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Abstract We prove that any diffeomorphism of a compact manifold can be
approximated in the C1 topology by another diffeomorphism exhibiting a
homoclinic bifurcation (a homoclinic tangency or a heterodimensional cycle)
or by one which is essentially hyperbolic (has a finite number of transitive
hyperbolic attractors with open and dense basin of attraction).
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1 Introduction

1.1 Mechanisms classifying the dynamics

In the direction to describe the long range behavior of trajectories for “most”
systems (i.e. in a subset of the space of dynamics which is residual, dense,
etc.), a crucial goal is to identify any generic dynamical behavior. It was briefly
thought in the sixties that this could be realized by the property of uniform
hyperbolicity. Under this assumption, the limit set decomposes into a finite
number of disjoint (hyperbolic) transitive sets and the asymptotic behavior
of any orbit is described by the dynamics in those finitely many transitive
sets (see [43]). Moreover, under the assumption of hyperbolicity one obtains
a satisfactory (complete) description of the dynamics of the system from a
topological and statistical point of view.

Hyperbolicitywas soon realized to be a less universal property thanwhat one
initially thought: the space of dynamics contains open sets of non-hyperbolic
systems. We are now aimed to understand how the space of systems can be
organized according to the different kinds of dynamical behavior they exhibit.

a Characterization of non-hyperbolic systems Dynamicists were lead to
look for obstructions to hyperbolicity. For instance any non-hyperbolic dif-
feomorphism can be approximated in the C1-topology by a system having a
non-hyperbolic periodic orbit (see [4,25,28]). Since Poincaré we know that
some very simple configurations (such that the existence of a homoclinic orbit)
could be the source of a widely complex behavior. It has been identified two
simple obstructions for hyperbolicity which generate rich dynamical phenom-
ena and they have played a crucial role in the study of generic non-hyperbolic
behavior:

1. heterodimensional cycle: the presence of two periodic orbits of different
stable dimension linked through the intersection of their stable and unstable
manifolds (see [3,22,44]);

2. homoclinic tangency: the existence of a non-transverse intersection
between the stable and unstable manifolds of a periodic orbit (see
[9,30,31,35,36]).

These obstructions are relevant due to several dynamical consequences that
they involve: the first one is related to the existence of non-hyperbolic robustly
transitive systems (see [12,13,22]); the second one generates cascade of bifur-
cations, is related to the existence of residual subsets of diffeomorphisms dis-
playing infinitely many periodic attractors (see [32]) and to the local variations
of entropy for surface diffeomorphisms (see [40]).

Another important property is that these obstructions are not isolated in the
C1-topology, and sometimes, there are not isolated in a strong way: (i) among
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Essential hyperbolicity and homoclinic bifurcations 387

C2-surface diffeomorphisms, any system with a homoclinic tangency is limit
of an open set of diffeomorphisms having homoclinic tangencies associated to
hyperbolic sets (see [32]); (ii) among C1-diffeomorphisms, any system with
a heterodimensional cycle is limit of an open set of diffeomorphisms having
heterodimensional cycles associated to hyperbolic sets of different indexes
(see [11] and Sect. 2.11).

In the 80’s Palis conjectured (see [34,35]) that these two bifurcations are
the main obstructions to hyperbolicity:

Conjecture (Palis) Every Cr diffeomorphism of a compact manifold can be
Cr approximated by one which is hyperbolic or by one exhibiting a heterodi-
mensional cycle or a homoclinic tangency.

This conjecture may be considered as a starting point to obtain a generic
description of Cr -diffeomorphisms. If it turns out to be true, we may focus on
the two bifurcations mentioned above in order to understand the dynamics.

b Main result In the present paper, we prove the mentioned conjecture in the
C1-topology for a weaker notion of hyperbolicity.

Definition 1.1 A diffeomorphism is essentially hyperbolic if it has a finite
number of transitive hyperbolic attractors and if the union of their basins of
attraction is open and dense in the manifold.

The essential hyperbolicity recovers the notion of Axiom A: most of the
trajectories (in the Baire category) converge to a finite number of transitive
attractors that are well described from a both topological and statistical point
of view. Moreover, the dynamics in those hyperbolic attractors, govern the
dynamics of the trajectories that converge to them. In fact, in an open and dense
subset the forward dynamics does not distinguish the system to an Axiom A
diffeomorphism.

Now, we state our main theorem:

Main theorem Any diffeomorphism of a compact manifold can be C1-
approximated by another diffeomorphism which:

1. either has a homoclinic tangency,
2. or has a heterodimensional cycle,
3. or is essentially hyperbolic.

Roughly speaking we proved that homoclinic tangencies and heterodimen-
sional cycles are the C1-complete obstructions for the essential hyperbolicity.

Remark 1.2 a. The proof gives amore precise result: inside the open set of dif-
feomorphisms that are not limit inDiff1(M) of diffeomorphisms exhibiting
a homoclinic tangency or a heterodimensional cycle, the essentially hyper-
bolic diffeomorphisms contain a Gδ dense subset. As a consequence, one
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may also require that these diffeomorphisms are also essentially hyperbolic
for f −1.

b. After this work was finished, we proved with A. Arbieto that for a generic
diffeomorphism of a three-dimensionalmanifold and that is far fromhomo-
clinic tangencies, the union of the basins of the attractors has full volume.

c Mechanisms versus phenomena To elaborate the significance of this con-
jecture and of ourmain result, wewould like to recast it in terms ofmechanisms
and dynamical phenomena.

By a mechanism, we mean a simple dynamical configuration for one dif-
feomorphism (involving for instance few periodic points and their invariant
manifolds) that has the following properties:

– it “generates itself”: the system exhibiting this configuration is not isolated.
In general the mechanism is a codimensional bifurcation, but it produces a
cascade of diffeomorphisms sharing the same configuration;

– it “creates or destroys” rich and different dynamics for nearby systems (for
instance horseshoes, cascade of bifurcations, entropy’s variations).

Following this definition, homoclinic tangencies and heterodimensional cycles
are mechanisms in any Cr -topology for r ≥ 1.

In our context a dynamical phenomenon is any dynamical property which
provides a good global description of the system (like hyperbolicity, transitiv-
ity, minimality, zero entropy, spectral decomposition) and which occurs on a
“rather large” subset of systems.

We relate these notions and say that a mechanism is a complete obstruction
to a dynamical phenomenon when:

– it is an obstruction: the presence of themechanismprevents the phenomenon
to happen;

– it is complete: each system that does not exhibit the dynamical phenomenon
is approximated by another displaying the mechanism.

In other words, a mechanism (or a dynamical configuration) is a complete
obstruction to a dynamical phenomena, if it not only prevents the phenomenon
to happen but it also generates itself creating rich dynamics and it is common
in the complement of the prescribed dynamical phenomenon. Following this
approach, Palis’s conjecture can be recast:

Recasting Palis’s conjecture Heterodimensional cycles and homoclinic
tangencies are a complete obstruction to hyperbolicity.

Let us give some examples where a dichotomy mechanism/phenomenon
has been proved or conjectured.

– Homoclinic bifurcations/hyperbolicity. This corresponds to the previous
conjecture and is known in dimensions 1 and 2 for theC1-topology, see [39].
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Essential hyperbolicity and homoclinic bifurcations 389

– Transverse homoclinic intersection/robust zero topological entropy. It has
been proved in any dimension for the C1-topology, see [16,18].

– Trapping region/residual transitivity. Any C1-generic diffeomorphism f is
either transitive or sends a compact set into its interior, see [7].

– Homoclinic tangency/global dominated splitting. After a C1-perturbation
any diffeomorphism exhibits a homoclinic tangency or its limit dynamics
holds a (robust) dominated splitting with one-dimensional center bundles,
see [21].

d Mechanisms associated to phenomena In contrast to the previous
dichotomies, a mechanism could also be the key for a rich (semi-global)
dynamics. We say that a mechanism is associated to a dynamical phenom-
enon if the following holds:

– the systems exhibiting the dynamical phenomenon can be approximated by
ones displaying the mechanism;

– the ones exhibiting the mechanism generate (at least locally) the dynamical
phenomenon.

As in the notion of complete obstruction, a mechanism is associated to a
dynamical phenomenon not only if it generates it but if any time that the
phenomenon appears by small perturbations the mechanism is created. Thus a
goal would be to establish a dictionary betweenmechanisms and (semi-global)
dynamical phenomena.

Let us mention some known examples.

– Transverse homoclinic intersections/non-trivial hyperbolicity.Onone hand,
systems exhibiting a transverse homoclinic point of a hyperbolic periodic
point has horseshoes associated to them; on the other hand horseshoes dis-
plays transverse homoclinic points (see for instance [5,43]).

– Heterodimensional cycles/non-hyperbolic C1-robust transitivity.On the one
hand, systems displaying heterodimensional cycles are C1-dense in the
interior of the set of non-hyperbolic transitive diffeomorphisms (see for
instance [23]); on the other hand, the Cr -unfolding of a (co-index one)
heterodimensional cycles creates maximal invariant robustly transitive non-
hyperbolic sets (see [22]).

– Homoclinic tangencies/residual co-existence of infinitely many indepen-
dent pieces On the one hand, the existence of a homoclinic tangency for
C2 surface diffeomorphisms, sectionally dissipative tangencies in higher
dimension or the existence of a homoclinic tangencies combined with het-
erodimensional cycles for C1 diffeomorphisms may imply locally residu-
ally the co-existence of infinitelymany attractors (Newhouse phenomenon),
see [9,32,36]. On the other hand, it is conjectured that any diffeomorphism
exhibiting infinitely many attractors can be approximated by a diffeomor-
phism which exhibits a homoclinic tangency (see for instance [6]).
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Related to the above conjecture in [6], it was proved in [42] that for smooth dif-
feomorphisms, the co-existence of infinitely many attractors in a “sectionally
dissipative region of the manifold” implies the creation of sectionally dissipa-
tive tangencies by C1 perturbations (see corollary 1.1 in [42] for details). In a
more general framework as a byproduct of the proof of the main theorem, we
prove the following.

Theorem 1 The co-existence of infinitely many attractors for a C1-generic
diffeomorphism implies that either heterodimensional cycles or homoclinic
tangencies can be created by C1 perturbations.

See also item c in Sect. 1.2 and see Sect. 2.9 for details and proof.

e Robust mechanisms The mechanisms we presented are simple configura-
tions of the dynamics but as bifurcations are also one-codimensional. From
the deep studies of the role of cycles and tangencies, Bonatti and Diaz have
proposed to enrich Palis’s conjecture and introduced the notion of robust het-
erodimensional cycles and robust homoclinic tangencies, meaning that now
the mechanisms involve non-trivial transitive hyperbolic sets instead of peri-
odic orbits so that the cycles and tangencies may occur on an open set of
diffeomorphisms (see precise definition in Sect. 2.11, Definitions 2.35). More
precisely:

From [10] the main theorem can be restated in the following way:
Main theorem revisited Any diffeomorphism of a compact manifold can

be C1-approximated by another diffeomorphism which either is essentially
hyperbolic, or has a homoclinic tangency, or has a robust heterodimensional
cycle.

We also refer to [6] for a complementary program about the dynamics of
C1-diffeomorphisms, in a spirit close to our approach. Going deeper on the
initial conjecture by Palis, Bonatti proposes to split the space of systems into
open regions where the dynamics either exhibits a robust global structure or a
robust local phenomenon.

1.2 Itinerary of the proof

Since some diffeomorphisms have no attractors, we have to consider a weaker
notion. We recall that Conley’s theory allows to decompose the dynamics
into elementary pieces, called chain-recurrent classes, that are the maximal
sets that are transitive for the pseudo-orbits. There always exist such classes
that are furthermore Lyapunov stable and one call them quasi-attractors. For
C1-generic diffeomorphisms, one distinguishes two types of chain-recurrence
classes (see [7]): the aperiodic classes which do not contain any periodic orbit,
and the homoclinic classes which contain a dense set of periodic points (see
the precise definitions at the beginning of Sect. 2).
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The proof focuses on diffeomorphisms far from homoclinic bifurcations
and on their quasi-attractors. It consists in three parts.

(a) We first conclude that the quasi-attractors (the Lyapunov stable chain-
recurrence classes) are “topologically hyperbolic”: they are partially
hyperbolic homoclinic classeswith a one-dimensional “stable” center bun-
dle and the union of their basins of attraction is dense in the manifold.

(b) We then develop a series of perturbation techniques which ensure
that “topologically hyperbolic” quasi-attractors are uniformly hyperbolic
attractors.

(c) At the end we prove that the set of quasi-attractors is finite.

A diffeomorphism which satisfies the first and the third property could be
called “essentially topologically hyperbolic”.

Part a: Chain-hyperbolicity From the start, we concentrate the study on
quasi-attractors. Recall that each chain-recurrence class is either a homoclinic
class or is aperiodic. Following [18,19] (see Theorems 4 and 5 below), it is con-
cluded thatC1-far from homoclinic bifurcations, the aperiodic chain-recurrent
classes are partially hyperbolic with a one-dimensional center bundle, and the
homoclinic classes are partially hyperbolic with their center bundles being at
most two-dimensional that splits in two one-dimensional center subbundles
(however the hyperbolic extreme subbundles may be degenerated). Moreover,
a special type of dynamics has to hold along the center manifolds: the cen-
ter stable is chain-stable and the center unstable is chain-unstable. We define
a weak notion of topological hyperbolicity that we call chain-hyperbolicity:
this is suitable for our purpose since in some cases the chain-hyperbolicity is
robust under perturbations. (See Definition 2.10 for details and justification of
the name chain-hyperbolicity).

From Corollary 2.14 it is concluded that aperiodic classes cannot be attrac-
tors and therefore they are out of our picture. For homoclinic classes, when-
ever the partially hyperbolic splitting has two extreme hyperbolic subbundles,
Corollary 2.13 concludes that the center bundle is one-dimensional subbundle
and chain-stable otherwise a heterodimensional cycle can be created.

Part b:UniformhyperbolicityAt this step, a first dichotomy is presented (see
Corollary 2.18): either the quasi-attractor is contained in a normally hyperbolic
submanifold (and from there one concludes the hyperbolicity, see Corollary
2.31) or the strong stable foliation is non-trivially involved in the dynamic,
meaning that at least two different points x, y in the class share the same
local strong stable leaf. In this second case (see Theorem 12), we will perturb
the diffeomorphism in order to obtain a strong connection associated to a
periodic point, i.e. a periodic point whose strong stable and unstable manifolds
intersect, see Definition 2.20; in particular, assuming that the quasi-attractor
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is not hyperbolic, a heterodimensional cycle can be created (see Proposition
2.22).

Toperform theperturbations, onehas to discuss the relative positionbetween
two unstable leaves after projection by the strong stable holonomy: the position
types are introduced in Definition 5.1. In particular, by analyzing the geometry
of quasi-attractors one can reduce to the case the points x, y belong to stable
or to unstable manifolds of some periodic orbits. Improving [37,38], three
different kinds of perturbations may be performed. They correspond to the
following cases:

– x, y belong to unstable manifolds and their forward orbits have fast returns
close to x or y.

– x, y belong to unstable manifolds and their forward orbits have slow returns
close to x or y.

– x, y belong to a stable manifold.

The two first cases are covered by Theorem 14 and the last one by Theorem
13. To perform these perturbations one needs to control how the geometry
of the class changes for any perturbed map; we prove (see Proposition 4.8)
that whenever the perturbation of the homoclinic class does not display strong
connection associated to periodic points then it is possible to get a well defined
continuation for the whole class.

Part c: Finiteness of the attractors The delicate point is to exclude the exis-
tence of an infinite number of sinks. This is done by proving that for any
non-trivial chain-recurrence classes, the extreme subbundles are hyperbolic.
We thus consider the splittings Es ⊕ Ecu or Ess ⊕ Ec ⊕ Ecu , where Ec, Ecu

are one-dimensional, and in both cases we prove that Ecu is hyperbolic. The
first case follows from results in [42]. In the second case, the hyperbolicity
of the center unstable subbundle follows for a more detailed understanding of
the topological and geometric structure of the homoclinic class (see Theorem
11). In fact, from being far from heterodimensional cycles, it is concluded that
the class is totally disconnected along the center stable direction (see Theo-
rems 7) and from there a type of geometric Markov partition is constructed
(see Proposition 8.16); this allows to use C2-distortion arguments to conclude
hyperbolicity of Ecu as in [39,42].

After it is concluded that the chain-recurrence classes are partially hyper-
bolic with non-trivial extreme hyperbolic subbundles, the finiteness follows
quite easily (see Sect. 2.9).

Structure of the paper In Sect. 2 it is proved that the chain-recurrence classes
for systems far from homoclinic bifurcations are “topologically hyperbolic”.
Moreover,we stated there all the theorems (proved in the other sections) needed
to conclude the main theorem, which is done in Subsect. 2.10. In Sect. 3 we
give a general study of the chain-hyperbolic classes and their topological and
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geometric structures. This allows to obtain the continuation of some partially
hyperbolic classes (done in Sect.‘4), and to introduce the notion of bound-
ary points for quasi-attractors (done in Sect. 5). In Sects. 6 and 7 are stated
and proved the new perturbations techniques that hold in the C1+α-topology.
In Sects. 8 and 9 are studied partially hyperbolic homoclinic classes with a
two-codimensional strong stable bundle, first analyzing their topological and
geometric structure and latter their hyperbolic properties.

1.3 Some remarks about new techniques and Cr -versions of the main
theorem

Wewould like to highlightmany of the new techniques developed in the present
paper and that can be used in other contexts.

1. Chain-hyperbolicity We introduce the notion of chain-hyperbolic homo-
clinic classwhich generalizes the locallymaximal hyperbolic sets. It allows
to include some homoclinic classes having hyperbolic periodic points with
different stable dimensions, provided that at some scale, a stable dimension
is well-defined. We recover some classical properties of hyperbolic sets:
the local product structure, the stability under perturbation, the existence
of (chain) stable and unstable manifolds. See Sect. 3.

2. Continuation of (non necessarily hyperbolic) homoclinic classes. It is well
known that isolated hyperbolic sets are stable under perturbation and have
a well defined and unique continuation. We extend this approach to certain
partially hyperbolic setswhich are far from strong connections. This is done
by extending the continuation of their hyperbolic periodic points to their
closure, a technique that resembles to the notion of holomorphic motion.
See Sect. 4.

3. Geometric and topological properties of partially hyperbolic attractors
We study the geometric structure of partially hyperbolic attractors with a
one-dimensional center direction in terms of the dynamics of the strong
stable foliation. For instance:
– It is presented a dichotomy proving that a homoclinic class is either
embedded in a submanifold of lower dimension of the ambient space
or one can create a strong connection (maybe after a perturbation). See
Theorems 7 and 12.

– In certain cases it is introduced the notion of stable boundary points of
a partially hyperbolic homoclinic class (extending a classical notion for
hyperbolic surfaces maps) which permits us to control the bifurcations
that holds after perturbations. See Proposition 5.3 and Lemma 5.6.

– If they are no (generalized) strong connection, it is proved that the homo-
clinic class is totally disconnected along its stable leaves. See Theorem7.
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– The total disconnectednessmentioned above, allows us to introduce kind
ofMarkov partitions for non-hyperbolic partially hyperbolic classes. See
Proposition 8.16.

4. Hyperbolicity of the extreme subbundles. For invariant compact sets having
a dominated splitting E ⊕ F with dim(F) = 1, [39,42] have developed a
technique which allows to prove that F is hyperbolic provided E is either
uniformly contracted or one-dimensional.We extend this result for partially
hyperbolic systems with a 2-dimensional center bundle, that is when E is
only “topologically contracted”. See Sect. 9.

5. New perturbation techniques. It is developed new perturbation techniques
suitable for partially hyperbolic sets with one-dimensional center direc-
tions. See Theorems 14 and 13. Those perturbations resemble the C1-
connecting lemma but since in the present context a better understanding
of the dynamics is available, then it is possible to get a type of C1+α-
connecting lemma, even for some α > 0, see below.

6. Consequences for hyperbolic dynamics. Previous highlighted techniques
can be formulated for hyperbolic attractors and have consequences in terms
of topological and geometric structure. See Theorems 7 and 12.

7. Generic structure of partially hyperbolic quasi-attractors. A byproduct of
the proof shows (see Theorem 15) that for C1-generic diffeomorphisms,
any quasi-attractor which has a partially hyperbolic structure with a one-
dimensional center bundle contains periodic points of different stable
dimension.

C1+α-perturbations We also want to emphasize that many of the results
contained in the present paper work in the Cr -category for any r ≥ 1 or for
r = 1 + α with α ≥ 0 small. For instance, Theorems 12, 13 and 14 below
allow C1+α-perturbations. Let us recall how this topology is defined.

Definition 1.3 The C1+α-topology is generated by the open sets U =
U((ϕ, U ), (ψ, V ), K , f, ε) defined for a pair of charts ϕ, ψ : U, V → R

d

of M , a compact set K ⊂ U , a diffeomorphism f ∈ Diff1+α(M) satisfying
f (K ) ⊂ V and a ε > 0 as follows:

U := {
g ∈ Diff1+α(M), g(K )⊂V and |D(ψgϕ−1)−D(ψ f ϕ−1)|α,K <ε

}
,

where |.|α,K is the α-Hölder norm on K defined by

|H |α,K := sup
x∈K

‖H(x)‖ + sup
x �=y∈K

‖H(x) − H(y)‖
d(x, y)α

.

This topology is complete metrizable but not separable.
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Remark 1.4 One easily shows that a diffeomorphism g is close to a diffeo-
morphism f for the C1+α-topology when it is a composition g = ϕ f such
that ϕ is close to the identity for the C1+α-topology. But this does not implies
that g−1 is close to f −1 for the C1+α-topology. (Consider for instance the
diffeomorphisms f : x 	→ x(1 + |x |α) and gε = f + ε for ε arbitrarily close
to 0.).

We obtain (see the Remark 2.33, item 4) a partial version of Palis conjecture
in the C1+α-category when one restricts to partially hyperbolic attractors with
one-dimensional center direction).

Theorem 2 For any C2 diffeomorphism f of a compact manifold and any
“topologically hyperbolic attractor” H(p) (i.e. which satisfies the assump-
tions stated in Theorem 12), there exists α > 0 with the following property.
For any δ > 0, there exist C1+α-perturbations g of f such that

– either the homoclinic class H(pg) associated to the continuation pg of p
is hyperbolic,

– or there exists a periodic orbit O of g which has a strong homoclinic inter-
section and one of its Lyapunov exponents has a modulus smaller than δ.

Wedon’t knowhowever if under the conclusions of this theorem it is possible
to create a heterodimensional cycle by a C1+α-perturbation of the diffeomor-
phism.

2 Chain-recurrence classes far from homoclinic bifurcations

We introduce in Sects. 2.1 and 2.2 the notion of trapped plaque families and
chain-hyperbolic homoclinic classes.Their basic propertieswill be studied sys-
tematically later in Sect. 3, but we will derive before (Sects. 2.2, 2.4 and 2.9)
important consequences for the generic dynamics far from homoclinic bifur-
cations. We also present (Sects. 2.8 and 2.10) the main results of the paper that
are proved in the next sections and explain how they imply the main theorem.
In the last part (Sect. 2.11) we give other consequences of our techniques. We
start this section by recalling some classical definitions.

In all the paper M denotes a compact boundaryless manifold.

Definition 2.1 We say that f ∈ Diff1(M) exhibits a homoclinic tangency if
there is a hyperbolic periodic orbit O and a point x ∈ W s(O) ∩ W u(O) with
Tx W s(O) ⊕ Tx W u(O) �= Tx M .

Definition 2.2 We say that f ∈ Diff1(M) exhibits a heterodimensional cycle
if there are two hyperbolic periodic orbits O and O ′ of different stable dimen-
sion, such that W u(O) ∩ W s(O ′) �= ∅ and W u(O ′) ∩ W s(O) �= ∅.
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Definition 2.3 From now on, with Tang∪Cycl we denote the set of diffeo-
morphisms that can beC1-approximated by one exhibiting either a homoclinic
tangency or a heterodimensional cycle. We say that a diffeomorphisms f is
C1-far from cycles and tangencies if f ∈ Diff1(M)\Tang∪Cycl .

The global dynamics of a diffeomorphism may be decomposed in the fol-
lowing way. The chain-recurrent set is the set of points that belong to a peri-
odic ε-pseudo orbit for any ε > 0. This compact invariant set breaks down
into invariant compact disjoint pieces, called the chain-recurrence classes:
two points belong to a same piece if they belong to a same periodic ε-pseudo
orbit for any ε > 0. An invariant set is chain-transitive if it contains a ε-dense
ε-pseudo-orbit for any ε > 0.

Definition 2.4 A quasi-attractor is a chain-recurrence class which is Lya-
punov stable, i.e. which admits a basis of neighborhoodsU satisfying f (U ) ⊂
U .

For any diffeomorphism, we define another notion of “piece of the dynam-
ics”. Associated to a hyperbolic periodic point p, one introduces its homoclinic
class H(p) which is the closure of the transverse intersection points between
the unstable and the stable manifolds W u(O), W s(O) of the orbit O of p.
It also coincides with the closure of the set of hyperbolic points q that are
homoclinically related to the orbit of p, i.e. such that W u(q) and W s(q) have
respectively a transverse intersection point with the stable and the unstable
manifolds of the orbit of p. Note that for diffeomorphisms g that are C1-close
to f , the periodic point p has a hyperbolic continuation pg. This allows to
consider the homoclinic class H(pg).

For a C1-generic diffeomorphism, the periodic points are hyperbolic and in
[7] was proved that a chain-recurrence class that contains a periodic point p
coincides with the homoclinic class H(p). The other chain-recurrence classes
are called the aperiodic classes. Those classes are treated in Subsects. 2.2 and
2.4.

We state two other consequences of Hayashi’s connecting lemma and [7].
In this paper we sometimes consider C1-generic diffeomorphisms. The sen-
tences “Any C1-generic diffeomorphism f satisfies the property P” and “Any
diffeomorphism f in a dense Gδ subset of Diff1(M) satisfies the property
P” mean that there exists a dense Gδ subset G ⊂ Diff1(M) such that any
diffeomorphism f ∈ G satisfies the property P .

Lemma 2.5 For any C1-generic diffeomorphism f and any homoclinic class
H(p),

– if H(p) contains periodic points with different stable dimensions, then f
may be C1-approximated by diffeomorphisms having a heterodimensional
cycle;

123



Essential hyperbolicity and homoclinic bifurcations 397

– H(p) is a quasi-attractor if and only if it contains the unstable manifold of
p.

Quasi-attractor always exist and for a C1-generic diffeomorphism they
attract most orbit.

Theorem 3 [7,29] Let f be a diffeomorphism in a dense Gδ subset of
Diff1(M). Then the ω-limit set of any point x in a dense Gδ subset of M
is a quasi-attractor.

According to this result, the main theorem is a consequence of two inde-
pendent properties of C1-generic diffeomorphisms that are C1-far from cycles
and tangencies:

– the set of quasi-attractors is finite (see Proposition 2.32);
– each quasi-attractor is a hyperbolic set (see Theorem 12).

Indeed by the shadowing lemma, any quasi-attractor which is hyperbolic is
transitive and attracts any orbit in a neighborhood.

2.1 Trapped tangent dynamics

Let f be a diffeomorphism and K be an invariant compact set.
A dominated splitting on K is a decomposition TK M = E ⊕F of its tangent

bundle into two invariant linear subbundles such that, for some integer N ≥ 1,
any unit vectors u ∈ Ex , v ∈ Fx at points x ∈ K satisfy

2‖D f N .ux‖ ≤ ‖D f N .vx‖.
This definition does not depend on the choice of a Riemannian metric on M .
In the same way, one can define dominated splittings TK M = E1 ⊕ · · · ⊕ Es
involving more than two bundles.

When the bundle E is uniformly contracted (i.e. when there exists N ≥ 1
such that for any unit vector u ∈ E one has ‖D f N .u‖ ≤ 2−1), the stable
set of each point x contains an injectively immersed submanifold W ss(x)

tangent to Ex called the strong stable manifold of x , which is mapped by f
on the manifold W ss( f (x)). In this case the bundle is often denoted by Ess

(or sometimes Es if it is the “maximal” stable bundle). When F is uniformly
contracted by f −1, it will be denoted by Euu (or Eu) and the corresponding
strong unstable manifolds by W uu(x).

A partially hyperbolic splitting on K is a dominated splitting TK M =
Ess ⊕ Ec ⊕ Euu such that Ess and Euu are uniformly contracted by f and
f −1 respectively.

Definition 2.6 Let us consider a dominated splitting TK M = E1 ⊕ E2 ⊕ E3
and the bundle E = E2 (E1 or E3 can be degenerate). A plaque family tangent
to E is a continuousmapW from the linear bundle E over K into M satisfying:
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– for each x ∈ K , the induced mapWx : Ex → M is a C1-embedding which
satisfiesWx (0) = x and whose image is tangent to Ex at x ;

– (Wx )x∈K is a continuous family of C1-embeddings.

The plaque family W is locally invariant if there exists ρ > 0 such that for
each x ∈ K the image of the ball B(0, ρ) ⊂ Ex by f ◦Wx is contained in the
plaqueW f (x).

We often identifyWx with its image. The plaque family theorem [26, theorem
5.5] asserts that a locally invariant plaque family tangent to E always exists
(but is not unique in general).

Definition 2.7 The plaque familyW tangent to E is trapped if for each x ∈ K ,
one has

f (Wx ) ⊂ W f (x).

W is thin trapped if for any neighborhood S of the section 0 in E there exists
a continuous family (ϕx )x∈K of C1-diffeomorphisms of the spaces (Ex )x∈K
such that for any x ∈ K one has

ϕx (B(0, 1)) ⊂ S and f (Wx ◦ ϕx (B(0, 1))) ⊂ W f (x) ◦ ϕ f (x)(B(0, 1)).

The following property will be proved in Sect. 3.1.

Lemma 2.8 Let K be a compact invariant set endowed with a dominated
decomposition TK M = E ⊕ F such that there exists a thin trapped plaque
family W tangent to E. Then:

1. Any other locally invariant plaque family tangent to E is thin trapped.
2. For any ρ > 0, there exist a maximal invariant set K ′ in a neighborhood

of K , a dominated splitting E ⊕ F on K ′ which extends the splitting on K
and a trapped plaque family W ′ on K ′ tangent to E, whose plaques have
a diameter small than ρ, and such that W ′

x ⊂ Wx for x ∈ K .

Definition 2.9 The bundle E is thin-trapped if every locally invariant plaque
family tangent to E is thin trapped (equivalently if one locally invariant plaque
family tangent to E is thin trapped.).

2.2 Chain hyperbolicity

Far from homoclinic bifurcations, the homoclinic classes of a generic diffeo-
morphism satisfy some weak form of hyperbolicity.
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Definition 2.10 A homoclinic class H(p) is said to be chain-hyperbolic if:

– H(p) has a dominated splitting TH(p)M = Ecs ⊕ Ecu into center stable
and center unstable bundles;

– there exists a plaque family (Wcs
x )x∈H(p) tangent to Ecs which is trapped

by f and a plaque family (Wcu
x )x∈H(p) tangent to Ecu which is trapped by

f −1;
– there exists a hyperbolic periodic point qs (resp. qu) homoclinically related
to the orbit of p whose stable manifold containsWcs

qs
(resp. whose unstable

manifold containsWcu
qu
).

The chain-hyperbolicity will be systematically studied in Sect. 3. One will
see (Lemma 3.11) that for any point x ∈ H(p), the plaque Wcs

x is contained
in the chain-stable set of H(p) (in the sense that Wcs

x is contained in the set
of points x ∈ M such that for any ε > 0, there exists a ε-pseudo-orbit that
joints x to H(p)). This justifies the name “chain-hyperbolicity”: this definition
generalizes the hyperbolic basic sets endowed with families of stable and
unstable plaques. Indeed, in this case the plaquesWcs (which are not assumed
to be small) are the images of local stablemanifolds by abackward iterate f −n).
With additional assumptions, the chain-hyperbolicity is a robust property: if
H(p) is chain-hyperbolic for f , coincides with its chain-recurrence class and
if Ecs, Ecu are thin trapped by f and f −1 respectively, then for any g that is
C1-close to f the homoclinic class H(pg) associated to the continuation pg
of p is also chain-hyperbolic (see Corollary 3.7).

We state two properties that are used in the next paragraphs. The first one
is proved in Sect. 3.

Lemma 2.11 see Lemma 3.9 Let H(p) be a chain-hyperbolic homoclinic
class. It contains a dense set of hyperbolic periodic points q that are homo-
clinically related to the orbit of p and whose stable and unstable manifolds
contain the plaques Wcs

q and Wcu
q respectively.

Lemma 2.12 Let H(p) be a chain-hyperbolic homoclinic class whose center-
stable bundle has a dominated splitting Ecs = E ⊕ Ec such that Ec has
dimension 1. For any δ > 0, there exists ρ > 0 and neighborhoods U of K
and U ⊂ Diff1(M) of f such that, for any g ∈ U , any invariant compact
set K ⊂ U, and any trapped plaque family W tangent to Ecs over K whose
plaques are C1-close to the plaques Wcs over H(p), the following property
holds.

For any periodic orbit O ⊂ K of g whose Lyapunov exponent along Ec is
smaller than −δ, there exists q ∈ O whose stable manifold contains the ball
centered at q with radius ρ in Wq .

Proof Let O ⊂ K be a hyperbolic periodic orbit whose Lyapunov expo-
nents along Ecs are smaller than −δ: since Ec is one-dimensional this implies
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that there exists q0 ∈ O such that for each n ≥ 0 one has ‖Dgn
|Ec(q0)‖ =

∏n−1
i=0 ‖Dg|Ec(gi (q0))‖ ≤ e−n.δ . The domination E ⊕ Ec then implies that for

each n ≥ 0, one has

n−1∏

i=0

‖DgN
|Ecs (gi.N (q0))‖ ≤ C.e−n, (2.1)

where C, N > 0 are some uniform constants given by the domination. One
deduces from (2.1) that a uniform neighborhood of q0 in Wq0 is contained in
W s(q0) (see also [1, section 8]).

2.3 Homoclinic classes

We now start to describe homoclinic classes of generic diffeomorphisms far
from homoclinic tangencies and heterodimensional cycles. The following
result is essentially contained in [19].

Theorem 4 Let f be a diffeomorphism in a dense Gδ subset of Diff1(M)\
Tang∪Cycl. Then, any homoclinic class of f is chain-hyperbolic. Moreover,
the center stable bundle Ecs is thin trapped. If it is not uniformly contracted,
it decomposes as a dominated splitting Ecs = Ess ⊕ Ec where dim(Ec) = 1
and Ess is uniform; and there exist periodic orbits homoclinically related to p
and whose Lyapunov exponents along Ec are arbitrarily close to 0. The same
holds for the center unstable bundle Ecu and f −1.

Proof From [19, theorem A and addendum A], the homoclinic class has a
dominated splitting Ecs ⊕ Ecu and if Ecs is not uniformly contracted:

– There exists a dominated splitting Ecs = Ess ⊕ Ec, where Ess is uniform
and dim(Ec) = 1.

– There exists periodic orbits homoclinically related to p whose Lyapunov
exponent along Ec is arbitrarily close to 0.

– The bundle Ec has “type (H)-attracting”: there exists a locally invariant
plaque family D tangent to Ec and for any r > 0, there exists a continuous
family of open intervals Ix ⊂ Ec

x containing 0 and of length smaller than r ,
satisfying f (Dx (Ix )) ⊂ D f (x)(I f (x)) for each x ∈ H(p). (Equivalently D
is thin trapped.)

It remains to justify the thin trapping of Ecs . (Of course the same discussion
applies to Ecu for f −1.

When Ecs is uniformly contracted, this is very standard. When Ecs is not
uniformly contracted, let us now consider a locally invariant plaque familyW
tangent to Ecs . Since I is small, one has Dx (Ix ) ⊂ Wx for any x ∈ H(p)
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(see [19, lemma 2.5] or the proof of Lemma 2.8). One then builds for each x
a small open neighborhood Vx of Dx (Ix ) in Wx which depends continuously
on x : this can be obtained by modifying a tubular neighborhood of Dx (Ix )

in Wx . Since Ess is uniformly contracted one can still require the trapping
property f (Vx ) ⊂ Vx . Let Ux ⊂ Ecs

x be the preimage of Vx by W . Since Ux
can be obtained by modifying the tubular neighborhood of a C1-curve, it can
be chosen diffeomorphic in Ecs to an open ball through a diffeomorphism as
stated in Definition 2.7 and it defines a trapped plaque familyWcs . ��

One deduces that the tangent bundle over a non-hyperbolic homoclinic class
as in Theorem 4 has a dominated splitting T M = Ess ⊕ Ec ⊕ Euu or Ess ⊕
Ec
1 ⊕ Ec

2 ⊕ Euu where each bundle Ec or Ec
1, Ec

2 is one-dimensional, Ess is
uniformly contracted and Euu is uniformly expanded (however, one of them
can be trivial). Note that under perturbations the homoclinic class H(pg) is still
chain-hyperbolic but its center stable bundle Ecs is a priori not thin trapped.

We will focus on the invariant compact sets K that are Lyapunov stable, i.e.
that have a basis of neighborhoods U that are invariant by f (i.e. f (U ) ⊂ U ).

Corollary 2.13 Let f be C1-generic in Diff1(M)\Tang∪Cycl (recall Defi-
nition 2.3). Then, for any Lyapunov stable homoclinic class of f the center
unstable bundle is uniformly expanded.

Proof For any open set U ⊂ M and any integer d ≥ 0, one considers the
following property:

P(U, d): There exists a hyperbolic periodic orbit O ⊂ U whose stable
dimension equals d.

This property is open: if P(U, d) is satisfied by f , then so it is by any
diffeomorphism g that is C1-close to f . Let us fix a countable basis of open
sets B, i.e. for any compact set and any open set V satisfying K ⊂ V ⊂ M ,
there exists U ∈ B such that K ⊂ U ⊂ V . Then, there is a Gδ dense subset
R0 ⊂ Diff1(M), such that for any diffeomorphism f in R0, any open set
U ∈ B and any d ≥ 0, if there exists a perturbation g of f such that the
property P(U, d) holds for g, then it also holds for f . More precisely,

R0 =
⋂

U,d

P(U, d) ∪ (Diff1(M)\P(U, d)).

We denote by R ⊂ U a dense Gδ subset of Diff1(M)\Tang∪Cycl whose
elements satisfy Theorem 4 and have hyperbolic periodic orbits.

Let us consider f ∈ R∩R0 and a homoclinic class H(p) of f whose center
unstable bundle Ecu = Ec

2 ⊕ Euu is not uniformly expanded. Hence dim(Ec
2)

is one-dimensional, p is not a sink (and a priori Euu could be degenerated).
By the Theorem 4, there exists a hyperbolic periodic orbit O homoclinically
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related to p having the Lyapunov exponent along Ec
2 arbitrarily close to 0.

By Franks lemma, one can find a perturbation g of f such that O becomes
a hyperbolic periodic orbit whose stable space contains Ec

2. Since f ∈ R0,
one deduces that any neighborhood of H(p) contains a periodic orbit whose
stable dimension is ds + 1, where ds denotes the stable dimension of p.

By Lemma 2.8(2), one can consider a trapped plaque familiesW tangent to
Ecs over the maximal invariant set in a small neighborhood of H(p), whose
plaques are arbitrarily small. Let us consider a periodic orbit O contained in
a small neighborhood of H(p), with stable dimension equal to ds + 1. As a
consequence, using the domination Ecs ⊕ Ecu , the Lyapunov exponents along
Ecs of O is smaller than some uniform constant −C < 0. If the plaques of the
familyW are small enough, the Lemma 2.12 then ensures that at some q ∈ O
one hasWq ⊂ W s(q). ByLemma2.11,q is close to a hyperbolic periodic point
z homoclinically related to the orbit of p whose plaqueWcu

z is contained in the
unstable set of z. The plaqueWq intersects transversally the plaqueWcu

z . This
proves that the stable manifold of q also intersects transversally the unstable
manifold of the orbit of p.

Since H(p) is Lyapunov stable, it contains W u(z), q and W u(q) and
therefore the point q is not a sink (recall that homoclinic classes does not
contain attracting periodic points). This proves that Euu is non trivial. Let
y ∈ W u(q)\{q}. Since y belongs to H(p), the stable manifold of the orbit of
p accumulates on y, hence by a C1-small perturbation produced by Hayashi’s
connecting lemma, one can create an intersection between the unstable man-
ifold of q and the stable manifold of the orbit of p. The intersection between
W u(p) and W s(q) persists hence we have built a heterodimensional cycle,
contradicting our assumptions. We have proved that if H(p) is Lyapunov sta-
ble, then the bundle Ecu is uniformly expanded. ��

2.4 Aperiodic classes

Far from homoclinic bifurcations, the aperiodic classes have also a partially
hyperbolic structure. The following result restate [19].

Theorem 5 Let f be a diffeomorphism in a dense Gδ subset of Diff1(M)\
Tang∪Cycl. Then, any aperiodic class of f is a minimal set and holds a
partially hyperbolic structure Ess ⊕ Ec ⊕ Euu with dim(Ec) = 1. Moreover,
there exists a continuous family of center stable plaques Wcs tangent to Ecs =
Ess ⊕ Ec which are thin trapped by f . Similarly, there exists a continuous
family of center unstable plaques Wcu tangent to Ecu = Ec ⊕ Euu which are
thin trapped by f −1.

Corollary 2.14 Let f be generic in Diff1(M)\Tang∪Cycl. Then, for any
aperiodic class, the bundles Euu and Ess are non-degenerate.
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The strong unstable manifolds of points of the class are not contained in the
class. In particular, the class is not Lyapunov stable.

Proof Let us consider an aperiodic class K . By Lemma 2.8(2), there exists a
trapped plaque family Wcs over the maximal invariant set in a small neigh-
borhood of K , whose plaques have small diameters.

