := R�G∞� =
R⊗̂Zp�cyc. Under our assumptions Section 3.4 of [9] (using ideas from [10,
17]) attaches to f an element

L p(f) ∈ R,

unique up to multiplication by units in R, which interpolates the Mazur–Tate–
Teitelbaum p-adic L-functions of the arithmetic specialisations of f . More
precisely, given ν ∈ X arith(R), let Rν := ν(R)�G∞� and write again ν : R �
Rν for the morphism of �cyc-algebras induced by ν. Fix also a canonical
Shimura period �ν ∈ C

∗ for fν (see [9, Sec. 3.1]). Then, for every ν ∈
X arith(R), there exists a scalar λν ∈ ν(R)∗ such that

ν
(
L p(f)

) = λν · L p( fν) ∈ Rν,

where L p( fν) = L p,�ν ( fν) is the Mazur–Tate–Teitelbaum p-adic L-function
attached in [23] to fν , normalised with respect to�ν (see also [10, Section 4]).
It is characterised by the following interpolation property: let kν be the weight
of ν. Then for every finite order character χ : G∞ →Q

∗
p and every integer

0 < s0 < kν

χ ·χ s0−1
cyc (L p( fν))= ν(ap)

−m
(

1− χω1−s0(p) · ps0−1

ν(ap)

)

Lalg( fν, χω1−s0, s0),

(16)
where m is the p-adic valuation of the conductor of χ and

Lalg( fν, χω1−s0, s0) := τ(χω1−s0) pm(s0−1)(s0 − 1)! L( fν, χ−1ωs0−1, s0)

(2π i)s0−1�ν

∈ Q.

For a Dirichlet character μ, τ(μ) is the Gauss sum of μ and L( fν, μ, s) is the
Hecke L-function of fν twisted by μ.

According to [11, Sec. 3], under our assumptions we can choose�ψ = �+
A

as the real Néron period of A/Q, so that L p(A/Q) := L p( fψ) is the p-adic
L-function of A/Q. Here we insist to make this choice and to normalise L p(f)
by requiring λψ = 1, i.e.

ψ(L p(f)) = L p(A/Q). (17)
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Exceptional zero formulae and a conjecture of Perrin-Riou 935

Then L p(f) is a well-defined element of R up tomultiplication by unitsα ∈ R∗
such that ψ(α) = 1.

2.3.1 Exceptional zeros

The p-adic multiplier

E p(ν, χ · χ j
cyc) :=

(

1 − χω− j (p) · p j

ν(ap)

)

which appears in the interpolation formula (16) is responsible for the phe-
nomenon of exceptional zeros mentioned in the introduction (cf. [23]). Indeed
ψ(ap) = ap(A) = +1 in our setting, and E p(ψ, 1) = 0. In particular, let
I = Icyc be the augmentation ideal of �cyc and let p = (p, I ) be the ideal of
R generated by I and p. Then

L p(f) ∈ p; L p(A/Q) ∈ I. (18)

2.3.2 The improved p-adic L-function

Let ε : R � R be the augmentation map. By [9, Remark 3.4.5] (generalising
a result of [10]) there is a factorisation

ε(L p(f)) =
(
1 − a−1

p

)
· L∗

p(f), (19)

for an element L∗
p(f) ∈ R called the improved p-adic L-function of f .

2.4 The analytic Mellin transform

As explained in [10, Section 2.6] (see also [26, Section 1.4.7]), there exist a
disc U ⊂ Zp centred at 2 and a unique morphism of �-algebras

M = M f : R −→ AU

such that M(r)|k=2 = ψ(r) for every r ∈ R. HereAU ⊂ Qp�k − 2� (see Sect.
1.2) is endowed with the structure of a �-algebra via the character 	 →AU
which sends γ ∈ 	 to the power series γ k−2 := expp((k − 2) · logp(γ )). The
morphism M is called the Mellin transform centred at k = 2. For every n ∈ N,
set an(k) := M(an) and define

f∞ :=
∞∑

n=1

an(k) · qn ∈ AU �q�.
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936 R. Venerucci

Let A ⊂ Qp�k − 2, s − 1� and J ⊂ A be as in Sect. 1.2. Then A
has a structure of �cyc-algebra, induced by the character G∞ →A mapping
g ∈ G∞ to χcyc(g)s−1 := expp((s − 1) · logp(χcyc(g))). Moreover there
exists a unique morphism of �cyc-algebras

M = M f : R −→ A

whose restriction to R equalsM, called theMellin transform centred at (k, s) =
(2, 1). Define the Mazur–Kitagawa p-adic L-function of f∞:

L p( f∞, k, s) := M(L p(f)) ∈ J (20)

as the Mellin transform of L p(f) ∈ R. More precisely, it is a well-defined
element ofA up tomultiplication by a nowhere-vanishing functionα(k) ∈ AU
such that α(2) = 1, and belongs to J by Eq. (18). In the introduction we
defined L p(A/Q, s) := χ s−1

cyc (L p(A/Q)) = M(L p(A/Q)), so that Eq. (17)
gives

L p( f∞, 2, s) = L p(A/Q, s). (21)

According to Theorem 5.15 of [10] L p( f∞, k, s) satisfies the functional equa-
tion

�p( f∞, k, s) = −sign(A/Q) · �p( f∞, k, k − s), (22)

where�p( f∞, k, s) := 〈N 〉s/2 ·L p( f∞, k, s), 〈·〉 : Z∗
p � 1+ pZp denotes the

projection to principal units and sign(A/Q) ∈ {±1} is the sign in the functional
equation satisfied by the Hasse–Weil L-function of A/Q. Note that the central
critical line s = k/2 is the ‘centre of symmetry’ of the functional equation. In
particular, when sign(A/Q) = +1, L p( f∞, k, k/2) vanishes identically.

Write L∗
p( f∞, k) := M(L∗

p(f)) ∈ AU . As M ◦ ε = M(·)|s=1, Eq. (19) gives
a factorisation in AU :

L p( f∞, k, 1) = (
1 − ap(k)

−1) · L∗
p( f∞, k). (23)

The function L∗
p( f∞, k) is called the improved p-adic L-function of f∞.

2.5 The Bertolini–Darmon exceptional zero formula

The following result has been proved in [2], assuming a mild technical con-
dition subsequently removed in [21, Section 6]. Denote by Lcc

p ( f∞, k) ∈ AU
the restriction of L p( f∞, k, s) to the central critical line s = k/2.
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Exceptional zero formulae and a conjecture of Perrin-Riou 937

Theorem 2.1 There exist a non-zero rational number � ∈ Q∗ and a rational
point P ∈ A(Q) ⊗ Q such that

d2

dk2
Lcc

p ( f∞, k)k=2 = � · log2A(P).

Moreover, P is non-zero if and only if L(A/Q, s) has a simple zero at s = 1.

Remark 2.2 Assume for simplicity that sign(A/Q) = −1 and that N 
= 1 is
not square-full (see [21] for the general case). As explained in [2], the defini-
tions ofP and � rest on the choice of an auxiliary imaginary quadratic field K/Q
satisfying the following conditions. Let DK and εK : (Z/DKZ)∗ → {±1}
denote the discriminant and the quadratic character of K respectively.

(α) (DK , N p) = 1 and there is a factorisation N p = pN+N−, such that pN−
is square-free and a prime divisor of N p divides pN− if and only if it is
inert in K .

(β) The special value L(A/Q, εK , 1) is non-zero.

ThenP is defined as the trace toQof aHeegner point in A(K )⊗Q, coming from
a parametrisation of A/Q by the Shimura curve X N+,pN− associated with an
Eichler order of level N+ in the indefinite quaternion algebra of discriminant
pN−. The rational number � is defined by the relation

2�−1 = η f · √
DK · L(A/Q, εK , 1)

�−
A

∈ Q∗.

Here�−
A ∈ iR∗ is such that�+

A ·�−
A is the Petersson norm of f . The constant

η f := 〈
φ f , φ f

〉 ∈ Q∗ is the Petersson normof a (suitably normalised) Jacquet–
Langlands lift of f to an eigenform φ f on the definite quaternion algebra of
discriminant N−∞ (cf. Sections 2.2 and 2.3 of [2]). Note that both P and �

depend on the choice of K/Q, while the product � · log2A(P) does not.

2.6 Ochiai’s big dual exponential

We recall here the definition of Ochiai’s two-variable big dual exponential for
T, constructed in [27] using previous work of Coleman–Perrin-Riou.

2.6.1 Notations

For every n ∈ N ∪ {∞}, let Qp,n be as in the introduction. The Galois group
of Qp,∞/Qp is naturally identified with G∞ = Gal(Q∞/Q), via the unique
prime of Q∞ dividing p.
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938 R. Venerucci

Given n ∈ N and a p-adic representation V of G p = GQp , let DdR,n(V ) :=
H0(Qp,n, V ⊗Qp BdR), where BdR is Fontaine’s field of periods. It is equipped
with a complete and separated decreasing filtration Fil•DdR,n(V ), arising from
the filtration {Filn BdR := tn B+

dR}n∈Z, where B+
dR is the ring of integers of BdR

and t := log(ζ∞), for a fixed generator ζ∞ ∈ Zp(1). Denote by tgn(V ) :=
DdR,n(V )/Fil0 the tangent space of the GQp,n -representation V . If n = 0,
it will be omitted from the notations (e.g. DdR(V ) = DdR,0(V )). If V is a
de Rham representation of G p, there is a natural Gal(Qp,n/Qp)-equivariant
isomorphism of filtered modules DdR,n(V ) = DdR(V ) ⊗Qp Qp,n .

Let S be a complete, local Noetherian ring with finite residue field of char-
acteristic p and let X be a free S-module of finite rank, equipped with a
continuous S-linear action of G p. Define

Hq
Iw(Qp,∞,X) := lim←−

n∈N
Hq(Qp,n,X),

where the limit is taken with respect to the corestriction maps in Galois coho-
mology. Galois conjugation equips Hq

Iw(Qp,∞,X) with the structure of a
module over the completed group algebra S := S�G∞�.

For every R-moduleM and every ν ∈ X arith(R), writeMν := M⊗R,ν ν(R).

2.6.2 de Rham modules

Set Ť := HomR(T, R) and Ť
± := HomR(T

∓, R). Let ν ∈ X arith(R).
Since Tν is a Galois-stable lattice in Vν by (12), Ťν is a Galois-stable
lattice in the Deligne representation V̌ν = HomKν (Vν, Kν) of fν , where
Kν := Frac(ν(R)). Define V ±

ν := T
±
ν ⊗Zp Qp and V̌ ±

ν := Ť
±
ν ⊗Zp Qp.

According to (10), for Mν ∈ {Vν, V̌ν} there is a short exact sequence of
Kν[G p]-modules

0 −→ M+
ν

i+−→ Mν
p−

−→ M−
ν −→ 0.

