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Abstract We show that the classical Kuga—Satake construction gives rise,
away from characteristic 2, to an open immersion from the moduli of primi-
tively polarized K3 surfaces (of any fixed degree) to a certain regular integral
model for a Shimura variety of orthogonal type. This allows us to attach to
every polarized K3 surface in odd characteristic an abelian variety such that
divisors on the surface can be identified with certain endomorphisms of the
attached abelian variety. In turn, this reduces the Tate conjecture for K3 sur-
faces over finitely generated fields of odd characteristic to a version of the Tate
conjecture for certain endomorphisms on the attached Kuga—Satake abelian
variety, which we prove. As a by-product of our methods, we also show that
the moduli stack of primitively polarized K3 surfaces of degree 2d is quasi-
projective and, when d is not divisible by p?, is geometrically irreducible in
characteristic p. We indicate how the same method applies to prove the Tate
conjecture for co-dimension 2 cycles on cubic fourfolds.

1 Introduction

The goal of this paper is to prove:

Theorem 1 Let X be a K3 surface over a finitely generated field k of charac-
teristic not equal to 2. Then the Tate conjecture holds for X.
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That is, for any prime £ invertible in k, the £-adic Chern class map

. h r
Pic(X) ® Q¢ —> H2(Xgser, Qe(1))
is an isomorphism. Here, k5P is a separable closure of k and T’ = Gal(k*°P / k)
is the associated absolute Galois group.

Work of Lieblich—-Maulik—Snowden [26] shows that Theorem 1 implies:

Corollary 2 There are only finitely many isomorphism classes of K3 surfaces
over a finite field of odd characteristic.

The following cases of Theorem 1 are already known:

(1) When the field k is of characteristic O: cf. [49, Theorem 5.6(a)] or [1].

(2) When £ is finite of characteristic at least 5: This is due to Nygaard and
Nygaard-Ogus [36,37]" for K3 surfaces of finite height, and Maulik [33]
and Charles [8] for supersingular K3 surfaces. Maulik’s work utilizes
the case of elliptic K3 surfaces, due to Artin—-Swinnerton—Dyer [2], but
Charles’s is independent of it, being an application of a general result for
reductions of holomorphic symplectic varieties.

The main contribution of this article is an unconditional proof of the conjec-
ture in odd characteristic. Our methods are independent of the results above,
but owe a substantial spiritual debt to the proof in characteristic 0, which com-
bines the classical Kuga—Satake construction with Deligne’s theory of absolute
Hodge cycles and Faltings’s isogeny theorem.

1.1 Kuga—Satake construction

In characteristic 0, the Kuga—Satake construction attaches to every polarized
K3 surface (X, &) a polarized abelian variety A such that the primitive coho-
mology group P H?*(X, &) embeds within H'(A) ® H'(A) as a sub-Hodge
structure. One can extend this construction to finite characteristic as in [10], by
lifting to characteristic 0, applying the Kuga—Satake construction, and taking
its reduction. The crystalline compatibility (up to isogeny) of such a construc-
tion is shown in [40, § 7]. We make two improvements to this: first, we show
the crystalline compatibility on an integral level. Second, we show that the
Kuga—Satake construction sees enough geometry to allow us to view divisors
on the K3 surface X as endomorphisms of A. This is of course predicted by
the conjecturally motivic nature of the construction.

! The result of [36] for ordinary K3 surfaces does not appear to have any restriction on the
characteristic.
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The Tate conjecture for K3 surfaces 627

In particular, we can reduce the Tate conjecture for X to a refined version
of Tate’s theorem for endomorphisms of A.

The reader is directed to (5.17) in the body of the paper for a precise version
of the following result:

Theorem 3 Given any field k of odd characteristic p and a polarized K3
surface (X, &) over k, there exists a finite separable extension k'/k and an
abelian variety A over k', the Kuga—Satake abelian variety such that the 7y
and crystalline realizations of the primitive cohomology PH?(X, &) embed
naturally within those of H'(A) @ H'(A). Moreover, there is a canonical
inclusion

Pic(Xp) D (£)* < End(A)

compatible, via the cycle class maps, with the corresponding embeddings of

cohomology groups. Its image consists of those endomorphisms whose coho-
mological realizationsin H' (A)@ H' (A)(1) lie in the image of PH* (X, £)(1).

It is essential for our method that we work with families of K3 surfaces:
We view the Kuga—Satake correspondence in characteristic 0 as a period map
from the moduli of polarized K3 surfaces to an appropriate orthogonal Shimura
variety, and use the theory of integral models from [31] to extend it to period
map over Z[2~']. The integral crystalline compatibility of this construction
shows that the period map is étale. This permits us to prove the inclusion
(€)1 < End(A) of the theorem by lifting—one divisor at a time—to charac-
teristic 0, where we can appeal to the Lefschetz (1,1) theorem.

1.2 The Tate conjecture for special endomorphisms

Given the above theorem, it is natural to make the following definition: A
special endomorphism of the Kuga—Satake abelian variety A is an element
f € End(A) whose cohomological realizations in H LA) @ HY(A)(1) lie
in the image of PH?(X, £)(1). We will write L(A) for the space of special
endomorphisms. When k is finitely generated, the Tate conjecture for (X, &)
now reduces to the statement that L(A) has the expected rank.

This last assertion is best viewed in the setting of motives attached to points
of orthogonal Shimura varieties. Such varieties are attached to quadratic lat-
tices over Z of signature (n, 2). For instance, the one that appears as the target
of the period map mentioned above is attached to the primitive cohomology
lattice of a polarized K3 surface; it has signature (19, 2). Given a lattice L
of signature (n, 2), the associated Shimura variety Sh(L) is n-dimensional
and defined over Q. The theory of [31], which builds on work of Kisin [20],
provides us with a regular integral model .#’(L) over Z [%]
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628 K. Madapusi Pera

To every geometric point s — .%’(L), we can attach an abelian variety A?S,
again called the Kuga—Satake abelian variety. Suppose that k(s) has charac-
teristic p > 2. Then this abelian variety comes equipped with a right action
of the Clifford algebra C (L), as well as the following additional structure:

e For every £ # p, a distinguished sub-space

Vs CEndeqy (HL(ARS, Q)

such that, for all f € V,,, the composition f o f is a scalar. The space
V(s with the quadratic form f +— f o f is isometric to L @ Q.
e A distinguished sub- F-isocrystal

Veis,s C Ende ) (Heis (ALY W (K()))

such that, for all f € Vs 5, the composition f o f is a scalar. The space
V cis,s With the quadratic form f +— f o f is isometric to L @ W (k(s)).

We now define the space of special endomorphisms L (A fs) to be the sub-space
of End(AXS) consisting of those elements whose cohomological realizations
land in the distinguished sub-spaces given above.

When L is the primitive cohomology lattice of a polarized K3 surface and
s arises from a polarized K3 (X, &), A?S is just the associated Kuga—Satake
abelian variety A, and the distinguished sub-spaces V  and Vs s can be
identified with the realizations of the primitive cohomology P H?(X, £). So
the general definition recovers our definition from this special case.

Suppose now that s is defined over a finitely generated extension k. Then
the distinguished sub-spaces V¢ ¢ are stable under the action of I', the absolute
Galois group of k. We will assume that AlIfS and all of its endomorphisms are
also defined over k. The key technical result of this paper is:

Theorem 4 Under a certain £-independence condition, for every { # p, the
natural map of L-adic vector spaces

LIA®)®@ Q- Vi,

is an isomorphism.

The ¢-independence condition essentially says that the dimension of the invari-
ant sub-spaces Vz  does not depend on ¢; cf. Sect. 6. In the situation of the
Kuga—Satake abelian variety attached to a polarized K3 surface, this condition
always holds, and so we obtain the Tate conjecture for K3s as a consequence.

The most important case of the theorem is when s is defined over a finite
field. We can deduce the general result from this by invoking Zarhin’s theorem
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The Tate conjecture for K3 surfaces 629

for endomorphisms of abelian varieties over finitely generated fields and a
specialization argument.

For the proof in the finite field case, we begin with a simple observation. Let
I be the largest algebraic sub-group of M"C( L) (Ai(s) (viewed as the algebraic
group attached to the group of units of the algebra Endc(z) (Ai(s)@) that sta-
bilizes the distinguished sub-spaces V¢ s and V o 5. Then, for every £ # p,
the map considered in Theorem 4 is a map of representations of the Q-group
Ig,. We will be done if we can prove two assertions: First, for some £ # p,
V};S is irreducible as a representation of Ig,. Second, L(AXS) £ 0.

When £ is a prime such that Gy is split, we show the first assertion using a
result of Kisin [21].

Our method for showing that L(AES) 1s non-zero is indirect, and uses the
validity of the first assertion for points valued in arbitrary orthogonal Shimura
varieties. We direct the reader to Sect. 6 for details.

1.3 Moduli of K3 surfaces and the period map

As mentioned above, a key component of this paper is a period map for K3
surfaces in odd characteristic. The classical Torelli map for K3 surfaces can
be viewed as a map

tc : M3, ¢ — Sh(Ly)c,

where M3 ; is the moduli space (over Z[2™ 1) of degree 2d primitively polarized

K3 surfaces and |\7|§ 4 1s a certain twofold ‘orientation’ cover. Sh(Ly) is the
associated orthogonal Shimura variety over Q.
Results of Rizov [47] show that the period map descends over Q:

1g : M3, o — Sh(La).
The following theorem is a positive characteristic analogue of the Torelli

theorem for K3 surfaces.

Theorem 5 There exists a regular integral model .’ (Ly) for Sh(Lg) over
Z[2~"] such that Lg extends to an étale map

lZ[zfl] . M;d,Z[Z_l] —> y(Ld)

Over Z[(2d)_1 ], this construction of the map is essentially due to Rizov [46];
cf. also [33, §5]. With the same condition on p, a construction by Vasiu can
be found in [51]. As a consequence of Theorem 5, we get:

@ Springer



630 K. Madapusi Pera

Corollary 6 Foranyprime p > 2, the moduli stack M5 ; F, is quasi-projective.

If p> 1 d, then M3 d.F, is geometrically irreducible.

The quasi-projectivity was also proven in [33, §5] for p > 5 with p { d.

1.4 Further remarks

There remains the question of extending these results to characteristic 2. A
major hindrance is the lack of a good theory of integral models of orthogonal
Shimura varieties over 2-adic rings of integers; cf. [30, 4.6.5] for a discussion.
Once such a theory is available, it should be straightforward to extend the
ideas here to the situation where 2 { d, though highly 2-divisible d are likely
to present new difficulties.

In characteristic 0, it is known that the period map is surjective, once
extended to the moduli of quasi-polarized K3 surfaces. We expect the same
assertion to hold in characteristic p. This question is intimately related that of
the existence of a Neron—Ogg—Shafarevich type criterion for the good reduc-
tion of K3 surfaces over discrete valuation fields of characteristic p. Such a
criterion is available in characteristic 0 [22,42], and for certain K3 surfaces in
finite characteristic [32].

