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Abstract We consider the gravity water waves system in the case of a one
dimensional interface, for sufficiently smooth and localized initial data, and
prove global existence of small solutions. This improves the almost global
existence result of Wu (Invent Math 177(1):45-135, 2009). We also prove
that the asymptotic behavior of solutions as time goes to infinity is different
from linear, unlike the three dimensional case (Germain et al., Ann Math
175(2):691-754,2012; Wu, Invent Math 184(1):125-220, 2011). In particular,
we identify a suitable nonlinear logarithmic correction and show modified
scattering. The solutions we construct in this paper appear to be the first global
smooth nontrivial solutions of the gravity water waves system in 2D.
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1 Introduction
1.1 The problem

The evolution of an inviscid perfect fluid that occupies a domain €2; in R”
(n > 2) at time ¢, is described by the free boundary incompressible Euler
equations. If v and p denote respectively the velocity and the pressure of
the fluid (which is assumed here to have constant density equal to 1), these
equations are:

vy +v-Vv=—-Vp—ge, x €
V.-v=0 x € (E)
v(0, x) = vo(x) x € Qo,

where g is the gravitational constant, which we will assume to be 1 from
now on. The free surface S; := 0€2; moves with the normal component of
the velocity, and, in absence of surface tension, the pressure vanishes on the
boundary:

& +v - Vistangentto |J, S, c R*H! (BC)
pt,x) =0, x €.
In the case of irrotational flows, i.e.
curlv =0, (1.1)

one can reduce (E)—(BC) to a system on the boundary. Although this reduction
can be performed identically regardless of the number of spatial dimensions,
we only focus on the two dimensional case which is the one we are interested in.
Assume that Q; C R? is the region below the graph of afunction z : R; xR, —
R, thatis , = {(x,y) € R> : y < h(t,x)} and S; = {(x,y) : y =
h(t, x)}. Let us denote by ® the velocity potential: V& (¢, x, y) = v(z, x, y),
for (x,y) € Q. If ¢(z,x) := P(¢, x, h(x, 1)) is the restriction of ® to the
boundary S;, the equations of motion reduce to the following system for the
unknowns i, ¢ : R; x R, — R:
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1 X 1 , (1.2)
3[(15 =—h— §|¢)x| + W(G(h)(b + hxd’x)

with
G(h) == /1 + |he >N () (1.3)

where N (h) is the Dirichlet-Neumann operator associated to the domain €2;.
We refer to [40, chap. 11] or [14] for the derivation of the water wave equations
(1.2).

Another possible description for (E)—(BC) can be given in Lagrangian coor-
dinates again by deriving, in the case of irrotational flows (1.1), a system of
equations on the boundary S;. More precisely, following [45], let z(¢, ), for
a € R, be the equation of the free interface S; at time ¢ in Lagrangian coordi-
nates, i.e. z;(f, ) = v(¢, z(¢, «)). Identifying R? with the complex plane we
use the same notation for a point z = (x, y) and its complex form z = x +iy.
We will thendenotez = x —iy ~ (x, —y). The divergence and curl free condi-
tion on the velocity v imply that v is holomorphic in €2;. Therefore z; = H,z;,
where H,, denotes the Hilbert transform! along a curve y:

f B)
y(t, o) —y(, B)

1
Hy Ht, a) = - p.V./ vp(t, B) dp. (1.4)

R

The vanishing of the pressure in (BC) implies that Vp is perpendicular to
S; and therefore —Vp = iazy, with a = —%—5@. Since z;(t,a) =
(v + v - Vo) (t, z(t, @)), one see that (E)—(BC)—(1.1) in two dimensions are
equivalent to

I ti=lazy

z _ 1.
{Zt =H;Z- (1.5)

In [43] Wu was able to reduce (1.5) to a quasilinear system, and to exploit
the weakly hyperbolic structure of the new system to obtain local-in-time
existence of solutions in Sobolev spaces by energy methods. Earlier results for
small initial data in two dimensions were provenin [34,42] and [13]. In [44] Wu
was also able to prove local existence for the three dimensional problem (two
dimensional interface) [44]. Following the breakthrough of [43,44], there has
been considerable amount of work on the local well-posedness of (E)-(BC),

1 Integrals like the one in (1.4) are to be understood in the principal value sense, but for simplicity
we will often omit the p.v. notation.
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656 A. D. Ionescu, F. Pusateri

also including other effects on the wave motion, such as surface tension on the
interface or a finite bottom. We refer the reader to [1,2,4,5,8,9,11,31,32,39]
for some of the works on the local well-posedness of (E). Recently, blow-up
solutions in the form of turning waves [7] and “splash” solutions [6,12] have
been constructed.

The question of existence of global-in-time solutions for small, smooth,
and suitably localized data, has also received attention in recent years. In the
case of one dimensional interfaces, the only work investigating the long time
behavior of small gravity waves is that of Wu [45], who was able to show
almost global existence of solutions for (1.5). To do this, the author proposed
some new unknowns, which we denote here by F, and a fully nonlinear change
of coordinates, reducing (1.5) to a system of the form

O?F +id,F =G (1.6)

where G are quasilinear nonlinearities of cubic and higher order with suitable
structure. Thanks to the cubic nature of this new system Wu was then able to
perform (almost optimal) energy estimates and obtain existence of solutions
up to times of order ¢¢/¢, where ¢ is the size of the initial data.

On the other hand, in the case of two dimensional interfaces, Germain,
Masmoudi and Shatah [19] and Wu [46] obtained global solutions. The result
of [19] relied on the energy method of [38,39] and on the space-time resonance
method introduced in [18]. In [46] the author used instead a three dimensional
version of the arguments of [45] to derive a set of equations similar to (1.6),
perform weighted energy estimates on them, and obtain decay via L> — L™
type estimates. Recently, Germain, Masmoudi and Shatah [20] obtained global
solutions in three dimensions for capillary waves, i.e. with surface tension on
the interface and no gravitational force.

Here we are interested in the gravity water waves system (E)-(BC)—(1.1)
in the case of one dimensional interfaces which are a perturbation of the flat
one, and initial velocity potentials which are suitably small in an appropriate
norm. We aim to prove the existence of global-in-time and pointwise decaying
solutions, and determine their asymptotic behavior as t — oo.

1.2 The main theorem

We define first our main spaces of functions. Fix> Ny = 10* and define N| :=
No/2+4.LetS = %ta, + a9, be the scaling vector field. Given a time interval

2 We assume a large number of derivatives mostly to simplify the exposition. However one can
likely reduce this number to, say, Ng between 10 and 100 by a slightly more careful analysis.
Similarly, the parameter 8 in (1.9), which is related to the size of the small frequencies, can be
allowed to take other values in the interval (0,1/2).
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I and a function f : I x R — C we define the norm

IfOlx, = 1fOlgx + 1SF @O gare. (1.7)

XN, will be the weighted energy-space for the solution, expressed in some
appropriate modified Lagrangian coordinates, as well as in Eulerian coordi-
nates.

Given the height function / and the velocity potential ¢ in Eulerian coordi-
nates, we define the Z’ norm

[(h(2), @Dz = IRl yyvi a0 + [AS @) Iy 400, With A = 13512,
(1.8)

This is the decaying norm that we will estimate. Decay of this norm at the rate
of +~1/2 will give us a small global solution to the water wave problem.
Finally, we define the space Z by the norm

1717 = sup |(Ig1? + 1g1"+1%) Fe (1.9)
£eR
where 8 = 1/100, and

f(é,t) 3=/€_ing(t,x)dx

R

is the partial Fourier transform in the spatial variable. This space plays a key
role in obtaining decay of the Z’ norm of solutions, see the linear estimate
(1.18). The Z norm also plays an important role in proving modified scattering
of solutions in Eulerian coordinates.

The paper is concerned with the proof of the following Main Theorem:

Theorem 1.1 Let ho(x) = h(0, x) be the initial height of the surface So, and
let po(x) = ¢ (0, x) be the restriction to So of the initial velocity potential.
Assume that at the initial time one has

l(ho, Apo) | gvo+2 + 1x0x (ho, Ado) || o2+t + lho + i Agollz < €0,
(1.10a)

where Z is defined in (1.9). Moreover, for x € Qq let vo(x) = v(0, x), where
v is the irrotational and divergence free velocity field of the fluid, and assume

that

X1V voll gvor2 () = €0- (1.10b)
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658 A. D. Ionescu, F. Pusateri

(1) (Global existence) Then there exists €9 small enough, such that for any
g0 < €o, the initial value problem associated to (1.2) admits a unique
global solution with

sup | (10 h(0). ey, + I150) + i AG D

HIFGO, 6z ] S 20

where po = 1074,
(i1) (Modified scattering) Letu(t) := h(t)+iA¢(t), with A := |8x|1/2. Define

t
4
. d
G 1) = "’%'/W(s,snzﬁ, r 0, T].
0

Then there is p1 > 0 such that

(1 +m)7 |

el GE i A7 (g tl)]

(14 g™ [ 06 mA O, 1y)

L S €. (1.11)
§

foranyt; <ty € [0, T]. In particular, there is woo € L>((1 + |E)*N1de)
with the property that

sup (14 1)?!

te[0,00)

(1+ 1ENN (£ CEDMEOG(E, 1) — woo (§))

<8()
2~ °
LE

(1.12)

Remark 1.2 The first norm in (1.10a) ensures that our initial data is small and
smooth in Sobolev spaces of high regularity. Notice that we are assuming that
the vertical variation from equilibrium of the interface, given by the graph of 4,
as well as half derivative of the velocity potential are small. This is consistent
with the conserved energy (and Hamiltonian)

1 1
Eo(h, ¢) = E/¢>G(h)¢>azx + E/hzdx ~ |lh +iAgl%,

for solutions of (1.2). The second norm in (1.10a), properly evolved in time,
gives some control of certain weighted norms of the solution.

The key new ingredient in (1.10a) is the smallness of &g and A¢yp in the
Z-norm defined in (1.9). The Z-norm is the key new component of our global
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argument: it is the only strong norm of the solution that we can control uni-
formly in time, while the other energy-type norms are allowed to increase
slowly in time. Furthermore, the Z-norm allows us to describe properly the
modified scattering of the solution.

Finally, (1.10b) is similar to a condition imposed by Wu [45]. We use it
as in the cited paper to guarantee that the energy functional on which energy
estimates are based is small at time ¢ = 0.

Remark 1.3 The solutions can also be defined on the time interval (—oo, 0],
since the equations are time-reversible. The global solutions we construct in
Theorem 1.1 appear to be the first smooth nontrivial global solutions of the
gravity water waves system (E)—-(BC) in 2 dimensions.

Remark 1.4 A more precise statement of modified scattering can be found in
Lemma 6.1, in terms of certain modified Eulerian variables. Also, more precise
bounds on the solution, both in terms of the Eulerian variables (4, ¢) and the
Lagrangian variable z can be found in Sect. 3, see (3.1)—(3.3).

1.3 Main ideas in the proof

If one is interested in the long-time existence of small smooth solutions to
quasilinear dispersive and wave equations, such as (1.2) or (1.5), there are two
main aspects one needs to consider: controlling high frequencies and proving
dispersion. The first aspect is generally connected to the construction of high
order energies which control the Sobolev norm of a solution. The second
aspect is related to L? decay estimates, and to estimates of weighted norms.
When dealing with the water waves system both of these aspects are extremely
delicate.

1.3.1 Supercriticality, energy estimates and normal forms

The general strategy for obtaining a global small solution usually starts with
local-in-time energy estimates. The aim of the energy method is to construct
an energy functional E(¢) such that

E(t) ~ u(®ll3,y  and %E(t) < E@)¥2. (1.13)
Here, the power 3/2 is dictated by the quadratic nature of the nonlinearities in
(1.2) or (1.5). The estimates (1.13) are often the key ingredient in obtaining
local solutions, and for initial data of size ¢ they give existence for times of
order 1/e. We remark here that the construction of an energy satisfying (1.13)
for the water waves system is particularly challenging. Nevertheless it has
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660 A. D. Ionescu, F. Pusateri

been done in several works, such as the already cited [1,5,9,31,32,39,43,44],
thanks to considerable insight into the structure of the equations.

To extend a local solution for longer times one needs to engage the dispersive
effects of the equation. One possibility is to try to upgrade (1.13) to

lu@ 3y + lu@®3 S E@  and %E(r) < ti E(t), (1.14)

provided the solution decays like ¢ in some L°°-based space. The W-norm
in (1.14) is supposed to encode some information about the localization of the
flow. In the best case scenario a bound of the form |u(7)|ly < 1 implies the
desired 1~ decay. Thus, if one can prove (1.14) with @ > 1 small solutions
will exist globally and scatter to a linear solution. If @ = 1 solutions will
automatically exist almost globally and further analysis® is needed in this
critical case to show global existence and determine the asymptotic behavior.
If a < 1 the problem of global existence and scattering is much more difficult.
This case is referred to as scattering supercritical and it is the case of the 2d
water waves problem, since solutions of the linear equation id;u — Au = 0,
A= |8x|1/2, decay at the rate =12,

In the work of Wu [45] on the almost global existence in the two dimensional
problem, the author relied on a nonlinear version of a normal form transforma-
tion. Starting from the Lagrangian formulation (1.5), Wu proposed some new
quantities, and a diffeomorphism depending fully nonlinearly on the solution,
such that the set of equations obtained in the new coordinates admit a certain
type of energy estimates, consistent with cubic nonlinearities. More precisely,
let us denote, schematically, by F the new transformed unknowns, after the
nonlinear change of variables. The point of Wu’s remarkable construction is
that the variables F satisfy nonlinear equations like (1.6) with cubic-type non-
linearities. As a consequence, Wu defines a suitable energy functional E(¢)
and proves the following type of energy estimates:

IFEOI5y + IF Ol < E@)
d 1
and —E@) S|IFOI? v _ E®logt + —E*(1).  (1.15)
dt w2 t
These estimates can then be combined with L2 — L estimates, which show

that F(¢) decays pointwise like # ~!/2. Therefore E(¢) < &2 as long as logt <
¢!, which concludes the proof of almost global existence.

3 Examples of such analysis are the classical vector fields method of Klainerman [29,30], or
the more recent papers [18,19,21,22,25,26,36] on global regularity results for certain physical
systems.
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1.3.2 Dispersion and asymptotic behavior

To pass to global existence, our first concern is to improve (1.15) by eliminat-
ing logarithmic losses. We will use the same approach of [45], and the same
equations derived there, to show an estimate of the form

d
IFOIy FIFOI SEQ  and  —E@0) S IFOl, EQ),
(1.16)

for some L based space Zs, which is stronger than W%"’O. Such an estimate
is achieved by carefully analyzing the singular integrals (Calder6n commu-
tators) appearing in the cubic nonlinearities, and exploiting special structures
present in some of them.

Another important point is that in order to justify the existence of the Wu’s
diffeomorphism k and of the new unknowns F for all times ¢, we need appro-
priate a priori control on Wu’s change of coordinates. This is obtained by
taking advantage of a certain null structure present in the transformation.

Thanks to (1.16) one can guarantee E(t) <, e212po for any fixed pg > 0,
and for all 7 € [0, oo), provided || F (1)l z_ < et~ /2. However, since E(t) is
forced to grow in time, although just slightly, one cannot obtain the desired
sharp Z, decay through energy estimates like those in [45].

Our main idea in this paper is to use also the Eulerian formulation of the
equations (1.2) for the purpose of proving decay and modified scattering.
More precisely, we achieve this by bootstrapping at the same time several
bounds, which control the Eulerian variables, the Lagrangian variables, and
Wu’s diffeomorphism k (see (2.8)—(2.10)). This consists of several steps:

e We show first that the Eulerian variables 4 and ¢, in (1.2) are controlled
in the energy norms H™0 and in S~'HN0/2 by the energy E(r) of the
modified Lagrangian variables. Here S = (1/2)t9; + x0, is the scaling
vector field. In other words we transfer the energy and weighted energy
bounds (which are expected to increase slowly in time as a result of the
bootstrap argument) to the Eulerian variables £, ¢y.

e The variables & and ¢ satisfy the equations (1.2), which can be written
schematically in the form

dth = 10x|¢p — 0x(hdx®) — [0x|(h]dx|¢) + Cubic(h, ¢x);
0 = —h — (1/2)1x|> + (1/2)[13:|$|* + Cubic(h. ¢y),
where the remainders are cubic expression of /, ¢,.. We use a normal form

transformation H = h + A(h, h), ¥ = ¢ + B(h, ¢), for suitable bilinear
operators A and B to eliminate the quadratic nonlinearities and reduce this
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662 A. D. Ionescu, F. Pusateri

to an evolution equation of a complex variable with a cubic nonlinearity.
More precisely, letting V = H +i AW, we show that V satisfies an equation
of the form

&V +iAV =C(V,V), A =3 (1.17)

where C is a nonlocal cubic quasilinear nonlinearity depending on all pos-
sible combination of V and V, and some of their derivatives. Moreover,
we show that the variable V satisfies similar energy and weighted energy
estimates as the functions 4 and ¢, i.e. with a slow increase in time.

e Finally, to analyze* the equation (1.17) we use the key Z norm defined
in (1.9). Unlike all the other energy and weighted energy norms, which
are allowed to increase slowly at t — oo, the Z norm of the solution
is not based on L2-type of spaces and is the only strong norm we are
able to control uniformly in time. Letting f(¢) = ¢AV (¢) and using the
Fourier transform method, we identify an appropriate nonlinear correction
L= L(]?) and show that the functionr — F~![¢/L¢ 't)f(%‘, t)] converges,
at a polynomial rate, as t — oo. This suffices to prove global existence

and modified scattering.
The crucial £ ~'/2 pointwise decay of the solution, which is needed to close the
energy estimates, is then a consequence of the linear bound in Lemma 6.2,

le™ Al S A1) 21EP RE) | Lo+ + 1)
[l - 8xhll 2+l 2] - (1.18)
Notice that this pointwise bound requires sharp control of the Z norm, but can

tolerate slow increase of the energy norms in time. This is consistent with the
information we have on our solutions.

4 This step was considered, as a model case, in [27]. More precisely, we considered the semi-
linear Cauchy problem

oru +iAu = ic0|u|2u + c1u3 + czuﬁ2 + 0353,

co € R, and ¢1, ¢3, ¢3 € C. This is a simplified semilinear version of the quasilinear equation
(1.17), and energy and weighted energy estimates are not an issue. However, to prove global
existence and pointwise decay, one still needs to identify an appropriate logarithmic correction,
and prove modified scattering using a norm similar to the Z norm. A similar argument was used
in [28] in the case of scattering critical semilinear Schrodinger equations (see also [23,35]). For
more works on modified scattering we refer the reader to the papers of Delort [17], Hayashi and
Naumkin [23,24], Lindblad and Soffer [33], Deift and Zhou [15,16], and references therein.
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Global solutions for the gravity water waves system 663

1.3.3 Plan of the paper

In Sect. 2 we describe in detail the strategy of our proof through Propositions
2.1-2.5. In Sect. 3 we prove the main Theorem 1.1 assuming these proposi-
tions. In Sect. 4 we state Propositions 4.1-4.4 and show how they imply the
decay and the control of lower Sobolev norms stated in Proposition 2.5. Propo-
sitions 4.1-4.4 are then proved in Sects. 5 and 6. In Sect. 7 we describe the
change of coordinates used by Wu [45], the cubic equations obtained there, and
the associated energy functional. In Sect. 8 we prove the energy estimates con-
tained in Proposition 2.3 via Propositions 8.1-8.3. We then prove Proposition
2.2. i.e. that the change of coordinates used is a diffeomorphism, on any time
interval where one has a small solution satisfying certain a priori bounds. The
transition of energy norms to Eulerian coordinates is done in Sect. 10, where
we prove Proposition 2.4. In Appendix A we first give some variants of the esti-
mates used in [45] that are compatible with our energy estimates. Section A2
contains some estimates for singular integral operators of “Calderén commu-
tators” type that are used in the course of the energy estimates. In appendix B
we calculate the resonant contribution of the cubic nonlinearities in Eulerian
coordinates, after the application of the normal form. Appendix C contains
estimates for the quartic and higher order remainders in the equation (1.2).

2 Strategy of the proof

The proof of Theorem 1.1 relies on a set of different Propositions. We state
these key Propositions below and make some comments.

2.1 Local existence

Our strategy for controlling high Sobolev norms of solutions relies on the
energy method of Wu [45], which is developed starting from the Lagrangian
formulation of the problem. Therefore we begin by describing the local exis-
tence theory in Lagrangian coordinates. Assume that at the initial time the
interface Sy is given by the graph of a function sg : R — R, with hg(e) — 0
as |a| = oo. Let zo(«) = a+ihg(a) be a parametrization of So C C. Assume
that for some p > 0

z0(@) —z0(B)| = pula —B|  Va, BeR. 2.1)

Letz = z(t, «) be the equation of the free surface S; attime ¢, in the Lagrangian
coordinate o, with z(0, &) = zo(«). The following local existence result holds:
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664 A. D. Ionescu, F. Pusateri

Proposition 2.1 (Local existence in Lagrangian coordinates [45, Theorem
5.1], [43]) Let N > 4 be an integer. Assume that

2

0<j=N

0 Ga =120, 4z O)| |+ (0 ©, 220 @), <e0.
(2.2)

Then there exists a time T > 0, depending only on the norm of the initial data,
such that the initial value problem for (1.5) has unique solution z = z(t, @)
fort € [0, T, satisfying forall j < N

9 (za — 1,21, 3azs) € C ([0, T1, H'A(R))
3 (zu1s dazur) € C ([0, T1, LA(R))
and |z(t, ) — z(t, B)| = vl — B, forall a, B € R, ¢t € [0, T, and some
v> 0.

Moreover, one has the following continuation criterion: if T* is the supre-
mum of all such times T, then either T* = 00 or

sup > 18zl + 18520l 1o
1€[0,T%) e
0=j<[ % ]+2
4 o= b ' 2.3)
sup = 00. .
Ol;ﬁﬁ Z(t9a)_ (t’ﬁ)

Given N = Ny, and a local solution on [0, 7T'], with initial data as in the
main Theorem, we assume that

; ; 3/4
sup > N8z ® 2 + 18zl + 2a() = Lo | < e *.
0.7

011 0<j<042

(2.4)

To obtain a global solution it suffices to prove that the quantity in the left-hand
side of the inequality above is bounded by Cegy.

5 Recall that the Taylor coefficient a can be expressed in terms of z and z;, see formula (5.13)
in [45].
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2.2 The main a priori assumptions

Under the a priori assumption (2.4), we have that Rez is a diffeomorphism on
[0, T]. We can then relate the Eulerian variables # and ¢ to the Lagrangian
map o — z(t, o), for ¢t € [0, T'], via the following identities

h(t,Rez(t, @)) = Imz(z, @), ¢(t,Rez(t,@)) = ¥ (t,a). (2.5)

Here (¢, @) is the trace of the velocity potential in Lagrangian coordinates,
which can be obtained from the map z, for example, using the Bernoulli equa-
tion ¥, = —Imz + (1/2)z/|, ¥ (0, @) = ¢o(@).

In addition, we also need Wu’s change of coordinates k as in [45], to obtain
cubic equations amenable to energy estimates. The explicit form for k is given
in (7.2), and is the same as the one used by Totz and Wu [41], see formula (2.3)
there. As long as this transformation & is a well-defined diffeomorphism, one
can associate to the Lagrangian map z a modified Lagrangian map ¢ = zok ™!,
and the following vector associated to the new coordinates:

Z(t, o) = (Ce(t,a) — 1, u(t,a), w(t, o), Im¢ (¢, o)), (2.6)
with
g“:ZZOk_l, ui=z ok ', wi=zyok . 2.7)

Our main bootstrap assumptions on the solution are:

sup [(1 + 07PN @), @)l xy, + 17(1) + i AP Dl vi+10
1€[0,T]

TG, 9)lz] < e, 2.8)
up_ [+ D7 IEO Ny, + IZON s + VTFALO Ny | < e,

tell,
(2.9

and

sup |[[kq (t) — Ll yno+se < €1, (2.10)
1€[0,T]

where Xy, is defined by (1.7) and Z’ is defined in (1.8), &1 < 8(3)/4, and
po = 107, In other words we assume a priori control on the Eulerian variables

(h, ¢), on the modified Lagrangian variable ¢, and on the diffeomorphism k.
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To close the bootstrap argument we need to prove improved control on these
quantities; this is the content of Propositions 2.2-2.5 below.

2.3 The main Propositions

Our first proposition, which is proved in Sect. 9, provides improved control
on the diffeomorphism k.

Proposition 2.2 (Control on the diffeomorphism k) Assume that (2.8)—(2.10)
hold and, in addition,

ke (0) — Iy np/243.00 S €0 - (2.11)
Then

sup ke (1) — 1]l yno/aesce < 0 + &7, (2.12)
t€[0,T]

The proof of the above Proposition relies crucially on the exploitation of a
special null structure present in the transformation k.

Our second proposition concerns improved control of the highest energy
norm in modified Lagrangian variables. More precisely:

Proposition 2.3 (Energy estimates for the modified Lagrangian variables)
Assume that (2.8)—(2.10) hold. Then

sup (1+07PILWOly,, S s +ef. (2.13)
tel0,T]

This is proved in Sect. 8. We follow, to a large extent, the proof of Wu [45],
using cubic equations for the “good unknowns” related to L, and performing
energy estimates. However, some arguments need to be adjusted in order to
avoid the logarithmic losses in the energy bound (compare with (1.15)).

The next step consists in translating the bounds given by the energy estimates
in terms of the modified Lagrangian coordinates, to bounds on the norms of
the Eulerian variables & and 0, ¢.

Proposition 2.4 (Transition to Eulerian coordinates) Assume that (2.8)—(2.10)
hold. Then, fort € [0, T],

(R (2), 3 )l xy, S IZ(2) x> (2.14)

@ Springer



Global solutions for the gravity water waves system 667

and

ILO gy +s S @), B )| g7 + €, (2.15a)
1L lynroo S ICRE), )]l 2. (2.15b)

The proof of Proposition 2.4 is given in Sect. 10.
Finally, we use the Eulerian formulation of the equations to show the decay
of the Z’-norm and bound lower Sobolev norms:

Proposition 2.5 (Control of dispersive and lower Sobolev norms) Assume that
(2.8)—(2.10) hold. Then

sup VI+th@), ¢y < oo+ ef (2.16)
[0,T]
and

7 (t) + i A (2) || vy +10 S €0 + &7 (2.17)

The detailed strategy for the proof of Proposition 2.5 can be found in Sect. 4,
and relies on Propositions 4.1-4.4, which are proven in Sects. 5 and 6.

Proposition 2.5 is the main new ingredient in our proof of global regularity.
We start from the equations (1.2), written schematically in (4.5) and perform
first a normal form transformation to eliminate the quadratic terms in the
nonlinearity. We then analyze the resulting cubic equation, given in Lemma
5.1. A crucial step in the analysis consists in applying a phase correction to
the transformed solution, and estimating it in the auxiliary Z-norm defined in
(1.9).

3 Proof of the main Theorem

Using Propositions 2.2-2.5 we can now complete the proof of the main theo-

rem. Set ] = 88/ * and assume that (2.8)—(2.10) hold. We apply Propositions
2.2-2.5 to conclude that

S[gPT] (14077 (h(), Gx )l xy, + [1-E) + i AP @) vi+10
tel0,

+V1 +tII(h(t),¢(t))||z/] S €0, (3.1

sup [(1+D"IL Ol xy, + IZOl s + VTHALO | S 0.
te[0,T]

(3.2)
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and

sup kg (1) — 1l yno/243.00 S €0- (3.3)
t€[0,T]

This provides the desired improvement of the a priori assumptions (2.8)—(2.10).
By continuity, the improved bounds (3.1)—(3.3) hold on the time interval [0, T].

We consider now the a priori Assumption 2.4. To improve it, we need to
show that

sup | D 190zl + 19z (Ol e + l1za(®) = 1l | < €0
0TI ooy

(3.4)

This follows using the chain rule from the identities z = { ok, z; = u ok, and
Zyr = w o k, see (2.7), and the bounds (3.2) and (3.3). As a consequence of
Proposition 2.1, the solution extends globally, and part (i) of the Main Theorem
follows.

To prove the modified scattering statement in part (ii) we may assume that
t; < tp < 2t and use Lemma 6.1, more precisely the bound (6.13)

g1 + 151N (g6, 1) — g€ 1)l S o1 +1)77, (3.5)

where, see (6.10) and Lemma 5.1,

. . 4 . d
g, 1 =etEVFE ), LE, 1) :=E—/|f(s,s)|2—s,
T s+1
0

f@O)=e"™V(@), V=H+iAV=[h+ A, h)]+iAl¢ + B, ).
(3.6)

With the notation in Theorem 1.1, and using also (5.26), we notice that, for
t € {11, 12},

1+ 1D [ OED A O, 1) — TED Fie, |

2
Li

S |a+ien [men - Ve n]| L set+n71"

2
Lg
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Therefore, for (1.11) it suffices to prove that

[ 16D [e106) Fe 1) — 0 Fig, 1)

, Seo(l+1)7 P
Lg

(3.7)
Notice that e/CED F(&, 1) = g(&, 1)elCEND=LED] ¢ e {1 1,}. Moreover

|/16ER-LED] _ filGEN-LEN]| <|(G(E, 1)~ L(E. 1))

15}
—[GE, t)—LE | S 54/ @, ) — Vg, )| (@, 5|
1

ds

+|V(E,S)|)S+1-

In view of Proposition 4.4, we have, for any & € R and s € [11, #2],

(1618 + 1M1 (176, )| + IV (E, )| + 8, 9)I) < o

Also, using Proposition 5.1 and the bounds [|2.(s) [ n5o + | x ()| gve S €0(1+
s)P0, see (2.8), it follows that, for any & € R and s € [, 2],

(14 1EMTB) (@, 5) — V(E, 5)1) < eo(1 4 5)P0.