The representation V̌ν is known to be deRham, and then so is Vν . In addition,
Fil0DdR(V̌ν) = DdR(V̌ν) and Film DdR(V̌ν) is 1-dimensional over Kν (resp.,
zero) for every 1 ≤ m ≤ kν −1 (resp., m ≥ kν), where kν ≥ 2 is the weight of
ν. It follows easily from (11) that p− : Vν � V −

ν and i+ : V̌ +
ν ↪→ V̌ν induce

isomorphisms of Kν-modules

Fil0DdR,n(Vν) ∼= DdR,n(V
−
ν ); DdR,n(V̌

+
ν (1)) ∼= tgn(V̌ν(1)) (24)

for every n ∈ N, which we consider as equalities in what follows.
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Exceptional zero formulae and a conjecture of Perrin-Riou 939

For every n ∈ N the duality Vν × V̌ν(1)→ Kν(1) induces a Kν-bilinear
form

〈−,−〉dR = 〈−,−〉dR,n : Fil0DdR,n(Vν) × tgn(V̌ν(1))
∪−→ DdR,n(Kν(1)) = Qp,n ⊗Qp Kν.

Under the isomorphisms DdR,n(M) = DdR(M)⊗QpQp,n , for M = Vν, V̌ν(1),
the pairing 〈−,−〉dR,n is identified with the Qp,n-base change of 〈−,−〉dR,0.
Denote also by 〈−,−〉dR : Fil0DdR,n(Vν) × tgn(V̌ν(1))→ Kν(μpn+1) the
bilinear form defined by composing 〈−,−〉dR with the multiplication map
Kν ⊗Qp Qp,n → Kν(μpn+1).

2.6.3 Variation of periods

Let Qun
p be the maximal unramified extension of Qp and let Ẑun

p be the p-
adic completion of its ring of integers. Following [27, Section 3], define the
R-module

D := H0(Qp, Ẑun
p ⊗̂Zp Ť

+).

By (10) and (11), the G p-module Ť
+ is unramified and free of rank one as

an R-module. Then D is also a free R-module of rank one, by Lemma 3.3
of [27]. As H0(Qun

p , BdR) = Ẑun
p ⊗Zp Qp, this easily implies (cf. loc. cit.)

that for every ν ∈ X arith(R) there is a natural isomorphism of Kν-modules
Dν ⊗Zp Qp

∼= DdR(V̌ +
ν ). This induces a natural ν-specialisation map

D −→ DdR(V̌
+
ν ).

For every X ∈ D, denote by Xν the ν-specialisation of X .
Fix a generator � of the R-module D, which also fixes a Kν-basis

�ν(1) := �ν ⊗ ζdR ∈ tg(V̌ν(1)).

Here ζdR := ζ∞ ⊗ log(ζ∞)−1 ∈ DdR(Qp(1)) is the canonical Qp-basis
associated to a generator ζ∞ ∈ Zp(1) and · ⊗ ζdR is the natural isomorphism
DdR(V̌ +

ν ) ∼= DdR(V̌ +
ν ) ⊗Qp DdR(Qp(1)) = DdR(V̌ +

ν (1)).
By (13) and (15) one has Tψ

∼= Tp(A) and T
−
ψ

∼= Zp respectively. Then

V̌ψ(1) and V̌ +
ψ (1) are identified with V̌p(A)(1) andQp(1) respectively, where

V̌p(A) := HomQp(Vp(A),Qp). In particular ζdR can be identified with an

element of tg(V̌p(A)(1)) (cf. Eq. (24)). After possibly multiplying � by a unit
in R, we can assume
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940 R. Venerucci

�ψ(1) = ζdR ∈ tg(V̌p(A)(1)). (25)

2.6.4 Ochiai’s two-variable big dual exponential

For every ν ∈ X arith(R) and every finite order character χ : G∞ →Q
∗
p write

ν × χ : R →Qp for the unique morphism of Zp-algebras whose restriction
to R (resp., G∞) equals ν (resp., χ ). Let T

? denote either T or T
±. For every

Zn ∈ Hq(Qp,n,T
?) let Zn,ν ∈ Hq(Qp,n, V ?

ν ) be the image of Zn under the
morphism induced in cohomology by T

? � T
?
ν ⊂ V ?

ν . Finally, for every
n ∈ N, write

exp∗ = exp∗
V −
ν

: H1(Qp,n, V −
ν ) −→ DdR,n(V

−
ν ) ∼= Fil0DdR,n(Vν)

for the Bloch–Kato dual exponential map defined in [15, Chapter II].
The following proposition is proved in Section 5 of [27] (see in particular

Proposition 5.1) building on previous work of Coleman [8] and Perrin-Riou
[33].

Proposition 2.3 There exists a unique morphism of R-modules

LT := LT,� : H1
Iw(Qp,∞,T

−) −→ p ⊂ R

such that: for every Z = (Zn) ∈ H1
Iw(Qp,∞,T

−), every weight-two arith-

metic point ν ∈ X arith(R) and every character χ : Gal(Qp,n/Qp)→Q
∗
p of

conductor pm ≤ pn+1

ν × χ(LT(Z)) = E(ν, χ)
∑

σ∈Gal(Qp,n/Qp)

χ(σ )−1 · 〈
exp∗(Zσ

n,ν),�ν(1)
〉
dR,

where

E(ν, χ) := τ(χ)ν(ap)
−m

(

1 − χ(p)ν(ap)

p

)−1 (

1 − χ(p)

ν(ap)

)

.

With a slight abuse of notation, write again

LT : H1
Iw(Qp,∞,T) −→ p

for the composition of LT with the morphism H1
Iw(Qp,∞,T)→ H1

Iw
(Qp,∞,T

−) induced by p− : T � T
−.
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Exceptional zero formulae and a conjecture of Perrin-Riou 941

2.7 Beilinson–Kato elements and Kato’s reciprocity law

We now state a general version of Kato’s reciprocity law, following Section 6
of [28] (see in particular Corollary 6.17).

Denote byQ(N p)/Q themaximal algebraic extension ofQwhich is unram-
ified at every finite prime l�N p, and set Gn := Gal(Q(N p)/Qn). Let S be a
local complete Noetherian ring with finite residue field of characteristic p and
let X be a free S-module of finite rank, equipped with a continuous S-linear
action of G0. Define

Hq
Iw(Q∞,X) := lim←−

n∈N
Hq(Gn,X),

where the limit is taken with respect to the corestriction maps. According to
[37, Corollary B.3.6], if q = 1 and S = Zp, the �cyc-module H1

Iw(Q∞,X)

is isomorphic to the inverse limit of the cohomology groups H1(Qn,X). In
particular the definition of H1

Iw(Q∞, Tp(A)) given here agrees with the one
given in the introduction.

Theorem 2.4 There exists ZBK∞ = (ZBK
n )n∈N ∈ H1

Iw(Q∞,T) such that

LT

(
resp(Z

BK∞ )
) = L p(f).

Remark 2.5 The preceding theorem comes principally from the work of Kato
[16]. For every arithmetic point ν ∈ X arith(R), Kato [16] attaches to fν a
cyclotomic Euler system for Tν , using Beilinson–Kato elements in the K2 of
modular curves. In particular this gives a class ζBK∞,ν ∈ H1

Iw(Q∞,Tν), related
to the p-adic L-function L p( fν) via the Perrin-Riou big dual exponential (see
in particular Theorem 16.6 of [16]). According to Theorem 6.11 of [28], the
classes {ζBK∞,ν}ν can be interpolated by a two-variable Beilinson–Kato class
ZBK∞ ∈ H1

Iw(Q∞,T), satisfying the conclusions of the theorem.

3 The derivative of Ochiai’s big dual exponential

Consider the morphism of R-modules

LT(·, k, s) := M ◦ LT : H1
Iw(Qp,∞,T

−) −→ J ⊂ A ,

defined as the composition of Ochiai’s big dual exponentialLT with theMellin
transform M; note that LT(·, k, s) takes values in J ⊂ A since M maps by
construction the ideal p intoJ . With a slight abuse of notation, denote again
byLT(·, k, s) : H1

Iw(Qp,∞,T) −→ J the composition ofLT(·, k, s)with the
morphism induced by the projection p− : T � T

−. The aim of this section is
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942 R. Venerucci

to prove Theorem 3.1 below, which gives a simple expression for the derivative
of LT(·, k, s).

Denote by recp : Q∗
p → Gab

p := Gab
Qp

the local reciprocity map, normalised

so that recp(p−1) is an arithmetic Frobenius. It induces an isomorphism
recp : Q∗

p⊗̂Qp
∼= Gab

p ⊗̂Qp, where G⊗̂Qp := (lim←− n∈NG/pnG) ⊗Zp Qp
for every abelian group G. This yields an isomorphism of Qp-vector spaces

H1(Qp,Qp) = Homcont(G
ab
p ⊗̂Qp,Qp) ∼= Homcont(Q∗

p⊗̂Qp,Qp)

= Homcont(Q∗
p,Qp),

which we consider as an equality. For every Z = (Zn) ∈ H1
Iw(Qp,∞,T

−), the
class Z0,ψ ∈ H1(Qp,Qp) is then identified with a continuous morphism on
Q∗

p (see Sect. 2.6.4 for the notations). Let

exp∗
A : H1(Qp, Vp(A))→Fil0DdR(Vp(A)) ∼= Qp

be the Bloch–Kato dual exponential map (cf. (24)). Finally, set

e(1) := (1 + p)⊗̂ logp(1 + p)−1 ∈ Z∗
p⊗̂Qp.

Theorem 3.1 1. Let Z = (Zn) ∈ H1
Iw(Qp,∞,T

−) and let z := Z0,ψ ∈
Homcont(Q∗

p,Qp). Then

(

1 − 1

p

)

LT(Z, k, s)

≡ z(p−1) · (s − 1) − 1

2
Lp(A) · z(e(1)) · (k − 2) (mod J 2).

2. Let Z = (Zn) ∈ H1
Iw(Qp,∞,T) and let z := Z0,ψ ∈ H1(Qp, Vp(A)).

Then
(

1 − 1

p

)

LT(Z, k, s) ≡ Lp(A) · exp∗
A(z) · (s − k/2) (mod J 2).

The proof of Theorem 3.1 is given in Sect. 3.3. We consider separately
the partial derivatives of LT(·, k, s) with respect to the cyclotomic variable s
and the weight variable k. In order to compute the derivative in the cyclotomic
direction, wemake use of the work ofWiles [44] and Coleman [8]. To compute
the derivative in the weight direction, we prove the existence of an improved
big dual exponential, and then invoke a formula of Greenberg–Stevens which
relates the derivative of the p-th Fourier coefficient of f∞ to the L -invariant
Lp(A) [10].
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Exceptional zero formulae and a conjecture of Perrin-Riou 943

3.1 The Coleman map

In this section we first recall, following [36], the definition of the cyclotomic
big dual exponential LA := LTp(A) for the p-adic Tate module of A, called
the Coleman map. In our exceptional zero situation, it is a morphism of �cyc-
modules

LA : H1
Iw(Qp,∞, Tp(A)) −→ I,

factoring through the Iwasawa cohomology of Zp = Tp(A)−, where I =
Icyc is the augmentation ideal of �cyc. We then prove in Proposition 3.6 a
simple formula for its derivative at the augmentation ideal. While versions of
Proposition 3.6 already appear in the literature (e.g. it follows fromProposition
A.3.1 of [20]), we give here a proof in our setting for the convenience of the
reader.

