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Abstract Simple, separable, unital, monotracial and nuclear C∗-algebras are
shown to have finite nuclear dimension whenever they absorb the Jiang–Su
algebraZ tensorially. This completes the proof of the Toms–Winter conjecture
in the unique trace case.

The structure theory of simple nuclearC∗-algebras is currently undergoing rev-
olutionary progress, driven by the discovery of regularity properties of various
flavours: topological, functional analytic and algebraic. Despite the diverse
nature of these regularity properties, they are all satisfied by those classes of
C∗-algebras which have been successfully classified by K -theoretic data, and
they all fail spectacularly for the “exotic” algebras in [30,40] which provide
counterexamples to Elliott’s classification conjecture. The observation that
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there are deep connections between these disparate properties was crystallised
in the following conjecture of Toms and the third named author.

Conjeture A Let A be a simple, separable, unital, nuclear and non-
elementary C∗-algebra. Then the following statements are equivalent:

(i) A has finite nuclear dimension;
(ii) A absorbs the Jiang–Su algebra Z tensorially (A is Z-stable);
(iii) A has strict comparison.

For now we only give a rough idea of what these notions mean; we will
discuss them in greater detail in Sect. 1.

Nuclear dimension is the C∗-algebraic analogue of Lebesgue covering
dimension as introduced in [52]. This should be thought of as a topological
property, phrased in terms of approximating A via noncommutative partitions
of unity; the numerical value of dimension enters as a colouring number for
the latter. The notion is closely related to decomposition rank, its precursor
from [21]. Having finite decomposition rank is a stronger condition than (i)
which implies quasidiagonality, and so (in contrast to nuclear dimension) is
only applicable to stably finite algebras.

A C∗-algebra A is Z-stable if A ∼= A ⊗ Z , where Z denotes the Jiang–Su
algebra (which is nuclear, so there is no need to specify the tensor product).
Jiang and Su constructedZ in [16] as an inductive limit of so-called dimension
drop algebras (i.e. certain bundles of matrices over the closed unit interval).
Amongst all such inductive limits, they characterised it as the unique one
which is simple and monotracial. The classification machinery for nuclear
C∗-algebras allows for a much more general statement: Z is the uniquely
determined infinite dimensional, simple and monotracial C∗-algebra which
has finite decomposition rank and is KK -equivalent to the complex numbers;
cf. [47, Corollary 5.5]. Here, KK -equivalence (in the sense of Kasparov)
may be interpreted as a weak notion of homotopy equivalence. It implies in
particular that Z and C have isomorphic ordered K -groups; in fact, in some
sense Z plays the role of an infinite dimensional version of C. Thanks to
[26], one can also replace the hypothesis of finite decomposition rank in the
statement above by finite nuclear dimension combined with quasidiagonality.
The Jiang–Su algebra is strongly self-absorbing in the sense of [42], i.e., there
is an isomorphismZ ∼= Z ⊗Z which is approximately unitarily equivalent to
the first factor embedding. This is perhaps the most crucial feature ofZ , since
it provides the link to celebrated results of Connes on injective II1 factors and
of Kirchberg on purely infinite nuclear C∗-algebras (wewill return to this point
of view below). In [48], Z was characterised in an entirely abstract manner
as the initial object in the category of strongly self-absorbing C∗-algebras.
Being Z-stable has a functional analytic flavour, which becomes particularly
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Nuclear dimension and Z-stability 895

clear when characterising Z-stability in terms of central sequence algebras;
cf. Proposition 1.2.

Strict comparison means that positive elements (or rather their support pro-
jections)may be compared in the sense ofMurray–vonNeumann by looking at
their values on traces. This can be rephrased in a much more algebraic manner
in terms of a certain notion of order-completeness of a homological invari-
ant (the so-called Cuntz semigroup). It is the different nature of these three
regularity properties—topological, functional analytic, and algebraic—which
makes the conjecture so useful, since it sheds light on the same phenomenon
from completely different angles. Moreover, and quite strikingly, versions of
these properties and their interplay also appear in other contexts, for example
in von Neumann algebras and in topological dynamics.

Up to now the Toms–Winter conjecture has been verified for various natu-
rally occurring classes of algebras: in particular many C∗-algebras of the form
C(X) � Z arising from minimal homeomorphisms of compact metric spaces
satisfy the conjecture. In the uniquely ergodic case Elliott and Niu have shown
that regularity is automatic [11] (a fact related to unique ergodicity implying
mean dimension zero—regularity can fail for larger trace spaces). This leads
to classification by K -theory ([44]; see [36,50] for the case of Z

d actions).
Moreover, the implications (i)⇒(ii) and (ii)⇒(iii) have been established in
general by the third named author [47,49] (see [38] for an extension to the
stably projectionless case) and Rørdam [31] respectively; recent progress of
Matui and the first named author [25] establishes (iii)⇒(ii) for C∗-algebras
with a unique tracial state (this has subsequently been extended to somewhat
more general trace simplices in [20,34,41]). In the traceless case, (iii)⇒(ii)
boils down to Kirchberg’s celebratedO∞-stability theorem for purely infinite
nuclear C∗-algebras, [17]; (ii)⇒(i) follows from Kirchberg–Phillips classifi-
cation combined with [52] in the presence of the universal coefficient theorem
(UCT), and was shown in general in [26] (see also [2]).

The focus of this paper is the implication from (ii) to (i) in the tracial case.
Classification results provide one route towards the implication (ii)⇒(i), via
the strategy of comparing an algebra with a directly constructed model which
has finite topological dimension. As well as passing through vast amounts of
technical machinery, this approach is inevitably restricted to C∗-algebras sat-
isfying the still mysterious UCT. A direct approach was pioneered by Tikuisis
and the third named author in [39] (heavily based on the results of Kirchberg
and Rørdam in [19]), which proves that Z-stable locally homogeneous alge-
bras have finite decomposition rank (even outside the simple setting); however
this too relies in an essential way on the existence of a concrete inductive limit
structure. A recent breakthrough was achieved by Matui and the first named
author in [26], which, in the presence of a unique tracial state, establishes finite
decomposition rank from quasdiagonality and Z-stability. Our main theorem,
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stated below, does not require a quasidiagonality assumption (which can often
be hard to verify outside a concrete inductive limit setting) to establish finite
nuclear dimension from Z-stability.

Theorem B Let A be a simple, separable, unital, nuclear and Z-stable C∗-
algebra with a unique tracial state. Then dimnuc(A) ≤ 3.

Upon combining Theorem B with the main results of [25], and the general
implications (i)⇒(ii) of [49] and (ii)⇒(iii) of [31], this confirms the Toms–
Winter conjecture in the form stated above forC∗-algebraswith a unique tracial
state. Thus the difference between finite decomposition rank and finite nuclear
dimension for unital, simple, separable and monotracial Z-stable algebras is
precisely quasidiagonality, and it remains an open question as to whether such
algebras are automatically quasidiagonal. (Indeed this is a special case of the
Blackadar–Kirchberg conjecture from [4], which asks whether every stably
finite nuclear C∗-algebra is quasidiagonal.)

Corollary C Conjecture A holds under the additional assumption that A has
at most one tracial state.

In the rest of the introductionwediscuss the analogies between the regularity
properties in Conjecture A and properties of von Neumann factors of type II1
and provide an architectural outline of the proof of Theorem B.

Each of the statements in the Toms–Winter conjecture is a natural analogue
of a corresponding property for II1 factors: strict comparison relates to the
fact that the Murray–von Neumann lattice of projections in a II1 factor is
determined by the trace; tensorial absorption of Z to being a McDuff factor
(absorbing the hyperfinite II1 factor tensorially); and finite nuclear dimension
to hyperfiniteness. For (separably acting) injective II1 factors these properties
are theorems (of course comparison holds for all II1 factors), and all play
roles in carrying through the implication from injectivity to hyperfiniteness
in Connes’ celebrated paper [7]. From this viewpoint, carrying through the
implications (iii)⇒(ii)⇒(i) in the Toms–Winter conjecture provides a C∗-
algebraic version of Connes’ characterisations of injectivity.

In his work Connes relies on a detailed analysis of automorphisms of II1
factors, and the notion of an approximately inner flip (the automorphism
x ⊗ y �→ y ⊗ x on the tensor square can be approximated by inner automor-
phisms) plays a key role.A crucial step inConnes’ proof that injectivity implies
hyperfiniteness is to show that any automorphism of an injective II1 factor with
separable predual is approximately inner [7, Corollary 3.2, Theorem 5.3] in
the strong topology. In particular, it has strongly approximately inner flip [7,
Theorem 5.1 (7)⇒(3)] and therefore is McDuff [7, Theorem 5.1 (3)⇒(2)] in
a particularly strong fashion; from this Connes obtains hyperfiniteness of M
[7, Theorem 5.1 (2)⇒(1)]. Of course, by now two beautiful alternative proofs
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Nuclear dimension and Z-stability 897

without using automorphisms have been obtained by Haagerup and by Popa,
but for our purposes it will be more suitable to focus on the original strategy
involving approximately inner flips.

