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Abstract For the d-dimensional incompressible Euler equation, the standard
energy method gives local wellposedness for initial velocity in Sobolev space
HY(R?), s > s. := d/2 + 1. The borderline case s = s, was a folklore open
problem. In this paper we consider the physical dimension d = 2 and show that
if we perturb any given smooth initial data in H°¢ norm, then the corresponding
solution can have infinite H* norm instantaneously at # > 0. In a companion
paper [1] we settle the 3D and more general cases. The constructed solutions
are unique and even C*°-smooth in some cases. To prove these results we
introduce a new strategy: large Lagrangian deformation induces critical norm
inflation. As an application we also settle several closely related open problems.

1 Introduction

The d-dimensional incompressible Euler equation takes the form
u—+w-VYu+Vp=0, (x)eRxR?,
V.ou=0, (1.1)

u|t=0 = uo,
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where u = u(t,x) = (u1(t,x),...,uq(t,x)) : R x RY — R denotes the
velocity of the fluid and p = p(r,x) : R x R? — R is the pressure. The
second equation V - 4 = 0 in (1.1) is usually called the incompressibility
(divergence-free) condition. By taking the divergence on both sides of the
first equation in (1.1), one can recover the pressure from the quadratic term
in velocity by inverting the Laplacian in suitable functional spaces. Another
way to eliminate the pressure is to use the vorticity formulation. For this we
will discuss separately the 2D and 3D case. In 2D, introduce the scalar-valued
vorticity function

w=—duy +duy =V*t-u, V= (-d,d).
By taking V- on both sides of (1.1), we have the equation

dow+u-Vo=0, (t,x)eRxR?,
u=Viy = (=Y, hy), AV =o, (1.2)
o|

=0 — Q.

Under some suitable regularity assumptions, the second equations in (1.2) can
be written as a single equation

u=A"vto, (1.3)

which is the usual Biot—Savart law. Alternatively one can express (1.3) as a
convolution integral
1 .X'J' L
u=Kxw, Kx)=— —, x :=(—x2,x1).
2 |x|?

We can then rewrite (1.2) more compactly as

o+ (A7'VEiw Vo =0,
(1.4)

We shall frequently refer to (1.4) as the usual 2D Euler equation in vorticity
formulation. Note that (1.4) is a transport equation which preserves all L?,
1 < p < oo norm of the vorticity w. In the 3D case the vorticity is vector-
valued and given by

w=curlu =V x u.
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The 3D Euler equation in vorticity formulation has the form

ow+ (u- Vo = (v - V)u,

u=-A"v X w,

Note that the second equation above is just the Biot—Savart law in 3D. The
expression (w - V)u is often referred to as the vorticity stretching term. It
is one of the main sources of difficulties in the wellposedness theory of 3D
Euler.

There is by now an extensive literature on the wellposedness theory for Euler
equations. We shall only mention a few and refer to Majda-Bertozzi [23] and
Constantin [8] for more extensive references. The papers of Lichtenstein [21]
and Gunther [15] started the subject of local wellposedness in Holder spaces
Ck® (k > 1,0 < a < 1). In [29] Wolibner obtained global solvability of
classical (belonging to Holder class) solutions for 2D Euler (see Chemin [6]
for a modern exposition). In [12] Ebin and Marsden proved the short time exis-
tence, uniqueness, regularity, and continuous dependence on initial conditions
for solutions of the Euler equation on general compact manifolds (possibly
with C* boundary). Their method is to topologize the space of diffeomor-
phisms by Sobolev H*, s > d/2 + 1 norms and then solve the geodesic
equation using contractions. In [5] Bourguignon and Brezis generalized H* to
the case of W*? fors > d/p + 1. In [18] Kato proved local wellposedness of
d-dimensional Euler in C ,0 H" for initial velocity ug € H™ (R4) with integer
m > d /2 + 1. Later Kato and Ponce [20] proved wellposedness in the general
Sobolev space WP (RY) = (1 — A)~*/2LP(RY) withreal s > d/p + 1 and
1 < p < oo. The key argument in [20] is the following commutator estimate'
for the operator J* = (1 — A)*/%:

175Cf) = FI°8lp Sas.p IDFlooll T gllp 4+ 117° £ lIglloos
l<p<oo,s>0. (1.5)

To extend the local solutions globally in time, one can use the Beale-Kato-
Majda criterion [4] which asserts that (here s > d/2 + 1)

lim sup ||u(t, N s wey = 400,
t—T*

I The Lo° end-point Kato-Ponce inequality (conjectured in [14]) and several new Kato-Ponce
type inequalities are proved in recent [2].
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if and only if

t
lim Sup/ ||a)(s, ')”LOO(Rd)dS = +00.
0

t—T%*

By using this criterion and conservation of |@||» in 2D, one can immediately
deduce the global existence of Kato’s solutions in dimension two. In [27] (see
also [28]) Vishik considered the borderline case s = d/p + 1 and obtained
global solvability for the 2D Euler in Besov space BZ{ 1’7 with 1 < p < oo.In
[7] Chae proved local existence and uniqueness of solutions to d-dimensional
Euler in critical Besov space (for velocity) BZ,/ lp + RY) with 1 < p < oo.
The local wellposedness in Béo,l (R4, d > 2 was settled by Pak and Park
in [25]. Roughly speaking, all the aforementioned local wellposedness results
rely on finding a certain Banach space X with the norm || - || x such that (take

f=Vxuand X = BZ’/IP for example)

(D) If f e X, then || fllze+1Rij fliLe S | fllx (Rij is the Riesz transform);
(2) Some version of a commutator estimate similar to (1.5) holds in X.

The above are essentially minimal conditions needed to close the energy esti-
mates. On the other hand, this type of scheme completely breaks down for
the natural borderline Sobolev spaces such as H%/>*! (in terms of vorticity
we have X = HY/ 2) since both conditions will be violated. In [9,11], well-
posedness in critical H4/>*! spaces were proved for some logarithmically reg-
ularized Euler equations. In [26], Takada constructed? several counterexam-

ples of Kato-Ponce-type commutator estimates in critical Besov Bz( (f + (RY)

and Triebel-Lizorkin spaces Fg,/qp + (R?) for various exponents p and g (For
Besov: 1 < p < 00,1 < g < oo; For Triebel-Lizorkin: 1 < p < o0,
1 < g <ocoor p =g = o0). It should be noted that the vector fields used
in his counterexamples are divergence-free. In light of these considerations, a
well-known long standing open problem was the following

Conjecture 1.1 The Euler equation (1.1) is ill-posed for a class of initial data
in H4/2+1 (Rd)

Of course one can state analogous versions of Conjecture 1.1 in similar
Sobolev spaces W?/P*1.P or other Besov or Triebel-Lizorkin type spaces with
various boundary conditions. A rather delicate matter is to give a precise (and
satisfactory) formulation of the ill-posedness statement in Conjecture 1.1. The
formulation and the proof of such a statement requires a deep understanding
of how the critical space topology changes under the Euler dynamics.

2 Counter examples for the case s < d/p + 1 was also considered therein.
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To begin, one can consider explicit solutions to (1.1). In [13], DiPerna and
Majda introduced the following shear flow (in their study of measure-valued
solutions for 3D Euler):

l/l(t,.x) = (f(XZ)a O’ g(—xl - tf(XZ)))7 X = (-xl’-x2’-x3)’

where f and g are given single variable functions. This explicit flow (some-
times called “2+1/2”-dimensional flow) solves (1.1) with pressure p = 0.
DiPerna and Lions used the above flow (see e.g. p152 of [22]) to show that for
every l < p <oo,T >0, M > 0, there exists a smooth shear flow for which
lu () lw1.p(rsy = 1 and [|u(T)|ly1.p(p3y > M. Recently Bardos and Titi [3]
revisited this example and constructed a weak solution which initially lies in
C“ but does not belong to any C# forany r > 0 and 1 > B > «?. By similar
arguments one can also deduce ill-posedness in F, 010’2 and Béo’ o (see Remark
1 therein). In [24], Misiotek and Yoneda considered the logarithmic Lipschitz
space LL, (R%) consisting of continuous functions such that

IfltL, = I flleo +  sup |f(x) = fF)

O<|x—y|<% |x - y|| 10g |)C - y||°‘

They used the above shear-flow example to generate ill-posedness of 3D Euler
inLLy forany 0 < o < 1. In connection with Conjecture 1.1, arelated issue is
the dependence of the solution operator on the underlying topology. In [19], to
describe the sharpness of the continuous dependence on initial data in his well-
posedness result, Kato showed that (see Example 5.2 therein) the solution oper-
ator for the Burgers equation is not Holder continuous in H*(R), s > 2 norm
for any prescribed Holder exponent. In [16] Himonas and Misiotek proved that
for the Euler equation the data-to-solution map is not uniform continuous in
H* () topology where s € Rif @ = T? = R?/277% and 5 > 0 if Q@ = R<.
Very recently Inci [17] strengthened this result and showed for any 7 > 0 that
the solution map u(0) — u(7T) is nowhere locally uniformly continuous for
H*(R"),s > n/2+ 1. In[10], Cheskidov and Shvydkoy proved ill-posedness
of d-dimensional Euler in Besov spaces B;"OO(’]I‘d) where s > 0 if r > 2 and
s >d (% —1)if1 <r < 2.However, as was pointed out by the aforementioned
authors, the above works do not address the borderline Sobolev space H9/?*1
or similar critical spaces which was an outstanding open problem.

The purpose of this work and the companion [1] is to completely settle
the borderline case H4/>*! (Conjecture 1.1) and several other related open
problems. Roughly speaking, we prove the following
Theorem Let the dimensiond = 2, 3. The Euler equation (1.1) is ill-posed in
the Sobolev space W/PTL-P for any 1 < p < 00 or the Besov space Bi{,f“
foranyl < p <o0o, 1 <g <o0.
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As a matter of fact, we shall show that in the borderline case, ill-posedness
holds in the strongest sense. Namely for any given smooth initial data, we
shall find special perturbations which can be made arbitrarily small in the crit-
ical Sobolev norm, such that the corresponding perturbed solution is unique
(in other functional spaces) but loses borderline Sobolev regularity instan-
taneously in time. Our analysis shows that in some sense the ill-posedness
happens in a very generic way. In particular, it is “dense” in the H/>*! (and
similarly for other critical spaces) topology.

In order to expound the main ideas without clouding it by technicalities, we
only treat the 2D case in this paper. The companion paper [1] is devoted to the
(more technical) strong ill-posedness results in borderline Besov and Sobolev
spaces for 3D. The prominent difficulty in extending the analysis of this paper
to 3D is the vorticity stretching effect (e.g. it renders the L°°-norm of vorticity
hard to control) and certain nonlocal obstructions. We defer the discussion of
these technical aspects to the end of this introduction.

We now state more precisely the main results. The first result is for 2D Euler
with non-compactly supported data. A special feature is that our constructed
solutions are C°°-smooth which are classical solutions.

Theorem 1.2 (2D non-compact case) For any given a)(()g b e C & R?) N
H~'(R?) and any € > 0, we can find a C™ perturbation a)(()p) : R? — Rsuch
that the following hold true:

M N gy + lof” 1 @) + lod” 1 sg) + lof” 1@, <e.