Therefore, using these three bounds and (3.5), the left-hand side of (3.7) is
dominated by

[+ 16D (g6, 12) — (6. 1)

L2

&
4 H(l +1EDVI (&, 1) [/ 1OE~LED] _ (ilGEm-LE)]| .
§
Seo(l+m) ™ o sup (1+9)[@E ) = VE )| 2

s€lty,n]
Seo(l4+10)7 P

This completes the proof of the desired bound (3.7) and of the main theorem.
4 Eulerian formulation and proof of Proposition 2.5
In this section we first recall the water waves equations in Eulerian coordinates.

We then explain our strategy for the proof of Proposition 2.5. This will be
obtained as a consequence of Propositions 4.1, 4.2, 4.3 and 4.4 below.
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4.1 The equations in Eulerian coordinates
The system of equations in Eulerian coordinates is

0th = G(h)¢
(4.1)

¢ =—h— %|¢x|2 + W(G(h)ff) + hepr)?,

where

G(h) := /1 + |he >N (h) 4.2)

and V' denotes the Dirichlet-Neumann operator associated to ;.
Given a multilinear expression of 4 and ¢

F=F(h.¢)= D Fjh ¢,

jz1
where F; is an homogeneous polynomial of order j in its arguments, we denote
[Fli := Fi(h, $) (4.3)

and

[Flox == D_[Fl;,  [Fla:= Y [F];. 4.4)

j=k l<j=<k

After expanding N for small displacements of the moving surface, see
[19,40], one obtains the equations

dh = 0x|¢p — 3y (hdy}) — |x](h|dx]¢)
— 210, ] [A210: ¢ + x| (B2|3x|p) — 21 3;|(h|dx|p)] + Ri(h, @),

4.5)
9p = —h — 3o |* + 3110:181% + [0x1 [110x 1> — 9x](h]3x )]
+Ry(h, @),
where:
Ri(h, ¢) := [G(h)¢]=4 (4.6)
(G(h)¢ + hx¢x>2]

Ry (h, = . 477
20 9) [ 20+ P oy @0
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Let us denote

My (h, @) := —0x(hdx®) — |0x|(h|0x|), (4.8)
1
M3(h, h, ¢) := _§|ax| [h2|3x|2¢ + 13| (h? 3¢ |¢p) — 20|09 |(h3x|$)] .
4.9)
1 2, 1 2
02, ¢) == _§|¢x| + Ellaxltﬁl ; (4.10)
Q3. h, ) := 0510 [ldx ¢ — |3x|(h3x19)] . (4.11)
so that

0h = |0x|¢p + Ma(h, ¢) + M3(h, h, ) + Ri(h, $),
(4.12)
¢ =—h+ Q2(¢,9) + Q3(¢, h, ) + Ra(h, §).

4.2 Strategy for the proof of Proposition 2.5

Recall thatin Proposition 2.5 we are making the following a priori assumptions:

sup [ (1407 (h(0), 39 (O) 1y, +VTH TN, WDl | < &1

t€[0,T]
(4.13)

and

lho + i Aol gvo+1 + [lxdx (o + i Ado)ll gros2 + 1ho + i Agollz < €0,

(4.14)
for some €| € [gg, 1]. We then aim to prove
sup T+ 1l(h(0), ¢z S €0 + &3 4.15)
1€[0,T]
and
sup [[A(t) +iAd @) g0 S €0 + 8%. (4.16)
t€[0,T]

To prove (4.15) and (4.16) the idea to transform the quadratic equations into
cubic ones, and then apply the strategy of our previous paper [27] to the cubic
equations. We will proceed through several steps. We first perform a bilinear
normal form transformation:
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Proposition 4.1 (Poincaré-Shatah Normal Form) There exist bilinear opera-
tors A and B such that if

HY i amm, ),
(4.17)
d
v ¢+ B ).
then the function V defined by
vE H+ing 4.18)
satisfies
0V +iAV = C (h, |0:]¢) (4.19)

where C is a nonlinearity consisting of cubic and higher order terms.

A more precise statement of this Proposition, with the explicit form of
A, B, and C is given in Sect. 5, followed by its proof. In Sect. 5.3 we show
the following bounds on the transformation:

Proposition 4.2 (Bounds for the transformation) Under the a priori assump-
tions (4.13) on h = h(t) and ¢ = ¢ (t), we have for any t € [0, T]
IAC, 1) ||y +4.00 + IABR, @) |lypny +400 S €7(1+1)71/2, (4.20)
LAGR, ) o5 + I ABC, )l ro-s < &7 (4.21)
ISAGR, )| ny_, + ISABGR, G| ny . S &l (4.22)
H?2 H72

In particular we have

IR, )l 7 SNVl ynsacs + (141712, (4.23)
1B+ iApl w10 S IV I gnyan + &3, (4.24)
and
IV [y saoe S (141712 (4.25)
IH +i0, ¥ yno-6 < e1(1 4 1), (4.26)

< e1(1+1)M. (4.27)

~

ISHI no_o + 1S9 N ¢
H?2 H™2

The above Proposition shows that the a priori smallness assumption (4.13)
can be suitably transferred to V. The next step is to improve (4.27) by using
the equation (4.19) and the specific properties of the nonlinearity:
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Proposition 4.3 (Improvement of the weighted bound on V) Let V be the
function defined by (4.18) and satisfying (4.19). Then

sup (1 + t)_SPO [||SV(t)||HNO/2—20 + ||V(t)||HN0/2—20] < e+ 8%. (4.28)
t€[0,T]

Furthermore, if we define the profile of V as

Ft,x) = (e“AV(z)) ). (4.29)
we have

sup (1 + )77 [xdy £ (Ol grvoz—20 + I f @)l yvorn20] S g0 + €.
t€l0,T]

(4.30)

This is proved in Sect. 5.4. The bound (4.28) improves the bound (4.27)
by gaining half derivative for low frequencies on the estimate for W, at the
expense of losing a small amount of decay and some derivatives. This gives
us (4.30) and allows us to exploit the bounds obtained in our previous paper
[27].

Using the bounds given by Proposition 4.2 we will work on the scalar cubic
equation (4.19) with the aim of showing:

Proposition 4.4 (Bound on the Z-norm and decay of the Z’-norm of V') Let V
be defined as above, and satisfying the bounds (4.25), (4.26), (4.30) . Assume
further that

sup [[V(DIlz < €1, 4.31)
te[0,T]

where Z is the norm defined in (1.9). Then

sup [Vl < eo+e3. (4.32)
t€l0,T]

As a consequence, using also Lemma 6.2,

sup V1 + |V () w4 S €0 + &7, (4.33)
t€l0,T]
and
sup |Vl yven < g0+ &3 (4.34)
tel0,7T]
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The proof of (4.32) constitutes the heart of the proof for the decay in Eulerian
coordinates, and is performed in Sect. 6, using a construction similar to our
paper [27].

Using (4.31) and an estimate similar to (4.20), we can also obtain the fol-
lowing:

Corollary 4.5 Under the a priori assumptions (4.13) and (4.31) we have

sup (1 +0)8p (1)) o < €0 + &7 (4.35)
t€l0,T]

This shows in particular the validity of the assumption (8.128) in Lemma 8.10.

Proof of Corollary 4.5 For any k € Z let Py be the Littlewood—Paley projector
defined after (5.18). We estimate, using (4.33) and (4.23)

1P ()l < (20 + eD2 72 (1 + )72,
At the same time, using (4.32), (4.20), and the bound

IPcB(h(t), ()l oo < 2XNFPeB(A (), ¢ ()l Lo
S29NhO) 2 110x 19 (1) 12 S 2562,

see the explicit from of the symbol b in (5.3), we can obtain
1P D) oo S N Pe¥ @) oo+ PB (D), () 0 S 2 (e0+67) + 257,

The desired conclusion follows from these estimates by considering the cases
2k <1+ and 2k > (1417378, O

Observe that (4.33) together with (4.23) imply (4.15). The bound (4.34)
together with (4.24) implies (4.16), thereby concluding the proof of Proposition
2.5.

5 Proof of Propositions 4.1, 4.2, and 4.3: normal forms

In this section we aim to transform the quadratic equations (4.5) into cubic ones
using a normal form transformation, as in [19,37]. The possibility of doing
this relies on the vanishing of the symbols of the quadratic interaction on the
time resonant set. We remark that the structure of the transformation here is
very important because we only have information on d,¢ and not on ¢ or A¢.
Therefore we want to find H and W as in (4.17), with A and B depending
nicely on 4 and d,¢, and such that H + i AW satisfies a cubic equation.
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5.1 Solving the homological equation

Given a suitable symbol m : R x R — C we define the associated bilinear
operator M (f, g) by the formula

1 —~
FIM( 91 ®) = 5 / m(E. ) FE — Mo dn. 5.1)
R

The following lemma gives the explicit form for the transformation in Propo-
sition 4.1:

Lemma 5.1 Let

El m &§—n
)= =1 5.2
A = e ©:2)

E—n &
b(E, n) = — =, 5.3
&, m |77||‘§_}7| 2] (5.3)

and
ma(&,n) =&n— &lInl, (5.4)
1 1

@&, = E(S —mn+ EIS —nlinl. (5.5)

Then, the function V defined as
VY H 4 iAV = [h+ AGh, )] + i Alp + B(h, §)] (5.6)

satisfies

OV +iAV =N3+ N, (5.7)

where N3, respectively Ny, are cubic, respectively quartic and higher, order
terms explicitly given by

N3 Ms(h, b, ¢) + 2A(Ma(h, ). h) + i A[Q3(p, h. §)

+ B(Ma(h, ¢), ¢) + B(h, 02(¢, )], (5.8)

No ™ Ry(h. ¢) + 2A(M3(h, h, §) + Ry (h. ). h) + i A [Ra(h, )

+ B(h, Q3(¢, h, ) + Ra(h, @) + B(M3(h, h, §) + Ri(h, ¢), $)].
(5.9)

Proof of Lemma 5.1 Given equation 4.12 we look for a transformation of the
form (h, ¢) — (H, V), with
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H=h+A(¢,d)+ Ar(h, h),
(5.10)

V' =¢+ B(h, ),

where A1, A, are symmetric bilinear forms and B is a bilinear form. Our goal
is to eliminate the quadratic nonlinear expressions, i. e.

(5.11)

0y H = |0,|¥ + cubic terms
0,V = —H + cubic terms.

Indeed, using (5.10) and (4.12), we have

O H — |0x|W = — |0x|¢ — |0x| B(h, ) + 0;h + 2A1(3;¢, ¢) + 2A2(3;h, h)
= — [0x|B(h, ¢) + Ma(h, ¢) + M3(h, h, ¢) + Ri(h, ¢)
—2A1(h, ) +2A41(Q2(¢, 9), ) +2A1(Q3(¢. h. $), ¢)
+2A1(R2(n, 9), @) +2A2(|0x|p, h) +2A2(M2(h, $), h)
+2A2(M3(h, h, @), h) +2A2(R1(h, §), h),

and

OV +H="h+A(¢p,p) + Ay(h, h) + 0;¢ + B(h, 3;¢) + B(d;h, ¢)
=+A1(¢, ) + Az(h, h) + O2(¢, ¢) + 03(¢, h, §) + Ra(h, ¢)
— B(h, h) + B(h, Q2(¢, ¢)) + B(h, Q3(¢, h, §)) + B(h, Ra(h, ¢))
+ B(|ox|¢p, @)+ B(Mr(h, ¢), ¢)+B(M3(h, h, ), )+ B(Ri(h, ¢), ¢).

The condition (5.11) is equivalent to

—[0x[B(h, §) + Ma(h, ¢) —2A1(h, §) +2A2(|0x]¢, h) =0,

A1(, ¢) + 02(9, ¢) + B(lx]¢, ¢) =0,
Ay(h,h) — B(h,h) =0.  (5.12)

Therefore one can define

b, m) +bE.§—n)
> :

ar(§,n) =—q26.n) —

a(&,n) =
b, g —nl+bE & —nnl

2
b, n)
20181+l =15 —nDg2(&, M)+ (nl+1§ —n|—1E)m2(§, n) —2|n|m2(§, § —n)
B D, n) ’

(5.13)
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where

D, n) = —IE1F — |& — nl* — In)* + 2I€11E — nl + 2I&lIn] + 2InllE — 7l

and the identities (5.12) are easily seen to be verified.

The formulas can be simplified in the one-dimensional situation. Indeed,
we notice first that m(&,n) = m(—§&, —n) for all m € {q2, m2, ay, az, b}.
Moreover, for £ > 0, we calculate® explicitly:

if n < 0 then

@&, n) =0, ma&,n) ==2|&lInl, ma&,&—n) =0,
D&, m) =4l&lnl, b&,n) =—Inl;

if n € (0, ) then

g&.n) =1& —nlinl, m2&,n) =0, myE,&—n) =0,
D&, n) =41& —nlinl, b&E,n) =—nl;

if n > & then

QZ($7 77) = 05 mZ(S’ 77) = O’ mZ(S’ 5 - 77) = _2|€||$ - 77|,
D&, n) =4[§l1E —nl, b, n) = Inl.

Using also the formulas in the first line of (5.13), we calculate, for & > 0,

if 7n<0 then ai(§,n) =0, ax(§,n)=5§/2
if ne (07 5) then al(g’ 77) = O? 02(59 77) = _5/2’
if n>& then ai(§,n) =0, ax&,n) =E§/2.

In particular A; = 0 and the desired formulas in the lemma follow. |

5.2 Analysis of the symbols

We now want to study the behavior of the symbols that appear in Lemma 5.1.
We will describe our multipliers in terms of a simple class of symbols S,
which is defined by
codef (o2 ) : T o
§% = {m : R“— C: m continuous and ||m | s :=||F "~ (m)|[;1 < oo}.
(5.14)

6 Some of our symbols are discontinuous when § = O or n = O or £ — n = 0 due to the
vanishing of the denominator D (&, n).
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Clearly, S*° — L*°(R x R). Moreover, S symbols are compatible with
Holder-type bounds on bilinear operators. Our first lemma summarizes some
simple properties of the S* symbols.

Lemma 5.2 (i) If m, m’ € 8 thenm -m’ € S and
m - m||ls < [lmllsecllm’|| s (5.15)

Moreover, if m € 8%, A : R? — R? is a linear transformation, v € R2,
andmy (&, 1) :=m(A&, n) + v) then

Ima,vllse = lImlls. (5.16)

(ii) Assume p,q,r € [1,00] satisfy 1/p + 1/q = 1/r, and m € S*°. Then,
forany f, g € L*(R),

IM(f N < Imlis<ll flleligliea, (5.17)

where M is defined as in (5.1).

Proof of Lemma 5.2 Part (i) follows directly from the definition. To prove (ii)
let

K y) = (F'm)(x. y) = / m(E, me e dedn.

RxR
Then
M(f, g)(x) = C/eixsin(%“, ) f(E —mE() dndé
R2
= C/K(u, V) f(x —u)g(x —u —v)dudv,
R2
and the desired bound (5.17) follows. O

We fix ¢ : R — [0, 1] an even smooth function supported in [—8/5, 8/5]
and equal to 1 in [—5/4, 5/4]. Let

o (x) = o(x/25) —p(x /25 Y, keZ xeR. (5.18)

Let Py denote the operator defined by the Fourier multiplier § — ¢ (&). Given
any multiplier m : R2 — C and any k, k1, ky € Z we define

mRR ) = m () - ok )k (6 — Mer (). (5.19)
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Our next lemma, which is an easy consequence of the explicit formulas (5.2)—
(5.5), describes our main multipliers m», g2, a, b in terms of S symbols.

Lemma 5.3 Foranyk, ky, ky € Z we have

k,ky,k k,ki .,k H
lmy ™ "2 | 500 + llgy™ "2 g0 < 2K 2minG1K) (5.20)
la* k1R | g0 < 2K, (5.21)
and
[BFF1R2 | g0 < 2F2, (5.22)

5.3 Proof of Proposition 4.2: bounds on the normal form

Recall that we are assuming (4.13) and we want to show the three estimates
(4.20), (4.21) and (4.22) for the bilinear operators A, B defined through their
symbols a, b in Lemma 5.1.

As a consequence of (4.13), we have the following bounds on 2 = h(t) and
¢ = ¢(t), forany k € Z:

| Pehllz2 + 2k||Pk¢)||L2 <e(1+ t)Poz—NokJr’
| Pehll oo + 252 Pegpli oo < e1(1 4 1)~ 1/22~ N1tk (5.23)
I PeShll 2 + 2K PeSoll 2 S en (1 + ryPoa—Noke/2,

where here, and from now on, we denote ky = max(k, 0).
For any k € Z let

X=Xl ual,
Xkl = {(k1, k2) € Z x Z : min(ky, k2) < k + 4, |max(ky, ko) — k| < 4},
(5.24)
X2 = {(k1, k2) € Z x Z : min(ky, k) > k — 4, |ky — ka| < 4}.
Also let
Xy = {(ky1, ko) € X : 2mintkik2) < i (k=10 (1 4 )= 101
k. {(k1, k2) k < ( ( )" )} (5.25)

X = (k1. ko) € Xy : 2M0RD) = min 24710, (1 4-1)719)),
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To prove (4.20)—(4.22) we estimate for any k € Z, using (5.23), (5.21)-
(5.22), and Lemma 5.2 (ii),

IPAGR W2 S D I PAPy A, Poh) 2
(k1,k2) € Xy

S D 2Pyl Pl
ki <k+4, [ko—k|<4
+ > 2Pyl Pl
(k1.kp)ex?
< 8%(1 +t)2p0—1/22k/42—(N0—3)k+

and

IPABGR, ¢ 2 S D, 2| PuB(Pih, Piyg) 12
(k1,k2) € Xk

k/2~k
S S R PRl Pl
k1<k+4, |kp—k|<4

+ > 2R P h 2| Pyl
ko <k+4, |k —k|<4
+ D 229 Pyl Pl
(k1.k)ex}?
< e%(l + t)2p0—1/22k/42—(N0—3)k+‘

Therefore, for any k € Z,

IPAh, W)l 2 + | PcAB(h, @)l 12 S &7 (1 + 1)?Po=1/20k/4p=(No=Dks
(5.26)

and the desired bound (4.21) follows.
Similarly, we also have the L bounds,

IPCAG, W)l S D IIPCA(Pi R, Pigh)| Lo
(k1,k2)€ Xy

< D 2Pyl Pohll
(k1,k2) € Xy
5} 812(1 +t)p()—l2k/42—N()k+/2
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and

IPABh, @)= S D 2Y2IUPB(Pyh, Pid)llL
(k1,k2) € Xy

S D 220 bl Pl
(k1,k2) € Xy
S 8]2(1 + t)po—lzk/42—N0k+/2.

Therefore, for any k € Z,

| PeA(h, B)||Loe + || PcAB(h, @)oo < e (1 + r)Po1ok/4p=Nok+ /2.
(5.27)

and the desired bound (4.20) follows.
To prove (4.22) we notice first that the symbol a is homogeneous of degree
1,i.e.
a(A&, ) = ra(&, n) forany £,n € R, A € (0, 00).

Differentiating this identity with respect to A and then setting A = 1, we have

(§0za)(§. n) + n9ya) (€. n) = a(&, n).

The symbol to (§,n) — b(&, n) is homogeneous of degree 1. As a conse-
quence, we have the identities

(§9ga) (&, m) + (ndya)(§, n) = a(§, n),
(§0:b)(E, m) + (ndyb)(E, m) = b(E, ). (5.28)

Using the first formula in (5.28) we calculate
F[SA(h, h)] (&)

= (510 - 63— 1][ [ ate.its - n. 0. 1))
R

1~ = -~
[ aten[5r@h ~7]6 - n.ofo.0dy

R

—~ 1 —~
+/a(s, mh(E —n, t)Et(ath)(na t)dn

R
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682 A. D. Ionescu, F. Pusateri

- / (E0:a) &, MIE — 0, OBy, 1) dn
R

- / a (e, MEGR)E — 0, OBy, 1) dn

R
_ / a (&, )ShE — 0, O, 1) dn — / a(e. M@ E — n, R, 1) dn
R R
+/a<s, WA — 0, OShGr. 1) dn
R
+ / a(g, Mh(E —n, DO, 1) + h(n, H]dn
R
+ / [(10ya) €. ) — a(6. MIRE — n. R (0. 1) dn
R

= F[A(Sh, )] (§) + F [A(h, Sh)](§) — F [A(h, )] (§).

A similar calculation can be applied to the operator B, using also (5.28).
Therefore

SA(h, h) = A(Sh, h) + A(h, Sh) — A(h, h),

(5.29)
SB(h,¢) = B(Sh, ¢) + B(h, S¢) — B(h, ¢).

For any k € 7Z we estimate, using (5.23), Lemma 5.2 (ii), and (5.21)—(5.22),
and recalling (5.29),

IPCAGSR. M2 S D 1PcA2(Py, Sh, Puh) |l 2

~

(k1,k2) € Xy

S D0 2Py Shl 2 Pkl
(k1,k2)€Xy 1

+ D, 2amnCRR P Shil 2 Piyhll 2
(k1.k2) € X s
< 8%(1 + t)ZPo—1/22k/42—(No/2—3)k+’

and

| PcAB(Sh, §)ll 2 + | Pe AB(h, S$)| 12

S29% > [IPcB(PyySh. Pyl 12 + | PaB(Piy b, Pry S$)l 2]
(k1,k2)€X)
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SRS (220 Py Sl 2N Pl + 22 Pyl e | Py S 2 |
(k1,k2)€Xp 1

L ok/2 Z omin(ki k2)/2
(k1,k2)€Xy s

x |21 Py Sl 21 Plad 12 + 21 Pyl 21 Pra S .2

< 8%(1 + [)2170—1/22k/42—(N0/2—3)k+.
Therefore, using also (5.29) and (5.26), for any k € Z,

IPeSAC, )| 2+ | PeSAB(h, @)l 2 Sef(1 4 1)?Po= 12k 4= (No/ 2=k
(5.30)

and the desired bound (4.22) follows.

5.4 Proof of Proposition 4.3
We start from the formula (5.7),
o,V +iAV = N3+ Ny,

where N3 and Ny are given in (5.8) and (5.9). Applying S and commuting we
derive the equation

0 +iA)SV = SN3 + SN+ (1/2)(N3 + Nay).
Moreover, with f(t) = ¢"/AV (¢), we have
(B (1) = A [SV — (1/2) (N3 + Na)].
It follows from the assumption (4.14) and Proposition 4.2 that
IV Ol orz-s + 1SV O yvos2-s S €0 + &7

Therefore, it suffices to prove the following:

Lemma 5.4 Foranyt,
NG gnvo-20 + 1SNl o220 S &5 (1 4 1)7P0 1, (5.31)
and

IV 020 + ISNG a0 S &7 (1 417071 (5.32)
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Proof of Lemma 5.4 As in the proof of Proposition 4.2, see (5.26), (5.27), and
(5.30), for any k € Z we have

1PcO2(d, D)l 2+ | PMa(h, @)l 2 S eF (1 + 1)?Po= 12k 4= (No=Dks

IPeSQa2(d, d)l 2+ | PSMa(h, §)ll 2 S eF (1 + 1)2Po /20K 4= (No 2=k
(5.33)

1PcQ2(#, Pl Lo + || PuMa(h, §) || 1o < e7(1 4 )P0 12K/ =(No/2=3)ks

We examine now the trilinear expressions M3(h, h, ¢) and Q3(¢, h, ¢) in
(4.9) and (4.11). These expressions appear in both nonlinearities A3 and Nj.
To estimate them we start by estimating /|9, |¢ and /|0y |2¢: using (5.23), for
any k € Z, we obtain as before

| Pe(h|dx 1)l 12 + | Pe(hldx Pl 2 S eF (1 + 1)2Po /2= (No=dke

I PeS(h13x 1)l 2 + 1 PeS(RI3x PPNl 2 S €T (1 + 1)2Po— /2= (No/2=3ks |
(5.34)

|| P (h|8x )l Loe + || Pe(h|dy [2p) | oo < e (1 4 £)Po 1o~ No/2=3ks

We examine the formulas (4.9) and (4.11). For any k € Z we use (5.23) and
(5.34) and estimate as before, for any k € Z,

27K PeM(h, b, )2 + 1 PeQ3(o, by @)l 2 < &3 (1 4 1)3Po— 17 (No=Oks

2K P SM3(h, b, @)1z + 1PSQ3(h, by @)1z S &3 (1 4 1)3P0~ 1o~ (No/2=00ks
(5.35)

27K P M (hy by @)L + | PeQ3 (g, by @) Lo S &5 (1 + 1)3P0=3/20=(No/2=60k+

Recall the formulas (5.8) and (5.9),

N3 = Ms(h, h, ¢) +2A(Ma(h, ), h) +iA[Q3(d, h, )
+B(Mz(h, @), ¢) + B(h, Q2(¢, $))],
Ni = Ri(h, ¢) +2A(M3(h, h, ) + Ri(h, $), h) +iA[Ra(h, ¢)
+ B(h, Q3(¢, h, d) + Ra(h, ¢)) + B(M3(h, h, ¢) + Ri(h, @), P)],

and the bounds (13.10)

IRi(h, ) + i AR (h, )|l yno-10 + IS(R1(h, @) + i AR2(h, )|l gynos2-10
et +10)7%
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The desired bounds (5.31) and (5.32) follow using (5.33), (5.35), and Lemma
5.5 below, with G = Ry (h, ¢) and

F e {020, 9), Ma(h, §), M3(h, h, §), Q3(¢. h, §), Ri(h, $)}.

Lemma 5.5 Assume F and G satisfy the bounds, for any k € Z,

| P F 2 + 282 PGl 2 S e3(1 + 1)3Po= /20~ (No=12)ks
IPSF 2 + 22| PeSG 2 < e2(1 + 1)30=1/20=(No/2=12k+ (5 36)
| P F L + 282 PGl oo < e3(1 + )3P0 1= (No/2=12)ks

Then, for any k € Z,

| PRACF, h) || 2 + 22| P B(F, )l 2 + 2K | PeB(h, G) | 12
< 8%(1 + t)5p0—12k/42—(N0—16)k+,

| PeSAF, B)|l 2 + 25| P SB(F, ¢) |12 + 22| P SB(h, G) | 12
< e%(l + t)5p0—12k/42—(N0/2—16)k+.

(5.37)

Proof of Lemma 5.5 We estimate, using (5.23), (5.36), Lemma 5.3, and
Lemma 5.2 (ii),

IPAF. D2 S DL 2YPg Fllieel Pkl

~

k1<k+4, ko —k|<4

k
+ D> 2Py Fllel Pl
ko <k+4, k1 —k|<4

+ D 2Py Fllll Pohll g
(k1.kp)eX?
S, 8%(1 + t)sp()—lzk/42—(N()—l6)k+

and
IPCACF, Sh) 2 + | PAA(SF, 1)l 2
S DL 2M[IPG FllLl Py Shll 2 + | Piy SF | 2l Pryhll o]

(k1,k2)€Xy 1
+ > 2RI P Fl ol Py Shl2 + | Py SF 2 Prohll 2]
(k1,k2)eXy s

< e3(1 4 1)SP0= 12kl (No/2- 16K+

@ Springer



686 A. D. Ionescu, F. Pusateri

This proves the desired bounds for || PtA(F, h)||;2 and || Pt SA(F, h)| ;2. The
other bounds in (5.37) are similar. O

6 Proof of Proposition 4.4: uniform control of the Z norm

In this section we prove Proposition 4.4, which is our main bootstrap estimate.
We start by rewriting the equation (5.7) in the form

&V +iAV = N5 + R, 6.1)
where

Ny = Msy(H, H, W) + 2A,(My(H, V), H)
+iA[Q3(V, H, V) + B(My(H, V), V) + B(H, 0>(¥, ¥))], (6.2)

and
R := N3+ Ny — As. (6.3)
The point of the above decomposition is to express the cubic part of the non-
linearity in terms of H and W, hence of the solution V.
Letting f (1) = €AV (¢) as in (4.29), we have
o f = "™ (N3(t) + R()). (64)

Notice that

V) + V@) e ")+ F)

2 2 A (6.5)
iNTTV@) = V(@) DAV — e AT @)
U(r) = > = 5 .

H() =

Therefore, the trilinear expression /(/'3 can be written in terms of f(¢) and £ (¢),
in the form

i

P [IT¢E n+17E D
+ I E D+ E D),

I ) = / A —AE— =M= +A@] A+ 1 )

RxR
x f& —n,00f(n —o0,1)f(o, 1) dnda,

F("MN3(1))(8) =
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I = / HMAOZAETIHROm RO 0, o) (& = 0. 1)

RxR

x f(n—o,1)f(o,1)dndo, (6.6)
I E ) = / FIAO—AE)=A0—0) =A@ (5 o) F(E — . 1)

RxR

X f(n — o, t)f(cr, t)dndo,
I (1) = / FHAEHAGC=I A=A (2 n )T (€ — 1, 1)

RxR
X 7(17 — 0, I)T(a, t)dndo.