3.1.1 Definition of LA

For every n ∈ N ∪ {∞}, identify Gn := Gal(Qn/Q) with the Galois group of
Qp,n/Qp via the unique prime of Q∞ dividing p. Then �cyc = Zp�G∞� is
identifiedwith the Iwasawa algebra of the cyclotomicZp-extensionQp,∞/Qp.
Let Zp,n and mn be the ring of integers of Qp,n and its maximal ideal respec-
tively, and let Nm,n : Q∗

p,m →Q∗
p,n be the norm map, for m ≥ n.

Fix a generator ζ∞ = (ζpn )n∈N ∈ Zp(1). As in [36, Appendix], define for
every n ∈ N:

xn := p + TraceQp(μpn+1 )/Qp,n

(
n∑

k=0

ζpn+1−k − 1

pk

)

∈ Qp,n.

A simple computation shows that these elements are compatible with respect
to the trace maps. The following key lemma is due to Coleman (cf. Theorem
24 of [8]).

Lemma 3.2 There exists a unique principal unit g(X) ∈ 1 + (p, X) · Zp�X�
such that:

1. logp(g(0)) = p;
2. Cn := g(ζpn+1 − 1) ∈ 1 + mn and logp (Cn) = xn for every n ∈ N;
3. Nm,n(Cm) = Cn for every m ≥ n ≥ 0.

Proof See [36, Appendix] or [37, Appendix D]. ��
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944 R. Venerucci

Identify H1(Qp,n,Zp(1)) = Q∗
p,n⊗̂Zp by Kummer theory. The preceding

lemma allows us to define

C := (
Cn⊗̂1

)
n∈N ∈ H1

Iw(Qp,∞,Zp(1)).

Fix a topological generator σ0 ∈ G∞, and write ς := σ0 − 1 ∈ I for the
corresponding generator of I ⊂ �cyc.

Lemma 3.3 There exists a unique C′ := C′
ς ∈ H1

Iw(Qp,∞,Zp(1)) such that
C = ς · C′.

Proof The corestriction map induces an injective map: H1
Iw(Qp,∞,Zp(1))/ς

↪→ H1(Qp,Zp(1)), and the ς -torsion submodule H1
Iw(Q∞,p,Zp(1))[ς ] is

trivial (being a quotient of H0(Qp,Zp(1))). It is then sufficient to prove that the
principal unit C0 is equal to 1. Note that x0 = 0, as TraceQp(μp)/Qp(ζp − 1) =
−p. By Lemma 3.2(2) this implies logp(C0) = 0, i.e. C0 = 1 (as p 
= 2). ��

By local Tate duality, there is a natural morphism of �cyc-modules

〈−,−〉∞ : H1
Iw(Qp,∞,Zp) ⊗�cyc H1

Iw(Qp,∞,Zp(1))
ι −→ �cyc.

Here ι is Iwasawa’s main involution on �cyc, i.e. the isomorphism of Zp-
algebras which acts as inversion on G∞, and H1

Iw(Qp,∞,Zp(1))ι denotes
the Zp-module H1

Iw(Qp,∞,Zp(1)), with �cyc-action obtained by twisting
the original action by ι. (See, e.g. Section 2.1.5 of [31] for the definition
of 〈−,−〉∞). Define

LA := − 〈 · ,C〉∞ : H1
Iw(Qp,∞,Zp) −→ I.

The fact that LA takes values in the augmentation ideal follows from Lemma
3.3 (as ι(ς) = −σ−1

0 ς ∈ I ). The following proposition is a version of the
Coleman–Wiles explicit reciprocity law [8,44]; we refer to [36, Appendix] (or
[42, Section 13.2]) for a proof in our setting.

Proposition 3.4 For every z = (zn) ∈ H1
Iw(Qp,∞,Zp) and every non-trivial

character χ of Gn:

χ(LA(z)) = τ(χ)
∑

σ∈Gn

χ(σ)−1 · exp∗
n(z

σ
n ),

where exp∗
n : H1(Qp,n,Qp)→ DdR,n(Qp) = Qp,n is the Bloch–Kato dual

exponential map.
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Exceptional zero formulae and a conjecture of Perrin-Riou 945

With a slight abuse of notation, denote again by LA : H1
Iw(Qp,∞, Tp(A))

−→ I the composition of LA with the map induced by the projection
p− : Tp(A) � Zp (see (14)). Note the following corollary.

Corollary 3.5 Let T
? denote either T

− or T. For every Z ∈ H1
Iw(Qp,∞,T

?):

ψ(LT(Z)) = LA(Zψ),

where Zψ ∈ H1
Iw(Qp,∞, Tp(A)?) is the image of Z under the morphism

induced by T
? � T

?
ψ

∼= Tp(A)?.

Proof As ψ(ap) = 1, this follows from (25) and the interpolation properties
of ψ ◦ LT and LA. ��
3.1.2 The derivative of LA

If M denotes either Tp(A) or Zp, define the derivative of LA:

L′
A : H1

Iw(Qp,∞, M) −→ I/I 2

as the composition of LA with the projection {·} : I � I/I 2. Denote by
logp(ς) the p-adic logarithm of χcyc(σ0), and define

lς := logp(ς) · (1 − p−1) ∈ Z∗
p,

where ς = σ0 − 1 is our fixed generator of I . As in Sect. 3, the coho-
mology group H1(Qp,Zp) is identified with Homcont(Q∗

p,Zp) via the local
reciprocity map.

Proposition 3.6 Let z = (zn) ∈ H1
Iw(Qp,∞,Zp). Then

lς · L′
A(z) = z0

(
p−1) {ς} .

Before giving the proof of Proposition 3.6, we deduce the following corol-
lary.

Corollary 3.7 Let z = (zn) ∈ H1
Iw(Qp,∞, Tp(A)). Then

lς · L′
A(z) = Lp(A) · exp∗

A(z0) {ς} .
In particular LA(z) ∈ I 2 if and only if z0 ∈ H1

f (Qp, Vp(A)) ∼= A(Qp)⊗̂Qp.

Proof Consider the exact sequence

H1(Qp,Qp(1))
i+−→ H1(Qp, Vp(A))

p−
−→ Homcont(Q∗

p,Qp)

δ−→ H2(Qp,Qp(1))
invp∼= Qp

123



946 R. Venerucci

arising from the exact sequence (14), where invp is the invariant map of local
class field theory. A direct computation shows that δ(·) = invp(· ∪ qA⊗̂1),
where ∪: H1(Qp,Qp) × H1(Qp,Qp(1))→ H2(Qp,Qp(1)) is the natural
cup-product pairing and we identify as above H1(Qp,Qp(1)) = Q∗

p⊗̂Qp. It
then follows by local class field theory [39] that δ(φ) = −φ(qA) for every
φ ∈ Homcont(Q∗

p,Qp), so that the image of p− is equal to the space of
morphisms φ such that φ(qA) = 0. As logp and ordp form a Qp-basis of
Homcont(Q∗

p,Qp), this implies

Im
(

p−) = Qp · logqA
,

where logqA
= logp −Lp(A) · ordp is the branch of the p-adic logarithm

which vanishes on qA ∈ pZp.
Let z = (zn) ∈ H1

Iw(Qp,∞, Tp(A)), and write p−(z0) = α · logqA
∈

Homcont(Q∗
p,Qp), for some α ∈ Qp. Then exp∗

A(z0) = exp∗(α · logqA
) = α,

where exp∗ = exp∗
0 is the Bloch–Kato dual exponential forQp. Indeed, by its

very definition (see Chapter II of [15]), exp∗(logp) = 1 and exp∗(ordp) = 0.
According to Proposition 3.6

lς · L′
A(z) = α logqA

(p−1) · {ς} = Lp(A) · exp∗
A(z0) · {ς}.

The last assertion in the statement follows from the non-vanishing of the L -
invariant [7] and the fact that the finite part H1

f (Qp, Vp(A)) ∼= A(Qp)⊗̂Qp

[6] of the local cohomology group H1(Qp, Vp(A)) is the kernel of the
dual exponential. Indeed, the preceding discussion shows that an element
of H1(Qp, Vp(A)) belongs to the kernel of exp∗

A if and only if it is in
the image of i+ : H1(Qp,Qp(1))→ H1(Qp, Vp(A)), and the latter equals
H1

f (Qp, Vp(A)), as follows easily from Kummer theory and the surjectivity
of the Tate parametrisation (3). ��
Proof of Proposition 3.6 For every n ∈ N, let πn := NormQp(μpn+1 )/Qp,n

(ζpn+1 − 1); this is a uniformiser of Zp,n . Since Q∗
p,n has no non-trivial p-

torsion, one has a decomposition

H1(Qp,n,Zp(1)) = Q∗
p,n⊗̂Zp = π̂n ⊕ 1 + mn,

where π̂n is the p-adic completion of πZ
n . Given αn ∈ H1(Qp,n,Zp(1)), let

κn(αn) ∈ 1 + mn be its projection to principal units, and ordn(αn) ∈ Zp
its πn-adic valuation. Since Nm,n(πm) = πn for every integers m ≥ n, if
α = (αn) ∈ H1

Iw(Qp,∞,Zp(1)) then ord(α) := ordn(αn) is independent of
n ∈ N, and κ(α) := (κn(αn))n∈N is a compatible sequence with respect to the
norm maps. One can then define maps
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Exceptional zero formulae and a conjecture of Perrin-Riou 947

ord : H1
Iw(Qp,∞,Zp(1))→Zp; κ : H1

Iw(Qp,∞,Zp(1))→ U 1∞,

where U1∞ denotes the inverse limit of the groups 1 + mn . Write π∞ :=
(πn) ∈ H1

Iw(Qp,∞,Zp(1)). By construction α = π
ord(α)∞ + κ(α) for every

α = (αn) ∈ H1
Iw(Qp,∞,Zp(1)). Moreover, one has

α0 = pord(α) ∈ H1(Qp,Zp(1)). (26)

Indeed, local class field theory tells us that the image of the injective map
H1
Iw(Qp,∞,Zp(1))/ς ↪→ H1(Qp,Zp(1)) induced by the corestriction equals

p̂ = π̂0. Then U 1∞ ⊂ ς · H1
Iw(Qp,∞,Zp(1)) and Eq. (26) follows.

Let us now consider the element C′ = C′
ς appearing in Lemma 3.3. For

every z = (zn) ∈ H1
Iw(Qp,∞,Zp)

L′
A(z) = z0(p−1) · ord(C′) · {ς}. (27)

Indeed, let 〈−,−〉 : H1(Qp,Zp) × H1(Qp,Zp(1))→Zp be the local Tate
pairing. Then

〈
z0,C′

0

〉 = ε
(〈

z,C′〉
∞

)
, where ε is the augmentation map and

we write C′ = (C′
n). This implies

L′
A(z) = −{〈z, ς · C′〉

∞} = 〈
z0,C

′
0

〉 · {ς}. (28)

(Note that ι(ς) ≡ −ς mod I 2.) Since 〈z0, x〉 = z0(x−1) for every x ∈ Q∗
p⊗̂Zp

by local class field theory [39], Eq. (27) follows by combining Eqs. (28) and
(26).