Since K is a minimal set and f is C1-generic, Pugh’s closing lemma (the
general density theorem) implies that K is the Hausdorff limit of a sequence
of periodic orbits. For any τ -periodic point p whose orbit is close to K , the
plaque Wcs

p is mapped into itself by f τ . Since the plaque Wcs is tangent to
the bundle Ecs = Ess ⊕ Ec where Ec has dimension 1 and Ess is uniformly
contracted, the orbit of any point inWcs

p accumulates in the future on a periodic
orbit.

If Euu is degenerate, the union of the plaques Wcs
p cover a neighborhood

of K , hence the orbit of any point in K converges towards a periodic orbit,
which is a contradiction.

If Euu is not degenerate, the strong unstable manifold W uu(x) tangent to
Euu of any point x ∈ K intersects the plaque Wcs

p of a periodic point p. One
deduces that there exists an orbit that accumulates on K in the past and on a
periodic orbit O in the future. If W uu(x) is contained in K , the periodic orbit
O is contained in K , contradicting the fact that K is an aperiodic class. ��
Remark 2.15 Actually, a stronger result can be proved.

For any C1-generic diffeomorphism and any aperiodic class K endowed
with a partially hyperbolic structure TK M = Ess ⊕Ec⊕Euu with dim(Ec) =
1, the class is not contained in a locally invariant submanifold tangent to
Ess ⊕ Ec.
Indeed, otherwise, one could work in this submanifold and get a contradic-

tion as in the previous proof. See also Sect. 2.5.

2.5 Reduction of the ambient dimension

Let us consider an invariant compact set K with a dominated splitting TK M =
Ess ⊕F such that Ess is uniformly contracted. The dynamics on K may behave
like the dynamics inside a manifold of smaller dimension. This motivates the
following definition.

Definition 2.16 An embedded C1-submanifold � containing K and tangent
to F is locally invariant if there exists a neighborhood U of K in � such that
f (U ) is contained in �.

More generally, when K admits a partially hyperbolic splitting TK M = Ess ⊕
Ec ⊕ Euu one may define the notion of locally invariant submanifold tangent
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to Ec. The next proposition state that the property defined above is robust by
C1-perturbations.

Proposition 2.17 [8] Let K be an invariant compact set endowed with a dom-
inated splitting TK M = Ess ⊕ F such that Ess is uniformly contracted. If K is
contained in a locally invariant submanifold tangent to F, then the same holds
for any diffeomorphism C1-close to f and any compact set K ′ contained in a
small neighborhood of K .

There exists a simple criterion for the existence of a locally invariant sub-
manifold.

Theorem 6 [8] Let K be an invariant compact set with a dominated splitting
Ess ⊕ F such that Ess is uniformly contracted. Then K is contained in a
locally invariant submanifold tangent to F if and only if the (global) strong
stable leaves for the bundle Ess intersect the set K in only one point.

One can deduce a generic version of previous theorem.

Corollary 2.18 Let f be C1-generic and H(p) be a homoclinic class having
a dominated splitting Ess ⊕ F such that Ess is uniformly contracted.

Then, either H(p) is contained in a locally invariant submanifold tangent
to F or for any generic diffeomorphism g that is C1-close to f , there exist two
different points x �= y in H(pg) such that W ss(x) = W ss(y).

Proof By [7], there exists a dense Gδ subset R ⊂ Diff1(M) of diffeomor-
phisms whose homoclinic classes are chain-recurrence classes. In particular,
for any f ∈ R and any homoclinic class H(p) for f , the class H(pg) for
g C1-close to f is contained in a small neighborhood of H(p). By Proposi-
tion 2.17, one deduces that if H(p) has a dominated splitting Ess ⊕ F and is
contained in a locally invariant submanifold tangent to F , then the same holds
for the classes H(pg).

As a consequence, for any f in a dense Gδ subset G ⊂ Diff1(M) (contained
in R), and any homoclinic class H(p) of f , either for any diffeomorphism
g close to f the class H(pg) is contained in a locally invariant submanifold
tangent to F or for any diffeomorphism g ∈ G close to f the class H(pg) is
not contained in such a manifold. The Theorem 6 ends the proof. ��

The previous result raises an important question for us:

Question 2.19 When H(p) is not contained in a locally invariant submanifold
tangent to F , is it possible to find a periodic point q homoclinically related to
the orbit of p whose strong stable manifold W ss(q)\{q} intersects H(p)?

Such an intersection is called a generalized strong homoclinic intersection
in the next section.Wewill provide answers for this problem in some particular
cases, see Theorems 7 and 12 below.
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2.6 Strong homoclinic intersections

Inside a homoclinic class, someperiodic points exhibit a transverse intersection
between their stable and unstable manifolds. If this intersection holds along
strong stable and unstable manifolds of the periodic orbit we say that there is
a strong homoclinic connection. More precisely, we introduce the following
definition:

Definition 2.20 Given a hyperbolic periodic orbit O with a dominated split-
ting TO M = E ⊕ F such that the stable dimension of O is strictly larger
(resp. strictly smaller) than dim(E) it is said that O exhibits a strong stable
homoclinic intersection (resp. a strong unstable homoclinic intersection) if the
invariant manifold of O tangent to E and the unstable manifold of O (resp.
the invariant manifold of O tangent to F and the stable manifold of O) have
an intersection point outside the orbit O .

This definition can be generalized to homoclinic classes.

Definition 2.21 Ahomoclinic class H(p)has a strong homoclinic intersection
if there exists a hyperbolic periodic orbit O homoclinically related to p which
has a strong homoclinic intersection.

The strong homoclinic intersections allow sometimes to create heterodi-
mensional cycles. The following statement generalizes [37, proposition 2.4].
The proof is similar and we only sketch it.

Proposition 2.22 Let H(p) be a homoclinic class for a diffeomorphism f
such that:

– H(p) has a dominated splitting E ⊕ F and the stable dimension of p is
dim(E) + 1;

– there exist some hyperbolic periodic orbits homoclinically related to p hav-
ing some negative Lyapunov exponents arbitrarily close to 0.

If there exist diffeomorphisms g C1-close to f such that H(pg) has a strong
homoclinic intersection, then there exist some C1-close perturbations of f
that have an heterodimensional cycle between a hyperbolic periodic orbit
homoclinically related to p and a hyperbolic periodic orbit of stable dimension
dim(E).

Before proving this proposition, we explain how it is possible by a Cr -
perturbation to transport the strong homoclinic intersection to another periodic
orbit.

Lemma 2.23 Let H(p) be a homoclinic class for a Cr -diffeomorphism f with
r ≥ 1 such that:
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– H(p) has a dominated splitting E ⊕ F and the stable dimension of p is
dim(E) + 1;

– H(p) has a strong homoclinic intersection.

Then for any periodic point q homoclinically related to p there exist some Cr -
close perturbations of f that have a periodic point q ′ homoclinically related
to the orbit of p which exhibit a strong homoclinic intersection and whose
minimal Lyapunov exponents along F are close to the one of q.

Proof Without loss of generality, one can assume that the orbit O of p has
a strong homoclinic intersection ζ . Let us consider a transverse intersection
point zs between W s(O) and W u(q) and a transverse intersection point zu
between W u(O) and W s(q) where O is the orbit of p. There exists a tran-
sitive hyperbolic set K which contains zs, zu, O and which is included in a
small neighborhood U of { f n(zs)}n∈Z ∪ { f n(zu)}n∈Z. One deduces that there
exists a sequence of periodic points (qn) converging to p and whose orbits is
contained in U and homoclinically related to p. One may choose these orbits
in such a way that they spend most of their iterates close to the orbit of q.
Note that K has a dominated splitting of the form E ⊕ Ec ⊕ F ′ where Ec

is one-dimensional and E ⊕ Ec, F ′ respectively coincide with the stable and
the unstable bundle. As a consequence the minimal Lyapunov exponents of
qn along E are arbitrarily close to the corresponding exponent of q when n is
large.

For a smallCr perturbation g supported in a small neighborhood of ζ (hence
disjoint from K ), one canfirst ensure that Tζ W u(O)⊕Eζ is one-codimensional
and then consider a small arc of diffeomorphisms (gt ) which coincides with
g when t = 0 and which unfolds the strong intersection: in a neighborhood
of ζ the strong homoclinic intersection has disappeared for t �= 0. The local
unstablemanifold and the localmanifold tangent to E for qn accumulate on the
local unstable manifold and the local manifold tangent to E for O respectively.
One thus deduces that for a diffeomorphism Cr close to g and n large enough,
the strong stable and the unstable manifolds of the orbit of qn intersect. This
gives the conclusion for q ′ = qn . ��
Sketch of the proof of proposition 2.22 Let us fix ε > 0 and a periodic point q
homoclinically related to the orbit of p andwhoseminimal Lyapunov exponent
along F belongs to (−ε, 0). Let g be a diffeomorphismC1-close to f and O be
a periodic orbit homoclinically related to the continuation pg of p for g which
exhibits a strong homoclinic intersection y between its unstable manifold and
its invariant manifold tangent to E . By Lemma 2.23, one can find a small
C1-perturbation g1 having a periodic point q1 homoclinically related to pg1 ,
whose minimal Lyapunov exponent along F belongs to (−ε, 0) and which
exhibits a strong homoclinic intersection.
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Let us consider a local stable manifold D of q1. Since q1 has a stable
exponent close to 0, one can by C1-perturbation g′ (as small as one wants
if one chooses ε and q accordingly) create inside D a hyperbolic periodic
point q ′ of stable dimension dim(E). Since D has dimension dim(E) + 1,
one can also require that D contains finitely many periodic points of stable
dimension dim(E) + 1, close to q1, whose stable sets cover a dense subset of
D. If the perturbation is realized in a small neighborhood of q1, the manifold
W u(pg′) intersects transversally D, hence one can ensure that the unstable
manifold of pg′ intersects transversally the stable manifold of a periodic point
q ′′, so that q ′′ and pg′ are homoclinically related. The stable manifold of q ′′
intersects the unstable manifold of q ′ along an orbit contained in D. Since
the local invariant manifolds of q ′, q ′′ are close to those of q1, one can by
a small perturbation close to the strong homoclinic intersection of q1 create
an intersection between W u(q ′) and W s(q ′′). This gives a heterodimensional
cycle associated to the periodic orbit q ′′ that is homoclinically related to pg′ .

��
If a homoclinic class H(p) contains two hyperbolic periodic points q, q ′

homoclinically related to p such that the strong stable manifold W ss(q)\{q}
and the unstablemanifold W u(q ′) intersect, one can create a strong homoclinic
intersection by aCr -perturbation, for any r ≥ 1.Wehave amore general result.

Lemma 2.24 Let f be a Cr -diffeomorphism, r ≥ 1 and let q, px , py be three
periodic points whose orbits are homoclinically related such that

– the homoclinic class H(q) has a dominated splitting TH(q)M = Ess ⊕ F
and dim(Ess) is strictly smaller than the stable dimension of q;

– there are two distinct transverse intersection points x ∈ W u(px )
∣
∣∩ W s(q),

y ∈ W u(py)
∣
∣∩ W s(q) sharing the same strong stable leaf.

Then for any r ≥ 1, there is g Cr -close to f such that H(qg) has a strong
homoclinic intersection.

Proof One can assume that y is distinct from q. Taking a small neighborhoods
of the orbits of q, px , py, x , the orbit of a point in W u(q) ∩ W s(px ), the orbit
of a point in W u(q) ∩ W s(py) and the orbit of a point in W s(q) ∩ W u(py)

different than y it is possible to get a transitive hyperbolic set  that contains
px , py , x and q but not y. So, it follows that there is a periodic point q̂
homoclinically related to p arbitrarily close to x and whose orbit is close to 

in the Hausdorff topology. One deduces that the local strong stable manifold
of q̂ and the local unstable manifold of the orbit of q̂ are close to y. By
a Cr -perturbation, one can thus create an intersection at y, hence a strong
connection between these manifolds, keeping the transverse homoclinic orbits
with p. This shows that H(qg) has a strong homoclinic intersection for this new
diffeomorphism g. ��

123



408 S. Crovisier, E. R. Pujals

Remark 2.25 The same Proof of Lemma 2.24 gives a more general property:
Let f be a Cr -diffeomorphism, K a transitive hyperbolic set whose stable
bundle has a non-trivial dominated splitting Es = Ess ⊕ Ec, and x, y ∈ K
such that W ss(x) and W u(y) intersect at a point z /∈ K . Then there exists g
Cr -close to f which coincides with f outside a small neighborhood of z and
a periodic orbit O ⊂ K which exhibits a strong homoclinic intersection for g.

We generalize again the definition of strong homoclinic intersection.

Definition 2.26 Ahomoclinic class H(p) has a generalized strong homoclinic
intersection if there exists a hyperbolic periodic orbit O homoclinically related
to p, having a dominated splitting TO M = E ⊕ F such that the stable dimen-
sion of O is strictly larger (resp. strictly smaller) than dim(E), and whose
invariant manifold tangent to E (resp. to F) contains a point z ∈ H(p)\O .

In the previous definition, the class may not have a strong homoclinic inter-
section since the point z may not belong to W u(O). However z ∈ H(p) is
accumulated by W u(O) and from the C1-connecting lemma by Hayashi the
following result holds immediately.

Proposition 2.27 Let H(p) be a homoclinic class for a diffeomorphism f
which has a generalized strong homoclinic intersection. Then, there exist some
C1-close diffeomorphisms g such that H(pg) has a strong homoclinic inter-
section.

One may wonder if this last result still holds in Cr -topologies for r > 1.
We have a result in this direction under stronger assumptions. We state it for
the completeness of the discussion but we will not use it in the remainder of
the text. The proof is much less elementary than the previous ones and will be
obtained as a corollary of Theorem 13 at the end of Sect. 6.

Proposition 2.28 For any diffeomorphism f0 and any homoclinic class H(p)

which is a chain-recurrence class endowed with a partially hyperbolic struc-
ture Ess ⊕ Ec ⊕ Euu, dim(Ec) = 1, such that Ess ⊕ Ec is thin trapped, there
exists α0 > 0 and a C1-neighborhood U of f0 with the following property.

For any α ∈ [0, α0] and any C1+α-diffeomorphism f ∈ U such that H(p f )

has a generalized strong homoclinic intersection, there exists a diffeomor-
phism g arbitrarily C1+α-close to f such that H(pg) has a strong homoclinic
intersection.

2.7 Total disconnectedness along the center stable plaques

Let us consider a chain-hyperbolic homoclinic class H(p)whose center-stable
bundle is thin trapped by f . In certain part of the proof of the main theorem,
we need a better understanding on the geometric properties of the class in
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order, for instance, to build analogs of Markov partitions. To do that, we need
to ensure that the intersection of H(p) with its center stable plaques is totally
disconnected. By Lemma 2.8 this property does not depend on the choice of
a center stable plaque family. It is provided by the following result proved in
Sect. 8.

Theorem 7 Let f be a diffeomorphism and H(p)be a chain-hyperbolic homo-
clinic class with a dominated splitting Ess ⊕ Ec

1 ⊕ Ec
2 such that Ec

1, Ec
2 are

one-dimensional and Ecs = Ess ⊕ Ec
1 and Ecu = Ec

2 are thin trapped. Then,
one of the following cases holds.

• The strong stable manifold (tangent to Ess) of any point x ∈ H(p) intersects
H(p) only at x.

• There exists a periodic point q in H(p) whose strong stable manifold
W ss(q)\{q} intersects H(p).

• The class is totally disconnected along the center stable plaques.

Under this general setting the point q is not necessarily homoclinically related
to p. Note that this theorem also applies and may be interesting for locally
maximal hyperbolic sets K having a dominated splitting TK M = Es ⊕ Eu =
(Ess ⊕ Ec) ⊕ Eu (in the sense that Es = Ess ⊕ Ec) such that Ec, Eu are
one-dimensional.

2.8 Extreme bundles

Theorems 4 and 5 show that the chain-recurrence classes K of a C1-generic
diffeomorphism far from homoclinic bifurcations have a partially hyperbolic
splitting TK M = Ess ⊕ Ec ⊕ Euu with dim(Ec) ≤ 2. We now prove that
the extreme bundles are non-degenerated. This will ensure that the diffeomor-
phisms considered in the main theorem have only finitely many sinks.

For aperiodic classes this has already been obtained with Corollary 2.14.
For homoclinic classes one can apply the following result.

Theorem 8 Let f be a diffeomorphism in a dense Gδ subset of Diff1(M) and
let H(p) be a homoclinic class endowed with a partially hyperbolic splitting
TH(p)M = Ess ⊕ Ec

1 ⊕ Ec
2 ⊕ Euu, with dim(Ec

1) ≤ 1 and dim(Ec
2) ≤ 1.

Assume moreover that the bundles Ess ⊕ Ec
1 and Ec

2 ⊕ Euu are thin trapped by
f and f −1 respectively and that the class is contained in a locally invariant
submanifold tangent to Ess ⊕ Ec

1 ⊕ Ec
2.

Then one of the two following cases occurs:

– either H(p) is a hyperbolic set,
– or there exists diffeomorphisms g arbitrarily C1-close to f with a periodic

point q homoclinically related to the orbit of pg and exhibiting a heterodi-
mensional cycle.
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Remark 2.29 We will see in Sect. 2.11 that the result can be improved: the
second case of the theorem never appears.

The proof relies on techniques developed in [39,40,42] for C2-diffeom-
orphisms that extend a result in [27] for one-dimensional endomorphisms. We
list different settings that have been already studied.

(a) The surface case For C2-maps, the non-hyperbolic transitive sets which
have a dominated splitting contain either a non-hyperbolic periodic point or a
curve supporting the dynamics of an irrational rotation.

Theorem 9 [39] Let f be a C2 diffeomorphism of surface and K be a compact
invariant set having a dominated splitting TK M = E ⊕ F, dim(F) = 1 whose
periodic orbits are all hyperbolic. Then, one of the following cases occurs.

– K contains a sink or a compact invariant one-dimensional submanifold
tangent to F.

– F is uniformly contracted by f −1.

One deduces the following generic result.

Corollary 2.30 Let f be a C1-generic diffeomorphism and K be a partially
hyperbolic set endowed with a dominated splitting TK M = Ess ⊕ Ec

1 ⊕ Ec
2 ⊕

Euu, with dim(Ec
1) = dim(Ec

2) = 1.
If K is contained in a locally invariant surface tangent to Ec

1 ⊕ Ec
2 and does

not contain a periodic orbit of stable dimension dim(Ess) or dim(Ess) + 2,
then K is hyperbolic.

Note that a periodic orbit of stable dimension dim(Ess) or dim(Ess) + 2 is
a source or a sink in the surface. If K is transitive and non trivial, it does not
contain such a periodic orbit.

Proof Let us consider a countable family of compact sets  ⊂ M that form
a basis of the topology on M and have a smooth boundary. We define P()

as the set of diffeomorphisms f whose maximal invariant set K f in  has a
dominated splitting TK M = Ess ⊕Ec

1⊕Ec
2⊕Euu and is contained in a locally

invariant surface tangent to Ec
1 ⊕ Ec

2. By Proposition 2.17 and Theorem 6, this
is an open set in Diff1(M). We also introduce the (open) subset H() ⊂
P() of diffeomorphisms f such that either K f is hyperbolic or there exists
a hyperbolic periodic orbit in the interior of  with stable dimension equal to
dim(Ess) or dim(Ess) + 2. We will prove that H() is dense in P() and a
standard Baire argument will conclude the proof of the corollary.

Let us fix an arbitrary diffeomorphism f0 ∈ P() and consider themaximal
invariant set K0 in a neighborhood of . By Proposition 2.17 it is contained
in a locally invariant surface �0 tangent to Ec

1 ⊕ Ec
2. One can conjugate f0 by

a diffeomorphism ψ which sends �0 on a smooth surface � and approximate
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the obtained diffeomorphism ψ ◦ f ◦ ψ−1 by a smooth diffeomorphism f1.
By this new diffeomorphism, the smooth surface � is mapped on a smooth
surface f1(�)which isC1-close to� and contains themaximal invariant set in
a neighborhood of. As a consequence, there exists a smooth diffeomorphism
f2 that isC1-close to f1 which contains the maximal invariant set K2 in, and
preserves� in a neighborhood of K2. One can perturb the restriction of f2 to a
neighborhood of K2 in � and obtain a Kupka-Smale diffeomorphism without
any invariant one-dimensional submanifold supporting the dynamics of an
irrational rotation andwithout any periodic point inside the (smooth) boundary
of  ∩ �. This perturbation can be extended to a smooth diffeomorphism of
M : indeed the compactly supported diffeomorphism close to the identity in �

are isotopic to the identity and can be extended in a trivializing neighborhood
of � as a compactly supported diffeomorphism close to the identity.

At this point we have built a smooth diffeomorphism f3 that is C1-close to
f and an invariant smooth surface � which contains the maximal invariant
set K3 of f3 in . Moreover all the periodic orbits in K3 are hyperbolic, do
not intersect the boundary of  and the dynamics inside any invariant one-
dimensional submanifold of K3 isMorse-Smale. If K3 contains a periodic point
of stable dimension equal to dim(Ess) or dim(Ess) + 2, the diffeomorphism
f3 belongs toH() as required. Otherwise, Theorem 9 shows that any orbit in
K3 accumulates on a hyperbolic set. Now, for any diffeomorphismC1-close to
f3, the dynamics contained in a small neighborhood of  is hyperbolic, hence
f3 belongs to H() also in this case. ��
(b) The codimension one case This has been considered for homoclinic
classes.

Theorem 10 [42] Let f be a C2 diffeomorphism and H(p) be a homoclinic
class endowed with a partially hyperbolic splitting Ess⊕Ec with dim(Ec) = 1
whose periodic orbits are hyperbolic. Then H(p) is hyperbolic.

As before, this gives the following generic result (which is a particular case of
Theorem 8).

Corollary 2.31 For any C1-generic diffeomorphism, any homoclinic class
H(p) that is

– endowed with a partially hyperbolic splitting Ess⊕Ec⊕Euu, dim(Ec) = 1,
– contained in a locally invariant submanifold tangent to Ess ⊕ Ec,

is hyperbolic.

Proof Consider a C1-generic diffeomorphism f and a homoclinic class H(p)

as stated in the corollary and � the locally invariant submanifold tangent to
Ess ⊕ Ec containing H(p). By genericity, one can suppose that the class H(p)

is a chain-recurrence class and that for any diffeomorphism g close to f , the

123



412 S. Crovisier, E. R. Pujals

class H(pg) is contained in a small neighborhood of H(p). Moreover, if for
somearbitrarily close diffeomorphisms g the chain-recurrence class containing
pg is hyperbolic, then the class H(p) for f is also hyperbolic.
Let us consider a C2-diffeomorphism g arbitrarily close to f in Diff1(M)

andwhose periodic orbits are hyperbolic. By Proposition 2.17, the chain recur-
rence class containing pg is still contained in a locally invariant submanifold
�g. As in the proof of Corollary 2.30, one may have chosen g so that �g is a
smooth submanifold. Let us assume by contradiction that  is not hyperbolic:
there exists an invariant compact set K ⊂  that is not hyperbolic and that is
minimal for the inclusion, in the sense that any compact invariant proper set is
hyperbolic. It can be obtained in the following way: if we consider a sequence
of nested not hyperbolic invariant compact ordered by inclusion, then the inter-
section in not hyperbolic (otherwise, some sets of the nested sequences would
be hyperbolic) and therefore by Zorn’s lemma we obtain the non-hyperbolic
compact invariant set that is minimal for the inclusion. Since K coincides with
the support of an ergodic measure whose Lyapunov exponent along Ec is non-
positive, the set K is transitive. The set K cannot be a sink, nor contain an
invariant one-dimensional submanifold tangent to Ec, since by transitivity the
set K would be reduced to a sink or a union of normally attracting curves in
�g, contradicting the fact that  is chain-transitive and contains pg . One can
thus apply [42, lemma 5.12] and conclude that K is contained in a homoclinic
class H(q). Since H(q) is contained in a small neighborhood of H(p), it is
contained in �g. By Theorem 10 applied for g inside �g, one deduces that
H(q) is a hyperbolic set. This contradicts the fact that K is non hyperbolic.
As a consequence, the chain-recurrence class containing pg is hyperbolic,
hence coincides with H(p). This proves that the homoclinic class H(p) is
hyperbolic. ��
(c) The Codimension two case For homoclinic classes with two-codimens-
ional strong stable bundle, one can replace the uniformity of the center stable
bundle by the thin trapping property and the total disconnectedness along the
center stable plaques. This theorem is proved in Sect. 9.

Theorem 11 Let f0 be a diffeomorphism and H(p f0) be a chain-recurrence
class which is a chain-hyperbolic homoclinic class endowed with a dominated
splitting Ecs ⊕ Ecu such that Ecu is one-dimensional and Ecs, Ecu are thin
trapped (for f0 and f −1

0 respectively). Assume moreover that the intersection
of H(p f0) with its center stable plaques is totally disconnected.

Then, for any C2 diffeomorphism f that is close to f0 in Diff1(M) and for
any f -invariant compact set K contained in a small neighborhood of H(p f0)

and whose periodic orbit are hyperbolic, one of the following cases occurs.

– K contains a sink or a compact invariant one-dimensional submanifold
tangent to Ecu.
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– Ecu is uniformly contracted by f −1.

We can now prove that for C1-generic diffeomorphisms far from homo-
clinic bifurcations, the extreme subbundles of the homoclinic classes are non-
degenerated.

Proof of Theorem 8 We consider a C1-generic diffeomorphism. Thus for g
close to f the class H(pg) is contained in a small neighborhood of H(p). The
genericity also implies that, if for some arbitrarily close diffeomorphisms g
the chain-recurrence class containing pg is hyperbolic, then the class H(p)

for f is hyperbolic. The following several cases have to be considered.
Note first that when the bundle Ec

1 or Ec
2 is degenerated, Corollary 2.31

implies that H(p) is a hyperbolic set.
When the strong stable leaves intersect the class in at most one point, The-

orem 6 implies that the class is contained in a locally invariant submanifold
tangent to Ec

1 ⊕ Ec
2. By Corollary 2.30 the class is then hyperbolic.

When the intersection of the class with the center stable plaques is totally
disconnected, one can apply Theorem 11. For any C2 diffeomorphisms g C1-
close to f in Diff1(M) with hyperbolic periodic orbits, the chain-recurrence
class containing pg is hyperbolic. As a consequence H(p) is hyperbolic.

It remains the case that both bundles Ec
1, Ec

2 are one-dimensional, Ec
1 is not

uniformly contracted, the class contains two different point in a same strong
stable leaf and the intersection of the class with the center stable plaques is
not totally disconnected. One can then apply Theorem 7 when the dynamics
is restricted to a locally invariant submanifold tangent to Ess ⊕ Ec

1 ⊕ Ec
2 and

one deduces that the class has a generalized strong homoclinic intersection.
By Lemma 3.19 and Remark 3.20 the class contains hyperbolic periodic

orbits homoclinically related to p and whose Lyapunov exponent along Ec
1 is

arbitrarily close to zero.One concludes applying the Propositions 2.27 and 2.22
and creating a heterodimensional cycle associated to a periodic orbit homo-
clinically related to p. ��

2.9 Finiteness of quasi-attractors

We now consider the quasi-attractors and prove one part of the main theorem.

Proposition 2.32 For any C1-generic diffeomorphism that is far from homo-
clinic tangencies and heterodimensional cycles, the set of the quasi-attractors
is finite.

Proof Let us consider a C1-generic diffeomorphism, which satisfies Theo-
rems 5, 4, 8, Corollary 2.14, Lemma 2.5 and (as a consequence of Pugh’s
closing lemma) whose minimal sets are limits for the Hausdorff topology of
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hyperbolic period orbits. Now, let us assume by contradiction that there exists
a infinite sequence of distinct quasi-attractors (An). After extracting a subse-
quence, it converges towards a (chain-transitive) set L . By Theorem 5, they
are homoclinic classes An = H(pn) and one can assume that all the periodic
orbits pn have the same dimension. ��
Claim 1 L is a contained in a homoclinic class H(p).

Proof If L is contained in an aperiodic class, by Theorem 5 it has splitting
TL M = Ess ⊕ Ec ⊕ Euu with dim(Ec) = 1. So, this is the same for the
classes An . Since the classes An are quasi-attractors, they are saturated by
strong unstable leaves, and therefore the same holds for L . This contradicts
Corollary 2.14. ��

ByTheorem4, the class H(p)has a dominated splitting Ess⊕Ec
1⊕Ec

2⊕Euu

where Ec
1 and Ec

2 have dimension 0 or 1.Moreover Ecs = Ess ⊕Ec
1 and Ecu =

Ec
2⊕ Euu are thin trapped for f and f −1 respectively. By Lemma 2.8(2), there

exists some plaque familiesWcs,Wcu defined over the maximal invariant set
in a neighborhood of H(p) and tangent to Ess ⊕Ec

1 and Ec
2⊕Euu respectively,

which are trapped by f and f −1 respectively. They satisfy the definition of
chain-hyperbolic class. By Theorem 8, the bundle Euu is non-degenerated. In
particular the quasi-attractors An are not sinks for n large. Therefore at this
point we have proved that the number of sinks is finite.

Claim 2 The stable dimension of the periodic points pn is strictly larger than
the stable dimension of p. Hence the stable dimension of the pn is dim(Ess ⊕
Ec
1 ⊕ Ec

2) and dim(Ec
2) is non zero.

Proof Let us assume by contradiction that the stable dimension of pn is smaller
or equal to the stable dimension of p. We claim thatWcu

pn
⊂ W u(pn) for each

n. Indeed if it is not the case, using that Wcu is trapped by f −1, there would
exists a periodic point qn ∈ Wcu

pn
, in the closure of W u(pn) and whose stable

dimension is dim(Wcu
pn

) − 1. Since H(pn) is a quasi-attractor it contains qn

and by Lemma 2.5, there exist C1-perturbations of f which exhibit a heterodi-
mensional cycle. This is a contradiction.

Let x ∈ L be an accumulation point of the pn and let q be a periodic
point close to x which is homoclinically related to the orbit of p such that
Wcs

q ⊂ W s(q). This exists by Lemma 2.11. The plaques Wcs
q and Wcu

pn
, for

some n arbitrarily large, intersect transversally. Hence the unstable set of pn
accumulates on q. Since H(pn) is a quasi-attractor, this implies that q belongs
to H(pn). Since this occurs for infinitely many n, the quasi-attractors H(pn)

are not all distinct, contradicting our assumption. ��
Let us set Ec = Ec

2. We are thus reduced to consider the case that on the
union of the An and H(p) there exists a dominated splitting T M = Ecs ⊕
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Ec ⊕ Euu such that Ec is one-dimensional, Ecs ⊕ Ec is thin trapped by f over
each quasi-attractor An and Ec ⊕ Ecu is thin trapped by f −1 over H(p). We
also fix a point z ∈ L and a small neighborhood U of z.

Claim 3 In each set An there exists a periodic orbit On which avoids U .

Proof By Theorem 8, the bundle Euu is non-degenerated and the set An is sat-
urated by strong unstable leaves. By a standard argument (see for instance [27,
lemma 5.2]), each class An contains an invariant compact set Kn which avoids
U . Then one can reduce Kn and assume that it is minimal.

For each n, Lemma 2.8(2) gives two plaque families W̃cs, W̃u tangent to
Ecs⊕Ec and Euu and trapped by f and f −1 respectively,with arbitrarily small
diameter, above themaximal invariant set in a small neighborhood of An. Since
the plaques are small, the restrictions of W̃cs, W̃u to An satisfy the definition
of chain-hyperbolic classes. By the closing lemma, there exists a periodic
orbit Õn arbitrarily close to Kn in the Hausdorff topology. By Lemma 2.11,
there exists a point q homoclinically related to the orbit of p such that W̃u

q is
contained in W u(q) and intersects W̃cs

y for some y ∈ Õn at a point ζ . One
deduces that ζ converges toward a periodic orbit On contained in the plaques
of the family W̃cs above Õn . Since An is a quasi-attractor, it contains ζ and
On . By construction On is included in an arbitrarily small neighborhood of
Kn , as required. ��
Claim 4 There exists N ≥ 1 such that f N (W u

loc(p)) intersects transver-
sally W s

loc(On) for each n large. Moreover, this property is stable under C1-
perturbations with supports avoiding a neighborhood of On .

Proof Since the stable space of On is Ecs ⊕ Ec and since Ec is non-
degenerate, all the exponents of On along Ecs are bounded away from zero.
By Lemma 2.12, the orbit On contains a point qn that it is arbitrarily close to
a point ζ ∈ L and satisfies Wcs

qn
⊂ W s

loc(qn) (i.e. W s
loc(qn) is a uniform disc

tangent to Ecs). For N large, f N (W u
loc(p)) is close to every point of L and

on the other hand f N (W u
loc(p)) contains a uniform disc tangent to Ecu . For

n large, On is contained in a small neighborhood of L . One thus deduces that
f N (W u

loc(p)) and W s
loc(qn) intersect transversally and this property is robust

under perturbations with supports avoiding a neighborhood of On . ��
Conclusion Since W u(On) is dense in An , and An converges towards L , the

unstable manifold of On has a point close to z for n large. Since z is in H(p),
the stable manifold of p has a point close to z. Observing that the orbits On are
far from the neighborhood U of z, there exists small perturbations given by
the connecting lemma in a small neighborhood of a finite number of iterates of
z (which is not periodic), such that W s(p) and W u(On) intersect. The orbits
of On has been preserved and the intersection W s(On) ∩ W u(p) is still non
empty. This gives a heterodimensional cycle and therefore a contradiction. ��
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2.10 Hyperbolicity of quasi-attractors: proof of the main theorem

It remains now to prove that for anyC1-generic diffeomorphism that is far from
homoclinic tangencies and heterodimensional cycles, the quasi-attractors are
hyperbolic. The proof is independent from Proposition 2.32.

Let us consider a quasi-attractor and let us assume by contradiction that it
is not hyperbolic. From Sects. 2.2 and 2.4, the quasi-attractor is a homoclinic
class H(p) with a splitting Ess ⊕ Ec ⊕ Eu where Ec is one-dimensional,
Ess ⊕ Ec is thin-trapped and it contains arbitrarily weak periodic orbits homo-
clinically related to p. FromTheorem 8 andCorollary 2.18, for anyC1-generic
diffeomorphism g that is C1-close to f the homoclinic class H(pg) associ-
ated to the continuation of p for g contains two different points x, y such that
W ss(x) = W ss(y). The end of the proof is based on the next theorem. The
first case of the dichotomy is not satisfied in our setting and in the second case,
one can create a heterodimensional cycle in H(p), by Proposition 2.22. This
contradicts our assumptions on the diffeomorphism f and concludes the proof
of the main theorem.

Theorem 12 Let H(p) be a homoclinic class of a diffeomorphism f which is
a quasi-attractor endowed with a partially hyperbolic structure Ess ⊕Ec⊕Eu

such that dim(Ec) = 1 and Ecs = Ess ⊕ Ec is thin trapped. Assume also
that all the periodic orbits in H(p) are hyperbolic (since Ecs is thin trapped,
it coincides with the stable space at the periodic points). Then, there exists
α ≥ 0 (which is positive if f is Cr for r > 1) such that one of the following
cases holds.

– Either there exists a non-empty open set U ⊂ Diff1+α(M) such that f
belongs to U and for any g ∈ U and for any distinct points x, y ∈ H(pg)

one has W ss(x) �= W ss(y). Therefore the class H(pg) is contained in a
C1-submanifold N ⊂ M tangent to Ec ⊕ Eu which is locally invariant.

– Or there is a C1+α-small perturbation g of f , a periodic point x homoclini-
cally related to the orbit of pg and some point y �= x in H(pg)∩W ss(x) such
that W ss(x) = W ss(y). Therefore the class H(pg) has a strong homoclinic
intersection.

Remark 2.33 We want to emphasize some features of Theorem 12.

1. The result does not require any generic assumption.
2. It holds in the C1+α-category for α > 0 small.
3. The theorem can also be applied in the context of hyperbolic attractors

whose stable bundle has a dominated splitting Es = Ess ⊕ Ec such that
dim(Ec) = 1. This can have important consequences in terms of the Haus-
dorff dimension of the attractor: if the attractor is contained in a submani-
fold, the Hausdorff dimension is smaller than 1+u (where u = dim(Eu));
if there is a strong connection, the dimension could jump close to 1+u + s
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(where s = dim(Ess)) (see [14]). Note that the proof in the hyperbolic
case is simpler since we can use the hyperbolic continuation of any point
in the attractor.

4. In the case when the bundle Ec is not uniformly contracted, one can assume
that the periodic point x has an arbitrarily small Lyapunov exponent. Indeed
we will prove, in Lemma 3.19 and Remark 3.20, that for any ε > 0, there
exists a periodic point q homoclinically related to the orbit of p and whose
center Lyapunov exponent is contained in (−ε, 0). Let us consider a per-
turbation g having a periodic point x homoclinically related to pg and
exhibiting a strong homoclinic intersection. By another Cr -small pertur-
bation (see Lemma 2.23), one can obtain a periodic point x ′ homoclinically
related to the orbit of p, with a strong connection and a center Lyapunov
exponent close to the exponent of q.

The proof of Theorem 12 is based on the following proposition whose proof
is postponed toSect. 5 and uses the notion of stable boundary point (see Sect. 3)
and of continuation of a homoclinic class (see Sect. 4). As before W ss

loc(x) and
W u

loc(x) denote local strong stable and unstable manifolds tangent to Ess
x and

Eu
x respectively for the points x ∈ H(pg). Note that this result holds in any

Cr -topology, r ≥ 1.

Proposition 2.34 Given a Cr diffeomorphisms under the assumptions of The-
orem 12, for any α ∈ [0, r − 1] one of the following cases occurs.

1. There exists a non-empty open set V ⊂ Diff1+α(M) such that f belongs
to V and for any g ∈ V and for any x �= y in H(pg), one has W ss(x) �=
W ss(y).

2. There exists g, C1+α-close to f , such that H(pg) exhibits a strong homo-
clinic intersection.

3. There exist a neighborhood V ⊂ Diff1+α(M) of f and some hyperbolic
periodic points q and px

n , py
n for n ∈ N such that:

– the continuations qg, px
n,g, py

n,g exist on V and are homoclinically
related to the orbit of pg;

– (px
n,g), (py

n,g) converge towards two distinct points xg, yg in H(pg) ∩
W s

loc(qg) for any g ∈ V;
– the map g 	→ xg, yg is continuous at f ;
– yg ∈ W ss

loc(xg) for any g ∈ V .
4. There exist two hyperbolic periodic points px , py homoclinically related

to the orbit of p and an open set V ⊂ Diff1+α(M) whose closure contains
f , such that for any g ∈ V the class H(pg) contains two different points
x ∈ W u(px,g) and y ∈ W u(py,g) satisfying W ss(x) = W ss(y).

One concludes the proof of Theorem 12 by discussing the two last cases of
the Proposition 2.34. The two following theorems, proved in Sects. 6 and 7
give a strong homoclinic intersection.
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In case 3, the points x = x f , y = y f belong to the stable manifold of a
periodic point q.

Theorem 13 For any diffeomorphism f0 and any homoclinic class H(p)

which is a chain-recurrence class endowed with a partially hyperbolic struc-
ture Ess ⊕ Ec ⊕ Eu, dim(Ec) = 1, such that Ess ⊕ Ec is thin trapped, there
exists α0 > 0 and a C1-neighborhood U of f0 with the following property.

For any α ∈ [0, α0], any diffeomorphism f ∈ U and any C1+α-
neighborhood V of f , if there exist:

– some hyperbolic periodic points q f and px
n, f , py

n, f with n ∈ N for f whose

hyperbolic continuations qg, px
n,g, py

n,g exist for g ∈ V and are homoclini-
cally related to the orbit of pg,

– two maps g 	→ xg, yg defined on V , continuous at f , such that for any
g ∈ V the points xg, yg belong to W s(qg), are the limit of (px

n,g) and (py
n,g)

respectively and satisfy yg ∈ W ss
loc(xg),

then, there exist C1+α-small perturbations g of f such that the homoclinic
class H(pg) exhibits a strong homoclinic intersection.

In case 4, the points x, y belong to the unstable manifold of periodic points
px , py .

Theorem 14 Consider any diffeomorphism f0 and any homoclinic class H(p)

which is also a chain-recurrence class endowed with a partially hyperbolic
structure Ess ⊕ Ec ⊕ Eu such that Ess ⊕ Ec is thin trapped and dim(Ec) = 1.
Then, there exists α0 > 0 and for any hyperbolic periodic points px , py
homoclinically related to the orbit of p, there exists a C1-neighborhood U of
f0 with the following property.

Given any α ∈ [0, α0] and any C1+α-diffeomorphism f ∈ U , if there exist
two different points x ∈ W u(px, f ) and y ∈ W u(py, f ) in H(p f ) satisfying
W ss(x) = W ss(y), then, there exist C1+α-small perturbations g of f such
that the homoclinic class H(pg) exhibits a strong homoclinic intersection.

Some weaker results similar to Theorems 14 and 13 were obtained in [38]
for attracting homoclinic classes in dimension three and assuming strong dis-
sipative properties.

2.11 Other consequence on quasi-attractor: main theorem revisited

As it was mentioned in the introduction, for C1-generic diffeomorphisms one
obtains a stronger version of Theorem 12 related to the notion of robust cycles.
We point out that what follows in this section is not used in the proof of our
main theorem.
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Definition 2.35 It is said that f has a robust heterodimensional cycle if it has
two hyperbolic periodic points p, q with different stable dimensions, that are
contained in two transitive hyperbolic sets K , L and for any g C1-close to f ,
there exist two heteroclinic orbits that join the continuations Kg to Lg and Lg
to Kg.

Theorem 15 Let f be a diffeomorphism in a dense Gδ subset of Diff1(M)

and let  be a quasi-attractor endowed with a partially hyperbolic splitting
TM = Ess ⊕ Ec ⊕ Euu with dim(Ec) = 1. If Ec is not uniformly contracted
and not uniformly expanded, then  is a homoclinic class which contains
hyperbolic periodic points of both stable dimensionsdim(Ess) anddim(Ess)+
1.

The proof uses the following result from [11]

Theorem 16 [11]Let f be a diffeomorphism that exhibits a heterodimensional
cycle between two hyperbolic periodic points p, q whose stable dimensions
differ by 1.