The Kuga—Satake construction has appeared in many other contexts in char-
acteristic 0: cf. [1,29,44,52]. It is likely that the methods of this paper will
permit us to extend the construction into positive characteristic in these cases
as well, enabling us to also prove the Tate conjecture in these contexts. Cer-
tainly, for cubic fourfolds, the Torelli theorem from [52] allows us to apply
our methods in rather straightforward fashion, and we indicate this briefly in
(6.13); cf. also [25] and [8, Corollary 6].

1.5 Notational conventions

For any prime ¢, vy will be the £-adic valuation satisfying vy (¢) = 1. A ; will
denote the ring of finite adéles over Q, and Z C A will be the pro-finite
completion of Z. Given a rational prime p, A’; will denote the ring of prime-

to- p finite adéles; that is, the restricted product ]_[2 +p Q¢. Moreover, 7P C A?
will be the closure of Z. Given a perfect field k of finite characteristic, W (k) will
denote its ring of Witt vectors, and o : W (k) — W (k) will be the canonical
lift of the Frobenius automorphism of k. For any group G, G will denote the
locally constant étale sheaf (over a base that will be clear from context) with
values in G.
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The Tate conjecture for K3 surfaces 631

2 Motives

Throughout this section (and only here), all fields will be assumed to be embed-
dable in C, and all varieties will be smooth, projective. Our main reference for
this section is [12].

2.1. Given afield k in characteristic 0, denote by Moty (k) the neutral Q-linear
Tannakian category of motives over k for absolute Hodge cycles; cf. [41, § 2],
where it is denoted .. Its objects are triples M = (X, n, w), where X is a
smooth projective variety over k, n € Z, and @ is an idempotent absolutely
Hodge self-correspondence of X. Given such an M and m € Z, we will write
M (m) for the Tate twist (X, n + m, @ ). Write h(X) for the motive (X, 0, id).

For each embedding o : k — C, Betti cohomology gives us a realiza-
tion functor w, for Moty (k) into Q-vector spaces. For each prime £, ¢-adic
cohomology gives us a realization functor w; into Qg-vector spaces.> In fact,
the varying ¢-adic cohomology theories can be put together to obtain a real-
ization functor wy , into A y-modules. Finally, de Rham cohomology gives
us a realization functor wqr into k-vector spaces. For ? = o, ¢, Ay, dR, and
M € Motay(k), we will write M+ for the realization w9 (M), especially when
we want to call attention to additional structure: that of a Hodge structure,
Galois-module, or filtered vector space, respectively.

For each variety X, the Kiinneth decomposition on X x X allows us to
attach to each d € Zx, an object h4(X) € Motag (k) such that wo(h? (X)) =
H?d(X), for? =0,¢,Ay,dR.If H € CHI(X) is a hyperplane section, then
the Lefschetz decomposition gives us an object p?(X) € MotTAH(k) such
that w9 ( pd (X)) =P H;" (X), the primitive cohomology group associated with
H; cf. [12, §11.6].

The following result is shown in [12, I1.6.7].

Proposition 2.2 For any extension L/ k, there is a natural, faithful functor of
Tannakian categories compatible with fiber functors:

_®r L : Motayg(k) > Motag(L).

If k is algebraically closed in L, then this functor is also full. In general, for
motives M, N € Motay(k), amap f : M Q@ L — N ®y L is defined over
k if and only if, for some prime £, its L-adic realization f; commutes with
Aut(L/k). O

The following can be easily deduced from the main result of [12, Ch. I].

2 One also needs an additional choice of an algebraically closed field containing k, which we
suppress.
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632 K. Madapusi Pera

Theorem 2.3 (Deligne) Let Motap (k) C Motag(k) be the full Tannakian
sub-category generated by the motives attached to abelian varieties. Let Hdg
be the Tannakian category of Q-Hodge structures. Then, for any embedding
o : k — C, the functor

Moty (k) — Hdg@
M+— M,

is faithful. If k is algebraically closed, then it is in fact fully faithful. O

2.4. We will need a mildly refined notion of a motive: Let R C Q be a sub-
ring. A motive with R-structure or an R-motive is a motive M equipped
with an Aut(%/ k)-stable R ® Z-lattice Mz C My ;- For example, if R = Z,
then My is a Z-lattice; and, if R = Z(p), then giving Mz amounts to giving a
Aut(k/k)-stable Z-lattice Mz, C M.

A morphism f : (M, Mz) — (N, Np) of R-motivesisamap f : M — N
of motives such that the A ¢-realization fa, carries Mg into Ng.

Suppose that Mg = (M, Mp) is an R-motive. For any embedding o :
k — C, this also gives us a canonical R-lattice Mg, C M, obtained as
follows. Choose an extension @ : k < C of o. This gives us a comparison
isomorphism

M, ®Af E) MAf-

We now take Mg , to be the intersection of the pre-image of Mz with M,,.
Since M is Aut(k/ k)-stable, this does not depend on the choice of @. Clearly,
for any map f : Mr — Ng of R-motives, the Betti realization f;, respects
the R-lattice Mg ;.

Given an R-motive M, and a prime p not invertible in R, we will write M,
for its associated Z,-representation of Aut(E/ k),and, forany o : k — C, we
will write M, for the associated R-Hodge structure.

For any R-motive M, write AH(M) for the R-module of cycles on M:
This is the space of maps Hom(1, M), where 1 is the identity object; that is
1 = h(pt) with its natural R-structure. If R < R’ is an inclusion of sub-rings
of Q, then there is a natural functor _ ® g R’ from R-motives to R’-motives
such that

AH(M) ®g R’ = AH(M ®g R'),

for any R-motive M.

Definition 2.5 An R-motive M is pure of weight d, for some d € Z, if,
for one (hence all) o : k — C, M, is a pure Hodge structure of weight d.
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The Tate conjecture for K3 surfaces 633

A polarization on a R-motive M that is pure of weight d is a pairing
v MM — L(—d)

such that, for any o : k — C, v induces a polarization of the Q-Hodge
structure M, Qg Q.

2.6. One problem with absolute Hodge cycles is that they do not have an
analogue in positive characteristic. We will deal with this in somewhat ad hoc
fashion. We now assume that the field k is equipped with a discrete valuation
v : k* — Z such that the residue field k(v) is perfect of characteristic p > 0.
Let k), be the completion of k along v, and let &, be its ring of integers. Let Bgr
be Fontaine’s ring of de Rham periods for k,,. For any smooth projective variety
over k, and for d € Zx(, we have the de Rham comparison isomorphism:

yar + HY(X) ®q, Bar — Hix (X/k) @k Bar.

?ere, we write H g (X) for the p-adic cohomology group H g(X;, Qp), where
k is an algebraic closure of k.

Definition 2.7 An absolutely Hodge cycle s on X with p-adic realization s,
and de Rham realization sgr is de Rham (with respect to v), if

YdR(Sp ® 1) = sqr ® 1.

Let Motap . (k) be the category defined exactly as Motay (k) isin [41, § 2],
except that we only allow absolutely de Rham cycles as morphisms. It is easy
to see that this is a sub-category of Motag (k). The analogue of [12, 11.6.2]
holds in this setting, so Motap , (k) is semi-simple and in fact Tannakian.

Theorem 2.8 (Blasius—Wintenberger) Let Moty ,, (k) be the Tannakian sub-
category of Motap , (k) generated by the motives attached to abelian varieties.
Then the natural functor

Moty , (k) — Motap (k)

is an equivalence of categories.

Proof This reduces to showing that every (absolutely) Hodge cycle on an
abelian variety is de Rham, which is the main result of [4]. O

2.9. We will now work with pairs (X, X), where X is a k-variety and X is
a smooth proper &), -scheme equipped with an identification X ®¢, k(v) =
X Q@ k(v). Write Xy for the special fiber X ® ¢, k(v). Set W = W (k(v)); then
the crystalline cohomology Hf (Xo/ W) is an F-crystal over W.

TiS
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Cris

Let W(—1) = HZ, (P}, / W), and let W (1) beits dual; note that W (1) | £ |

has the structure of an F-isocrystal over W [;] , but that W (1) is not F'-stable.

Let Bgis be Fontaine’s ring of crystalline periods for k. For d € Z>o and
m € Z, we have natural comparison isomorphisms:

Veris - Hp (X)(m) ®Qp Beris _> Hcm(xO/ W)(m) Qw Beris.

These isomorphisms are compatible in the sense that

¥B-0 © (Veris ® 1) = Var.

Definition 2.10 An absolutely Hodge cycle s € Hf d (X Y(m) x H R (X)(m)
is Tate (with respect to X and v), if

Vo o(sar ® 1) € Hi (Xo/ W) (m) @w k()

is an F-invariant element of Hcdns(%o /W)(m) [%] We will denote this F-
invariant element by s¢is: it is the crystalline realization of s.

We say that s is crystalline (with respect to X and v) if it is Tate, and if
Vcris(sp & 1) = Seris ® 1.

Since the comparison isomorphisms are compatible with cycle classes and
Poincaré duality, we see that algebraic cycle classes are crystalline. Similar
statements hold for the Kiinneth and Lefschetz decompositions.

Lemma 2.11 The notion of being Tate or crystalline does not depend on the
choice of model X. In fact, an absolutely Hodge cycle is crystalline if and

only if it is de Rham. Moreover, the F-isocrystal Crls(%0 /W) [ ] is also
independent of the choice of model X.

Proof Since ygr is compatible with yg.0 and ycris, and since yeis(sp ® 1) is
always F-invariant, s is crystalline if and only if y4r (s, ® 1) = sqr ® 1; that
is, if and only if s is de Rham. From this, the first two assertions are immediate.

For the third, we now only have to note that H, cns (Xo/W) [ ] is identified
with the Gal(k, / ky)-invariants of Hg (X) ®@p cris - O
2.12. Let Motac (k) C Motan(k) be the sub-category whose objects are
triples (X, m, ), where X has good reduction at v, and r is crystalline. Mor-

phisms are given as before, except that we restrict ourselves to absolutely
crystalline cycles. Just like Motap , (k), Motac,, (k) is also Tannakian. Note
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The Tate conjecture for K3 surfaces 635

that, by (2.11) above, any object M of Motac,, has a canonical crystalline
realization M, that is an F-isocrystal over W [%] and is equipped with a
natural isomorphism of k,,-vector spaces

Mcris ®W[%] kv i) MdR Rk kv-

The next result follows easily from (2.11) and (2.8):

Proposition 2.13 Let MOtOAb,v(k) (resp. Motzb’v’ cris(K)) be the full sub-
category of Motayg (k) (resp. Motj’%c’v (k)) generated by the motives attached
to abelian varieties with good reduction at v. Then the natural functor

Moty |, cris (k) — Motap (k)

is fully faithful and its essential image is Moty | (k). O

3 Moduli of K3 surfaces

Our main references for this section are [33,39,45,47].
3.1. A K3 surface over a scheme S is an algebraic space f : X — S over S
that is proper, smooth and whose geometric fibers are K3 surfaces. A polar-
ization (resp. a quasi-polarization) of a K3 surface X — S is a section
& € Pic(X/S)(S) whose fiber at each geometric point s — S is a polariza-
tion (resp. a quasi-polarization); that is, the class of an ample (resp. big and
nef)3 line bundle, of the K3 surface X over k(s). There is an intersection
pairing on Pic(X/S) with values in the locally constant sheaf Z; the degree
deg(é) e H 0¢s, Z) of a (quasi-)polarization & is the value of its pairing with
itself. The restriction of deg(&) to any connected component of § is a non-zero
positive integer. A section & of Pic(X/S) is primitive if, for all geometric
points s — S, £(s) is primitive; that is, £(s) is not a non-trivial multiple of
any element of Pic(Xjy).