Thanks to (27), the proposition will follow once we prove the claim

ord(C′) = l−1
ς ∈ Z∗

p. (29)

Write V∞ for the inverse limit of the groupsZp[ζpm+1]∗, form ∈ N. According
to Theorem A of [8], for every v = (vn) ∈ V∞ there exists a unique power
series fv(T ) ∈ Zp�T �∗ such that fv(ζpn+1 − 1) = vn for every n ∈ N. The
association v �→ fv(T ) is a morphism of Zp�Gal(Qp(μp∞)/Qp)�-modules
(see [8] for details).Note that,with the notations ofLemma3.2, g(T ) = fC(T ).
As C = ς · C′ and C′ = κ(C′) + π

ord(C′)∞ , one then finds

g(T ) = fκ(C′)((1 + T )χcyc(σ0) − 1)

fκ(C′)(T )
·

⎛

⎝
∏

μ∈μp−1

(1 + T )μ·χcyc(σ0) − 1

(1 + T )μ − 1

⎞

⎠

ord(C′)

.
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948 R. Venerucci

Evaluating this equality at T = 0 and then applying the p-adic logarithm, we
easily obtain

logp(g(0)) = (p − 1) · ord(C′) · logp(χcyc(σ0)) = p · ord(C′) · lς .

Since logp(g(0)) = p by Lemma 3.2(1), the claim (29) follows.

3.2 The improved big dual exponential

The aim of this section is to construct an improved big dual exponential
L∗

T
: H1(Qp,T

−)→ R[1/p]. To do this we follow the techniques of [27, Sec-
tion 5].

Proposition 3.8 There exists a unique morphism of R-modules

L∗
T

= L∗
T,� : H1(Qp,T

−) −→ R ⊗Zp Qp

such that: for every Z ∈ H1(Qp,T
−) and every ν ∈ X arith(R)

ν(L∗
T
(Z)) =

(

1 − ν(ap)

p

)−1 〈
exp∗(Zν),�ν(1)

〉
dR,

where exp∗ : H1(Qp, V −
ν )→ DdR(V −

ν ) = Fil0DdR(Vν) is the Bloch–Kato
dual exponential map.

Before giving the proof of Proposition 3.8, we note the following corollary
(cf. Sect. 2.3.2).

Corollary 3.9 Let ε : R � R be the augmentation map, and let Z = (Zn) ∈
H1
Iw(Qp,∞,T

−). Then

ε(LT(Z)) =
(
1 − a−1

p

)
· L∗

T
(Z0).

Proof Taking χ as the trivial character of G∞ in Proposition 2.3, one has

ν ◦ ε(LT(Z)) = (
1 − ν(ap)

−1) · ν(L∗
T
(Z0)),

for every weight-two arithmetic point ν ∈ X arith(R). Since such points (or
better their kernels) form a dense subset of Spec(R), the corollary follows. ��
Proof of Proposition 3.8 Let K be a complete subfield of Q̂un

p and let V be a
p-adic representation of G K . Denote by DdR,K (V ) := H0(K , V ⊗Qp BdR),
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Exceptional zero formulae and a conjecture of Perrin-Riou 949

and by exp : DdR,K (V )→ H1(K , V ) the Bloch–Kato exponential map [6].
For V = Qp(1), it is described by the composition

expp : DdR,K (Qp(1)) = K −→ K ∗⊗̂Qp = H1(K ,Qp(1)),

where the first equality refers to the canonical identification DdR,K (Qp(1)) =
K ·ζdR ∼= K (see Sect. 2.6.3), the arrow is given by the usual p-adic exponential
and the last equality is the Kummer isomorphism. As K is unramified, expp

maps the ring of integers of K into 1
p H1(K ,Zp(1)) ⊂ H1(K ,Qp(1)).

Set G p := GQp , Ip := IQp and Gun
p := G p/Ip. With the notations of Sect.

2.6, consider the morphism of R[Gun
p ]-modules

expp ⊗̂id : Ẑun
p ⊗̂Zp Ť

+ → (H1(Ip,Zp(1))⊗̂Zp Ť
+) ⊗Zp Qp

= H1(Ip, Ť
+(1)) ⊗Zp Qp (30)

(recall that Ť
+ is unramified). As H0(Ip, Ť

+(1)) = 0, restriction gives an
isomorphism between H1(Qp, Ť

+(1)) and H0(Gun
p , H1(Ip, Ť

+(1))). Taking
Gun

p -invariants in (30) then yields a morphism of R-modules

exp
T
: D −→ H1(Qp, Ť

+(1)) ⊗Zp Qp.

We claim that for every arithmetic point ν ∈ X arith(R)

ν∗(expT
(�)) = exp(�ν(1)), (31)

where ν∗ : H1(Qp, Ť
+(1))→ H1(Qp, V̌ +

ν (1)) is the morphism induced by
Ť

+ � Ť
+
ν ⊂ V̌ +

ν , and exp is the exponential on DdR(V̌ +
ν (1)). As

above, the restriction map gives an isomorphism between H1(Qp, V̌ +
ν (1))

and the Gun
p -invariants of H1(Ip, V̌ +

ν (1)). It follows that the exponential

exp : DdR(V̌ +
ν (1))→ H1(Qp, V̌ +

ν (1)) is identified with the restriction of

expp ⊗id : Q̂un
p ⊗Qp V̌ +

ν −→ H1(Ip,Qp(1)) ⊗Qp V̌ +
ν = H1(Ip, V̌ +

ν (1))

to the Gun
p -invariants. Equation (31) then follows from the definitions of exp

T

and �ν(1).
Let 〈−,−〉R : H1(Qp,T

−) ⊗R H1(Qp, Ť
+(1))→ R be the R-adic local

Tate pairing and define

exp∗
T

= exp∗
T,� := 〈 · , exp

T
(�)

〉
R : H1(Qp,T

−) −→ R ⊗Zp Qp.
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950 R. Venerucci

By (31) one obtains: for every Z ∈ H1(Qp,T
−) and every ν ∈ X arith(R)

ν(exp∗
T
(Z)) = 〈

Zν, ν∗(expT(�))
〉
ν

= 〈
Zν, exp(�ν(1))

〉
ν

= 〈
exp∗(Zν),�ν(1)

〉
dR.

(32)

Here 〈−,−〉ν : H1(Qp, V −
ν )×H1(Qp, V̌ +

ν (1))→ Kν is the local Tate pairing
and exp∗ is the Bloch–Kato dual exponential map on H1(Qp, V −

ν ); the first
equality follows from the functoriality of the local Tate duality, while the last
equality is [15, Chapter II, Theorem 1.4.1]. Define

L∗
T

:=
(

1 − ap

p

)−1

exp∗
T
: H1(Qp,T

−) −→ R ⊗Zp Qp.

According to (32), themorphismL∗
T
satisfies the desired interpolationproperty,

which characterises it uniquely (as the kernels of the arithmetic points are dense
in Spec(R)).

3.3 Proof of Theorem 3.1

Write R for the localisation of R at p, and P for its maximal ideal. Then
P = (�, ς) · R, where � = γ0 − 1 (resp., ς = σ0 − 1) is the generator
of pRp (resp., I ) fixed in (9) (resp., Sect. 3.1.1). Moreover the Qp-module
P/P2 is isomorphic to (I/I 2 ⊗ ZpQp) ⊕ (pRp/p

2Rp).
Let Z = (Zn) ∈ H1

Iw(Qp,∞,T
−) and z := Z0,ψ ∈ Homcont(Q∗

p,Qp).
According to Theorem 3.18 of [10]

1 − a−1
p ≡ − Lp(A)

2 logp(�)
· � (mod p2Rp),

where logp(�) := logp(γ0). Corollaries 3.5 and 3.9 then yield the equality
in P/P2:

LT(Z) mod P2 = L′
A(Zψ) − Lp(A)

2 logp(�)
· ψ(L∗

T
(Z0)) · {� },

where as usual {·} : P � P/P2 denotes the projection. Thanks to Proposi-
tions 3.6 and 3.8, the last congruence can be rewritten as

(
1 − p−1) · LT(Z) mod P2 = z(p−1)

logp(ς)
· {ς} − Lp(A)

2 logp(�)
· z(e(1)) · {� }.

Herewe used thatψ(ap) = ap(A) = 1 and the equality
〈
exp∗(z),�ψ(1)

〉
dR =

z(e(1)). The latter follows from the definition of exp∗ : H1(Qp,Qp)→ DdR
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Exceptional zero formulae and a conjecture of Perrin-Riou 951

(Qp) = Qp (see the proof of Corollary 3.7) and our normalisation (25) of
�ψ(1). Applying M to both sides of the last equation, one obtains the formula
displayed in Part 1 of Theorem 3.1. (Strictly speaking, the Mellin transform is
defined on R, but it extends to a morphism M : R →M reg, whereM reg is the
localisation of A at the multiplicative subset {g(k, s) ∈ A : g(2, 1) 
= 0}.)

To prove Part 2 of the theorem, let Z = (Zn) ∈ H1
Iw(Qp,∞,T) and let

z := Z0,ψ ∈ H1(Qp, Vp(A)). Since exp∗
A(z) is equal to p−(z)(e(1)), using

Corollary 3.7 in place of Proposition 3.6, the same argument as above yields

(1 − p−1) · M ◦ LT(Z) ≡ Lp(A) · exp∗
A(z) · (s − 1)

− 1

2
Lp(A) · exp∗

A(z) · (k − 2) (mod J 2),

thus concluding the proof of Theorem 3.1.

4 Selmer complexes and the height-weight pairing

Inspired by Nekovář’s formalism of height pairings [25, Section 11], we define
the height-weight pairing mentioned in the introduction. We then summarise
its main properties, referring to [25,43] for the proofs.

4.1 Selmer complexes

With the notations of Sect. 2.7, set G := G0. Let S be a complete, local
Noetherian ring with finite residue field of characteristic p, and let S be a
localisation of S. Let M = (M, M+) be an S -adic, nearly-ordinary repre-
sentation of G. More precisely, M = M ⊗S S and M+ = M

+ ⊗S S , where
M is a finitely generated, free S-module, equipped with a continuous, S-linear
action of G, and M

+ ⊂ M is an S-direct summand of M, which is stable for
the action of the decomposition group G p := GQp ↪→ GQ determined by the
embedding i p : Q ↪→ Qp.

For every prime q|N , fix an embedding iq : Q ↪→ Qq , and write Gq :=
GQq ↪→ GQ for the corresponding decomposition group at q. Following [25],
define Nekovář’s Selmer complex of M as the complex of S-modules:

C̃•
f (G, M) := Cone

⎛

⎝C•
cont(G, M) ⊕ C•

cont(Qp, M+)

resN p−i+−→
⊕

l|N p

C•
cont(Ql , M)

⎞

⎠ [−1],
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where the notations are as follows. For G = G or G = Gl (l|N p),
C•
cont(G, �) is the complex of continuous (non-homogeneous) cochains of G

with values in � and C•
cont(Ql, �) := C•

cont(Gl , �) (see Section 3 of [25]).
i+ : C•

cont(Qp, M+)→ C•
cont(Qp, M) is the morphism induced by M+ ⊂

M . Finally, for every prime l|N p, resl : C•
cont(G, M)→ C•

cont(Ql, M) is the
restriction morphism associated with the decomposition group Gl ↪→ GQ and
resN p is the direct sum of the morphisms resl , for l|N p.

