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Abstract The midscribability theorem, which was first proved by
O. Schramm, states that: given a smooth strictly convex body K ⊂ R

3 and
a convex polyhedron P , there exists a convex polyhedron Q ⊂ R

3 combi-
natorially equivalent to P which midscribes K . Here the word “midscribe”
means that all its edges are tangent to the boundary surface of K . By using the
intersection number technique, together with the Teichmüller theory of pack-
ings, this paper provides an alternative approach to this theorem. Furthermore,
by combining Schramm’s method with the above ones, we obtain a rigidity
result as well. That is, such a polyhedron is unique under the normalization
condition.
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656 J. Liu, Z. Zhou

1 Introduction

Let Q ⊂ R
3 be a convex polyhedron, and K ⊂ R

3 be a strictly convex body
with smooth boundary ∂K . We call Q a K -midscribing polyhedron if all its
edges are tangent to ∂K . In addition, when K = B

3 is the unit ball in R
3, we

often call Q a midscribable polyhedron for short.
It follows from Koebe–Andreev–Thurston theorem (i.e. the Circle Packing

Theorem) [2,3,19,20] that: for any given convex polyhedron P , there is a con-
vex midscribable polyhedron Q combinatorially equivalent to P . Moreover,
the midscribable polyhedron is unique up to Möbius transformations which
preserve the unit sphere. Indeed, it is a consequence of the simultaneous real-
ization phenomenon of circle packings [5]. That is, any polyhedral graph (the
1-skeleton of a polyhedron) and its dual graph can be simultaneously real-
ized by two circle packings such that the two tangent circles corresponding to
an edge in the primal graph and the two tangent circles corresponding to the
dual of this edge are always orthogonal to each other at the same point of the
Riemann sphere (Fig. 1).

Incidentally, Schulte [18] establishes that there is no higher dimensional
analogue for the midscribability theorem: for every n ≥ 3 and any k with
0 ≤ k < n, with the exception of (n, k) = (3, 1), there exists a convex n-
polytope P ⊂ R

n such that no combinatorially isomorphic copy of P can
have all of its k-dimensional faces tangent to the unit sphere. The case n = 3
is actually a classical result by Steiner (please see Grünbaum’s book [6]). The
exceptional case (n, k) = (3, 1) motivated the midscribability theorem and its
generalizations.

Fig. 1 A midscribable
polyhedron
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How many cages midscribe an egg 657

A generalization of the midscribability theorem, also proposed by Schulte
in [18], is the question of replacing the unit ballB3 by any other smooth strictly
convex body K ⊂ R

3. That is, given a convex body K ⊂ R
3, for any con-

vex polyhedron P , is there a K -midscribable polyhedron Q combinatorially
equivalent to P?

In 1992, Schramm [15] proved the following generalization of themidscrib-
ability theorem:

Theorem 1.1 (Midscribability theorem)Given a strictly convex body K ⊂ R
3

with smooth boundary and a convex polyhedron P, there exists a convex P-type
K -midscribing polyhedron Q ⊂ R

3.

Furthermore, Schramm proved that the space of all such K -midscribable
Q is a 6-manifold. In particular, if K is the closed unit ball, then the Circle
Packing Theorem implies that the solution space can be identified with the
Möbius group PSL(2; C). Note that the rigidity property for the closed unit
ball could be restated as the uniqueness of circle packings with the centers
of three distinct circles fixed. The Circle Packing Theorem then immediately
implies that the midscribable polyhedron is unique under this normalization
condition.

Analogously, it remains to consider the solution space and the rigidity result
for general convex bodies. This will be the main purpose of this paper. To
reach this goal, let us introduce proper normalization conditions. Then we
shall treat the midscribability theorem for general convex bodies by using a
similar method.

Given a convex polyhedron P ⊂ R
3, we write P ≡ P(V, E,F), where

V (resp. E,F) denotes the set of vertices (resp. edges, faces). Denote by
G(P) = (V, E,F). Choosing f0 ∈ F and three ordered sequential edges
e1, e2, e3 of f0, we call such 4-quadruple O = { f0, e1, e2, e3} a combina-
torial frame associated to P . Suppose that Q ⊂ R

3 is a K -midscribable
polyhedron combinatorially equivalent to P . The midscribability implies that
there exist three tangent points p1, p2, p3 corresponding to the edges e1, e2, e3
respectively. Under this convention, we call the polyhedron Q a normalized
polyhedron with mark {O, p1, p2, p3}.

Then the question becomes: given a convex polyhedron P with a combinato-
rial frameO , for any triple (p1, p2, p3)with distinct points, pi ∈ ∂K , is there a
convex K -midscribing polyhedron combinatorially equivalent to P with mark
{O, p1, p2, p3}? In addition, if the answer is yes, could the uniqueness hold?

For the close unit ball, from the Circle Packing Theorem, it follows that
there exists a convex midscribable polyhedron in R

3. Moreover, all the other
midscribable polyhedra can be transformed from the original one by using
Möbius transformations. It is now possible that a Möbius transformation turns
a convex polyhedron of R

3 into a non-convex one, or a degenerate one (some
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658 J. Liu, Z. Zhou

points go to infinity). That is, the resulted polyhedron could lose convexity or
become degenerate.

