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Abstract We study the structure of multiple correlation sequences defined by
measure preserving actions of commuting transformations. When the iterates
of the transformations are integer polynomials we prove that any such cor-
relation sequence is the sum of a nilsequence and an error term that is small
in uniform density; this was previously known only for measure preserving
actions of a single transformation. We then use this decomposition result to
give convergence criteria formultiple ergodic averages and deduce some rather
surprising results, for instance we infer convergence for actions of commuting
transformations from the special case of actions of a single transformation.
Our proof of the decomposition result differs from previous works of Bergel-
son, Host, Kra, and Leibman, as it does not rely on the theory of characteristic
factors. It consists of a simple orthogonality argument and the main tool is an
inverse theorem of Host and Kra for general bounded sequences.
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876 N. Frantzikinakis

1 Introduction and results

1.1 Main result

Throughout this article, a system is a probability space (X,X , μ) together
with invertible, measure preserving transformations T1, . . . , T� : X → X that
commute. A multiple correlation sequence is a sequence of the form

∫
T n1
1 f1 · . . . · T n�

� f� dμ

where (X,X , μ, T1, . . . , T�) is a system, f1, . . . , f� ∈ L∞(μ), and n1, . . . , n�

∈ Z. The study of the limiting behavior of averages of such sequences, where
the iterates are restricted to certain subsets of Z�, has been an indispensable
tool in ergodic Ramsey theory and in particular in proving various far reaching
extensions of Szemerédi’s theorem on arithmetic progressions. Although the
precise structure of the multiple correlation sequences is unknown even when
n1 = · · · = n� = n, there is a widespread belief that modulo negligible terms
the building blocks are sequences with algebraic structure (see [7, Problem 1]
for a related conjecture).

Definition ([5]) For � ∈ N, an �-step nilsequence is a complex valued
sequence of the form (F(gn�)), where F ∈ C(X), X = G/�, G is an
�-step nilpotent Lie group, � is a discrete cocompact subgroup, and g ∈ G. A
0-step nilsequence is a constant sequence.

When Ti = T i , i = 1, . . . , �, following the discovery of characteristic
factors with algebraic structure for some closely related multiple ergodic aver-
ages, Bergelson et al. proved the following beautiful result (see also [17] for
related work for � = 3):

Theorem ([5, Theorem1.9])For � ∈ N, let (X,X , μ, T ) be an ergodic system
and f1, . . . , f� ∈ L∞(μ) be functions with ‖ fi‖∞ ≤ 1. Then we have the
decomposition

∫
T n f1 · . . . · T �n f� dμ = ast (n) + aer (n), n ∈ N,

where

(i) (ast (n)) is a uniform limit of (� − 1)-step nilsequences with ‖ast‖∞ ≤ 1;
(ii) limN−M→∞ 1

N−M

∑N−1
n=M |aer (n)|2 = 0.

This result was extended by Leibman to cover polynomial iterates in [14]
and not necessarily ergodic transformations in [15]. The proofs of these results
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Multiple correlation sequences and nilsequences 877

depend in an essential way on the fact that characteristic factors for some suit-
ablemultiple ergodic averages are inverse limits of nilsystems.This is no longer
true for correlation sequences involving actions of commuting transformations,
which is why efforts to prove decomposition results for such sequences did not
bring any results so far. In fact, characteristic factors for commuting actions are
known to be extremely complex (for related work see [2,3]) which has raised
suspicions that decomposition results in this more general setup may involve
sequences very different from nilsequences. Our main result settles this rather
elusive problem; we show that modulo error terms that are small in uniform
density, correlation sequences of actions of commuting transformations are
nilsequences.

Theorem 1.1 For � ∈ N let (X,X , μ, T1, . . . , T�) be a system and
f1, . . . , f� ∈ L∞(μ) be functions with ‖ fi‖∞ ≤ 1. Then for every ε > 0
we have the decomposition

∫
T n
1 f1 · . . . · T n

� f� dμ = ast (n) + aer (n), n ∈ N, (1)

where

(i) (ast (n)) is an (� − 1)-step nilsequence with ‖ast‖∞ ≤ 1;
(ii) limN−M→∞ 1

N−M

∑N−1
n=M |aer (n)|2 ≤ ε.

Remark We do not know if a strengthening similar to the one in [5, Theorem
1.9] holds where one uses uniform limits of nilsequences in (i) and takes ε = 0
in (i i).

Our argument is rather versatile and does not rely on the theory of char-
acteristic factors; we rather focus on some distinctive properties correlation
sequences as in (1) satisfy (see Theorem 1.3). The idea that starts the proof
comes from answering the following natural question: “Can a multiple cor-
relation sequence as in (1) be asymptotically orthogonal to all (� − 1)-step
nilsequences?”