Denote by D(S ) the derived category of complexes of S -modules and
by D(S )b

ft ⊂ D(S ) the subcategory of cohomologically bounded complexes
with cohomology of finite type overS . Write

R̃	 f (Q, M) ∈ D(S )b
ft; H̃∗

f (Q, M) := H∗ (
R̃	 f (Q, M)

)

for the image of C̃•
f (G, M) in D(S )b

ft and its cohomology respectively.

By construction, there is an exact triangle in D(S )b
ft (cf. Sect. 6 of [25]):

R̃	 f (Q, M) −→ R	cont(G, M) −→ R	cont(Qp, M−) ⊕
⊕

l|N
R	cont(Ql , M),

which gives rise to a long exact cohomology sequence of S -modules

· · · → Hq−1(Qp, M−) ⊕ Hq−1
N (M)→ H̃q

f (Q, M)→ Hq(G, M)

→ Hq(Qp, M−) ⊕ Hq
N (M)→ · · · . (33)

Here M− := M/M+ = M/M+ ⊗S S , R	cont(G, �) ∈ D(S )b
ft is the image

of C•
cont(G, �) in the derived category, and we write for simplicity Hq

N (M) :=⊕
l|N Hq(Ql, M).

4.2 The extended Selmer group

Let S = Qp and M = Vp(A), with the nearly-ordinary structure
i+ : Qp(1) ↪→ Vp(A) given in (14). By [25, 12.5.9.2], one can extract from
(33) a short exact sequence of Qp-modules

0→Qp → H̃1
f (Q, Vp(A))→ H1

f (Q, Vp(A))→ 0, (34)

where the left-most term arises as H0(Qp,Qp) = H0(Qp, Vp(A)−) and
H1

f (Q, Vp(A)) ⊂ H1(G, Vp(A)) is the Bloch–Kato Selmer group of Vp(A)

[6]. In addition the projection in (34) admits a natural splitting

σ u-r : H1
f (Q, Vp(A)) −→ H̃1

f (Q, Vp(A)),
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Exceptional zero formulae and a conjecture of Perrin-Riou 953

characterised by the following property. Let ℘+ : H̃1
f (Q, Vp(A))→ H1

(Qp,Qp(1)) = Q∗
p⊗̂Qp be the morphism induced by the natural projection

R̃	 f (Q, Vp(A))→R	cont(Qp,Qp(1)). Then

℘+ ◦ σ u-r(H1
f (Q, Vp(A))) ⊂ H1

f (Qp,Qp(1)) = Z∗
p⊗̂Qp. (35)

This follows from Section 11.4 of [25], thanks to the fact thatLp(A) 
= 0 by
[7].We use the section σ u-r to obtain the identification H̃1

f (Q, Vp(A)) ∼= Qp ⊕
H1

f (Q, Vp(A)). Moreover, we identify the Tate period qA with the canonical

generator of Qp ⊂ H̃1
f (Q, Vp(A)). In other words, from now on

H̃1
f (Q, Vp(A)) = Qp · qA ⊕ H1

f (Q, Vp(A)). (36)

4.3 The height-weight pairing

As in Sect. 3.3, let R be the localisation of R = R�G∞� at p = (p, I )
and let P = (�, ς) · R be its maximal ideal. Let M reg ⊂ Frac(A )

be the localisation of A at the multiplicative subset consisting of elements
g(k, s) ∈ A such that g(2, 1) 
= 0, and write again J ⊂ M reg for the
ideal of functions vanishing at (2, 1). The Mellin transform extends to a mor-
phism M : R →M reg mapping P into J and then induces a morphism of
Qp-modules M : P/P2 →J /J 2.

Denote by χ∞ : G � G∞ ⊂ R
∗
the tautological representation of G and

define

T := T ⊗R R(χ−1∞ ) ∈ R[G]Mod; T := T ⊗R R ∈ R[G]Mod.

Similarly, define the R[G p]-modules T
± := T

± ⊗R R(χ−1∞ ) and theR[G p]-
modules T ± := T

± ⊗R R. Then T
±
are free R-modules of rank one, so that

T = (T, T +) is a nearly-ordinary R-adic representation of G. In particular,
there is a short exact sequence ofR[G p]-modules

0 −→ T + i+−→ T
p−

−→ T − −→ 0 (37)

and the Selmer complex R̃	 f (Q, T ) ∈ D(R)b
ft is defined.

Denote by ξ : R � Qp the composition ofψ : Rp � Qp with the augmen-
tation map ε : R � Rp. Since ε ◦ χ∞ is the trivial character, Eq. (13) induces
a natural isomorphism of Qp[G]-modules

Tξ := T ⊗R,ξ Qp
∼= Vp(A). (38)
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Similarly T +
ξ := T + ⊗R,ξ Qp

∼= Qp(1) and T −
ξ := T − ⊗R,ξ Qp

∼= Qp
as Qp[G p]-modules, and (38) extends to an isomorphism between the ξ -base
change of (37) and the tensor product of (14)withQp. This induces a canonical
isomorphism of complexes of Qp-modules

R̃	 f (Q, Tξ ) ∼= R̃	 f (Q, Vp(A)). (39)

4.3.1 The Bockstein map

By thegeneral behaviour ofSelmer complexes under base change, R̃	 f (Q, Tξ )

is isomorphic to the derived base change R̃	 f (Q, T ) ⊗L
R,ξ Qp. This yields

via (39) natural isomorphisms in D(R)b
ft:

R̃	 f (Q, T ) ⊗L
R,ξ Qp

∼= R̃	 f (Q, Vp(A));
R̃	 f (Q, T ) ⊗L

R P/P2 ∼= R̃	 f (Q, Vp(A)) ⊗Qp P/P2. (40)

(For the details see the proof of Lemma 5.5 below; see also the proof of
Proposition 8.10.1 of [25].) Applying the functor R̃	 f (Q, T ) ⊗L

R − to the
exact triangle

P/P2 −→ R/P2 ξ−→ Qp
∂ξ−→ P/P2[1] (41)

then induces a morphism in D(R)b
ft:

β̃ p : R̃	 f (Q, Vp(A)) −→ R̃	 f (Q, Vp(A))[1] ⊗Qp P/P2,

called the derived Bockstein map. It induces in cohomology theBockstein map

β̃p := H1(˜β p) : H̃1
f (Q, Vp(A)) −→ H̃2

f (Q, Vp(A)) ⊗Qp P/P2.

4.3.2 Definition of the pairing

Nekovář’s generalisation of Poitou-Tate duality attaches to the Weil pairing
on Vp(A) a perfect, global cup-product pairing [25, Section 6]

〈−,−〉Nek : H̃2
f (Q, Vp(A)) ⊗Qp H̃1

f (Q, Vp(A)) −→ H3
c,cont(Q,Qp(1)) ∼= Qp,

where H∗
c,cont(Q,−) denotes the compactly supported cohomology and the

last trace isomorphism comes from global class field theory [25, Section 5].
(See in particular Sections 5.3.1.3, 5.4.1 and 6.3 of [25].)

123



Exceptional zero formulae and a conjecture of Perrin-Riou 955

We define the (cyclotomic) height-weight pairing

〈〈−,−〉〉p : H̃1
f (Q, Vp(A)) ⊗Qp H̃1

f (Q, Vp(A)) −→ J /J 2

as the composition of

β̃p ⊗ id : H̃1
f (Q, Vp(A)) ⊗Qp H̃1

f (Q, Vp(A))

−→ H̃2
f (Q, Vp(A)) ⊗Qp H̃1

f (Q, Vp(A)) ⊗Qp P/P2

with

〈−,−〉Nek ⊗ M : H̃2
f (Q, Vp(A)) ⊗Qp H̃1

f (Q, Vp(A)) ⊗Qp P/P2 −→ J /J 2.

We alsowrite 〈〈−,−〉〉p(k, s) := 〈〈−,−〉〉p whenwewant to emphasise the depen-
dence of 〈〈−,−〉〉p on the variables (k, s). If F : M reg →M reg is a morphism
of Qp-algebras s.t. F(J ) ⊂ J , then 〈〈−,−〉〉p(F(k, s)) := F ◦ 〈〈−,−〉〉p.

Remark 4.1 Let W : Vp(A) ⊗Qp Vp(A)→Qp(1) be the Weil pairing, nor-
malised as in [40, Chapter III]. In order to define 〈〈−,−〉〉p without ambiguities,
one has to fix the Tate parametrisation�Tate introduced in (3), which is unique
up to sign. We do this by requiring: W (a, i+(b)) = p−(a) · b for every
a ∈ Vp(A) and b ∈ Qp(1).

4.3.3 Basic properties

In this section we discuss the basic properties satisfied by the height-weight
pairing, referring to [25, Section 11] and [43] for the proofs.

Section 7 of [24] defines a symmetric (cyclotomic) canonical height pairing

〈−,−〉cycp : H1
f (Q, Vp(A)) ⊗Qp H1

f (Q, Vp(A)) −→ Qp,

denoted hcan in [24]. More precisely, after identifying Vp(A)with its Kummer
dual under the Weil pairing, the definition of hcan rests on the choices of a
continuous morphism λp : A

∗
Q/Q∗ →Qp (where A

∗
Q is the group of ideles

of Q) and a splitting sp : DdR(Vp(A)) � Fil0DdR(Vp(A)) of the natural
filtration. In the definition of 〈−,−〉cycp , λp is the composition of the Artin map
A

∗
Q/Q∗ → Gab

Q with logp ◦χcyc : Gab
Q →Qp, andsp is the splitting induced by

(24). Let {·} : J � J /J 2 denote the projection. Given g(k, s) = a · {s −
1} + b · {k − 2} ∈ J /J 2, write d

ds g(2, s)s=1 := a and d
dk g(k, 1)k=2 := b.

Theorem 4.2 The Qp-bilinear form 〈〈−,−〉〉p enjoys the following properties.
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1. (Cyclotomic specialisation) For every x, y ∈ H1
f (Q, Vp(A)):

d

ds

(〈〈x, y〉〉p(2, s)
)

s=1 = 〈x, y〉cycp .

2. (Exceptional zero formulae) For every z ∈ H1
f (Q, Vp(A)):

〈〈qA, qA〉〉p = logp(qA) · {s − k/2}; 〈〈qA, z〉〉p = logA(resp(z)) · {s − 1},

where logA = logqA
◦�−1

Tate : H1
f (Qp, Vp(A)) ∼= A(Qp)⊗̂Qp →Qp is the

formal group logarithm.
3. (Functional equation) For every x, y ∈ H̃1

f (Q, Vp(A)):

〈〈y, x〉〉p(k, s) = − 〈〈x, y〉〉p(k, k − s).

Proof Part 1 is proved in [25, Corollary 11.4.7]. Part 2 and Part 3 are proved
in [43]. ��

5 Exceptional zero formulae à la Rubin

Recall the extended height-weight h̃ p : H1
f (Q, Vp(A))→J 2/J 3 intro-

duced in (4). For every global class Z = (Zn) ∈ H1
Iw(Q∞,T), write

Zn,ψ ∈ H1(Gn, Vp(A)) for the image of Zn under the morphism induced
by T � Tψ ⊂ Vp(A). The aim of this section is to prove the following theo-
rem, reminiscent of the Rubin formulae proved by Rubin [35] and Perrin-Riou
[32, Section 2.3] in a different setting (see also [25, Sec. 11]).

