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Abstract We show that supersingular K3 surfaces in characteristic p ≥ 5 are
related by purely inseparable isogenies. This implies that they are unirational,
which proves conjectures of Artin, Rudakov, Shafarevich, and Shioda. As a
byproduct, we exhibit the moduli space of rigidified K3 crystals as an iterated
P
1-bundle over Fp2 . To complete the picture, we also establish Shioda–Inose

type isogeny theorems for K3 surfaces with Picard rank ρ ≥ 19 in positive
characteristic.

Mathematics Subject Classification 14J28 · 14G17 · 14M20 · 14D22

1 Introduction

The Picard rank ρ of a complex K3 surface satisfies ρ ≤ 20. In [20,54],
Shioda and Inose classified complexK3 surfaceswith Picard rank 20, so-called
singular K3 surfaces, showed that they can be defined over number fields,
and thus, form a countable set and have no moduli. They also showed that
such a surface rationally dominates and is rationally dominated by a Kummer
surface. This is related to a conjecture of Shafarevich [49], according to which
every Hodge-isogeny between the transcendental lattices of two complex K3
surfaces is induced by a rational map or a rational correspondence—we refer
to Sect. 2.2 for details.

C. Liedtke (B)
TU München, Zentrum Mathematik, M11, Boltzmannstr. 3,
85748 Garching bei München, Germany
e-mail: liedtke@ma.tum.de

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00222-014-0547-7&domain=pdf


980 C. Liedtke

The first result of this article is an extension of the Shioda–Inose theorem
to positive characteristic:

Theorem Let X be a K3 surface in odd characteristic with Picard rank 19 or
20. Then, there exists an ordinary Abelian surface A and dominant, rational
maps

Km(A) ��� X ��� Km(A),

both of which are generically finite of degree 2.

We refer to Theorem 2.6 for more precise statements, fields of definition, as
well as lifting results. For example, singular K3 surfaces in odd characteristic
can be defined over finite fields, and thus, also these surfaces form a countable
set and have no moduli.

Artin [2] observed that there do not exist K3 surfaces with Picard rank 21 in
any characteristic. On the other hand, Tate [55] and Shioda [52] gave examples
of K3 surfaces with Picard rank 22 in positive characteristic, so-called Shioda-
supersingular K3 surfaces. Artin [2] showed that Shioda-supersingular K3
surfaces are Artin-supersingular, that is, their formal Brauer groups are of
infinite height. It follows from recent progress in the Tate-conjecture for K3
surfaces due to Charles [7], Madapusi Pera [32], and Maulik [35] that a K3
surface in odd characteristic is Artin-supersingular if and only if it is Shioda-
supersingular.

Artin [2] also showed that supersingular K3 surfaces form 9-dimensional
families, which is in contrast to the above mentioned rigidity of singular K3
surfaces. Moreover, Shioda [52] showed that Tate’s and his examples are uni-
rational, another property of K3 surfaces that can happen in positive character-
istic only. Since unirational K3 surfaces are supersingular as shown by Shioda
[51], this led several people to conjecture the converse:

Conjecture (Artin, Rudakov, Shafarevich, Shioda) A K3 surface is supersin-
gular if and only if it is unirational.

Shioda [52] established this conjecture for supersingular Kummer surfaces
in odd characteristic, Rudakov and Sharafevich [46] showed it in characteristic
2 and for K3 surfaces with Artin invariant σ0 ≤ 6 in characteristic 3, and Pho
and Shimada [45] for K3 surfaces with Artin invariant σ0 ≤ 3 in characteristic
5. We refer to [23] and [21] for some refinements. In particular, there do exist
unirational K3 surfaces in every positive characteristic.

The key result of this article is a structure theorem for supersingular K3
surfaces, which was posed as a question by Rudakov and Shafarevich in [46],
and which is similar to the Shioda–Inose theorem for singular K3 surfaces.
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Supersingular K3 surfaces are unirational 981

Theorem Let X and X ′ be supersingular K3 surfaces in characteristic p ≥ 5
with Artin invariants σ0 and σ ′0, respectively. Then, there exist dominant and
rational maps

X ��� X ′ ��� X ,

both of which are purely inseparable and generically finite of degree
p2σ0+2σ ′0−4.

In [20,54], Shioda and Inose introduced a notion of isogeny for singular
K3 surfaces over the complex numbers, which was extended to other types
of complex K3 surfaces by Morrison [36], Mukai [38], and Nikulin [41]. We
refer to Sect. 2.2 for an extension of this notion to positive characteristic, and
using this terminology, our structure theorem says that all supersingular K3
surfaces are mutually purely inseparably isogenous.

Our theorem also fits into Shafarevich’s conjecture [49] mentioned above:
supersingular K3 surfaces are precisely those K3 surfaces without transcen-
dental cycles in their second �-adic cohomology. Thus, their “transcendental
lattices” should be thought of as being zero, thus mutually isogenous, and by
our theorem, they are all related by rational maps. We refer to Sect. 2.2 for
details.

Our theorem also explains why supersingular K3 surfaces form 9-
dimensional families, whereas singular K3 surface have no moduli: in both
cases, these surfaces are isogenous to Kummer surfaces. For singular K3 sur-
faces, the isogeny is separable and does not deform. For supersingular K3
surfaces, the isogeny can be chosen purely inseparable, and deforms in fami-
lies. We refer to Remark 5.2 for details.

As already mentioned, Shioda [52] proved that supersingular Kummer sur-
faces in odd characteristic are unirational. Combined with our structure theo-
rem, this establishes the Artin–Rudakov–Shafarevich–Shioda conjecture.

Theorem Supersingular K3 surfaces in characteristic p ≥ 5 are unirational.

Together with results of Artin, Shioda, and the recent proof of the Tate-
conjecture forK3 surfaces in odd characteristic, we obtain the following equiv-
alence.

Theorem For aK3 surface X in characteristic p ≥ 5, the following conditions
are equivalent:

(1) X is unirational.
(2) The Picard rank of X is 22.
(3) The formal Brauer group of X is of infinite height.
(4) For all i , the F-crystal Hi

cris(X/W ) is of slope i/2.
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982 C. Liedtke

We refer to Sects. 3.4, 4.4, and 5.4 for partial results in small characteristics.
For example, if the Rudakov–Shafarevich theorem [48] on potential good
reduction of supersingular K3 surfaces were known to hold in characteristic
3, then the above theorems would hold in characteristic 3 as well.

The main tool to proving that supersingular K3 surfaces are related by
purely inseparable isogenies is that a Jacobian elliptic fibration X → P

1 on
a supersingular K3 surface with Artin invariant σ0 admits a deformation that
is a one-dimensional family of elliptic supersingular K3 surfaces, such that
all elliptic fibrations in this family are generically torsors under X → P

1. We
call this a moving torsor family and refer to Sect. 3.1 for details. Moreover,
the generic fiber of this family has Artin invariant σ0 + 1 and is related to the
special fiber X by a purely inseparable isogeny, see Theorem 3.6.

In [43], Ogus introduced moduli spaces MN of N -rigidified K3-crystals,
where N is a supersingular K3 lattice. If N and N+ denote supersingular K3
lattices in odd characteristic of Artin invariants σ0 and σ0 + 1, respectively,
then, these moving torsor families induce a structure of a P

1-bundle, which is
an interesting result in itself.

Theorem There exists a surjective morphism

MN+ → MN

together with a section, which turns MN+ into a P
1-bundle over MN . In

particular,MN and MN+ are iterated P
1-bundles over Spec Fp2 .

Using Ogus’ Torelli theorem [44], we use this P
1-bundle structure to show

that every supersingular K3 surface of Artin invariant σ0 + 1 is purely insep-
arably isogenous to one of Artin invariant σ0, and, by induction on the Artin
invariant, we obtain our theorem on isogenies between supersingular K3 sur-
faces. We refer to Theorems 4.3 and 4.5 for details.

This article is organized as follows:
In Sect. 2, after reviewing formal Brauer groups, several notions of supersin-

gularity, and introducing purely inseparable isogenies, we classify K3 surfaces
with Picard ranks 19 and 20 in odd characteristic, which generalizes the clas-
sical Shioda–Inose theorem.

In Sect. 3, we show how a supersingular K3 surface with Artin invariant
σ0 together with a Jacobian elliptic fibration gives rise to a one-dimensional
family of elliptic supersingular K3 surfaces that are generically torsors under
this Jacobian fibration, and whose generic fiber has Artin invariant σ0 + 1.
Moreover, we show how these torsors are related to the trivial torsor by purely
inseparable isogenies.

In Sect. 4, we interpret these one-dimensional families of torsors in terms of
Ogus’moduli spaces of supersingularK3 crystals. As an interesting byproduct,
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Supersingular K3 surfaces are unirational 983

we find that these moduli spaces are related to each other by iterated P
1-

bundles, together with a moduli interpretation of this structure. In particular,
this gives a new description of these moduli spaces.

In Sect. 5, we use the results of the previous sections to prove that all super-
singular K3 surfaces are related by purely inseparable isogenies. Since Shioda
showed that supersingular Kummer surfaces are unirational, we conclude that
all supersingular K3 surfaces are unirational. Finally, we also characterize
unirational Enriques surfaces.

Following a simplified form of our strategy, Max Lieblich [29] has recently
shown how the unirationality of supersingular K3 surfaces follows from his
theory of moduli spaces of twisted sheaves (see [28, Section 9] for announce-
ments, as well as Remark 4.7).

2 Non-supersingular K3 surfaces with large Picard number

In this section, we first review the formal Brauer group, and discuss sev-
eral notions of supersingularity for K3 surfaces. Then, we classify non-
supersingular K3 surfaces with large Picard rank in positive characteristic,
which establishes a structure result similar to the Shioda–Inose theorem over
the complex numbers.