Fix an integer d € Z-q, and let My (resp. Mg ) be the moduli problem over
Z [%] that assigns to every Z [%]—soheme S the groupoid of tuples (f : X —
S, &), where X — S is a K3 surface and & is a primitive quasi-polarization
(resp. polarization) of X with deg(§) = 2d.

Proposition 3.2 The natural map M3, — My is an open immersion of
Deligne-Mumford stacks of finite type over Z, fiber-by-fiber dense. Moreover,
M3, is separated.

3 ‘Big’ equals being the tensor product of an ample line bundle with an effective one.
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Proof Everything except the fiber-by-fiber density of the image of the map
can be found in [45, 4.3.3] and [33, Proposition 2.1]. Showing the claimed
density amounts to seeing that any quasi-polarized K3 surface (Xg, &y) over a
field k admits a deformation (X, &) such that £ is an ample class. Indeed, let
Dy be a divisor on X with class &y. Then 3Dg determines a base-point free
map X9 — PV whose image is a surface with isolated ordinary double-point
singularities. The pre-images of the singularities are (—2)-rational curves on
Xo. If a deformation (X, &) of (Xo, &o) is not polarized, then one of these
(—2)-curves must also permit a deformation to X. It is easy to check using
the Riemann-Roch formula that deforming a (—2)-curve on a K3 surface is
equivalent to deforming its divisor class, and so [27, Theorem A.7] shows
that the deformation locus of a (—2)-curve in the versal deformation space
of (Xo, &p) has co-dimension 1. This implies in turn that the locus where the
versal deformation is not polarized is a union of co-dimension 1 sub-spaces,
and so finishes the proof of the proposition. Notice that the proof shows that
the complement of M3, in My is flat over Z [%] and has pure co-dimension
1. O

33.Let (f : X = Myy, &) be the universal object over My,. For any prime ¢,

the second relative étale cohomology H % of X over M 5 [ | ] with coefficients
Ll

inZ, is alisse Z;-sheaf of rank 22 equipped with a perfect, symmetric Poincaré
pairing

(L) H}x H? - Z,(-2).

We will actually be equipping H % with the negative of the conventional pairing.
In characteristic 0, this means that we are viewing the Betti cohomology groups
of K3 surfaces as being quadratic spaces of signature (19+, 3—).

The ¢-adic Chern class chy(€) of & is a global section of the Tate twist H %(1)
that satisfies (ch¢ (&), chy(§)) = —2d. We set

P2 = (chy(§))*(~1) C H?.

This is a lisse Z¢-sheaf over M 2.4 of rank 21 and it inherits a symmetric
Z¢(—2)-valued pairing (_, _), which is perfect if £ { d.

3.4. There is also the second relative de Rham cohomology H (%R of X over
M,,. This is a vector bundle with flat connection of rank 22 equipped with a
Hodge filtration F*H cziR satisfying Griffiths transversality. It is also equipped
with a perfect, horizontal, symmetric pairing (_, _) into Oy,,. The filtration
then is of the form

0=FH}; C F°H}x C F'H} = (F2H%)" ¢ FOH} = Hg,
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The Tate conjecture for K3 surfaces 637

determined by the isotropic line F>H gR. The de Rham Chern class chgr (§)
attached to £ is a horizontal global section of F'H (%R satisfying (chgr (§),
chgr(§)) = —2d. Again, we set

P2 = (char(§)) c H;.

This is a vector sub-bundle of H (%R of rank 21, and it inherits the connection,
the filtration and the symmetric pairing from H ﬁR.
For any prime p, over Ma4 r,, the induced vector bundle H (%R F, is equipped

with an decreasing, horizontal filtration F$ A H <21R,1F,, called the conjugate fil-
tration (cf. [39, §1] for this and the rest of the discussion in this paragraph).
Suppose that & is an algebraically closed field over IF;, and we have a map
s : Speck — Mj,;. We say that s is superspecial if the fiber of chgr (§) in

F! HﬁR ; liesin FszlR ;- In this case, we have

2 72 2 2
F HdR,s = FcoanR,s'
We say that s is ordinary if X is ordinary; that is, if FzHﬁR sN FczoanR =0.
We now recall some definitions and results from [50].

Definition 3.5 A regular local Z,)-algebra R with maximal ideal m is quasi-
healthy if it is faithfully flat over Z(,), and if every abelian scheme over
Spec R\{m} extends uniquely to an abelian scheme over Spec R.

A regular Zp)-scheme X is healthy if it is faithfully flat over Z,), and if,
for every open sub-scheme U C X containing Xg and all generic points of
X, , every abelian scheme over U extends uniquely to an abelian scheme over
X. Itis locally healthy if, for every point x € X, of co-dimension at least 2,

the complete local ring ﬁxﬁx is quasi-healthy.

Remark 3.6 e Any regular, flat Z,)-scheme of dimension at most 1 is triv-
ially healthy.

e By faithfully flat descent, a regular local ring R is quasi-healthy whenever
its completion R is quasi-healthy.

e If X is locally healthy, then it is healthy. Indeed, suppose that U C X is as
in the definition of ‘healthy’ above; the complement X\U lies entirely in
the special fiber and has co-dimension at least 2 in X. The claim follows by
using ascending Noetherian induction on the co-dimension of X\U, and
repeatedly using quasi-healthiness of the local rings of X.

We do not know if the converse holds.

Theorem 3.7 (Vasiu—Zink) Let R be a regular local, faithfully flat Zp)-
algebra of dimension at least 2.
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(1) Suppose that there exists a faithfully flat complete local R-algebra
R that admits a surjection R —» WIITy, T»|1/(p — h), where h €
(Ty, o)W\ T, T»|] is a power series that does not belong to the ideal
(p, Tlp , sz , Tlp _1T2p _1). Then R is quasi-healthy.

(2) Let mg C R be the maximal ideal and suppose that p ¢ mI;. Then R is
quasi-healthy.

(3) If R is a formally smooth complete local Zp)-algebra, then R is quasi-
healthy.

Proof Cf. Theorem 3 and Corollary 4 of [50]. O

We can encapsulate the deformation theory of K3 surfaces in the following

Theorem 3.8 Let X be a K3 surface over a perfect field k of characteristic
p > 0. Then:

(1) The deformation functor Def x, for X is pro-representable and formally
smooth of dimension 20 over W (k).

(2) Forany class &y € Pic(Xo), the deformation functor Def (x, ,) for the pair
(Xo, &0) is pro-represented by a flat, formal sub-scheme of Def x,, defined
by a single equation.

(3) If &g is primitive, then chgr(§0) # O, and Def (x, &) is formally smooth,
unless chgr (&o) lies in FZH(%R (Xo/ k). In particular, Def (x,, ¢, is formally
smooth whenever X is ordinary.

(4) If&o is primitive and char (§0) lies in F> H3y (Xo/ k), then v, (deg(£)) = 1,
and Def (x, &) is quasi-healthy regular.

Proof (1) and (2) are due to Deligne; cf. [11, 1.2,1.5]. (3) can be found in [39,
2.2].

For (4), that v, (deg(§0)) = 1 follows from (a suitable adaptation of) the
argument in [31, 5.21]. The main point is that the de Rham cohomology of
any lift of Xy over W (k) is a strongly divisible filtered F-crystal in the sense
of [38, 3.9]. This follows from [3, 8.26] and [23, Prop 5.2].

Now, Ogus [39, 2.2] shows that the deformation ring for Def x, ¢,) is iso-
morphic to

Wi, ..., tio, w1, ... w101/ tini — deg(0)).-

Soit follows from Vasiu and Zink’s criterion (3.7) that this ring is quasi-healthy
regular. |

Corollary 3.9 Let r be the product of primes £ > 2 such that £ | d, but £* td.
(1) M

. 1 . . .
2, Z[ il ] is smooth over 7. [5] of relative dimension 19.
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(2) If p | r, then the singular locus of Mag r, is at most O-dimensional, and
lies within the superspecial locus.
(3) All mixed characteristic complete local rings of M Y Z[ . ] of dimension at
L2

least 2 are quasi-healthy regular.

Proof (1) is an immediate consequence of (3) and (4) of (3.8).

For (2), we first note that the singular points of My, , are all superspecial
and that their complete local rings are quasi-healthy regular, by loc. cit.. The
assertion is now a consequence of the fact that there are no non-trivial infini-
tesimal families of quasi-polarized superspecial K3 surfaces (cf [39, Remark
2.7)).

For (3), we only need to worry about the complete local rings of M ) d’Z[ ! }
at points valued in fields of characteristic p | r. By (2), the completions at the
non-closed such points are formally smooth and hence quasi-healthy regular.
The completions at the closed such points are quasi-healthy regular, as we
have already observed. O

3.10. We will need moduli spaces of K3 surfaces with level structure; cf. [45,
§4]. Let U be the hyperbolic lattice over Z of rank 2, and let Eg be the root
lattice attached to the eponymous Lie algebra. Let N be the self-dual lattice
U @ Egez. Choose a basis e, f for (say) the first copy of U in N. Set

Lq=(e—df)*"

This is a quadratic lattice over Z of discriminant 2d; let Lg C Vq:=Lggbe
its dual lattice. Set G4 = SO(Vj,;): it is a semi-simple algebraic group over Q.

Let K C G4(A ) be acompact open sub-group that stabilizes L ; 7 and acts
trivially on L /L4. The maximal such sub-group is called the discriminant
kernel of L ; 7. These compact opens are called admissible in [45]. Strictly
speaking, Rizov’s definition of admissibility is the following: First, note that
G4 can be viewed as the sub-group of isometries of V; that fix e — df. Now,
a compact open sub-group K C G4(A ¢) is admissible if every element of K,
viewed as an isometry of Vy a e stabilizes L 4.7 That this is equivalent to our
definition is shown in [31, 2.6].

We will now fix an admissible compact open K C G4(A r) such that K, C
G4(Q)) is the discriminant kernel of L, Z,-

Over Mag 7, , the relative £-adic cohomology sheaves H %, for £ # p, can
be put together to get the 7P -sheaf H ; =11 op Hy.- 2 Then the Chern classes

of & can also be put together to get the Chern classchy, (§) in H z ,(1). Let 17 be
the étale sheaf over Moy, Z(p)> whose sections over any scheme T — Moy, Z(p)
are given by

@ Springer



640 K. Madapusi Pera

I7(T) = {Isometriesn : L @ Z" = HZ, (1) with n(e — df) = chg, (&)}

This has a natural right action via pre-composition by the constant sheaf of
groups K”. A section [n] € HO(T, I?/K?) is called a K P-level structure
over T'.

We define My, k. 7, 1o be the relative moduli problem over Mo, 7, that
attaches to T — My, Z(p) the set of K”-level structures over T.

