
Invent. math. (2015) 201:519–559
DOI 10.1007/s00222-014-0555-7

Construction of the Witten–Reshetikhin–Turaev
TQFT from conformal field theory

Jørgen Ellegaard Andersen · Kenji Ueno

Received: 5 February 2014 / Accepted: 18 October 2014 / Published online: 19 November 2014
© Springer-Verlag Berlin Heidelberg 2014

Abstract In Andersen and Ueno (J Knot Theory Ramif 16:127–202, 2007)
we constructed the vacua modular functor based on the sheaf of vacua the-
ory developed in Tsuchiya et al. (Adv Stud Pure Math 19:459–566, 1989)
and the abelian analog in Andersen and Ueno (Int J Math 18:919–993, 2007).
We here provide an explicit isomorphism from the modular functor underly-
ing the skein-theoretic model for the Witten–Reshetikhin–Turaev TQFT due
to Blanchet, Habbeger, Masbaum and Vogel to the vacua modular functor.
This thus provides a geometric construction of the TQFT first proposed by
Witten and constructed first by Reshetikhin–Turaev from the quantum group
Uq(sl(N )).

1 Introduction

This is the main paper in a series of four papers (the previous three being
[8,9,15]), where we provide a geometric construction of modular functors
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520 J. E. Andersen, K. Ueno

and topological quantum field theories (TQFT’s) from conformal field theory
building on the constructions of Tsuchiya et al. [48] and [53] and Kawamoto
et al. [33]. In this paper we provide an explicit isomorphism of the modular
functors underlying theWitten–Reshetikhin–Turaev TQFT forUq(sl(N )) [40,
44,45,50,51,60,62] and the vacua modular functors constructed in [9], based
on the conformal field theory for the Lie algebra sl(N ) constructed in [48,
52,53] and the one dimensional ghost theory constructed in [33]. We use the
skein theory approach to the Witten–Reshetikhin–Turaev TQFT of Blanchet
et al. [23–25] together with work of Wenzl [59] and Kanie [32] to set up this
isomorphism. Since the modular functor determines the TQFT uniquely, this
therefore also provides a geometric construction of the Witten–Reshetikhin–
Turaev TQFT. That there should be such an isomorphism is a well established
conjecture which is due to Witten et al. (see e.g. [21,36,46,61]).

Let us now outline our construction of the above mentioned isomorphism
between the two theories. In [8] we described how to reconstruct the rank one
ghost theory first introduced by Kawamoto et al. [33] from the the point of
view of [48,53], which in turn extends the works [35,42,43,47,56]. In [9] we
described how one combines the work of Tsuchiya et al. [48,53] with [8] to
construct the vacua modular functor for each simple Lie algebra and a positive
integer K called the level. See also [55]. Let us here denote the theory we
constructed for the Lie algebra sl(N ) and level K by V†

N ,K . We recall that
a modular functors is a functor from a certain category of extended labeled
marked surfaces (see Sect. 2) to the category of finite dimensional vector
spaces. The functor is required to satisfy Walker’s topological version [57] of
Segal’s axioms for a modular functor [46] (see Sect. 2). Note that we do not
consider the duality axiom as part of the definition of a modular functor. We
consider the duality axioms as extra data. For modular functors which satisfies
the duality axiom, we say that it is a modular functor with duality. In [23]
Blanchet constructed a modular tensor category which we will here denote
HSU(N )

K (see Sect. 3). It is constructed using skein theory and one can build a
modular functor and a TQFT from this category following either the method
of [25] or [49]. We denote the resulting modular functor V SU (N )

K . It is easy to

check that the two modular functors V†
N ,K and V SU (N )

K have the same label set
�N ,K . In this paper we explicitly construct an isomorphism between these to
modular functors.

Theorem 1.1 There is an isomorphism of modular functors

IN ,K : V SU (N )
K → V†

N ,K ,

i.e. for each extended labeled marked surface (�, λ) we have an isomorphism
of complex vector spaces
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The WRT-TQFT from conformal field theory 521

IN ,K (�, λ) : V SU (N )
K (�, λ) → V†

N ,K (�, λ),

which is compatible with all the structures of a modular functor.

The choices involved in our construction of this isomorphism is only a non-
zero complex scalar for each element in the label set �N ,K (see Definition
5.3). If we multiply the choice for IN ,K by the non-zero complex scalars cλ

for each label λ ∈ �N ,K , then the new isomorphism ĨN ,K for any labeled
marked surface (�, λ) is given by

ĨN ,K (�, λ) =
∏

p∈P

cλ(p) IN ,K (�, λ),

where P is the set of labelled marked points of �. Hence up to these simple
automorphisms, which any modular functor has, the isomorphism is indepen-
dent of these choices.

The main idea behind the construction of IN ,K is to use the GNS construc-
tion applied to the infinite Hecke algebra with respect to the relevant Markov
traces as was first done by Jones [31] andWenzl [59]. On the skein theory side,
we identify the usual purification construction in terms of the GNS construc-
tion. This allows us to show that the resulting representations of the Hecke
algebras are isomorphic to Wenzl’s representations. Analyzing the proper-
ties of this isomorphism further we find that it determines isomorphism from
certain morphism spaces in the category HSU(N )

K to Wenzl’s representation
spaces. On the vacua side, we know by the results of Kanie [32] (see also [54])
that the space of vacua gives a geometric construction of Wenzl’s represen-
tations. In fact Kanie constructs explicit isomorphisms between certain space
of vacua and Wenzl’s representations. Combining the isomorphisms arising
from the above mentioned analysis of the GNS-constructions with Kanie’s
isomorphisms, we arrive at the very important isomorphisms between certain
morphism spaces of the category HSU(N )

K and certain spaces of vacua given in
Definition 6.1. From the very way these isomorphisms are constructed, they
provide an identification of certain factorizations on the skein theory side to
those on the vacuamodular functor side as stated in Theorem 6.4. By following
Turaev’s construction of amodular functor from amodular tensor category, we
build the the modular functor V SU (N )

K from the modular category HSU(N )
K and

the isomorphism from Definition 6.1 now determines all the needed isomor-
phism between the vector spaces V SU (N )

K and V†
N ,K associates to all labeled

marked surfaces. Theorem 6.4 is key in showing that this is indeed an iso-
morphism of modular functors in genus zero. The main result of [15] then
implies that the isomorphisms of modular functors (without duality) in genus
zero can be extended to surfaces of all genus. It is only after Theorem 1.1 has
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been established that we get the structure of duality and unitarity on the vacua
modular functor V†

N ,K , since we can use our isomorphism IN ,K to transfer

these two structures from V SU (N )
K to V†

N ,K . In fact at present we do not have a

geometric construction of a duality structure for V†
N ,K .

We have the following geometric application of our construction.

Theorem 1.2 The connections constructed in the bundle of vacua for any
holomorphic family of labeled marked curves given in [48] preserves projec-
tively a unitary structure which is projectively compatible with morphism of
such families.

This theorem is an immediate corollary of our main Theorem 1.1. By def-
inition V†

N ,K (�, λ) is the covariant constant sections of the bundle of vacua
twisted by a fractional power of a certain ghost theory over Teichmüller space
as described in [9]. Using the isomorphism IN ,K from our main Theorem 1.1,
we transfer the unitary structure on V SU (N )

K (�, λ) to the bundle of vacua over
Teichmüller space. Herewe have used the preferred section of the ghost theory,
to transfer the unitary structure to the bundle of vacua (see [9]). Since the uni-
tary structure on V SU (N )

K (�, λ) is invariant under the extended mapping class
group, the induced unitary structure on the bundle of vacua will be projectively
invariant under the action of the mapping class group. But since the bundle of
vacua for any holomorphic family naturally is isomorphism to the pull back
of the bundle of vacua over Teichmüller space, we get the stated theorem. As
a further application we get that

Theorem 1.3 The Hitchin connection constructed in the bundle H(K ) over
Teichmüller space, whose fiber over an algebraic curve, representing a point
in Teichmüller space, is the geometric quantization at level K of the moduli
space of semi-stable bundles of rank N and trivial determinant over the curve,
projectively preserves a unitary structure which is projectively preserved by
the mapping class group.

This is an immediate corollary of Theorem 1.2 and then the theorem by
Laszlo in [37], which provides a projective isomorphism of the bundle H(K )

with its Hitchin connection [30] and then the bundle of vacua with the TUY-
connections over Teichmüller space. In the paper [18] this unitary structure is
constructed explicitly for N = 2. We also get the following corollary

Corollary 1.1 The projective monodromy of the Hitchin connection contains
elements of infinite order for N and K /∈ {1, 2, 4, 8}.

Masbaum proved the corresponding result for the Witten–Reshetikhin–
Turaev Theory for N = 2 in [41]. This theorem is therefore an immedi-
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The WRT-TQFT from conformal field theory 523

ate corollary of Theorem 1.1 and the results of [7], which shows that Mas-
baum’s arguments for N = 2 implies the statement for any N for the Witten–
Reshetikhin–Turaev Theory. Prior to this, Funar proved, in the case of N = 2,
that the monodromy group was infinite for the same levels for the Witten–
Reshetikhin–Turaev theory in [26]. For a purely algebraic geometric proof of
this result for N = 2, see [38].

A further corollary is that the projective space of projective flat sections of
the bundle H(K ) over Teichmüller space of any closed surface � is isomor-
phic to the space PV SU (N )

K (�). Therefore we are allowed to use the geomet-
ric quantization of the moduli space of flat SU (N )-connections to study the
Witten–Reshetikhin–Turaev TQFT’s. We have already provided a number of
such applications, see e.g. [3–6,10–14,16,17,19].