Then, there exist a C1-perturbation g of f and two transitive hyperbolic
sets K , L - the first contains the hyperbolic continuation pg, the second has
same stable dimension as q - that have a robust cycle.

A consequence of this result is that for any C1-generic diffeomorphism and
any hyperbolic point p of stable dimension i ≥ 2, if there exists some small
perturbations g of f which exhibits a heterodimensional cycle between a peri-
odic point homoclinically related to pg and a periodic orbit of stable dimension
i −1, then the homoclinic class H(p) for f contains periodic points of indices
i − 1.

Proof of Theorem 15 The existence of the dominated splitting implies that
there is no diffeomorphism C1-close to f which exhibits a homoclinic tan-
gency in a small neighborhood of .

Step 1. We first prove that  is a homoclinic class H(p) which contains
periodic orbits whose center exponents are arbitrarily close to 0. This uses the
following.

Claim If  contains an invariant compact set K such that any invariant
measure supported on K has a Lyapunov exponent along Ec equal to 0, then 

contains periodic orbits whose center Lyapunov exponent is arbitrarily close
to 0.

Proof The proof is similar to the proof of Theorem 9.25 in [20] and uses
proposition 9.23 also in [20]. See also [45]. ��

Since Ec ⊕ Euu is not uniformly expanded, the trichotomy given by [19,
theorem 1] and the previous claim imply that the class  contains periodic
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orbits whose center exponent is negative or arbitrarily close to 0. Similarly,
since Ess ⊕Ec is not uniformly contracted, the class contains periodic orbits
whose center exponent is positive or arbitrarily close to 0. In any case  is
a homoclinic class H(p) which contains for any δ > 0 some periodic orbits
O−

δ , O+
δ whose center exponent is respectively smaller than δ and larger than

−δ. From the results in [2] follows that H(p) contains periodic orbits whose
center exponents are arbitrarily close to 0.

Step 2.We then show that one can find a diffeomorphismC1-close to f and a
periodic orbit homoclinically related to pg which exhibits a heterodimensional
cycle.

Using the center models introduced in [18], the dynamics along the cen-
ter bundle Ec can be classified into chain-recurrent, chain-neutral, chain-
hyperbolic and chain-parabolic (see [19, section 2.2] for details). Since H(p)

contains hyperbolic periodic orbits, some types can not occur (the neutral and
the parabolic ones). Note that since H(p) contains periodic orbits whose cen-
ter exponent is close to 0 and since f is C1-generic, the class H(p) is the
limit of periodic orbits of both indices dim(Ess) and dim(Ess) + 1 for the
Hausdorff topology. When the center dynamics has the chain-recurrent type,
[19, proposition 4.1], this implies that these periodic orbits are contained in
H(p), hence both indices appear in the class.
It remains to consider a center dynamics which has the chain-hyperbolic

type: equivalently two cases are possible: either Ess ⊕ Ec is thin trapped by
f or Ec ⊕ Euu is thin-trapped by f −1. In any case it follows that there exists
a diffeomorphism g that is C1-close to f and a periodic point homoclinically
related to the continuation pg which exhibits a heterodimensional cycle: in
the first case, this is a direct consequence of Theorem 12, Corollary 2.18,
Theorem 8 and Proposition 2.22; in the second case, one argues as on the
proof of Corollary 2.13.

Step 3. We then concludes with Theorem 16 that the class H(p) contains
hyperbolic periodic points of different stable dimension. ��

Theorem 8 can be combined with Theorem 16 to get the following improve-
ment.Theorem8’Let f be a diffeomorphism in a denseGδ subset of Diff1(M)

and let H(p) be a homoclinic class endowed with a partially hyperbolic split-
ting TH(p)M = Ess ⊕ Ec

1 ⊕ Ec
2 ⊕ Euu , with dim(Ec

1) ≤ 1 and dim(Ec
2) ≤ 1.

Assume moreover that the bundles Ess ⊕ Ec
1 and Ec

2 ⊕ Euu are thin trapped
by f and f −1 respectively and that the class is contained in a locally invariant
submanifold tangent to Ess ⊕ Ec

1 ⊕ Ec
2. Then H(p) is a hyperbolic set.

Proof Arguing by contradiction, from theorem 6 it would be possible to cre-
ate a heterodimensional cycle involving points of different indexes and from
Theorem 16 it is get a robust heterodimensional cycle, then for generic diffeo-
morphisms the center dynamics it is not trapped neither for f nor for f −1; a
contradiction. ��
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3 Properties of chain-hyperbolic homoclinic classes

In this section, we prove that the chain-hyperbolic classes share many prop-
erties of hyperbolic basic sets. The first subsection is devoted to the trapped
plaque families. In the remaining parts, we consider a homoclinic class H(p)

which is chain-hyperbolic for a diffeomorphism f : as in the Definition 2.10
we introduce two periodic points qs, qu ∈ H(p) and two plaque families
Wcs,Wcu respectively tangent to the bundles Ecs, Ecu .

3.1 Properties of trapped plaque families, robustness

Let us consider a compact set K having a dominated splitting TK M = E ⊕ F
for f . If U ⊂ M and U ⊂ Diff1(M) are some small neighborhoods of K
and f , then for each g ∈ U the maximal invariant set Kg = ⋂

n∈Z gn(U ) has
a dominated splitting Eg ⊕ Fg such that dim(Eg) = dim(E). Moreover the
maps (g, x) 	→ Eg,x , Fg,x are continuous. Hence one may look for a plaque
family tangent to the continuation Eg of E for g.

Definition 3.1 A trapped plaque family W is ε-coherent, ε > 0, if for any
points x, y ∈ K that are ε-close,Wx ∩ Wy �= ∅ implies f (Wy) ⊂ W f (x).

Lemma 3.2 (Robust coherence) Let K be a compact invariant set endowed
with a dominated decomposition TK M = E ⊕ F for a diffeomorphism f .
There exist r, ε > 0 and a neighborhood CE of E in the tangent bundle T M
such that any trapped plaque family W tangent to E satisfies:

If the plaques have diameter smaller than r and if for each x ∈ K and
y ∈ Wx , any unit vector u ∈ TyWx belongs to CE , then W is ε-coherent.

Moreover there exist neighborhoods U ⊂ Diff1(M) of f and U of K such that
for any g ∈ U , any trapped plaque family W tangent to Eg over the maximal
invariant set Kg in U still has this property.

The argument is similar to [19, Lemma 2.4] and we only sketch it.

Sketch of the proof We repeat the proof of One first covers the manifold M
by charts.

The domination implies that there exists two continuous cone fields CE and
CF on a neighborhood of K and an integer N ≥ 1 such that for any g that
is C1-close to f , any x that is close to K and any unit vectors u ∈ CE and
v ∈ CF , we have (see for instance [Appendix B.1]bdv)

‖DgN (x).u‖ <
1

2
‖DgN (x).v‖,

DgN (CF
x ) ⊂ CF (gN (x)) and Dg−N (CE

x ) ⊂ CE (g−N (x)).
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The cone fields CE and CF are arbitrarily small neighborhoods of the bundles
E and F .
For a diffeomorphism g that is C1-close to f , let W be a trapped plaque

family as in the statement of the lemma. Let us consider two plaquesWx and
Wy which intersect at a point z. If ε is small enough the plaques are close for
the C1-topology. In particular f (W y) is close to f (W x ), which is contained
in W f (x). Any point a ∈ f (W y) may be connected to a point b ∈ W f (x) by
a C1 path tangent to CF and whose tangent space is almost constant in the
charts. If r is small and CE is thin enough, then one can connect a and b to
z by C1 paths tangent to CE and whose tangent spaces are almost constant in
the charts. One thus deduces

max

(
d(gN (a), gN (z))

d(a, z)
,

d(gN (b), gN (z))

d(b, z)

)
≤ 1

2

d(gN (a), gN (b))

d(a, b)
.

Moreover by invariance of the cone fields, gN (a) and gN (b) are still connected
together by a path tangent to CF and connected to gN (z) by paths tangent to
CE . Since the plaque familyW is trapped the three points remain close and the
paths remain small.We can thus iteratemore and repeat the argument. If a �= b,
the distances d(gi N (a), gi N (z)) and d(gi N (b), gi N (z)) decay exponentially
faster thand(gi N (a), gi N (b)) as i goes to+∞,which contradicts the triangular
inequality. As a consequence a = b, proving that f (W y) ⊂ W f (x), hence the
coherence. ��

The same argument gives the uniqueness of the plaque families.

Lemma 3.3 (Uniqueness) Let K be a compact invariant set endowed with
a dominated decomposition TK M = E ⊕ F, and let W be a thin trapped
plaque family tangent to E. If W ′ is another locally invariant plaque family
tangent to E, there exists ρ > 0 such that for each x ∈ K the image of the
ball B(0, ρ) ⊂ Ex by Wx is contained in W ′

x .

Sketch of the proof The argument is the same, let us explain how it has to be
adapted. We consider the plaques Wx and W ′

x and two points a ∈ Wx and
b ∈ W ′

x that are connected by a path tangent to CF and that are close enough
to the point z = x .

SinceWF is thin trapped, by forward iteration the points f i N (a) and f i N (x)

remain close. Since f i N (b) may be connected to f i N (a) by a path tangent to
CF and to f i N (x) by a path tangent to CE , hence f i N (b) remain also close to
f i N (x). The argument follows as before. ��
This allows us to prove the first part of Lemma 2.8.

Corollary 3.4 Let K be a compact invariant set endowed with a dominated
decomposition TK M = E ⊕ F such that there exists a thin trapped plaque
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familyW tangent to E. Then, any other locally invariant plaque family tangent
to E is thin trapped.

Proof LetW ′ be another locally invariant plaque family. By Lemma 3.3, there
exists ρ > 0 such that, for each x ∈ K , the embeddingsWx andW ′

x restricted
to some neighborhoods of 0 have the same image. ConsequentlyW ′

x ◦W−1
x is

a diffeomorphism from the ball B(0, ρ) to a neighborhood of 0 in Ex . Using a
bump function, one can build a continuous family of diffeomorphisms ψx of
each space Ex , which coincideW ′−1

x ◦Wx on a small neighborhood of 0 and
with D0W ′−1

x ◦ Wx outside the ball B(0, ρ).
Let us fix a small neighborhood S of the section 0. SinceW is thin trapped,

there exists a family of diffeomorphism (ϕx ) such that

f (Wx ◦ ϕx (B(0, 1))) ⊂ W f (x) ◦ ϕ f (x)(B(0, 1)).

Moreover each ball ϕx (B(0, 1)) is contained in an arbitrarily small neighbor-
hood of the section 0: in particular it is contained in the domain where ψx
coincides with W ′

x ◦ W−1
x and also in ψ−1

x (S). As a consequence the diffeo-
morphisms ϕ′

x = ψx ◦ ϕx satisfy the Definition 2.7. ��
A collection of plaque families (Wg)g∈U tangent to the bundles (Eg)g∈U

over the sets (Kg)g∈U is continuous if (Wg,x )g∈U,x∈Kg is a continuous family
of C1-embeddings. It is uniformly locally invariant if there exists ρ > 0 such
that for each g ∈ U and x ∈ Kg, the image of the ball B(0, ρ) ⊂ Eg,x by
g ◦ Wg,x is contained in the plaque Wg,g(x).

Lemma 3.5 (Continuations of plaque families)Let K be an invariant compact
set for a diffeomorphism f having a dominated splitting E ⊕ F. Then, there
exist some neighborhoods U of K and U ⊂ Diff1(M) of f and a continuous
collection of plaque families (Wg)g∈U tangent to the bundles (Eg)g∈U over
the maximal invariant sets (Kg)g∈U in U, which is uniformly locally invariant.

This is proved by a standard graph transform argument similar to HPS. We
only sketch the proof

Sketch of the proof Let exp be the exponential map from a neighborhood of
the section 0 in T M to M . Each diffeomorphism g close to f induces a
diffeomorphism ĝ on T M , which coincides for each x ∈ K with the map
exp−1

g(x) ◦g ◦ expx on a small neighborhood of 0 ∈ Tx M and with the linear
map Tx g outside another small neighborhood of 0; moreover, ĝ is arbitrarily
close to the linear bundle automorphism T g over the map g. The proof of the
plaque family theorem [26, theorem 5.5] associates to each x ∈ Kg the graph
�g,x in Tx M of a C1 map ψg,x : Eg,x → Fg,x tangent to Eg,x at 0 ∈ Tx M
and satisfying

ĝ(�g,x ) = �g,g(x). (3.1)
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The graphs �g,x are uniformly Lipschitz and are characterized for some con-
stant C > 0 by

�g,x =
⋂

n≥0

ĝ−n({(y1, y2) ∈ Eg,g−n(x) × Fg,g−n(x), C‖y1‖ ≥ ‖y2‖}).

One thus deduces that they depend continuously on (g, x) for the C0-metric.
On the other hand, each map ĝ has a dominated splitting Êcs ⊕ Êcu inside the
spaces Tx M and each graph �g,x is tangent to the bundle Êcs . The bundle Êcs

depends continuously on (g, x), hence the graphs �g,x depend continuously
on (g, x) also in the C1-metric.

The plaque Wg,x is defined as the image by the exponential expx of a
uniform neighborhood of 0 ∈ �g,x . For instance, one may choose ε > 0 small
and define for any z ∈ Eg,x ,

Wg,x (z) = expx (y, ψg,x (y)), where y = ε.
arctan ‖z‖

‖z‖ .z.

By construction and the invariance (3.1), the plaque families (Wg) are uni-
formly locally invariant. ��

The next lemma implies the second part of Lemma 2.8

Lemma 3.6 (Continuation of trapped plaque families) Let K be an invariant
compact set for a diffeomorphism f having a dominated splitting E ⊕ F and
let us assume that E is thin trapped. Let (W̃g) be a continuous and uniformly
locally invariant collection of plaque families tangent to the bundles (Eg) over
the maximal invariant sets in a neighborhood of K for g C1-close to f .

Then, for any r > 0, there exist some neighborhoods U of K and U ⊂
Diff1(M) of f and a continuous collection of plaque families (Wg)g∈U tangent
to the bundles (Eg) over the maximal invariant sets (Kg)g∈U in U, which is
trapped by g and whose plaques have diameter smaller than r. Moreover we
have Wg(x) ⊂ W̃g(x) for each g ∈ U and x ∈ Kg.

Proof Since E is thin trapped for f over H(p), there exist a continuous family
of embedding (ϕ0

x ) of (Ex ) satisfying for each x ∈ K ,

f (W̃ f,x ◦ ϕ0
x (B(0, 1))) ⊂ W̃ f, f (x) ◦ ϕ0

f (x)(B(0, 1)). (3.2)

Moreover each ϕ0
x (B(0, 1)) is contained in an arbitrarily small neighborhood

of the section 0.
One may find a continuous family of embeddings (ϕx ) that is close to (ϕ0

x )

in the C1-topology and that extends to any point x in a neighborhood of K :
one fixes a finite collection of points xi in H(p) and using a partition of the
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unity one defines ϕx as a barycenter between ϕ0
xi
associated to points xi that

are close to x . One deduces that there exist a neighborhood U of K in M , and
a continuous family of embeddings (ϕx ) of (Ex ) over U , such that (3.2) still
holds for g, x ∈ Kg and (ϕx ). One can thus define Wg,x as the embedding

Wg,x : z 	→ W̃g,x ◦ ϕg,x

(
arctan ‖z‖

‖z‖ .z

)
.

By construction the plaque familyWg is trapped by g and the collection (Wg)g
is continuous. ��
Corollary 3.7 Let H(p) be a chain-hyperbolic homoclinic class with plaque
families Wcs and Wcu, which is also a chain-recurrence class and whose
bundles Ecs and Ecu are thin-trapped by f and f −1 respectively. Then, for
any r > 0, there exists ε > 0, some neighborhoods U of H(p) and U ⊂
Diff1(M) of f and two continuous collections of plaque families (Wcs

g )g∈U
and (Wcu

g )g∈U tangent to Ecs
g and Ecu

g over the maximal invariant sets (Kg)g∈U
in U such that:

– (Wcs
g )g∈U and (Wcu

g )g∈U are trapped by g and g−1 respectively,
– they are ε-coherent,
– the plaques have diameter smaller than r > 0,
– for each x ∈ H(p) we have Wcs

f,x ⊂ Wcs
x and Wcu

f,x ⊂ Wcu
x .

In particular for any diffeomorphism g that is C1-close to f , the homo-
clinic class H(pg) of g associated to the continuation pg of p is still chain-
hyperbolic.

Proof Let us fix two continuous and uniformly locally invariant collection of
plaque families (W̃cs

g ) and (W̃cu
g ) tangent to Ecs and Ecu respectively. By

Lemma 3.3, for ρ > 0 small enough Wcs
x (B(0, ρ)) is contained in the image

of W̃cs and Wcu
x (B(0, ρ)) is contained in the image of W̃cu respectively.

Applying the Lemma 3.6 to the bundles Ecs and Ecu , we obtain the trapped
plaque families (Wcs

g )g∈U and (Wcu
g )g∈U whose plaques have arbitrarily small

diameters and are contained in the plaques of (W̃cs
g ) and (W̃cu

g ). Note that since
H(p) is a chain-recurrence class, the homoclinic class H(pg) for g close to
f is still contained in the neighborhood U , hence in Kg. Since the plaques
Wcs

g (pg) andWcu
g (pg) are small, they are contained in the stable and unstable

manifolds of pg, so that H(pg) is chain-hyperbolic for any g C1-close to f .
Since the plaques ofWcs

g are contained in the plaques (W̃cs
g ) and since they

are small, for g close enough to f their tangent bundle is close to the fibers of
the bundle E f on K . In particular by Lemma 3.2 the familyWcs

g is ε-coherent
(for a uniform constant ε). Note also that each plaque Wcs

f,x is small, hence

contained inWcs
x (B(0, ρ)) ⊂ W̃cs

x . ��
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3.2 Periodic points with large stable manifold

Let H(p) be a chain-hyperbolic class. We give an immediate consequence of
the trapping property.

Lemma 3.8 Let O be a periodic orbit in H(p). If there exists a point q0 ∈ O
such thatWcs

q0 is contained in the stable manifold of q0, then this property holds
for any point q ∈ O and more generally for any point z ∈ W s(q0) ∩ H(p).

Proof Any point q ∈ O can be written as q = f −n(q0) with n ≥ 0. By the
trapping property, Wcs

q is contained in f −n(Wcs
q0 ), hence in f −n(W s(q0)) =

W s(q). In particular the diameter of the forward iterates ofWcs
q0 goes to zero.

Any point z ∈ W s(q0) has large forward iterates f n(z), n ≥ n0 which remain
close to O . By continuity of the plaque family, one deduces that the forward
iterates ofWcs

z have a diameter which also goes to zero, hence converge to the
periodic orbit O . As a consequence Wcs

z is contained in the stable manifold
of O . ��

The homoclinic class H(p) contains a dense set of “good” periodic points,
in the sense which is defined in the next lemma (which contains Lemma 2.11):

Lemma 3.9 For any sufficiently small δ > 0, there exists a dense set P0 ⊂
H(p) of periodic points homoclinically related to the orbit of p with the
following property.

– The modulus of the Lyapunov exponents of any point q ∈ P0 are larger than
δ.

– The plaques Wcs
q and Wcu

q for any point q ∈ P0 contained in the stable and
in the unstable manifolds of q respectively.

Proof Let us choose δ > 0 such that the modulus of the Lyapunov exponents
of qs and qu are larger than 2δ. LetUs andUu be some small disjoint neighbor-
hoods of the orbits of qs and qu respectively: there exist some constant j ≥ 1
such that for any segment of orbit {x, . . . , f jn(x)} contained in H(p)∩ Us or
in H(p) ∩ Uu , one has for any u ∈ Ex and v ∈ Fx ,

n−1∏

i=0

‖D f j
f i j (x)

.u‖ ≤ e−2δnj‖u‖ and
n−1∏

i=0

‖D f j
i j .v‖ ≥ e2δnj‖v‖.

We fix ε > 0 small and consider the periodic orbits O that are homoclini-
cally related to the orbit of pwith the following combinatorics: there are at least
1
2 (1−ε).τ consecutive iterates inUs and at least 12 (1−ε).τ consecutive iterates
in Uu , where τ is the period of O . In particular, the maximal Lyapunov expo-
nent of O along Ecs is smaller than −δ and the minimal Lyapunov exponent
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of O along Ecu is larger than δ. Let us write the orbit O = {z, . . . , f τ−1(z)}
as the concatenation of a segment of orbit {z, . . . , f m−1(z)} in Us , a seg-
ment of orbit { f m+�1(z), . . . , f 2m+�1−1(z)} in Uu , and two other segments of
orbit { f m(z), . . . , f m+�1−1(z)} and { f 2m+�1(z), . . . , f 2m+�1+�2−1(z)}, such
that m ≥ 1

2 (1 − ε).τ , and �1, �2 ≤ ε
2τ . Provided ε is small, at any iterate

zk = f k(z) with 0 ≤ k < m/2, one has for any u ∈ E f k(z) and any n ≥ 0,

n−1∏

i=0

∥
∥
∥D f j

f i j (zk)
.u

∥
∥
∥ ≤ e−δnj .‖u‖.

One deduces that there exists ρ > 0 such that the ball centered at zk with
radius ρ in Wcs

zk
is contracted by forward iterations so that it is contained in

the stable set of zk .
Since the stable set of qs contains Wcs

qs
, there exists N ≥ 2 such

that f N (Wcs
qs

) has a radius smaller than ρ/2. If τ is large enough, since
{z, . . . , f m−1(z)} is contained in the neighborhood Us of the hyperbolic orbit
of qs , there exists an iterate zk = f k(z), 0 ≤ k < m

2 − N arbitrarily close to qs .
By continuity of the plaque familyWcs , one deduces that f N (Wcs

zk
) has radius

smaller than ρ, hence is contained in the stable set of f N (zk). Consequently
the plaque Wcs

zk
is contained in the stable manifold of zk . By Lemma 3.8 for

any point q in the orbit O , the plaqueWcs
q is contained in the stable manifold

of q. Similarly the unstable manifold of q contains the plaque Wcu
q . In order

to prove the lemma, it remains to show that the union of the orbits O we con-
sidered is dense in H(p): Indeed any point x in H(p) can be approximated by
a hyperbolic periodic point q whose orbit is homoclinically related to the orbit
of qs and qu . Then there exists a transitive hyperbolic set which contains the
points q, qs, qu, p. One deduces by shadowing that there exists a hyperbolic
periodic orbit O having a point close to x which is homoclinically related to
the orbit of p and has the required combinatorics. ��
Lemma 3.10 All the hyperbolic periodic orbit in H(p) with the same stable
dimension as p are homoclinically related to p. In particular if Ecs and Ecu

are thin trapped by f and f −1 respectively, then all the hyperbolic periodic
orbits contained in H(p) are homoclinically related together.

Proof Let us take a hyperbolic periodic point q in the class with the same index
as p. By Lemma 3.9, there exists a periodic orbit O homoclinically related
to p and having a point q ′ arbitrarily close to q such that Wcs

q ′ ⊂ W s(q ′)
andWcu

q ′ ⊂ W u(q ′). One deduces that the plaquesWcs
q ′ intersects W u(q) and

Wcu
q ′ intersects W s(q). As a consequence O and q are homoclinically related.

Finally, observe that if Ecs and Ecu are thin trapped, then all the hyperbolic
periodic points in H(p) have the same stable index as p. ��
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3.3 Local product stability

For any invariant compact set K , we define the chain-stable set of K as the
set of points x ∈ M such that for any ε > 0, there exists a ε-pseudo-orbit that
joints x to K . The chain-unstable set of K is the chain stable set of K for the
map f −1.

Lemma 3.11 For any point x ∈ H(p), the plaque Wcs
x (resp. Wcu

y ) belongs
to the chain-stable set (resp. the chain-unstable set) of H(p).

Proof By Lemma 3.9, the point x is the limit of periodic points pn ∈ P0 such
that Wcs

pn
is contained in the stable set of pn for each n ≥ 0. By definition of

a plaque family, any point of Wcs
x is limit of a sequence of points xn ∈ Wcs

pn
,

proving that x is contained in the chain-stable set of H(p). ��
Lemma 3.12 For any points x, y ∈ H(p), any transverse intersection point
between Wcs

x and Wcu
y is contained in H(p).

Proof By Lemma 3.9, there exist two periodic points px and py close to
x and y respectively whose orbits are homoclinically related to p such that
Wcs

px
⊂ W s(px ) and Wcu

py
⊂ W u(py). By continuity of the plaque families

Wcs andWcu , one deduces thatWcs
px
andWcu

py
intersect transversally at a point

z′ ∈ H(p) close to z. Hence z belongs to H(p). ��

3.4 Quasi-attractors

Lemma 3.13 If the chain hyperbolic class H(p) is a quasi-attractor and if the
bundle Ecu is uniformly expanded, then for any diffeomorphism g C1-close to
f and any hyperbolic periodic point q homoclinically related to the orbit of
pg, the unstable manifold W u(q) is contained in the homoclinic class H(pg).

In particular if g is C1-generic, then H(pg) is a quasi-attractor.

Proof Since H(p) is a homoclinic class, there exists a dense set of points
x ∈ H(p) that belong to the stable manifold of p. Moreover by the trapping
property,Wcs

x contains f −n(Wcs
f n(x)) for any n ≥ 0, hence is contained in the

stable manifold of the orbit of p.
If H(p) is a quasi-attractor and Ecu is uniformly expanded, it is the union of

the unstable manifolds W u(x) of the points x ∈ H(p). If one fixes ρ > 0 then
any disk D of radius ρ contained in an unstable manifold W u(x) intersects
transversally the stable manifold of p. Hence, by compactness there exists
N ≥ 1 uniform such that f N (D) intersects transversally the local stable
manifold W s

loc(O) of the orbit O of p. This property is open: since H(p) is a
chain-recurrence class, for any g close to f , the class H(pg) is contained in
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a small neighborhood of H(p), hence for any disk D of radius ρ contained
in W u(x) for some x ∈ H(p), the iterate f N (D) intersects transversally
W s

loc(Og).
Moreover since H(p) is a quasi-attractor, there exists an arbitrarily small

open neighborhood U of H(p) such that f (U ) ⊂ U . Hence for g close to f
one still has g(U ) ⊂ U and the unstable manifold W u(Og) is contained in
U . Since U is a small neighborhood of the set H(p), the partially hyperbolic
structure extends to the closure of W u(Og); in particular the dynamics of g
uniformly expands along the manifold W u(Og).

One deduces that for any g close to f , for any point x ∈ W u(Og), for any
neighborhood V of x inside W u(Og), there exists an iterate gn(V ) with n ≥ 1
which contains a disk of radius ρ, so that gn+N (V ) ⊂ W u(Og) intersects
transversally W s

loc(Og). One deduces that H(pg) meets gn+N (V ), hence V .
Since V can be chosen arbitrarily small and H(pg) is closed, the point x
belongs to H(pg). We have proved that W u(Og) ⊂ H(pg).

Let q be any hyperbolic periodic point homoclinically related to pg . The
unstable manifolds of the orbit of p and q have the same closure. In particular
W u(q) ⊂ H(pg). ��

3.5 Stable boundary points

We now discuss the case the center stable bundle has a dominated decompo-
sition Ecs = Ess ⊕ Ec with dim(Ec) = 1 and Ess is uniformly contracted.
Half center stable plaques Any point x ∈ H(p) has a uniform strong sta-
ble manifold which is one-codimensional inside Wcs

x . A neighborhood of x
intersectsWcs

x \W ss
loc(x) into two connected components. The choice of an ori-

entation on the vector space Ec
x allows to denote them by Wcs,+

x and Wcs,−
x .

One can then consider if x is accumulated inside Wcs
x \W ss

loc(x) by points of
H(p) in one or in both components. Note that this does not depend on the
choice of the plaque family Wcs . Note also that the same case will occur all
along the orbit of x .

Whereas the bundle Ec may not be orientable, it is locally trivial and locally
orientable. In fact, since Ec has dimension 1, one can compare the strong stable
and the unstable plaques W ss

loc(y) and W u
loc(z) of points y, z close to x and say

that the first is above or below the second. Hence there exists an orientation on
the spaces Ec

y for y ∈ H(p)∩W cu
x close to x that matches with the orientation

of Ec
x . The points of H(p) ∩ Wcs

x close to x projects on Wcs
y through the

holonomy along the center unstable plaques, but there is no reason that the
projection of the points in H(p)∩Wcs,+

x are contained insideWcs,+
y . However

the following can be proved.
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Lemma 3.14 Consider any periodic point q homoclinically related to p and
any point x that is close to q and belongs to the chain-hyperbolic class H(p)

such that W u
loc(q) intersects W ss

loc(x) at a point z. If q is accumulated by
H(p)∩Wcs,+

q then z is accumulated by H(p)∩Wcs,+
x . More precisely, there

exists y ∈ H(p) ∩ Wcs,+
q arbitrarily close to q such that W u

loc(y) intersects
H(p) ∩ Wcs,+

x close to z.

Proof Let us consider a point y0 ∈ Wcs,+
q close to q; it belongs to W s(q). Let

D be a neighborhood of z inWcs
x and D+ a neighborhood of z inWcs,+

x . By the
λ-lemma, the sequence f −n(D), n ≥ 0 converges toward W s(q). Observe that
the strong stable manifolds of x and z coincide. By continuity of the strong sta-
ble lamination, the sequence f −n(W ss

loc(x)) converges toward W ss(q). Hence
Wcu

y0 intersects f −n(D+) close to q for n large enough. The intersection is
transverse, hence belongs to H(p) by Lemma 3.12. One thus deduces that
D+ intersects H(p). By taking D+ arbitrarily small, one has proved that z is
accumulated by H(p) ∩ Wcs,+

x . Also the local unstable manifold W u
loc(y) of

the point y = f n(y0) intersects D+, giving the conclusion. ��
Lemma 3.15 Let us assume that the chain-hyperbolic class H(p) does not
contains periodic points q, q ′ homoclinically related to the orbit of p such that
W ss(q)\{q} and W u(q ′) intersect. Then any point x ∈ H(p) is accumulated
by H(p) in Wcs

x \W ss
loc(x).

Proof Let us assume by contradiction that there exists a point x ∈ H(p)

which is not accumulated by points in (Wcs
x ∩ H(p))\W ss

loc(x). Let q ∈ H(p)

be a periodic point close to x and homoclinically related to the orbit of p. Its
unstablemanifold intersects transversallyWcs

x at a point z ∈ H(p). Since z can
be chosen arbitrarily close to x , it belongs to W ss

loc(x) and it is not accumulated
by points in (Wcs

x ∩ H(p))\W ss
loc(x). By Lemma 3.14, W s

loc(q)\W ss(q) is
disjoint from H(p). In particular the point q is not accumulated by points in
(Wcs

q ∩ H(p))\W ss
loc(q). One can thus repeat for q the argument we have made

for x and find a periodic point q ′ �= q homoclinically related to the orbit of p
such that W u(q ′) intersects W ss(q). This contradicts our assumption. ��

We now introduce the definition of the stable boundary points, generaliz-
ing the notion of stable boundary points for uniformly hyperbolic set whose
stable bundle is one-dimensional (see [appendix 2]PT). This notion plays an
important role and it is extensively studied in Sect. 5.

Definition 3.16 A point x in the chain-hyperbolic class H(p) is a stable
boundary point if inside one of the half plaques Wcs,−

x or Wcs,+
x the point x

is not accumulated by points of H(p)

Observe that if x is a stable boundary point, then any iterate of x is also. Note
that if Ecs is one-dimensional, a stable boundary point x ∈ H(p) is a point
which is not accumulated by points of H(p) in both components ofWcs

x \{x}.
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Naturally in the same way, if the center unstable subbundle splits Ecu =
Ec
2 ⊕ Euu , where Ec

2 is one-dimensional and Euu is uniformly expanded, it
can be defined the notion of unstable boundary point.

The next lemma about stable boundary points is a version of a classical one
for hyperbolic systems. A more general proposition about stable boundary
points is provided in Sect. 5.

Lemma 3.17 Let f be a diffeomorphism and H(p) be a chain-recurrence
class which is a chain-hyperbolic homoclinic class endowed with a domi-
nated splitting Ecs ⊕ Ecu = Ecs ⊕ (Ec

2 ⊕ Euu) such that Ecs, Ec
2 are one-

dimensional, Ecs, Ecu are thin trapped (for f and f −1 respectively) and Euu

is uniformly expanded. Then any stable boundary point of H(p) belong to the
unstable set of a periodic point.

Proof We use a standard argument from [33]. Let x be a stable boundary point
of H(p). Let us introduce three backward iterates x1 = f −k(x), x2 = f −l(x)

and x3 = f −m(x) with 0 < k < l < m, that are arbitrarily close to each
other. If the center unstable plaques of two of those three points (for instance
x1, x2) intersect, from the coherence (Lemma 3.2) it follows that f −1(Wcu

x1 )

is contained in Wcu
f −1(x1)

. Since Wcu is trapped by f −1, one deduces that the

center unstable plaqueWcu
x1 is mapped into itself by f k−l . Since Ecu splits as

Ec
2⊕Euu and dim(Ec

2) = 1, one deduces that the backward orbit of x1 belongs
to the unstable set of a periodic point of Wcu

x1 (this point is not necessarily
hyperbolic).

If the center unstable plaques of the three points do not intersect, we can
assume that the center stable plaque of namely x2 intersects the center unsta-
ble plaques of the other two points in different connected components of
Wcs

x2\{x2}. By Lemma 3.12 those points of intersection belong to H(p) and
using that Ecs is thin trapped, the forward orbits of those points remain arbi-
trarily close to x (provided that the points x1, x2, x3 were sufficiently close)
and contained in different components ofWcs

x2\{x2}; a contradiction. ��
The following proposition is not needed in the context of the present paper,

however we provide it since it helps to understand the notion of boundary point
(the proof uses [19, proposition 3.2]).

Proposition 3.18 Let f be a diffeomorphism and H(p) be a homoclinic class
endowed with a partially hyperbolic structure Ess ⊕ Ec ⊕ Eu such that
dim(Ec) = 1 and such that Ecs = Ess ⊕ Ec is thin trapped. Then,

– either any stable boundary point x ∈ H(p) belongs to the unstable manifold
of a periodic point,

– or there exists a diffeomorphism g that is C1-close to f and a periodic orbit
contained in a small neighborhood of H(p) which has a strong homoclinic
intersection.
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One will use instead a similar result for quasi-attractors, see Sect. 5.2 below.

Sketch of the proof Let x be a stable boundary point. Let us take the sequence
{xn = f −n(x)}n>0. Since Ecs is thin trapped, one may take a small plaque
family Wcs which is trapped and such that for each n ≥ 0, one connected
component Un of Wcs

xn
\W ss

loc(xn) is disjoint from H(p). In particular:

(*) For any two close iterates xn, xm , the unstable manifold W u
loc(xn) does

not meet Um .

We consider two cases: either the orientation of the center manifolds of all
close backward iterates is preserved or not. Equivalently, the tangent map D f
preserves or not a continuous orientation of the bundle Ec over α(x), the α-
limit set of x . One can assume that α(x) is not reduced to a periodic orbit
since otherwise, x belongs to the unstable manifold of a periodic orbit and the
statement follows.

– The orientation preserved case. From property (*), any two close iterates
xn, xm are in twisted position (see [19, section 3]), implying that α(x) is
twisted. If α(x) contains a periodic orbit O , it contains points in W ss(O)\O
and in W u(O)\O; as a consequence, one can apply the Hayashi connecting
lemma and get a strong homoclinic intersection for O by an arbitrarily small
C1-perturbation. Otherwise α(x) contains a non-periodic minimal set and
from [19, proposition 3.2], there exists a diffeomorphism g that is C1-close
to f and a periodic orbit contained in a small neighborhood of H(p) which
has a strong homoclinic intersection.

– The orientation reversed case. Let us consider a sequence of arbitrarily
close points xnk , xmk such that D f mk−nk reverse the local orientation on
Ec at xnk . One may assume that they converge toward a point y ∈ α(x).
Property (*) now implies that H(p) ∩ Wcs

y is contained in W ss(y). This
contradicts Lemma 3.15 above. ��

3.6 Non-uniformly hyperbolic bundles

When the bundle Ecs is not uniformly contracted, the class may contain weak
periodic orbits.

Lemma 3.19 Let us assume that the chain-hyperbolic class H(p) is a chain-
recurrence class and that there exists a dominated splitting Ecs = Ess ⊕ Ec

where Ec is one-dimensional and not uniformly contracted, Ecs is thin-trapped
and Ess is uniformly contracted. Then, there exists some hyperbolic periodic
orbits in H(p) whose Lyapunov exponent along Ec is arbitrarily close to zero.

Remark 3.20 If one assumes that all the periodic orbits in H(p) are hyperbolic,
then one can ensure that the obtained periodic orbits are homoclinically related
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to p. Indeed, since Ecs is thin-trapped, all the periodic orbits in H(p) have the
same stable dimension and by Lemma 3.10 are homoclinically related to p.

Proof Following a classical argument in the works of Mañé and Liao, one
can consider an invariant compact set K ⊂ H(p) such that the restriction of
Ec to K is not uniformly contracted and K is minimal for the inclusion and
these properties. Since the bundle Ec

|K is one-dimensional, thin trapped and
not uniformly contracted, K coincides with the support of an ergodic measure
μ whose Lyapunov exponent along Ec is zero. The exponent of any other
measure supported on K is non-positive.

In the case there exists ergodicmeasuresμ supported on K whose Lyapunov
exponent along Ec is negative and arbitrarily close to zero, the domination
Ecs ⊕ Ecu implies that these measures are hyperbolic and the C1-version
of Anosov closing lemma (see [19, proposition 1.4]) ensures that the chain-
recurrence class H(p) contains hyperbolic periodic orbits whose Lyapunov
exponent along Ec is arbitrarily close to zero.

In the case there exist ergodic measures with negative exponent, but not
close to zero, one applies the following lemma which follows from Liao’s
selecting lemma as explained at the end of the proof of [19, theorem 1].

Lemma 3.21 Let f be a diffeomorphism, K be an invariant compact set
endowed with a dominated splitting TK M = E ⊕ Ec ⊕ F with dim(Ec) = 1
and δ > 0 such that:

– on any invariant compact subset K ′
� K , the bundle Ec is uniformly

contracted,
– there exits an ergodic measure supported on K with negative Lyapunov

exponent along Ec,
– the exponent along Ec of each ergodic measure supported on K does not

belong to (−δ, 0).

Then, there exists a sequence of periodic orbits, homoclinically related
together, which converge to K for the Hausdorff topology and whose Lya-
punov exponent along Ec goes to zero.

In the remaining case, all the measures supported on K have a Lyapunov
exponent along Ec that is equal to zero. In particular, Ecu is uniformly
expanded on K . We have also assumed that Ecs is thin trapped. As a con-
sequence, one can choose over the maximal invariant set in a neighborhood
of K some plaques Dcs and Dcu with arbitrarily small diameter and that are
trapped by f and f −1 respectively.

123



434 S. Crovisier, E. R. Pujals

For any ε > 0 there exists a periodic ε-pseudo-orbit x0, x1, . . . , xn = x0
contained in K such that the quantity

1

n

n−1∑

k=0

log ‖D f|Ec(xk)‖

is arbitrarily close to zero. By the weak shadowing Lemma [19, lemma 2.9],
there exists a periodic orbit O0 contained in an arbitrarily small neighborhood
of K and whose Lyapunov exponent along Ec is close to zero. We still have
to prove that O0 is contained in H(p).

The unstablemanifold of a point x ∈ K close to O0 intersects a center stable
plaque of O0. Since these plaques are trapped and Ec is one-dimensional, this
implies that the center stable plaques of O0 contains a periodic orbit O ′ whose
stablemanifold intersectsW u(x). On the other handW u(O ′) intersects a center
unstable plaque of a point of H(p). As a conclusion O ′ is contained in the
chain-recurrence class of p. Since the plaques Dcs have a small diameter, the
Lyapunov exponent of O ′ along Ec is close to the Lyapunov exponent of O ,
hence is close to zero.

The conclusion of the lemma has been obtained in all the cases. ��

4 Continuation of chain-hyperbolic homoclinic classes

Let H(p) be a chain-hyperbolic homoclinic class of a diffeomorphism f
which is a chain-recurrence class endowedwith a partially hyperbolic structure
Ess ⊕ Ec ⊕ Eu such that dim(Ec) = 1 and the bundle Ecs = Ess ⊕ Ec is thin
trapped. ByCorollary 3.7, the homoclinic class H(pg) is still chain-hyperbolic
for the diffeomorphisms g close to f . We explain here, how in certain sense,
the points in H(p) can be continued in H(pg). If f is far from strong homo-
clinic intersections, Proposition 4.8 shows that the points of H(pg) are in
correspondence with the continuation of the points of H(p) up to some iden-
tifications and blow-ups in the center direction (that can be compared with the
blow-up of an Anosov diffeomorphism during the construction of a “derived
from Anosov” map).

4.1 Preliminary constructions

Local center orientation The bundle Ec on H(p) is one-dimensional and
locally trivial. Moreover it depends continuously on the dynamics f . One
deduces that for any g, g′ close to f , the orientations of Ec

g,x and Ec
g′,x ′ for

two points x ∈ H(pg) and x ′ ∈ H(pg′) can be compared provided x and x ′
are close (say at distance less than ε). To make this precise, one can cover a
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neighborhood of H(p) by a finite number of open sets Ui endowed with non-
singular one-forms αi such that αi never vanishes on the bundle Ec. Two close
points x, x ′ belong to a same open set Ui . Two orientations on Ec

g,x and Ec
g′,x ′

(seen as non-trivial one-forms modulo multiplication by a positive constant)
match if they both coincide with the class of αi or the class of −αi . If x, x ′
are close enough, this does not depend on the open set Ui containing {x, x ′}.
If one considers another collection of pairs (U ′

i , α
′
i ), the orientations on Ec

g,x
and Ec

g′,x ′ still match if the distance between x and x ′ is small and g is close
enough to f .

