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Abstract We study stability and bifurcations in holomorphic families of poly-
nomial automorphisms of C

2. We say that such a family is weakly stable over
some parameter domain if periodic orbits do not bifurcate there. We first show
that this defines a meaningful notion of stability, which parallels in many ways
the classical notion of J -stability in one-dimensional dynamics. Define the
bifurcation locus to be the complement of the weak stability locus. In the
second part of the paper, we prove that under an assumption of moderate dis-
sipativity, the parameters displaying homoclinic tangencies are dense in the
bifurcation locus. This confirms one of Palis’ Conjectures in the complex set-
ting. The proof relies on the formalism of semi-parabolic bifurcation and the
construction of “critical points” in semi-parabolic basins (which makes use of
the classical Denjoy–Carleman–Ahlfors and Wiman Theorems).

1 Introduction

One of themain goals in themodern theory of dynamical systems is to describe
the dynamics of typical mappings in a representative family. Let us consider
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for instance the space ofCk diffeomorphisms (k ≥ 1) of real compact surfaces.
It was briefly believed in the 1960s that hyperbolicity was generically satisfied
in Diffk(M). This hope was discouraged fast, particularly with the discovery
by Newhouse [46,47] of an open region N in Diffk(M), k ≥ 2 containing a
dense subset of maps that display homoclinic tangencies. Moreover, a generic
map in N has infinitely many sinks. (We will refer to N as the Newhouse
region.)

A more refined picture of typical dynamics of diffeomorphisms then grad-
ually emerged. It was articulated by Palis as a series of conjectures (see e.g.
[48], [49, Chap. 7]). The first conjecture on this list is the following:

Conjecture (Palis). Every f ∈ Diffk(M), k ≥ 1, can be Ck-approximated
either by a hyperbolic diffeomorphism or by one exhibiting a homoclinic
tangency.

Here “homoclinic tangency” means a tangency between the stable and
unstable manifolds of some saddle periodic point. Since hyperbolic diffeo-
morphisms are structurally stable, this singles out homoclinic tangencies as a
basic phenomenon responsible for bifurcations. This conjecture was proven
for k = 1 by Pujals and Sambarino [50], nevertheless it remains wide open
for k > 1. More generally, there has been an important progress in the under-
standing of C1-generic dynamics in the past few years (see [16] for a recent
overview).

Another situation that has been extensively studied is one-dimensional
dynamics, both real and complex. In fact, the early Density of hyperbolicity
conjecture turned out to be true in the real one-dimensional case [27,34,42].
It is conjectured to be true in the complex case as well (this is known as the
Fatou Conjecture), but this problem is still open.

Consider a holomorphic family ( fλ)λ∈� of rational mappings of degree
d on the Riemann sphere P

1(C), parameterized by a complex manifold �

(which may be the whole space of rational mappings of degree d). We say
that the family is J -stable in a connected open subset � ⊂ � if in � the
dynamics is structurally stable on the Julia set J . Work of Mañé et al. [43] and
independently of the second author [40,41] implies that the J -stability locus
is dense in�. In addition, parameters with preperiodic critical points (which is
the one-dimensional counterpart of the homoclinic tangency) are dense in the
bifurcation locus. We see that the Fatou Conjecture is reduced to the problem
whether J -stability implies hyperbolicity (for a sufficiently generic family,
like the whole space of polynomials or rational maps of a given degree).

In this paper we deal with families of polynomial automorphisms of C
2,

which shares features with both of the previous settings. Friedland andMilnor
[22] showed that dynamically interesting automorphisms in C

2 are conjugate
to compositions of Hénon mappings (z, w) �→ (aw + p(z), az), where a is a
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non-zero complex number and p is a polynomial of degree at least two. In what
follows,we assumewithout saying that all automorphisms under consideration
are dynamically interesting, and in particular, they have dynamical degree
d ≥ 2 (see Sect. 2 for a review of this notion).

Note that a polynomial automorphism f has constant complex Jacobian
Jac f = det Df . So Jac f is a well-defined quantity attached to f . We work
in the dissipative setting, and our main results actually require some stronger
form of dissipation, namely we need

|Jac f | < 1

d2
, where d is the dynamical degree of f. (1)

We will call such maps moderately dissipative1

We denote by J ∗ the closure of saddle periodic points of f . It is unknown
whether J ∗ is always equal to the “small Julia set” J , which can be defined in
classical terms as the locus where both families { f n}n≥0 and { f n}n≤0 are not
normal.

From one-dimensional holomorphic dynamics we borrow the idea of focus-
ing on J -stability rather than hyperbolicity, and in accordance with the Palis
program, we explain bifurcations by the presence of homoclinic tangencies.
Ourmain result is the following, in the spirit of the Palis conjecture (the precise
meaning of the terminology “weakly stable” will be explained shortly).

Theorem A. Let ( fλ)λ∈� be a holomorphic family of moderately dissipative
polynomial automorphisms ofC2 of dynamical degree d ≥ 2. Thenweakly sta-
ble maps, together with maps exhibiting non-persistent homoclinic tangencies
form a dense subset of �.

It is also true thatweakly stablemaps, together withmaps that have infinitely
many sinks form a dense subset in �. Somewhat surprisingly, this is just an
observation obtained by analyzing the one-dimensional argument.

The set of locally weakly stable parameters will be simply referred to as the
stability locus, and its complement is by definition the bifurcation locus. It is
worth mentioning here that G. Buzzard [12] showed that the Newhouse region
is non-empty in the space of polynomial automorphisms of sufficiently high
degree. It follows that the stability locus is not dense in general.

Let us now discuss the notion of weak stability. To say it briefly, a family of
polynomial automorphisms is weakly stable in some open set if periodic points
do not bifurcate there. The first part of this paper is devoted to demonstrating
that this defines a reasonable notion of stability in this context, parallel to the

1 The word “moderately” was chosen to contrast with the very strong dissipativity assumptions
that are often made in the study of real Hénon mappings.
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usual J -stability in dimension 1. In particular we show that in a weakly stable
family:

– there are no homoclinic bifurcations, and moreover all homoclinic and het-
eroclinic intersections can be followed holomorphically;

– the sets J ∗, J−, J+, K move continuously in the Hausdorff topology;
– connectivity properties of the Julia sets are preserved.

Let us point out that these results are true for any dissipative family, without
further assumption on the Jacobian. Naturally, these results are based on a
generalization to two dimensions of the key idea of holomorphic motion. A
fundamental problem here is that a holomorphic motion of a set X in higher
dimension does not automatically admit an extension to a motion of X . In
practice, we work with a weaker notion of “branched holomorphic motion”,
in which collisions are allowed. Because of this, we have not been able to
prove that weak stability implies structural J ∗-stability.

An important special case is when f is uniformly hyperbolic on J ∗. It then
follows from the classical theory of hyperbolic dynamical systems that f is
structurally stable on J ∗. In addition it is known that J ∗moves holomorphically
(see Jonsson [31]), and that this holomorphic motion extends to a holomorphic
motion of J+ ∪ J− (see Buzzard–Verma [13]).

The main point of this paper is to design a mechanism creating homoclinic
tangencies from bifurcations of periodic points (for moderately dissipative
polynomial automorphisms ofC2).Notice that conversely, the creation of sinks
from (generic) homoclinic tangencies is classical and goes back to Newhouse
[47] (see Gavosto [24] for a proof in our context). The theory of weak J ∗-
stability gives a fresh insight into this phenomenon as well.

Let us now formulate a more precise version of Theorem A:

Theorem A′. Let ( fλ)λ∈� be a holomorphic family of moderately dissipative
polynomial automorphisms ofC2 of dynamical degree d ≥ 2.Then parameters
with non-persistent homoclinic tangencies are dense in the bifurcation locus.

To understand the strategy of the proof of this theorem, let us first review
the one-dimensional result that parameters with preperiodic critical points
are dense in the bifurcation locus. The classical proof of this fact, based on
Montel’s theorem [38], does not seem to have an analogue in our context.

Let us outline an argument that admits a generalization to dimension two.
If λ0 belongs to the bifurcation locus, then some periodic point changes type
near λ0. In particular there exists λ1 close to λ0 such that at λ1, there is a peri-
odic point p whose multiplier crosses the unit circle at a rational parameter.
The theory of parabolic implosion [37,52] describes how the dynamics in the
basin B of the parabolic point can “implode” for some parameters close to λ1.
In particular, under generic assumptions, and replacing f by some iterate if
needed, for well chosen sequences λn → λ1, f nλn converges locally uniformly
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in B to some limiting holomorphic function g : B → C, which we refer to as
a transit map. Fix a repelling periodic point q, which necessarily persists as
q(λ) in the neighborhood of λ1. By a classical theorem of Fatou, there exists
a critical point c in B. Then it is actually possible to adjust the sequence λn so
that g(c) = q. From this we infer that for large n, there exists λ′n close to λn ,
such that f n

λ′n
(c(λ′n)) = q(λ′n), which is precisely the result that we seek.

To prove Theorem A′, in the second part of the paper we design a two-
dimensional generalization of this argument. In the dissipative regime, if some
periodic point p(λ) bifurcates at λ0, then one multiplier of p(λ) crosses the
unit circle while the other stays smaller than 1. If furthermore p(λ0) has a root
of unity as multiplier, it is said to be semi-parabolic, and we say that p(λ)

undergoes a semi-parabolic bifurcation. Then the proof is divided into two
main steps:

– Step 1: prove the existence of “critical points” in the basins of semi-parabolic
periodic points.

– Step 2: use “semi-parabolic implosion” to make these critical points leave
the basin under small perturbations of λ0, eventually creating tangencies.

The critical points in Step 1 are defined as follows. Let f be a polynomial
automorphism with a semi-parabolic periodic point p, which we may assume
is fixed. Then p admits a basin of attraction B, which is endowed with a
holomorphic strong stable foliation, whose leaves are characterized by the
property that points in the same leaf approach one another exponentially fast
under iteration.Thenbydefinition a critical point is a point of tangencybetween
the strong stable foliation in B and the unstable manifold of some saddle
periodic point q.

We obtain the following result.

Theorem B. Let f be a moderately dissipative polynomial automorphism
of C

2. Assume that f possesses a semi-parabolic periodic point with basin
of attraction B. Then for any saddle periodic point q, every component of
Wu(q) ∩ B contains a critical point.

Notice that this is precisely the place where the assumption on the Jacobian
is required. Curiously, the proof relies on the classical theory of entire functions
of finite order in one complex variable. The same idea was then used by Peters
and the second author [39] to obtain a nearly complete classification of peri-
odic Fatou components for moderately dissipative polynomial automorphisms
of C

2.

Remark The classical theory of entire functions was first applied to (one-
dimensional) polynomial dynamics by Eremenko and Levin [20].

The second step relies on the construction of transit mappings in the context
of semi-parabolic bifurcations. Semi-parabolic points are roughly classified
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according to the multiplicity of f − id at the periodic point under consid-
eration. The theory of semi-parabolic implosion was recently developed by
Bedford et al. [2] who obtained a satisfactory picture in the multiplicity two
case. In particular, it generalizes a theorem of Lavaurs [37], thus obtaining
a precise description of the transit behaviour in this setting. However, these
results depend on certain explicit changes of variables that do not readily
extend to the general case.

In our situation we have to deal with semi-parabolic points of arbitrary
multiplicity, so we need to develop a more general method. It was inspired by
a chapter of the celebrated Orsay Notes by Douady and Hubbard, cheerfully
entitled “un tour de valse” [18] (written by Douady and Sentenac).

To be specific, if λ0 is a parameter at which a semi-parabolic bifurcation
occurs, replacing f by some iterate if needed, there exists a sequence of para-
meters λn → λ0 such that f nλn converges in B to some holomorphic map

g : B → C
2. Notice that due to dissipation, g has 1-dimensional image. An

important phenomenon here is that g(B) need not be contained inB: indeed fλn
shifts B slightly, which is then amplified by iteration. In this sense the limiting
dynamics of fλn is richer than that of f0. Though these transit mappings g are
not as explicit as in [2], they can still be well controlled (see Theorem 8.7). If
now q = q(λ0) is any saddle point, and c is a critical point in Wu(q), we can
adjust the sequence λn so that g(c) ∈ Ws(q). It is then easy to find parame-
ters λ′n close to λn for which Wu(q(λ′n)) and Ws(q(λ′n)) are tangent, thereby
concluding the proof.

The plan of the paper is the following. The first section is devoted to some
preliminaries on polynomial automorphisms of C

2. The notion of branched
holomorphic motion is explained in detail in Sect. 3. In Sect. 4, we define
the notion of weak J ∗-stability, which is the direct analogue of the one-
dimensional notion of J -stability and study the properties of weakly J ∗-stable
families. In Sect. 5 we show that a weakly J ∗-stable family is also weakly
stable on J+, J−, and K . In particular this justifies the use of the more gen-
eral “weakly stable” terminology. We also prove that if a dissipative family
of polynomial automorphisms has persistently connected Julia set, then it is
weakly stable (Theorem 5.7). This generalizes a well known result in dimen-
sion 1. The proof of Theorem A′ occupies Sect. 6 to 9. In Sect. 6, we recall
some basics on semi-parabolic dynamics. The existence of critical points in
semi-parabolic basins (TheoremB) is discussed in Sect. 7, which also includes
some preparatory material on entire functions of finite order. A slight adapta-
tion gives the existence of critical points in attracting basins. Details are given
in Appendix A. Semi-parabolic implosion and transit mappings are studied in
Sect. 8, and finally in Sect. 9 we assemble these results to prove Theorem A′.

Throughout the paper we use the following notation: if u and v are two real
valued functions, we write u � v (resp u � v) if there exists a constant C > 0

123



Bifurcations of polynomial automorphisms of C
2 445

such that 1
C u ≤ v ≤ Cu (resp. u ≤ Cv). The disk in C of radius r centered

at 0 is denoted by Dr . Moreover, D stands for D1. Throughout the paper, �

stands for a connected complex manifold, which serves as a parameter space.

Remark The results of this paper were first announced at the Balzan-Palis
Symposium on Dynamical Systems (IMPA, June 2012) and at the Workshop
on Holomorphic Dynamical Systems (Banff, July 2012).

2 Preliminaries

In this section we recall some basics on the dynamics of polynomial automor-
phisms of C

2, and establish some preparatory results.

2.1 Basics

Let f be a polynomial automorphism of C
2 with non-trivial dynamics. “Non-

trivial dynamics” here means for instance that f has positive topological
entropy, which then equals log d, where

d = lim
n→∞(deg( f n))1/n

is the dynamical degree of f . According to Friedland and Milnor [22] this
happens if and only if f is conjugate to a composition of Hénon mappings

(z, w) �→ (p(z)− bw, z).

Let us recall the following basic dynamical objects and facts. The reader
can consult [5,7,21,29] for details.

• K± are the forward and backward filled Julia sets, that is, the sets of points
with bounded forward/backward orbits respectively.

• U± = C
2\K± are the forward and backward basins of infinity.

• J± = ∂K± are the forward and backward Julia sets. They can be also
defined as the sets of non-normality for the families { f ±n}n≥0 respectively.
Note that in the dissipative case, K− has empty interior so J− = K−.

• K := K+ ∩ K− is the filled Julia set consisting of points whose two-sided
orbits do not escape.

• J := J+ ∩ J− is the “little” Julia set and ̂J := J+ ∪ J− is the “big” one.
In the complement of the former, at least one of the families, { f n}n≥0 or
{ f n}n≤0, is normal. In the complement of the latter, the whole two-sided
family { f n}n∈Z is.
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• S is the set of saddle periodic points (saddles). As usual,Ws(p) andWu(p)
stand for the stable and unstable manifolds of a saddle2 p. They are holo-
morphically immersed complex lines C → C

2.
• Given a saddle p, H(p) denotes the set of homoclinic intersections between
Wu(p) and Ws(p), while H tr(p) is the subset of transverse homoclinic
intersection. For any p ∈ S the closure of either of these sets coincides
with J ∗ [7, Prop. 9.8], so according to the general dynamics terminology,
J ∗ is the homoclinic class of f.

We do not devote a special notation for the set of heteroclinic intersections,
but use the following abbreviated terminology: s/u intersection is a shorthand
for “homoclinic or heteroclinic intersection of stable and unstable manifolds
of saddle periodic orbits”.

• J ∗ is the closure ofS. It is contained in J , and it is an open problem (posed
by Hubbard) whether J = J ∗.

• S− = J− \ K+ and S+ = J+ \ K−.
• G± are the forward and backward Green functions. Their dynamical mean-
ing is that of escape rate functions:

G±(z) = lim
n→+∞

1

dn
log+ ‖ f ±n(z)‖.

Moreover, they have the following properties:
– G± are non-negative and vanish on K± respectively;
– G± are pluri-subharmonic on the whole C

2, and pluri-harmonic on U±
respectively;

– they satisfy the functional equations G±( f ±1z) = d G±(z).
• ϕ± are the forward and backward Böttcher functions. They are well defined
and holomorphic in appropriate sectors in U± near infinity and satisfy
log |ϕ±| = G±. Moreover, they satisfy the Böttcher functional equations

ϕ±( f ±z) = (ϕ±(z))d .

Note that by means of this equation, ϕ± extend analytically to the whole
basins U± as multi-valued functions with a single-valued absolute value
> 1 (namely exp(G±) ).

• Though the Böttcher functions do not coherently extend to the whole basins
U±, their level sets do (by means of the dynamics), defining holomorphic
Böttcher C-foliations 3 F± in U±.

2 or for a more general periodic point whenever they exist.
3 meaning that their leaves are conformally equivalent to C.
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• Stable and unstable Green currents T± := ddcG±. They are supported on
the forward and backward Julia sets J± respectively and satisfy the dynam-
ical functional equations f ∗T± = d±1. Moreover, the unstable manifold
Wu(p) of any saddle p is equidistributed with respect to T−, while the
stable manifolds Ws(p) are equidistributed with respect to T+ [5,21]. It
follows that any Wu(p) is dense in J−, while any Ws(p) is dense in J+.

• Themeasure of maximal entropyμ = T+∧T−. By [8], saddles are equidis-
tributed with respect to μ. Moreover, supp μ = J ∗.

2.2 Families of compositions of Hénon maps

We will be interested in holomorphic families ( fλ)λ∈� of polynomial auto-
morphisms, parameterized by some complex manifold �. We put a subscript
λ to denote the parameter dependence of the corresponding objects, e.g., Jλ,
μλ, etc.

The following proposition, which might be known to some experts (see e.g.
[23], and also [56, Thm 1.6] for the birational case), asserts that as far as we
are interested in properties of fλ which are typical with respect to λ, it is not
a restriction to assume that the fλ are products of Hénon mappings.

Proposition 2.1 Let ( fλ)λ∈� be a holomorphic family of polynomial automor-
phisms in C

2, parameterized by a connected complex manifold. There exists a
Zariski open set �′ ⊂ � and an integer d ≥ 1 such that for λ ∈ �′, fλ has
dynamical degree d.

Furthermore, if d ≥ 2, locally in �′ we can write

fλ = ϕ−1λ ◦ h1λ ◦ · · · ◦ hmλ ◦ ϕλ

where (ϕλ) is a polynomial automorphism and (hiλ)i=1,...,m are Hénon map-
pings of degree di , with

∑

di = d, all depending holomorphically on λ.

To prove the proposition we need to recall some ideas from [22]. Fix coor-
dinates (z, w) on C

2. We denote by E the group of automorphisms pre-
serving the family of lines {w = C}. Such automorphisms are of the form
(z, w) �→ (αz + p(w), βw+ γ ) and will be referred to as elementary. (More
generally, an automorphisms is elementary if it can be put in this form in
some system of coordinates (z, w).) The group of affine automorphisms will
be denoted by A. It turns out that the group Aut(C2) of polynomial automor-
phisms ofC

2 is the free product of A and E , amalgamated along their intersec-
tion S := A∩E , that is, every f ∈ Aut(C2)\S, can bewritten as a composition
f = gk ◦ · · · ◦ g1, where gi belongs to A\S or E\S. This decomposition is
unique, up to simultaneously replacing gi by gi ◦ s and gi−1 by s−1 ◦ gi−1,
for some s ∈ S. The degree of such a composition is to equal

∏

deg(gi ) (of
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course only elementary automorphisms contribute to the degree). One has that
deg( f n) = (deg f )n if and only if f is cyclically reduced, that is the extreme
factors g1 and gk belong to different subgroups A and E . In general, write

f = am ◦ em ◦ am−1 ◦ em−1 ◦ · · · ◦ e1 ◦ a1, with ai ∈ A\S and ei ∈ E\S,

with possibly am or a1 equal to the identity. We define the multidegree of f
as (dm, . . . , d1) where di = deg(ei ).