The paper is organized as follows. In Sect. 2 we briefly recall the theory
of modular functors. Section 3 briefly describes, following Blanchet [23], the
modular tensor category HSU(N )

K using skein theory. In the following Sect. 4,

we define the modular functor V SU (N )
K which gives the skein-theoretic model

for Witten–Reshetikhin–Turaev TQFT [44,45,51] due to Blanchet et al. [24,
25]. In Sect. 5 we recall Jones andWenzl work on the representation theory of
the Hecke algebra and establish the needed relation between the skein theory
representations and Wenzl’s representations of the Hecke algebra. The genus
zero part of the isomorphism IN ,K between the modular functors V SU (N )

K and

V†
N ,K is provided in Sect. 6. It is recalled in Sect. 7 how we in the paper [15]

proved that such a genus zero isomorphism automatically extends to a full
isomorphism of modular functors, thus establishing our main Theorem 1.1.

2 Modular functors

2.1 The axioms for a modular functor

We shall in this section give the axioms for a modular functor. These are due
to Segal and appeared first in [46]. We present them here in a topological
form, which is due to Walker [57]. See also [28,34]. We note that similar,
but different, axioms for a modular functor are given in [49] and in [22]. The
authors are not aware of a proof of the equivalence of these definitions of a
modular functor. However, we will not need it in this paper.

For a closed oriented surface � of genus g we have the non-degenerate
skew-symmetric intersection pairing

(·, ·) : H1(�, Z) × H1(�, Z) → Z.

Suppose� is connected. In this case a Lagrangian subspace L ⊂ H1(�, Z)

is by definition a subspace, which is maximally isotropic with respect to the

123



524 J. E. Andersen, K. Ueno

intersection pairing. If � is not connected, then H1(�, Z) = ⊕i H1(�i , Z),
where �i are the connected components of �. By definition a Lagrangian
subspace is in this paper a subspace of the form L = ⊕i Li , where each
Li ⊂ H1(�i , Z) is Lagrangian.
For any real vector space V , we define PV = (V − {0})/R+.

Definition 2.1 A marked surface � = (�, P, V, L) is an oriented closed
smooth surface� with a finite subset P ⊂ � of points with projective tangent
vectors V ∈ �p∈P PTp� and a Lagrangian subspace L ⊂ H1(�, Z).

Definition 2.2 A morphism f : �1 → �2 of marked surfaces �i =
(�i , Pi , Vi , Li ) is an isotopy class of orientation preserving diffeomorphisms
f : �1 → �2 that maps (P1, V1) to (P2, V2) together with an integer s. Hence
we write f = ( f, s).

Let σ be Wall’s signature cocycle for triples of Lagrangian subspaces of
H1(�, R) (see [58]).

Definition 2.3 Let f1 = ( f1, s1) : �1 → �2 and f2 = ( f2, s2) : �2 → �3
be morphisms of marked surfaces �i = (�i , Pi , Vi , Li ) then the composition
of f1 and f2 is

f2f1 = ( f2 f1, s2 + s1 − σ(( f2 f1)∗L1, f2∗L2, L3)).

With the objects being marked surfaces and the morphism and their com-
position being defined as in the above definition, we have constructed the
category of marked surfaces.

The mapping class group �(�) of a marked surface � = (�, L) is the
group of automorphisms of �. One can prove that �(�) is a central extension
of the mapping class group �(�) of the surface � defined by the 2-cocycle
c : �(�) → Z, c( f1, f2) = σ(( f1 f2)∗L , f1∗L , L). One can also prove that
this cocycle is equivalent to the cocycle obtained by considering two-framings
on mapping cylinders (see [20]).

Definition 2.4 The operation of disjoint union of marked surfaces is

(�1, P1, V1, L1)�(�2, P2, V2, L2)=(�1 � �2, P1 � P2, V1 � V2, L1 ⊕ L2).

Morphisms on disjoint unions are accordingly ( f1, s1) � ( f2, s2) = ( f1 �
f2, s1 + s2).

We see that disjoint union is an operation on the category ofmarked surfaces.

Definition 2.5 Let � be a marked surface. We denote by −� the marked
surface obtained from � by the operation of reversal of the orientation. For a
morphism f = ( f, s) : �1 → �2 we let the orientation reversed morphism be
given by −f = ( f, −s) : −�1 → −�2.
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The WRT-TQFT from conformal field theory 525

We also see that orientation reversal is an operation on the category of
marked surfaces. Let us now consider glueing of marked surfaces.

Let (�, {p−, p+}� P, {v−, v+}�V, L) be amarked surface, where we have
selected an ordered pair of marked points with projective tangent vectors

((p−, v−), (p+, v+)),

at which we will perform the glueing.
Let c : P(Tp−�) → P(Tp+�) be an orientation reversing projective linear

isomorphism such that c(v−) = v+. Such a c is called a glueing map for �.
Let �̃ be the oriented surface with boundary obtained from � by blowing up
p− and p+, i.e.

�̃ = (� − {p−, p+}) � P(Tp−�) � P(Tp+�),

with the natural smooth structure induced from �. Let now �c be the closed
oriented surface obtained from �̃ by using c to glue the boundary components
of �̃. We call �c the glueing of � at the ordered pair ((p−, v−), (p+, v+))

with respect to c.
Let now�′ be the topological space obtained from� by identifying p− and

p+. We then have natural continuous maps q : �c → �′ and n : � → �′.
On the first homology group n induces an injection and q a surjection, so we
can define a Lagrangian subspace Lc ⊂ H1(�c, Z) by Lc = q−1∗ (n∗(L)). We
note that the image of P(Tp−�) (with the orientation induced from �̃) induces
naturally an element in H1(�c, Z) and as such it is contained in Lc.

Remark 2.1 If we have two glueing maps ci : P(Tp−�) → P(Tp+�),

i = 1, 2, we note that there is a diffeomorphism f of � inducing the identity
on (p−, v−)� (p+, v+)� (P, V ) which is isotopic to the identity among such
maps, such that (d f p+)−1c2d f p− = c1. In particular f induces a diffeomor-
phism f : �c1 → �c2 compatible with f : � → �, which maps Lc1 to Lc2 .
Any two such diffeomorphims of� induces isotopic diffeomorphims from�1
to �2.

Definition 2.6 Let � = (�, {p−, p+} � P, {v−, v+} � V, L) be a marked
surface. Let

c : P(Tp−�) → P(Tp+�)

be a glueing map and �c the glueing of � at the ordered pair ((p−, v−), (p+,

v+)) with respect to c. Let Lc ⊂ H1(�c, Z) be the Lagrangian subspace
constructed above from L . Then the marked surface �c = (�c, P, V, Lc) is
defined to be the glueing of � at the ordered pair ((p−, v−), (p+, v+)) with
respect to c.
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526 J. E. Andersen, K. Ueno

We observe that glueing also extends to morphisms of marked surfaces
which preserves the ordered pair ((p−, v−), (p+, v+)), by using glueing maps
which are compatible with the morphism in question.

We can now give the axioms for a 2 dimensional modular functor.

Definition 2.7 A label set � is a finite set furnished with an involution λ 	→ λ̂

and a trivial element 0 such that 0̂ = 0.

Definition 2.8 Let � be a label set. The category of �-labeled marked sur-
faces consists of marked surfaces with an element of � assigned to each of
the marked points and morphisms of labeled marked surfaces are required to
preserve the labelings. An assignment of elements of � to the marked points
of � is called a labelling of � and we denote the labeled marked surface by
(�, λ), where λ is the labelling.

Remark 2.2 The operation of disjoint union clearly extends to labeled marked
surfaces. When we extend the operation of orientation reversal to labeled
marked surfaces, we also apply the involution ·̂ to all the labels.
Definition 2.9 A modular functor based on the label set� is a functor V from
the category of labeled marked surfaces to the category of finite dimensional
complex vector spaces satisfying the axioms MF1 to MF5 below.

MF1

Disjoint union axiom The operation of disjoint union of labeled marked sur-
faces is taken to the operation of tensor product, i.e. for any pair of labeled
marked surfaces there is an isomorphism

V ((�1, λ1) � (�2, λ2))) ∼= V (�1, λ1) ⊗ V (�2, λ2).

The identification is associative.

MF2

Glueing axiom Let� and�c bemarked surfaces such that�c is obtained from
� by glueing at an ordered pair of points and projective tangent vectors with
respect to a glueing map c. Then there is an isomorphism

V (�c, λ) ∼=
⊕

μ∈�

V (�, μ, μ̂, λ),

which is associative, compatible with glueing of morphisms, disjoint unions
and it is independent of the choice of the glueing map in the obvious way
(see Remark 2.1). This isomorphism is called the glueing isomorphism and its
inverse is called the factorization isomorphism.
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MF3

Empty surface axiom Let ∅ denote the empty labeled marked surface. Then

Dim V (∅) = 1.

MF4

Once punctured sphere axiom Let � = (S2, {p}, {v}, {0}) be a marked sphere
with one marked point. Then

Dim V (�, λ) =
{
1, λ = 0
0, λ �= 0.

MF5

Twice punctured sphere axiom Let � = (S2, {p1, p2}, {v1, v2}, {0}) be a
marked sphere with two marked points. Then

Dim V (�, (λ, μ)) =
{
1, λ = μ̂

0, λ �= μ̂.

In addition to the above axioms one may has extra properties, namely

MF-D

Orientation reversal axiom The operation of orientation reversal of labeled
marked surfaces is taken to the operation of taking the dual vector space, i.e
for any labeled marked surface (�, λ) there is a pairring

〈·, ·〉 : V (�, λ) ⊗ V (−�, λ̂) → C,

compatible with disjoint unions, gluings and orientation reversals (in the sense
that the induced isomorphisms V (�, λ) ∼= V (−�, λ̂)∗ and V (−�, λ̂) ∼=
V (�, λ)∗ are adjoints).

and

MF-U

Unitarity axiom Every vector space V (�, λ) is furnished with a unitary struc-
ture

(·, ·) : V (�, λ) ⊗ V (�, λ) → C
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so that morphisms induces unitary transformation. The unitary structure must
be compatible with disjoint union and glueing. If we have the orientation
reversal property, then compatibility with the unitary structure means that we
have a commutative diagram

V (�, λ) −−−→∼=
V (−�, λ̂)∗

⏐⏐�∼= ∼=
⏐⏐�

V (�, λ)∗
∼=−−−→ V (−�, λ̂),

where the vertical identifications come from the unitary structure and the hor-
izontal from the duality.

