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Abstract Let M be a pseudoconvex, oriented, bounded and closed CR sub-
manifold of Cn of hypersurface type. Our main result says that when a certain
1-form on M is exact on the null space of the Levi form, then the complex
Green operator on M satisfies Sobolev estimates. This happens in particular
when M admits a set of plurisubharmonic defining functions or when M is
strictly pseudoconvex except for the points on a simply connected complex
submanifold.

Mathematics Subject Classification 32W10 · 32V20

1 Introduction

A(connected)CR submanifoldM ofCn is called of hypersurface type if at each
point of M , the complex tangent space has co-dimension one inside the real
tangent space. The ∂-complex inCn induces the (extrinsic) ∂M -complex on M
[10,13]. Throughout this paper, we assume that M is orientable and compact
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(without boundary). We will study Sobolev estimates for the ∂M -complex
and the associated complex Green operator on (oriented) pseudoconvex CR
submanifolds of hypersurface type.

Subelliptic estimates for the complex Green operator on (abstract) CRman-
ifolds go back to [27] when M is strictly pseudoconvex and to [30] when M
is of finite type. Compactness estimates for ∂M on compact CR submanifolds
of hypersurface type are more recent and may be found in [33,35,36,40]. But
Sobolev estimates hold in many situations where compactness fails. When M
is the boundary of a smooth bounded pseudoconvex domain in C

n , Boas and
the first author proved Sobolev estimates for the complex Green operator on
a large class of (weakly) pseudoconvex boundaries, namely those that admit a
defining function that is plurisubharmonic at points of M [6,7]. In this paper,
we prove an analogue of this result for CR submanifolds of hypersurface type
of codimension greater than one. In addition to nontrivial technical issues that
must be addressed, an interesting twist arises that is absent in the case of codi-
mension one. This new difficulty is resolved via the use of results from CR
geometry.

When proving Sobolev estimates, one has to control commutators of vector
fields with ∂M and ∂

∗
M ; the key is to find vector fields so that the relevant

components of the commutators are small. These components are conveniently
expressed by a 1-form α ([16], subsection 3.1.1, [9], [39], section 5.9), and
one is led to the condition that α be ‘exact on the null space of the Levi form’
as a sufficient condition for Sobolev estimates for the complex Green operator.
When M is given by plurisubharmonic defining functions, this condition turns
out to be satisfied. It is in the proof of this fact that the ideas from [6,7] do not
suffice and CR geometry enters into the argument.

Focusing on α rather than on the vector fields directly has the additional
advantage thatwe obtain, essentiallywith no additionalwork, the analogue of a
result for the ∂-Neumannoperator from [9].A special case of this analogue says
that when M is strictly pseudoconvex, except for a complex submanifold with
trivial first DeRham cohomology (smooth as a manifold with boundary), then
the complex Green operators on M are continuous in Sobolev spaces. More
generally, α defines a DeRham cohomology class on complex submanifolds
of M , and estimates hold as soon as this class vanishes.

The remainder of the paper is organized as follows. In Sect. 2, we recall the
L2 theory of ∂M , we introduce the 1-form α mentioned above, and we state
our results. In Sect. 3, we prove Theorem 2 to the effect that α is exact on the
null space of the Levi form when M admits a set of plurisubharmonic defin-
ing functions. Section 4 establishes the same conclusion when M is strictly
pseudoconvex except for the points on a special submanifold (this is Theorem
3). The main result, Sobolev estimates for the complex Green operator when
α is exact on the null space of the Levi form (Theorem 1), is proved in two
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steps. First, we show in Sect. 5 that exactness of α on the null space of the Levi
form implies the existence of a family of vector fields with good commutation
properties with ∂M and ∂

∗
M (Proposition 1). Then, in Sect. 6, we prove that

the existence of such a family of vector fields implies the Sobolev estimates
in Theorem 1 (Theorem 4).

2 Statement of results

We first recall the (standard) setup and notation by giving a condensed and
updated version of section 2 in [40] and section 1 in [33]. The CR-dimension
of M , denoted by m − 1, is the dimension over C of T 1,0(M). Because M
is orientable, there is a global purely imaginary vector field T on M of unit
length that is orthogonal to the complex tangent space TC

z (M) at every point
z in M . The Levi form at z ∈ M is the Hermitian form λz given by

[X, Y ] = λz(X, Y )T mod T 1,0(M) ⊕ T 0,1(M); X, Y ∈ T 1,0(M). (1)

M is pseudoconvex if the Levi form is either positive semidefinite at all points,
or negative semidefinite at all points. Replacing T by its negative if necessary,
we may assume that the Levi form is positive semidefinite.

The ∂-complex in C
n induces the ∂M -complex on M (see [10], chapter 8,

[13], chapter 7 for details). If L1, · · · , Lm−1 are local orthonormal sections of
T 1,0(M) (in the inner product induced from C

n), and ω1, · · · , ωm−1 generate
the dual basis in �1,0(M), then a form u can be written (locally) as u =∑′

|J |=q u Jω
J , where ωJ = ω j1 ∧ ω j2 · · · ∧ ω jq , and the prime indicates

summation over strictly increasing q-tuples only. (It will be convenient to still
take the coefficients uJ to be defined for all J by skew symmetry.) In such a
local frame, ∂M is expressed as

∂Mu =
∑ ′
|J |=q

m−1∑

j=1

(L ju J )ω j ∧ ωJ +
∑ ′
|J |=q

u J ∂MωJ . (2)

Note that the coefficients of u are not differentiated in the second sum.
The inner product on (0, q)-forms on Cn induces a pointwise inner product

on (0, q)-forms on M . This pointwise inner product provides an L2 inner
product on M via integration against (the induced) Lebesgue measure:

(u, v) =
∫

M
(u, v)zdμM(z). (3)

We denote by L2
(0,q)(M), 0 ≤ q ≤ (m − 1), the completion of the C∞

smooth forms with respect to the norm corresponding to (3). When expressed
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in local frames as above, these are precisely the forms all of whose coeffi-
cients are (locally) square integrable. ∂M extends to an (unbounded) operator
L2

(0,q)(M) → L2
(0,q+1)(M) with domain consisting of those forms where the

result, when computed in the sense of distributions in local frames, is actually
in L2. As a densely defined closed operator, ∂M has a Hilbert space adjoint
∂

∗
M : L2

(0,q+1)(M) → L2
(0,q)(M). Integration by parts shows that in local

coordinates, ∂
∗
M is given as follows (see for example [13], section 8.3, [18],

p. 94):

∂
∗
Mu = −

m−1∑

j=1

∑ ′
|K |=q−1

L ju jKωK + terms of order zero. (4)

Here, u jK = u j,k1,...,kq , and ‘terms of order zero’ means terms that do not
involve derivatives of the coefficients of u.