Theorem 5.1 Let Z = (Zn) ∈ H1
Iw(Q∞,T) and let z := Z0,ψ ∈

H1(G, Vp(A)).

1. We have the equality in J /J 2:

LT(resp(Z), k, s) mod J 2 = 1

ordp(qA)

(

1 − 1

p

)−1

exp∗
A(resp(z)) · 〈〈qA, qA〉〉p.

In particular: LT(resp(Z), k, s) ∈ J 2 if and only if z ∈ H1
f (Q, Vp(A)).

2. If z ∈ H1
f (Q, Vp(A)), we have the equality in J 2/J 3:

logA(resp(z)) · LT(resp(Z), k, s) mod J 3 = −1

ordp(qA)

(

1 − 1

p

)−1

· h̃ p(z).
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This result, whose proof is given in Sect. 5.2 below, becomes partic-
ularly relevant when combined with the work of Kato. Recall the class
ZBK∞ ∈ H1

Iw(Q∞,T) appearing in Theorem 2.4. By loc. cit. and Eq. (20)

LT

(
resp(Z

BK∞ ), k, s
) = L p( f∞, k, s). (42)

With the notations of the introduction, we set

ζBK∞ := ZBK∞,ψ ∈ H1
Iw(Q∞, Tp(A)); ζBK = ZBK

0,ψ ∈ H1(G, Vp(A)).

By Corollary 3.5 and Eq. (17), LA(resp(ζ
BK∞ )) = L p(A/Q); this is Eq. (1) in

the introduction.
Equation (42) and Theorem 5.1(1) yield the following result, which in light

of Kato’s reciprocity law (2) and Theorem 4.2(2) can be seen as a variant of
the main result of [10].

Theorem 5.2 We have the equality in J /J 2:

L p( f∞, k, s) mod J 2 = 1

ordp(qA)

(

1 − 1

p

)−1

exp∗
A(resp(ζ

BK)) · 〈〈qA, qA〉〉p.

In particular, L p( f∞, k, s) ∈ J 2 if and only if ζBK is a Selmer class.

Theorem 5.1(2) and (42) combine to give the following theorem (cf. Sect.
1.3).

Theorem 5.3 Assume that ζBK ∈ H1
f (Q, Vp(A)). Then we have the equality

in J 2/J 3:

logA(resp(ζ
BK)) · L p( f∞, k, s) mod J 3 = −1

ordp(qA)

(

1 − 1

p

)−1

· h̃ p(ζ
BK).

5.1 Derivatives of cohomology classes

With the notations of Sect. 4.3, Shapiro’s lemma gives a natural isomorphism
of R-modules

H1(Qp, T −) ∼= H1
Iw(Qp,∞,T

−) ⊗R R,

under which the morphism ξ∗ : H1(Qp, T −)→ H1(Qp,Qp) induced by
T − � T −

ξ
∼= Qp (see (38)) corresponds to the R-base change of

H1
Iw(Qp,∞,T

−)→ H1(Qp,Qp); (Zn) �→ Z0,ψ . Under this isomorphism,
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LT(·, k, s) gives rise to a morphism of R-modules (denoted again by the
same symbol)

LT(·, k, s) : H1(Qp, T −) −→ J ⊂ M reg.

As usual, one writes LT(·, k, s) : H1(Qp, T )→J also for the morphism
induced by the projection p− : T � T −.

Denote by H1(Qp, T )o ⊂ H1(Qp, T ) the submodule consisting of classes
Y such that p−(Y) ∈ P · H1(Qp, T −). Given Y ∈ H1(Qp, T )o, choose
Y�,Yς ∈ H1(Qp, T −) such that p−(Y) = � ·Y� +ς ·Yς , write y�, yς ∈
Homcont(Q∗

p,Qp) for the images of Y�,Yς under ξ∗ and define

Derwt(Y) := logp(�) · y�(e(1)); Dercyc(Y) := logp(ς) · yς (p−1);
Der†(Y) := logp(�) · y�(p−1) − 1

2
logp(ς) · Lp(A) · yς (e(1)),

where logp(�) := logp(γ0) and logp(ς) := logp(χcyc(σ0)). Note that, for
∗ ∈ {wt, cyc, †}, the definition of Der∗(Y) depends a priori on the choice
of the classes Y� and Yς . That it is indeed independent of this choice is a
consequence of the following corollary of Theorem 3.1 and the non-vanishing
of Lp(A).

Corollary 5.4 For every Y ∈ H1(Qp, T )o, we have

(

1 − 1

p

)

LT(Y, k, s) ≡ Dercyc(Y) · (s − 1)2 + Der†(Y) · (s − 1)(k − 2)

− 1

2
Lp(A) · Derwt(Y) · (k − 2)2 (mod J 3).

Proof As logp(�)(k − 2) and logp(ς)(s − 1) are the linear terms of M(�)

and M(ς) respectively, and LT(·, k, s) factorises through an R-linear map on
H1(Qp, T −), this is a direct consequence of Theorem 3.1(1). ��

5.2 Proof of Theorem 5.1

Part 1 of the theorem follows by combining Theorem 3.1(2) with Theorem
4.2(2). We then concentrate on the proof of Part 2 in the rest of this section.

Notations

With the notations of Sect. 4.1, set C̃•
f (M) := C̃•

f (G, M). Write x̃ =
(x, x+, y) for an n-cochain of C̃•

f (M), where x ∈ Cn
cont(G, M), x+ ∈
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Cn
cont(Qp, M+) and y = (yl)l|N p ∈ ⊕

l|N p Cn−1
cont (Ql, M). Denote by

d̃ the differentials of C̃•
f (M), so that d̃ (̃x) = (d(x), d(x+), i+(x+) −

resN p(x) − d(y)), where the d’s are the differentials of C•
cont(−,−).

Write ξ∗ : C̃•
f (T )→ C̃•

f (Vp(A)), ξ∗ : C•
cont(G, T )→ C•

cont(G, Vp(A)) and

ξ∗ : C•
cont(Qp, T ?)→ C•

cont(Qp, Vp(A)?) (with ? ∈ {∅,±}) to denote the mor-
phisms induced on cochains by T � Tξ

∼= Vp(A) (see Eq. (38)). Finally, write
R̃	 f (M) := R̃	 f (Q, M) and H̃∗

f (M) := H̃∗
f (Q, M).

5.2.1 A description of β̃p

In order to prove the theorem, we need a more concrete description of the
Bockstein map β̃p. This is addressed in the following lemma.

Lemma 5.5 Let x̃ ∈ C̃1
f (Vp(A)) be a 1-cocycle, and let X̃ ∈ C̃1

f (T ) and

Ỹ�, Ỹς ∈ C̃2
f (T ) be cochains such that:

(a) ξ∗(X̃) = x̃ ;
(b) d̃(X̃) = � · Ỹ� + ς · Ỹς .

Then ỹ� := ξ∗(Ỹ�) and ỹς := ξ∗(Ỹς ) are 2-cocycles of C̃•
f (Vp(A)) and

−β̃p([̃x]) = [̃y� ] ⊗ {� } + [̃yς ] ⊗ {ς} ∈ H̃2
f (Vp(A)) ⊗Qp P/P2

(where [�] denotes the cohomology class of �, and {·} : P � P/P2 the
projection).

Proof Consider the complex ofR-modules, concentrated in degrees (−2, 0):

K• := K•(�, ς) : R d2−→ R ⊕ R
d1−→ R,

where d2(r) = (−rς, r�) and d1(r, s) = r� + sς . It is the Koszul complex
of theR-sequence (�, ς) generatingP . Note that the morphism ξ in degree
zero defines a quasi-isomorphism ξ : K• →Qp. Similarly, one has a quasi-
isomorphism ξ ′ : K 2• →Q2

p
∼= P/P2, defined in degree zero by ξ ′(r, s) =

ξ(r){� }+ξ(s){ς}. It is then easily verified that there is a commutative diagram
in D(R):

K•
ξ

��

∂̂ξ �� K 2• [1]
ξ ′[1]

��
Qp

∂ξ �� P/P2[1],

(43)
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where ∂ξ is the morphism which appears in the exact triangle (41) and ∂̂ξ is
the morphism of complexes

R
d2 ��

μ

��

R2
d1 �� R

R2
−d2⊕−d2 �� R4

−d1⊕−d1 �� R2

with μ(r) := (0, r,−r, 0) for every r ∈ R.
As K• ∼= Qp in D(R) and K• is a complex of free R-modules, there are

functorial isomorphisms in D(R):

C ⊗R K• ∼= C ⊗L
R,ξ Qp; C ⊗R K 2• ∼= C ⊗L

R P/P2 (44)

for every cohomologically bounded complexC ∈ D(R)b. Since T and T ± are
free R-modules, the natural projection K• →R/P (in degree zero) induces
a quasi-isomorphism

C̃•
f (T ) ⊗R K•

qis−→ C̃•
f (T ) ⊗R R/P. (45)

The complex on the right is isomorphic to C̃•
f (Tξ ) ∼= C̃•

f (Vp(A)), as follows

from [25, Proposition 3.4.2]. Then ξ∗ : C̃•
f (T ) � C̃•

f (Vp(A)) and (45) define
a quasi-isomorphism

" : C̃•
f (T ) ⊗R K•

qis−→ C̃•
f (Vp(A)),

inducing via (44) the first isomorphism in (40). Similarly, consider the quasi-
isomorphism

"′ : C̃•
f (T ) ⊗R K 2•

"2−→ C̃•
f (Vp(A)) ⊗Qp Q

2
p

∼= C̃•
f (Vp(A)) ⊗Qp P/P2.

The second isomorphism displayed in (40) is then induced by "′ via (44).
Together with (43), the preceding discussion describes the morphism β̃p as

the composition

β̃p : H̃1
f (Vp(A))

"−1
1−→ H1

(
C̃•

f (T ) ⊗R K•
) (id⊗∂̂ξ )1−→

H2
(

C̃•
f (T ) ⊗R K 2•

) "′
2−→ H̃2

f (Vp(A)) ⊗Qp P/P2, (46)
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where (·)n := Hn(·). Take now x̃, X̃ , Ỹ� and Ỹς as in the statement. The
relation (b) gives� · d̃(Ỹ�) = −ς · d̃(Ỹς ). This easily implies that d̃(Ỹ�) =
ς · Ũ and d̃(Ỹς ) = −� · Ũ , for a 3-cocycle Ũ ∈ C̃3

f (T ). Then (b) tells us that

X := (Ũ , (−Ỹ� ,−Ỹς ), X̃) ∈ C̃3
f (T ) ⊕ C̃2

f (T )2 ⊕ C̃1
f (T ) = (C̃•

f (T ) ⊗R K•)1

is a 1-cocycle, and by (a): "1([X]) = [ξ∗(X̃)] = [̃x]. Applying (id ⊗ ∂̂ξ )1 to
X we obtain the 2-cocycle

Y := ((0, Ũ ,−Ũ , 0), (−Ỹ� ,−Ỹς )) ∈ C̃3
f (T )4 ⊕ C̃2

f (T )2 ⊂ (C̃•
f (T ) ⊗R K 2• )2.