To overcome these difficulties, in what follows let us use the 3-dimensional
real projective space RP

3 instead of the Euclidean space R
3. By viewing R

3

as a subset of RP
3, one can regard each polyhedron in R

3 as a polyhedron in
RP

3. Note that a convex spherical polyhedron (or just a polyhedron) is a subset
of S

3 obtained as the intersection of finitely many hemispheres and such that
the interior Po �= ∅ and P ∩ (−P) = ∅ (that is, the polyhedron P does not
contain any antipodal points). Using the covering π : S

3 → RP
3, then any

closed set P ⊂ RP
3 is called a convex polyhedron in RP

3 if and only if either
of the components of π−1(P) is a convex spherical polyhedron in S

3.
The following is our main result.

Theorem 1.2 Let K ⊂ R
3 be a given strictly convex body with smooth bound-

ary. Given a convex polyhedron P with a combinatorial frameO, for any triple
(p1, p2, p3) with distinct points on ∂K , then there exists a unique convex K -
midscribing P-type polyhedron Q ⊂ RP

3 with mark {O, p1, p2, p3}.
Denote byUP,K the space of all P-type polyhedra inRP

3 which midscribes
K . Due to the above theorem,we could identifyUP,K with the set of all distinct
points triples {(p1, p2, p3)}, which is homeomorphic to the Möbius group.
Namely,

UP,K
∼= PSL(2; C) = Iso+(B3).

It is a 6-dimensional manifold. Denote by Uc
P,K ⊂ UP,K the subset which

consists of all convex P-type K -midscribing polyhedra in R
3. We have:

Theorem 1.3 Uc
P,K is a non-empty open subset of UP,K .

Equivalently, we now give an alternative proof of the midscribability theo-
rem (Theorem 1.1). Also, we prove that the space of all such P-type polyhedra
which midscribe K is a smooth 6-manifold.

The proof of Theorem 1.2 is briefly sketched as follows.
Recall that K is a convex body and P is the given convex polyhedron. Given

an affine half space H+ ⊂ RP
3 intersecting the interior of the convex body K ,

then the intersection H+ ∩ ∂K is a smooth topological disk in the boundary
∂K . We call it a K -disk, and call its boundary a K -circle.

Nowwe associate every face of P with an affine half space. Let Z denote the
space of all configurations; where a configuration is defined to be an indexed
collection of affine half space and points in RP

3. The points are indexed by
the vertices of P , and the planes are indexed by the faces of P .

We are interested in two subspaces Z P , Z K of Z . The subspace Z P is the
space of all polyhedra combinatorially equivalent to P . The subspace Z K
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How many cages midscribe an egg 659

consists of all configurations corresponding to K -circle packings with contact
graph G∗(P) (the dual graph of the 1-skeleton of P).

With these notions, to find a K -midscribable polyhedron is equivalent to
find a point in the intersection Z P ∩Z K . By combining the intersection number
theory with a homotopy method, we will obtain the desired result.
Notational conventions Through this paper, for any set A, we use the notation
|A| to denote the cardinality of A. Also, for any triple (p1, p2, p3), we always
assume that pi , 1 ≤ i ≤ 3, are distinct.

2 Preliminaries

Differential topology, especially transversality and intersection number theory,
will play an important role in this paper. In this section let us give a simple
introduction to them. The reader is referred to [7,10] for a detailed exposition
of the general theory of differential topology.

The first topic is transversality. According to H. E. Winkelnkemper, it is
said that transversality unlocks the secrets of the manifolds (see Chap. 3 in
[10]). Indeed, it plays a significant role throughout the paper [15].

Suppose that M, N are two oriented smooth manifold, and suppose S ⊂ N
is a submanifold.

Definition 2.1 Assume that f : M → N is a C1 map. Given A ⊂ M , we say
f is transverse to S along A, denoted by f �A S, if

I m(d fx ) + T f (x)S = T f (x)N

whenever x ∈ A ∩ f −1(S). When A = M , we simply denote f �S.

The other notion is the intersection number. Let S ⊂ N be a closed sub-
manifold such that

dimM + dimS = dimN .

Suppose� ⊂ M is an open subsetwith compact closure �̄. Given a continuous
map f : M → N with f (∂�) ∩ S = ∅, where ∂� = �̄\�, we will define
a topological invariant I ( f, �, S), the intersection number between f and
S in �. Supposing that f ∈ C0(�̄, N ) ∩ C∞(�, N ) such that f ��S, then
�∩ f −1(S) consists of finite points. For each x ∈ �∩ f −1(S), the sgn( f, S)x
at x is +1, if the orientations on I m(d fx j ) and T f (x j )S ”add up” to preserve
the prescribed orientation on N , and −1 if not.

Definition 2.2 If � ∩ f −1(S) = {x1, x2, . . . , xm}, then we define the inter-
section number of the map f with S to be
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660 J. Liu, Z. Zhou

I ( f, �, S):=
∑m

j=1
sgn( f, S)x j .

The following proposition tells us that homotopic maps always have the
same intersection numbers. Its proof is in the same style as that of the homotopy
invariance of Brouwer degree. Please see Milnor’s book [12].

Proposition 2.3 Suppose that fi ∈ C0(�̄, N ) ∩ C∞(�, N ), fi��S and
fi (∂�) ∩ S = ∅, i = 0, 1. If there exists a homotopy H ∈ C0(I × �̄, N )

such that H(0, ·) = f0(·), H(1, ·) = f1(·), and H(I × ∂�) ∩ S = ∅, then

I ( f0, �, S) = I ( f1, �, S).

The next lemma, which helps us to manipulate the intersection number for
general mappings, is a consequence of Sard’s theorem [7,10].

Lemma 2.4 For any f ∈ C0(�̄, N ) with f (∂�) ∩ S = ∅, there exists g ∈
C0(�̄, N ) ∩ C∞(�, N ) and H ∈ C0(I × �̄, N ) such that

1. g��S;
2. H(0, ·) = f (·), H(1, ·) = g(·);
3. H(I × ∂�) ∩ S = ∅.

The above lemma, together with Proposition 2.3, allows one to define the
intersection numbers for general continuous mappings.