Effros and Rosenberg initiated the study of approximately inner flips in
the setting of C∗-algebras in [9]. As they observe, an approximately inner
flip is a strong requirement on a C∗-algebra (implying simplicity, nuclearity
and at most one trace), but several prominent examples enjoy such a flip, like
uniformly hyperfinite (UHF) C∗-algebras, the Jiang–Su algebra Z and the
Cuntz algebrasO2 andO∞, all of which play key roles in the modern study of
nuclear C∗-algebras. Using the approximately inner flip, Effros and Rosenberg
characterised the universal UHF algebraQ as the unique separable unital C∗-
algebra which is quasidiagonal, has an approximately inner flip and tensorially
absorbs Q [9, Theorem 5.1], using a C∗-analogue of Connes’ implication
[7, Theorem 5.1 (2)⇒(1)]. With the benefit of hindsight, this result can be
thought of as the precursor to the strategy of [26] and our work here. Effros
and Rosenberg compare the first factor embedding A ↪→ (A ⊗Q)ω of A into
the ultrapower of A ⊗Q with an embedding of A into 1A ⊗Qω ⊂ (A ⊗Q)ω
obtained from quasidiagonality. They then conjugate these two embeddings
using the approximately inner flip on A, and obtain an approximately finite
dimensional (AF) structure on A directly from this, whence A is isomorphic to
Q byElliott’s classification theorem [10]. From today’s perspective, Effros and
Rosenberg’s approach can be used to directly give approximations verifying
decomposition rank zero (equivalent to being AF by [21]).

Here, it should be noted that there is a significant difference between approx-
imately inner flips in von Neumann algebras and C∗-algebras. In both contexts
this implies amenability, but there are K -theoretic obstructions preventing a
general simple unital nuclear C∗-algebra with unique trace from having an
approximately inner flip. Indeed AF algebras with an approximately inner flip
must be UHF [9]. Thus a key idea is that of a “2-coloured approximately inner
flip” for a C∗-algebra (in the norm sense) as introduced in [26], and this notion
applies to a broader class of algebras. Starting from Connes’ approximately
inner flip on an injective II1 factor, such a 2-coloured approximately inner flip
was established for simple separable unital and nuclear C∗-algebras with a
unique trace which absorb a UHF-algebra tensorially by using a 2-coloured
approximate Murray–von Neumann equivalence, which in turn is inspired by
Haagerup’s approach [12] to injectivity implies hyperfiniteness. This ingredi-
ent is structured so that the flipping strategy gives the estimate dr(A) ≤ 1 for a
quasidiagonal simple separable unital nuclear C∗-algebra A which isQ-stable
(i.e. A ∼= A ⊗ Q) and has unique trace—the two colours in the decompo-
sition rank estimate arising from those in the approximately inner flip. The
estimate dr(A) ≤ 3 (i.e. a 4-coloured approximation) of [26, Theorem 1.1] in
the Z-stable case arises from using the UHF-stable approximations twice.
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In both [9,26] quasidiagonality provides ∗-homomorphisms from a qua-
sidiagonal C∗-algebra A into the ultrapowers Uω of suitable UHF algebras
(analogous to the asymptotic embeddings into the hyperfinite II1 factor which
arise from Condition (2) in [7, Theorem 5.1]). As Voiculescu shows in [45],
the cone over any C∗-algebra A is quasidiagonal, so nontrivial order zero maps
from A into these ultrapowers always exist.We aim to use suchmaps in place of
the ∗-homomorphisms used in [9,26]. As a byproduct we obtain an alternative
proof of Voiculescu’s result when A is nuclear without elementary quotients,
and has a separating family of tracial states. The argument uses recent work of
Kirchberg and Rørdam on the tracial ideal in an ultrapower [20], which also
shows that the order zero maps φ : A → Uω can be taken to preserve a fixed
trace on A (cf. Lin’s work [22] on AF-embeddability of crossed products), and
are unital modulo the tracial ideal. We perform the flipping strategy working
in an algebra of the form (A ⊗ A ⊗ V )ω, the presence of a UHF algebra V
providing the 2-coloured approximately inner flip. We then use the extra prop-
erties of the map φ to obtain order zero maps �(0), �(1) : (U ⊗ V )ω → Z
such that

∑1
i=0 �(i)(φ(1A) ⊗ 1V ) = 1Zω (for this we use a uniqueness result

for certain positive contractions in Zω proved using recent Cuntz-semigroup
classification theorems [6,27]); thus the resulting factorisation takes values in
A ⊗ Z . This strategy of proving results for Z-stable algebras via the UHF-
stable case has its origins in [46]. The use of two maps �(i) doubles the
number of colours in the final nuclear dimension approximation, leading to a
4-coloured factorisation: two colours from the�(i), multiplied by two colours
from the 2-coloured approximately inner flip. Accordingly, when A does have
an approximately inner flip, for example when it is strongly self-absorbing,
we get an estimate dimnuc(A) ≤ 1 in Theorem B (see Theorem 6.4).

InSect. 1we recall the notionof order zeromaps and the regularity properties
appearing in the Toms–Winter conjecture. In Sect. 2 we examine asymptot-
ically order zero maps and establish some technical preliminaries. Section 3
provides our “trace-preserving”-quasidiagonality of cones over tracial nuclear
C∗-algebras. In Sect. 4 we extract the 2-coloured approximately inner flip
for monotracial, simple, unital, nuclear and UHF-stable C∗-algebras from the
proof of [26, Theorem 4.2], and record some of its consequences. Section 5
provides the uniqueness theorem used in Sect. 6 to produce the two maps �(i)

and then prove Theorem B.

1 Order zero maps and regularity properties

In this section we recall some basic facts about completely positive order zero
maps, and the regularity properites which appear in Conjecture A.

Let A and B be C∗-algebras. A completely positive (c.p.) map ψ : A →
B is said to be order zero if it preserves orthogonality, i.e. ψ(e)ψ( f ) = 0
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whenever e f = 0. The structure theorem from [51] (based on the respective
result of Wolff from [53] for disjointness preserving bounded maps) for order
zero maps ψ : A → B provides a supporting ∗-homomorphism π from
A into the multiplier algebra M(C∗(ψ(A))) ⊆ B∗∗ and a positive element
h ∈ M(C∗(ψ(A))) ∩ ψ(A)′ such that ψ(a) = π(a)h = hπ(a) for all a ∈ A.
In the case that A is unital (as it will be throughout the paper) one can take
h = ψ(1A) so that ψ(a) = ψ(1A)π(a) for a ∈ A and it follows that a c.p.
map ψ : A → B is order zero if and only if

ψ(x)ψ(y) = ψ(xy)ψ(1A), x, y ∈ A. (1.1)

From the structure theorem one obtains two further key properties:

• the functional calculus for completely positive and contractive (c.p.c.) order
zero maps [51, Corollary 4.2]: given f ∈ C0(0, 1]+, define an order zero
map f (ψ) : A → B by f (ψ)(a) = π(a) f (h) which is π(a) f (ψ(1A))

when A is unital.
• the duality between c.p.c. order zero maps ψ : A → B and

∗-homomorphisms C0(0, 1] ⊗ A → B on the cone over A, [51, Corollary
4.1].

The nuclear dimension of a C∗-algebra from [52] is defined in terms of
c.p. approximations which are uniformly decomposable into sums of order
zero maps (cf. [15], which shows that approximations as below can be found
for any nuclear C∗-algebra when n is allowed to vary with i). The notion is
inspired by the idea of regarding a nuclear C∗-algebra as a noncommutative
topological space; completely positive approximations then play the role of
noncommutative partitions of unity.

Definition 1.1 ([52, Definition 2.1], [21, Definition 3.1]) A C∗-algebra A has
nuclear dimension at most n ∈ N, written dimnuc(A) ≤ n, if there exists a net
(Fi , ψi , φi )i∈I where Fi are finite dimensional C∗-algebras, which decompose
as Fi = F (0)

i ⊕ · · · ⊕ F (n)
i , ψi : A → Fi are c.p.c. and φi : Fi → A are

c.p. such that limi φi (ψi (a)) = a for a ∈ A, and each φi |F ( j)
i

is contractive

and order zero. If additionally each φi is contractive, then A is said to have
decomposition rank at most n.

The Jiang–Su algebra Z was constructed in [16] as an inductive limit of
prime dimension drop intervals. It is simple, projectionless, has a unique tracial
state and is strongly self-absorbing in the language of [42], i.e. Z ∼= Z⊗Z via
an isomorphism θ : Z → Z ⊗Z which is approximately unitarily equivalent
to the first factor embedding a �→ a ⊗ 1Z , [16, Theorem 7.6, Theorem 8.7].
There are by now several alternative ways (ranging from very concrete to
very abstract) of characterising Z . Likewise, Z-stability, i.e. the property of
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absorbing the Jiang–Su algebra tensorially, can be expressed in quite different
fashions. We recall a result which is particularly useful in this context, and
which does not require the definition of the algebra Z itself. The idea is to
realise afinite set of generators and relations inside the central sequence algebra
(of course, the latter may also be replaced by an ultrapower; cf. 2.1). The
statement essentially combines [32, Proposition 5.1] with [43, Proposition
2.2]; an approximate version was given in [47, Proposition 2.3].

Proposition 1.2 A separable unital C∗-algebra A is Z-stable if and only if,
for any 2 ≤ p ∈ N, there are c.p.c. order zero maps

	 : Mp −→ (

∞(A)/c0(A)

) ∩ A′ (1.2)

and
� : M2 −→ (


∞(A)/c0(A)
) ∩ A′ (1.3)

satisfying the relations

�
(
e(2)
11

) + 	
(
1Mp

) = 1
∞(A)/c0(A) and �
(
e(2)
22

)
	

(
e(p)
11

) = �
(
e(2)
22

)
. (1.4)

Note that this result is in complete analogy to McDuff’s characterisation
ofR-stability of II1 factors in terms of the existence of approximately central
copies ofmatrix algebras [24], replacing a unital ∗-homomorphism frommatri-
ces by an order zero map 	 which is large, in that 1 − 	(1Mp) is dominated

by 	(e(p)
11 ) (as witnessed by �).