Plaque families In the following one fixes δ > 0 small which is a lower bound
for the modulus of the Lyapunov exponents of pg for g close to f . Since Ecs

is thin trapped, one can choose some continuous collection of plaque families
(Wcs

g ) for the diffeomorphisms g close to f as given by Corollary 3.7: they
are trapped by f −1, coherent, and the plaques have small diameters. Also, by
Lemmas 2.12 and 3.8, for g that is C1-close to f and for any periodic point
q ∈ H(pg) whose Lyapunov exponents along Ecs are smaller than −δ/2, the
plaqueWcs

g,q is contained in the stable set of q.
One will consider local manifolds W ss

g,loc(x) and W u
g,loc(x) for x ∈ H(pg)

with a small diameter so that W u
g,loc(x) intersects a plaque Wcs

g,y in at most
one point and the intersection is always transverse.

Shadowing One chooses ε > 0 so that for any g, g′ close to f and any
x ∈ H(pg), y ∈ H(pg′) satisfying d(x, y) < ε the local manifold W u

g,loc(x)

intersects Wcs
g′,y . One can then reduce ε and find ε′ ∈ (0, ε/3) so that the

following lemma holds.

Lemma 4.1 There exists ε > 3ε′ > 0 small such that any diffeomorphisms
g, g′ close to f satisfy:

– if x, y ∈ H(pg) are two points such that the forward orbit of x is ε-shadowed
by the forward orbit of y, then y ∈ Wcs

g,x ;
– if x, y ∈ H(pg) are two points ε′-close such that y belongs to Wcs

g,x , then
the forward orbit of x is ε

3 -shadowed by the forward orbit of y;
– for any periodic orbit O ⊂ H(pg) of g with center Lyapunov exponent

smaller that −δ, any periodic O ′ orbit of g′ that ε-shadows O satisfies the
following:
i- O ′ ε′-shadows O,

ii- O ′ is homoclinically related to pg′ and has a center Lyapunov exponent
smaller than −δ/2.

Moreover, any point x ∈ H(pg) whose backward orbit ε-shadows O
belongs to the unstable manifold of O.

Proof We prove the first item. Let us consider the intersection point z between
Wcs

g,x and W u
g,loc(y). By uniform local invariance of Wcs

g , one checks induc-
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tively that the point gn(z) is the intersection point between Wcs
g,gn(x) and

W u
g,loc(g

n(y)) for n ≥ 0. If z �= y, since z and y belong to the same unsta-
ble leaf, the distance d(gn(z), gn(y)) increases exponentially and becomes
much larger than ε, contradicting that the distance between gn(x) and gn(y)

is bounded by ε. One deduces that y = z, hence y belongs to Wcs
g,x .

Now we choose ε′ � ε and prove the second item. Since Ecs and Eu are
thin trapped by f and f −1, Corollary 3.7 associates some continuous trapped
and coherent plaque families Ŵcs

g and Ŵcu
g over H(pg) for g close to f with

diameter smaller than ε/3. From the coherence and Lemma 3.3 if ε′ is small
enough, then for any x, y ∈ H(pg) such that y ∈ Wcs

g,x and d(x, y) < ε′, the
point y belongs to Ŵcs

g,x . By the trapping property, gn(y) belongs to Ŵcs
g,gn(x)

for any n ≥ 0, hence d(gn(x), gn(y)) < ε/3 as required.
We then prove the properties of the third item. We first note that if g, g′

are close to f and ε is small enough, then any periodic orbit O ′ of g′ that
ε-shadows a periodic orbit O of H(pg) still has a partial hyperbolic structure
and has Lyapunov exponents close to those of O . This proves that the center
Lyapunov exponent of O ′ is smaller than −δ/2.

One deduces from Lemma 2.12 that for some point q ′ ∈ O ′ the stable
manifold of q has uniform size insideWcs

g′,q ′ . From Lemma 3.9, there exists a
dense set of periodic points x ∈ H(pg′) whose stable manifold has a uniform
size. If ε is small enough and g, g′ close enough to f , one thus deduces that q ′
is close to a point of H(pg′). From the uniformity of the invariant manifolds,
we deduce that the stable and unstable manifolds of q ′ intersect the stable and
unstable manifolds of a hyperbolic periodic orbit homoclinically related to
pg′ . In particular, O ′ is homoclinically related to pg′ .
Let us consider again, as given by Corollary 3.7, some continuous plaque

families Ŵcs
h and Ŵcu

h over H(ph) for h close to f with diametermuch smaller
than ε′. From Lemma 3.3 there exists ρ > 0 such that for any g close to f
and any x ∈ H(pg), the ball B(x, ρ) in Wcs

g,x is contained in Ŵcs
g,x . From the

trapping property, the following holds for g, g′ close to f : if x ∈ H(pg) and
y ∈ H(pg′) such that d(x, y) < ε satisfy that W u

g′,loc(y) intersects Ŵcs
g,x , then

the same holds for g(x) and g′(y). Using the estimate (2.1) in the Proof of
Lemma 2.12, there exists a uniform integer N ≥ 1 and an iterate q ∈ O such
that gN (Wcs

g,q) has radius smaller than ρ, hence is contained in Ŵcs
g,gN (q)

. Let

us choose q ′ ∈ O ′ such that d(g′n(q ′), gn(q)) < ε for each n ∈ Z. Provided
that g, g′ have been chosen close enough to f , the intersection zn between
W u

g′,loc(g
′n(q ′)) and Wcs

g,gn(q) for 0 ≤ n ≤ N are close to the N first iterates

of z0 under g, hence zN is contained in Ŵcs
g,gN (q)

. By our construction, one

deduces that W u
g′,loc(g

′n(q ′)) intersects Ŵcs
g,gn(q) for any n ≥ N , hence any

n ∈ Z. With the same argument,Wcs
g′,g′n(q ′) intersects Ŵcu

g,gn(q), for any n ∈ Z.

123



Essential hyperbolicity and homoclinic bifurcations 437

Since the diameter of the plaques Ŵcu and Ŵcs is much smaller than ε′, one
deduces that gn(q) and g′n(q ′) are at distance smaller than ε′. We have proved
that O is ε′-shadowed by O ′.

Let us now consider a point x ∈ H(pg) whose backward orbits ε-shadows
the backward orbit of a point q ∈ O . Let us introduce for each n ≥ 0 the
intersection point zn between W u

g,loc(g
−n(x)) andWcs

g,g−n(q)
. By construction

one has g(zn+1) = zn and in particular z0 is contained in the intersection of the
gn(Wcs

g,g−n(q)
). By assumption Wcs

g,g−n(q)
is contained in the stable manifold

of g−n(q). This proves that z0 coincides with q. As a consequence z0 belongs
to W u

g,loc(q). ��

4.2 Continuation of uniform periodic points

Recall that if p is a hyperbolic periodic point of a diffeomorphism f , then it has
a hyperbolic continuation on any small simply connected open neighborhood
Up of f . More precisely, there exists a continuous map g 	→ pg from Up
to M such that pg is a hyperbolic periodic point of g for each g ∈ U . The
continuation when it exists is necessarily unique. A priori the neighborhood
U depends on the periodic point, but in our setting the periodic points with
uniform Lyapunov exponents have a hyperbolic continuation on a uniform
neighborhood of f .

Lemma 4.2 There exists an open neighborhood U ⊂ Diff1(M) of f such
that:

– The hyperbolic continuation of p exists for any g ∈ U and the class H(pg)

is chain-hyperbolic.
– For any g ∈ U and any periodic orbit O ⊂ H(pg) of g whose center

Lyapunov exponent is smaller than −δ, the hyperbolic continuation Og′ of
O exists for any g′ ∈ U and is homoclinically related to pg′ . Moreover its
center Lyapunov exponent is still smaller than −δ/2, and Og′ is ε

3 -shadowed
by O.

Proof Let U be a small open ball centered at f . By Corollary 3.7, it satisfies
the first property.

Let us consider a path (γt )t∈[0,1] in U between g and g′ and the maximal
interval I containing 0 where the hyperbolic continuation Ot of O is defined
and ε/2-shadows O . If I = [0, t0) with t0 < 1, one can consider a periodic
orbit Ot0 for gt0 that is the limit of a sequence of orbit Ot for t < t0. By
construction Ot0 ε-shadows O , hence Ot0 has a center Lyapunov exponent
smaller than −δ/2 and also ε′-shadows O by Lemma 4.1. Since ε′ < ε/3,
we have contradicted the definition of t0. Hence, the orbit O has a hyperbolic
continuation Og′ for g′. Since U is an open ball, this continuation is unique.
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We have shown that O is ε′-shadowed by Og′ , hence by Lemma 4.1, Og′ is
homoclinically related to pg′ , has a center Lyapunov exponent smaller than
−δ/2. Since ε′ < ε/3, all the properties stated in the second item are satisfied.

��
This justifies the following notation.

Notation 4.3 We denote by P the set of hyperbolic periodic points q ∈ H(p)

homoclinically related to the orbit of p whose continuation qg exists for any
diffeomorphism g ∈ U and such that for some g ∈ U the center Lyapunov
exponent of qg is smaller than −δ.

Since for any g ∈ U the center Lyapunov exponents of pg is smaller than
−δ, there exists a dense set of periodic points in H(pg)whose center Lyapunov
exponent is smaller than −δ. By Lemmas 4.2 and 3.9, one deduces that the
continuations qg of points in q ∈ P are dense in H(pg).

Note also that by Lemma 4.2 the center Lyapunov exponent of qg for q ∈ P
is smaller than −δ/2; hence the plaqueWcs

g,qg
is contained in W s

g (qg).

4.3 Pointwise continuation of H(p)

Definition 4.4 For any g, g′ ∈ U , one says that two points x ∈ H(pg) and x ′ ∈
H(pg′) have the same continuation if there exists a sequence of hyperbolic
periodic points (pn) in P such that (pn,g) and (pn,g′) converge toward x and
x ′ respectively.

This implies that gk(x) and g′k(x ′) have the same continuation for each
k ∈ Z.

By compactness and density of the points qg with q ∈ P , one sees that,
for any g, g′ ∈ U , any point x ∈ H(pg) has the same continuation as some
x ′ ∈ H(pg′). In general x ′ is not unique. The following implies that if x ′

1, x ′
2 ∈

H(pg′) have the same continuation as x , then x ′
2 belongs to Wcs

g′,x ′
1
.

Lemma 4.5 For any g, g′ ∈ U , let us consider x ∈ H(pg) and x ′ ∈ H(pg′)
such that x and x ′ have the same continuation. Then, the orbits of x by g is
ε
3 -shadowed by the orbit of x ′ by g′.

As a consequence, if x1, x2 ∈ H(pg) are ε′-close and satisfy x2 ∈ Wcs
g,x1 ,

then for any x ′
1, x ′

2 ∈ H(pg′) such that xi , x ′
i have the same continuation for

i = 1, 2, one still has x ′
2 ∈ Wcs

g′,x ′
1
.

Proof Let us consider a sequence (pn) ∈ P whose continuations (pn,g),
(pn,g′) for g and g′ converges toward x and x ′ respectively. From Lemma 4.2,
the orbit of (pn,g) by g is ε

3 -shadowed by the orbit of (pn,g′) by g′. Taking the
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limit, one deduces that the orbit of x by g is ε
3 -shadowed by the orbit of x ′ by

g′.
If x1, x2 ∈ H(pg) are ε′-close and satisfy x2 ∈ Wcs

g,x1 , by Lemma 4.1 the
forward orbit of x2 is ε

3 -shadowed by the forward orbit of x1. By the first part
of the lemma, one deduces that for any x ′

1, x ′
2 ∈ H(pg′) such that xi , x ′

i for
i = 1, 2 have the same continuation, then the forward orbit of x ′

1 by g′ is
ε-shadowed by the forward orbit of x ′

2 by g′. By Lemma 4.1, this implies that
x ′
2 ∈ Wcs

g′,x ′
1
. ��

One then shows that if x is a hyperbolic periodic point inP , then x ′ coincides
with its hyperbolic continuation (hence is unique). This is also true for the
unstable manifold of points in P .

Lemma 4.6 For any g ∈ U , let qg be the hyperbolic continuation of some
point q ∈ P and let us consider some point x ∈ W u(qg) ∩ H(pg). Then,
for any g′ ∈ U , there exists a unique point x ′ ∈ H(pg′) which has the same
continuation as x; moreover x ′ belongs to W u(qg′) and varies continuously
with g′. In particular the hyperbolic continuation qg′ of qg is the unique point
in H(pg′) such that qg and qg′ have the same continuation (in the sense of the
Definition 4.4).

Proof Let us consider any x ′ ∈ H(pg′) which has the same continuation as x .
From Lemma 4.2, the orbit of qg′ by g′ is ε

3 -shadowed by the orbit of qg by g
and from Lemma 4.5, the orbit of x by g is ε

3 -shadowed by the orbit of x ′ by
g′. There exists N ≥ 1 such that the backward orbit of g−N (x) is ε

3 -shadowed

by the backward orbit of g−N (qg). Hence the backward orbit of g′−N
(x ′) is

ε-shadowed by the backward orbit of g′−N
(qg′). By Lemma 4.1, x belongs to

the unstable manifold of g−N (qg). It remains to prove that x ′ is the only point
in H(pg′) which has the same continuation as x ∈ H(pg).

Let x ′
1, x ′

2 ∈ H(pg′) be two points that have the same continuation as
x ∈ H(pg). By Lemma 4.5 their orbits under g′ both ε

3 -shadow the orbit of x
under g. By Lemma 4.1, g′n(x ′

2) belongs toWcs
g′,g′n(x ′

1)
for each n ∈ Z. When

n goes to −∞, the points g′n(x ′
2) and g′n(x ′

1) are contained in a small local
unstable manifold of the orbit of qg′ . Since the plaques W u

loc andWcs intersect
in at most one point, this implies that x ′

1 = x ′
2.

Let us denote by xg′ the point which has the same continuation as x . In order
to prove the continuity of the map g′ 	→ xg′ , one considers any limit point x ′
of points xg′ when g′ goes to g. As before, the orbit of x by g is ε-shadowed
by the orbit of x ′, so that gn(x ′) belongs to the unstable manifold of the orbit
of q and toWcs

g,gn(x) for each n ∈ Z. This implies x = x ′. ��
Remark 4.7 1. Lemma 4.6 implies that Definition 4.4 does not depend on the

choice of δ, U .
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Indeed, if one considers δ̃ ∈ (0, δ) and Ũ ⊂ U another neighborhood of f ,
then one gets two sets of periodic points P ⊂ P̃ . Let us consider g, g′ ∈ Ũ
and two points x ∈ H(pg), x ′ ∈ H(pg′)which have the same continuation
on Ũ with respect to P̃; we claim that they also have the same continuation
with respect to P . Indeed one considers a sequence ( p̃n) in P̃ such that
( p̃n,g) converges toward x . Then, for each n there exists pn ∈ P such that
pn,g is close to p̃n,g . By Lemma 4.6, pn,g′ is close to p̃n,g′ , hence one
can obtain a sequence (pn) in P such that (pn,g) converges toward x and
(pn,g′) converges toward x ′, as wanted.

2. For any x ∈ H(p f ) and any neighborhood Ux of x , there exists a neigh-
borhood U f of f such that for any g ∈ U f , any x ′ ∈ H(pg) which has the
same continuation as x belongs to U f .
Indeed when one reduces the constantsε and ε′, the Lemmas 4.1 and 4.5
still hold on a smaller neighborhood of f but by the remark (1), the notion
of continuation remains unchanged. Thus for g close to f , any point x ′ ∈
H(pg) which has the same continuation as x ∈ H(p) is ε/3-close to x
with an arbitrarily small constant ε.

4.4 Continuations far from strong homoclinic intersections

For g ∈ U we define H̃(pg) to be the set of pairs x̃ = (x, σ )where x ∈ H(pg)

and σ is an orientation of Ec
g,x , such that x is accumulated in H(pg) ∩Wcs,+

g,x

whereWcs,+
g,x is the component ofWcs

g,x\W ss
loc(x) determined by the orientation

σ as introduced in Sect. 3.5. By Lemma 3.15 and if H(pg) does not contain
two periodic points q, q ′ homoclinically related to the orbit of p such that
W ss(q)\{q} and W u(q ′) intersect, above each point of H(p) there exists one

or two points in H̃(pg), depending if x is a stable boundary point. Observe

that the set H̃(pg) could be empty but even in this case the definition makes
sense.

One can view H̃(pg) as a subset of the unitary bundle associated to Ec
g over

H(pg). The dynamics of g can thus be lifted to H̃(pg) and defines a map g̃.

One also defines the projectionπg : H̃(pg) → H(pg) such thatπg(x, σ ) = x .

Proposition 4.8 Let H(p) be a homoclinic class of a diffeomorphism f ∈
Diffr (M) such that

– it is not a periodic orbit,
– is a chain-recurrence class endowed with a partially hyperbolic structure

Ess ⊕ Ec ⊕ Eu such that dim(Ec) = 1 and Ecs = Ess ⊕ Ec is thin trapped.
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In a C1-small neighborhood U of f in Diff1(M) we consider a Cr -open
connected set V ⊂ U such that there is no diffeomorphism g ∈ V whose
homoclinic class H(pg) has a strong homoclinic intersection.

Then, for each g, g′ ∈ V , the following holds:

(a) (Lifting). The map πg : H̃(pg) → H(pg) is surjective and semi-
conjugates g̃ to g.

(b) (Continuation of the lifting). For any x̃g = (xg, σ ) ∈ H̃(pg), there is

a unique x̃g′ = (xg′, σ ′) ∈ H̃(pg′) such that xg = πg(x̃g) and xg′ =
πg′(x̃g′) have the same continuation and such that the orientations σ on

Ec
g,xg

and σ ′ on Ec
g′,xg′ match; this defines a bijection �g,g′ : H̃(pg) →

H̃(pg′). We denote �g := � f,g.
(c) (Continuation of the projection). For any xg ∈ H(pg) and xg′ ∈

H(pg′) having the same continuation, there exists x̃ ∈ H̃(p) such that
πg(�g(x̃)) = xg and πg′(�g′(x̃)) = xg′ .

Remark 4.9 One may consider on H̃(pg) the topology induced by Ec
g. This

set is in general not compact since a sequence of points xn ∈ H(pg) that are
accumulated in H(pg) ∩ Wcs,+

g,xn may converge toward a point x ∈ H(pg)

which is not accumulated in Wcs,+
g,x . One can show however that the map

(g, x̃) 	→ �g(x̃) is semi-continuous.

The next lemma is used in the proof of the Proposition 4.8 and of
Lemma 4.11.

Lemma 4.10 Let us consider q1, q2 ∈ P and g, g′ ∈ V such that
d(q1,g, q2,g) < ε/3. If W u

g,loc(q1,g) intersectsWcs,+
g,q2,g , then W u

g′,loc(q1,g′) does

not intersect Wcs,−
g′,q2,g′ .

Proof By Lemma 4.2 and our choice of ε, one has d(q1,h, q2,h) < ε for any
h ∈ U , hence W u

h,loc(q1,h) intersects Wcs
h,q2,h

. Now, W ss
h,loc(q2,h) has codi-

mension one in Wcs
h,q2,h

and varies continuously with h. Let us assume that

W u
g,loc(q1,g) intersects Wcs,+

g,q2,g and that W u
g′,loc(q1,g′) intersects Wcs,−

g′,q2,g′ . By

connectedness of V , one deduces that for some h0 ∈ V the local manifolds
W u

h0,loc(q1,h0) and W ss
h0,loc(q2,h0)\{q1,h0} intersect. By using Lemma 2.24 one

gets a diffeomorphism h ∈ V having a strong homoclinic intersection in
H(ph), giving a contradiction. ��
Lemma 4.11 Under the setting of Proposition 4.8, if (gn) converges in V
toward g and (x̃n) toward x̃ in H̃(p), then any limit x̄ of (�gn (x̃n)) satisfies
πg(x̄) ∈ Wcs

g,xg
\Wcs,+

g,xg where xg = πg(x̃).
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Proof Let us assume by contradiction that x̄ belongs to Wcs,+
g,xg . There exists

a sequence (pn) in P that converges toward x f = π f (x̃) such that W u
loc(pn)

intersects Wcs,+
x f and (pn,gn ) converges towards x̄ . By Proposition 4.8, the

sequence (pn,g) converges toward xg. Hence, one can consider n large such
that pn,g is close to xg. By continuity of the map h 	→ pn,h , the point pn,h is
still close to xh for a diffeomorphisms h nearby. For m large enough, pn,gm

is close to xg and pm,gm is close to x̄ . One deduces that W u
loc,gm

(pn,gm ) meets

Wcs,−
gm ,pm,gm

. On the other hand, since W u
loc(pn)meetsWcs,+

x f , the localmanifold

W u
loc(pn,g) meetsWcs,+

g,pm . The Lemma 4.10 above contradicts our assumption
that f is far from homoclinic intersections. ��
Proof of proposition 4.8 We introduce the open set U and the collection of
periodic points P as in the previous sections.

The item (a) of the proposition is a direct consequence of Lemmas 3.15
and 2.24. The item (b) is first proved in the case xg is the hyperbolic contin-
uation qg of a periodic point q ∈ P . In this case there is only one possible
continuation xg′ . We are thus reduced to prove.

Claim 1 Consider any periodic point q ∈ P and an orientation σ on Ec
q . If qg

is accumulated by H(pg) ∩ Wcs,+
g,qg for some g ∈ V , then the same holds for

any g.

Proof Let us consider g ∈ V such that qg is accumulated by H(pg)∩Wcs,+
g,qg . In

particular, there exists a sequence (pn) inP such that (pn,g) converges toward
qg andW u

g,loc(pn,g) intersectsWcs,+
g,qg . ByLemma4.6, the sequence (pn,g′) con-

verges towardqg′ .MoreoverW u
g′,loc(pn,g′) does not intersectW ss

g′,loc(qg′) since
this would contradict our assumptions by Lemma 2.24. Also by Lemma 4.10,
W u

g′,loc(pn,g′) does not intersectsWcs,−
g′,qg′ . One thus deduces that W u

g′,loc(pn,g′)

intersects Wcs,+
g′,qg′ . The intersection point belongs to H(pg′) by Lemma 3.12,

hence qg′ is accumulated by H(pg′) ∩ Wcs,+
g′,qg′ . ��

We now prove the item b) in the general case.
Claim 2 Let us consider xg ∈ H(pg) and xg′ ∈ H(pg′) and a sequence (pn)

in P such that (pn,g) converges toward xg and (pn,g′) converges toward xg′ .
If the local unstable manifolds W u

g,loc(pn,g) intersect Wcs,+
g,xg , then there exists

another sequence ( p̄n) in P having the same properties as (pn) and which
satisfies furthermore that the local unstable manifolds W u

g′,loc( p̄n,g′) intersect

Wcs,+
g′,xg′ .

Proof We first remark that each point (pn,g), with n large enough, is accumu-
lated by H(pg) ∩Wcs,+

g,pn,g . Indeed, W u
g,loc(p1,g) intersectsWcs,+

g,pn,g for n large
at some point yn which belongs to H(pg) by Lemma 3.12. By Lemma 2.12,
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Wcs,+
g,pn,g is contained in the stable manifold of pn,g , hence the forward orbit of

yn accumulates the orbit of pn,g , proving the announced property. From claim
1, the points pn,g′ are also accumulated by H(pg′) ∩ Wcs,+

g′,pn,g′ .

Now we note that W u
g′,loc(pn,g′) does not intersect Wcs,−

g′,xg′ . Indeed, if this

occurs, one would deduce that for m � n the manifold W u
g′,loc(pn,g′) inter-

sects Wcs,−
g′,pm,g′ and that W u

g,loc(pn,g) intersects Wcs,+
g,pm,g . By Lemma 4.10 this

would contradict our assumptions. If W u
g′,loc(pn,g′) intersects Wcs,+

g′,xg′ for a

subsequence ( p̄n) of (pn), the claim holds. We thus reduced to consider the
case W u

g′,loc(pn,g′) intersect W ss
g′,loc(xg′). We denote by zn the intersection.

Since pn,g′ is accumulated by H(pg′) ∩ Wcs,+
g′,pn,g′ , Lemma 3.14 implies that

there exists p̄n ∈ P such that

– p̄n,g′ is close to pn,g′ (hence ( p̄n) has the same properties as (pn)),
– W u

g′,loc( p̄n,g′) intersectsWcs,+
g′,xg′ as announced.

The last claim implies the existence statement of the item b): if x̃g belongs

to H̃(pg), one may approximate the points of H(pg) ∩ Wcs,+
g,xg by periodic

points that are the continuations for g of points in P . Hence, there exists a
sequence (pn) inP such that W u

g,loc(pn,g) intersectsWcs,+
g,xg for each n. Taking

a subsequence, one may also assume that the points pn,g′ converge toward a
point xg′ ∈ H(pg′). One defines x̃g′ = (xg′, σ ) such that σ is the orientation
which matches with the orientation of x̃g. By the previous claim, one can
replace the sequence (pn) by another one ( p̄n) such that ( p̄n,g′) still converges
toward xg′ and furthermore W u

g′,loc( p̄n,g′) intersects Wcs,+
g′,xg′ for each n. The

intersection point belongs to H(pg′) by Lemma 3.12, hence x̃g′ belongs to

H̃(pg′), as required.

Claim 3 For any g1, g2 ∈ V , let us consider x1 ∈ H(pg1) and x2 ∈ H(pg2)

having the same continuation. Then, there exist two matching orientations on
Ec

g1,x1 , Ec
g2,x2 and a sequence (pn) in P such that (pn,gi ) converges toward xi

and the local unstable manifolds W u
gi ,loc(pn,gi ) intersects Wcs,+

gi ,xi for i = 1, 2.

Proof By assumption, there exists a sequence (p0n) in P such that (p0n,gi
)

converges toward xi for i = 1, 2. We first replace (p0n) by a sequence (p1n) so
that W u

g1,loc(p1n,g1) does not intersect W ss
g1,loc(x1): if there exists a subsequence

of (p0n) which has this property, we get the subsequences (p1n); otherwise, one
can assume that W u

g1,loc(p0n,g1) intersects W ss
g1,loc(x1) for each n ≥ 0. From

Lemma 3.14, there exists y ∈ Wcs
g,p0n,g1

arbitrarily close to p0n,g1 such that its

unstable manifold intersects Wcs
x1\W ss

g1,loc(x1). One can approximate y by a
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point p1n,g1 with p1n ∈ P . Doing this for each n, one gets a required sequence
(p1n) such that (p1n,g1) still converges toward x1. By Lemma 4.6, one can ensure
that the sequence (p1n,g2) converges toward x2. By choosing the orientations

on Ec
gi ,xi

, one can now assume that W u
g1,loc(p1n,g1) intersects Wcs,+

g1,x1 . By the

Claim 2, one can modify again the sequence (p1n) and replace it by a sequence
(pn) having the required properties. ��

One can now conclude the uniqueness part of the item b). Let us assume

by contradiction that x̃g ∈ H̃(pg) has two distinct continuations x̃1g′, x̃2g′ in

H̃(pg′) as stated in item b). By Lemma 4.5, one may assume that x1g′ belongs

to Wcs,−
g′,x2

g′
. Claim 3 provides us with two sequence (pi

n), i = 1, 2. On the one

hand W u
g,loc(pi

n,g) intersectsWcs,+
g,xg , hence for n ≥ 1 andm � n, W u

g,loc(p1n,g)

intersects Wcs,+
g,p2

m,g′
. On the other hand x1g′ ∈ Wcs,−

g′,x2
g′
, hence W u

g′,loc(p1n,g′)

intersectsWcs,−
g′,p2

m,g′
. By Lemma 4.10, this contradicts our assumptions.

The item c) is a direct consequence from the Claim 3. ��
Corollary 4.12 Let us assume that f , H(p) and V satisfy the assumptions
of Proposition 4.8. Then there exists ε′ > 0 such that for any f ′ ∈ V and
for any points x, y ∈ H(p f ′) that are ε′-close and satisfy y ∈ W ss

f ′,loc(x) ⊂
Wcs

f ′,loc(x), the following property holds.
For any g ∈ V and any points xg, yg ∈ H(pg) that have the same contin-

uations as x, y we still have yg ∈ Wcs
g,xg

. Moreover the open region in Wcs
g,xg

bounded by W ss
g,loc(xg) ∪ W ss

g,loc(yg) does not meet H(pg).
If x, y are accumulated by H(p f ′) in the same component of Wcs

x \W ss
loc(x),

then there exist two maps g 	→ xg, yg defined on V such that xg, yg have the
same continuations as x, y and such that moreover yg ∈ W ss

g,loc(xg) for each
g ∈ V .

Proof The constant ε′ is chosen as in the previous paragraphs. Let us consider
two points x, y that are ε′-close and satisfy y ∈ Wcs

f ′,x for some f ′ ∈ V . Then,
the same holds for any g ∈ V and any continuations xg, yg by Lemma 4.5. Let
us assume by contradiction that there exists some point z ∈ H(pg) in the open
region bounded by W ss

g,loc(xg)∪ W ss
g,loc(yg). For instance z ∈ Wcs,−

g,xg ∩Wcs,+
g,yg .

Claim For f ′ the point z does not belong to Wcs,+
g,xg , nor to Wcs,−

g,yg .

Proof Indeed, there exists two periodic points px , pz ∈ P such that px
g , pz

g are
arbitrarily close to xg and zg respectively and px

f ′, pz
f ′ are arbitrarily close to

x f ′ and z f ′ respectively. One deduces that W u
g,loc(pz

g) intersectsWcs,−
g,xg while

W u
f ′,loc(pz

f ′) intersectsWcs,+
f ′,x f ′ , contradicting Lemma 4.10. ��
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As a consequence, since the strong stable manifolds of x and y coincide for
f ′, the point z f ′ belongs to W ss

f ′,loc(x f ′). Let us consider some periodic point
pz ∈ P such that pz

g is close to zg, xg, yg: for instance W u
g,loc(pz

g) intersects

Wcs,+
g,zg . henceWcs Let pz ∈ P be a periodic point inP such that pz

g is close to

zg: for instance W u
g,loc(pz

g) intersectsWcs,+
g,zg . Note that W u

f ′,loc(pz
f ′) intersects

Wcs,+
f ′,z f ′ . Let px ∈ P be a periodic point in P such that px

g and px
f ′ are close to

xg and x f ′ . One deduces that W u
g,loc(pz

g) intersectsWcs,−
g,xg while W u

f ′,loc(pz
f ′)

intersects Wcs,+
f ′,x f ′ , contradicting Lemma 4.10. We have proved that the open

region of Wcs
g,x bounded by W ss

g,loc(xg) ∪ W ss
g,loc(yg) does not meet H(pg).

Let us assume now that x, y are accumulated by H(p f ′) in Wcs,+
x . They

are associated to two points x̃, ỹ in H̃(p f ′). By Proposition 4.8, these points
have unique continuations x̃g, ỹg for each g ∈ V . After projection in M , we
obtain two maps g 	→ xg, yg where xg, yg have the same continuations as x, y
and moreover xg is accumulated by H(pg) in Wcs,+

g,xg and yg is accumulated

by H(pg) in Wcs,+
g,yg for each g ∈ V . Let us assume by contradiction that

yg ∈ Wcs,+
g,xg for some g. One considers px ∈ P such that px

f ′ is close to x ,

the continuation px
g is close to xg, and W u

f ′,loc(px
f ′) intersects Wcs,+

f ′,x f ′ . One

then introduces py ∈ P such that py
f ′ is close to y, the continuation py

g is

close to yg, and W u
f ′,loc(py

f ′) intersects Wcs,−
f ′,px

f ′
. Then W u

g,loc(py
g) intersects

Wcs,+
g,px

g
, contradicting Lemma 4.10. One deduces that for each g ∈ V , yg does

not intersectWcs,+
g,xg and symmetrically xg does not intersectWcs,+

g,yg , implying
that yg ∈ W ss

g,loc(xg), as required. ��

Corollary 4.13 Let us assume that f , H(p) and V satisfy Proposition 4.8.
For any f ′ ∈ V and any hyperbolic periodic point q f ′ whose hyperbolic
continuation qg is defined and homoclinically related to the orbit of pg for
each g ∈ V , let us consider some x ∈ H(p f ′) in W u(q f ′).

Then, for g ∈ V , there exists a unique xg ∈ H(pg) which has the same
continuation as x. The map g 	→ xg is continuous and xg belongs to W u(qg).
For x = q f ′ we have xg = qg.

Proof We first consider the case x = q f ′ . It is enough to prove that for any
g ∈ V and any g′ in a small neighborhood of g, the point qg′ is the unique point
in H(pg′) which has the same continuation as qg. Let (pn) be a sequence in P
such that pn,g accumulates on qg. One can assume that W u

g,loc(pn,g) intersects

Wcs,+
g,qg . By Lemma 4.11, for any g′ ∈ V , the limit q̄g′ of (pn,g′) is a point in

Wcs
g′,qg′ \Wcs,−

g′,qg′ .
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If τ is the period of q, the points g′−τ.k
(q̄g′) have also the same continuation

as qg, hence belong to Wcs
g′,qg′ . In particular, there exists e > 0 such that for

any g′ close to g, any point x̄ ∈ Wcs
g′,qg′ \{qg′ } whose backward orbit by g′τ

is contained in Wcs
g′,qg′ has a backward iterate g′−τ.k

(x̄) ∈ Wcs,+
g′,qg′ at distance

larger than e > 0 from W ss
g′,lot (qg′). Let us fix a periodic point rg (among the

pn,g) close enough to qg so that W u
g,loc(pn,g) intersects Wcs,+

g,qg at a point at a
distance smaller than e/2 from W ss

g,lot (qg). We consider the diffeomorphisms
g′ close enough to g so that this property is still valid.

If one assumes by contradiction that for g′ close to g the limit q̄g′ is dif-

ferent from qg′ , then (up to replace it by a backward iterate g′−τ.k
(q̄g′) and to

replace the sequence (pn) by the periodic points ( f −τ.k(pn)) the unstableman-
ifold W u

loc,g(rg) intersects Wcs,+(qg) and the unstable manifold W u
loc,g′(rg′)

intersects Wcs,−(q̄g′). If one consider a periodic point pn,g close enough
to qg whose continuation pn,g′ is close enough to q̄g′ , one contradicts the
Lemma 4.10. Hence q̄g′ = qg′ .

Let us now consider the case x ∈ W u(q f ′). One can assume that x belongs
to the local manifold W u

f ′,loc(q f ′) and is ε/3-close to q f ′ . By Lemma 4.5 one
deduces that any point xg that has the same continuation as x for some g ∈ V is
still ε-close to qg. The manifold W u

g,loc(xg) intersectsWcs
g,qg

at a point x̄ �= qg.

The backward orbit of x̄ by g−τ.k is still ε-close to qg and contained inWcs
qg
.

Let (pn) be a sequence in P such that

– (pn, f ′) converges to x and ( f ′−τ.n
(pn, f ′)) converges to q f ′ ,

– (pn,g) converges to xg and d(g−τ.n(pn,g), g−τ.n(x̄)) converges to 0.

One deduces that any limit point of g−τ.n(x̄) in Wcs
g (qg) is a continuation of

q f ′ , hence is equal to qg by the first part of the proof. We have proved that xg
belongs to W u

loc(qg) for any g ∈ V .
The uniqueness of xg and its continuity with respect to g are consequences

of the uniform expansion in the unstable direction as explained at the end of
the proof of Lemma 4.6. ��

5 Boundary points of quasi-attractors

We discuss the properties of chain-hyperbolic homoclinic classes as in the pre-
vious section that are furthermore quasi-attractors. In particular, we conclude
the proof of Proposition 2.34. The following slightly more general setting will
be considered.

– Let V ⊂ M be an invariant open set which is a trapping region f (V ) ⊂ V .
– Assume that the maximal invariant set in V is endowed with a partially
hyperbolic splitting Ess ⊕ Ec ⊕ Euu such that dim(Ec) = 1.
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– Let H(p) ⊂ V be a chain-hyperbolic homoclinic class with the splitting
Ecs ⊕ Ecu = (Ess ⊕ Ec) ⊕ Euu and containing the unstable manifold of
p. (We will also write Eu = Euu .)

In particular, H(p) is saturated by the unstable leaves, tangent to Eu , and
V is foliated by a forward invariant foliation which extends the strong stable
lamination tangent to Ess .

5.1 Comparison of unstable leaves through the strong stable holonomy

Let us assume that H(p) satisfies the following property.
Strong intersection property: there exist x, y ∈ H(p) with y ∈

W ss(x)\{x}.
As explained in Sect. 2.5, this property prevents the class to be contained

in a lower dimensional submanifold tangent to Ec ⊕ Eu .
For any point x ∈ H(p), we fix arbitrarily some plaque D containing x

transverse to W ss
loc(x) and define for any z close to W ss

loc(x) the projection
�ss(z) ∈ D through the strong stable holonomy. When z belongs to H(p),
the map �ss is a homeomorphism from a neighborhood of z in Wcu

z to a
neighborhood of �ss(z) in D. Hence, the projection �ss(W u

loc(z)) is a one-
codimensional topological submanifold ofD. In particular, in a neighborhood
of �ss(z), the set D\�ss(W u

loc(z)) has locally two connected components.

Definition 5.1 Let us fix ε0 > 0 smaller than the radius of the plaque D. The
following situations can occur.

– The transverse case There exists x, y ∈ H(p) with y ∈ W ss
loc(x)\{x}

such that �ss(W u
loc(y)) intersects both components of �ss(B(x, ε0))\�ss

(W u
loc(x)).

– The jointly integrable case There exists x, y ∈ H(p) with y ∈
W ss

loc(x)\{x} such that �ss(W u
loc(x)) and �ss(W u

loc(y)) coincide in �ss

(B(x, ε0)).
– The strictly non-transverse case For any x, y ∈ H(p) with y ∈

W ss
loc(x)\{x}, the projection�ss(W u

loc(y)) intersects one of the components
of �ss(B(x, ε0))\�ss(W u

loc(x)) and is disjoint from the other.

Since the holonomies are homeomorphisms, note that these definitions do
not depend on the choice of the plaque D. Clearly one of these three cases
happen. The transverse and the jointly integrable cases may occur at the same
time. The strictly non-transverse case is quite different since it concerns each
pairs of points x, y ∈ H(p) such that y ∈ W ss

loc(x)\{x}.
Lemma 5.2 Let us assume that H(p)does not satisfy the transverse case. Then
there exists ε ∈ (0, ε0) such that for any two points x, y ∈ H(p) with y ∈
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W ss
loc(x)\{x}, if �ss(W u

loc(y)) intersects �ss(B(x, ε))\�ss(W u
loc(x)), then x

and y are not accumulated by H(p) in the same component of Wcs
x \W ss

loc(x)

(and in particular, they are stable boundary points).

Proof The constant ε0 is chosen much smaller than the size of the plaques,
so projecting on the plaque at x or at y does not change anything
in the definitions. The constant ε is related to the (uniform) continu-
ity of the projections �ss and also related to the constant ε0: for any
x, y, the projection of B(y, ε) is contained in B(x, ε0). In particular,
if �ss(W u

loc(y)) intersects �ss(B(x, ε))\�ss(W u
loc(x)), then �ss(W u

loc(x))

intersects �ss(B(y, ε0))\�ss(W u
loc(y)).

We denote by U+
x , U−

x the local connected components of �ss(B(x, ε))\
�ss(W u

loc(x)) such that �ss(W u
loc(y)) meets U−

x and is disjoint from
U+

x . We also denote by U+
y , U−

y the local connected components of
�ss(B(y, ε0))\�ss(W u

loc(y)) such that �ss(W u
loc(x)) meets U+

y and is dis-
joint from U−

y . In particular, U+
x ⊂ U+

y .
Let us assume by contradiction that y is accumulated by H(p) from the

side ofWcs
x \W ss

loc(x) which projects in U+
x . Let us consider a point z ∈ H(p)

close to y and which projects insideU+
x . Its local unstable manifold is close to

the unstable manifold of y, hence �ss(W u
loc(z)) meets U−

x also. This implies
that the transverse case occurs for some points x ′ ∈ W u(x) and y′ ∈ W u(z).
This is a contradiction.

Similarly if x is accumulated by H(p) from the side ofWcs
x \W ss

loc(x)which
projects in U−

y , we find a contradiction. One deduces that x and y can not be
accumulated by H(p) on the same side of Wcs

x \W ss
loc(x). ��

5.2 Structure of the stable boundary points

For quasi-attractors not in the transverse case,weprove that the stable boundary
points (see Sect. 3.5) belong to the unstable manifold of a periodic orbit.

Proposition 5.3 Let H(p) be a homoclinic class such that

– H(p) is a quasi-attractor endowed with a partially hyperbolic structure
Ess ⊕ Ec ⊕ Eu such that Ec is one-dimensional and Ecs = Ess ⊕ Ec is
thin trapped,

– for any periodic points q, q ′ ∈ H(p) homoclinically related to the orbit of
p, the manifolds W ss(q)\{q} and W u(q ′) are disjoint,

– the transverse case does not hold.

Then any stable boundary point of H(p) belongs to the unstable manifold of
a periodic point.
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Proof Let x be a stable boundarypoint of H(p). Let us assumebycontradiction
that the point x does not belong to the unstable manifold of a periodic point.
In particular, the unstable manifolds W u( f n(x)) for n ∈ Z are all distinct.

Let us consider a point ζ in the α-limit set of x . LetD be a plaque transverse
to W ss

loc(ζ ). The holonomy �ss is well defined in a neighborhood of ζ . Since
Ecs is thin trapped, the plaques of the family Wcs can be chosen small and
one may thus assume that one of the components of Wcs

x \W ss
loc(x) is disjoint

from H(p). Let us introduce two backward iterates x1 = f −n(x) and x2 =
f −m(x), of x close to ζ . By the trapping property, one of the components of
Wcs

xi
\W ss

loc(xi ) is also disjoint from H(p) for i = 1 and i = 2. Since x1 and x2
are close, it makes sense to compare the orientations of Ec

1 and Ec
2. Choosing

different iterates x1 and x2 if necessary, one may assume that the tangent map
D f n−m : Ec

x1 → Ec
x2 preserves the orientation.

Claim Exchanging x1 and x2 if necessary, W ss
loc(x2) meets W u

loc(x1).