2.1 Formal Brauer groups, supersingularity, and Picard ranks

Let X be a K3 surface over a field k. By results of Artin and Mazur [4], the
functor on local Artinian k-algebras with residue field k defined by

�2
X/k : (Art/k) → (Abelian groups)

R �→ ker
(
H2
ét (X ×k Spec R, Gm) → H2

ét (X, Gm)
)

is pro-representable by a one-dimensional formal group law B̂r(X), which
is called the formal Brauer group. Over algebraically closed fields of posi-
tive characteristic, one-dimensional formal group laws are classified by their
height, and Artin [2, Theorem (0.1)] showed that the height h of the formal
Brauer group of a K3 surface satisfies 1 ≤ h ≤ 10 or h = ∞.

Definition 2.1 Let X be a K3 surface over a field of positive characteristic and
let h be the height of its formal Brauer group. Then, X is called ordinary if
h = 1, and X is called Artin-supersingular if h = ∞.

For a K3 surface X , the height h determines the Newton polygon of the
F-crystal H2

cris(X/W ). More precisely, the Newton slopes are equal to (1 −
1
h , 1, 1+ 1

h ), and we refer to [18, Section II.7.2] for details. Thus, a K3 surface
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984 C. Liedtke

X is ordinary in the sense of Definition 2.1 if and only if the Newton and the
Hodge polygon of H2

cris(X/W ) coincide, and it is supersingular in the sense
of Definition 2.1 if and only if the Newton polygon of H2

cris(X/W ) is of slope
1. In particular, the notions of ordinarity and supersingularity for K3 surfaces
are compatible with the corresponding notions for F-crystals.

For surfaces, Shioda [51] introduced another notion of supersingularity. To
explain it, we note that the first Chern class map c1 : NS(X) → H1(�1

X ) is
injective over the complex numbers, which implies that the Picard rank ρ of a
smooth complex projective variety is bounded above by h1(�1

X ). For complex
K3 surfaces, this gives the estimate ρ ≤ 20. In positive characteristic, Igusa
[17] established the inequality ρ ≤ b2, which, for K3 surfaces, only gives the
estimate ρ ≤ 22. However, this bound is sharp, since Tate [55] and Shioda
[52] showed that there do exist K3 surfaces with Picard rank 22 in positive
characteristic.

Definition 2.2 Let X be a K3 surface over an algebraically closed field. Then,
X is called singular if ρ = 20, and it is called Shioda-supersingular if ρ = 22.

The relation between these two notions of supersingularity is as follows:
In [2, Theorem (0.1)], Artin showed that a K3 surface whose formal Brauer
group is of finite height h satisfies ρ ≤ b2−2h. Thus, Shioda-supersingular K3
surfaces areArtin-supersingular. In [2, Theorem (4.3)],Artin proved thatArtin-
supersingularK3 surfaces that are elliptic are Shioda-supersingular. In general,
the equivalence of Artin- and Shioda-supersingularity follows from the Tate-
conjecture for supersingular K3 surfaces. Since this has been recently estab-
lished in odd characteristic by Charles [7], Madapusi Pera [32], and Maulik
[35], we can summarize these results as follows.

Theorem 2.3 (Artin, Charles,Madapusi Pera,Maulik, et al.)For a K3 surface
X in odd characteristic, the following are equivalent:

(1) X is Shioda-supersingular, that is, ρ = 22.
(2) X is Artin-supersingular, that is, h(B̂r(X)) = ∞.
(3) For all i , the F-crystal Hi

cris(X/W ) is of slope i/2. �	
By [2, Section 4], the discriminant of the Néron–Severi lattice of a Shioda-

supersingular K3 surface is equal to −p2σ0 for some integer 1 ≤ σ0 ≤ 10.

Definition 2.4 The integer σ0 is called the Artin-invariant of X .

The Artin invariant σ0 gives rise to a stratification of the moduli space of
Shioda-supersingular K3 surfaces [2, Section 7], and it determines the Néron–
Severi lattice of a Shioda-supersingular K3 surface up to isometry [46, Sec-
tion 1]. We refer the interested reader to the overview articles by Shioda [53]
and Rudakov–Shafarevich [47] for basic properties of Shioda-supersingular
K3 surfaces, details and further references.
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Supersingular K3 surfaces are unirational 985

2.2 Isogenies between K3 surfaces

For Abelian varieties, the notion of isogeny is classical. For K3 surfaces, there
are several and conflicting extensions of this notion, andwe refer to [37, Section
1] for an overview. Following Inose [20], we use the most naive one, which is
sufficient for the purposes of this article.

Definition 2.5 Let X and Y be varieties of dimension d over a perfect field k
of positive characteristic p. An isogeny of degree n from X to Y is a dominant,
rational, and generically finite k-linear map X ��� Y of degree n. A purely
inseparable isogeny of height h is an isogeny that is purely inseparable of
degree ph .

For Abelian varieties A, B and an isogeny A → B, there exists an integer
n such that multiplication by n : A→ A factors through this isogeny. Such a
factorization gives rise to an isogeny B → A, and in particular, being isoge-
nous is an equivalence relation. Over the complex numbers, K3 surfaces with
Picard rank 20 are related to Kummer surfaces by isogenies, and the existence
of an isogeny in the other direction is a true, but non-trivial fact, see [20,31,54].

Coming back to Definition 2.5, if X ��� Y is a purely inseparable isogeny
of height h, the h-fold k-linear Frobenius Fh : X → X (ph) factors through
this isogeny, inducing an isogeny Y ��� X (ph), which is purely inseparable of
height (d − 1)h. As abstract schemes, X and X (p) are isomorphic, and thus,
purely inseparable isogenies define an equivalence relation (when neglecting
the k-structure).

Since it motivates some of our results later on and sheds another light on
them, let us shortly discuss a conjecture of Shafarevich concerning complex
K3 surfaces: let X and Y be complex K3 surfaces with transcendental lattices
T (X) and T (Y ). If ρ(X) = ρ(Y ) = 20, then T (X) and T (Y ) are of rank 2,
and the Shioda–Inose theorem [54] says that every isogeny T (X) → T (Y )

preserving Hodge structures induces and is induced by an isogeny between
the corresponding surfaces. Morrison [36], Mukai [38], and Nikulin [40],
[41] generalized these results to K3 surfaces, whose transcendental lattices
are of higher rank. Moreover, Shafarevich [49] conjectured that every Hodge
isogeny between transcendental lattices of complex K3 surfaces is induced
by an isogeny, or, by a rational correspondence. Here, the right definition of
isogeny for K3 surfaces is one difficulty, and we refer to [37, Section 1] for
a discussion and the relation of Shafarevich’s conjecture to the Hodge con-
jecture. We note that results of Chen [8] imply that Shafarevich’s conjecture
cannot be true if one only allows isogenies in the sense of our naive Defini-
tion 2.5.

In positive characteristic, a K3 surface X is Shioda-supersingular if and
only if every class in H2

ét (X, Q�) is algebraic if and only if the cokernel of
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c1 : NS(X)→ H2
cris(X/W ) is aW -module that is torsion.Therefore, the “tran-

scendental lattices” of Shioda-supersingular K3 surfaces should be thought of
as being zero, in which case they would all be isogenous for trivial reasons.
Now, if one believes in some sort of characteristic-p version of Shafarevich’s
conjecture, one would expect that all Shioda-supersingular K3 surfaces are
related by isogenies. This was posed as Question 8 by Rudakov and Shafare-
vich at the end of [46], and we shall prove it in Theorem 5.1 below.

2.3 The Shioda–Inose theorem in odd characteristic

In this subsection, we classify non-supersingular K3 surfaces with Picard rank
ρ ≥ 19 in odd characteristic and establish an analog of the Shioda–Inose
theorem [20,54]. The idea is to show that such surfaces are ordinary, which
implies that we can lift them to theWitt ring together with their Picard groups.
Then, we use the Shioda–Inose theorem in characteristic zero to deduce the
structure result in odd characteristic.

Theorem 2.6 Let X be a K3 surface with Picard rank 19 ≤ ρ ≤ 21 over an
algebraically closed field k of odd characteristic. Then,

(1) X is an ordinary K3 surface, and
(2) X lifts projectively together with its Picard group to SpecW (k). Moreover,
(3) If ρ = 19, then there exists an ordinary Abelian surface A over k, and

isogenies of degree 2

Km(A) ��� X ��� Km(A) .

Moreover, neither X nor A can be defined over a finite field.
(4) If ρ = 20, then there exist two ordinary and isogenous elliptic curves E

and E ′ over k, and isogenies of degree 2

Km(E × E ′) ��� X ��� Km(E × E ′) .

Moreover, X can be defined over a finite field. The lift of (X,Pic(X)) is
unique and coincides with the canonical Serre–Tate lift of X.

(5) K3 surfaces with Picard rank ρ = 21 do not exist.

Remark 2.7 Non-existence of K3 surfaces with Picard rank 21 was already
observed by Artin [2, p. 544]. Independently, Jang [22, Section 4] obtained a
similar classification result for K3 surfaces with Picard rank ρ = 20.

Proof Let K be the field of fractions ofW (k), and let K be its algebraic closure.
We proceed in several steps:
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Supersingular K3 surfaces are unirational 987

Step 1: X is ordinary and ρ = 21 is impossible.
Let h be the height of the formal Brauer group. Since ρ < 22, we deduce

h < ∞ from [2, Theorem 1.7]. But then, the inequalities ρ ≤ b2 − 2h ≤ 20
from [2, Theorem 0.1] show that ρ = 21 is impossible. They also show that X
is ordinary, that is, h = 1, if 19 ≤ ρ ≤ 20. This establishes claims (1) and (5).

Step 2: There exists a projective lift of the pair (X,Pic(X)) to W (k).
Since X is ordinary, there exists a canonical formal lift X → Spf W (k),

the Serre–Tate lift. By [42, Proposition 1.8], it has the property that Pic(X)

lifts to X . In particular, lifting an ample invertible sheaf, it follows from
Grothendieck’s existence theorem that X is algebraizable. This establishes
claim (2).

Step 3: If ρ = 20, thenXK is dominated by a Kummer surface.
Since ρ = 20, the classical Shioda–Inose theorem from [20] and [54], says

that there exist isogenous elliptic curves Ẽ and Ẽ ′ with complexmultiplication
over K , and a symplectic involution ı on the Kummer surface Km(Ẽ × Ẽ ′),
such thatXK is the desingularization of the quotient Km(Ẽ × Ẽ ′)/〈ı〉.