For D a C∗-algebra with positive elements x, y ∈ D⊗K write x � y when
there exists a sequence (vn)

∞
n=1 in D⊗K with v∗

n yvn → x . Write x ∼ y when
x � y and y � x . TheCuntz semigroup is defined to beCu(D) = (D⊗K)+/∼,
and we write 〈x〉 for the class of x ∈ (D ⊗ K)+. This is equipped with an
addition arising from identification of K ∼= K ⊗ M2 to take an orthogonal
sum of two positive elements of D ⊗ K, an order ≤ induced from �, and has
the property that every increasing sequence in Cu(D) has a supremum [8]. An
abstract category Cu containing the Cuntz semigroups of C∗-algebras was set
out in [8], which shows that the assignment Cu(·) is functorial and preserves
sequential inductive limits. Given a positive element x ∈ A and ε > 0, write
(x−ε)+ forhε(x)wherehε(t) = max(t−ε, 0). Positive elements x, y ∈ D⊗K
satisfy x � y if and only if (x − ε)+ � y for all ε > 0. This last result can
be found in the survey article [1] (as Proposition 2.17), to which we refer for
a full account of the Cuntz semigroup and the category Cu.

Definition 1.3 A simple, separable, unital C∗-algebra D is said to have strict
comparison if the following holds:
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Nuclear dimension and Z-stability 901

Whenever there are positive nonzero elements a, b ∈ D ⊗ K such that

lim
k→∞ τ(a

1
k ) < lim

k→∞ τ(b
1
k ) (1.5)

for any 2-quasitrace τ on D, then a � b.

A (2-quasi)trace τ on a unital C∗-algebra D defines a functional dτ on
Cu(D) by dτ (〈a〉) = μa((0, ∞)) for a ∈ (D⊗K)+, where μa is the measure
on [0, ∞) induced by μa( f ) = τ( f (a)) for f ∈ C0[0, ∞)+. In particular,
note that dτ (〈 f (a)〉) = μa(Supp( f )) where Supp( f ) = {t : f (t) �= 0} is
the open support of f ∈ C(Sp(a)). (We only need the definition of dτ when
a ∈ D, but in general τ is extended to a lower semicontinuous (2-quasi)trace
on D⊗K to make this definition.) With this terminology, a simple, separable,
unital C∗-algebra D has strict comparison if and only if dτ (〈a〉) < dτ (〈b〉)
for all 2-quasitraces τ implies that a � b. It should be pointed out that we
will only encounter strict comparison in situations when it is known that all
2-quasitraces are in fact traces.

In order to appreciate the algebraic flavour of strict comparison, consider
Rørdam’s characterisation in terms of an order property of theCuntz semigroup
Cu(A); see [31] or [1, Section 5].

Proposition 1.4 A simple, separable, unital, nuclear C∗-algebra A has strict
comparison if and only if its Cuntz semigroup Cu(A) is almost unperforated,
i.e., (n + 1) · 〈a〉 ≤ n · 〈b〉 for some n ∈ N implies 〈a〉 ≤ 〈b〉.

2 Asymptotically order zero maps

We will be repeatedly concerned with sequences of asymptotically order zero
maps inducing order zeromaps into ultrapowers. Firstlywe set out our notation
for working with the latter.

Notation 2.1 Throughout the paper ω will denote a free ultrafilter on N.
Given a C∗-algebra A, write Aω for the ultrapower obtained as the quotient

∞(A)/cω(A), where cω(A) = {(xn)∞n=1 ∈ 
∞(A) : limn→ω ‖xn‖ = 0}. We
shall generally suppress the quotient map 
∞(A) → Aω and instead say that
(xn)∞n=1 represents or lifts x ∈ Aω if its image in the quotient is x . It is well
known that positive contractions can be lifted to sequences of positive con-
tractions, and unitaries to sequences of unitaries. We regularly regard A as
embedded in Aω, where a ∈ A is represented by the sequence with constant
value a. We also work regularly with ultrapowers of tensor products of the
form (A⊗ B)ω and throughout the paper⊗ denotes the spatial tensor product.

Given C∗-algebras A and B, a uniformly bounded sequence (ψn)
∞
n=1 of

bounded linear maps : A → B induces a bounded linear map � : Aω → Bω
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902 Y. Sato et al.

defined at the level of representatives by (xn)∞n=1 �→ (ψn(xn))∞n=1. When
eachψn is completely positive, contractive, a ∗-homomorphism, or order zero,
then � enjoys the same property. When each ψn is c.p. then the induced
map � is order zero if and only if limn→ω ‖ψn(xn)ψn(yn)‖ = 0 whenever
limn→ω ‖xn yn‖ = 0 for bounded sequences (xn)∞n=1, (yn)

∞
n=1 in A. Sometimes

themap� will only be order zerowhen restricted to a subalgebra, say A ⊂ Aω.
This is the case if and only if the sequence is asymptotically order zero with
respect to A in the sense that limn→ω ‖ψn(x)ψn(y)‖ = 0 whenever x, y ∈ A
satisfy xy = 0; when A is unital we can describe this by asking for (1.1) to
hold asymptotically, i.e.

lim
n→ω

‖ψn(xy)ψn(1) − ψn(x)ψn(y)‖ = 0, x, y ∈ A. (2.1)

Note too that when A is nuclear, by the Choi–Effros lifting theorem [5] any
c.p.c. order zero map A → Bω arises from a sequence of c.p.c. maps A → B
which is asymptotically order zero with respect to A. Sequences of asymptoti-
cally order zero maps arise naturally from the approximations in the definition
of finite nuclear dimension; indeed, given a system of maps (Fi , ψi , φi )i∈I as
in Definition 1.1 one can modify the approximation by removing unnecessary
components so that the mapsψi are asymptotically order zero [52, Proposition
3.2].

Sequences of asymptotically order zero maps enjoy a slight variant of the
structure theorem using a supporting order zero map in place of the supporting
∗-homomorphism. A crucial point here is that the supporting order zero map
can be chosen to take values in the ultrapower Bω, rather than the multiplier
algebraM(C∗(ψ(A))) ⊂ (Bω)∗∗.

Lemma 2.2 Let A and B be separable unital C∗-algebras, and (ψn)
∞
n=1 a

sequence of c.p.c. maps A → B inducing a c.p.c. map � : Aω → Bω.
Let X be a separable C∗-subalgebra of Aω with 1Aω = 1X and suppose
that �|X : X → Bω is order zero. Then there exists a sequence (πn)

∞
n=1 of

c.p.c. maps πn : A → C∗(ψn(A)) ⊆ B such that the induced c.p.c. map
 : Aω → Bω restricts to an order zero map on X satisfying

�(x) = (x)�(1X ) = �(1X )(x), x ∈ X. (2.2)

Suppose additionally that A and B factorise as A = Â⊗C and B = B̂⊗C,
for some separable unital C∗-algebra C, and each ψn is equal to ψ̂n ⊗ idC
for some c.p.c. map ψ̂n : Â → B̂. Then each πn may be chosen of the form
π̂n ⊗ idC for some c.p.c. map π̂n : Â → C∗(ψ̂n( Â)).
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Nuclear dimension and Z-stability 903

Proof For m ∈ N, define piecewise linear functions gm ∈ C0(0, 1] by

gm(t) =

⎧
⎪⎨

⎪⎩

1, t ≥ 1/m;
2mt − 1, 1/(2m) ≤ t ≤ 1/m;
0, 0 ≤ t ≤ 1/(2m).

(2.3)

Define hm ∈ C0(0, 1]+ to satisfy hm(t)t = gm(t) for all t ∈ (0, 1]. The
c.p.c. order zero map gm(�|X ) : X → Bω ∩ �(1X )′ takes the form

gm(�|X )(x) = hm(�(1X ))1/2�(x)hm(�(1X ))1/2, x ∈ X, (2.4)

since if ρ is the supporting homomorphism of �|X , then

gm(�|X )(·) = ρ(·)gm(�|X (1X ))

= ρ(·)�|X (1X )hm(�|X (1X )) = �|X (·)hm(�|X (1X )). (2.5)

Fix a countable dense sequence (x (i))∞i=1 in the unit ball of X and lift each

x (i) to a sequence (x (i)
n )∞n=1 of contractions in A. Since (hm(ψn(1A))1/2)∞n=1

is a lift of hm(�(1X ))1/2 the map gm(�|X ) is (the restriction to X of the
c.p.c. map) induced by the sequence of c.p.c. maps (ψ̃m,n)

∞
n=1 from A to B

given by

ψ̃m,n(a) = hm(ψn(1A))1/2ψn(a)hm(ψn(1A))1/2, a ∈ A. (2.6)

It then follows that for each i, j,m ∈ N,

lim
n→ω

‖ψ̃m,n(x
(i)
n x ( j)

n )ψ̃m,n(1A) − ψ̃m,n(x
(i)
n )ψ̃m,n(x

( j)
n )‖ = 0. (2.7)

As gm(�|X )(X) ⊂ Bω ∩ �(1X )′, for all i,m ∈ N we also have

lim
n→ω

‖ψ̃m,n(x
(i)
n )ψn(1A) − ψn(1A)ψ̃m,n(x

(i)
n )‖ = 0. (2.8)