Definition 2.5 For any f ∈ C0(�̄, N ) with f (∂�) ∩ S = ∅, we define the
intersection number

I ( f, �, S) = I (g, �, S),

where g is defined in Lemma 2.4.

FromProposition 2.3, it follows I ( f, �, S) iswell-defined. Furthermore, the
following theorem implies that the number I ( f, �, S) is a homotopy invariant.

Theorem 2.6 For i = 0, 1, suppose that fi ∈ C0(�̄, N ) such that fi (∂�) ∩
S = ∅. If there exists H ∈ C0(I × �̄, N ) such that

1. H(0, ·) = f0(·), H(1, ·) = f1(·);
2. H(I × ∂�) ∩ S = ∅.

Then I ( f0, �, S) = I ( f1, �, S).

In particular, it immediately follows from the definition that:

Theorem 2.7 If I ( f, �, S) �= 0, then we have � ∩ f −1(S) �= ∅.
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3 Teichmüller theory of packings

A disk (or circle) packing P , as its name suggests, is a configuration of topo-
logical disks (or circles) {Dv : v ∈ V } with specified patterns of tangency.
The contact graph (or nerve) of P is a graph GP , whose vertex set is V and
an edge appears if and only if the corresponding disks (or circles) touch.

Recall that a K -disk is defined to be the intersection H+ ∩ ∂K , where H+
is an affine half space which intersects the interior of the convex body K .
Naturally, we call {Dv : v ∈ V } a K -disk packing, if all Dv are K -disks.

In this section, we shall investigate the Teichmüller space of such packings,
which characterizes the subspace Z K of K -disk packings with the same con-
tact graph. To reach the purpose, a main step is to extend the Circle Packing
Theorem.

Given the convex body K ⊂ R
3, without loss of generality, we assume that

it lies below the plane {(x, y, z) ∈ R
3 : z = 1} and it is tangent to the plane at

the point N = (0, 0, 1). The point N is regarded as the “North Pole” of ∂K . Let
h : ∂K → C ∪ {∞} denote the “stereographic projections” with h(N ) = ∞.
Since h can be extended to a diffeomorphism between ∂K and Ĉ, we endow
∂K with a complex structure by pulling back the standard complex structure
of Ĉ. Sometimes we identify ∂K with the Riemann sphere Ĉ. Therefore it is
plausible to introduce the following terminology.

Definition 3.1 A K -circle domain in the Riemann sphere Ĉ (or ∂K ) is a
domain, whose complement’s connected components are all closed K -disks
or points.

Let �n ⊂ Ĉ be a finitely connected domain with n boundary components.
A marked domain �n(z1, z2, z3) is the domain �n together with three differ-
ent ordered points z1, z2, z3 in the same boundary component of �n . In [16],
Schramm proved the following result, which generalizes Koebe’s Uniformiza-
tion [9] of finitely connected domains:

Lemma 3.2 Let �n(z1, z2, z3) be a marked n-connected domain in Ĉ. For
any given triple {p1, p2, p3}, pi ∈ ∂K , there exist a marked K -circle
domain �K

n (p1, p2, p3) and a conformal mapping f : �n(z1, z2, z3) →
�K

n (p1, p2, p3) such that f (zi ) = pi , i = 1, 2, 3.

Given any polyhedral graph (the 1-skeleton of a polyhedron) G, let us fix a
vertex v0 of G and three ordered edges e1, e2, e3 emanating from v0. Similarly,
we call the 4-quadruple O = {v0, e1, e2, e3} the combinatorial frame associ-
ated to the graph G. Suppose thatP = {Dv} is a packingwith the contact graph
G. Supposing that p1, p2, p3 are the three tangent points corresponding to the
edges e1, e2, e3, we call P a normalized packing with mark {O, p1, p2, p3}.
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Under these conventions, by turning to the limiting case of Lemma 3.2, we
have:

Corollary 3.3 Let G be a polyhedral graph with a combinatorial frame O .
If (p1, p2, p3) is any triple in ∂K , then there exists a normalized K -circle
packing PK = {Dv : v ∈ V } with mark {O, p1, p2, p3} which realizes the
contact graph G.

If G is a triangular graph of the Riemann sphere, Schramm [14] proved that
such packing is unique. While G isn’t a triangular graph of Ĉ, the uniqueness
wouldn’t hold any more. In fact, there exist uncountable normalized K -circle
packings with the same contact graph. To resolve this problem, He–Liu [8]
developed the Teichmüller theory of circle patterns (packings). Recalling their
method, it has little hard to extend similar results to K -circle packings.

We will give the notion of conformal polygons, which are considered as
analogs of the conformal quadrangles. It is defined as pairs h : I → Ĉ, where
I ⊂ Ĉ is a given topological polygon and h is a quasiconformal embed-
ding. Please refer to [1] for details of quasiconformal mappings. Say two such
conformal polygons h1, h2 : I → Ĉ are Teichmüller equivalent, if the com-
position mapping h2 ◦ (h1)

−1 : h1(I ) → h2(I ) is isotopic to a conformal
homeomorphism f such that, for each side e ⊂ ∂ I , f maps h1(e) onto h2(e).

Definition 3.4 The Teichmüller space of I , denoted by TI , is the space of all
equivalence classes of conformal polygons h : I → Ĉ.

Remark 3.5 If the polygon I is k−sided, it follows from the classical Teich-
müller theory that TI is diffeomorphic to the Euclidean space R

k−3. See e.g.
[11].