3 The skein theory construction of modular categories

Let us briefly review Blanchet’s [23] constructions of the Hecke-category
and its associated modular tensor categories to fix notation and normalisa-
tion. This construction is really a generalization of the BHMV-construction
[25] of the Uq(sl2(C))-Witten–Reshetikhin–Turaev TQFT [44,45,51] to the
Uq(slN (C))-case. We give a slightly more direct construction of this category
and its associatedmodular functor, which implements skein theoretically some
of the abstract categorical constructions presented in [23,49]. This is done in
complete parallel to the N = 2 case treated in [25].

Throughout we will fix integers, N ≥ 2 and K ≥ 1. Let q be the following
primitive (N + K )’th root of 1 in C, q = e2π i/(K+N ). We will also need the
following roots of q, q1/2N = e2π i/(2N (K+N )) and q1/2 = e2π i/(2(K+N )). We
observe that the quantum integers

[ j] = q j/2 − q− j/2

q1/2 − q−1/2

are invertible if 1 ≤ j < N + K .

3.1 The Hecke algebra and Jones–Wenzl idempotents

Let Bn be the braid group on n strands. The standard generators of σi ∈ Bn ,
i = 1, . . . , n − 1 are given by the braids on n strands where the i’th strand is
crossing over the (i + 1)’th strand
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The Hecke algebra Hn is the following quotient of the group ring of Bn .

Definition 3.1 The Hecke algebra Hn is

Hn = C[Bn]/〈q1/2N σi − q−1/2N σ−1
i = (q1/2 − q−1/2)Id|i = 1, . . . n − 1〉.

The Jones–Wenzl idempotents of Hn are given explicitly as follows:

gn = 1

[n]!q
−n(n−1)/4

∑

π∈Sn

(−q)(1−N )�(π)/2N wπ

fn = 1

[n]!q
n(n−1)/4

∑

π∈Sn

q−(1+N )�(π)/2N wπ

where wπ is the positive braid associated to π and �(π) is the length of π and
the quantum factorial

[n]! =
n∏

j=1

[ j ]

is assumed to be invertible.
Following further Jones and Wenzl, we introduce the idempotents ei ∈ Hn ,

i = 1, 2, . . . , n − 1 given by

ei = q − q(N+1)/2N σi

q + 1
.

These idempotents satisfies the relations (H1) and (H2) from [59] and they
clearly also generate Hn . One can define a ∗-structure on Hn by the assignment
e∗

i = ei , i = 1, 2, . . . , n − 1.

3.2 Skein theory

Let D2 be the unit disc in the complex plane.

Definition 3.2 A framed set of points � is a finite set of points P ⊂ D2−∂ D2

together with oriented directions

vP ∈ P(Tp D2)×P

and signs εp attached to each point p ∈ P . For a framed set of points � in D2,
we denote by −� the same framed set of points, but with all signs negated.
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530 J. E. Andersen, K. Ueno

For the definition of an oriented ribbon graph R in D2 × [0, 1] with

∂ R = �0 × {0}
∐

−�1 × {0}

for two sets of framed points in D2, see pp. 31–35 in Turaev’s book [49]. We
just recall here that the signs at the boundary indicates the direction of the
band, positive for outgoing and negative for ingoing.

We are only interested in the equivalence class of the ribbon graph in D2 ×
[0, 1] up to the action of orientation preserving diffeomorphisms of D2×[0, 1],
which are the identity on the boundary and isotopic to the identity among such.

Definition 3.3 A ribbon graphs R in D2 × [0, 1] is called special if it only
contains coupons of the following type:

which has N incoming or N outgoing bands.

The label 1N on these coupons is as such immaterial, but will be justified
by the relations on them introduced below.

LetH (D2 × [0, 1], �0, �1) be the free complex vector space generated by
special ribbon graphs in D2×[0, 1], whose boundary is �0×{0} ∐−�1×{0},
modulo the following local relations

(1)

plus the two coupon relations:

We observe that if the algebraic number of points in �0
∐

(−�1) is not
a non-zero multiple of N , then all coupons of any special ribbon graph in
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(D2 × [0, 1], �0, �1) can be reduced away by the first of the coupon relations,
so certainly H (D2 × [0, 1], �0, �1) is in this case generated by ribbon links.
By Proposition 1.11 in [23] it also follows that no extra relations is obtained
from the second coupon relation, so thatH (D2 ×[0, 1], �0, �1) is in this case
isomorphic to the Homfly skein module of (D2 ×[0, 1], �0, �1) in the slN (C)-
specialization we are considering here. We further observe that if �0 = �1 then
framed braids spans H (D × [0, 1], −�0, �1).

We have the following fundamental theorem.

Theorem 3.1 The framed version of the Homfly polynomial which by defini-
tion satisfies the relations (1) induces by evaluation an isomorphism

〈·〉 : H (S3) −→ C

where H (S3) is the Homfly skein module of S3.

The Homfly polynomial was first introduced in [27].

3.3 The Hecke category H

TheHecke category H is defined as follows. The objects are pairsα = (D2, �),
where � is a framed set of points in the interior of the 2-disk D2. Themorphisms
Hom(α, β) = H(α, β), between two objects α = (D2, �0) and β = (D2, �1)

are

H(α, β) = H (D2 × [0, 1], �0 × {0} � −�1 × {1}).
There is a trace trN ,K

α on Hα = H(α, α) given by

trN ,K
α : Hα −→ H (D2 × S1) −→ H (S3) −→ C

The first map is obtained by glueing the bottom and top disk of D2 × [0, 1].
The second map is induced by the standard inclusion of D2 × S1 into S3 and
the last is induced by the framed Homfly polynomial. Define

〈·, ·〉 : H(α, β) × H(β, α) → C

by

〈 f, g〉 = trN ,K
α ( f g).

The definition of tensor product, braiding, twist and duality is straight forward
and explained in detail in [23], where the following proposition is established.
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Proposition 3.1 The category H with the above structure is a ribbon category.

The object consisting of the points−(n −1)/n, −(n −3)/n, . . . , (n −1)/n
framed along the positive real axis we denote simply n. We observe that Hn

is naturally isomorphic to H(n, n). The trace trN ,K
n defined above induces

therefore a trace on Hn .

3.4 Young symmetrizers

Let us now for each Young diagram define an object in the Hecke category
and the Aiston–Morton realization of the corresponding Young symmetrizer
following [1,2,23,29].

To a partition of n, λ = (λ1 ≥ · · · ≥ λp ≥ 1), n = λ1 + · · · + λp there is
the Young diagram of size |λ| = n:

For a Young diagram λ we use the usual notation λ∨ to denote the Young
diagram obtained from λ by interchanging the rows and columns.

Let now λ be a Young diagram, |λ| = n. Let�λ be the object in H obtained
by “putting λ over D2”, i.e. put a point at (k+il)

(n+1) if λ has a cell at (k, l), where
we index by (row, column). Let Fλ ∈ H�λ

be obtained by putting [λi ]! fλi

along row i in λ, i = 1, . . . , p and Gλ ∈ H�λ
be obtained by putting [λ∨

j ]!gλ∨
j

along colomn j , j = 1, . . . , p∨. Then ỹλ = FλGλ is a quasi-idempotent,
since by Proposition 1.6 in [23]

ỹ2λ = [hl(λ)]ỹλ,

where hl(λ) is the hook-length of λ. So when [hl(λ)] is non-zero we define

yλ = [hl(λ)]−1 ỹλ,

which is an idempotent. By Proposition 1.8 in [23], we have that

μ �= λ ⇒ yλH(�λ, �μ)yμ = 0

and

yλH�λ
yλ = Cyλ.
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3.5 �N ,K -completed Hecke category H�N ,K

Consider the following subset of Young diagrams

�N ,K = {
(λ1, . . . , λp) | λ1 ≤ K , p < N

}
.

We observe that [hl(λ)] is non-zero for all λ ∈ �N ,K . We now introduce
the �N ,K -completed Hecke category H�N ,K , whose objects are triples α =
(D2, �, λ) where λ = (

λ(1), . . . , λ(m)
)
, λ(i) ∈ �N ,K , and � = (�1, . . . , �m)

being a framed set of points in the interior of D2. We have an expansion
operation E which maps objects of H�N ,K to objects of H . For an object of
H�N ,K , we let E(α) = (

D2, E(�)
)
be the object in H , where E(α) is obtained

by embed �λ(i) in a neighborhood of �i according to the tangent vector of
�i . Then πα = yλ(1) ⊗ · · · ⊗ yλ(n) defines an idempotent in HE(α) and we
let H�N ,K (α, β) = πα H(E(α), E(β))πβ . By simply associating the Young
diagram � to all points, we have a natural inclusion of the objects of H into
the objects of H�N ,K . Moreover, for such objects, E is just the identity and the
hom-spaces between such are identical for H and H�N ,K . For any λ ∈ �N ,K ,
we simply write λ for the object in H�N ,K given by

(
D2, (0, v, +1), λ

)
, where

v is the direction of the positive real line through 0. The category H�N ,K

inherits the structure of a ribbon category from H .

3.6 The modular category HSU(N )
K

Wedefine the category HSU(N )
K to have the objects of H�N ,K and themorphims

given by

HSU(N )
K (α, β) = H�N ,K (α, β)

N �N ,K (α, β)

where

N �N ,K (α, β) =
{

f ∈ H�N ,K (α, β) | 〈 f, g〉 = 0, ∀g ∈ H�N ,K (β, α)
}
.