For each n ∈ N, let mn denote the maximum value of m ∈ {1, 2, . . . , n}
such that

‖ψ̃m,n(x
(i)
n x ( j)

n )ψ̃m,n(1A) − ψ̃m,n(x
(i)
n )ψ̃m,n(x

( j)
n )‖ ≤ 2

m
, 1 ≤ i, j ≤ m,

(2.9)
and

‖ψ̃m,n(x
(i)
n )ψn(1A) − ψn(1A)ψ̃m,n(x

(i)
n )‖ ≤ 2

m
, 1 ≤ i ≤ m. (2.10)

123
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The limits in (2.7) and (2.8) demonstrate that limn→ω mn = ∞.
Define πn = ψ̃mn,n : A → B. As limn→ω mn = ∞, (2.9) and the order

zero relation (1.1) show that the sequence (πn)
∞
n=1 induces a c.p.c. order

zero map  : X → Bω and (2.10) shows that (X) ⊂ �(1X )′. Denote by
e ∈ Bω the contraction represented by the sequence (gmn (ψn(1A)))∞n=1. As‖gm(ψn(1A))ψn(1A) − ψn(1A)‖ ≤ 2/m for all n and limn→ω mn = ∞. It
follows that e�(1X ) = �(1X ) = �(1X )e. Since �(X) lies in the hereditary
subalgebra �(1X )Bω�(1X ), we have

e�(x) = �(x)e = �(x), x ∈ X. (2.11)

Now, given x ∈ X with lift (xn)∞n=1, we have

ψn(1A)1/2πn(xn)ψn(1A)1/2 = gmn (ψn(1A))1/2ψn(xn)gmn (ψn(1A))1/2,

(2.12)
so (2.11) gives

�(1X )1/2(x)�(1X )1/2 = �(x). (2.13)

As (X) commutes with �(1X ), this establishes (2.2).
Now suppose that A, B and each ψn factorise as described in the second

paragraph of the lemma. Then hm(ψn(1A))1/2 = hm(ψ̂n(1 Â))1/2 ⊗ 1C , and
so each ψ̃m,n factorises as ψ̌m,n ⊗ idC , with ψ̌m,n : Â → C∗(ψ̂n( Â)) given by

ψ̌m,n(a) = hm(ψ̂n(1 Â))1/2ψ̂n(a)hm(ψ̂n(1 Â))1/2, a ∈ Â. (2.14)

Thus each πn also enjoys the specified factorisation. ��
The functional calculus for order zero maps � : X → Bω arising as in

Lemma 2.2 can be recaptured using the supporting order zero map : for f ∈
C0(0, 1]+ and x ∈ X , we have f (�)(x) = (x) f (�(1X )).When f is a poly-
nomial with f (0) = 0, then f (t) = t ·g(t) for some polynomial g andwe have
f (�)(x) = �̄(x) f (�(1X )) = �̄(x)�(1X )g(�(1X )) = �(x)g(�(1X )) =
(x)�(1X )g(�(1X )) = (x) f (�(1X )), where �̄ denotes the supporting
∗-homomorphism of �. In general the assertion follows by approximating f
uniformly by polynomials. In particular, this shows that f (�) is induced by
a sequence of asymptotically order zero maps, whose ranges lie in the same
C∗-algebras as the maps used to obtain �.

Lemma 2.3 Let A and B be separable unital C∗-algebras and (ψn)
∞
n=1 a

sequence of c.p.c. maps A → B inducing a c.p.c. map � : Aω → Bω.
Let X be a separable C∗-subalgebra of Aω with 1X = 1Aω , and suppose that
�|X : X → Bω is order zero. Given any function f ∈ C0(0, 1]+, the order
zero map f (�|X ) : X → Bω is (the restriction to X of the c.p.c. map) induced
by a sequence (ψ̃n)

∞
n=1 of c.p. maps ψ̃n : A → C∗(ψn(A)) ⊆ B.
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Suppose additionally that A and B factorise as A = Â⊗C and B = B̂⊗C,
for some separable unital C∗-algebra C, and each ψn is equal to ψ̂n ⊗ idC
for some c.p.c. map ψ̂n : Â → B̂. Then each ψ̃n : A → B may be chosen of
the form ψ̌n ⊗ idC for some c.p.c. map ψ̌n : Â → C∗(ψ̂n( Â)).

Proof This follows from the expression f (�|X )(x) = (x) f (�(1X )) for
x ∈ X , where  is the supporting order zero map of Lemma 2.2 induced by
c.p.c. maps πn : A → C∗(ψn(A)). ��

We end the section by recording a fact about polar decompositions in ultra-
powers. The proof that unitary polar decompositions exist given in [23] is
stated for quotients

∏
Bn/

∑
Bn , but applies without modification to ultra-

powers. It then follows immediately that Bω has stable rank one (x = u|x | can
be approximated by invertibles of the form u(|x | + ε1Bω)).

Lemma 2.4 (cf. [23, Lemma 19.2.2(1)]) Let B be a separable unital C∗-
algebra with stable rank one. Then for every x ∈ Bω, there exists a unitary
u ∈ Bω with x = u|x | and so B has stable rank one.

3 Tracially large UHF embeddings of cones

In this section we provide the tracially large order zero maps A → Uω used
to obtain the finite dimensional algebras in the finite nuclear dimension fac-
torisations of our main result. The proof works when U is replaced by any
separable, unital, nuclear and stably finite C∗-algebra.

Notation 3.1 Let A be a separable unital C∗-algebra with a fixed tracial state
τ , and let τA,ω be the induced tracial state on Aω defined on a representative
sequence (xn)∞n=1 by limn→ω τ(xn). Following [20], we define the trace kernel
ideal of τA,ω as JA,τ := {(an)n ∈ Aω | limn→ω τ(a∗

na)} � Aω. (We do not
keep track of the ultrafilter in our notation for the ideal. However, this should
not cause confusion; in fact, we think of the free ultrafilter as being fixed
throughout the paper.)

We use Kirchberg’s notion of a σ -ideal from [18], working with the for-
mulation of [20, Definition 4.4]: an ideal I in a C∗-algebra D is a σ -ideal if
for every separable C∗-subalgebra C of D there exists a positive contraction
e ∈ I ∩C ′ such that ec = c for all c ∈ I ∩C . A key observation of Kirchberg
and Rørdam is that JA,τ is a σ -ideal in Aω whenever A is unital, and τ is a
tracial state on A, [20, Proposition 4.6 and Remark 4.7]. (This is a special case
of the results of [20, Section 4]; the trace-kernel ideal JA obtained from those
sequences which converge to zero uniformly on all traces is also a σ -ideal in
Aω, and so too are the ideals (JA∩ A′)�(Aω ∩ A′) and (JA,τ ∩ A′)�(Aω ∩ A′)
in the central sequence algebras). The proof below is based on the argument
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for surjectivity given at the end of Sect. 4 of [20]. In forthcoming work we will
provide some uniqueness statements for such maps up to a finitely coloured
decomposition as a sum of order zero maps arising from conjugation by a
suitable sequence of contractions.

Proposition 3.2 Let A and B be separable unital and nuclear C∗-algebras
without elementary quotients, and with extremal traces τA and τB respectively.
Then there exists a c.p.c. order zero map � : A → Bω with 1Bω − �(1A) ∈
JB,τB and τB,ω(�(x)) = τA(x) for all x ∈ A.

Proof The strong operator closures of A and B in the GNS representations
corresponding to τA and τB are injective II1 factors, so by Connes’ uniqueness
theorem [7], both these strong closures are isomorphic to the hyperfinite II1
factor R. Let Rω be the von Neumann algebra ultrapower, namely the quo-
tient of 
∞(R) by those sequences (xn)∞n=1 with limn→ω τR(x∗

n xn) = 0. By
Kaplansky’s density theorem, the canonical emebddings Aω/JA,τA → Rω

and Bω/JB,τB → Rω are surjective, so give a surjective ∗-isomorphism
�̃ : Aω/JA,τA → Bω/JB,τB . Let π : A → Aω/JA,τA be the canonical
unital ∗-homomorphism. Applying the Choi–Effros lifting theorem [5], we
obtain a unital c.p.c. map �̂ : A → Bω lifting �̃ ◦ π , i.e. �̃ ◦ π = q ◦ �̂,
where q : Bω → Bω/JB,τB is the quotient map. As JB,τB is a σ -ideal in Bω,
there is a positive contraction e ∈ JB,τB ∩C∗(1Bω, �̂(A))′ with ec = c for all
c ∈ JB,τB ∩ C∗(1Bω, �̂(A)).

Define a c.p.c. map � : A → Bω by �(a) = (1Bω − e)�̂(x)(1Bω − e) for
x ∈ A. We have 1Bω − �(1A) = 1Bω − (1Bω − e)2 = 2e − e2 ∈ JB,τB and

τB,ω(�(x))=τB,ω(�̂(x))=τB,ω(�̃◦π(x)) = τA,ω◦π(x) = τA(x), x ∈ A;
(3.1)

for the third equation note that since Rω is a II1 factor (see [35, Lemma
A.4.2]) it has a unique tracial state (any trace on a II1 factor is automatically
normal [37, Proposition V.2.5]), and so we have τB,ω(�̃(x)) = τA,ω(x) for
any x ∈ Aω/JA,τA .