The operator ∂M has closed range (at all levels, and hence so does ∂
∗
M at all

levels); see [34] for m ≥ 3 (also [22] for a version that weakens the condition
on the Levi form to one that depends on q) and [1,2] for a proof that also
covers m = 2. Denote by Hq(M) the subspace of L2

(0,q)(M) consisting of

harmonic forms, that is, of forms in ker(∂M)∩ker(∂
∗
M), and denote by Hq the

orthogonal projection onto it. The closed range property implies the estimate

‖u‖2L2
(0,q)

(M)
� ‖∂Mu‖2L2

(0,q+1)(M)
+ ‖∂∗

Mu‖2L2
(0,q−1)(M)

+ ‖Hqu‖2L2
(0,q)

(M)
,

u ∈ dom(∂M) ∩ dom(∂
∗
M), 0 ≤ q ≤ m − 1 (5)

([24], Theorem 1.1.2; (5) is actually equivalent to ∂M,q and (∂M,q−1)
∗ having

closed range).
The Sobolev spaces of (0, q)-forms on M are defined in the usual way. Fix

a covering of M by coordinate charts so that in each chart, ω1, · · · , ωm−1
generate a pointwise orthonormal basis for (0, 1)-forms. The Sobolev s-norm
of a form is computed componentwise in these local frames, via a partition of
unity subordinate to the cover given by the coordinate charts (see for example
[18], p. 122). Derivatives of a form will similarly be taken componentwise in
these frames. We use the notation Ws

(0,q)(M) for the Sobolev space of order s
of (0, q)-forms.

When 1 ≤ q ≤ (m − 2), Hq(M) is finite dimensional [22,34]. More
precisely, there is the estimate ‖v‖ � ‖v‖−1 onHq(M) [22], proof of Lemma
5.1. Applying this estimate to Hqu gives
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Sobolev estimates for the complex Green operator 1077

‖Hqu‖L2
(0,q)

(M) � ‖Hqu‖W−1
(0,q)

(M)

≤ ‖u‖W−1
(0,q)

(M)
+‖Hqu − u‖W−1

(0,q)
(M)

�‖u‖W−1
(0,q)

(M)
+‖Hqu − u‖L2

(0,q)
(M)

� ‖u‖W−1
(0,q)

(M)
+‖∂M(Hqu − u)‖L2

(0,q+1)(M)+‖∂∗
M(Hqu − u)‖L2

(0,q−1)(M)

= ‖u‖W−1
(0,q)

(M)
+‖∂Mu‖L2

(0,q+1)(M)+‖∂∗
Mu‖L2

(0,q−1)(M); (6)

where the estimate in the third line follows from (5) (note that Hq(Hqu−u) =
0). Reinserting (6) into (5) gives

‖u‖2L2
(0,q)

(M)
� ‖∂Mu‖2L2

(0,q+1)(M)
+ ‖∂∗

Mu‖2L2
(0,q−1)(M)

+ ‖u‖2
W−1

(0,q)
(M)

,

u ∈ dom(∂M) ∩ dom(∂
∗
M), 1 ≤ q ≤ m − 2. (7)

The fact that the ranges of ∂M and ∂
∗
M are closed (at all levels) now imply

that the complex Laplacian � = ∂M∂
∗
M + ∂

∗
M∂M , with domain so that the

compositions are defined, maps (Hq)
⊥ ∩ dom(�) onto (Hq)

⊥, and has a
bounded inverse Gq (on (Hq)

⊥). Indeed, Gq is given by ιq ◦ ι∗q , where ιq is

the embedding ιq : (Hq)
⊥ ∩ dom(∂M) ∩ dom(∂

∗
M) → (Hq)

⊥. Equation (5)
says that ιq is continuous. Hence so is its adjoint. Thus ιq ◦ ι∗q is continuous.

The argument that it inverts �q is the same as in the case of the ∂-Neumann
operator, see [39], proof of Theorem 2.9, part (1), in particular (2.76–2.78)
there. It is customary to extend Gq to all of L2

(0,q)(M) by setting it equal

to zero on the kernel of �q (which equals ker(∂M) ∩ ker(∂
∗
M )). Gq is ‘the’

complex Green operator.
In addition to the Hq , we consider two more Szegö type projections (note

that H0 is the usual Szegö projection onto the square integrable CR functions).
Denote by S′

q the orthogonal projection L2
(0,q)(M) → Im(∂M,q−1), where

∂M,q−1 : L2
(0,q−1)(M) → L2

(0,q)(M) (and the range is interpreted as {0} when
q = 0). S′′

q denotes the orthogonal projection L2
(0,q)(M) → Im((∂M,q)

∗)
(when q = (m − 1), this range is interpreted as {0}). Note that the three
projections provide an orthogonal decomposition ofL2

(0,q)(M), and u = S′
qu+

S′′
q u + Hqu, 0 ≤ q ≤ (m − 1).
The 1-form α mentioned in the introduction is defined as follows. Let T be

the vector field introduced at the beginning of this section. Denote by η the
purely imaginary 1-form on M dual to T (i.e. η(T ) ≡ 1, and η vanishes on
T 1,0(M) ⊕ T 0,1(M)). Then α is the negative of the Lie derivative of η in the
direction of T :

α := −{Lie}T (η). (8)
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1078 E. J. Straube, Y. E. Zeytuncu

Note that α is real. α is important because it arises when expressing T -
components of certain commutators ([16], p. 92, [9]). Indeed, when X ∈
T 1,0(M), the definition of the Lie derivative (see for example [19], section
4.3) gives

α (X) = − (Tη(X) − η([T, X ])) = η([T, X ]) (9)

(since η(X) ≡ 0 on M and T is tangent to M). Thus α(X) is the T -component
of the commutator [T, X ].

The form α was introduced into the literature by D’Angelo [14–16], also
for the purpose of dealing with commutators as in (9). Its role in the context
of estimates for the ∂-Neumann operator was discovered in [9]. A detailed
discussion of this role may be found in [39], sections 5.9–5.12.

Denote by K ⊂ M the set of weakly pseudoconvex points of M , and byNz
the null space of the Levi form at the point z ∈ K . We say that α is exact on
the null space of the Levi form if there exists a smooth function h, defined in
a neighborhood of K (in M), such that

dh(Lz)(z) = α(Lz)(z), Lz ∈ Nz, z ∈ K . (10)

We are now ready to state our results.

Theorem 1 Let M be a smooth compact pseudoconvex orientable CR sub-
manifold of Cn of hypersurface type, of CR-dimension (m-1). Assume that
α = αM is exact on the null space of the Levi form. Then for every nonneg-
ative real number s, there is a constant Cs such that for all u ∈ L2

(0,q)(M),
0 ≤ q ≤ (m − 1),

‖S′
qu‖s + ‖S′′

q u‖s + ‖Hqu‖s ≤ Cs‖u‖s; (11)

‖u‖s ≤ Cs

(
‖∂Mu‖s + ‖∂∗

Mu‖s + ‖u‖
)

; 1 ≤ q ≤ (m − 2); (12)

‖u‖s ≤ Cs

(
‖∂Mu‖s + ‖∂∗

Mu‖s
)

; u ⊥ Hq; (13)

‖Gqu‖s ≤ Cs‖u‖s . (14)

Estimates (11) and (14) say, respectively, that the three projections S′
q , S

′′
q ,

and Hq , and the complexGreen operatorsGq are continuous in Sobolev norms.
So are the canonical solution operators to ∂M and to ∂

∗
M , by (13). In (12), we

can replace the ‖u‖ term on the right hand side by ‖Hqu‖, in view of (5). As
a result, (13) follows trivially from (12) and (5) when 1 ≤ q ≤ (m − 2). Thus
the main cases of interest in (13) are the cases q = 0 and q = (m − 1).