Proof Observe that the plaque Wcs
x2 meets W u

loc(x1) at a point x ′
1 ∈ H(p).

One chooses a small path t 	→ x1(t) inside W u
loc(x1) between x1 = x1(0) and

x ′
1 = x1(1). Since H(p) is a quasi-attractor this path is contained in H(p).

Each plaqueWcs
x1(t)

meets W u
loc(x2) at a point x2(t), defining a path t 	→ x2(t)

inside W u
loc(x2) ∩ H(p).

For any t ∈ [0, 1], the plaques Wcs
x1(t)

(and Wcs
x2(t)

) projects by �ss on a

(same) C1 curve γ (t) which is topologically transverse to �ss(W u
loc(x1)) and

�ss(W u
loc(x2)). The set D\�ss(W u

loc(x1)) has locally two connected com-
ponents U+, U−. Hence, γ (t)\�ss(x1(t)) has two connected components
γ +(t) ⊂ U+ and γ −(t) ⊂ U− for each t .

Let us consider the components γ ±
1 := γ ±(0). By Lemma 3.15 and since

x1 is a stable boundary point, �ss(H(p) ∩ Wcs
x1 ) meets one of them, γ −

1 , and
is disjoint from the other one, γ +

1 . Similarly, we define γ −
2 , γ +

2 the connected
components of γ (1)\�ss(x2), such that �ss(H(p)∩Wcs

x2 ) meets the first and
is disjoint from the second. One deduces that γ +

2 is contained in U+ or in U−.
Recall that γ +

1 ⊂ U+. Since D f n−m preserves the local orientation of Ec, the
orientations on γ +

1 and γ +
2 match and γ +

2 is contained in U+.
As a consequence �ss(W u

loc(x2)) is disjoint from γ +
1 := γ +(0) and from

γ −
2 := γ −(1). Since we are not in the transverse case, one deduces that

�ss(W u
loc(x2)) contains �ss(x1) or �ss(x ′

1). Exchanging x1 and x2 if neces-
sary, one has W ss(x ′

1) = W ss(x2). ��
Let us denote x ′

1 the intersection point betweenW ss
loc(x2) andW u

loc(x1). Since
x2 is a boundary point, one connected component ofWcs

x2\W ss
loc(x2) is disjoint

from H(p). By Lemma 3.15 the other component contains sequences of points
of H(p) that accumulate on x2 and x ′

1. One deduces from the Lemma 5.2 that
the projection �ss(W u

loc(x1)) ∩ B(x, ε/2) coincides with �ss(W u
loc(x2)) ∩
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B(x, ε/2). Since f n−m sends W u
loc(x1) inside a small neighborhood of x2

in W u
loc(x2), there exists a periodic point q ∈ H(p) such that W u

loc(x1) and
W u

loc(x2) project on W u(q) by the strong stable holonomy. Note that when
x1, x2 are arbitrarily close to ζ , the point q is also close.

If q and ζ are distinct, one may consider backward iterates x ′
1, x ′

2 closer
to ζ . One builds another periodic point q ′ ∈ H(p). All the local unstable
manifolds of x1, x2, x ′

1, x ′
2, q, q ′ have the same projection through the strong

stable holonomy. By Lemma 3.10, q and q ′ are homoclinically related to the
orbit of p. This proves that W ss

loc(q) and W u
loc(q

′) intersect, contradicting our
assumption.

If q and ζ coincide, one can consider higher backward iterates f −n(x)

in a neighborhood of ζ . They all have distinct local unstable plaques whose
projection by the strong stable holonomy coincide. One deduces that one can
find a sequence of such backward iterates which accumulates on a point ζ ′ ∈
W ss

loc(ζ ) different from ζ . Repeating the construction near ζ ′, one builds a
periodic point q ′ ∈ H(p) distinct from q and as before W ss

loc(q) and W u
loc(q

′)
intersect, giving again a contradiction. This ends the proof of the proposition.

��
5.3 The transverse case

When H(p) is a quasi-attractor, the Lemma 3.13 ensures that for diffeomor-
phisms g close to f the unstable manifold W u(pg) is still contained in H(pg).
The following lemma implies that in the transversal case the item 4 of Propo-
sition 2.34 holds.

Lemma 5.4 Let us assume that H(p) is a quasi-attractor and consider f ′,
C1-close to f , such that the transverse case holds for a pair of points x �=
y in H(p f ′). Then, for any two different hyperbolic periodic points px , py
homoclinically related to the orbit of p f ′ and close to x and y respectively,
and for any diffeomorphism g that is C1-close to f ′ there exist x ′ ∈ W u(px,g)

and y′ ∈ W u(py,g) in H(pg) satisfying W ss(x ′) = W ss(y′).
Proof Let x, y ∈ H(p f ′) with y ∈ W ss

loc(x)\{x} such that the intersection
between�ss(W u

loc(x)) and�ss(W u
loc(y)) is topologically transverse. Consider

two periodic points px , py homoclinically related to p f ′ and close to x and
y respectively, so that the local unstable manifolds of px and py are close to
the local unstable manifold of x and y. This implies that �ss(W u

loc(px )) and
�ss(W u

loc(py)) intersect topologically transversally. By continuity of the local
unstable manifolds and the local strong stable holonomy this property still
holds for any g close to f ′: there are points x ′ ∈ W u

loc(px,g), y′ ∈ W u
loc(py,g)

such that W ss(x ′) = W ss(y′). By Lemma 3.13, the local unstable manifolds
of px,g, py,g remain in H(pg) and therefore the points x ′, y′ are in H(pg).

��
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5.4 The jointly integrable case

The next lemma states that in the jointly integrable case either a heterodimen-
sional cycle is created by a Cr -perturbation or for any point in the class there
is a well defined continuation.

Lemma 5.5 Let us consider r ≥ 1 such that f ∈ Diffr (M). Let us assume
that H(p) is a quasi-attractor whose periodic orbits are hyperbolic, that Ecs

is thin trapped and that the jointly integrable case holds. Then, one of the
following cases occurs.

– There exists g that is Cr -close to f such that H(pg) exhibits a strong
homoclinic intersection.

– There exists a hyperbolic periodic point q homoclinically related to the
orbit of p, two maps g 	→ xg, yg defined on a neighborhood V of f in
Diffr (M) and continuous at f such that for any diffeomorphism g ∈ V the
points xg, yg belong to H(pg) ∩ W s(qg) and are continuations of x f , y f .
Moreover yg belongs to W ss

loc(xg).

Proof Note that by our assumptions the results of Sects. 3 and 4 apply. In
particular for g C1-close to f the class H(pg) is still chain-hyperbolic and
contains W u(p). Let us assume that the first item of the proposition does not
hold: on a Cr -neighborhood V of f , there is no diffeomorphism whose homo-
clinic class H(pg) has a strong homoclinic intersection, therefore, Proposition
4.8 can be applied on V .

Recall that all the periodic orbits are hyperbolic. Since Ess ⊕ Ec is thin
trapped, they have the same index and by Lemma 3.10, they are all homoclin-
ically related. There is no periodic points q, q ′ ∈ H(p) such that W ss(q)\{q}
and W u(q ′) intersect: otherwise, one gets a strong homoclinic intersection by
using Lemma 2.24. In particular, the Proposition 5.3 can be applied.

As in Definition 5.1, let x, y ∈ H(p) be two close points with disjoint local
unstablemanifolds such that for any z ∈ W u

loc(x)∩ B(x, ε0)we have W ss
loc(z)∩

W u
loc(y) �= ∅. Observe that there exists a periodic point q ∈ H(p) close to x

whose local stable manifold intersects both the local unstable manifold of x
and y. One can change x, y by the intersection points between W s

loc(q) and
the plaques W u

loc(x), W u
loc(y). So without lost of generality, we can assume

that x, y belong to W s
loc(q).

The points x and y do not belong both to the unstablemanifold of some peri-
odic points px , py : otherwise, we would get a strong connection by applying
Lemma 2.24. We can thus now assume that x does not belong to the unsta-
ble manifold of a periodic point. In particular, by Proposition 5.3 it is not a
stable boundary point and it is accumulated by points in H(p) from both con-
nected components of Wcs

x \W ss
loc(x). The Corollary 4.12 (in the orientation

preserving case) implies that there exist two maps g 	→ xg, yg on V satisfying
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(x f , y f ) = (x, y) and for any g close to f , the points xg, yg belong to H(pg)

and have the same strong stable manifold. The continuity of xg, yg at f is
given by Remark 4.7(2). ��

5.5 The strictly non-transverse case

In the strictly non-transverse case, roughly speaking is proved that either by
perturbation is created a strong homoclinic connection, or for a diffeomor-
phisms nearby the strong stable leaves contains at most one point in the class
or there are two periodic points such that for any diffeomorphisms nearby their
unstable manifolds intersects some strong stable leaves (see Lemma 5.8).

Lemma 5.6 Let us assume that H(p) satisfies the strictly non-transverse case.
Then, any close points x �= y in H(p) satisfying y ∈ W ss

loc(x) are stable
boundary points. Moreover they are not accumulated by H(p) in the same
component of Wcs

x \W ss
loc(x).

Proof Since H(p) satisfies the strictly non-transverse case and x, y are close,
there exists y′ ∈ W u

loc(y) and x ′ ∈ W u
loc(x) such that y′ ∈ W ss

loc(x ′) and for any
ε > 0, the manifolds �ss(W u

loc(y′)) intersects �ss(B(x ′, ε))\�ss(W u
loc(x ′)).

By Lemma 5.2, they are not accumulated by H(p) in the same component and
in particular both are stable boundary points. ��

For the points (x, y) as in the previous lemma the following property obvi-
ously holds (the open region considered below is then empty):

(**)Wcs
x contains y. The open region inWcs

x bounded by W ss
loc(x)∪W ss

loc(y)

does not meet H(p).

Note that this property already appeared in Corollary 4.12. The next lemma
states that the set of such pairs (x, y) is quite small.

Lemma 5.7 Let H(p) be a quasi-attractor such that Ecs is thin trapped, the
strictly non-transversal case holds and for any periodic points q, q ′ ∈ H(p)

the manifolds W ss(q)\{q} and W u(q ′) are disjoint. Let us fix δ > 0. Then,
there exist N ≥ 1 and finitely many periodic points p1, . . . , ps such that any
points x �= y in H(p) satisfying (**) and d(x, y) ≥ δ belong to the union of
the f N (W u

loc(pi )), i ∈ {1, . . . , s}.
Proof Wefix δ > 0 small.Wefirst note that byLemma5.6 and Proposition 5.3,
any x, y as in the statement of the lemma are stable boundary points and there
exists some periodic points px , py ∈ H(p) such that x belongs to W u(px )

and y to W u(py).
Let P be the set of pairs (x, y) ∈ H(p)2 satisfying (**) and d(x, y) ≥ δ. It

is a closed set: for any limit (x, y) of pairs (xn, yn) in P we still have y ∈ Wcs
x
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(by continuity of the plaque family); if one assumes that the open region in
Wcs

x bounded by W ss
loc(x) ∪ W ss

loc(y) intersects the class, then the same will
hold for a pair (xn, yn) by local product stability (Lemma 3.7). (Note that we
included in P the pairs (x, y) such that x ∈ W ss

loc(y).)
We have to prove that if two pairs (x, y) and (x ′, y′) in P are close, then

x ′ ∈ W u
loc(x) and y′ ∈ W u

loc(y). This is done by contradiction: we consider
a sequence (xn, yn)n≥0 in P that converges toward (x, y) and assume that all
the leaves W u

loc(xn) are distinct. One may assume that x is accumulated by
H(p) insideWcs,+

x .
First we claim that W u

loc(xn) does not cut W ss
loc(x). Otherwise, we denote

by zn the intersection point. The plaque Wcs
zn

coincides with Wcs
x in a neigh-

borhood of zn by Lemma 3.2, hence zn is not accumulated by H(p) ∩Wcs,−
zn

for n large. One deduces that zn and x belongs to the same local strong sta-
ble leaf and are accumulated by points of H(p) ∩ Wcs,+

zn and H(p) ∩ Wcs,+
x

respectively, contradicting the definition of the strictly non-transverse case.
Let�ss be the projection along the strong stable holonomyon a diskD trans-

verse toW ss
loc(x). Theprojections�ss(W u

loc(xn)), �
ss(W u

loc(x)),�ss(W u
loc(y)),

�ss(W u
loc(yn)) are one codimensional manifolds of D: by our assumptions,

the one-dimensional curve γ = �ss(Wcs
x ) meets them in this order. Since

we are in the strictly non-transverse case, the order is the same on any other
curve γ ′ = �ss(Wcs

x ′ ) where x ′ ∈ W u
loc(x) is close to x . In particular, when x ′

is the intersection point between W u
loc(x) and Wcs

xn
, one finds a contradiction

since W u
loc(x) and W u

loc(y) cannot intersect the open region of Wcs
x bounded

by W ss
loc(x)∪ W ss

loc(y) and by the same argument as above, W u
loc(x)∩ W ss

loc(xn)

and W u
loc(y) ∩ W ss

loc(yn) are empty. This concludes the proof of the lemma. ��
Lemma 5.8 Let us assume that H(p) is a quasi-attractor whose periodic
orbits are hyperbolic, that Ecs is thin trapped and that the strictly non-
transverse integrable case holds. Then for any r ≥ 1 such that f ∈ Diffr (M),
one of the following cases occurs.

– There exists g, Cr -close to f such that H(pg) exhibits a strong homoclinic
intersection.

– There exists a non-empty open set V ⊂ Diffr (M) such that f belongs to V
and for any g ∈ V and any x �= y in H(pg) one has W ss(x) �= W ss(y).

– There exist two hyperbolic periodic points px , py homoclinically related
to the orbit of p and an open set V ⊂ Diffr (M) whose closure contains
f , such that for any g ∈ V the class H(pg) contains two different points
x ∈ W u(px,g) and y ∈ W u(py,g) satisfying W ss(x) = W ss(y).

Proof As in the proof of Lemma 5.5, for g that isC1-close to f the class H(pg)

is still chain-hyperbolic and contains W u(p). Moreover, one can assume that
for any periodic points q, q ′ ∈ H(p) the manifolds W ss(q)\{q} and W u(q ′)
do not intersect. One may also assume there is no g in a Cr -neighborhood V0
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of f such that H(pg) has a strong homoclinic intersection. Hence f, H(p),V0
satisfy the assumption of the Proposition 4.8. The Corollary 4.12 gives a con-
stant ε′ > 0 and one fixes δ < 0 much smaller. One can consider the periodic
points p1, . . . , ps and the integer N ≥ 1 provided by the Lemma 5.7. We
denote by τi the period of pi . These points are hyperbolic, homoclinically
related to p by Lemma 3.10 and have a continuation for any g that is C1-close
to f .

In a small neighborhoodof f inDiffr (M), consider for each pair (pi , p j ) the
(closed) subset Di, j of diffeomorphisms g such that the class H(pg) contains
some distinct points x ∈ f N+τi (W u

loc(pi,g)) and y ∈ f N+τ j (W u
loc(p j,g))with

y ∈ W ss
loc(x). The third case of the lemma with the interior V of Di, j (if this is

not empty).
If the sets Di, j have empty interior, there exists an open set V in Diffr (M)

whose closure contains f such that for any g ∈ V , any pi , p j and any distinct
points x ∈ f N+τi (W u

loc(pi,g)) and y ∈ f N+τ j (W u
loc(p j,g)) one has y /∈

W ss
loc(x). To conclude, we have to prove that for g ∈ V close to f and any

distinct points x, y ∈ H(pg) one has W ss(x) �= W ss(y), giving the second
case of the lemma. This is done by contradiction: one considers g ∈ V close
to f , a pair (x, y) such that y ∈ W ss(x) and up to consider a backward iterate,
one can require that the points x, y satisfy ε′/2 > d(x, y) > 2δ. Having
chosen g close enough to f , one deduces (Lemma 4.5) that any continuations
x f , y f for f still satisfy ε′ > d(x f , y f ) > δ.

If x, y are accumulated in the same component of Wcs
x \W ss

loc(x), then by
Proposition 4.8 and Corollary 4.12, there exists two maps h 	→ xh, yh , for h ∈
V0, such that xh, yh are two distinct points in H(ph)with the same local strong
stable manifold and accumulated in the same component of Wcs

xh
\W ss

loc(xh).
Choosing h = f , this contradicts Lemma 5.6.

If x, y are accumulated in different components of Wcs
x \W ss

loc(x), then by
Corollary 4.12 the continuations x f , y f for f satisfy (**). Since their dis-
tance is bounded from below by δ, Lemma 5.7 implies that x f , y f belong
to f N (W u

loc(pi )) and f N (W u
loc(p j )) respectively. By Corollary 4.13, one

deduces that for the diffeomorphism g close, the points x, y belong to
gN+τi (W u

loc(pi,g)) and gN+τ j (W u
loc(p j,g)) respectively. This contradicts our

assumption on g. ��

5.6 Proof of Proposition 2.34

Let us consider a diffeomorphism f ∈ Diff1+α(M), α ≥ 0, and a homoclinic
class H(p) as in the statement of Theorem 12 and assume that the two first
cases of the proposition do not occur. By Proposition 2.17 and Theorem 6,
one can assume that the strong intersection property stated at the beginning
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of Sect. 5 holds. If the jointly integrable case holds, the Lemma 5.5 gives the
third case of the proposition. If the transverse or the strictly non-transverse
case holds, the Lemmas 5.4 and 5.8 give the fourth case of the proposition.

6 Periodic stable leaves: proof of Theorem 13

In this section we prove Theorem 13 and Proposition 2.28. Let us consider:

1. A diffeomorphism f0 and a homoclinic class H(p f0) which is a chain-
recurrence class endowed with a partially hyperbolic splitting Ess ⊕ Ec ⊕
Eu where Ec is one-dimensional and Ess ⊕ Ec is thin-trapped.

2. Some α ∈ [0, 1), a C1+α-diffeomorphism f that is C1-close to f0, an open
neighborhood V ⊂ Diff1+α(M) of f and some collections of hyperbolic
periodic points q f , {px

n, f }n∈N and {py
n, f }n∈N for f such that the following

properties hold.
– For g ∈ V , the continuations qg, px

n,g , py
n,g exist and are homoclinically

related to pg .
– For each g ∈ V , the sequences (px

n,g) and (py
n,g) converge towards

two distinct points xg, yg in H(pg) ∩ W s
loc(qg) such that yg belongs to

W ss
loc(xg).

– The maps g 	→ xg, yg are continuous at f .

We will show that if α ≥ 0 is small, then there exists a diffeomorphism
g ∈ V whose homoclinic class H(pg) has a strong homoclinic intersection.

Proposition 6.1 For any diffeomorphism f0 and any homoclinic class H(p f0)

satisfying the assumption (1) above, there exists α0 ∈ (0, 1) and a C1-
neighborhood U of f0 with the following property.

For any α ∈ [0, α0], any diffeomorphism f ∈ U , any neighborhood
V ⊂ Diff1+α(M) of f , any hyperbolic periodic point q f and any maps
g 	→ xg, yg satisfying (2), there exists a transverse intersection z ∈ W s(q f )∩
W u

loc(q f )\{q f } and an arc of diffeomorphisms (gt )t∈[−1,1] in V such that

– for each t ∈ [−1, 1], considering the (unique) continuation zt of z for gt ,
the center stable plaque Dcs

zt
intersects W u

loc(xgt ) and W u
loc(ygt ) at some

points x̂t and ŷt ;
– considering an orientation of the center bundle in a neighborhood of q, one

has

ŷ−1 ∈ Dcs,−
x̂−1

and ŷ1 ∈ Dcs,+
x̂1

.

Let us conclude the proof of Theorem 13. By construction and Lemma 3.12,
for each t ∈ [−1, 1] the points zt , xt , yt belong to the homoclinic class H(pgt ).
Moreover one can find for each n ∈ N two hyperbolic periodic points p̂x

n,g and
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p̂y
n,g whose continuations exists for every g ∈ V , are homoclinically related

to pg and are arbitrarily close to the intersections x̂g, ŷg between W s
loc(zg)

and W u
loc(xg) or W u

loc(yg) respectively. By Corollary 4.13, one can assume
that the hyperbolic points p̂x

n,g and p̂y
n,g are the hyperbolic continuations of

points of P . For n large, W u
loc( p̂y

n ) intersectsWcs,−
p̂x

n
for g−1 andWcs,+

p̂x
n

for g1.
One can thus apply Lemma 4.10 and obtain a diffeomorphism g ∈ V which
has a strong homoclinic intersection. Note that the neighborhood V of f can
be taken arbitrarily small. As a consequence the perturbation g is arbitrarily
C1+α-close to f . Hence the proposition implies Theorem 13.

6.1 An elementary C1+α-perturbation lemma

The perturbations in Sects. 6 and 7 will be realized through the following
lemma.

Lemma 6.2 Let us consider a C1+α map v0 : R
d → R

�, and two numbers
D̂ > 2D > 0. Then, there exists a C1+α-map v : R

d → R
� which coincides

with v0 on the ball B(0, D) and with 0 outside the ball B(0, D̂) and whose
C1+α-norm is arbitrarily small if the following quantity is small:

sup
x �=y in B(0,D̂)

‖Dv0(x) − Dv0(y)‖
‖x − y‖α

+ D̂−(1+α) sup
B(0,D̂)

‖v0‖.

Proof One chooses a smooth bump map ρ : R
d → [0, 1] which coincides

with 0 outside B(0, 2
3 D̂) and with 1 inside B(0, D). The map v is then defined

by v = ρ.v0.
When α > 0, we define Lipα(h) the α-Hölder pseudo-norm of a map h,

that is

Lipα(h) = sup
x �=y

‖h(x) − h(y)‖
‖x − y‖α

.

We then denote by A, A′ the C0 norm of v0, Dv0 and by Aα, A′
α the α-Hölder

pseudo-norms of v0, Dv0 on B(0, D̂). There exists a universal constant C > 0
such that for any α ∈ (0, 1] one has

Lipα(ρ) ≤ C.D̂−α,

Lipα(Dρ) ≤ C.D̂−(1+α).

From inequalities above, it is easy to check thatwhen theC1+α pseudo-norm
of v0 is small, the C1+α-size of v is controlled by AD̂−(1+α):
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– The C0 norm of v is smaller than A.
– The C0-norm of Dv is bounded by A Lip1(ρ) + A′ ≤ C AD̂−1 + A′.
– When α > 0, the α-Hölder pseudo-norm of Dv is bounded by

Aα Lip1(ρ) + A Lipα(Dρ) + A′
α + sup

B(0, 23 D̂)

‖Dv0‖ Lipα(ρ). (6.1)

Observe that A′ and the three first terms in (6.1) are small when A′
α and

AD̂−(1+α) are small. Indeed the usual convexity estimate gives

A′ ≤ C Aα A′1/(1+α)
α , Aα ≤ C A1/(1+α) A′

α
α/(1+α)

.

For any x ∈ B(0, 2
3 D̂) one has

‖Dv0(x)‖ ≤ C.
[
sup‖u‖=D̂/3

‖v0(x+u)−v0(x)‖
‖u‖

+ supy∈B(x,D̂/3) ‖Dv0(y) − Dv0(x)‖
]

≤ 3C.(AD̂−1 + A′
α D̂α).

The last term in (6.1) is thus smaller than AD̂−(1+α) + A′
α .

By our assumption AD̂−(1+α) + A′
α is small and the lemma follows. ��

Remark 6.3 When v0(0) = 0, for proving that the quantity D̂−(1+α) supB(0,D̂)

‖v0‖ is small it is enough to show that D̂−α supB(0,D̂) ‖Dv0‖ is small.

6.2 Preliminary constructions

To simplify the presentation, one will assume that q0 coincides with p0 and is
fixed by f0.

The smoothness bound α0 and the neighborhood U . We denote by λ ∈ (0, 1)
an upper bound for the domination between the bundles Ess and Ec and
by λu > 1 a lower bound for the expansion along the bundle Eu : for any
x ∈ H(p f0) and any unit vectors u ∈ Ess

x , v ∈ Ec
x and w ∈ Eu

x one has

‖D f0.u‖ ≤ λ‖D f0.v‖ and ‖D f0.w‖ ≥ λu . (6.2)

We let λc ∈ (0, 1) be upper bound for the contraction along Ec at p f0 . We
then choose α0 > 0 small so that

λα0
u max(λ, λc) < 1, (6.3)

‖D f −1
0 ‖α0λ < 1. (6.4)
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In particular, one can consider ρ ∈ (0, 1) such that

λ1/α0 < ρ < ‖D f −1
0 ‖−1. (6.5)

We choose the neighborhood U so that for any f ∈ U , the homoclinic class
still has the dominated splitting Ess ⊕ Ec ⊕ Eu and the estimates (6.2), (6.4),
(6.5) still holds.

TheneighborhoodsV1, V2 of x . Let us nowconsiderα ∈ [0, α0], a diffeomor-
phism f ∈ U , a neighborhood V ⊂ Diff1+α(M) and two maps g 	→ xg, yg
satisfying the assumptions of Proposition 6.1. Let z f ∈ W s(p f ) ∩ W u

loc(p f )

be a transverse homoclinic point of p f that does not belong to the orbit of x f
or y f (since the homoclinic class of p f is non-trivial, there exists infinitely
many distinct transverse homoclinic orbits associated to p f ). We choose two
small open neighborhoods V1, V2 of x f , such that V̄2 ⊂ V1. Choosing them
small enough, the orbit of the intersection V1 ∩ W s

loc(p f ) is disjoint from the
orbit of y f and z f .

Since f is a continuity point of g 	→ xg, yg, for any diffeomorphism g ∈ V
close to f , the point xg still belongs to V2 and the orbit of the intersection
V1 ∩ W s

loc(pg) is still disjoint from the orbit of the continuations yg, zg.

The diffeomorphism g. We choose a diffeomorphism g ∈ V arbitrarily close
to f . One can require that g is of class C∞ and that there is no resonance
between the eigenvalues of the linear part associated to pg . As a consequence
of Sternberg linearization theorem, the dynamics in a neighborhood of pg can
be linearized by a smooth conjugacy map.

In order to simplify the notations we will denote p = pg , x = xg, y = yg.

Local coordinates One can find a small neighborhood B of p and a Cr -
chart B → R

d which linearizes the dynamics and maps p on 0 and the
local manifolds W ss

loc(p), W s
loc(p), W u

loc(p) inside the coordinate planes R
s ×

{0}u+1, {0}s×R×{0}u and {0}s+1×R
u , where s, u, d denotes the dimension of

Ess, Eu and M respectively. The coordinates in the chart arewritten (x̄, ȳ, z̄) ∈
R

s × R × R
u .

The map g viewed in the chart is thus a linear map A = As × Ac × Au of
R

d which preserves these coordinate planes. Replacing x, y by iterates, one
can assume that their forward orbits are contained in B.

The local stable disk D. Let z0 be the transverse homoclinic point of p for g
that is the continuations of z f . For n ≥ 0 we also define z−n = g−n(z0).

We can thus choose a small neighborhood D of z0 in W s(p) whose orbit is
disjoint from the orbits of x and y. Replacing z0 by an iterate, one can assume
that its backward orbit belongs to B. The disk D (or one of its backward
iterates) endowed with its strong stable foliation can then be linearized.
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Lemma 6.4 By a C1+α-small perturbation of g one may assume furthermore
that in the chart at p,

– D is contained in an affine plane parallel to the local stable manifold
W s

loc(p),
– the strong stable manifolds inside f −1(D) coincide with the affine planes

parallel to W ss
loc(p).

Proof We choose a large integer n ≥ 1. The ball W centered a z−n of radius
r = λ−n

u does not intersect the local stable manifold of p, neither the iterates
z−k for k �= n.

We first rectify the disc D: in the chart, the disc g−n(D) can be seen as the
graph of a map whose derivative has norm smaller than λn . By the λ-lemma,
this graph is arbitrarily C1+α-close to the linear plane W s

loc(p). One can thus
apply Lemma 6.2: by a diffeomorphism supported inside W which fixes z−n ,
one can send a neighborhood of z−n inside D in an affine plane parallel to
W s

loc(p). By Remark 6.3, this diffeomorphism is C1+α-close to the identity
provided that λnr−α = (λλα

u )n is small, which is the case if α < α0 and our
choice of α0.

Assuming now that D is contained in an affine plane parallel to W s
loc(p), we

denote by W c
loc(z0) the affine space containing z0 parallel to {0}s × R × {0}u .

We rectify the strong stable foliation inside D: this is the image of the affine
foliation parallel to W ss

loc(p) by a diffeomorphism � of the form

� : (x̄, ȳ, z̄) 	→ (x̄, ϕ(x̄, ȳ), z̄),

which fixes z0 and W c
loc(z0). Let us again consider n ≥ 1 large.

Inside g−n(D), the strong stable foliation is the image of the affine foliation
by the map �n = A−n ◦ � ◦ An where A = (As, Ac, Au) is the linear map
of R

d which coincides with Dpg. The components �n,x̄ , �n,z̄ of � along the
coordinates x̄, z̄ coincide with the identity of the planesR

s ×{0} and {0}×R
u .

The derivative of the component �n,ȳ at a point ζ is

D�n,ȳ(ζ ) = A−n
c ∂x̄ϕ(An.ζ ) An

s + ∂ȳϕ(An.ζ ).

When n goes to infinity, the first term A−n
c ∂x̄ϕ An

s goes to zero as λn since
the contraction As is stronger than Ac. Since g is assumed to be smooth,
∂x̄ϕ(ζ ), ∂ȳϕ(ζ ) are Lipschitz in ζ . The map An sends a uniform neighborhood
of z−n in g−n(D) inside a ball of radius λn

c of D; hence if one restricts D�n,ȳ to
a small neighborhood of p, the second term ∂ȳϕ(An.ζ ) is λn

c -close to ∂ȳϕ(z0).
One deduces that D�n,ȳ converges uniformly to the identity and that

‖D�n,ȳ − Id ‖ ≤ λn + λn
c .
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The same argument shows that the Lipschitz constant of D�n,ȳ goes to zero as
n goes to infinity. One can thus apply Lemma 6.2, in order to rectify the strong
stable foliation on a small neighborhood of z−n in g−n(D), by amap supported
on the ball B(z−n, λ

−n
u ). The perturbation is small inC1+α-topology, provided

that

‖D�n,ȳ − Id ‖λnα
u ≤ (λn + λn

c )λ
nα
u

is small, which is the case when n is large since α < α0 by the choice of α0.
By this argument, if n is large one can find a diffeomorphism ϕ that isC1+α-

close to the identity supported in a small neighborhood of z−n+1 that rectifies
both f (D) and its strong stable foliation. By Remark 1.4 the diffeomorphism
ϕ ◦ g is C1+α-close to g, the stable manifold of p in a neighborhood of z−n
coincides locally with an affine plane parallel to the local stable manifold
W s

loc(p), the strong stable manifolds coincide locally with the affine planes
parallel to W ss

loc(p). ��
The perturbation support Let us denote by Dm the connected component

of g−m(D)∩B which contains z−m .We choose two small open neighborhoods
U1, U2 of x inW s

loc(p), such that Ū2 ⊂ U1: they are obtained as the intersection
of V1, V2 with W s

loc(p). By construction, their orbit is disjoint from the orbit
of z0 and y. For each n ≥ 0 and s > 0, we introduce Rn

1 (s) the product (in the
coordinates of the chart at p)

Rn
1 (s) = gn(U1) × {|z̄| < s},

and similarly we define Rn
2 (s). See Figs. 1 and 2.

p

x

y

Rn
1 (s)

R1(s)

gn(y)

gn(x)
W s

loc(p)

z0D

Fig. 1 The perturbation support
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R1(s) Rn
1 (s)

Dm

g−1(D)

D

p

Fig. 2 The local stable disks Dm

gn(x) gn+1(x) p

Fig. 3 The perturbation

6.3 The perturbation

Let us choose a linear form L on R
u and recall that ρ ∈ (0, 1) has been

chosen smaller than ‖Dg−1‖−1. The perturbation gt of g will be obtained as
the composition T ◦ g where T in the chart around p coincides with a map Tn ,
for n large, given by the following lemma. See Fig. 3.

Lemma 6.5 There exists a sequence of smooth diffeomorphisms Tn of R
d such

that

– Tn coincides with the identity outside Rn
1 (ρ

n) and on W s
loc(p),

– DTn coincides on Rn
2 (ρ

n+1) with the linear map

B : (x̄, ȳ, z̄) 	→ (x̄, ȳ + ρα0n.L(z̄), z̄),

– (Tn) converges to the identity in C1+α-topology.

Proof Let us choose a smooth map ϕ : R
s+1 → [0, 1] supported on U1 which

takes the value 1 on U2 and a smooth map ψ : R
u → [0, 1] supported on the
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unit ball and which coincides with 1 on the ball B(0, ρ). We then define

Tn : (x̄, ȳ, z̄) 	→ (x̄, ȳ + tn(x̄, ȳ, z̄), z̄),

tn(x̄, ȳ, z̄) = ρα0n ϕ ◦ g−n(x̄, ȳ, 0) ψ(ρ−n.z̄) L(z̄).

The two first properties are clearly satisfied. On Rn
1 (ρ

n), the factor L(z̄) is
bounded (up to a constant) by ρn . Since g−n is linear and (by our choice of
ρ) has a norm smaller than ρ−n , as before the C1+α size of the perturbation T
can be easily computed: it is smaller than (ρα0−α)n and goes to zero as n gets
larger. ��

Remark 6.6 After the perturbation, the orbits of z0 and p are unchanged. The
local manifold W s

loc(p) and its strong stable foliation are also the same. For m
large and s > 0 small, the forward orbit of Dm ∩ Rn+1

1 (s) does not intersect the
support of the perturbation, hence the strong stable foliation on Dm ∩ Rn+1

1 (s)
still coincides with the linear one.

6.4 Proof of Proposition 6.1

Recall that z−m is the image of z0 by the linear map A−m . Let us choose a
linear form L on R

u and a constant c > 0 such that for infinitely many values
of m ≥ 0 one has

L(z−m) > c‖z−m‖. (6.6)

We define Lt = −t L for any t ∈ [−1, 1]. The construction of Sect. 6.3
associates to n ≥ 1 large, a perturbation gt = Tn,t ◦ g. We also consider
a large integer m ≥ 1 so that the distance of z−m to p is smaller than ρn+1

and (6.6) is satisfied. The point z announced in the statement of the proposition
will be z−m .

We introduce the continuations xt = xgt , yt = ygt of x, y for gt and the
intersection x̂t , ŷt of the local unstable manifold at gn+1

t (xt ), gn+1
t (yt ) with

the disc Dm . By Lemma 3.8, the points x̂t , ŷt belong to H(pt ). Since for
each considered perturbation, the disc Dm is still contained in W s

loc(p) and is
endowed with the same linear strong stable foliation, it is enough to introduce
the projection πc on the center coordinate ȳ and to show that

πc(x̂1) < πc(ŷ1) and πc(x̂−1) > πc(ŷ−1). (6.7)

First we notice that since gt is close to g and f in V , the continuations xt
and yt of x, y are still contained in U2 and in W s

loc(p)\U1. Since gt coincides
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with A outside Rn
1 (ρ

n), the local unstable manifolds of gn
t (xt ) and gn+1

t (yt )

are tangent to the cone

Cu
n = {(vcs, vu) ∈ R

s+1 × R
u, ‖vcs‖ ≤ λn‖vu‖}.

By construction the local unstable manifold of gn+1
t (xt ) in f (Rn

2 (ρ
n+1)) is

tangent to the cone Bt (Cu
n+1), where Bt is the linear map associated to Lt as

in Lemma 6.5.
The points x̂t , ŷt are contained in the intersection of these cones with the

affine plane parallel to R
s+1 × {0} containing A−m(z0). One deduces that

πc(x̂t ) ∈ B(πc(xt ) − tρα0n L(z−m), λn‖z−m‖),
πc(ŷt ) ∈ B(πc(yt ), λ

n‖z−m‖).

By assumption we have πc(xt ) = πc(yt ) and by our choice of ρ one has
λ < ρα0 . In particular, by (6.6), for n large enough and t = −1 or t = 1,
these two balls are disjoint. One also controls the sign of πc(ŷt ) − πc(x̂t ) and
gets (6.7) as wanted.

6.5 Proof of Proposition 2.28

The number α0 > 0 is given by Theorem 13. The open set U is chosen to
satisfy Theorem 13 and Proposition 4.8.

We then consider α ∈ [0, α0] and a diffeomorphism f as in the statement of
the proposition. Let us assume by contradiction that in a C1+α-neighborhood
V of f , there is no diffeomorphism g such that H(pg) has a strong homoclinic
intersection. The Proposition 4.8 applies.

By assumption there exists a hyperbolic periodic point q f homoclinically
related to p and a point x f ∈ H(q f ) ∩ W ss(q f )\{q f }. By Lemma 3.15, x f
is accumulated by points of the class H(p f ) in Wcs

x f
\W ss

loc(x f ). Considering
the forward orbit of these points, one deduces that x f and q f are accumulated
by points of H(q f ) inside the same component ofWcs

x f
\W ss

loc(x f ). By Corol-
lary 4.12, there exists a continuation g 	→ xg such that xg belongs to W ss

loc(qg)

for each g ∈ V . Since qg and W ss
loc(qg) vary continuously, one can argue as at

the end of the proof of Lemma 4.6 and conclude that g 	→ xg is continuous.
Now the Theorem 13 applies to the diffeomorphisms f0, f and to the points

q = y, p and x . One gets a strong homoclinic intersection for some g ∈ V
and the class H(pg). This is a contradiction, concluding the proof of the
proposition.
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7 Periodic unstable leaves: proof of Theorem 14

Now we continue with the proof of Theorem 14. In this section we consider:

1. A diffeomorphism f0 and a homoclinic class H(p f0) which is a chain-
recurrence class endowed with a partially hyperbolic splitting Ess ⊕ Ec ⊕
Eu where Ec is one-dimensional and Ess ⊕ Ec is thin-trapped.

2. Two hyperbolic periodic points px, f0 and py, f0 homoclinically related to
the orbit of p f0 . One can choose δ > 0 small enough so that the points
px , py for f0 belong to the set P of the Definition 4.3. There also exists a
continuous collection of trapped plaque family (Wcs

g ), as explained in the
beginning of the Sect. 4.

3. A diffeomorphism f that is C1-close to f0 such that there exists two points
x ∈ W u(px, f ), y ∈ W u(py, f ) in H(p f ) whose strong stable manifold
coincide. By Corollary 3.7, the homoclinic class associated to the hyper-
bolic continuation p f of p f0 is still chain-hyperbolic. By Lemma 4.6, the
continuations of x, y are well defined and unique for any diffeomorphism
g C1-close to f0.

We will show that f is the limit of diffeomorphisms g such that H(pg) has
a strong homoclinic intersection. The results of this section are sum up in the
next proposition.

Proposition 7.1 For any diffeomorphism f0 and any homoclinic class H(p f0)

satisfying the assumption (1) above, there exists α0 ∈ (0, 1) such that, for any
hyperbolic periodic points px, f0, py, f0 homoclinically related to the orbit of
p f0 , the following property holds on a C1-neighborhood U of f0.

For α ∈ [0, α0], any C1+α-diffeomorphism f ∈ U which satisfies (3) can
be C1+α-approximated by a diffeomorphism g such that:

– Either there exists a periodic point q homoclinically related to the orbit of
pg such that

W ss
loc(q) ∩ W u(py,g) �= ∅.

– Or the continuations of x, y satisfy xg /∈ W ss
loc(yg) and also xg belongs to

an arbitrary previously selected component of Wcs
yg

\W ss
loc(yg).

The proposition now implies Theorem 14.

Proof of Theorem 14 One argues by contradiction and assumes that for any
diffeomorphism g that C1+α-approximates f the homoclinic class H(pg)

does not exhibit a strong homoclinic intersection. By the Proposition 2.28,
H(pg) does not exhibit a generalized strong homoclinic intersection either.
The assumptions of Proposition 4.8 and Corollary 4.12 about the continuation
of x and y and of Lemma3.15 about boundary points are thus satisfied. The first
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case of the Proposition 7.1 gives a generalized strong homoclinic intersection
and thus can not happen. We are thus in the second case of the proposition.

We get approximations g such that the continuation xg belongs to the com-
ponent Wcs,+

yg of Wcs
yg

\W ss
loc(yg). The Corollary 4.12 may be applied for the

diffeomorphisms f and g: it asserts that H(pg) ∩Wcs,+
yg does not accumulate

on yg. The same property holds for any diffeomorphism g′ that is C1+α-

close to f since otherwise the Proposition 4.8 gives ỹ, z̃ in H̃(pg) such that
πg(ỹ) = y, πg (̃z) �= y and whose continuations �g,g′(ỹ) and �g,g′ (̃z) have
the same projection by πg′ , contradicting the uniqueness of the continuation of
the point y. The second case of the Proposition 7.1 also gives diffeomorphisms
g′ such that xg′ belongs to Wcs,−

yg′ . As before the Corollary 4.12 implies that

H(pg′)∩Wcs,−
yg′ does not accumulate on yg′ . It is now a contradiction since by

Lemma 3.15, the point yg′ is accumulated by H(pg′) in Wcs,−
yg′ or in Wcs,+

yg′ .
This concludes the proof of the theorem.

In what follows, we introduce the fake holonomies (Subsect.7.1) and we
explain why these holonomies are Hölder regular. In Subsect. 7.2 we show
that the recurrences to the point x in Proposition 7.1 hold along the center
direction and in Subsect. 7.3 we present a dichotomy related to the recurrence
times. Related to this dichotomy, two different perturbations are introduced in
Lemmas 7.8 and 7.9 proved in Sects. 7.4 and 7.5 respectively.

7.1 Strong stable holonomy

Plaques Using an adapted metric if needed, we can assume that there exist
constants λ > 1 and 0 < λs < 1 < λu such that for any x ∈ H(p f0) and any
unitary vectors u ∈ Ess

x , v ∈ Ec
x ⊕ Eu

x and w ∈ Eu
x , one has

λ.‖Dx f0.u‖ < ‖Dx f0.v‖, ‖Dx f0.u‖ ≤ λs and ‖Dx f0.w‖ ≥ λu .