Proposition 3.11 My, k 7 ,) is finite and étale over M4 7, - For K small
enough, it is an algebraic space over Zp). It is regular and locally healthy,
and, unless v, (d) = 1, it is smooth over Zp).

Proof Both finiteness and étaleness are clear from the definition. As for the
second assertion, the key point is to show that a quasi-polarized K3 surface
with K ”-level structure has trivial automorphism group. This is shown in [33,
2.8], which is based on [45, 6.2.2].

The last assertion follows from (3.9). ]

4 Shimura varieties

Our main reference for this section will be [31].

4.1. Let L be a quadratic lattice over Z of signature (n, 2) withn > 1. We will
write Q for the quadratic form on L, and [_, _]¢ for the associated bilinear
form. Then one can associate with L a Shimura variety Sh(L). It is a smooth
Deligne-Mumford stack over QQ such that, as complex orbifolds, we have:

Sh(L)(C) = GL(@\(XL x GL(Ay)/KL).

Here, X1 is the space of oriented negative definite planes in Ly, G is the
reductive Q-group SO(Lq), and K, C G (Ay) is the discriminant kernel of
L7: the largest sub-group of SO(L)(z) that acts trivially on the discriminant
disc(L) = LY /L, where LY C L is the dual lattice.

For the rest of this section, we will make the simplifying hypothesis that L
contains a hyperbolic plane: That is, we will assume that there exist isotropic
elements e, f € L such that [e, f]p = 1. Then we will have (use strong
approximation for the Spin cover of G ):

Sh(L)(C) =T\ X, 4.1)

where 'y, € SO(L)(Z) is the discriminant kernel.
Every compact open sub-group K C K (L) determines a finite étale covers
Shg (L) — Sh(L), Shg (L) — Sh(L), defined over QQ, with

Shr (L)(C) = GL(@\(XL x GL(Af)/K).
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If K is neat*, then Shg (L) is a smooth quasi-projective variety over Q.
4.2. We will now show that, in the language of Section 2, Sh(L) carries a
canonical family of Z-motives L. For details, cf. [31, § 3].

To begin, the Betti realization L g will just be the local system on Sh(L)(C)
attached to the tautological representation L of I'z. Note that Lp is equipped
with a canonical symmetric bilinear form, which equips it with an injective
map L — L} into its dual local system. The finite local system Ly, /L g with
its Q/Z-valued quadratic form is canonically isomorphic to the constant sheaf
LY /L over Sh(L)(C). Furthermore, the determinant det(L g) is also identified
with the constant sheaf det(L) with its natural quadratic form.

For any prime ¢, the ¢-adic local system attached to Lp has a canonical
descent over Sh(L), which we denote by L. In fact, if K(¢") C K is the
largest sub-group acting trivially on L/£" L, then L, is pro-represented over
Sh(L) by the inverse system of finite €tale covers {Shg n)(L)},>1

The analytic vector bundle with integrable connection Lp ® ﬁgg( Lc has
a canonical algebraization Lggr ¢ over Sh(L)c, which also descends canoni-
cally to a vector bundle with integrable connection Lgr g over Sh(L). This
vector bundle has the additional structure of a three-step filtration by vector
sub-bundles:

OZFzLdR,Q C FlLdR,Q C FOLdR,@:(FlLdR’Q)L C F_lLdRQ:LdR,@.

Here, FlLdR,@ C Lgr g is isotropic of rank 1.

In fact, the pair (Lp, F°*Lgr,c) forms a polarized variation of Z-Hodge
structures of weight 0 over Sh(L)(C). At each point of Sh(L)(C), it gives rise
to a Z-Hodge structure with Hodge numbers 7~ 11 = =1 = 1, 400 = 5,

This allows us to give a moduli-theoretic description of Sh(L): Suppose
that T is a smooth complex analytic space and f : T — Sh(L)(C) is a map
of smooth complex analytic stacks. We can attach to it the polarized variation
of Z-Hodge structures (f*Lp, F*® f*Lgg ), and canonical identifications of
the sheaves f*Ly,/f*L g and det(f*L p) with the constant sheaves L /L and
det(L), respectively. This gives us (cf. [34, 3.10]):

Proposition 4.3 The above process gives us a canonical equivalence between
the category of maps of analytic stacks T — Sh(L)(C) and the category of
tuples

(U, F*(U®z Or),n, B,
where:

° (U , F* (U Rz ﬁT)) is a polarized variation of Z-Hodge structures over T
with constant Hodge numbers h= ! = p1-=1 =1, 190 = p.

—1

4 This means that, for every g € G (A ), the discrete group G (Q) NgKg™ " is torsion-free.
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n:LY/L = UY/U and B : det(L) = det(U) are isomorphisms of
sheaves of abelian groups over T, compatible with the natural pairings.

The local system U with its polarization pairing must satisfy the following addi-
tional condition: For every pointt € T, there exists an isometry of quadratic

lattices L = U; inducing n; and B;.
If T is a smooth algebraic variety over C, this category can also be identified
with the category of maps of algebraic stacks T — Sh(L)c. O

4.4. The sheaves constructed above can all be viewed as realizations of a
family of Z-motives over Sh(L). This is essentially shown in [31, § 3], with
the additional inputs being (2.3) and (2.8). _

__ To explain this, we will require a certain finite étale cover Shy, of Shy. Let
G = GSpin(Lg) be the generalized spin group over Q attached to L: Itis a
central extension of G, by G, and is a sub-group of the multiplicative group
of units of the Clifford algebra C(Lg) attached to Lg. Set K, = G L(Ap)nN
C(L7)*:itis a compact ‘open sub-group of G L(A ) whose image in G (A )
is precisely K. Then Sh(L) is a smooth Deligne-Mumford stack over Q,
equipped with an identification of complex orbifolds

Sh(L) = GL(Q\(XL x GL(Ay)/KL)

The map Sh(L) — Sh(L) is bijective on geometric points, but is not an
isomorphism.

The main utility of Sh(L) is that it is of Hodge type. More precisely, there
exists an alternating pairing

v C(L)yx C(L) —> Z

such that the induced pairing on C(Lg) is non-degenerate, and has the fol-
lowing property: Let Gy, = GSp(y) be the group of symplectic similitudes
attached to v/, and let Xy be the associated union of the Siegel half-spaces
(cf. [31, 3.5]). Then the representation of G on C(L)q via left multiplication
gives rise to an embedding of Shimura data

(Gr, X1) = Gy, Xy). (4.2)

Let Ky C Gy (Ay) be the stabilizer of C(L5). Then we obtain a map of
Shimura varieties over Q:

Sh(L) — Shi,, Gy, Xy). (4.3)

The right hand side has a modular interpretation as a parameter space for
polarized abelian schemes with additional level structure; cf. [31, 3.9].
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Via this interpretation, (4.3) provides us with an abelian scheme AKS over
Sh(L) with an action of the Clifford algebra C (L) and a Z/2Z-grading AXS =
AKS:H » AKS:— compatible with that on C(L): This is the Kuga—-Satake
abelian scheme.

It has the following properties: For every point s — Sh(L) with lift
s — ST[(L), the motive /' (Afsg) ® (h1 (ASKS§)) v, with its natural Z-structure,
depends only on s; we will denote it by H ?(1’ D, Furthermore, there is a natural
idempotent operator 1y on Hf?(l’l) such that, if Ly = imm; C H?(l’l), then
the various realizations of L are canonically identified with the fibers at s of
the sheaves L, Ly, Lqr,g seen above.

In particular, we can view AH(Lj) as a space of C(L)-equivariant, grading-
shifting endomorphisms of A§2§ We will refer to such endomorphisms as
special endomorphisms. If s is a geometric point valued in a field embedded
in C, we will have:

AH(Ly) = L N FOLar sc € HVU N FOHS ) = End(AK).

In general, given T — Sh(L), we can define a ‘special endomorphism’ over T’
as follows: The endomorphism scheme E_nd(AKS) over S~h(L) has a canonical
descent over Sh(L) [31, 5.24]. Write E for this descent; then the space of
special endomorphisms L(7") will consist of sections of E over T whose
fibers at every geometric point s — 7 lie in AH(L). Denote the space of
special endomorphisms over T by L(T).

4.5. From now on, we will further assume that, for every prime p > 2, the
p-primary part of the discriminant LY /L is cyclic.

The main result of [31] is:

Theorem 4.6 [31, 8.1] Under these assumptions, Sh(L) admits an integral
canonical model . (L) over Z[27'].

The terminology here requires a bit of explanation. First, for every prime
p > 2,let Sh, (L) be the pro-variety

1<i£1 ShKL,pr(L).
KPcGL(Aji.)

It has a natural Hecke action by G L(AP). An integral canonical model
for Sh,(L) over Z) is a locally healthy, regular pro-Z,)-scheme .%), (L)
with generic fiber Sh, (L) satisfying the following extension property: For
any locally healthy regular scheme S over Z(,), any map of generic fibers
S ® Q — Sh, (L) extends (uniquely) to a map § — .7, (L). A smooth inte-
gral canonical model .¥™ (L) is defined similarly, except that we require
it to be regular and formally smooth, and in the definition of the extension
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property, we restrict ourselves to schemes § that are regular, formally smooth;
cf. [31, 7.8].

The integral canonical model (resp. smooth integral canonical model) is
uniquely determined by these conditions. In particular, the action of G L(A'})
on Sh, (L) extends to an action on .%,, (L) or Y;m(L), and so, for any compact
open K? C GL(A?), one obtains a model .”k (L)) = #»(L)/K? (resp.
S (L)py =Sy (L)/KP) for Shg, ,kr(L). Here, we view the quotient in
the category of algebraic stacks over Z).

We can now explain the meaning of (4.6). Let d be the discriminant of L.

The model . (L) over Z[27'] is the unique one that satisfies the following
property: For every p > 2 such that p? { d (resp. p* | d), Sh,, (L) admits
an integral canonical model .#, (L) (resp. a smooth integral canonical model
y;m(L)) over Zpy such that /(L) ® Zy = Sk, (L)p) (resp. (L) ®
Zipy = <k, (L) (p))-
4.7. The integral model above carries a natural extension of the family of
motives L; cf. the discussion in [31, 7.10,7.13]. For simplicity, write . for
the stack .(L). Quite formally, for any prime ¢, we can view L, as an ¢-adic
lisse sheaf over .#[¢~!]. Moreover, the de Rham realization Lgr @ extends
to a vector bundle with integrable connection Lgr over .. The tautological
isotropic line F lLdR,Q also extends to an isotropic line F LR C Lar.

Also, for any prime p > 2, there is a natural F-crystal of vector bundles
L s over the crystalline site (./F o/ Zp)cris, Whose Zariski realization over the
p-adic completion of .7, is canonically identified with Lgr z, as a vector
bundle with integrable connection.

The deformation theory of . is governed by the line F! Lgg: Lifting a map
T — . over afirst-order nilpotent thickening 7 < T is equivalent to lifting
the isotropic line F 1LdR,T over 7' (the lift of Lgr 7 over T’ being determined
by its crystalline nature).