Estimate (12) immediately gives that harmonic forms are in Ws
(0,q)(M) for

all s ≥ 0, hence are smooth, when 1 ≤ q ≤ (m − 2):
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Corollary 1 Let M (and αM) satisfy the assumptions of Theorem 1. Then

Hq(M) ⊂ C∞
(0,q)(M) , 1 ≤ q ≤ (m − 2). (15)

Wepoint out that there aremanifoldsM as inCorollary 1withHq(M) �= {0}
(but finite dimensional) for say q = 1. This can be seen as follows.

In [11], the author noticed that there exist smooth compact strictly pseudo-
convex submanifolds of hypersurface type and of any dimension, embedded
into some Cn , whose (smooth) ∂M -cohomology at the level of (0, 1)-forms is
nontrivial. Examples arise in [12], where the authors construct smooth strictly
pseudoconvex compact embeddable CR manifolds which admit small defor-
mations that are also embeddable, but whose embeddings cannot be chosen
close to the original embedding. A theorem of Tanaka [42] shows that for
such a manifold M (with CR-dimension at least two) the ∂M -cohomology at
the level of (0, 1)-forms cannot be trivial (if it were, the small deformations
would have to be embeddable by embeddings close to the original one). These
observations are contained in the Remark at the end of [11].

The manifolds from the previous paragraph are also orientable, as they arise
as boundaries of complex manifolds ([12], p. 103). Moreover, they trivially
satisfy the assumptions of Theorem 1: any h ∈ C∞(M) will do in (10), as
Nz = {0} for all z ∈ M . Therefore, if β is a smooth ∂M -closed (0, 1)-form
such that ∂M f = β admits no smooth solution f , this equation also does not
admit a solution in L2(M). If it did, the canonical solution would have to be
smooth, in view of (13) in Theorem 1. Thus for such M , H1(M) �= {0}.

We give two classes of CR submanifolds that satisfy the assumptions of
Theorem 1. For the first, observe that because M is orientable, there is a
(tubular) neighborhood V of M so that within V , M is given globally by
defining functions ρ1, · · · , ρl : M = {z ∈ V |ρ j = 0, j = 1, · · · , l}. here
l is the real codimension of M , that is, l = 2n − (2m − 1). Theorem 2 is
the analogue of the main result in [7] obtained for the case where M is the
(smooth) boundary of a bounded pseudoconvex domain in C

n .1

Theorem 2 Let M be a smooth compact pseudoconvex orientable CR sub-
manifold of Cn of hypersurface type. Assume that M admits a set of plurisub-
harmonic defining functions in some neighborhood. Then αM is exact on the
null space of the Levi form. Consequently, the conclusions of Theorem 1 and
Corollary 1 hold.

1 In [7], the authors only needed to assume that the defining function is plurisubharmonic at
points of the boundary. Our proof does use plurisubharmonicity in some (arbitrarily small)
neighborhood of M . This may be an artifact of the proof. On the other hand, in terms of actually
verifying the assumption, not much is lost. The role of αM is not made explicit in [7].
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The assumption in Theorem 2 relies heavily on M being embedded in C
n .

Our next result has a more intrinsic flavor. It is analogous to results for the
∂-Neumann operators in [9].

Theorem 3 Let M bea smooth compact pseudoconvex orientableCR subman-
ifold of Cn of hypersurface type, strictly pseudoconvex except for the points
of a closed smooth submanifold S (with or without boundary). Suppose that
at each point of S, the (real) tangent space is contained in the null space of
the Levi form (of M) at the point. If the first DeRham cohomology H1(S) is
trivial, then αM is exact on the null space of the Levi form. Consequently, the
conclusions of Theorem 1 and Corollary 1 hold.

For emphasis, we formulate the following important special case as a
corollary.

Corollary 2 Let M be a smooth compact pseudoconvex orientable CR sub-
manifold ofCn of hypersurface type, strictly pseudoconvex except for a simply
connected complex submanifold (smooth as a submanifold with boundary).
Then αM is exact on the null space of the Levi form. Consequently, the con-
clusions of Theorem 1 and Corollary 1 hold.

The conclusions in Theorem 3 and in Corollary 2 suggest that α restricted
to the submanifold S be closed. That this is indeed the case was discovered in
[9]. This fact is crucial for the proof of Theorem 3. In particular, α represents
a DeRham cohomology class [α] on S, and the assumptions in Theorem 3
and Corollary 2 imply that [α] = 0. The appearance of this cohomology class
explainswhy an annulusmay ormay not be an obstruction to Sobolev estimates
(wormlike vs. non-wormlike Hartogs domains [8]), and why a disc is always
benign [8,9].

Remark 1 The estimates in Theorem 1 are not independent. For example,
in [21] the authors show, among many other things, that regularity of Gq is
equivalent to regularity of three Szegö type projections at levels (q−1), q, and
(q + 1) (for the ∂-Neumann operators and the Bergman projections, this was
shown in [5]). It was observed already in [7] that (14) is an easy consequence
of (13) and (11); see also (34) below.

Remark 2 The method used to prove Theorem 3 can be adapted to also obtain
results whenM contains a Levi flat patch that is foliated by complexmanifolds
of dimension (m−1) (the so called Levi foliation of the patch). This is of some
intrinsic interest; the solvability of dh = α on the whole patch [i.e. (10) above]
turns out to be equivalent to a question that is much studied in foliation theory,
namely whether the Levi foliation can be given globally by a closed 1-form.
We refer the reader to the discussion in section 5.11 in [39] and the references
given there.
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Remark 3 It is not known whether the converse to Corollary 2 holds. That is,
if say G1 satisfies Sobolev estimates, does it follow that the restriction of α

to S is exact (i.e. [α] = 0)? This question is also open in the context of the
∂-Neumann problem. For a partial result, see [3].

3 Proof of Theorem 2

Denote by J the usual complex structuremap induced by the complex structure
of Cn . Suppose M is defined by the defining functions ρ1, · · · , ρl which are
plurisubharmonic in some neighborhood of M . Then l = 2n−2m+1, and the
real gradients are linearly independent overR at points of M . Because TC(M)

is J -invariant, and because J preserves inner products, JT is orthogonal to
M.
By Theorem 2.2 in [1], M has a one-sided complexification to a complex

submanifold M̂ ofCn (a ‘strip’), so thatM is the smooth connected component
of the boundary of M̂ from the pseudoconvex side. Denote by T̃ the real
unit normal to M pointing ‘outside’ M̂ , that is, T̃ = −i J T . The following
geometric Lemma contains the crux of the matter.

Lemma 1 Let U be a neighborhood of M. Then, near M, M̂ is contained in
the hull of M with respect to the functions that are plurisubharmonic in U.

Proof The proof is more or less implicit in the proof of Theorem 2.2 in [1].
One has to observe that the extensions there can be swept out by analytic discs
with boundaries in M , or in a set already under control. This does necessitate
a modification, as [1] at one point uses propagation of extendibility from [20],
which is not based on analytic discs.