On the one hand, using an inverse theorem of Host and Kra (see The-
orem 2.1), one gets that any such sequence has to be U�-uniform. On the
other hand, by successively applying van der Corput’s lemma one sees that
a sequence of the form (1) is asymptotically orthogonal to all U�-uniform
sequences. Hence, any sequence that provides a positive answer to our ques-
tion has to be asymptotically orthogonal to itself, that is, has to converge to 0
in density.

With this idea inmind,weprove ourmain result as follows:Given a sequence
(a(n)) as in (1), we consider the (� − 1)-step nilsequence, call it ast , that lies
“closest” to (a(n)) with respect to the semi-norm ‖·‖2 defined in (3). Then

123



878 N. Frantzikinakis

aer := a − ast is asymptotically orthogonal to all (� − 1)-step nilsequences,
and arguing as before, we get that ast and aer have the asserted properties.
A slight complication appears because for � ≥ 2 the space of (� − 1)-step
nilsequences (or uniform limits of such sequences) is not ‖·‖2-complete; this
is the reason why we are led to an error term aer that is small, but not zero,
in uniform density. For our argument to work we also have to make sure that
various limits of uniform Cesàro averages exist; to guarantee this, we use a
result of Austin [1].

Using a variant of the previous argument and a result of Walsh [19] we get:

Theorem 1.2 Let �,m ∈ N and pi, j ∈ Z[t], i = 1, . . . , �, j = 1, . . . ,m, be
polynomials. Then there exists k ∈ N, k = k(�,m,max deg(pi, j )), such that
for every system (X,X , μ, T1, . . . , T�), functions f1, . . . , fm ∈ L∞(μ) with
‖ fi‖∞ ≤ 1, and ε > 0, we have the decomposition

∫ (
�∏

i=1

T
pi,1(n)

i

)
f1 · . . . ·

(
�∏

i=1

T
pi,m(n)

i

)
fm dμ = ast (n) + aer (n), n ∈ N,

(2)
where

(i) (ast (n)) is a k-step nilsequence with ‖ast‖∞ ≤ 1;
(ii) limN−M→∞ 1

N−M

∑N−1
n=M |aer (n)|2 ≤ ε.

1.2 A more general framework

It turns out that Theorem 1.1 is a manifestation of a more general principle
which asserts that if a sequence is asymptotically orthogonal to allU�-uniform
sequences and satisfies some necessary regularity conditions, then it admits
a decomposition like the one in Theorem 1.1. To make this more precise we
introduce some notation (see Sect. 2.1 for the definition of the uniformity
seminorms).

Definition Let � ∈ N. We say that the bounded sequence a : N → C is

(i) �-anti-uniform if there exists C := C(�, a) such that

lim sup
N−M→∞

∣∣∣ 1

N − M

N−1∑
n=M

a(n)b(n)

∣∣∣ ≤ C ‖b‖U�(N)

for every b ∈ �∞.
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Multiple correlation sequences and nilsequences 879

(ii) �-regular if the limit

lim
N−M→∞

1

N − M

N−1∑
n=M

a(n)ψ(n)

exists for every (� − 1)-step nilsequence (ψ(n)).

Theorem 1.3 For � ∈ N let a : N → C be a sequence with ‖a‖∞ ≤ 1 that is
�-anti-uniform and �-regular. Then for every ε > 0we have the decomposition

a(n) = ast (n) + aer (n), n ∈ N,

where

(i) (ast (n)) is an (� − 1)-step nilsequence with ‖ast‖∞ ≤ 1;
(ii) limN−M→∞ 1

N−M

∑N−1
n=M |aer (n)|2 ≤ ε.

Remark For general �-regular sequences a similar result is proved in [12,
Theorem 2.19] with an error term that is small with respect to the seminorm
‖·‖U�(N).

A sequence (a(n)) that satisfies the asserted decomposition has to be �-
regular. It also has to satisfy the estimate defining the �-anti-uniformity prop-
erty if one introduces an arbitrarily small error term ε on the right hand side
and allows C to depend on ε (this follows from [12, Theorem 2.14]).

Theorem 1.3 fails if we use standard Cesàro averages to define the notions
of anti-uniformity and regularity (and leave the definition of ‖·‖U�(N) as is); the

sequence (ei
√
n), illustrates this. The same sequence shows that anti-uniformity

does not imply regularity ((ei
√
n) is 2-anti-uniform but not 1-regular).