Suppose now that E is a field of characteristic 0 equipped with a discrete
valuation v with residue field k of characteristic p > 2, and suppose that
we have an E-valued point s : Spec E — Sh(L) that extends to an Of (y)-
valued point of .#. Then, in the notation of (2.13), the motive V := L; ®
Q belongs to the category Motj,, |, (E). In fact, the crystalline realization
of V, can be identified with Ls s, ® Q, where so : Speck — .7 is the
specialization of s, and Leyis g, is the evaluation of Ls on the pro-nilpotent
divided power thickening Spec k — Spec W (k). In particular, there exists a
canonical crystalline comparison isomorphism

Lp,E ®Zp Beris — Lcn's,so ®W(k) Beis- (4-4)

Here, s is a geometric point of Sh(L) lying above s.
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The notion of a special endomorphism can also be extended to work over
.. The finite cover Sh(L) — Sh(L) extends to a finite étale map .%¥ —
& of integral canonical models, and the Kuga—Satake abelian scheme also
extends to an abelian scheme AKS over .. If Hgg is the relative ﬁrst de
Rham cohomology sheaf of AXS over ., the inclusion Lgg Q — H® dR. Q)

of vector bundles with flat connection over Sh(L) extends to an inclusion

Lsqr C H; ®(1 D over . In turn, over YF , there is a compatible embedding

of crystals Lcrls C H(Q:);l(sl 1)'

If s — . is a point valued in a perfect field of characteristic p > 2, we say
that an endomorphism of Ai(s is special if its crystalline realization in H ;8’(1’ D
actually lies in Ly 5. This automatically implies that its £-adic realizations,
for € # p,liein Ly ; cf. [31, 5.12]. In general, given an .”’-scheme T', we say
that an endomorphism of AKS is special if its restriction over every geometric
point of T is special.

Just as in the characteristic O situation, the endomorphism sheaf of

descends to a sheaf E over . along with the inclusion of crystals L¢is C
H ?(1’1). This allows us to speak of the group of ‘special endomorphisms’
L(T) over any .#-scheme T even if the abelian scheme AXS does not descend
over T; cf. [31, 7.16].
4.8. Suppose that we have a maximal quadratic lattice L’ of signature (n+r, 2)
and an isometric embedding L < L’ mapping L onto a direct summand of
L’. This gives rise to maps ./ — .(L’) and ¥ — . (L’). There is now an
additional notion of a special endomorphism over any .#’-scheme 7T arising
from its induced structure as an .(L’)-scheme. Denote by L’(T) the space
consisting of this latter kind of special endomorphism.

Let A = L+ C L'. Then the relationship between L(T) and L'(T) can be
described as follows [31, 7.15]:

AKS

Proposition 4.9 There is a canonical isometric embedding A C L' (), such
that, for any .-scheme T, we have a natural isometry:

L(T) > At c L'(T).
This is compatible with isometries of sheaves:

L, > AL Ly| y1o-1y. for any primet;
Lig — A C Ligly:

Lgis — AT C L8R|(5ﬂFp/Zp)cris, for any prime p>2.
O
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5 The Kuga-Satake period map over Z [1]

In this section, we will study the classical period map for the moduli of K3
surfaces and show that it has an extension over Z[2~!] with good properties.
This allows us to extend the Kuga—Satake construction for K3 surfaces over
fields of characteristic p # 2.

5.1 Let L4 be the quadratic lattice from (3.10): This is maximal at all primes
p > 2 such that p? 1 d and has cyclic discriminant. So the theory of Sect. 4
gives us an integral canonical model . (L) for Sh(Ly) over Z127 1.

Over Mgﬂl’c, we have a natural isometric trivialization

n : disc(Lyg) — disc(P%).
Indeed, for any point s — My, ¢, there is a canonical isometry:

N = H%? K
— 3 :
Li®(e—df) P @ (ch(h)

N dise(Lg) = = disc(P% ),

induced by any isometry N = H%’S carrying e — df to ch(A). Now, n is the
unique global isometry that interpolates the 7;.
Let Myy — My, be the twofold finite étale cover parameterizing isometric

trivializations det(Ly) ® Z» = det(P%) of the determinant of the primitive 2-
adic cohomology of the universal quasi-polarized K3 surface. We can identify

|\~/|2d,(c with the space of isometric trivializations det(Ly) = det(P%) of the
determinant of the primitive Betti cohomology.
Applying (4.3), we obtain:

Proposition 5.2 There is a natural period map
iks,c : Mag.c — Sh(La)c

attached to the tuple (P%, F’PEIR’C, n, B), where B is the tautological trivi-
alization ofdet(P%) over I\N/Izd,(c. O

Cf. also [47, Prop. 2.5] for a similar construction for (a finite cover of)
M3, c» and [33, 5.7] for its extension over the quasi-polarized locus.

Proposition 5.3 For every point s € |\7|2d(C), there is a canonical isomor-
phism of Z-motives:

Ly (=) > P
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Proof This is shown as in the proof of [12, I11.6.26(d)]. Here are some more
details: To begin, from the very construction of (s ¢ there exists a canonical
isometry

ap : iigcLp(=1) = P%

of polarized variations of Z-Hodge structures over |\~/|§‘:1 c- We can view this
as a section of the variation of Z-Hodge structures (tE&(cH ?(1’1) ® P%)(1).

After replacing Moy by a finite étale cover T', we can view H g(l’l) as the
relative cohomology sheaf of a family of abelian varieties.

As in loc. cit., we can show by hand that «p s is absolutely Hodge when
X is a Kummer K3. Now we can appeal to Principle B of [12, Ch. I], which
states that a horizontal Hodge cycle (on a family of smooth projective vari-
eties over a smooth connected variety) that is absolutely Hodge at one point
is absolutely Hodge everywhere. To apply this, we have to show that every
connected component of 7' contains a Kummer point.

Now, My, ¢ is irreducible. It is of course enough to show that I\7I§ 4.C is

irreducible. For this, we first observe that the restriction of 1xs c to M3 4.C
is an open immersion of algebraic stacks; this is essentially the global Torelli
theorem for K3 surfaces, for which there are many proofs in the literature; cf. [7,
14,28,43]. For a good summary and yet another proof, cf. [15]. Therefore, it
is enough to know that Sh(Ly)c is irreducible. But this is a consequence of
the complex uniformization (4.1).

So we have only to exhibit a single Kummer surface over C equipped with
a primitive quasi-polarization of degree 2d. Let A be an abelian surface over
C equipped with a polarization A of degree 2d. Then the Kummer surface
X attached to A is constructed as follows: One takes the blow-up A of the
2-torsion in A, and then quotients A by the action of the canonical lift ¢ of
the involution [—1] on A given by multiplication by —1. Any polarization
on A gives rise to an ample class A € NS(A) and the pull-back of 24 =
A 4 [—1]*A over A descends to a quasi-polarization & € NS(X). Moreover,
if the polarization is of degree cf, then by Riemann—Roch [35, III.16], A has
self-intersection 2d, and, since A — X is a degree 2 map of smooth surfaces,
& has self-intersection 2d as well.

So, to finish, we have to construct an abelian surface A with a primitive
polarization of degree d?. For this, take A = E x E, with E an elliptic curve,

and the polarization to be the endomorphism f x (fo[d]), where f : E =S EY
is the canonical polarization of E. O

Corollary 5.4 (Rizov) ixs.c descends to a map

IKS,Q * MZd,Q — Sh(Ly).
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Proof This is essentially [47, 3.16] (cf. also [33, 5.7]). Rizov shows that the
map descends over (Q by proving the existence of a dense set of ‘CM points’, for
which the reciprocity law is compatible with Shimura-Taniyama reciprocity
for CM points on the canonical model Sh(Lz).

But we will provide a different proof, using the theory of motives for absolute
Hodge cycles. It is enough to see that, for every o € Aut(C), iks,coo =
o o (ks c. For this, from (4.3), it is enough to see that both maps induce the

same tuples (up to isomorphism) over |\~/|2d’(c. This is easy to deduce from

the following consequence of (5.3): For every s € Myy ¢, there are canonical
isomorphisms of Z-Hodge structures:

) ~
Logscen(—1) = Po ) = Ly o) (—D.

O

5.5. For the sake of convenience, given any sheaf F over Sh(L,) (with respect
to any of the natural Grothendieck topologies), we will denote its pull-back
along (ks c again by the same letter F. This will apply in particular to the
various realizations of the family of Z-motives L.

Via the de Rham comparison isomorphism, «p gives rise to a canonical
isometry of polarized filtered vector bundles with flat connection:

. ~ 0
agr,c : Lar,c(=1) = Pgg c-

That this isometry is algebraic follows from [9] and the fact that both flat
bundles have regular singularities along the boundary divisor in a suitable

compactification of M3, ..
Via Artin’s comparison isomorphisms, for any prime £, we also obtain com-
patible isometries of polarized local systems on My c:

ag: Li(—1) > P2

Proposition 5.6 (1) For each prime £, the isometry oy is defined over |\~/|2d,@

(and hence over My 712¢)-11)-
(2) The isomorphism agr ¢ descends to an isometry

a0 Laro(=1) = Pip g

of filtered polarized vector bundles with flat connection over |\7|2d,@-
(3) For every point s : Spec F — Moy q, there is a canonical isometry of

Z-motives Lg(—1) = P?. In particular, P_% is a motive in Moty (F)
with Z-structure.
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4 If v . F — Z is a discrete valuation on F, then the isomorphism
L;(—1) = P2 is a map of motives in Motap ,(F) with Z-structure

(cf 2.6).
Proof To prove (1), it is sufficient to show that the £-adic sheaf P% does not

admit any non-trivial isometries over |\7|2d,<c with trivial determinant. This fol-
lows from the fact that the attached monodromy representation is irreducible—
a fact that can be deduced from the openness of the period map tKS cf. [10,
6.4].

By (5.3), given a point s € My;(C), the isometry of Hodge structures

s :LB,s(_l) i P%},s

is absolutely Hodge. If we are now given a point s € |\7|2d(F ), where F is a
field of characteristic O that is embeddable in C, using (1) for any ¢ and (2.2),
we find that there exists a unique isometry of polarized Z-motives

g : Ly(—1) > P2

such that, for any embedding v : F' < C, it induces the realizations op 1 (y),
Qy 7(s) and QdR,7(s)- This shows (3)

Applying (3) to the generic points of |\~/|2d,Q, we get (2).

(4) now follows from the argument used for the proof of [4, 3.1(3)]; cf. also
the proof of (5.3). ]

Proposition 5.7 tés extends to a map

XS |\7|2d — S (Lg)

Proof For every compact open K C Kp,, write M2d k.0 for the pull-back

of Mg kg over Mag q. Then the map (83 lifts naturally to a map (&5

M2d,K,Q — Shg (Lg).

Fix a prime p > 2, and write Mpy, g 1. for the Zy)-scheme defined as the
inverse limit

1(11_1'1 MZdaKLd,praZ(p)'
KPCGd(A?)

Then MZd’KLd,p?Q admits a map LIS gto Sh,(Lg) giving rise to LK o at

each finite level. Therefore, if v, (d) < < l (resp. vp(d) > 1), by the extension
property of the integral canonlcal model ., (L) (resp. the smooth integral
canonical model ,5” smr ), K K ) extends uniquely to a map
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KS \/
Ky, - Meaky,, = LpLa)ors " (La)).
In turn, this gives us an extension over Z):

LZ( ) :Maaz,,, = 7 (La)z,,,-

The main result of this section is:
Theorem 5.8 The map XS is étale.