Proof It is clear that there exists a Zariski open set �0 ⊂ � where the degree
is constant, say, equal to d ′. If d ′ = 1 there is nothing to prove so assume
d ′ ≥ 2. A theorem due to Furter asserts that in a connected holomorphic
family of polynomial automorphisms, the degree is constant if and only if the
multidegree is constant [23, Cor. 3]. Hence there exists an integer m such that
for every λ ∈ �0 we can write

fλ = am,λ ◦ em,λ ◦ am−1,λ ◦ em−1,λ ◦ · · · ◦ e1,λ ◦ a1,λ.
We claim that the factors ai,λ and ei,λ may be chosen to depend holomor-

phically on λ. This is not obvious since they are not unique. We can deal with
the extreme factors am and a1 as in [22, Lemma 2.4], by observing that the
coset space A/S is isomorphic to P

1 and that there is a well defined mapping
fλ �→ (a−11,λS, am,λS) ∈ P

1 × P
1. In a more explicit fashion, this mapping

may be expressed as fλ �→ (I ( fλ), I ( f
−1
λ )), where I ( f ) is the indeterminacy

set of f viewed as a rational mapping on P
2, and P

1 is identified to the line
at infinity. Since fλ depends holomorphically on λ, so do a−11,λS and am,λS,
hence absorbing some of the S factors in em,λ and e1,λ if necessary, we infer
that a1,λ and am,λ depend holomorphically in λ. Thus we are left to proving
that if fλ is of the form fλ = em,λ ◦ am−1,λ ◦ · · · ◦ e1,λ, then the factors may
be chosen to depend holomorphically on λ. By [22, Lemma 2.10], fλ admits
a unique decomposition of the form

fλ = (ŝm,λ ◦ êm,λ) ◦ t ◦ êm−1,λ ◦ · · · ◦ t ◦ ê1,λ,
where ŝm,λ is affine with diagonal linear part, êi is of the form (z, w) �→
(z + pi (w), w), with pi (0) = 0 and t (z, w) = (w, z). By uniqueness, the
factors of this decomposition depend holomorphically on λ (see [23, p.909]
for details) and our claim is proven.

From this point it is clear that the set of parameters such that fλ is not
cyclically reduced is Zariski closed in �0. Indeed, conjugating fλ by a1,λ we
obtain an expression of the form

a1,λ ◦ am,λ ◦ em,λ ◦ · · · ◦ e1,λ,
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which is not cyclically reduced if and only if a1,λ ◦ am,λ ∈ S, which is an
analytic condition. If so, we absorb a1,λ ◦ am,λ into em,λ and infer that the
resulting word is not cyclically reduced iff e1,λ ◦ em,λ ∈ S, and so on. Iterating
this process we obtain a Zariski open set�′ such that if λ ∈ �′, fλ is cyclically
reduced, and the first part of the proposition is proved.

To establish the second assertion, in �′ we conjugate fλ as above to make
it cyclically reduced and of the form

(t ◦ ek) ◦ · · · ◦ (t ◦ e1).

Then we argue as in [22, Theorem 2.6] that a mapping of the form t ◦ ei is
affinely conjugate to a Hénon mapping (z, w) �→ (δi z + pi (w), z), which is
unique up to finitely many choices if pi is chosen to be monic and centered. ��

Part 1. Holomorphic Motions and Stability

3 Branched Holomorphic Motions

Recall the notation� for the parameter domain, which is a connected complex
manifold. It will often be pointed by a base point λ0 ∈ �. In this case, if we
have a family of objects parametrized by �, the base objects will often be
simply labeled with 0, e.g., f0 ≡ fλ0, J0 ≡ Jλ0 , etc.

Recall that a holomorphic motion of a set A in C
d over � is a family of

mappings hλ : A → C
d such that

– for fixed a ∈ A, λ �→ hλ(a) is holomorphic;
– for fixed λ ∈ �, a �→ hλ(a) is injective;

Holomorphic motions are often pointed by assuming that hλ0 is the identity
mapping.

The total space of a holomorphic motion of A over � is a family of disjoint
holomorphic graphs over the first coordinate in�×C

2, which we endow with
the topology of uniform convergence on compact subsets of �. Let us relax
this notion as follows:

Definition 3.1 A branched holomorphic motion (abbreviated as “BHM ” in
the following) over � is a family of holomorphic graphs over the first coordi-
nate in �× C

2.

Remark 3.2 This definition bears some similarity with the notion of “analytic
multifunction”, which was studied by Słodkowski, and others. In particular it
appears in [53] under the name of “locally trivial analytic multifunction”.
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With G being such a family, we let Gλ = {γ (λ), γ ∈ G} be the sections of
the total space, and we say that the Gλ “move under the branched motion G”.
We let�λ : G → Gλ be the natural projection, which is obviously continuous.

As in the one-dimensional setting, we will use extension properties of
(branched) holomorphic motions. The classical λ-lemma asserts that a holo-
morphicmotion of A ⊂ C extends to A and is automatically continuous. These
virtues come fromMontel normality of the family G of disjoint graphs� → C

and from the Hurwitz Theorem that ensures that disjointness is inherited by
the closure G. Of course neither of these statements is true in higher dimen-
sion, which motivates our use of branched motions as well as the following
definition:

Definition 3.3 A branched holomorphic motion G in C
2 over � is called

normal if G is a normal family of graphs γ : � → C
2.

Recall that normality means that from any sequence of graphs γn we can
extract a subsequence γnk which is either locally bounded (and hence locally
equicontinuous) or else γnk → ∞ locally uniformly. In particular, this is the
case if the whole family G is locally uniformly bounded, or more generally, if
the sections Gλ belong to a Kobayashi hyperbolic domain U ⊂ C

2.
With these definitions in hand, the following lemma is obvious.

Lemma 3.4 If G is a normal branched holomorphic motion over �, then so
is G.

Recall that the Hausdorff topology on the space of subsets of C
2 is defined

by the following basis of neighborhoods: Ur,ε(A) consists of subsets X ⊂ C
2

such that the set X ∩ D
2
r is contained in the ε-neighborhood of A ∩ D

2
r , and

the other way around.

Lemma 3.5 If G is a normal BHM then the sections Gλ depend continuously
on λ in the Hausdorff topology.

Proof This easily follows from the local equicontinuity of the truncated
families

Gλ(r, δ) := {γ ∈ G : γ (λ) ∈ D
2
r for λ ∈ D1−δ}. (2)

��
Let us say that a BHM G is unbranched at some λ ∈ � if the natural

projection G → Gλ is injective. It is unbranched along γ0 ∈ G if γ0 does not
cross any other graph γ ∈ G.
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Lemma 3.6 Let G be a normal BHM in C
2 over � . If G is unbranched at

some parameter λ0 ∈ � then the mappings hλ : Gλ0 → Gλ defined by

γ (λ0) �→ γ (λ), for γ ∈ G,

are continuous and depend holomorphically on λ ∈ �.

Proof The last statement is obvious from the definitions. To prove continuity
of the hλ, let us consider the functional space G0(r, δ) ≡ Gλ0(r, δ) (defined in
(2)), which is compact. By the unbranching assumption, the natural projection

�0 : G0(r, δ) → G0 ∩ D
2
r

is bijective and hence is a homeomorphism. It follows that the maps hλ =
�λ ◦�−1

0 are continuous. ��
Corollary 3.7 Under the circumstances of Lemma 3.6, if the motion of G is
unbranched, then the maps hλ : Gλ0 → Gλ are homeomorphisms.

More generally, let us say that a normal holomorphic motion G is strongly
unbranched if for every γ ∈ G, G is unbranched along γ (notice that the whole
G is allowed to be branched).

We say that a holomorphic motion is continuous if all the maps hλ : G0 →
Gλ, λ ∈ �, are homeomorphisms.

Lemma 3.8 A normal holomorphic motion G is continuous iff it is strongly
unbranched.

Proof Assume hλ is discontinuous for some λ ∈ �. Then for some γ ∈ G
there exists a sequence γk ∈ G such that γk(λ0) → γ (λ0) while ‖γk(λ) −
γ (λ)‖ ≥ δ > 0. Since G is normal, we can pass to a limit γ∞ ∈ G such
that γ∞(λ0) = γ (λ0) while γ∞(λ) �= γ (λ). Thus, G is branched at γ . The
same argument shows that discontinuity of h−1λ implies branching ofG at some
γ ∈ G.

The reverse assertion is easily supplied. ��
Next, let us formulate a simple consequence of the classical one-dimensional

λ-lemma:

Lemma 3.9 Let ψλ : C → C
2, λ ∈ D, be a holomorphic family of injec-

tively immersed entire curves. Let hλ : A0 → C
2, λ ∈ D, be a holomorphic

motion in C
2 such that Aλ := hλ(X0) ⊂ ψλ(C). Then it extends to a holomor-

phic motion of ψ0(C) with values in ψλ(C). Moreover, locally in λ (indepen-
dently of the particular motion over �), there is a canonical extension which
depends only on the images ψλ(C) but not on the particular choice of the
parametrizations ψλ.
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Proof Apply the Słodkowski λ-lemma [53] to the holomorphic motion in C:

ψ−1
λ ◦ hλ ◦ ψ0 : ψ−1

0 (A0) → ψ−1
λ (Aλ), λ ∈ D.

Moreover, locally in λ, there is the canonical “harmonic” extension due to
Bers and Royden [9] which is equivariant under complex affine changes of
variable, so it is independent of the particular choice of the ψλ. ��

We will refer to the above canonical extension as the Bers–Royden motion.
It implies the following foliated λ-lemma (first considered in [13]).

Let us say that a family of holomorphic C-foliations Fλ depends holomor-
phically on λ ∈ � if the local defining functions φλ for the Fλ can be selected
holomorphic in λ. Given a set A and a C-foliation F we define the leafwise
closure clF A as

⋃

L(clL(A ∩ L), where the union is taken over all the leaves
L of F and the closure clL is taken in the intrinsic topology of the leaf.

Corollary 3.10 Let hλ : A0 → C
2 be a holomorphic motion in C

2, and let
Fλ be a holomorphic family of C-foliations supported on open sets Uλ ⊂ C

2

containing Aλ. Then hλ extends to aholomorphicmotionof the leafwise closure
clF0 A0. Moreover, locally in λ, it further extends to the motion of the whole
leaves of Fλ that meet Aλ.

Proof The extension to the leafwise closure is obvious by the simplest one-
dimensional version of theλ-lemma. Further extension comes fromLemma3.9
(it is important that this extension is canonical). ��

4 Weak J∗-stability

4.1 Substantial families

From now on, ( fλ)λ∈� will stand for a holomorphic family of polynomial
automorphisms of C

2 of dynamical degree d ≥ 2 over a parameter domain
�, which is a connected complex manifold.

Wewill often require an additional—presumably superfluous—assumption.
We say that a holomorphic family of polynomial automorphisms is substantial
if

– either all members of the family are dissipative
– or for any periodic point with eigenvalues α1, α2, no relation of the form

αa
1α

b
2 = c, holds persistently in parameter space, where a, b, c are complex

numbers and |c| = 1.

As an example, any open subset of the family of all polynomial automorphisms
of dynamical degree d is substantial [11, Theorem 1.4]. On the other hand, a
family of conservative polynomial automorphisms is not.
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4.2 Stability and Newhouse phenomenon

A family ( fλ)λ∈� induces a fibered map

̂f : �× C
2 → �× C

2, ̂f : (λ, z) �→ (λ, fλ(z)), (3)

which in turn, induces an action on the space of graphs (λ, γ (λ))λ∈� of holo-
morphic functions γ : � → C

2. A branched holomorphic motion G over �

is called equivariant if ̂f (G) = G.
Definition 4.1 A holomorphic family ( fλ)λ∈� of polynomial automorphisms
of C

2 is called weakly J ∗-stable if the sets J ∗λ move under an equivariant4

BHM . A map fλ0 and the corresponding parameter λ0 ∈ � are called weakly
J ∗-stable if the family ( fλ) is weakly J ∗-stable over a neighborhood �0 ⊂ �

of λ0, otherwise we say that a bifurcation occurs at λ0.

If in this definition we require that the motion in question is unbranched
then we obtain the usual notion of J ∗-stability. Given any dynamical set X f
(e.g., K f or J

±
f ), we can define (weak) X -stability in the same way.

Remark Note that we do not assume that the BHM in question is normal. It
turns out that for all dynamical sets considered in this paper (e.g., X = ̂J ),
the BHM can be selected to be normal. (Of course, in case of X = J ∗ it is
automatically so.)

The following theorem is verymuch in the spirit of one dimensional dynam-
ics [41,43]. It shows that weak J ∗-stability is a reasonable notion of stability
for polynomial automorphisms.

Theorem 4.2 Let ( fλ)λ∈� be a substantial family of polynomial automor-
phisms of C

2 of dynamical degree d ≥ 2. The following are equivalent:

(i) The family ( fλ) is weakly J ∗-stable.
(ii) Every periodic point stays of constant type (saddle, attracting, repelling,

indifferent) throughout the family.
(iii) J ∗λ moves continuously in the Hausdorff topology.5

If furthermore ( fλ) is dissipative, the following two conditions are equiv-
alent, and imply the previous ones:

(iv) The number of attracting cycles is (finite and) locally constant.
(v) The periods of attracting cycles are locally uniformly bounded.

Most of the proof of this theorem is contained in Sects. 4.4 and 4.5 below
(see in particular Proposition 4.14). The proof will be completed in Sect. 5.6.

4 Later on we will see that equivariance is automatically satisfied.
5 In general, J∗λ moves lower semi-continuously, compare [17].

123



454 R. Dujardin, M. Lyubich

Corollary 4.3 Let ( fλ)λ∈� be a family of dissipative polynomial automor-
phisms of C

2. Then any bifurcation parameter λ0 ∈ � can be approximated
by a parameter λ ∈ � such that fλ has an attracting cycle.

Proof By item (ii) of the theorem, λ0 can be a approximated by a parameter
μ0 such that fμ0 has an non-persistently indifferent periodic point p0 with
multipliers |α1| < |α2| = 1. Such a point can be perturbed to an attracting
one. ��

The following consequence follows exactly as in dimension 1:

Corollary 4.4 Let ( fλ)λ∈� be a family of dissipative polynomial automor-
phisms of C

2. If the number of attracting cycles is locally uniformly bounded
on �, then the locus of weak J ∗-stability is open and dense.

Proof By the above corollary, any bifurcation parameter λ0 ∈ � can be per-
turbed to a parameter λ1 such that fλ1 with an attracting cycle. If λ1 is a also
a bifurcation parameter then for the same reason, it can be further perturbed
to a parameter λ2 with two attracting cycles, and so on. Since the number of
attracting cycles is locally uniformly bounded, this process must terminate,
hence producing a stable parameter λn approximating λ0. ��

In particular we have the following nice corollary in the spirit of the Palis
conjectures. We say that fλ is a Newhouse automorphism if it possesses infi-
nitely many sinks.

Corollary 4.5 Let ( fλ)λ∈� be a family of dissipative polynomial automor-
phisms of C

2. Then the set

{locally weaklyJ ∗-stable parameters} ∪ {Newhouse parameters}

is dense in �.

Proof Let B ⊂ � be the open set where the number of attracting cycles is
locally uniformly bounded. By Corollary 4.4, weak J ∗-stability is dense in B.
Now in Bc, the set

Um = {λ, fλ possesses at least m attracting cycles}

is relatively open and dense. We conclude by Baire’s Theorem. ��
According to the work of Buzzard [12], it is known that the Newhouse

region, i.e. the closure of the set of Newhouse parameters, has non-empty
interior in the space of polynomial automorphisms of sufficiently high degree.
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On the other hand, it is an open question whether weak J ∗ stability implies
that there are only finitely many sinks (i.e. whether conditions (i)–(v) in The-
orem 4.2 are equivalent). (Of course, the Palis Conjecture would imply it).

It is also worthwhile to state the following result which will follow from the
proof of Theorem 4.2 (see Proposition 4.14 below).

Corollary 4.6 Let ( fλ)λ∈� be aweakly stable substantial family of polynomial
automorphisms of C

2 of dynamical degree d ≥ 2. Then:

– the BHM of the set J ∗ is unbranched over the set of periodic, homoclinic
and heteroclinic points;

– homoclinic and heteroclinic tangencies are persistent.

An important question that is left open after this analysis is whether branch-
ing can actually occur. Indeed, while the λ-lemma clearly fails for general two-
dimensional holomorphic motions, we do not know any instance of branching
in the dynamical context, or even any mechanism that may lead to it. Thus,
it is tempting to believe that weak J ∗-stability actually implies J ∗-stability.
(Again, the Palis Conjecture would imply that this must be true generically.)

4.3 Normality of motions in S±λ

According to Proposition 2.1, ( fλ) is conjugate to a holomorphic family of
composition of Hénon mappings. From this it easily follows that the sets Kλ

are locally uniformly bounded in C
2. In particular, if G is a BHM such that

Gλ ⊂ Kλ for all λ, then it is normal. The next lemma shows that it is also true
if Gλ ⊂ S±λ . This will be used in Sect. 5.7.

Lemma 4.7 Let ( fλ)λ∈� be a family of polynomial automorphisms of dynam-
ical degree d ≥ 2. Then any family of holomorphic mappings γ : � → C

2

such that for every λ ∈ �, γ (λ) ∈ S+λ ∪ S−λ is normal.

We will make use of the following lemma, which is known as the Zalcman
Renormalization Principle (see [57] and Berteloot [10] for the version that we
state here).

Lemma 4.8 Let M be a compact complexmanifold and (gn)n≥1 be a sequence
of holomorphicmappings from the unit disk to M. If (gn) is not a normal family
at z0 ∈ D then there exists a sequence (zn) converging to z0 and a sequence of
scaling factors rn > 0 converging to 0 such that (after possible extraction) the
sequence of holomorphic mappings ζ �→ gn(zn + rnζ ) converges uniformly
on compact sets to a non-constant entire map g : C → M.
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Proof of Lemma 4.7 It is no loss of generality to assume that� is the unit disk
in C. Moreover, since the sets

̂S± := {(λ, z) ∈ �× C
2 : z ∈ S±λ }

are relatively open in their union, each graph γ ∈ G is fully contained in one
of them. Then we can assume without loss of generality that all the graphs
γ ∈ G are contained in one of these sets. For definiteness, let it be ̂S+.

Assume by contradiction that the family of mappings given in the statement
is not normal. Then by the Zalcman Lemma 4.8 there exist a sequence of holo-
morphic disks γn : � → C

2 such that γn(λ) ∈ S+λ , a sequence of parameters
λn → λ∞ ∈ �, and a sequence rn → 0 such that rescaled holomorphic disks

γn(λn + rnz) converge to a non-constant entire curve ζ : C → S+λ∞ . Since the
Zalcman Lemma requires the target manifold to be compact, the closure here
is taken in CP

2. Observe that that in CP
2 we have J+ = J+ ∪ {I+}, where

I+ = I+λ is a single point at infinity.
Consider now a sequence of positive harmonic functions Hn defined by

Hn(z) = G−
λn+rnz(γn(λn + rnz)).

A first possibility is that the Hn diverge uniformly to+∞. Then ζ would take
its values in I+, which is absurd. Hence the Hn are locally uniformly bounded
and converge toG−

λ1
(ζ(z)). Being a limit of a sequence of harmonic functions,

G−
λ1

(ζ(z)) is harmonic. But a non-negative harmonic function on C must be
constant. On the other hand, J+ ∩ {G− = c} is compact, so again we arrive at
a contradiction. ��

Though normality is what we need, let us also make a related statement:

Lemma 4.9 Let f be a product of Hénon mappings. For any R > 0, the
domain

� = U+ ∩ ({max(|x |, |y|) < R} ∪ {|y| < |x |})
is Kobayashi hyperbolic (and similarly for U−).

Proof Let us consider a domain

Q = {z = (x, y) ∈ U+ : |y| < R |ϕ+(z)|},
where ϕ+ is the forward Böttcher function. It is well defined since |ϕ+| is such,
and it contains �, by increasing R slightly if needed. Let ˜U+ be the covering
of U+ that makes the Böttcher function ϕ+ well defined. Then

˜Q = {|Y | < R |�|+},
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where capitals mean the lifts to ˜U . Then Z �→ (�+(Z), Y/�+(Z)) maps ˜Q
onto the bidisk (C\D)×DR , with discrete fibers. Since the latter is hyperbolic,
so are ˜Q, Q, and � (see [33, Prop. 1.3.12 and 3.2.9]). ��

4.4 Motion of saddle and heteroclinic points

Let us start with a result that shows that any branched holomorphic motion
Gλ ⊂ Kλ is strongly unbranched (and hence continuous) on hyperbolic sets.
In particular, it is strongly unbranched at saddles and heteroclinic points.

Lemma 4.10 Let G be a BHM over �, such that for every λ ∈ �, Gλ ⊂ Kλ

or Gλ ⊂ S−λ ∪ S+λ . Assume that (γk) is a sequence of graphs in** G such that
for some λ0 ∈ �, γk(λ0) → p(λ0) as k →∞, where p(λ0) belongs to some
uniformly hyperbolic invariant compact set Eλ0 .

Then there exists a unique holomorphic continuation (p(λ))λ∈� of p(λ0)
such that γk(λ) → p(λ) as k → ∞ uniformly on compact subsets of �.
Furthermore p(λ) coincides with the natural continuation of p near λ0 as
a point of the hyperbolic set Eλ that dynamically corresponds to Eλ0 . In
particular, if (γ̃k) is any other sequence with γ̃k(λ0)→p(λ0), then γ̃k(λ) →
p(λ) on the whole �.
This holds in particularwhen p(λ0) is a saddle periodic point or a transverse

s/u intersection.

Proof Let N be a neighborhood of λ0 ∈ � where Eλ persists as a hyperbolic
set. Then the point p admits a natural local continuation (p(λ))λ∈N . We claim
that in N , γk(λ) → p(λ) when k → ∞. Then the other conclusions of the
lemma follow.

Indeed consider any cluster value of the sequence of holomorphic maps
(γk(λ))λ∈� (recall that from Lemma 4.7 and the remarks preceding it that this
is a normal family). By our claim it has to coincide with p(λ) in N . This in
turn allows to define a holomorphic continuation p(λ) of p throughout �.