Finally, if x, y ∈ A+ satisfy xy = 0, then �̂(x)�̂(y) ∈ ker q = JB,τB , and
hence (1Bω − e)�̂(x)�̂(y) = 0. Since (1Bω − e) commutes with �̂(A), we
have

�(x)�(y) = (1Bω − e)�̂(x)(1Bω − e)2�̂(y)(1Bω − e)

= (1Bω − e)2�̂(x)�̂(y)(1Bω − e)2 = 0, (3.2)

showing that � is order zero, as required. ��
One can prove more. Since JB,τB ∩ B ′ is a σ -ideal in Bω ∩ B ′, starting with

a trace preserving embedding A → Rω ∩ R′ (which is easily obtained from
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the isomorphism of R with its infinite tensor product), and using the fact that
(Bω ∩ B ′)/(JB,τB ∩ B ′) ∼= Rω ∩ R′ ([33, Lemma 2.1] when B is nuclear and
[20, Theorem 3.3] for general B), the same proof allows us to insist that the
order zero map � maps into the central sequence algebra Bω ∩ B ′.

Note too that the previous proposition recaptures Voiculescu’s result [45]
that the cone over a C∗-algebra A is quasidiagonal in the special case when A
is unital and nuclear without elementary quotients, and has a separating family
of tracial states (so in particular when A is also simple and stably finite by the
work of Blackadar, Handelman [3,14] and Haagerup [13]).

Corollary 3.3 Let A be a separable, unital and nuclear C∗-algebra without
elementary quotients, and with the property that for every positive element
x ∈ A there is a tracial state τ on A with τ(x) �= 0. Then C0(0, 1] ⊗ A is
quasidiagonal.

Proof Suppose first that τA is an extremal tracial state on A and take B
to be a UHF algebra in Proposition 3.2, and let � : A → Bω be the
order zero map given there. The duality between order zero maps from A
and ∗-homomorphisms from C0(0, 1] ⊗ A [51, Corollary 4.1], gives a ∗-
homomorphism  : C0(0, 1] ⊗ A → Bω which has (id(0,1] ⊗ x) = �(x).
Note that

τB,ω(�(1A)n) = 1, n ∈ N (3.3)

as 1Bω −�(1A) ∈ JB . Then the measure on (0, 1] induced by τB,ω((·⊗1A))

is supported at 1 so that τB,ω ◦  vanishes on C0(0, 1) ⊗ A, and hence factors
through A ∼= (C0(0, 1]⊗ A)/(C0(0, 1)⊗ A). Accordingly τB,ω◦ = δ1⊗τA.

Given t ∈ (0, 1], follow the restriction C0(0, 1] → C0(0, t] with a map
C0(0, t] → C0(0, 1] induced by rescaling to obtain a ∗-homomorphism t :
C0(0, 1] ⊗ A → Bω with τB,ω ◦ t = δt ⊗ τA. Now if τA is faithful, the
sequence of maps (̃n)

∞
n=1 given by

̃n( f )=1/n(x) ⊕ 2/n( f ) ⊕ · · · ⊕ 1( f ) : A → B⊕n
ω

∼= (B⊕n)ω (3.4)

can be used to confirm quasidiagonality of C0(0, 1] ⊗ A as asymptotically

1

n

n∑

i=1

τB,ω(i/n( f ))→
∫ 1

0
τA( f (t))dt, f ∈C0((0, 1], A) ∼= C0(0, 1]⊗ A,

(3.5)
where the integral on the right is performed with respect to Lebesgue measure
and so is non-zerowhen f is positive and non-zero, as τA was assumed faithful.

In general, note that for every non-zero positive element f ∈ C0((0, 1], A),
the hypothesis gives an extremal trace τ on A such that

∫ 1
0 τ( f (t))dt �= 0. Thus

sums of the maps in (3.4) taken over finite subsets of the extremal boundary
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of the tracial state space of A can be used to witness quasidiagonality of
C0(0, 1] ⊗ A. ��

4 2-coloured approximately inner flips

The next lemma extracts the 2-coloured approximately inner flip for mono-
tracial nuclear UHF-stable C∗-algebras from the proof of [26, Theorem 4.2]
in the form we need for the sequel. We give the proof for completeness (note
that our notation differs from that in [26], particularly for ultrapowers).

Lemma 4.1 Let A be a simple, separable, unital, non-elementary and nuclear
C∗-algebra with unique tracial state τA, and let V be a UHF algebra. Then
there exist contractions v(0), v(1) ∈ (A ⊗ A ⊗ V )ω with

1∑

i=0

v(i)(a ⊗ b ⊗ 1V )v(i)∗ = (b ⊗ a ⊗ 1V ), a, b ∈ A, (4.1)

v(0)∗v(0), v(1)∗v(1) ∈(1A ⊗ 1A ⊗ V )ω and
1∑

i=0

v(i)∗v(i) =1A ⊗ 1A ⊗ 1V .

(4.2)

Proof As A has unique trace its strong closure in the GNS-representation of
this trace is an injective II1 factor, and so has a ‖ · ‖2,τ -approximately inner
flip by the implication (7)⇒(3) from Connes’ Theorem [7, Theorem 5.1]). In
particular, using Kaplansky’s density theorem, there exists a sequence (un)∞n=1
of unitaries in A ⊗ A with

lim
n→ω

‖unxu∗
n − σ(x)‖2,τA⊗A = 0, x ∈ A ⊗ A, (4.3)

where σ : A ⊗ A → A ⊗ A is the flip automorphism of A ⊗ A.
Write B = M2⊗A⊗A⊗V and let q : Bω → Bω/JB,τB denote the quotient

map. Consider the embedding π : A⊗ A → Bω
∼= M2((A⊗ A⊗V )ω), given

by

π(x) =
[
ι(x) ⊗ 1Vω 0

0 ι ◦ σ(x) ⊗ 1Vω

]

, (4.4)

where ι : A ⊗ A ↪→ (A ⊗ A)ω is the canonical unital inclusion. Denote the
partial isometry in Bω represented by

([
0 0

un ⊗ 1V 0

])∞

n=1
(4.5)
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byu, so thatq(u) ∈ q(Bω)∩q(π(A⊗A))′ from (4.3). Thenwehaveprojections

e =
[
1(A⊗A⊗V )ω 0

0 0

]

, f =
[
0 0
0 1(A⊗A⊗V )ω

]

(4.6)

in Bω ∩ π(A ⊗ A)′ satisfying e = u∗u and f = uu∗. By construction, the
partial isometry q(u) witnesses Murray–von Neumann equivalence of q(e)
and q( f ) in q(Bω) ∩ q(π(A ⊗ A))′.

The relative SI results of [26, Sect. 3] apply to the inclusionπ(A⊗A) ⊂ Bω.
In particular every trace on Bω ∩π(A⊗ A)′ is of the form τ̃ ◦q for some trace
τ̃ on q(Bω)∩q(π(A⊗ A))′ by [26, Proposition 3.3(i)]. Thus τ(e) = τ( f ) for
all traces τ ∈ T (Bω ∩ π(A ⊗ A)′).

Further, as B has strict comparison, [26, Proposition 3.3(ii)] applies to show
that Bω ∩ π(A ⊗ A)′ has strict comparison of projections. Then, for each
n ∈ N, apply the 2-coloured Cuntz–Pedersen theorem [26, Lemma 2.1] to
obtain contractions w̃

(0)
n , w̃

(1)
n in (Bω ∩ π(A ⊗ A)′) ⊗ Mn , such that

‖w̃(0)
n

∗w̃(0)
n +w̃(1)

n
∗w̃(1)

n −e⊗1n‖≤ 4

n
, ‖w̃(0)

n w̃(0)
n

∗+w̃(1)
n w̃(1)

n
∗− f ⊗1n‖≤ 4

n
(4.7)

and

dist(w̃(0)
n

∗w̃(0)
n , e ⊗ Mn) ≤ 2

n
, dist(w̃(1)

n
∗w̃(1)

n , e ⊗ Mn) ≤ 2

n
. (4.8)

By regarding Mn (for suitable n) as being unitally embedded in V , we
have w̃

(0)
n , w̃

(1)
n ∈ Bω ∩ π(A ⊗ A)′. A standard reindexing argument gives

contractions ṽ(0), ṽ(1) ∈ Bω ∩ π(A ⊗ A)′ with

1∑

i=0

ṽ(i)∗ṽ(i) =
[
1(A⊗A⊗V )ω 0

0 0

]

,

1∑

i=0

ṽ(i)ṽ(i)∗ =
[
0 0
0 1(A⊗A⊗V )ω

]

(4.9)
and

ṽ(0)∗ṽ(0), ṽ(1)∗ṽ(1) ∈
[
(1A ⊗ 1A ⊗ V )ω 0

0 0

]

. (4.10)

From (4.9), there are contractions v(0), v(1) ∈ (A ⊗ A ⊗ V )ω such that

ṽ(0) =
[

0 0
v(0) 0

]

, ṽ(1) =
[

0 0
v(1) 0

]

. (4.11)

These are readily seen to satisfy (4.1) and (4.2). ��
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Since UHF algebras of infinite type are strongly self-absorbing, if a sepa-
rable C∗-algebra A tensorially absorbs a UHF-algebraU of infinite type, then
there is an isomorphism A → A⊗U which is approximately unitarily equiv-
alent to the first factor embedding ι : A → A ⊗ U [29, Theorem 7.2.2 and
Remark 7.2.3]. Applying this statement to A⊗ A, one obtains an isomorphism
� : (A ⊗ A ⊗U )ω → (A ⊗ A)ω with �(a ⊗ b ⊗ 1U ) = a ⊗ b for a, b ∈ A.
Following Proposition 4.1 by this isomorphism gives the next statement, the
conclusion of which one might take as the definition that “A has 2-coloured
approximately inner flip”.