Let us introduce a strong stable cone field Cs over H(p f0): one can choose
a > 0 small and define at each point x the set

Cs
x = {(us, uc, uu) ∈ Ess

x ⊕ Ec
x ⊕ Eu

x , ‖us‖ ≥ a.‖uc + uu‖}.
The cone field extends continuously to a neighborhood U of H(p f0) such that
at any x ∈ U ∩ g(U ),

Dx f −1
0 .Cs

g(x) ⊂ Cs
x .

For some r0 > 0, at any point x ∈ U there exists a plaque of radius r0 tangent
to Cs . Similarly, one can define a center unstable cone field Ccu and an unstable
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cone-field Cu onU close to the bundles Ec ⊕ Eu and Eu respectively. All these
properties remain valid for any diffeomorphism that is C1-close to f0.

Strong stable holonomy It is a classical fact that the strong stable
holonomies are Hölder. The proof extends to more general objects, that we
call fake holonomies. For more references see [17].

Let us consider a small constant δ > 0 that is used to measure how orbits
separate. For any diffeomorphism f that is C1-close to f0, let us consider two
different points z ∈ H(p f ) and z′ ∈ W u

loc(z) close to each other. Note that
there exists a smallest integer N = N (z, z′) ≥ 1 such that f N (z) and f N (z′)
are at distance larger than δ.

Definition 7.2 Two points �̂ss(z), �̂ss(z′) are called fake strong stable
holonomies of z, z′ if they satisfy the following properties.

– There exists a center unstable plaque of radius r0 containing �̂ss(z) and
�̂ss(z′).

– There exists two plaques of radius r0 at f N (z) and f N (z′) that are tangent
to Cs and contain f N (̂�ss(z)) and f N (̂�ss(z′)) respectively.

– For 0 ≤ k ≤ N , the distances d( f k(z), f k (̂�ss(z))), d( f k(z), f k (̂�ss(z)))
are smaller than r0.

Note that by invariance of the cone field Cs under backward iterations the
point f k (̂�ss(z)) belongs to a plaque at f k(z) tangent to Cs and whose radius
is smaller than λk

s .r0.
The choice for the plaques tangent to Cs is of course not unique: one can

consider for instance the local strong stable manifold (in this case, the fake
holonomies coincide with the usual strong-stable holonomies) but one can
also choose the local strong stable manifold of a diffeomorphism C1-close to
f . In fact the fake holonomies allow us to compare the holonomies when the
diffeomorphism is changed.

Hölder regularity We now sketch how the classical result about Hölder
regularity adapts for the fake holonomies.

Lemma 7.3 If δ > 0 has been chosen small enough, then there exists αs > 0
such that for any diffeomorphism f that is C1-close to f0, for any z ∈ H(p f )

and z′ ∈ W u
loc(z) close, and for any fake holonomies �̂ss(z), �̂ss(z′), one has

d (̂�ss(z), �̂ss(z′)) ≤ d(z, z′)αs .

Sketch of the proof Observe that if N is sufficiently large (provided that z′ is
close enough to z), the distances d( f N (�ss(z)), f N (z)) and d( f N (�ss(z′)),
f N (z′)) are exponentially small. Hence d( f N (̂�ss(z)), f N (̂�ss(z′))) is of
the same order than d( f N (z), f N (z′)) and close to δ.
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The distance d (̂�ss(z), �̂ss(z′)) is bounded by ‖D f −1‖N d( f N (�ss(z)),
f N (̂�ss(z′))) and the distance d(z, z′) is bounded from below by ‖D f ‖−N

d( f N (�ss(z)), f N (̂�ss(z′))). This proves that there exists σ > 0 (which only
depends on f0) such that

d (̂�ss(z), �̂ss(z′)) ≤ σ N .d(z, z′).

On the other hand, since the distance along the unstable manifolds growth
uniformly, there exists another constant C > 0 such that

N ≤ C. log d(z, z′).

The result follows from these two last inequalities. Observe that the exponent
αs only depends on C and σ which are uniform on a C1-neighborhood of f0.

��
Regularity of the strong stable bundle The regularity of the strong stable

bundle needs more smoothness on the diffeomorphism. Note that the strong
stable bundle is defined at any point whose forward orbit is contained in a
small neighborhood U of H(p f0).

Lemma 7.4 There exists α′
s such that for any diffeomorphism f that is C1-

close to f0 and of class C1+α for some α ∈ (0, α′
s), there exists a constant

C > 0 with the following property.
At any points z, z′ close having their forward orbit contained in U, one has

d(Ess
z , Ess

z′ ) ≤ C.d(z, z′)α.

Sketch of the proof Let us choose K > ‖D f ‖∞ and as before denote by λ ∈
(0, 1) a bound for the domination between Ess and Ec⊕Eu .We chooseα′

s > 0
such that K α′

s λ < 1. By working in charts, one has for some constant C > 0,

d(Ess
z , Ess

z′ ) ≤ d(D f −1
f (z)(Ess

f (z)), D f −1
f (z)(Ess

f (z′)))

+d(D f −1
f (z)(Ess

f (z′)), D f −1
f (z′)(Ess

f (z′)))

≤ λd(Ess
f (z), Ess

f (z′)) + C.d( f (z), f (z′))α.

By induction one gets for any k ≥ 1,

d(Ess
z , Ess

z′ ) ≤ C.

k−1∑

j=0

λ j d( f j+1(z), f j+1(z′))α + λkd(Ess
f k(z), Ess

f k(z′)).
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One can bound d( f j (z), f j (z′)) by K j d(z, z′). Since λK α′
s < 1, this gives

d(Ess
z , Ess

z′ ) ≤ C(d(z, z′)α + λk).

By choosing k large enough, one gets the estimate. ��

7.2 Localization of returns to px

We now fix a diffeomorphism f that isC1-close to f0.We assume that isC1+α

for some α ∈ [0, 1). We also fix x ∈ W u
loc(px, f ) and y ∈ W u

loc(py, f ) whose
strong stable manifolds coincide. In order to simplify the notations we will
now set p = p f , px = px, f and py = py, f . Let τx be the period of px and
let us consider a local center manifold W c

loc(px ).
We will use the following assumption:

(***) The intersection between W ss(px )\{px } and H(p) is empty.

The orbit of any point z ∈ W s(px )\{px } meets the fundamental domain
f −τx (W s

loc(px ))\W s
loc(px ). The next lemma states, that if H(p) and px sat-

isfy (***), and if z belongs to H(p) ∩ W s
loc(px ) then its orbit meets a kind of

“fundamental center domain” of px .

Lemma 7.5 If (***) is satisfied, there are points z0, z1 contained in W c
loc(px )\

{px } such that if z ∈ W s
loc(px ) ∩ H(p) then there is k ∈ Z verifying that

f k(z) ∈ W ss
loc([ f 2τx (z0), z0)]) ∪ W ss

loc([ f 2τx (z1), z1)])
where [ f 2τx (zi ), zi ], for i ∈ {0, 1} is the connected arc of W c

loc(px ) whose
extreme points are zi , f 2τx (zi ) and (see Fig. 4)

W ss
loc([ f 2τx (zi ), zi ]) =

⋃

{z′∈[ f 2τx (zi ),zi ]}
W ss

loc(z
′).

Proof Let us consider two points z00 and z01 in two different connected com-
ponents of W c

loc(px ) and set zn
i = f nτx (z0i ).

Note that the image of W ss
loc([ f 2τx (zn

i ), zn
i ]) by f τx is contained in

W ss
loc([ f 2τx (zn+1

i ), zn+1
i ]). The union of the W ss

loc([ f 2τx (zn
i ), zn

i ]) over n ≥ 0
and of W ss

loc(px ) contains a neighborhood of px in W s(px ).
If the thesis of the lemma does not hold, it follows that for arbitrar-

ily large n ≥ 0, there exists a point ζn ∈ H(px ) ∩ W s
loc(px ) which

belongs to W ss
loc([ f 2τx (zn+1

i ), zn+1
i ]) and whose preimage by f τ does not

belong to W ss
loc([ f 2τx (zn

i ), zn
i ]). An accumulation point ζ of {ζn} belongs to

W ss
loc(px )\{px } ∩ H(px ), contradicting the assumption of the lemma. ��
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z1
f 2τx(z0)

z0
px

W ss
loc([f

2τx(z0), z0])

f 2τx(z1)

W ss
loc([f

2τx(z1), z1])

Fig. 4 Fundamental center domains

We now describe the returns of the forward orbit of x in the neighborhood
W of the orbit of px . We need to take into account the orbits that follow the
orbit of x during some time. For that we let λs ∈ (0, 1) be an upper bound for
the contraction along Ess , we let λ > 1 be a lower bound for the domination
between Ess and Ec ⊕ Eu as in Sect. 7.1 and we let μc > μs in (0, 1) be the
modulus of the center eigenvalue at px and the maximal modulus of the strong
stable eigenvalues at px . We also choose ρ > 1 such that

ρ < min
(
λ, λ

−1/2
s , μc/μs

)
.

We then introduce some “forward dynamical balls” centered at x : we fix k0 ≥ 1
and for n ≥ 0 we define the set

Bn(x) =
{

z ∈ M, ∀ 0 ≤ k ≤ n, d( f k(z), f k(x))

< ρk−k0 .

k−1∏

�=0

‖D f|Ess ( f �(x))‖
}

.

Note that:

(i) By our choice of ρ, the intersection of all the balls Bn(x) coincides with a
local strong stable manifold of x and the image f n(Bn(x)) has diameter

smaller than
√

λ
n−k0
s .
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(ii) By taking k0 large enough, the point y belongs to the balls Bn(x) and its
forward iterates satisfy the stronger estimate

d( f k(y), f k(x)) <
1

3
ρk−k0 .

k−1∏

�=0

‖D f|Ess ( f �(x))‖. (7.1)

Let us now assume that (***) holds.
(iii) For n large enough, f n(Bn(x)) does not intersect W u

loc(px ). Otherwise
Bn(x) would intersect a large backward iterate of W u

loc(px ): this would
imply that the strong stable manifold of the orbit of px contains x and
contradicts our assumptions that W ss(px )∩ H(p) = {px }. In fact, by first
item, if for n large enough f n(Bn(x)) intersects W u

loc(px ), then it follows
that px ∈ W ss

loc(x).
(iv) One can choose the neighborhoodW of the orbit of px so that the backward

orbit of x is contained in W and x /∈ W . The Lemma 7.5 above implies
that the forward iterates of x close to px are close to the center manifold
of px . Consequently, their distance to the local unstable manifold of the
orbit of px decreases by iteration by a factor close to the center eigenvalue
of px . One thus gets the following.

Lemma 7.6 Let us fix η > 0 small. If (***) holds, any large iterate f n(Bn(x))

which intersects B(x, δ) has the following property.
Let m be the largest integer such that m < n and f m(Bn(x)) is not contained

in W . Then the distance between the points of f n(Bn(x)) and W u
loc(px ) belongs

to [μ(1+η).(n−m)
c , μ

(1−η).(n−m)
c ], where μc denotes the modulus of the center

eigenvalue associated to px .

(v) For any forward iterate f �(x) close to px , the quantity ρ‖D f|Ess ( f �(x))‖
is smaller than μc by our choice of ρ. We thus obtain another version of
the estimate of item (i).

Lemma 7.7 If f n(Bn(x)) intersects B(x, μN
c ) for some N ≥ 1 large, then

the diameter of f n(Bn(x)) is smaller than
√

λ
n−N
s μN

c .

7.3 Recurrence time dichotomy

As before we denote by λu, λ > 1 the lower bounds for the expansion along
Eu and the domination between Ess and Ec ⊕ Eu . By Lemma 7.3, there
exists αs ∈ (0, 1) such that the strong stable fake holonomies are αs-Hölder.
The Lemma 7.4 gives α′

s ∈ (0, 1) which control the smoothness of the strong
stable bundle. Recall that by μc ∈ (0, 1) we denote the modulus of the center
eigenvalue associated to px for f . We also denote by ᾱ0 the bound on the
smoothness associated to H(p f0) in Proposition 2.28.
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Let χ, K1, K2 be some positive constants defined by

χ = log λu

log λu + ‖D f −1
0 ‖ ,

K1 = | logμc|
χ log λ

, K2 = (1 − αs)| logμc|
αs log λu

.

Let us consider again theC1+α-diffeomorphism f that isC1-close to f . If α
belongs to [0, ᾱ0] and condition (***) does not hold, then the Proposition 2.28
implies that there exist C1+α-perturbation g of f such that H(pg) has a strong
homoclinic intersection, concluding the proof of the proposition.

In the following we assume that condition (***) holds for f and as in the
statement of Proposition 7.1, that there exist two different points x ∈ W u(px )

and y ∈ W u(py) whose strong stable manifolds coincide. For any N large,
we take V a neighborhood of size μN

c around f −1(x). We define n = n(N ),
the smallest element of N ∪ {∞} such that f n(Bn(x)) intersects V . By the
property (iii) of Sect. 7.2, the sequence {n(N )} increases and goes to +∞ as
N increases.
We fix a constant K > max(1, K1, K2) and we are going to consider two

cases:

1. Fast returns. There exists arbitrarily large N such that

n(N ) ≤ K .N . (7.2)

2. Slow returns. There exists arbitrarily large N such that

n(N ) > K .N . (7.3)

One of these two conditions (maybe both) occur. If the first option holds, we
prove the following.

Lemma 7.8 Assume that (***) and (7.2) hold for some K > 0, and that
α < inf( 1

K−1 , α
′
s). Then there exists a diffeomorphism ϕ ∈ Diff1+α(M) that

is C1+α-close to the identity such that g = ϕ ◦ f has a hyperbolic periodic
point q homoclinically related to the orbit of px,g and whose strong stable
manifold W ss(q)\{q} intersects W u(py,g).

If the second option holds, we prove the following.

Lemma 7.9 Assume that (7.3) holds for some K > max(K1, K2), and that
1 + α < K

max(K1,K2)
. Then, there exists a diffeomorphism ϕ ∈ Diff1+α(M)

that is C1+α-close to the identity such that g = ϕ ◦ f satisfies the second
option of Proposition 7.1: if one fixes an orientation on Ec

y, there exist two
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such diffeomorphism g+, g− such that xg+ (resp. xg−) belongs to Wcs,+
g+,yg+

(resp. Wcs,−
g−,yg− ).

Both Lemmas and the Proposition 2.28 conclude the proof of Proposi-
tion 7.1.

Note that for proving Proposition 7.1 one can choose K independently from
μc, for instance

K = ‖D f0‖max

(
3

log λs
,
2 χ

log λ
,
2 (1 − αs)

αs log λu

)
.

In this way we obtain a bound

α0 = inf

(
ᾱ0,

1

K − 1
, α′

s,
K

max(K1, K2)

)

for the smoothness exponent α in Proposition 7.1, which only depends on f0
as announced.

7.4 Fast returns: proof of Lemma 7.8

Let us assume that condition (7.2) holds for some large values of N and some

K > 0 such that α < inf
(

1
K−1 , α

′
)
. We also assume that (***) holds so that

the Lemma 7.6 applies.

Lemma 7.10 There are a > b in (K −1, 1) such that some arbitrarily large
N and n = n(N ) satisfy:

1. f n(Bn(x)) ∩ B(x, μa n
c ) �= ∅ and

2. f m(Bm(x)) ∩ B(x, μb n
c ) = ∅ for any k0 < m < n.

Moreover a
b can be chosen arbitrarily close to K

K−1 .

Proof We introduce the integers Ni and ni = n(Ni ) satisfying for any i ,

Ni < Ni+1, ni < ni+1, and ∀ Ni−1 < N ≤ Ni , n(N ) = ni .

We will prove that there are positive constants b′ < a′ in (K −1, 1) and there
is ni sufficiently large such that Ni > a′.ni and N j < b′.ni for 0 ≤ j < i . We
then choose any b < a in (b′, a′). One can check easily that for these large
n = ni the result holds:

– We have f n(Bn(x)) ∩ B(x, μ
Ni
c ) �= ∅ with Ni > a′.n, hence f n(Bn(x)) ∩

B(x, μa′.n
c ) is non-empty. By Lemma 7.7, the diameter of f n(Bn(x)) is
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boundedby
√

λ
n−Ni
s μ

Ni
c which ismuch smaller thanμa′.n

c .As a consequence
f n(Bn(x)) is contained in B(x, μa.n

c ).
– By definition of the sequence (N j ), for any m < n = ni , one has

f m(Bm(x))∩ B(x, μ
Ni−1+1
c ) = ∅ and b.n > b′.n+1 > Ni−1+1, implying

the second condition of the lemma.

Let us now prove the existence of the constants a′ < b′. We denote by mi
the smallest integer such that

∀mi ≤ m < ni , f m(Bni (x)) ⊂ W.

By Lemma 7.6 if one chooses ε > 0 small and if Ni is large enough, one has

(1 + ε).(ni − mi ) ≥ Ni .

Let us define

R = lim sup
j→+∞

N j

n j
.

By (7.2), R belongs to [K −1, 1].
For any j larger than a constant j0 we have

N j
n j

< (1 + ε)R. For some i

sufficiently large we also have Ni
ni

> (1 − ε)R. If j < i we have n j ≤ mi ≤
ni − (1 + ε)−1Ni and so for j0 < j < i we have

N j ≤(1 + ε)Rn j ≤(1 + ε)R(ni − (1 + ε)−1Ni ) ≤ R[1 − (1 − ε)R + ε]ni .

Since R belongs to [K −1, 1], then [1 − (1 − ε)R + ε] < (1 − ε) for ε small
and therefore taking a′ = (1 − ε)R and b′ = R[1 − (1 − ε)R + ε] the result
holds. To check that it also holds for j < j0 it is enough to take i sufficiently
large.

Observe that the quantity a
b is close to 1−ε

1−(1−ε)R+ε
. Since R ≥ K −1, when

ε goes to 0 the limit is larger or equal to K
K−1 . ��

We can now conclude the proof of Lemma 7.8.

Proof of lemma 7.8 We fix a, b and a large integer n as in Lemma 7.10. By
assumption α < (K − 1)−1 and a

b can be chosen close to K
K−1 . One can thus

ensure that 1 + α is smaller than a/b.
Let D ⊂ W ss

loc(x) be the smallest disc containing y. By construction it is
contained in the ball Bn(x), hence its image by f n is contained in B(x, μan

c ).
We consider a C1+α-diffeomorphism ϕ supported in B(x, μbn

c ) which sends
f n(D) into D and define g = ϕ ◦ f . By construction the support of the
perturbation g is disjoint from D and its n − 1 first iterates.
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Claim If 1+α < inf(a
b , α′

s), by choosing n large the diffeomorphism ϕ can
be taken arbitrarily close to the identity in Diff1+α(M).

Proof Let us consider a C1+α-chart U → R
d of a neighborhood U of x such

that x coincides with 0 and W ss
loc(x) coincides with the plane R

k × {0}, where
k = dim(Ess). For n large, the plaque W ss

loc( f n(x)) is close to W ss
loc(x) and

coincides in the chart with the graph of a map χ0 : R
k → R

d−k . We introduce
the map

(z1, z2) 	→ (0, −χ0(z1))

which is close to 0 in the C1+α topology and satisfies ‖v0(0)‖ ≤ e−an by
construction.

One can thus apply the Lemma 6.2 in order to build a map v : R
d → R

d−k

which coincides with v0 on the ball B(0, e−an) and with 0 outside B(0, e−bn).
Themap ϕ : (z1, z2) 	→ (z1, z2−v(z1, z2)) is the announced diffeomorphism.
In order to prove that ϕ is close to the identity in Diff1+α(M), one has to check
that e(1+α)bn supB(0,e−bn) ‖v0‖ is small.

Since α < α′
s , by Lemma 7.4 we have

‖Dv0(0)‖ ≤ C‖v0(0)‖α ≤ Ce−αan.

Since v0 is close to the identity in Diff1+α , there exists an arbitrarily small
constant ε > 0 such that

sup
B(0,e−bn)

‖Dv0‖ ≤ ‖Dv0(0)‖ + εe−αbn ≤ 2εe−αbn.

This gives

sup
B(0,e−bn)

‖v0‖ ≤ ‖v0(0)‖ + e−bn sup
B(0,e−bn)

‖Dv0‖ ≤ e−an + 2εe−(1+α)bn.

Since a > (1 + α)b, this shows that e(1+α)bn supB(0,e−bn) ‖v0‖ is small when
n is large. ��

The previous claim and Remark 1.4 imply that g is C1+α-close to f . To
continuewith the proof of Lemma 7.8, we note that themap ϕ◦ f n is a contrac-
tion on D, hence the diffeomorphism g has a n-periodic point q whose strong
stable manifold contains D. Since the backward orbit of W u

loc(py) is disjoint
from the support of the perturbation, the manifolds W ss(q) and W u

loc(py,g)

intersect.
In particular W s(q) and W u

loc(py,g) have a transverse intersection. On the
other hand the orbit of q has a point close to px , hence W s(px ) and W u(q)
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have a transverse intersection. One deduces that q is homoclinically related to
the orbits of px,g and py,g . This concludes the proof of Lemma 7.8. ��

7.5 Slow returns: proof of Lemma 7.9

Let us fix a C1+α plaqueD at x which is tangent to Ec
x + Eu

x and contains the
manifold W u

loc(px ) for f . For diffeomorphisms g close to f we will consider
the strong stable holonomy �ss

g to D.
Under condition (7.3), we are going to get a perturbation g of f such

that �ss
g (xg) �= �ss

g (yg), proving that W ss
loc(xg) and W ss

loc(yg) are disjoint.
Since xg, yg belong to a same center stable plaque Wcs

g,yg
, the projections

�ss
g (xg), �

ss
g (yg) are contained in a C1-curve of D that is tangent to a center

cone field. Moreover, one will be able to choose the perturbation to satisfy
either xg ∈ Wcs,+

g,yg or xg ∈ Wcs,−
g,yg .

Description of the perturbationWe recall thatwe have fixed a large integer
N ≥ 1 and that V denotes the ball B(x, μN

c ).
Let us fix two small constants r̂ = 1

2μ
N
c and r < r̂ in (0, 1). We perform the

perturbation g of f in the ball B( f −1(x), r̂), in such a way that W u
loc(px ) is

still contained in D and the distance between x = f ( f −1(x)) and g( f −1(x))

is r along the center coordinate. This can be realized by a small perturbation of
f in Diff1(M) provided r̂ and r/̂r are large enough. Moreover one can require
that the C0 size of the perturbation is equal to r .

Later, in item 7, we explain how the perturbation can be adapted to beC1+α-
small. Note that the point x can be pushed to g( f −1(x)) along Ec

x in any of
the two center directions at x .

To get the conclusion, we choose a small constant ε > 0 (independent
from N ) and show that the distances d(�ss

g (yg), x) and d(xg, g( f −1(x))) are
smaller than ε.r , which is much smaller than d(x, g( f −1(x))).

1. Estimating d(yg, y). Observe that yg does not necessarily coincide with y
since the forward orbit of y may intersect the region of perturbation. However
by Lemma 4.6 the point yg still belongs to the local unstable manifold of
py,g = py, f which coincides for f and g. We will consider the distance dist
along the unstable plaques (which is locally comparable in a uniform way to
the distance in the ambient space). We also introduce a constant C � 1

λu−1
independent from N .

Lemma 7.11 If for some positive integer m the two points f m(y), gm(yg)

belong to a same unstable plaque, then their distance satisfies dist ( f m(y),

gm(yg)) < C.r .

Proof Let us assume by contradiction that the estimate does not hold. Observe
that the distance by the action of f growth by a factor λu and the C0 distance
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between f and g is at most r , which is much smaller than C.r . One deduces
that the points f m+1(y), gm+1(yg) still belong to a same unstable plaque.
Denoting γ = λuC−1

C > 1, their distance now satisfy

dist ( f m+1(y), gm+1(yg)) > λu dist ( f m(y), gm(yg)) − r
> (λu − C−1) dist ( f m(y), gm(yg))

= γ.dist ( f m(y), gm(yg)).

Therefore after k iterates the distance become larger than γ k .C.r and so
increasing to infinity. This is a contradiction with the fact yg is a continua-
tion of y. ��
Lemma 7.12 The n(N ) first iterates of y and yg coincide for f and for g.

Proof Since y belongs to the dynamical balls Bn(x), the segment of orbit
(y, . . . , f n(N )(y)) is also a segment of orbit for g. Let us consider the first
integer m ≥ 1 such that gm(yg) = f m(yg) enters in the region of perturbation
and let us assume by contradiction that m < n(N ).

As for y, yg, one knows that f m(yg) and f m(y) belong to a same unstable
plaque: by Lemma 7.11 they are at distance smaller than C.r . If r has been
chosen small enough one has C.r < 1

2μ
N
c = r̂ . By definition of m one

also has d( f m(yg), x) < r̂ = 1
2μ

N
c . As a consequence f m(y) belongs to

V , hence m ≥ n(N ). This contradicts our assumption. This shows that the
orbit (yg, . . . , gn(N )(yg)) coincides for f and for g. ��

Since y, yg belong to an unstable plaque, and since by Lemma 7.12 their
n(N ) first iterates are the same by f and by g, the points f n(N )(y) and
gn(N )(yg) belong to a same unstable plaque and by Lemma 7.11, their dis-
tance is smaller than C.r . For any 0 ≤ m ≤ n(N ) we obtain

d(gm(yg), f m(y)) < λm−n(N )
u C.r. (7.4)

2. Estimating d(xg, g( f −1(x))). Arguing as in Lemma 7.11, one shows that
for any positive integer m, if the two points f m(x), gm(xg) belong to a same
unstable plaque, then their distance satisfy dist ( f m(x), gm(xg)) < Cr .

Let us denote by λ′ > 1 a lower bound for the domination between the
bundles Ec and Eu and consider two large constants k � � (independent from
N ) such that λ�

u .(λ′)−k > C . If N has been chosen large, the � first iterates of
x, xg, g( f −1(x)) are the same by f and by g. Let us assume by contradiction
that the distance dist (g( f −1(x)), xg) insideW u

loc(px,g) is larger than (λ′)−k .r .
Since the distance between x and g( f −1(x)) in the center direction is equal to
r , one deduces that the distance from f �(g( f −1(x))) to f �(xg) is much larger
than its distance to f �(x). In particular f �(x) and f �(xg) are contained in a
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same unstable plaque and by our choice of k, �, their distance is larger than
C.r , which is a contradiction. Consequently

dist (g( f −1(x)), xg) < (λ′)−k .r.

Taking k large enough, one has d(g( f −1(x), xg) < ε.r as wanted.

3. Estimating d (̂�ss
f (yg), �

ss
f (y)). Since yg belongs to the unstable man-

ifold W u
loc(y) for f , one can introduce some fake holonomies �̂ss

f (yg),

�̂ss
f (y) = �ss

f (y) for f . By (7.4) and Lemma 7.3, one gets

d (̂�ss
f (yg), �

ss
f (y)) < d(y, yg)

αs < [λ−n(N )
u C.r ]αs .

5. Estimating d(�ss
g (yg), �̂

ss
f (yg)). As before we first compare the iterates

of f and g.

Lemma 7.13 The χ.n(N ) first iterates of yg, �ss
g (yg) and �̂ss

f (yg) coincide

for f and for g, where χ = log λu

log λu+log ‖D f −1
0 ‖ .

Proof By Lemma 7.12 we already know that the n(N ) first iterates of yg under
f and g coincide. Since χ ∈ (0, 1) and from the estimate (7.4), the points y
and yg do not separate by f during the time χ.n(N ) and by definition of the

fake holonomies, the χ.n(N ) first iterates of the points �̂ss
f (yg) and yg remain

in a same strong stable plaque.
From (7.4) and the definition of χ , we also have that for 0 ≤ m ≤ χ.n(N ),

d( f m(yg), f m(y)) < λ−n(N )+m
u .C.r < ‖D f −1

0 ‖−m

<
1

3
ρm−k0 .

m−1∏

�=0

‖D f|Ess ( f �(x))‖. (7.5)

With (7.1), this shows that yg belongs to the dynamical ball Bχ.n(N )(x).

We will prove by induction on m ≤ χ.n(N ) that�ss
g (yg) and �̂ss

f (yg) by f
also belong to the dynamical ball Bm(x). This will imply that theirmth iterates
by f and g coincide and conclude the proof of the lemma.

Let us choose η > 0 small and m0 ≥ 0 large. If N has been chosen large
enough, the point yg is close to y and the points�ss

g (yg) and �̂ss
f (yg) are close

to x ; as a consequence, the three points belong to the dynamical balls Bm(x)

with 0 ≤ m ≤ m0. When m is larger than m0, the diameter of f m−1(Bm−1(x))
is small, hence
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d( f m(�ss
g (yg)), f m(yg)) ≤ eη.‖D f|Ess ( f m−1(x))‖.d( f m−1(�ss

g (yg)), f m−1(yg)),

d( f m (̂�ss
f (yg)), f m(yg)) ≤ eη.‖D f|Ess ( f m−1(x))‖.d( f m−1(̂�ss

f (yg)), f m−1(yg)).

With (7.5), (7.1), this gives the required estimate and gives the conclusion.
��

Since the points �ss
g (yg), �̂

ss
f (yg) belong to a same center unstable plaque

and since their χ.n(N ) first iterates by f remain close, one deduces that for
any 0 ≤ m ≤ χ.n(N ), the points f m(�ss

g (yg)) and f m (̂�ss
f (yg)) are still

contained in a center unstable plaque, whereas the pairs of point f m(�ss
g (yg)),

f m(yg) and f m (̂�ss
f (yg)), f m(yg) are contained in strong-stable plaques. This

shows that

d(�ss
g (yg), �̂

ss
f (yg)) < λ−χ.n(N ),

where λ > 1 is the lower bound for the domination between the bundles Ess

and Ec ⊕ Eu .

6. Estimating d(�ss
g (yg), x). From the estimates we obtained, we get

dist (�ss
g (yg), x) < d(�ss

g (yg), �̂
ss
f (yg)) + d (̂�ss

f (yg), �
ss
f (y)) < λ−χ.n(N )

+[λ−n(N )
u C.r ]αs .

In order to conclude, the perturbation should thus satisfies:

λ−χ.n(N ) + [λ−n(N )
u C.r ]αs < ε.r.

Since χ, αs, C, ε are constants independent from N , this inequality holds
if N large enough and the following are satisfied:

αs(n(N ) log λu + | log r |) > | log r | + c,

n(N ) log λ > | log r | + c,

where c > 0 is independent from N .
From the definition of r̂ and since n(N ) > K .N , one gets the following

condition
| log r | < B.| log r̂ | − c, (7.6)

where

B = inf

(
χ log λ,

αs

1 − αs
log λu

)
K

| logμc| .

Note that by our choice of K , the factor B is larger than 1.
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7. Realization of the C1+α perturbation. By Lemma 6.2, in order to be
able to realize a C1+α perturbation supported on a ball of radius r̂ such that
d(g( f −1(x)), x) = r , one has to check that for some A > α one can choose
r, r̂ arbitrarily small satisfying

| log r | > (1 + A)| log r̂ |. (7.7)

Note that this also implies the estimate C.r < r̂ = 1
2μ

N
c that we used in

paragraph 1.
By our choice of K , both conditions (7.6) and (7.7) can be realized simul-

taneously provided 1 + α is smaller than B.

8 Structure in the center stable leaves

In this section we prove Theorem 7 on the geometry of chain-hyperbolic
classes. It is used in the proof of Theorems 8 and 11. As a consequence
(see Proposition 8.16), for some chain-hyperbolic classes, one can replace the
plaquesWcs

x by submanifolds Vx whose boundaries are disjoint from H(p).
In the whole section, H(p) is a chain-recurrence class with a dominated

splitting Ess ⊕ Ec
1 ⊕ Ec

2 such that Ecs := (Ess ⊕ Ec
1 and Ecu := Ec

2
are thin trapped by f and f −1 respectively, and such that Ec

1, Ec
2 are one-

dimensional. We assume moreover that for each periodic point q ∈ H(p), the
set W ss(q)\{q} is disjoint from H(p).

8.1 Geometry of connected compact sets

One can obtain connected compact sets as limit of ε-chains, i.e. finite sets
{x0, . . . , xm} such that d(xi , xi+1) < ε for each 0 ≤ i < m. This idea is used
to prove the following lemma.

Lemma 8.1 For any n ≥ 1, any metric on R
n which induces the standard

topology, any closed connected set K ⊂ R
n, any point x ∈ K and any 0 ≤

D ≤ Diam(K ), there exists a compact connected set K (D) ⊂ K containing
x and whose diameter is equal to D.

Proof For ε > 0, one can choose a finite set Xε = {x0, x1, . . . , xm} ⊂ K such
that

– x belongs to Xε;
– for each 0 ≤ i < m, the open balls B(xi , ε) and B(xi+1, ε) intersect;
– the diameter of Xε belongs to [D, D + 2ε].
Let Kε be the closed ε-neighborhood of Xε. It is a connected compact set
contained in the ε-neighborhood of K . Up to considering a subsequence, (Kε)
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converges for the Hausdorff topology towards a compact set K (D) which
contains x , is connected and has diameter D as required. ��

Recall that for x ∈ H(p), the submanifold W ss(x) is diffeomorphic to
R

d−2, where d = dim(M).

Lemma 8.2 Consider a sequence (zn) in H(p) which converges to a point
z and for each n a compact connected set Cn ⊂ W ss(zn) ∩ H(p) which
converges for the Hausdorff topology in M towards a (compact connected) set
C ⊂ W ss(z) ∩ H(p). Then the restriction of the intrinsic distance of W ss(zn)

to the set Cn converges towards the intrinsic distance of W ss
z to C.

Proof Let U be a bounded neighborhood of C inside W ss(z) which is diffeo-
morphic to R

d−2.
For zn close to z, there exists an open set Un ⊂ W ss

zn
, containing zn , diffeo-

morphic to R
d−2 and which is close to U for the C1-topology on immersions

of R
d−2. In particular, U and Un are diffeomorphic by a map whose Lipschitz

constant is arbitrarily close to 1. Since Cn is connected and contains zn , it is
included in Un . This gives the conclusion. ��

8.2 Structure in the strong stable leaves

We are aimed first to prove total discontinuity in the strong stable leaves.

Proposition 8.3 Let f be a diffeomorphism and H(p) be a chain-hyperbolic
class satisfying the assumptions of Theorem 7. If for any periodic point q ∈
H(p) the set W ss(q)\{q} is disjoint from H(p), then, for each x ∈ H(p), the
set W ss

loc(x) ∩ H(p) is totally disconnected.

At any points, one considers the plaquesWcu
x ⊂ f (Wcu

f −1(x)
).We choose the

plaquesWcs,Wcu with a diameter small enough so that for each x, y ∈ H(p)

the intersection Wcs
x ∩ f (Wcu

y ) is transverse and contains at most one point
(which belongs to H(p) by Lemma 3.12).

For this proof we will endow H(p) with the center-stable topology: two
points x, y ∈ H(p) are close if the distance d(x, y) is small and x ∈ Wcs

y (or
equivalently y ∈ Wcs

x by Lemma 3.2). The center-stable distance on H(p) is
the distance between x and y insideWcs

x .
Since Wcs is trapped, W ss(x) ∩ Wcs

x is contained inside W ss
loc(x) and the

center-stable topology induces on W ss(x) ∩ H(p) the intrinsic topology of
W ss(x).

If x0, y0 ∈ H(p) satisfy y0 ∈ Wcu
x0 , one can define the local holonomy map

�cu from a neighborhood of x0 in H(p)∩Wcs
x0 toWcs

y0 the image�cu(z) is the
intersection between Wcu

z and Wcs
y0 . The next definition extends globally this

holonomy map to a larger set by following continuously the pairs (z, �cu(z)).
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Since a stable leaf may intersect a plaque ofWcu in several points, the global
holonomy may be multivalued.

Global holonomy A global holonomy along the plaques Wcu is a closed
connected set � ⊂ H(p) × H(p) (endowed with the product center-stable
topologies) such that for any (x, y) ∈ � one has y ∈ Wcu

x and x ∈ Wcu
y .

The sets π1(�) and π2(�) denote the projections on the first and the second
factors.

The following lemma allows to extend global holonomies from a connected
set contained in a center-stable leaf.

Lemma 8.4 Let �0 be a global holonomy along the center-unstable plaques,
and C ⊂ H(p) be a set which is closed and connected for the center-stable
topology and which contains π1(�0).

Then, there exists a global holonomy � along the center-unstable plaques
containing �0, such that π1(�) ⊂ C and satisfying one of the following cases.

1. π1(�) = C;
2. � is non-compact;
3. there exists (x, y) ∈ � such that y ∈ Wcu

x \Wcu
x or x ∈ Wcu

y \Wcu
y .

Proof If {�n} is a family of global holonomies along the center-unstable
plaques that is totally ordered by the inclusion, then the closure of the union
∪n�n is also a global holonomy. By Zorn’s lemma one deduces that there
exists a global holonomy � containing �0, satisfying π1(�) ⊂ C and maxi-
mal with these properties for the inclusion. We prove by contradiction that �
satisfies one of the properties above. We fix a pair (x0, y0) ∈ �0.

If π1(�) �= C , then there exists r1 > 0 and for each ε1 > 0 there exists a
sequence (x0, . . . , xs) in C such that

– for each 0 < i ≤ s, the points xi−1, xi are at distance less than ε1 and
xi ∈ Bcs(xi−1);

– the point xs and the set π1(�) are at distance exactly r1 insideWcs
xs
.

If� does not satisfies the items 2) or 3), then for any (x, y) ∈ H(p)× H(p)

close to � and any x ′ ∈ H(p) close x (for the center-stable topology), Bcs(y)

meetsWcu
x ′ at a point y′ ∈ H(p) which also satisfies x ′ ∈ Wcu

y′ .
This allows to build inductively a sequence (y0, . . . , y�) for some 0 ≤ � ≤ s

and associated to (x0, . . . , x�) such that, for each i , the pair (xi , yi ) is at a small
distance from (xi−1, yi−1) for the center-stable distance.

More precisely, there exists r > 0 and for each ε > 0 there exists a
sequence (x0, y0), . . . , (x�, y�) such that for the product center-stable distance
on H(p) × H(p) the following holds:
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– for each 0 < i ≤ �, one has xi ∈ Wcu
yi

and yi ∈ Wcu
xi
;

– for each 0 < i ≤ �, the pairs (xi−1, yi−1) and (xi , yi ) are at distance less
than ε;

– the pair (x�, y�) and the set � are at distance exactly r .

When ε goes to 0 and up to consider a subsequence, the set � ∪
{(x0, y0), . . . , (x�, y�)} converges for the Hausdorff distance towards a com-
pact connected set �′ which is a global holonomy, strictly contains � and
satisfies π1(�

′) ⊂ C . This contradicts the maximality of � and proves the
lemma. ��

Using that for periodic points q ∈ H(q) the set W ss(q)\{q} is disjoint
from H(p), we deduce that in the construction of Lemma 8.4 the strong stable
leaves are preserved under the global holonomy. More precisely we have:

Addendum 8.5 In the case each set C and π2(�0) is contained in a strong
stable leaf, one can ensure furthermore that π2(�) is also contained in a strong
stable leaf.

Proof We repeat the proof of Lemma 8.4 requiring furthermore that the pro-
jection π2(�) of the global holonomies are contained in the strong stable leaf
W ss(y0). Indeed if {�n} is totally ordered family of such global holonomies,
then the closure of the union ∪n�n projects in W ss(y0) by π2: this is due to
the choice of the center-stable topology.

Let us consider a maximal global holonomy� satisfying π2(�) ⊂ W ss(y0)
and given by Zorn’s lemma. Assume by contradiction that� does not satisfies
the three items of Lemma 8.4. In particular, it is compact and one may fix
(x, y) ∈ � and an n ≥ 1 such that f n(π2(�)) is contained in Wcs

f n(y0)
. One

repeats the same construction as above and builds a global holonomy �′ that
strictly contains �. If π2(�

′) is contained in W ss(y0), one has contradicted
the maximality of�. One will thus assume that the set f n(π2(�

′)) ⊂ Wcs
f n(y0)

is not contained in a strong stable leaf. Since it is connected, it contains a point
z such that both local components of Wcs

z \W ss
loc(z) at z meet f n(π2(�

′)).
If one considers a hyperbolic periodic orbit O homoclinically related to p
having a point q0 close to z, the local holonomy�cu along the plaques ofWcu

allows to project f n(π2(�
′)) on a connected compact subset of Wcs

q0 which
meets W ss(q0). Since W ss(q0)\{q0} is disjoint from H(p), one deduces that
the projection contains q0. Consequently the unstable manifold W u(q)\{q} of
some point q ∈ O meets C at some point x .

By Lemma 8.1 applied to C and since Ess is uniformly contracting, there
exists ε > 0 such that any backward iterate x−n = f −n(x) is contained in
a connected compact set C−n ⊂ W ss

loc(x−n) ∩ H(p) ∩ f −n(C) which has a
radius equal to ε. Since x belongs to the unstable set of some point f k(q) in
the orbit of q, the backward iterates of x and q become arbitrarily close. Let
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τ be the period of q. One gets that the projection �cu(C−nτ ) by holonomy on
Wcs

q converges to a compact connected set contained in W ss
loc(q)with diameter

equal to ε. This contradicts our assumption that W ss(q)\{q} is disjoint from
H(p). In all the cases we have found a contradiction and the lemma is proved.

��
Triple holonomy The previous results on holonomies extend to connected

set of triples.

Lemma 8.6 Let � be a global holonomy along the center-unstable plaques,
(x0, y0) be a pair in � and z0 ∈ H(p) be a point which belong to the connected
component of Wcu

x0 ∩ Wcu
y0 bounded by x0 and y0. Then there exists a set

X ⊂ H(p) × H(p) × H(p) containing (x0, y0, z0) such that

– X is closed and connected for the center-stable topology,
– for each triple (x, y, z) ∈ X one has (x, y) ∈ � and z ∈ Wcu

x0 ∩ Wcu
y0 ,

– one of the two following cases holds:
1. the set of pairs (x, y) for (x, y, z) ∈ X coincides with �,
2. X is non-compact.

Moreover if π1(�) and π2(�) are contained in strong stable leaves, then the
same holds for π3(X).