It remains to prove our claim that γk(λ) → p(λ) in some neighborhood
of λ0. Let us first deal with the case where Gλ ⊂ Kλ. The observation is that
for λ ∈ N , the dynamics is locally expansive near p(λ), that is: there exists
δ > 0, which can be chosen to be uniform in N (reducing N if needed),
such that if q(λ) is such that d( f nλ (q(λ)), f nλ (p(λ))) ≤ δ for all n ∈ Z, then
p(λ) = q(λ). Now let q be any cluster value of the sequence of graphs γk(λ),
and consider the family ( f nλ (q(λ)))n∈Z. This is a bounded, hence normal,
family of graphs (since they are contained in

⋃

Kλ), and by assumption,
f nλ0(q)(λ0) = f nλ0(q(λ0)) = f nλ0(p(λ0)). Therefore by equicontinuity, for
λ close to λ0, f nλ (q(λ)) remains close to f nλ (p(λ)) and we are done.

Assume now that for all λ ∈ �, Gλ ⊂ J+λ \Kλ. By Lemma 4.7, we can
extract a subsequence, still denoted by γk , such that γk converges to some
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γ : � → C
2 with γ (λ0) = p(λ0). We claim that for λ ∈ �, γ (λ) is in

Kλ. Indeed λ �→ G−
λ (γk(λ)) is a sequence of positive harmonic functions, so

its limit λ �→ G−
λ (γ (λ)) is harmonic and non-negative, and we conclude by

observing that G−
λ0

(γ (λ0)) = 0, whence λ �→ G−
λ (γ (λ)) vanishes identically,

so that γ (λ) ∈ Kλ. Then by applying the reasoning of the previous paragraph
we deduce that γ (λ) = p(λ), which was the desired result. ��

We now show that in substantial families, saddles do not change their nature
under holomorphic motions.

Lemma 4.11 Let ( fλ)λ∈� be a substantial family of polynomial automor-
phisms of C

2 of dynamical degree d ≥ 2. Let P0 be a set of periodic points
for f0 ≡ fλ0 which admits a continuation as a branched holomorphic motion
Pλ ⊂ Kλ over �. If q(λ0) ∈ P0 is a non-isolated saddle periodic point, then
its unique continuation q(λ) ∈ Pλ remains a saddle for all λ ∈ �.

Proof From Lemma 4.10 we know that q(λ0) admits a unique continuation
q(λ) to � which locally coincides with its continuation as a saddle point.
By analytic continuation of the identity f Nλ (q(λ)) = q(λ), q(λ) is periodic
throughout the family, and we need to show that it remains of saddle type.

To illustrate the idea, assume first that fλ is dissipative for any λ ∈ �. In this
case, if a saddle bifurcates, it must become a sink for an open set of parameters.
On the other hand, as q(λ0) is non-isolated in P0, there is a sequence of other
saddles pn(λ0) ∈ P0 converging to q(λ0). By Lemma 4.10, pn(λ) → q(λ) on
the whole space�. Moreover, outside countably many exceptional parameters
in �, the points pn(λ) remain different from q(λ). It follows that there is a
parameter λ ∈ � for which q(λ) is a sink that can be approximated by other
periodic points, which is contradictory.

Let us now address the general case.6 We start with a saddle periodic point
q of period N , that we can follow holomorphically as (q(λ))λ∈�. We want
to show that it cannot change type, i.e. that neither of the eigenvalues of the
differential Df N at q(λ) crosses the unit circle. Since these eigenvalues are
not locally constant (this is forbidden by the “substantiality” assumption), at
a bifurcating parameter they run through an open arc of the unit circle. Thus,
we may always assume that we the eigenvalues are far from 1, so that we can
follow them holomorphically as α1(λ) and α2(λ). Without loss of generality
we replace � by a one-dimensional submanifold with the property that no
relation of the form αa

1α
b
2 = c holds persistently in it.

If a bifurcation occurs in the locus where |Jac fλ| �= 1 then a sink or source
can be created, andwe conclude as before. In the remaining case, elliptic points

6 The argument is similar to that of [8, Theorem 3] but the possibility of persistent non-
linearizability, e.g. persistent resonance between the eigenvalues, was overlooked there. This is
the reason for the additional assumption that ( fλ) is substantial.
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are created. Recall that the possibility of linearizing a periodic point depends
on a Diophantine condition on the eigenvalues. To be specific, a sufficient
condition for linearizability is that there exists ν > 0 such that for j1, j2 ≥ 1
and k = 1, 2, |α j1

1 α
j2
2 − αk | ≥ C

( j1+ j2)ν
.

Consider a piece C of the curve {|Jac fλ| = 1} in parameter space, and a
point λ1 ∈ C where |α1| = |α2| = 1. Recall that α1 and α2 are holomorphic
and non-constant. There are two possibilities. Either |α1| = |α2| = 1 along
C or not. In the latter case there is a branch of the curve |α1| = 1 having an
isolated intersection with C , so we have bifurcations in the dissipative regime
and we are done. In the first case, we claim that q(λ) cannot be persistently
non-linearizable along C . Then, at a parameter where q(λ) is linearizable, it
is the center of a Siegel ball, and we get a contradiction in the same way as in
the dissipative case.

To prove our claim, note that for λ ∈ C we can write αk(λ) = eiθk(λ),
k = 1, 2,where θk is real analytic. Since the family is substantial, (θ1, θ2, 1) are
linearly independent. It is then a theorem of Schmidt [51] (solving a conjecture
of Sprindzhuk’s, see also [32]) that for a.e. λ, (α1(λ), α2(λ)) is Diophantine.
This concludes the proof of Lemma 4.11. ��

Let us point out the following consequence of Lemmas 4.10 and 4.11.

Corollary 4.12 Let ( fλ)λ∈� be a substantial family of polynomial automor-
phisms of C

2 of dynamical degree d ≥ 2. Let P0 ⊂ S0 be a set of saddles of
f0 ≡ fλ0 without isolated points, that admits a continuation as a branched
holomorphic motion P with Pλ ⊂ Kλ for λ ∈ �.

Then all points in P0 persist as saddles and (Pλ)λ∈� is the corresponding
holomorphic motion. It is strongly unbranched, and hence continuous. More-
over, it extends to a strongly unbranched holomorphic motion of all saddles
that belong to P0.

Proof If p(λ0) ∈ P0, Lemma 4.10 implies that it admits a unique continuation
p(λ) ∈ Pλ, which is never isolated in Pλ, and Lemma 4.11 says that p(λ) is a
saddle for all λ. So we can apply Lemma 4.10 at all parameters, and it follows
thatP is strongly unbranched. The same holds for every saddle point belonging
to P0. ��

We will also need the following result.

Lemma 4.13 Let Pλ be a holomorphic motion of a set of periodic points of
fλ, λ ∈ �, such that P0 ≡ Sλ0 is the set of all saddles of f0 ≡ fλ0 . Then
Pλ ⊃ J ∗λ for all λ ∈ �.

Proof Note first that the statement is not obvious since a priori f0 may have
infinitely many sinks that could transform into saddles during the deformation.
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However, by [8], if we denote by Pn,λ0 = Sn,λ0 the set of saddle points
with period dividing n, then

#Sn,λ0

dn
→ 1 and

1

dn
∑

p∈Sn,λ0

δp → μλ0 .

Hence the continuation Pn,λ of Pn,λ0 is a set of periodic points with #Pn,λ =
#Pn,λ0 ∼ dn . Thus, by the Equidistribution Theorem of [8], applied to fλ we
obtain that

1

dn
∑

p∈Pn,λ

δp → μλ,

and the conclusion follows. ��

4.5 From special motions to weak J ∗-stability

The λ-lemma allows us to promote motion of saddles or s/u intersections to
weak J ∗-stability:
Proposition 4.14 Let ( fλ)λ∈� be a substantial family of polynomial automor-
phisms of C

2 of dynamical degree d ≥ 2. Assume there exists a BHM G such
that:

– Gλ ⊂ Kλ for any λ ∈ �;
– G0 ≡ Gλ0 is dense in J ∗0 ≡ J ∗λ0 for some λ0 ∈ �.

Then:

(a) Gλ ⊃ J ∗λ for every λ ∈ �;
(b) no saddle point bifurcates in the family, and the motion of saddles of f0 is

an equivariant strongly unbranched (and hence continuous) holomorphic
motion;

(c) the family ( fλ)λ∈� is weakly J ∗-stable;
(d) the motion of transverse s/u intersections is an equivariant strongly

unbranched motion;
(e) homoclinic and heteroclinic tangencies are persistent.

Conversely, each of the conditions (b), (c), or (d) implies the others.

Proof Let us consider the set S0 of saddles of f0. By Lemma 4.10, points of
S0 can be followed holomorphically along �, giving rise by Corollary 4.12
to a strongly unbranched holomorphic motion of saddles P = (Pλ) over �.
Moreover, P ⊂ G, while by Lemma 4.13,

Pλ ⊃ J ∗λ for all λ ∈ �, (4)
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implying (a).
Since the motion P satisfies the assumptions of the proposition, while G

is not part of any further assertion, from now on we can assume G = P . In
particular, G is equivariant.

Since G is a motion of saddles, and since every saddle point belongs to J ∗,
we conclude from (4) that for every λ, Gλ = J ∗λ . Applying Corollary 4.12 once
again (with different base points), we conclude that no saddle point can change
type in the family, and that for any λ ∈ �,Gλ is the set of all saddles of fλ,
i.e., Gλ = Sλ. This proves (b). Since G is an equivariant normal holomorphic
motion, G is an equivariant BHM of J ∗, implying (c).

For (d), let q be a transverse point of intersection of Ws(p1) and Wu(p2)
(for some parameter λ0). By Lemma 4.10 q admits a unique continuation q(λ)

which locally coincides with its natural continuation as a s/u intersection.
By (c), the saddle points p1 and p2 persist in the family. Since f nλ (q(λ)) is a
normal family and f nλ (q(λ)) → p1(λ) forλ close toλ0, this convergence holds
throughout�, and similarly for f −nλ (q(λ)). In particular q(λ) ∈ Ws(p1(λ))∩
Wu(p2(λ)) for all parameters so it remains an s/u intersection.

Let us now show that this s/u intersection remains transverse or equivalently,
that there are no collisions. This will establish (e) and at the same time that the
motion of transverse s/u intersections is strongly unbranched by Lemma 4.10,
thus completing the proof of (d). (Notice that tangencies are not a priori incom-
patible with the fact that intersections are moving holomorphically, due to the
possibility of degenerate tangencies).

Consider a pair q(λ0), q ′(λ0) of distinct transverse intersections of
Ws(p1(λ0)) and Wu(p2(λ0)). We know that q, q ′ (as well as p1, p2) can
be followed holomorphically. We have to show that q and q ′ stay distinct. For
this we parameterize Wu(p2(λ)) by some φλ : C → Wu(p2(λ)), depending
holomorphically on λ (see the comments preceding Proposition 5.2 below),
so we may identify Wu(p2(λ)) with C. Fix another saddle point p3(λ). Since
Ws(p3(λ0)) intersects transversally Wu(p1(λ0)), by the Lambda (or inclina-
tion) lemma of hyperbolic dynamics (see [49, p. 155]) we get that q(λ0) is
the limit, inside C � Wu(p2(λ0)) of a sequence of transverse intersection
points qn(λ0) of Ws(p3(λ0))∩Wu(p2(λ0)). These intersection points can be
followed globally in �.

We claim that qn(λ) converges locally uniformly to q(λ) in � (again here
we work in C). Indeed notice first that by Montel’s theorem qn is a normal
family, since locally we can follow any finite set of transverse intersections
of Ws(p1(λ)) ∩ Wu(p2(λ)), and qn(λ) stays disjoint from them. Then we
argue that qn(λ0) converges to q(λ0) while qn(λ) is disjoint from q(λ), so by
Hurwitz’ Theorem qn(λ) converges to q(λ).

To conclude the argument, assume that there exists λ1 such that q(λ1) =
q ′(λ1), and let N be any neighborhood of λ1. Now if for every λ ∈ N and
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n ≥ 0, q ′(λ) �= qn(λ), we have a contradiction with Hurwitz’ Theorem. Thus
there exists λ2 ∈ N and an integer n such that q ′(λ2) = qn(λ2) which is
impossible because these points belong to different stable manifolds. Hence,
item (e) is established.

Conversely, if one of the conditions (b), (c) or (d) holds, then the assumption
of the proposition is satisfied, and we infer that the other conclusions hold.
This completes the proof. ��

Let us point out the following consequence of Proposition 4.14:

Corollary 4.15 Let ( fλ)λ∈� be a substantial family of polynomial automor-
phisms of C

2 of dynamical degree d ≥ 2. If there exists a persistent set of
saddle points, which is dense in J ∗ for some parameter, then the family is
weakly J ∗-stable.

Proof Apply the implication (b) ⇒ (d) of Proposition 4.14 to the given set of
saddles. ��
Remark 4.16 Notice that in Proposition 4.14 we do not assume any equivari-
ance for G. This shows that the equivariance assumption is superfluous in
Definition 4.1.

Remark 4.17 It follows from Proposition 4.14 and from the density of trans-
verse homoclinic intersections in J ∗ at every parameter that if all homoclinic
intersections can be followed in some � ⊂ �, then ( fλ) is weakly J ∗-stable
there. This a priori does not imply that weak J ∗-stability follows from the
absence of homoclinic tangencies. Indeed, if there are no tangencies in �,
every homoclinic intersection can be followed locally. However, intersections
may disappear by “slipping off to infinity” inside stable and unstable mani-
folds. The methods that we develop in Part 2 of the paper should be seen as a
way of circumventing this problem.

4.6 Further consequences

Corollary 4.18 Under the assumptions of Proposition 4.14, if furthermore
( fλ) is J ∗-stable in a neighborhood of λ0 (for instance if fλ0 is uniformly
hyperbolic on J ∗λ0), then for λ ∈ � there is a semiconjugacy J ∗λ0 → J ∗λ .

Proof By Lemma 4.10 we can follow holomorphically all points of J ∗λ0 . The
motion is continuous near λ0, so by analytic continuation we easily deduce
that it is continuous throughout �. Likewise, the compatibility between the
motion and the dynamics holds near λ0 so it holds everywhere, hence it defines
a global semiconjugacy. ��
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Corollary 4.19 If a substantial family has the property that its members are
topologically conjugate on J ∗, and the conjugatingmap depends continuously
on λ, then it is J ∗-stable.

Proof Fix a parameter λ0 ∈ �. For every λ there is a conjugacy hλ : J ∗0 → J ∗λ
depending continuously on λ. If p is a saddle point for f0, then hλ(p) = p(λ)

is a continuously moving periodic point which is a limit of periodic points
for all λ. By Lemma 4.11, p(λ) is a saddle for all parameters. In particular
the assumptions of Corollary 4.15 hold, and the family ( fλ) is weakly J ∗-
stable, thus all saddle points move holomorphically. To conclude, let q ∈ J ∗
be any point, and let a sequence of saddle points pn → q. Then for all λ,
hλ(pn) → hλ(q), so λ �→ hλ(q) is holomorphic. Finally, it is obvious that the
motion is injective since the hλ are homeomorphisms. ��

5 Holomorphic Motions in Unstable Manifolds and Persistent
Connectivity of the Julia Set

In this section we capitalize on the idea that in a weakly J ∗-stable family
of polynomial automorphisms, we can apply the one-dimensional theory of
holomorphic motions inside stable and unstable manifolds. In Sect. 5.2 we
show that connectivity properties of Julia sets are preserved in a weakly J ∗-
stable family. Conversely, if in some dissipative family ( fλ), the Julia set is
persistently connected, then the family is weakly J ∗-stable (Theorem 5.7).
In Sect. 5.6, we use these techniques to complete the proof of Theorem 4.2.
Finally, in Sect. 5.7 we prove, using the Bers–Royden λ-lemma, that in a
weakly J ∗-stable family, the equivariant BHMof the little Julia set J ∗ actually
extends to the big Julia set ̂J = J+ ∪ J−. Note that in the hyperbolic case,
this method was first used by Buzzard and Verma [13] to show that ̂J moves
under an actual holomorphic motion.

5.1 Motion of ∂(Wu(p) ∩ K+)

Let f be a polynomial automorphism of C
2 of dynamical degree d ≥ 2, and

let p be a saddle periodic point. Then Wu(p) is is dense in J− (see Sect. 2.1).
In particular, there are two distinct topologies on Wu(p): the one induced
by the isomorphism with C, which we refer to as the intrinsic topology, and
the topology induced from C

2. Viewed as subsets of C, the components of
Wu(p) ∩ K+ are simply connected closed subsets that may be bounded or
unbounded.Notice that,with our current state of knowledge, nothing prevents a
component ofWu(p)∩K+with non-empty interior frombeing fully contained
in J or even in J ∗.
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Recall the notation H(p) and H tr(p) from Sect. 2.1 for the sets of homo-
clinic intersections associated with a saddle p. Throughout this section we
use the notation Inti X , cli X , and ∂i X for the intrinsic interior, closure, and
boundary of a subset X ⊂ Wu(p).

Lemma 5.1 Relative to the intrinsic topology in Wu(p) � C we have that

∂i (W
u(p) ∩ K+) = cli H(p) = cli H

tr(p).

Proof This is very similar to [7, Sect. 9] (see also the proof of [19, Cor. 1.9]).
We freely use the formalism of laminar currents and Pesin boxes, the reader
is referred to [7] for details.

Let x ∈ ∂i (Wu(p) ∩ K+) and let us show that x ∈ cli H tr(p). Since
the dynamical Green function G+ admits a non-trivial minimum at x , if � ⊂
Wu(p) is a disk containing x , thenG+ is not harmonic in�, i.e. T+∧[�] > 0.
Let ψ be a cut-off function in �, with ψ = 1 near x . By [6, Thm 1.6],
d−n( f n)∗(ψ [�]) → cT− as n → ∞, with c = ∫

ψ[�] ∧ T+ > 0. We
now argue exactly as in [7, Lemma 9.1]. Let P be a Pesin box of positive
μ-measure, and S+ be the uniformly laminar current made of the local stable
manifolds Ws

loc(z), z ∈ P , with transverse measure given by the unstable
conditionals of μ. Then 0 < S+ ≤ T+ so S+ has continuous potential [7,
Lemma 8.2]. It follows that d−n( f n)∗(ψ[�]) ∧ S+ → cT− ∧ S+ > 0 and
we conclude that for large n, f n(�) admits transverse intersection points
with Ws

loc(z0), for some z0 ∈ P (the transversality comes from [7, Lemma
6.4]).

We claim that iterating a bit further, the iterates of� intersectWs
loc(z) trans-

versely, for every z ∈ P . Indeed, for y sufficiently close to z0, f n(�) intersects
Ws

loc(y) transversely. By Poincaré recurrence and the Pesin Stable Manifold
Theorem, for typical y like this, there exists an infinite sequence (n j ) j≥1, such
that f n j (y) ∈ P and f n+n j (�) contains a disk close toWu

loc( f
n j (y)), and the

claim follows.
We now apply exactly the same argument to a neighborhood of p inWs(p).

In this way we obtain disks in Ws(p), arbitrary close to Ws
loc(z) for some

z ∈ P , from which we conclude that f n+n j (�), hence �, intersects Ws(p)
transversely, and we are done.

As was mentioned in Sect. 2.1, H(p) = H tr(p) in C
2 [7, Prop. 9.8]. In

fact, the proof works in the intrinsic topology of Wu(p) as well. For conve-
nience, let us recall the argument: since Wu(p) admits non-trivial transverse
intersections with Ws(p), it follows from the Hyperbolic λ-lemma that every
disk � ⊂ Wu(p) is the limit in C

2 of an infinite sequence of disjoint disks
�n ⊂ Wu(p). Hence the result follows from the instability of non-transverse
intersections [7, Lemma 6.4].
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To conclude the proof, let us show that H tr(p) ⊂ ∂i (Wu(p)∩K+). Observe
first that p ∈ ∂i (Wu(p)∩ K+) (which is well known). Otherwise p would lie
in the interior of Wu(p)∩ K+, hence the family of forward iterates f n would
be normal in some intrinsic neighborhood V ⊂ Wu(p) of p, contradicting the
growth of the derivatives Df n(p) in the direction of Wu(p).

Let now x ∈ H tr(p) ⊂ Wu(p) ∩ K+ and let � be a small disk around
x , which is thus transverse to the stable manifold of p. By the Hyperbolic
λ-lemma, f n(�) contains graphs arbitrary close in C

2 to a neighborhood of
p in Wu(p), so f n(�) must intersect U+, and the conclusion follows. ��
Let now ( fλ)λ∈� be a holomorphic family of polynomial automorphisms

with a holomorphically moving saddle point (p(λ)). Then there exists a holo-
morphic family of parametrizationsψu

λ : C → Wu(p(λ))withψu
λ (0) = p(λ).

Indeed, since the eigenvectors of Dfλ(p(λ)) depend holomorphically on λ,
we can normalize the family so that p(λ) = 0 and the eigenbasis is equal
to the standard basis at 0, with the vertical direction unstable. Then normal-
ize ψu

λ so that (π2 ◦ ψu
λ )′(0) = 1. The Graph Transform construction of

the local unstable manifold provides an explicit formula for the normalized
parametrization:

ψλ(z) = lim
n→+∞

1

μn
f nλ (0, z), where μn = d(π2 ◦ f nλ (0, z))

dz

∣

∣

∣

∣

z=0
,

which is manifestly holomorphic in λ.
The following easy proposition is the starting point for most of the results

in this section.

Proposition 5.2 Let ( fλ) be a weakly J ∗-stable family of polynomial auto-
morphisms, (pλ) be a holomorphically moving saddle point and (ψu

λ ) be
a holomorphic family of parameterizations of Wu(pλ), as above. Then
(ψu

λ )−1(∂i (Wu(pλ) ∩ K+
λ )) moves holomorphically in C.

Proof By Proposition 4.14 (e) and (f), homoclinic intersections move holo-
morphically and without collisions. Therefore the result follows directly from
Lemma 5.1 and the ordinary one-dimensional λ-lemma.