The symbols ¢, ¢™=F, ¢™+, ¢~~~ can be calculated explicitly, using the
formulas (4.9), (4.11), and (5.2)—(5.5), see Appendix B. For us it is important
to notice that these symbols are real-valued, and satisfy the uniform bounds

|7~ 253 (&, 0. 0) - @) ry (6 — i, (1 — 0)<Pk3(0)]”L1(R3)
< 21/222max(k1,k2,k3)’ (67)

forany (t1¢2t3) € {(++—), (= —+), (+++), (———)}and[, ki, k2, k3 € Z.
As a consequence,

”Clltzt3 &.n,0)-01(E)pr, E—1) @k, (N—0 )iy (0) Hsﬁog Szl/zzzmax(kl,kz,/a)’

(6.8)

for any (t123) € {(++ =), (= = +), (+++),(— = )}, § € R, and
I, k1, k2, k3 € Z. Moreover, for any k = (k1, k2, k3),1 = (I1, 2, [3) € 73 let
e, y)i=c"TTE —x, —E —x — ),
(Ox i a(x, ¥) 1= (Bxcp) (x, ¥) - @k (6 + X)pr, (6 + ¥)
X @3 (6 +x + y)on (DR (V)@ (26 +x + ),
Oy a(x, ¥) == (Bycp) (x, ¥) - @k, (§ + X)pr, (6 + )
X @iy (6 + x + y)on (D)@, (V)¢ (28 +x + y).

Then, for any k, 1 73, and &£ € R,
|| (8)(0;)]( 1”500 <9- min(kl,k3)25 max (kq ,kz,k3)/2’

||(8ycg)k,]||800 5 2— min(kz,k3)25max(k1,kz,k3)/2. (69)
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688 A. D. Ionescu, F. Pusateri

These bounds are proved in Lemma 12.1.
Let (compare with (12.9)),

(&) == —8m|£|¥?c£(0,0) = 4 |g|*,
L 1) = (S)/ms P

g, 1) = e’“%*”f(s, 1. (6.10)

It follows from (6.4) that

If(é >|2

ALED[ -
)& 0 = o5z 0+ EO S ST 0|
iLE D p—+ ot -
L U GO R AR GO R O
+ eiL(EJ)eifA(S)i{(é—’ 1). (6.11)

Proposition 4.4 clearly follows from Lemma 6.1 below.

Lemma 6.1 With the same notation as before, recall that f satisfies the bounds

sup [ (14077 £ (1) -0
t€[0,T]

+ 1+ 07PN GANOl o0+ FOlz | <er. (612)

Then there is p1 > 0 such that, for any m € {1,2,...}andany t; < t €
[2m -2, 2m+1]’

1G€1P + 151N ) (g6, ) — g€ 1))l Sef27™. (6.13)

The rest of the section is concerned with the proof of Lemma 6.1. We will
use the following dispersive linear estimate from [27, Lemma 2.3]:
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Lemma 6.2 Foranyt € R we have

e hllzee S A+ 1)~ 2 1EP4RE) g0
+ L+ D [llx - dchll 2+ Al 2] - (6.14)

For any k € Z let fk+ =Pf, [ = P, f, and decompose,

Ly L1243
I - Z Ikl,kz,ka’
ki,ka,k3€Z

for (t1103) € {(++ —), (— —+), (++ +), (— — —)}, where

185, (1) = / HMTAE -1 AE—D—0AG-0)-5A©)]

RxR

x C”[2L3(~’;‘_, n, O—)J/“E(s -, [)fk?;(r] — 0, t)f]z’(o’, t)dndo.
(6.15)

Using (6.11), for (6.13) it suffices to prove thatif k € Z, m € {1,2,...},
€] € [2F, 2kt and 1) < 1 € [2 — 2,21 N[0, T then

19}

Z eiL(s’S)[lg;;h(é, s) + C(€)

ﬁ@wﬁ@wﬁea%w

ki,ky,k3eZ 1 st !
< 8%2—171"1(2/% + 2Nk =1 (6.16)
15}
Z eiL(s,s)I/iifit;h (&, s)ds| < 8{32_p1m(2/3k 4+ 2WNiH19ky—1
ki,k2,k3€Z t
(6.17)
for any (¢, t2,13) € {(— —4), (+++), (— — —)}, and

n
/eiL<f~S>eisA<f)1€(g, s)ds| S &2 P 2P 4 oML (6.18)

4]
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690 A. D. Ionescu, F. Pusateri

In view of (6.12) and Lemma 6.14, we have

”J/rz}(S)lle < gy 2pomp~(No=10)L4
”(3];1})(S)||L2 < g12%pom)~lp=(No/2-20)Ly
”fl}(s)”Loo < g1 (2B 4 2N+,
”e:FiSAfli(s)HLOO < g127m/20~ (No/2-200 6.19

forany/ € Z and s € [2™ — 2, 2m+t N0, 7). Using only the L? bounds in
the first line of (6.19) it is easy to see that
|Ili:f?(l23’k3 (S’ S)l 5 8:1’)23p0m2min(k1,kz,k3)/2(1 + 2max(k1,k2,k3))f(N0720),
(6.20)

for any (t1t23) € {(++ =), (= =), (++ ), (— — =)}, ki, ko, k3 € Z.
Moreover, using the L°° bounds in (6.19),

)f;?,(s, ) E ) [ Es)
s+1

(max(lky — k|, [ka — k|, |k3 — kI)).

S 2_m8%2k2_3N1k+ 1[0’4]

cé

Using these two bounds it is easy to see that the sums in (6.16) and (6.17)
over those (ki, k2, k3) for which max(ky, k2, k3) > 3m/No — 1000 or
min(ky, kp, k3) < —4m are bounded by C8f2_p1m2_(N1+15)k+, as desired.
The remaining sums have only Cm?> terms. Therefore it suffices to prove
the desired estimates for each (ki, k2, k3) fixed satisfying ki, k2, k3 €
[—4m, 3m /Ny — 1000].

At the same time, using (6.19), together with the symbol estimates (6.8), it
follows that

13 € 9] S el /22mntne=)

zmed(lq,kg,k3)(1—/3)2—(N1+10) max (ky ,kz,kg,O), 6.21)

forany (¢102t3) € {(++—), (= —+), (+++), (———)}, k1, k2, k3 € Z, and
& € R, where med(ky, k2, k3) denotes the second largest frequency among
k1, k2, k3.

After these reductions, it suffices to prove the following lemma:
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Lemma 6.3 Assume thatm € {1,2,...), k € Z, |&| € [2K, 2" and t; <
th € [2" —2,2" T N[0, T]. Then, for any k1, ko, k3 satisfying

ki, ko, k3 € [—4m,3m /Ny — 1000] N Z,
min(ky, kz, k3) + med(ky, k2, k3) > —m(1 + 3B), (6.22)
we have

19}

[ e +@

131

E(&s)fﬁ@,s)?k;(—s,s)]d
s+ 1 s

< 8%2—21?11"(2;‘3/( + 2(N1+15)k)—1’ (6.23)

and, for any (111213) € {(= — +), (+ ++), (= = )},
)

/eiL(g’s)IziifiZ@(S,S)ds < gj27 2Pk NIk =1 (6 04)

1

Moreover

2
/e"L(S’s)eiSA(S)I/?\(é,s) ds| < ed27Pim 2Pk 4 oNIHINk =1 (6 75)

1

We will prove this main lemma in several steps. The bounds (6.23) and
(6.24) are proved in the remaining part of this section. The main ingredients
are the bounds (6.19). We will also use the following consequence of Lemma
5.2 (i):if (p,q,r) € {(2,2, 00), (2, 00,2), (00,2,2)} then

/ Fg@)h(—n — o)m(n, o) dndo | < |mlis<|l fllLrlglcallhlLr
xR
(6.26)

We also need suitable L2 bounds on the derivatives (9, fli), in order to be able
to integrate by parts in time. More precisely, we have

185 ) (5)l 2 S 1230 == (No=200:. (627)
which is a consequence of the (5.31)-(5.32) and the formula o;f =

e"MNG (1) + Na(0)], see (6.4).
The bound (6.25) is proved in appendix C.
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6.1 Proof of (6.23)

We divide the proof in several cases.

Lemma 6.4 The bounds (6.23) hold provided that (6.22) holds and, in addi-
tion,

ki1, ka, k3 € [k — 20,k +20] N Z. (6.28)

Proof of Lemma 6.4 This is the main case, when the specific correction in the
left-hand side of (6.23) is important. We will prove that

FE R E (=9

++— ~
L oas (68) +¢(6) —

< 2—m8?2—2p|m(2ﬂk + 2(Nl+15)k)_1’ (6.29)

for any s € [f1, t2], which is clearly stronger than the desired bound (6.23).
The bound (6.29) follows easily from the bound (6.21) if k < —m/2.
Therefore, in the rest of the proof of (6.29) we may assume that

k> —m/2. (6.30)
After changes of variables we rewrite’
I €9 = /e”q’(s’""’)fkf(é +1,8)

R2
XJ’C/?;(S +o, S)J’”E(—é‘ —n —o0,5)c;(n,0)dndo,

where

QE.n,0)=AE) —AE+n) - AE +0)+AE +n+0). (631

Let [ denote the smallest integer with the property that 2! > 23k/4p=49m/100

(in view of (6.30) < k — 10). For any m, k € Z, m < k, we define

ky k—1 .
() = [(p(x/Z) /2T, i kzmal o

@(x /28, if k=m.

7 The point of this change of variables is to be able to identify n = o = 0 as the unique critical
point of the phase ® in (6.31).
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We decompose

k+20
L&) = D InG.s), (6.33)

I, L=l

where, for any Iy, [l > 1,

I, s) = / PEND £ FE gy ) [ E 4 005) fi (—E —n—0v9)

R2
<o e (@)ci (0. 0) dndo. (6.34)
Step 1. We show first that

[0, (8, 8)| S 27Med273rm Pk L oIS =L e 1) > max(ly, 1+ 1).
(6.35)

For this we integrate by parts in 1 in the formula (6.34). Recalling that A () =
/|01, we observe that

(3, @) (&, n, 0)|=|A'(E +n+0) = NE+n)| 2222752 (6.36)

provided that | + 5| ~ 2%, |& + n + 0| & 2%, |o| ~ 2/2. After integration by
parts in  we see that

T E OIS 1 E D+ 1 E D+ a9 +1Gr b 9],

where

Iy pas) = / PEND (FE 4 5) [ E + 0vs)

R2

X fk:(_g —n—o0, S)(anrl)(ﬂa U)C;(Ti, 0) dﬁdU,
I naEs) = / PEND (FE 4 5) [ E 4 0,s)

R2

X fi (& =0 = 0. $)r1(n. 0)(@,cH)(n, o) dndo,
Firna(€.5) = [ P10 + 0.5 o)

RZ

X fi (=& —n—o0,5)ri(n, 0)c;(n, 0) dndo,
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Gruint(€.5) = [ 01 3G bn.9) fFE +0.5)
R2
x (3 fr)(=& —n — o, )ri(n, o)ci(n, o) dndo,  (6.37)

and

wl(f ) (M1, (o)

L0 = G ) E 0 o)

“ Ok —2.k14+216 + MPk3—2,k3+21(6 + 1 +0).

To estimate |Fy, 1,,1(§, s)| we recall that & and s are fixed and use (6.26)
with

f(n) = e—isA(é-i—U)(afk-\:-)(s +n,5),
§(O') = e_iSA(s'f‘O')f";:;(g + o, S) . (p(o./212+4)’
7(O) = N0 Lo (6 +0,5) - (022,

Itis easy to see, compare with (6.36), that | satisfies the symbol-type estimates

(@y0gr (. 0)] < 27"27R2%H) 272
x 1y g +4y (1M 14 pn+4y (|0 ), (6.38)

for any a, b € [0, 20] N Z. It follows from (6.19) that

£ 112 S er272pomam NO2=200s g oo S g 27 207 (N0/27200

]2 < e122/227 P,
It follows from (6.26), (6.38), and (6.8) that
1F~ - el S27m2 ket

Therefore, using (6.26) and recalling that 272/2 < 2m/42=3k/8 and that k <
m/10,

|Fyy 1 (6, 5)] < e327K5pomp=(No/2=200ks | 9=m /2= (No/2-20)kx _ pl2/2) Bk

. 2—m2—1224k SJ 8132—(N0/2+40)k+2—m . 2—m/8‘
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Global solutions for the gravity water waves system 695

Similar arguments show that |Gy, 1,.1(€,5)] S 8%2_(1\’0/ 24400k 0 =9m/8 g,
using also the bound (6.9)%, |J1?,12,1 (&,5)| S e327 WNo/2H40ks2=9m/8 There-
fore, for (6.35) it suffices to prove that

) (& )] S 27 meda3rm aBk g p(NiF19k) =1 (6.39)
For this we integrate by parts again in 1 and estimate

Ih 1 GO S L 2 E )+ 1L, 2 E )+ | Fiypa (. s)]
+Gl .2, s)],

where

I o) = / PPEND (FE 4, 5) [ E +0,5)

RZ

X fiz (=& =1 —0,5)(9yr2)(n, 0)c; (n, o) dndo,
i o) = / PEND (FE 4, 5) [ E +0,5)

R2

X fiz (=& =1 —0,5)r2(n, 0)(9yc;) (0, o) dndo,
FinaEs) = [ P0G E + 0.5 +o.)

RZ

X fi, (=& —n — 0, 9)r2(n. o)k (1. 0) dydo,
GinaE.s) = / PENN) (E e Ly ) fEE +0v9)

RZ

x (3 fi) (=& —n—0o,5)r2(n, 0)cg (n, o) dndo.

and

oy e (0. 0)
2= Gy @) L o)

It follows from (6.38) that r, satisfies the stronger symbol-type bounds

|(805r2) (0, 0)] < (27277233 Ty a7
X 1o pn+4)(IND 114 pp+41 (0 ]), (6.40)

8 Theuse of (6.9) requires additional dyadic decompositions in the variables 1, o, and 2§ +n+o.
This leads to an additional polynomial loss ~ m3, which does not change the estimates.
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696 A. D. Ionescu, F. Pusateri

for a, b € [0, 19] N Z. Therefore, using Lemma 5.2 as before,

|Fiy 269+ Gl 2E 9+ 12, 0, 5)]
S 8%2—(N0/2+40)k+2—m . 2—m/8.

Moreover, we can now estimate |Jli’ 12,2@’ s)| using only (6.40) and the first
L°° bounds in (6.19),

b2 9] < i+l 8%(2;% 4 2 NIHISk) =3 | g=mo—li~ho3k/2)295k/2
< 8%27(N0/2+40)k+27m . p—m/350.

This completes the proof of (6.39) and (6.35).
A similar argument shows that

[T (B, 9)] S 27mef23im Bk 4 aWIHIDE L 1y > max(l, T+ 1).

Step 2. Using the decomposition (6.33), for (6.29) it suffices to prove that

FEE D E ) [ (—E,9)
s+ 1

Ji1,s) +c§)
< 27 Mmegpmim Pk 4 p(NiHISk)~T, (6.41)

To prove (6.41) we notice that

<2702 (1) + o)),

‘q’(g’ )+ g <

as long as [n| + |o| < 2%=3_ Therefore, using the L°° bounds in (6.19)

‘Jm(é, $) = J7 (&, s)‘ < 6] @PF 4 2119k =3 gm)y=5k/2)3l
S 8%(2'31{ +2(N1+15)k)—12—5m/4’ (642)

where

Jilj(é’ 5) 1= /e—isno/(4|5|3/2)fli‘(§ + 1, s)]/vk-\fz'(g +0,5)
RZ
X fo(—& =1 — 0. 9002 e o)l (1. o) dudo.  (643)
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Global solutions for the gravity water waves system 697

Using the second bound in (6.19), we see that

P
e + 0. = 6.9 £ [ 107iE + )l
0
S1el 10 /i)l S 1ol 2er2370m2!
whenever |p| < 2!=10_ Then, using the third bound in (6.19) it follows that

@+ 1,9 [ +0,8) f (~6 — 1 — 0,5)
— FEE S I ) f (6. 9)| S £]2l/? 2 NokegSpomp—k(1426),

whenever |n] + |o| < 214 In addition, using (6.9),
k(. 0) — c£(0,0)] < 2%/22
provided that |5| + |o'| < 2/*4. Therefore
FE.5) ~ / om0/ ED £ e o) £ (8 5) [ (=&, )02 )
e
x 9(2710)ct (0, 0) dndo | < 27232 . g30!/2p=NokspSpom)y=k(1+25)

< 8?(2’% + 2(N1+15)k)—12—9m/8. (6.44)

Starting from the general formula

/eaxsz dx — ebz/(4a)ﬁ/ﬁ, a,beC, Rea >0,
R
we calculate, for any N > 1,
/ e—i)cye—xz/N2e—yz/N2 dxdy = ﬁN/e_yz/N2€_N2y2/4dy
R

RxR
=27+ ON"h.
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698 A. D. Ionescu, F. Pusateri

Therefore, for N > 1,

/ e o(x/N)e(y/N)dxdy =21 + O(N~/?).
RxR

Recalling also that 2/ ~ |&|3/42-49m/100 it fo]lows that

3/2

/ eI GE 0Ty (27 lo) dydo —

2

Therefore, using also (6.19),

/ e/ S B e ) £, 5) fi (—&, )02 )2 o)} (0, 0) dndo
8TIEPPE0,0) [ 69 i 6,9 i (<6, 9)

35—(+4p1)m~H—Nok
g Se2 270+,

(6.45)

and the bound (6.41) follows from (6.42), (6.44), and (6.45). This completes
the proof of the lemma. O

Lemma 6.5 The bounds (6.23) hold provided that (6.22) holds and, in addi-
tion,

max(lky — kI, [k — k|, |k3 — k|) = 21,
min(ky, k2, k3) = —19m /20, max(|ky — k3|, [ka —k3]) = 5. (6.46)

Proof of Lemma 6.5 Recall the definition

L (s = /eiw(s,n,a)fkf(é ) FHE+0.5)
R2
ka;(—f —n—o, s)c,:f(n, o)dndo, (6.47)

where
©E,n,0)=AE)—AE+n) —AE+o)+AE+n+0).
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Global solutions for the gravity water waves system 699

It suffices to prove that, for any s € [2" — 1, 2"+,
[ (€ 9)| S 27 efam2pimpm NIk (6.48)
By symmetry, we may assume that |k; — k3| > 5 and notice that

13, @) (&, 1, 0)| = | — A (E +n) + N (E + 1+ 0)| =27 mintkik)/2
(6.49)

provided that | +n| € [2K1=2, 2K42] |£ 4+ 5 + 0| € [2K372,2%3F2] Asin the
proof of Lemma 6.4, we integrate by parts in 7 to estimate

I GO S T E )+ ITEE O]+ [FIE 9|+ |G, 5)],

where

S5 = [P0 TG L FEE 09 (<6 n— a0
RZ
x (dyr3)(n, 0)cg (n, o) dndo,
JREs) = / 5PEND ey ) [T +0,9) fi (—E —n—0,9)
R2
x r3(n, 0)(dycz)(n, o) dndo,
i s) = / YERN @ RV E 4 0.9) [T+ 0u8) fi (—E —n —0.8)
R2
x r3(n, 0)c; (n, o) dndo,

Gi(s.5) = [ VN TR 4 e + o)
R2
x (3 fi)(=§ —n — o, 9)r3(n, o)cg (n, 0) dndo,

and

1

r3(n,0) i= ————— Okl +11E + MPls-1, k3411 + 1+ 0).
S(anq))(é, n’o_) [k1 1+1] [k3 3+1]

Using also (6.49), it follows easily that

||f_1(r3)||L1 5 2—m2min(k1,k3)/2, “]:_1(8777'3)”[‘1 5 2—m2— min(k|,k3)/2.
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700 A. D. Ionescu, F. Pusateri

We apply first (6.26) with

F) = e PHED0E +0.5), B(0) 1= PO [1E +09),
h©) ="MV f(—E +0,9).

Using also (6.19), (6.8), and (6.9), we conclude that

|J11($, S)| + |J12(é-’ S)| 5 8%2—m/223p0m2—(N0—20)max(kl,kz,k3)+
p—Mmn— min(kl,k3)/2‘

Similarly, we apply (6.26) with
Fa = e HAED @ £ E +0.5), Blo) = e TNETD fRE 400 s),
il\(Q) — eiSA(E_G)fkg(_s +0,s),

and use (6.19) to conclude that

< 3n—m/2~8pomH—ki»—(Ny/2—30) max(ky,kz,k3)+  H—m~min(ky,k3)/2
|[F1(¢,5)] S €2 2 274172 272 .
Finally, we apply (6.26) with
Fln) = WAE phE 4 s), Blo) = e HAERD fRE o),
h(©) ="M@ £ (—E 46, 5),

and use (6.19) to conclude that

|G1(§, S)| 5 8%2—m/228p()m2—k32—(N()/2—30) max(ky,kz,k3) 4 2—m2min(k1,k3)/2‘

Therefore

|1 E, $)| + |Fi(& )|+ |G 1(E, 5)| < e327m2~ No/2=30k+
2—111/2+8p0m2— min(ky,k3)/2

and the desired bound (6.48) follows from the assumptions — min(ky, k3) /2 <
19m /40, see (6.46), and max(ky, k2, k3)+ < 3m/Ny (see the hypothesis of

Lemma 6.3). |

Lemma 6.6 The bounds (6.23) hold provided that (6.22) holds and, in addi-
tion,

max(|ky — kI, [ka — k|, |k3 — k[) = 21,
min(ky, k2, k3) = —19m /20, max (ki — k3|, [ko —k3]) = 4. (6.50)
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Global solutions for the gravity water waves system 701

Proof of Lemma 6.6 We may assume that
min(ky, kp, k3) > k + 10, (6.51)

and rewrite

) = / SPEND FE (e 4y ) fEE +o,s)

R2
X fiy (=& =1 — 0, 5) Py -4 ky+41(0)Ct (1, 0) dndo,
(6.52)
where, as before,
¢, n,0)=AE)—AE+n) —AE+o)+AE+n+o0).
It suffices to prove that, for any s € [f1, 2],
L€ s)| S27mefam 2 NIk (6.53)
Notice that
@y ®)E . 0)| = —ANE+n+ANE+n+0) 227072 (654)

provided that |€ + | € [2K72,2K%+2) |6 + n + 0| € [2K72, 2052 and
lo| & 2%2 (recall also that 2K ~ 2%2 ~ 2%3). The bound (6.53) follows by
integration by parts in 7, as in the proof of Lemma 6.5. m|

Lemma 6.7 The bounds (6.23) hold provided that (6.22) holds and, in addi-
tion,

max (lky — k|, lka — k|, [k3 — k[) = 21,
min(ky, k2, k3) < —19m/20,  k < —m/5. (6.55)

Proof of Lemma 6.7 It follows from the definition and the bounds (6.8) and
(6.19) that, for any s € [11, 12],

|I]j__;_k (s S)l < 8?|§|]/22(1_ﬂ) min(k1,kz,k3)22p0m2—(No—20) max(kl,kz,k3,0)
1,k2,K3 227 ~

< 2—m8132—2p]m2—(N1+15)k+ ]
The desired estimate (6.23) follows in this case. |
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702 A. D. Ionescu, F. Pusateri

Lemma 6.8 The bounds (6.23) hold provided that (6.22) holds and, in addi-
tion,

max(lky — k|, |ko — kI, [kz — k|) = 21,
min(ky, k2, k3) < —19m/20, k> —m/5. (6.56)

Proof of Lemma 6.8 In this case we cannot prove pointwise bounds on
|I,:: ,jz ks (&, s)| and we need to integrate by parts in s. For (6.23) it suffices

to prove that

/ HESBPENN £H e 4, 5) [l € +0,5)

2x[11,12]
X fio (=6 —n—o,5)c;(n, 0)dndods| g3 2mmy—(Ni+1S)k:

(6.57)

where

P, n,0)=AE)—AE+n - AGE+0o)+AE+n+0),

L s) = @/wg P

The assumptions (6.56) and (6.22) show that

k := min(k, med(ky, k2, k3)) > —m/5. (6.58)
Then we make the simple observation that

A@) +Ab)—A@+b)>A@/2 if 0<a<b
to conclude that @ satisfies the weakly elliptic bound
(5.0, 0)| = 242710 (6.59)

provided that | + 1| € [2"1 =2 2k+2) e 40| € 2272, 2 t2) |1E 4 40 €
[2ks=2 2k3+2] Letting L(&, s) := (3,L)(&, s), where L is defined in (6.10),

and using (6.19), we notice that, for any s € [2" — 1, omtly

L&, 5)| < g3k Noksp—m (6.60)
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We integrate by parts in s to conclude that the integral in the left-hand side
of (6.57) is dominated by

BY(€) + ZZ:BJ-(S),
j=1
where
1)
BY(¢) := / / ei““’@’”’”ﬁj—s[&“‘mfg E+0.9) [ E+0.5)
2

1

X fiy (=6 =1 = 0,9)ct 1, 0) | dndo | ds
and, for j = 1,2,

. 1 — —
B(©)i= | [ 50600 e R+ ) 6 )
2

X fi (=6 —n — o, t))c;(n, o) dndo

Let

r4(n, o) : Otk — 1,k +11E + MOk —1,60+11(E +0)

T D, ,0)
XQks—1,k3+11(E + 1+ 0).

Using (6.59)—(6.60) and integration by parts it is easy to see that, for any
s € [n, 2],

1F )l S 2702, 6.61)

Using the first L® bound in (6.19) we estimate, for j € {1, 2},

B; () < 8%2(1—/3)miﬂ(klJ<2J<3)2—(1\’0/2—20)k+ < 8%2—3”1/42—(N0/2—20)k+.
(6.62)
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704 A. D. Ionescu, F. Pusateri

Expanding the d/ds derivative we estimate

BO(E)lesss1m2m sup [Bo(é s)+B (&, s)+Bz(§ s)+B3(S ],

s€lty,n]
ds L
B 5) = /‘ms@ L€+ L€ +os)

X f,; (=6 —n—o0,5)c;(n,0)| dndo,

BGs) = | [ D)0 FDE + 1.9 T E + 0.5)

R2

x [ (=€ —n—0,5)ct(n, 0)dndo|,

BG.s) = | [ D) 6 1) TDE +0.5)

R2

X fig (=§ —n—o, S)Cg(ﬂ,G)dnda ,

BY(E.s) = / S PEN (0, 0) [T+ 1.9 [T + o s)

R2

x (05 /i) (=6 = 11— 0,9)c} (1, 0) ddo |

As before, we combine (6.26), (6.61), and the bounds (6.19) and (6.27) to
conclude that

sup [B)(€,s) + BY(E, 5) + BY(E, 5)] < e527 /4= (No/2=200k+

s€lty,n]

(6.63)
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In addition, using the definition of the function L, we have

sup |9 L(E, 5)| S &2, (6.64)
s€ln,n]
Therefore
sup  BJ(E, 5) < 327 om/4p=(No/2=200ks (6.65)
s€lt1,12]
The desired bound (6.57) follows from (6.62), (6.63), and (6.65). O

6.2 Proof of (6.24)

After changes of variables, it suffices to prove that

[ e i o e + o)

R2x[t1,1]
X /kL\;’(_s —n—o, S)CHLZL:;(s’ -n, _S -n- G) dﬂdo'ds

< gipm2pimy = (NiHIDk (6.66)
where (11, t2,13) € {(+, +, +), (=, =, +), (=, —, —)} and
P (E, 1, 0) = AE) — uAE + 1) — BAE +0) — BAE +7+0).
The main observation is that the phases @123 are weakly elliptic, i.e.

11,02,03 med(ky,k2,k3)/2—100
|P &, n,0) =2 ,

provided that [€ + n| € [26172, 2842 |£ + o] € [2R272 2242 |£ 4 +
G| € [21{3_2’ 2k3+2]’and (L17 L2, L3) € {(+7 +9 +)’ (_7 ) +)7 (_7 ) _)}The
proof then proceeds as in the proof of Lemma 6.8, using integration by parts
ins.

7 Lagrangian formulation and “Wu’s good coordinates”

In this section we review the formulation of the problem used by Wu [45]. We
use the same notations as in the cited paper to summarize the construction of
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Wu’s modified Lagrangian variables. We recall the cubic evolution equations
associated to these good unknowns, some other (elliptic) relations between
these variables, and the relative cubic energies.

Let v be the fluid’s velocity field, recall that we denote by z : (¢, «) €
[0, T] x R — C the Lagrangian map (restricted to the surface parametrized
by «), that is the solutions of

2t o) =v(t, z(a, 1), 20, 0) = +iyo(a). (7.1)

z(t,a) = x(t, @) +iy(t, o) is the equation of the free interface. The imaginary
part of z, Imz, measures the height of the interface.

7.1 The transformation k and modified Lagrangian coordinates

Define the change of coordinates k

k(t, ) :==7(t, a) + %(1 +HIT + )7 2t @) =2, ) (7.2)

where H, denotes the Hilbert transform along the curve y, see (1.4), and
K, = ReH,. The explicit change of coordinates (7.2) is the same as the
one given by Totz and Wu in [41, formula (2.3)]. k£ will be shown to be a
diffeomorphism on R. Given the change of coordinates k£ we can define the
transformed Lagrangian unknowns as in [45]

Z(t, o) = (Cut,a) — 1, u(t,a), w(t, o), Im¢ (¢, o))
with

C(t, o) =zt k7 @, @), ut,a) =zt k' (1, @),
w(t, ) =z, k¢, ). (7.3)

Note that
W(t, O{) = le(tv k_l (t’ a)) = (8[ + b(tv a)aoz)u(t’ a)v

where b(t, ) = k:(t,k~' (¢, «)). Also, following [45] we define the “good
quantities” in terms of the transformed Lagrangian unknowns

x =20l —H)IME = (I —H)(z—2) ok (7.4)
A= —H)Wok™ )y =T -H)Pp ok (7.5)
vi= 8 —H)z =2 ok ' = (@ +bd)x, vi:=U—Hv. (7.6)
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In what follows we will denote H for H,, where this creates no confusion. We
recall that i is the trace of the velocity potential in Lagrangian coordinates:
Y(t,a) = ®(t, z(¢, ®)). The quantities x, A and v are those for which cubic
equations are derived and the Energy argument is performed. The relation
between the Eulerian trace of the velocity potential ¢ and the surface elevation
h with the Lagrangian quantities is given by the identities:

h(t,Rez(t, o)) = Imz(t, @) (7.7)
¢(t,Rez(t, @)) = ¥ (¢, ). (7.8)

Precomposing with k! these become

h(t,Re¢(t,a)) =Ime(t, ), ¢(t,Rel(t,a)) = ¥(t, k=Y, o).