Proposition 4.2 Let A be a simple, separable, unital and nuclear C∗-algebra
with a unique tracial state which absorbs a UHF-algebra of infinite type. Then
there exist contractions v(0), v(1) ∈ (A ⊗ A)ω with v(i)∗v(i) ∈ (A ⊗ A)ω ∩
(A ⊗ A)′ for i = 0, 1,

∑1
i=0 v(i)∗v(i) = 1A⊗A, and

1∑

i=0

v(i)(a ⊗ b)v(i)∗ = b ⊗ a, a, b ∈ A. (4.12)

Having an approximately inner flip is a strong requirement to impose on
a separable C∗-algebra A, forcing A to be simple and nuclear, and to have
at most one tracial state [9, Proposition 2.7, Proposition 2.8, Lemma 2.9].
Essentially the same arguments apply toC∗-algebras satisfying the conclusions
of Proposition 4.2. We sketch this below for completeness. In particular this
shows that in usingLemma4.1 to proveTheoremB, the unique trace hypothesis
really is essential.

Proposition 4.3 (cf. [9]) Let A be a separable unital C∗-algebra with 2-
coloured approximately inner flip, i.e., satisfying the conclusions of Proposi-
tion 4.2. Then A is simple, nuclear and has at most one tracial state.

Proof For simplicity, if I is a proper ideal in A, then I ⊗ A and A ⊗ I are
distinct ideals in A ⊗ A. On the other hand if the flip automorphism on A
takes the form (4.12), then it follows that I ⊗ A = A ⊗ I , a contradiction.
For the tracial statement, suppose τ1 and τ2 are traces on A, inducing a trace
(τ1 ⊗ τ2)ω on (A ⊗ A)ω. Noting that

∑1
i=0 v(i)∗v(i) = 1(A⊗A)ω , applying

(τ1 ⊗ τ2)ω to (4.12) with b = 1A shows that τ1(a) = τ2(a) for a ∈ A. Finally,
for nuclearity, given (4.12), lift each v(i) isometrically to a sequence (v

(i)
n )∞n=1

of finite combinations of elementary tensors, v(i)
n = ∑

j∈�n
c(i)
j,n ⊗ d(i)

j,n . Fix a
state φ on A; then the maps

A → A; a �→
1∑

i=0

∑

j,k∈�n

φ(c(i)
j,nac

(i)
k,n

∗)d(i)
j,nd

(i)
k,n

∗ (4.13)

123



Nuclear dimension and Z-stability 911

are c.p., uniformly bounded, finite rank, and converge to idA as n → ω in
point norm topology, so that A is nuclear. ��

5 Tracially large purely positive elements in Zω

Our objective in this section is to establish the following uniqueness result
for certain positive contractions of full spectrum which we shall apply when
A = B = Z .

Lemma 5.1 Let A and B be simple, unital and exactC∗-algebras with unique
tracial states τA and τB respectively such that A⊗B has strict comparison and
stable rank one. Let h ∈ B beapositive contractionwith spectrum [0, 1]. Given
positive contractions e(0), e(1) ∈ JA,τA � Aω, there is a unitary u ∈ (A⊗ B)ω
with u((1Aω − e(0)) ⊗ h)u∗ = (1Aω − e(1)) ⊗ h.

Recall that C0(0, 1] is the universal C∗-algebra generated by a positive
contraction, so positive contractions in a C∗-algebra D are in bijective cor-
respondence with ∗-homomorphisms C0(0, 1] → D. To prove Lemma 5.1,
we use Ciuperca and Elliott’s classification of such ∗-homomorphisms up to
approximate unitary equivalence when D has stable rank one via the Cuntz
semigroup from [6] (stated in the form we use as Theorem 5.2 below; see also
[27]).

Theorem 5.2 (Ciuperca–Elliott [6, Theorem 4]) Let D be a unitalC∗-algebra
with stable rank one, and for i = 0, 1, let ρ(i) : C0(0, 1] → D be ∗-
homomorphisms. Then ρ(0) and ρ(1) are approximately unitarily equivalent if
and only if the induced maps Cu(ρ(i)) : Cu(C0(0, 1]) → Cu(D) are equal.

In the proof of Lemma 5.1 we use strict comparison in order to show that the
∗-homomorphisms of Theorem 5.2 do indeed induce the same map at the level
of the Cuntz semigroup. Note that when τ is a faithful trace on D, and h ∈ D+
is a positive contraction with full spectrum, then dτ ((h − ε)+) < dτ (h) for all
ε > 0.

Proof of Lemma 5.1. By transitivity, it suffices to prove the lemmawith e(1) =
0. For i = 0, 1, write ρ(i) for the induced ∗-homomorphism C0(0, 1] →
(A ⊗ B)ω, i.e.,

ρ(0)(id(0,1]) = (1Aω − e(0)) ⊗ h (5.1)

and
ρ(1)(id(0,1]) = 1Aω ⊗ h. (5.2)

We shall show that

〈ρ(0)( f )〉 = 〈ρ(1)( f )〉 in Cu((A ⊗ B)ω), f ∈ C0(0, 1]. (5.3)
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Since Cu(C0(0, 1]) is isomorphic to lsc((0, 1], {0, 1, 2, . . . , ∞}), the lower
semicontinuous functions from (0, 1] into the extended natural numbers (a
result of Coward which can be found as [6, Theorem 10.1]), it is generated
(under the operations of addition and taking suprema) by the equivalence
classes of positive elements in C0(0, 1]. Thus, once we have established (5.3)
it follows that Cu(ρ(0)) = Cu(ρ(1)), and hence ρ(0) and ρ(1) are approximately
unitarily equivalent by Theorem 5.2, as (A⊗B)ω inherits stable rank one from
A⊗ B by Lemma 2.4. Then either a reindexing argument, or the “ε-test” [18,
Lemma A.1] can be used to show that ρ(0) and ρ(1) are actually unitarily
equivalent.

We now establish (5.3). Write τA⊗B = τA ⊗ τB . Lift e(0) to a sequence
(en)∞n=1 of positive contractions in A, which satisfy limn→ω τA(en) = 0.Write
μn for the measure on (0, 1] induced by

μn( f ) = τA⊗B( f ((1A − en) ⊗ h)), f ∈ C0(0, 1] (5.4)

and μ for the measure induced by

μ( f ) = τA⊗B( f (1A ⊗ h)), f ∈ C0(0, 1]. (5.5)

As e(0) ∈ JA, we have

lim
n→ω

τA⊗B((1A − en)
m ⊗ hm) = τA⊗B(1A ⊗ hm), m ∈ N (5.6)

and so, by approximating f ∈ C0(0, 1] uniformly by polynomial functions,

lim
n→ω

τA⊗B( f ((1A − en) ⊗ h)) = τA⊗B( f (1A ⊗ h)), f ∈ C0(0, 1]. (5.7)

Given an open set U ⊂ (0, 1], take a sequence (gm)∞m=1 of continuous func-
tions in C0(0, 1] with 0 ≤ gm ↗ χU , where χU is the indicator function of
U . Then

μn(χU ) ≥ μn(gm)
n→ω→ μ(gm),

so that
lim
n→ω

μn(χU ) ≥ μ(gm)
m→∞→ μ(U ), (5.8)

by the monotone convergence theorem. Consequently, for closed subsets F ⊆
(0, 1], we have

lim
n→ω

μn(F) ≤ μ(F). (5.9)

Now, for f ∈ C0(0, 1],
dτA⊗B ( f ((1A − en) ⊗ h)) = μn(Supp( f )). (5.10)
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Thus (5.8) and (5.10) combine to show

lim
n→ω

dτA⊗B ( f ((1A−en)⊗h))≥dτA⊗B ( f (1A⊗h)), f ∈ C0(0, 1]+. (5.11)

Fix f ∈ C0(0, 1]+ with ‖ f ‖ = 1. For notational purposes write h̃ =
f (1A ⊗ h), and h̃n = f ((1A − en) ⊗ h). As h has full spectrum, so too has h̃.
Since A and B (and hence A⊗ B, since we work with the spatial tensor norm)
are simple, it follows that for a fixed, sufficiently small ε > 0, we have

dτA⊗B ((̃h − ε)+) < dτA⊗B ((̃h − ε/2)+) < dτA⊗B (̃h). (5.12)

Define

rε/2(t) =
{
2t/ε 0 ≤ t ≤ ε/2;
1, t ≥ ε/2.