5.2 Preservation of connectivity under branched motions

Let us start with a few general comments on connectivity of Julia sets of
polynomial automorphisms.

Of course, if J is totally disconnected, then so is J ∗. Moreover, by [6], every
component of K intersects J ∗, so in particular if K is totally disconnected, then
J = J ∗ = K . It follows from general topology that if J is totally disconnected
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then so is K : indeed the boundary of a non-trivial continuum cannot be totally
disconnected. On the other hand it is unclear whether total disconnectedness
of J ∗ implies that J is totally disconnected.

Following [3], we say that f is said to be unstably connected ifU±∩Wu(p)
is simply connected for some (and then any) saddle point p, and unstably
disconnected otherwise. By [3], J is disconnected iff f is stably and unstably
disconnected. It is not difficult to see that K is disconnected in this case (an
inclination lemma argument). Likewise, it follows from [3] that J is connected
iff J ∗ is connected. We also remark that a dissipative map is always stably
disconnected [3, Cor. 7.4].

We start by observing that the connectedness of J is preserved in weakly
J ∗-stable families.

Proposition 5.3 Let ( fλ)λ∈� be a weakly J ∗-stable substantial family of poly-
nomial automorphisms of C

2 of dynamical degree d ≥ 2. Then stable and
unstable connectivity are preserved in the family. In particular if for some
parameter λ0, Jλ0 is connected, then Jλ is connected for all λ.

Proof Let us show that disconnectedness of J is preserved in a weakly J ∗-
stable family. So assume that for some λ, fλ is stably and unstably discon-
nected, so for every saddle point p, Wu(p) ∩ K+ and Ws(p) ∩ K− admit
intrinsic compact components. By Proposition 5.2, if Cλ0 is any compact
component of Wu(pλ0) ∩ K+

λ0
, ∂iCλ0 moves holomorphically as the parame-

ter evolves, without colliding with the other components, so its continuation
(∂iC)λ bounds a compact component of Wu(pλ)∩ K+

λ . Hence fλ is unstably
disconnected at all parameters, and the same argument shows that it remains
stably disconnected as well. We conclude that Jλ is disconnected for every
λ ∈ �. ��

In the same way we obtain that if ( fλ)λ∈� is weakly J ∗-stable and if for
some parameter λ0, Jλ0 is totally disconnected, then for all λ, fλ is stably
and unstably totally disconnected. However, it is unclear whether stable and
unstable total disconnectedness implies that J or J ∗ is totally disconnected.

5.3 Traces of attracting basins in unstable manifolds

Here we will establish the following useful property (perhaps, known to
experts):

Lemma 5.4 Let f be a polynomial automorphism possessing an attracting
periodic point q. Then for every saddle point p, there is a non-empty component
of Inti (Wu(p) ∩ K+) contained in the basin B(q).

If in addition f is unstably disconnected, then there exists such a component
that is relatively compact in the intrinsic topology.
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Proof Since the basin B(q) is biholomorphic to C
2, it contains entire curves

E : C → C
2. To any such curve E , corresponds a positive closed Ahlfors

current produced by averaging currents of integration over holomorphic disks
E : Dr → C

2 (see e.g. [45, Sect. 7.4 pp. 349-350]). Since T+ is a unique
positive closed current of mass 1 supported on K+ [21], the Ahlfors current
must be equal to T+.

We can now proceed as in the proof of Lemma 5.1: fix a Pesin box and
construct a local laminar current S− ≤ T− made of local Pesin stable man-
ifolds. Since S− has continuous potential, the entire curve E must intersect
it; more precisely we get a transverse intersection with some local unstable
leaf Wu

loc(x). Since Wu(p) contains disks arbitrary close to Wu
loc(x), W

u(p)
intersects E transversely as well. Thus, Wu(p) ∩ B(q) �= ∅.

Finally, note that any component C of inti (Wu(p)∩ K+) is either entirely
contained in the basin B(q) or disjoint from it. This follows easily from nor-
mality of the family of restrictions f n : C → C

2, n ≥ 0.
Now assume that f is unstably disconnected, or equivalently, that K+ ∩

Wu(p) admits a compact component. Thus there exists an intrinsically
bounded topological disk� ⊂ Wu(p) such that�∩K+ �= ∅ and ∂i� ⊂ U+.
We claim that there exists a component of B(q) ∩ Wu(p) that is contained
in �. By Lemma 5.1, H tr(p) ∩ � �= ∅, so by the Hyperbolic λ-lemma, for
large n, f n(�) contains disks arbitrary C1-close to any given disk in Wu(p).
Now the first part of the proof shows that there is a point of transverse inter-
section between E and Wu(p). Therefore f n(�) intersects E , hence B(q) for
large n. By invariance, � intersects B(q) as well, and since ∂i� ∩ K+ = ∅,
we conclude that there is a component of Wu(p) ∩ B(q) which is compactly
contained in �. ��

In fact, the above proof gives a more general statement:

Proposition 5.5 Let D be a component of Int K+ containing an entire curve
E : C → D. Then for every saddle point p, there is a non-empty component of
Inti (Wu(p) ∩ K+) contained in D. If in addition f is unstably disconnected,
then there exists such a component that is relatively compact in the intrinsic
topology.

5.4 Persistent connectivity and moving Bedford–Smillie solenoids

We will now show that in the dissipative case, the preservation of connectivity
properties of the Julia set implies stability. Our first statement is that persistent
Cantor Julia sets are stable.

Proposition 5.6 Let ( fλ)λ∈� be a family of dissipative polynomial automor-
phisms of C

2 of dynamical degree d ≥ 2. If J ∗λ is totally disconnected for all
λ, then ( fλ) is weakly J ∗-stable.
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Proof If J ∗ is totally disconnected, then for any saddle p, Wu(p) ∩ J ∗ is
totally disconnected as well. Together with Lemma 5.4, this implies that f
does not have sinks. If this happens persistently over �, then no saddle point
can bifurcate and the family ( fλ)λ∈� is weakly J ∗-stable by Proposition 4.14.

��
Our next result asserts that persistent connectivity of J also implies stability.

Similarly to the analogous statement for polynomials in C, the argument is
ultimately based on the absence of “escaping critical points”.

Theorem 5.7 Let ( fλ)λ∈� be a family of dissipative polynomial automor-
phisms of dynamical degree d ≥ 2. If for every λ ∈ �, the Julia set Jλ is
connected then the family ( fλ) is weakly J ∗-stable.

Remark 5.8 Note that this is the only moment in our argument that requires
dissipativity.

As a preparation to the proof, let us recall the notion of Riemann surface
lamination. It is a topological space S endowed with local charts gi : Ui →
Di × Ti , where the Ui are open, Di are domains in C, and Ti are topological
spaces (transversals) , such that the transit maps gi ◦ g−1j (wherever they are
defined) have form (z, t) �→ (γ (z, t), h(t)), where γ (z, t) is conformal in z.
Preimages of Di × {t} in Ui are called plaques or local leaves ; they patch
together to form global leaves endowed with a natural conformal structure.
So, S is decomposed into Riemann surfaces, which is reflected in its name.
We denote L(z) the global leaf through a point z ∈ S.

If all the leaves are dense in S then S is called minimal. It is equivalent to
saying that for any transversal T and any leaf L , the intersection L∩T is dense
in T .

A minimal Riemann surface lamination S with Cantor transversals is
called a solenoid. The leaves of a solenoid S can be topologically recog-
nized as path connected components of S. It follows that any homeomor-
phism between solenoids h : S → S′ maps homeomorphically leaves to
leaves, h : L(z) → L(hz). If this leafwise map is conformal then h itself is
called a conformal solenoidal homeomorphism. More generally, a conformal
solenoidal map h : S → S′ is a continuous map that induces, for any z ∈ S, a
conformal isomorphism between the leaves L(z) and L(hz).

Let us now go back to Theorem 5.7. By Proposition 2.1, we can normalize
the family ( fλ) so that fλ is a product a Hénon mappings depending holo-
morphically on λ. This puts us in a position to apply the following Structure
Theorem due to Bedford and Smillie [3].

Let f be a composition of Hénon maps that is unstably connected. Then
the set S− = J−\K+ is a solenoid whose leaves are conformally equivalent
to the upper half plane H = {Im z > 0}. Furthermore, the Böttcher function

123



Bifurcations of polynomial automorphisms of C
2 469

ϕ+ admits a holomorphic extension to a neighborhood of S− [3, Thm 6.3],
and the map ϕ+ : S− → C\D is a locally trivial fibration with Cantor fibers
F(c) = Ff (c) := {ϕ+ = c}. Moreover, the restriction of ϕ+ to each leaf
of S− is the universal covering over C\D. We will refer to S− = S−f as the
Bedford–Smillie solenoid of f .

In particular, given a saddle p, any component L of Wu(p)\K+ provides
us with a leaf of the solenoid S−. It follows that L intersects any fiber Fc,
c ∈ C\D, by a countable dense (in Fc) subset. Note also that by [3, Theorem
4.11], Wu(p)\K+ consists of only finitely many leaves.

The map f restricts to a conformal homeomorphism of S− that maps fibers
to the fibers, f (F(c)) ⊂ F(cd) (according to the Böttcher equation).

Theorem 5.7 will follow from the following result of independent interest.
In the hyperbolic case, it was already established by Mummert [44].

Proposition 5.9 Let ( fλ)λ∈� be a family of unstably connected polynomial
automorphisms of dynamical degree d ≥ 2. Then the Bedford–Smillie solenoid
S−λ of fλ moves under an equivariant holomorphic motion that preserves the
fibers of the Böttcher function ϕ+λ .

Proof Fix some λ0 ∈ �; the objects corresponding to this parameter will be
labeled by “0”, e.g., S−0 ≡ S−λ0 . It is enough to show that the solenoid S−λ
moves holomorphically in some neighborhood of λ0.

Pick a saddle point p0 for f0 ≡ fλ0 , and let pλ be its holomorphic continu-
ation to some neighborhood of λ0. The unstable manifold Wu(pλ) is parame-
terized by the (normalized) linearizing coordinate ψu

λ : C → Wu(pλ), which
depends holomorphically on λ.

Let us consider a leaf L0 ⊂ Wu(p0) of S
−
0 and a point z = ψu

0 (t) ∈ L0.
The map g0 := φ+0 ◦ ψu

0 is univalent in some neighborhood of t , and so is its
perturbation

gλ := ϕ+λ ◦ ψu
λ , |λ− λ0| < δ = δ(z).

Hence the map g−1λ is well defined in some neighborhood of c ≡ c(t) := g0(t)
and depends holomorphically on λ. Let

tλ ≡ tλ(c) := g−1λ (c), zλ ≡ zλ(c) := ψu
λ (tλ), |λ− λ0| < δ(z).

Then for δ(z) small enough, we have

(i) zλ ∈ Wu(pλ) \ K+, hence zλ belongs to some leaf L(zλ) ⊂ Wu(pλ) of
S−λ ;

(ii) ϕ+(zλ) = c, so zλ belongs to the fiber Fc independently of λ;
(iii) zλ depends holomorphically on λ.
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Pick now a base point z∗ = ψu
0 (t∗) ∈ L0, and let c∗ := φ+0 (z∗), z∗λ be its

motion as above, L∗λ ≡ L(z∗λ). Since the maps ϕ+λ : (L∗λ, z∗λ) → (C \ D̄, c∗)
are holomorphic universal coverings, for |λ − λ0| < δ∗ ≡ δ(z∗) there exist
conformal isomorphisms

hλ : (L0, z
∗) → (L∗λ, z∗λ) such that ϕ+λ ◦ hλ = ϕ+0 . (5)

Let us show that the maps hλ : L0 → C
2 form a holomorphic motion. Note

that δ(z) can be selected so that it is lower semi-continuous (since the same
δ = δ(z) serves as δ(ζ ) for points ζ near z). Hence it is bounded away from 0
on compact subsets of L0. Let us take a relative domain D0 � L0 containing
z∗, and let δ = inf

z∈D0
δ(z). Then for |λ− λ0| < δ, the maps

Hλ : D0 → C
2, z �→ zλ, z ∈ D0,

form a holomorphic motion of D0. Since Hλ(D0) is contained in the solenoid
Sλ, by Lemma 4.7 this motion of D0 is normal. By Lemma 3.6, it is continuous
in z. Since D0 is connected, Hλ(D0) belongs to some leaf of Sλ, which must
be L(z∗λ) ≡ L∗λ. Also, by definition,

ϕ+λ ◦ Hλ| D0 = ϕ+0 | D0 and Hλ(z
∗) = z∗λ.

Comparing this with (5), we conclude that Hλ = hλ| D0.
Consequently, there is δ1 = δ1(z) > 0 such that hλ(z) depends holomorphi-

cally onλ for |λ−λ0| < δ1(z). Finally, replacingλ0 by any other parameterλ in
the δ∗-neighborhood of λ0, we conclude that hλ(z) depends holomorphically
on λ for all λ in this neighborhood,

Applying Lemma 4.7 once again, we conclude that the motion hλ : L0 →
C
2 is normal. By the λ-lemma (Lemma 3.4), hλ extends to a BHMof L0 ⊃ S−0 .

To see that it gives an actual holomorphic motion of S−0 , consider the Böttcher
foliation F+

λ of U+
λ , notice that clFλ(Lλ) ⊃ S−λ , and apply the foliated λ-

lemma (Corollary 3.10).
Let us use the same notation hλ : S−0 → S−λ for the extended holomorphic

motion. By continuity, it satisfies the covering property ϕ+λ ◦ hλ = ϕ+0 . Since
ϕ+λ is a leafwise covering over C \ D̄, this property determines hλ uniquely.
Due to the Böttcher equation, this identity is inherited by the motion h̃λ :=
fλ ◦ hλ ◦ f −10 ,

ϕ+λ ◦ h̃λ = (ϕ+λ ◦ hλ ◦ f −10 )d = (ϕ+0 ◦ f −10 )d = ϕ+0 ,

implying h̃λ = hλ, which by definitionmeans that themotion hλ is equivariant.
��

123



Bifurcations of polynomial automorphisms of C
2 471

Proof of Theorem 5.7 Since for every λ ∈ �, fλ is dissipative and Jλ is con-
nected, it follows from [3] that fλ is unstably connected. As was already
mentioned in the proof of the above proposition, Lemma 3.4 implies that the
equivariant holomorphic motion of the Bedford–Smillie solenoid Sλ extends
to an equivariant BHMG of the closure S̄λ. The latter contains all saddle points,
which are dense in J ∗λ . Moreover, by equivariance, these saddles remain being
periodic under the motion, so they stay in Kλ. Now Proposition 4.14 implies
the desired. ��

5.5 Bers–Royden motion of unstable manifolds

Let us consider a weakly J ∗-stable substantial family ( fλ)λ∈� of polynomial
automorphisms. Fix a holomorphicallymoving saddle point pλ, and consider a
holomorphic family of parameterized unstable manifoldsψu

λ : C → Wu(pλ).
By Proposition 5.2, the intrinsic boundary ∂i (Wu(pλ)∩ K+) moves holomor-
phically. Then locally in λ, this motion extends to the Bers–Royden holomor-
phic motion of the whole unstable manifold Wu(pλ) ≈ C, see Lemma 3.9.
Being canonical, it is automatically equivariant (where the dynamics is just
multiplication by the unstablemultiplier), so in this waywe obtain an equivari-
ant holomorphic motion of Wu(pλ) in C

2.

Lemma 5.10 Let ( fλ)λ∈� be a weakly J ∗-stable substantial family of polyno-
mial automorphisms, and let (pλ) be a holomorphically moving saddle point
as above. Then the Bers–Royden holomorphic motion of Wu(pλ) preserves
the decomposition C

2 = K+ �U+.

Proof For λ0 ∈ �, let C0 ≡ Cλ0 be an intrinsic connected component of
Wu(p0)∩ K+

0 , and let Cλ be its image under the Bers–Royden motion hλ. We
have to show that for every λ ∈ �, Cλ is an intrinsic connected component of
Wu(pλ) ∩ K+

λ .
By the one-dimensional λ-lemma, the maps hλ are intrinsic homeomor-

phisms, so they preserve intrinsic topological properties of the subsets of
Wu(pλ)), e.g., ∂iCλ = hλ(∂i (C0)), Cλ is intrinsically bounded iff C0 is, etc.

From Lemma 5.1 we know that ∂iC0 ⊂ J ∗0 , hence for every λ, ∂iCλ ⊂
J ∗λ ⊂ K+

λ . So, we need to show that for every λ ∈ �, Inti (Cλ) ⊂ K+
λ .

Let�0 be a connected component of Inti C0, and let�λ = hλ(�0). If�0 is
intrinsically bounded in Wu(p0) then the Maximum Principle applied to the
non-negative subharmonic function G+

λ |Wu(pλ) implies that �λ ⊂ K+
λ .

Assume �0 is intrinsically unbounded. Then the Maximum Principle
implies that �0 is simply connected, so the same holds for �λ.

Given a parameter λ1, we will label the corresponding objects with “1”,
e.g., f1 ≡ fλ1 , U1 ≡ Uλ1 . Assume by contradiction that �1 ∩ U+

1 �= ∅
for some λ1. We first claim that �1 ⊂ U+

1 . Otherwise �1 would intersect
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∂i (Wu(p1) ∩ K+
1 ) = cli (H(p1)). Since the holomorphic motion preserves

H(p), �0 would intersect cli (H(p0)) contradicting the fact that �0 is con-
tained in K+.

It follows that �1 is a simply connected intrinsic component of Wu(p1) ∩
U+
1 . The existence of such a component implies that f1 is unstably connected

[3, Theorem 0.1], so J1 is connected. Since unstable connectivity is preserved
in weakly J ∗-stable families (see Proposition 5.3), f0 is unstably connected,
too.

On the other hand, for families of unstably connected polynomial automor-
phisms we have shown in Proposition 5.9 that every intrinsic component of
Wu(pλ)\K+

λ can be followed by some holomorphicmotion h̃λ coincidingwith
hλ on ∂i (Wu(p0) ∩ K+

0 ). But then the action of h̃λ on the space of connected
components of Wu(p0) \ K+

0 must agree with that of hλ, which is impossible
for the component h̃−11 (�1). This contradiction completes the proof. ��

5.6 Proof of Theorem 4.2

Let us show that (i) ⇔ (ii). First, it follows from Proposition 4.14 that (i) is
equivalent to the statement

(ii′) Saddle points stay of saddle type throughout the family.

Obviously, (ii) implies (ii′). The reverse is also obvious in the dissipative case,
since every bifurcation of a sink gives rise to a saddle. In general, we have to
rule out the possibility that in a weakly J ∗-stable substantial family, a periodic
point q bifurcates from attracting to repelling through indifferent without ever
turning into a saddle.

Assume by contradiction that such a scenario happens. Fix a parameter
domain�′ over which q can be followed holomorphically, and its eigenvalues
cross the unit circle. So, inside �′ there is a region �− where q(λ) is a sink
and a region �+ where q(λ) is a source. Fix a (necessarily persistent) saddle
point p(λ). For λ ∈ �+, since |Jac fλ| > 1, fλ is unstably disconnected
by [3, Cor. 7.4]. By the weak J ∗-stability, the same is true for every λ ∈ �

(see Proposition 5.3). Then Lemma 5.4 implies that for λ ∈ �−, there is a
non-trivial bounded component �λ of Wu(p(λ)) ∩ B(q(λ)).

By Lemma 5.10, we infer that under the Bers–Roydenmotion ofWu(p(λ)),
�λ persists throughout � as a bounded component of Wu(p(λ)) ∩ K+

λ . Let
us consider the Bers–Royden orbit z(λ) of some point of �λ. Then the family
of maps � → C

2, λ �→ f nλ (z(λ)), n = 0, 1, . . ., is locally bounded and hence
normal over �. Hence by analytic continuation the convergence f nλ (z(λ)) →
q(λ) persists throughout �. But if λ ∈ �+, q(λ) is repelling, so we arrive at
a contradiction, which finishes the proof of (ii) ⇔ (ii′).
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Condition (i) implies (iii) by Lemma 3.5. Conversely, (iii) implies (ii).
Indeed if a periodic point changes type, then arguing as in Lemma 4.11, we
see that for some λ, a multiplier of the cycle must cross the unit circle at a
linearizable parameter. So at this parameter a Siegel ball or Siegel/attracting
basin is created, and the corresponding periodic orbit jumps outside J ∗, thus
preventing continuity of J ∗.

To conclude the proof we show the (rather obvious) chain of implications:

(iv) ⇒ (v) ⇒ (i)+ the number of non-saddle cycles is finite ⇒ (iv).

Indeed (iv) ⇒ (v) is clear. Next, if (v) holds, then all periodic points of suf-
ficiently high prime period are (necessarily persistent) saddles, so by Corol-
lary 4.15, the family is weakly J ∗-stable. Therefore, all periodic points are of
constant type, hence (iv) holds.

The Theorem is proved. ��

5.7 Motion of the big Julia set ̂J = J+ ∪ J−

Let us start with a simple observation:

Lemma 5.11 Any equivariant normal BHM G preserves the sets7 K± and
hence preserves K .

Proof For definiteness, let us treat the case of K+. Let γ = (λ, z(λ)) be
a graph of G such that z(λ0) ∈ K+

0 for some λ0 ∈ �. Then the forward
orbit ( f nλ (z(λ0)))n≥0 is bounded. By the equivariance, all the graphs ̂f n(γ ) =
(λ, ( f nλ (z(λ))), n ≥ 0, belong to G as well. By normality of G, the ̂f n(γ ) form
a normal family. Consequently, this family is locally uniformly bounded on
�, implying that z(λ) ∈ K+

λ for all λ ∈ �. ��
Recall that a family ( fλ) is said to be weakly X -stable if the sets Xλ move

under an equivariant BHM . We now prove the equivalence of several notions
of weak stability.