This construction on the morphisms is called “purification”, where one
removes “negligible” morphismsN �N ,K (α, β). We observe that H�N ,K (α, β)

is a sub-quotient of H(E(α), E(β)).
Let lm be the Young diagram with l columns containing m cells. The object

1 ⊗ · · · ⊗ 1

(l factors) in HSU(N )
K will simply be denoted l. We further use the notation
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N N ,K
n = N �N ,K (n, n).

For a Young diagram λ in �N ,K we define λ† ∈ �N ,K to be the Young
diagram obtained from the skew-diagram (λN

1 )/λ by rotation as indicated in
the figure below.

According to Theorem 2.11 in [23] we have that.

Theorem 3.2 The category HSU(N )
K with simple objects λ ∈ �N ,K and duality

involution λ 	→ λ† is modular.

Let n ∈ N and consider the decomposition

HSU(N )
K (n, n) =

⊕

λ∈�N ,K

HSU(N )
K (n, λ) ⊗ HSU(N )

K (λ, n),

which we have, since HSU(N )
K is a modular tensor category. Let

�n
N ,K = {λ ∈ �N ,K | n ≥ |λ| and N |(n − |λ|)}.

Let λ ∈ �n
N ,K . Then HSU(N )

K (n, λ) �= 0 and we let z(n)
λ ∈ HSU(N )

K (n, λ) ⊗
HSU(N )

K (λ, n) be such that

1n =
∑

λ∈�n
N ,K

z(n)
λ . (2)

We recall that there is a one to one correspondence between irreducible rep-
resentations of a finite dimensional algebra over the complex numbers and its
minimal central idempotents. Each subalgebra HSU(N )

K (n, λ) ⊗ HSU(N )
K (λ, n)

is the full matrix algebra, since HSU(N )
K (λ, n) is the dual of HSU(N )

K (n, λ) (see

Corollary 4.3.2 in [49]), so we conclude that the z(n)
λ , λ ∈ �n

N ,K are the min-

imal central idempotents of HSU(N )
K (n, n) and HSU(N )

K (n, λ), λ ∈ �n
N ,K , are

the irreducible modules of HSU(N )
K (n, n). We have thus proved the following

proposition.
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Proposition 3.2 We have that HSU(N )
K (n, λ), λ ∈ �n

N ,K , are the irreducible

modules of HSU(N )
K (n, n). Moreover HSU(N )

K (n, λ) corresponds to the minimal

central idempotent z(n)
λ for all λ ∈ �n

N ,K .

Definition 3.4 Suppose n ∈ N and let λ ∈ �n
N ,K . Then we define

�
n−1,λ
N ,K =

{
λ′ ∈ �N ,K | (λ′ < λand|λ/λ′|=1) or (λ < λ′ and λ′/λ=1N−1)

}
.

Weobserve that�n−1,λ
N ,K ⊂ �n−1

N ,K and further that |�n−1,λ
N ,K | ≥ 1 and if n > |λ|

and λ �= ∅ then |�n−1,λ
N ,K | ≥ 2. Further if |�n−1,λ

N ,K | = 1 then λ = lm for positive
l and m such that n = |λ|.
Proposition 3.3 Suppose λ ∈ �N ,K and n ∈ N such that N divides n − |λ|
and let λ′ ∈ �

n−1,λ
N ,K . Then the Hn−1-module HSU(N )

K (n − 1, λ′) is isomorphic

to a submodule of the Hn−1-module HSU(N )
K (n, λ).

Proof Let us consider first the case where λ′ < λ. Let we observe that

HSU(N )
K (λ′ ⊗ 1, λ) �= 0

by Corollary 1.10 in [23], so we choose e ∈ HSU(N )
K (λ′ ⊗ 1, λ) − {0}. By the

same Corollary we see that there then must exist e′ ∈ HSU(N )
K (λ, λ′ ⊗1), such

that e ◦ e′ = 1λ. The morphism

f 	→ e ◦ ( f ⊗ 1) ∈ HSU(N )
K (n, λ)

for f ∈ HSU(N )
K (n − 1, λ′) must be non-zero, since it is possible to choose f

such that there exists f ′ ∈ HSU(N )
K (λ′, n − 1) which satisfies f ◦ f ′ = 1λ′ .

But then

e ◦ ( f ⊗ 1) ◦ ( f ′ ⊗ 1)e′ = 1λ

by Corollary 1.10 in [23]. Since HSU(N )
K (n − 1, λ′) is an irreducible Hn−1-

module this morphism must be injective and hence an isomorphism onto its
image. Now we consider the case where λ < λ′, n > |λ| and λ′/λ = 1N−1.
First we fix an isomorphism e ∈ HSU(N )

K (1N ⊗ λ, λ). Now let λ̃ ∈ �N ,K be
the young diagram obtain from λ by putting 1N to the immediate left of λ.
Again by Corollary 1.10 of [23], we have that there exist

g1 ∈ HSU(N )
K (λ′ ⊗ 1, λ̃) − {0} and g2 ∈ HSU(N )

K (λ̃, 1N ⊗ λ) − {0},
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for which there exists

g′
1 ∈ HSU(N )

K (λ̃, λ′ ⊗ 1) − {0} and g′
2 ∈ HSU(N )

K (1N ⊗ λ, λ̃) − {0},

such that

g1g′
1 = 1λ̃, g′

2g2 = 1λ̃.

Let g = g2g1. Now consider the morphism

f 	→ e ◦ g ◦ ( f ⊗ 1) ∈ HSU(N )
K (n, λ),

for f in HSU(N )
K (n−1+N , λ′). Again byCorollary 1.10 in [23]wemay choose

f such that there exist f ′ ∈ HSU(N )
K (λ′, n − 1 + N ), such that f ◦ f ′ = 1λ′ .

But then we see that

g′
2 ◦ e−1 ◦ e ◦ g ◦ ( f ⊗ 1) ◦ ( f ′ ⊗ 1) ◦ g′

1 = 1λ̃.

hence the above morphism is non-zero and therefore again an isomorphism
onto its image. ��

4 The Witten–Reshetikhin–Turaev modular functor via skein theory

Let us briefly recall Turaev’s construction of amodular functor from amodular
tensor category in [49]. Since we are interested in the modular tensor category
HSU(N )

K , we will at the same time apply it to Blanchet’s category, the con-
struction of which we reviewed in Sect. 3. Let � = (�, P, V, L) be a marked
surface and λ a labeling of it by labels from the �N ,K , hence λ : P → �N ,K .
Let �0 = (�0, P0, V0, L0) be the standard surface (see Section 1.2 Chapter
IV in [49]) of the same type as � . Let the genus of � (or equivalently of �0)
be g. We recall the following definition

Definition 4.1 Themodular functorV SU (N )
K obtained by applying theResheti-

khin–Turaev construction to the modular tensor category HSU(N )
K associates

to any labeled marked surface (�, λ) the vector space V SU (N )
K (�, λ) which is

uniquely determined by the following property. For any morphism φ : �0 →
� of marked surfaces, there is a unique isomorphism
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V SU (N )
K (φ) :

⊕

μ∈�
×g
N ,K

HSU(N )
K

(
λ1 ⊗ · · · ⊗ λp ⊗

( g⊗

i=1

μi ⊗ μ
†
i

)
, 0

)

→ V SU (N )
K (�, λ)

where (λ1, . . . , λp) is the labeling of P0 induced from λ via φ, such that if
φ′ : �0 → � is another parametrization, then we get the formula

V SU (N )
K ((φ′))−1 ◦ V SU (N )

K (φ) = ϕ(φ′, φ)

where ϕ(φ′, φ) is defined in Section 6.3 in Chapter IV of [49].

We remark that ϕ(φ′, φ) is constructed by producing a ribbon graph pre-
sentation of the mapping cylinder of (φ′)−1 ◦φ and then computing the TQFT
morphism determined by HSU(N )

K for this ribbon graph. In case g = 0, we
observe that this mapping cylinder is just determined by a spherical braid on
p strands connecting P0 to it self. For further details on this please see Section
2 of Chapter IV in [49].

The construction of the gluing morphism for the modular functor is
described in Section 4 of Chapter V in [49]. This morphism is also constructed
by producing an explicit 3-dimensional cobordism between the unglued and
the glued marked surface. This cobordism is described in detail in Section
4.5 of Chapter V in [49]. As it is explained in Section 5.10 of Chapter 10 in
[49], the glueing isomorphism for standard genus zero surfaces is given by the
following isomorphism

H SU (N )
K (λ1 ⊗ · · · ⊗ λp+q , 0)

∼=
⊕

μ∈�N ,K

H SU (N )
K (λ1 ⊗ · · · ⊗ λp ⊗ μ†, 0) ⊗ H SU (N )

K

(μ ⊗ λp+1 ⊗ · · · ⊗ λp+q , 0). (3)

Suppose α is an object in H SU (N )
K , then by including it in S2 we get the

structure of a labeledmarked surface�α . Letλα be the corresponding labelling
of �α . In particular for the object n, we have �n , which we will choose as
the standard labeled marked surface of genus 0 with n marked points and λn
will denote the box-labelling of all marked points in n. We remark that the
subindex here refers to the object n.

Lemma 4.1 For any object α of H SU (N )
K we have a canonical isomorphism

�α : H SU (N )
K (α, 0) → V SU (N )

K (�α, λα)
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such that for all Tα′,α representing an element of H SU (N )
K (α′, α), where α′ =

λ1 ⊗ . . . ⊗ λn for some n, we get a commutative diagram

HSU(N )
K (α, 0)

�α−−−→ V SU (N )
K (�α, λα)

⏐⏐�Tα,α′ V SU (N )
K (φTα,α )

⏐⏐�

HSU(N )
K (α′, 0) Id−−−→ V SU (N )

K (�α′, λα′)

where φTα,α′ is the diffeomorphism of the disc, determined by the braid Tα′,α ,
such that φTα,α′ (α) = α′, extended to a morphism of labelled marked surfaces
from (�α, λα) to (�α′, λα′).