(5.13)

Then rε/2(t)(t − ε/2)+ = (t − ε/2)+. By (5.11) and (5.12), we have

lim
n→ω

dτA⊗B ((̃hn − ε/2)+) ≥ dτA⊗B ((̃h − ε/2)+) > dτA⊗B ((̃h − ε)+). (5.14)

Thus, the set � = {n ∈ N : dτA⊗B ((̃hn − ε/2)+) > dτA⊗A((̃h − ε)+)} lies in
ω, and for n ∈ �, (̃h − ε)+ � (̃hn − ε/2)+ by strict comparison (exactness
of A and B, and hence of A ⊗ B, plays a role here ensuring via Haagerup’s
work [13] that the unique trace is the only 2-quasitrace on A⊗ B). For n ∈ �,
find vn ∈ A ⊗ B (it is easy to see that vn can be taken in A ⊗ B regarded as a
subalgebra of A ⊗ B ⊗ K) with ‖vn (̃hn − ε/2)+v∗

n − (̃h − ε)+‖ < 1/n and
for n /∈ �, define vn arbitrarily with ‖vn‖ ≤ 1. Then

lim
n→ω

‖vn (̃hn−ε/2)1/2+ rε/2(̃hn)(̃hn − ε/2)1/2+ v∗
n − (̃h − ε)+‖ = 0. (5.15)

As the sequence (vn (̃hn − ε/2)1/2+ )∞n=1 is uniformly bounded, this witnesses

( f (1A ⊗ h)−ε)+ � rε/2( f ((1Aω − e(0)) ⊗ h))∼ f ((1Aω − e(0))⊗h) (5.16)

in (A ⊗ B)ω. Since ε > 0 can be taken arbitrarily small, this shows that

〈 f (1A ⊗ h)〉 ≤ 〈 f ((1Aω − e(0)) ⊗ h)〉 in Cu((A ⊗ B)ω). (5.17)

The reverse inequality is similar, workingwith closed supports. Fix an ε > 0
small enough that Supp(( f − ε/2)+) � Supp(( f − ε)+), and

μ
(
Supp(( f − ε)+)

)
< dτA⊗B ((̃h − ε/2)+). (5.18)
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914 Y. Sato et al.

By (5.9),
lim
n→ω

μn
(
Supp(( f − ε)+)

)
< dτA⊗B ((̃h − ε/2)+), (5.19)

so that
lim
n→ω

dτA⊗B ((̃hn − ε)+) < dτA⊗B ((̃h − ε/2)+). (5.20)

Then, arguing in just the sameway that (5.17) is obtained from (5.14), we have

〈 f (1A ⊗ h)〉 ≥ 〈 f ((1Aω − e(0)) ⊗ h)〉 in Cu((A ⊗ B)ω). (5.21)

Combining this with (5.17) establishes (5.3), and so completes the proof. ��
Note that when B is the Jiang–Su algebra, then when A is simple, unital,

exact and stably finite, A ⊗ Z has strict comparison and stable rank one by
[31], leading to the following version of the lemma, in which we can also
replace Z by any UHF-algebra.

Lemma 5.3 Let A be a simple, unital and exactC∗-algebrawith unique tracial
state τA. Let h ∈ Z be a positive contraction with spectrum [0, 1]. For any pair
of positive contractions e(0), e(1) ∈ JA,τA �Aω there is a unitary u ∈ (A⊗Z)ω
with u((1Aω − e(0)) ⊗ h)u∗ = (1Aω − e(1)) ⊗ h.

6 Z-stability and nuclear dimension

In this sectionwe establish themain result of the paper: TheoremB. Recall that
the Jiang-Su algebra has strict comparison and stable rank one ([31], which
shows the same for all simple, separable, unital, exact and stably finiteZ-stable
C∗-algebras). Thus Lemma 5.1 can be applied with A = B = Z .

From the original inductive limit construction one can see that the Jiang–
Su algebra is almost divisible (again see [31] for the more general statement
in the presence of Z-stability); in particular given ε > 0 and k ∈ N, there
exists a c.p.c. order zero map ψ : Mk → Z with τZ(ψ(1k)) > 1 − ε. (Note
too that these maps can be obtained using the maps 	 from Proposition 1.2).
We use this last fact in the first of two technical lemmas, which allow us to
adjoin the UHF tensor factor required to employ Lemma 4.1 and factorise this
through a sum of two order zero maps back into Z . The two order zero maps
used here double the number of colours used in the final approximation: two
colours arise from the 2-coloured approximately inner flip, and another two
from Lemma 6.2, leading to a 4-colour approximation in Theorem B.

Lemma 6.1 Let U be a UHF algebra. Then there exists a sequence (ψ̃n)
∞
n=1

of c.p.c. order zero maps U → Z inducing an order zero map �̃ : Uω → Zω

such that for any positive contraction e ∈ JU,τU , we have 1Zω − �̃(1Uω −e) ∈
JZ,τZ .
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Proof Let p and q be supernatural numbers which are relatively prime and
such thatU embeds unitally into Mp ⊗Mq . As pointed out in [32, Proposition
3.3], the generalised dimension drop interval Z p,q embeds unitally into Z .
Careful inspection of the proof (which follows that of [31, Proposition 2.2])
shows that this embedding can be chosen so that the trace on Z induces the
trace on Z p,q associated to the Lebesgue integral on [0, 1]. Note that Z p,q ⊂
C([0, 1], Mp ⊗ Mq), and that there is an order zero map Mp ⊗ Mq → Z p,q
such that the Lebesgue trace on Z p,q is at most 1−1/n on the image of the unit
ofMp⊗Mq . (Embed the coneC0(0, 1]⊗Mp⊗Mq intoC[0, 1]⊗Mp⊗Mq

∼=
C([0, 1], Mp⊗Mq) in such away that id(0,1] maps to a functionwhich vanishes
at the endpoints and is constant 1 on the interval [1/2n, 1 − 1/2n].) We may
now compose these maps to obtain a sequence (ψ̃n)

∞
n=1 of order zero maps

U → Z with τZ(ψ̃n(1U )) > 1 − 1/n for each n ∈ N. Define �̃ to be the
c.p.c. order zero map Uω → Zω induced by the sequence (ψ̃n)

∞
n=1. Given

a positive contraction e ∈ JU,τU , lift e to a sequence (en)∞n=1 of positive
contractions with limn→ω τU (en) = 0. Since τZ ◦ ψ̃n is a trace on U (by [51,
Corollary 4.4]), we have τZ(ψ̃n(en)) = τU (en)τZ(ψ̃n(1U )). Then

τZ(1Z − ψ̃n(1U − en)) = 1 − τZ(ψ̃n(1U )) + τZ(ψ̃n(en))

= 1+τZ(ψ̃n(1))(τU (en)−1)
n→ω→ 1+1(0−1)=0.

(6.1)

Thus 1Zω − �̃(1Uω − e) ∈ JZ,τZ , as claimed. ��
Lemma 6.2 Let U be a UHF algebra, and let e ∈ JU,τU be a positive contrac-

tion. Then there exist two sequences (λ
(0)
n )∞n=1 and (λ

(1)
n )∞n=1 of c.p.c. order

zero maps U → Z inducing c.p.c. order zero maps �(0), �(1) : Uω → Zω

such that
∑1

j=0 �( j)(1Uω − e) = 1Zω .

Proof Fix a positive contraction d(0) ∈ Z with spectrum [0, 1], and write
d(1) = 1 − d(0) which is also a positive contraction with spectrum [0, 1]. By
Lemma 6.1, there is a sequence (̃λn)

∞
n=1 of c.p.c. order zero maps U → Z

inducing a c.p.c. order zero map �̃ : Uω → Zω such that 1Zω −�̃(1Uω −e) ∈
JZ,τZ . Then consider the c.p.c. order zero maps λ̃

( j)
n : U → Z ⊗Z given by

λ̃
( j)
n (x) = λ̃n(x) ⊗ d( j), which induce c.p.c. order zero maps �̃( j) : Uω →

Zω ⊗Z ⊂ (Z ⊗Z)ω with �̃( j)(1Uω − e) = (�̃(1Uω − e)⊗ d( j)). By Lemma
5.1, there exist unitaries u( j) ∈ (Z ⊗ Z)ω, with u( j)(�̃( j)(1Uω − e))u( j)∗ =
(1Zω ⊗ d( j)), which we can lift to a sequence (u( j)

n )∞n=1 of unitaries in Z ⊗Z .

Define c.p.c. order zero maps λ
( j)
n = ad(u( j)

n ) ◦ λ̃
( j)
n : U → Z ⊗ Z , with

induced map �( j) so that
∑1

j=0 �( j)(1Uω − e) = ∑1
j=0(1Zω ⊗ d( j)) =

1Zω⊗1Z = 1(Z⊗Z)ω . IdentifyingZ⊗Z withZ , the lemma is established. ��
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The next lemma packages a factorisation for the order zero maps obtained
from the 2-coloured approximately inner flip (cf. Proposition 4.2).

Lemma 6.3 Let A and B be separable unital C∗-algebras with B simple
and stably finite and let U and V be UHF algebras. Given a contraction
v ∈ (B ⊗ A ⊗ V )ω with v∗v ∈ (1B ⊗ 1A ⊗ V )ω, let (ψn)

∞
n=1 be a sequence

of c.p.c. maps A → U, such that the c.p.c. map � : (B ⊗ A ⊗ V )ω →
(B ⊗ U ⊗ V )ω induced by the sequence (idB ⊗ ψn ⊗ idV )∞n=1 is order zero
on C∗(B ⊗ A ⊗ V, v) ⊂ (B ⊗ A ⊗ V )ω. Then the c.p.c. map � : A →
(B ⊗ U ⊗ V )ω given by �(a) = �(v(1B ⊗ a ⊗ 1V )v∗) is order zero and
can be factorised as follows: there are finite dimensional C∗-algebras Gn,
c.p.c. maps φn : A → Gn, and ∗-homomorphisms θn : Gn → B ⊗ U ⊗ V
such that �(a) is represented by (θn(φn(a)))∞n=1 for a ∈ A.

Proof Since v∗v ∈ (1B ⊗1A ⊗V )ω, the map a �→ v(1B ⊗a⊗1V )v∗ is order
zero, and hence so too is �.