1.3 Applications

On �∞(N) we define the seminorm ‖·‖2 by

‖a‖22 := lim sup
N−M→∞

1

N − M

N−1∑
n=M

|a(n)|2. (3)

For � ∈ N we consider the following subspaces of �∞(N):

A� :=
{
(ψ(n)) : ψ is an (� − 1)-step nilsequence

}
;
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880 N. Frantzikinakis

B� :=
{( ∫

T k1n f1 · . . . · T k�n f� dμ
)
: (X,X , μ, T ) is a system,

fi ∈ L∞(μ), ki = �!/ i
}
;

C� :=
{( ∫

T n
1 f1 · . . . · T n

� f� dμ
)
: (X,X , μ, T1, . . . , T�) is a system and

fi ∈ L∞(μ)
}
.

After Proposition 2.4 we explain why in the definition of B� we use the
exponents k1, . . . , k� instead of 1, . . . , �. The space A� is linear since if for
i = 1, 2, (Fi (gni �i )) are (� − 1)-step nilsequences on Gi/�i , then their sum
is the (� − 1)-step nilsequence (F(gn�)) on G/�, where G = G1 × G2,
� := �1 × �2, g := (g1, g2), F(g�) := F1(g1�1) + F2(g2�2). To see that
the space C� is linear (similarly for B�), let a, b ∈ C� be defined by the systems
(Xi ,Xi , μi , Ti ) and the functions f i1 , . . . , f i� , i = 1, 2. Then c := (a + b)/2
is also a multiple correlation sequence defined by the system (X,X , μ, T ),
where X = X1 ∪ X2 (considered as disjoint subsets) with the correspond-
ing σ -algebra X , μ := (μ1 + μ2)/2, T equals T1 on X1 and T2 on X2, and
fi := f 1i 1X1 + f 2i 1X2 , i = 1, . . . , �.
It is a rather striking fact that, modulo sequences that are small in uniform

density, the three subspaces A�, B�, C� coincide.

Theorem 1.4 For every � ∈ N we have

A� = B� = C�

where the closure is taken with respect to the seminorm ‖·‖2 defined in (3).

It is not hard to see that the first equality fails if we consider closures
with respect to the ‖·‖∞ norm. The second equality may still hold under
such circumstances but this is not something we can prove with the methods
developed so far.

The next two results illustrate some rather surprising principles: (i) con-
vergence results for actions of a single transformation automatically imply
stronger convergence results for actions of commuting transformations; and
(i i) convergence results involving linear iterates automatically imply stronger
convergence results involving polynomial iterates.

Theorem 1.5 Let (rn) be a strictly increasing sequence of integers such that
rn = O(n). Then for every � ∈ N the following statements are equivalent:
(i) For every (�−1)-step nilsequence (ψ(n)) the limit limN→∞ 1

N

∑N
n=1 ψ(rn)

exists.
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Multiple correlation sequences and nilsequences 881

(ii) For every system (X,X , μ, T ), functions f1, . . . , f� ∈ L∞(μ), and for
ki = �!/ i , i = 1, . . . , �, the following limit exists

lim
N→∞

1

N

N∑
n=1

∫
T k1rn f1 · . . . · T k�rn f� dμ.

(iii) For every system (X,X , μ, T1, . . . , T�) and functions f1, . . . , f� ∈
L∞(μ) the following limit exists

lim
N→∞

1

N

N∑
n=1

∫
T rn
1 f1 · . . . · T rn

� f� dμ.

Remark Equivalently, the growth condition rn = O(n) holds if the set R :=
{r1, r2, . . .} has positive lower natural density.

In the previous result we have established an equivalence for every fixed
� ∈ N, in the next result we have to assume that a certain property is known
for every � ∈ N in order to establish an equivalence [this is needed for the
equivalence of (ii) and (iii)].

Theorem 1.6 Let (rn) be a strictly increasing sequence of integers such that
rn = O(n). Then the following statements are equivalent:

(i) For every� ∈ Nand�-stepnilsequence (ψ(n)) the limit limN→∞ 1
N

∑N
n=1

ψ(rn) exists.
(ii) For every � ∈ N, system (X,X , μ, T ), and functions f1, . . . , f� ∈

L∞(μ), the following limit exists

lim
N→∞

1

N

N∑
n=1

∫
T rn f1 · . . . · T �rn f� dμ.

(iii) For every � ∈ N, polynomials p1, . . . , p� ∈ Z[t], system (X,X , μ, T1,
. . . , T�), and functions f1, . . . , f� ∈ L∞(μ), the following limit exists

lim
N→∞

1

N

N∑
n=1

∫
T p1(rn)
1 f1 · . . . · T p�(rn)

� f� dμ.