Theorem 5.12 Let ( fλ)λ∈� be a substantial family of polynomial automor-
phisms of dynamical degree d ≥ 2. The following properties are equivalent:

(i) ( fλ)λ∈� is weakly J ∗-stable.
(ii) ( fλ)λ∈� is weakly J−-stable.
(iii) ( fλ)λ∈� is weakly J+-stable.
(iv) ( fλ)λ∈� is weakly K -stable.
(v) ( fλ)λ∈� is weakly S−-stable (resp. S+-stable).

7 Meaning that a point that begins in K±
0 stays in K±

λ under the motion (it is not assumed that
the motion is defined on the whole set K±)
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If ( fλ)λ∈� is weakly J -stable, then the properties (i)–(v) hold.
In items (i), (iv) and (v), the motions in question are automatically normal,

while in items (ii) and (iii) they can be selected to be so. Moreover, in the latter
items the motions preserve respectively the unstable and stable manifolds of
all saddles.

From now on a family satisfying the equivalent conditions (i)–(v) of this
theorem will be simply referred to as weakly stable.

Remark 5.13 We do not know if weak stability implies weak J -stability since
we cannot rule out a scenario where under a BHM of K = K+ ∩ J−, a point
in J moves out to (Int K+) ∩ J−.

Proof We start by proving that (i) �⇒ (ii) (of course (i) �⇒ (iii) for the
same reason). So, assume ( fλ)λ∈� isweakly J ∗-stable. Take a holomorphically
moving saddle p(λ), and consider the Bers–Royden equivariant holomorphic
motion of its unstable manifold Wu(p(λ)). By Lemma 5.10, it respects the
decomposition K+

λ � U+
λ inside Wu(p(λ)). The motion of K+

λ ∩ Wu(p(λ))

is obviously normal, while the motion of Wu(p(λ))\K+
λ is normal by

Lemma 4.7. Hence the motion of the whole unstable manifold Wu(p(λ))

is normal as well. By the λ-lemma, it extends to an equivariant normal BHM
of Wu(p(λ)) = J−λ , as desired.

By Lemma 5.11, this motion preserves the decomposition J− = K � S−
(and similarly, for J+), so (i) implies (iv) and (v) as well.

Let us show that (iii) �⇒ (i). Consider an arbitrary saddle p(λ0) and the
graph γ0 = (λ, p(λ)) of its motion. By Proposition 2.1, we may normalize
our family so that each fλ is a product of Hénon mappings. Then on a given
compact subset of �, for sufficiently large R, the set J+ ∩ D

2
R is forward

invariant. Hence the family of graphs ( f n(γ0))n≥0 is normal.8 Let γ be a
cluster graph for this family. Then γ (λ) ∈ Kλ for any λ ∈ �, while γ (λ0) =
p(λ0) is an arbitrary saddle. Proposition 4.14 implies J ∗-stability once again.
Moreover, this argument shows that themotions in question preserve the stable
manifolds of all saddles.

Of course, (ii) �⇒ (i) for the same reason. Furthermore, it follows directly
from Proposition 4.14 that (iv) �⇒ (i). Likewise, weak J -stability implies (i)
as well.

Let us show that (v) �⇒ (iv). Assume ( fλ)λ∈� is weakly S−-stable. By
Lemma 4.7, the corresponding BHM is normal, so it extends to a normal BHM
G of S−. By Lemma 5.1, J ∗ ⊂ S−. By Lemma 5.11, the graphs of G that begin
in J ∗ for some λ0 ∈ � remain in K for all λ ∈ �. Applying Proposition 4.14
once again, we obtain the desired.

8 Recall that we do not assume any normality in the definition of the weak J+-stability.
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The last assertion on normality and preservation of s/u manifolds has been
established along the lines of the proof. ��
Corollary 5.14 If ( fλ)λ∈� is weakly stable, there exists an equivariant normal
BHM of ̂J that preserves the stable and unstable manifolds of saddle periodic
points. In particular ̂J moves continuously in the Hausdorff topology.

Proof The former assertion follows directly from the theorem. The latter fol-
lows from Lemma 3.5. ��
Remark 5.15 It is not difficult to show that ( fλ) is weakly stable if and only
if λ �→ J+λ is continuous for the Hausdorff topology (for J ∗ this was done in
Theorem 4.2). On the other hand this is false for J−. Indeed in the dissipative
setting K− = J−, and it is classical that K− moves upper semi-continuously
while J−moves lower semi-continuously (see e.g. [2, Prop. 4.7]). In particular
λ �→ J−λ is always continuous. Compare [17] in the one dimensional case.

According to [39], non-wandering components of Int (K+) of a moderately
dissipative polynomial automorphism f :C2→C

2 can be classified as attract-
ing, parabolic, or rotation basins. (For components of Inti (Wu(p) ∩ K+),
there is one more theoretical option: they can be contained in the small Julia
set J .) We cannot rule out that some of these components change type under a
branched holomorphic motion of the Julia set (compare Remark 5.13). How-
ever, arguing as in Sect. 5.6, we obtain:

Proposition 5.16 Under a branched holomorphicmotion over aweakly stable
domain, if for some parameter λ0, z0 is a point in J−0 ∩ K+

0 belonging to the
basin of attraction of a sink q0 then for every λ, z(λ) stays in the basin of q(λ).

Part 2 Semi-parabolic Implosion and Homoclinic Tangencies

6 Semi-parabolic Dynamics

In this paragraph we collect some basic facts about semi-parabolic dynamics:
basins, petals, etc., following the work of Ueda [54,55], Hakim [28] (see also
[2]). Let f be a polynomial automorphism of C

2. A periodic point p is semi-
parabolic if its multipliers are 1 (or more generally a root of unity) and b with
|b| < 1. Notice that this forces f to be dissipative. Replacing f by f q for
some q ≥ 1 we can assume that p is fixed. Then, if we denote by k + 1 the
multiplicity at 0 of f − id (which is finite because f has no curve of fixed
points), there exist local coordinates (x, y) in the neighborhood of p such that
p = (0, 0) and f is of the form

(x, y) �→
(

x + xk+1 + Cx2k+1 + x2k+2g(x, y), by + xh(x, y)
)

, (6)
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where g and h are holomorphic near the origin and C is a complex number
(see [28, Prop. 2.3]). Notice that in these coordinates, {x = 0} = Wss

loc(0) is
the local (strong) stable manifold of 0, and f |{x=0} is linear. For r > 0, the
flower-shaped open set {x, |xk + rk | < rk} admits k connected components,
which will be denoted by P ι

r, j , 0 ≤ j ≤ k − 1. Then for small η > 0, the
domains Br, j,η := P ι

r, j × Dη are attracted to the the origin under iteration.
Finally, let B j = ⋃n≥0 f −n(Br, j,η). The open sets B j are biholomorphic to
C
2 and are the components of the basin of attraction of p in C

2.
To be more specific, in Br, j,η we change coordinates by letting (z, w) =

((kxk)−1, y), so that in the new coordinates, f assumes a form

(z, w) �−→
(

z − 1+ c

z
+ O

(

1

|z|1+1/k
)

, bw + O

(

1

|z|1/k
))

,

where c is a complex number depending on C . Notice that in the new coordi-
nates, Br, j,η corresponds to a region of the form {Re(z) < −M} × Dη, with
M = (2krk)−1. Therefore if we set

wι(x, y) = wι(x) = 1

kxk
+ c log

1

kxk

we infer that the limit

ϕι(x, y) = lim
n→∞(wι( f n(x, y))+ n)

exists and satisfies the functional equation ϕι ◦ f = ϕι − 1 (beware that
this normalization differs from the references mentioned above). In addition,
ϕι−wι is a bounded holomorphic function inBr, j,η. In the paper, the letter ιwill
stand for “incoming” and o for “outgoing”, following a convenient notation
from [2].

It easily follows that in the original coordinates, if (x, y) ∈ B then
f n(x, y) = (xn, yn) with xn ∼ (kn)−1/k and yn = O(n−1/k), see [28, Prop.
3.1] (beware that yn needn’t be exponentially small).

Fix a component B = B j of the basin of attraction. By the iteration we can
extend ϕι to B. It turns out that ϕι : B → C is a fibration [28, Thm 1.3], and
that there exists a function φ2 : B → C such that � = (ϕι, φ2) : B → C

2 is a
biholomorphism.

The following result is similar to [2, Thm 1.2], and its proof will be left to
the reader.

Proposition 6.1 If p1 and p2 are points in B such that ϕι(p1) = ϕι(p2) then

lim
n→+∞

1

n
log dist( f n(p1), f n(p2)) = log |b| < 0.
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On the other hand, if ϕι(p1) �= ϕι(p2) then dist( f n(p1), f n(p2)) decreases
like n−(1+1/k).

From now on we will refer to the foliation {ϕι = Cst } as the strong stable
foliation inB, and it will be denoted byF ss . Its structure near the origin is easy
to describe. Indeed since ϕι − wι is bounded near the origin, it follows from
Rouché’s theorem that the leaf of F ss through (x0, 0) in Br, j,η is graph over
the vertical direction, whose distance to the line {x = x0} tends to 0 as x0 → 0.
In particular F ss extends continuously to Br, j,η ∪ {x = 0} = Br, j,η ∪Wss

loc(0)
by adding Wss

loc(0) as a leaf.
On the “outgoing” side, there is also a notion of “repelling petal”, which is

defined as follows. With coordinates as in (6), denote by Po
r, j , 0 ≤ j ≤ k − 1,

the connected components of {x, ∣∣xk − rk
∣

∣ < rk}. Then for small r, η > 0
the set � j,loc defined by

� j,loc = {q ∈ Po
r, j × Dη : ∀n ≥ 0, f −n(q)∈ Po

r, j × Dη and f −n(q) −→
n→∞ 0}.

Then � j,loc is a graph {y = ψ(x)} over the first coordinate, which extends
continuously to the origin by putting ψ(0) = 0 (this extension cannot be
made holomorphic, see [2, Prop. 1.3]). This is stated in [55, Thm 11.1] only
for k = 1, however the proof relies on a more general result [55, Lemma 11.2]
which allows to treat the general case as well. As usual we extend the petal
globally to C

2 by letting

� j =
⋃

n≥0
f n
(

� j,loc
)

.

Then� j is biholomorphic to C (this is stated only for k = 1 in [55, Thm 11.6]
but the adaptation to the general case is straightforward). The union

⋃

j � j
is the set of points converging to the semi-parabolic point p under backward
iteration, referred to as the asymptotic curve in [2,55]. We will also call it the
repelling petal (or simply unstable manifold) of p.

7 Critical Points in Basins

In this sectionwe prove the existence of critical points in semi-parabolic basins
for moderately dissipative maps. Let f be a polynomial automorphism with
a semi-parabolic basin B. Recall that by a critical point, we mean a point of
tangency between the strong stable foliation in B and the unstable manifold
of some saddle periodic point. The argument is based on a refined version of
some classical properties of entire functions of finite order: see Sect. 7.1. The
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proof of Theorem B comes in Sect. 7.2. These results will be generalized to
attracting basins in Appendix A.

7.1 Entire functions of finite order

Let f : C → C be an entire function. The order of f is defined as

ρ( f )= lim sup
r→∞

log+ log+ M(r, f )

log r
, where M(r, f )=max{| f (z)| , |z|=r}.

The class of entire functions of finite order is well-known to display a number
of remarkable properties, some of which we recall now. We say that a ∈ C is
an asymptotic value of f if there exists a continuous path γ : [0,∞) → C

tending to infinity such that f (γ (t)) → a as t → ∞. The famous Denjoy–
Carleman–Ahlfors Theorem asserts that if f is an entire function of order
ρ < ∞, then it admits at most 2ρ distinct asymptotic values (see e.g. [25,
Chap. 5] or [35]). Another essentially equivalent formulation is that for every
R > 0, the open set {z, | f (z)| > R} admits at most max(2ρ, 1) connected
components.

When ρ < 1
2 , we see that f has no asymptotic values. One can actually be

more precise in this case. Indeed, Wiman’s theorem [25, Chap. 5, Thm 1.3]
asserts that there exists a sequence of circles {|z| = rn} with radii rn → ∞
such that min{| f (z)| , |z| = rn} → ∞.

To prove the existence of critical points in semi-parabolic basins we will
require a slight generalization of the Denjoy–Carleman–Ahlfors theorem on
asymptotic values. We say that a is an ε-approximate asymptotic value of f
if there exists a continuous path γ : [0,∞) → C tending to infinity such that
lim supt→∞ | f (γ (t))− a| < ε. The statement is as follows:

Theorem 7.1 Let f be an entire function of finite order. Assume that f
admits n distinct ε-approximate asymptotic values (ai )i=1,...,n, with ε <

mini �= j
|ai−a j |

5 .
Then the order of f is at least n/2.

In order to prove the theorem let us first recall the classical Phragmen–
Lindelöf Principle.

Proposition 7.2 Let D be an unbounded domain in C. Let f be a bounded
holomorphic function on D, such that lim sup∂D z→∞ | f | ≤ δ. Then
lim supD z→∞ | f | ≤ δ.

The following result is a version of a classical Lindelöf Theorem (the argu-
ment below is adapted from [35, Thm 12.2.2]).
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Theorem 7.3 Let D be a simply connected unbounded domain in C, whose
boundary consists of two simple curves γ1, γ2 both tending to infinity, and
disjoint apart from their common starting point. Let f be holomorphic on D
and continuous on ∂D, and assume that when z goes to infinity along γi , f
has the property that lim supt→∞ | f (γi (t))− ai | < ε, with ε <

|a1−a2|
5 . Then

f is unbounded on D.

Proof Assume by contradiction that f is bounded, and let g(z) = ( f (z) −
a1)( f (z)− a2). Then g is bounded on D, and lim sup |g(z)| ≤ δ, as z →∞
along ∂D, for some δ < 6

5 |a1 − a2| ε. It follows that lim supD z→∞ |g| ≤ δ.
Now for every R > 0 there exists a curve � in D joining γ1 and γ2 and

staying at distance at least R from the origin. If R is large enough, we then
have that |g| < 6

5 |a1 − a2| ε along �. Furthermore at � ∩ γ1 (resp. � ∩ γ2),
f is ε-close to a1 (resp. a2). So there exists z0 ∈ � such that | f (z0)− a1| =
| f (z0)− a2| ≥ |a1−a2|

2 . We infer that

|g(z0)| ≥ |a1 − a2|2
4

≥ 5

4
|a1 − a2| ε,

a contradiction. ��
Proof of Theorem 7.1 (compare [35, Cor. 14.2.3]) By assumption there are n
curves γi going to infinity along which f ε-approximately converges to ai .
We may assume that all these curves are simple, start from 0, and intersect
only at 0. We reassign the indices so that the curves are arranged in clockwise
order. By the previous theorem f must be unbounded in the domain enclosed
between γi and γi+1 (here we put γn+1 = γ1). Therefore the order of f is at
least n/2 by the ordinary Denjoy–Carleman–Ahlfors Theorem. ��
Remark 7.4 Alex Eremenko has pointed out to us the following version of the
Denjoy–Carleman–Ahlfors Theorem. Let f be an entire function bounded in
the left-half plane and outside horizontal strips. Let

M(x) = max
Re z=x

| f (z)| and ρ = ρ( f ) = lim sup
x→+∞

logM(x)

x
.

Then f admits at most 2ρ asymptotic values. [This follows from the sub-
harmonic version of the DCA Theorem applied to the function u(z) =
log+( f (log z)/M), where M is the supremum of | f | outside the half-strip
� = {Re f > 1, |Imf| < π}, and log z is the principal value of the logarithm
in C\R−.]

This Theorem admits an ε-approximate version similar to Theorem 7.1.
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7.2 Semi-parabolic basins

In this paragraph we prove Theorem B. We first recall that stable and unstable
manifolds of saddle points, aswell as strong stablemanifolds of semi-parabolic
points are entire curves, whose parameterizations are defined dynamically.
More precisely, if p is a fixed point with an expanding eigenvalue κu , then the
associated stable manifold is parameterized by an entire function ψu : C →
C
2 satisfying ψu(0) = p and f ◦ ψu(t) = ψu(κut) for every t ∈ C, and

similarly for a contracting eigenvalue. Let us now make an easy but important
observation (see [20] in the one-dimensional setting, [3,30] in our setting, and
[14] for automorphisms of compact projective surfaces).

Lemma 7.5 Let q be a fixed point of a polynomial automorphism of dynam-
ical degree d ≥ 2 with an expanding eigenvalue κu, and ψu : C → C

2 is
a parameterization of the associated unstable manifold as above. Then the
coordinates of ψu are entire functions of finite order

ρ = log d

log |κu| .

Notice that any other parameterization has the same order, since two para-
meterizations differ from an affine map of C. So we may speak of the order of
the unstable manifold Wu(q).

In the semi-parabolic case the result specializes as follows:

Corollary 7.6 If p is a semi-parabolic periodic point for a polynomial auto-
morphism of dynamical degree d ≥ 2, then the order of Wss(p) is

log d

log |Jac f |−1 .

Proof Apply Lemma 7.5 to f −k , where k is the period of p. ��
Our use of this corollary will be the following.

Corollary 7.7 Let f be a polynomial automorphismofC2 of dynamical degree
d ≥ 2, with a semi-parabolic periodic point p. Assume that the Jacobian of f
satisfies |Jac f | < 1

d2
. Then the connected component of p in Wss(p) ∩ J−

is {p}.
Proof The assumption on the Jacobian together with the previous corollary
imply that the order of Wss(p) is smaller than 1

2 . Then by Wiman’s theorem
there exists a sequence of circles {|t | = rn} such that the second coordinate
(say) of ψ s satisfies min{|t |=rn} |ψ s(t)| → ∞. Since K is bounded, these
circles must be eventually disjoint from K . So we infer that the connected
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component of p in (ψ s)−1(J−) is bounded in C. Since in addition the com-
ponent is invariant under multiplication by κs , we are done. ��

Theorem B now clearly follows from the previous corollary, together with
the following result.

Proposition 7.8 Let f be a polynomial automorphism of C
2 of dynamical

degree d ≥ 2, possessing a semi-parabolic periodic point p with basin of
attraction B. Assume that the connected component of p in Wss(p) ∩ J− is
reduced to {p}. Then for every saddle periodic point q, every component of
Wu(q) ∩ B contains a critical point.

Notice that in the above situation, Proposition 5.5 guarantees thatWu(q)∩B
is never empty.

Remark 7.9 Proposition 7.8 remains true in the case where q is a semi-
parabolic point rather than a saddle (in particular, when q = p). The proof is
the same except it makes use of the version of the Denjoy–Carleman–Ahlfors
Theorem stated in Remark 7.4

Proof Let q be as in the statement of the proposition, and ψu as above be a
parameterization ofWu(q). Translating the coordinates and iterating if needed
wemay assume that the semi-parabolic point is fixed and equal to 0 ∈ C

2. Also
we may assume that q is fixed. Let � ⊂ C be a component of (ψu)−1(B)—
which must be non-empty by Proposition 5.5. By the maximum principle,� is
biholomorphic to a disk.Recall that the incomingFatou functionϕιwasdefined
in Sect. 6. Observe first that ϕι◦ψu : � → C cannot be constant for otherwise
Wu(q) would coincide with a strong stable leaf, which cannot happen since it
would then be contained in the compact set K . We argue by contradiction, so
assume that � contains no critical point. Then ϕι ◦ ψu : � → C is a locally
univalent map. Since ϕι ◦ψu cannot be a covering, it must possess asymptotic
values, that is, there exists a path γ : [0,∞) → �, tending to infinity in �

(that is, converging to ∂� or to infinity inC) such that ϕι ◦ψu(γ (t)) has a well
defined limit inC as t →∞ (see [45, p. 284] or [26, Lemma 1.2] for a modern
presentation). Notice that by definition, ψu(γ ), as well as all its iterates and
cluster values, are contained in K+ ∩ J−.

Recall that there exists a function φ2 : B → C such that � := (ϕι, φ2) :
B → C

2 is a biholomorphism. At this point the proof splits into two cases.

Case 1: φ2 ◦ ψu(γ ) is unbounded.

Observe that this case must occur when � ◦ψu : � → C
2 is proper, which

happens for instance when � is relatively compact in C. Consider a domain
Br, j,η as in Sect. 6, corresponding to the basin B, and in which the strong
stable foliation ismade of vertical graphs, clustering atWss

loc(0) = {x = 0}. For

123



482 R. Dujardin, M. Lyubich

sufficiently large n, the connected component of f n(ψu(γ ))∩Br, j,η containing
f n(ψu(γ (0))) is a path which by our unboundedness assumption and the fact
that ϕι admits a finite limit along ψu ◦ γ, goes up to the horizontal boundary
P ι
r, j × ∂Dη of Br, j,η. When n is large, this connected component is contained

in a small neighborhood of Wss
loc(0). In addition f n(ψu(γ (0))) converges to

0 when n → ∞. Thus, taking a cluster value of this sequence of paths for
the Hausdorff topology, we obtain a closed connected subset ofWss

loc(0)∩ J−,
containing 0, and touching the boundary, hence not reduced to a point. This
contradicts Corollary 7.7, and finishes the proof in this case.

Case 2: φ2 ◦ ψu(γ ) is bounded.