(2) Let wg = a)(()g) + w(()p). The initial velocity ug = A~1VLwg has regularity

ug € H2(R?) N C®(R?) N L>®(R?). The gradient of uy has no decay at
infinity in the sense that

||Vu0||Loo(R2) = +00.

(3) There exists a unique classical solution w = w(t) to the 2D Euler equation
(in vorticity form)

do+ A"V - Vio=0, 0<r<1, x € R?,

w

= o,
1=0
satisfying

max ([l (@, i1 + o, )= + o, ) 4-1) < oo.
0<r<1

Here w(t) € C®, u(t) = A™'Vtw(@) € C® N L?>N L™ for each
0<tr<l.
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Ill-posedness of Euler in Sobolev 103

(4) Forany (0 <ty <1, we have

e85-5UpQ -, <y (1., ) [ 1 = +00. (1.6)

Remark 1.3 The H~' assumption on the vorticity data a)(g) can be removed.

We include it here simply to stress that the perturbed solutlon can inherit H !
regularity which is natural since the corresponding velocity will be in L2. Of

course one can also state similar results for a)(()g) € H® with s > 1 or some
other subcritical functional spaces.

Remark 1.4 In [19] Kato introduced the uniformly local Sobolev spaces
Llfl (R?) [see (2.3)] and H, (R%). These spaces contain H* (R?) and the peri-
odic space H*® (T9). The statement (1.6) in Theorem 1.2 can be improved to

€88-Supg ;<4 IV (2, ')”Lﬁl(RZ) = +o00.

Similar results also hold for Theorem 1.5 below.

Our next result is for the compactly supported data for the 2D Euler equation.
Note that this result carries over (with simple changes) to the periodic case
as well. For simplicity we shall consider vorticity functions having one-fold
symmetry. For example, we shall say ¢ = g(x1, x2) : R> — Ris odd in x5 if

g(x1, —x2) = —g(x1,x2), Vx = (x1,x) € R%

It is not difficult to check that the one-fold odd symmetry (of the vorticity
function) is preserved by the Euler flow.

Theorem 1.5 (2D compact case) Leta)(g) e C¥ (RZ)ﬂH —1(R?) be any given
vorticity function which is odd in x.> For any such a)(()g) and any € > 0, we

can find a perturbation a)(()p ) R? — R such that the following hold true:

) a)(p ) is compactly supported (in a ball of radius < 1), continuous and

06”1y + llog” o2y + gl -1 ey < e

(2) Let wyg = a)(g) + a)(p ) Corresponding to wq there exists a unique time-

global solutton w = w(t) to the Euler equation satisfying w(t) € L N
H~'. Furthermore € COCO and*u = A"Vt € COL2 N COC“for
any 0 <o < 1.

3 Similar results also hold for vorticity functions which are odd in x, or odd in both x| and x5.
4 Actually it is easy to show that u is log-Lipschitz.
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(3) w(t) has additional local regularity in the following sense: there exists
xx € R? such that for any x # xs, there exists a neighborhood Ny > x,
ty > 0 such that w(t,-) € C®°(Ny) forany 0 <t < t,.

(4) Forany 0 <ty < 1, we have

€88-SUPy s <, |0 (7, )|l 1 = +00.

More precisely, there exist 0 < t,l < t,% < %, open precompact sets 2,
n=1,2,3,...suchthat o(t) € C*(R2,) forall0 <t < t,%, and

IVo(t, )l 2, >n, Vtelt, ]

Remark 1.6 In [30] Yudovich proved the existence and uniqueness of weak
solutions to 2D Euler in bounded domains for L® vorticity data. In our con-
struction, since we have uniform in time L control of the vorticity w in 2D,
the uniqueness of the constructed solution is not an issue and we shall not
discuss this point further in this work.

In the rest of this introduction, we give a brief overview of the proofs of
Theorems 1.2 and 1.5. The overall scheme consists of three steps. The first
two steps are devoted to local constructions. The last step is a global patching
argument. Some additional technical points needed to treat the 3D case in [1]
will be clarified at the end.

Step 1. Creation of large Lagrangian deformation. Define the flow map asso-
ciated to (1.1) as ¢ = ¢ (z, x) which solves

(1, x) =u(t, ¢, x)),
¢, x) = x.

Forany0 < T « 1, B(xg, §) C R2 withxg € R? arbitrary and § < 1,

we choose initial (vorticity) data a)g)) with supp (a)éo)) C B(xg, §) such

that
o1 + 0Pz + 0P < 1,
and

sup |[[Deq(t, )L (B(xg.8) > 1.
O<t<T

Here ¢, is the flow map associated with the velocity u = u, which

solves (1.1) with wﬁf’) as vorticity initial data. By translation invariance
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Ill-posedness of Euler in Sobolev 105

Step 2.

Step 3.

of Euler it suffices to consider the case xg = 0. In our construction
we restrict to some special flows which have odd symmetry and admit
the origin as a stagnation point. We prove that the deformation matrix
Du remains essentially hyperbolic near the spatial origin in the short
time interval considered (cf. Propositions 3.4 and 3.5).

Local inflation of the critical norm. As was already mentioned, the
critical norm for the vorticity is H'. The solution constructed in Step 1

does not necessarily obey supg_, <7 [V, (1) [|2 > 1. We then perturb

the initial data a)c(,o) and take

1 .
a)l(70) _ wL(zO) + 3 sin(kf (x))g(x),

where k is a very large parameter. The function g is smooth and has
o(1) L? norm.’ The function f (x) and the support of g will be chosen
depending on the exact location of the maximum of || D¢, (¢, -)||co. Of
course since the initial data is altered, the corresponding characteristic
line (flow map) is changed as well. For this we run a perturbation argu-
ment in W4 so that I D@p(t, ) — Dpy(t, -)|loo <K 1. The same argu-
ment is used to show that in the main order the ' norm of the solution
corresponding to a),(,o) is inflated through the Lagrangian deformation
matrix D¢,. The technical details are elaborated in Proposition 4.2.

Gluing of patch solutions. The construction in previous two steps
can be repeated in infinitely many small patches which stay away
from each other initially. To glue these solutions together we need to
differentiate two situations. In the case of Theorem 1.2, we exploit
the unboundedness nature of R? and add each patches sequentially.
Each time a new patch is added, we choose the distance between it
and the old patches sufficiently large such that their interaction is very
small. The key properties exploited here are the finite transport speed
of the Euler flow and spatial decay of the Riesz kernel. In the case of
Theorem 1.5, we need to deal with compactly supported data. This
forces us to analyze in detail the interactions of the patches since
the patches can become infinitely close to each other. For each n > 2,
define w<,_1 the existing patch and wj, the current (to be added) patch.
It turns out that there exists a patch time 7,, such that for 0 < ¢ < T,
the patch w, has disjoint support from w<,_1, and obeys the dynamics

dwn + AV, 1 Vo, + ATV e, - Vo, = 0.

5 In the actual perturbation argument, we need to divide it by a suitable power of || D¢ || co-
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By a suitable re-definition of the patch center and change of variable,
we find that @, (which is w, expressed in the new variable) satisfies
the equation

8 on + AT'VEE, - Vo,

+b(t) (_yzl) Ny +r(t,y) -V, =0,

where b(t) = O(1) and |r(z, y)| < |y|2. We then choose initial data
for w, such that within patch time 0 < ¢ < T, the critical norm of
wy, inflates rapidly. As we take n — o0, the patch time 7,, — 0 and
w, becomes more and more localized. Note that the whole solution
(consisting of all patches w;,) is actually a time-global solution. During
interaction time 7;, the patch w, produces the desired norm inflation
since it stays disjoint from all the other patches. The details of the
perturbation analysis can be found in Lemma 6.4 (and some related
lemmas in Sect. 6).

The 3D case. As was already mentioned, in [1] we settle the 3D case which
is technically more involved. To put things into perspective, we
briefly explain the main difficulties therein and how to overcome
them. Compared with the 2D case, the first difficulty in 3D is the
lack of L? conservation of the vorticity. It is deeply connected
with the vorticity stretching term (@ - V)u. To simplify the
analysis we take the axisymmetric flow without swirl as the
basic building block for the whole construction. The vorticity
equation in the axisymmetric case takes the form

0y (%) + @ -V) (%) =0, r= ,/x% +x§, x = (x1, x2, 2).

Owing to the denominator r, the solution formula for w then
acquires an additional metric factor (compared with 2D) which
represents the vorticity stretching effect in the axisymmetric
setting. A lot of analysis goes into controlling the metric factor
by the large Lagrangian deformation matrix and producing the
desired H3/? norm inflation of vorticity. In our construction the
patch solutions which are made of asymmetric without swirl
flows typically carry infinite ||w/7| ;3,1 norm (when summing
all the patches together). To glue these solutions together in the
3D compactly supported case, we need to run a new pertur-
bation argument which allows to add each new patch w, with
sufficiently small ||w;, ||co norm (over the whole lifespan) such
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Ill-posedness of Euler in Sobolev 107

that the effect of the large ||w, /7|31 becomes negligible. All
in all, the constructed patch solutions converge in the C° metric
after building several auxiliary lemmas.

We have roughly described the whole strategy of the proof although some
technical points could not be elucidated or even mentioned in this short intro-
duction. In some sense our approach is a hybrid of the Lagrangian point of
view and the Eulerian one, using in an essential way several features of the
Euler dynamics: finite speed propagation and weak interaction between well-
separated “patch” solutions. The rest of this paper is organized as follows.
In Sect. 2 we set up some basic notations and preliminaries. In Sect. 3 we
describe in detail the first part of the local construction for the 2D case. Sect.
4 is devoted to the perturbation argument needed for the 2D local construc-
tion step. In Sects. 5 and 6 we treat the 2D noncompact case and compactly
supported case separately.

2 Notation and preliminaries

For any two quantities X and Y, we denote X < Y if X < CY for some
harmless constant C > 0. Similarly X = Y if X > CY for some C > 0.
We denote X ~ YV if X <Y andY < X. We shall write X Sz, 7,
X < CY and the constant C depends on the quantities (Z1, ..., Zx). Similarly
we define 27, .z, and ~z, . 7.

We shall denote by X+ any quantity of the form X + € for any € > 0. For
example we shall write

y <2%* 2.1)
if ¥ <. 2%X+€ for any € > 0. The notation X — is similarly defined.

For any center xg € R4 and radius R > 0, we use B(xg, R) := {x € R4 .
|x — xo| < R} to denote the open Euclidean ball. More generally for any set
A C R?, we denote

B(A, R) := {yeRd: |y — x| < R for some x € A}. 2.2)
For any two sets A1, Ay C R?, we define

d(A], Az) = diSt(Al, Az) = inf{|x — y| X € A], y € AQ}.

For any f on R?, we denote the Fourier transform of f as
FNHE =fE&) = / f@eTE dx.
R
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108 J. Bourgain, D. Li

The inverse Fourier transform of any g is given by

1 .
(Flo)x) = o /R ) g(&)e™t dt.