By following each ψn by a suitable conditional expectation from U to a
finite dimensional C∗-subalgebra, we can assume that C∗(ψn(A)) = En ⊂ U
is finite dimensional for each nwithout changing the values of the inducedmap
� on the separableC∗-algebra X = C∗(B⊗A⊗V, v). ThenLemma2.2 gives a
sequence of c.p.c. maps (πn)

∞
n=1, πn : A → En such that (idB ⊗πn⊗ idV )∞n=1

induces a c.p.c. order zero map  : X → (B ⊗U ⊗ V )ω satisfying

�(x) = (x)�(1(B⊗A⊗V )ω) = �(1(B⊗A⊗V )ω)(x), x ∈ X. (6.2)

In particular

�(a) = �(v(1B ⊗ a ⊗ 1V )v∗) = (v(1B ⊗ a ⊗ 1V )v∗)�(1(B⊗A⊗V )ω)

= 1/3(v)�(1)1/21/3(1B ⊗ a ⊗ 1V )�(1)1/21/3(v∗), a ∈ A.

(6.3)

Write s = 1/3(v). By Lemma 2.3, 1/3 is induced by a sequence of
c.p.c. maps of the form (idB⊗π̃n⊗idV )∞n=1, where π̃n : A → En . Since v∗v ∈
(1B ⊗1A⊗V )ω, we can lift |s| = (1/3(v∗)1/3(v))1/2 = 1/3((v∗v)1/2) to
a sequence (tn)∞n=1 of positive contractions in 1B ⊗ En ⊗V . Since V is AF, by
making a small perturbation of these lifts, we can assume that there are finite
dimensionalC∗-subalgebras Fn ⊆ V with 1V ∈ Fn such that tn ∈ 1B⊗En⊗Fn
for all n. As B is simple and stably finite, B ⊗ U ⊗ V has stable rank one
by [28, Theorem 5.7], so Lemma 2.4 provides a unitary u ∈ (B ⊗ U ⊗ V )ω
with s = u|s|. Lift u to a sequence of unitaries (un)∞n=1 in B ⊗ U ⊗ V , then
(untn)∞n=1 is a lift of s.

Define Gn = 1B ⊗ En ⊗ Fn and c.p.c. maps φn : A → Gn by

φn(a) = tn(1B ⊗ ψn(1A)1/2π̃n(a)ψn(1A)1/2 ⊗ 1V )tn, a ∈ A, (6.4)
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noting that the choices have been made so that φn(A) ⊆ Gn . Let θn : Gn →
B ⊗ U ⊗ V be the ∗-homomorphism θn = ad(un). As (untn)∞n=1 is a lift of
1/3(v), (6.3) and (6.4) show that for every a ∈ A, (θn(φn(a)))∞n=1 is a lift of
�(a), as required. ��

All the pieces are now in place to prove our main result. As explained in
[39, Propositions 2.4 and 2.5], when A is a Z-stable C∗-algebra, dimnuc(A)

can be computed by only approximating the first factor embedding ι : A ↪→
(A ⊗ Z)ω; this is used at the end of the proof.

Proof of Theorem B Fix UHF algebras U and V . Since A has unique tracial
state, we can apply Lemma 4.1 to find contractions v(0), v(1) ∈ (A⊗ A⊗V )ω
satisfying (4.1) and (4.2). By Proposition 3.2 we can find an order zero map
�̃2 : A → Uω with 1Uω − �̃2(1A) ∈ JU,τU , which, by the Choi–Effros lifting
theorem of [5], is induced by a sequence (ψ̃n)

∞
n=1 of c.p.c. maps A → U .

Letting (x (l))∞l=1 be a countable dense sequence in C
∗(A⊗A⊗V, v(0), v(1)) ⊂

(A ⊗ A ⊗ V )ω, with fixed isometric lifts (x (l)
n )∞n=1, we can find a sequence

(mn)
∞
n=1 of natural numbers such that

‖(idA ⊗ ψ̃mn ⊗ idV )(x (k)
n x (l)

n )(idA ⊗ ψ̃mn ⊗ idV )(1A ⊗ 1A ⊗ 1V )

− (idA ⊗ ψ̃mn ⊗ idV )(x (k)
n )(idA ⊗ ψ̃mn ⊗ idV )(x (l)

n )‖≤ 1

n
, 1≤k, l≤n,

(6.5)

and τU (ψmn (1A)) ≥ 1 − 1/n for each n ∈ N. Let ψn = ψ̃mn and let � :
(A ⊗ A ⊗ V )ω → (A ⊗U ⊗ V )ω be the c.p.c. map induced by the sequence
(idA ⊗ ψn ⊗ idV )∞n=1 which is constructed to be order zero on C∗(A ⊗ A ⊗
V, v(0), v(1)). Write �2 : A → Uω for the c.p.c. order zero map induced by
(ψn)

∞
n=1 and note that 1Uω − �2(1A) ∈ JU,τU .

Embedding Uω into (U ⊗ V )ω as Uω ⊗ 1V , we have

1(U⊗V )ω − �2(1A) ⊗ 1V = (1Uω − �2(1A)) ⊗ 1V ∈ JU⊗V,τU⊗τV . (6.6)

As U ⊗ V is UHF, Lemma 6.2 provides two sequences (̃λ
( j)
n )∞n=1, j = 0, 1,

of c.p.c. order zero mapsU ⊗ V → Z such that the induced order zero maps
�̃( j) : (U ⊗ V )ω → Zω satisfy

∑1
j=0 �̃( j)(�2(1A) ⊗ 1V ) = 1Zω . For each

n and j , let λ
( j)
n = idA ⊗ λ̃

( j)
n : A ⊗ U ⊗ V → A ⊗ Z , which is c.p.c. and

order zero, and so the two sequences (λ
( j)
n )∞n=1 induce c.p.c. order zero maps

�( j) : (A ⊗U ⊗ V )ω → (A ⊗ Z)ω with

1∑

j=0

�( j)(a ⊗ �2(1A) ⊗ 1V ) = a ⊗ 1Zω, a ∈ A. (6.7)
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Let �(i) : A → (A ⊗ U ⊗ V )ω, i = 0, 1, be the c.p.c. order zero map given
by �(i)(a) = �(v(i)(1A ⊗ a ⊗ 1V )v(i)∗). Hence, for a ∈ A,

1∑

i, j=0

�( j)(�(i)(a)) =
1∑

i, j=0

�( j)(�(v(i)(1A ⊗ a ⊗ 1V )v(i) ∗))

=
1∑

j=0

�( j)(�(a ⊗ 1A ⊗ 1V ))

=
1∑

j=0

�( j)(a ⊗ �2(1A) ⊗ 1V ) = a ⊗ 1Z , (6.8)

using (4.1) for the second equality, and (6.7) for the last.
We can factorise the order zero map �(i) by Lemma 6.3 (with A in place of

B), so there are finite dimensional C∗-algebras G(i)
n , c.p.c. maps φ

(i)
n : A →

G(i)
n and ∗-homomorphisms θ

(i)
n : G(i)

n → (A ⊗ U ⊗ V ) such that for each
a ∈ A, �(i)(a) is represented by the sequence (θ

(i)
n (φ

(i)
n (a)))∞n=1. This shows

that the first factor embedding A → A ⊗ Z has nuclear dimension at most 3
(in the sense of [39, Definition 2.2]), fromwhich it follows that dimnuc(A) ≤ 3
by [39, Propositions 2.5 and 2.6]. For completeness, we give the details here.
As A isZ-stable, andZ is strongly self-absorbing, there is a sequence (σn)

∞
n=1

of ∗-isomorphisms σn : A⊗Z → A such that σn(a ⊗ 1Z) → a for all a ∈ A
(see for example [42, Theorem 2.2]). Then the diagram

A

⊕1
i, j=0 φ

(i)
n �����

���
���

�
idA �� A

⊕1
i, j=0 G

(i)
n

∑1
i, j=0 σn◦λ

( j)
n ◦θ

(i)
n

������������

(6.9)

is point-norm asymptotically commutative as n → ω, showing dimnuc(A) ≤
3. ��

When A has approximately inner flip we can use this in place of Lemma
4.1 and reduce the bound on the nuclear dimension. In the proof below the
factor V is unnecessary and is included only so that we can quote our earlier
results without notational modification; a formally simpler proof can be given
just working with A ⊗ A.

Theorem 6.4 Let A be a separable, unital and stably finiteC∗-algebra, which
has approximately inner flip and is Z-stable. Then dimnuc(A) ≤ 1.
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Proof As A has approximately inner flip it is simple and nuclear [9]. Let
(un)∞n=1 be a sequence of unitaries in A ⊗ A witnessing the approximately

inner flip. We can then follow the proof of Theorem B with v
(0)
n = un ⊗ 1V

and v
(1)
n = 0, to obtain a factorisation (6.9) consisting of two maps (the maps

with i = 1 in (6.8) vanish), so that dimnuc(A) ≤ 1. ��
In particular the previous result applies to the class of strongly self-absorbing

algebras formalised in [42].

Corollary 6.5 Let A be a stably finite strongly self-absorbing C∗-algebra.
Then dimnuc(A) ≤ 1.

Proof Strongly self-absorbing C∗-algebras are separable by definition [42],
have approximately inner flip essentially by definition [42, Proposition 1.5],
and are Z-stable by [48]. Thus Theorem 6.4 applies. ��
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