Step 4: This Kummer surface has potential good reduction and ı extends.
Since elliptic curveswith complexmultiplication have potential good reduc-

tion, there exists a model of Km(Ẽ × Ẽ ′) over a finite extension R ⊇ W (k)
with good reduction that is itself a Kummer surface, say, Km(E × E ′) (since
p = 2, we can form the quotient by the sign involution over R without trou-
ble). After possibly enlarging R, the involution ı is defined on the generic fiber
Km(E×E ′)K .Now, ı extends to an involution onKm(E×E ′), see, for example
the proof of [27, Theorem 2.1]. Since ı acts trivially on the global 2-form of the
generic fiber, its extension will act trivially on the global 2-form of the special
fiber, and thus, ı extends to a symplectic involution onKm(E ×E ′)→ SpecR.
On the geometric generic fiber it has precisely 8 fixed points by [36, Lemma
5.2] or [39], and the same is true for the induced involution on the special fiber
by [13, Theorem 3.3] (here, we use again that p = 2).

Step 5: X is the quotient of a Kummer surface by an involution.
After possibly enlarging R again, wemay form the quotientKm(E×E ′)/〈ı〉

and resolve the resulting 8 families of A1-singularities to obtain a smooth
family Y → Spec R. After possibly enlarging R again, the generic fibers of
X and Y become isomorphic. Since X and Y both have good reduction,
and their special fibers are not ruled, the special fibers are isomorphic by the
Matsusaka–Mumford theorem [34, Theorem 2]. This shows the existence of
a rational dominant map Km(E × E ′) ��� X , which is generically finite of
degree 2. Here, E and E ′ denote the reductions of E and E ′, respectively. The
existence of a rational dominant map X ��� Km(E × E ′), generically finite
of degree 2, follows from the corresponding characteristic zero statement as
before and we leave the proof to the reader.
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Step 6: Ordinarity and fields of definition.
Since X is ordinary, Frobenius acts bijectively on H2(X,OX ), from which

we conclude that it also acts bijectively on H2(Km(E× E ′),OKm(E×E ′)) and
thus, on H2(E × E ′,OE×E ′). In particular, E × E ′ is an ordinary Abelian
surface, which implies that E and E ′ are ordinary elliptic curves. And finally,
since Ẽ and Ẽ ′ are elliptic curves with complex multiplication, they can be
defined over Q, which implies that E , E ′, Km(E × E ′) and ı can be defined
over W (Fp), which implies that E , E ′, Km(E × E ′) and X can be defined
over Fp. This establishes claim (4).

Step 7: Sketch of the case of Picard rank ρ = 19.
As in step 2, letX → SpecW (k) be a projective lift of (X,Pic(X)). Then,

as in step 3, there exists anAbelian variety Ã over some finite extension L ⊇ K
and an involution ı onKm( Ã) such that Km( Ã)/ ı andXK become isomorphic
over K . SinceX has good reduction, the Galois-action of GL := Gal(K/L)

on H2
ét (XK , Q�), � = p, is unramified. From this, it is not difficult to see that

also the GL -actions on H2
ét (Km( Ã)K , Q�) and H2

ét ( ÃK , Q�) are unramified.
Thus, by the Néron–Ogg–Shafarevich criterion, there exists a smooth model
of Ã over some finite extension of W (k), whose special fiber A is an Abelian
surface. As in step 5, we find rational dominant maps Km(A) ��� X and
X ��� Km(A), both of which are generically finite of degree 2. As in step 6,
we conclude that A is an ordinary Abelian surface. Finally, if X were defin-
able over Fp, then its geometric Picard rank would be even by [2, p. 544], a
contradiction. This implies that A, Km(A), and X cannot be defined over Fp
and establishes claim (3). �	
Remark 2.8 Wewould like to point out the following analogybetween zero and
positive characteristic for K3 surfaces with Picard rank 20: over the complex
numbers, such surfaces can be defined over Q, and thus, have no moduli. In
characteristic p ≥ 3, such surfaces can be defined over Fp, and again, have
no moduli.

3 Continuous families of torsors

In this section, we consider Jacobian (quasi-)elliptic fibrations on surfaces in
positive characteristic p. If the formal Brauer group of the surface is not p-
divisible, then we construct a deformation of the Jacobian to a non-Jacobian
fibration, which is generically a family of torsors under the Jacobian fibration.
Using a purely inseparable multisection, we show that the special and the
generic fiber of this family are related by a purely inseparable isogeny. Our
main result is Theorem 3.6, which is the technical heart of this article. For
a K3 surface, such a family exists if only if it is supersingular with Artin
invariant σ0 ≤ 9, and then, this family can be spread out to a smooth family of
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Supersingular K3 surfaces are unirational 989

supersingular K3 surfaces over a proper curve such that the generic fiber has
Artin invariant σ0 + 1.

In order to avoid confusion, let us fix the following terminology.

Definition 3.1 A fibration from a smooth surface onto a smooth curve is said
to be of genus 1 if its generic fiber is an integral curve of arithmetic genus 1.
In case the generic fiber is smooth, the fibration is called elliptic, and quasi-
elliptic otherwise. Moreover, if the fibration admits a section, it is called Jaco-
bian, and a choice of section, referred to as the zero section, is part of the
data.

In characteristic different from2 and3, the generic fiber of a genus 1fibration
is automatically smooth by [6], and thus, an elliptic fibration.

3.1 Families of torsors arising from formal Brauer groups

For future applications, we extend our setup in this subsection and work with
Jacobian genus 1 fibrations from surfaces that are not necessarily K3. We
follow the setup of the articles [2] and [5] by Artin and Swinnerton-Dyer. Let

f : X → Y

be a relativelyminimal (that is, there are no (−1)-curves in the fibers) Jacobian
genus 1 fibration, where X is a surface, and Y is a curve, both smooth and
proper over an algebraically closed field k. Contracting those (−2)-curves in
the fibers of f that do not intersect the zero section, we obtain theWeierstraß
model

f ′ : X ′ → Y.

If f has reducible fibers, then X ′ has rational double point singularities. We
denote by A ⊆ X ′ the smooth locus of X ′. As explained in [5, Section 1],
A has a unique structure ⊕ of group scheme over Y : namely, if P1, P2 are
sections of A over Y , then they are Cartier divisors, and P1 ⊕ P2 is the zero
locus of a non-zero section of OX ′(P1 + P2 − Z), where Z denotes the zero
section. In case f is an elliptic fibration, we have the following interpretation
in terms of Néron models: the smooth locus of X over Y is the Néron model
of its generic fiber, and A is its identity component.

Next, let S be the formal spectrum of a local, Noetherian, and complete
k-algebra with residue field k. We want to classify families of torsors under
A, parametrized by S, such that the special fiber is the trivial A-torsor. That
is, we consider Cartesian diagrams of algebraic spaces
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A ��

��

A

��
Y ��

��

Y ×k S

��
Spec k �� S

In order to classify such moving torsors, we recall that Artin and Mazur [4]
studied the functors on local Artinian k-algebras with residue field k

�i
X/k : (Art/k) → (Abelian groups)

R �→ ker
(
Hi
ét (X ×k Spec R, Gm) → Hi

ét (X, Gm)
)

see also Sect. 2.1. We now furthermore assume that �2
X/k is pro-representable

by a formal group law, which is then called the formal Brauer group and
denoted B̂r(X), Next, let us recall that there exists a Grothendieck–Leray
spectral sequence

Ei, j
2 := Hi

ét (Y, R j f ′∗Gm) �⇒ Hi+ j
ét (X ′, Gm) .

AsArtin explained in [2, Section 2], the formal structure of H2
ét (X, Gm) is that

of H1
ét (Y,PicX ′/Y ). Using the zero section of f ′, we identify Pic0X ′/Y with A,

and then, it is not difficult to see that moving torsors are closely related to the
formal Brauer group. More precisely, we have the following result.

Proposition 3.2 We keep the notations and assumptions. Let S := Spf R,
where (R,mR) is a local, Noetherian, and complete k-algebra with residue
field k. Let n ≥ 1 be an integer.

(1) Formal families of A-torsors A → Y ×k S, whose special fiber is the
trivial A-torsor, are classified by the R-valued points

B̂r(X)(R)

of the formal Brauer group of X.
(2) The compactification A ⊆ X ′ extends to a compactification A ⊆ X ′,

and the formal familyX ′ → Y ×k S is algebraizable.
(3) Moreover, n-torsion elements of B̂r(X)(R) correspond to families as in

(1) such that there exists a degree n section of PicX ′/Y×k S over Y ×k S.

Proof First, we use the zero section of f ′ to identify Pic0X ′/Y with A. Then, as
explained at the beginning of [2, Section 2] and in [2, Proposition (2.1)], the
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formal structures of H2
ét (X, Gm) and H2

ét (X
′, Gm) are that of H1

ét (Y,PicX ′/Y ).
That is, by definition of�2

X/k and its pro-representability assumption, we have

B̂r(X)(R) = ker
(
H1
ét (Y ×k S, A)

res−→ H1
ét (Y, A)

)
,

where res denotes restriction. But then, elements of the right hand side classify
A-torsors overY×k S,whose restriction to the special fiber is trivial. This shows
claim (1).

Next, we show compactification of A . We set Rm := R/mm and Sm :=
Spec Rm . To simplify notations, we denote by −Sm the trivial product fam-
ily − ×Spec k Sm . By induction on m, we may assume that we have already
extended the compactification A ⊆ X ′ to some ASm ⊆ X ′

m . Blowing up
the boundary, we obtain a compactification ASm ⊆ Ym , whose boundary is a
Cartier divisor. As explained in [10, Section 2.1], this latter compactification
can be extended to a compactification ASm+1 ⊆ Ym+1. Blowing down Ym+1
toX ′

m (see, for example, in [11, Theorem 3.1]), we obtain a compactification
ASm+1 ⊆ X ′

m+1, which extends ASm ⊆ X ′
m . Passing to the limit, we obtain

the desired compactification A ⊆X ′.
Multiplication by n induces a morphism A→ A of group schemes over Y ,

and thus, a morphism τn : H1
ét (Y, A)→ H1

ét (Y, A). From the discussion at the
end of [5, Section 1] it follows that an element in the kernel of τn corresponds
to an A-torsor over Y such that there exists a section of PicX ′/Y over Y of
degree n. The same holds true with Y replaced by YS , and thus, n-torsion
elements of B̂r(X)(R) correspond to formal families of A-torsors over YS that
become trivial over the special fiber, such that there exists a degree-n section
of PicX ′/YS over YS . This shows claim (3).