We will need a few preliminaries before we can prove (5.8), the main input
being (5.11) below. The proof will appear right below that of loc. cit.

Lemma 5.9 Let k be an algebraically closed field of characteristic p > 2,
and let W = W (k). For s : Spec W — My, the map

. = 2
R.sq * Lar.sg(=1) = Pig g
is an isomorphism of F-isocrystals.

Proof This is shown in [40, § 7], but we can provide a different proof with the
technology of Sect. 2.

Let 5@ be a geometric point above sg valued in an algebraic closure Wg.
Then we have comparison isomorphisms:

Lp 5Q ® Beris — Lgr s ® Beris;

p 50 ® Beris —> PdR s ® Beris.
We also have a natural isomorphism of ' := Gal(W ¢/ Wq)-representations:

(-1) > p?

aP,EQ P SQ )20

arising from anisomorphism of motives L, (—1) = P? o Itnow follows from
(5.6)(4) that agR, 50 is exactly the map obtained from o P50 via the crystalline
comparison isomorphisms. In particular, it is F'-equivariant. O

Lemma 5.10 Suppose that s : Spec W — |\7|2d is a lift of an ordinary point
S0 : Speck — M2d Then agr 50 carries Lgr s(—1) onto P
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Proof Inthis situation, by (5.9), both L4r s(—1) and PgR’S are ordinary filtered
F-crystals. This means that they admit direct sum decompositions into sub-
F-crystals of constant slope [18, 1.6.1]:

Lars(—1) = ®7_oLar,s(—D? 3 Py, = &7_o(Pir 0.

Here, the superscript (i) denotes the summand of slope i. Since agr, 50 is F-
equivariant, it must respect these decompositions. In particular, it suffices to
show that, for each i = 0, 1, 2, the induced isomorphism

(PRE = Lags(—DY

respects integral structures.

Define the increasing slope filtrations U.P(%R’ ; and UsLgr 5(—1) by let-
ting U; be the sum of all summands of slope at most i. One easily checks
that these are actually filtrations by filtered sub-F-crystals, which become
weakly admissible after tensoring with Wg. In particular, via the comparison
isomorphisms with the p-adic realizations, they give rise to I"-stable filtrations
U.P;EQ and U,L 5, (—1). Strictly speaking, they produce filtrations on the
associated QQ ,-representations, which we then intersect with the Z ,-lattices in
question.

We claim that, fori = 0, 1, 2, there exist canonical isomorphisms, compat-
ible with the p-adic comparison isomorphisms after tensoring with Beys:

or) P () @z, W= grf Pip s = (P& )";
gV L5, — 1) ®z, W = gr¥ L s(—1) = Lar,s (=D,

The existence of the first isomorphism is a result of Bloch—Kato [5, 9.6.2],
which constructs such an isomorphism for the cohomology of any smooth
projective scheme over W with ordinary reduction and torsion-free crystalline
cohomology. For the second, we can assume that the composition Koy
Spec W — . (Lg) lifts to amap s : Spec W — .#(L4). Then Lgr s (resp.

L p’g@) is a direct summand of H ; ®(1 D (resp. H ®(1 l)) On the other hand, the

associated Kuga—Satake abelian scheme Afs has ordmary reduction; cf. [36,
Prop. 2.5]. So the result of Bloch-Kato once again applies to give us our claim.
From this and the integrality of ), 5, we now obtain the lemma. |

The following result, which exhibits the infegral crystalline nature of the
Kuga—Satake construction is the chief ingredient in the proof of (5.8); cf [33,
6.8] for an essentially equivalent statement, but with stronger hypotheses on
d and p.
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Proposition 5.11 The isometry

aar,@ : Lar.o(—1) = Pirlm,,

extends to an isometry (necessarily unique)
. = p2

of vector bundles over |\7|2d with integrable connection. It carries F 1 Lagr(—1)
onto F? P?IR'

Proof It is enough to extend agr, @ as a map of vector bundles, since the other
requirements can be checked over Q.
Fix a prime p > 2 and an affine open U = Spec R C Mg 7z, such that the

restrictions of Lgr and P(zlR to U are both trivial. We now follow the argument
from [33, 6.15]. First, represent OdR.Ug, by a matrix with values in Rg. We
claim that the entries of this matrix lie in R. Indeed, let a € Rg be a matrix
entry, and let m € Z>( be minimal such thata’ = p™a € R. By (5.10), for any
W(Fp)—valued point of U with ordinary reduction, the image of @ in W (F »)Q
lies in W. In particular, if m > 0, then the value of ¢’ at any such point would
lie in pW(Fp). Since ordinary points are dense in Up,, this implies that a
must lie in p R, which is a contradiction. Indeed, otherwise, the image of a in
RFp would be a non-zero global function on U]Fp that vanishes at a dense set
of points.

An analogous argument shows that the matrix entries of « d_Rl’ Ug, also lie in

R, thus proving that agr,yg extends to an isometry agr,v @ Lar,u(—1) =
2

PdR’U‘ . .o

From this, the proposition follows. O

5.12. For any smooth point s € I\N/IZd,]Fp (Fp), let R be the completion of the

localring ats. Set W = W(Fp), and choose alift j : R — W.Equip R with an
endomorphism ¢ lifting the p-power Frobenius on Ry, suchthato o j = jog.

The restrictions of Lgr(—1) and PcziR to Spec R give rise to F-crystals over R
in the terminology of [17, 1.3]. We will denote these F-crystals by Lqr r(—1)
and PcziR’ g Tespectively. The reductions of Lgr,g(—1) to PﬁR’ g along j will

be denoted Lyr w(—1) and PﬁR’W, respectively.
Lemma 5.13 adr spec r is an isomorphism of filtered F-crystals over R.

Proof Let R(*‘Qn be the ring of functions on the rigid analytic space over Wy
attached to Spf R. Then, by [17, 3.1], there exist unique F-equivariant, hori-
zontal isomorphisms that reduce to the identity along j*:
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Lar,w(=1) ®w RG' = Lar gy (=1);

2 an = 2
PR w®w Ry — PdR,R@*

Here, we equip the left hand sides with the constant connection 1 ® d and the
constant F-structures induced from the ones on Lgr w(—1) and PﬁR’ W

Since agr, Rg is horizontal for the connection, it now suffices to check that
the induced isomorphism

oar. Wy ¢ Lar.wg (—1) = Pcle,WQ
is a map of F-isocrystals over W, and this follows from (5.9). |

Let T — I\N/IZd,]Fp be an étale map with T a scheme. Then one can also

consider the crystalline realization Pgris,T of the primitive cohomology of

the universal family X7 — T': This will be a crystal of vector bundles
over (T'/Zp)cis- At the same time, one also has the crystal Lis 7(—1) over
(T/Zp)cris- In fact, both these crystals have the additional structure of an F'-
crystal. That is, if Frr : T — T is the absolute Frobenius on 7', then we have

natural maps Fri. P2, — P2. and Fr} Legs(—1) — Leris(—1).

Corollary 5.14 agr induces a canonical isomorphism of F-crystals

Leris 7(=1) = Pl 1
Proof If T is smooth (this is always the case unless v,(d) = 1), then this
follows from (5.11) and (5.13). Indeed, working locally if necessary, we can
assume that 7 lifts to a smooth map 7' — MZd,Zp- Now, one can use the
classical equivalence of categories between crystals on 7" and vector bundles
over T with integrable connections.

Suppose now that v,(d) = 1 and that 7" is not smooth. Then, according
to (3.9), T has at worst isolated singular points with quadratic singularities.
Let 75 C T be the smooth locus. The result now follows from the fact that
restriction of crystals of vector bundles from (7'/Zp)cris to (T5™/Zp)cris 1s a
fully faithful operation. O

Proof of (5.8) It is enough to show that, for every prime p > 2, and every
closed point s € Moy (F ), the induced map of complete local Z ,-algebras

o~

O5(La).%5(s) = Oy s

is an isomorphism. For simplicity denote this map by R — R’.
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Both R and R’ are complete local Noetherian domains of the same dimen-
sion, namely 19, so it is enough to show that the induced map of tangent spaces
tr — tg/ is anisomorphism. But, by (5.11), both #g and ¢/ can be canonically
identified with the space

|Isotropic lines L C PﬁR,S ® Fp [€] lifting FzP(%R,s ]

Under these identifications, the map on tangent spaces is simply the identity.
This can be checked, for example, by lifting to characteristic 0. O

Fix a prime p > 2. Given any neat compact open K C K, with K, =
K, p» Moy, K.Z(p) admits a (non-canonical) section to MZd,Z(,,)-

Corollary 5.15 The induced map LIIES : MSd,K,Z(,,) — Sk (Lq)(p) is an open
immersion.

Proof Clearly, L%S is étale. Therefore, by [24, 16.5], there exists a finite
Sk (La)(p)-scheme 2 and a factoring as below, where the top arrow is a
dense open immersion.

o
M2d,K,Z(p) — Z

KS

K (La)(p)-

. . KS . o .
Now, as seen in the course of proving (5.3), ("¢ restricted to M3 4. 1san

open immersion. Therefore, so is the restriction of LIIESQ to M3, - Using the
normality of .k (Lg)(p), we now find that the finite map 2° — Sk (La)(p)
must be an isomorphism onto a union of connected components of .7k (Ly) (p)-
In particular, the restriction of t%s to M3 d.K.Zp, must be an open immersion.

O

Corollary 5.16 For every p > 2, M3, F, is a quasi-projective Deligne-

Mumford stack over I ,. Moreover, the Hodge bundle v = F ’H (%R F, is ample
over M3, F, Ifvp(d) < 1, then M3, F, is geometrically irreducible.

Proof The quasi-projectivity is immediate from (5.8) and the quasi-projectivity
of S(La)¥,-

To show ampleness of w it suffices by (5.11) to show the ampleness of
F'Lar r,. This follows from [31, 4.18].
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Suppose now that v,(d) < 1. Let K be as in (5.15). Then L; is maximal
at p, and so the irreducible components of Sh K(Ld)@ and .Yk (Ld)( p).F, are
in natural bijection [31, 7.6]. From this and (5.15), we find that the closure in
M,, 7 of an irreducible component of M, 5 contains at most one irreducible
component of M, 4F, So, to show the 1rredu01b111ty of M,,. F,’ it suffices to

show that of My ;3 but this was already observed in the proof of (5.3). m|

Theorem 5.17 Given any field k of odd characteristic p and a polarized K3
surface (X, &) over k of degree 2d, there exists a finite separable extension k' | k
and an abelian variety A over k', the Kuga—Satake abelian variety, equipped
with an action of the Clifford algebra C(Lg), which enjoys the following
additional properties:

(1) Fix a separable closure kP of k. For every prime € # p, there exists an
isomorphism of Zg-modules

Hyy(Auer, Ze) = C(PH(Xpo, Zu(1))).