Forany 1 < p < oo we use | flp, ”f”Lp(Rd), or ||f||L§(Rd) to denote
the usual Lebesgue norm on R?. The Sobolev space H!(R?) is defined in
the usual way as the completion of C2° functions under the norm || f| ;1 =
lfll24+ IV fll2. For any s € R, we define the homogeneous Sobolev norm of
a tempered distribution f : RY — R as

1= ([ €1 Pae)

We use the Fourier transform to define the fractional differentiation operators
|V|* by the formula

[VISFE) = £° £ &)

For any integer n > 0 and any open set U C R?, we use the notation C"(U)
to denote functions on U whose n’" derivatives are all continuous.

For any 1 < p < oo, we denote by Lfl (R%) the Banach space endowed
with the norm

1
D
il ey = sup ( / |u<y)|f’dy) . 23)
“ ly—x|<1

xeRd

Let¢p € C®° (R) be not identically zero. The condition u € L{z ; 18 equivalent
to

sup [lo(- — x)u(')”Lp(Rd) < oQ.
xeRd

For any s € R and any function u € H;} . (RY), one can define

el s, vy = sUp [l = 0)uC)ll s ra)-
xeRd

We will need to use the Littlewood—Paley frequency projection operators.
Let ¢ (&) be a smooth bump function supported in the ball |§| < 2 and equal
to one on the ball |£| < 1. For any real number N > Oand f € S’ (R?), define
the frequency localized (LP) projection operators:
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Ill-posedness of Euler in Sobolev 109

Py f(§) = p(&/N) (&),
Poy f(§) =1 - /N (®),
Py f(&) :=1[@(E/N) — @2§/N)]1f ().

Similarly we can define P—y, P>y, and Py ..<y := P<y — P<j, whenever
N > M > 0 are real numbers. We will usually use these operators when M
and N are dyadic numbers. The summation over N or M are understood to be
over dyadic numbers. Occasionally for convenience of notation we allow M
and N not to be a power of 2.

We recall the following Bernstein estimates: for any 1 < p < g < o0,
s € R,

IIVIE Py £l o gy ~ NI Py Fll o gay-
di-1
1P Fllagay Sa NYP™ NPy £l ay.

dl-1
1PN £l 10 gy Sa NYPTONPy £l o gay-

Foranys € R,1 < p, g < oo, we define the homogeneous Besov seminorm
as

1
(Zneo NPV I ) s i 1 =g < 00

SUPpn -0 NS”PNf”Lp(Rd), if g = o0.

£l =

The inhomogeneous Besov norm ||f||B;) . of f € S'(RY) is

1l = 1F0p+ £

3 Local construction for 2D case

We begin by describing the choice of initial data for the local construction.
Let g € C° (R?) be a radial bump function such that supp(¢o) C B(0, 1)
and 0 < ¢g < 1. Define

(x1 —ar, x2 — a)
no(x1, x2) = Z aias - sﬂo( 10 )

ay,ap==x1

Clearly by definition ng is odd in x1, x3, i.e.
no(x1, x2) = —no(—x1, x2) = —no(x1, —x2), Yx = (x1, x2) € R%.
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Define for each integer k > 1,

M (x) = 10(2x). (3.1)
Obviously,
supp(m) € | J B ((2"‘a1, 27K ay), 2‘("“0)), (3.2)
ar,a==+1
so that 1 and n; have disjoint supports for k 7 [, and
18k lloo Sa 2411 (3.3)

Take any A >> 1 and define the following one parameter family of functions:

J1og A
LS mw.

ha(x) = n

3.4)
A<k<2A

It is easy to check

Jlog A
A

Ihalli + 1halloo S

and

log
VA

4

1hallg S

Note that in computing the H'-norm above, we have a saving of A2 due to the
fact that each composing piece n; has O (1) H'-norm and they have disjoint
supports.

We begin with a simple interpolation lemma.

Lemma 3.1 Let R = R;; be a Riesz transform on R2, then

IR flloe SUIZIV fliS- (3.5)

Proof By using the Littlewood-Paley decomposition, splitting into dyadic fre-
quencies and the Bernstein inequality, we have

IRflloe S D MPNflloo S D NIPyflz+ D N7HIPYY flloo
N

N <Ny N=>Ny
< Noll £ll2 + N IV £ lloo-
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1
Choosing Ny € 2% such that Ny ~ (%)7 then yields (3.5). o

The following lemma gives the estimates of Riesz transforms of composi-
tions with Lipschitz maps on R? for the functions 4 4 defined earlier.

Lemma 3.2 Let ¢ : R?> — R? be a bi-Lipschitz function satisfying the
following conditions:

(i) ¢(0) =0.
(1) ¢ = (¢1, ¢2) commutes with the reflection map o> (x1, x2) = (x1, —x2),
i.e.

d1(x1, —x2) = ¢1(x1, x2),
Po(x1, —x2) = —$a(x1, x2),  Vx = (x1,x) € R%.
(ii1) For some integer ng > 1,
ID$lloc < 2" and | D¢~ ")l < 2. (3.6)

Here ¢~ denotes the inverse map of ¢. Note that equivalently we can
write

(DY) oo <2,

where (D$) ™" is the matrix inverse of D¢.
Then with w = h 4 defined in (3.4), we have

1 ng J1og A
IR11(@ 0 )lloo < C - np - (| det(D(@NNZ% 27 +1) - Zg . (37

1 n 1 A
IR22(@ 0 @)llse < C - no - (| det(D(@~ N2 - 27 +1) - ¥ ‘f . (38)

Here C > 0 is an absolute constant. R1; = A~'911 and Ray = A~194 are
the Riesz transforms.

Remark 3.3 The same result holds if ¢ commutes with the map oy (x1, x3) =
(—x1, x2). Note also that in the proof below, we only used the oddness in x;
of h 4 defined in (3.4).

Proof of Lemma 3.2 First, note that by assumption (ii) on the map ¢, the func-
tion ng o ¢ is still odd in x;. Since R1; is an even operator, it follows that
R11(nk o ¢)(0) = 0. (More precisely one just recalls that /R ; is obtained by

2_.2
1 XX

convolution with the even kernel K (x) = p.v. (E . m) + %8(x), and
1 2

Rit(nk 0 9)(0) = (ko ¢, K) =0.)
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Now letx € R?\ {0}, |x| ~ 27/ We evaluate R 1 (x o) (x) by considering
3 cases.

Case 1.2k « 2!=m0 [see (3.6) for the definition of ng.]

By definition
Ri1(mk o $)(x)| = ‘/Rz(ﬁk o@)(x — y)K(y)dy|. (3.9

The integrand in (3.9) vanishes unless [¢(x — y)| ~ 27k [see (3.2)]. By
(3.6) and ¢ (0) = 0, we have

2R > — y| > 27k 07

Therefore 2 %70 Syl S 27k+70_ Since (i o ¢)(y1, y2) is odd in the y,
variable, obviously

/ Mk 0 @)(—y)K (y)dy = 0.
2-k=m0 <Jy|<2k+no

We then insert the above into (3.9) and compute

[R11(k o ¢)(x)]
5/ (0 $)(x — ¥) — (7 0 ) (—WIIK WIdy
27k Sy <27k Fmo

< x| - IVOn o¢>||oo-/ K (5)ldy

2—k—ng 5‘y|52—k+n0
<27loom 2k pg < ng.

Case 2.2k pltno,

Again the integrand in (3.9) vanishes unless |¢ (x — y)| ~ 27k which yields
27k4n0 > |x — y| > 27k=70_ Since 27! > 27K and |x| ~ 27, we get
|y] ~ 2~!. Therefore

Rt 0 ) < 1K llpe(ryoa-ty - 17k 0 Sl
< 4[ X 4—k . 4n0 — 4—k+l+n0 < 1

Case 3.2/770 < ok < pltno,
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In this case we use Lemma 3.1. Then by (3.5) and (3.3),

IR11 (ko oo < ik 0 $12 - 1V e 0 )12
< 1 det(D@ I - Inell? - Vel - 2%
< ldet(D@™ )% 275 25 2%
< | det(D@ )% 2.
Collecting all the estimates, we then obtain
S Rit(n 0 0] S 1 det(DG I 2% g+ no.
k

The bound (3.7) follows from this and the normalizing factor in (3.4). Sim-
ilarly one can prove (3.8) or just use the identity R1; + Ry = Id. m|

We are now ready to describe the details of the local construction: namely
the existence of large deformation for well-chosen initial data.
To be more specific, we consider the Euler equation

(3.10)

where /1 4 is defined in (3.4). Easy to check that w is odd in both x| and x,. We
suppress the dependence of the solution w on the parameter A for simplicity
of notation.

The equation for the (forward) characteristic lines takes the form

— A—le_
Iatas(r,x) ( w)(t, $(t, X)), Gl

$0,x) =xeR%

It is easy to check that ¢ = ¢ (¢, x) is a symplectic map and ¢ (¢, 0) = 0.
Due to the special choice of the initial data & 4, the flow associated with (3.10)
and (3.11) is hyperbolic near the origin with a large deformation gradient. The
following proposition quantifies this fact.

Proposition 3.4 With the notation in (3.10, 3.11), we have for A sufficiently
large,

max [[(D@)(, )|loc > Ma, (3.12)
0<t<ta
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where M 4 = loglog A and t4 = 1/loglog A.

Proof of Proposition 3.4 We shall argue by contradiction. Assume that

omax [(DP)(t, oo = My. (3.13)

Since det(D¢) = 1, it is easy to check that || D(qf1 )|loo has the same bound.
Now by Lemma 3.2, we have

J1og A
max [|Rijole < Ma Y22
0<t<ta A
JIoZA
g4 (3.14)

max [|[Roolle S Ma
<t=<ita

o<t A

Denote D(t) = D(t,-) = (D¢)(t,-). By (3.11) and (3.14), we have

—Ripow —Rapw
9 D(t) = ( Rio R ) D(1)
—. (_’W) O) D(®) + P(1)D(1) (3.15)
o o ’ '

where A(t, x) = (Ripw)(t, ¢ (¢, x)), and

J1og A
max [|P(1)]lee < Ma Y2l (3.16)
0<t<ty A

Integrating (3.15) in time and noting that D(0) = Id, we get

D SRAT) TR Ca i) Yoy 3.17
R R B A W O LOTR

Now note that | [T 4] < | [y Al + | fy Al < 2maxo<s< | [5 Al-
By (3.13, 3.16) and (3.17), we have for all 0 < ¢ < 14,

legA . max (254,

0<s<t

M < Mo+ M3

where Cp > 0 is some absolute constant.
By taking A sufficiently large and a standard continuity argument, we get

e M < oMy, VO <t <4 (3.18)
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Now denote

e ™ 0
D= ( ) + B, (3.19)

0 e“

where «(t, x) := fot A(t, x)dt and

J/log A
A

1Bl < Cy- M7 - 4M3.