It remains to show algebraization. By the established assertion (3), there
exists a degree-n section L of PicX ′/YS over YS . Since Y is a curve over
an algebraically closed field, we have Br(Y ) = 0 by Tsen’s theorem. Since
H2(Y,OY ) = 0, we have B̂r(Y ) = 0, which implies Br(YS) = 0, and we
obtain a short exact sequence

0 → Pic(YS) → Pic(X ′) → H0(YS, PicX ′/YS ) → Br(YS)︸ ︷︷ ︸
=0

→ . . .

In particular, L lifts to some L̃ ∈ Pic(X ′). Next, let E ∈ Pic(X ′) be
the class of a fiber, and then, for every integer m, we define Mm := L̃ ⊗
OX ′(mE). Since every integral curve on X ′ is either a fiber or a multisection
of the fibration, it follows that the restriction Mm |X ′ has positive intersection
with every integral curve on X ′ if m � 0. Moreover, for m � 0, the self-
intersection of Mm |X ′ is positive. Thus, by the Nakai–Moishezon criterion,
form � 0, the restriction ofMm to X ′ is an ample invertible sheaf. Therefore,
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the formal family X ′ is algebraizable by Grothendieck’s existence theorem,
which establishes claim (2). �	

Before proceeding, let us recall a couple of facts about commutative formal
group laws, and refer, for example, to [57] for details: if Ĝ is a commutative
formal group law of dimension d over a field of characteristic zero, then there
exists a unique strict isomorphism to Ĝ

d
a , the logarithm of Ĝ. On the other

hand, if Ĝ is defined over a field of positive characteristic p, then there exists
a short exact sequence of commutative formal group laws

0 → Ĝu → Ĝ → Ĝbt → 0,

where Ĝu is unipotent and Ĝbt is p-divisible [57, Theorem 5.36]. We recall
that a formal group law Ĝ is called p-divisible if multiplication by p is an
isogeny, and then, there exists an integer h ≥ 1 such that the h-fold Frobenius

Fh : Ĝ → Ĝ(ph)

factors through multiplication by p. The minimal h, for which such a factor-
ization exists, is called the height of Ĝ. On the other extreme, multiplication
by p on Ĝa is zero and thus, this formal group law is of infinite height. More
generally, if Ĝ is unipotent, then there exists an increasing sequence of formal
subgroup laws 0 = Ĝ0 ⊂ . . . ⊂ Ĝr = Ĝ such that successive quotients are
isomorphic to Ĝa , see [57, Theorem 5.37].

This recalled,wehave the following statement about formal group laws only,
which we need to ensure the existence of non-trivial moving torsor families
over Spec k[[t]].
Lemma 3.3 Let Ĝ be a formal group law over k, and let (R,mR) be a local,
Noetherian, and complete k-algebra with residue field k.

(1) If p does not divide n, or R is reduced and Ĝ is a p-divisible formal group
law, then

Ĝ(R)[n] = 0.

(2) If R is reduced and mR = 0, then

Ĝ(R)[p] = 0 ⇔ Ĝu = 0 ,

that is, if and only if Ĝ is not p-divisible.

Proof If p � n, then multiplication by n is injective, and thus, Ĝ(R)[n] = 0.
If Ĝ is p-divisible, say, of finite height h, then the h-fold Frobenius factors
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through multiplication by p. Since Frobenius is injective on R-valued points
of Ĝ for reduced R, this implies Ĝ(R)[p] = 0 and establishes claim (1).

If Ĝu = 0 and R is reduced, then Ĝ(R)[p] = 0 by assertion (1). Conversely,
if Ĝ is not p-divisible, then Ĝa ⊆ Ĝ. Since Ĝa(R)[p] = mR = 0, we find
Ĝ(R)[p] = 0, which establishes claim (2). �	

Proposition 3.2 and Lemma 3.3 give us a criterion for the existence of fam-
ilies of A-torsors, and ensure compactification and algebraization. The fol-
lowing result gives desingularization, and compares the formal Brauer groups
and the Picard groups of special and geometric generic fiber—we note that the
latter implies that the family has non-trivial moduli.

Proposition 3.4 We keep the notations and assumptions of Proposition 3.2
and assume that B̂r(X) is not p-divisible. Set R := k[[t]] and S := Spec R,
and let

A → Y ×Spec k S → S

be a family of A-torsors associated to a non-trivial p-torsion element of
B̂r(X)(R) as in Proposition 3.2.

(1) Let X ′ → S be a compactification as asserted in Proposition 3.2. Then,
after possibly replacing S by a finite flat cover, there exists a simultaneous
resolution of the singularities

X ��

��

X

��
Y ��

��

Y ×Spec k S

��
Spec k �� S

which is smooth and projective over S.
(2) Let η ∈ S be the geometric generic point. Then, there exists an isomor-

phism of formal group laws

B̂r(Xη) ∼= B̂r(X) ⊗k κ(η).

In particular, if X is a supersingular K3 surface, then so is Xη.
(3) Specialization induces a short exact sequence of Picard groups

0 → Pic(Xη) → Pic(X) → Z/pZ → 0 ,

whose cokernel is generated by the class of the zero section of f : X → Y .

123



994 C. Liedtke

Proof First,X ′ → S is a flat family of surfaces, whose special fiber X ′ has at
worst rational double points as singularities. Thus, also the generic fiber has
at worst rational double points as singularities by [30, Proposition 6.1], and
thus, after possibly base-changing to a finite flat extension of S, there exists
a simultaneous resolution of singularities X → S by the main result of [3].
This establishes claim (1) except for the projectivity statement.

Claim (2) follows from [2, Proposition (2.1)].
To establish claim (3), we note that there exists a commutative diagramwith

exact rows, whose vertical arrows are restriction maps:

0→ Pic(Yη) → Pic(X ′
η)→ H0(Y, PicX ′

η/Yη
) → 0

↑ ↑ ↑
0→ Pic(YS)→ Pic(X ′)→ H0(YS, PicX ′/YS )→ 0

↓ ↓ ↓
0→ Pic(Y ) → Pic(X ′) → H0(Y, PicX ′/Y ) → 0

see [5, (2.2)], or the proof of Proposition 3.2. Replacing S by a finite flat cover,
we may and will assume that the Picard groups ofX ′

η andX ′
η are isomorphic.

Next, it follows from [5, Proposition (1.6)] that there exists a commutative
diagram of group algebraic spaces over Y , YS and Yη, respectively:

0→ Aη → PicX ′
η/Yη

→ ZYη
→ 0

↑ ↑ ↑
0→ AS → PicX ′/YS → ZYS → 0

↓ ↓ ↓
0→ A → PicX ′/Y → ZY → 0

The class of the zero section Z of X ′ → Y in Pic(X ′) defines a splitting of the
bottom row. By Proposition 3.2, there exists a degree-p section of PicX ′/YS
over YS . Thus, taking global sections in the previous diagram, we conclude
that the image of H0(YS,PicX ′/YS ) inside H0(YS, ZYS ) is of index 1 or p.
However, this index cannot be equal to 1, since A → YS is a non-trivial
family of A-torsors. Combining these observations and the two commutative
diagrams, we arrive at a short exact sequence of Abelian groups

0 → Pic(X ′
η) → Pic(X ′) → Z/pZ → 0,

where the cokernel is generated by the class of Z .
Next, Pic(X) is generated by the exceptional divisors of the contraction

morphism ν : X → X ′ and ν∗Pic(X ′), and we have a similar statement for
Pic(Xη). Since A → YS is a family of A-torsors, and the special fiber A has
no multiple fibers, neither has the generic fiber, and thus, the singular fibers
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do not change their type by [9, Theorem 5.3.1]. In particular,X ′
η and X ′ have

the same types of rational double points. From this, we deduce that also the
cokernel of the specialization homomorphism Pic(Xη)→ Pic(X) is cyclic of
order p, generated by the class of Z , which establishes claim (2).

Finally, if L is an ample invertible sheaf on X , then L ⊗p extends to X ,
which shows thatX → S is projective. �	

To understand the geometry of moving A-torsors better, and to construct
purely inseparable multisections, we now inspect the generic fiber more
closely. Let ξ ∈ Y be the generic point, and restrict a family A → Y ×k S as
in Proposition 3.2 to ξ ×k S, that is, we consider

Aξ := A ×(Y×k S) (ξ ×k S) → ξ ×k S.

This is a family of torsors under Aξ := A×Y ξ over ξ ×k S. Let us recall that
the relative Frobenius F : A→ A(p) is a morphism of group schemes over Y ,
whose kernel A[F] is a finite, flat, and infinitesimal group scheme of length p
over Y .