First note that there are strictly pseudoconvex points on M . This can be seen
by enclosing M inside a large sphere and then shrinking the radius. Points of
first contact with M are strictly pseudoconvex points of M . Near a strictly
pseudoconvex point z0 of M , M̂ is constructed as follows. Graph M , near z0,
over its projection π into a suitable copy of Cm . Then the hypersurface π(M)

is strictly pseudoconvex at π(z0), and the inverse of the projection extends
to the pseudoconvex side of π(M) (as all components are CR functions on
π(M)), by the Kneser–Lewy extension theorem.2 Moreover, near π(z0), the
pseudoconvex side of π(M) can be filled in by analytic discs with boundaries
in π(M), and these lift to analytic discs with boundaries in M that sweep out
the extension. In particular, by the maximum principle for plurisubharmonic
functions, near z0 the extension constructed in this manner is contained (after
shrinking if necessary) in the hull of M with respect to the plurisubharmonic
functions in U .

2 Often referred to as the Lewy extension theorem, but see [25,38].
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1082 E. J. Straube, Y. E. Zeytuncu

Next, note that M consists of a single CR orbit ([1], Proposition 2.1). Pick
a strictly pseudoconvex point z0 ∈ M . Let z1 be an arbitrary point of M , and
let γ (t), 0 ≤ t ≤ 1 be a (piecewise smooth) CR curve with γ (0) = z0 and
γ (1) = z1. Let A be the set of those t ∈ [0, 1]with the property that near γ (t),
M̂ is contained in he hull of M with respect to the plurisubharmonic functions
in U . By what was said above , 0 ∈ A, i.e. A is not empty. By definition, A is
open. It now suffices to show that A is also closed; then A = [0, 1], 1 ∈ A,
and M̂ is contained in the required hull near z1.

First assume that t0 ∈ A is such that γ (t0) ∈ M is not contained in any
(germ of a) complex submanifold of M of dimension (m − 1). Near γ (t0), we
can again graph M̂ over its projectionπ into a suitable copy ofCm . Thenπ(M)

is a hypersurface, and there is no germ of a complex submanifold of π(M) of
dimension (m − 1) that contains π(γ (t0)). It follows that π(M) is minimal at
π(γ (t0)), in the terminology of [4]. Also, there are points arbitrarily close to
π(γ (t0)) where the Levi form has at least one positive eigenvalue (otherwise
a neighborhood of π(γ (t0)) would be foliated by complex submanifolds of
π(M) of dimension (m − 1)). In particular, it is clear which side of π(M)

is the pseudoconvex side. Because π(M) is minimal at π(γ (t0)), there is a
one-sided neighborhood of π(γ (t0)) on the pseudoconvex side of π(M) that
is swept out by analytic discs with boundaries in π(M). Moreover, these discs
can be chosen ‘small’: for any neighborhood of π(γ (t0)), the construction
can be done within that neighborhood. This follows from [4], Theorem 8.6.2
and the proof of Theorem 8.6.1. there. It is not explicitly stated in [4] that
the swept out one-sided neighborhood is on the pseudoconvex side when the
hypersurface is pseudoconvex, but this property follows for example from the
standard characterization of pseudoconvexity via families of analytic discs.3

Lifting these discs via the graphing function(s) for M̂ gives a family of analytic
discs with boundaries in M that sweeps out a neighborhood of z0 in M̂ ∪ M .
This neighborhood is contained in the hull of M with respect to the functions
that are plurisubharmonic in U . (This part of the argument does not use the
fact that t0 ∈ A.)

Assume now that t0 ∈ A and γ (t0) ∈ S ⊂ M , where S is a (germ of) an
(m − 1) dimensional complex submanifold of M . In this case, we use results
from [44] (see also [43]). With π a projection as above, we have π(γ (t0)) ∈
π(S) ⊂ π(M), and π(S) is an (m − 1) dimensional complex submanifold of
the hypersurface π(M). For t close to t0, π(γ (t)) gives a CR curve in π(M).
Near π(γ (t0)), it must stay inside π(S). Choose a point w on it that is the
projection of a point γ (t1) with t1 ∈ A. Let M ′ be the projection of a (small)

3 Via the continuity principle (see e.g. [37], Theorem 5.8 in section 5.4). Indeed, if there were
a (small) disc with boundary in π(M) and non-empty intersection with the pseudoconcave side
of π(M), translating it along the normal to π(M) at π(γ (t0)) would produce a one parameter
family of discs that contradicts the continuity principle on the pseudoconvex side of π(M).
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neighborhood of γ (t1) in M̂ ∪ M . M ′ is a one-sided neighborhood of w, and
its boundary coincides with π(M) near w. The proof of Theorem 3.3 in [44]
shows the following. There are a finite sequence of points q j , 1 ≤ j ≤ k
on π(M) (close to the CR curve π(γ )) and one-sided neighborhoods Mj
of q j , 1 ≤ j ≤ k, with the following properties: (i) q1 is close to w and
M1 ⊆ M ′, (ii) qk = π(γ (t0)), and (iii) Mj+1 is swept out by analytic discs
with boundaries inπ(M)∪Mj , 1 ≤ j ≤ (k−1). Moreover, this can be done so
that the Mj ’s as well as all the discs involved stay in as small a neighborhood
of π(γ (t0))) as we wish. Again by the characterization of pseudoconvexity
via families of analytic discs, all the discs involved stay on the same side of
π(M) (the pseudoconvex side.4) Lifting the neighborhoods Mj and the discs
involved via the graphing function(s) of M̂ (the inverse of π ) and applying the
maximum principle for plurisubharmonic functions shows that there is indeed
a neighborhood of γ (t0) in M ∪ M̂ that is contained in the hull of M with
respect to the plurisubharmonic functions in U (namely the image of Mk). In
other words, t0 ∈ A.

Since z1 was an arbitrary point of M , the proof of Lemma 1 is complete. ��
Set ρ := ρ1 + · · · + ρl . The restriction of ρ to M̂ can serve as a one-sided

defining function for M (on M̂), in view of Lemma 2:

Lemma 2 T̃ρ > 0 on M.

Proof Let z ∈ M . Then there is at least one index j0 such that ∇Rρ j0(z) is not
orthogonal to T̃ . This is because the (real) gradients of the defining functions
span (over R) the orthogonal complement of M . In particular, T̃ρ j0(z) �= 0.
Also, in view of Lemma 1, ρ j ≥ 0 on M̂ , 1 ≤ j ≤ l. Therefore, T̃ρ j (z) ≥ 0
for all j , 1 ≤ j ≤ l. Consequently, T̃ρ j0(z) > 0, and T̃ρ(z) = T̃ (ρ1 + · · · +
ρl)(z) > 0. The proof of Lemma 2 is complete. ��

We are now ready to prove Theorem 2; the essence of the argu-
ment/computation is the same as in [6,9,40], but the organization is somewhat
different.