5 The representation theory of the Hecke algebra

Following Jones [31] and Wenzl [59] we will now consider the tower of alge-
bras H1 ⊂ H2 ⊂ . . . and consider the towers of representations corresponding
to Markov traces on this tower, first constructed by Wenzl [59]. We will see
that themodular category HSU(N )

K constructed above yields another realization
of Wenzl’s representations via the GNS construction. These representations
are central to Wenzl’s construction of subfactors from the Hecke-algebras in
[59].

Let H∞ be the inductive limit of the algebras

H1 ⊂ H2 ⊂ · · · .

A trace tr on H∞ is a linear functional tr : H∞ → C, such that tr(xy) = tr(yx)

for all x, y ∈ H∞ and such that tr(1) = 1.

Definition 5.1 A trace tr on H∞ is a Markov trace if there is an η ∈ C such
that

tr(xen) = ηtr(x)

for all x ∈ Hn and all n ∈ N.

Lemma 5.1 A Markov trace is uniquely determined by η = tr(e1).

For an argument for this lemma see [31]. In [31] Jones also proved the
theorem, that there exist a Markov trace for any η ∈ C. Let now

ηN ,K = (q − q N )/(1 + q)(1 − q N ),

and let trN ,K be the corresponding Markov trace.
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Theorem 5.1 (Wenzl) The GNS construction applied to the state trN ,K on the
*-algebra H∞ gives a representation π N ,K+N of H∞ with the property1 that

π N ,K+N |Hn
∼=

⊕

λ∈�
N ,K+N
n

π
N ,K+N
λ , (4)

where �
N ,K+N
n is the set of Young diagrams defined in Definition 2.4 in [59]

and the π
N ,K+N
λ ’s are Wenzl’s representations

π
N ,K+N
λ : Hn → B

(
V N ,K+N

λ

)

constructed right after Definition 2.4 in [59].

This theorem is one half of Theorem 3.6(b) in [59]. The other half states that
it is precisely these Markov traces which factors through a C∗-representation.

Let us now briefly recall the GNS construction: define

N N ,K∞ = {x ∈ H∞ | trN ,K (x∗x) = 0},

and let H̃ N ,K∞ = H∞/N N ,K∞ . Then π N ,K+N : H∞ → B(H̃ N ,K∞ ) is just
given by the left action of H∞ on H̃ N ,K∞ . Here H̃ N ,K∞ gets a pre-Hilbert space
structure induced from the trace by the formula

(x, y)N ,K = trN ,K (y∗x).

The Cauchy–Schwarz inequality shows that this is indeed a well-defined inner
product on H̃ N ,K∞ . The identity 1 ∈ H∞ projects in H̃ N ,K∞ to the required
cyclic vector for

π N ,K : H∞ → B(H̃ N ,K∞ ).

The isomorphism in Theorem 5.1 should be understood in the following sense.
Let H̃ N ,K

n be the image of Hn in H̃ N ,K∞ . Then the action of Hn on H̃ N ,K∞ pre-
serves H̃ N ,K

n and it is this representation of Hn on H̃ N ,K
n which is isomorphism

to the direct sum ofWenzl’s representations given in the right hand side of (4).
We will use the notation

π N ,K+N
n : Hn → B(H̃ N ,K

n )

for this representation.

1 Please see the discussion following this theorem for the proper interpretation of this property.
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We now introduce the following trace on Hn

trN ,K (x) = trN ,K
n (x)/trN ,K

n (id),

for all x ∈ Hn. We observe that trN ,K (x) = trN ,K (x ⊗ 1) for all x ∈ Hn ,
hence trN ,K is a well-defined trace on H∞.

Theorem 5.2 The traces trN ,K and trN ,K coincide.

Proof From the skein theory it is clear that trN ,K is a Markov trace and an
explicitly simple computation show that trN ,K (e1) = ηN ,K . ��
Theorem 5.3 For any n, we have that

N N ,K
n = {x ∈ Hn | trN ,K (x∗x) = 0}.

Proof It is clear that the left hand side is contained in the right hand
side. The other inclusion follows from the observation that trN ,K (yx) =
trN ,K ((y∗)∗x) = 0 for all x ∈ N N ,K∞ by Cauchy–Schwarz. ��

By using similar easy arguments one finds thatN N ,K∞ is two-sided ideal in
H∞, from which we conclude that π N ,K+N factors to a well-defined repre-
sentation π N ,K+N : H∞/N N ;K∞ → B(H̃ N ,K∞ ).A simple argument shows that
this representation is injective. Moreover, if we consider π

N ,K+N
n , it clearly

also factors through Hn ∩N N ,K∞ , and the same argument again shows that also
this representation is injective on Hn/Hn ∩N N ,K∞ which by the above lemma
is naturally isomorphic to HSU(N )

K (n, n). From this we have the following
theorem as an immediate consequence.

Theorem 5.4 For all n we have a canonical Hn isomorphism

�N ,K
n : HSU(N )

K (n, n)
∼=→ π N ,K+N

n (Hn),

which is compatible with inclusions

HSU(N )
K (n, n)

�
N ,K
n−−−→ π

N ,K+N
n (Hn)⏐⏐�

⏐⏐�

HSU(N )
K (n + 1, n + 1)

�
N ,K
n+1−−−→ π

N ,K+N
n+1 (Hn+1)

We now consider the following inductive limit.
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Definition 5.2 We let

HSU(N )
K (∞, ∞) = lim−→

n

HSU(N )
K (n, n).

From the above discussion we see the following theorem.

Theorem 5.5 The isomorphisms �
N ,K
n induces a natural H∞-isomorphism

�N ,K∞ : HSU(N )
K (∞, ∞) → H̃ N ,K∞ .

Let λ ∈ �N ,K . Let n be an integer such that n − |λ| is a non-negative
multiple, say l, of N , thus λ ∈ �n

N ,K . Let (λ)n be obtained from λ by attaching
l column of N boxes to the left of λ. This provides a bijection between �n

N ,K

and Wenzl’s �
N ,K+N
n .

Theorem 5.6 Let n ∈ N. The canonical Hn isomorphism �
N ,K
n from the

previous theorem takes the decomposition

HSU(N )
K (n, n) ∼=

⊕

λ∈�n
N ,K

HSU(N )
K (n, λ) ⊗ HSU(N )

K (λ, n)

to the decomposition

π N ,K+N
n (Hn) =

⊕

λ∈�n
N ,K

π
N ,K+N
(λ)n

(Hn),

for all n. Moreover for any λ ∈ �n
N ,K we have that HSU(N )

K (n, λ) and V N ,K+N
(λ)n

are isomorphic representations of Hn.

Proof Following again Wenzl, we consider the minimal central idempotents
z̃(λ)n corresponding to π

N ,K+N
(λ)n

(Hn) ⊂ π N ,K+N (Hn). Likewise we consider

the minimal central idempotents z(n)
λ ∈ HSU(N )

K (n, n) corresponding to

HSU(N )
K (n, λ) ⊗ HSU(N )

K (λ, n) ⊂ HSU(N )
K (n, n).

We claim that
�N ,K

n (z(n)
λ ) = z̃(λ)n . (5)

It is clear that this formula for a given n is implied by the second half
of the theorem, since there is a one to one correspondence between mini-
mal central idempotents and irreducible representations of HSU(N )

K (n, n) ∼=
π N ,K+N (Hn).
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For n = 1 the theorem is trivial true.
For n = 2 we have the following two possible diagrams: λ(2) consisting of

a row of two boxes and λ(1,1) consisting of a column consisting of two boxes.
A simple calculation with the two minimal idempotents corresponding to the
two labels λ(2) and λ(1,1) immediately gives the conclusion of the theorem for
n = 2.

Assume that we have proved the theorem for all integers less than n. We
will now deduce the second half of the theorem for the integer n. Suppose λ ∈
�n

N ,K . By Corollary 2.5 in [59] and the discussion following the proof of the

Corollary, we have that V N ,K+N
(λ)n

is the irreducible representation ofπ N ,K (Hn)

which corresponds to z̃(λ)n . By Proposition 3.2 we have that HSU(N )
K (n, λ) is

the irreducible representation of HSU(N )
K (n, n) corresponding to z(n)

λ . We now
consider these to representations as representations of Hn−1. By the explicit
construction of the representation V N ,K+N

(λ)n
in [59] we see that it decomposes

as follows under the action of Hn−1

V N ,K+N
(λ)n

=
⊕

λ′∈�
n−1,λ
N ,K

V N ,K+N
(λ′)n−1

.

Then by induction we get an Hn−1 module isomorphism

V N ,K+N
(λ)n

∼=
⊕

λ′∈�
n−1,λ
N ,K

HSU(N )
K (n − 1, λ′).

But since V N ,K+N
(λ)n

is an irreducible HSU(N )
K (n, n)-module, we know there is

a unique μ(λ) ∈ �n
N ,K such that

V N ,K+N
(λ)n

∼= HSU(N )
K (n, μ(λ)).

We observe that the map λ 	→ μ(λ) is a bijection from �n
N ,K to it self. We

also know that

HSU(N )
K (n, μ(λ)) >

⊕

μ′∈�
n−1,μ(λ)
N ,K

HSU(N )
K (n − 1, μ′).

Hence we conclude that �n−1,μ(λ)
N ,K ⊂ �

n−1,λ
N ,K .

Claim 5.0.1 We have that μ(λ) = λ for all λ ∈ �n
N ,K .