Proposition 3.5 We keep the notations and assumptions of Proposition 3.2
and assume that B̂r(X) is not p-divisible. Set R := k[[t]] and S := Spec R,
and let

A → Y ×k S → S

be a family of A-torsors associated to a non-trivial p-torsion element of
B̂r(X)(R) as in Proposition 3.2. Then, after possibly replacing S by some
finite flat cover

(1) There exists a degree p multisection Dξ ⊂ Aξ such that the induced
morphism

Dξ → ξ ×k S

is finite, flat and radicial of degree p.
(2) More precisely, Dξ → ξ ×k S is a family of Aξ [F]-torsors. Thus, we

obtain an isomorphism

Aξ
∼= (

Aξ ×(ξ×k S) Dξ

)
/ Aξ [F],

that is, a description of this family of Aξ -torsors as Aξ [F]-twist.
Proof If Z denotes the zero section of f ′ : X ′ → Y , thenOX ′(pZ) extends to
some invertible sheafM onX ′ by Proposition 3.4. SinceM has degree p on
each fiber, Riemann–Roch implies that it has vanishing first cohomology and a
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p-dimensional space of global sections on each fiber. Thus,Q := ( f
′
∗M )∨ is

a locally freeOY×k S-module of rank p. This being introduced, we recall (see,
for example, [25, Section 3]) that relative effective Cartier divisors D → YS
such thatOX ′(D) is isomorphic toM modulo invertible sheaves coming from
YS , correspond to sections of P(Q)→ YS . Since the fiber of P(Q)→ YS over
ξ ×k S is isomorphic to P

p−1
ξ×k S

, this already shows the existence of degree-p
multisections of Aξ → ξ ×k S.

Next, we show that A[F] acts on P(Q) → YS by translation of rela-
tive effective Cartier divisors: the A-action on A induces an A-action on
the symmetric product Symp(A ), which we identify with the space of rel-
ative effective Cartier divisors of X ′ → YS of degree p (see, for exam-
ple, [25, Remark 9.3.9]). Moreover, for every finite and flat Y → YS ,
every (P1, . . . , Pp) ∈ A p(Y ), and every P ∈ A[F](Y ), translation by
P on each component yields some (P ′1, . . . , P ′p) ∈ A p(Y ). Since P is
p-torsion in the group law, it follows that O(

∑p
i=1 Pi ) is isomorphic to

O(
∑p

i=1 P ′i ) up to invertible sheaves from Y . We have P(Q) → YS inside
Symp(A ) → YS , and then, the previous consideration shows that the A[F]-
action on Sym p(A )→ YS induces an A[F]-action on P(Q)→ YS .

We now determine the schematic fixed point locus of the Aξ [F]-action on

P
p−1
ξ×S . On geometric fibers, a fixed point is of the form pP . Thus, depending on

the p-torsion subgroup scheme of Aξ , the fixed point locus is either Artinian of
length p2 (if f ′ is elliptic), or it is a curve (if f ′ is quasi-elliptic). In any case,
the fixed point locus is flat over ξ × S. Thus, after possibly replacing S by a
finite flat cover, there exists an Aξ [F]-invariant section Dξ of P

p−1
ξ×k S

→ ξ×k S
that specializes to pZ . By construction, Dξ → ξ ×k S is a family of Aξ [F]-
torsors, and in particular, finite, flat, and radicial of degree p over ξ×k S, which
establishes claim (1). Since the base-change ofAξ to Dξ trivializes the torsor,
we obtain a description of Aξ as Aξ [F]-twist, which establishes claim (2). �	

We now summarize the results on moving A-torsors obtained so far and
use a purely inseparable degree-p multisection as established in the previous
proposition to show that special and generic fiber of a family of moving A-
torsors are related by a purely inseparable isogeny. We note that the following
theorem is the technical heart of this article.

Theorem 3.6 We keep the notations and assumptions of Proposition 3.2 and
assume that B̂r(X) is not p-divisible. Let R := k[[t]] and S := Spec R and let

A → Y ×Spec k S → S

be a family of A-torsors associated to a non-zero p-torsion element of
B̂r(X)(R) as in Proposition 3.2. Then, after possibly replacing S by a finite
and flat cover,
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(1) There exists a compactification and desingularization ofA → Y ×k S to
a smooth and projective family

X → Y ×Spec k S → S

with special fiber X.
(2) Specialization induces a short exact sequence

0 → Pic(Xη) → Pic(X) → Z/pZ → 0,

and we have an isomorphism

B̂r(Xη) ∼= B̂r(X)⊗k κ(η),

where η denotes the geometric generic point of S.
(3) There exist a morphism and a rational map

Y

��������������

��
X ×Spec k η Xη

both of which are generically finite and purely inseparable of degree p,
that is, both maps are purely inseparable isogenies of height 1.

(4) There exist rational maps

X
(1/p)

η ��� X ×Spec k η ��� X
(p)

η ,

both of which are generically finite and purely inseparable of degree p2,
that is, both maps are purely inseparable isogenies of height 2.

Proof We established claims (1) and (2) in Propositions 3.2 and 3.4.
After possibly replacing S by a finite flat cover, there exists a purely insep-

arable degree-p multisection Dξ ⊂ Aξ by Proposition 3.5, and we denote by
D its closure inXη. Since Dξ → ξ ×k S is finite, flat and radicial of degree p,
the same is true for D → Y ×k η. Base changing to D → Y ×k η trivializes
the compactified family of A-torsors generically, and therefore, we obtain a
diagram

X ×Spec k η ←− (X ×Spec k η)×(Y×kη) D
∼=��� Xη ×(Y×kη) D −→ Xη ,

where the morphisms on the left and right are purely inseparable of degree p,
and the rational map in the middle is birational. This establishes claim (3).
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Let F :X (1/p)
η →Xη be the relative Frobenius morphism over η and note

that F factors throughXη×(Y×kη) D, see also Sect. 2.2. From this, we obtain
a composition

X (1/p)
η → Xη ×(Y×kη) D ��� X ×Spec k η,

which is a rational map of varieties over η, which is generically finite and
purely inseparable of degree p2, that is, a purely inseparable isogeny of height
2. Since twice the Frobenius morphism factors through this isogeny, we obtain
claim (4). �	

3.2 Families of supersingular K3 surfaces

In this subsection we specialize to K3 surfaces. We recall from Sect. 2.1 that
the formal Brauer group B̂r(X) of a K3 surface X is a one-dimensional formal
group law. In particular, we have the following equivalences:

B̂r(X)u = 0 ⇔ h
(
B̂r(X)

) = ∞ ⇔ X is supersingular.

Thus, byProposition 3.2 andLemma3.3, non-trivial families ofmoving torsors
over Spec k[[t]] associated to a Jacobian (quasi-)elliptic K3 surface can exist
only for supersingular K3 surfaces, which renders precise Artin’s remark:
“The unusual phenomenon of continuous families of homogeneous spaces
occurs only for supersingular surfaces” [2, footnote (2) on p. 552]. The next
proposition rephrases Theorem 3.6 in terms of supersingular K3 surfaces.

Proposition 3.7 Let X → P
1 be a Jacobian (quasi-)elliptic fibration on a

supersingular K3 surface over k. Then, there exists a smooth and projective
family of supersingular elliptic K3 surfaces with non-trivial moduli

X → P
1
S → S, where S := Spec k[[t]],

whose special fiber is X → P
1 and that has the following properties:

(1) The Artin invariant of the geometric generic fiber satisfies

σ0(Xη) = σ0(X) + 1.

(2) There exist purely inseparable isogenies of height 2, that is, dominant,
rational, and generically finite maps

X
(1/p)

η ��� X ×Spec k η ��� X
(p)

η ,

whose composition is twice the η-linear Frobenius morphism.
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Proof By Theorem 3.6, the index of Pic(Xη) in Pic(X) is equal to p, and thus,
claim (1) follows from the definition of the Artin invariant. In particular, since
the Artin invariants of X andXη differ, the family has non-trivial moduli. The
remaining assertions are explicitly stated in Theorem 3.6. �	

In characteristic p ≥ 5, supersingular K3 surfaces do not degenerate, that is,
have potential good reduction, by a theorem of Rudakov and Shafarevich [48].
Thus, the family over Spec k[[t]] described in the previous proposition can be
spread out to a smooth family of supersingular K3 surfaces over a smooth and
proper curve. More precisely, we have the following result.

Proposition 3.8 If p ≥ 5 and under the assumptions of Proposition 3.7, there
exist a smooth projective curve C over k, a closed point 0 ∈ C, and a smooth
projective family of supersingular K3 surfaces

Y → C

with the following properties:

(1) After possibly replacing S by a finite flat cover, X → S is the fiber over
the completed local ring ÔC,0. In particular, X is the fiber over 0.

(2) Specialization induces an embedding

Pic(Yη) ⊂ Pic(X),

which is of index p. More precisely, if E denotes a fiber of X → P
1, and

Z the zero-section, then the classes of E and pZ extend to Pic(Yη).
(3) Let c ∈ C be a point such that the geometric fiber Yc has Artin-invariant

σ0(X) + 1. Then, specialization of E to Yc gives rise to a non-Jacobian
elliptic fibration. Moreover, there exists a purely inseparable degree-p
multisection Dc on Yc, which of class pZ + kE for some k ≥ 2.

(4) Under the assumptions of (3), there exist purely inseparable isogenies

Y
(1/p)
c ��� X ×Spec k Spec κ(c) ��� Y

(p)
c ,

both of which are of height 2.

Proof By Artin’s approximation theorem [1, Theorem 1.6], the familyX →
S can be defined over a k-algebra of finite type. From there, we spread it out to
a projective family Y → C , where C is a smooth projective curve over k. We
denote by 0 ∈ C the point such that the family over the completed ring ÔC,0
is X . Since supersingular K3 surfaces in characteristic p ≥ 5 have potential
good reduction by [48], we may assume, after possibly replacing C by a finite
flat cover, that Y → C is a smooth projective family of supersingular K3
surfaces. This establishes claim (1).
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We have a family of elliptic fibrations X → P
1 ×k S → S (since p ≥ 5,

the fibrations cannot be quasi-elliptic). In particular, the class of E extends
from X to Yη, which, together with Proposition 3.4 establishes claim (2).

Now, let c ∈ C be a point such that σ0(Yc) = σ0(Yη). Then, specialization
induces an isomorphism Pic(Yη) ∼= Pic(Yc). The elliptic fibration on Yη

specializes to an elliptic fibration on Yc. However, this latter fibration cannot
be Jacobian, for otherwise there would exist a section, whose class would
extend to Yη, and which would give rise to a section of the original elliptic
fibration of Yη, a contradiction. SinceX → P

1×k S is a family of A-torsors,
also the Jacobian fibration associated to Yc → P

1 is X → P
1.