Note that G(P) = (V, E,F) and G∗(P) = (V, E) is the dual graph of
the 1-skeleton of G(P). Fix a disk packing P0 = {D0,v}v∈V on the Riemann
sphere Ĉ with the contact graph G∗(P). The closure of any component of
Ĉ−∪v∈V D0,v is called an interstice. Evidently, it is also a topological polygon.

Denote TG∗(P) = ∏m
i=1 TIi , where {I1, I2, . . . , Im} are all interstices of the

disk packing P0. Then m = |F |, where F is the face set of the contact graph
G∗(P). In view of Remark 3.5, we easily check that

TG∗(P)
∼= R

2|E |−3|F | = R
2|E|−3|V|.

Analogous to [8], we can now establish the following theorem.

Theorem 3.6 Let K , P, G∗(P) and TG∗(P) be as above. Suppose p1, p2, p3
are three different points in ∂K . For any

[
τ
] = ([τ1], [τ2], . . . , [τm]) ∈ TG∗(P),
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there exists a unique K -disk packing PK ([τ ]) realizing the contact graph
G∗(P) with mark {O, p1, p2, p3}. Moreover, the interstice of PK ([τ ]) corre-
sponding to Ii is endowed with the given complex structure [τi ], 1 ≤ i ≤ m.

Proof We will prove the theorem by two steps.
Existence part Indeed, it is straightforward as a limiting case of Lemma 3.2.
However, in this paper we will pursue an alternative approach to this result.
The ideal is similar to the method used by He–Liu in [8] or Schramm in [17],
which is a combination of the Packing Theorem [14,16] and Rodin–Sullivan
method [13].

For each interstice I ∈ {I1, I2, . . . , Im} and complex structure [τ ] : I → Ĉ,
for convenience, we assume that the region [τ ](I ) is a bounded domain in C.
Lay down a regular hexagonal packing of circles in C, say each of radius 1/n.
By using the boundary components of ∂[τ ](I ) like a cookie-cutter, we have
a circle packing QI,n which consists of all the circles intersecting the closed
region [τ ](I ). Denote by GI,n the contact graph of QI,n . Glue the contact
graphs {GIi ,n}1≤i≤m and the contact graph G∗(P) along the corresponding
edges to form a triangular graph Gn in Ĉ. For each newly vertex of Gn\G∗(P),
we associate it with standard round disks. According to the general Packing
Theorem [14,16], there exists a normalized packing Pn realizing the contact
graph Gn .

It is easy to verify that there exists a subsequence (still denoted by {Pn})
such that Pn convergent to a packing P∞. According to the following Propo-
sition 3.7, this packing doesn’t degenerate. Therefore P∞ is actually a K -disk
packing with the contact graph G∗(P). Setting PK ([τ ]) = P∞, and by using
Rodin–Sullivan’s method [13], it is not hard to verify that the interstices of
PK ([τ ]) are endowed with the given complex structures.
Uniqueness part Suppose that there are two normalized packingsPK andP ′

K
with the same contact graph G∗(P) such that there exists conformal maps
between the corresponding interstices. We shall prove the uniqueness part in
Appendix. ��
Proposition 3.7 The packing P∞ = {D∞,v : v ∈ V } isn’t degenerating.

Proof Suppose it is not true. Then there exists at least one vertex v ∈ V such
that the disks {Dn(v)}n=1,2,... tends to a point. Note that any three K -disks with
disjoint interiors in P∞ can not meet at a common point. Therefore, except
for at most two K -disks, all other K -disks in P∞ degenerate to points, which
contradicts to our normalized condition. ��

4 Proof of the main theorems

The 3-dimensional real projective space RP
3 is the space of all lines through

0 in R
4. More precisely, we can define x ∼ x ′ in R

4\{0} if and only if there is
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a real number λ �= 0 such that x ′ = λx . Let

� : R
4\{0} → RP

3

denote the projection. Denote by [x0, x1, x2, x3] the point �((x0, x1, x2, x3)),
which is the homogeneous coordinates in RP

3. We then have the projection

� : S
3 → RP

3,

where S
3 ⊂ R

4\{0} is the unit sphere. Thus RP
3 can be regarded as the

quotient of S
3 obtained by identifying antipodal points. Moreover, we can

regard R
3 as a subset of RP

3 by identify the point [1, x1, x2, x3] ∈ RP
3 with

(x1, x2, x3) ∈ R
3. Namely, RP

3 = R
3 ∪ RP

2.
Each plane of RP

3 can be defined as

{[x0, x1, x2, x3] : Ax0 + Bx1 + Cx2 + Dx3 = 0}.

Therefore, each plane inRP
3 is uniquely determined by a point [A, B, C, D] ∈

RP
3.
Recall that G(P) = (V, E,F) and G∗(P) = (V, E) is the dual graph of

the 1-skeleton of G(P). Let Z denote the configurations space (RP
3)|F |. That

is, each point z ∈ Z gives rise to a half space (or an oriented plane) for each
f ∈ F , which is called a configuration. For any configuration z ∈ Z , we
denote by z f the plane corresponding to the face f ∈ F .

For any v ∈ V , let lk(v) be the number of faces linking to this vertex v.
Denote by { f1, f2, . . . , flk(v)} ⊂ F all faces linking to the vertex v. Let Zvo ⊂
Z be the set of configurations such that, for at least one triple {i1, i2, i3} ⊂
{1, 2, . . . , lk(v)}, the intersection

z fi1
∩ z fi2

∩ z fi3

contains more than one points. Evidently, Zvo ⊂ Z is a closed set, which
implies that

Zoc = Z\(∪v∈V Zvo)

is open in Z . That is, Zoc is a manifold with the same dimension 3|F | as
Z . On the other hand, let Zvc ⊂ Zoc be the set of configurations such that
∩lk(v)

i=1 z fi �= ∅, where f1, f2, . . . , flk(v) are all faces in F linking to the vertex
v. We then define

Z P = ∩v∈V Zvc.
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It is obvious that any configuration in Z P corresponds to a polyhedron of RP
3

combinatorially equivalent to P . Moreover, we have:

Lemma 4.1 Z P is a closed submanifold of Zoc with real dimension dim Z P =
|E | + 6.