First we observe that μ(∅) = ∅ (in the case N | n). Second we will
consider the special case where λ = lm for some l, m ∈ N. Then |�n−1,λ

N ,K | = 1
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if n = |λ| and |�n−1,λ
N ,K | = 2 if n > |λ|. But we must have that |�n−1,μ(λ)

N ,K | ≥ 1

and |�n−1,μ(λ)
N ,K | = 2 if n > |μ(λ)|. In the case where |�n−1,λ

N ,K | = 2 and

|�n−1,μ(λ)
N ,K | = 1, we have that μ(λ) = (l ′)m′

for positive l ′ and m′ and n =
|μ(λ)|, which then leads to a contradiction by examining the two possibilities
for the twonon-empty strict subset�n−1,μ(λ)

N ,K ⊂ �
n−1,λ
N ,K .Wemust thus have that

�
n−1,μ(λ)
N ,K = �

n−1,λ
N ,K . But then we see immediately that in this case μ(λ) = λ.

We split the rest of the proof into four cases. In each case we assume that
λ �= μ(λ) and then we derive a contradiction. We further recall that we can
assume that n > 2. We will just write μ = μ(λ).

Case 1 n = |λ| = |μ|. Since �
n−1,μ
N ,K �= ∅, we can choose μ′ ∈ �

n−1,μ
N ,K .

Then μ′ is obtained from λ by removing one box say bλ. Since λ �= μ, we see
there is unique Yong diagram ν such that |ν| = n + 2 and such that λ < ν and
μ < ν and a box bμ in ν such that

ν = λ ∪ bμ, ν = μ ∪ bλ. (6)

If μ has another box b different from bμ such that μ − b is a Yong diagram,

then μ − b ∈ �
n−1,μ
N ,K , but μ − b /∈ �

n,λ
N ,K , hence this is a contradiction. But

then |�n,μ
N ,K | = 1. This mean that there exists l, m ∈ N such that μ = lm .

But then we have a contradiction, since we are assuming that μ �= λ, yet we
have established in this special case for μ, that μ = λ, since λ 	→ μ(λ) is a
bijection.

Case 2 n > |λ| and n = |μ|. By counting boxes, we see that we cannot
have the situation of Eq. (6), hence we can assume that

μ − bμ = 1N−1 ∪ λ.

If μ has another box b �= bμ such that μ − b is a Young diagram, then there
must exists a box b′ in λ such that

μ − b = λ − b′

which contradicts that |λ| �= |μ|.
Case 3 n = |λ| and n > |μ|. Then we know that λ has a removable box bλ

such that

λ − bλ = 1N−1 ∪ μ,

which implies that |λ| = N + |μ|. But if μ �= ∅, then μ has a box bμ which
can be removed, so λ must have another box b′

λ such that

λ − b′
λ = μ − bμ,
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which contradicts the above count of sizes. Hence we must have that μ = ∅.
From this we have an immediate contradiction by the above.

Case 4 n > |λ| and n > |μ|. We cannot have that 1N−1 ∪ λ = 1N−1 ∪ μ,
since μ �= λ. Hence λ must have a removable box bλ such that

λ − bλ = 1N−1 ∪ μ.

Hence |λ| = N + |μ|. But if μ �= ∅ then it has a removable box bμ such that

1N−1 ∪ λ = μ − bμ �⇒ |λ| = |μ| − N

or for some other removable box b′
λ from λ

λ − b′
λ = μ − bμ �⇒ |λ| = |μ|,

which contradicts |λ| = N + |μ|. So we must have that μ = ∅. Again this
gives an immediate contradiction. ��
Corollary 5.1 There exists Hn-module isomorphisms

HSU(N )
K (n, λ) ∼= V N ,K+N

(λ)n

for all λ ∈ �n
N ,K .

Definition 5.3 For each λ ∈ �N ,K fix an Hn-module isomorphism (unique up
to scale)

�
N ,K
|λ|,λ : HSU(N )

K (|λ|, λ) → V N ,K+N
(λ)|λ| .

Let us now recall the following about Wenzl’s construction of the represen-
tations V N ,K+N

λ for each λ ∈ �
N ,K+N
n . Let Tn(λ) denote the set of generalised

Young tableau’s on λ of length n as defined in Definition 2.4 in [59]. Then
V N ,K+N

λ is the complex vector space generated by Tn(λ). Let us denote the
basis vector corresponding to t ∈ Tn(λ) by wt . Then wt , t ∈ Tn(λ), is an
orthonomal basis for V N ,K+N

λ . Formula (2.9) in [59] gives the explicit action
on this basis by the generators ei of Hn . Suppose that λ ∈ �

N ,K+N
n is obtained

from μ ∈ �
N ,K+N
n−1 by adding one box, then we get an inclusion

ιμ,λ : V N ,K+N
μ → V N ,K+N

λ

of Hn−1 modules which mapswt ′ towt for all t ∈ Tn(λ) such that the diagram
of t ′ is μ. By the very definition we have an identification

π
N ,K+N
(λ)n

(Hn) = End(V N ,K+N
λ ).
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Under this identification we have that Wenzl’s path idempotents pt ∈
π

N ,K+N
(λ)n

(Hn) is identified with the rank one projection onto wt for all
t ∈ Tn(λ). From this we see that the inclusion

ιn : π
N ,K+N
n−1 (Hn−1) → π N ,K+N

n (Hn)

is given by

ιn =
⊕

μ∈�n−1
N ,K

⊕

{λ∈�n
N ,K |μ∈�

n−1,λ
N ,K }

ιμ,λ ⊗ ι∗μ,λ

when identifying

π N ,K+N
n (Hn) =

⊕

λ∈�n
N ,K

End(V N ,K+N
λ ),

for all n.
We now need to determine an Hn-isomorphism

�
N ,K
n,λ : HSU(N )

K (n, λ) → V N ,K+N
(λ)n

for all λ ∈ �N ,K and integers n = l N +|λ|, where l is a positive integer. These
are of course unique up to scale.

We observe that we have the inclusion

HSU(N )
K (N , 0) ⊗ · · · ⊗ HSU(N )

K (N , 0) ⊗ HSU(N )
K (|λ|, λ) ⊂ HSU(N )

K (l N + |λ|, λ)

and we have the inclusion

V N ,K+N
(λ)|λ| ⊂ V N ,K+N

(λ)l N+|λ|

obtained by pre-composing the tableaux’s from T|λ|(λ) with the tableaux of
the Young diagram Nl which labels the points down the first column, then
down the second and so on up to the l’th. The space HSU(N )

K (N , 0) contains
a canonical non-zero element consisting of one coupon label 1N attached to
the object N and embed in the [−1, 1] × I ⊂ D2 × I . By tensoring this
element with itself l times, we get a preferred inclusion of HSU(N )

K (|λ|, λ) in

HSU(N )
K (l N + |λ|, λ). These two inclusions allows us to fix
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�
N ,K
l N+|λ|,λ : HSU(N )

K (l N + |λ|, λ) → V N ,K+N
(λ)l N+|λ| ,

so as to agree with the above choice for �
N ,K
|λ|,λ under these inclusions.

Let λ ∈ �N ,K and t ∈ Tn(λ). Define w̃t ∈ HSU(N )
K (n, λ) by

wt = �
N ,K
n,λ (w̃t ).

Proposition 5.1 Let μ, λ ∈ �N ,K such that

HSU(N )
K (μ ⊗ 1, λ) �= 0.

Then there are unique

w̃μ,λ ∈ HSU(N )
K (μ ⊗ 1, λ) − {0},

such that the map

HSU(N )
K (n + 1, λ) ∼=

⊕

μ∈�N ,K

HSU(N )
K (n, μ) ⊗ HSU(N )

K (μ ⊗ 1, λ)

maps

w̃t̃ 	→ w̃t ⊗ w̃μ,λ

for all t ∈ Tn(μ) and t̃ ∈ Tn+1(λ) such that t̃ ′ = t.

Proof The direct sum decomposition

HSU(N )
K (n + 1, λ) ∼=

⊕

μ∈�N ,K

HSU(N )
K (n, μ) ⊗ HSU(N )

K (μ ⊗ 1, λ)

of Hn-modules,whichweget from factoring HSU(N )
K (ν, λ⊗1∗) over the simple

objects �N ,K , must be taken by �
N ,K
n+1,λ to the the direct sum decomposition

V N ,K+N
(λ)n+1

∼=
⊕

μ∈�
n,λ
N ,K

V N ,K+N
(μ)n

.

From this we see that dim(HSU(N )
K (μ ⊗ 1, λ)) = 1 for exactly the μ ∈ �

n,λ
N ,K

and else zero and further more there are unique elements

123



The WRT-TQFT from conformal field theory 547

w̃μ,λ ∈ HSU(N )
K (μ ⊗ 1, λ) − {0}

with the property stated in the proposition. ��
The decompositions

HSU(N )
K (μ ⊗ (n + 1), λ) ∼=

⊕

ν∈�N ,K

HSU(N )
K (μ ⊗ n, ν) ⊗ HSU(N )

K (ν ⊗ 1, λ),

which we get from factoring HSU(N )
K (ν ⊗ n, λ ⊗ 1∗) over the simple objects

�N ,K , togetherwith the vectors w̃μ,λ defines inductively bases for all the vector

spaces HSU(N )
K (μ ⊗ n, λ). We observe that these bases jointly with the basis

vectors w̃t are natural with respect to the isomorphisms

HSU(N )
K (n + n′, λ) ∼=

⊕

μ∈�N ,K

HSU(N )
K (n, μ) ⊗ HSU(N )

K (μ ⊗ n′, λ), (7)

for all μ, λ ∈ �N ,K and all non-negative integers n and n′.

6 The genus zero isomorphism

6.1 The label sets and the action of the Hecke algebra

Recall the construction of the vacua modular functor V g
K given in [9] for any

simple Lie algebra g over the complex numbers C and level K . Our main
theorem from [9] states

Theorem 6.1 The functor V g
K from the category of labeled marked surfaces

to the category of finite dimensional vector spaces is a modular functor.