Similar results hold if in (i)–(iii) of Theorems 1.5 and 1.6 one replaces
the limit limN→∞ 1

N

∑N
n=1 with the limit limN−M→∞ 1

N−M

∑N−1
n=M and the

growth assumption on (rn)with the assumption that the range of this sequence
has positive lower Banach density. Furthermore, the same method can be
used to prove convergence criteria for weighted averages where for a given
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bounded sequence of complex numbers (wn) one replaces in (i)–(iii) of Theo-
rems 1.5 and 1.6 the averaging operation 1

N

∑N
n=1 with the averaging operation

1
N

∑N
n=1 wn .

1.4 Conjectures

The growth assumption on (rn) in Theorems 1.5 and 1.6 is crucial for our
argument to work as the proofs use Theorem 1.1 which is not helpful for
sequences that grow faster than linearly. Nevertheless, we believe that the
following is true:

Conjecture 1 In Theorems 1.5 and 1.6 the growth assumption on (rn) is super-
fluous.

We also believe in the following strengthening of the second identity in The-
orem 1.4:

Conjecture 2 For every � ∈ N we have B� = C� where the closure is taken
with respect to the norm ‖·‖∞.

1.5 Notation

We denote by N the set of positive integers.
If (a(n)) is a bounded sequencewedenote by lim supN−M→∞ | 1

N−M

∑N−1
n=M

a(n)| the limit (it exists by subadditivity) limN→∞ supM∈N
∣∣∣1N ∑M+N−1

n=M a(n)

∣∣∣.

2 Proofs of results

2.1 Uniformity seminorms and the Host-Kra inverse theorem

We give a slight variant of the uniformity seminorms defined by Host and
Kra [12].

Definition Let � ∈ N and a : N → C be a bounded sequence.

(i) Given a sequence of intervals I = (IN ) with lengths tending to infinity,
we say that the sequence (a(n)) is distributed regularly along I if the
limit

lim
N→∞

1

|IN |
∑
n∈IN

a1(n + h1) · . . . · ar (n + hr )

exists for every r ∈ N and h1, . . . , hr ∈ N, where ai is either a or ā.
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(ii) If I is as in (i) and (a(n)) is distributed regularly along I, we define
inductively

‖a‖I,1 := lim
N→∞

∣∣∣ 1

|IN |
∑
n∈IN

a(n)

∣∣∣;

and for � ≥ 2 (one can show as in [12, Proposition 4.3] that the next limit
exists)

‖a‖2�

I,� := lim
H→∞

1

H

H∑
h=1

‖σha · ā‖2�−1
I,�−1

where σh is the shift transformation defined by (σha)(n) := a(n + h).
(iii) If (a(n)) is a bounded sequence we let

‖a‖U�(N) := sup
I

‖a‖I,�

where the sup is takenover all sequences of intervals Iwith lengths tending
to infinity along which the sequence (a(n)) is distributed regularly.

An application of Lemma 2.2 shows that ‖a‖I,1, as defined here, is smaller
than the corresponding quantity defined in [12] (they can be different though).
Furthermore, the inductive formula is identical in both cases (see [12, Propo-
sition 4.4]), hence ‖·‖U�(N), as defined here, is a seminorm that is smaller than
the corresponding seminorm defined in [12]. In fact, it can be shown that the
two seminorms coincide but we will not need this.

Using the main structural result in [11], Host and Kra proved an inverse
theorem that will be a key ingredient in the proof of Theorem 1.3. We state
a slight variant of it next ([12, Theorem 2.16] gives a stronger lower bound
but it does not allow to assume that ‖b‖∞ ≤ 1). Its proof amounts to a simple
modification of the argument given in [12, Theorem 2.16]; we give the details
for completeness.

Theorem 2.1 ([12, Theorem 2.16]) Let a : N → C be a sequence of complex
numbers with ‖a‖∞ ≤ 1 and � ∈ N. Then for every ε > 0 there exists an
(� − 1)-step nilsequence (b(n)) with ‖b‖∞ ≤ 1 such that

lim sup
N−M→∞

∣∣∣ 1

N − M

N−1∑
n=M

a(n)b(n)

∣∣∣ ≥ ‖a‖2�

U�(N) − ε.

Remark It is crucial that the seminorms were defined using uniform and not
standardCesàro averages as in the latter case it is shown in [12, Paragraph2.4.3]
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that the corresponding inverse theorem fails. For standard Cesàro averages a
finitary inverse theorem was proved in [10] but it is not clear whether it has an
infinitary variant that is useful for our purposes.

Proof We refer the reader to [12] for notation used in this argument. In what
follows we assume that the seminorms ‖a‖I,� are defined as in [12].