Proof Recall that f1, f2, . . . , flk(v) are all faces of the polyhedron P linking
to v. For each i = 1, 2, . . . , lk(v), suppose that the plane z fi is defined by the
equation

z fi = {[x0, x1, x2, x3] : Ai x0 + Bi x1 + Ci x2 + Di x3 = 0}.

Then ∩lk(v)
i=1 z fi �= ∅ if and only if the rank of the matrix

⎛

⎜⎜⎜⎜⎜⎝

A1 B1 C1 D1
A2 B2 C2 D2
A3 B3 C3 D4
...

...
...

...

Alk(v) Blk(v) Clk(v) Dlk(v)

⎞

⎟⎟⎟⎟⎟⎠
,

is less than 4. Equivalently, the determinant

R( fi1, fi2, fi3, fi4) =

∣∣∣∣∣∣∣∣

Ai1 Bi1 Ci1 Di1
Ai2 Bi2 Ci2 Di2
Ai3 Bi3 Ci3 Di3
Ai4 Bi4 Ci4 Di4

∣∣∣∣∣∣∣∣
= 0,

for each subset {i1, i2, i3, i4} ⊂ {1, 2, . . . , lk(v)}. In virtue of the definition of
Zoc, 0 is a regular value of the smooth function R. It follows from the regular
value theorem that Z P is a closed sub-manifold of Zoc. Please refer to [10].
Therefore,

dimZ P = 3|F | −
(∑

v∈V lk(v) − 3
)

= 3|F | − (2|E | − 3|V|) = |E | + 6,

where the last identity follows from Euler’s formula. ��
Fix a combinatorial frameO for G∗(P) and three distinct points p1, p2, p3

in ∂K . For each [τ ] ∈ TG∗(P), from Theorem 3.6, it follows that there is a
unique normalized K -disk packing PK ([τ ]) with the mark {O, p1, p2, p3}
which realizes the graph G∗(P). As a result, it gives rise to the following
mapping

fK : TG∗(P) −→ Zoc ↪→ Z .
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In addition, a simple computation shows that:

dimZ P = 3|F | − (2|E | − 3|V|) = |E | + 6,

dimTG∗(P) = 2|E | − 3|V|,
dimTG∗(P) + dimZ P = 3|F | = dimZoc.

These identities remind us of the intersection number theory. However, in order
to apply this tool, it is necessary to find a suitable compact set � ⊂ TG∗(P)

and determine the intersection number I ( fK , �, Z P). In fact, the following
lemma guarantees the existence of such a compact set.

Lemma 4.2 For any given strictly convex body K , there exists a compact set
� ⊂ TG∗(P) such that fK (∂�) ∩ Z P = ∅.

Proof We assume, by contradiction, that there is not such a compact set �.
Then there is a sequence of [τ ]n ∈ f −1

K (Z P) such that the corresponding
normalized packings Pn satisfy one of the following two possibilities:

• There is a fixing vertex v ∈ V such that the corresponding disks Dn(v) ⊂
PK ([τ ]n) tend to a point, as n → ∞;

• As n → ∞, the distance of two non-adjacent arcs of the interstices {I0,n}
which face to the vertex (say v0), tends to zero.

Using a similar argument as in Proposition 3.7, we rule out the first possi-
bility.

In the second case, for each given n, since [τ ]n ∈ f −1
K (Z P), the normal-

ized packing Pn corresponds to a K -midscribing polyhedron Pn . Hence the
corresponding tangent edges of Pn will separate the non-adjacent arcs. On
the other hand, we have known that the sizes of all disks in PK ([τ ]n) have
positive infimum. These facts together tell us that the distance of any pair of
non-adjacent arcs can not tend to zero, which implies the second case is also
impossible. ��

If we could prove I ( fK , �, Z P) �= 0, then Theorem 2.7 implies that
f −1
K (Z P) ∩ � �= ∅, which leads to the existence part of Theorem 1.2. To

obtain the desired result, we need the following transversality theorem, which
is a modified version of Schramm’s result in [15].

Lemma 4.3 (Transversality theorem) Given any strictly convex body K ⊂ R
3

with smooth boundary, then we have fK�Z P.

Remark 4.4 It is worthwhile pointing out that the distinction between
Schramm’s theorem and ours lies in the description of configuration spaces,
which is far from essential. In other words, the above lemma could be deduced
by using an analogous way as long as we do little modifications to our defini-
tions.
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With the help of the preceding results, and by using the homotopy method,
now we can compute the intersection number.

Noting B
3 ⊂ R

3 is the close unit ball and K is the given convex body in
R
3, for convenience, we assume that the diameter of K is greater than 1 and

B
3 ⊂ K . We also assume that the boundary ∂K is tangent to the unit sphere

∂B
3 at the point N = (0, 0, 1). Then N = (0, 0, 1) could be considered as the

common “North Pole” of ∂B
3 and ∂K .

Let h0 (resp. h1) be the “stereographic projection” for S
2 = ∂B

3 (resp. ∂K ).
Define a one parameter family of closed surfaces by

{
s · h−1

1 (z) + (1 − s) · h−1
0 (z) : z ∈ Ĉ

}
.

For each s ∈ [0, 1], the above set is a compact strictly convex surface in R
3.