We recall further that the label set for this modular functor is

PK = { λ ∈ p+|0 ≤ (θ, λ) ≤ K } (8)

where p+ is the set of dominant integral weights. Here ( , ) is the normalized
Cartan–Killing form defined to be a constant multiple of the Cartan–Killing
form such that

(θ, θ) = 2.

for the longest root θ . Further the involution

† : PK → PK

λ 	→ λ†
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is defined by
λ† = −w(λ) (9)

where w is the longest element of the Weyl group of the simple Lie algebra g.
The modular functor constructed there for the Lie algebra g = sl(N , C)

at level K , will here be denoted by V†
N ,K . Let us explicate the normalisation

of the Cartan–Killing form and that of the longest root for this particular Lie
algebra.

Let Ei j , 1 ≤ i, j ≤ N be the N × N -matrix whose (i, j)-entry is 1 and all
others are 0. We also let εi , i = 1, 2, . . . , N be an element of the dual vector
space of ⊕N

i=1CEii defined by

εi (E j j ) = δi j , 1 ≤ i, j ≤ N .

Put r = N − 1. Also put

Hi = Eii − Ei+1,i+1, i = 1, 2, . . . , r, h = ⊕r
i=1CHi .

Then, h is a Cartan subalgebra of g. The dual space h∗ is written as

h∗ =
{

N∑

i=1

niεi |
N∑

i=1

ni = 0

}
.

Denote by � the root system of (g, h). A root α of (g, h) has the form αi j =
εi − ε j , i �= j , 1 ≤ i, j ≤ N . Choose αi = εi − εi+1, i = 1, 2, . . . , r as
simple positive roots.

For a root αi j = αi − α j , i �= j , the root space

gαi j = { X ∈ g | ad(H)X = αi j (H)X, ∀H ∈ h }
is spanned by the matrix Ei j . Hence, the root space decomposition g is given
by

g = h ⊕
N∑

i �= j i, j=1

CEi j .

Let (, ) be a constant multiple of the Cartan–Killing form of g defined by

(X, Y ) = tr(XY ), X, Y ∈ g.

Since the bilinear form (, ) is positive definite, in the following, we identify h∗
with h via this bilinear form. For any root α define Hα ∈ h in such a way that
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〈α, H〉 = (H, Hα)

holds for any H ∈ h. Then for the simple roots αi we have that Hαi = Hi .
The bilinear form (, ) on the dual vector space h∗ is defined by

(α, β) = (Hα, Hβ), α, β ∈ �.

Then, for the simple roots αi we have that

(αi , αi ) = 2, (αi , αi±1) = −1, (αi , α j ) = 0 if |i − j | ≥ 2. (10)

The longest root θ of g is given by

θ = α1 + α2 + · · · + αr = ε1 − εN (11)

and we have that (θ, θ) = 2. Hence our inner product (, ) is the normalized
Cartan–Killing form.

The fundamental weights �i ∈ h∗, i = 1, 2, . . . , r are defined by

〈�i , Hj 〉 = δi j , 1 ≤ i, j ≤ r (12)

and they are given by

�i = ε1 + · · · + εi − i

N

N∑

i=1

εi , i = 1, 2, . . . , r.

Lemma 6.1 The set of dominant weights corresponding to the irreducible
finite dimensional representations of SU (N ) index by the Young diagrams in
�N ,K is precisely PK .

Proof For λ = (λ1, . . . , λp) ∈ �N ,K we let � be the corresponding dominant
integral weight of sl(N , C). Then we have that

� =
N−1∑

i=1

(λi − λi+1)�i

where �i is the fundamental weight defined by (12). The longest root is given
by (11) and by (10) we have that

(�, θ) = λ1 − λN .

This gives the desired result. ��
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We recall that the defining representation of SU (N ) corresponds to the
Young diagram � ∈ �N ,K .

Let�∞
n be obtained from�n by further marking∞ and providing this point

with the direction of the negative real axis. Let μn = (�, . . . , �) be the box
labelling of the object n.

We have a group homomorphism from the braid group on n stands Bn to
the mapping class group of �∞

n , which we denote ��∞
n
:

f : Bn → ��∞
n

.

This group homomorphism induces an algebra morphism

ϒn : C[Bn] → End(V†
N ,K (�∞

n , μn, λ))

by the assignment

ϒn(b) = V†
N ,K ( f (b))

for all b ∈ Bn .
For this action Kanie proved in [32] the following formula. See also [54].

Theorem 6.2 (Kanie) We have the following skein relation for ϒn

q
1
2N ϒn(σi ) − q− 1

2N ϒn

(
σ−1

i

)
=

(
q

1
2 − q− 1

2

)
Id.

This means that ϒn factors to the Hecke algebra Hn , and so we see that
V†

N ,K (�∞
n , μn, λ) becomes a module over Hn . Kanie constructed in [32] for

all λ ∈ �N ,K and all n an explicit isomorphism

�
N ,N+K
n,λ : V†

N ,K (�∞
n , μn, λ) → V N ,K+N

(λ)n

by constructing a basis vt , t ∈ Tn(λ) of V†
N ,K (�∞

n , μn, λ) and defining

�
N ,N+K
n,λ by

�
N ,N+K
n,λ (vt ) = wt

for all t ∈ Tn(λ). He further proved the following theorem

Theorem 6.3 (Kanie) The isomorphism �
N ,N+K
n,λ is an isomorphism of Hn

representation from

ϒ : Hn → B
(
V†

N ,K

(
�∞

n , μn, λ
†))
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to

π
N ,K+N
(λ)n

: Hn → B
(

V N ,K+N
(λ)n

)

for all λ ∈ �n
N ,K .

This theorem is proved in [32]. See also Theorem 6.29 in [54].
Kanie’s basis vt , t ∈ Tn(λ), of V†

N ,K (�∞
n , μn, λ) is constructed inductively

such that for all μ, λ ∈ �N ,K and integer n with the property that there is a
non-negative integer l solving the equation n = l N + |λ| and μ ∈ �

n,λ
N ,K , he

constructs a non-zero vector

vμ,λ ∈ V† (
�∞

2 , μ, �, λ†
)

such that if t ∈ Tn(λ) such that t ′ is a tableau for μ, then

vt = vt ′ ⊗ vμ,λ,

under the glueing isomorphism

V†(�∞
n , μn, λ

†) ∼=
⊕

μ∈�
n,λ
N ,K

V† (
�∞

n−1, μn−1, μ
†) ⊗ V† (

�∞
2 , μ, �, λ†

)
.

Definition 6.1 The isomorphisms

IN ,K (n, μ) : HSU(N )
K (n, μ) → V†

N ,K (�∞
n , μn, μ

†)

are given by the formula

IN ,K (n, μ) = (�
N ,N+K
n,λ )−1�

N ,N+K
n,λ .

Weobserve that IN ,K (n, μ) takes the basis w̃t to the basis vt by construction.
Moreover this isomorphism must by construction take the decomposition

HSU(N )
K (n, λ) ∼=

⊕

μ∈�
n−1,λ
N ,K

HSU(N )
K (n − 1, μ) ⊗ HSU(N )

K (μ ⊗ 1, λ)

to the decomposition

V†(�∞
n , μn, λ

†) ∼=
⊕

μ∈�
n,λ
N ,K

V†(�∞
n−1, μn−1, μ

†) ⊗ V†(�∞
2 , μ, �, λ†)

such that w̃t ⊗ w̃μ,λ is taken to vt ⊗vμ,λ by the very construction of the bases.
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We note that we can inductively determine bases of H SU (N )
K (μ⊗ n′, λ) and

of V†(�∞
n+n′, μn+n′, λ†) by using the above bases and decompositions jointly

with

H SU (N )
K (μ ⊗ n′, λ) ∼=

⊕

ν∈�N ,K

H SU (N )
K (μ ⊗ (n′ − 1), ν) ⊗ H SU (N )

K (ν ⊗ 1, λ).

Since IN ,K (n, μ) takes preferred bases to preferred bases, we get the fol-
lowing theorem.

Theorem 6.4 The decomposition

HSU(N )
K (n + n′, λ) ∼=

⊕

μ∈�N ,K

HSU(N )
K (n, μ) ⊗ HSU(N )

K (μ ⊗ n′, λ),

is by the isomorphism IN ,K (n + n′, λ) taken to the decomposition

V†(�∞
n+n′, μn+n′, λ†) ∼=

⊕

μ∈�N ,K

V†(�∞
n , μn, μ

†) ⊗ V†(�̃
∞
n′ , μ, μn′, λ†).

Moreover preferred bases are taken to preferred bases by this isomorphism.

6.2 The isomorphism for general box-labeled objects

Since there for any object α in H exist some n and a braid Tα,n representing
a morphisms in H(α, n), we get the following theorem.

Theorem 6.5 For all objects α in the category H, there is a unique isomor-
phism

IN ,K (α) : HSU(N )
K (α, 0) → V†

N ,K (�α, λα)

such that

IN ,K (n) = IN ,K (n, 0)

and which makes the following diagram commutative

HSU(N )
K (α, 0)

IN ,K (α)−−−−→ V†
N ,K (�α, λα)

⏐⏐�Tα,β V†
N ,K (φTα,β

)

⏐⏐�

HSU(N )
K (β, 0)

IN ,K (β)−−−−→ V†
N ,K (�β, λβ)
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for all pairs of objects α, β in H and all braid Tα,β representing morphisms
in H(α, β).

From the above theorem, it is clear that HSU(N )
K (α, μ) andV†

N ,K (�∞
α , λα, μ)

are isomorphic irreducible HSU(N )
K (α, α)-module and that all of this algebra’s

irreducible modules are of this form by Theorem 6.3 and Corollary 5.1.