Proof The proof is the same as for Lemma 8.4 and addendum 8.5 but the
third case of Lemma 8.4 has not to be considered since for all the triples
(x, y, z) ∈ X , the point z belongs to the connected component ofWcu

x ∩Wcu
y

bounded by x and y and its distance to x and z is thus controlled.

Remark 8.7 If one projects the set X obtained in Lemma 8.6 on any pair of
coordinates, for instance as π1,3(X) = {(x, z), (x, y, z) ∈ X}, one gets a
set which is connected. Hence the closure of π1,3(X) for the center-stable
topology is a global holonomy.

Non compact holonomy We now build unbounded holonomies.

Lemma 8.8 If for some x ∈ H(p) the set W ss(x) ∩ H(p) is not totally
disconnected, then there exists a global holonomy � along the center-unstable
plaques which is non-compact, non trivial (i.e. there exists (x0, y0) ∈ � such
that x0 �= y0) and such that both π1(�) and π2(�) are contained in strong
stables leaves.

Proof One considers a non trivial compact connected set� ⊂ H(p) contained
in some strong stable leaf and the accumulation set  of the backward iterates
f −n(�) (which is invariant by f ). The uniform expansion along Ess and the
Lemmas 8.1 and 8.2 above imply that for any x0 ∈  the strong stable leaf
W ss(x0), contains a closed connected set C0 ⊂  which is not compact and
contains x0.
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There exist some points y0 ∈ H(p) distinct from x0 such that x0 ∈ Wcs
y0 and

y0 ∈ Wcs
x0 hold. Indeed, x0 is accumulated by periodic points q ∈ H(p)whose

period is arbitrarily large. Consequently the sets Wcs
q are pairwise disjoint.

Hence, there exists q close to x0 whose plaqueWcs
q intersectsWcu

x0 at a point
y0 which belongs to H(p)\{x0} from Lemma 3.12.
Assuming that the conclusion of the lemma does not hold one builds a

sequence of compact holonomies (�n) such that π1(�n) is contained in ,
both π1(�n), π2(�n) are contained in strong stable leaves, and the diameter
of π1(�) in the strong stable leaf goes to infinity with n. The holonomy �0
is just the initial pair (x0, y0). One constructs �n+1 from �n in the following
way.

In the strong stable leaf that contains π1(�n), one considers a closed non-
compact connected set Cn ⊂ . One then applies Lemma 8.4 and its adden-
dum 8.5 and finds a global holonomy�′

n ⊃ �n such that again π1(�
′
n) is con-

tained inCn and bothπ1(�
′
n), π2(�

′
n) are contained in strong stable leaves. By

assumption�′
n is compact and in particular π1(�

′
n) is strictly contained inside

Cn . As a consequence there exists (x ′
n, y′

n) ∈ �′
n such that x ′

n ∈ Wcu
y′

n
\Wcu

y′
n
or

yn ∈ Wcu
x ′

n
\Wcu

x ′
n
. Using the fact that for each x ∈ H(p) we have

f −1(Wcu
x ) ⊂ Wcu

f −1(x)
,

the set of images ( f −1(x), f −1(y)) for (x, y) ∈ �′
n is still a compact global

holonomy: this is �n+1. We also define (xn+1, yn+1) = ( f −1(xn), f −1(yn)).
By construction π1(�1) is a non-trivial compact connected set. Since Ess

is uniformly contracted, the projection π1(�n), which contains f −n(π1(�1)),
has a diameter (for the distance inside W ss(xn)) which increases exponentially.
This ends the construction of the sequence (�n).

Up to considering a subsequence, one can assume that the sequence (xn, yn)

converges towards a pair (x, y) ∈ H(p) × H(p) for the classical topology
on M . By construction xn, yn are at a bounded distance, hence x and y are
distinct.

For each n, one endows W ss(xn) × W ss(yn) with the supremum distance
between the intrinsic distances inside W ss(xn) and W ss(yn). Let us fix D > 0.
By Lemma 8.1, for each n large one can find a compact connected set �D

n
contained in �n of diameter D and containing (xn, yn). One can assume that
the sequence (�D

n ) converges for the Hausdorff topology towards a compact
connected set �D ⊂ W ss(x) × W ss(y). By Lemma 8.2, this set has diameter
D. Now the closure of the union of the�D over D is a global holonomywhich
is non-compact and whose projections by π1, π2 are both contained in strong
stable leaves. ��

Unbounded projections of holonomies Non-compact holonomies allow
to obtain non-compact connected sets inside strong stable leaves.
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Lemma 8.9 Let � be a non-compact holonomy such that π1(�), π2(�) are
contained in strong stable leaves. Then the closure of π1(�) for the center
stable topology is non-compact (in the center stable topology).

Proof First notice that one can replace � by f −1(�). By the trapping of
the center-unstable plaques this allows to have x ∈ Wcu

y and y ∈ Wcu
x for

each (x, y) ∈ � and to work with the plaques of the family Wcu . The set
of pairs (x, y) ∈ � such that x = y is closed. By the choice of the center-
stable topology it is also open. Hence two cases occurs: either x = y for each
(x, y) ∈ � and π1(�) = π2(�) is non-compact; or for each (x, y) ∈ � one
has x �= y and this is the case one considers now. For any pair (x, y) ∈ �, we
denote by [x, y] the closed segment of Wcu

x bounded by x, y.
Let us assume by contradiction that the closure of π1(�) is compact. One

can find a finite collection of points X = {x j } ⊂ π1(�) which satisfies that
for any x ∈ π1(�) there exists x j such that

– x belongs to Bcs(x j );
– for any y, z ∈ H(p) ∩Wcu

x such that (x, y) ∈ � and z ∈ [x, y], the plaque
Wcu

x j
intersects Bcs(z).

In the following we will consider holonomies D with π1(D) ⊂ π1(�) and
we introduce the set of points x j ∈ X that are “avoided” by D:

P(D) = {x j ∈ X , ∀(x, y) ∈ D, ∀z ∈ [x, y] ∩ H(p),

x /∈ Wcs
x j

or Bcs(z) ∩ Wcu
x j

= ∅}.

Since the closure of π1(�) is compact and � is not, one can find xi ∈ X with
the following property.

(****) There exists (x ′, y′), (x ′′, y′′) ∈ � with x ′, x ′′ ∈ Wcs
xi

such that

– for each z ∈ ([x ′, y′] ∪ [x ′′, y′′]) ∩ H(p), the plaque Wcs
z intersects

Wcu
xi

,Wcu
x ′ ,Wcu

x ′′ ;
– Wcs

y′ and Wcs
y′′ intersectWcu

xi
in two distinct points.

Note that in particular the plaquesWcs
y′ andWcs

y′′ are disjoint. This allows us to
build a compact holonomy D ⊂ � which “almost fails” to be a graph above
its first projection.

Claim 8.10 There exists a compact holonomy D having the following prop-
erties:

1. π1(D) ⊂ π1(�); π2(D) is contained in a strong stable leaf;
2. D is a continuous graph over its first factor;
3. there is xi ∈ P(D) satisfying (****).
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Proof Let us first notice that since � is non-compact it contains compact
holonomies �′ with arbitrarily large diameter by Lemma 8.1. One can thus
assume that for such a compact holonomy �′, there exists xi and two pairs
(x ′, y′), (x ′′, y′′) ∈ �′ satisfying (****). Working with ε-chains as in the
proof of Lemma 8.1, one can build a compact connected set D0 ⊂ �′ such
that 3) is satisfied for xi . More precisely for any ε > 0 one builds a finite set
Xε = {(x(0), y(0)), . . . , (x(s), y(s))} contained in �′ such that

– (x(k), y(k)) and (x(k + 1), y(k + 1)) are ε-close for each 0 ≤ k < s;
– the pairs (x ′, y′) = (x(0), y(0)) and (x ′′, y′′) = (x(s), y(s)) and the point

xi satisfy (****);
– for any pair (x(k), y(k)) with x(k) ∈ Wcs

xi
, and for any point z ∈

[x(k), y(k)] ∩ H(p) the intersection Bcs(z) ∩ Wcu
xi

is empty.

The compact holonomy D0 is obtained as limit of the sets Xε. Repeating the
constructionwith the other points x j , one gets a new compact global holonomy
D ⊂ D0 such that 2) is satisfied. Note that 3) is still satisfied but for a new
point xi . Since D ⊂ �, the condition 1) holds also. ��

We now fix a compact holonomy D satisfying the properties 1), 2) and 3)
above. We do not assume that it is contained in �. However we choose it so
that the cardinal of P(D) is maximal.

Let us consider the points xi , x ′, x ′′ in property 3) and (****) and consider
the plaques Wcs

xi
,Wcs

x ′ , Wcs
x ′′ and the ordering of their intersection on Wcu

xi
.

ThenWcs
xi

is not “in the middle” of Wcs
x ′ and Wcs

x ′′ .

Claim 8.11 The point xi does not belong to the connected component of
Wcu

xi
\(Wcs

x ′ ∪ Wcs
x ′′) bounded by Wcs

x ′ and Wcs
x ′′ .

Proof Let us define the compact connected set C := π1(D). For each x ∈
C , there exists a unique pair (x, y) ∈ D; moreover x �= y. One can thus
consider the orientation on Ecu

x determined by the component of Wcu
x \{x}

which contains y. This defines a continuous orientation of the bundle Ecu
|C .

One can compare the orientations of Ecu
x ′ and Ecu

x ′′ as transverse spaces to the
one-codimensional plaque Wcs

xi
. By the trapping property, for any k ≥ 0 the

forward iterates f k(x ′) and f k(x ′′) still belong to the same plaque Wcs
f k(xi )

,
hence the orientations comparison will be the same for k = 0 or k large. Since
C is a compact subset of a strong stable leaf, for k ≥ 1 large f k(C) is contained
in Wcs

f k(xi )
; so for any continuous orientation of Ecu

| f k(C)
, the orientations on

Ecu
f k(x ′) and Ecu

f k(x ′′) match.

One deduces that for the orientation on Ecu
|C considered above, the orien-

tations on Ecu
x ′ and Ecu

x ′′ match. By definition of the orientation on Ecu
|C , this

implies the claim. ��
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Let γ ′ = [x ′, y′] and γ ′′ = [x ′′, y′′]. One now defines a homeomorphism
ϕ : γ ′ ∩ H(p) → γ ′′ ∩ H(p). For z′ ∈ γ ′ ∩ H(p), one can use Lemma 8.6 and
find a closed connected set Xz′ ⊂ H(p)× H(p)× H(p) containing (x ′, y′, z′)
and such that for all (x, y, z) ∈ Xz′ one has z ∈ Wcu

x ∩Wcu
y and (x, y) ∈ D.

Claim 8.12 There exists a unique map χ : D → H(p) which is continuous
for the center-stable topology, sends (x ′, y′) on z′ and satisfies χ(x, y) ∈ [x, y]
for each (x, y) ∈ D. Its graph coincides with Xz′ , which is thus compact.

Proof By Remark 8.7, the closure �̃ of π1,3(Xz′) is a global holonomy satis-
fying property 1).

Let us assume by contradiction that the projection map π1,2 : Xz′ → D
is not injective: in particular �̃ contains two different pairs (x, z) and (x, ζ ),
having the same projection by π1. Let us choose x j such that x ∈ Bcs(x j )

and Wcu
x j

intersects both Bcs(z) and Bcs(ζ ). Repeating the argument of the

proof of claim 8.10, there exists a compact holonomy D̃ ⊂ �̃ satisfying the
properties (1), (2), (3) above such that x j belongs to P(D̃). By construction
for each (x, z) ∈ �̃, there exists (x, y) ∈ D such that z belongs to [x, y].
The definition of the set {x j } and the fact that for each (x, z) ∈ D̃ there exists
(x, y) ∈ D such that z ∈ [x, y] imply that P(D) ⊂ P(D̃). Since x j belongs
to P(D̃)\P(D), we have contradicted the maximality of D. Hence the map
π1,2 : Xz′ → D is injective.

Since D is compact, one deduces that Xz′ is also compact and the first case
of Lemma 8.6 holds. Consequently, the projection π1,2 is also surjective Xz′ .
This proves that Xz′ is the graph of a map χ : D → H(p). Since Xz′ is
compact, this map is continuous. The connectedness of D implies that the
map χ is unique. ��

One deduces that Xz′ contains a unique triple of the form (x ′′, y′′, z′′) and
one sets ϕ(z′) = z′′. The claim implies that ϕ is monotonous for the ordering
on γ ′, γ ′′. One can build similarly a map from γ ′′ to γ ′, which is an inverse of
ϕ. Consequently ϕ is a homeomorphismwhich is monotonous for the ordering
on γ ′, γ ′′.

Let y′
i be the intersection betweenWcs

y′ andWcu
xi

and y′′
i be the intersection

between Wcs
y′′ and Wcu

xi
. Let γ ′

i , γ
′′
i be the segments contained in Wcu

xi
and

bounded by {xi , y′
i } and {xi , y′′

i } respectively. One defines two monotonous
homeomorphisms ψ ′ : γ ′ ∩ H(p) → γi ∩ H(p) and ψ ′′ : γ ′′ ∩ H(p) →
γi ∩ H(p) which send x ′ and x ′′ on xi . There are obtained by considering
local projection through the center-stable holonomy: one hasψ ′(z′) = z when
z ∈ Wcs

z′ (and equivalently when z′ ∈ Wcs
z ). One thus obtains a monotonous

homeomorphism ϕi = ψ ′ ◦ ϕ ◦ ψ ′′−1 from γ ′
i ∩ H(p) to γ ′′

i ∩ H(p).
From the Claim 8.11 and exchanging (x ′, y′) and (x ′′, y′′) if necessary, one

can assume that y′′
i is between xi and y′

i inside Wcu
xi
. Consequently ϕi maps
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monotonously H(p)∩γ ′
i into itself. The sequence zn = ϕn

i (y′
i ) thus converges

to a point z which is fixed by ϕi but all the zn are distinct since by assumption
z0 = y′

i and z1 = y′′
i are distinct.

By construction, for each n one associates a compact connected set
Xn = Xψ ′−1(zn) ⊂ H(p) × H(p) × H(p) which contains the triples

(x ′, y′, ψ ′−1
(zn)) and (x ′′, y′′, ψ ′′−1

(zn)). Its projection on its third factor
is a compact connected set Cn ⊂ H(p) containing ψ ′−1

(zn) and ψ ′′−1
(zn)

and contained in a strong stable leaf. Similarly, let X = Xψ ′−1(z) and C be its
projection on the third factor. Then, Cn converges towards C for the Hausdorff
topology on compact sets of M , whereas the points ψ ′−1

(zn), ψ
′′−1

(zn+1) ∈
Cn converge towards ψ ′−1

(z), ψ ′′−1
(z) ∈ C .

Since z is fixed by ϕi , the center-stable plaques of the points ψ ′−1
(z),

ψ ′′−1
(z) intersect,whereas since zn, zn+1 are distinct, the center-stable plaques

of the points ψ ′−1
(zn), ψ

′′−1
(zn+1) are disjoint. Thus the intrinsic distances

between ψ ′−1
(z), ψ ′′−1

(z) and ψ ′−1
(zn), ψ

′′−1
(zn+1) are bounded away,

contradicting Lemma 8.2. The proof of Lemma 8.9 is now complete. ��
We now finish the proof of the proposition.

Proof of proposition 8.3 Let us assume by contradiction that for some point
x ∈ H(p) the set H(p) ∩ W ss(x) is not totally disconnected. We will
find a periodic point q ∈ H(p), a point z0 ∈ W s(q) ∩ H(p) and a set
C ⊂ W ss(z0) which is closed connected and non-compact for the intrinsic
topology on W ss(z0). In the stable manifold of the orbit of q, the iterates
f n(C) accumulate a non-trivial subset of W ss(q), contradicting the assump-
tion that W ss(q) ∩ H(p) = {q}.

In order to find q and C , we apply Lemma 8.8 and consider a non-compact
holonomy� and a pair (x0, y0) ∈ � such that x0 �= y0. The setsπ1(�), π2(�)

are contained in strong stable leaves and by Lemma 8.9 their closures in the
leaves are not compact. Let us remind that Wcu

x0 is a one-dimensional curve
and consider the open connected subset U ⊂ Wcu

x0 bounded by {x0, y0}. Two
cases have to be studied.

If H(p) does not meet the set U , then x0 is an unstable boundary point of
the chain-hyperbolic class H(p) (see Definition 3.16). By Lemma 3.17, there
exists a periodic point q in H(p) whose stable set contains π1(�). We define
z0 = x0 and the set C as the closure of π1(�) in W s(q), finishing the proof
in this case.

Let us assume now that there exists a point ζ ∈ U ∩ H(p). We intro-
duce a hyperbolic periodic point q homoclinically related to p and close to
ζ such that Wcs

q ⊂ W s(q) as given by Lemma 3.9. The plaques Wcs
q and

Wcu
x0 intersect at a point z0 ∈ U ∩ H(p). By Lemma 8.6, there is a closed

connected set X ⊂ H(p) × H(p) × H(p) which contains (x0, y0, z0), such
that for each (x, y, z) ∈ X one has z ∈ Wcu

x ∩ Wcu
y and (x, y) ∈ �. More-
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over the projection π3(X) is contained in a strong stable leaf of W s(q) and
X is non-compact. We want to show that the closure of π3(X) in W s(q) is
non-compact.

We know that the closure of one of the three projections π1(X), π2(X),

π3(X) is non-compact. If for instance this happens for π1(X), the closure of
π1,3(X) is a non-compact holonomy by Remark 8.7. Hence by Lemma 8.9,
the closure of π3(X) is non-compact also. One concludes that in any case
the closure C of π3(X) is non-compact: we have found a non-compact con-
nected set contained in H(p) ∩ W ss(z0) as claimed, concluding the proof of
the proposition in the second case. ��

8.3 Structure in the center-stable leaves: proof of Theorem 7

By the trapping property, the iterates of each plaque Wcs
x , x ∈ H(p), remain

in a small neighborhood of H(p), hence Wcs
x is foliated by a strong stable

foliation.We call strong stable plaques the connected components of the strong
stables leaves of Wcs

x .

Lemma 8.13 For any x ∈ H(p), let us consider a connected compact set
� ⊂ H(p) ∩ Wcs

x . Then � intersects each strong stable plaque of Wcs
x in at

most one point. In particular this is a curve.

Proof Let us assume by contradiction that � intersects some strong stable leaf
L ofWcs

x in at least two distinct points z, z′. Let us consider two small closed
neighborhoods U and U ′ of z, z′ in Wcs

x , such that U\L and U ′\L have two
connected components.

We introduce the connected components �z, �z′ of � ∩ U and � ∩ U ′
containing z and z′ respectively. These two sets are not reduced to z and z′
and, by Proposition 8.3 �z ∩ L and �z′ ∩ L are totally disconnected. In one of
the connected components V of U\L , all the strong stable plaques close to z
are met by �z . The same holds for �z′ and a component V ′ of U ′\L .

We claim that one can reduce to the case both components V, V ′ are on the
same side of L . Indeed if this is not the case, the connected set � intersects
L at another point z′′. One can thus define three sets V, V ′, V ′′; among them,
two are on the same side of L .

Let L̃ be a strong stable plaque close to z and z′ which intersects V and V ′:
all the plaques close to L̃ meet both �z and �z′ .

Let q be a periodic point homoclinically related to p and close to a point in
�z′∩L̃ . The local strong stablemanifoldW ss

loc(q) is close to L̃ and the projection
of �z by the center-unstable holonomy on Wcs

q is a connected compact set
that intersects both sides of W ss

loc(q). One deduces that this projection meets
W ss

loc(q) at a point y ∈ H(p)∩W ss(q)which is distinct fromq. This contradicts
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our assumption (made at the beginning of Sect. 8) that W ss(q)\{q} is disjoint
from H(p). ��

Let us call graph of a plaque Wcs
x a connected compact set of Wcs which

intersects each strong stable leaf of Wcs
x in at most one point.

Lemma 8.14 If for some point x0 ∈ H(p), the set Wcs
x0 ∩ H(p) is not totally

disconnected, then for each x ∈ H(p), there exists a graph �x ⊂ Wcs
x ∩ H(p)

containing x which meets all the strong stable plaques of Wcs
x that intersect a

small neighborhood of x.

Proof Let us consider a non trivial connected compact set � ⊂ Wcs
x0 . By

Lemma 8.13 this is a graph. Let us consider a point z ∈ � which is not an
endpoint. One also chooses a trapped plaque family D above H(p) tangent
to Ecs whose plaques have a small diameter and are contained in the plaques
ofWcs . Consequently the connected component �z of � ∩Dz contains z and
has its endpoints insideDz\Dz . We are aimed to build at each point x ∈ H(p)

a similar graph �x ⊂ Dx . This will imply the conclusion of the lemma. Let
us first choose a periodic point q homoclinically related to p and close to z.
By projecting � insideWcs

q along the center-unstable holonomy, one deduces

that Dq contains a graph �q ⊂ H(p) whose endpoints are inside Dq\Dq . It
contains a point close to q. Since W ss

loc(q)\{q} is disjoint from q, this proves
that �q contains q.

By the trapping property, for each n ≥ 0, the connected component � f −n(q)

of f −n(�q) ∩ D f −n(q) has also its endpoints inside the boundary of D f −n(q).
As a consequence H(p) contains a dense set of periodic points y and inside
each plaque Dy there exists a graph �y containing y whose endpoints belong
to Dy\Dy .

For any point x ∈ H(p) there exists a sequence of periodic points (yn)

converging towards x such that the sequence of graphs (�yn ) converges towards
a connected compact set�x : by Lemma 8.13 this is a graph and by construction
its endpoints belong to Dy\Dy as required. ��

We are now able to finish the proof of the theorem.

Proof of Theorem 7 We assume that the conclusion of the theorem does not
holds: in particular, the Lemma 8.14 applies. By Theorem 6, there exists two
distinct points x, y ∈ H(p) with y ∈ W ss(x). By iterations one may assume
that y belongs to the strong stable plaque of x inWcs

x . By Lemma 8.14, there
exists a graph �x ⊂ Wcs

x which contains x and meets all the strong stable
plaques of points close to x inWcs

x . One now argues as at the end of the proof
of Lemma 8.13: if q is a periodic point close to y, the projection of �x toWcs

q
has to intersect W ss

loc(q) at a point close to x , hence different from q. This
contradicts the assumptions. ��

123



Essential hyperbolicity and homoclinic bifurcations 491

8.4 Construction of adapted plaques

We now give a consequence of Theorem 7 giving plaques adapted to the
geometry of the classes along the center-stable plaques.

Let us consider an invariant compact set K with a dominated splitting E ⊕F
and a trapped family tangent to E such that the coherence holds for some
constant 10 ε > 0 (see Lemma 3.2). Let W̃ be another trapped family tangent
to E whose plaques have a small diameter and such that for each x ∈ K one
has W̃x ⊂ Wx . The coherence ensures that any plaque W̃y that intersects the
5ε-ball centered at x inside Wx is contained in Wx .

Definition 8.15 In this setting, a set X ⊂ K that is contained in the ε-ball
centered at a point x ∈ K inside the plaque Wx is said to be W̃-connected if
the union of the plaques W̃y for y ∈ X is connected.

When the diameters of the plaques W̃ are small, the W̃-connected sets have
a small diameter.

Proposition 8.16 Let f0 be a diffeomorphism, H(p f0) be a chain-recurrence
class which is chain-hyperbolic such that the bundles Ecs, Ecu are thin trapped
and consider some neighborhoods U of H(p f0), U of f0 in Diff1(M) and a
plaque family (Wcs

f,x ) f ∈U,x∈K f as provided by Corollary 3.7.
If for each x ∈ H(p f0), the set H(p f0) ∩Wcs

x is totally disconnected, then
for any η > 0 small, there exist smaller neighborhoods Ũ ⊂ U of H(p f0) and
Ũ of f0 and there are other plaque families (W̃cs

f,x ) f ∈Ũ,x∈K̃ f
defined on the

maximal invariant sets K̃ f in the closure of Ũ for f , satisfying the following
properties for each f ∈ Ũ and x ∈ K̃ f :

– The plaque W̃cs
f,x is contained in Wcs

f,x .

– Any W̃cs
f -connected set of K f ∩Wcs

f,x which contains x has diameter smaller
than η.

Proof One considers a constant ε > 0, two neighborhoods Uε of H(p f0) and
Uε of f0 which decrease to H(p f0) and f0 as ε goes to zero, and a continuous
collection of plaque family (Wcs

ε, f ) f ∈Uε defined on the maximal invariant set
Kε, f in the closure of Uε. We assume that these families are trapped, that each
plaqueWcs

ε, f,x has diameter smaller than ε and thatWcs
ε, f,x is contained in the

initial plaqueWcs
x . Such plaque families are given by Corollary 3.7.

For f ∈ Uε, one makes the union� f of the setsWcs
ε, f,x . We claim that when

ε goes to zero, the supremum of the diameter of the connected components of
� f (with respect to the center-stable topology) goes to zero. Indeed, if this is
not the case, one finds as limit set a non-trivial connected component of H(p f0)

for f0 and the center-stable topology, which contradicts our assumption. The
plaque family (W̃cs

f ) is thus chosen to be (Wcs
ε, f ) for some ε small enough. ��
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9 Uniform hyperbolicity of the extreme bundles: proof of Theorem 11

In this section we finish the proof of Theorem 11. We consider:

1. a diffeomorphism f0 and a chain-hyperbolic homoclinic class H(p f0)

which is a chain-recurrence class endowed with a dominated splitting
Ecs ⊕ Ecu such that:
1a. Ecu is one-dimensional and Ecs, Ecu are thin trapped by f0 and f −1

0
respectively.

1b. The intersection of H(p f0) with the center-stable plaques is totally
disconnected.

2. a C2-diffeomorphism f that is C1-close to f0,
3. a chain-recurrence class K for f contained in a small neighborhood of

H(p f0) such that:
3a. All the periodic points of K are hyperbolic.
3b. K does not contain a sink, nor a closed curve γ tangent to Ecu , invariant

by some iterate f n , n ≥ 1, such that f n|γ is conjugated to an irrational
rotation.

4. a transitive invariant compact set  ⊂ K for f such that the bundle Ecu is
uniformly expanded on any proper invariant compact subset of .

We prove here the following proposition.

Proposition 9.1 Let us consider some diffeomorphisms f0, f , some chain-
recurrence classes H(p f0), K and a subset  ⊂ K satisfying the assump-
tions 1)-4) above. Then the bundle Ecu is uniformly expanded on .

Let us explain how to conclude the Proof of the Theorem 11.
Proof of Theorem 11 Under the hypothesis of the theorem, the assump-

tions (1) and (2) above are clearly satisfied. Note that since K is contained
in a small neighborhood of H(p f0), the same holds for any chain recurrence
class K ′ which meets K . If for any such chain-recurrence class K ′, the bundle
Ecu is uniformly expanded, the same holds for K , hence the conclusion of
the theorem holds. Note that if K ′ contains a curve γ tangent to Ecu such that
f n preserves γ and is conjugated to an irrational rotation for some n ≥ 1,
then from the domination Ecs is uniformly contracted on the union X of the
iterates of γ and consequently X is an attractor. Since K ′ is chain-transitive,
K ′ coincides with X and is contained in K ; this gives Theorem 11 in this case.
The same holds if K ′ contains a sink. We will now assume by contradiction
that the conclusion of the theorem does not hold and hence that K ′ satisfies (3)
and that the bundle Ecu is not uniformly expanded by f on K ′.

One can then consider an invariant compact set ⊂ K ′ whose bundle Ecu is
not uniformly expanded and that is minimal for this property. Such a set exists
by Zorn’s lemma since if {α}α∈A is a family of invariant compact sets totally

123



Essential hyperbolicity and homoclinic bifurcations 493

ordered by the inclusion and if Ecu is uniformly expanded on the intersection
∩α∈Aα , then the same holds on theα for α large enough. Byminimality, for
any proper invariant compact set of , the bundle Ecu is uniformly expanded.

Since Ecu is one-dimensional and not uniformly expanded on, there exists
an invariant measure μ supported on  and whose Lyapunov exponent along
Ecu is non-positive. One can assume that μ is ergodic and by minimality of 

its support coincides with . This implies that  is transitive and satisfies 4).
By applying Proposition 9.1 to f, , K ′, the bundle Ecu is uniformly

expanded on  which is a contradiction. Consequently the conclusion of The-
orem 11 holds. ��

In the following we are in the setting of Proposition 9.1 and prove that
Ecu is uniformly expanded on . The proof follows the strategy of [39] (see
also [37,41,42] for more general contexts). The new difficulty is to work with
a non-uniformly contracted bundle Ecs having dimension larger than 1; the
summability arguments and the construction of Markovian rectangles become
more delicate.

Strategy Our goal is to find a non-empty open set B of  which satisfy:

(E) For any x ∈ B and n ≥ 1 such that f −n(x) ∈ B we have ‖D f −n
|Ecu (x)‖ <

1
2 .

This concludes the proof of the Proposition 9.1. Indeed if one considers any
point x ∈ , then:

– either its backward orbit intersects B and property (E) applies,
– or the α-limit set of x is a proper invariant compact subset of  whose
bundle Ecu is uniformly contracted by f −1.

In both cases, the point x has a backward iterate f −n(x) such that
‖D f −n

|Ecu (x)‖ < 1. By compactness one deduces that there is some k ≥ 1

such that for any x ∈  the derivative ‖D f −k
|Ecu (x)‖ is smaller than 1/2, con-

cluding the proof that Ecu is uniformly expanded on .

9.1 Topological hyperbolicity on 

We begin with preliminary constructions and recall some results from [39]
which only use the one-codimensional domination Ecs ⊕ Ecu and the fact that
f is C2. We introduce (in this order) the following objects satisfying several
properties stated in this section:

– some constants κ, λ, μ, χ related to the domination,
– two transverse cone fields Ccs, Ccu on a neighborhood of H(p f0): they are
thin neighborhoods of the bundles Ecs and Ecu over H(p f0) and they are
invariant by D f −1

0 and D f0 respectively.
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– two continuous trapped and coherent C1-plaques families (Wcs
f ), (Wcu

f )

provided by the Corollary 3.7, defined for diffeomorphisms f that are C1-
close to f0 and tangent to the bundles (Ecs

f ) and (Ecu
f ) over the maximal

invariant sets in a small neighborhood of H(p f0): the plaques are small and
tangent to Ccs, Ccu .

– some constants ε, ε̃ which control the geometry of the center-stable plaques
under backward iterations, their coherence and their intersections,

– some small neighborhood U of H(p f0): for any diffeomorphism f we then
denotes K f the maximal invariant set of f in U .

– a continuous family of trapped C1-plaques (Ŵcs
f ) tangent to Ecs over the

maximal invariant set in a small neighborhood of H(p f0): they have a small
diameter so that Ŵcs

x is contained in U for each x ∈ K ; moreover for each
x ∈ K , the plaque Ŵcs

x is contained in Wcs
x . This family is obtained by

Corollary 3.7. It will be used in order to define holes at Sect. 9.2.
– a scale ρ smaller than the diameter of the plaques Ŵcs and which control
the size of Markovian rectangles,

– a C2-diffeomorphism f , a chain-recurrence class K and a chain-transitive
set  satisfying the conditions of the Proposition 9.1: the C1-distance
between f and f0 and the size of the neighborhood of H(p f0) contain-
ing K are chosen small enough in order to satisfy further conditions that
will appear in Sect. 9.3.

– a scale r > 0 which depends on the C2-diffeomorphism f and on the set
, where the plaquesWcu are nicely controlled.

Now we list a series of properties that are used (and referred to) in the proof
of Proposition 9.1.

(a)Dominated splittingWefirst state someconsequences of the domination
Ecs⊕Ecu . To simplify the presentation, one can change theRiemannianmetric
(see [24]) and find κ ∈ (0, 1) such that for each point x ∈ H(p f0), and each
unitary vectors u ∈ Ecs

x and v ∈ Ecu
x , one has ‖D f0.u‖ < κ‖D f0.v‖. One

then chooses some λ, μ ∈ (0, 1) such that λμ > κ . This implies that: For any
x ∈ K f one has

‖D f|Ecs (x)‖ ≥ λ ⇒ ‖D f|Ecu (x)‖ > μ−1.

Since Ecu is not uniformly expanded on , there exists ζ ∈  such that
‖D f n

|Ecu (ζ )‖ ≤ 1 for all n ≥ 1. Note that since Ecu is uniformly expanded on
any invariant compact subset, the forward orbit of ζ is dense in . With the
domination Ecs ⊕ Ecu one deduces:

(i) There exists a point ζ with dense forward orbit in  such that for each
n ≥ 1 one has
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n−1∏

i=0

‖D f|Ecs ( f i (ζ ))‖ ≤ κn.

We fix some small constant χ > 0 such that (1 + χ)κ < λ. Choosing
Ccs thin enough one gets:

(ii) For any points x, y that are close and contained in a small neighborhood
of H(p f0) and for any unitary vector u ∈ Ccs

x , one has

‖D fx .u‖ ≤ (1 + χ) sup
{
‖D fy .v‖, v ∈ Ccs

y , ‖v‖ = 1
}

.

(b) Center stable and unstable plaquesAssuming that the plaques are
small and the cones thin, one deduces from our choice of λ, μ:

(iii) If for some point x ∈ K f and any n ≥ 1 one has

n−1∏

i=0

‖D f|Ecs ( f i (x))‖ ≤ λn,

thenWcs
x is contained in the stable set of x , i.e. the diameter of f n(Wcs

x )

goes to 0 as n → +∞.
(iv) If for some point x ∈ K f and some n ≥ 1 one has

n−1∏

i=0

‖D f|Ecs ( f i (x))‖ ≥ λn,

then the norm of the derivative of f −n along the plaqueWcu
f n(x) is smaller

than μn .
The center-stable discs do not degenerate under backward iterations: let
us fix ε > 0 small; then there is ε̃ > 0 small such that choosing f close
to f0 and U small the following holds.

(v) Consider any segment of orbit (z, . . . , f n(z)) in U and any disc D
tangent to Ccs , containing a ball centered at f n(z) of radius ε̃. Then
the preimage f −n(D) contains a ball B centered at z and of radius ε,
whose iterates f i (B), i ∈ {0, . . . , n}, have radius bounded by ε̃.
Indeed each point f i

0 (z) is close to a point xi ∈ H(p f0). Each disc D
in the plaqueWcs

f n
0 (z) at f n

0 (z) can be viewed as the graph of a Lipschitz

map above a domain �n of Wcs
xn
. The invariance of the cones Ccs, Ccu

and the fact that the bundle Ecs is thin trapped shows that f −k
0 (D), for

k ∈ {0, . . . , n} contains the graph of a Lipschitz map above a domain
�n−k of Wcs

xn−k
whose radius is uniformly bounded from below. The

property extends to any diffeomorphism f that is C1-close.
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The coherence of the plaques (Lemma 3.2 and Corollary 3.7) gives:
(vi) For any points x, y ∈ K f that are ε-close, if Wcs

x ∩ Wcs
y �= ∅ then

f (Wcs
y ) ⊂ Wcs

f (x). If Wcu
x ∩ Wcu

y �= ∅ then f −1(Wcu
y ) ⊂ Wcu

f −1(x)
.

Theholonomyalong the center-stable plaques canbe chosen to “preserve
the order”:

(vii) For any points x, y ∈ K f that are ε-close, the plaques Wcs
x and Wcu

y
intersect in a unique point.

(viii) For any points x−, x+, y, z ∈ K f that are ε-close, assume that y belongs
to a subinterval of Wcu

y bounded by x−, x+ and denote x̃−, x̃+, ỹ the
intersections of the plaques Wcs

x−,Wcs
x+,Wcs

y with Wcu
z . Then ỹ belongs

to the subinterval of Wcu
z bounded by x̃−, x̃+.

(This is a consequence of the coherence of the Wcs-plaques given by
the property (vi).)

(c) Smoothness and stability of the center-unstable plaquesWe now use
the following result which is based on a Denjoy argument. (The proof in [39]
is written for surface diffeomorphisms but as it is noticed in [41] this does not
make any difference.)

Lemma 9.2 ([39], lemma 3.3.2, item1) Let f be a C2-diffeomorphism and K
be an invariant compact set endowed with a dominated splitting Ecs ⊕ Ecu

such that Ecu is one-dimensional, K does not contain sinks and all its periodic
points hyperbolic. Then, there exists a locally invariant plaque family γ tangent
to Ecu such that

– the maps γx : Ecu
x → M, x ∈ K , define a continuous family of C2-

embeddings;
– for any r0 > 0, there exists r1 > 0 such that for any x ∈ K and n ≥ 0 the

image of the curve γx,r1 := γx (B(0, r1)) by f −n is contained in γ f −n,r0 .

For the C2-diffeomorphism f and the chain-recurrence class K one deduces
that the plaques Wcu are C2 in a neighborhood of the section 0 ∈ Ecu which
remains small by backward iterations. Indeed, the coherence, gives r > 0 such
thatWcu

x (B(0, r)) is contained in γx for any x ∈ K .
(d) Topological expansion along the center-unstable plaques The fol-

lowing result, whose proof is identical to the surface case [39], asserts that the
center-unstable curves γ in the center-unstable direction are unstable mani-
folds.

Lemma 9.3 ([39], lemma 3.5.2) Under the setting of Lemma 9.2, for any
transitive invariant compact set  ⊂ K such that on any proper invariant
compact sets the bundle Ecu is uniformly expanded, there exists r > 0 such
that

for any x ∈ , the length of f −n(γx,r ) decreases uniformly to 0 as n →
+∞.
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In the following we fix r > 0 small and depending on , as given by the
previous lemma, and we denote by W cu

loc(x) the C2-curve γx,r for x ∈ K . By
Lemma 9.2, the family of unstable curves (W cu

loc(x))x∈K is continuous for the
C2 topology. For points x ∈  we sometimes write W u

loc(x) = W cu
loc(x).

9.2 Adapted rectangles

(a) Rectangles The set B in condition (E) will be obtained from a geometry
adapted to the splitting Ecs ⊕ Ecu . A rectangle1 of  will be a union of local
unstable leaves of points of K .

Definition 9.4 A rectangle R is a union
⋃

x∈X γx with X ⊂ K such that for
each x ∈ X the set γx is an open interval of W cu

loc(x) bounded by two distinct
points x−

R , x+
R in K f and such that the following properties hold:

1. R has diameter smaller than ρ,
2. R ∩  is open in ,
3. for any x, y ∈ X , the point y−

R belongs to Wcs
x−

R
and the point y+

R belongs

to Wcs
x+

R
.

The sets {x−
R , x ∈ X} and {x+

R , x ∈ X} are called the boundaries of R.
By item (3) and the property (vi), any two curves γx , γx ′ with x, x ′ ∈ X are

either disjoint or coincide. For any z ∈ X or z ∈ R ∩ , one can thus denote
by W cu

R (z) the curve γx containing z.

Definition 9.5 A rectangle S is a subrectangle of R = ⋃
x∈X γx if it is a union⋃

x∈X γ ′
x over the same set X as R and if one has γ ′

x ⊂ γx for each x ∈ X .

Remark 9.6 Note that if S, T are two subrectangles of R and if x−
S = x−

T for
some x ∈ X , then it holds for all x . Indeed for any y ∈ X , the point y−

T is the
intersection ofWcs

x−
T

= Wcs
x−

S
with W cu

loc(y). In particular if W cu
S (x) = W cu

T (x)

for some x ∈ X , then S = T .

(b) Adapted rectangles We introduce for rectangles a kind of Markov
property.

Definition 9.7 A rectangle R is adapted if for any x, y ∈ X and n ≥ 0,

– the curve W cu
R (y) is either disjoint from or contained in f n(W cu

R (x)),

1 The name refers to the rectangles of Markov partitions. For general hyperbolic sets K the
rectangles are subsets of K but on surfaces one can also consider geometric Markov partitions
[Appendix 2]PT whose rectangles are subsets of the surface diffeomorphic to [0, 1]2. In higher
dimensions, when the unstable bundle is one-dimensional, one can build rectangles that are
laminated by curves as in Definition 9.4.
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– in the case W cu
R (y) ⊂ f n(W cu

R (x)) there exists a subrectangle S of R such
that for each z ∈ X the image f n(W cu

S (z)) is an unstable curve of R and
such that f n(S) contains W cu

R (y).

This subrectangle S is called a return and n is called a return time of R. In the
case f k(S) is disjoint from R for any 0 < k < n, one says that S and n are a
first return and a first return time of R.

The next lemma shows that returns of adapted rectangles are adapted (take
S = R).

Lemma 9.8 Let R be an adapted rectangle and S be a subrectangle of R.
Let also R′ be a return of R with return time n. Then S′ = R′ ∩ f −n(S) is a
subrectangle of R′. If S is adapted, S′ is adapted.

Proof Note that S′ has diameter smaller than ρ and S′ ∩  is open in . For
x ′ ∈ X , we consider the point x ∈ X such that f n(W cu

R′ (x ′)) = W cu
R (x) and

we define γx ′ = f −n(W cu
S (x)). By construction and since R is adapted, S′ is

the union
⋃

x ′∈X γx ′ . In order to prove that S′ is a rectangle it remains to check
the item 3 of the definition.

For x ′, y′ ∈ X , we consider x, y ∈ X such that f n(W cu
R′ (x ′)) = W cu

R (x) and
f n(W cu

R′ (y′)) = W cu
R (y).We then denote x−

S′ = f −n(x−
S ) and y−

S′ = f −n(y−
S ).

We have to prove that y−
S′ belongs to Wcs

x−
S′
. Let z by the intersection between

Wcs
x−

S′
and W cu

R′ (y−
S′). The image f n(z) is the intersection between Wcs

x−
S
and

W cu
R (y−

S ). Since S is a subrectangle of R, f n(z) and y−
S coincide, hence z and

y−
S′ coincide, as required.
We now assume that S is adapted and prove that S′ is adapted too. Let

us suppose that f m(W cu
S′ (x ′)) intersects W cu

S′ (y′) for some m ≥ 0. Taking
the image by f m , one deduces that f m(W cu

S (x)) intersects W cu
S (y). Since S

is adapted, one has W cu
S (y) ⊂ f m(W cu

S (x)). This implies that W cu
S′ (y′) is

contained in f m(W cu
S′ (x ′)), proving the first item of Definition 9.7.