Next, the degree-p multisection D ⊂ Yη from the proof of Theorem 3.6
specializes to a degree-p multisection Dc ⊂ Yc. Now, Dc must be an integral
curve, for otherwise, a linear combination of Dc and (Dc)red would give rise to
a relative invertible sheaf on Yc → P

1 of degree 1, contradicting the fact that
this fibration is not Jacobian. Since the class of D onYη is equal to pZ modulo
fiber classes, it must be of class pZ + kE for some integer k, and similarly for
Dc. Since integral curves on K3 surfaces have self-intersection number at least
−2, we compute k ≥ 2. And finally, since D is purely inseparable of degree p
over the base, the same is true for its specialization Dc. This establishes claim
(3).

Having a non-Jacobian elliptic fibrationYc → P
1 with a purely inseparable

degree-p multisection Dc, whose associated Jacobian fibration is X → P
1,

the same arguments for the proof of assertion (4) of Theorem 3.6 establish the
stated purely inseparable isogenies, and claim (4) follows. �	

3.3 Jacobian elliptic fibrations on supersingular K3 surfaces

In order to use Proposition 3.7, we have to show the existence of Jacobian
elliptic fibrations on supersingular K3 surfaces. For example, a supersingular
K3 surface with Artin invariant σ0 = 10 cannot possess such a fibration,
for otherwise Proposition 3.7 would produce a supersingular K3 surface with
σ0 = 11, which is impossible. The next proposition shows that this is the only
restriction.

Proposition 3.9 Let X be a supersingular K3 surface with Artin invariant σ0
in characteristic p ≥ 5.

(1) If σ0 ≤ 9, then X admits a Jacobian elliptic fibration.
(2) If σ0 = 10, then X does not admit a Jacobian elliptic fibration.

Remark 3.10 Assertion (2) was already shown by Ekedahl and van der Geer
[15, Proposition 12.1], as well as by Kondō and Shimada [26, Corollary 1.6],
but using different methods.
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Proof We have shown claim (2) in the lines before this proposition.
By [46, Section 1], the Artin invariant σ0 determines NS(X) up to isometry,

and we denote this lattice by �p,σ0 . Let U
′ be the rank 2 lattice with basis

{Z , E} and intersection matrix

(−2 1
1 0

)
.

To show the existence of a Jacobian elliptic fibration on X , it suffices to find an
isometric embedding of U ′ into �p,σ0 . Since U

′ is isometric to a hyperbolic
planeU , and since�p,σ0 is a sublattice of�p,σ0−1 for every σ0 ≥ 2, it suffices
to show that �p,9 contains U in order to establish claim (1). However, this
follows from the explicit classification of the lattices �p,σ0 in [46, Section 1]:
namely, there exists an isometry

�p,9 ∼= U ⊕ Hp ⊕
(
I (−p)16

)
∗ ,

where the other lattices are defined and explained in [46, Section 1]. �	
Remark 3.11 In characteristic p ≤ 3, we leave it to the reader to show the
following if X is a Shioda-supersingular K3 surface:

(1) If σ0 ≤ 9, then X admits a Jacobian genus 1 fibration.
(2) If σ0 = 10, then X does not admit a Jacobian genus 1 fibration. Moreover,

if p = 3 and σ0 = 6, then X does not admit a Jacobian quasi-elliptic
fibration.

3.4 Small characteristics

Unfortunately, Proposition 3.8 rests on a theorem of Rudakov and Shafare-
vich [48] that supersingular K3 surfaces have potential good reduction, which
(currently) requires the assumption p ≥ 5.

4 Moduli spaces

In this section, we study the moving torsor families from Proposition 3.8
using moduli spaces. In order to avoid technical difficulties, we work with
moduli spaces of rigidified K3 crystals rather than moduli spaces of marked
supersingular K3 surfaces. As an interesting byproduct, we show that moduli
spaces of rigidifiedK3 crystals are related to each other by iteratedP

1-bundles,
together with amoduli interpretation. In particular, this gives a new description
of these moduli spaces, see Remarks 4.4 and 4.7.
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4.1 Recap of Ogus’ period map

In this subsection, we shortly review Ogus’ articles [43] and [44]. Let N be
a supersingular K3 lattice, that is, the Néron–Severi lattice of a supersingular
K3 surface in characteristic p. By [46, Section 1], such a lattice is determined
up to isometry by p and its Artin invariant σ0.

Definition 4.1 Let N be a supersingular K3 lattice. An N-marked supersin-
gular K3 surface is a K3 surface X together with an isometric embedding
N → NS(X).

We now assume p ≥ 5. In [44, Theorem (2.7)], Ogus showed the existence
of a fine moduli scheme SN for N -marked supersingular K3 surfaces, and
proved that it is locally of finite presentation, locally separated, and smooth
of dimension σ0(N )− 1 over Fp. Moreover,SN is almost proper, but neither
of finite type nor separated over Fp. Here, we call a scheme almost proper,
if it satisfies the existence part of the valuative criterion for properness with
DVR’s as test rings.

A K3 crystal of rank 22 consists of a triple (H, 〈−,−〉, �), where H is free
W -module of rank 22, 〈−,−〉 is a symmetric bilinear form on H , and � is
a Frobenius-linear endomorphism of H , that satisfies the conditions of [43,
Definition 3.1]. For example, the F-crystal arising from H2

cris of a K3 surface,
together with the symmetric bilinear form coming from Poincaré duality, is a
K3 crystal. In case H is of slope one, the K3 crystal is called supersingular.
By the crystalline Torelli theorem [44, Theorem I], a supersingular K3 surface
in characteristic p ≥ 5 is determined up to isomorphism by its supersingular
K3 crystal.

In order to obtain Ogus’ periodmap, we first have to rigidify theK3 crystals:
by definition, the Tate-module of a K3 crystal H is defined to be TH := {x ∈
H : �(x) = px}. If H is supersingular, then TH is a free Zp-module of
rank 22, and the bilinear form 〈−,−〉 on H induces a non-degenerate and
non-perfect bilinear form on TH . Moreover, an N -marking of a supersingular
K3 surface induces, via the crystalline Chern map, an isometric embedding
of N into the Tate-module of the associated K3 crystal, which motivates the
following definition.

Definition 4.2 Let N be a supersingular K3 lattice. AnN-rigidified K3 crystal
is a pair (ı : N → TH , H), where H is a K3 crystal, and ı is an isometric
embedding.

By [43, Proposition 4.6], there exists a moduli space MN of N -rigidified
K3 crystals, which is smooth and projective of dimension σ0(N ) − 1 over
Fp. We refer to Remark 4.4 and the references given there for details about its
geometry. Assigning to an N -marked supersingular K3 surface its N -rigidified
K3 crystal induces a morphism π : SN →MN .
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In order to get the period map, we have to equip N -rigidified K3 crystals
with ample cones, and refer to [44, Definition 1.15] for definitions. There exists
a moduli schemePN of N -rigidified K3 crystals with ample cones, which is
almost proper and locally of finite type over Fp. Forgetting the ample cone
induces an étale and surjective morphism fN :PN →MN , which is neither
of finite type, nor separated. Finally, assigning to an N -marked supersingular
K3 surface its N -rigidified supersingular K3 crystal together with the ample
cone arising from the ample cone of X defines a lift of π to a morphism

π̃ : SN −→ PN .

This is Ogus’ period map, and it is an isomorphism by [44, Theorem III’].

4.2 Moduli spaces of rigidified K3 crystals

After these preparations, we now interpret Proposition 3.8 in terms of rigidified
K3crystals: if X is a Jacobian elliptic fibration on a supersingularK3 surface X ,
andY → C is as inProposition3.8, thenweobtain orthogonal decompositions

NS(X) ∼= U ⊕� and NS(Yη) ∼= U (p)⊕�.

More precisely,U is the hyperbolic plane generated by the classes of a fiber E
and the zero-section Z of the fibration, � is defined to be U⊥ inside NS(X),
and U (p) is the lattice generated by E and pZ . Then, we have the following
theorem on moduli spaces of rigidified K3 crystals, which depends on these
lattice decompositions only, and which is independent from Sect. 3. In Theo-
rem 4.5 below, we will show that it is indeed amanifestation of Proposition 3.8
on the level of K3 crystals.

Theorem 4.3 Let N and N+ be the supersingular K3 lattices in odd charac-
teristic p of Artin-invariants σ0 and σ0 + 1, respectively. Then, there exists a
rank 20 lattice �, and orthogonal decompositions

N ∼= U ⊕� and N+ ∼= U (p)⊕�,

where U denotes the hyperbolic plane. These decompositions gives rise to
a surjective morphism �N of moduli spaces of rigidified K3 crystals with a
section σN

MN+

�N

��
MN

σN

��

which turnsMN+ into a P
1-bundle over MN .
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Proof We proceed in several steps.