Here, the right hand side denotes the Clifford algebra attached to the
quadratic lattice P Hézt (step , Zyg(1 )). Moreover, let kP be a perfect closure
of k'; then there exists an isomorphism of W (k”)-modules

Agr | W (kP)) = C(PHfm(ka/W(kP))(l)).

CI‘lS (

(2) For all primes £ # p, the algebra
C(Ld) ® Z@ C End( (Aksep Z[))

is Galois-equivariantly identified with C(P Hézt(step, Zg(l))) acting on
itself by right translation via the isomorphism in (1). Similarly, C(Lg) ®
W (kP) is F-equivariantly identified with C(PH2 (Xkr/ W(kp))(l))

Cris
(3) The action of C (P Hézt(step, Ly (1))) on itself by left translations induces,
via (1), a Galois-equivariant embedding
PHZ(Xpse, Ze(1)) € Endcry) (HL (Axser, Zy)).
Similarly, there is an F -equivariant embedding

PHZ(Xer/W(KP)) (1) C Endery) (Hoi(Arr / W (KP))).

(4) Let L(A) C End(A) be the sub-space of endomorphisms whose cohomo-
logical realizations lie in the image of PHézt(step, Zg(l)) forall ¢ # p,
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Xxr/ W(kp)) (1). Then there is a natural

as well as in the image of P Cns(

identification
Pic(Xy) D (£)F = L(A)

compatible with all cohomological realizations.

Proof After replacing k by a finite separable extension if necessary we can
assume that (X, &) arises from a point s € |\7|2d (k) that lifts to a k-valued point
of .7 (Ly). To this lift, we can attach the Kuga—Satake abelian variety AKS with
properties (1), (2) and (3). The integral crystalline compatibility here follows
from (5.14).

It still remains to show (4). For this we observe that, given a special endo-
morphism f € L(A?S) = L(s), the deformation space of the triple (X, &, f)
admits a flat component. Indeed, by (5.8), we can identify the complete local
ring of Mzd at s with that of .#’(L,), and so the claim follows from [31, 7.18].

We see therefore that there exists a lift (X 5 f ) over a characteristic O field
F attached to a point s € Mzd(F ) lifting 5. Here we have:

~ Lefschetz (1,1)
—_—5

Pic(X) D (€)* AH(P2)

= AH(Ly) N End(AS®) = L(ASS).

See (2.4) and (4.4) for the notation. In particular, there is a unique element of
(£)* mapping to f under this isomorphism. Reducing back over k shows that
there is a unique element of (£) C Pic(X) that has the same cohomological
realizations as f.

Repeating this step for all f € L(A?S) shows that we have an inclusion
L(A?S) — (& )L compatible with cohomological realizations.

Similarly, given a class n € (& )L C Pic(X), the deformation space of
(X, &, n) again admits a flat component; cf. [27, A.1]. Repeating the same
argument as above gives us an inclusion going the other way, and so finishes
the proof. O

Remark 5.18 1In the literature (cf. for example [10], [1]), one usually finds the
even Clifford algebra in place of the full Clifford algebra that we have chosen
to use. As in [8, 3.3], we do this to ensure that the statement in (3) above is
not too unwieldy.

Remark 5.19 In fact, one can show more. For every map T — My,, we have
a canonical identification:

L(T) = (§)7 C Pic(X7/T).
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Here, L(T) is the space of special endomorphisms over T viewed as a a scheme
over ..

Indeed, the functors 7 +— L(T) and T +— (§)% are both representable,
unramified, and locally of finite type over M,,. Moreover, it is easy to deduce
from the above argument that, for any field k, there is a canonical bijection
between their k-valued points. In addition, one sees using deformation theory
that, given a k-valued point of either stack, the complete local ring at that point
is canonically isomorphic to the complete local ring at the associated k-valued
point of the other stack. Using this and Artin approximation, one can glue
together a canonical isomorphism from one stack to the other.

Remark 5.20 Notice that we did not need the full force of the étaleness of (X5
in the proof above. All we needed was for the intersection of the deforma-
tion space of a polarized K3 surface with the deformation space of a special
endomorphism to admit a flat component. This weaker condition might still be
checkable in situations where the Kuga—Satake period map is not expected to
be étale, such as in the context of the Catanese-Ciliberto surfaces considered
in [29].

5.21.1In[46,4.2], Rizov shows that, when p 1 d, the Kuga—Satake construction
is compatible with the theory of canonical lifts for ordinary varieties. This
continues to hold in our more general situation. Suppose that (X, &o) is a
polarized K3 surface over a perfect field k of characteristic p, and suppose
that Xg is ordinary. Let (X, &) be the canonical lift (cf. loc. cit.) of (Xg, &)
over W (k). After replacing k by a finite extension, if necessary, we can assume
that there is a Kuga—Satake abelian variety Ay over k attached to (Xo, &), as
in Theorem 3. There is also an algebraizable deformation A of Ay over W (k)
attached to the canonical lift (X, &).

Proposition 5.22 Ag is ordinary and A is its canonical lift.

Proof The proof of [46, 4.2.2] goes through verbatim. We recall it here briefly
for the convenience of the reader. That A is ordinary was already observed in
the course of the proof of (5.10). Via Serre—Tate co-ordinates, the deformation
space of A is naturally identified with a formal torus ¥ over W (k). Nygaard has
shown in [36, 2.7] that in this situation A has to be isogenous to the canonical
lift, implying that it corresponds to a torsion point of T. However, the only
torsion point of ¥ defined over W (k) is the identity, which corresponds to the
canonical lift of Ag. O

6 The Tate conjecture
Let L be a quadratic lattice as in Sect. 4 satisfying the conditions of (4.5), and
let .7, .# be the attached integral models over Z[2~'] of Sh(L) and Sh(L),

respectively. Fix a prime p > 2.
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6.1. Suppose that we have s € 2 (Fp), and suppose that s in fact arises from
a point s defined over the finite field F . Then, for each £ # p and each m
such that r|m, the p™-power Frobenius Fr,, acts on Hy ; and on L, ;. We will
write V¢ ¢ for the Qg-vector space Ly s @ Q.

Forany m € Z>, set Z,r = W(IF,m), and let Q,» be its fraction field. We
have the crystalline realization Lyis s: this is a Z ,r-module of endomorphisms

of the Z,r-module H cis 5. Set Veris s = Leris,s [%] For each f such that r | £,
let

F,=1
(me ®Qpr Vcris,s) - me ®Qpr Vcris,s

denote the Q,-subspace of F;-equivariant endomorphisms. For any prime £,
set

dimg, (lim  V{"="),if¢ # p;
—>r|m
dimg, (lim  (Qp» ®q,, Veis.s) F5=h), ife = p.

>r|m

I’g:

From now on, we will maintain:
Assumption 6.2 ({-independence) ry is independent of £.

Remark 6.3 This assumption should always hold by results of Kisin [21].
Also, by [19], it will hold if one can realize {{V ¢ s}e-p, Veris,s } as the family
of cohomological realizations of a motive over [ r.

Theorem 6.4 (1) If £ # p, the natural map

L(AXS)® Q- lim vy

—>r|m

is an isometry of Q¢-quadratic spaces.
(2) The natural map

LA ®Q, - lim (@ @, Veris.) ™!

—>rm
is an isometry of Q ,-quadratic spaces.

Remark 6.5 Given our standing assumption (6.2), each of the assertions of
the theorem is equivalent to the following statement: rk L(A?S) = r, where
r = rg, for one (hence any) prime £.
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The proof of this theorem will be given below following (6). As noted in
the introduction, the flexibility of working with arbitrary orthogonal Shimura
varieties is important to our method. It enables us to make the following crucial
reduction:

Lemma 6.6 We can assume that L is self-dual at p and that L(A?S) # 0.

Proof Choose any non-zero positive definite quadratic space A over Z such
that V' = V @& A admits a lattice L’ that is self-dual at p. It is always possible
to find such a A; cf. [31, 6.8]. Attached to this is a map of (smooth) integral
canonical models .¥ — . (L’). Let s be the image of s in . (L’). Set

Fr,,=1

VI e £ p:
dim@p (li_r>nr|m(Qp”’ ®Qpr iv/cris,E')F‘;:l) , ifl=p

dimg, (lim

re =

Then, by (4.9), we have, forall ¢, e =re+rk A. Therefore, the assumption
(6.2) holds for s € y(IE‘p) if and only if it holds for s € Y(L Y(Fp).
Moreover, by (4.9), we have

L(ASS) = A+ ¢ L(A%S).
So we find that (6.4) holds for 5 if and only if it holds for s. O

6.7. Following this lemma, we can and will maintain the assumptions that L
is self-dual at p and that L(AKS) # 0.

For ¢ # p and allm € Z-¢ such thatr | m,let Iy, C Gz = GSpin(Vy )
be the commutant of Fry,. Since Fry, is a semi-simple element, /; ,, is a reduc-
tive sub-group of GSpin(V ). In fact, for m divisible enough, /, ,, does not
depend on m. From now on, we will fix m such that Iy ,, = I, for all
positive integer multiples m’ of m. Note that, for such m and m’, we have

Fr,,/=1 Fr,, =1
VZ s - VZ,s

We will write /; for the group Ig,m.S
Frm 1

Lemma 6.8 For every £ # p, V
tation of 1.

is an absolutely irreducible represen-

Proof Letq = p™.Fix £ # p,and let 1, &;"', ..., o' € Q, be the distinct

=
eigenvalues of Fr,, acting on V. Since Fr,, is semi-simple, for £ # p, the

5 More canonically, we can take Iy to be the direct limit |, I¢ ;.
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image of I, ® Q; in SO(V“’@) is the product

Frm_l Fry, —al
SO li s Q H GL Z 5,Qy

From this description, the lemma is immediate. O

6.9. Let Aut® (A?S) be the group scheme of units in the ring End(AfS) ® Q:
this is an algebraic group over Q. For £ # p, there is a natural embedding of
algebraic (Qg-groups

ie : Aut®(AX%) ®g Q¢ — GL(H ., ® Q)

defined by the functoriality of £-adic homology.
Similarly, if Q‘; is the fraction field of W (IF ), we have a natural embedding
of algebraic Q;-groups

ip: Aut®(AL%) ®g Q) <> GL(H crig 5,q1)-

Let I? C Aut® (Ai,(s) be the largest closed sub-group that maps into Gy
under iy for each £ # p, and let I C I? be the largest closed sub-group
mapping into GSpin(V ¢rs,5) under i .

We will need the following proposition:

Proposition 6.10 (Kisin) Suppose that £ # p is a prime such that Gy is split
and such that all the roots of the characteristic polynomial of Fr,,, are contained
in Q.9 Then the natural map lg, — Iy is anisomorphism of algebraic groups

over Q.

Proof This is proven in [21, 2.1.7] via a group-theoretic reinterpretation of
Tate’s original argument for the main theorem of [48].

Given the importance of the result, we will give a quick recap of Kisin’s
proof. It does not require any of the more advanced machinery in [21] and
reduces to a statement that can be found in [20].