Let 0 < ε < 1. By [12, Proposition 6.2] there exists a sequence of intervals
I = (IN )with lengths tending to infinity and an (�−1)-step nilsequence (c(n))

of the form c(n) = F(gn�), where F is a continuous function on an (� − 1)-
step nilmanifold X = G/� and g ∈ G is an element that acts ergodically on
X , such that the sequences a−c and a satisfy propertyP(�) on I andmoreover
we have the estimates

‖a − c‖I,� ≤ ε, ‖a‖I,� ≥ ‖a‖U�(N) − ε. (4)

Furthermore, we have ‖F‖∞ ≤ 1, this is because in the proof of [12, Propo-
sition 6.2] the function F is defined as a conditional expectation of a function
bounded by 1. We let b(n) := H(gn�), where H := D�F , and check that the
asserted properties are satisfied.

First note that (b(n)) is an (� − 1)-step nilsequence and since ‖F‖∞ ≤ 1
we have ‖H‖∞ ≤ 1, hence ‖b‖∞ ≤ 1. Furthermore, by [12, Corollary 5.3]
we have H ∈ C(X), hence F · H ∈ C(X), and since g acts ergodically on X
we have

lim
N→∞

1

|IN |
∑
n∈IN

c(n)b(n) =
∫

F · H dmX = ‖F‖2�

� = ‖c‖2�

I,�

where we used the identity
∫
F ·D�F dmX = ‖F‖2�

� and [12, Corollary 3.11]
to justify the last two identities. By (4) and the triangle inequality this is greater
or equal than

(‖a‖I,� − ε)� ≥ (‖a‖U�(N) − 2ε)� ≥ ‖a‖�
U�(N) − k�ε

for some positive integer k�. On the other hand, by [12, Theorem 2.13] we
have

lim sup
N→∞

∣∣∣ 1

|IN |
∑
n∈IN

(a(n) − c(n))b(n)

∣∣∣ ≤ ‖a − c‖I,� ‖b‖∗
� ≤ ε

where we used (4) and that ‖b‖∗
� = ‖D�F‖∗

� = ‖F‖2�−1
� ≤ 1 (the second

identity follows from [12, Equation (14)]). Combining the previous bounds
we get the asserted result. ��
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2.2 Proof of Theorem 1.3

Let � ∈ N and (a(n)) be an �-regular and �-anti-uniform sequence with
‖a‖∞ ≤ 1. We first remark that the limit

lim
N−M→∞

1

N − M

N−1∑
n=M

|a(n)|2 exists. (5)

This follows from our anti-uniformity assumption and [12, Theorem 2.19]
(it applies since (a(n)) is �-regular) which states that for every ε > 0 we
have a decomposition a = a1 + a2 where a1 is an (� − 1)-step nilsequence
and ‖a2‖U�(N) ≤ ε. Writing |a(n)|2 = aā1 + aā2 one checks the asserted
convergence at once.

We let

Y :=
{
(ψ(n)) : ψ is an (� − 1)-step nilsequence

}

and

X := span{Y, a}.

On X × X we define the bilinear form

〈 f, g〉 := lim
N−M→∞

1

N − M

N−1∑
n=M

f (n)g(n).

Note that the limit exists for f, g ∈ X . This is the case if f or g is equal to a
because of our regularity assumption and (5), and when both f and g are in Y
because limits of uniform Cesàro averages of nilsequences exist [13,16]. This
bilinear form induces the seminorm

‖ f ‖2 := √〈 f, f 〉.

This is the restriction on X of the seminorm (3) defined on �∞(N).
Let ε > 0. There exists y0 ∈ Y such that

‖a − y0‖22 ≤ d2 + δ2 (6)

where
d := inf{‖a − y‖2 : y ∈ Y }, δ := (ε/(4C))2

�

, (7)
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886 N. Frantzikinakis

andC := C(�, a) is the constant determined by our �-anti-uniformity assump-
tion on a. We can assume that C ≥ 1. Furthermore, we can assume without
loss of generality that

‖y0‖∞ ≤ 1. (8)

Indeed, let y0 := (F(gn�)) where X = G/� is a nilmanifold, g ∈ G, and
F ∈ C(X). Then the sequence ỹ0 := (F̃(gn�)), where F̃ := F · 1|F |≤1 +
e2π i arg(F) ·1|F |≥1 ∈ C(X), is a nilsequence, ‖ỹ0‖∞ ≤ 1, and as ‖a‖∞ ≤ 1 we
get that |a(n) − ỹ0(n)| ≤ |a(n) − y0(n)| for every n ∈ N, hence ‖a − ỹ0‖2 ≤
‖a − y0‖2.

It follows from (6) that for every y ∈ Y we have

−δ2 ≤ ‖a − (y0 + δy)‖22 − ‖a − y0‖22 = −2δRe(〈a − y0, y〉) + δ2 ‖y‖22 .