A first observation is that under this assumption, the path γ must go to
infinity inC. Indeed otherwise let (tn) be a sequence such that γ (tn) converges
to ζ ∈ ∂� ⊂ C. Then ψu(γ (tn)) converges to ψu(ζ ) /∈ B, contradicting the
fact that �(ψu(γ (tn))) stays bounded in C

2. In particular γ is an asymptotic
path for the entire mapping ψu .

For the sake of explanation, assume first that φ2 ◦ ψu(γ (t)) admits a limit
as t → ∞. Thus � ◦ ψu(γ (t)) converges in C

2, and ψu(γ (t)) converges to
some limiting point ω ∈ B, which must be an asymptotic value of ψu (that is,
both coordinates are asymptotic values of the coordinate functions of ψu). By
the invariance of Wu(p), all iterates f n(ω), n ∈ Z, are asymptotic values of
ψu . Since ψu has finite order, this contradicts the Denjoy–Carleman–Ahlfors
Theorem.

In the general case we use Theorem 7.1 instead. Let K be the cluster set
of ψu(γ ), which is a compact subset of B, contained in a leaf {ϕι = Cst } of
the strong stable foliation. Let us study the shape of f n(K ). When n is large
enough, f n(K ) is contained in a small neighborhood of the origin, inside a
local strong stable leaf. Perform a linear change of coordinates so that in the
new coordinates, f expresses as f (x, y) = (x, by)+h.o.t. These coordinates
are tangent (at 0), but not equal, to the adapted local coordinates of Sect. 6. In a
bidisk near 0, the strong stable foliation is made of vertical graphs andWss

loc(0)
is a vertical graph tangent to the y-axis. Let (x0, y0) ∈ K and (xn, yn) =
f n(x0, y0). Then we infer that xn ∼ (kn)−1/k and f n(K ) is a subset of the leaf
F ss(xn, yn) of size exponentially small with n. Denoting by pr1 : (x, y) �→ y
the first projection, we deduce that pr1( f

n(K )) is a set of exponentially small
diameter about xn . It follows that for every integer k there exists ε > 0 and
integers n1, . . . , nk such that the sets pr1( f

n j (K )), 1 ≤ j ≤ k are of diameter
smaller than ε, and 5ε-apart from each other. Notice that the sets pr1( f

n j (K ))

are ε-approximate asymptotic values of pr1 ◦ψu in the sense of Theorem 7.1.
Now since pr1 is linear, pr1 ◦ψu is an entire function of finite order. Thus we
obtain a contradiction with Theorem 7.1, and the proof is complete. ��
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8 Semi-parabolic Bifurcations and Transit Mappings

In this section we develop an analogue of the “tour de valse” of Douady and
Sentenac [18] in the context of semi-parabolic implosion. When the family
can be put in the form

fε(x, y) = (x + (x2 + ε2)αε(x, y), bε(x)y + (x2 + ε2)βε(x, y)),

(this corresponds to the case k = 1 in (7) below), we may directly appeal to
the results of Bedford, Smillie and Ueda [2]. In our setting, however, we have
to deal with periodic points and bifurcations of a more general nature, and it
is unclear how to extend the results of [2].

Consider a family ( fλ)λ∈� of dissipative polynomial automorphisms ofC
2,

with a periodic point changing type, that is, one multiplier crosses the unit
circle. It is no loss of generality to assume that � is the unit disk.

Let us start with a few standard reductions. Recall that for polynomial auto-
morphisms all periodic points are isolated. Replacing fλ by some iterate, we
may assume the bifurcating periodic point is fixed. Passing to a branched cover
of � if necessary, the fixed point moves holomorphically, so we assume it is
equal to 0 ∈ C

2. Since fλ is dissipative the multipliers depend holomorphi-

cally on λ, and we denote them by ρλ and bλ, with ρ0 = e2π i
p
q and |bλ| < 1

for all λ ∈ �. We further assume that ρλ crosses ∂D with non-zero speed, i.e.
∂ρ
∂λ

∣

∣

λ=0 �= 0.

8.1 Good local coordinates

The first step is to find adapted local coordinates. which is a parameterized
version of the discussion in Sect. 6. This is analogous to Proposition 1 in [18].

Proposition 8.1 If ( fλ) is as above, then for λ sufficiently close to 0, there
exists a local change of coordinates (x, y) = ϕλ(z, w) in which f qλ takes the
form

f qλ (x, y) = (ρ
q
λ x + xk+1 + xk+2gλ(x, y), b

q
λ y + xhλ(x, y)) (7)

with gλ and hλ holomorphic and hλ(0, 0) = 0. Moreover k = νq for some
integer ν ≥ 1.

Proof Since we are working locally near (0, 0) ∈ � × C
2, we freely reduce

the domains of definition in (λ, x, y) when necessary. We will also feel free to
use to the same symbols for coordinates after successive changes of variable.
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Recall from Sect. 6 that there exists an integer k and local coordinates in
which f q0 is of the form

(x, y) �→ (x + xk+1 + xk+2g(x, y), bq0 y + xh(x, y)). (8)

Then f q admits k (open) attracting petals and k repelling petals, which are
permuted by f . These petals approach 0 at certain directions permuted by the
differential D0 f , so necessarily k = νq for some nonzero integer ν.

Fromnowon for notational easewe replace f q by f , that is we assume ρ0 =
1. Since the differential D0 fλ is diagonalizable, there exists a (λ-dependent)
linear change of coordinates so that fλ(x, y) takes the form (ρλx, bλy) +
h.o.t. There exists a local strong stable manifold tangent to the y-axis; we
change coordinates so that it becomes {x = 0}. By the Schröder theorem we
can linearize fλ|{x=0}, holomorphically in λ. Hence in the new coordinates,
fλ(0, y) = (0, bλy), so that

fλ(x, y) = (ρλx(1+ O(x)), bλy + xhλ(x, y)).

Of course hλ(0, 0) = 0 since the linear part is (ρλx, bλy). From now on all
changes of variables will be “horizontal”, i.e. of the type (x, y) �→ (x(1 +
O(x, y)), y), so the form of the second coordinate persists and we focus on
the first one.

Express fλ(x, y) as

fλ(x, y) = (ρλa1(λ, y)x + a2(λ, y)x2 + · · · + a j (λ, y)x j

+ · · · , bλy + Oλ,y(x)), (9)

where the a j are holomorphic and a1(λ, 0) = 1. To start with, for λ = 0, we
put f0 in form (8), so that for j ≤ k, a j (0, y) = 0 and ak+1(0, y) = 1.

The first task is to arrange so that a1 ≡ 1. This is similar to [54]. For this
we look for a change of coordinates of the form (X, Y ) = (xϕλ(y), y), with
ϕλ(0) = 1. Using the notation fλ(x, y) = (x1, y1) (and similarly in the (X, Y )

variables), we infer that

X1 = ρλa1(λ, Y )
ϕλ(Y1)

ϕλ(Y )
X + O(X2) = ρλa1(λ, Y )

ϕλ(bλY )

ϕλ(Y )
X + O(X2).

Therefore we see that to obtain the desired form, it is enough to choose

ϕλ(y) =
∞
∏

n=0
a1(λ, bnλy),
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which is locally a convergent product since a1(λ, y) = 1+Oλ(y) and |bλ| < 1.
Notice also that for λ = 0, ϕ0(y) = 1 so the change of variables is the identity.
In particular f0 remains of the form (8).

We then argue by induction. So assume that we have found coordinates such
that for some j ≤ k, a2(λ, y) = · · · = a j−1(λ, y) = 0, and f0 remains under
the form (8) . Put

(X, Y ) =
(

x + a j (λ, y)

ρλ − ρ
j
λ

x j , y

)

.

Notice that since a j (0) = 0 and ρλ − 1 has a simple root at the origin, the
change of coordinates is also well defined at λ = 0. Now, for λ �= 0, since
the term a j (λ, y) is non-resonant, a classical explicit computation (see e.g.
[1, Thm 6.10.5.]) shows that it disappears in the new coordinates. Hence by
continuity the same holds for λ = 0.

Moreover, for λ = 0 the change of coordinates is of the form (X, Y ) = (x+
A j (y)x j , y), so (x, y) = (X − A j (Y )X j + h.o.t., Y ). In the new coordinates
we obtain

X1 = x1 + A j (y1)x
j
1 = x + xk+1+O(xk+2)+A j (y)(x + xk+1+O(xk+2)) j

= x + A j (y)x
j + xk+1 + O(xk+2)

= X + Xk+1 + O(Xk+2),

so f0 remains of form (8) (observe that j ≤ k is used here).
Hence by induction we arrive at a situation where the first coordinate of

fλ(x, y) is of the form ρλx + ak(λ, y)xk + O(xk+1), with ak(0, y) = 1, and

the desired form follows by putting (X, Y ) = (ak(λ, y)
1

k−1 x, y). ��

Remark 8.2 Observe that the normal form (6) is more precise than the one
that we obtain here for f0. Indeed, as opposed to the case λ = 0, we cannot in
general kill the terms xk+2, . . . , x2k in the first coordinate of (7).

In fact, the vanishing of these terms for λ = 0 is incompatible with keeping
( fλ) in form (7). Indeed, the change of variables required to kill these terms
at λ = 0 is of the form (x, y) �→ (x + αλ(y)x j , y + h.o.t.), where α0(0) �= 0
and j ≤ k (compare [1, Thm 6.5.7]). If ρλ �= 1 for some λ, it brings back a
non-zero term x j in the first coordinate of fλ.

On the other hand, if by chance the terms x j , j = k + 2 ≤ k ≤ 2k,
vanish, we can reduce ourselves to [2] by letting (x ′, y′) = (kρk−1

λ xk, y)
and then (x ′′, y′′) = (x ′ + (1 − ρk)/2, y′). It is the presence of these extra
non-vanishing terms that prevents us from using [2] directly.
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8.2 Transit mappings in the one-dimensional case: un tour de valse

To fix the ideas, let us establish the statement we need in the one-dimensional
case first. This is a refined version of [18]. Consider a holomorphic family
( fλ)λ∈� of mappings defined in some neighborhood of the origin in C, of the
form

fλ(x) = ρλx + xk+1 + xk+2gλ(x), (10)

with g holomorphic. As before � is the unit disk. We assume that ρ0 = 1 and
∂ρ
∂λ

(0) �= 0 (this amounts to replacing fλ by its q th iterate in (7)).
Recall that for λ = 0 the repelling and attracting directions are respectively

defined by the property that (1 + xk) ∈ R
+/−. We fix two consecutive such

directions with respective angles 0 and π
k , and non-overlapping sectors about

them by putting

Sι =
{

arg x ∈
(

−5π

4k
,−3π

4k

)}

and So =
{

arg x ∈
(

− π

4k
,

π

4k

)}

.

The result is as follows.

Theorem 8.3 Let fλ be as in (10) and Sι/o be as above. There exists a neigh-
borhood V of the origin in C with the following property: if Qι and Qo are
open topological disks with Qι � Sι ∩ V and Qo � So ∩ V , then for every
neighborhood W of 0 in �, there exists an integer N and a radius r such that
if n ≥ N there exists a holomorphic map λn : Qι × Qo → W such that for
every (zι, zo) ∈ Qι × Qo, f nλn(zι,zo) is a well defined univalent function on

B(zι, r), with f nλn (z
ι) = zo and

∣

∣

∣( f nλn )
′ − 1

∣

∣

∣ ≤ 1
5 .

This statement being quite technical, a few words of explanation are in
order. What this theorem says is that if a parabolic bifurcation of the form
(10) occurs, then by carefully selecting the parameters λn , taking high iterates
f nλn we can map any point zι from an attracting sector to any point zo in a
consecutive repelling sector, with uniform control on the derivative ( f nλn )

′ in
the neighborhood of zι.

To prove the theorem we begin with some background and intermediate

results. We work in the new coordinate z = ρk+1
λ

kxk
. Notice that for λ = 0,

the change of variables maps the sector {arg x ∈ (−3π
2k , π

2k )} onto C\iR−,

hence for small enough λ, Sι and So are contained in (
ρk+1

λ

kxk
)−1(C\iR−). In

the new coordinates, Sι and So are respectively perturbations of the sectors
{arg z ∈ (3π4 , 5π

4 )} and {arg z ∈ (−π
4 , π

4 )}.
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Using the the classical notation x1 = fλ(x) (and similarly for z), we infer
that

z1 = ρk+1
λ

kxk1
= ρk+1

λ

k( fλ(x))k
= ρk+1

λ

kρk
λx

k(1+ xk
ρλ
+ O(xk+1))k

= ρk+1
λ

kρk
λx

k

(

1− kxk

ρλ

+ O(xk+1)
)

= ρλ

kxk
− 1+ O(x)

= ρ−kλ z−1+ηλ(z),with ηλ(z)=O

(

1

|z|1/k
)

as z→∞, uniformly in λ∈�

The exponent 1/k will play a special role in the estimates to come, so for
notational ease, from now on we put γ = 1/k. We also change coordinates in
the parameter space by putting u = ρ−kλ − 1, so that u now ranges in some
neighborhood W of the origin, and our mapping writes as

fu(z) = (1+ u)z − 1+ ηu(z), with ηu(z) = O

(

1

|z|γ
)

.

In these coordinates, fu is defined in an open set �R of the form

�R =
{

z, |z| > R, arg(z) ∈
(−3π

8
,
11π

8

)}

, (11)

for some R = R0. Its complement is shaded on Fig. 1 and will be referred to
as the “forbidden region”. We also pick two bounded open topological disks
Qι and Qo such that Qι � Sι ∩ �R and Qo � So ∩ �R , where R ≥ R0 is
to be fixed later (this corresponds to the choice of the neighborhood V in the
statement of the theorem).

Wefixa constantM such that for every parameteru ∈ W and every z ∈ �R0 ,

|ηu(z)| ≤ M

|z|1/k =
M

|z|γ and
∣

∣η′u(z)
∣

∣ ≤ M

|z|1+γ
. (12)

Wewill let u vary in a small subset ofW , of the formWn = B(−2π i
n , 1

n1+γ /2 ).
Notice that for u ∈ Wn we have that

|1+ u| = 1+ 2π2

n2
+ o

(

1

n2

)

and arg(1+ u) = −2π

n
+ O

(

1

n1+γ /2

)

.

In the following we always consider n so large that nγ /2 > 100, 1 − 30
n2

≤
|1+ u| ≤ 1+ 30

n2
and

∣

∣arg(1+ u)+ 2π
n

∣

∣ ≤ 1
100n .
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1
u

zι
zo

Sι
So

Fig. 1 Schematic view of the orbit connecting zι to zo. It shadows the arc of a circle passing
through the “gate” between the fixed points 1/u and∞. The forbidden region is shaded

To understand the argument better, it is instructive to think of fu as a per-
turbation of the affine map �u : z �→ (1 + u)z − 1. When u ∈ Wn and n is
large, �u is approximately a rotation by angle −2π

n centered at 1
u . Notice also

that 1
u is close to in

2π (see Fig. 1).
To fix the ideas, let us first analyze the linear case, dealing with �u instead

of fu .

Proposition 8.4 With notation as above, there exists an integer N, anda radius
r such that if n ≥ N then for every (zι, zo) ∈ Qι×Qo, there exists a parameter
u = u(zι, zo) ∈ Wn, depending holomorphically on (zι, zo) and such that

– �nu(z
i ) = zo;

– for every z ∈ B(zι, r) the iterates �
j
u(z), j = 1, . . . , n do not enter the

forbidden region;
–
∣

∣(�nu)
′ − 1

∣

∣ ≤ 1
5 on B(zι, r).

Proof Let l = !n/2" andm = n−l. As said above, �u(z) = (1+u)(z− 1
u )+ 1

u
has its fixpoint at 1

u . Write u = −2π i
n + v

n1+γ /2 , with v ∈ D. For j ≤ n we have
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that

(1+ u) j = exp( j log(1+ u)) = exp

(

j log

(

1− 2π i

n
+ v

n1+γ /2

))

= exp

(

j

(

−2π i

n
+ v

n1+γ /2 + O

(

1

n2

)))

= exp

(

−2 jπ i

n
+ jv

n1+γ /2 + O

(

j

n2

))

,

in particular for j = n

(1+ u)n = 1+ v

nγ /2 + O

(

1

n

)

, (13)

where the O(·) is uniform with respect to v ∈ D.
Simple geometric considerations (see [18]) then show that for j ≤ #n/2$

�
j
u(zι) (resp. �

− j
u (zo)) do not enter the forbidden area.

Let us prove that there exists u(zι, zo), depending holomorphically on
(zι, zo) ∈ Qι×Qo and such that �lu(z

ι) = �−mu (zo). Then for such a parameter,
by connecting the two pieces of orbits 1, . . . , l and l + 1, . . . , n, we infer that
the iterates �

j
u(zι) do not enter the forbidden area for 1 ≤ j ≤ n and since �u

is affine, the control of the derivative follows from (13).
To prove this, consider the expression

�lu(z
ι)− 1

u

�−mu (zo)− 1
u

= (1+ u)n
zι − 1

u

zo − 1
u

.

A simple computation shows that

zι − 1
u

zo − 1
u

= 1+ (zι − zo)
2π i

n
+ O

(

1

n1+γ /2

)

.

Therefore by (13), we infer that

�lu(z
ι)− 1

u

�−mu (zo)− 1
u

= 1+ v

nγ /2 + O

(

1

n

)

, (14)

where the O(·) is uniform with respect to v ∈ D, zι ∈ Qι and zo ∈ Qo. Thus
when n is large enough the quantity in (14) winds once around 1 as v turns
once around ∂D, and the result follows from the Argument Principle. ��

We now turn to fu . Let us start with a technical lemma.
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Lemma 8.5 Fix R ≥ (105kM)k . With notation as above, there exists an inte-
ger N = N (R) depending only on R such that if n ≥ N, u ∈ Wn and if
zι ∈ Qι then for every 1 ≤ j ≤ #n2$:
(i) f j

u (zι) stays outside the forbidden area;
(ii) | f j

u (zι)− 1
u | ≥ n

10 ;

(iii) writing f j
u (zι) = z j = x j + iy j we have that either x j ≤ x0 − j

10 or

y j ≥ n
10 . In particular

∣

∣z j
∣

∣ ≥ min( |z0|2 + j
10 ,

n
10 ).

The same results holds for f − j
u (zo), when zo ∈ Qo (in that case the last

condition needs to be replaced by “either x j ≥ x0 + j
10 or y j ≥ n

10”)

Proof We first deal with the assertions (i) and (ii). We argue by induction so
assume the result holds for j ≤ k − 1, for some k ≤ #n2$. Let us write

f j
u (zι)− 1

u

f j−1
u (zι)− 1

u

= (1+ u)+ ηu( f
j−1
u (zι))

f j−1
u (zι)− 1

u

,

so that

f ku (zι)− 1
u

zι − 1
u

= (1+ u)k
k
∏

j=0

(

1+ ηu( f
j
u (zι))

(1+ u)( f j
u (zι)− 1

u )

)

. (15)

Considering the modulus of this expression, we see that

∣

∣

∣

∣

f ku (zι)− 1

u

∣

∣

∣

∣

≥
∣

∣

∣

∣

zι − 1

u

∣

∣

∣

∣

(

1− 30

n2

)# n2 $ k−1∏

j=0

(

1− M

(0.9)Rγ | f j
u (zι)− 1

u |

)

≥
∣

∣

∣

∣

zι − 1

u

∣

∣

∣

∣

(

1− 30

n2

)# n2 $ (
1− 10M

(0.9)Rγ n

)# n2 $
,

where the first estimate follows from bound (12) on ηu and the second estimate
follows from the induction hypothesis. Since (1− 30

n2
)n/2 → 1 as n →∞, by

our choice of R we see that when n ≥ N (R),

∣

∣

∣

∣

f ku (zι)− 1

u

∣

∣

∣

∣

≥ 9

10

∣

∣

∣

∣

zι − 1

u

∣

∣

∣

∣

≥ 9

10
d

(

1

u
, Sι

)

≥ 9

10

n

2
√
2π

≥ n

10
,

which proves (ii).
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To prove that f ku (zι) does not enter the forbidden region, we look at the
argument of f ku (zι)− 1

u . Recall that
∣

∣arg(1+ u)+ 2π
n

∣

∣ ≤ 1
100n so by (15)

∣

∣

∣

∣

∣

arg

(

f ku (zι)− 1
u

zι − 1
u

)

−
(−2kπ

n

)

∣

∣

∣

∣

∣

≤ k

100n
+

k−1
∑

j=0

∣

∣

∣

∣

∣

arg

(

1+ ηu( f
j
u (zι))

(1+ u)( f j
u (zι)− 1

u )

)∣

∣

∣

∣

∣

.

With our choice of R, | ηu( f
j
u (zι))

(1+u)( f ju (zι)− 1
u )
| ≤ 1

200n , so since log(1+z) = z+h.o.t.,

when n is large enough, we infer that

∣

∣

∣

∣

∣

arg

(

1+ ηu( f
j
u (zι))

(1+ u)( f j
u (zι)− 1

u )

)∣

∣

∣

∣

∣

≤ 1

100n
.

Thus we obtain that
∣

∣

∣

∣

∣

arg

(

f ku (zι)− 1
u

zι − 1
u

)

−
(−2kπ

n

)

∣

∣

∣

∣

∣

≤ k

100n
+ k

100n
≤ k

50n
,

therefore arguing geometrically we see that f ku (zι) stays outside the forbidden
region. The induction step is complete proving (i).