Consider the £-adic manifold 7 (Qg)\7¢(Q¢): It suffices to prove that this is
compact. Indeed, it will then follow (cf. [6, 9.3]) that /g, contains a sub-group
H C I, that is maximal among sub-groups of /, that are connected, solvable,
and admit a maximal torus split over Q;. Now, our hypotheses on the prime £
imply that I, is split, and so H is simply a Borel sub-group of /,. Therefore,
the homogeneous space I, \/; is projective over Q.

6 Such a prime always exists; in fact, the set of such primes has positive density.
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Since it preserves a polarization on Ai(s, I is a reductive group over Q (use
the positivity of the Rosati involution). Therefore, the homogeneous space
Ig,\1¢ is also affine, and so must be finite. Since Iy is connected [cf. the
description in (6.8)], it has no proper sub-groups of finite index. The proposi-
tion follows.

It remains to prove the crucial compactness statement. For this, it will be
helpful to consider the full prime-to-p tower:

Sp = Lﬂl yI?PI?L,,,(L)(p)-
EPCE;(A;)

The construction of 5717 via the embedding of Shimura data (4.2) equips it with
an unramified map to the moduli space S, of triples (A, A, ), where (A, A) is
a polarized abelian scheme, defined up to prime-to-p isogeny [31, 3.7], and

n:C(L)® AL = TP(A)g

is an isomorphism of A?-sheaves carrying v to an A?’ *_multiple of the Weil

pairing on the prime-to-p Tate module TP?(A). To be more precise, what we
actually have is a compatible family ([]xr), where, for each compact open
open K7 C Gy, (A?), [n]icr is a KP-orbit of such trivializations 7.

Choose a lifting of s to a point of %(Fp). This gives us a trivialization
&1 C(L) @ AT = H,r,

with the additional property that it preserves G-structures: There exists
an idempotent operator 7 on End(C(L))Z(p) with image LZ(p) such that
GSpin(L)Z(p) can be identified with the sub-group of GL(C(L))Z(p) that con-
sists of automorphisms which commute with right multiplication by C(L),
preserve the Z/2Z-grading, and stabilize the operator 7. The isomorphism &g
now commutes with the C (L)-action, preserves the Z/27-grading, and carries

the operator 7 to the projector & AP,s OD H A5

We will now define amap j : I;(Qy) — ,Yz, (Fp). Let A be the polarization
on AES. Giveni € 1;(Qy), the image of js(i)in S, (Fp) will correspond to the
triple (AKS, A5, i o &,). Here, we are viewing i as an automorphism of H A
by letting it act trivially on H g, for €' # .

__ Since post-composition by i can be viewed as Hecke translation by 8;1 igg €
G(Qy), we find that the above assignment lifts to the desired map J.
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We claim that j; factors through an injective map

TQM\(Qp) = 7,(F)p).

This will complete the proof of the proposition. Indeed, I, commutes with
Fr yn, for all n divisible enough. Therefore, for any neat compact open sub-
group KP C G(A?), the image of j;(1;(Qy)) in 575 (L)(Fp) will lie in the
finite set of I ,n-valued points, for n sufficiently divisible. This means that
I (@Q)\1,(Qy) is pro-finite and hence compact.

To prove the claim, suppose that we have i1, i» € 1;(Q¢). The images of the
points jg(i1) and jg (i) in SP(FP) correspond to the triples (Afs, Mg, Ik O &g),
for k = 1, 2. It follows from the moduli description that these two points are
equal exactly when there is a prime-to-p isogeny f : AKS — AKS necessarily
unique, such that, for every compact open ¥ C Gy, (A?), foijoggandipoeg
are in the same KCP-orbit. It is easily seen that, for any ¢ # p, the ¢'-adic
realization of such an f must lie in G (since it does so ‘modulo K?’ for any
compact open K7 C Gy, (A?)).

In sum, we find that the composition

Qo) > Zp(Fp) > S,(F))
factors through an injective map:
IP@\1e(Qp) > Sp(F)p).

Given i; and i, as above with the same image in SP(FP), consider the
unique isogeny f € I7(Q) with fi; = ip. To finish, we have to prove the
following assertion: In this situation, js(i1) = js(i2) if and only if f € I(Q);
or, equivalently, if and only if the crystalline realization of f preserves the
operator T crig s - _

This is now a question concerning the fibers of the map ./, — S, and
is the true geometric content of the proposition. So, fix a point t € S), (Fp),
admitting a lift s € % F p)- This lift equips the abelian variety A; attached to
t witha C(L)-action, a Z/27Z-grading and also gives us the crystalline operator
Teris s € D(AN(W)P22), _

Let R, (resp. R;) be the complete local ring of S), (resp. .),) at t (resp. §).
Then we claim: Rj is aquotient ring of R; that determines, and is determined by,
the additional structures on A;: namely, the grading, the C (L)-action and the
operator T s s. This is an immediate consequence of the explicit description
of these rings [31, 4.7,4.12], which follows from the work of Faltings and
Kisin.

@ Springer



The Tate conjecture for K3 surfaces 663

As a consequence, we obtain: Given another lift 5’ of 7 to 5%,(]1317), we have
§ = §" if and only if g5 = s 55 of. [21, 1.3.11]. Applying this with
§ = js(i1) and §" = js(ip), we now find that js(i1) = js(i») if and only if:

®(2,2
f(”cris,s) = f(ncris,js(il)) = Tcris, j, (i) = Teris,s € Hcri(s,s )-

Proof of (6.4) For £ # p, the map
L(ASS) @ @ —» v

is a map of I ® Qy-representations, and so, by (6.10), for a particular choice
Fr,,=1
S

of £, it is in fact a map of I,-representations. But now, by (6.3), V, is an

5

irreducible representation of ;. Since L(Afs) # 0, this implies that the map
must be an isomorphism for this choice of £. By (6.5), this finishes the proof
of the theorem. O

The following corollary is inspired from [13, §3].

Corollary 6.11 Suppose that the L-independence Assumption (6.2) holds at
every point in y(Fp). Let s — . be a point defined over a finitely generated
extension of ¥, and let s — S bea geometric point above s. Then, for each
prime £ # p, the natural map

is an isometry of Q¢-quadratic spaces.

Proof We can assume that k(s) = k(X) is the function field of a smooth, geo-
metrically connected variety X over [F;, equipped with an [ -valued rational
point xo. We can also arrange things so that s arises from amaps : X — 7,
and thus specializes to an IF,-valued point s9 = s o xo. By shrinking X if
necessary, we can further assume that

End(AXS) = End(AXS).
By the definition of specialness, we have:
L(AX®) = End(A¥%) N L(AKS) C End(A%S). (6.1)

Therefore from (6.4), we find, for a geometric point 5o lying above so:

LA @ Q, = (End(A%s) ® Qg) NVis, CEnd(Hs) ® Q. (6.2)
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By [53], we have, for any ¢ # p:

End(4%%) ® Q¢ = Endauwe/kesy (Hes) ® Q. (6.3)
Combining this with (6.2) gives us the result. O
6.12. We can now easily prove the Tate conjecture for K3 surfaces:

Proof of Theorem 1 After replacing k by a finite separable extension, we can
assume that X admits a polarization & of degree 2d, and that (X, &) corre-
sponds to a point s € My (k). After a further finite separable extension of k,
if necessary, we can assume that it lifts to a point in . (Lg) (k).

If k is finite, the theorem is immediate from (5.17) and (6.4). The required
£-independence hypothesis (6.2) is valid in our case because of the obviously
motivic origin of Vs = P7 (1); cf. (6.3).

For infinite &, the result follows easily from the proof of (6.11), once we
observe that the argument there only needs a smooth open neighborhood U C
S (Lg) of s such that the ¢-independence hypothesis holds at some closed
point of U. O

6.13. We quickly sketch how the above ideas apply to cubic fourfolds. Let My
be the even rank 2 Z-lattice equipped with the bi-linear form represented by

the matrix (% ;) Let M be the quadratic Z-lattice:

M=EP* U ¢ M.

This is a signature (20, 2) lattice that is maximal and is self-dual over Z[671].

Let CF be the moduli stack of cubic fourfolds over Z[271]. Over C, we have
a Kuga—-Satake map CF¢c — Sh(M)c constructed using primitive degree-4
cohomology, where, once again, CF is a twofold cover of CF trivializing the
determinant of primitive cohomology. Using the fact that this map is given via
an absolutely Hodge correspondence [1, § 6], just as in (5.4), we can descend
the Kuga—Satake map over Q: C~FQ — Sh(M).

Let (+1) (resp. (—1)) be the self-dual odd positive (resp. negative) Z-lattice
of rank 1, and set

M =+ @ (—1)%2.

This is a self-dual lattice of signature (21, 2). It is shown in [16, 2.1.2] that
there exists m € M’ with m - m = 3 such that M is isometric to (m)~ c M’.
Then, for any p > 2, just as we did for K3 surfaces in Sect. 3, we can define
a notion of K ”-level structure for cubic fourfolds over Z,) using the lattice
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M’ and the distinguished element m € M’. This gives us a finite étale cover
CFK,Z(,,) — CfFZ(p). Since CNFK,Z(p) is smooth over Z,), we can again use the
theory of integral canonical models to find a natural extension of the Kuga—
Satake map over Z271: CF — < (M). We now have:

Theorem 6.14 (1) The period map CF — .#(M) is étale. For any p > 2 and
K? small enough, the map Cﬁ‘FK,Z(p) — Sk (M)(p) is an open immersion.

(2) Given any cubic fourfold X over a field k of odd characteristic, there exists
a finite separable extension k'/k and an abelian variety A over k' such
that the numbered assertions of (5.17) hold with P H? replaced by P H*
and Pic(Xy) replaced by CH>(Xy).

(3) The Tate conjecture for cubic fourfolds holds in co-dimension 2 over fields
of odd characteristic. That is, given a cubic fourfold X over a finitely
generated field k of odd characteristic with absolute Galois group I' =
Gal (k%P / k), the L-adic cycle class map

CHX(X) ® Q¢ — Hj(Xpser, Qe(2))"

(S

is an isomorphism for all £ # p.
(4) CFg,, is geometrically irreducible for every p > 2.

Proof (Sketch of proof) If we look back at the strategy used for K3 surfaces,
we see that the main step is to show that the period map

CF — (M)

is étale. Indeed, once we know this, the Torelli theorem for cubic fourfolds [52]
will imply that the induced map CFg Zipy = Sk (M) (p) is an open immersion
for K7 small enough. The remaining statements are proven just as for K3
surfaces. We only note that, for the Tate conjecture, we have to appeal to
the Hodge conjecture for co-dimension 2 cycles on cubic fourfolds over C,
which is known; cf. [1, Appendix 2] or [54]. This plays the same role for cubic
fourfolds as Lefschetz (1,1) did for K3 surfaces.

To prove étaleness, we note that CF is smooth and that the tangent space at
any point s : Speck — CF attached to a cubic fourfold X /k is given by:

Defx (k[€]) = ’Isotropic lines L C Pjy (X/k) ® k[e] lifting F4H5‘R(X/k)].

This is shown in [25, § 3]. So, just as in the proof of (5.8), it is enough to prove
the integral crystalline compatibility of the Kuga—Satake construction. We do
this using the same strategy: prove it directly for ordinary cubic fourfolds as in
(5.10) and then propagate it everywhere using the density of ordinary points
asin (5.11). |
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