Hence,

Re(〈a − y0, y〉) ≤ δ for every y ∈ Y with ‖y‖2 ≤ 1.

Inserting −y and ±iy in place of y we deduce that

sup
y∈Y : ‖y‖2≤1

|〈a − y0, y〉| ≤ 2δ. (9)

Since the set {y ∈ Y : ‖y‖2 ≤ 1} contains all (� − 1)-step nilsequences that
are bounded by 1, we deduce from Theorem 2.1 that

‖a − y0‖U�(N) ≤ (2δ)2
−�

. (10)

We let

ast := y0, aer := a − y0.

Then

a = ast + aer

and (ast (n)) is an (� − 1)-step nilsequence with ‖ast‖∞ ≤ 1 by (8). Since a
is �-anti-uniform we get using (10) and the definition of δ in (7) that

|〈a, aer 〉| ≤ C ‖aer‖U�(N) ≤ ε/2.

Furthermore, (9) gives

|〈ast , aer 〉| ≤ ε/2.
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Multiple correlation sequences and nilsequences 887

Combining the last two estimates we deduce that

‖aer‖22 = 〈aer , aer 〉 ≤ |〈a, aer 〉| + |〈ast , aer 〉| ≤ ε.

This completes the proof of Theorem 1.3.

2.3 Proof of Theorem 1.1

In view of Theorem 1.3, it suffices to prove that for every � ∈ N the sequence
a : N → C defined by

a(n) :=
∫

T n
1 f1 · . . . · T n

� f� dμ, n ∈ N, (11)

is �-anti-uniform and �-regular.

2.3.1 Anti-uniformity

Throughout, we can and will assume that ‖ fi‖∞ ≤ 1 for i = 1, . . . , �. The
�-anti-uniformity follows by successive applications of the following Hilbert
space variant of van der Corput’s estimate (for a proof see [4]).

Lemma 2.2 Let (vn) be a bounded sequence of vectors in an inner product
space and (IN ) be a sequence of intervals with lengths tending to infinity. Then

lim sup
N→∞

∥∥∥∥∥∥
1

|IN |
∑
n∈IN

vn

∥∥∥∥∥∥
2

≤ 4 lim sup
H→∞

1

H

H∑
h=1

lim sup
N→∞

∣∣∣ 1

|IN |
∑
n∈IN

〈vn+h, vn〉
∣∣∣.

It suffices to show that for every � ∈ N and every sequence of intervals
I := (IN ) with lengths tending to infinity, any sequence (a(n)) given by (11)
satisfies the estimate

lim sup
N→∞

∣∣∣ 1

|IN |
∑
n∈IN

a(n)b(n)

∣∣∣ ≤ 4 ‖b‖U�(N)

for every b ∈ �∞(N). Using a diagonal argument and passing to a subsequence
of (IN ) (if necessary) we can and will assume that the sequence (b(n)) is
distributed regularly along the sequence I. It suffices to establish that for any
sequence (a(n)) as in (11) which is bounded by 1 and any b ∈ �∞(N) which
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888 N. Frantzikinakis

is distributed regularly along a sequence of intervals I, we have

lim sup
N→∞

∣∣∣ 1

|IN |
∑
n∈IN

a(n)b(n)

∣∣∣ ≤ 4 ‖b‖I,� . (12)

We prove this by induction on �. For � = 1 the result holds trivially. Suppose
that � ≥ 2 and the statement holds for � − 1.

We compose with T−n
� , use the Cauchy-Schwarz inequality, and then

Lemma 2.2 (on the space L2(μ)) for the sequence

vn := b(n) · T̃ n
1 f1 · T̃ n

2 f2 · . . . · T̃ n
�−1 f�−1, n ∈ N,

where T̃i := Ti T
−1
� for i = 1, . . . , �− 1. We deduce that the square of the left

hand side in (12) is bounded by

lim sup
N→∞

∥∥∥ 1

|IN |
∑
n∈IN

vn

∥∥∥2
L2(μ)

≤4 lim sup
H→∞

1

H

H∑
h=1

lim sup
N→∞

∣∣∣ 1

|IN |
∑
n∈IN

〈vn+h, vn〉
∣∣∣.