To establish (iii), let us first observe that due to the the above estimate on

the argument, when j ≤ #n2$, arg(
f ju (zι)− 1

u

zι− 1
u

) is equal to −2 jπ
n , up to an error of

at most 1
50 . Expressing in coordinates, we see that

x j+1 = x j − 1+ 2π

n
y j + ε j and y j+1 = y j − 2π

n
x j + ε′j ,

with

|ε j |, |ε′j | ≤ max

(

1

n1+γ /2 ,
M

|z j |γ
)

≤ 1

1,000

because nγ /2 ≥ 100 and by the previous step, z j ∈ �R . We see that, as soon
as y j ≤ n

10 , we have that x j+1 ≤ x j − 1
10 . Now when y j reaches n

10 , and until
j is as large as n

4 (a time at which y j is approximately equal to n
2π ), since

∣

∣z j − 1
u

∣

∣ ≥ 9
10

∣

∣z0 − 1
u

∣

∣, by expressing the distance in coordinates and using
the estimate on the argument, we infer that x j ≤ − n

100 therefore y j+1 ≥ y j .
The result follows.
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The argument for f − j
u (zo), 1 ≤ j ≤ #n2$ is similar, and is left to the reader.

��
Proof of Theorem 8.3 We argue as in Proposition 8.4. As before let l = !n/2"
and m = n − l. Using (15) with k = l, we obtain

f lu(z
ι)− 1

u

zι − 1
u

= (1+ u)l
l
∏

j=1

(

1+ ηu( f
j−1
u (zι))

(1+ u)( f j−1
u (zι)− 1

u )

)

.

Hence, using Lemma 8.5 together with the inequality
∣

∣

∏

(1+ x j )− 1
∣

∣ ≤
exp

∑
∣

∣x j
∣

∣− 1, we infer that
∣

∣

∣

∣

∣

f lu(z
ι)− 1

u

(1+ u)l(zι − 1
u )
− 1

∣

∣

∣

∣

∣

=
∣

∣

∣

∣

∣

f lu(z
ι)− 1

u

�lu(z
ι)− 1

u

− 1

∣

∣

∣

∣

∣

≤ exp

⎛

⎝

l
∑

j=0

10M

(0.9)nmin( |zι|2 + j
10 ,

n
10 )

γ

⎞

⎠− 1

≤ exp

⎛

⎝

# n2 $
∑

j=0

100M

9nmin( j
10 + 1, n

10 )
γ

⎞

⎠− 1

≤ exp

(

1,000M

nγ

)

− 1

= O

(

1

nγ

)

, (16)

where in the last inequality we use an elementary estimate

# n2 $
∑

j=0

1

min( j
10 + 1, n

10 )
γ
≤ 50n1−γ .

Doing the same with f −mu (zo) we get that

f lu(z
ι)− 1

u

f −mu (zo)− 1
u

(

�lu(z
ι)− 1

u

�−mu (zo)− 1
u

)−1
= 1+ O

(

1

nγ

)

.

Thus, from (14) we deduce that

f lu(z
ι)− 1

u

f −mu (zo)− 1
u

= 1+ v

nγ /2 + O

(

1

nγ

)

,
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where the O(·) is uniformwith respect to (v, zι, zo) ∈ D×Qι×Qo. Therefore
we conclude that if n is large enough, when u winds once around ∂Wn (i.e. v

winds once around ∂D), the curve u �→ f lu(z
ι)− 1/u

f −mu (zo)− 1/u
winds once around

1, so by the Argument Principle, there exists a unique u = u(zι, zo) ∈ Wn
(thus, depending holomorphically on (zι, zo)), such that f lu(z

ι) = f −mu (zo).

Given such a u, we see that the iterates f j
u (zι) 1 ≤ j ≤ n stay outside the

forbidden region, and f nu (zι) = zo.
Let us now estimate the derivative ( f lu)

′(z), for z ∈ Qι (this is place where

we need to be precise on the value of R). Recall that for 1 ≤ j ≤ l, f j
u (z) is

well-defined, and write

( f lu)
′(z) =

l
∏

j=1
( fu)

′( f j−1
u (z)), where ( fu)

′(z) = 1+ u + η′u(z),
∣

∣η′u(z)
∣

∣

≤ M

|z|1+ 1
k

.

So we get that

( f lu)
′(z) = (1+ u)l

l
∏

j=1

(

1+ η′u( f
j−1
u (z))

1+ u

)

.

Our choice of u and l implies that 0.99 ≤ ∣∣(1+ u)l
∣

∣ ≤ 1.01 for large n, while

∣

∣

∣

∣

∣

∣

l
∏

j=1

(

1+ η′u( f
j−1
u (z))

1+ u

)

− 1

∣

∣

∣

∣

∣

∣

≤ exp

⎛

⎝

# n2 $
∑

j=1

10M

9(min( R2 + j
10 ,

n
10 ))

1+γ

⎞

⎠− 1.

(17)

For large n (depending only on R) we have that

# n2 $
∑

j=1

1

(min( R2 + j
10 ,

n
10 ))

1+γ
≤

∞
∑

j=! R
2 "

101+γ

j1+γ
+

# n2 $
∑

j=! n
10 "

( n

10

)−(1+γ )

≤ 200kR−γ . (18)

Since R ≥ (105kM)k , by (18) we infer that the right hand side of (17) is
smaller than 1

400 , and finally we conclude that when z ∈ Qι and n is large
enough,

∣

∣( f lu)
′(z)− 1

∣

∣ ≤ 1
50 .
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The following lemma is classical, for conveniencewe recall the proof below.

Lemma 8.6 Let f be a holomorphic function onDr such that
∣

∣ f ′ − 1
∣

∣ ≤ a <

1 on Dr . Then f is injective on Dr and

D( f (0), (1− a)r) ⊂ f (Dr ) ⊂ D( f (0), (1+ a)r).

From this lemma we deduce that there exists r > 0 independent on n such
that f lu is univalent on B(zι, r), and its image contains B( f l(zι), r). Likewise,
there exists r > 0 such that f −mu is univalent on B(zo, r), with derivative 1

50 -
close to 1. Thus we conclude that f lu maps univalently B(zι, r

2 ) into B(zo, r),
and its derivative satisfies

∣

∣( f nu )′(z)− 1
∣

∣ ≤ 1
5 This completes the proof of the

theorem. ��
Proof of Lemma 8.6 Replacing f by z �→ r−1 f (r z) − f (0) it is no loss of
generality to assume that f (0) = 0 and r = 1. Since z �→ z − f (z) is
contracting, if f (z) = f (z′) we get that

∣

∣(z − f (z))− (z′ − f (z′))
∣

∣ = ∣∣z − z′
∣

∣ ≤ a
∣

∣z − z′
∣

∣ ,

whence z = z′. Thus f is injective. That f (D) ⊂ D1+a readily follows from
themean value inequality. Finally, to prove that for anyw ∈ D1−a , the equation
f (z) = w admits a solution, it is enough to apply the Contraction Mapping
Principle to g : z �→ z − f (z)+ w in D. ��

8.3 Transit mappings in dimension 2

We return to the two-dimensional setting. The treatment will be based on the
observation that in a two-dimensional thickening of the domain �R , the maps
fλ admit a dominated splitting, i.e., they have a horizontal cone field invariant
under the forward dynamics, and moreover, they are contracting in the vertical
direction.

Let us first fix some notation. As before the parameter space � is the unit
disk. Changing coordinates and passing to an iterate if needed, by Proposi-
tion 8.1 we may assume that ( fλ)λ∈� is a holomorphic family of germs of
diffeomorphisms in (C2, 0) of the form

fλ(x, y) = (ρλx + xk+1 + xk+2gλ(x, y), bλy + xhλ(x, y)), (19)

where ρ0 = 1, dρ
dλ

(0) �= 0, and |bλ| ≤ b < 1 for all λ.
As in the one-dimensional case, we consider two consecutive sectors Sι =

{arg x ∈ (−5π
4k ,−3π

4k )} and So = {arg x ∈ (− π
4k ,

π
4k )}. For λ = 0, consider a

bidisk V = V1 × V2 around the origin such that:
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– (Sι ∩ V1)× V2 is attracted to the origin under forward iteration;
– there exists a local repelling petal � ⊂ V1 × V2, which is a graph over
So ∩ V1, defined by the property that every orbit converging to 0 under
backward iteration in (So ∩ V1)× V2 belongs to �.

The next theorem is the key technical mechanism which will allow us to
create a homoclinic tangency from a critical point in a semi-parabolic basin.
It is the counterpart of Theorem 8.3 in the dissipative 2-dimensional setting.
Assuming that a semi-parabolic bifurcation of the form (19) occurs, it select
parameters λn such that the iterates f nλn map a given point pι in some semi-
parabolic basin (almost) onto a given target po located in a repelling petal �,
with a good control on the geometry of f nλn near zι. This geometric control
is expressed in terms of the pull-back action on a foliation transverse to �

near po.

Theorem 8.7 Let ( fλ)λ∈� be as above. There exists a bidisk V = V1 × V2
around 0 ∈ C

2 such that if Qι � (Sι ∩ V1)× V2, Qo � �, and F is a germ of
holomorphic foliation transverse to � along Qo, then for every neighborhood
W of 0 in �, there exists an integer N and a radius r such that if n ≥ N,
there exists a holomorphic map λn : Qι × Qo → W such that for every
(pι, po) ∈ Qι × Qo, for λn = λn(pι, po), there exists a bidisk D2(pι, r)
around pι, and a neighborhood D�(po, r) = B(po, r) ∩� of po in �, such
that the following properties hold:

– f nλn (p
ι) belongs to F(po), the leaf of F through po;

– the preimage of F under f nλn defines a holomorphic foliation F−n of

D2(pι, r) by vertical graphs along which f nλn contracts by a factor b
n;

– the derivative of f nλn along any horizontal line in D2(pι, r) satisfies

| ∂ f
n
λn

∂z − 1| ≤ 1
5 .

To prove the theorem, we consider the dynamics of fλ in a domain of the
form

{

arg(x) ∈
(−3π

2k
,

π

2k

)}

× Ds0

and as in the previous section we change coordinates by putting (z, w) =
(
ρk+1

λ

kxk
, y), and u = ρ−kλ − 1. In the new coordinates, u ranges in some small

neighborhood W of the origin and fu is defined in a domain of the form
�R0 × Ds0 , where �R is as in (11), R0 ≥ 1, s0 ≤ 1, and its expression
becomes

fu(z, w) = ((1+ u)z − 1+ ηu(z, w), buw + θu(z, w)), (20)
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where ηu(z, w) and θu(z, w) are of the form 1
z1/k

ϕu(
1

z1/k
, w), with ϕu holo-

morphic in the neighborhood of the origin. In the new coordinates,

Sι =
{

z, arg(z) ∈
(

3π

4
,
5π

4

)}

and So =
{

z, arg(z) ∈
(

−π

4
,
π

4

)}

.

As above we let W = Wn = D(−2π i
n , 1

n1+γ /2 ) (recall that γ = 1/k).
We will gradually adjust the parameters R and s. We fix M such that for

(z, w) ∈ �R0 × Ds and u ∈ W ,

|ηu(z, w)| ,
∣

∣

∣

∣

∂ηu

∂w
(z, w)

∣

∣

∣

∣

, |θu(z, w)| ,
∣

∣

∣

∣

∂θu

∂w
(z, w)

∣

∣

∣

∣

≤ M

|z|γ ,

and

∣

∣

∣

∣

∂ηu

∂z
(z, w)

∣

∣

∣

∣

≤ M

|z|1+γ
.

Due to dissipation, there is now an asymmetry between positive and negative
iterates. The idea of the construction of the transition mapping is now to pull
back n/2 times a leaf of the foliation F from the “outgoing” region Qo and to
push forward n/2 times a point from the “incoming” region Qi , and use the
Argument Principle to make the image of the point belong to the preimage of
the leaf.

Wewill first prove Theorem 8.7 under a seemingly stronger assumption that
the foliationF is composed of graphs over the second coordinate in �R×Ds ,
with slope bounded by 1/100. We start by showing that the backward graph
transform is well defined for such vertical graphs on an appropriate subregion
of �R0 × Ds0 (as long as R0 is large and s0 is small). This is a standard
technique for maps with dominated splitting, which is e.g. used to construct
the strong stable foliation on forward invariant regions (this is not the case we
are dealing with here).

Lemma 8.8 Let ˜�R = {ζ ∈ �R : D(
1+ζ
1+u , 1) ⊂ �R}. There exists R0 and s0

such that if R ≥ R0 and s ≤ s0, then if � is a vertical graph of slope≤ 1/100
in ˜�R ×Ds then f −1u (�)∩ (�R ×Ds) is a vertical graph in �R ×Ds of slope
≤ 1/100.

Proof Take � = {z = ψ(w)} with ψ(0) ∈ ˜�R and
∣

∣ψ ′∣
∣ ≤ 1/100. Then

f −1(�) admits an equation of the form �(z, w) = 0, where

�(z, w) = (1+ u)z − 1+ ηu(z, w)− ψ(buw + θu(z, w)).

123



Bifurcations of polynomial automorphisms of C
2 497

For w = 0, Rouché’s theorem implies that for R ≥ R0, there exists z such
that

�(z, 0) = 0 and

∣

∣

∣

∣

z − 1+ ψ(0)

1+ u

∣

∣

∣

∣

≤ 2M

|z|γ . (21)

In addition we have

∂�

∂z
= 1+ u + O(R−γ ) and

∣

∣

∣

∣

∂�

∂w

∣

∣

∣

∣

≤ b

100
+ O(R−γ ).

Thus, the result follows from the Implicit Function Theorem. ��
Fromnowon the parameter s = s0 will befixed, and for notational simplicity

we denote the second factor Ds0 by D. Let Qι � Sι × D. We will now state
two different counterparts of Lemma 8.5: one for push-forwards, and the other
one for pullbacks. For pι = (zι, wι) ∈ Qι, we denote by pι

j = (zιj , w
ι
j ) its j th

iterate under fu .

Lemma 8.9 With notation as above, fix R ≥ max(Mk(1 − b)−ks−k0 ,

(105kM)k). Then there exists an integer N = N (R) such that if n ≥ N,
pι ∈ Qι × D and u ∈ Wn then for every 1 ≤ j ≤ #n2$ we have that
(i) f j

u (pι) belongs to �R × D
(ii) |zιj − 1

u | ≥ n
10 ;

(iii) |zιj | ≥ min( |z0|2 + j
10 ,

n
10 ).

Proof It follows from expression (20) for fu that if M
Rγ < (1 − b)s0 and

(z, w) ∈ �R × D, then the second coordinate of fu(z, w) belongs to D. So
we only need to focus on the first coordinate. By (20) we have that

zιj+1 − 1
u

zιj − 1
u

= 1+ u + ηu( f
j
u (pι))

zιj − 1
u

, (22)

with |ηu( f j
u (pι))| ≤ M

Rγ as soon as f j
u (pι) ∈ �R × D. Then the proof is

identical to that of Lemma 8.5. ��
We now deal with pullbacks. Given po ∈ Qo, we consider a holomorphic

foliation F by vertical graphs of slope bounded by 1/100 in a neighborhood
of po, and byF(p) the leaf through p. Starting fromF0 = F(p), by applying
successive graph transforms we inductively define F− j−1 = f −1u (F− j ) ∩
(�R × D). We also let ζ− j = F− j ∩ {w = 0}.
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Lemma 8.10 Let R be as in Lemma 8.9. There exists an integer N = N (R)

such that if n ≥ N, if p ∈ Qo and u ∈ Wn then for every 1 ≤ j ≤ #n2$ we
have

(i) F− j (p) is a well-defined vertical graph in �R × D, with slope bounded
by 1/100;

(ii) |ζ− j − 1
u | ≥ n

10 ;

(iii) |ζ− j | ≥ min( |z0|2 + j
10 ,

n
10 ).

Proof From (21) we infer that

∣

∣

∣

∣

ζ− j−1 − 1+ ζ− j

1+ u

∣

∣

∣

∣

≤ 2M

|ζ− j |γ ,

that is,

ζ− j−1 − 1
u

ζ− j − 1
u

= 1

1+ u
+ ε j

ζ− j − 1
u

, with |ε j | ≤ 2M

|ζ− j |γ , (23)

so as before the result follows exactly as in the one-dimensional case (for (i)
we also use Lemma 8.8). ��

Pick now an R satisfying all the above requirements. Let as above pι =
(zι, wι) ∈ Qι, po ∈ Qo, and letFo be the leaf ofF through po. Let l = !n/2"
and m = n− l. By Lemma 8.9, for 1 ≤ j ≤ l f j

u (pι) ∈ �R . Then, using (22)
exactly as in (16) (i.e. by taking the product from 0 to l − 1) we deduce that

∣

∣

∣

∣

∣

zιl − 1
u

(1+ u)l(zι − 1
u )
− 1

∣

∣

∣

∣

∣

= O

(

1

nγ

)

.

On the pullback side, recall that F− j (po) denotes the j th graph transform
of F0, and let ζ− j = F− j (po) ∩ {w = 0}. Using (23) and taking the product
from j = 0 to j = −m + 1 we obtain:

∣

∣

∣

∣

∣

(1+ u)m
ζ−m − 1

u

ζ0 − 1
u

− 1

∣

∣

∣

∣

∣

= O

(

1

nγ

)

.

Thus, writing u = −2π i
n + v

n1+γ /2 , from the two previous displayed equations
together with (13), we obtain that

zιl − 1
u

ζ−m − 1
u

= 1+ v

nγ /2 + O

(

1

nγ

)

. (24)
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Now express the graph F−m as z = ψ(w), with ψ(0) = ζ−m . Since
∣

∣ψ(wι
l)− ψ(0)

∣

∣ ≤ 1/100, we infer that

ψ(wι
l)− 1

u

ζ−m − 1
u

= 1+ O

(

1

n

)

,

so from (24) we finally deduce that

zιl − 1
u

ψ(wι
l)− 1

u

= 1+ v

nγ /2 + O

(

1

nγ

)

.

By the Argument Principle we conclude that for every (pι, po) ∈ Qι × Qo,
there exists a unique (hence, depending holomorphically on (pι, po)) u =
u(pι, po) ∈ Wn such that ψ(wι

l) = zιl , that is, f
l
u(p

ι) ∈ F−m(po).
For this parameter u we can pull back F−m(po) under f mu , thus obtaining a

vertical graphF−n(po) through pι. It is clear that the derivative d f n contracts
exponentially along this graph, more precisely

∥

∥d( f n|F−n(po))
∥

∥ � bn . Indeed,
the tangent vectors toF−n(po) remain in a cone field close to the vertical under
iteration, and the second factor gets contracted at rate b.

From now on the parameter u is fixed. To simplify notation we drop the
subscript u and write f j

u = ( f j
1 , f j

2 )Wewill prove at the same time that f nu is
defined in a fixed domain around pι and estimate its derivatives. Let r > 0 be
such that all iterates f j , 1 ≤ j ≤ n are well defined on D(zι, r)× {wι}, and
for all j ≤ n,

∥

∥ f j (pι)− f j (z, wι)
∥

∥ is bounded by, say, 1. For the moment r
depends on n.

The estimateweneed is contained in the following lemma.Denote f j (z, wι)

by (z j , wι
j ).

Lemma 8.11 For r as above, let K = 2(1 − b)−1M. Then for every z ∈
D(zι, r), and every 1 ≤ j ≤ n

∂ f j
1

∂z
(z, wι) = (1+ u) j

j
∏

i=1
(1+ δi ), with |δi | ≤ K

|zi−1|1+γ
,

and

∣

∣

∣

∣

∣

∂ f j
2

∂z
(z, wι)

∣

∣

∣

∣

∣

≤ K

|z j−1|1+γ

As a preliminary observation, notice that if R ≥ (106k(1 − b)−1M)k , and
δi is as in the statement of the lemma and n is large enough, then for every
1 ≤ j ≤ n,
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∣

∣

∣

∣

∣

∣

(1+ u) j
j
∏

i=1
(1+ δi )− 1

∣

∣

∣

∣

∣

∣

≤ 1

5
. (25)

Indeed, this follows from the proof of Theorem 8.3 (see (17) and (18) there;
also if j ≥ l we need to split the product at l and to estimate separately the
two terms).

Proof We argue by induction on j . The result holds true for j = 1. So assume
that it holds for some j . We compute

∂ f j+1
1

∂z
(z, wι) =

(

(1+ u)+ ∂ηu

∂z
(z j , w

ι
j )

)

∂ f j
1

∂z
(z, wι)

+∂ f j
2

∂z
(z, wι)

∂ηu

∂w
(z j , w

ι
j )

= (1+ u) j+1
j
∏

i=1
(1+ δi )

(

1+ 1

1+ u

∂ηu

∂z
(z j , w

ι
j )

)

+∂ f j
2

∂z
(z, wι)

∂ηu

∂w
(z j , w

ι
j ).

By the induction hypothesis,
∣

∣

∣

∣

∣

∂ f j
2

∂z
(z, wι)

∂ηu

∂w
(z j , w

ι
j )

∣

∣

∣

∣

∣

≤ K

|z j−1|1+γ

M

|z j |γ .

Since
z j+1
z j

is close to 1+ u and (1+ u) j+1
∏ j

i=1(1+ δi ) is close to 1, we can
write

∂ f j+1
1

∂z
(z, wι) = (1+ u) j+1

j
∏

i=1
(1+ δi )

(

1+ 1

1+ u

∂ηu

∂z
(z j , w

ι
j )+ δ

)

,

with |δ| ≤ 2KM

|z j |1+2γ
.

Thus if we put δ j+1 = 1
1+u

∂ηu
∂z (z j , wι

j )+ δ we get that

|δ j+1| ≤
(

M

|1+ u| +
2KM

Rγ

)

1

|z j |1+γ
,

which, from the choice of R and K is not greater than K

|z j |1+γ .
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To get the bound on the derivative of f j+1
2 , we write

∂ f j+1
2

∂z
(z, wι) = bu

∂ f j
2

∂z
(z, wι)+ ∂ f j

1

∂z
(z, wι)

∂θu

∂z
(z j , w

ι
j )

+∂ f j
2

∂z
(z, wι)

∂θu

∂w
(z j , w

ι
j ),

and we get that

∣

∣

∣

∣

∣

∂ f j+1
2

∂z
(z, wι)

∣

∣

∣

∣

∣

≤ b
K

|z j−1|1+γ
+ 6

5

M

|z j |1+γ
+ K

|z j−1|1+γ

M

|z j |γ

≤ K

|z j |1+γ

(

b

∣

∣

∣

∣

z j
z j−1

∣

∣

∣

∣

1+γ

+ 6M

5K
+ M

Rγ

∣

∣

∣

∣

z j
z j−1

∣

∣

∣

∣

1+γ
)

.