From (3.19) we can get more information on the transport map ¢ = ¢ (¢, x).
Indeed for fixed ¢, using the fact that ¢ (¢, 0) = 0, we have

¢, x) =¢,x) —¢(,0)
ld
:/0 g((b(t,sx))ds

1
= (/ (D) (t, sx)ds) X
0
1 1
— ((/ e—a(t,sx)ds) X1, (/ ea(l,sx)ds) Xz) + B‘,
0 0

where

1Bl < My -
Note that by (3.18), forany 0 < ¢ < 14,

1
2M 4
1

1
— 5/ e S de < IM 4.
A 0

1
5/ O gg < IMy,
0

[\

Since

Jlog A 1

AT < M

’

we have if x; > 0, x» > 0, and

1
—<x—1<2,
2 X
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then for ¢ (z, x) = (¢1(7, x), p2(1, X)), 0 < 1 < 14,

1 t,
LG TNV (3.20)
IOMA ¢2(t7 X)
By (3.13), we also have
|, x)| < Malx|. (3.2

These bounds will be needed later.
Now we analyze A(¢,-) at x = 0 to get a contradiction. We have (recall
(0, x) = ha(x))

At,0) = (Ripw)(t, ¢(1,0)) = (Ri2w)(t, 0)
__/ (t x)&dx
T e 12
1 d1(t, )P (2, x)

=7 fe MY G 0T a2 O

In the last step above we have made a change of variable x — ¢ (¢, x) and
used the fact w(z, ¢ (¢, x)) = w (0, x) = ha(x).

To continue, let us observe that the maps ¢ and ¢, are sign-preserving, i.e.
if x; > 0 (resp. xo > 0) then ¢ > 0 (resp. ¢ > 0). To check this, one can
use (3.11) and the fact that w is odd in x; and x; to get

dp1 = (AT ho)(t, ¢1, $2) — (—AT'RHw)(1, 0, $2)
= F(t, ¢1, d2) 91,

which (by integrating in time) yields that sign(¢;(z)) = sign(¢1(0)) =
sign(xy).

By using the sign property mentioned above and the parity of our solution,
we conclude that the RHS integral of (3.22) is always non-negative and can
be restricted to the first quadrant. Hence by (3.20-3.22),we have for all 0 <
I =14,

T 12, x)P2(2, x)
T, 0) = ha(x) -
4 (60 /x1>0,xz>0 A0 (¢12(t»x)+¢§(t,x))2 !
1 1

= ha(x) - . dx
/x1>0,x2>0 % % ¢12(t,x)+¢)%(t,x)

1 1 1
> ha(x) » —— + — - —=dx
/x1>o,xz>o 20M5 M3 |xP?
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o I ylogA / nk(x)d
—_— . — x
x1>0,x2>0

~ M A |x|2

e M;4 -y/log A.

Therefore
A
/ A2, 0)dt
0

which obviously contradicts (3.18). |

A<k<2A

ZIA‘MX4‘ log A

The special initial data /2 4 in Proposition 3.4 can be generalized to a slightly
larger class of functions. Also the proof of Proposition 3.4 can be simplified if
we take full advantage of the odd symmetry of the data. The main observation
is that by parity x = 0 is invariant under the flow and (Du)(¢, 0) is diagonal
for all # > 0. We now state a more general result taking into account all these
considerations. The argument below bypasses Lemma 3.2 and is more stream-
lined and quantitative. In particular the contradiction argument is replaced by
a more effective integral (in time) inequality.

Consider

do+ A7V - VIo=0, >0,
w =g.

t=0

Assume g € CSO(RZ) satisfies

(i) gisoddin xj and x3, and
g(xy,x2) >0, if x; > 0and x, > 0.
(ii)
X1X2
/ gx)—=dx =B > 0.
R2 |x |4

Denoting by ¢ = ¢ (t, x) the (forward) characteristic lines, we have

Proposition 3.5

! 1 T 4B
—4ds§—log 1+—1t), Vt>0.
o I1DP(s)I5 4B 7T
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In particular,

106 () = 22 ! " viso
max s AP EEL——— > 0.
0<s<t =\ log(1 + 47Bt)

Proof of Proposition 3.5 By parity, we have ¢ (¢, 0) = 0 and

DG 0) — —A() O
(Du)(t,0) = A

where A(f) = (Ri2w)(t, 0). The off-diagonal terms of Du vanish at x = 0
since R11w and Row are both odd functions of xi, x;. Integrating in time
gives

e—fék(r)dr 0

(D) (1,0) =
¢ 0 elor@dr

Write ¢ = (¢1, ¢2). By parity it is easy to check ¢(¢,0,x2) = 0,
¢a2(t, x1,0) = 0 for any x1, x» € R. By this and sign preservation it follows
that for any x; > 0, xp > 0,

1
TR Ex) < 8 S 91 x2) - 1D
o0
1
WWL X1, X2) < x2 < ¢a(t, X1, X2) - || D (1) |-
o0
Therefore for any x; > 0, x, > 0,
g0 11
@ -7 R+ oi+el
. 1 1
T DI, L +2 |xp
_ 1 X1X2
DG4, |x|*

We compute A(z) as

_ P11, )pa(t, 1)
_”W)_/Rzg(x) XN

@1(t, x)a(t, x)
=4 — = d
/xl>o,xz>og O o &
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4 / X1X2
> __ g2 dx
IDP ()% Jx150,x00 |x |4

. B
Do IIL
Since
t
Do, )lloo = [1(DP)(2,0)]|cc > exp (_/o ?»(S)dS) ,
we get
ID¢ ()l > exp (5 / , ;ds) .
B 7 Jo 1D ()%

Equivalently,

d 4B [1 1 4B
—|exp| = | ———79d5))=<— Vi=o0.
dt 7 Jo IDP($)I% T

Integrating in time, we get

! 1 T 4B
——_ds<—log(14+—r), Vi=o0.
0o D)% 4B T

4 H! norm inflation by large Lagrangian deformation

We begin with a simple ODE perturbation lemma.
Lemma 4.1 Supposeu = u(t, x) : RxR? > Rv=uv(x): RxR2 >R
are given smooth vector fields. Let ¢1, ¢ solve respectively

a[¢1(t7 x) = u(t’ ¢l(t’ x))a

¢1(0,x) = x € R,

and
O p2(t, x) = u(t, $2(t, x)) + v(t, $2(t, x)),
$2(0,x) = x € R%.
Then for some constant C = C(maxo</<i ||D*u(t)]c0, Maxo</<i

| Du(t)lloc) > 0, we have
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max (l92(1, ) = @12, oo + (DB = (DS
0=<t<l

< C- max (|v(®)|lco + I1Dv(1)|lo) - exp(C1 max || Dv(t)]c0),
0<r<1 0<t<l

where C1 > 0 is an absolute constant.

Proof of Lemma 4.1 This is quite standard. We sketch the details for the sake

of completeness.
Set n(, x) = ¢2(t, x) — ¢1(z, x). Then

O = u(t, ¢2) — u(t, ¢1) +v(t, $2)
1
= /0 (Du)(t, g1 + (2 — $1)0)d0 n + v(z, $2).

A Gronwall in time argument then yields

max [[n(f)flec < C max [[v(f)llcos
0<t<l1 0<t<l1

where the constant C = C(maxo<;<1 || Du(t)lloo)-
Now for Dn note that

9 (Dn) = (Du)(t, $2) Dpz — (Du)(t, ¢1) D1 + (Dv)(1, $2) D
= ((Du)(z, ¢2) — (Du)(t, $1)) Dp2 + (Du)(t, 1) Dy 4 (Dv) Dep2
= 0(ID*ut]lco - IMlloc - 1 D¢2llc) + O(l Dulloc) D
+ O([[Dvlloo - | DP2lloo)-

It is easy to estimate

0<t<

max [(Dg2) (1. )loo < exp (const (max (| Du(t) oo + ||Dv(r>||oo))) :
Hence the desired bound follows from Gronwall. O

The following key proposition shows that large deformation of the trans-
portation map can produce large H! norm, provided we perturb the initial data
judiciously.

Proposition 4.2 (Large deformation induces H' inflation) Suppose w is a
smooth solution to the Euler equation

dw—+ ATVw - Vo=0, 0<1<1,

w = wo
=0
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satisfying the following conditions:

o [[woll 1 + llwollze + llwoll g-1 < o0.
e For some 7 € R2, Ro > 0, we have

1
supp(w(t, -)) C B (zo, ERo) , VO=<t<1.

o Forsome 0 < ty < 1 and some M > 1 (M > 107 will suffice), we have

(D) (10, Mo > M,

where ¢ = ¢ (t, x) is the (forward) characteristics:

W (t, x) = (A™'V>Iw) (@, ¢(t, x)),
¢ (0, x) = x.

(4.1)

Then we can find a smooth solution @ also solving the Euler equation

o+ ATV - Va=0, 0<r<1

- — o
t=0

such that the following hold:

(1) @wg can be bounded in terms of wq:

ldoll 1 < 2llwollzr,
ll@ollzee < 2llwoll Lo,
lldoll g1 = 2llwoll g1,

~ _1
lwoll g1 = llwoll g1 + M2,
(2) For the same ty as in (4.1), we have
~ 1
oo, )l g1 > M3.
(3) @ is also compactly supported:

supp(@(t)) C B(zo, Ro), YO0 =<t<1.

4.2)
(4.3)
(4.4)

4.5)

(4.6)

(4.7)
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Proof of Proposition 4.2 To simplify the later computation, we begin with a
general derivation. Let W = W (¢, x) be a smooth solution to the Euler equation

oW+ ATIVIw . vw =0,

Wl _ =1

t
Denote the associated (forward) characteristics as ® = ®(z, x) which solves

P(r,x) = (A-IWVLIW)(@, d(@, x)),
®0,x) =ux.

Let &D(t, x) be the inverse map of ® (¢, x). Then

o, (1, x)) = x.

Differentiating the above gives us

(DD)(r, (1, x))(DDP)(r,x) = Id
or
(DD)(t, D(t, x)) = (DD(t, x)) "}, (4.8)

where (D®(z, x))~! is the usual matrix inverse.

Since ®(¢) is a smooth symplectic map with ®(0,x) = x, we have
det(D®) = 1. Denote ® (¢, x) = (P (z, x), P> (¢, x)) and recall

0P 09
dx1 0x2
D® =
0Dy, 0Py
0x1 0x)
Then
Iy _ 3Py
1 dxo 0x)
D® = . 4.9
( ) _ 0Py 09y ( )
dx1 0x1

Since W(t, x) = f(CT>(t, X)), we get

/ (DW)(1, x)Pdx = / (D@t ) (DB (1, x)Pdx
RZ RZ

= / 2 (DAY (DD, x) " 2dx,  (4.10)
R
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where we have performed a measure-preserving change of variables x —
®(z, x) and used (4.8).
By (4.9), we can then write (4.10) as

W@, )% = / [(V)(x) - (VED2)(1, %) Pdx
R2

+/ (V) - (VED))(2, x)|dx. (4.11)
]RZ

We shall need this formula below.
Now discuss two cases.

1 . . ~ .
Case 1:|w(to, )|l 1 > M53. In this case we just set @ = w and no work is
needed.

I . . -
Case 2:|lw(t, -)l g1 < M53.Itis this case which requires a nontrivial analy-
sis. We shall use a perturbation argument.

By (4.1), we can find x, such that

(D@ (10, x:) oo > M.

Here for a matrix A = (a;;), ||Allco := max |a;;]|.
Denote ¢ (fg, x) = (¢1(tg, x), P2(to, x)). Without loss of generality, we may
assume one of the entries of (D¢)(fg, x,) is at least M, namely

GL0%)
¢ (t09 x*)
0x2

> M.