Proof of Theorem 2 Denote by J ∗ the adjoint of J with respect to the pairing
between vector fields and forms ([10, page 42]). Recall that J ∗∂ = i∂ and
J ∗∂ = −i∂ . In particular,

(
∂ρ − ∂ρ

)
(T ) = − (

∂ρ − ∂ρ
)
(J 2T ) = − (

J ∗∂ρ − J ∗∂ρ
)
(JT )

= −idρ(JT ) > 0; (16)

4 π(M) may be Levi flat near π(γ (t)), so that both sides are pseudoconvex. However, the
pseudoconvex side of M is defined globally (it is given by i J T ). The local projections π near
a point in M then transfer this direction/side “downstairs”.
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by Lemma 2. Therefore, η = eh
(
∂ρ − ∂ρ

)
for some h ∈ C∞(M) (since also

(
∂ρ − ∂ρ

)
vanishes on T 1,0(M) ⊕ T 0,1(M)). We claim that

α
(
L
)
(z) = dh

(
L
)
(z), z ∈ M, L ∈ Nz. (17)

Using one of the Cartan formulas for the Lie derivative [see for example
[19], section 4.3, Proposition II, (1)] and the fact that η(T ) ≡ 1 gives

α
(
L
) = − ((i(T )d + d i(T ))η) (L) = −dη(T, L), (18)

where i(T ) denotes the substitution operator ([19], section 4.1). The fact that
η = eh

(
∂ρ − ∂ρ

)
implies

dη = eh
[
dh ∧ (

∂ρ − ∂ρ
) + d

(
∂ρ − ∂ρ

)] = dh ∧ η − 2eh∂∂ρ. (19)

We have used again that eh
(
∂ρ − ∂ρ

) = η, and that d = ∂ + ∂ . Now
insert (19) into the last term of (18) and observe that η

(
L
) = 0 implies

that (dh ∧ η)
(
T, L

) = −dh
(
L
)
η(T ) = −dh

(
L
)
. The result is

α
(
L
)
(z) = dh

(
L
)
(z) + 2eh∂∂ρ

(
T, L

)
(z), z ∈ M, L ∈ Nz. (20)

The plurisubharmonicity of ρ says that i∂∂ρ is positive semi-definite. There-
fore, L ∈ Nz implies that the second term on the right hand side of (20)
vanishes (note that ∂∂ρ

(
T, L

) = i∂∂ρ
(−iT, L

) = i∂∂ρ
(
(−iT )(1,0), L

)
,

where the subscript denotes the (1, 0)-part of the vector−iT ). Thusα(L)(z) =
dh(L)(z). Since α is real, we also have α(L)(z) = dh(L)(z). We have shown
that α agrees with dh, and so is exact, on the null space of the Levi form. The
proof of Theorem 2 is complete. ��

Remark 4 It is worthwhile to note that the particular combination ρ = ρ1 +
· · ·+ρl does not matter in Lemma 2 (and the rest of the argument) above; any
combination c1ρ1+· · ·+clρl with c j > 0, 1 ≤ j ≤ l, will do. Geometrically,
this says the following. For a point z of M , consider the positive cone Cz
in C

n ≈ R
2n generated by the gradients of the ρ j ’s, Cz = {c1∇ρ1 + · · · +

cl∇ρl | c j > 0 , 1 ≤ j ≤ l}. Denote by Ĉz its dual cone. Then the extension
M̂ goes in the direction of −T̃ , and so near M is contained in the union
∪z∈M(z + Ĉz) of dual cones.
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4 Proof of Theorem 3

The proof is essentially from [9] (see also [39], proof of Corollary 5.16), where
a slightly weaker conclusion is obtained when M is the boundary of a smooth
bounded pseudoconvex domain.

Proof of Theorem 3 The crucial fact for the proof, discovered in [9] (see the
Lemma on p. 230; see also [39], Lemma 5.14), is that α is closed on the
null space of the Levi form, that is , dα|Nz = 0, for z ∈ M . Consequently, α
represents aDeRhamcohomology class on S. Because H1(S) is trivial,α = dh̃
on S, for someC∞-function h̃ on S (if S is a submanifoldwith boundary, then h̃
is smooth up to the boundary). Locally, h̃ can be extended into a neighborhood
(in M) of S in such a way that for points on S, the differential of the extended
function, at the point, agrees with α at the point. This is also true near points
of the boundary, if S is a submanifold with boundary. By compactness, we
can choose a finite cover {Uj }Jj=1 of S, associated extensions {h j }Jj=1 of h̃,

and a partition of unity {ϕ j }Jj=1 of a neighborhood of S that is subordinate

to this cover. We now set h := ∑J
j=1 ϕ j h j . The function h is defined in a

neighborhood of S, and for z ∈ S,

dh(z) =
J∑

j=1

ϕ j (z)dh j (z) +
J∑

j=1

dϕ j (z)h j (z)

=
J∑

j=1

ϕ j (z)α(z) +
J∑

j=1

dϕ j (z)h̃(z) = α(z). (21)

We have used here that
∑J

j=1 dϕ j (z) = d(
∑J

j=1 ϕ j )(z) = 0. Using a cutoff
function supported in a small enough neighborhood of S and identically one
in a (smaller) neighborhood, we can extend h to a C∞-function on M . This
concludes the proof of Theorem 3. ��

5 Exactness of α and good vector fields

Recall K ⊂ M denotes the set of weakly pseudoconvex points of M and
Nz denotes the null space of the Levi form at point z ∈ K . When proving
Sobolev estimates, one needs vector fields with good commutator properties.
The required properties come for free for commutators with vector fields in
strictly pseudoconvex directions. This crucial observation was made in [6] (in
the context of the ∂-Neumann problem), see also [40], section 5.7. For commu-
tators with fields in weakly pseudoconvex directions, the needed commutator
properties come from the exactness of α on the null space of the Levi form.
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When X is a vector field on M , let us denote its T -component modulo
T 1,0(M) ⊕ T 0,1(M) by (X)T .

Proposition 1 Let M be a smooth compact pseudoconvex orientable CR sub-
manifold ofCn of hypersurface type. Assume that αM is exact on the null space
of the Levi form. Then there exists a constant C such that for every ε > 0,
there are smooth real vector fields Xε on M with the following properties:

(i)
1/C ≤ |(Xε)T | ≤ C, (22)

and
(ii) ∣

∣([Xε, Z ])T
∣
∣ ≤ ε (23)

for every unit vector field Z in T 1,0(M).

Proof of Proposition 1 The proof consists in combining, and rewriting in the
present context, the arguments from the proofs of Theorem 5.9, Lemma 5.10,
and Proposition 5.13 in [39], or from [41], equivalence of (iii) and (iv) in the
theorem there.

Fix ε > 0. Locally, near a point P ∈ M , the vector field Xε we seek can be
written as

Xε = egεT +
m−1∑

j=1

(
bε, j L j + bε, j L j

)
, (24)

for smooth functions gε and bε, j that are to be determined.Here, L1, . . . , Lm−1
generate a basis of TC(M) near P .Wehave used that Xε is real.Wemay choose
L1, . . . , Lm−1 so that at P (but not necessarily near P), this basis diagonalizes
the Levi form. Then we have, at P ,

[
Xε, Lk

]
T (P) = −egε(P)Lkgε(P) + egε(P)

[
T, Lk

]
T (P)

+
m−1∑

j=1

bε, j (P)
[
L j , Lk

]
T (P)

=−egε(P)
(
Lkgε(P)−α(Lk)(P)

)+bε,k(P)
[
Lk, Lk

]
T (P).