7.2 The cubic equations

In [45] cubic equations are derived for the “good quantities” x, A and v given
by (7.4)—(7.6). We will not discuss the derivation of these equations here, but
refer the reader to section 2 in [45] for the details. In the cited work it is shown
that for F = x, A orv

(0, + bdy)*F —iAd,F = G(L) (7.9)

where the right-hand side G(L) can be thought of as a cubic expression in the
variables

L= (u,wlIng ¢ty —1), (7.10)

which involves singular integrals related to the Cauchy integral and to Calderén
commutators. The functions b and A are defined by

b(t,a) =k (1, k7' (2, @) (7.11)
A, @) = (at, ko (t, ) 0o k™' (1, @) (7.12)
where a(t, «) is the Rayleigh-Taylor coefficient appearing in (1.5). As shown

in [45, Proposition 2.1], both b and A — 1 are real valued and quadratically
small if L is small. More precisely:

Lemma 7.1 Let b and A be given by (7.11) and (7.12). Under the a priori
assumptions (2.9) we have

IA@) = gy + 6@ gy < €1, (7.13)
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and for 0 < k < Ny

IA@) = 1y, S eILOllx,, (7.14)
Ib@llx, S elLOllx, - (7.15)

Proof The identities in (2.30) of [45] (see Proposition 2.4 in [45] for their
derivation) read

I—-—H)(A-1) =i[u,'H]?—a+i[w,H]§a (7.16)
Ea —1
I —H)b=—[u, H]—/——. (7.17)

Ca

The above right-hand sides are all of the form QO(Z, Z) or QO(Z, Oy Z), where
Qo is defined in (11.18). (7.16) and (7.17) then follow from the bounds for
operators of the type Q¢ given in (11.30), Sobolev’s embedding, the estimate
(11.3) for ‘H, and the a priori smallness assumptions on L. The bounds (7.14)
and (7.15) follow by combining (7.16) and (7.17) with Lemma 11.2. O

The cubic equations verified by x, A and v are (see formulas (2.27)-(2.29)
and (4.33) in [45])

(0 + bdy)*x — i Adyx = G (u,Im¢) (7.18)
(0 + bdg)?v — i Adqv = G (u, w, Ly — 1,1ImZ, xa) (7.19)
(0; + bdy)*A — i Adyh = G*(u, w, Im¢) (7.20)
where
4 [ (u(@) —u(B))(Im¢ () — Img(B))
G*(u, 1 )::—/ B)d
. ime @) — (B up(P)ap
u(a) —u(B)

dg, 7.21
/(c(oo ;(ﬂ)) mep(B) dp 72D

G’(u,w, &y — 1,Ime, xq)

4 [ (W) — wB)ImE (@) — ImZ(B))
-7 d
/ c(@) — (B “s (B dp
4 [ (@) — u(B)Im¢ (@) — Img (B))
+- d
/ c(@) — LB wp (B dp
u(a) — u(ﬁ)) (o) — u(B)|?
W) Z PN wpprap — = | L8y dp
(C @ — (B Cer—z) "
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L2 / (u(e) — u(B))(w(a@) — w(B))
in (& (@) — ¢(B))?
1 (u(a)—u(ﬁ)

(Ep(B) — Lp(B)) dp

2
— —up(B))d
— g“(a)—;(ﬁ)) (up(B) —p(B)) dp

2 u(a)—u(ﬂ))3 _ a
- (—= — dB +i— ok 1Adyx,
g (C(a)—é(ﬂ) (&p(B) = Tp(B) dp +i- X
(7.22)
2 [ (u(@) — u(B))(Im¢ () — ImZ (B)) -
G u, w, 1 :=—/ d
(, w, Img) = = @ — 6P p(Bw(B) dp
— [ _uqy Uy U- Uy
+ [u, H] (uz—)—i-u[u,H]g_——Z[u,H]
1 u(@) —u(B)\>
— _— . dB. 7.23
— ({(a)—{(ﬁ)) u(B) - tp(B) dp (7.23)

A fourth additional equation is also derived in [45, formula (4.32)] for the
quantity

v = —Hov (7.24)
and has the same form as above
(0 + bdy)?v) — i Adgu; = GV (u, w, &y — 1,Ime, v, x) (7.25)
with
G" (u,w, ¢y — 1,Img, v, x)

= —H)Pv —2[u, H]?—QPX —2lu, H]?—a (wa—ax)

o o {(X
. — W) 1 u(a)—u(ﬂ))2
—i[(H+Hu, HI{ — — _ dag,
AL+ T ](;a)“in (aa)—;(ﬂ) vp(P)dp

(7.26)

where P := (0; + bam)2 — iAd,. The above cubic equations allow the con-
struction of energy functionals, see Sect. 7.3 below, which suitably control
the variables x, v and A. The quantities appearing on the right-hand sides of
these cubic equations, such as u, w and ¢, — 1, are in turned controlled by the
energies, see Proposition 8.1, using the identities (8.24)—(8.27).
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710 A. D. Ionescu, F. Pusateri

In order to simplify our presentation and the estimates performed on the
above equations, we define the following types of trilinear operators:

(f@ — F(B)(5(@) — g(B))
T! L g, h ::/
(/8.1 @ — (B
(f@ — F(B)(5(@) — g(8))
T2 L g, h ::/
(8.1 @@ —1(B))
P g / (f@ — F(B) (@) — g(B))

C(@) —T(B)°

h(pB)dp (7.272)

h(p)dp (7.27b)

h(p) dB, (7.27¢)

and denote by T any scalar multiple of them:

T(f. 8. =cTi(f g h) (7.28)

for some constant ¢; € C,i = 1,2,3. We can then write the nonlinearity
(7.21) appearing in the equation (7.18) as:

GX(u,Im¢) = T(u, Ime, ug) + T(u, u, Imey). (7.29)
Similarly we have

Gv(ua w’ CC( - 17 Im{)
= T(w7 Imé-’ uO{) + T(l/l, Im§7 w(]() + T(u, u, uoe) + T(u’ wv Im{ol)

T, u, ) + T, w, Tmey) 4+ T, w, ulmey) + i ot o k=" Ady X,
a

(7.30)
and
Gk(u, w, Im¢) = T(u, Im¢, Eo,w) 4+ T(u, u,u-Ly)
o+, H] (ﬁf—“) Foufu, HIZE o[, HIZ 2 (7.31)
{a {a ;‘Ol
and
G’ (u,w, ¢y — 1,Img, v, x)
Oy Oy Oy
= —H)Pv —2[u, H1—Pyx — 2[u, H]— (w—x)
Cu Cu L
_ 9\
—i[(H+ H)u, 'H](;—) X + T(u, u, vy). (7.32)
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By writing the nonlinearities (7.21), (7.22), (7.23) and (7.26) in terms of oper-
ators of the type (7.27) above, we will be able to efficiently estimate them by
making use of a general Proposition giving L2-type bounds of such operators.
These estimates are given in Proposition 11.7, and are obtained by improving
two statements contained in [45] (which in turn rely in part on the work of
Coifman, McIntosh and Meyer [10]). All the terms that cannot be written as a
trilinear operators of the form (7.27), acting on the components of L, need to
be treated separately. To bound these remaining nonlinear terms, namely

P2 ok Adyx. [u,ﬁ](ﬂ—“)w[u,m”—“, [, H] e
a To la Ca

2
[(H+ﬁ)u,H](?—a) X, [u,H]?—a (wa—ax)

o o é‘O{

we will make use of some additional special structure present in them.

7.3 The energy

The total energy for the system is given by the sum of three energies naturally
associated to the equations (7.18), (7.20) and (7.25). Let us define

Sy := D*S. (7.33)

The first term in the energy is given by

No -
1 2 h
EX@t) = /Z‘(at+baa)DkX‘ +i(DkX) 8u (D*x)" de

No/2

1 JR—
+> / 1@+ b0 Sex? + 1(S00" 0 (Sex)" der, - (1.34)
k=0 g

where f” denotes the anti-holomorphic part of a function f:

I-H
= —— (7.35)

By considering only the anti-holomorphic parts of DX x and Sy x in (7.34), one
obtains that all summands in £% are non-negative, see Lemma (8.7). Similarly
one constructs the energy associated to (7.20):
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712 A. D. Ionescu, F. Pusateri

No—2 _
1 2 h
A k . k h
ENn) = /Z‘(8t+b8a)D A"+ i (D42) b (D4)" de

k=0 3
No/2 1

+> / 1@+ b3S +i(Seh) 00 (Seh) det, (1.36)
k=0 p

The energy controlling v instead is given in terms of v, and based on the
equation (7.25):

No
1 2
E'(t) = Z/;‘(f’f + bdy)D*v| + i D*v18, D"V da
No/2 1
+ Z / Z|(a’ + b3y)Siv1 | + i Skvi 9y ST dat. (7.37)

Here in the second summand there is no restriction to (D¥v; )h or (Sv; )
Therefore the Energy E" has no definite sign. Nevertheless, it can be shown that
this Energy controls the norms of v and v{ up to cubic lower order contributions.
The total energy is then given by

E(t) = EX(t) + E'(t) + E*(0). (7.38)

8 Proof of Proposition 2.3: energy estimates

Once the energy E(¢) has been defined, we can proceed with the proof of
Proposition 2.3. The main ideas are essentially the same as those used in Wu’s
paper [45]. In fact, we use a similar procedure and borrow several identities and
estimates from this paper. However, some arguments there need to be adjusted
in order to make the energy estimates valid for all times, and compatible with
the growth of the highest Sobolev and weighted norms. In particular, we need to
pay special attention to certain dangerous nonlinear terms that can potentially
create logarithmic losses, compare with Wu’s energy estimate (1.15), and show
how these losses can be avoided.
Recall that we denoted L = (u, w, Im¢, ¢, — 1), and define the vectors

L™ =&y —1,u,w,dyx,v), L:= (L ,Img).

We separate the proof of Proposition 2.3 into three main steps. We first show
how E(t) controls the X y,-norm of L(7):
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Global solutions for the gravity water waves system 713

Proposition 8.1 Under the a priori assumptions (2.9), that is

sup (14 07PULO Ly, + IOl s + IO Iy v/ T+7)
t€[0,T]
<& K1, (8.1)

we have
ILOIxy, SVE®. (8.2)

foranyt € [0, T] and &1 sufficiently small.

This is proven in Sect. 8.1. Our next proposition shows how to estimate the
energy increment.

Proposition 8.2 Assume again that (8.1) holds for &1 small enough. Then

d
7V E(0) < (ILOlynioo + ”HLi(t)”WNl’OO)Z\/E(t)a (8.3)

foranyt € [0, T].

The above Proposition will be proven in Sect. 8.2. We eventually need to bound
the L°°-norms on the right hand side of (8.3) in terms of the Z’-norm of 4 and

¢:

Proposition 8.3 Under the a priori assumption (8.1) and (2.8) we have
IL@O)llywvr.co HIHLT (O lynioo S IR, @)z = 1(h, AP lyyn+a00. (8.4)

The proof of this Proposition is in Sect. 8.3.

In view of the initial assumptions (1.10a)—(1.10b) and the discussion in [45,
sec 5.1], one has E(0) < 8(2). It is then clear that Propositions 8.1-8.3 imply
Proposition 2.3.

8.1 Proof of Proposition 8.1: energy bounds

The estimate (8.2) will be achieved through a sequence of Lemmas which we
state below and prove in the remaining of this section. We start by using some
formulae derived in [45] to bound || L (¢) || x N by the X y,-norms of (9; +b0dy) X
(0 + bdy)v and (9; + boy)A:
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714 A. D. Ionescu, F. Pusateri

Lemma 8.4 Under the assumption (8.1) it is possible to write

2u = (8 + bdy)x + O (8.5)
2w = (8 + bdy)v + Q (8.6)

2y — 1) = —i(d; +bd)v + O (8.7)
(I — H)Im¢ = —(8; + bd)r + O (8.8)

where Q denotes a generic term which is at least quadratic in L and satisfies

10 llxy, S etlL®lxy, (8.9)
1O oo S ELILE) a0 (8.10)

for g1 small enough. In particular we see that

IOy, ~ 1 + bda) x 1 xy, + 13 + bBa)vlx,, + 10 + b lx,,
(8.11)

and

ILO) lyyviee S @B+ b3 x llyyvioe + 13r + D)y oo
+ 1107 4 D) Ay v, o0 (8.12)

The proof of this Lemma is given in Sect. 8.1.1. We then establish the following
commutators estimates:

Lemma 8.5 Assume again (8.1) holds for &1 small enough. Then, for Q as in
(8.9) above, we have

Jx = =H)(Ga — o) + Q (8.13)
v=2u+Q (8.14)
doh =u+ Q. (8.15)

Moreover, denoting D for 0y, we have for all 0 < k < Noand f = x,v or A
1, + b3a) D* f = D*(@; + bdo) fll 2 S &1l L)1,y » (8.16)
and forall 0 < k < %0

1(3; +b3a) DXSf = D*S @ +b3a) 12 S e1ILO)1xy, +11@r + b3a) £ -
(8.17)
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The above Lemma is proven in Sect. 8.1.2. Eventually we show how E (¢)
controls x and v:

Lemma 8.6 Under the assumption (8.1), we have

2

1(3; + b)) D* x 1172 < E(2), (8.18)
2 ~ 2

(3 + bde) DX vliz2 S E(®) + e1lIL() | 5o (8.19)

forall 0 <k < Ny. Also
2
13 + bde) D* il 72 S E(2), (8.20)

forall0 < k < No — 2. Moreover, for 0 < k < %

2
13, + b3o)D*Sxll;2 S E0), (8.21)
2 ~ 2
1@ + boa) DSl 12 S E) + erll L@l - (8.22)
10, + baa)D"SAniz < E(@). (8.23)

This Lemma is proven in 8.1.3. One can actually obtain the stronger bound
=~ 2
13 + b3 TVl 7> + 113, + b)Tvil7> S E@) +erlL(0)x, -

The bound (8.2), and hence Proposition 8.1, follow easily from the above
three lemmas.

8.1.1 Proof of Lemma 8.4

Equations (2.35), (2.43), (3.38) and (2.51) in [45] respectively read

2u = (8; + bdy) x + (H+ﬂ)u+[u,m§“;—§“ (8.24)
 — Uy Uy — Uy —
2w = (0; + boy)v + [u, H]— + [u, H]é‘— +(H+Hw
la— 8y |1 /(u(a)—u(ﬁ))2 _
JH - — (=== - d
o M= = Sy ) G B —EpBndp
(8.25)
qor_ Al (8.26)
A S |
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716 A. D. Ionescu, F. Pusateri

Lt

. 8.27
% (8.27)

(I — H)Im¢ = —(0; + b))\ — %[u, ‘H]

Proof of (8.5). To show (8.5) it is enough to prove that (H + H)u and

[u, H] g“;f‘* are quadratic terms satisfying (8.9). Estimate (11.4) and the a
priori assumption (8.1) give

I+ Fulxg S Mt =11 vl

+ 16 — IIIXNOIIMIIHN%Jr1 SetllLlixy,-

Similarly, under the a priori assumptions (8.1), estimate (11.31) implies

7H—
e =

< e1llullxy, +erlme lx,

H ;01 - Ea

XNO

+e1lee = Uxy, S e1llx,,-

Proof of (8.6). We need to estimate all of the terms in the difference 2w —
(0 + bdy)v from (8.25). The terms

é‘a _Za

o

[w, H] and  (H+Hw

can be estimated as above, the only difference being the appearance of w
instead of u. The last term in (8.25) is of the form T (u, u, Im¢, ), where T is
defined in (7.27). This can be directly estimated using (11.35). The remaining
terms are

— Uy 2 o _Ot
I = [u, H]E— and I, :=[u, H]u
Ea goe

These are terms of the form QO(Z , Oy Z) and can be bounded by making use
of (11.30):

111y, + 1 2llxy, S 1Q0G. datt)llxy, < €1l Ly, -

Proof of (8.7). We start from (8.26) and rewrite as:

1 iw+iw (1 ! A-l (8.28)
—l=—iw+iw|{l——) - ——. .
' 4 A A
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Since w satisfies (8.6), in order to show (8.7) is suffices to verify that

#(-3)

This follows from the bounds on A — 1 (7.13) and (7.14), and the a priori
assumptions (8.1).

Proof of (8.8). This follows directly from (8.27) and arguments similar to
the ones above.

Proof of (8.11) and (8.12). Using (11.9) in combination with (8.8) one can
deduce that

SelLlxy, .
XNy

N HA—]
XNy A

Mg llx,, S 113 + b3 A, + €1l -

In view of (8.5)—(8.9) we have then obtained (8.11).

From the a priori bound on the ™1™ -norm of L it is not hard to see that
(8.10) holds true by using similar arguments as above. (8.12) immediately
follows, concluding the proof of Lemma 8.4. O

8.1.2 Proof of Lemma 8.5

Identities (2.50), (2.35) and (2.36) in [45] respectively read:

Lo wE L ) 1 dauge) ) 1
Eaax =wl, 2H(ua t )+ 2[1/" H]( Lo ) i

/ (o) —u(B))(Ga(@) — Lp(B))
1

= 1 _
(¢ (@) = £(B)? u(B)E (B dp + 5 (b = o)

1 I —1 _
+ —ﬁau — EC(X (H— + H_—) (U){a + Mﬁa)

2 C(Y C(x
é“a/ ( u(o) —u(p) ) —
+ 22 [ Im(—L—" dg, 8.29
) AL ey i(ﬁ)cﬂw) B (8.29)
v =2u — (H+ Hu — [u, H] a ; 5‘", (8.30)

duh = ul, — % ({aH% +¢,H

o

1\ -
= ) (ut,). (8.31)
)
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From these, Proposition 11.7 and the a priori assumption (8.1), it is not hard
to see that

el + 0l + 182y S 21, (8.32)
Ny, + 10lxy, + H0atllxy, S L0y, - (8.33)

We are now going to use these bounds to control the commutators [d; +
by, Dk]f and [0; + b0y, S]f for f = x, v, A. By direct computation one
sees that

k
[Dk, 3, + baa} - [Dk, baa] = > 07b0* I, (8.34)
=1
1 1
[S, 8 + bdg] = (Sb - 5b) B — 5 (3 + bi). (8.35)

Moreover, for S, = DS, we have
[Sk, 0; + byl f = Dk[S, 0 + boy]f + [Dk, 0r + boy]Sf. (8.36)

From (8.34) it follows that for any 0 < k < Ny

HD"(at bdg) f — (3 + baa)D"f‘

L2
No/2 No/2
< D N8l oo 18 f 1| et + 186l et D 196 f 1l oo
j=1 j=l

S 10abll No 10 f il k-2 + 110abll -1 100 f1I Mo, -
H 2 H™2

Using (8.32) and (8.33) we see that for f = x,vand 0 < k < Ng,or f = X
and 0 < k < Ny — 2, we have

| D!+ b0 £ = @+ 030 DA £, S by I,
+ 21 bl -1

This would conclude the proof of (8.16) provided one has

||30119IIH@+1 Ser o and  (9abligro-t S LN xy, -

These two estimates follow from Lemma 7.1.
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To show the commutator estimate (8.17) we start by using (8.36):

LSk, 3 + b1 f 1112 S IIDY, 8 + b3u1SS Nl 12 + LS, & + b1 f 1| i
(8.37)

From (8.34), and for 0 < k < %, we get
ILD*, 8, + b3s1Sf 12 S 18Dl i W0 SF Nl i1 + 19l 1 18 SFN -
Using (8.33) we can bound the above right-hand side to obtain

IED*, 3, + b3a1S7 2 < 191w I lIx,, (8.38)

for f = x, v or A. Moreover, from (8.35) we see that
IS, 0 + D01 f Il xS NSBO f Nl gt + 160 1 g+ 1(0r 4 bB) f 1l i
With f = x, v or A, and using (8.32) and (8.33) we deduce
LS, 3 + b3 fll e S &1 (ISP g + 161l ) + 11B; 4 be) f 1l - (8.39)

Putting together (8.37) with (8.38) and (8.39) we get

I[Sk, 0 + b3 fllz2 S 19Dl mIIZIIxN + el (IISbII Ny + 15l No)
H™ 0 H™2 H™2

+ 11(0; + b0g) [l k-

To obtain (8.17) it then suffices to have

< ||L <
IISbIIH@ SILlxy, and IIbIIH@+I S el
These two estimates are again direct consequence of Lemma 7.1. m|
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8.1.3 Proof of Lemma 8.6

Recall the definition of EX given in (7.34):

No -
1 2 h
EX(1) :Z/Z’(a’+b8“)DkX’ +i(DkX) 00 (DFx)" dor (8.40)
k:O]R
No/2 1
+ > / 1@+ B0 Skx P + (500" 0 (Six)" de (841)
where fh = (I —H)f/2. Asin Lemma 4.1 of [45] (see Lemma 8.7 below)

we know that if ® is the boundary value of an holomorphic function in (7)€,
such as f", then

i/@c‘)a@doz > 0.

Therefore both summands in (8.40) and (8.41) are nonnegative. In particular

No 1 2 No/2 1
EX(¢)Z§/Z|(3z+b8a)DkX) T kzo/z|<at+baa>skx|2. (8:42)
=0r =0 g

From this, and since |A — 1] < 1/2, see (7.14), we get the desired bounds
(8.18) and (8.21). The exact same argument can be used to show (8.20) and
(8.23).

To prove (8.19) and (8.22) the argument is more complicated since EV is
not nonnegative, but we just need to adapt the proof of Lemma 4.2 in [45, pp.
89-92] to see that

EV(t) > l||(a + bdy)Tv||? +l||(a 3T |2, — &1 EX — | L
=4 t o L2 ] t o 1 L2 1 1 XNO
whereF=Dkf0r0§k§No,0rF=Dka0r0§k§%. ]

8.2 Proof of Proposition 8.2: evolution of the energy

We want to show, under the a priori assumptions (8.1), the following bound
for the evolution of the Energy

d
ZVED S (L@ vy + IIHL_(I)IIWNl,oo)Z\/ E(1) (8.43)

@ Springer



Global solutions for the gravity water waves system 721

for any ¢ € [0, T]. From the definition of E in (7.38), and the bound (8.2), we
see that it suffices to prove

d _ P =)

ZEL (1) 5 (ILOllym oo + IHLOllym ) (ILOI,, +E@)
(8.44)

foranyt € [0, T]and f = x, A and v.

8.2.1 Basic energy equality

Assume that F' is a smooth function vanishing sufficiently fast at infinity and
satisfying the equation

PF = (8 + b(t,0)3)2F(t,a) — i A(t, @) F(t, @) = G(t,a). (8.45)

Define the zero-th energy associated to (8.45) by

1 —
Eg(t) = / AG.@) (8 4 b(t, @) F(t,a)|* + i F(t, @), F(t, a) da.

R
(8.46)
Also define higher order energies
F 1 j 2
Ef 0= [ G |Grtb ainr o)
R
+ i(FjF)h(t, @)y (T'7 F)h(t, a)do. (8.47)

where j > 1, r/ = D/ for j < Ny, or r/ = §j for j < No/2, and fh is
defined in (7.35). Then the following holds:

Lemma 8.7 ([45]) Assume that F and Eq are as above, then

d F 2 — 1 ay ] 2
—Ef (t):/ZRe (0 +b0)F G) = = o k" |(0s + b FI” dat.
R

(8.48)

Furthermore, if ® is the boundary value of an holomorphic function in ¢,
that is © = @h, then

i/@(t,oz)aa@(t,oe) da > 0.
R
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Let Ef (t) be as in (8.47), then

d 2 N la 2
TE[ () = / TRe ((a, + baa)FfFGJ) — ok + ba) T F| da
R
(8.49)
— 2Re/i8t(FjF)h8a(I‘jF)r 4 i8,(T F) 9,(TV FY"
R
+ 3T/ F) 9,(TV F) da, (8.50)
where
G;:=T'G+[P,TV|F
and f7 is defined by " := (1/2)(I +H) f.
The proof of the above Lemma can be found in [45, pp. 83-85].
8.2.2 Evolution of EX
We want to show
d X _ 2
—EX(t) S (IILllywoo + IHL [lyny.oc) " E(2). (8.51)

dt

We recall that the energy EX is given by

Noo g 2 h
EX(t)=Z/Z‘(8,+b8a)Dkx‘ +i(DkX) 82 (D*x)" da
kZOR

No/2

1 -
20 [ 10+ b3S+ (5030 (Se)" de
k=0 %

From (7.18) and (7.29) we know that x satisfies an equation of the form
Px = G* with a cubic nonlinearity GX = T(u, Im¢, uy) + T(u, u, Imgy),

where T are operators of the type defined in (7.28). This nonlinearity can be
schematically rewritten as

G* =T(L,L, Ly). (8.52)
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By using Lemma 8.7 one obtains

d &2 R
ZEX() :Z/ZRe (@ + o) D" PD¥x)
k=0

dt
la ko |?
_ Yok ‘(a, + b3,)D x‘ da (8.53)
Aa
No — .
=23 Re [ 8Dk 08 DEX) +i8,(D ) 0 (DF )
k=0
+i3,(D*x) 84(D*x)" dat (8.54)
No/2
2 la, 2
+ Z —Re ((0; + b3a) Sk x PSkx) — —— ok "[(3 + bdy) Sk x|” da
P A Aa
(8.55)
No/2
-2>" Re/ 10 (Skx)" 0 (S )" + 10, (S x) 0 (S )"
k=0
4+ 00 (Skx) 0q (Skx)" dot. (8.56)

Since |A — 1]~ < 3, we have

No
(8.53)+(855 S VEX® Y (IDXG 2+ 1P, D1l 2) + VEX®)

k=0
No/2 u
x> (156G 1 +1P. Silx ) +EX 0| ok™!|
k=0

The terms in (8.54) and (8.56) are remainder terms. Since there is no logarith-
mic loss in the estimates for those terms in [45, p. 94-98], they can be estimated
exactly as in the cited paper, and therefore we skip them. Thus, to obtain the
desired bound (8.51) on the evolution of EZX it suffices to show

1G¥ lxy, S ILIGyn 3 VE (8.57)
No 5
DI, D Yxllze S (L llymi oo + IHL llyme) VE (8.58)
k=0
No/2 )
D P, Sixlize S (L lymise + IHL lyme) VE (8.59)
k=0
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|

These estimates are performed in the next four subsections.
Proof of (8.57). The bound (8.57) follows directly from (8.52) and Propo-
sition 11.7. Indeed applying (11.35) we see that

9 g H A (8.60)
a Lo°

~ o~ o~ ~ 2 ~
1G¥lIxy, = ITZ, L. L)l xy, < IL1wm o Lllxy, S ILI»,VE,

having used (8.2) in the last inequality.
Proof of (8.58). Recall the definition P = (9; + 1980,)2 — [ Ady. By direct
computation we see that

[DX, P1f =[D*, 8, + b3y 10 +bdy) f+ (0 + bda)[DF, 3, + boy1f
— i[DF, Ady1f = [D*, b3y1(3; + bde) f + (8 + bdy)[D¥, bdy] f

k
—i[D*, Adu)f =D ek jDIbD I 3,(3; + bda) f
j=1
k k
+ (B + Do) D ek jDIbD* 3y f —i D cr jDIADM B, f, (8.61)
j=1 j=1

for some coefficients ¢ ;. It follows that for any 0 < k < Ny

ItP, D*1x 2
< 1@ + bdy) x | 3o 10Dl yyNos2.00 + 1106 DIl no—111(3r + B ) X Il o /2.0
(8.62a)
No—1
+ Z 13 + D) D! 8ubl 12119 x 1y o200 + 180 Bl gpvg-1
j=0
No/2
X " 11(@ + bda) DY B x |l 1o (8.62b)
j=0
No/2
- Z I13; + b3a) DY bl o 1 X Il -1 + 19abllyyno/2.0
j=0
No—1
X D113 + bda) D B x || 12 (8.62¢)
j=0
+ 1|00 x ”[—]NO ”({)ozA”WNo/Z,OO + ||8aA||HN0 [l 0 X ||WN0/2>00- (8.62d)
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Combining (8.11), commutator estimates for [d; + bdy, D71, (8.13) and
(8.2), it follows that

No—1
1 + b3 X o + D 110 + b3 DB x 12 + 18 x | oo S VE®).
j=0

(8.63)

From Lemma 8.4, and commutation estimates for [9;, + bdy, D’], we also
control the following L°° norms:

No/2
13: + b3e) x Iy voszo0 119 lyvorzoe + D 1By + ba) DI 8 x|l o0
Jj=0
S Ly oo (8.64)

Estimate of (8.62a). Using (8.63) and (8.64) we can bound

(8.62a) S E)|10abllyyno/2.00 + 10abll gyng—1 | LIl yyny o0
To obtain the desired bound in then suffices to show

_ 2
18abllyyvornco S (IHL ™ llypvieo + IL1 a0 (8.65)
18eD 1| jyvo-1 S LI vy .o VE. (8.66)

From formula (7.17) we see that (I — 'H)b = g with

ga —1
g = —[u, H] o (8.67)

Using (11.11) in Lemma 11.2 we get
||aab||WN0/2,00 S 102 & Il yyNo/2.00 + ||Z||WN0/2+1,00||8ag||HNo/2+1-

Since g above is an operator of the form QO(Z, Z), with Q¢ defined in (11.18),
we can use the L*> bound provided by (11.33) to deduce

laabllynoroe S ILIysoz20 (IHL lyozizee + L yrorizss). (8.68)

Here we have also used the Li—bounds from 11.4 to estimate ||y g || ;Np/2+1,
and the a priori assumption |[L|| zn+s < €1. (8.65) is proven. Using again
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726 A. D. Ionescu, F. Pusateri

Lemma 11.2 we can estimate
180b1l o1 S 13agll grvo-1 S WL v 1L lyyvg 212,00, (8.69)

which in light of (8.2) suffices to obtain (8.66).
Estimate of (8.62b). Using (8.63) and (8.64) we see that

No—1
(8.620) S > 10 + bda) DI dubll 2 I Ly 242
j=0

+ ||aab||HNo—1 ||L||WN0/2+2,00-

Since we already have the bound (8.66) for [|0yb|| ;v,-1, in order to estimate
(8.62b) it suffices to show

No—1
D 1@ +b3) D7 Bubll 2 S L llyvorae Ll - (8.70)
j=0

To establish this estimate we use the following identity derived in [45, formula
(2.52)]:

(I —H)(3; + bdy)b = B3

33;:[M,H]M_[w,7{]ga_l+.i
Ca o 1w
() —u(p)\’ -
_— —1)dB. 8.71
/(C(O!)—C(ﬁ)) €pP) ) ap ( )

Using this formula, (11.8) in Lemma 11.2, and the fact that [dy, 0; + bJy 1D
gives higher order quartic terms, it is not hard to see that (8.70) holds
Estimate of (8.62c). Using again (8.63) and (8.64) we can bound

No/2
(8.62¢) S Z (3 + bdy) D’ 3y || oo/ E(t) + (|00l yynor2.00/ E(2).
=0

By virtue of (8.65) it suffices to establish the bound

No/2
i — 2
D 1@ + bde) DI bl o0 S (IHL llyynorzezce + LI ywo/2r200) "
Jj=0
(8.72)
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Commuting 9; + bd, and BO{, using (8.71) and (11.11) in Lemma 11.2, and
(8.68), one can see that for any 0 < j < No/2

13 + b0a) D bl 100 S 10 (3 + b0l wice + LI w2100

2
S 10aB3llywnosz.co + LIy nos2+2.00 106 B3Il gyvorzet + L1, v /242,00

Since ||y B3|l yvo/2+1 can be estimated by means of Corollary 11.4, we only
need to bound [|dy B3|y np/2.00. B3 contains potentially dangerous terms, but
since they are of the form Q¢(L~, L™ ) we can use again (11.33) in Proposition
11.7 to obtain

_ 2
180 B llyorzce S (IHL lymorzizce + IL I yg/2s200) .