By continuity we can find § > O sufficiently small such that {x : |x —x,| <
28} C B(zo, 5Ro) and

%(fo,x)

> M, V|x — x| <26. (4.12)
0x2

Now let &y € C* (R?) be a radial bump function such that 0 < ®g(x) <1
for all x € R?, ®g(x) = 1 for |x| < 1 and ®g(x) = O for |x| > 2. Obviously

VI < 1@l < 24/7. (4.13)

Depending on the location of x,, we need to shrink § > O slightly further if
necessary and define an even function b € C2° (R?) as follows. If x,. = (0, 0),
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we just define

o= fouf3).

If x4 = (a4, 0) for some a, # 0, then we shrink § > 0 such that § < |a,| and

define
b(x) — 1 ((DO( —Sx*) +(D0(x-;x*))‘

The case x, = (0, a,) for some a, # 0 is similar. Now if x, = (ax, cx) for
some a, 7% 0 and ¢, # 0, then we take § << min{|a.|, |c«|} and define

b(x) = % Z (D()(x - (61681*, GZC*))'

€1,6p==%1

Easy to check that in all cases the function b(x) defined above is even in x1,
X2, 1.€.

b(x1,x2) = b(=x1,x2) = b(x1, =x2),  Vx = (x1,x) € R%.
Now introduce the perturbation

B(x )—Lsm(k)q) b(x) - L (4.14)
10k M3

[SIE

and define

wo(x) = wo(x) + B(x). (4.15)

We now show that if the parameter £ > 0 is taken sufficiently large then the
corresponding solution @ will satisfy all the requirements. In the rest of this
proof, to simplify the presentation, we shall use the notation X = O(k%) if

the quantity X obeys the bound X < Cj - kia and the constant C| can depend
on (w, M, ®g, 8, ¢, Rp).

We first check (4.2-4.5).

Obviously by (4.14), if k is sufficiently large, then

1Bl =+ J_IIbIILl =< llwollz1,

Similarly we can take k large such that

1Bl < llwollLoe.
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For the H~!-norm, note that f is an odd function and ﬁ(O) = 0. Thus

VI~ Bll2 < 1%l + 118112
= O0(k™") < llwoll -1

if k 1s taken sufficiently large.
For the H'-norm, by (4.13) we have

kz

1 1 -2 2
0] a2 +ﬁ-10 b-(x)dx

<o + L 10244 :
—_— — . . <_
=“\e) T om T=w

1 1
|Wm;so(_)+ﬁ.m2/#@nm%mm

A

where we again take k sufficiently large. Consequently the bound (4.5) follows.
On the other hand, (4.7) follows from the assumption supp(w(t,-)) C
B(zo, %Ro) for all 0 < ¢ < 1, and the fact that we can take k sufficiently
large.

It remains to show (4.6). We shall proceed in several steps.

First we shall show

max [|Vao(t) |+ < 1. (4.16)
0<t<l1

Here the implied constant is independent of k (but is allowed to depend on
other parameters).
By a standard energy estimate, we have

d ~ N4 ~ ~ 4
—(1vamI) £ 1RGGO I - 1VE@I}
< log(10 + D13 + V@ [3) - IV

A Gronwall in time argument then yields (4.16) [by (4.14), it is easy to
check that the initial data @q satisfies (4.16)].
Set n = w — @. Then

an+A"'Vie -V + ATIVEy . Ve = 0.
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Therefore noting that supp(n(¢)) C B(zg, Rg) forany 0 <t < 1, we have

d _ -
E(IInII%) SHNATIVE g - 1VD )4 - ]2
Sl - 1V lla.

Integrating in time then gives

max @l =0 (k7). 4.17)

Interpolating the bound (4.17) with (4.16) [note that w also satisfies the
same bound (4.16)], we obtain

max [DATIVE@B() = o) oo + max [ATVE@(0) = o0))lloo
=t= <t=<

1
-0 (k_“) (4.18)

where @ > 0 is some absolute constant.
Denote the forward characteristic lines associated with @ as ¢ (¢, x) which
solves

qp(t, x) = (ATIVED) @, ¢(t, X)),
#(0, x) = x.

By Lemma 4.1 and (4.18), we have

1

max (16 ) = 6. Vo + 1Dt ) = (DB o) = O (k—)

Write ¢ (¢, x) = (@1 (1, x), ¢2(t, x)). By (4.11), we get

(0, )12, = / (Vo) (x) - Vo (10, )| dx

> / Vo (x) - VEalio, 1)2dx — O (i)

ka
1 1 2
z3 IVB(x) - V=2 (to, x)|"dx
1 2 1
— [ Vao(x) - V=¢a(10, x)["dx — O w@ ) (4.19)
where in the last step we used the simple inequality

1
la + b)? > >la al> = |b|*>, Va,beR?
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Since we are in Case 2, we have [ (fy, )| g1 < M5, By (4.11), we get

/ Voo () - VEga(io, ) Pdx < oo, ), < M5, (4.20)

By our choice of the function  and (4.12), we have

1
5 / IVB(x) - VEa(to, x)|*dx
R2
1 cos(kx1)b(x) ¢ 2 L
23 JoFrovar a9 406

1
> 510—2 M- /bz(x)cosz(kxl)dx -0 (k2
> % 1072 M — 0 (k72). 4.21)

Plugging (4.20) and (4.21) into (4.19), we get

I3(t0, ) = T10720 = M3 = 0 (k%) = 0 (k™)

) 2
>07-100°M — M5,

if k is taken sufficiently large. Clearly (4.6) follows. O

5 Local to global: gluing the patches

In this section we prove a general proposition which allows us to glue the local
solutions into a global one. We begin with some auxiliary lemmas.

To state the next lemma, we need to fix a sufficiently large constant A} > 1
such that

IATIVE Flloo < Av-(If I+ 1 Fllee), ¥f € L' NLOMRY). (5.1)
Note that A is an absolute constant which does not depend on any parameters.

Lemma 5.1 Consider the Euler equation on R>:

dhw—+ AV - Vo=0, 0<1<1,
(5.2)

| =wy=[f+g.
t=0
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Assume f € HEN L' for somek =2, g € H*N L' and

lwoll L1 + llwollLe < C1 < o0, (5.3)
d(supp(f), supp(g)) = 1004;C; > 0, (5.4)

where A is the same constant as in (5.1).
Then for any 0 < t < 1, the following hold true:

(1) The solution w(t) to (5.2) can be decomposed as
() = wrt) + wg (), (5.5

where wy(0) = f, wg(0) = g, and [see (2.2)]

supp(w (1)) C B(supp(f), 2A1Cy),
supp(wg (1)) C B(supp(g),2A1Cy).

(2) The Sobolev norm of ws(t) can be bounded in terms of || f || yx and C;
only:

max o7 ()l < CAf . C1) < oo. (5.6)

Proof of Lemma 5.1 By (5.3) and (5.1), we have

max |AT'V¥Eo(r)]le < A1C).
0<r<1

By the transport nature of the equation, the support of the solution w(z)
is enlarged at most a distance A;C; from its original support in unit time.
The decomposition (5.5) follows easily from this observation and (5.4). More
precisely, w ; and w, are solutions to the following linear equations:

dwr + (u() - Viwr =0,
=0 - f;

wy

[, + (u(t) - V)wg =0,

=g.

{wf t=0

Here u = A~!'V¥w. Note that » £(t) and wg (1) stay well separated for all
0<r<l:

d(supp(; (1)), supp(ws (1)) = 90A1Cy > 0. (5.7)
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To show (5.6), we note that the equation for w ¢ (¢) can be rewritten as
dhor+ A" 'Vior Vor + AT'V4e, - Vo =0. (5.8)

Note that for any multi-index «, we have
(AT'VE0%we) (x) = / K@ =)@ (dy, (5.9)
R

where K (-) is the kernel function corresponding to the operator A~ V.

By (5.7), for any x € supp(w¢ (7)), y € supp(wg(t)), we have [x — y| >
90AC|. Therefore we can introduce a smooth cut-off function x on the kernel
K () and rewrite (5.9) as

(ATIVE%wy) (x) = /]R KO = ) x1eyizs0410, (0 0g) (1) dy
= [0 (K = 3o Jos 0y

= /IRZ Ky (x — y)wg(y)dy, (5.10)

where the modified kernel K « satisfies

Ra(@)] Scra 141272, ¥z eR2 (5.11)
By using L' and L™ conservation, we have
lor@llpr + llwr@llLe + llwgOllpr + llwg ()l < 2C1. (5.12)
Therefore by (5.10-5.12) and the Cauchy-Schwartz inequality, we have

max  max  [(AT'V%,)(t, x)| Sy L (5.13)
0<t<I xesupp(wy(t))

The estimate (5.13) shows that the drift term A ! VLa)g in (5.8) is arbitrarily
smooth on the support of w s. Therefore the estimate (5.6) follows from the
standard energy estimate. For the sake of completeness we sketch the detail
here for k = 2. By (5.8), we have

/ AAT'VEo, Vo) Ao dx
R2

< (180,013) =

_.l_

/2 A(A_IVLa)g -Vor)Awrdx
R
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< / ATV ws| - 19w - |Aw rldx
R2

+ max AT IVL9%0, (1) - N
xesupp(w (1)) | wg ()] -l ( )”Hz
lo|<2

Sor A+ IRijor®) o) - lof (3,2,

where R;; denotes the Riesz transform. By the usual log interpolation inequal-
ity and (5.12), we have

IR oo Se Tog(10+ o013 ).
Therefore
L (hor@122) S, 10g(10 + oy O - oy I
g; 12r Wiz ) ¢ o8 @D g2) M@ -
A log Gronwall in time argument then yields (5.6). O
Lemma 5.2 Let w and @ be solutions to the Euler equations

o+ AT'Vtw - Vo=0, 0<1<1,

w

=wo=f+g.

=0
and

9o+ AWV - Vo =0, 0<t<1

Assume f € H3N L, g€ H*N L' and
lwoll 1 + llwollLe = €y < o0.
Assume also f is compactly supported such that
Leb(supp(f)) < C2 < o0. (5.14)
Then for any € > 0, there exists Rc = Re(€, || f |l g3, C1, C2) > O such that if
d(supp(f), supp(g)) = Re > 0,

then for any 0 < t < 1, the following hold true:
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(1) w(t) has the decomposition

w(t) = wr(t) + wg (1), (5.15)

where

supp(w (1)) C B(supp(f),2A1Cy); (5.16)
supp(wg (1)) C B(supp(g), 2A1Cy);
d(supp(wy(t), supp(wg(?))) = 100AC;.

Here Ay is the same constant in (5.1).
(2) The support of w(t) also satisfies

supp(@(1)) C B(supp(f), 2A;Cy). (5.17)
(3) wyr(t) and w(t) are close:

max g () = &0l g2 < €. (5.18)

Proof of Lemma 5.2 Note that (5.15) and (5.17) follows directly from Lemma
5.1: we just need to take R > 100A1C;. By Lemma 5.1, we have

max [y (1) — (1)l 3

0<r<1
< t o(t
= max lws @l g3 + Jmax, ()|l 3
<C3=C3(I fllgs, Cr)- (5.19)

Set n(t) = wy(t) — (). Then by (5.8), we have

IN+ATIVEn Vor+A7IVEG - Vp+ A7 V4w, - Vo, =0, 0<t<I,
n) = 0.