Denote by Ks the convex body bounded by this surface. Then {Ks}1≤s≤1 is
a family of strictly convex bodies joining B

3 and K . Each convex body Ks
is tangent to the plane {(x, y, z) ∈ R

3 : z = 1} at N = (0, 0, 1) from the
same side of B

3. By the “stereographic projection”, we can also identify ∂Ks

with Ĉ for each s ∈ [0, 1]. Moreover, the curve s → Ks is continuous in the
Hausdorff metric.

For each Ks , Theorem 3.6 implies that we can construct a mapping

fs = fKs : TG∗(P) → Zoc.

Moreover, fromLemma 4.2, it immediately follows that there exists a common
� ⊂ TG∗(P) such that fs(∂�) ∩ Z P = ∅ for all s ∈ [0, 1]. Denoting K0 = B

3

and K1 = K , since fs is a homotopy from fK0 to fK , then we have

Theorem 4.5 Given P, K , �, and fK as above, then I ( fK , �, Z P) = 1

Proof According to Theorem 2.6, we need only to calculate I ( fK0, �, Z P).
From the Circle Packing Theorem [2,3,19,20], it follows that there is only
one point in f −1

K0
(Z P) ∩ �. On the other hand, the preceding Transversality

theorem tells us that the map fK0 is transverse to Z P at the intersection point,
which implies I ( fK0, �, Z P) = 1. Hence it proves I ( fK , �, Z P) = 1. ��
Remark 4.6 Although the Transversality theorem (Lemma 4.3) is a powerful
result, its proof [15] is a little technically involved. On account of this fact,
in next section we will pursue another approach to Theorem 4.5, which is
independent of Lemma 4.3.

Up to now, we have made the necessary preparations for our purpose. It is
ready to prove the main results of this paper.
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Proof of Theorem 1.2 The existence part is an immediate consequence of The-
orem 2.7 and Theorem 4.5. From fs�Z P , it follows that the cardinality
| f −1

s (Z P) ∩ �| is constant for 0 ≤ s ≤ 1. Since | f −1
K0

(Z P) ∩ �| = 1,
we prove the uniqueness part of the theorem.

Proof of Theorem 1.3 The openness is an immediate consequence of the
Transversality theorem.

It remains to treat the existence part. Since the arguments are technical, the
proof will be sketchy. For any point x ∈ RP

3\K , let Ox be the set of points
on ∂K which are visible from x . Then Ox consists of all p ∈ ∂K such that
the ray −→xp and �n p form an angle θp ∈ [0, π/2], where �n p is the inner normal
vector of the smooth surface ∂K at the point p. Obviously, Ox is a topological
disk.

We have proved that, for any triple (p1, p2, p3), there is a unique K -
midscribing P-type polyhedron Q = Q(p1, p2, p3) ⊂ RP

3. For every v ∈ V ,
let x(v) denote the apex of Q corresponding to v. Then {Ox(v)}v∈V forms a
packing on ∂K with the contact graph G(P), where G(P) is the 1-skeleton of
P .
Choose some triple (p1, p2, p3) such that the vertex x(v0) of Q =

Q(p1, p2, p3) is at RP
3\R

3. Since the points p1, p2, p3 uniquely determine a
K -disk D0, for convenience, suppose that the vertex x(v0) is the intersection
of the two lines tangent to D0 at p1 and p2. Thus

Ox(v) � ∂K\Ox(v0), v �= v0,

which implies the remaining vertices x(v) ∈ R
3, v0 �= v ∈ V . We now move

p2 a sufficiently small distance along the arc p̂1 p2 ⊂ ∂ D0. Denote by p′
2 the

resulted point. Then (p1, p′
2, p3) uniquely determines a convex K -midscribing

polyhedron Q(p1, p′
2, p3) ⊂ R

3, which implies that Uc
P,K �= ∅. The proof is

complete. ��

5 Further discussion

Consider the Klein model of the closed unit ball B
3 in RP

3. A hyperideal
polyhedron Phi is defined to be a compact convex polyhedron in RP

3 whose
vertices locate outside of the closed unit ball B

3 and whose edges all meet B
3.

In terms of the combinatorial type and dihedral angles, in 2002 Bao–Bonahon
[4] classified the hyperideal polyhedron, up to isometries of B

3.
Recall that G∗(P) = (V, E) is the dual graph of the polyhedral graph of

P . They prove the following result.

Lemma 5.1 Let θe ∈ (0, π ] be a weigh attached to each edge of e ∈ E with
the following properties:
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(i) If a simple closed curve formed by edges e0, e1, . . . , en of E, then∑n
i=1 θei > 2π;

(ii) If a simple arc γ of G∗(P) formed by edges e0, e1, . . . , en joining two
distinct vertices v1, v2 which are in the closure of the same component
A of S

2 − G∗(P), and if γ is not contained in the boundary of A,

then
∑n

i=1 θei > π .

Then there exists a hyperideal polyhedron Phi combinatorially to P and with
external dihedral angle θe, e ∈ E. Moreover, such a hyperideal polyhedron
Phi is unique up to hyperbolic isometries of B

3.