This gives (8.72), which in turn allows to bound (8.62c) by the right-hand side
of (8.58) as desired.
Estimate of (8.62d). From (8.63) and (8.64) we see that

(8.62d) < VE®)13u All oo + 180 All o | Ll oo

To obtain the desired bound it is sufficient to show the following two estimates:

10 All gvo S VE@ L ynor2+2.00 (8.73)
_ 2
10 (A = Dllynozoe S (IHL™ lyno/2+2.00 + | Lllyngs2.00) . (8.74)

Recalling the identity (7.16) for (I — H)(A — 1) we see that the two terms in
the right hand side of that formula are of the same type of the one appearing in
the formula (8.67) for (I —H)b. Therefore, in order to show (8.73) and (8.74),
one can proceed in the exact same fashion as was done before to obtain (8.65)
and (8.66). Also in this case the presence of a derivative acting on A — 1 in
(8.74) plays a crucial role, allowing us to use the bound (11.33) on operators
of the type 9, Qo.
Proof of (8.59). Since S = DS for any 0 < k < Np/2, we can write

[P, Sk1f = [P, D¥1S + D*[P, 5].

Thus, to prove (8.59) it is enough to show

IP. DXISX N2 S (ILllwsioe + IHL llyymoo)*VE (8.75)
1P, SIxllax S (ILllymos + IHL lymoe)*VE (8.76)
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forany 0 < k < Np/2. Recall that the commutation [P, D¥]is explicitly given
in (8.61), whereas a direct computation shows that

[P,S]=P+ [(Sb — %b) by — S(0; + baa)b] 0o
- (Sb - %b) {0 + b0e) 0o + 3o (3; + bOy)} +iSAdy.  (8.77)
Proof of (8.75). For 0 < k < Ny/2, we first use (8.61) to obtain
1P, D*1Sx Nl 22 S 19abllyior.oo 196 (3 + o) Sx | it

k
+ D 11 + b3a) Dbl 1o 196 S X | -1 + 10Dl yi-1.00

j=1
k .
X D N1@ +b3) D Sx 2 + [0 All it |8 S i1 (878)
j=1

Commuting 9d; + b9, with 9, and S in the appropriate fashion, using (8.21) to
control the L? norm of 8y (9; + bdy) Sk x, and (8.13) to control ||3,S x | i1,
we see that all of the L2-based norms in (8.78) are controlled by V'E.To obtain
(8.75) We are then left with proving that for 0 < k < Ngy/2

2

19abllwi-t0o S (1L .00 4 IHL™ [lyyny.00) (8.79)
_ 2

10 + b0e)Babllyyi-1.00 S (LN ywwioo + IHL [lyyay.c0) (8.80)
_ 2

10 Allywi-t00 S (ILIyny.c0 4+ IHL lyngoo) . (8.81)

The bound (8.79) is implied by (8.68) which has been already proven. Up to
commuting 9; + bd, and 8y, for 0 < j < k — 1, we see that (8.80) would
follow from obtaining the same bound for (d; + bdy)0d deb. Such an estimate
has been already obtained in (8.72). Since also (8.81) has been shown to hold
true before, see (8.74), we have completed the proof of (8.75).

Proof of (8.76). Using (8.77), for any 0 < k < Np/2, we can estimate

1
1P, Sl e S PN e + (H Sb — EbH k”ba”HkJrl + 1153 + baa)bHHk)
H

1
X 10 x|l N +H5b——b
w2 2

130 (5, + b3 X s
Hk w2

+ ISCA = Dl gell0a x|l n
w2

00"
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From (8.12) we know that
10l no 4+ 100 + b3 no . SILI ng .
w2 w2 w2

From Lemma 7.1 we see that ||b|| yx+1 < 1. To conclude the desired bound it
then suffices to show the following L>-estimates:

160 g + 1551 g S (LNl yyvyoo + IHL lyyvy.0) VE (8.82)
IS @ + bd)bll xS (ILIyar0o + IHL lyyny.o0) VE (8.83)
1S(A = Dllge S (ILIynroo + IHL lyyny.oo) VE (8.84)

forany 0 < k < Np/2.

The L? estimates above can all be proven in the same fashion, so we just
give details for the first one. As before, from (7.17) we know that (1 — H)b =
Qo(L, L), where Qg is as in(11.18). From (11.9) we then have

161 e + 1551 xS Qo (L. Ll + llga = L, (1Qo(L, DI s
+mallyios 1Qo(L, DI t.)-
Using the estimate (11.30), and the energy bounds (8.2), we see that

| QO(Z, L) || x, is bounded by the right-hand side of (8.82). Moreover we can
use (11.3), and the a priori assumptions, to deduce that

10T DIt SILN oy LN o SULH b,

This, and [[¢e — 1lIx, < VE, suffice to obtain (8.82). One can easily see
that (8.83) and (8.84) follow analogously, by using respectively the identities
(8.71) and (7.16).

Proof of (8.60). In order to complete the Energy estimate for EX we want

to prove the L°° bound

In what follows we are going to establish the stronger bound

a _ ~ 2
Zok™| S ITlme.
a L

ﬂok—IH VA (8.85)
a w2
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and the additional estimate
|5 ox
a X

The above bounds will also be useful later on. To prove (8.85)—(8.86) we will
use the formula (2.32) from [45], which reads

S IZlyw ool Ly, (8.86)

No

(I—H)(—ok AT, ):11+12

=2i[w, H]{ + 2i[u, H]g—

L[ (ul@) —u(B)\*—
I i=—— _ dag, 8.87
? n/(i(d)-é(ﬂ)) P ©5D

in combination with the following Lemma:

Lemma 8.8 Let f € Xi, 0 < k < Ny, let A be as in (7.16), and w as defined
in (7.3). Assume that f and g are related by

(I —H)(fAL,) =g

Then, for any 0 < k < Ny

Ifllx, S lglx, + (lwllx, + 115e — 1lx,)
(||g|| R 1 e [¢:2 w>||H2+loo), (8.88)

andforOfkf%—i—Z

Il fllwroo S IIRe gllwkoo + Mmoo 181l a1 + gl grst lw k1,00
(8.89)

Proof From the identity (8.135) we see that Az, = 1 — iw, and therefore
I-Hf=g+U-H(fw).
(8.88) can then be derived by applying (11.9) to the above identity, using

(11.2) and the a priori bounds on w. The estimate (8.89) follows similarly
from (11.10), together with (11.7) and (11.3). |

Notice that I in (8.87) is of the form T(u, u, uy), and therefore is easier to
estimate, so that we can skip its treatment and focus on /1. From Lemma 8.8
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we see that in order to prove (8.85) it suffices to obtain the bounds

IReN v, o S WL s (8.90)

||11I| USRS ) VA P (8.91)
For (8.86) it is enough to prove
1Ty, S IZlymise I, - (8.92)

To show (8.90) we write explicitly Re/; as follows:

2 [ w(a) — (/3)_ u(a) — (/3)_
Relj =Re| = [ —————= () — ¢(B) a
el; e(n (@) — ;(,3) p(P) ﬂ+ {(a) — C(ﬁ) sF) ﬂ)
Uy oy, Wa
= Re (w2i'H— + u2zH—)
e ( /w(ﬂ)uﬂ(ﬁ)-f-u(ﬁ)wﬂ(ﬁ) ﬁ)_ (8.93)
T C(a) —¢(B)

The first contribution above is estimated using (11.36):

szmu—"‘ +u2in2e
g g

o o

vo S Twlliywreollullywg.oo. (8.94)
WT+1,00

To bound the second summand in (8.93) we use the identity

Re [ LB dp = /§2Ref(ﬂ)

(@) = ¢(B) (@) = ¢(B)
Y f(ﬂ)(Im{(a)—ImZC(ﬂ)) dp
() = C(B)]

and notice that
2Re (witg + uwg) = dg(wii + uw).
It follows that

Re (3/ w(Bug(B) +u(B)wg(B)
7T g(a) =&(B)

dﬁ) _ 2”1M s

’ (8.95)
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where I, is cubic remainder which can be easily estimated. Since

(8.96)

HH Oy (WU + nw) H
a w

g

we have concluded the proof of (8.90). The estimates (8.91) and (8.92) follow
respectively from (11.3), and the bound (11.31) provided by Proposition 11.7.

w u
g ST Tl

8.2.3 Evolution of E*

The energy associated with X is given by

E*(t) N§0_2/ 1‘(8 + b9 )D"x)2+ '(D"x)ha (k1) d
) = J—
k=0 A t ’ l ’ ¢

No/2
l —_
+> / 10 + b3 SKA +1(Sk2)" 8 (Sih)" der
k=0

From (7.20) and (7.23) we have (0; + baa)zk + iAdgA = Zj’:l G, where

. [ R 1] _
Gt == |u M+ H— | @) (8.97)
G} = [u, H] (ﬁ;—“) + u[u,H]?—a (8.98)
Gh = —2[u, H]—* (8.99)

L[ (u@ —u@)
G = —/(—) - dagp. 8.100

= | Gor—is ) v - w®ras (8.100)

As already done for x before, we use Proposition 8.7 to compute

d =z o
ZEh) — il k k
—EAN0) k; / Re ((at+baa)D APD A)

1 a; —1 ks |2
- 2ok ‘(8,+b8a)D x‘ do (8.101)
a

No—2
—2 Z Re/ia,(Dkx)haa(Dkx)r
k=0
+ i3, (D*1) 9y (DKM 4+ i9,(D*A) 3y (DAY dae (8.102)
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No/2 )
+ Z; / —Re (@ + boe) Seh PSih)

1
_ Xﬂ o k~1|(3, + bdy)SiAl da (8.103)
a
No/2
~23" Re / i3, (S10)" 80 (S0 + 8y (S1)" 3 (S
k=0
0, (Seh) By (Seh) da. (8.104)

Since |A — 1]z < 1 we see that

No—2
(8.101) + (8.103) S VE*(1) (||DkGX||Lz + I[P, D"]anz) (8.105)
k=0
No/2
+VEX©) D (I5kG 2 + TP, Sklrlz2)  (8.106)
k=0
—i—E)‘(t)‘%ok_lHLm. (8.107)

As before, the terms in (8.102) and (8.104) are remainder terms: there is
no logarithmic loss in estimating them already in [45], so we can disregard
them. Moreover ||a;/a o | 100 has been already estimated in Sect. 8.2.2, see
(8.85). Also, the terms ||[P, Dk]klle and [|[P, Sx]A|l ;2 can be treated exactly
as done in Sect. 8.2.2. Therefore, to control the time evolution of E* by the
right-hand side of (8.44) it suffices to show

1G™ Iy, S ILOyn 1L, - (8.108)
This is done in the following sections by estimating each of the terms in
(8.97)—(8.100).

Estimate of (8.97). Observe that

G — _;/ (u(e) — u(p))Ims (o) _Img(ﬁ))w(ﬂ)fﬁ(ﬂ)dﬁ

(@) — ¢(B)I?

and therefore it is an operator of the form T(u, Im¢, w¢,) which can be esti-
mated by means of Proposition 11.7.

Estimate of (8.98). The term G%‘ is more delicate. In order to estimate it we
need to exploit its special structure, which allows the appearance of the Hilbert
transform acting on products only when the arguments are perfect derivative
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of functions that we can control. Let us start by explicitly rewriting G’z\ as

G = uH (af—“) ~H (uﬂ—“) +2H (uﬁ—"‘) . (8.109)
C(x é‘a ;a Ca

We can then apply Dffork =1,..., Ny, and Sg, for k = 0, ..., No/2, to
the above expression and use the commutation identities to distribute them.
This procedure will give many terms, most of which can be estimated directly
using the L2-bounds given by Proposition 11.7. There will only two be types
of dangerous terms:

1. Terms for which D0 or § No/2 fall on ug;
2. Terms that require the estimate in L°° of an Hilbert transform of a product,
such as H{%uﬁa.

More precisely, denoting by T'0 either D0 or Sy, /2, all the dangerous
terms are:

— __( TN TN
AlerouH(ﬁf—“), AZ:uH(ﬁ _““) - H( “"‘)
Ca Ca Lo
_ Ny, m
Ay = 2TV HES A = i>H—2% Ag = —TNoyH (u”—“) ,
o ga o

No7
A7 =—uH (uré_ua) .

In particular, using Propositions 11.7 and 11.4, one can verify that

H [No (m (ﬂ_)) ~ (A + A)
gcx L2

+ HFNO (quu_a) — (A4 + As)
Lo L2

o ) e,

It follows that

+ H Ny (WC—) — Aj

L2

< ”u”WNl OO”MHXNO

||

7

2

ng ZAJ +||u||WN1.oo”u||XNO'
Jj=1 L2
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To estimate the terms A; we need to combine them appropriately. More pre-
cisely we look at the combinations

Ayt Ay = — L [ @) —uBNEB) Ly,
in ) t@—-ip

1 u(@) — u(p)
As A7 = in”(“)/ {@) —2P)

AL+ Ag = TNoy, (ﬂ (ﬁg—"‘) —H(u?—a)) (8.112)

The remaining term A4 can be directly bounded using Lemma 11.8

ug(B)dp (8.110)

rNoug () dp (8.111)

Hae

o

—u
ulrNoy =<
o

lA4ll2 S

~

< lull oo ITNou | 2
L2

2
5 ”u”WN],OO”u”XNO'
LOO

The terms (8.110) and (8.111) can be estimated by means of (11.31) (case

k = 0) in Proposition 11.7 since, upon commuting I'N0 and 3y, they are linear
combinations of terms of the form

Qo(ut, 87T Y0w), Qo (1, 0@ N0w)) , Qolu, ANou) o uQo(u, 8T N0w).

Notice that there are no singular integrals that need to be estimated in L™
here.
To bound (8.112) we rewrite it as:

(8.112) =Ty 'HE—(uua)—l—H;—(uua) — Iy Hé‘—(uua)—i—H{—(uua)

a o o o

1 1 1
=Ny (H_— + H—) (Hug) — TNOw H—0d, (Wu) =: By + Bs.
o o é‘a

(8.113)
The first term Bj in (8.113) is quartic and can therefore be easily estimated.

The second term B; can instead be bounded by means of Lemma 11.8 using
the fact that the argument of the Hilbert transform is a perfect derivative:

N
I1B2ll S IIT™0ull 2

1
H—03,(
c (uue)

o

2
S el 1 gy e
LOO

Estimate of (8.99). The term Gg‘ can be treated similarly to G%. Using the
same notation as above, and indicating with “+ - - - harmless terms that can
be controlled directly by means of Propositions 11.7 or 11.4, we can write
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o 'FNooz
u _Z[M,H]%+..._

(8.114)
Since u - u, = Re (uiiy) the first summand in (8.114) is like B, above.
The second summand in (8.114) is of the same form as (8.110) above, and
therefore can be estimated similarly. o
Estimate of (8.100). The term Gﬁ isof the type T(L, L, L) and can therefore
be treated directly using (11.34) in Proposition 11.7. This concludes the proof
of (8.108), hence of (8.44) for f = A.

rMoGk = —orM ([u, H~ ”“) = —or Moy~

o

8.2.4 Evolution of EV

The energy associated with v is given by

No
1 2 -
EY (1) :Z/Z‘(af+b3“)’3k”1 +iD*v,9, Dkvy da
No/2

+ Z/—I(E),era )Skv1| + iSpvy 0y Skvlda

Here vi = (I —H)v and from (7.19), (7.22), (7.26) we have (9; + baa)zvl +
iAdur = 377_; GY', with

G\' = —H)Pv (8.115)
Gy = —2[u,’H]?—a7’x (8.116)
3
GY = 2[u, H = 8.117
3 [u, ]Ca (w gho{x) ( )
G)' = —i[(H + H)u, H]( ) (8.118)
v u(a) — u(p)
I = 8.119
v=x ot ;“(ﬁ)) P A (G119

Using (8.48) we compute
d No 2 1 ag 2
TE'() = Z/ TR (@ +b0) D vy PD vy - o ok—l‘(a, + bog) D vy | da

No/2
+ z / —Re ((0; + bdy)Skvi PSivy) — — — Ok l|(3t ~+ by )Skv1| da.
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Since |A — 1]l = < 3 we see that

No
d
TE'® SVET) Y (IDG™ 2 + 1P, D vl

k=0
No/2 a
+VET®) D (ISG g2 + 1P Silvil2) + E" 0| ok~
k=0

Since ||a; /a o k! |l ;. has been already estimated in (8.85), and ||[P, D¥u; 72
and ||[P, S]v1||;2 can be bounded as in Sect. 8.2.2, we only need to suitably
control |G| Xn, by showing

- 2
1G™ Ixy, S (ILONynioo + IHLT O llynoe) LI xy, - (8.120)

This bound is proven below by separately estimating each of the terms (8.115)—
(8.119).
Estimate of (8.115). From (11.2) we see that

1G 1y, S WPVlxy, + 1Lk IPVlgonn.  (8121)

Since the second summand above is easier to estimate (itis a quartic expression)
we just show how to control the X y,-norm of Pv in (7.22). With the exception
of the lastterm, i (a; /a) ok~1 Ad, x, these are all terms of the form T(L, L, L)
for which (11.35) applies directly. To estimate the remaining term we first
notice that we can essentially replace A with 1 in view of Lemma 7.1 and the
estimates (8.85) and (8.86). We then have

ﬂokq aax‘

F

Using (8.85)—(8.86) to bound the norms of (a;/a) o k1, and (8.32)—(8.33) to
control the norms of d, x we see

ag 1
Lok m Muxllxy,

ar -
Lok Nl xy +|
a Xn, w2

S ‘
~Y
XNy

ﬂok—lAaO,X(

F
as desired.
Estimate of (8.116). Since Py is a cubic term, (8.116) is a quartic term.
Moreover it is of the form Q¢(u, d,P x). Thus we can use (11.31) to obtain

2
S ILO v ol Ll xy,
XNO

1811 xy, < el 3p WPy, +IPKI 0 Nl

< elPxllxy, HIPKI 0l
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One can then use bounds obtained previously on ||Py || x No and the estimate

P N Ak
I X||WTo+3’OQN 1l ”W%,oo

which is easy to derive, to deduce the desired bound for (8.116).
Estimate of (8.117). This term is of the form

(8.117) = Qo (u Oy (wi—a)()) .

Applying (11.31), followed by product estimates, (8.32)—(8.33), and the use
of (8.13), we see that

Oy O
8.117 < |lu w— w— u
11Dl Sl sy 032X +H d e L
0
O < 2
+ ”””W%H,m wC_aX " loc||§oz = Uixy, S 1Ly, 1Ly w00

Estimate of (8.118). This contribution can also be written in terms of the
operator Qg as

o

(8.118) = Qo ((H + H)u, 9y (i—“x)) .

We can then use (11.31) to obtain

o

18.118) 1, S ||80,(H+ﬂ)ullw o\
o

@H,oo
XN0

_|_

o — —_
o] sy 10 T P

X

O |
e BN TR PO

From (11.6), (11.28) and (11.36), and (11.4), we deduce

No
T+3,oo

196 (H + Hull ng . S ILIP
w2 w

ICH+ Py, SILH o, Ly,
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Using these bounds we eventually see that
< 2
18118y, S ML 1212 g

Estimate of (8.119). This term is of the form T(L, L, Ly) and therefore
(11.35) can be applied directly.

8.3 Proof of Proposition 8.3: control in terms of the Z’ norm
Recall the definitions

L=y —1u,Ime,w), L:=(y—1,u,w,Im,dgx,v) (8.122)

and
L™ =Ly — 1, u, w, dgx, V). (8.123)
We want to show
L@ e S ICRE), ¢z (8.124)
and
IHL™ (@) w0 S NG, p ()l 22 (8.125)

where the Z’ norm is defined in (1.8). These estimates rely on the following
Lemmas:

Lemma 8.9 Assume that the a priori estimate (2.9) holds. Then there exists
constants c¢;, d;, fori = 1,...,5 such that

L (t,a) —cidax (1, @) — didoA(t, a) = Q(t, @) (8.126)

where Q denotes a quadratic expression in L satisfying
1@l e S L@l s IIZ(I)||W§+1_OO- (8.127)
Lemma 8.10 Assume that the a priori estimates (2.8) and (2.9) hold, and that

1
sup (1 +0)8[|¢p @)l < &1, (8.128)
[0,7]
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740 A. D. Ionescu, F. Pusateri

as guaranteed by (4.35). Then for any 0 < k < Ny and any t € [0, T] we
have,

1100 X (Dl wroo S IR, S ()l 2/ (8.129)
10X () [l wroo S (R (E), G ()l 2 (8.130)
and
H x (D lywroo S MR, §@))l 2 (8.131)
[HA (@) | wroo S ICAE), P 7 (8.132)

Proof of Proposition 8.3 The estimate
IL™ lynieo + IHL llyngoo S 10, @)l 20

clearly follows by combining the above Lemmas. To obtain (8.124) we need
to use in addition the identity

Im¢ (¢, o) = h(r, Res (1, a))
to estimate Im¢ in W10

||Im§||WN1v°° 5 ||h||WN1~0°||Re§a||WN1’°O S ”h”WNLoo
(14 IReCq — Ul gny+1) S Al oo

8.3.1 Proof of Lemma 8.9

To prove Lemma 8.9 we use the identities (2.44), (2.50), (3.38) and (2.35)
derived by Wu [45], which relate the components of L™, ¢, — 1, u, w and v,
to dy x and 0y A. These are given respectively by

_ | 1 1 1\ _
A+ Lt(l - ;0!) + E(;ot - ;a)u + Ega (Hé‘_cx + HZ) (M;a)

(8.133)
oy (u;“a)

o

— ia 7 lﬁ T wH
R (uag_a)——[ ]
I [ (o) = u(h))(Gel@) — u

- (u(a) —u(B))(Cu(a) fﬁ(ﬂ))u(ﬁ)gﬁ(ﬁ)dﬂ

2mi T - 2B’
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1 S . 1 —1\ _ _
+ E(fa — )W — Zuqu + Eéa (H— + H——) (Wey + uugy)

2 é‘(x é‘a
_E_a/I (—”(“)_“(’3))2— d 8.134
= () Twe s (8.134)
w A—1
fa—1=— = (8.135)

é‘a _E(x

v=2u— (H+Hu—[u, H] :

(8.136)

From (8.133) we can schematically write
u—dgh=L-L+Q(L,L)

up to cubic and higher order terms whose arguments have the same regularity
of L. Commuting derivatives via (11.39b) and using (11.48), it is then easy to
verify that u — d,A = Q, where Q is a quadratic term satisfying the estimate
(8.127) in the statement. Similarly, from (8.134) we deduce that up to cubic
terms

w— Sdux = I - L)+ oL, L) + QL I,

Arguing as above using the bounds (11.3), (11.30) and (11.48), it follows that
w— 50, = Q,forsome Q satisfying (8.127). Using (8.135), the last equality
above, and the quadratic bounds on A — 1 given by (7.16), we can write

w A=l Al ASL L
TiA A T A A QTR

so that (8.126) is verified also for the component {, — 1. Combining (8.133)
with the identity u — d,A = Q, and the quadratic bounds on H + H given in
(11.6), we see that v — 20,A = Q, for Q as above. Thus we have checked that
(8.126) holds true foralli =1, ...,5. O

8.3.2 Proof of Lemma 8.10

Let H = H, and let Hy be the flat Hilbert transform. We start by establishing
the following estimate:

|(7 = H)(f oReg) — [(I — Ho) f(1 + 1')] o ReZ || i
S I koo 1Al 2,00 (8.137)
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742 A. D. Ionescu, F. Pusateri

for any 0 < k < N + 4. Notice that since Im¢ (¢, o) = h(¢t, Re¢ (¢, o)) we
have ¢ = (x + ih(x)) o Re¢. Thus by a change of variables one has

(I —H)(foRet) = (I —Hyqinw)f oRes.

Expanding out the denominator in the expression for H, in(x) f We see that

(I = Hatina.0)f = = Ho) [f(t, )1+ 12, )] (x) + Ry (1, x)

1 h(x) = h(y)\ h(x) — h
with Ry (z, x) ::E/H( (x;_y(y)) (();)_ y)(zy)f()’)(l-i-h/(y))dy
(8.138)

for some smooth function H. To prove (8.137) it then suffices to show that R 7 in
WK% is bounded by the right-hand side of (8.137). Applying the commutation
identity (11.39b) in order to distribute derivatives, and the L°° estimate (11.40),
it is not hard to see that

IR fllytoo S Illwiszoo |l f (14 A lyisroco S ILF llwirtoo 72l yrr2.co.

We will now show the estimates (8.130) and (8.132). The estimates (8.129)
and (8.131) can be proven in a similar fashion, so we will not detail the proof
here.

Proof of (8.130). Recall the definition of A

A=U-Hy =U—-H)¢oRe).
Applying (8.137) with f = ¢, and using the assumption (8.128), we see that

e = 8o [(1 = H)p (1 + h') o Re¢ ]| yun
S Iplwerisellbllyrsnse S 1 @)z (8.139)

forany 0 < k < Nj+2.Moreover, using [0, Ho f ||z < [|Af ]l y1.00, standard
product estimates, and the hypothesis (8.128), one can estimate

|00 [(1 = Ho)p (1 + h')] o ReZ || i
< Jox [( = Ho)p (1 + 1) | e
S 0x (I — Ho)gllwrs1c + [9h [ iszce SN0 P)llz. (8.140)

This and (8.139) giveusforall0 <k < Ny + 2

10 MMl wroo S MRy @)l 27 (8.141)
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which in particular implies (8.130).
Proof of (8.132). Let us write

A=FoRe with F(t,x) = (I —Hering.n) ¢, ). (8.142)

Then 0y A = dy F o Re¢ d,Re¢, and since we know that £, — 1 has uniformly
bounded H1*> norm, using also (8.141), we can easily deduce that

10 Fllwkoo S N0arllwkee S 17, @)llz, (8.143)

for any 0 < k < N; + 2. Using the definition of , and making a change of
variables, we see that

| I [ 0.F(Rec(t, )
H_aa)\, ’ = T 8 R ’ d
e = oy R,
1 Ay F(t,)

in ) x+ih)— 0+ | Rectw

Using also (8.141), it follows that

1
IH A, &) lynyc0 S HHg—aak(ha}
o

+ ||aa)¥||WN1+1»°°

WN],OO
Ay F(t,y)
S H/ 2 . dy +I(h, Pl 7
x+ih(x) = (y+ih(y) " lwnie
Setting
dy F(t,
G(t,x) = / EUTIUR)R— (8.144)
x +ih(x) — (y +ih(y))
we see that in order to obtain (8.132) it suffices to show
1Gllyn0o S MR, @)z (8.145)

Expanding the denominator in (8.144), we can write

G(t,x) = (I — Hp)o  F (¢, -)(x) + G(t, x)
with  Gi(t, x) == i/H (h(x) _h(y)) hx) _h(zy)ayF(t,y) dy
14 y)

X =y (x —
(8.146)

@ Springer



744 A. D. Ionescu, F. Pusateri

for some smooth function H. Expanding the denominator in the expression
for F we can write:

F(t,x) = (I — Ho)[(1 +A'(z, )¢ (t, )]1(x) + Ry(t, x)
where Ry is given by (8.138). It follows that
G = (I — Hy)ox(I — Hy)[¢(1 +h)]+ (I — Hy)dxRy + G1.  (8.147)

To obtain (8.145) it is then enough to have

I Hodx[¢ (1 + m) My S NI )z (8.148)
(1 — Ho)dx Ry llyyvy.oo S 1R, ) 2, (8.149)
1Gtllywico S MR D) 2 (8.150)

The bound (8.148) has been already shown to hold true in the above paragraph,
see (8.140). We also have

IRpllyni42.00 S @l wni+scollbllyni+aoo S 12, @) 22

which is stronger than (8.149). Using again commutation identities and
(11.40), together with (8.143), we get

IG1llwnioo S Ihllyvi+2o0 05 Fllyni+too S Ihllyni+2.00 1 (R, @) 22

which is enough for (8.150). O

9 Proof of Proposition 2.2: the diffeomorphism k

This section contains the proof of Proposition 2.2. The main issue is to show
that the change of coordinates k is a uniformly controlled diffeomorphism
for all times. This is a substantial improvement of the analogous analysis
performed by Wu [45, p. 124-127], and relies on a special null structure present
in the transport equation (9.5) for k.