For x € supp(wy(t)), we have

(AT VEwe) (t, 0)| S /

1 lwg (£, y)Idy
lx—yl=1r. X =Yl

_1 _1
SR ||a)g||% 5 Rc* - Cy.

~
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Therefore
4 2) <A~ tvt Vo o+ R. \%
o In@®I) < Nz - lnll2 - IVogllet+Re = - Ci - [[Varlla - Inll2-
(5.20)
By Sobolev embedding, (5.14, 5.16, 5.17) and Holder, we have
IA7VEnlls < il
§C1,C2 Inll2.
By (5.19) and Sobolev embedding we have
[Vorlle S Cs.

Therefore integrating (5.20) in time, we obtain for some C4 = C4(Cy,
Cy, C3) > 0 that

1

max [|n(t)[l2 < Re 2 - Cq. (5.21)
0<r<l1

The desired estimate (5.18) follows easily from interpolating (5.19, 5.21)
and taking R, sufficiently large. |

Proposition 5.3 (Almost non-interacting patches) Let {w; }3?‘; | be a sequence
of functions in C2°(B(0, 1)) that satisfy the following condition.:

o0 o
D il + D lwjlp +sup lojlx < Cr <o, (522)
j=1 j=l J

Here we may assume C1 > 1.
Then there exist centers xj € R? whose mutual distances are sufficiently
large (i.e. |x; — xi| > 1if j # k) such that the following hold:

(1) Take the initial data
o
wo(x) = D w;j(x —x)),
j=1

then wy € L' N L% N H' N C*®. Furthermore for any j # k
B(xj, 100A1Cy) N B(xk, 100A;Cy) = @. (5.23)

Here Ay is the same absolute constant as in (5.1).
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(2) With wyg as initial data, there exists a unique solution w to the Euler equa-
tion

orw + A"WVre Vo =0
on the time interval |0, 1] satisfying w € L'NL®NC® u=A"'V9ip e
C®°. Moreover forany 0 <t < 1,
o0
supp( (1, ) C | B(x;,3A,C). (5.24)
j=1

(3) For any € > 0, there exists an integer J¢ sufficiently large such that if
Jj = Je, then

012?;(1 lo(, ) —w;(t, ')||H2(B(xj,3A1c1)) < €. (5.25)

Here @ is the solution solving the equation
Wo;+ATIVEe; - Vo; =0, 0<t <1, xeR%;
[@j(t =0,x) =wj(x —x;), xeR2%
Proof of Proposition 5.3
Step 1. Choice of the centers x;.

For each wj, j = 1, we choose Rj = Rj([lwjll g3, C1) > O corresponding
to f = wj and € =27/ in Lemma 5.2 [C is the same constant as in (5.22)].
More precisely, if we take

dho+A'V¥iw - Vo=0, 0<t<1,

@ _, T i + 8,
and
o+ ATIVEE - Vo =0,
w 0= wj,
with
lwj + gl + lw; + gllLe < Cp < 00,
and

d(supp(w;), supp(g)) = R;, (5.26)
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then w (1) = wy(t) + w, (1) with
supp(w (1) C B(O, 1 +24,Cy)
and

max Jlog (1) = &2 < 277, (5.27)
<t<

With the numbers R; properly defined, we now describe how to choose the
centers x; inductively. First set x; = 0. For j > 2, assume xy,...,x;_ have
already been chosen. Let

fimi(x) = sz(x—xz)

and consider the problems

dw+ A Vw - Vo=0, 0<t<1,

w| 0= fi-1+8&,
and
90+ ATIVLE - Ve =0,
ol = fia
with =0

I fici+ gl + 11 fj—1+gllee < C1 < oo.
By Lemma 5.2, we can find Iéj = Rj(llfj_lllHa, C1) > 0 such that if
d(supp(fj—1), supp(g)) > R;, (5.28)
then

max flog; (0 = o0 52 < 27, (5.29)

We now choose x; such that

J
d(supp(fj—1).x;) > 2R; + 2> R+ 1000A,C; + 107, (5.30)
=1
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By induction it is easy to verify that (5.23) holds.

Step 2. Construction of the solution w(¢) by patching.

Since wg € L' N L™, the usual Yudovich theory already gives existence
and uniqueness of a weak solution in L' N L. Here thanks to the special type
of initial data we shall give a more direct construction which also yields the
regularity of the solution at one stroke.

To this end, denote for each m > 2

a)(()m)(x) = ij(x —Xj)
j=1

and let o (¢, x) be the corresponding solution to the Euler equation. Obvi-
ously for0 <t <1,

m
supp(o™ (1)) C U B(xj,3A1Cy).
j=1

Now we define w(?, x) as follows

limy, 00 0™ (2, x),  ifx € U2 B(x;,341Cy),
w(t,x) = ‘
0, otherwise.

We now justify that w (¢, x) is well-defined and is the desired solution.
Fix jo > 1and consider the ball B(x,, 3A1C). By (5.29) (setting» = o™
and ® = 0™ 1), we have

(m) (m—1) m .
Jnax @™ (1) — @ OBy 3a10) =277 ifm = jo+ 1.

By Lemma 5.1, we also have for any k£ > 3,

(m) _ . . .
ax N Ol ks, 3a100) = Cr = Celllwjllgx, €O, ifm = jo+ 1.

Thus (0") forms a Cauchy sequence in Hk(B(xjo, 3A,Cy)) forany k > 2
and hence converge to a unique limit w (¢, x) € C*(B(xj,, 3A1Cy)). Clearly
(5.24) holds. Easy to check w € L.

By using the Lebesgue Dominated Convergence Theorem, we have

loOLt e, 3ac) < M N0 O L1 (30, 341000 = @l

Summing in jj then gives us w € L.
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We now show that A~ VL™ converges locally uniformly to A~ V4w
on U?il B(xj,3A1Cy). By construction we can decompose

m
0™t x) = > " (1),
j=1

where
supp (a)ﬁ’")) C B(xj,3A1Cy).

Also we have

o0
ot,x)=> 0™ (t,x), supp (wj.‘”)) C B(xj.3A1Cp).  (5.31)
j=1
The summation above is actually a finite sum since for each x there exists

at most one j such that '™ (t,x) #0.
Now fix jo > 1. Then f[orx € B(xjy,2A1Cy) and m > jo + 1, we have

‘(A_IVJ'w(m))(x) _ (A—lv%))(x)‘

< |(a7VE (o —0f?)) @] (532)

P3| ) | 6
=)

- i (a7 VEe) 0. (5.34)
Jj=m+1

For (5.32), we use the inequality (5.1) to get

1ol (, (m) (00)
a7 (o — o) ]
= Ar- (I = 05l + o = 05 lx)
(m) (00)
Se ”wjo ~ @ lloo

Sey o™ — ol L@, 34100

— 0, asm — o0,

since @ converges uniformly to w on the ball B(x jo» 3A1C1).
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For (5.33), note that for j # jo [see (5.30)]

d (supp(w§m) — ™), Bx)p. 3A1C1)) > 2.

Therefore by using an estimate similar to (5.10), we have

o
(533) S > 270" — & i
j=1
J#Jo
o0
<c 22*1 ™ — ollLeo(B(x;,34,C1))

j=1
— 0, asm — oo.

Similarly
o0
(534) Se, DL 277 >0, asm— oo,
Jj=m+1

Hence we have shown that A~ V1™ — A~!VLg locally uniformly on
compact sets (and also uniformly in #) as m tends to infinity. By writing

t
o™ (1) = 0" (0) + / ATV . Vo™ (1)dr,
0

and sending m to infinity, we conclude that w is the desired solution on the
time interval [0, 1].

Finally (5.25) is a simple consequence of Lemma 5.2 and our choice of the
centers x; [see (5.27)]. O

We are now ready to complete the
Proof of Theorem 1.2 For each j > 2, we choose (by a slight abuse of nota-

tion)hj = hy; according to (3.4) with the parameter A j to be taken sufficiently
large. Consider the Euler equation

dow+ A V9w - Vo=0, 0<t<1,
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By Proposition6 3.4, we obtain for some ¢; € (0, m),

(DY) (1, oo > loglog A,

where ¢ is defined in (3.11).
We then use Proposition 4.2 to find 5)5.0) e C(B(0, 1)), 5)5.0) odd in both
x1 and xp, such that

1111 < 20kl
10 e < 211 .
101 < Mgl +277, (5.35)
10 1 < 2011t
I@; (. g > Js
where @ (¢) is the solution to the Euler equation
»o; +A7'VIe; - Va; =0, 0<t <1,

~(0)
@ =@ .
=0 J

We then apply Proposition 5.3 to w1 = a)(()p ), wj = 5)5.0) for j > 2 and find
the centers x ;. Obviously by (5.35) and (5.25), we have

€e8S-SUPy s <, l0 (7, ) g1 = 400, VO <ip < 1.

It is not difficult to check the H ! regularity of the constructed solution by
using conservation of L2-norm of velocity. The theorem is proved. O

6 The 2D compactly supported case

Lemma 6.1 (Control of the support) Suppose w = w(t, x) is a smooth solu-
tion to the following equation:

[8,w+ A"'Were Vo + (by + b)) - Vo =0,
w

t=0 a f’

where by = b (t, x), by = by(t, x), f = f(x) are smooth functions satisfying
the following conditions:

6 Note that the perturbation B(x) therein can be chosen to be odd in x| and x».
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e || flloc < Cy for some constant Cy > 0, and
supp(f) C B(O,R), R >0.

e by, by are incompressible, i.e. V - by =V - by = 0.
e For some By > 0,

bi(t,x)| < Bi|x|, VxeR2
e For some By > 0,
ba(t, x)| < Balx|*, Vx e R%

Then there exists Ry = Ro(Cyr, By, B2) > 0, 1o = to(Cr, By, B2) > 0, such
that if 0 < R < Ry, then

supp(w(t,-)) C B(0,2R), YO0 <t <1.

Proof of Lemma 6.1 Define the forward characteristic lines ¢ = ¢ (¢, x) which
solves the ODE

o, x) = (AL + by + bo)(t, $(2, X)),
ot =0,x)=x, xeR2

By using the assumptions, we compute
d 2
i t,
= (1001
< AT'VE)(E, Vlold (2, x)| + Bilg(t. x)1* + Balgp(r, x)]>. (6.1)
Since both b; and b; are incompressible, we have
o, Mg = lo@ =0, =1flg <Cs-xR> (6.2)

Then by interpolation and L°° conservation, we get

ATV @, )l S o, I o, )l

1 1
SIS 1
< C/R. (6.3)

where in the last inequality we have used (6.2) and all the implied constants
are absolute constants.
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Plugging (6.3) into (6.1), we obtain

d

Z(106.01) £ CrR+ Bilg @ 0| + Balt. )
The desired result then follows from time integration and choosing Ry, fo
sufficiently small. m|

For the compactly supported case, we need to use a slight variant of the
function /1 4 defined in (3.4). We now take any A > 1 and

1 1
loglogloglog A /log A Aik;:—logA

where 7, was defined in (3.1).
It is easy to check that

supp(ga) C B(0, Ry), with Ry ~ 274,
1

< R
lgalla S loglogloglog A’

1
o < ,
lgallLe S Tog A

ID?gallpee < 22ATEA),

The main difference between g4 and hy4 is that the former has weaker
dependence on A in terms of the bounds on higher derivatives. This fact will
be used in the perturbation theory later (see Lemma 6.3).