By Eq. (46) one has

β̃p([̃x]) = "′
2([Y]) = [

ξ∗(−Ỹ�)
] ⊗ {� } + [

ξ∗(−Ỹς )
] ⊗ {ς},

as was to be shown. ��
5.2.2 Proof of Part 2 of Theorem 5.1

Let us begin with two simple lemmas.

Lemma 5.6 1. The natural projections induce isomorphisms

H1(Qp, T −)/� ∼= H1(Qp, T −/�); H1(Qp, T −)/ς ∼= H1(Qp, T −/ς).

2. ξ∗ induces an isomorphism H1(Qp, T −) ⊗R R/P ∼= H1(Qp,Qp).

Proof 1. We prove the first isomorphism, the other being similar. Since
(T −/�)/ς = T −/P ∼= Qp, H2(Qp, T −/�)/ς is a submodule of
H2(Qp,Qp) = 0, hence H2(Qp, T −/�) = 0 by Nakayama’s lemma. We
have short exact sequences

0 −→ Hq(Qp, T −)/� −→ Hq(Qp, T −/�) −→ Hq+1(Qp, T −)[� ] −→ 0.

Taking q = 2 yields H2(Qp, T −)/� = 0, and then H2(Qp, T −) = 0 by
another application of Nakayama’s lemma. Taking now q = 1 in the exact
sequence above, one finds H1(Qp, T −)/� ∼= H1(Qp, T −/�).

2. By an argument similar to that proving Part 1, the vanishing of
H2(Qp,Qp) implies that H1(Qp, T −/�)/ς is isomorphic to H1(Qp,Qp).
Together with Part 1 this concludes the proof. ��

TakingS = Qp and M = Vp(A) in Eq. (33) (so that M− = Qp), one can
extract from the long exact sequence a morphism

j : Homcont(Q∗
p,Qp) = H1(Qp,Qp)→ H̃2

f (Vp(A)).
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We recall also themorphism℘+ : H̃1
f (Vp(A))→ H1(Qp,Qp(1)) = Q∗

p⊗̂Qp
introduced in Sect. 4.2.

Lemma 5.7 For every x ∈ H̃1
f (Vp(A)) and every κ ∈ H1(Qp,Qp):

〈j (κ), x〉Nek = −κ(℘+(x)).

Proof Let κ̂ ∈ C1
cont(Qp, Vp(A)) be a 1-cochain lifting κ under the map

p−∗ : C•
cont(Qp, Vp(A))→ C•

cont(Qp,Qp) and let d κ̂ = i+(c(κ)+), for a 2-
cocycle c(κ)+ ∈ C2

cont(Qp,Qp(1)). By construction

j (κ) = [
(0, c(κ)+, κ̂)

] ∈ H̃2
f (Vp(A)). (47)

Let (x, x+, y) ∈ C̃1
f (Vp(A)) be a 1-cocycle representing x, so ℘+(x) is

represented by x+ ∈ C1
cont(Qp,Qp(1)). The definition of 〈−,−〉Nek in [25,

Section 6.3] yields

〈j (κ), x〉Nek = invp([κ̂ ∪W i+(x+)]) = invp(κ ∪ ℘+(x)) = −κ(℘+(x)).

Here ∪W : C•
cont(Qp, Vp(A)) ⊗Qp C•

cont(Qp, Vp(A))→ C•
cont(Qp,Qp(1)) is

the cup-product induced by the Weil pairing W , and invp : H2(Qp,Qp(1)) ∼=
Qp is the invariant map. The second equality follows from Remark 4.1, while
the last equality is a consequence of local class field theory [39]. ��

We are now ready to begin the actual proof of Part 2 of Theorem 5.1. Let
Z = (Zn) ∈ H1

Iw(Q∞,T), let z := Z0,ψ and assume that z ∈ H1
f (Q, Vp(A)).

As in Sect. 5.1, Shapiro’s lemma gives a natural isomorphism

H1(G, T ) ∼= H1
Iw(Q∞,T) ⊗R R.

Write again Z ∈ H1(G, T ) for the class corresponding to Z ⊗ 1 ∈
H1
Iw(Q∞,T)⊗RR under this isomorphism, which satisfies z = ξ∗(Z). Choose

a 1-cocycle Z ∈ C1
cont(G, T ) representing Z, and a 1-cochain

Z̃ = (Z , †, ‡) ∈ C̃1
f (T ) such that [ξ∗(Z̃)] = z ∈ H̃1

f (Vp(A)).

(The shape of † ∈ C1
cont(Qp, T +) and ‡ ∈ ⊕

l|N p C0
cont(Ql, T ) will not be

relevant, and we use Eq. (36) to identify H1
f (Q, Vp(A)) with a submodule of

H̃1
f (Vp(A)).) As ξ∗(d̃(Z̃)) = 0, there exist Ỹ�, Ỹς ∈ C̃2

f (T ) such that

d̃(Z̃) = � · Ỹ� + ς · Ỹς . (48)
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Write ỹ� := ξ∗(Ỹ�) and ỹς := ξ∗(Ỹς ). Lemma 5.5 yields

− β̃p(z) = [̃y� ] ⊗ {� } + [̃yς ] ⊗ {ς} ∈ H̃2
f (Vp(A)) ⊗Qp P/P2. (49)

For ? ∈ {�, ς}, write Ỹ? = (Y?, Y +
? , K̂? + L̂?), where

Y? ∈ C2
cont(G, T ); Y +

? ∈ C2
cont(Qp, T +);

K̂? ∈ C1
cont(Qp, T ); L̂ ∈

⊕

l|N
C1
cont(Ql, T ).

Since d(Z) = 0, (48) gives� · Y� = −ς · Yς and this implies ξ∗(Y?) = 0, as
T and T + are free R-modules. Define

y+
? := ξ∗(Y +

? ) ∈ C2
cont(Qp,Qp(1)); κ̂? := ξ∗(K̂?) ∈ C1

cont(Qp, Vp(A)).

Since R	cont(Ql , Vp(A)) ∼= 0 for every prime l 
= p one deduces

[̃y?] = [
(0, y+

? , κ̂?)
] = j (κ?); κ? := p−∗ (κ̂?) ∈ H1(Qp,Qp)

(see Eq. (47)). Lemma 5.7 and (49) then give: for every x ∈ H̃1
f (Vp(A))

〈〈z, x〉〉p = 〈−,−〉Nek ⊗ M(β̃p(z) ⊗ x)

= logp(�) · κ� (℘+(x)) · {k − 2} + logp(ς) · κς(℘+(x)) · {s − 1}.
(50)

Lemma 5.8 The class resp(Z) belongs to H1(Qp, T )o and we have

logp(ς) · κς(p−1) = −Dercyc(resp(Z));
logp(�) · κ� (e(1)) = −Derwt(resp(Z));
logp(�) · κ� (p−1) − 1

2
logp(ς) · Lp(A) · κς(e(1)) = −Der†(resp(Z)).

Proof Since z is a Selmer class, p−(resp(Z)) is in the kernel of the morphism
ξ∗ : H1(Qp, T −)→ H1(Qp,Qp) (see Eq. (34)). Lemma 5.6(2) then implies
that resp(Z) ∈ H1(Qp, T )o.

Write K? := p−∗ (K̂?), so that ξ∗(K?) = κ?. By Eq. (48)

−p−∗ (resp(Z)) ≈ � · K� + ς · Kς ,

where ≈ denotes equality up to coboundaries. In particular the sum in
the R.H.S. is a 1-cocycle in C1

cont(Qp, T −). Then � · (K� mod ς) ∈
C1
cont(Qp, T −/ς) is a 1-cocycle, so (K� mod ς) is a 1-cocycle, as T −/ς
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is free overR/ς . Similarly, (Kς mod�) ∈ C1
cont(Qp, T −/�) is a 1-cocycle.

Lemma 5.6 then implies the existence of 1-cocycles A�, Aς ∈ C1
cont(Qp, T −)

and 1-cochains B�, Bς ∈ C1
cont(Qp, T −) such that

A� ≈ K� + ς · B� ; Aς ≈ Kς + � · Bς .

Note that �ς · (B� + Bς ) ∈ C1
cont(Qp, T −) is a 1-cocycle; using again the

fact that T − isR-free, this implies that B� + Bς itself is a 1-cocycle. We then
deduce the congruence

−p−(resp(Z)) = [� · K� + ς · Kς ] ≡ � · [A� ] + ς · [Aς ] (mod P2 · H1(Qp, T −)).

Since κ� = ξ∗([A� ]) and κς = ξ∗([Aς ]), the lemma follows from the defin-
ition of the derivatives of resp(Z). ��

Coming back to our proof, since the p-adic logarithm logp and the p-adic
valuation ordp give aQp-basis of Homcont(Q∗

p,Qp), Lemma 5.8 allows us to
write

− logp(ς) · κς := a(ς) · logp −Dercyc(resp(Z)) · ordp;
− logp(�) · κ� = Derwt(resp(Z)) · logp +b(�) · ordp, (51)

for (unique) constants a(ς), b(�) ∈ Qp which satisfy

b(�) + 1

2
Lp(A) · a(ς) = −Der†(resp(Z)). (52)

Since ℘+(z) ∈ Z∗
p⊗̂Qp by Eq. (35) and ℘+(qA) = qA⊗̂1 (cf. Eq. (36)),

Eqs. (50) and (51) yield

−〈〈z, z〉〉p = a(ς)· logA(resp(z))·{s−1}+Derwt(resp(Z))· logA(resp(z))·{k−2},
(53)

and

− 〈〈z, qA〉〉p = (a(ς) · logp(qA) − Dercyc(resp(Z)) · ordp(qA)) · {s − 1}
+(Derwt(resp(Z)) · logp(qA) + b(�) · ordp(qA)) · {k − 2}

(54)

(where we have used the formula logp ◦℘+(z) = logA(resp(z)), which fol-
lows immediately retracing the definitions of logA and ℘+). Moreover, the
exceptional zero formulae displayed in Theorem 4.2(2) give the identities

〈〈qA, qA〉〉p = logp(qA) · {s − k/2}; 〈〈qA, z〉〉p = logA(resp(z)) · {s − 1}. (55)
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Using Eqs. (52)–(55) and writing for simplicity Der?(Z) := Der?(resp(Z)),
we compute

−h̃ p(z)

ordp(qA)
= logA(resp(z)) ×

(

Dercyc(Z) · {s − 1}2 + Der†(Z) · {s − 1}{k − 2}

−1

2
Lp(A) · Derwt(Z) · {k − 2}2

)

in J 2/J 3. Part 2 of Theorem 5.1 follows by combining the last equation
with Corollary 5.4.

6 Proofs of the main results

In this section we prove the results stated in the introduction.