Step 1: Setting up the lattices.
Since σ0 ≤ 9, there exists an isometry N ∼= U ⊕ � (see, for example,

the proof of Proposition 3.9). Next, we choose a basis {E, Z} of U such that
E2 = 0, Z2 = −2, E · Z = 1. Then, E and D := pZ span a sublattice of U ,
which is isometric to U (p). Since U (p)⊕� is a supersingular K3 lattice of
Artin invariant σ0 + 1, it is isometric to N+ by the uniqueness result in [46,
Section 1]. Thus, we obtain a commutative diagram of embeddings of lattices:

N+ → N
↑ ↑

U (p)→ U

Step 2: Translation from crystals into characteristic subspaces.
For the explicit computations, it is more convenient to work with char-

acteristic subspaces rather than rigidified K3 crystals, and we refer to [43,
Proposition 4.3] for the translation between these two points of view. As in
loc. cit., we define

N0 := pN∨/pN and (N+)0 := pN∨+/pN+,

which are Fp-vector spaces of dimensions 2σ0 and 2σ0 + 2, respectively.
Also, the intersection forms turn pN∨ and pN∨+ into sublattices of N and N+,
respectively. Moreover, by [43, Proposition 3.13], the intersection forms on
N and N+ are divisible by p on pN∨ and pN∨+ , and induce perfect forms
on N0 and (N+)0. A straight forward computation shows that the embedding
U (p) ⊂ N+ induces an isometry (N+)0 ∼= N0 ⊕ (U ⊗ Fp), where U ⊗ Fp is
generated by the classes of D and E . Tensoring the inclusion N+ ⊂ N with
Fp, we obtain a map γ : N+ ⊗ Fp → N ⊗ Fp, which has a one-dimensional
kernel generated by D, and whose cokernel is one-dimensional generated by
Z . Combining the remarks and computations of the previous paragraph, we
obtain a commutative diagram of Fp-vector spaces

(N+)0 ∼= N0 ⊕ (U ⊗ Fp) ⊂ N+ ⊗ Fp
↓ γ

N0 ⊂ N ⊗ Fp

For a field k of characteristic p, we set ϕ := id ⊗ F∗k on N0 ⊗ k, where
Fk denotes Frobenius. By [43, Definition 3.19], a characteristic subspace of
N0 ⊗ k is a totally isotropic k-subvector space K , such that K + ϕ(K ) is
of dimension σ0 + 1. It is called strictly characteristic if it is characteristic
and moreover

∑∞
i=0 ϕi (K ) is equal to N0 ⊗ k. If A is an Fp-algebra, then a
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generatrix of N0⊗ A is a direct summand of rank σ0 such that the intersection
form restricted to it is identically zero, see [43, p. 40]. Finally, a generatrix is
called characteristic if K + F∗A(K ) is a direct summand of rank σ0+ 1. Then,
MN represents the functor taking A to the set of characteristic generatrices of
N0 ⊗ A, see [43, Proposition 4.6].

Step 3: Definition of σN .
By [43, Definition 4.1],MN parametrizes N -rigidified K3 crystals, that is,

pairs (ı : N → TH , H) as in Definition 4.2. Composing ı with N+ → N turns
an N -rigidified K3 crystal into an N+-rigidified K3 crystal, which defines a
morphism σN : MN → MN+ . Translated into generatrices, this becomes
the following: if A is an Fp-algebra, and if K ⊂ N0 ⊗ A is a characteristic
generatrix, then γ−1(K ) ∼= K ⊕ (D · A), and easily seen to be a characteristic
generatrix of (N+)0 ⊗ A. Using [43, Proposition 4.3], it is not difficult to see
that the assignment

K �→ γ−1(K )

describes σN in terms of characteristic generatrices.

Step 4: Definition of �N .
For an Fp-algebra A, and a direct summand K ⊆ (N+)0 ⊗ A, we set

�+(K ) := prN0

(
K ∩ (E⊥ ⊗ A)

)
,

where prN0
denotes the projection (N+)0⊗ A→ N0⊗ A. A straight forward

calculation shows that if K is a characteristic generatrix of (N+)0 ⊗ A, then
�+(K ) is a characteristic generatrix of N0 ⊗ A. Thus, the assignment

K �→ �+(K )

defines a morphismMN+ →MN that we denote by �N .

Step 5: σN is a section of �N .
If A is an Fp-algebra and K is a direct summand of N0⊗ A, then it follows

from the definitions that �+(γ−1(K )) = K , which shows that �N ◦σN = id.

Step 6: �N defines a P
1-bundle structure.

Using the isomorphism (N+)0 ∼= N0 ⊕ (U ⊗ Fp), we have a projection

prU : (N+)0 → (U ⊗ Fp) .

Now, let k be an algebraically closed field of characteristic p, and let K0 ⊂
N0⊗k be a characteristic subspace, that is, a k-rational point ofMN . A straight
forward computation shows that if K+ ⊂ (N+)0 ⊗ k is characteristic, then
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prU (K+∩ϕ(K+)) is one-dimensional. This shows that K+∩ϕ(K+)∩(N0⊗k)
is (σ0 − 1)-dimensional, where we view N0 again as a subspace of (N+)0. In
particular, if �+(K+) = K0, then K+ ∩ ϕ(K+) ∩ (N0 ⊗ k) = K0 ∩ ϕ(K0).
Thus, every characteristic subspace K+ ⊂ (N+)0 ⊗ k with �+(K+) = K0
contains the (σ0− 1)-dimensional and totally isotropic subspace K0 ∩ϕ(K0).
Let k1, . . . , kσ0−1 be a basis of K0 ∩ ϕ(K0), and choose v ∈ K0 such that
K0 = 〈v, K0 ∩ ϕ(K0)〉 and ϕ(K0) = 〈ϕ(v), K0 ∩ ϕ(K0)〉. We normalize v

such that 〈v, ϕ(v)〉 = 1. Then, another straight forward calculation shows that
K+ ⊂ (N+)0 ⊗ k is characteristic with �+(K+) = K0 if and only if either
K+ = 〈K0, E〉 or if there exists a unique λ ∈ k such that

K+ =
〈
k1, . . . , kσ0−1, v + λE, v − λϕ(v)+ D + λE

〉
.

Thus, the fiber of �N over K0 is isomorphic to P
1, and since K0 was chosen

arbitrarily, this shows that all fibers of �N over geometric points of MN are
isomorphic to P

1. In particular, �N is a conic bundle. Since σN is a section of
�N , this conic bundle is a P

1-bundle. �	
Remark 4.4 In [43, Examples 4.7], Ogus explicitly described MN in the fol-
lowing cases

σ0(N ) MN

1 Spec Fp2

2 P
1 × Spec Fp2

3 (P1 × P
1) × Spec Fp2

By our previous theorem,MN is an iterated P
1-bundle over SpecFp2 , and we

refer to [43, Remark 4.8] and [43, Theorem 3.21] for further descriptions.

4.3 The moduli interpretation

The previous theorem is about moduli spaces of rigidified K3 crystals. The
following theorem links it to the moving torsor families of supersingular K3
surfaces from Proposition 3.8, and gives a moduli interpretation of �N and
σN .

Theorem 4.5 We keep the notations and assumptions of Theorem 4.3. More-
over, we assume p ≥ 5.

(1) Let X be a supersingular K3 surface withNS(X) ∼= N, and let [X ] ∈MN
be the associated K3 crystal. Then, the family

Y → C,
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from Proposition 3.8 comes with an N+-marking, such that the associated
family of N+-rigidified K3 crystals maps onto �−1

N ([X ]).
(2) Being the fiber over 0 ∈ C, the surface X inherits an N+-marking, and

the corresponding K3 crystal is σN ([X ]).
Proof We keep the notations from the proof of Theorem 4.3. Given X as
in claim (1), we choose the isomorphism N ∼= NS(X) such that U ⊂ N
corresponds to a Jacobian elliptic fibration on X , see also the proof of Propo-
sition 3.9. Next, let Y → C be the associated family from Proposition 3.8.
Let η ∈ C be the generic point, set R := OC,0, choose a uniformizer t ∈ R,
and note that k(C) is the field of fractions of R. By Proposition 3.4, the iso-
morphism N ∼= NS(X) induces an isomorphism N+ ∼= NS(Yη), and, via
restriction, the whole family Y → C becomes N+-marked. More precisely,
weobtain orthogonal decompositions of N and N+ and an embedding N+ ⊂ N
as in step 1 of the proof of Theorem 4.3.

Let us now determine the characteristic subspaces associated to X and Yη.
As explained on [44, p. 365], these arise as kernels of the Chern class cdR. We
have a commutative diagram

NS(Yη) → NS(Yη)⊗Z k(C)
cdR−→ H2

dR(Yη/η)

↑ ↑ ↑
NS(YR)→ NS(YR)⊗Z R

cdR−→ H2
dR(YR/R)

↓ ↓ γ ′ ↓
NS(X) → NS(X)⊗Z k

cdR−→ H2
dR(X/k)

whose vertical arrows are restriction maps. Let K ′0 := ϕ−1(K0) ⊂ N0 ⊗ k
be the characteristic subspace associated to X . It is not difficult to see that
there exists a lift of K ′0 to an R-submodule K̃ ′0 ⊂ N+ ⊗ R of rank σ0 that
is contained in ker(cdR). More precisely, if k1, . . . , kσ0 is a basis of K

′
0, and

ki := ki ⊗ 1 ∈ N0 ⊗ R, there exist lifts of the ki to ker(cdR) of the form

ki + tni + αi D + tβi E, i = 1, . . . , σ0,

where ni ∈ N0 ⊗ R, and αi , βi ∈ R. There is one more element in ker(cdR),
linearly independent from these, and without loss of generality, it is not divis-
ible by t and lies in the kernel of γ ′. Thus, we may choose it to be of the
form

tn0 + D + tβE,

where n0 ∈ N0 ⊗ R and β ∈ R. Since these σ0 + 1 elements lie inside
ker(cdR), they form a totally isotropic subspace. After some tedious com-
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putations exploiting this isotropy, we find that ker(cdR) contains a free R-
submodule K̃ ′+ of rank σ0 + 1 generated by elements of the form

ki + tμi E
tn0 + D + tβE

Simply for dimensional reasons, K̃ ′+ ⊗ k(C) ⊂ (N+)0 ⊗ k(C) is the charac-
teristic subspace associated to Yη.

Using this explicit description, we compute γ ′(K̃ ′+) = K ′0 and �+(K̃ ′+) =
K ′0 ⊗k R, where �+ is defined as in the proof of step 4 of Theorem 4.3. In
particular, the classifying map fC : C →MN+ maps to the fiber �−1

N ([X ]).
Since the fibers of� andC are proper irreducible curves and fC is not constant,
fC maps surjectively onto �−1

N ([X ]), which establishes claim (1). The fiber
over 0 ∈ C is isomorphic to X , and the N+-marking of NS(X) induced from
the N+-marking of the family Y → C arises via N+ → N ∼= NS(X). Thus,
by the definition of σN in step 3 of the proof of Theorem 4.3, the associated
N+-rigidified K3 crystal is σN ([X ]), which establishes claim (2). �	
Let us give an immediate corollary of Theorems 4.3 and 4.5, which is actu-

ally everything we will need to prove the results of the next section.