The following is a variant of Proposition 3.4. Note that the additional drift
term has a special form which makes the class of odd flows invariant.

Lemma 6.2 Let w = w(t, x) be the smooth solution to the equation
do+ A"'Viw - Vo+b-Vo =0,

w = 8A,
t=0 &

where g4 is defined in (6.4), b = b(t, x) takes the form

b(t, x) = by(t) (_x’;‘) . x eR%: (6.5)

and by(t) is a smooth function satisfying

1bolleoc < Bo < 00. (6.6)
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Let ¢ = ¢ (¢, x) be the associated forward characteristic line which solves

Qo (t,x) = (A" 'V +b)(t, ¢(t, x)),
¢(t=0,x)=x, x € R2.

Then there exists Ag = Ag(Bg) > 0 such that if A > Ay, then

max (D@)(t, ) |lco > loglog A. (6.7)

0=1=fogioga

Proof of Lemma 6.2 Thanks to the special assumption (6.5), it is easy to check
that w (¢, x) is still an odd function in x; and x, for any 7. We can then repeat
the proof of Proposition 3.4 or use the simplified version as in the proof of
Proposition 3.5. We omit the details. |

The next lemma shows that the patch dynamics can still be controlled under
a suitable perturbation in the drift term. This will play an important role in our
later constructions. Since we no longer have odd symmetry at our disposal,
we need to carry out a perturbative analysis.

Lemma 6.3 Let W = W (¢, x) be a smooth solution to the equation

AW+ AIWVLW . VW + (b(r, x) +r(t,x)) - VW = 0,
w

= Wp = ga,

t=0

where the functions g4, b, r satisfies the following conditions:
e g is the same as defined in (6.4);
o b(t,x) = bo(t) (;;”) . llbolloo < Bo < o0;
e 1 is incompressible and

Ir(t, )| < B - |xI?,

|(Dr)(t, x)| < By - |x],

1
(D*r)(t,x)] < Bi, YxeR,L0<1<—0.  (68)
loglog A

Here By > 0 is a constant.

Let ® = ® (¢, x) be the characteristic line which solves the ODE

® = (A" lvt ®
[at (t,x) = ( W +b+r)(t, o, x)), ©9)

&(r=0,x)=x, xeR2
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Then there exists Ag = Ao(Bo, B1) > 0 such that if A > Ay, then

max (DD)(t, -)|lco > logloglog A. (6.10)

0=I= Ioglog A
Proof of Lemma 6.3 We shall argue by contradiction. Assume (6.10) is not
true, then

max |(D®)(t, -)|lco <logloglogA. (6.11)

0=1= iogroga
By the c}eﬁnition of the characteristic line ®, we have W(z, x) = WO(&D(I, x))
where @ is the inverse map of ®. By (6.11) and using a computation similar
to (4.11), we get

max  [[DW(, )ll2 S IDWoll2 - max  [[DP(, )l
<
™~ loglogloglog A

< logloglog A. (6.12)

-logloglog A

We shall need this estimate later.
The main idea is to compare W with the other solution w which solves the
“unperturbed” equation

9w+ A"'WVLe - Vo +b(t,x) Vo =0,

w = g2A.
t=0 &

The perturbation theory requires a bit of work so we shall proceed in several
steps.

Step 1.Setn = W — w. We first show that

2
I, g S273%, VO<i<

_—. 6.13
~ loglog A ( )

Here and below we use the notation X+ as in (2.1). Also to simplify notations
we shall write Sp, as < (i.e. we suppress the notational dependence on Bj)
since A will be taken sufficiently large.
The equation for 5 takes the form
a4+ ATV VW 4+ ATIVEw -V +b-Vyp+r- VW =0,
n) =0.
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By Lemma 6.1 and (6.8), we have

7t I Lo suppw e, ) S 474
1(Dr)(, )l Lo suppW(r,)) S <24

1
D?r)(t, oo <1, VO<t<——-r. 6.14
(D7), )l LoosuppW (2,))) S = Joglog A4 (6.14)

Let 1 < p < 2. By Sobolev embedding and (6.14), we compute

d _ —1 - -1
—(1m1p) 07V il VW - Il 4TI W - Il

- -1
SIVWiz - Il + 4" IVWi2 - linlly~

Therefore for 0 <t < by using (6.12), we get

foglog A glogA’

t
In(, )y < 4‘*‘/ eli=9)logloglog A 46 150 10g log A
0

< yA logloglog A <4A

~

(6.15)

~

loglog A

This estimate is particularly good for p = 2—.
On the other hand, for any 2 < g < 00, a standard energy estimate gives
forany 0 <t <1,

I, wze SNTWE, e + o, )lly2e
S lgallwza
o1 H2(A+log A)(1=1)
logA
<44,

Interpolating the above with (6.15) then yields (6.13) (note that ||n|| zo ()

< ||77||L2(R2) ” ATI ||L°O(R2))

Step 2. Let ¢ be the characteristic line associated with the equation for w,
1.e.

Qo (t, x) = (A™'VEw +b)(1, ¢(t, x)),
¢(t=0,x)=x, x € R2.
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We show that

max g, ) = (1, e S 274, (6.16)

OstsloglogA

Set Y (t,x) = &(¢t, x) — ¢(¢, x). By Lemma 6.1, we only need to consider
x| <274 sine ¢ (r, x) = D(r, x) = x for [x| > 274,
Then for |x| < 274,

%Y = (AT'VEW) (@) — (AT Vi) (9)
+ by (1) (_YYI) +r(t, ®)
2
= (ATIVEW) (@) — (ATIVEW) (9) + (ATIVEW — ) (¢)

+bo(1) (_Y?) +r(t, D).

For |x] <24 and 0 <1 < m we have |®(z, x)| < 274. By (6.8),
we get
_A 1
max |r(t, ®(, x))| <474, Vo<t < ——.
x| <274 loglog A
Therefore

d
(1Y @.20)1) £ Bo+ IRWlloo) - 1Y (1. 0) 4+ A7 VAW = 0)lloc +47.

(6.17)
By using the usual log-interpolation inequality, we have
IRWloo S W2 + W lloo log(10 + [ Wl £2)
S A. (6.18)

On the other hand, by (6.13), we have

1 1
W = ol W - olls

5 2—A . 2—%A+

[ATIVEW = 0)loo <

~

<2 iAT
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Plugging these estimates into (6.17) and integrating in time, we obtain

t
Y (0] < / (I-9CA4=A 4 p=dat g
0

N

1
loglog A CA 4
/ e loglog A (4_A 4+ 2_§A+)ds
0

<2 iAT

Step 3. Set f(t) = (D®)(t, x), J(t) = (D¢)(t, x), then obviously

3.7 = @@+ (5 0) 7+ B,

-1 0
0rJ = (Rw)(¢)J + bo(t) ( 0 1 ) J.
Let g = J — J. Then g satisfies the equation

hg = ((RW)(@) = RW)@)T + (RW)(@) — Re)@)]

+ (Ra)(®)q + bo(0) ( ) 10) g+ (D)@,
By (6.13, 6.16, 6.18), we obtain

31ql S IDRWloo|® = @1 - [T lloo + 2734 T lloo
+ Algl + 274 [l
< A+ =34+ logloglog A + 234+ logloglog A + Alq|
+274 logloglog A.

Integrating in time and noting ¢ < m, we obtain (note g(0) = 0)

1
foglogd _CA
llgloo ,§/ . eloglogAZ_%AJ“logloglogAds S 1.
0

But this obviously contradicts (6.7) and (6.11). ]

The next lemma is the main building block for our construction in the
compactly supported data case.
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Lemma 6.4 Suppose f_1 € C®° (R2) is a given real-valued function such that

e for some Ry > 0,
supp(f-1) C {x = (x1,x2) :© x1 < —2Ro};
e f_1is an odd function of x3, i.e.
fo1(x1,x0) = — fo1(x1, —x2), Vx e R
Then forany 0 < € < 1’%%, one can find 5o = §o(f-1,€, Rg) > 0,0 <ty =

t0(f-1,€, Ro) < €, and fo € C°(B(0, €)) ( fo depends only on (f-1, €, Ry))
with the properties:

e fo is an odd function of x3;
[ ]

I follr + L follLe + Il foll g1 + L foll g1 < €, (6.19)

such that for any f € C° (R?) with

o supp(f1) C {x = (x1,x2) : x1 > Ro};
o [[fillgr + Nl fillLe < B0,

the following hold true:
Consider the Euler equation

w0+ A"'VLw - Vo =0,
o =[fatfothi

then the smooth solution w = w(t, x) satisfies the following properties:

(1) forany 0 <t < to, we have the decomposition
o(t,x) = o1, x) + wo(t, x) + w1 (, x), (6.20)

where
1
supp(w-1(1)) C B (supp(f—l), gRo) ;
supp(wp(t)) C B (O, €+ éRO) ;

1
supp(wi(t)) C B (supp (f1, gRO)) .
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2) llwot =0, )t = I foll g1 < € but

1
lwo (2o, )l g1 > < (6.21)

Proof of Lemma 6.4 The decomposition (6.20) is a simple consequence of
finite transportation speed. Therefore we only need to show how to choose fj
to achieve (6.21) and the other conditions.

Consider first the equation

do® + A~V . Ve =,
(6.22)

w® = fo1+ga,
t=0

where g4 was defined in (6.4) and we shall choose A sufficiently large.

ForO0 <t < m,we decompose the solution oM (1) to (6.22) as

oD (t, x) = (1, x) + 0§ 2, 1),

with
M I
supp(_ (1, ) C B | supp(f-1), 75R0 )

1
supp(w)(t, ) C B (supp(gA>, ERO) . (6.23)

Obviously a)(()l) () satisfies the equation

gy + A VEol - Vol + A7V (1) - Ve =0,
1 (6.24)
o )‘ = g4.
0 li=o

Since by assumption f_; is odd in x7 and g4 is also odd in x», it is easy to
check that both a)(_lf (t) and a)(()l) (1) are odd functions of x,. Therefore we have

(a7 000 )¢, x1,0) =0,
(a~"one ). x1, 0 =0,

1
(A7"000) (51,00 =0, YO<i =\ x R (625
loglog A
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Now let £(7) solve the ODE

Le(y = (A o), £(1), 0,
£(0) = 0.