To conclude, we observe that when n is large enough, due to the choice of R
and K , the expression within parentheses is smaller than 1. The proof of the
lemma is complete. ��

We are now in position to conclude the proof of Theorem 8.7. Let r0 be the
supremum of the radii r > 0 such that f j is well-defined, and f j (z, wι) stays
at distance at most 1 from f j (zι, wι) for 1 ≤ j ≤ n. By the above lemma
and (25), r0 ≥ 2

3 . Then the image of D(zi , r0) × {wι} under f n is a graph
over some neighborhood of zo, which by Lemma 8.6 must contain D(zo, 1

2 ).
Now since the repelling petal � is a graph (relative to the first coordinate)
over {z, Re(z) > R}, we infer that for p ∈ B(po, 1

4) ∩ �, f n(D(zi , r0) ×
{wι}) intersects F(p) close to p. Therefore we can pull back F(p) under
f n to get a vertical graph intersecting D(zi , r0) × {wι} along which (for the
same reasons as before) the derivative of f n along is smaller than bn , and
the proof is complete in the case where F is a foliation by vertical graphs
in �R × D.

What remains to be done is to remove the simplifying assumption on F .
For this we simply iterate backwards and use the previous analysis to show
that for k large enough, f −k(F)|�R×D is made of vertical graphs of slope
≤ 1/100. Indeed, let � be a germ of a holomorphic disk transverse to � at
po = (z0, w0) ∈ �R × D. Let f −k0 (p) = (z−k, w−k) which (in our coor-
dinates) converges to infinity by staying in �R × D. Applying the reasoning
of Lemma 8.11 for u = 0 (together with (25)) shows that for every w ∈ D,
f k(D(z−k, 2

3)× {w}) is a horizontal graph over D(z0,
1
2 ), which is exponen-

tially close to � due to vertical contraction. Thus when k is large enough, it
intersects � exactly in one point, and the result follows. ��
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9 Proof of the Main Theorem on Homoclinic Tangencies

9.1 Creating tangencies between horizontal and vertical moving curves

Here we explain how to obtain a tangency between two holomorphically mov-
ing complex curves by using only “soft complex analysis”, i.e. basically the
Argument Principle. We work in the unit bidisk B = D

2. A subvariety V
in B (or current, etc.) is horizontal if there exists some ε > 0 such that
V ⊂ D× D1−ε. Vertical objects are defined similarly.

Following [29], we define the horizontal (resp. vertical) Poincaré cone field
as the set of tangent vectors v = (v1, v2) ∈ TxB � C

2 such that |v1|Poin >

|v2|Poin (resp. |v2|Poin > |v2|Poin), where |·|Poin denotes the Poincaré metric
in D. The contraction property of the Poincaré metric implies that if � is a
horizontal graph in B, then for every x ∈ �, Tx� is contained in the horizontal
Poincaré cone field.

A horizontal manifold (or subvariety) V in B has a degree, which is the
degree of the branched cover π1 : V → D (here of course π1 is the first
coordinate projection). If V is irreducible and d > 1 then π1|V must have
critical points (indeed otherwise it would be a non-trivial covering of the
unit disk). In particular, it admits tangent vectors in the vertical Poincaré
cone field.

By definition a holomorphic family of submanifolds (Vλ)λ∈� of a com-
plex manifold M is the data of a codimension 1 analytic set (which might be
singular) ̂V ⊂ �× M such that for every λ ∈ �, Vλ = ̂V ∩ ({λ} × B).

Here is the precise statement.

Proposition 9.1 Let (Vλ)λ∈� be a holomorphic family of horizontal subman-
ifolds of degree k in B, parameterized by a connected Stein manifold �. We
assume that:

(i) There exists a compact subset �0 � � such that if λ /∈ �0, Vλ is the
union of k graphs.

(ii) There exists λ0 ∈ � such that Vλ0 is not a union of graphs.

Then, if (Wλ)λ∈� is any holomorphic family of vertical graphs in B, there
exists λ1 ∈ � such that Vλ1 and Wλ1 admit a point of tangency.

Using the above remarks, we see that condition (ii) could be replaced by
“there exists x ∈ B and λ0 ∈ � such that TxVλ0 is contained in the vertical
Poincaré cone field”. Notice also that (ii) implies that k > 1 in (i).

Proof To simplify the exposition, we assume that � is the unit disk (we will
use the result in that case only). The proof in the general case is similar.

Notice first that if λ is close to ∂�, then there are no tangencies between
Vλ and Wλ. Indeed the tangent vectors to Vλ and Wλ belong to disjoint cone
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fields. In particular, reducing � a little bit if needed, we may assume that the
Vλ (resp. Wλ) are uniformly horizontal (resp. vertical), that is, that they are
contained in D× D1−ε (resp. D1−ε × D) for some fixed ε > 0.

If V ⊂ B is a smooth holomorphic curve, we let PT V be its lift (which is
also a holomorphic curve) to the projectivized tangent bundle PTB � B×P

1.
Notice that since V is smooth, PT V intersects every P

1 fiber at a single point.
If (Vλ)λ∈� is a holomorphic family of submanifolds, we obtain in this way a
holomorphic family of submanifolds (PT Vλ)λ∈� in B × P

1. In other words,
there exists a subvariety of � × B × P

1, of dimension 2, which we denote
P̂T V such that for every λ ∈ �,

P̂T V ∩ ({λ} × B× P
1) = PT Vλ.

Let now W = (Wλ)λ∈� be any holomorphic family of vertical graphs in B.
An intersection point between P̂TV and P̂TW corresponds to a parameterλ0 at
which Vλ0 andWλ0 are tangent.We claim that then P̂TV∩P̂TW has dimension

0 (if non-empty). In particular, the varieties P̂T V and P̂TW intersect properly
in B × P

1 ×�. Observe first that this intersection is compactly supported in
�× B× P

1, indeed:

– as observed above, there are no tangencies between Vλ and Wλ when λ is
close to ∂�;

– the intersection points between Vλ and Wλ are contained in D
2
1−ε for some

ε > 0.

By the Maximum Principle, the projection of P̂T V ∩ P̂TW to�×B is a finite
set. Hence any component of P̂T V ∩ P̂TW of positive dimension is contained
in a P

1 fiber, which is impossible by definition of the lifts P̂T V and P̂TW .
This proves our claim.

By assumption, there exists λ0 such that Vλ0 admits a vertical tangent vector,

hence a tangency with some vertical line L . Let P̂T L ⊂ � × B × P
1 be the

surface corresponding to the trivial family where L is fixed. Then P̂T V ∩ P̂T L
is non-empty, therefore it is a finite set.

We can now deform L to W through some holomorphic family (Wλ,s)

of vertical graphs with Wλ,0 = L and Wλ,1 = Wλ, and s ranges in some
neighborhoodD1+ε of the closed unit disk. For this we can simply take a linear
interpolation. In this way we obtain a holomorphic deformation (P̂TWs)s∈Dε

from P̂T L to P̂TW , parameterized by a neighborhood of the unit disk.
To conclude that P̂T V ∩ P̂TW �= ∅, we argue that the set of parameters

s ∈ D1+ε such that P̂T V ∩ P̂TWs �= ∅ is open in D1+ε by the continuity of
the intersection index of properly intersecting analytic sets of complementary
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dimensions (see [15, Prop. 2 p.141]) and closed because intersection points
stay compactly contained in B. This completes the proof. ��

9.2 From critical points to tangencies

In this sectionwe settle the secondmain step of TheoremA′. If pλ is a holomor-
phically varying periodic point for a holomorphic family ( fλ)λ∈� of dissipative
polynomial automorphisms ofC

2, we say that pλ undergoes a non-degenerate
semi-parabolic bifurcation at λ0 if one of the multipliers ρλ of pλ satisfies
ρλ0 = 1 and ∂ρ

∂λ
|λ=λ0 is a submersion � → C.

Proposition 9.2 Let ( fλ)λ∈� be a holomorphic family of dissipative poly-
nomial automorphisms of C

2 of dynamical degree d with positive entropy,
parameterized by the unit disk. Assume that:

• there exists a holomorphically varying periodic point pλ which admits a
non-degenerate semi-parabolic bifurcation at λ0;

• for λ = λ0, there is a critical point in one of the basins of attraction of pλ0 .

Then λ0 can be approximated by parameters possessing non-persistent homo-
clinic tangencies.

Proof Without loss of generalitywemay assume that� is the unit disk,λ0 = 0,
and pλ is fixed. Normalize the situation so that fλ is locally of the form (19).
Conjugating by a rotation, we may assume that the critical point lies in the
basin B corresponding to the attracting direction {(x, 0), arg(x) = −π

k }. Let
q0 be a saddle point such that Wu(q0) admits a point of tangency with the
strong stable foliation in B. (Then, by the hyperbolic λ-lemma (see e.g. [49,
Thm 2, p. 155]) and the fact that any pair of saddle points have transverse
heteroclinic intersections, any saddle point would do.) Let t be such a point of
tangency.

The global repelling petal � in the direction of {(x, 0), arg(x) = 0} is
an immersed curve biholomorphic to C ([54], see Sect. 6). Hence, using the
theory of laminar currents, exactly as in [7], it admits transversal intersections
with Ws(q0). We fix a transverse intersection point m ∈ � ∩Ws(q0).

Fix a neighborhood W of 0 in �. Iterating t forward and m backward a
few times, we may assume that both points are close to 0. Theorem 8.7 thus
provides us with an integer N and a radius r , so that for n ≥ N , a transition
mapping f nλn is defined from D2(t, r) to D2(m, r) such that f nλn (t) = m.

Let �u
λ be the component of Wu

λ (qλ) ∩ D2(t, r) containing t . Reducing W if
necessary, �u

λ can be followed holomorphically as λ ∈ W .
To make the situation visually clearer, we consider adapted coordinates

close to t and m. These changes of coordinates have bounded derivatives.
Abusing slightly, we declare that in the new coordinates, the neighborhoods
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remain of size r . Near t we choose (zι, wι) so that t = (0, 0), the strong
stable foliation F ss becomes the vertical foliation {zι = Cst } and for λ ∈ W ,
�u

λ is a horizontal manifold in D2(t, r) of some degree d ≥ 2, which is
transverse toF ss outside t . Nearm we choose local coordinates (zo, wo) such
that m = (0, 0) �0 = {wo = 0}, and the component of Ws(qλ) containing m
is {zo = 0}. Denote by F the vertical foliation in the target bidisk D2(m, r).

For |zo| ≤ r , let us consider the parameter λn = λn(t, zo) given by Theo-
rem 8.7 such that the first coordinate of f nλn (t) is z

o. For every such parameter,

by Theorem 8.7 f nλn realizes a crossed mapping of degree 1 [29] from D2(t, r)
to D(zo, r

2 )× Dr . So when |zo| ≤ r
4 we get by restriction a crossed mapping

from D2(t, r) to D r
4
× Dr . In particular, we infer that for |zo| ≤ r

4 , f
n
λn

(�u
λn

)

is a horizontal submanifold of degree d in D r
4
× Dr .

To conclude the argument, let us show that when zo ranges in D r
4
and n is

large, the family of curves f nλn (�
u
λn

) satisfies the assumptions of Proposition 9.1
in D r

8
× Dr .

The first observation is that the preimage F−n
λn

of F under f nλn converges to

the strong stable foliation associated to f0 in D2(t, r), uniformly in zo. Indeed,
we know that the leaves of F−n are graphs with bounded geometry over some
fixed direction, and the f nλn contract exponentially along these graphs, with
uniform bounds. So any cluster limit of F−n must be F ss( f0), which proves
our claim.

Now, when |zo| = r
4 , for every z such that |z| < 3r

16 , when n is large, for
λn = λn(t, zo) f −nλn

({z}×Dr ) is close to a leaf ofF ss which intersectsDr×{0}
transversely at a distance ≥ r

8 from t . Therefore, f −nλn
(D 3r

16
×Dr )∩�u

λn
is the

union of d graphs, over a disk of radius greater than 3r
16 · 45 = 3r

20 by Lemma 8.6.
Pushing by f nλn and applying the lemma again, we conclude that f nλn (�

u
λn

) is a
union of d graphs over D 3r

25
.

On the contrary, when zo = 0, for λn = λn(t, 0), pr1( f nλn ) = 0. Since F−n
converges to F ss, when n is large �u

λn
has a tangency with F−n close to t ,

hence f nλn (�
u
λn

) has a vertical tangency close to m.
We see that the assumptions of Proposition 9.1 are satisfied so there exists

a parameter λn = λn(t, zo) such that f nλn (�
u
λn

) has a tangency with Ws(qλn )

close to m, and we are done. ��
Proof of Theorem A′. Let ( fλ)λ∈� be a holomorphic family of polynomial
automorphisms of C

2 of dynamical degree d ≥ 2 with a bifurcation at λ0. By
Proposition 2.1 we may assume that the fλ are products of Hénon mappings.
Then close to λ0 there is a periodic point with a multiplier ρ crossing the unit
circle.Without loss of generalitywemayassume that dim(�) = 1.Hence there
exists λ1 close to λ0 such that at λ1, the multiplier is a root of unity, different
from 1, so that this periodic point pλ can be followed holomorphically close to
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λ1. In addition wemay assume that ∂ρ
∂λ
|λ=λ1 �= 0. Replacing fλ by f kλ for some

k, we may assume that pλ is fixed and ρλ1 = 1 (we keep the same notation for
the new multiplier, which is the kth power of the previous one) . Notice that
for the new multiplier we still have that ∂ρ

∂λ
|λ=λ1 �= 0.

Since the condition that |Jac fλ| < deg( fλ)−2 is preserved under iteration,
Theorem B asserts that there is a critical point in every component of the
attracting basin of pλ1 . Thus the result follows from Proposition 9.2. ��
Acknowledgments We thank Alex Eremenko for many useful comments on the Denjoy–
Carleman–Ahlfors and Wiman Theorems, and Eric Bedford for interesting discussions. We are
also grateful to Serge Cantat and the anonymous referee for carefully reading the manuscript
and making many suggestions that improved the exposition. This work was partly supported by
the NSF, the Balzan-Palis Fellowship, and the ANR project ANR-13-BS01-0002.

Appendix A. Attracting basins

The methods of Sect. 7.2 also give the existence of “critical points” in attract-
ing basins, under certain minor hypotheses (that are needed to even define
the critical points). Though these results are not used in the paper, they are
interesting on their own right.

Let f be a polynomial automorphism of dynamical degree d ≥ 2 with an
attracting point p. As usual, wemay assume that p is fixed, andwe denote byB
its basin of attraction. It is classical that there is a local holomorphic change of
coordinates which puts f in a simple normal form (this result goes apparently
back to Lattès [36]). Let κ1 and κ2 be the eigenvalues of Dfp, ordered so that
0 < |κ2| ≤ |κ1| < 1. We say that (κ1, κ2) is resonant if there exists an integer
i ≥ 1 such that κ2 = κ i

1 (notice that i = 1 is allowed). Then there exists a
local change of coordinates near p such that in the new coordinates (z1, z2),
f expresses as

f (z1, z2) =

⎧

⎪

⎨

⎪

⎩

(κ1z1, κ2z2) if (κ1, κ2) is not resonant,

(κ1z1, κ2z2 + αzi1) otherwise, where i is as above,

and α ∈ {0, 1}.
In any case, we see that the vertical foliation {z1 = C} is invariant under f . If
|κ2| < |κ1| this is the “strong stable foliation”, characterized by the property
that points in the same leaf approach each other at the fastest possible rate
κn
2 . As before, it will be denoted by F ss . Using the dynamics, the coordinates

(z1, z2) extend to the basin and define a biholomorphism B � C
2. In the non-

resonant (i.e. linearizable) case, the foliation {z2 = C} is invariant as well.
We then simply refer to {z1 = C} and {z2 = C} as the invariant coordinate
foliations in B.
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We give two statements on the existence of critical points. The first one
parallels Theorem B

Theorem A.1 Let f be a polynomial automorphismofC2 of dynamical degree
d ≥ 2, possessing an attracting point p, whose eigenvalues satisfy 0 < |κ2| <
|κ1| < 1, with basin of attraction B. Assume that |Jac f | < d−4, or more
generally that the connected component of p in Wss(p) ∩ J− is {p}. Then
for every saddle periodic point q, every component of Wu(q) ∩ B contains a
critical point, that is, a point of tangency with the strong stable foliation in B.

The second statement concerns the hyperbolic case.

Theorem A.2 Let f be a polynomial automorphismofC2 of dynamical degree
d ≥ 2, possessing an attracting point p with basin B. Assume that f is
uniformly hyperbolic on J , and fix any saddle periodic point q.

If the eigenvalues of p satisfy |κ2| < |κ1| (resp. are non-resonant), then every
component of Wu(q)∩B admits a tangency with the strong stable foliation of
B (resp. with both invariant coordinate foliations).

Here is an interesting geometric consequence. Recall that if f is dissipative
and hyperbolic, J+ is (uniquely) laminated by stable manifolds. Let us denote
by Ws(J ) this lamination. It is natural to wonder whether the strong stable
foliation in B matches continuously with the lamination of J+ (recall that
∂B = J+). The existence of critical points implies that this is never the case
(compare [4, Cor. A.2]).

Corollary A.3 Let f be as in the previous theorem, in particular f is hyper-
bolic on J . Then if p is an attracting point with eigenvalues |κ2| < |κ1| and
basin B, then for every x ∈ J , Ws(J ) ∪ F ss(B) does not define a lamina-
tion near x. If p is linearizable, the same holds for both invariant coordinate
foliations.

Proof Let us deal with the case where |κ1| < |κ2|. It is enough to assume that
x is a saddle periodic point. Hyperbolicity implies thatWu(J ) andWs(J ) are
transverse near x , so if Ws(J ) ∪ F ss(B) is a lamination near x , F ss(B) must
be transverse to Wu(J ) near x . On the other hand, there exist critical points
on Wu(x) arbitrary close to x (obtained from the previous ones by iterating
backwards). This contradiction finishes the proof. ��
Proof of Theorems A.1 and A.2 This is very similar to Proposition 7.8 so the
proof is merely sketched. Let us first deal with the case where |κ2| < |κ1|, with
f hyperbolic or not. Let π1 : B → C be the projection along the strong stable
foliation. In the coordinates (z1, z2), it simply expresses as (z1, z2) �→ z1.
Assume by contradiction that there is no critical point in �. Then π1 ◦ ψu :
�\(ψu)−1(Wss(p)) → C

∗ is a locally univalent map. Since it cannot be
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a covering it must possess an asymptotic value, hence there is a diverging
path γ in � such that the limit limt→∞ π1 ◦ ψu(γ (t)) = ω exists in C

∗. Let
π2 : B → C be the second coordinate projection. As before, we split the
argument according to the bounded or unbounded character of π2 ◦ ψu(γ ).

If π2 ◦ ψu(γ ) is unbounded, we iterate forward and take cluster values to
create an unbounded component C of J− ∩ Wss(p) containing p. Now if
|Jac f | < d−4, then |κ2| < d−2, so by Corollary 7.7, the component of p in
Wss(p) ∩ J− is a point, and we get a contradiction.

If f is hyperbolic we argue as follows: in B\{p}, J− is laminated by unsta-
ble manifolds. In particular by [7, Lemma 6.4] the set of tangencies between
Wss(p) and the unstable lamination is discrete. Pick c ∈ C\{p} such that
Wss(p) and the unstable lamination are transverse near c. There exist coordi-
nates (x, y) close to c in which Wss(p) is {x = 0}, c = (0, 0), and the leaves
of the unstable lamination close to c are horizontal in the unit bidisk B. By
construction, there is a sequence of integers n j such that f n j (ψu(γ )) has a
component C j , vertically contained in B, touching the boundary, and passing
close to c. On the other hand C j must be contained in a leaf of the unstable
foliation so we get a contradiction.

If π2 ◦ ψu(γ ) is bounded, then as before the path γ must be unbounded in
Wu(q). Let E be the cluster set of ψu(γ ), which is a compact subset of the
strong stable leaf {z1 = ω}. If |κ2| < |κ1|, then as in Proposition 7.8 we make
a linear change of coordinates close to p such that in the new coordinates, f
expresses as f (x, y) = (κ1x, κ2y) + h.o.t. We see that in these coordinates,
pr1( f n(E)) is a set of diameter � κn

2 about xn ∼ cκn
1 , which leads to a

contradiction with Theorem 7.1, exactly as in Proposition 7.8.
It remains to treat the case where f is hyperbolic, p is linearizable, and we

look for tangencies with any of the invariant coordinate foliations. We argue
exactly as before, with (π1, π2) being the linearizing coordinate projections, in
any order, and keep the samenotation. The casewhereπ2◦ψu(γ ) is unbounded
is dealt with exactly as above. If now π2 ◦ ψu(γ ) is bounded and E denotes
its cluster set in the leaf {z1 = ω}, we observe that as in the unbounded
case, the laminar structure of J− outside p forces E to be reduced to a point.
Thereforeψu admits an asymptotic value inB\{p} and the contradiction arises
by iterating and applying the ordinaryDenjoy–Carleman–Ahlfors theorem. ��
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