In particular, Lemma 5.1 implies there exists an injection

� : Iso+(B3) × U → Z P ,

whereU is the relatively open set of (π/2, π ]|E | defined by the constraint con-
ditions (i) and (ii). U is a convex set. Noting that dimZ P = |E |+ 6 = |E |+ 6,
Brouwer’s theorem on invariance of domains shows � : Iso+(B3) × U ◦ →
�(Iso+(B3) × U ◦) is a homeomorphism, where U ◦ is the interior of U .
An elementary computation shows that this map is actually a diffeomor-
phism. Denoting 
 = (θ1, θ2, . . . , θE ), the injection tells us that there exist
(m1, 
1) ∈ Iso+(B3) × U such that the tangent map

�∗ : Tm1Iso+(B3) × T
1U → Tz1 Z P

is a linear isomorphism, where z1 = �(m1, 
1).
The tangent space T
1U is expanded by vectors ∂

∂θ1
, ∂

∂θ2
, . . . , ∂

∂θ|E | . Noting
that

dimZ P = dimT
1U + dimTm1Iso+(B3) = |E | + 6,

which gives us a geometric insight into the tangent space of Z P . In order
to provide an alternative approach to Theorem 4.5, we need the following
theorem concerning the Teichmüller theory of circle patterns [8].

Lemma 5.2 Let 
 : E → [π/2, π ] be a weight function satisfying the above
conditions (i) and (i i). For any

[
τ
] = ([τ1], [τ1], . . . , [τm]) ∈ TG∗(P),

there exists a unique normalized circle pattern P(
, [τ ]) with contact graph
G∗(P) and with external dihedral angle 
(e), e ∈ E. Moreover, the interstice
corresponding to Ii is endowed with the given complex structure [τi ], 1 ≤ i ≤
m.
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Lemma 5.2 implies that one can define, for each 
 ∈ U ∩ (π/2, π ]|E |, a
mapping f
 : TG∗(P) → Zoc via associating every [τ ] ∈ TG∗(P) with the
unique normalize circle pattern realizing the complex structure [τ ]. Denoting

0 = (π, π, . . . , π), since 
1 ∈ U ∩ (π/2, π ]|E |, we have 
s = s
1 + (1−
s)
0 ∈ U ∩ (π/2, π ]|E |, s ∈ [0, 1]. Therefore f
s is a homotopy from f
0

to f
1 .
By using an argument similar to Lemma 4.2, it follows that there exists

a common compact subset � ⊂ TG∗(P) such that f
s (∂�) ∩ Z P = ∅ for
s ∈ [0, 1]. Since the preceding tangent map �∗ is a linear isomorphism, it is
easy to see that:

Proposition 5.3 f
1�Z P.

To some extent, the above proposition could be considered as a substitu-
tion of the Transversality theorem (Lemma 4.3). By using an almost repeated
procedure as in Sect. 4, we obtain that:

Corollary 5.4 Let P be the given polyhedron. Then

I ( fK0, �, Z P) = I ( f
0, �, Z P) = I ( f
1, �, Z P) = 1.

As a result, we are able to obtain a new proof of Theorem 4.5, which implies
the existence part of Theorem 1.2.

Since the Transversality theorem (Lemma4.3) has been proved by Schramm
independently, by combining it with the above discussion, converselywe could
obtain a new proof of the existence part of Lemma 5.1.

Acknowledgments We thank W. Peng for the help of the illustration. Also, we are very
grateful to the anonymous referee for a careful reading of the manuscript and for many helpful
suggestions.

Appendix: Fixed point index and rigidity lemma

Recall that K is a given strictly convex body. In this section, it remains to
prove the following lemma concerning the rigidity of K -circle packings.

Lemma 6.1 (Rigidity lemma) Suppose PK ,P ′
K are two K -circle packings in

Ĉ with the same contact polyhedral graph G. Moreover, assume that they are
normalize with the same mark {O, p1, p2, p3}.

Denoting by I (resp. I ′) the set of interstices of PK (resp. P ′
K ), if there

exists a conformal mapping f : I → I ′, then we have PK = P ′
K .

In the course of the proof we need the notion of fixed-point index. Let us
first recall its definition. Please refer to [9,19] for more details.
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For any Jordan curve γ ⊂ C, suppose that f : γ → C is a continuous map
without fixed points. Then the index( f ) is defined to be the winding number
of g ◦ γ around the point 0, where g(z) = f (z) − z and γ is parameterized in
accordance with its orientation. In [9] He–Schramm established the following
result.

Lemma 6.2 (Index lemma)Let J ,J ′ be Jordan curves in C, positively oriented
with respect to the Jordan domains that they bound; and let f : J → J ′ be an
orientation preserving homeomorphism with no fixed points. Then we have

(a) If J is contained in the closure of the Jordan domain determined by J ′, or
J ′ is contained in the closure of the Jordan domain determined by J, then
index( f ) = 1.

(b) If the intersection of J and J ′ contains at most 2 points, then index( f ) ≥ 0.

As an immediate consequence, we have:

Proposition 6.3 If J, J ′ are K -circles, then index( f ) ≥ 0.

Let f : A → C be a continuous map, where A ⊂ C is compact. For any
isolated fixed point z ∈ int(A) (the interior of A) of f , there exists a closed
disk D that contains z in its interior, but does not contain any other fixed point
of f . The index of f at z, denoted by index( f, z), is defined to be the restriction
of f to ∂ D, where ∂ D is positively oriented with respect to D.

To prove Lemma 6.1, we shall use the following result as well. Please refer
to [9].

Lemma 6.4 (Poincaré–Hopf) Let A ⊂ C be a compact set whose boundary
consists of finitely many disjoint Jordan curves. Assume that its boundary
components is positively oriented with respect to A. Suppose that f : A → C

is continuous, has only isolated fixed points and has no fixed points on the
boundary of A. Then the index of the restriction of f to ∂ A is equal to the sum
of the indices of f at all its fixed points.