(25)

For the first equality, note that all the other terms in the commutators coming
from the sum in (24) are multiples of one of the L j , L j , or

[
L j , Lk

]
, and

so are complex tangential, hence have vanishing T -component. In the second
equality, we have used (9), which says that [T, Lk]T = α(Lk), and also the
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fact that [L j , Lk]T = δ j,k (because L1, . . . , Lm−1 diagonalizes the Levi form
at P).

We first consider the case where Lk(P) ∈ NP . Then [Lk, Lk](P) = 0, so
that the relevant T -component becomes −egε(P)

(
Lkgε(P) − α(LK )(P)

)
. It

is now clear how the exactness of α onNP enters: if we choose gε = h, where
h is the function from the definition of exactness of α on the null space of
the Levi form (which we may assume to be defined on all of M , rather than
just in a neighborhood of K ), then Lkgε(P) − α(LK )(P) = 0. Note that with
this choice, we also satisfy the requirement that the T -component of Xε be
bounded and bounded away from zero uniformly in ε.

Next, consider the case where Lk /∈ NP , i.e. [Lk, Lk]T (P) �= 0. We
are stuck with the contribution from the first term on the right hand side of
(25); there is no reason why it should be small. But now the term containing
[Lk, Lk]T (P) comes to the rescue. Indeed, if we choose the constant bε,k as

bε,k = eh(P)
(
Lkgε(P) − α(LK )(P)

)

[Lk, Lk]T (P)
, (26)

then the right hand side of (25) vanishes.

The conclusion is that when we define Xε,P := ehT + ∑
L j /∈NP

(
bε, j L j

+bε, j L j

)
then [Xε,P , L j ]T (P) = 0 for 1 ≤ j ≤ (m−1). By continuity, there

is a neighborhood Vε of P such that for z ∈ Vε, we have
∣
∣[Xε,P , Z ]T (z)

∣
∣ < ε

for any section Z of T 1,0(M) of unit length. Choose finitely many points
P1, . . . , Pr such that the corresponding neighborhoods Vε = Vε,Pr cover M ,
and let {φ1, . . . , φr } be a partition of unity subordinate to this cover. We set

Xε =
r∑

j=1

φ j Xε,Pj = ehT +
r∑

j=1

φ j
(
Yε,Pj + Yε,Pj

)
, (27)

where Yε,Pj = ∑
Ls /∈NPs

bε,s Ls (for simplicity of notation, we have not added
subscripts to the L’s and the b’s to indicate the dependence on the point P (or
Ps)). Then, if Z is a field of type (1, 0) on M of unit length,

[
Xε, Z

]
T =

r∑

j=1

φ j
[
Xε,Pj , Z

]
T

−
r∑

j=1

Zφ j
(
Xε,Pj

)
T

. (28)

Each term in thefirst sumon the right hand side of (28) is atmostφ jε in absolute
value.Therefore, the sum is nomore than ε in absolute value. In the second sum,
note that

(
Xε,Pj

)
T

= eh , independently of j , 1 ≤ j ≤ r . Combining this with
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∑r
j=1 Zφ j = Z

(∑r
j=1 φ j

)
= 0 gives that that sum vanishes. Consequently,

[
Xε, Z

]
T has modulus less that ε. Then so does [Xε, Z ]T , the negative of

its conjugate (recall that T is purely imaginary). The family of vector fields
{Xε}ε>0 has all the required properties, and the proof of Proposition 1 is
complete. ��

6 Good vector fields and regularity: Proof of Theorem 1

The point is that a family of vector fields as in Proposition 1 implies the
conclusion in Theorem 1. This is well known when M is the boundary of a
pseudoconvex domain inCn ([7]; see in particularRemark 2), and it is clear that
it should work in the present context. Theorem 1 is an immediate consequence
of Proposition 1 and Theorem 4.

Theorem 4 Let M be a smooth compact orientable pseudoconvex CR sub-
manifold of Cn of hypersurface type. Assume that for every ε > 0, there exists
a smooth real vector field Xε on M whose T -component, mod T 1,0(M) ⊕
T 0,1(M), is bounded and bounded away from zero, uniformly in ε, with the
property that

[Xε, Z ] = aεT mod T 1,0(M) ⊕ T 0,1(M) (29)

for a function aε ofmodulus less than ε for every unit vector field Z in T 1,0(M).
Then for every nonnegative real number s, there is a constant Cs such that for
all u ∈ L2

(0,q)(M), 0 ≤ q ≤ (m − 1),

‖S′
qu‖s + ‖S′′

q u‖s + ‖Hqu‖s ≤ Cs‖u‖s; (30)

‖u‖s ≤ Cs

(
‖∂Mu‖s + ‖∂∗

Mu‖s + ‖u‖
)

; 1 ≤ q ≤ (m − 2); (31)

‖u‖s ≤ Cs

(
‖∂Mu‖s + ‖∂∗

Mu‖s
)

; u ⊥ Hq; (32)

‖Gqu‖s ≤ Cs‖u‖s . (33)

Proof The proof closely follows the arguments in [7]. Some modifications
are needed, however. First, there are non trivial harmonic forms also when
1 ≤ q ≤ (m−2). Second, the casem = 2 (n = 2 in [7]) needs extra attention,
as does the passage from a priori estimates to genuine estimates.

First, note that (33) is an easy consequence of (30) and (32). Indeed,

Gq = Qq Rq−1S
′
q + RqQq+1S

′′
q ; 0 ≤ q ≤ (m − 1), (34)

see Eq. (3) in [7]. Here Rq denotes the canonical solution operator on the
range of ∂M : L2

(0,q)(M) → L2
(0,q+1)(M), with R−1 and Rm−1 understood to
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be zero, and Qq similarly denotes the canonical solution operator on the range
of ∂

∗
M : L2

(0,q)(M) → L2
(0,q−1)(M), with Q0 and Qm−1 understood to be zero.

Equation (34) holds because the right hand side is zero onH⊥
q , maps intoH⊥

q ,
and applying �q to it results in (I d − Hq). Equation (32) implies that the
canonical solution operators are continuous in Sobolev norms. Consequently,
(34) displays Gq as a sum of compositions of operators that are continuous in
Sobolev norms.

By interpolation, it suffices to prove the above estimates for integer values
of s. This is straightforward for (30) and (33); for (31) and (32), one uses con-
tinuity of the canonical solution operators, obtained for example by combining
the solution operators that result from the closed range property [1,2,32,34]
with the continuity of the projections in (30).

The starting point is an estimate that says that complex tangential derivatives
are under control. Let k be a positive integer, and Y a smooth section of
T 1,0(M) ⊕ T 0,1(M). Then we have

‖Yu‖2k−1 ≤ Ck

(
‖∂Mu‖2k−1 + ‖∂∗

Mu‖2k−1 + ‖u‖k−1‖u‖k
)

,

u ∈ Wk
(0,q)(M), 0 ≤ q ≤ (m − 1). (35)

When M is the boundary of a pseudoconvex domain, (35) is in [7] (see Lemma
1 there). The integration by parts argument used in the proof when (k−1) = 0
works in the current situation aswell; the general case then follows by applying
the (k − 1) = 0 case to derivatives (as in [7]).