We start by assuming a priori that

sup (ke (1) — 1l yyno/assce < 1/2. (9.1)
t€[0,T]

Furthermore we assume, see (2.8),

sup | [(1 + 07PN (@), 0 ()l xy, + V1 +1lI(R(), ¢(f))||z/] < €1,

tel0,T
9.2)
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and (2.9), that is

sup [(1+ 07 ILO Ly, + IZO N giss + VTH IO Iy | < 1.
t€[0,T]

(9.3)
We then aim to conclude

sup [lke (t) — lyynoizee S €0 + &7 (9.4)
[0,T]

as a consequence of the following Lemmas:

Lemma 9.1 (Approximation of k;) Let k be defined as in (7.2) then the fol-
lowing formula holds:

Za — kg
o

(I — Rk = —lz1, H:] 9.5

Under the assumptions (9.2) and (9.3) there exists y > 0, such that for any
tel0,T]

7, —1
ol H;]g"‘ — To(h, $) o Re¢ <eld 4077 (9.6)
o wNo/2+3,00
and
, —1
o lut, H;]C“ — To(h, ¢) o Re< Seld+07VFr 9
o HNO/2+4
with Ty given by
To(f. g) := dx[(I — Ho)gx, Hol(I — Hp) fx. (9.8)

where Hy is the flat Hilbert transform, Hy = Hiq according to (1.4).

Lemma 9.2 (Estimate for Ty) Under the a priori assumptions (9.2), there
exists y > 0 such that

ITo(h, §)llynorsee S ef(1+1)7177, (9.9)
1 To(hy @)l yrosove S ef(1+1)~ 1277, (9.10)

The proofs of Lemma 9.1 and 9.2 are in Sect. 9.1 and 9.2 respectively. We
now show how Proposition 2.2 follows from them.
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746 A. D. Ionescu, F. Pusateri

Proof of Proposition 2.2 Since we know by our a priori assumption that k is
diffeomorphism, we can define

_ot _ka —_
K, a) =21, He ] ok~ 9.11)

Za

From the properties of the Hilbert transform and the definition of ¢ and u in
(7.3), we see that

é‘d_l

o

K(t,0) = [u, H¢] (9.12)

and
(I —H) kg ok = —K(t, ). (9.13)

Applying the estimate (11.11) for the inversion of I — H, with f = k; o k™!
and g = —K, we see that

186 (ky 0 k™ D)1 yyvor2e3.00 S 1106 K (2, 00) || yyvor2esoe + 18 — 1llyyno/2sao
0 K (2, ) [| gyng/2+4-

From the a priori assumption (9.3) and (9.1) it follows that

1/2

19ccki Iy no 243,00 S 1100 K (2, @)y no 243,00 +E1 (L0 [| 00 K (2, 00) || gy 2-+4.

(9.14)

Applying successively (9.6) and (9.9) we see that

186 K (1, @) lyynor2300 S €3 (141717 4 1 To(h, @) lyynonizee S ef(1+16)717.
(9.15)

Similarly, from (9.7) and (9.10) we have

180K (1, @)l groaea < €314+ 07 277 4 1 To(h, §) | yroess S eF(141) 71277,
(9.16)

Plugging (9.15) and (9.16) into (9.14) gives

18eckes ()| yyvor2e3ce < eF(141)"177
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whence

[k (2) — 1] W No/2+3,00 5 llke (0) —1] W No/2+3.00

t
+ / 185ka (5) Iy Nos243.00 ds S eo+Cy et
0

9.1 Proof of Lemma 9.1

The identity (9.5) is proven by Wu in Proposition 2.4 of [45]. Let K be given
by (9.11):

Za_l

o

K(t,a) = [u, H¢] = Qou,ly— 1), (9.17)

where Qg is the bilinear operator defined in (11.18). We aim to approximate
0. K by To(h, ¢) showing

10, K — To(h, ) o ReC lyynoisce < eF(141)7177 9.18)
10 K — To(h, ¢) o ReC || ynoars S e7(141)"1277, (9.19)

Step 1: Approximation of u. Let Hy denote the flat Hilbert transform, Hy =
‘Hiq according to (1.4). We start by showing

lu — (I — Ho)x o Re || yynoraisce S (1 +1)" 127, (9.20)

Using the identity (8.133) as in the proof of Lemma 8.9, we can schematically
write

u—gh=L-L+Q(L,1L),

so that using (11.41) to estimate Q, and interpolating between the a priori
decay assumption and the Sobolev bounds, we get

~ 2 _
= Al yynoraisce S IL o700 S €71+ 1) 734,

To obtain (9.20) it then suffices to show

8 — (I — Ho)¢x o ReC lyynpssce S eb(141)71277. (9.21)
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Looking at (8.139) and (8.140) in the proof of Lemma 8.10 one can see that

00 A — 0 [(I — Ho)p o Re¢ [l yynvgra+s.00 S N llyynor2+7.00 1]l yy g 2+8.00
<Sel( 41708,

having used (4.35) in the last inequality. Since we also have

9o [(1 — Ho)¢p o Re¢] — (I — Ho)¢x o Rel |l yyng/2+5.00
= [[(I — Ho)px o Re¢ (Rede — D) |lyyno/2+5.00

S NAGlywozosollle — Ulyngzsoe S ef(1+07",
we have verified (9.21), hence (9.20) with § = 1/8.

Step 2: Approximation of {4, — 1. We want to show that ¢, — 1 can be
approximated as follows:

I¢a — 1 = i(I = Ho)hy o Ret dgRel ||yyng/zes.c0 S 7 (1 + 1)1 />77
(9.22)

|He (6o — 1 —i(I — Ho)hy 0 Reg 8uRed) | yynpsnce S e7(14+1)7127,
(9.23)

for some y > 0. Putting together the identities (8.135) and (8.134), as in the
proof of Lemma 8.9, we can write

1 ~ ~ ~ ~ ~ ~ ~ ~
{a—l—iaax =HL-LY+L -HLy+L -Ly+Q(L,L)Y+A—-1+---
(9.24)
where operators of the type Q are defined by (11.19)-(11.21), A is defined in
(7.12), and “- - - denotes cubic or higher order terms which are more easily
estimated, and we will therefore disregard. Notice that interpolating between

the bounds provided by the a priori assumptions (9.3), for large enough p one
has

L@ lywozre S e1(1+ 0727, (9.25)

Combining this with the estimates (11.37) and (11.36) for H in Wk we see
that

“H(Z D)+L-HL,+L- L, ||WN()/2+5,00

< (I lyynorzts.r + ILlynoatsss) 1L Iy no2ts00 S eF(1 4 1) ™45
(9.26)
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and

”H (H(Z : Z) +L- Hza +L- Zoz) H WNo/2+3.00

< (I lyworzson + 1L 1 ynoss.00) L yno2rece S &5(1 +1)74°
(9.27)

having chosen p large enough so that (9.25) holds.
We now want to obtain similar bounds for Q(L, L) and A — 1, and more
precisely show

IQL, D) ywosoese S 1141745 (9.28)
IHQ(L. D)|| yywos2300 S €31 +1)735 (9.29)
and
IA — Ul ynoisse S et 416743 (9.30)
IH(A — Dl yvoeizee S et 4175, (9.31)

The first bound (9.28) follows directly from (11.29) and (9.25). To obtain
(9.29) first notice that the inequality in (11.48), which is an application of the
L? estimates in Corollary 11.4, gives

IQL, D) yvorzes S WL gnorsILllynorzssce S ef(1 417>,
Interpolating this and the L bound (9.28) gives
QL. Dl ynosan S 71+,
provided p is large enough. (9.29) then follows by applying (11.37).
Both (9.30) and (9.31) rely on the identity (7.16), which we can schemati-
cally write as

(I —H)YA—1)=[L,H]Ly +[L, HIL + - - - (9.32)

where once again “- - - ’stands for cubic order terms which we are going to
disregard. Applying (11.10) we get

1A = Ulynorsee S |IL, HILa + [L, HIL | 5y ag/2vs.0
+er(L+ 02| [L, HILa + [L, HIL | ;yng 246-
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We can then bound the above right-hand side by using (11.37), (9.25), and the
boundedness of H in (11.3):

~ ~ 2
IA = Ulynozesco S (L wnor2+7.0 4 1L yyNo/2+7.00 )
+ef(14+0)7 1P < e (1 4 1)~

We have therefore obtained (9.30). Since (9.32) holds true also for H(A — 1),
up to a sign, the estimate (9.31) follows as above.
Putting together (9.24)—(9.31) we have

1
Lo — 1 — EaaxH Set(l 410~

WNO/2+5.00

1
HH; (;a —1- —aax)H Sefl+n7127,
2 WNo/243.00

for some y > 0. To obtain (9.22) and (9.23) it is then enough to show

190 x — 2i (I — Ho)hy o Re¢ duRe¢ [lyngzesce S 67 (1+0)"/>77
| He (ax — 2i(I — Ho)hy o Re 8ReD) || yynpoise S €714+ 1)7127.

In light of (11.36) both bounds would follow from

llx —2i(I — Ho)h o Re¢ |l yyngarene < e7(141)"1/277, (9.33)

~

From the definition of x in (7.4) and (7.7) we see that
x =2i(I —H)(hoRer).
Applying the inequality (8.137) with f = 2ih, one gets

lx —2i(I — Ho)h o ReZ || yyng/2+6.00
S 1By no27.00 |l o 2800 4 (T = Ho) (hR") || g 24800
SR, o 24900 + 1105 Hoh® [| g 24500
N ”h||%vN0/2+1(),oo S 8%(1 + t)_4/5-
This gives us (9.33) and concludes the proof of (9.22)—(9.23).
Step 3: First approximation of dy K. We now want to show
100 K — 9o Qo ((I — Ho)¢x o Reg, (I — Ho)hy o Reg Redo) |y no/2+3.0
Seld+nr (9.34)
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10 K — 0o Qo (I — Ho)¢x o Reg, (I — Hp)hy o Re Rely) || gyng/2+4
Sel(l+n~ 177, (9.35)

Let us denote

A1 :=u— (I — Hy)p, oRe¢
Ay =8y — 1 —i(I — Hyp)hy o Re¢ d,Re¢.

Using (9.17) we can write
du K — 94 Q0 (I — Ho)¢x o Re¢, (I — Ho)hy o Re¢ dgRet) = Ky + K>
where

Ki:=0,00(A1,84 — 1)
K7 := 04 Q0 ((I — Hp)px o Reg, Ar) .

From (9.20), (9.22) and (9.23) we know that there exists y > 0 such that

TA L yrg2ssce S 6714071277, (9.36)
1Az yrgraesce S ef(1 41071277, (9.37)
IHAL llyyno2t3ce S eF(1+1)71277, (9.38)

Using the L® type bound (11.32) for operators of the type dy Qo, (9.36) above,
and the bound in Proposition 8.3 together with the a priori decay assumption
in (9.2), we see that

1K1 1l yvor2so0 STATyno2es.c0 (IH (G = D ynor2+3.00 +116a = Ll v 2+a.00 )
Se(l+077,

Similarly, in view of (9.37) and (9.38) above, one has

I K2 llyynvorze3.00 S (T — Ho)epy o ReC || yyvg/2+5.00
X (IH A2l yynossc + Azl ynonisce) S ef(1+0717.

We have therefore obtained (9.34). The HNo/2+4 estimate (9.35) can be
obtained similarly, estimating K| and K, in HN0/2+4 by using the bounds
on Aj and A, given by (9.20), (9.22), (9.36), (9.37) and (9.38), and bounded-
ness properties of the Cauchy integral on Sobolev spaces, see (11.3).
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Step 4: Approximation by Ty. Let us denote

¢o = 0x(I — Ho)¢ (9.39)
ho = 8, (I — Ho)h. (9.40)

To eventually obtain (9.18)—(9.19) it suffices to combine (9.34)—(9.35) with

19 Qo (0 © Ret, ho o Reg Reda) — To(h, §) o Red | yng2ese S ef(1+1)"" 7
(9.41)

18 Qo (¢p0 © Re¢, ho o Re ReZy) — To(h, §) o ReC || yngrara < eF(1+ 1)~ 1277,
(9.42)

With the notation (9.39)—(9.40) we can write To(h, ¢) in (9.8) as

To(h, ¢) o Res (o) = dx[¢o, Holho o Res ()

=L / Q) =90, () dy o Rec(@),  (9.43)
im X—y

whereas writing explicitly Q¢ and changing variables we can write

9o Qo (¢0 o Rel, ho o Re Redy)

1 $o o Rel (o) — ¢ o Red ()
= —aa h oR R d
= / (@ —7() 0 o Re¢(B) Relp(B) dp
1

= i ( / %) = %) ho(y)dy o Reg(a)) . (9.44)

X +ih(x) = (y +ih(y))

Then the difference we are interested in is given by

9o Qo (¢ o Re, hp o Ret Rety) — To(h, ¢) o Reg(a)
= T1 oRe¢ (Re¢y — 1) + T» o Re¢ Regy,

where
T o= Lo / P =P vy ay (9.45)
i xX—y
T iax / o (h(X) - h(y)) (h(x) — h(y))(¢o()2€) - ¢O(y))h0(y)dy,
im X—=y (x—y)
(9.46)

for some smooth function H. We have expanded the denominator in (9.44) to
obtain the above identity. Then, since Re,, — 1 decays like (1 + 1)~/ Zin L,
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in order to get (9.41) it suffices to prove

T llyyvossce S eF(1 4 1)~1/277 (9.47)
120l yro2soe S e7(1+0)71 77 9.48)

Applying 9, to the integrand in (9.45), and using (11.40), we see that

$o(x) — do(y)
Tl yyvor2e3.00 S H/ Who(y)dy + 10x o Hohollyyno/2+3.00

WNo/2+3,00
S Mol yro2+s.0o (1hollyynor2+a.ce + | Hoholl yng/z+4.0)
2 —1
S Al yyngr2+6.00 |1l yyng 245,00 S e (1 41)7 7.

Similarly, again using (11.40), it is not hard to see that

3 —3/2
1Tl yyvos2s3.00 S Il yyno/25.00 1100 vy os245.00 10l gy o 24400 S €7 (1 4 1) /2.

This gives us (9.48) and concludes the proof of (9.41).

The remaining estimate (9.42) can be obtained similarly, using the L?
bounds of Theorem 11.3 instead of the L*> bound (11.40). In particular it
suffices to show

ITill gvornes S eTA+077  and [ Tallynonise S eb(l 41671277,

We only detail the bound for 77 as the one for 75 can proved similarly (notice
that 7> is a cubic term and therefore its bounds are (1 + t)_l/ 2 better than
those of 77). Applying 9, to the integrand in (9.45), commuting derivatives
via (11.39b), and using the estimates in Theorem 11.3, one sees that

+ 10xpo Hoholl gg/2+4
HNo/2+4

IT1l gvos2ra S H/ Mho(y) dy
(x—=y)

2 —-1/2
S ol gyvora+s (||h()||WN0/2+4,oo + ||H()h0||WN0/2+4.oo) Ser(l+1) /

which is more than sufficient. O

9.2 Proof of Lemma 9.2

The proof proceeds in several steps.
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9.2.1 Step 1: The operator in Fourier space
Introduce the notations
¢ := (I = H)p. h:=(I— Hoh
so that from (9.8) we can write
0xTo(h, §) = B[y, Holhy.
By taking Fourier transform, and using the notation (5.1), we see that
9:To(h, §) = M (h, ¢) (9.49)

where the symbol of the operator M is given by

m(&,n) =&nlg —nl —1EME —n). (9.50)

We then want to show
|M (R, @) || yyroace S e1(1+0)7177 (9.51)
| M (7, &) | yyosore S 31+ 9.52)

for some y > 0, under the a priori assumptions (9.2) and (9.3).

9.2.2 Step 2: Approximation

Let H and W be the functions defined in (4.17) in Proposition 4.1. Define
H:=( — H)H, V:=( — HyW.

We then claim that the following hold true:

|M (R, ¢) — M(H, 9) | ynpise S 71+, (9.53)
|M(h, @) — M(H, 9) | nppre S ef(1+ 171277, (9.54)

Using (4.17) we see that
M(H, W) —M(h,¢) = M((I — Hp)A, $) + M(H, (I — Hp)B). (9.55)

From the definition of m in (9.50), the definitions (5.14) and (5.19), we see
that

R g < 2F2M25, (9:56)
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Combining this with the L and L bounds on A and B in (5.26) and (5.27),
the a priori bounds (5.23), and using (5.17) in Lemma 5.2, one can easily verify
that

|M((I = H))A, @) || yworpise S &1L+ 1)
|M(H, (I — Ho)B) | yynpiaeae S &7(1+17

These and (9.55) give us (9.53). Similarly one can show (9.54) again by using
(9.56), Lemma 5.2, (5.23) and the bounds on the Sobolev norms of A and B
provided by (5.26).

9.2.3 Step 3: Reduction to bilinear estimates

We are left with proving

”M(ﬁ’ {I}) ” wNo/2+3.00 S 8%(1 +n7t, (9.57)
HM(ﬁ \TJ) ” N2 S ef(1+0)~ 17, (9.58)

Recalling the definitionof V = H+i AW from (5.6), we have Vi =H=+iAUD,
so that H = (VJr +V )/2 and U =(GA)" 1(V+ —V_ )/2. We then have

MHO) = > c00(Ve Vo) (9.59)

e1,626{+,—}
where, again according to the notation (5.1),
q(&.m) = "2 [§nl§ — 0l — [§In& — )], (9.60)
and c;, ¢, are some constants. With the notation (5.14) and (5.19) we have
g 15 o0 < 2F2%12072, (9.61)

From the definition of V and the bounds provided by (4.25), (4.26) and
(4.30)on V = H + iAW, we see that the desired bounds (9.57)—(9.58) reduce
to showing the following bilinear estimates:

Qe (1), v () Ly no2 1300 S €71 +1)717, (9.62)
1O (t), v ()| yvorss S &3 (1 + 1) H27, (9.63)

where ¢ is as in (9.60), and vy = €$“Afj: satisfies, for all k € Z,

| Peos ()l v S e1(1 41712, (9.64)
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1P fie ()| gpvo-10 S &1 (1 4 1)°P0, (9.65)
100 Pefe Ol oy S 11+ 1>, (9.66)

9.2.4 Step 4: Proof of the bilinear estimates (9.62)—(9.63)

Step 1: Frequency decomposition. It suffices to show that for all 1 € [2" — 2,
2’”“] andm € {1, 2, ...}, there exists a constant y > 0 such that

D PeQP (1), Pryus ()| yyrgaenee S 727 (9.67)
k,ky,ky
D PeQPy (1), Pous()] yugas S e127 FM 0 (9.68)
k,k1,ka

By symmetry and conjugation it is clear that we can reduce matters to proving
the estimates (9.67)—(9.68) for the two bilinear operators

To(f, () == F! / g E, ) fr(t, E — ) frt,mdn,  (9.69)
R

T_(f, (@) == F! / 1P gE T E — T Gmdn,  (9.70)
R

where f = (f+, f-), and

Do =" £1E "2 qE& n=In""? [EnlE—nl—1EINE — ).
9.71)

Notice that under the a priori assumptions these bilinear terms have decay
rates which barely fail to give (9.67) and (9.68). The key to obtaining the
extra necessary decay is the vanishing of the symbol g (&, n) on the space-
resonant sets, i.e. for those (&, n) such that 9, ®4 (&, n) = 0. One can then use
integration by parts in frequency, and the weighted bound (9.66), to derive the
desired estimate.

First let us observe that using (9.61), Lemma 5.2, and (9.64)—(9.66), one
can bound as desired the sums in (9.67) and (9.68), for all those frequencies
(k, k1, k2) such that min(k, k, kp) < —m/Ng and max(k, k1, ko) > 3m/Ny.
The remaining sums have only Cm?> terms. Therefore it suffices to show the
estimates for each (k, k1, k») fixed satisfying

k, ki, ky € [=m/No,3m/NolNZ, max(ky,ka) >k —10.  (9.72)
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Step 2: Spatial decomposition. Let us define p : R — [0, 1] to be an even
compactly supported function which equals 1 on [0, 1] and vanishes on [2, 00).
Let R := 23/% We decompose the profiles f = (f, f_) into two pieces:
f=/rfsr+ f<kr = (f+>r, [->R) + (f+ <R, f— <r) Where

fer() = f(x)p (%) L for() = F(x) — fer(x).

We then want to show that forallz € [2" —2, 2"+, m e {1,2,...},andk, k1,
ko € [—m /Ny, 3m/No]l N 7Z

| P (Pry f=r (1), Pry f (D) | e + | PuT£(Pry f<r (D), Py f>r(D) ||
< 8%2—(14—]/)”12—(1\]0/24-3)/(4_’ (973)

| PeTe(Pry f<r(D), Py f<r(@) || oo S £727 (HHVIm=WNo/24Dk: 0 (9.74)

~

We also need to prove the HN0/2+4 versions of the above estimates corre-
sponding to (9.68), but since those can be obtained analogously we will skip
them.

Step 3: Proof of (9.73). First notice that both terms in (9.73) have (at least)
one profile supported at a distance R from the origin. Since this is the only
important aspect that we will use to gain the necessary decay, we only show
how to estimate one of the terms, the other being analogous. We then want to
prove

| PATe (P, £ (0), Py for() | oo S €727/ (No/ 29k

for any k, k1, kp € [—m /Ny, 3m/NolNZ, and any ¢ € [2" — 2, omtl Using
(9.61), Sobolev’s embedding, and the bounds (9.64) and (9.66), we see that

| PP £ 0), Pes for) ] o S 229252 [ Pvs0)] o |5 Py for |

S 2k2k1 812_m/22_N1 max(kq,0) || ax sz(I) ||L2
§ 8]22](2](12—m/2R—12—(N0/2—20) max(kl,kz,o)zmpo

< 8%2—9"1/82—(N0/2+3)k+’

in view of the frequency constraints (9.72), po < 1/1000 and R = 23"/4,
Step 4: Proof of (9.74) 1t suffices to show

| PeTe(Pry f<r (D). Piy f<r(D) || o0 S 727 /827 (N0/249

for any k, k1, kp asin (9.72) and t € [2"" — 2, 2m+1] We distinguish the two
cases of T and 7_. In the first case we introduce and extra cutoff in & — 2n
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by writing

PeTy (Pry f<r(t), Py f<r(?))
= z Pkar(Pkl f<r(@), Pr, f<r(1))

leZ
=2 [ereng e
leZ R
X @k (E)gry (€ — Mprs (NG E, ) fy < (1, & — 1) fr.<r(t, 1) dn

(9.75)

where @ is as in (9.71). First notice that the contribution in the summation
over [ in (9.75) is zero if [ > 3m /Ny + 100. (9.75) also vanishes if [ <
—m/Ng — 100, because in this case |£ — 25| < |n|/10, which implies that
& — n and £ have the same sign, and therefore g (&, n) = 0, see (9.71). The
summation over / can then be disregarded and it is enough to show

“ PkT_{_(Pkl st(t)’ szfSR(t))HLoo 5 8%2—5}’"/42—(1\/0/24-3)/(-0-

forany/, k, ki, ko € [—m/Ny—100, 3m/No+100]NZand ¢ € [2"—2, 2"+,
Observe that for any integer j we have

970, @5, m)| 2 27m/10
and
[876k (O F=r(, )] 11 S RIZS2270, (o] (q (&, mgu (& — 2m)| 5 205/2m/Mo,
Integrating by parts L times in 7 in the integral in (9.75) we see that

||PkT_{_(Pk1 f<r(@), szfSR(t))”LOO

L
< RL 2k|/22k2/222mp02—(N0—10) maX(kl,kz,O)gz
~ \ p2mp—m/10 1
< 8%2—3m/22—(N0/2+3)k+ ’

where the second inequality holds provided L is large enough.

In the case of the operator 7_ it is enough to observe that d,®_ vanishes
(linearly) only when & = 0, and, also in this case, we have

00, ®_| 2 27/"/1°,
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under the frequency constraints (9.72). One can then use the same integration
by parts argument as above (without the need to resort to a further splitting)
and obtain

| PeT—(Pi, f<r (1), Piy f<r (D)) || oo S £7277"/227 No/2HDks

~

This concludes the proof of (9.74) and therefore of Lemma 9.2. |

10 Proof of Proposition 2.4: transition to Eulerian coordinates

Here we want to transfer the a priori bounds from the modified Lagrangian
coordinates to Eulerian coordinates. Recall that

Z(t, o) = (Lu(t,a) — 1, u(t,a), w(t, o), Im¢ (¢, ).

Also, recall the a priori assumptions (2.9) and (2.8), that is

sup (10" ILW Ny, + IOl s + VTHLOllym o) < 21,
t€l0,T]

(10.1)
and
sup (14077, ey, + IO+ IASE) o
[0,T]

FVTH @), APl ymisae ) = o1, (102)
where || fllx, = I fllgn + [ISf |l gnos2. To prove Proposition 2.4 we need
to show, under the above a priori assumptions, that

L@ llynyoo S NG, B ()] 22 (10.3)
1L ges S 102 (0), 0 ()| yvy+7 + €7 (10.4)
IR (1), 0xp)lxy, S LD Nxy, - (10.5)

10.1 Proof of (10.3)
From Proposition 8.3 we have

ILOlyyce S (@), 0xp () 22

which is stronger than (10.3).
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10.2 Proof of (10.4)
Using h(Re¢) = Im¢ it is clear that
MM [l gpnvy+s S MAllgng+s.

Also, from (8.126)—(8.127) in Lemma 8.9, and the a priori assumptions (8.1),
we see that

(e () = L, u(t), w@)l g+
S M@ x (1), 0 A vy +s + IIL(t)IIHN1+6IIL(t)IIWNlTﬁYOO

S 1 @ax (1), B ()| grr+s + €1 (1 +HPer (1 4 1)~/
S 1 @ax (1), dah ()| gar+s + €7

Thus, to obtain (10.4) it is enough to show
1 x (1), DOl vy s S 1 Cr(0), B )| w7 + €7 (10.6)
From the definition of x in (7.4), and Im¢ = & o Re¢, we see that
x=U—-H)(¢—2¢) =2 —H)Im =2i(I —H)(hoRe).

Using the bounds on the Hilbert transform (11.1) with the a priori assumptions
(10.1)—(10.2), we get

180 X (Ol 45 < 1h o ReZ ()|l ynvyvs + &7 S @) | vy 6 + €7

which gives the bound (10.6) for the component y.
From (8.142) and (8.138) in the proof of Lemma 8.10, we see that

18e Ml gvies S N3x[p (1 + A vy 45
+ IRl ynvi+s S N0x@ll gpvies + @R Il vy + IRl vy s6,

where we recall
1 h(x)—h hx)—h
Ry(t, x) = .—/H( ) (y)) 52 (zy)¢(t,y)dy-
in xX—y (x—y)

Applying N + 6 derivatives to the above expression, commuting them via
(11.39b), and using Theorem 11.3, one can obtain

2
IRpll givs S NAll gmvisrl@llyni+ace + 1B yn oo 9l ga+s S €7
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Here we have used the a priori assumptions (10.2) and the bound (4.35) in
Corollary 4.5. A similar estimate can be easily obtained for [[¢h']| ;v +6. It
follows that

19t gvis S MRy )l gmir + €7,

which gives (10.6), completing the proof of (10.4).

10.3 Proof of (10.5)
To show (10.5) we will exploit the identities
h(t,Re¢(t,a)) =Im¢(r, ) and (I —He)o(t, Res(r, o)) = A(1, )

to prove the following:

Lemma 10.1 Let S be the scaling vector field. Then
1ROl xy, S HmEO 1y, + 1 @) = Tlix,, (10.7)
and

100 1lxy, < I ®llxy, + 120 = T, (10.8)

The estimates in the above Lemma, together with (8.33), imply (10.5). To prove
the estimates involving S we will need the two auxiliary Lemmas below:

Lemma 10.2 Let S be the scaling vector field. Then for any two functions
f iR, xRy > Rand g : Ry x Ry — Ry, the following formula holds:

Sfog=S(fog)—(fog)(Sg— 9. (10.9)

Here, for a function ¢ : R; x R, — R, the operation c o g is to be understood
as composition in the space variable:

(cog)t,a) =c(t, g(t, @),
and f’ denotes the derivative with respect to the space variable.

The proof of the above statement is by direct computation.