6.3 The isomorphism for general labels

Let λi ∈ �N ,K . Let ni = |λi |, i = 1, . . . , l and let n = n1 + · · · + nl . Let
� = (�1, . . . , �l) be a framed set of points in the interior of D2. Further let λ

be the object in HSU(N )
K obtained by labelling �i by λi .

Now let λ̃ = E(λ), where E(λ) is the object in H defined in Sect. 3.5. We
denote the labelling of all points in λ̃ simply also by λ̃. Further let λ̃i denote
the object E(�i , λi ) together with the labelling of all points in �i by boxes.

From Theorem 6.5 we have the isomorphism

IN ,K (λ̃) : HSU(N )
K (λ̃, 0) → V†

N ,K (�λ̃, λ̃). (13)

By definition

HSU(N )
K (λ, 0) = πλHSU(N )

K (λ̃, 0).

By factorization in the boundaries of small disjoint discs Di , i = 1, . . . , l
inside the unit disc, such that �i ∈ Di , we get the isomorphism

V†
N ,K (��, λ̃) ∼=

⊕

μ∈�×l
N ,K

V†
N ,K (��, μ) ⊗ ⊗l

i=1V†
N ,K (�∞

�i
, λ̃i , μi ).

We observe that this is a HSU(N )
K (λ̃1, λ̃1) × . . . × HSU(N )

K (λ̃l, λ̃l)-module iso-

morphism. By writing the identity in HSU(N )
K (λ̃, λ̃) as a sum of minimal cen-

tral idempotents in analogy with (2) and inserting them just below Di × 1,
i = 1, . . . , l, we also get the decomposition

HSU(N )
K (λ̃, 0) ∼=

⊕

μ∈�×l
N ,K

HSU(N )
K (μ, 0) ⊗ ⊗l

i=1HSU(N )
K (λ̃i , μi ) (14)

which is also a HSU(N )
K (λ̃1, λ̃1)×· · ·× HSU(N )

K (λ̃l, λ̃l)-module isomorphism.
Hence we see that the isomorphism (13) must preserve these decompositions,
thus we have proved the following theorem.
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Theorem 6.6 For all objects λ in HSU(N )
K as above, there is a unique isomor-

phism

IN ,K (λ) : HSU(N )
K (λ, 0) → V†

N ,K (��, λ)

and unique isomorphims

IN ,K (λ̃i , μi ) : HSU(N )
K (λ̃, μi ) → V†

N ,K (�∞
�i

, λ̃i , μi )

for all μi ∈ �N ,K and i = 1, . . . , l which for λ̃i = ni agrees with the
isomorphism from Definition 6.1, are compatible with diffeomorphisms of the
unit disc, that induces the identity on the boundary and such that under the
above identifications

IN ,K (λ̃) =
⊕

μ∈�×l
N ,K

IN ,K (μ) ⊗ ⊗l
i=1 IN ,K (λ̃i , μi ).

6.4 The isomorphism for arbitrary genus zero marked surfaces

Let

� = (�, P, V, L)

be a marked connected surface of genus zero and λ a labelling of it by labels
from �N ,K , hence λ : P → �N ,K . Let n = |P|, then �n is the standard
surface of the same type as �. Choose a morphism φ from �n to �. This
induces a labelling say λ0 of n which under φ|P0 matches up with λ. Further
let

λ̄0 = ⊗|P0|
i=1λ0(pi ).

As was explained in Sect. 4, the modular functor V SU (N )
K assigns the vec-

tor space V SU (N )
K (�, λ) represented by HSU(N )

K (λ̄0, 0) at the parametrization
(�, φ).

Theorem 6.7 There is a unique isomorphism

IN ,K (�, λ) : V SU (N )
K (�, λ) → V†

N ,K (�, λ)

which for any parametrization (�, φ) is represented by the isomorphism

V†
N ,K (φ) ◦ IN ,K (λ̄0) : HSU(N )

K (λ̄0, 0) → V†
N ,K (�, λ).
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Proof We just need to show that IN ,K (�, λ) is well defined. Suppose (�, φ1)

and (�, φ2) are two parametrizations. Then φ−1
1 ◦ φ2 is a morphism from �n

to it self, hence it can be represented by a braid T
φ−1
1 ◦φ2

which represents an

element in HSU(N )
K (λ̄0, λ̄0). Now we have the commutative diagram

HSU(N )
K (λ̄0, 0)

IN ,K (λ̄0)−−−−−→ V†
N ,K (�n, λ0)

V†
N ,K (φ1)−−−−−→ V†

N ,K (�, λ)
⏐⏐�T

φ
−1
1 ◦φ2 V†

N ,K (φ−1
1 ◦φ2)

⏐⏐� =
⏐⏐�

HSU(N )
K (λ̄0, 0)

IN ,K (λ̄0)−−−−−→ V†
N ,K (�n, λ0)

V†
N ,K (φ2)−−−−−→ V†

N ,K (�, λ)

which shows the induced isomorphism with respect to φ1 is the same as the
one induced from φ2. ��

We extend the isomorphism IN ,K to disconnected surfaces of genus zero,
by taking the tensor product of the isomorphisms for each component.

Suppose that (P̃p, Ṽp) is obtained from λ(p) by the expansion E introduced
in Sect. 3.5 for each p ∈ P . We let

(P̃, Ṽ ) =
⊔

p∈P

(P̃p, Ṽp)

Let λ̃p be the corresponding labeling of all points in P̃p by � and similarly
λ̃ assigns � to all points in P̃ . Let �̃ = (�, P̃, Ṽ , L) and �̃ p = (�, P̃p �
{∞}, Ṽp � {v∞}, L), where v∞ is the direction of the negative real axis at
infinity.

Theorem 6.8 We have the following commutative diagram

V SU (N )
K (�̃, λ̃) −−−−−→ ⊕

μ:P→�N ,K
V SU (N )

K (�, μ) ⊗ ⊗p∈PV SU (N )
K (� p, λ̃p, μ(p))

IN ,K (�̃,λ̃)

⏐⏐�
⊕

μ:P→�N ,K
IN ,K (�,μ)⊗⊗p∈P IN ,K (� p,λ̃p,μ(p))

⏐⏐�

V†
N ,K (�̃, λ̃) −−−−−→ ⊕

μ:P→�N ,K
V†

N ,K (�, μ) ⊗ ⊗p∈PV†
N ,K (� p, λ̃p, μ(p))

where the horizontal arrows are the factorization isomorphisms.

Proof Since the factorization isomorphisms is compatible with morphisms
of labelled marked surface, we can pick an morphism from �̃ to the standard
surface of the same type, which is�n for some n and then simply just check the
corresponding diagram for �n factored along a number of disjoint embedded
regular discs with centres on the real line of the appropriate radii. For this
standard surface and these standard factorization curves, the commutativity of
the diagram in this theorem follows immediately by the remark just above Eq.
(3) and repeated use of Theorem 6.4 and Lemma 4.1. ��
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6.5 Compatibility with glueing in genus zero

Let � = �+ � �−, where

�± = (�±, {p±} � P±, {v±} � V ±, L)

are marked surfaces of genus zero. Let λ± : P± → �N ,K be a labeling of
P±. Further let �c be the glueing of � with respect to (p±, v±) and λc the
corresponding labeling of P = P− � P+.

Theorem 6.9 We have the following commutative diagram

V SU (N )
K (�c, λc) −−−−−→ ⊕

μ∈�N ,K
V SU (N )

K (�−, μ, λ−) ⊗ V SU (N )
K (�+, μ†, λ+)

IN ,K (�c,λc)

⏐⏐�
⊕

μ∈�N ,K
IN ,K (�−,μ,λ−)⊗IN ,K (�+,μ†,λ+)

⏐⏐�

V†
N ,K (�c, λc) −−−−−→ ⊕

μ∈�N ,K
V†

N ,K (�−, μ, λ−) ⊗ VN ,K (�+, μ†, λ+)

where the horizontal arrows are the factorization isomorphisms.

Proof Let �̃± be the expansion of �± determined by E(λ±) and let �̃c be
the resulting expansion of �c. Again the invariance of factorization under
morphisms of surfaces allows us to assume that �̃± are standard. Further we
can assume that �̃c also has been identified with the standard surface of its
type. Then the commutativity follows by the remark just above Eq. (3) and
repeated use of Theorem 6.4 and Lemma 4.1, as in the previous proof. ��

6.6 The isomorphism of the genus zero part of the modular functors

We summarise our construction so far in the following theorem.

Theorem 6.10 We have an isomorphism IN ,K from the genus zero part of the
modular functor V SU (N )

K to the genus zero part of the modular functor V†
N ,K .

This theorem follows directly from the fact that this isomorphism per con-
struction is compatible with morphisms of marked surfaces, the definition of
the isomorphisms for disconnected surfaces and then from Theorem 6.9.

7 The S-matrices and the higher genus isomorphism

First we recall the main theorem from [15].

Theorem 7.1 Suppose Vi , i = 1, 2 are modular functor and we have isomor-
phisms

I (�, λ) : V1(�, λ) → V2(�, λ)
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for all genus zero labeled marked surfaces (�, λ), which is compatible with
disjoint union and glueing within genus zero labeled marked surfaces, then
there exists a unique extension of I to all labeled marked surfaces of all genus,
which gives a full isomorphism

I : V1 → V2

of modular functors.

We recall that this Theorem is proved by showing that the two S-matrices
of the two theories Vi , i = 1, 2 agree. Once we have this, it is clear that there
is a unique isomorphism I (�, λ), which is compatible with obtaining� as the
glueing of trinions, up to morphism of labeled marked surfaces, as explained
in [15].

Our main Theorem 1.1 follows now directly from Theorems 6.10 and 7.1.
We remark that Theorem 7.1 does not require the modular functors in question
to have duality. In fact at present we do not have a geometric construction of
a duality structure for V†

N ,K . That V†
N ,K has one is a consequence of our main

Theorem 1.1.
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