Since R is adapted, there exists a subrectangle R′′ of R such that, for each
z′ ∈ X , the image f m(W cu

R′′(z′)) is an unstable curve of R and such that
f m(W cu

R′′(x ′)) = W cu
R (y′). By the first part of the lemma, the intersection

T ′ = R′′ ∩ f −m(S′) is a subrectangle of R′′. Note that W cu
T ′ (x ′) is contained in

W cu
S′ (x ′). By property (viii) this implies that for any z ∈ X one has W cu

T ′ (x ′) ⊂
W cu

S′ (x ′) proving that T ′ is a subrectangle of S′ such that W cu
T ′ (x ′) is mapped

on W cu
S′ (y′). Hence S′ is adapted. ��

(c) Holes In general,  ∩ R is smaller than R and one can introduce the
notion of hole.

Definition 9.9 A hole of a rectangle R is a subrectangle that is disjoint from
 and that is maximal for the inclusion and these properties.
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A hole has aperiodic boundary if its boundary
⋃

x∈X {x−
S , x+

S } is disjoint
from its forward iterates.

Lemma 9.10 1. If S is a hole of R then either for any unstable curve W cu
R (x)

of R one has x−
S = x−

R or there exists a sequence (xn) in R ∩  such that
d(xn, x−

n,S) goes to zero as n → +∞.
2. Holes of adapted rectangles are adapted.
3. For any adapted rectangle R, any hole S with aperiodic boundary and

any τ ≥ 1, there exists N ≥ 1 such that for any x ∈  ∩ R and any
n ≥ N satisfying f −n(W cu

S (x)) ⊂ S, the iterates f −n−k(W cu
S (x)) for

k ∈ {1, . . . , τ } are disjoint from S.

Proof Let S be a hole of R and W cu
R (x) be an unstable curve. We suppose

that x−
S �= x+

R . The points y ∈ K f ∩ R can be ordered by considering the
projectionsWcs

y ∩ W cu
R (x) on W cu

R (x) in such a way that x−
S < x+

S . The union
of the curves γ ′

y ⊂ W cu
R (y) for y ∈ X , bounded by y−

R and y+
S , is a rectangle.

Thus, since S is a hole and x−
R < x−

S , there exists points y ∈  ∩ R such that
x−

R < y ≤ x−
S .

If there exists an increasing sequence (xn) ∈  ∩ R whose projections on
W cu

R (x) converge towards x−
S , then the distance d(xn, x−

n,S) goes to zero and
we are done. So we assume by contradiction that this is not the case. There
exists a point x̄ ∈  ∩ R which is the limit of points y ∈  ∩ R and such that
there is no point y ∈  ∩ R satisfying x̄ < y ≤ x−

S . Since R has diameter
smaller than ρ, which has been chosen smaller than the size of the plaque Ŵcs ,
the plaque Ŵcs

x̄ intersects each curve W cu
R (y) at a point y−

T . The union of the
curves γ ′

y ⊂ W cu
R (y) for y ∈ X , bounded by y−

T and y+
R is a rectangle whose

intersection with  is empty. This contradicts the maximality of S. We have
thus proved the first item of the lemma.

Let us assume that R is adapted and that W cu
S (y) intersects f n(W cu

S (x))

for some n > 0 and some x, y ∈ X . We have to show that f n(x−
S ) and

f n(x+
S ) do not belong to the open curve W cu

S (y). Since R is adapted, there
exists a return T of R such that f n(W cu

T (x)) = W cu
R (y). By property (viii),

the rectangle T contains S. In the case z−
S and z−

R coincide for z ∈ X , the
point f n(z−

S ) = f n(z−
T ) does not belong to the interior of the curves of R, as

required. Otherwise, there exists by the first item a sequence (xk) in  ∩ R
such that d(xk, xk,S−) goes to 0 as k goes to +∞. Hence f n(xk) is close to
f n(x−

k,S) and belongs to R. We have thus proved thatWcs
f n(x−

S )
is accumulated

by points of  ∩ R. As a consequence, f n(x−
S ) can not belong to the interior

of an unstable curve of S. This gives the second item of the lemma.
Note that S has only finitely many returns with return time smaller or equal

to τ . If S has aperiodic boundary, its boundary is disjoint from the boundary
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of each of its returns: there exists δ > 0 such that for any return T with return
time smaller or equal to τ , one has d(x−

S , x−
T ) > δ and d(x+

S , x+
T ) > δ. For

n larger than some constant N , the unstable curves f −n(W u
loc(x)) of points

x ∈  have a size smaller than δ. If x ∈ R and f −n(W cu
S (x)) ⊂ S, then the

iterate f −n(x) ∈  belongs to R\S. One deduces that f −n(W cu
S (x)) belongs

to a return of S with return time larger than N . This gives the third item of the
lemma. ��

9.3 Construction of adapted rectangles

The assumptions (1) and (2) are now used for the construction of adapted
rectangles. The proof is strongly based on Proposition 8.16.

Proposition 9.11 There exists an adapted rectangle R such that R ∩  is
non-empty.

Moreover one can choose R in such a way that one of the following cases
occur.

1. For any τ ≥ 0, there is a first return S of R with return time larger than τ

such that  ∩ S �= ∅.
2. There exists a hole S of R with aperiodic boundary.

The section continues with the proof of this proposition.
(a) The construction We have to require further assumptions on f and 

needed to perform the following construction. We first choose η > 0 small.
In particular one has η < ρ < ε and the 10 η-neighborhood of H(p f0) is
contained in U .

Let us apply the Proposition 8.16: one gets a smaller open neighborhood
Ũ of H(p f0) such that for any diffeomorphism f that is close enough to f0
in Diff1(M), there exists a continuous family of C1-plaques W̃cs tangent to
Ecs over the maximal invariant set K̃ f of f in Ũ which satisfies the following
properties:

– If two plaques Wcs
x and W̃cs

y have an intersection in the ρ-ball centered at
x then W̃cs

y ⊂ Wcs
x .

– Any W̃cs-connected set of K ∩ Wcs
x containing x has radius smaller than

η.

Since f is close to f0, if the chain-transitive set  for f is contained in a
small neighborhood of H(p f0), then the chain-recurrence class K that contains
 is also contained in Ũ . We thus have the inclusions  ⊂ K ⊂ K̃ f ⊂ K f .

Approximation by periodic orbits We build a sequence of periodic points
(pk) in K such that
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• the orbit of pk converges toward  for the Hausdorff topology,
• for each iterate f n(pk), the plaqueWcs

f n(pk)
is contained in the stable man-

ifold of f n(pk).

Let us fix ζ ∈  satisfying the property (i). With the property (iii), the plaque
Wcs

ζ is contained in the stable set of ζ . Note that ζ is not periodic since
otherwise  would be a periodic orbit: by our assumptions, either it would
be a sink or the bundle Ecu would be uniformly expanded, contradicting our
assumptions. This ensures that all the plaquesWcs

f n(pk)
andWcs

ζ are disjoint.

Claim 9.12 For any α > 0, there exists δ > 0 with the following property. For
any forward return y = f n(ζ ) that is δ-close to ζ , there exists x ∈ W cu

loc(ζ )∩K
such that d( f k(x), f k(ζ )) is smaller than α for each 0 ≤ k ≤ n and the image
f n(Wcs

x ) is contained in Wcs
x .

In particular for any k ≥ 0 one has

k−1∏

i=0

‖D f|Ecs ( f i (x))‖ ≤ λk .

Proof From Lemma 9.3, there exists r0 such that for any point z ∈ , the
backward iterates of the ball centered at z and of radius r0 in W u

loc(z) have a
length smaller than α. For δ0 small enough and any point y, x ∈ K that are
δ0-close to ζ , the plaque Wcs

x intersects W cu
loc(y) at a point y′ which belongs

to the ball centered at y and of radius less than r0 in W cu
loc(y). For n large

enough, the length of any curve f −n(W cu
loc(y)) with y ∈  is smaller than δ0.

We choose δ ∈ (0, δ0) so that the returns f n(ζ ) that are δ-close to ζ occur for
n large.

We define inductively a sequence of points xi ∈ K ∩ W cu
loc(ζ ) that are

δ0-close to ζ and satisfy:

– d( f k(xi ), f k(ζ )) < α for any 0 ≤ k ≤ n,
– f n(Wcs

xi+1
) is contained inWcs

xi
and x0 = ζ . With properties (i) and (ii), this

implies that
– For any k ≥ 0 one has

∏k−1
j=0 ‖D f|Ecs ( f j (xi ))‖ ≤ λk .

The construction is done in the following way. Let us assume that xi has been
defined. Then the plaque Wcs

xi
intersects W u

loc(y) in a point yi . By property
(iii) the point yi belongs to the stable and the unstable set of , hence belongs
to K . Moreover the distances d( f −k(yi ), y) are smaller than α for any k ≥ 0.
We then define xi+1 = f −n(yi ) and by construction this point is δ0-close to ζ

and belongs to W u
loc(ζ ).

The map xi 	→ xi+1 is continuous and monotonous, hence converges to a
fixed point x ∈ W u

loc(ζ ) ∈ K . The construction and properties (i), (ii) give the
announced conclusions on x . ��
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Since ζ is recurrent, the Lemma 9.12 gives a sequence of points (xk) in
W u

loc(ζ ) ∩ K which converges toward ζ and such that each plaque Wcs
xk

is
mapped into itself by an iterate f nk . The contraction along the bundle Ecs at
xk shows that each plaqueWcs

xk
is contained in the stable manifold of a periodic

point pk ∈ Wcs
xk

∩ K .
By construction, the orbit (xk, f (xk), . . . , f nk−1(xk)) is contained in an

arbitrarily small neighborhood of.With the contraction along the bundle Ecs

at xk and the fact that f nk (Wcs
xk

) ⊂ Wcs
xk
, one deduces that the whole forward

orbit of xk and the orbit of pk are close to  for the Hausdorff topology. Since
the plaques Wcs are trapped, each plaque Wcs

f n(pk)
is contained in the stable

set of the orbits of pk .
The boundary Wcs

p−,Wcs
p+ . We fix some periodic point pk for k large and

consider the set P of all iterates p′ of pk such that d(p′, x) < 5 η.
We choose x0 ∈  close to ζ and p−, p+ ∈ P so that the open interval

I ⊂ W u
loc(ζ ) bounded by Wcs

p− and Wcs
p+ has the following properties:

– for any point p′ ∈ P the intersection ofWcs
p′ with W u

loc(ζ ) does not belong
to I ,

– Wcs
x0 intersects I .

The plaquesWcs
f n(p±)

close to ζ are controlled:

Claim 9.13 For any n ≥ 0, either the iterate f n(Wcs
p+) does not meet the ball

centered at ζ of radius 2η, or Wcs
f n(p+)

does not intersect I . The same holds
with the iterates of Wcs

p− .

Proof Let us fix a large integer N . Since ζ is non-periodic and Wcs
ζ is con-

tained in its stable set, the iterates f n(Wcs
ζ ) are pairewise disjoint. From the

construction, having chosen Wcs
p+ close to Wcs

ζ and I close to ζ , the plaques
f n(Wcs

p+) do not meet I for n ≤ N .
When n = N , the radius of the plaque f n(Wcs

p+) is small, and the plaque

is contained in W̃cs
f n(p+)

. By the trapping property, any iterate f n(Wcs
p+) with

n ≥ N is thus contained in W̃cs
f n(p+)

and has a radius smaller than η. One
deduces that if f n(Wcs

p+) meets the ball centered at ζ of radius 2η, then the

distance between f n(p+) and ζ is smaller than 3η. Consequently, f n(p+)

belongs to P and Wcs
f n(p+)

does not meet I . ��
The rectangle R. Let us consider in the 2η-neighborhood of ζ the set X0

of points z ∈ Wcs
ζ that belong to a forward iterate f j (W u

loc(y)) associated

to a point y ∈ . Then we define X as the largest W̃cs-connected subset of
X0 containing ζ . By the choice of W̃cs , the set X has diameter bounded by
η. We define R as the union of curves γz ⊂ W cu

loc(z), z ∈ X , bounded by the
intersections z−, z+ between W cu

loc(z) and Wcs
p−,Wcs

p+ .
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By the choice of η and the construction, the points z−, z+ belong to K f .
With property (vi), one deduces that the items 1) and 3) of the Definition 9.4
are satisfied.

Consider any close points x, y ∈ with x ∈ R. The intersections ofW u
loc(x)

and W u
loc(y) withWcs

ζ are close, hence belong to the same W̃cs-component of
X0. As a consequence, W u

loc(y)∩Wcs
ζ belongs to X . This shows that y belongs

to R. We have proved that  ∩ R is open in  and that R is a rectangle. By
construction it contains the point x0 and the intersection R ∩  is non-empty.

(b) R is adapted Let us assume that for some x, y ∈ X , a forward iterate
f n(γx ) intersects γy . Considering a large backward iterate, the two curves
f n−m(γx ) and f −m(γy) are small and contained in local unstable curves
W u

loc(x ′) and W u
loc(y′) for some points x ′, y′ ∈ . By property (vi), one

deduces that f n−m(γx ) and f −m(γy) are contained in a same unstable curve
W u

loc(x ′). In particular, if f n(γx ) intersects γy but does not contain γx , then
the image of an endpoint f n(x−) (or f n(x+)) of γx is contained inside γy .
One deduces that Wcs

f n(p−)
intersects I . Since f n(x−) is 2η-close to x , this

contradicts the Claim 9.13 above. We have thus proved the first item of Defi-
nition 9.7.

Assume now that f n(γx ) contains γy . One can define the subrectangle S of
R whose unstable curves are bounded byWcs

x−
S
andWcs

x+
S
, with x±

S = f −n(y±
R ).

It remains to prove that f n(S) is contained in R. Let us consider the set X+
S

of points z+
S for z ∈ X , i.e. the intersection of Wcs

x+
S
with the unstable curves

W cu
loc(z). Since z+

S and z are close, the set X+
S is connected for the larger plaque

family f −1(W̃cs) containing the plaques f −1(W̃cs
f (x)) for x ∈ K̃ f . Note that n

is larger than 2. As a consequence, the set f n(X+
S ) is f (W̃cs)-connected. One

thus deduces that the set X ′ of intersections of the curves W cu
loc(z), z ∈ X+

S ,
with Wcs

ζ is W̃cs-connected. Since it contains y ∈ X , this set is contained in

the W̃cs-component X . This proves the second item of Definition 9.7 and R
is adapted.

(c) Periodic center-stable plaques Let us assume that there exist x ∈ 

and n ≥ 1 such that the plaque Wcs
x is mapped into itself by f n . The set  is

not contained in the orbit of the plaqueWcs
x : otherwise the property (i) would

imply that ζ is a sink of Wcs
x , contradicting the fact that  is non-periodic.

SinceWcs
ζ is contained in the stable manifold of ζ , the closure ofWcs

ζ and of
Wcs

x are disjoint.
Note that the rectangle R can have been constructed arbitrarily thin in the

center unstable direction, hence it is contained in an arbitrarily small neigh-
borhood ofWcs

ζ . In particular, the closure of R and the closure of the orbit of x
are disjoint. Since  is transitive the first return time on  ∩ R is unbounded,
giving the first case of Proposition 9.11.
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(d) Non-periodic center-stable plaques Let us assume the opposite case:
there does not exist x ∈  and n ≥ 1 such that the plaque Wcs

x is mapped
into itself by f n . Let R0 be a rectangle as obtained in paragraphs (a) and (b).
One can assume also that the first case of the Proposition 9.11 does not hold.
Since R0 ∩  is non empty and since  is the Hausdorff limit of periodic
points, there exists a periodic point p ∈ K f whose plaque Wcs

p intersects all
the unstable leaves W cu

R0
(z) of R0 at a point z p which is not in .

As in the proof of Lemma 9.10, the points K f ∩ R0 are ordered by their
projection on anunstable curve of R0. There exist twopoints x−, x+ ∈ K f ∩R0
such that x− < z p < x+, any point y ∈  ∩ R0 satisfies y ≤ x− or y ≥ x+
and such that there is no x̄− < x− or x̄+ > x+ with the same properties. One
checks easily that the collection of curves γ ′

z ⊂ W u
R0

(z) bounded by points in
Wcs

x− and Wcs
x+ is a rectangle and a hole S0 of R0.

We then explain how to modify R0 in order to obtain a hole with aperiodic
boundary. Since R0 ∩  is non-empty, one can assume by Lemma 9.10 that
there exists a sequence xn ∈  ∩ R0 such that d(xn, x−

n,S0
) goes to zero as

n goes to +∞. Let us denote by X− = {z−
S0

, z ∈ X} one of the boundaries
of S0. By construction there exists x− ∈ X− ∩  such that the plaque Wcs

x−
contains X−. One deduces that X− is disjoint from its forward iterates.

One can choose the points xn to have a dense forward orbit. In particular
they return to R0. Since the return time is bounded, one can also assume that
they all have the same return time, hence belong to a same return T of R0.
The set X− belong to T : otherwise it would be contained in the boundary of
T and mapped by a forward iterate into the boundary of R0; since the closure
of X− meets  and since the boundary of R0 is contained in the stable set of a
periodic orbit, this would imply that theWcs-plaque of a point of is mapped
into itself, contradicting our assumption.

Note that the set X− is still one of the boundaries of a hole of T and that the
boundary of T is still contained in the stable set of periodic orbits. One can
thus replace R0 by T and repeat the same argument. Doing that several times,
one gets a deeper return R of R0 which contains the set X−. The rectangle R
is arbitrarily thin in the unstable direction, hence it contains a hole S whose
boundaries are X− and a boundary of R. By construction the boundaries of R
are disjoint from their iterates. This implies that S has aperiodic boundaries.

The proof of the Proposition 9.11 is now complete. ��

9.4 Summability

For any point x ∈ K we denote by �(J ) the length of any interval J contained
in its local unstable manifold W cu

loc(x). This section is devoted to the proof of
the next proposition.
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Proposition 9.14 For any adapted rectangles S, R, where S is a subrectangle
of R, there exists K (S) > 0 satisfying the following: for any x ∈  ∩ R, and
any n ≥ 0 such that the curves f −k(W cu

S (x)), 0 < k < n, are disjoint from S,
we have

n−1∑

k=0

�( f −k(W cu
S (x))) < K (S).

Moreover, there is K0 > 0 which only depends on R such that K (S) < K0
when S is a return of R.

(a) Summability for first returns The first case corresponds to [39, lemma
3.7.1].

Lemma 9.15 For any adapted rectangle R with R ∩ �= ∅, there are C1 > 0,
σ1 ∈ (0, 1) as follows.

For any unstable curve W cu
R (x) of R with W cu

loc(x) ∩  �= ∅, any interval
J ⊂ W cu

R (x) and any n ≥ 0 such that the iterates f − j (W cu
R (x)) with 0 < j <

n are disjoint from R we have

�( f −n(J )) ≤ C1 σ n
1 �(J ).

Proof Let us consider a point z ∈ ∩ R. Since∩ R is open, one can choose
a small open neighborhood V of z. The maximal invariant set

1 =
⋂

n∈Z
f n( − V )

in∩(M\V ) is compact and proper in. By assumption Ecu is expansive on
1. It is thus possible to get a neighborhood of 1 such that while the iterates
remain in this neighborhood the subbundle Ecu is uniformly expanded by D f .
Moreover, the number of iterates that an orbit of remains in the complement
of the mentioned neighborhood of 1 and V is uniformly bounded.

Since W cu
loc(x) ∩  �= ∅, one can always assume that x belongs to . By

Lemma 9.3, choosing n0 large enough (and independent from x, J, j), the
curves f − j (W u

loc(x)) for j ≥ n0 are small. If j < n, the segment f − j (J )

is disjoint from R, hence f − j (x) is disjoint from V . Moreover x belongs
to . One deduces that there exist uniform constants σ ∈ (0, 1) and C >

0 such that ‖D f − j
|Ecu (x)‖ < Cσ j for all 0 < j < n. Since for n0 large

enough the curves f − j (W u
loc(x)) are small, the derivatives ‖D fEcu ( f − j (x))‖

and ‖D fEcu ( f − j (y))‖ for y ∈ W u
loc(x) are close.

123



506 S. Crovisier, E. R. Pujals

One deduces that for any 0 < j < n and y ∈ W u
loc(x) one also has

‖D f −n
|Ecs (y)‖ < C1σ

n
1 for other constants C1 > 0, σ1 ∈ (0, 1). The conclusion

of the lemma follows. ��
(b) Distortion along center-stable holonomies and contracting returns

We will need to compare the unstable curves.

Definition 9.16 A rectangle R has distortion bounded by � > 0 if for any
unstable curves W cu

R (x), W cu
R (y) one has:

1

�
≤ �(W cu

R (x))

�(W cu
R (y))

≤ �.

We will also need to consider returns that contract along the center-stable
bundle.

Definition 9.17 Let us fix N ≥ 0. A point z0 ∈ K f is N-contracting in time
n if there exists m ≤ N in {0, . . . , n} such that for each i ∈ {m, . . . , n} one
has

i∏

k=m

‖D f|Ecs ( f k(z0))‖ ≤ λi−m .

A return S of a rectangle R with returning time n is N-contracting if there
z0 ∈ K f ∩ S which is N -contracting in time n.

The following lemma is similar to [39, lemma 3.4.1].

Lemma 9.18 For any adapted rectangle R and any N ≥ 0, there is �1 > 0
such that any N-contracting return of R has distortion bounded by �1.

Proof One chooses a C1-foliationF tangent to the cone field Ccs and contain-
ing the plaquesWcs

x− ,Wcs
x+ of R. For any unstable curves of R with basepoints

x, y ∈ X , one gets a diffeomorphism �x,y : W cu
R (x) → W cu

R (y), whose
derivative is bounded from above and below uniformly in x, y ∈ X .

Let S be a N -contracting return of R. For any unstable curves of S with base-
points x ′, y′, their images by f n coincide with some curves W cu

R (x), W cu
R (y)

of R. This allows us to define a diffeomorphism �n
x ′,y′ : W cu

S (x ′) → W cu
S (y′)

by

�n
x ′,y′ = f −n ◦ �x,y ◦ f n.

The distortion of S is thus controlled by the following quantity, for any z ∈
W cu

S (x ′):

‖D f n
|T W cu

S (z)‖/‖D f n
|T W cu

S (�n
x ′,y′ (z))‖.
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Using that the forward iterates of any vector tangent to Ccu in U converge
towards Ecu (uniformly) exponentially fast and that the bundle Ecu is Hölder
(see Lemma 7.4), one can argue as in [39, lemma 3.4.1] and show that there
exist some uniform constants C > 0 and α ∈ (0, 1) such that

‖D f n
|T W cu

S (z)‖
‖D f n

|T W cu
S (�n

x ′,y′ (z))
‖ ≤ exp

(

C + C
n−1∑

i=0

d( f i (z), f i (�n
x ′,y′(z)))α

)

.

It remains to estimate d( f i (z), f i (�n
x ′,y′(z))) and it is clearly enough to

consider the case i ≥ N . Using the property (v) stated in Sect. 9.1, there
exists a disc B centered at z tangent to Ccs of radius larger than ε, whose
iterates f i (B), i ∈ {0, . . . , n} have a radius smaller than ε̃ and such that
f n(B) is contained in a leaf of the foliation F . One deduces that B contains
the point �n

x ′,y′(z). From property (ii), the distance d( f i (z), f i (�n
x ′,y′(z)) is

thus bounded by

d( f i (z), f i (�n
x ′,y′(z))) ≤ d( f m(z), f m(�n

x ′,y′(z))) (1 + χ)i−m

∏i
k=m ‖D f|Ecs ( f k(z0))‖

≤ ε̃ (1 + χ)i−m λi−m,

where z0 ∈ K f ∩ S is a point which satisfies the Definition 9.17 for some
integer m ≥ N . We have assumed that (1 + χ)λ < 1 (recall Sect. 9.1), hence
the sum

∑n−1
i=0 d( f i (z), f i (�n

x ′,y′(z)))α is bounded uniformly. This concludes
the proof of the lemma. ��

With the same proof, the Lemma 9.18 generalizes to the following setting.

Lemma 9.19 For any adapted rectangles S, R such that S is a subrectangle
of R and for any N ≥ 0, there exists �1(S) such that for any N-contracting
return R′ of R with return time n, the subrectangle S′ = R′ ∩ f −n(S) has
distortion bounded by �1(S).

(c) Summability between contracting returns One now obtains the sum-
mability for returns which do not satisfy Lemma 9.18.

Lemma 9.20 For any adapted rectangle R and any N ≥ 1 large enough,
there is K1 > 0 as follows.

Consider x ∈  ∩ R and 0 ≤ k < l such that:

– f −k(W cu
R (x)) ⊂ R and f −k(x) is N-contracting in time k,

– for any k < j < l, either f − j (W cu
R (x)) ∩ R = ∅ or f − j (x) is not N-

contracting in time j .
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Then for any curve J ⊂ W cu
R (x) one has

l∑

j=k

�( f − j (J )) ≤ K1 �( f −k(J )).

Proof We letR ⊂ {k, . . . , l} be the set of integers n such that f −n(W u
R(x)) ⊂

R. Since R is adapted the other integers satisfy f −n(W u
R(x)) ∩ R = ∅. The

Lemma 9.15 can be restated as:

Claim 9.21 There exists K2 > 0 satisfying the following. For any integers
r < p in {k, . . . , l} such that r ∈ R and {r + 1, r + 2, . . . p − 1} ∩ R = ∅,
one has

p∑

j=r

�( f − j (J )) < K2 �( f −r (J )).

We also introduce the set P ⊂ {0, . . . , l} of integers n such that for each
0 ≤ i < n one has

n∏

j=i+1

‖D f|Ecs ( f − j (x))‖ ≤ λn−i .

The summability between iterates in P is ensured by the next classical argu-
ment.

Claim 9.22 For any integers p < r in {k, . . . , l} such that p ∈ P and {p +
1, p + 2, . . . , r − 1} ∩ P = ∅, one has

�( f −r+1(J )) < μr−p−1�( f −p(J )).

Proof Using that the integers n ∈ {p + 1, . . . , r − 1} are not in P , one proves
inductively that

n∏

j=p+1

‖D f|Ecs ( f − j (x))‖ > λn−p. (9.1)

Indeed, if one has ‖D f|Ecs ( f −p−1(x))‖ ≤ λ, then using that p belongs to
P , one deduces that p + 1 also, which is a contradiction. Moreover if the
inequality (9.1) holds for all the integers p + 1, . . . , n − 1 and is not satisfied
for n, then for all i ∈ {p, . . . , n − 1} one gets

n∏

j=i+1

‖D f|Ecs ( f − j (x))‖ ≤ λn−i .
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Since p belongs to P this implies that n also which is a contradiction. This
proves that (9.1) holds.

The property (9.1) for n = r −1 together with (iv) in Sect. 9.1 imply that the
norm of D f p−r+1

|W u
S ( f −p(x))

along the plaque W cu
S ( f −p(x)) is smaller thanμr−p−1,

giving the required conclusion. ��
We can now prove the lemma. Let C f > 1 be an upper bound of ‖D f ‖. We

choose N large enough so that one has μN K2C f < 1
2 .

Let us consider ps < ps−1 < · · · < p0 in P and k ≤ rs < rs−1 < · · · <

r0 ≤ l in R which satisfy:

– For each i ∈ {0, . . . , s} one has pi ≤ ri and for i ∈ {1, . . . , s} one has
ri ≤ pi−1.

– There is no r ∈ R such that ri < r < pi . There is no p ∈ P such that
pi < p < ri−1.

– ps ≤ k and when s ≥ 1 one has k < ps−1. There is no r ∈ R such that
r0 < r ≤ l.

These sequences are defined inductively: r0 is the largest integer inR smaller
or equal to l and p0 is the largest integer in P smaller or equal to r0. Assume
that pi ≤ ri have been constructed. If pi ≤ k we set s = i and the construction
stops. Otherwise we let ri+1 be the largest integer inR that is smaller or equal
to pi and smaller than ri . By assumption pi is larger than n, hence ri+1 is
larger or equal to n. Then pi+1 be the largest integer in P smaller or equal to
ri+1 and smaller than pi .

Since f −k(x) is N -contracting in time k, we have ps ≥ k−N . One deduces

�( f −ps (J )) ≤ C N
f �( f −k(J )).

Using Claims 9.21 and 9.22, for each i ∈ {1, . . . , s} one has
pi−1∑

k=pi

�( f −k(J )) ≤ ((1 − μ)−1 + K2C f ) �( f −pi (J )),

l∑

k=p0

�( f −k(J )) ≤ ((1 − μ)−1 + K2C f ) �( f −p0(J )),

�( f −pi−1(J )) ≤ μri −pi K2C f �( f −pi (J )).

By our assumptions, when i satisfies 0 < i < s the point f −ri (x) ∈ R is not
N -contracting. As a consequence ri − pi ≥ N . This implies by our choice of
N ,

�( f −pi−1(J )) ≤ μN K2C f �( f −pi (J )) ≤ 1

2
�( f −pi (J )).
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Putting all these estimates together one gets the conclusion:

l∑

j=k

�( f − j (J )) < ((1 − μ)−1 + K2C f )(1 + 2K2C f )C
N
f �( f −k(J )).

��
(d) Proof of the proposition 9.14 Let us choose N ≥ 1 large and consider the
constant K1 given by Lemma 9.20. The Lemma 9.19 applied to the rectangle S
gives a bound �1(S). We fix an unstable curve W cu

R (x0) of R. We set K (S) =
2�1(S)K1�(W cu

R (x0)). We also set nS = 0 (in the case S is a return we will
obtain a better result taking nS equal to the return time).

Let x ∈  ∩ R and J = W u
S (x). We introduce the setRP ⊂ {−nS, . . . , n}

of integers i such that f −i (J ) ⊂ R and f −i (x) is N -contracting in time i +nS .
Since R is adapted, the Lemma 9.8 shows that for each i ∈ RP , there exists a
subrectangle Si of R such that

– f −i (J ) is an unstable curve of Si ,
– for each unstable curve W cu

Si
(z) of Si the image f i (W cu

Si
(z)) is an unstable

curve of S.

Lemma 9.23 For any i ′ < i in RP ∩ {1, . . . , n}, the rectangles Si , Si ′ are
disjoint.

Proof Assume by contradiction that some unstable curves f −i (W cu
S (y)) and

f −i ′(W cu
S (y′)) of Si and Si ′ intersect. Then W cu

S (y′) intersects f i ′−i (W cu
S (y))

and since S is adapted, there exists a return T of S with returning time i−i ′ such
that f i ′−i (W cu

S (y)) is an unstable curve of T . One deduces from Remark 9.6
and Lemma 9.8 that f i ′(Si ) is contained in T , hence in S. This contradicts the
assumption that f i ′−i (W cu

S (x)) is disjoint from S. ��
Let i0 be the largest integer in RP which is smaller or equal to nS . (When

nS = 0, one has i0 = 0). We now end the proof of the Proposition 9.14. The
Lemma 9.20 implies that

∑n−1
k=0 �( f −k(W cu

S (x))) ≤ ∑n−1
k=i0−nS

�( f −k(W u
S (x)))

≤ K1

(
�( f −i0(J )) + ∑

i∈RP , i>nS
�( f −i (J ))

)
.

Since f −i (x) is N -contracting in time i + nS , the Lemma 9.18 implies that
for each i ∈ RP

�( f −i (J )) ≤ �1(S) �(W cu
Si

(x0)).
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The Lemma 9.23 implies that the intervals W cu
Si

(x0) for i ∈ RP with i > nS
are disjoint. As a consequence

∑

i∈RP , i>nS

�(W cu
Si

(x)) ≤ �(W cu
R (x0)).

Putting together these last three inequalities, one concludes the proof of the
Proposition 9.14 in the general case S is an adapted subrectangle:

n−1∑

k=0

�( f −k(W cu
S (x))) ≤ 2�1(S)K1 �(W cu

R (x0)) = K (S).

When S is a return, we take nS equal to the return time so that f nS (J ) is an
unstable curve of R. The constant �1 is given by Lemma 9.19 and as before
we set K0 = 2�1K1�(W cu

R (x0)). We repeat the same proof, noting that the
subrectangles Si are returns of R, so that for each i ∈ RP we have the better
estimate

�( f −i (J )) ≤ �1 �(W cu
Si

(x0)).

The conclusion of the Proposition 9.14 thus holds with the uniform constant
K0. ��

9.5 Proof of the Proposition 9.1

In order to conclude the proof of Proposition 9.1 we consider a rectangle R as
given by the section 9.3 and we distinguish between two cases described by
the Proposition 9.11.

(a) Distortion along unstable curves Since by Lemma 9.2, the unstable
curves the set K are contained in a continuous C2-plaque family, the classical
distortion estimates hold (see for instance [39, lemma 3.5.1]).

(D) There is �2 > 0 such that for any z ∈ K , any x, y in an interval J ⊂
W cu

loc(z), and any n ≥ 0,

‖D f −n
|Ecu (x)‖

‖D f −n
|Ecu (y)‖ ≤ exp

(

�2

n−1∑

k=0

�( f −k(J ))

)

.

In particular,

‖D f −n
|Ecu (x)‖ ≤ �( f −n(J ))

�(J )
exp

(

�2

n−1∑

k=0

�( f −k(J ))

)

. (9.2)
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As a consequence we also get the following.

(D’)For any C > 0 there is η > 0 such that for any z ∈ K , for any intervals
J ⊂ Ĵ ⊂ W cu

loc(z) and for any n ≥ 0 satisfying �( Ĵ ) ≤ (1 + η) �(J ) and
∑n−1

k=0 �( f −k(J )) ≤ K , then one has

n−1∑

k=0

�( f −k(J )) ≤ 2 C.

In particular for any x ∈ Ĵ one has

‖D f −n
|Ecu (x)‖ ≤ �( f −n(J ))

�(J )
exp

(

2 �2

n−1∑

k=0

�( f −k(J ))

)

.

(b)Adapted rectangleswithunboundedfirst returnsWeconcludePropo-
sition 9.1 in the first case of the Proposition 9.11. (The end of the proof corre-
sponds to [39, lemma 3.7.4].)

Lemma 9.24 For any adapted rectangle R, there exists τ ≥ 0 as follows.
If there exists a first return S0 of R with return time larger than τ and such

that S0 ∩  �= ∅, then, there also exists a return S of R such that S ∩  �= ∅
which has the following property: for any x ∈ S ∩  and n ≥ 1 such that
f −n(x) ∈ S we have ‖D f −n

|Ecu (x)‖ < 1
2 .

In particular the property (E) holds with B = S ∩ .

Proof Let K0, K1, N , �1 be some constants associated to R so that Propo-
sition 9.14 and Lemmas 9.18 and 9.20 hold. Let L be a lower bound for the
length of unstable curves W cu

R (z) of R and l be an upper bound for all the
backward iterates f − j (W cu

R (z)) with j ≥ 0. Recall that �2 > 0 is a constant
such that (9.2) holds. We also set

δ = L

�1
exp(−�2 (K0 + K1 l))/3

and choose τ ≥ 1 so that for any z ∈  the backward iterates f −k(W cu
loc(z))

with k ≥ τ have a length smaller than δ (see Lemma 9.3). We then consider a
return S0 of R with return time n0 larger than τ such that S0 ∩  �= ∅. Two
cases occur.

Case 1: no contracting backward iterate. We assume first that for any x ∈
S0 ∩ , there is no backward iterate f − j (x) with j ≥ 0 which belongs to a
N -contracting return of R with return time j . In this case, we set S = S0. For
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any point x ∈ S ∩  and any j ≥ 1 such that f − j (x) ∈ S one can apply the
Lemma 9.20 to x and the integers k = 0 and l = j . One deduces that one has

j∑

i=0

�( f − j (W cu
R (x))) ≤ K1�(W cu

R (x)) ≤ K1 l.

Note that j ≥ n0 ≥ τ . Since z belongs to , one deduces that f − j (W cu
R (z))

is smaller than δ. With property (D), one gets

‖D f − j
|Ecs (x)‖ ≤ �( f − j (W cu

R (z)))
�(W cu

R (z)) exp(�2 K1 l)

≤ δ
L exp(�2 K1 l) < 1/2.

The lemma is thus proved in this case.
Case 2: contracting backward iterates exist. We first build the return S.

Claim 9.25 There exists a N-contracting return S of R with return time n1 ≥ τ

such that  ∩ S �= ∅ and such that for each z ∈  ∩ S one has

n1∑

j=0

�( f j (W cu
S (z))) < K1 �(W cu

R ( f n1(z))).

Proof There exists a point x ∈ f n0(S0) ∩  and a backward iterate f −n1(x)

with n1 > n0 which belongs to a N -contracting S return of R with return time
n1. One can assume that n1 is minimal: consequently for any i ∈ {1, . . . , n1 −
n2} the iterate f i (S) does not intersect a N -contracting return of R with return
time n1 − i . Since S0 is a first return, the iterates f i (S) for i ∈ {n1 − n0 +
1, . . . , n1 − 1} do not intersect R. The Lemma 9.20 can thus be applied to the
points z ∈  ∩ f n1(S) and the integers k = 0 and l = n1. In particular, for
any z ∈  ∩ S one gets the announced inequality. ��

We now prove that the return S given by the Claim 9.25 satisfies the conclu-
sions of Lemma 9.24. It is enough to consider a point x ∈ S∩ and n ≥ 1 such
that f −n(x) ∈ S and f −k(x) /∈ S for 0 < k < n. By Lemma 9.8, the rectangle
S is adapted, hence f −k(W cu

S (x)) is disjoint from S for any 0 < k < n. One
deduces by Proposition 9.14 that

n−1∑

k=0

�( f −k(W cu
S (x))) < K0.
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By our choice of S one has

n1∑

j=0

�( f j (W cu
S ( f −n(x))))< K1�( f n1(W cu

S ( f −n(x)))= K1�(W cu
R ( f n1−n(x))).

In particular, the property (D) gives

‖D f n1−n
|Ecu (x)‖ ≤ �( f n1−n(W cu

S (x)))

�(W cu
S (x))

exp (�2 K0) .

‖D f −n1|Ecu ( f n1−n(x))‖ ≤ �(W cu
S ( f −n(x)))

�(W cu
R ( f n1−n(x)))

exp (�2 K1 l) .

Since S is an N -contracting return of R, the Lemma 9.18 gives

�(W cu
S ( f −n(x)))

�(W cu
S (x))

≤ �1.

We also have

�( f n1−n(W cu
S (x))) = �( f −n(W cu

R ( f n1(x)))) < δ.

Combining these inequalities, one gets the required estimate:

‖D f −n
|Ecu ( f (x))‖ ≤ δ �1

L
exp (�2 (K0 + K1 l)) < 1/2.

��
(c) Adapted rectangles with holesWe obtain a stronger summability result

for holes. This is similar to [39, lemma 3.7.7].

Lemma 9.26 Let R be an adapted rectangle and S be a hole of R with ape-
riodic boundary. Then, there exists K3 > 0 such that for any x ∈ R ∩ , we
have

∑

k≥0

�( f −k(W cu
S (x))) < K3.

Proof By Lemma 9.10, S is an adapted rectangle. Let (ni ) be the sequence of
returns of W cu

S (x) into S, that is the integers such that f −ni (W cu
S (x)) ⊂ S.

Let us consider two consecutive returns ni , ni+1. By the Proposition 9.14, we
have

ni+1−ni∑

k=0

�( f −k(W cu
S ( f −ni (x)))) < K (S).
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From (D) this implies

ni+1∑

k=ni

�( f −k(W cu
S (x))) < �( f −ni (W cu

S (x))).K (S). exp(�2K (S)).

It thus is enough to bound uniformly the sum
∑

i≥0 �( f −ni (W cu
S (x))).

From (D) again we have

�( f −ni+1(W cu
S (x)))

�( f −ni (W cu
S (x)))

≤ �( f ni −ni+1(W cu
S ( f −ni (x))))

�(W cu
S ( f −ni (x)))

exp(�2K (S)).

By Lemma 9.10, there exists N ≥ 1 such that for ni ≥ N the difference
ni+1−ni is large and by Lemma 9.3, the length �( f ni −ni+1(W cu

S ( f −ni (x)))) is

smaller than �(W cu
S ( f −ni (x)))

exp(−�2K (S))
2 . In particular �( f −ni+1(W cu

S (x)))

is smaller than �( f −ni (W cu
S (x)))/2 for any ni ≥ N . The lemma follows. ��

It remains to conclude Proposition 9.1 in the second case of the Proposi-
tion 9.11.

Lemma 9.27 For any adapted rectangle R having a hole S with aperiodic
boundary and such that R ∩  �= ∅, there exists a non-empty open subset
B ⊂ R of  such that property (E) holds.

Proof Let K3, �2 be the constants given by Lemma 9.26 and the property (D)
and let η be the constant given by the property (D’) and associated to C = K3.
Since R ∩  is non-empty S is proper in R. Up to exchange the boundaries
x−, x+ of R and S, one deduces by Lemma 9.10 that there exists a sequence
(xn) in R ∩  such that d(xn, x−

n,S) goes to zero as n → +∞. Since  is
transitive and is not a single periodic orbit, one can assume that the points xn
are not periodic. We fix such a point x so that d(x, x−

S ) < η �(W cu
S (x)).

Let L be a lower bound for the length of the curves W cu
S (z) of S and let

δ = L exp(−2 �2 K3)/3. We choose τ large enough such that for any z ∈ 

the curves f −n(W cu
loc(z)) for n ≥ τ have a length smaller than δ. Since x is not

periodic, one can find a small neighborhood B of x in such that B is disjoint
from its first τ iterates and for any y ∈ B one has d(y, y−

S ) < η �(W cu
S (y)).

For any return f −n(y) in B one has n ≥ τ . Lemma 9.26 and property (D’)
thus give:

‖D f −n
|Ecu (y)‖ ≤ �( f −n(W cu

S (y)))

�(W cu
S (y))

exp
(
2 �2

∑n−1
k=0 �( f −k(W cu

S (y)))
)

≤ δ
L exp(2 �2 K3) < 1/2.

��
The proof of the Proposition 9.1 is now complete.
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