Fix ε > 0, to be chosen later. We can write derivatives of order k in terms
of Xε and complex tangential derivatives. When there is at least one com-
plex tangential derivative, we can commute it to the right (so it acts first),
modulo an error that is of order ‖u‖k−1. Applying (35) to these terms, using
‖u‖k‖u‖k−1 ≤ (sc)‖u‖2k + (lc)‖u‖2k−1, using the interpolation inequality
‖u‖2k−1 ≤ (sc)‖u‖2k + (lc)‖u‖2, and absorbing the ‖u‖2k term gives

‖u‖2k ≤ C‖Xk
εu‖2 + Cε

(
‖∂Mu‖2k−1 + ‖∂∗

Mu‖2k−1 + ‖u‖2
)

,

u ∈ Wk
(0,q)(M), 0 ≤ q ≤ (m − 1); (36)

here, the first constant does not depend on ε (because the T -component of Xε

is bounded and bounded away from zero uniformly in ε).
We first prove (31) at the level of an a priori estimate. That is, we assume that

u is known to be in Wk
(0,q)(M), and show that with this assumption, estimate

(31) holds. Thus we assume that u, ∂Mu, and ∂
∗
Mu are in Wk(M) (for the

respective form levels); wewant to show that (31) holds. The argument follows
[7, pp. 1578–1579]. Note that because ∂M Xk

εu = [∂M , Xk
ε ]u + Xk

ε∂Mu, Xk
εu
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is in the domain of ∂M , and similarly, in the domain of ∂
∗
M . Thus, when

1 ≤ q ≤ (m − 2), we have for the first term on the right hand side of (36), in
view of (7),

‖Xk
εu‖2 ≤ C

(
‖∂M Xk

εu‖2 + ‖∂∗
M Xk

εu‖2
)

+ Cε‖u‖2k−1

≤ C
(
‖[∂M , Xk

ε ]u‖2 + ‖[∂∗
M , Xk

ε ]u‖2
)

+Cε

(
‖∂Mu‖2k + ‖∂∗

Mu‖2k + ‖u‖2k−1

)
; (37)

we have used that ‖Xk
εu‖2−1 ≤ Cε‖u‖2k−1. Assumption (29) in Theorem 4 now

lets us estimate the commutators. We use that
[
∂M , Xk

ε

] = Xk−1
ε

[
∂M , Xε

]+
terms of order not exceeding (k − 1) ([17], Lemma 2, p. 418; [40], formula
(3.54), p. 65). By (29),

[
∂M , Xε

] = aεT + Yε, with |aε| ≤ ε and Yε com-
plex tangential. Thus, in view of (35) and because the T -component of Xε is
bounded independently of ε,

‖[∂M , Xk
ε ]u‖2 � ε2‖T ku‖2 + Cε

(‖Yεu‖2k−1 + ‖u‖2k−1

)

� ε2‖u‖2k + Cε

(
‖∂Mu‖2k−1 + ‖∂∗

Mu‖2k−1 + ‖u‖k−1‖u‖k
)

.

(38)

Inserting this estimate, and the analogous one for ‖[∂∗
M , Xk

ε ]u‖2, into (37),
and the result into (36), and using ‖u‖k−1‖u‖k ≤ (sc)‖u‖2k + (lc)‖u‖2k−1 ≤
(sc)‖u‖2k + (lc)‖u‖2, we obtain

‖u‖2k ≤ εC‖u‖2k + Cε

(
‖∂Mu‖2k + ‖∂∗

Mu‖2k + ‖u‖2
)

. (39)

Choosing ε small enough and absorbing the ‖u‖2k term into the left hand side
of (39) establishes (31) (at the a priori level).

We now treat (32), i.e. the cases q = 0 and q = (m − 1) (we already
mentioned that when 1 ≤ q ≤ (m − 2), (32) follows trivially from (31),
in view of (5)).First, let q = (m − 1), and u ∈ (Hm−1(M))⊥ = Im(∂M).
There is a solution operator to ∂ that is continuous in both Wk and L2-norm.
Whenm ≥ 3, the canonical solution will satisfy this estimate by (31), which is
already established. Whenm = 2, such a solution operator is obtained in [32],
denoted by ∂

∗
b,t Nt there, see the proof of Theorem 1.1, in particular Step 1 (p.

264) (note that the range of ∂M is closed in L2, as required in [32], by [1,2]).
Therefore, we can write u = ∂Mv, with ‖v‖k � ‖u‖k , ‖v‖ � ‖u‖. Equation
(5) now gives (as above, the a priori assumptions imply that Xk

εv and Xk
εu are

in the domains of ∂M and ∂
∗
M , respectively)
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‖Xk
εu‖2 � ‖∂∗

M Xk
εu‖2 + ‖Hm−1X

k
εu‖2

= ‖∂∗
M Xk

εu‖2 + ‖Hm−1X
k
ε∂Mv‖2 � ‖[∂∗

M , Xk
ε ]u‖2 + ‖[Xk

ε , ∂M ]v‖2
+Cε‖∂∗

Mu‖2k . (40)

In the last estimate, we have used that the projection Hm−1 annihilates the
range of ∂M , and then that it is norm non-increasing. The commutator terms
on the right hand side of (40) can now be treated as before.

Finally, let q = 0. We want to use essentially the same argument, but with
the role of ∂M played by ∂

∗
M . When m ≥ 3, there is no difficulty in doing so.

When m = 2, note that the canonical solution v to ∂
∗
Mv = u satisfies Sobolev

estimates by the case q = (m − 1) = 1 already shown (this latter observation
comes from [7]). The proof of (32), at the a priori level, is now also complete.

Now we prove (30), also at the a priori level. First note that when 1 ≤ q ≤
(m − 2), Hq trivially satisfies Sobolev estimates, in view of (31) (which we
already established): ‖Hu‖s � ‖Hu‖ ≤ ‖u‖ ≤ ‖u‖s . We now look at the
projections S′

q + Hq for 0 ≤ q ≤ (m − 2). This argument is essentially from
[7, p. 1580].

We need to estimate ‖(S′
q + Hq)u‖k by ‖u‖k . In view of (36), it suffices to

estimate ‖Xk
ε (S

′
q+Hq)u‖ (note that ∂M(S′

q+Hq)u = 0, and ∂
∗
M(S′

q+Hq)u =
∂

∗
Mu). Now (S′

q+Hq− I d))u = S′′
q u = ∂

∗
Mv, where v is the canonical solution

to ∂
∗
M . Then ‖v‖ ≤ ‖(S′

q + Hq − I d))u‖, and ‖v‖k ≤ ‖(S′
q + Hq − I d))u‖k ,

by (32) for s = 0 and s = k, respectively. This gives

(
Xk

ε (S
′
q + Hq)u, Xk

ε (S
′
q + Hq)u

)
=

(
Xk

ε S
′′
q u, Xk

ε (Sq + Hq)u
)

+Oε

(
‖u‖k‖Xk

ε (S
′
q + Hq)u‖

)

=
(
∂

∗
M Xk

εv, Xk
ε (S

′
q + Hq)u

)
−

(
[∂∗

M , Xk
ε ]v, Xk

ε (S
′
q + Hq)u

)

+Oε

(
‖u‖k‖Xk

ε (S
′
q + Hq)u‖

)

=
(
Xk

εv, [∂M , Xk
ε ](S′

q + Hq)u
)

−
(
[∂∗

M , Xk
ε ]v, Xk

ε (S
′
q + Hq)u

)

+Oε

(
‖u‖k‖Xk

ε (S
′
q + Hq)u‖

)
; (41)

we have used in the last equality that ∂M annihilates the range of (S′
q + Hq).