Corollary 4.6 Let Y be a supersingular K3 surface in characteristic p ≥ 5
with σ0(Y ) ≥ 2. Then, there exists a supersingular K3 surface X with σ0(X) =
σ0(Y )− 1 and a purely inseparable isogeny Y ��� X of height 2.

Proof First, we note that σ0(Y ) = σ0(Y (p)). By Theorems 4.3 and 4.5, there
exists a family Y → C of N+-marked supersingular K3 surfaces, where
σ0(N+) = σ0(Y (p)), such that Y (p) is a member of this family. By Proposi-
tion 3.8, there exists a point 0 ∈ C such that the fiber of Y → C over 0 is
a supersingular K3 surface X with σ0(X) = σ0(Y ) − 1 and such that there
exists a purely inseparable isogeny Y = (Y (p))(1/p) ��� X of height 2. �	
Remark 4.7 The unirationality of MN is clear from Ogus’ description [43,
Theorem 3.21], whereas our description as iterated P

1-bundle is new. It is
likely that Theorems 4.3 and 4.5 extend in some form to the moduli spacesSN
of N -marked supersingular K3 surfaces. However, since these latter spaces are
neither of finite type nor separated, the proofs and maybe even the statements
would probably be rather technical and involved. Much better behaved are
moduli spaces of polarizedK3 surfaces. In [28, Section 9], Lieblich announced
the existence of families of supersingular K3 surfaces over A

1 using moduli
spaces of twisted sheaves. As an application, he announces the uniruledness
of the supersingular loci of moduli spaces of polarized K3 surfaces. For com-
plex K3 surfaces, non-trivial families over P

1, whose general member is not

123



Supersingular K3 surfaces are unirational 1009

algebraic, arise from twistor spaces, see [16, Section 25]. For example, Mark-
man [33, Section 7] and Verbitsky [56, Section 1.4] studied twistor spaces
together with Lagrangian fibrations, which is similar to our moving torsor
families.

4.4 Small characteristics

The results of this section build on Ogus’ articles [43] and [44]. In [43], he
develops the theory of supersingular K3 crystals, and the assumption p ≥ 3
is built in from the very beginning: quadratic and symplectic forms play an
important role, which is why characteristic 2 is excluded. In [44], p ≥ 5 had to
be assumed, not only because it rests on [43], but also since it needs the theorem
of Rudakov–Shafarevich [48] on potential good reduction of supersingular K3
surfaces, see [44, p. 364].

5 Supersingular K3 surfaces are unirational

In this section, we prove that supersingular K3 surfaces in characteristic p ≥ 5
are related by purely inseparable isogenies, which is an analog of the Shioda–
Inose structure theorem for singular K3 surfaces, see Theorem 2.6. Since
Shioda [52] showed that supersingular Kummer surfaces are unirational, we
deduce the Artin–Rudakov–Shafarevich–Shioda conjecture on unirationality
of all supersingular K3 surfaces. Finally, we treat unirationality of Enriques
surfaces.

5.1 Isogenies between supersingular K3 surfaces

We now come to the main theorem of this article, which is a structure result for
supersingular K3 surfaces.We note that Rudakov and Shafarevich conjectured
this already in Question 8 at the end of [46]. We refer to Sect. 2.2 for the
connection with a conjecture of Shafarevich about isogenies between complex
K3 surfaces.

Theorem 5.1 Let X and X ′ be supersingularK3 surfaceswith Artin invariants
σ0 and σ ′0 in characteristic p ≥ 5.

(1) There exist purely inseparable isogenies

X ��� X ′ ��� X ,

both of which are of height 2σ0 + 2σ ′0 − 4.
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(2) Let E be a supersingular elliptic curve. Then, there exist isogenies

Km(E × E) ��� X ��� Km(E × E) ,

both of which are purely inseparable of height 2σ0 − 2.

Proof If σ0 ≥ 2, then there exists a supersingular K3 surface with Artin invari-
antσ0−1 that is purely inseparable isogenous of height 2 to X byCorollary 4.6.
By induction, we obtain a purely inseparable isogeny ϕ of height h := 2σ0−2
from X to a supersingular K3 surface with Artin invariant 1. However, there
exists only one such surface, namely the Kummer surface Km(E × E), where
E is a supersingular elliptic curve [43, Corollary (7.14)]. Since the h-fold
Frobenius of X factors through ϕ, we obtain a purely inseparable isogeny of
height h to Km(E × E)(p

h). Since the latter surface is a supersingular K3 sur-
face with Artin invariant 1, it is isomorphic to Km(E × E) by the uniqueness
result just mentioned, and we obtain claim (2).

By the established claim (2), there exists a purely inseparable isogeny ϕ′ :
Km(E × E) ��� X ′ of height 2σ ′0 − 2. Then, ϕ′ ◦ ϕ is a purely inseparable
isogeny X ��� X ′ of height 2σ0 + 2σ ′0 − 4. By symmetry, there also exists a
purely inseparable isogeny X ′ ��� X of height 2σ0 + 2σ ′0 − 4 and we obtain
claim (1). �	
Remark 5.2 Naively, one might expect that K3 surfaces of Picard rank ≥ ρ

form a codimension ρ subset inside the moduli space. This expectation is
fulfilled for singular K3 surfaces (ρ = 20), since they are defined over Fp.
But then, one would expect that K3 surfaces with ρ = 22 should not exist
at all, and the fact that they come in 9-dimensional families is even more
puzzling. However, by Theorem 5.1, there exists only one supersingular K3
surface in every positive characteristic up to purely inseparable isogeny. By
Proposition 3.8, these isogenies come in families, which gives an explanation
why supersingular K3 surfaces form 9-dimensional moduli spaces.

5.2 Supersingular K3 surfaces are unirational

Since Shioda [52] showed that supersingular Kummer surfaces are unirational,
the previous theorem implies the conjecture of Artin, Rudakov, Shafarevich,
and Shioda.

Theorem 5.3 Supersingular K3 surfaces in characteristic p ≥ 5 are unira-
tional.

Proof In odd characteristic, supersingular Kummer surfaces are unirational
by [52, Theorem 1.1]. The assertion then follows from Theorem 5.1. �	
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We recall that a surface is called a Zariski surface if there exists a dominant,
rational, and purely inseparable map of degree p from P

2 onto it. Although the
map from P

2 onto a supersingular Kummer surface constructed by Shioda in
[52] is inseparable, it is not purely inseparable. Using a different construction,
Katsura [23, Theorem 5.10] showed that supersingular Kummer surfaces with
σ0 = 1 in characteristic p ≡ 1 mod 12 are Zariski surfaces. This strengthens
Theorem 5.3, and gives a partial answer to a question of Rudakov and Sha-
farevich, who asked and actually doubted whether supersingular K3 surfaces
are purely inseparably unirational, see Question 6 at the end of [46].

Corollary 5.4 A supersingular K3 surface in characteristic p ≥ 5with p ≡ 1
mod 12 is purely inseparably unirational. �	

In Sect. 2.1, we discussed different notions of supersingularity for K3 sur-
faces and the relation to the Tate-conjecture. Combining Theorems 2.3 and
5.3, we obtain the following equivalence.

Theorem 5.5 For a K3 surface X in characteristic p ≥ 5, the following
conditions are equivalent:

(1) X is unirational.
(2) The Picard rank of X is 22.
(3) The formal Brauer group of X is of infinite height.
(4) For all i , the F-crystal Hi

cris(X/W ) is of slope i/2.

Proof If X is unirational, then its Picard rank is 22 by [51, Corollary 2], which
establishes (1)⇒(2). The converse direction (2)⇒(1) is Theorem 5.3. The
equivalences (2)⇔(3)⇔(4) are Theorem 2.3. �	

5.3 Enriques surfaces

As a consequence of Theorem 5.3, we now characterize the unirational ones
among Enriques surfaces, which generalizes a result of Shioda [52, Theorem
3.3].

Theorem 5.6 An Enriques surface X in characteristic p ≥ 2 is unirational if
and only if

(1) p = 2 and X is not singular (that is, Picτ
X/k = μ2), or

(2) p = 2 and the covering K3 surface is supersingular.

Proof Assertion (1) is shown in [9, Corollary I.1.3.1].
By [52, Lemma 3.1], an Enriques surface X in characteristic p ≥ 3 is

unirational if and only if its covering K3 surface X̃ is unirational. Thus, if
p ≥ 5, then assertion (2) follows from Theorem 5.5. If p = 3 and X is
unirational, then X̃ is unirational, and thus, supersingular. Conversely, if p = 3
and X̃ is supersingular, then σ0(X̃) ≤ 5 by [22, Corollary 3.4] and thus, X̃ is
unirational by [46], which implies the unirationality of X . �	
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5.4 Small characteristics

As in Sects. 3.4 and 4.4, let us discuss what we know and do not know in
characteristic p ≤ 3.

(1) Using quasi-elliptic fibrations, Rudakov and Shafarevich [46] showed that
Shioda-supersingular K3 surfaces in characteristic 2 and supersingular K3
surfaces with σ0 ≤ 6 in characteristic 3 are Zariski surfaces, and thus,
unirational. Therefore, the question remains whether supersingular K3
surfaces with σ0 ≥ 7 in characteristic 3 are unirational. By Proposition 3.7
together with the comments made in Sect. 3.4, there exists at least a 6-
dimensional family of unirationalK3 surfaceswithσ0 = 7 in characteristic
3.

(2) Theorem 5.1 rests onCorollary 4.6, andwe refer to Sect. 4.4 for details. On
the other hand, quasi-elliptic K3 surfaces are Zariski surfaces, and thus,
related by purely inseparable isogenies.

(3) The implication (1)⇒(2) of Theorem 5.5 holds in any characteristic and
we discussed it converse above. The implication (2)⇒(3) holds in any
characteristic, and its converse would follow from the Tate-conjecture for
K3 surfaces, which is true in characteristic 3 by [32]. The equivalence
(3)⇔(4) holds in every characteristic.

In particular (see also Sect. 4.4), once supersingular K3 surfaces in character-
istic 3 are shown to have potential good reduction, the results of this section
will also hold in characteristic 3.
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