(6.26)

+ and A sufficiently large, the function a)( i is

Since for 0 < ¢ < logT
supported away from the origin [see (6.23)], it is easy to check that the func-
tion (A~ 18260(1))0 -) is smooth and has uniform (independent of A) Sobolev
bounds in a small neighborhood of the origin. Thus £(¢) is well-defined and
remains close to the origin for ¢ <

By (6.25), we have

loglog A

(—a700N) ¢ e+, 1) = = (a7 00" )0, £, 0)
— (a0 @ 1), 0y +r{" (1, ),
(a7"000) @ e+ 31,3 = (A7 200 ) (.60, 032 + {1, 1),

1
where for 0 <r< m,

1 1
|l”1( )(l, »l+ |’"2( )(t, W SfoR |y|2’
1 1
|(Dr( N, )+ | (Dr( )) @ Sporro 1]

O+ 1 (D2) 9l Spm 1

By (6.26), we may write the above more compactly as

(Ao @, £(0) + yi,y2)
= (_%5(”) + bo(t) (‘yl) +r(t, y) 6.27)
0 » o '

where

1bo(t)] Sf1.ro 1,
(6] Sk 1917
(DY Sporry 191
(D*r)(t. )| Sporo 1

(6.28)
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Now we make a change of variable and set

x=(&@) +y1.y2),
o3 (1, x) = 0 (1, E(0) + y1, y2) = W, y1, y2). (6.29)

By using (6.27) and the above expressions, we can write (6.24) as
1 - 1 1
oW, ) + (AT VWY v Wiy, )

+bo(1) (_yﬁ 1) VW, v+, y) - VWP (@, y) =0,

where b (1), r(t, y) satisfies (6.28).

1
By Lemma 6.1, we have for 0 <t < foglog A

supp(W3" (1, )) € B(O, R), with R ~274.
Therefore by (6.28) and Lemma 6.3, we have for A sufficiently large,

max I(D®)(t, -)|loo > logloglog A, (6.30)

OStSloglogA

were @ is the forward characteristic line associated with Wél) [see (6.9)].
Let ¢ be the characteristic line solving the ODE

hp(t,x) = AV + ATV @, ¢, x)),
¢t =0,x) =x.

Denote by @, ¢ the inverse maps of ® and ¢ respectively. By (6.29), it is
easy to check that

(1, y) = (t, £(t) + y1,y2),  foranyr > 0and y = (y1, y2) € R%.
(6.31)

Therefore by (6.30),

max (D) (t, )|lco > logloglog A. (6.32)

OStSIOgIOgA

Now we just need to modify slightly the proof of Proposition 4.2. Note that
one can always choose the perturbation S(x) [see (4.14)] to be odd in x| and
X2, for example,
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Bx) = % sin(kx1) sin(xz)b(x)\/%.

Denote by g4 the perturbed initial data and let @'" be the solution to

»ao) + ATIvLeM . vl =0,

o] =fa+in

Similar to ) [see (6.22)], we also have the decomposition similar to that in
(6.23):

~(1) _ ~() | ~(1)
' =w_] Fw .

By our choice of perturbation (and taking A sufficiently large), we have

max 16" (¢, )l g1 > (logloglog A)3.

0<r< loglog A

Let fo = ga. We then compare @' with » which solves

w0+ AV¥Lw Vo =0,

o =[fatfotfi,

with f; € C2°(R?) satisfying

o supp(f1) C {x = (x1,x2) : x1 = 5Ro};
o [ fillpr + Il fillzee < do

and &g is to be taken sufficiently small.
By an argument similar to the proof of (5.18), we then have [see (6.20) for
the definition of wq(¢)]

~(1
max  [lwo(t) — @5 ()l 2 Se.r 1Ry S0-
0<t<

Toglog A
Therefore (6.21) follows by choosing §q sufficiently small. O

To prove Theorem 1.5 we need the following C-perturbation lemma.
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Lemma 6.5 Let Ry > O and f € C°(B(0, Ry)), g € CX°(B(0, Rp)). Let »*
and w be smooth solutions to the following 2D Euler equations:

do’ + W - Vyo® =0, 0<r<1, x eR?
ut = ATIVEeS, (6.33)

w? = f.
t=0 f

ow+ u-Vio=0, 0<rt< 1, x € R2,
u=A""Vto, (6.34)

a)t:O:f—i-g.

For any € > 0, there exists § = &(€, Rg, f) > O sufficiently small such that

if
llglloo <6,
then

max |l (t, ") —w(t, )| < €. (6.35)
<I=

Proof of Lemma 6.5 By first taking ||glloc S 1, we have || f + glloo Srry -

Since supp(f) C B(0, Rg) and supp(g) C B(0, Rp), we get

supp(w(t, -)) C B(0, Ry),
supp(w’(t,-)) C B(0, Ry), Y0 <r<1,

where R > 0 is some constant depending on Rg and || f||oc only.
Set n = w* — w. Then 7 satisfies the equation

an+ (AL - VYo + (u - V)n =0,
| i1 1 n 636

n0) = g.
By a simple energy estimate, we have

max ||Voi(t, - <, 1.
max Vo' ()l S
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On the other hand, since supp(n (¢, -)) C B(0, Ry) forany 0 <t < 1, we
have

IATIYVAnE, e S I, I+ 10 ) lloo
<r 10, oo

By (6.36), we then get forany 0 <t <1,

t
N, oo Ski.f 8lloo +/ (s, loods.
0
A Gronwall argument then yields
. <
max [0t oo Sk, 5 18l

Therefore (6.35) follows by choosing ||g||~o sufficiently small. O
We now sketch the proof of Theorem 1.5.

Proof of Theorem 1.5 We begin by noting that the support condition in state-
ment (1) of Theorem 1.5 (“compactly supported in a ball of radius < 17) is
rather easy to achieve: one only needs to change the parameters of the distances
between the patch solutions in our construction below. Similar comment also
applies to the condition “IIa)(()p) g1 g2y + IIa)(()p) | oo (m2) + IIw(()p) 12y <€
Therefore we shall ignore all these conditions below. In particular to simplify

notation we will construct a)ép ) of order 1. Also without loss of generality we

may assume a)(()g Vis supported (say) in a ball of radius < ﬁ.

Define zg = (-2, 0), z1 = (0, 0). For each integer j > 2, define

j—1
100
=c"0= (> i 0 (6.37)
k=1

We shall choose z, j > 0 to be the center of the j th patch.

Now define ho(x) = w(()g)(x—zo) andép = 1.ByLemma 6.4 with f_| = ho,
Ro = }T,e =1/800,wecanfind§; > 0,0 < £] < %,andhl e CX(B(0, ﬁ))
with the properties

e /11 is an odd function of x;
o lnillp + Inlizee + Mhill g + kil g < 45

such that for any f € C & (R?) with

o supp(f) C {x = (x1,x2): x| > %1};
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o IF L + 1l <81,
the following hold true:
For the Euler equation

drw + A 'WVWEe Vo =0,

w Ozho—}—h]—i-f,

=l
the smooth solution w = w(t) satisfies:
(1) Forany 0 <t < t1, w(¢) can be decomposed as

w(t,x) = wp(t, x) + wp, (t, x) + a)f(t, X),

where

1
supp(wp, (t, ) C B (o, 2+ 5) ,

1 1
tv : B 0’ o Y B
supp(wp, (t, -)) C ( gt 32)

1
Supp(wf(f,‘))c{X=(x1,x2): -x1>___};

(2)
llwn, (1, )l g1 > 8.

We now inductively assume that for 1 < i < j, we have chosen h; €
C(B(zi, 55)) whichis odd in x,0 < #; < 5, 8; > 0, with
Ihillr + Nhillzee + [Thill g1+ il g

[
< g, 3 639

such that for any f € C°(R?) with
o supp(f) C {x = (x1,%2) 1 x1 > 2,}; — &} [see (6.37)] for the definition
of 231
o Il + 1 f Nz <6,
the solution w(¢) to the equation
o+ A"'V4iw - Vo =0,

60[_0=Z§:{h1+hi+f~,
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satisfies the properties:

(1) for any 0 <t < t;, we have the decomposition
w(t,x) =w<i—1(t, x) +w;i(t, x)+ a)f(t, x), (6.39)

where

1
supp(w<i—1(t, 1)) C [x =(x1,x2): x1 < zfljl + f} :
supp(w; (t, -)) C {X = (x1,x2): |x—z]| < _,] .

1
supp(w 7(t, -)) C {x = (x1,x2): x> 2521 - _,} :

2) llwi(i, ) g > 2"

Then for i = j + 1, by shifting the coordinate axis to z; if necessary,
we can apply Lemma 6.4 with f_; = Z{:O hi, € < ZI—LI ming<x<; 8, and
choose hji1 € C(B(zj41, ij)) to satisfy all the needed properties similar

to the i’ step. This way we have completely specified the profiles of all & js
j=0,1,2,...
Now we define the initial data

Itis easy to check that w is compactly supported and wy € L°NH'NH!.
Denote the approximating initial data

J

) _ )

Wy = Zh,
=0

and let /) be the solution to the Euler equation

0 + ATV . ve) =0,

) N )]
w = w, .
t=0 0

(6.40)
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By using L”?, 1 < p < oo conservation of vorticity, L conservation of
velocity, it is easy to check that

sup sup ([l (1, i+l e+ 0@, )l ) ST (641

J 0<t<oo

Furthermore by Lemma 6.5, we can’ guarantee that

max [0 (z, ) — oYV, )l <277.
0<r<l1

Note that by (6.41) we can always guarantee for some constant R > 0 that
supp(@”)(z,-)) C BO,R), YO<r<1,J=1.

We then view (w/));=; as a Cauchy sequence in the Banach space
C?CQ([O, 1] x B(0, R)) and extract the limit solution w in the same space.
By interpolation and Sobolev embedding, it is easy to check that u!/) =
A~1VLeW) also forms a Cauchy sequence in COL2 N CYC%([0, 1] x R?) for
any 0 < o < 1. Therefore u) converges to the limit u = A~!'V+w and w is
the desired solution.

Set x, = lim; . z; = (100, 0). We now prove statement (3) and (4) in
Theorem 1.5. Fix any integer n > 2 and we choose #,, < zln in the same way as
specified in (6.38). By our way of construction, the fact that (w/)) is Cauchy
in C? and (a version of) Lemma 5.1, we have that the limit solution @ obeys
a decomposition similar to that in (6.39). More precisely define t,% = t,, then
forany 0 <t < t,f, we have

w(t,x) =w,t,x)+ w,(t, x) + ws, (2, x), (6.42)

where w_, (1, ) € CSO(Q<n), wp(t,-) € CSO(Qn), and

2
Qo = {x = (x1,x2) : |x| <1000 and x| < z,(ll_)l + 2—n]
2
Q= 1x = (x1,x2) : Ix—zn|<2—n ;

1
supp(ws,(z,-)) C {x =(x1,x2): x> Zlgllil - 2—,,] ;

7 One needs to inductively shrink the §; further (so that Lemma 6.5 can be applied) and re-
choose the profiles £ ; if necessary.

@ Springer



156 J. Bourgain, D. Li

Furthermore we can choose ! < 2 (¢! is sufficiently close to ¢2) such that
. 12
lwn(t, g1 >n, Vtelt,, t;].

Therefore statement (4) in Theorem 1.5 is proved. Now for statement (3)
we discuss two cases. If x = (x1, x2) # x, = (100, 0) and x; > 100, then
by using finite transportation speed we can find a neighborhood Ny of x and
ty > O sufficiently small such that w(¢, y) = Oforany 0 <7 <t,andy € Ny.
Similarly we can treat the case x = (x1, x2), x; < 100 and |x| > 500. On
the other hand if x = (x1, x2) and x; < 100 with |x| < 500, then we can
find n sufficiently large such that x € Q_,. Obviously we just need to define
Ny = Q_yand t, =12 sothat w(t, ) € C®(N,) forall 0 < t < t,. o
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