Lemma 10.3 Let ¢ be the Lagrangian map in the modified Lagrangian coor-
dinates, then

(I — H)(Re¢ — &) = i(I — H)Imc. (10.10)
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Under the a priori assumptions (10.1)—(10.2), it follows that
IRet — allxy S HmCllxy + 6 — ixy, - (10.11)
In particular

ISRet —Reg | o < Ime lxy, + g = Lxy, < WLNxy,- (10.12)

Proof The identity (10.10) follows from the fact that (I — H;)(E —a) =0,
which comes from the identity (I — H;)(k — Z) = 0 upon composition with
kL
The estimate (10.11) follows from an application of Lemma 11.2 with
f =Rel —aand g = i(I — H)Im¢, Sobolev’s embedding, and from the
boundedness properties of H in Lemma 11.1:
IRe¢ —allyy, S IU —HFImE Iy, + e = Hixy I = FOIME || 55,
S e iy +1Ze — Hixy (MME | vy + 1 =H)IME || vy)
S Ml + N6 = iy, -

(10.12) immediately follows since SRe¢ — Re¢ = S(Re¢ — o) + (¢ — Reg).
O

Proof of Lemma 10.1 Recall that h(t,Re¢(t,)) = Im¢(¢, ). Since
e — 1l yni+s =< &1, in particular we see that for ¢; < 1/2, the map Re¢
is a diffeomorphism with

|duRe¢| = 1/2, |9iRet| < 3/2
for 1 < k < Nj. It immediately follows that

all g = 1TmE o ReZ ™ [ yng S ITME () vy + IRSCaa ()] o1
S MmE v + 18a (@) = 1l -

This takes care of the Sobolev component of the norm to bound in (10.7). To
estimate the weighted component we apply Lemma 10.2 to get

Sh oRe¢ = SIm¢ — (h' o Re¢)(SRe¢ — Rel). (10.13)
Using (10.12) we have

1SRN wo S USTMZI wg + IR xg ISReC—Rezl < ImE Il + 12 — Hlxy, -
H 2 H 2 H 2 H

2

This gives us (10.7).
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Recall the relation between the trace of the velocity potential in Eulerian
variables and in modified Lagrangian variables A:

(I —H)o(t,Re¢(t, @) = Alt, a). (10.14)

Since

o 1
[0as H1f = [£a H]—f = =00 — 1, fa),
Ca 1T

where Qy is defined in (11.18), it follows that
(I = H)3u(p oRet) = dgr + Qo (Co — 1, 3 (¢ o Re)). (10.15)

Denoting f = ¢ o Re¢ and g = 9,1 + %Qo (o — 1, 04 (¢p 0 Reg)) we have
(I — H)dy f = g, so that (11.7) gives

10a fll g S 80 S 10arll gy + 1Q0(Ge — 1. 8o )l gvi,  (10.16)

while (11.9) gives

10 Fllxy, S I8lxy, + 1 = Uiy, Igham S Noutllxy, + 100 = 1,0 Nlixy,
116w = Uxy, (1w +1Q0Gw = 1,8 Pllgm) . (10.17)

From (8.32)—(8.33) we have
l8utll g S UL S ety NBahllxy, S Iy, -
From estimate (11.31) we get

1Q0(a = 1. 90 Ny, < M = 11 s, N2a Fllxy,
1@ S H D, N = iy,
S LR VTN X BN [ [

< 81||aotf||XN0 + 11(0a f, Haaf)IIW@H,OOIILIIXNO-
Next we claim that

1 fs Hoa O 3o, o S €1 (10.18)
w2
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Assuming this estimate for now, and using the fact that || Qo (¢ — 1, 9o /) | gy
can be bounded uniformly in time in a straightforward fashion, we can use the
last four bounds in (10.17) to deduce that

16 fllxy, S 11y, - (10.19)
Them, since ¢, = (3 f/Rety) o Rec ™!, we have
éxl gm0 S N0 f o + IIRCSaell gro-1 S ”Z”XNO- (10.20)

This takes care of the Sobolev component of the X y,-norm. To bound the
weighted component we use ¢, o Re¢ = 9y f/Rely, in combination with
(10.9), estimate (10.12), and (10.19), to get

IS¢l no S 1(Sx) oReL|l ng
H?2 H™2

SIS(fa/Resa)ll no +ldxll no,, ISRes —Red || ng ,SIIZIIXNO.
H 2 H 2 H™2

This shows (10.5) provided we verify (10.18). Observe that
10 f I S0, S 10 0, S,

directly from the a priori assumptions. To bound Hd,, f instead, we use Lemma
11.8, the a priori assumptions and (4.35) to obtain

IHauf I oy SIAI 3o SO m S

This shows (10.18) and concludes the proof of (10.5), hence of Proposition
24. O
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Appendix A: Supporting material

In this first appendix we gather some useful Lemmas that are used several
times in Sects. 9 and 10 and in the course of the energy estimates. First, in
Appendix Al we give some variants of estimates proven in [45] related to
the Hilbert transform on curves. In A2 we first recall some Theorems about
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multilinear operators of “Calderén’s commutators”-type, and then prove some
additional bounds on them that are used for the energy estimates.

Al: Estimates for the Cauchy integral

In what follows we will always be under the a priori assumption that (2.9)
holds.

Lemma 11.1 Let H = H;. Then, for any f in X; with 0 < k < Ny, we have

1
IIHfIIHk-i-HHg_—f S+ 08 = HalF g s (1L.1)

Hk

1
IHfllx, + ”H;_f S x5 = i 1FIL g - (11.2)

Xk

In particular, if k < N1 + 5, one has

SENAIZE (11.3)
Hk

1
IH Sl e + HH—f
Ca
Furthermore, for any 0 < k < Ny
ICH+H) fllx, S g — U gl fllx + e = Hix IF1 5 oor (11.4)
and for 0 < k < N,
ICH +H) £l e S Mmoo | f 1l e (11.5)

Proof The L? case in (11.1) follows directly from Theorem 11.3. The H k.
respectively Xy, estimates can be proven by induction using the commutation
identities (11.39b) to distribute derivatives, respectively (11.39c¢) to distribute
the vector field S, and the bounds given in Theorem 11.3 for operators of the
type C1, as defined in (11.16).

To prove (11.4) one notices that

_ 2 [ Im¢(@) — ImZ(B) 2 [ f(B)Imzs(B)
( W="2) w—cpr TPPPPr T | Tw—cp P

(11.6)

which is the sum of two operator of the form Ci(H,Im¢, f¢,) and
Ci1(H,id, fIm¢,), for some smooth H, see (11.16) below. Applying the com-
mutation identities (11.39b) and (11.39c), followed by the L?-estimates of
Theorem 11.3, one can then verify the validity of (11.4) and (11.5). ]
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The next Lemma is a variant of Lemma 3.8 in [45] and gives estimates of
real valued functions f in terms of the norms of (I — H) f. O

Lemma 11.2 Let f € X, 0 < k < Ny, be real-valued with
I-Hf=g.
Then, for 0 < k < N1 + 5, one has
1 N e S 18I - (11.7)

Furthermore, for 0 < k < Ny

10 S gl + e = e (Nl g+ Il g,llgl g)

(11.8)
17 S 18l + e = T, (gl g+ MmEall oo ligl g )
(11.9)
Moreover, for 0 < k < Ny, we have
I fllwroe S IRe gllwroo + 1TmEe llyirroo gl a1, (11.10)
and a similar estimate for oy f :
19 fllwroo S IR€agllwroo + 15a — Llwrsrolldagll grer.  (11.11)

Proof Since f is real-valued we have (I — K) f = Reg, where £ = ReH.
Then

J
(I — K)3) f = Redjg — [/c, ag,‘] f=Redfg — > 9 FIK. 0,105 1.
k=1

Notice that

[0, H1S = [Ca. H]? — Cy(H. (o~ 1, 1), (11.12)

o

for some smooth H, and where C; is defined in (11.17). We can then use
the fact that the inverse of I — K is bounded on L? with an operator norm
depending only on €1, (11.12), and Theorem 11.3, to obtain

182 £1l,2 < |9lg

o TG = T g e A+ e = s g
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< ol

o Hellfllar + 115 = 1||Hj||f||w%’oo-

After summing over j, the second term in the right-hand side above can be
absorbed to the left hand-side for £; small enough. We have therefore obtained
that for any 0 < k < Ny

I Wex S g + e = Mlael I g o (11.13)

If kK < N; + 5 the last term above can be also absorbed to the left hand-side
thus yielding (11.7).
In order to prove (11.8) let us focus on the term || f | koo Using the identity

f = K f+Reg, Sobolev’s embedding, the estimate (11.5), and (11.3), we get

I e S SNy + IRegl g oo S ImEall gy o1 g0+ [Regll g

S
S

MMl &0l +IRegll £ o

e+

Plugging this last inequality into (11.13) gives (11.8). Substituting k£ with 2k
we obtain (11.10). (11.11) can be obtained similarly.
From above we see that (11.9) would follow if we show

1SS e S IS gk + 1S@Ca — DIl el f oo (11.14)

Starting from (/I — H) f = g one can commute derivatives using (11.12) and
commute S by using

[S. H1f = [S¢ — LH]?—& = C2(H,5¢ = ¢, ). (11.15)

o

Applying Theorem 11.3 one can then obtain

104SF 152 S (048], + I = s IS s + 1S Ga = Dll s fwsos
S IS8l + et ISF s + 15Ce = Dll gl £ i

Summing over j and absorbing the second summand above in the left-hand
side, we obtain (11.14) and hence (11.9). |

A2: Estimates for multilinear operators

In this section we study some singular integrals that appear when performing
the energy estimates. These integral operators are well known objects, which
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768 A. D. Ionescu, F. Pusateri

are usually referred to as Calderén’s commutators. We first state some L>-
bounds like the ones already given in [45].

Let H e C',A e Clfori=1,...,m, and F € C*®. Using the same
notation in [45] we define

H(x)— H mA(x) — A
Ci(H, A, f) = p.V./F( ) (y)) iz (A ) — O £y dy
xX—y (x—y)
(11.16)
Hx)—H mA)— A
Co(H, A, f) := p.V./F( *x) (Y)) [i= (4: ) _ (y))ayf(y)dy.
X =y (x—=y)
(11.17)

Integrals like the ones above are always to be understood in the principal value
sense, but, as before, for simplicity we will often omit the p.v. notation.
We also define the quadratic bilinear operators

f) = f(B)
L 8) = | ————¢g(B)dp, 11.18
Qo(f. &) T@) — ) g(B)dp ( )
fl) = f(B)
8) = | ——————— dg, 11.19
Q1(f, 8) (g(a)—g(ﬁ))zg(ﬂ) B ( )

fle) = f(B)

g) = | ———""g(B)dp.
02(f.8) |§(a)—;(ﬂ)|2g(ﬂ) p

(11.20)

We denote by Q indistinctly any scalar multiple of the operators Q1 or Q»:

Q(f, 8) :==¢iQi(f, 8) (11.21)

forc; € C,i = 1,2. Qp causes some difficulties because it does not admit
standard L? x L® — L? estimates. Moreover, it does not admit L™ type
estimates like those in Lemma 11.5 below for Q1 and Q»; in order to bound
it we need to resort to a stronger space than L.

We recall the following:

Theorem 11.3 (Coifman-MclIntosh-Meyer [10], Wu [45]) There exists ¢ =
c(F, ||H'|| ;) such that the operators Cj, for j = 1,2, satisfy the bounds

IC;(H, A, H)ll 2 < c[T10A Ll 12 (11.22)
i=l
m
IC;(H, A, )l 2 < cldAnllzz [T 10 Al Ll £l (11.23)
i=2
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From the above Theorem we can infer the following bounds on the operators
of the type T defined in (7.28) and Q in (11.21):

Corollary 11.4 There exists a constant ¢ = c(||04¢ || ;.00) such that

QS &)z = cllda fllLeellgllg2
QS @)lIr2 = cllda flIL21lgl oo

and

ITCf, 8 ha)llp2 < cll8a fll oo 0agll L IRl 22
ITCf, &, ha)llp2 < cllda fll210agll oo A1l oo

In Appendix A.2.2 we will prove the following simple Lemma:

Lemma 11.5 There exists a constant ¢ = c(||04¢ || y1.00) such that the opera-
tors Q satisfy the bound

1QCf: &)l = cll fllw2eollgllwioe- (11.24)

We will also need to bound operators of the type Qg in L°°. However, they
will only appear with a derivative in front, so that we can use the following
Lemma:

Lemma 11.6 There exists a constant ¢ = c(||{q — 1| y3) such that

190 Qo(f, @)l < cll fllwzeo (I1Hgll Lo + llgllwroo) - (11.25)

The above results, together with some commutation identities, will give us
the following Proposition:

Proposition 11.7 Recall the definitions
L:=(Cy—1,u,w,Im,dux,v) € C® (11.26)
and
L™= (g — 1,u,w,dx,v) € C. (11.27)

Let Q and T be given by (11.21) and (7.27)—(7.28). Then

(1) There exists a constant ¢ = c(||{q — 1|l N +4) Such that for any integer
k <N

1QCS, &) lwkeo < cll f llwirzoe 18l wirzoo. (11.28)
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770 A. D. Ionescu, F. Pusateri

In particular
1QLi, L) yisprince < €ILI2 s (11.29)

foranyi, je{l,...,6} and 0 < m < Nj.
(2) There exists a constant ¢ = c(||{q — 1|| yn,+4) such that for any integer
0<k<Ny
1Q0(f, Ollx, Se 111l 3, Mgl + 1 O xo,, IF
FUA v Mgl s e =T, (11.30)

and

1Q0(f: Bug)lx, e IS o, Nl + gl o, N,
FIA 38l s e = U (113D

Furthermore, for k < Nj,

182 Qo (f, @)oo < cll fllwrrzco (IIHgllwroo + g lwrero) . (11.32)

so that

192 Qo(Lis LD yigroree < eIl yirosce (LN igiace + 1L N ig1iacc)
(11.33)

foranyi e {l,...,6}, j€{l,...,5}and 0 < m < Nj.

(3) There exists a constant ¢ as above such that for any triple (f, g, h) with
I(f, g Wl yvi— < 1, and any integer m, one has

IT(f, g, Wx, + T, & dat)x, <cll(f. g h, i — Dlx,
ICf g I vy .- (11.34)
WT+3’OO

In particular

ITCLi, Lj, Llly, + IIT(Li, Lj, 8 Li)lly, = C||L||Xm||L||2 N
w2 e
(11.35)

foranyi, j,k €{l,...,6}and 0 <m < Nj.
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The proof of the above Proposition is given in Appendix A.2.4. We will also
need the following simple Lemma:

Lemma 11.8 Let H = 'H; denote the Hilbert transform along a curve {
satisfying ||Co — 1| gny+4 < % Then forany f with || f|| gr+2 < 1, andk < Nj,
we have

1
H e f () w0 + “Hé__aaf(t)

S @O k2.0 (11.36)
Wk,oo

and forany2 < p < o0

1
IHf (O lwro + HHg_—f(t) S IO lwrrrp + 11 @O oo

Wk,oo
(11.37)
A.2.1 Commutator identities
Let K be an integral operator of the form
Kf(a, 1) =P-V-/K(Ot,ﬁ;t)f(ﬁ, ndp (11.38)

with kernel K («, B; t) or (¢ — B)K (¢, B; t) continuous and bounded, and K
smooth away from the diagonal @ = 8. One can easily verify that

[0;, K] f(a, 1) =/3tK(a,,3;t)f(,3, t)dp, (11.39a)
(00 KIf @0 = [ G+ 3K @ i) F(B.1) d. (11.39b)
(s.Kif@n = [ (aaa + Bog + %zat) K(@ ;0 f (B, dB + K (@, 1),
(11.39¢)
for any sufficiently smooth and decaying f.
A.2.2 Proof of Lemma 11.5

It is enough to just look at the case of (1, as the treatment of Q5 is identical.
Expanding out the denominator in (11.19) we can write

1 _ (K(a)—a—(é(ﬁ)—ﬁ)) 1
o= F 2
(¢ (o) = £(B)) a—p (@—=p)
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772 A. D. Ionescu, F. Pusateri

where F(x) = Zkzo (—DX(k + 1)x*. Then one can see that proving (11.24)
can be reduced to proving the following estimate for operators of the type C;
asin (11.16):

H(x)—H Ax)—A
HP'V' / F( (x) (y)) (x) (Qy) F(y)dy
X—=y (x—y)

m

STTIANw2l f e,
L P
i=1

(11.40)

where the implicit constant depends on ||H”||;~. To show this we split the
integral into two pieces:

Hx)—H(y)Y Ax) — A
/ F( (x) (y)) 0 =AW b4y dy = 1) + o)
X —y (x—y)

H(x)—H Ax) — A
100 = / F( (x) (y)) (x) )gy)f(y)dy

x—y (x—y
[x=y|<1
H(x)—H Ax)— A
L) = / F ( (x) (y)) (x) gy) £ dy.
X—=y (x—y)
lx—yl=1
We write
H — H A — A
nw= [ [F (M) - F(H’(x))} A =AW 1y 4y
lx—y|=<1 Y (=9
A(x) — A(y) — A/ -
+ F(H (x)) (x) ) 2(X)(x y)f(y)dy
(x =y
lx—yl=I
/ A'(x)
+ F(H'(x)) / P y(f(y) — f)dy = I 1 (x) + L1 2(x) + I 3(x).
lx—yl=I

It is then easy to see that we can then estimate

11,11 S NF oo l1H Il oo 1Al oo Il £ 1l oo
111201 S IF N oo A" | ool f 1l oo
113G S IF I oo lTA oo 1Ll oo

sothat [ 11| o S ¢ (IIF llwroes [|1H" [l 2o0) 1A [0 ]l f 1,00 Since [x — y|
is integrable for [x — y| > 1 one has

12010 S ¢ (IF N o) NAN ool £l oo
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The bound (11.40) follows. ]
A.2.3 Proof of Lemma 11.6

We start by calculating

fla) — f(B) fla) — f(B)
Oy ,8) =0y [ ————— df = —04 _— d
Qo(f. 8) (@) —2(B) g(B)dp ¢(a) @ _g(ﬁ))zg(ﬁ) B
do f (e)

SN dB =: 1 2 )
o) =5y BB 4 = Oh(@) + Q@)

Since the integral operators in Q? is of the type Q, we can use Lemma 11.5 to
bound

1000 o0 S Nallzooll £ l2.co llgll oo
The second contribution to d, Qo( f, g) is

0% = duf (Hgig) = 9, fHg + dufH (gi - 1) ¢

o

1
1O3N oo S 19 f Nl e g oo + 119 f 1l | H (C_ - 1) gH 1
o H

S 10a fll Lo IHE N Loo + 100 f Nl Looc (g — Tl )1l wi1.c0-

Thus, using also (11.1), we see that

We conclude that Q% satisfies the desired bound and so does 9, Qo(f, g). U
A.2.4 Proof of Proposition 11.7
Proof of (11.28). We want to show that for any two functions f and g

1QCS: @) llwkoe < cllf lwrs2oe |8 llr2.co. (11.41)

This can be shown by induction, using (11.24) as the base of the induction.
Again, it is enough to just look at the case of Q. Let us assume that (11.41)
holds true for some 1 < k < % + 1. We want to show the estimate for k + 1.
Notice that we can write Q as an operator of the form K, see (11.38), with
Kernel

fle) = f(B)

Ko B t)) = ———.
@FD= @ -t
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774 A. D. Ionescu, F. Pusateri

Using the commutation identity (11.39b) we see that

3 Q(f, 8) = Q(f. 928) + QB f, &) + 1 ()

where

() = _/ (f (@) = f(B))(Ba8 () — 3pL(B))

dg.
C@) — LB’ s dp

Using the inductive hypothesis we have

Q0 f5 @) llwkoo + QS 0l wroo < clldg f llwri2.o0llgll w200
+ cll f lwr+2.00 |0 gl wr+2.00.-

By expanding the denominator in the integral defining 7, we see that I is an
operator of the form C{(H, A, g), see (11.16), with A = (f, ¢y — 1) and

H = ¢ —id. Letting k + 1 = k1 + kp + k3, and using (11.39b), we see that
DFH1T is a sum of operators of the form

C1 (¢ = o Aiss DM19))

where A, iy = (Z;Q, D* f), and Z/Q is a vector with at most k3 components
satisfying

1AL, SUDS T el
for p = 2, co. Applying Theorem 11.3 we see that:

TN ies2.00 < l10e f llwir.co 6o =1l g2 18 llwir.co S Il fllwiesoe 18l wit2.00,

where the constant ¢ depends only on ||y || v, . We can then deduce

1QCf, &) llwr+1.00 < |Q0u fr &)l wrt+1.00 + QS 0 8) | wi+1.00 4 1 || k1,00
= C”flIWk+3,00||g||Wk+3,oo

which is exactly (11.41) with k£ + 1 replacing k.

Proof of (11.30). Let us first look at the H* component of the X; norm.
Since

1 1
Qo(f. &) ='H§—(fg) —ng—g (11.42)
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we can use product Sobolev estimates and the H* bounds on the Hilbert
transform (11.1) to obtain

1Qo(f, O)limx S N f8llmx + 118a = Ulaell f8ll koo + IS I mklIHEI Lo

+ 1 f e IHE N e S I N el (Hgs @)l Lo
1Az ligl e + 18 = Hiarl fIl g o8l g

where the implicit constants depend only on ||&, — 1] ]1?
A similar argument can be used to bound the S™' H* norm of Q¢(f, g) for
0<k< % First we observe that for any 0 < k < 1\£0 one has

1SQo(f. )l gr = SH HSfH —g HfSH

< H— + ! H— + o |H

& (fg) . I/ 1lx, é90(8 . Il f [l wr. {ag
(11. 43)
We can then use (11.2) to obtain
“H—(fg) =cllfgllx, + 18« — lllxkllfgllwﬁuoo
Xk
H’Hg—ag . = cllgllx, + 15« — lllxkllgllwgﬂoo-

Since we also have

I7gllx, <cliflixNIgllwroe + I1f lwrocllgllx,

we can plug the above bounds in (11.43) and get the desired conclusion.

Proof of (11.31). Let us start again with the H k component of the X norm.
First of all observe that Q¢ ( f, dyg) is an operator of the form C>(¢ — «, f, g),
see (11.17). Distributing derivatives on Q¢ (f, dyg) by using (11.39b), we see
that for any integer k = k| + k2 + k3, we have that Dk Qo(f, 0y g) 1s a sum of
operators of the form

Co (¢ = o A DM19))

where A, iy = (Zk3, Dk f), and Zk3 is a vector with at most k3 components
satisfying

k3+1
1AL, S IDS el
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for p = 2, co. One can then apply Theorem 11.3 to deduce that the H¥-norm of
Qo(f, 9,g) is bounded by the right-hand side of (11.31) for any 0 < k < Nj.

The estimate for [|SQo(f, 0ug) |l gr, for 0 < k < %, follows similarly by
using the commutation identity (11.39c). Indeed, applying S to Qo(f, 0xg) ~
Cr(¢ — «, f, g), and commuting S and d, when § falls on d, g, one obtains
operators of the form C, (¢ —«, Sf, g), C2(¢ —«, (f, S¢q), &), C2(L—a, f, Sg)
or C(¢ —a, f, g) itself. Applying and distributing k derivatives as above, one
can then estimate the resulting expressions in L? via Theorem 11.3, eventually
obtaining the desired bound.

Proof of (11.32). This estimate follows from the same proof of Lemma 11.6,
which is the case [ = 0, after applying and commuting k derivatives similarly
to what has been already done before. Since the proof is straightforward, we
skip it.

Proof of (11.34). Let us start by showing the H™ estimate

ITCS & Wl + 1T 85 dat) | gm < ll(f, &5 1y Ga — Dl gm
ICf g ba = DIy, s (11.44)
w2 e

for all integers 0 < m < Np. Again we will us induction and commutation
identities. The base for the induction is given by the estimates

ITCf, 8 W2 = cli(f. & M2 g, h)ll;@ﬁm, (11.45)

IT(S, & dah)l 2 < cll(f, & W 2IICS, & W N0 g (11.46)
w2

To verify these we cannot use directly Theorem 11.3. We instead write

T(f. g.h) = fQ(g.h) —Q(g. fh)
T(f. g, 8ah) = fQ(g. duh) — Q(g. fIuh).

From Theorem 11.4 we have

1Q(a, D)l < clldaallL=lbll 2.

Thus, using (11.29), we obtain

ITCf, g Wiz = 1/ Q& MliL2 +1QCg, fMliL2 S IFNIL21Q(8. )l L
+ 198l f 2 S UCF & 2N & My
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Similarly we have

IT(f. 8, da)ll 2 < 11/ QU8 daP)ll 2 + Q8. foum 2 S I 1121Q(8, dul) o0
+ 10agl ool f bl 2 S ICF & M2 8 M1y mc-

Now let us assume that (11.44) holds true for some integer 0 </ <m — 1.
Using the commutation identity (11.39b) we see that

aaT(fa g’h) = T(aaf’ gvh) +T(fv aOlg’ h) +T(f’ g’ aOlh) + J]((X)

where

(f () = f(B)(g(@) — g(B)) (3¢ () — 3pL(B))
J = — h(B)dB.
e / @ —¢(p) P b
Since
T f, g h) = 0x fQ(g, h) — Q(g, 3 fh)
we have

1T f, & Wl gt = 110 fll g 1Qg, )Nl oo 4 110a £ 1| Lo [1Q(E: 1) || g1
+ 11Q(g, da f 1)l 1. (11.47)

From Theorem 11.4, and commutation identities, it is not hard to see that

1Qa, D)l = cllall | 1orollblpt +cllidaalpt bl 1is o

lall o ID ol = Tl (11.48)

We can then use the above estimate and (11.29) to bound the right-hand side
of (11.47) and obtain

IT@u f. g2 W) 4
S0 f I 8 Dy + 100 f L8 W e (8 DI 4
F1@afo g DI 1 o= Ul 41811 0SB

0 e S o SIS 8= Dl N e I

An identical bound clearly holds for T( f, d,g, /). Since [ < Ng we have then
obtained
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10 T(f, 8, h) —T(f, 8, 0uht) — Jill i
<cll(f.g.h.Ca — DligmlI(fo g WIZ vy . -
WT+3’°O

To estimate

(f@) — f(B) (@ — ¢(B))
T(f, g, 0,h) =
(-8 %l / (@) —(B))

we need to get rid of the extra derivative falling on 4. Integrating by parts in
B we have

dgh(p) dp

T(f, g, 0uh) = Q(g, hde f) + Q(f, hdxg) + J2(a)

where

) = 2 / (f (@) = f(B)(E@ — g(B))

& @ = ¢(B))’ 5 (BIh(B) dp.

Using (11.48) we can bound
1Q(g. hda )l gt + 1QCS, Bl gt < cli(f. 8. by &a — Dl 1 (£, 8. WP No s
w2

as desired. To bound Jp, which is an operator of the form C(¢ — id,
(f, &), Luh), we can again commute derivatives via (11.39b) and apply Theo-
rem 11.3 to obtain:

12l < cl(fs g5 hy Lo — Dl IICF g, DI Ny .-
WT+3,00
We have then shown
18 T(f, g, 1) — Jill gt < cll(f. g hy &a — Dl g I(f, g, DI Mo a s
w2

To eventually estimate J; we notice that

Ji(a) = _gaT(fa 8 h) + T(f’ 8 ;ah),

so that

Iillg < cI TS g Wl gt + 11T 80 L)l e
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Using the inductive hypotheses we see that
11l < cll(fs 82 R Lo = Dl I(f 82 WP M0 a o
w2
+ll(f & Lahs Ca = Dl I(f 85 )
WT+3’OO

<cll(f g, b Ca — DllglCf, g, DI No
w2

where the constant ¢ depends only on lower Sobolev norms of (f, g, &, {x — 1),
which are uniformly bounded by assumption. It follows that

19 TCf. g Wl gt < Cll(f. & b Ca — Dl g1 1CF: g WP No g
w2t

which gives the bound on the first term on the left-hand side of (11.44).
To complete the proof of (11.44) we need to show

IT(f, & dah) I gpm < CllCf, & Lo = Dllggm I (fr & DI w0 -
w2

Again we proceed by induction, the base being given by (11.46) which has
already been verified. The argument is similar to those above. Applying a
derivative to T(f, g, doh) we get

0 T(f, & duh) = T(0u [, & dh) + T(f. 0ag, duh) + T(f, & Igh) + J3(@)

where

B (f (@) — f(B))(g(e) — g(B))(8ul () — gL (B))
Ji(@) = =2 .
(@) —¢(B))

dgh(B) dp.
Since

T(0a f, 8 duh) = 30 fQ(g, uh) — Q(g: 0a f 0e)

this term can be directly estimated using (11.28) and (11.48). One can bound
similarly T(f, 0y g, 0 ).

To control T(f, g, agh) we need to resort again to an integration by parts to
remove the presence of the extra derivative. More precisely we have

T(f. g, 92h) = Q(g. 0uhda f) + Q(f 0uhdng) + Ja(a)
where

Ji(a) = =2 / (@) = FENEE —(B)
(c(@) —2(p))

¢p(B)oph(B) dp.
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The terms Q(g, 010y f) and Q( f, d4hd,g) can be estimated via (11.48):

1Q(g, 3hde )l gt + 1Q(S, hde &)l e
<cl(f. g by ta — Dl ll(f g DI
W7+3,oo

Similarly to what has been done before, we can expand the factor (¢ ()
— ¢(B)) 73, and write Jy as an operator of the type C as in (11.16). By using
the commutation identity (11.39b) we can then bound it by

[Jall g =< cllOa(fs 85 b Ga — Dl gill0a(f, 8, h)IIZ;V%%oo

<cl(f.8 hta = Dl (£ 8 I v -
w2
This shows that

196 T(f, 8 0aht) — Sl gt < cll(fy g, 1y L — Dl 1S g, WP No s oo
w2t

To eventually bound J3 in H' notice that it can be written as follows:
J3 = —=20,¢T(f, g, 0uh) — Ja.