6.1 Proof of Theorem A

As in Sect. 1.3, let Lcc
p ( f∞, k) := L p( f∞, k, k/2) ∈ AU and let

h̃cc
p : H1

f (Q, Vp(A))→Qp

be the composition of h̃ p with the morphism J 2/J 3 →Qp sending

α(k, s) ∈ J 2 to d2

dk2
α(k, k/2)k=2.By the functional equation for 〈〈−,−〉〉p(k, s)

stated in Theorem 4.2(3), 〈〈−,−〉〉p(k, k/2) is a skew-symmetric pairing on
H̃1

f (Q, Vp(A)). Together with Theorem 4.2(2) this gives

h̃cc
p (x) = d2

dk2
det

⎛

⎝
0 1

2 logA(resp(x)) · (k − 2)

− 1
2 logA(resp(x)) · (k − 2) 0

⎞

⎠

∣
∣
∣
∣
∣
∣
k=2

= 1

2
log2A(resp(x)), (56)

for every Selmer class x ∈ H1
f (Q, Vp(A)).

Assume that L(A/Q, 1) = 0, i.e. that ζBK is a Selmer class by Kato’s
reciprocity (2). Combining the Bertolini–Darmon exceptional zero formula of
Theorem 2.1, Theorem 5.3 and Eq. (56), one obtains the identity

logA

(
resp(ζ

BK)
)·2�· log2A(P) = −1

ordp(qA)

(

1 − 1

p

)−1

· log2A
(
resp(ζ

BK)
)
,

(57)
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for a non-zero rational number � ∈ Q∗ and a rational point P ∈ A(Q) ⊗ Q.
Moreover, P 
= 0 precisely if L(A/Q, s) has a simple zero at s = 1. In order
to conclude the proof of Theorem A, we need the following lemma. For every
Z ∈ H1(G, T ), write Lcc

T
(resp(Z), k) for the restriction of LT(resp(Z), k, s)

to the central critical line s = k/2, and let ξ∗ : H1(G, T )→ H1(G, Vp(A))

be the morphism induced by (38).

Lemma 6.1 Let Z ∈ H1(G, T ) be such that ξ∗(Z) ∈ H1
f (Q, Vp(A)). The

following statements are equivalent:

(a) ξ∗(Z) is in the kernel of resp : H1
f (Q, Vp(A))→ A(Qp)⊗̂Qp.

(b) Lcc
T
(resp(Z), k) vanishes to order (strictly) greater than 2 at k = 2.

Proof Write z := ξ∗(Z). Theorem 5.1(2) and Eq. (56) yield

logA(resp(z)) · d2

dk2
Lcc

T
(resp(Z), k)k=2

·= log2A(resp(z)),

where
·= denotes equality up to a non-zero rational factor. Since the formal

group logarithm logA : A(Qp)⊗̂Qp
∼= Qp is an isomorphism, this shows that

(b) implies (a).
Assume now that (a) holds. Since 0 = resp(ξ∗(Z)) = ξ∗(resp(Z)), one can

write resp(Z) = ς · Zς + � · Z� , for classes Zς ,Z� ∈ H1(Qp, T ). (Indeed,
as H2(Qp, Vp(A)) = 0, an argument similar to the one appearing in the proof
of Lemma 5.6(2) proves that H1(Qp, T ) ⊗R,ξ Qp

∼= H1(Qp, Vp(A)).) By
Theorem 3.1(2)

LT(resp(Z), k, s) ≡ Lp(A) · (exp∗
A(zς ) · (s − 1) + exp∗

A(z�) · (k − 2))

· (s − k/2) (mod J 3),

where z� := logp(�) · ξ∗(Z�), zς := logp(ς) · ξ∗(Zς ) ∈ H1(Qp, Vp(A)).
This shows that (a) implies (b), thus concluding the proof of the lemma. ��

Coming back to our proof, the preceding lemma, applied to Z = ZBK∞ , tells
us that resp(ζ

BK) = 0 (or equivalently logA(resp(ζ
BK)) = 0) if and only if

Lcc
p ( f∞, k) vanishes to order greater than 2 at k = 2. In addition, Theorem 2.1

tells us that the latter condition is equivalent to P = 0. To sum up: resp(ζ
BK)

is non-zero if and only if P is non-zero. Defining

�1 := −2� · ordp(qA) · (1 − p−1) ∈ Q∗,

Eq. (57) then gives

logA(resp(ζ
BK)) = �1 · log2A(P),
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concluding the proof of Theorem A.

6.2 Proof of Theorem B

Write ran := ords=1L(A/Q, s). That ran ≤ 1 implies ζBK 
= 0 follows from
Kato’s reciprocity law (2) (if ran = 0) and Theorem A (if ran = 1).

Conversely, assume that ζBK is non-zero. Themethod of Kolyvagin, applied
to the Euler system constructed byKato [16], then tells us that the strict Selmer
group

{x ∈ H1(G, Vp(A)) : resp(x) = 0} ⊂ H1
f (Q, Vp(A))

is trivial. For a proof of this result, see Theorem 2.3 and Chapter III, Section 5
of [37]. (Note that A does not have complex multiplication, since ordp( jA) =
−ordp(qA) < 0 [41, Theorem 6.1]. This implies that the hypotheses of [37,
Theorem 2.3] are satisfied.) Then the restriction resp(ζ

BK) is non-zero. Using
again Theorem A (resp., Eq. (2)), one deduces that ran = 1 (resp., ran = 0) if
ζBK is (resp., is not) a Selmer class.

6.3 An interlude

In the proofs of Theorems C–E, we need the following lemma.

Lemma 6.2 Assume that (Loc) holds and that ords=1L p(A/Q, s) = 2. Then
ζBK 
= 0.

Proof We have short exact sequences of Qp-modules (easily deduced from
Shapiro’s lemma):

0→ Hq
Iw(Q∞, Vp(A))/ς → Hq(G, Vp(A))→ Hq+1

Iw (Q∞, Vp(A))[ς ]→ 0,

where Hq
Iw(Q∞, Vp(A)) := Hq

Iw(Q∞, Tp(A))⊗Zp Qp. Since H0(G, Vp(A))

= 0, H1
Iw(Q∞, Vp(A)) has no non-trivial ς -torsion. Moreover a theorem of

Rohrlich [34] states that L p(A/Q) 
= 0, so in particular ζBK∞ 
= 0 by (1).
There exist then a unique class zBK∞ = (zBKn ) ∈ H1

Iw(Q∞, Vp(A)) and a
unique integer ρ = ρBK ≥ 0 such that

ζBK∞ = ςρ · zBK∞ ; 0 
= zBK0 ∈ H1(G, Vp(A)).

By Poitou–Tate duality and hypothesis (Loc) one has H1
f (Q, Vp(A)) =

H1(G, Vp(A)) (see Lemme 2.3.9 of [32]). In particular zBK0 ∈ H1
f (Q, Vp(A)),

so that
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LA(resp(z
BK∞ )) ∈ ς2 · �cyc

by Corollary 3.7. This yields

L p(A/Q) = LA
(
resp(ζ

BK∞ )
) ∈ ςρ+2 · �cyc,

i.e. ords=1L p(A/Q, s) ≥ ρ + 2. Our assumption then forces ρ = 0 and
ζBK = zBK0 
= 0, as was to be shown. ��

6.4 Proof of Theorem C

Assume that sign(A/Q) = −1 and that hypothesis (Loc) is satisfied. Given
x ∈ H1

f (Q, Vp(A)), write for simplicity logA(x) = logA(resp(x)).

6.4.1 Step I

Assume that P is non-zero, i.e. that ords=1L(A/Q, s) = 1. Thanks to the
work of Gross and Zagier [12] and Kolyvagin [19], A(Q) has rank one and
A(Q) ⊗ Qp

∼= H1
f (Q, Vp(A)). One can then write ζBK = λ · P, where

λ = logA(ζ
BK)/ logA(P), so that h̃ p(ζ

BK) = λ2 · h̃ p(P). Setting �2 := 2�,
Theorems A and 5.3 combine to give the identity

L p( f∞, k, s) mod J 3 = �2 · h̃ p(P).

6.4.2 Step II

Assume that P = 0. We claim that

L p( f∞, k, s) ∈ J 3. (58)

Indeed ords=1L(A/Q, s) > 1 under our assumptions, so that ζBK = 0 by
Theorem B. Lemma 6.2 then yields

∂2

∂s2
L p( f∞, k, s)

∣
∣
∣
∣
(k,s)=(2,1)

= d2

ds2
L p(A/Q, s)s=1 = 0.

Moreover, by the functional equation (22) and Theorem 2.1

(
∂2

∂k2
− 1

4

∂2

∂s2

)

L p( f∞, k, s)

∣
∣
∣
∣
(k,s)=(2,1)

= d2

dk2
Lcc

p ( f∞, k)k=2 = 0.

Since L p( f∞, k, s) ∈ J 2 by Theorem 5.2, the claim (58) follows from the
preceding two equations.
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6.4.3 Step III (conclusions)

We now prove Theorem C. First of all, L p( f∞, k, s) ∈ J 2 by Eq. (2) and
Theorem5.2. The p-adicGross–Zagier formulawhich appears in the statement
follows fromSteps I and II. Finally, the last assertion in the statement is a direct
consequence of Theorem 2.1 and Step II.

6.5 Proof of Theorem D

Assume that (Loc) holds.
If sign(A/Q) = +1, then P = 0 and the order of vanishing of L p(A/Q, s)

at s = 1 is odd by Eq. (22). Moreover d
ds L p(A/Q, s)s=1 = 0, as follows from

Eq. (2) and Theorem 5.2. Theorem D follows in this case.
Assume now that sign(A/Q) = −1. As above, one easily proves that

ords=1L p(A/Q, s) ≥ 2. Moreover, writing h̃ p(P; k, s) = h̃ p(P), Theorem
4.2 yields

h̃ p(P; k, s)
∣
∣
k=2 = det

⎛

⎝
logp(qA) logA(P)

logA(P) 〈P,P〉cycp

⎞

⎠ · {s − 1}2

= logp(qA) · 〈P,P〉Schp · {s − 1}2.

Setting �3 := 2�2 ·ordp(qA)
−1 and recalling that L p(A/Q, s) = L p( f∞, 2, s)

by Eq. (17), Theorem D follows by restricting the formula displayed in The-
orem C to the cyclotomic line k = 2.

6.6 Proof of Theorem E

Assume that sign(A/Q) = −1 and that (Loc) holds.
Writing as above h̃ p(·; k, s) = h̃ p(·), Theorem 4.2 gives

d2

dk2
h̃ p(P; k, 1)k=2 = 2 det

⎛

⎝
− 1

2 logp(qA) 0

− logA(P) 〈P,P〉wtp

⎞

⎠ = − logp(qA) · 〈P,P〉wtp .

On the other hand, by Eq. (23) and Theorem 3.18 of [10]

1

2

d2

dk2
L p( f∞, k, 1)k=2 = d

dk

(
1 − ap(k)

−1)
k=2 · d

dk
L∗

p( f∞, k)k=2

= −1

2
Lp(A) · d

dk
L∗

p( f∞, k)k=2.
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Since Lp(A) 
= 0 [7], Theorem C and the preceding two equations yield the
identity

d

dk
L∗

p( f∞, k)k=2 = 2�4 · 〈P,P〉wtp ; �4 := �2 · ordp(qA).

To conclude the proof, it remains to show that 2 〈P,P〉wtp = − 〈P,P〉cycp . This
follows from Theorem 4.2(3).
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