The commutator terms in the last line of (41) can now again be handled by the
methods used above.

Because S′
0 = 0, we have Sobolev estimates also for H0 and thus for S′′

0 .
Because of the estimates for Hq when 1 ≤ q ≤ (m−2), we also have estimates
for S′

q for this range of q, and then also for S′′
q . Finally, when q = (m − 1),
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the argument is analogous, writing (I d − Hm−1)u = S′
m−1u as ∂Mv. This

completes the proof of (30) (at the a priori level).
We next show that if M happens to be strictly pseudoconvex, the estimates

in Theorem 4 are genuine estimates. That is, we do not need to assume that the
forms on the left hand sides are in the appropriate Sobolev spaces. Folland and
Kohn [18], Proposition 5.4.11 and Theorem 5.4.12 imply that (in the strictly
pseudoconvex case)when ∂Mu and ∂

∗
Mu are inWk

(0,q+1)(M) andWk
(0,q−1)(M),

respectively, then indeed u ∈ Wk
0,q)(M). This takes care of (31). When 1 ≤

q ≤ (m−2), (32) follows from (31) [because when u ⊥ Hq , ‖u‖ is dominated
by the right hand side of (32)]. More generally, when m ≥ 3, these estimates
follow at all form levels from the subelliptic estimates for �M,q for 1 ≤ q ≤
(m−2) ([18], Theorem 5.4.12). Whenm = 2 the canonical solution operators
are 1/2-subelliptic, by [30]. Only the statements for ∂M are given, but the
estimates for ∂

∗
M can be obtained by these methods as well [31]. Thus when

the right hand side of (32) is finite, u does belong to Wk
(0,q)(M). As for (30),

note that in view of (31) already established, all three projections take smooth
forms to smooth forms. Therefore, the a priori estimate established is a genuine
estimate on smooth forms. But smooth forms are dense in Wk

(0,q)(M), so that

the estimate carries over to Wk
(0,q)(M).

We are now ready to remove the a priori assumptions for allM as in Theorem
4. Let ρ be the function from Sect. 3. As noted there (Lemma 2), we can
think of ρ as a one-sided defining function for M on M̂ . Then there exists
a constant A > 0 such that for δ > 0 small enough, the CR submanifolds
Mδ := {z ∈ M̂ | ρ(z) + δeA|z|2 = 0} are strictly pseudoconvex (and oriented,
of hypersurface type). The construction is the same as in [28] (or see [40],
Lemma 2.5). Namely, one can cover M with finitely many local coordinate
patches and get a constant A for each patch; the maximum will then work
globally. The Mδ are the level sets of ρA := e−A|z|2ρ. As in [7], we fix a set
of diffeomorphisms between M and Mδ (always for δ > 0 small enough) by
the flow along the gradient of ρA (on M̂). Locally, we have bases {L j,δ , 1 ≤
(m−1), for T 1,0(Mδ) that vary smoothly with δ, and corresponding dual bases
{ω j,δ | 1 ≤ j ≤ (m − 1)}. We can now transfer forms on M to forms on Mδ

coefficient wise in these charts (this also involves fixing a suitable partition of
unity). For a formu onM ,wedenote byu↑δ the formobtainedonMδ. Similarly,
v↓δ denotes the form on M obtained from a form v on Mδ . The vector fields
in the family {Xε} live on M . But for each ε, we can extend Xε into M̂ , near
M , so that we still have the assumptions in Theorem 4, but with (29) holding
in a (one-sided) neighborhoodUε of M in M̂ . Observe that if Z denotes a first
order differential operator (a vector field) with coefficients that are smooth on
M̂ (up to M), tangential to the Mδ , and uδ are a family of forms on Mδ such
that the (uδ)

↓δ converge weakly in Wk
(0,q)(M) to u, then (Zuδ)

↓δ − Zu tends
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to zero on M as distributions. Finally, by what was said above, the estimates
(30–33) hold on Mδ , for δ > 0 small enough. Moreover, inspection of the
proofs shows that these estimates are uniform in δ. This latter point is crucial.

The argument now proceeds almost verbatim as in [7, p. 1581], with
small modifications. Consider (30) first. Let u ∈ Wk

(0,q)(M). Then uδ =
S′
qδuδ+S′′

q,δuδ+Hq,δuδ , where the subscripts on the operators denote operators
on Mδ . Because of the uniform bounds on these operators, the transfers of all
three terms toM are bounded inWk

(0,q)(M) by amultiple of ‖u‖k . By passing to
a suitable subsequence, wemay assume that all three terms convergeweakly as
δ → 0.Call the respectiveweak limitsw1,w2, andw3. Thenu = w1+w2+w3,
and ‖w1‖k +‖w2‖k +‖w3‖k � ‖u‖k . By the observation in the previous para-
graph about first order differential operators acting on forms uδ , w3 ∈ Hq(M)

(because Hq,δuδ ∈ Hq(Mδ). Also, S′
q,δuδ = ∂Mδ vδ , with ‖vδ‖k � ‖uδ‖k �

‖u‖ (vδ is the canonical solution on Mδ). By passing to a further subsequence,
wemay assume that the (vδ)

↓δ also converge weakly inWk
(0,q−1)(M). Call this

limit v. Then (∂Mδ (vδ))
↓δ − ∂Mv converges to zero (as distributions), so that

w1 = ∂Mv (since ∂Mδ (vδ) = S′
q,δuδ). That is, w1 is in the range of ∂M . Simi-

larly,w2 is in the rangeof ∂
∗
M . Because theHodgedecomposition ofu is unique,

it follows that S′
qu = w1, S′′

q u = w2, and Hqu = w3. This establishes (30).

The previous paragraph yields more. First, when u ∈ Im(∂M), then
u = S′

qu = ∂Mv. v is the weak limit, in Wk
(0,q−1)(M), of the forms (vδ)

↓δ .

Consequently, v belongs to the range of ∂
∗
M (by an argument analogous to the

one used to show that S′
qu ∈ Im(∂M) in the previous paragraph). In other

words, v is the canonical solution to ∂Mv = u. This shows that the canonical
solution operators to ∂M are continuous in Wk(M). Continuity of the canon-
ical solution operators to ∂

∗
M is established in the same way. Second, when

1 ≤ q ≤ (m − 2), ‖Hδuδ‖k � ‖uδ‖ � ‖u‖, so that ‖w3‖k = ‖Hqu‖k � ‖u‖.
With these estimates in hand, (31) and (32) are immediate: ‖u‖k ≤

‖S′
qu‖k + ‖S′′

q u‖k + ‖Hqu‖k . This quantity is bounded by the right hand
side of (31) (or (32)), in view of the last paragraph and the fact that S′

qu and

S′′
q u are the canonical solutions to the ∂M and ∂

∗
M -equations with right hand

sides ∂Mu and ∂
∗
Mu, respectively.

The proof of Theorem 4 is now complete. ��
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