Proof of Lemma 6.1 Suppose O = {v0, e1, e2, e3} is the mark of the graph
G∗(P). Then there exist four special K -disks D0, D1, D2, D3 of the packing
PK corresponding to O . More precisely, D0 = D(v0), Di = D(vi ) and
ei = [v0, vi ] for i = 1, 2, 3. Similarly, we have the corresponding disks
D′
0, D′

1, D′
2, D′

3 for the packing P ′
K . Then we claim that PK = P ′

K .
Obviously D0 = D′

0. If PK �= P ′
K , then there are two possibilities that

arise:

1. D1 �= D′
1, D2 �= D′

2, D3 �= D′
3;

2. There are at least one 1 ≤ i ≤ 3 such that Di = D′
i .
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In the first case, without losing of generality, we assume that

D1 � D′
1, D2 � D′

2, D3 � D′
3.

By using the Riemann mapping theorem, for convenience, we assume that
D0 = D′

0 is the closed unit disk in C. By reflection along the boundary of the
unit disk, we can map the outer part of PK andP ′

K to the interior of D0 = D′
0.

Then we obtain two new packings P̃K , P̃ ′
K and the corresponding disks

D̃i , D̃′
i , 1 ≤ i ≤ 3.

Choose a point a �= p1, p2, p3 with |a| = 1. Our goal is tomake a perturbation
to the packing P̃ ′

K byMöbius transformations Ma +c, where Ma is a parabolic
transformation close to the identity with the fixed point a, and c is complex
numbers arbitrarily close to 0. We then obtain a new packing (still denoted
by P̃ ′

K ) such that f : P̃K → P̃ ′
K has no fixed points on the boundaries of all

disks in P̃K , and

D1 � int(D′
1), D̃′

2 � int(D̃2), D̃′
3 � int(D̃3).

By using the map f : D1 → D′
1, and (a) of Lemma 6.2, thus we have

index( f |∂ D1) = 1.

Similarly, by considering the map f : Ĉ\int(D1) → Ĉ\int(D′
1), and using

Lemma 6.4, we have

index( f |∂ D1) ≥ 2.

This is a contradiction, which implies that the first case is impossible.
In the second case, for the sake of simplicity, we assume that

D1 = D′
1, D2 �= D′

2, D3 �= D′
3.

By using the Riemannmapping theorem,we canmap the domain Ĉ\(D0∪D1)

to the outer part of the closed unit disk. We then obtain two new packings and
a conformal map between them. Furthermore, the point p1 generates two fixed
points of this new conformal map. By arguing as in the proof of the first case,
it is not difficult to prove PK = P ′

K in this case.
Consequently, we concludePK = P ′

K , which completes the rigidity lemma.
��

123



How many cages midscribe an egg 673

References

1. Ahlfors, L.V.: Lectures on Quasiconformal Mappings, vol. 10. AMS Bookstore, New York
(1966)

2. Andreev, E.M.: On convex polyhedra in Lobachevskii spaces. Matematicheskii Sbornik
123(3), 445–478 (1970)

3. Andreev, E.M.: On convex polyhedra of finite volume in Lobachevskii space. Sbornik:
Math. 12(2), 255–259 (1970)

4. Bao, X., Bonahon, F.: Hyperideal polyhedra in hyperbolic 3-space. Bull. Soc. Math. France
130(3), 457–491 (2002)

5. Bobenko, A.I., Springborn, B.A.: Variational principles for circle patterns and Koebes
theorem. Trans. Am. Math. Soc. 356(2), 659–689 (2004)

6. Grünbaum, B.: Convex Polytopes. Wiley, New York (1967)
7. Guillemin, V., Pollack, A.: Differential Topology, vol. 370. American Mathematical Soci-

ety, Englewood Cliffs (2010)
8. He, Z., Liu, J.: On the Teichmüller theory of circle patterns. Trans. Am. Math. Soc. 365,

6517–6541 (2013)
9. He, Z., Schramm, O.: Fixed points, Koebe uniformization and circle packings. Ann. Math.

137, 369–406 (1993)
10. Hirsch, M.: Differential Topology. Graduate Texts in Mathematics, vol. 33. Springer, New

York (1976)
11. Lehto, O., Virtanen, K.I.: Quasiconformal Mappings in the Plane. Springer, New York

(1973)
12. Milnor, J.W.: Topology from the Differentiable Viewpoint. Princeton University Press,

Princeton (1997)
13. Rodin, B., Sullivan, D.: The convergence of circle packings to the Riemann mapping. J.

Differ. Geom. 26, 349–360 (1987)
14. Schramm, O.: Existence and uniqueness of packings with specified combinatorics. Isr. J.

Math 73(3), 321–341 (1991)
15. Schramm, O.: How to cage an egg. Invent. Math. 107, 543–560 (1992)
16. Schramm, O.: Conformal uniformization and packings. Isr. J. Math. 93, 399–428 (1996)
17. Schramm, O.: Combinatorically Prescribed Packings and Applications to Conformal and

Quasiconformal Maps. (2007, preprint). arXiv:0709.0710
18. Schulte, E.: Analogues of Steinitz’s theorem about noninscribable polytopes. In: Böröczky,

K., Tóth, G.F. (eds.) Intuitive Geometry. (Siófok, 1985), Colloquia Mathematica Societatis
János Bolyai, vol. 48, pp. 503–516. North-Holland, Amsterdam (1987)

19. Stephenson,K.: Introduction toCircle Packing: The Theory ofDiscreteAnalytic Functions.
Cambridge University Press, Cambridge (2005)

20. Thurston, W.P.: Three-Dimensional Geometry and Topology, vol. 1. Princeton University
Press, Princeton (1997)

123

http://arxiv.org/abs/0709.0710

	How many cages midscribe an egg
	Abstract
	1 Introduction
	2 Preliminaries
	3 Teichmüller theory of packings
	4 Proof of the main theorems
	5 Further discussion
	Acknowledgments
	Appendix: Fixed point index and rigidity lemma
	References