(13)
A simple computation gives that

1

|IN |
∑
n∈IN

〈vn+h, vn〉= 1

|IN |
∑
n∈IN

b(n+h) · b̄(n)

∫
T̃ n
1 f̃1,h · . . . · T̃ n

�−1 f̃�−1,h dμ

where f̃ j,h = T̃ h
j f j · f̄ j for j = 1, . . . , �−1. Note that the maps T̃1, . . . , T̃�−1

commute, for h ∈ N the sequence (b(n+h)b̄(n)) is distributed regularly along

I, and
∥∥∥ f̃ j,h

∥∥∥∞ ≤ 1 for j = 1, . . . , � − 1. Using the induction hypothesis and

the defining property of the seminorms we can bound the right hand side in
(13) by 16 times

lim
H→∞

1

H

H∑
h=1

‖σhb · b‖I,�−1 ≤ lim
H→∞

(
1

H

H∑
h=1

‖σhb · b‖2�−1

I,�−1

)1/2�−1

= ‖b‖2I,�

where (σhb)(n) := b(n+h). Taking square roots we get the asserted estimate.

2.3.2 Regularity

Let � ∈ N. To prove that (a(n)) is �-regular we will use a known mean
convergence result for multiple ergodic averages and Proposition 2.4 below.
We start with the following result of Green and Tao:
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Lemma 2.3 ([9, Lemma 14.2]) For � ∈ N let X = G/� be an (� − 1)-step
nilmanifold. Then there exists a continuous map P : X� → X such that

P(hg�, h2g�, . . . , h�g�) = g�, for every g, h ∈ G. (14)

The result in [9, Lemma 14.2] gives P(g�, hg�, h2g�, . . . , h�−1g�) =
h�g�. Inserting h−�g in place of g, then h−1 in place of h, and rearranging
coordinates, we get (14).

Proposition 2.4 For � ∈ N let (ψ(n)) be an (� − 1)-step nilsequence. Then
for every ε > 0 there exists a system (X,X , μ, T ) and functions f1, . . . , f� ∈
L∞(μ), such that the sequence (b(n)), defined by

b(n) :=
∫

T k1n f1 · . . . · T k�n f� dμ, n ∈ N, (15)

where ki := �!/ i for i = 1, . . . , �, satisfies

‖ψ − b‖∞ ≤ ε.

Remark To prove a variant of this result that uses the integers 1, . . . , � in place
of k1, . . . , k�, one would have to prove a non-trivial variant of Lemma 2.3 that
establishes in place of (14) the identity P(hk1g�, hk2g�, . . . , hk�g�) = g�
for every g, h ∈ G.

Combining [6, Theorem A (ii)] with Proposition 2.4 one deduces that for
every bounded generalized polynomial p : N → R (see definition in [6]) the
sequences (p(n)) and (eip(n)) can be approximated arbitrarily well in ‖·‖2 by
a sequence of the form (15).

Proof Let ε > 0 and

ψ(n) := F(gn�)

where F ∈ C(X), X = G/� is an (� − 1)-step nilmanifold, and g ∈ G.
By [13, Paragraph 1.11] we have that X is isomorphic to a subnilmanifold

of a nilmanifold X̃ = G̃/�̃, where G̃ is a connected and simply connected
(� − 1)-step nilpotent Lie group, �̃ is a discrete cocompact subgroup of G̃,
and all elements of G are represented in G̃. Then ψ(n) = F̃(b̃n�̃) for some
b̃ ∈ G̃ and F̃ ∈ C(X̃). Hence, in what follows we can and will assume that
the group G is connected.

Using Lemma 2.3 with gn in place of g and h := gm , m, n ∈ N, we get that
there exists a continuous map P : X� → X such that

gn� = P(gm+n�, g2m+n�, . . . , g�m+n�) for every m, n ∈ N. (16)
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890 N. Frantzikinakis

Let g0 ∈ G be such that g�!
0 = g (such a g0 exists since G is connected, hence

divisible) and for i = 1, . . . , � let gi := gi0. Applying (16) with g0 in place of
g and �!n (a multiple of n is needed that is divisible by all the coefficients of
m that appear in (16)) in place of n we get

ψ(n)=F(g�!n
0 �)= F̃(gm+k1n

1 �, gm+k2n
2 �, . . . , gm+k�n

� �) for everym, n∈N,

where F̃ := F ◦ P ∈ C(X�). Averaging over m ∈ N we get

ψ(n)= lim
M→∞

1

M

M∑
m=1

F̃(gm+k1n
1 �, gm+k2n

2 �, . . . , gm+k�n
� �) for every n∈N.

Since F̃ can be approximated uniformly by linear combinations of functions
of the form f̃1 ⊗ · · · ⊗ f̃�, where for i = 1, . . . , � the function f̃i ∈ C(X�)

depends on the coordinate xi only, we get that (ψ(n)) can be approximated in
the ‖·‖∞ norm within ε by a finite linear combination of sequences (a(n)) of
the form

a(n) := lim
M→∞

1

M

M∑
m=1

f̃1(g̃
m+k1n�̃)· f̃2(g̃m+k2n�̃)·. . .· f̃�(g̃m+k�n�̃), n ∈ N,

(17)
where X̃ := X� , �̃ := � × · · · × �, f̃i ∈ C(X̃), and g̃ := (g1, . . . , g�). It is
known (see [13] for example) that the limit in (17) is equal to

∫
Ỹ
f̃1(g̃

k1n ỹ) · f̃2(g̃
k2n ỹ) · . . . · f̃�(g̃

k�n ỹ) dmỸ , n ∈ N,

where Ỹ is the subnilmanifold of X̃ defined by the closure of the set {g̃m�̃ : m ∈
N}. This proves that the sequence (a(n)) has the form (15). Since finite lin-
ear combinations of sequences of the form (15) still have the form (15) (see
Sect. 1.3) the proof is complete. ��

We are now ready to verify that if (a(n)) is as in (11), then it is �-regular
for every � ∈ N.

ByProposition 2.4, in order to check that the limit limN−M→∞ 1
N−M

∑N−1
n=M

a(n)ψ(n) exists for every (�−1)-step nilsequence (ψ(n)), it suffices to check
that the limit

lim
N−M→∞

1

N − M

N−1∑
n=M

a(n)b(n) (18)

exists for every sequence (b(n)) of the form
∫
Sk1ng1 · . . . · Sk�ng� dν , where

k1, . . . , k� ∈ N, (Y,Y, ν, S) is a system, and g1, . . . , g� ∈ L∞(ν). This fol-
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lows from the mean convergence result of Austin [1] (which strengthens the
convergence result of Tao [18] to uniform averages) applied to the transfor-
mations T̃i := Ti × Ski acting on X × Y with the measure μ̃ := μ× ν and the
functions f̃i := fi ⊗ gi ∈ L∞(μ̃), i = 1, . . . , �.

2.4 Proof of Theorem 1.2

Modulo a known convergence result of Walsh [19] the argument is similar to
the one used to prove Theorem 1.1, we explain theminor modifications needed
next.

To verify k-anti-uniformity for some k ∈ N that depends only on �,m and
the maximum degree of the polynomials pi, j , one has to make successive uses
of Lemma 2.2 and apply an inductive argument, often called PET induction,
introduced by V. Bergelson in [4]. The details are very similar to those in the
proof of [8, Lemma 3.5] and so we omit them.

To verify regularity, we can argue as in the case of linear iterates, using the
convergence result ofWalsh [19] for averages of expressions of the form (2).At
the very last step one needs to verify that if (a(n)) is as in (2), then the limit (18)
exists for every sequence (b(n)) of the form

∫
Sk1ng1 · . . . · Skrngr dν, where

r ∈ N is arbitrary, k1, . . . , kr ∈ N, (Y,Y, ν, S) is a system, and g1, . . . , gr ∈
L∞(ν). The only change needed is to use Walsh’s convergence result for the
� + r commuting measure preserving transformations Ti × id, i = 1, . . . , �,
and id× Sk j , j = 1, . . . , r , acting on X ×Y with the measure μ̃ := μ×ν, and
the functions fi ⊗ 1, i = 1, . . . , � and 1⊗ g j , j = 1 . . . , r . If the polynomial
iterates are chosen appropriately, one verifies that a(n)b(n) is also a multiple
correlation sequence with polynomial iterates, hence, byWalsh’s convergence
result [19], the limit (18) exists.

2.5 Extension to nilpotent groups

Essentially the same argument can be used when the transformations
T1, . . . , T� generate a nilpotent group; the only extra difficulty occurs in prov-
ing k-anti-uniformity for some k ∈ N that depends also on the degree of
nilpotency of the group generated by T1, . . . , T�. In this case, the PET induc-
tion is somewhat more complicated, but can be handled by modifying the PET
induction used in [8, Lemma 3.5] along the lines of the argument used to prove
[19, Theorem 4.2].

2.6 Proof of Theorem 1.4

The inclusion A� ⊂ B� follows from Proposition 2.4. The inclusion B� ⊂ C�

is obvious. The inclusion C� ⊂ A� follows from Theorem 1.1.
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892 N. Frantzikinakis

2.7 Proof of Theorems 1.5 and 1.6

The implication (i i) ⇒ (i) follows from Proposition 2.4. (for Theorem 1.6 in
order to get property (i) for some fixed � ∈ N we use property (ii) for �!). The
implication (i) ⇒ (i i i) follows from Theorem 1.1 and the remarks following
this theorem. The implication (i i i) ⇒ (i i) is obvious.

The same argument applies for the extensions mentioned after Theorem 1.6
related to uniform and weighted Cesàro averages.

Acknowledgments I would like to thank B. Host, B. Kra, M. Wierdl, and the referee for
helpful remarks.
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