Using the inductive hypothesis for the first summand above, and the bound we
have already obtained for J4, one can easily see how the desired bound for J3
follows. This eventually yields

19 TCf, g daht)l g < clI(f, 85 s Lo = Dl g I(f: 8, DI Moo
w2t

thereby completing the proof of (11.44).
We now prove the estimate in the space SVH* withk := [%], 0 <m < Ny:

ISTC(f, &, M)l g + IST(S, &, Bl g < lISLI eI L1 (11.49)
w

No
T+2,oo

For simplicity we just show the proof of the bound for the second term in the
above right-hand side. The first term can be bounded similarly, and it is actually
easier to estimate, since there is one less derivative on & to worry about. Let us
start by computing ST(f, g, d.h) in L. By using the commutation identity
(11.39¢), and [S, d,] = — 0y, We see that

ST(f., 8, duh) = T(Sf, g, 0uh) +T(f, Sg, duh) + T(f, g, 82 Sh) + K1 (e)
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where

_ (f (@) = f(B))(g(ar) — g(B)(SE() — SE(B))
Ki(a) =-2 3
(¢ (o) = ¢(B))

dgh(B) dp.
Notice that we can write

T(Sf. g, 9a) = SFQ(g. duh) — Q(g, Sf ).

Then, using the Wh estimate (11.29) and the H' estimate (11.48) for Q, we
see that for any / < k:

IT(SS, & 0l gt = IISFIl 1 1Q(8, dal) lwice + 1Q(E, S dal) |l gt
< IS 118 B I3yir200 + 1008l wioc 1SS Bl
SUSF e 1C8: M 1p13.00-
An analogous bound holds for T(f, Sg, 0y h).

To control T(f, g, d, Sh) we need to integrate by parts in order to remove
the derivative from Sh. This integration by parts gives:

T(f, g, 0aSh) = Q(g, 0o [ Sh) + Q(f, 0 gSh) + K2(cx)
where

Ko@) = _2/ (f (@) = f(B)(g(e) - g(B)
(¢ (o) = ¢(B))

dps (B (B) dp.

The Q terms can be treated as before, and therefore satisfy the desired bound.
Thus, so far we have obtained

IST(f. g, dah) — K1 — Kall g1 < clISCf. g Wt 1(f 82 B yisoe

for any [ < k.

To conclude we notice that K, respectively K7, are operators of the form
Ci(H, A, f) asin (11.16), for some smooth F', H = ¢ —id, and (A, f) =
(f, g, S¢, dyh), respectively (A, f) = (f, g, {oh). Commuting derivatives,
using Theorem 11.3 and the assumptions, we can deduce that

1K1l gt + K2 gt < cll0a f 1 1110 gl wice 106 STl il 0a |00
+ cll0a f 1l g1 10 g lwioc 1 el .0
< cll(fs & M yreroe 1@ fs SCa — D)
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where ¢ depends only onthe H!*?-normof ( f, g, h, {o—1), which is uniformly
bounded by assumptions. Here we have used d,S¢ = S({y — 1) + 94 ¢ for the
second inequality. We can then conclude that

IST(S, & da)ll gt < clIS(Sf 82 Ry Ca — Dl gt I(f 8 W s (11.50)

for any / < k. This shows the validity of (11.49) and finishes the proof of
(11.34). O

A.2.5 Proof of Lemma 11.8

We want to show that for any f with || f||gr+2 < 1,0 <k < Nj, we have
HOw f oo S NIl wrt2.c0- (11.51)

From the definition of H we can write it Hd, f = I} + I with

dp f (B)

1 = — —  d
) s B

951 (B) 00 f(u — 1)
I = — (0 —1dB=H————.
2(@) (@) — g(ﬁ)( pt(B) —Ddp =H %

1> is a quadratic term and can be directly estimated using Sobolev’s embedding
and the boundedness of H on Sobolev spaces (11.1):

12llwroe S 12l S 190 f (G = Dll e + 180 = Ul 180 f Ga = DI 1o

S e = Uigrrt | fllwrsaoe S IS lwiezoo

having used || f|| gr+2 < 1 and the assumption on the Sobolev norm of ¢, — 1.
To estimate /; we expand the expression (¢(a) — ¢(8))~! in a geometric
sum as follows:

1 (@) —a— B -\
c(a>—;(ﬁ>_a—ﬁz( a—p )

k=0
1 +H(a)—H(ﬁ)F(H(Oé)—H(ﬂ)),
a—p a—p oa—p

where H := ¢ —id and F is a smooth function. We can then write

Ii(a) = Ip(a) + C2(F, H, f)(a)
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where C; is as in (11.17), and

Io(a) :/%(/Z)dﬂ (11.52)

is a constant multiple of the (flat) Hilbert transform Hy := H;q. To estimate
C>(F, H, 0y f) we can use Sobolev’s embedding, the commutation identity
(11.39b), and the bounds provided by Theorem 11.3:

IC2(F, H, 0 )l SNC2(F, H, e )Nl gt SIS N it | Hallwreroo SN lypert.oo

In the last inequality above we have used again the assumptions || f|| gx+1 < 1
and [|gy — 1| grr1 < % So far we have shown

IH0a f — Hoda fllwkoo S LS lwkezo.

Applying the Littlewood—Paley decomposition to f, and using the bounded-
ness of HoP; on L°°, we see that

| Hodo f oo S D N HoPida f koo S D 2N fllwoe S I f llyirco.
[ l

This concludes the proof of (11.51). The bound for the second summand in
the left-hand side of (11.36) can be obtain similarly.

To prove (11.37) one can use an argument similar to the one just showed,
replacing 9, f with f. The same estimates as above will show:

”Hf - HOf”ka 5 ||f||Wk+l.oo.
To conclude it is then enough to observe that for any 2 < p < oo

1 Ho fllweoo S IWHo fllwerrr S I f llwkstp.

The second summand in the left-hand side of (11.37) can be estimated analo-
gously. O

Appendix B: The symbols ¢‘1‘23

In this section we calculate explicitly the symbols ¢*1‘23 defined in (6.6) and
prove the bounds (6.8) and (6.9). -
With V¥(t) = V(t) and V~(¢) = V (), recall that

+ - x Lt a Lyt
H(t):w’ ‘-I’(l‘):l[A 14 (t)z ATV ([)]
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784 A. D. Ionescu, F. Pusateri

Starting from the formula (4.9),
M3(H, H, W) =—(1/2)|3,| [H?9:1*W +]8: | (H?|9: W) —2 H |3, | (H |8, |W)],

we calculate easily

FUMSH H 016 = 5 > [ € n.o)ViE —n.0

(t1263)p2

X Va(n — 0, t)va(o, t)dndo,

where the sum is taken over (t1¢2t3) € {(++—), (——+), (+++), (———)},
and

_ 20811 — o |32 — &]|o |3 + 21210 — o |V/? — |g|?|o|1/?
it n0) =

16
n —[€l1E —olln —o|'/* — [ElInlln — o2 + ElInllo|'/?
8 b
3/2 2 1/2 1/2
o+ _|llo =+ 1170 2[5 1Inllo|
cl (‘i:v 77,0) - 16 ’
oy (€ o)=—cT(E . 0),
C]___(%‘a n, 0) = _CT++(§5 m, O—) (121)

Using now the formula (4.11),
Q3(V, H, W) = [0, |W [H|0;|*W — [0, |(H 9, |¥)]
we calculate easily
FLAQ3 (W, H, W)](§)

i —_— — —
=Gz 2 /Ctz”z”(é, n,0)Vi(E —n,0V2(n —0,0)VE(0, 1) dndo,
(t123) 2

where the sum is taken over (11(2t3) € {(++—), (= —+), (+++), (———)},
and

G 0)

_ [E121E — P10l + 1E'21E — 0l o P — 1£1'21E — 0l 20 — o

8
N —[E1"21E — olln — o V20|12 — [E1Y21E — 0| 2 Inllo |2 + €121 — 0l nlln — o|'/?
o :
—[E1V21E — 0|2y — o /2 + |E1Y21E — |2 |n]|o |/
AT E o) = R ,
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s TEm o) =T (E 0 0),

G & 0)=cTE . 0). (12.2)
Let
pE N =ATE-—DA T @E ), maE ) = AT (maE, ).
(12.3)

Using the fact that A, Q> are symmetric we calculate

FRAMH. 9 N6 = 15 3 [ 4™ Eno) 7 - 0.0

(2t3)p2

X \’/‘\2(17 — o0, t)\’/-E(a, t)dndo,

where the sum is taken over (t1:2t3) € {(++—), (——+), (+++), (———)},
and

T 0)
_ a(%v 77)’772(77’ O—)_a(Sv 77)’772(7% U_U)_a(fi:’ s_a)ﬁ2(s — 0, S - 77)
4 s
C;_++(S, 1, O') — _a(g’ 77)4’"2(77’ O—)’
63__+(S’ n,0)= _CZJ,’“’__(Ev n,0),
g (Eno) =~ E o). (12.4)

Similarly we calculate

FLIAB(My(H, W), ©)](€)
=15 2 | A En o VIE — 0. 0VE( — 0.0V (0. ) dndo,

(12t3)p

where the sum is taken over (t1:2t3) € {(++—), (——+), (+++), (———)},
and

6 n0)
_EI"PhE E—mlE—nl~ a0, o) —|E]' b (&, £ —m)E—n| =" Pifia (0. n—0)

8
N E1V2b(E, 0)|o |~ 2ma(E — 0, & — 1)
: :
&b E - )lE — 0l i (n. o)

CI++(§9 779 U) - 8 ’
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786 A. D. Ionescu, F. Pusateri

c; TE o) =TT E n 0),
¢y Enmo)=ciTTE . 0). (12.5)

Finally we calculate

FUAB(H, 02(¥, ¥)](©)
= / A (E 0, )V (E — 0. V() — 0,0 V(0. 1) dndo,

(t1263)p2

where the sum is taken over (t12t3) € {(++—), (——4), (+++), (———)},
and

172 ~ _e11/2 ) (E—g £ —
05++7(%‘,77,0)=2|$| b, ng2(m,0)—|§|"°b(E,§ —0)g2(§—0,§ 77)’

8
112 ~
T E 0. 0) = €] b(één)éh(n, 0),
cs T o) =ciTT(E . 0),
s (€ n0)=ciTE 0, 0). (12.6)

The following lemma gives the desired bounds (6.8) and (6.9).
Lemma 12.1 The symbols c¢'12'3 satisfy the uniform bounds

|7 25 &, 0) - &), (E — Mgy (n — 0)('0]‘3(0)]”L1(]R3)
< pl/2p2max(ki k2 k3) (12.7)

Jorany (t11213) € {(++—), (——+), (+++), (———)}andl, ki, kz, k3 € Z.
Moreover, for any k = (k1, ko, k3),1 = (l1, 2, [3) € 73 let
e, y) =cTTE —x, =5 —x — ),
(BxeDka(x, ¥) = (3xcE)(x, ¥) - oy (€ + X)Pry (€ + V)rs (6 +x + ¥)
@1, ()@ (V)i (28 +x + y),
@yeka(x, y) = (Bycp)(x, ¥) - ry (§ + X) @iy (€ + V)rs (6 +x + ¥)
@1, (), (Ve (26 +x + y).

Then, for anyk,1 € Z3, and € € R

||(8xcg)k’]||500 SJ 2~ mm(kl,k3)25max(k1,kg,k3)/2’

||(8ycg)k,]||800 5 2— min(kz,k3)25max(k1,kz,k3)/2. (128)
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Proof of Lemma 12.1 Clearly, for any (t1t2t3) € {(++ —), (— — +), (+ +
+), (= =)}

5
ol — E :C;uzts.
=1

The bound (12.7) follows from the explicit formulas (12.1)—(12.6), the symbol
bounds in Lemma 5.3, and the algebra properties in Lemma 5.2 (ii).

Let:: R\ {0} — {—1, 1}, t(x) := x/|x|. Recalling the formulas in Lemma
5.1 and using (12.1)-(12.6) we calculate

i, y) = ¢ (x, ) i (0, ¥) + ¢ 5, p) +cf 4(x, y) +cf 5(x, y),

where

PR e G 11 WO e
R 8 16 8
CEPIE+x I 16128 +x + pllE + '
16 8
E11x11E + yI'2 | IENxIIE +x 4+ yI'2
B 8 + 8 ’
) _EMPIE PP IE A + 112 1E121E )P IE + x4y P
ceo(x,y) = 3 + 3
LENM21E + x)'21E £+ 9P
8
O LEIP128 4 x + ylIE + yI'PIE x4y
8
B e - - L
8 8 '
¢ e y) = E11E +x + 31" 2uE + 0LIx]E +x +y) — 2]
g3, Y 3
L 1E11E + 31"20E + 0 l1x1E +3) + ]
8
IEIIE+x ' PuE X+ Y126 +x + Yl +20) = (28 +x + )]
8 9

(. y) = 611215 x| 215+ + I P x e +x4y) —x]
g 4N, Y) = 2

N 11218 + x|Y21E + y|V20@E)Ix]UE + y) + x]
8
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EMPIE xR x -y @) 12E Fa Ay +x) — 26 +x+y)]

8
and
cf 5(x, y)
_ a1 PE I g a4y 2@ E ) I - E+)eEFa+y)]
8
LEI1E 1215 +x 2@ +x ) (26 +x Y I[1HLE+)u(E +x)]
16 ’

The desired bounds (12.8) are verified easily for every term in these formulas.
Using these formulas, we also calculate

c(0,0) = —|gP?/2. (12.9)

O

Appendix C: Estimate of remainder terms

In the first section below we give estimates for the Dirichlet-Neumann operator
Nin L?, weighted L2, and L!'-based Sobolev spaces. We will the use these
to establish several bounds for R and R; in (4.6)—(4.7). We then proceed to
estimate all quartic and higher order remainder terms, and in particular prove
(6.25).

C1: Dirichlet-to-Neumann operator: multilinear estimates

Here we recall that if N denotes the outward normal vector of the interface So

NM)p:=N-VO =N Vo, Gh)p=+1+F>PNH)e¢. (13.1)

We are interested in particular in estimating quartic and higher order terms
in the expansion of the Dirichlet-Neumann operator. The L? and weighted
L? estimates are needed to obtain the improved weighted bounds on V in
Proposition 4.3. The L! estimates are used to bound these higher order terms
in the Z-norm.

The first Proposition below gives estimates in L>-based spaces and its proven
in Appendix C.1.1:

Proposition 13.1 The Dirichlet-Neumann operator G can be expanded in a
series
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G f =D Mysi(h,....h, [), (13.2)

n>0
where My, 1 is an n + 1-linear operator satisfying the following L? bounds:

||Mn+1(h1, ---»hm f)||L2

n
< Cgmin ¢ [ LIAZI Lol £l 2, _min

{1 ...n}H”h;”Lm”h/j”L2”f/”L°° ,
= i

(13.3)
for some absolute constant C.

Moreover, G is invariant under translation and scaling symmetries, and the
following identities hold.:

aan+l(hl9 ---,hn, f) = ZM}’l-’rl(hl’ ---’axhi’ ---,hn, f)
i=1
+ M,H_](hl, o hy, axf) (13.4)

n
SMI’Z-’,—](hla""hna f) :ZMH+1(h17"'7Shiv"'ahna f)
i=1

+ M1,y by SE) = D~ Muga(hi, s s f),
i=1
(13.5)

where S denotes the scaling vector field. As a consequence, for any integer
[ > 0 one has:

n
1M1 Crrs e s Pt S D0 WA [T 1y oo ] fe oo

i=1 j#i

+ [T Wil coll Fiel (13.6)

i=1

n
UISMua (s Ol S D SR 1t 101

i, j=1,i#j
< [T Weallyymrcoll fellyroo
ki, j
n
+ > A [T ynico (KA Tt +1F W ).
i=1 jAi

(13.7)
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where the implicit constants are bounded by C for some absolute constant
Co.

Let us denote

[G(M)@l>4(1) = Z My 1 (h (D), ..., h(2), 9 (1)) (13.8)

n>3

to be the quartic and higher order terms (in 4 and ¢) in the expansion of G. A
corollary of this expansion and Proposition 13.1 is the following:

Corollary 13.2 Under the a priori assumptions (2.8) on h and ¢ one has

G (M) P1=a D fpng—2 + ||S[G(h)<;s]z4(;)||H@_2 < ed(1 +1)3r032,
(13.9)

Moreover, for Ry and R defined in (4.6)—(4.7) we have

IRy + i AR5 + ISR+ AR O] v S 41 4 13302,
(13.10)

The next Proposition establishes L!-type estimates:

Proposition 13.3 With the same notations of Proposition 13.1, and for any
n > 3, we have

B
015 MaaGrs b )] S

n

il s [T W vy oo 1 il g
1

i= J#i
(13.11)
As a consequence, under the a priori assumption (2.8) on h and ¢,
B _

Here B = 1/100 is the parameter that appears in the definition of the Z norm
(1.9).

C.1.1 Proof of Proposition 13.1

This Proposition follows from some standard potential theory, arguments sim-
ilar to those in [20, sec. 7.2], and Theorem 11.3. We sketch the proof below.
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Expansion of the Dirichlet—-Neumann operator. In order to find an explicit
formula for the Dirichlet-Neumann operator we start with an ansatz for the
harmonic extension of a function f to the domain {(x, z) : z < h(x)}:

1
D(x,2) = / S1og (Il =y + Iz = h() p() dy. (13.13)
By standard potential theory one has

N f(x) = hir(l )VCIJ(x,z) - N(x)

h(x) —h(y) + K'(x)(y — x)

1 p(x) /
== +
2 1ol = ¥+ [hx) = h(y)?

We then aim at determining p in terms of 4 and f. Using (13.13) and f(x) =
®(x, h(x)), one has

p(y)dy

(13.14)

! 2 2
f) =/§10g(|x—y| + h(x) = hI7) p(y) dy. (13.15)

It follows that

— v+ (h(x) — h(y)h'(x) — .
3, — i Hy /x Y+ dy = +5iH,
|1 f () =1 TR e —hE PO = ’Zz 0
h(x) —h()\*" x —y + (h(x) — h(»)h' (x)
X 5 p(y)dy
xX—=y (x—=y)
= p(0) + D Pa(h)p ().
n=1

One can then invert the above series expansion and write
p=2(- 1%[2}) (h)} 1021 (13.16)
k>0

where

h h Znh/
Pa(h)g(x) == i Ho /( S _(yy)ZH © o) dy
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792 A. D. Ionescu, F. Pusateri

R (h(x) — h(y))*"*!
+ i Hoh (x)/ r = y)2"+2 g(y)dy. (13.17)

Expanding the second summand in (13.14) one can write

1 W ~
N f(x) = z—————+>" Qu(h)p
2N+ wep =
() =R\ h(x) = h(y) + B () () — x)
Onh) _/( x—y ) (x —y)?

p(y)dy.
(13.18)

Putting together (13.1), (13.16) and (13.18) we eventually obtain (13.2).

Symmetries and L?-bounds. The basic L?-type bounds (13.3) follow directly
from the expansion (13.16)—(13.18) and Theorem 11.3. The formulas (13.4)
and (13.5) follow from the space translation and scaling invariances of the
basic operators P, and Q, in (13.17) and (13.18). More precisely, for any
deRand A >0

[G(h(-+8) f(-+)](x) =[G(h) f1(x + ),
1
G (Xh()»-)) F)(x) = A[G(h) f1(Ax).
These identities hold true for each operator M,, in the expansion (13.2), that is
Mn(hl( + 8)’ LRI hl’l( + 5)’ f( + (S))()C) = Ml’l(hlv ey hns f)(x + 8),
(13.19)

1 1
M, (Xhl()t‘), s ), f(k-)) (x) = My(hi, ..., b, [)(AX),
(13.20)

and can be verified directly on the operators P, and Q, defined above. Dif-
ferentiating with respect to the parameters in (13.19) and (13.20), one sees
that

n
0 My(hy, ... by f) = My(hy, ... 0chi .l f)+My(hy. .y, 0 f),
i=1

n
X0 My(h, ... b, )x) =D My(hy, ... x0:hi, .. . f)
i=1
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n
+ My (B, X0 f) = D My (ki ., ).

i=1

The first identity is (13.4). If 7 and f depend on time, one can similarly derive
(13.5) from the last identity above. The estimates (13.6) and (13.7) follow by
repeated applications of (13.4) and (13.5) and the L? estimate (13.3). |

C.1.2 Proof of Corollary 13.2

The estimate (13.9) is an immediate consequence of the bounds (13.6) and
(13.7). To prove (13.10) it then suffices to prove

IAR Ol mo-s + ISARDN o o S ef1 400732 (13.21)
From the definition of R, (4.7) we see that

Ro = [(10:1¢ + Ma(h, @) + M3(h, b, ¢) + Ri(h, @) + heg)? |
+ 20+ 10D 7] (0x16+Mah, @) + Ma(h. h. ) + Rilh. ) + har)?
= (Ma(h, )+ M3 b, 6) + Ri(h, )+ hih)? + 21l (M (h b, 9)
+ Rith, 9) + 20+ doilg
+ Ma(h, ¢)+Ms(h, h, ¢) + Ri(h, ) + hey)?. (13.22)

To obtain the desired bound it suffices to apply appropriately Holder’s inequal-
ity in combination with the a priori estimates (4.13), the L? estimates (5.33)
for M, and (5.35) for M3, and the following L°° estimates:

| PcMo(h, §)l| oo S e(1 + 1)~ 12827 Noke/2) (13.23)
| PeM3(h, b, )| oo < €3(1 4 1) 73/ 22kp=Noke/2, (13.24)

The last two estimates above can be obtained by inspection of (4.8) and (4.9)
using the a priori bounds (5.23).

C.1.3 Proof of Proposition 13.3
Given the expansion of A in (13.16)—(13.18), the already established L3

based estimates, and the commutation property (13.4), it is not hard to see that
(13.11) would follow if one can show that operators of the form

i (hi (x)—h;
Ci(hi, ..., hy, f) = puv. [ L= £y gy

(x_y)n+|
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satisfy

B .
1015 HoCr(hi, o oy D] S min il 1;[ 2o £l 2
VES

.....

(13.25)

The above estimate is in turn implied by

IC 1, Dl S min il [T 1 ool £l
i=1,...,n b
J#
Since the action of derivatives on operators of the type C; produces operators
of the same type (acting on derivatives of the arguments), it is enough to obtain

IC 1y Pl S min ||h,-||H21;[ 17l ol £l
JFL

.....

We only provide details of the proof of the above estimate in the case n = 1,

that is
h(y) —h
Hp.v. / PO =10 () ay
y—X)

( Sl g2 1L f 1 s (13.26)

L1

as the case n > 2 can be treated similarly. Let us write

h —h
/L(zy)f(y)dy =h+h+1
(x—y)
h —h
I(x) = / POV =R 14y ay (13.27)
(y —x)
ly—x|=1
h —h —n —
h) = =M A0 =Y fyay  a328)
(y—x)
ly—x|=1
L(x) =K (x) / Mdy. (13.29)
y—x
ly—x|=1

Notice that I; can be written as I} = K * (hf) — hK % f, where K (x) :=
|x|_2X|x|Zl is an L' kernel. It follows that

Hillzy S UK * BONpr + A1 IK « fllgz S Tl M fllze.
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Using Taylor’s formula and a change of variables we can write

1
I =— / /th//(x+ty)dtf(y+x)dy.

lyl<1 0

It follows that

1
12111 5/ / /Ih”(erty)llf(y +x0)ldxdydt S A"\ 20 fll 2

0 |yl=1
For the last term (13.29) we first write

1

Iz = h'(x) / wa’yzh’(x)//lf/(x—i-ty)dtdy

ly—x[=<1 lyl<l 0

and then estimate

1
(REYIFS S/ / /Ih/(X)IIf'(Xthy)Idxdydf5 A 20 f 7 2

0 [yl=t

This shows that (13.26) holds and completes the proof of Proposition 13.3. O

C2: Proof of (6.25)

For m € Z N[20,00), k € Z N [—m/2, m/50 — 1000], |€| € [2K, 21,
1 <t e 2™, 2mH1 N[0, T, we want to show

n
/ e HENINOR(E 5 ds| < e327Pm 2Pk 4 a(NI+1Dk) =1 (13 30)

1
where
R := N3+ Ny — Ns. (13.31)

with A3, Ny and ./V3 defined respectively in (5.8), (5.9) and (6.2). To prove
(13.30) we will use Lemma 13.4 and 13.5 below.
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Lemma 13.4 Let R be defined as in (13.31). Under the a priori assumptions
(5.23) on h and ¢, we have for k € Z

[PeR(E, )| S e (1 4 1)!0P0— 12~ (No—=200ks = fk/4 (13.32)

and
IPcR@)II 2 + I1PSR ()l 2 S e (1 + 1)20P0—3/22=(MNo/2=200kx (13 33)
Lemma 13.5 Assume that a function D = D (&, t) satisfies for all t € [0, T]

IDOI 2 + I1SD® 2 S 8L+~ 15,
ID@) o S 8(1+ )00, (13.34)
Itfollows that fork € Z, |&| € [2K, 2571 m € {1,2, .. . Yandt; < 1r € [2"=2,
2m+Hno, 7]

o)
/eiH@,s)eisA(s)ﬁ@ s)ds| < 8(1 +27k)2-m/1e. (13.35)

1

We now show how (13.30) follows from Lemma 13.4 and 13.5.
Proof of (13.30) From (13.32) we see that for |£]| € [2K, 25+17 one has

15}

/eiH(E"V)ei‘YA(E)I’?\(g,s)ds <2" sup |RE, )]

se[2m—2 2m+1]
41

< 8411210pom2—(N0—20)k+2—/3k/4‘
Given our choice of Ny and N, the desired bound (13.30) follows for k >

22po/(No — 80) and k < —44pg/38, with any p; < pg. For the remaining
frequencies

k € [—44po /3B, 22po/(No — 80)] (13.36)

we want to apply Lemma 13.5 with
D, 1) = (2P +2019K) PR, 1)

and § = 8‘1‘. From (13.32) and (13.33) we see that

!5(5, t)| < g‘l‘(l + t)101’0—12—(No/2—50)k+23ﬂk/4 < 841;(1 n t)lopo—l,
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ID@)|l 2 + ISD@)|l 2 S eF(1 4 1)20P073/2030%+ < (] 4 1)2Lpo=3/2,

under the restriction (13.36). The hypotheses of Lemma 13.5 are then satisfied,
and the conclusion (13.35) implies

5]
/eiH(s,S)eiSA(f)R\(é’ S) ds S 8411(2,3]( + 2(N1—|—15)k)_1 (1 + 2—k) 2—m/l6.

1

This gives (13.30) in the considered frequency range (13.36), by choosing
p1 = 1/16—44p0/3ﬂ. O

C.2.1 Proof of Lemma 13.4
Since R = N3 + Ny — A, from (5.8), (5.9) and (6.2) we can write
5 o~
R=MNy+ ZN3’j
j=1
where we recall that

Na = Ri(h,§) +2AM53(h, h, ¢) + Ri(h, ¢), h) + i A[Ra(h, ¢)
+ B(h, Q3(¢, h, ¢) + Ra(h, 9)) + B(M3(h, h, ) + Ri(h, $), ¢)],

(13.37)
and we have defined
Ns.i = Ms(h, h, ) — M3(H, H, W), (13.38)
N3 :=2A(My(h, ¢), h) —2A(My(H, V), H), (13.39)
/\73,3 =iA[Q3(p, h,¢) — 03(V, H, V)], (13.40)
/\73,4 =iA[B(Mz(h, ¢),$) — B(IM2(H, V), V)], (13.41)
N5 :=iA[B(h, Q2(9, ¢)) — B(H, 02(¥, ¥))]. (13.42)

Proof of (13.32). We start by proving that each term in N4 is bounded by the
right hand side of (13.32). The bound for Ry = [G (h)$]>4(2) is an immediate
consequence of the L' estimate (13.12). The bound for A R, can be obtained
from (13.22) using Cauchy’s inequality and the L? bounds for M;, M3 and
R given respectively in (5.33), (5.35) and (13.9). From the definition of A in

@ Springer



798 A. D. Ionescu, F. Pusateri

(5.1)—(5.2) we see that for any integer [
[PAF, G| S 27 Fl grsr |Gl g (13.43)

Using the L? bounds (5.35) on M3, (13.9) on Ry, and the a priori assumptions,
it immediately follows that

PAMs(h, b, @) + Rilh, 6), )| S 2707108 105 - Ryl v 1] -9

< 841127(N0710)k+(1 + 1)*po—T,
Similarly, from the definition of B in (5.1)—(5.3) we have
[PCB(F, G)| S 27| Fll o0, Gl g (13.44)
Using again (5.35) and (13.10) we get

|F [P AB(h, Q3(¢. h, ) + Ro(h, ¢)) + PiAB(M3(h, h, §) + Ri(h, $). $)]|
< 27N i v 101185 (Q3 + R2) | vg—10 + I M3+ Rill gyvg-10 1 3x @l 10
< 8?2—(N0—15)k+(1 + t)4po—1.

We now estimate the terms (13.38)—(13.42). From (4.17) we see that
—Ns1 = M3(A b, ¢) + M3(H, A, §) + M3(H, H, B).  (13.45)
From the definition of M3 in (4.9) we see that for any integer 0 <[/ < Ny — 10
POVG(E. F.G)
S 27 Ellyror-soe I F L o8 Gl oo + 1B | Fllyngro-ss

[13x Gl gi+2 + ||E||H1+2||F||H1+2|||3x|G||WNo/2—s,oo]- (13.46)

Applying this together with the L° bounds (5.27) on A and A B, the a priori
bounds (5.23), (4.25) and (4.26), one can obtain the desired bound for each of
the three terms in (13.45).

To estimate (13.39) we write

1 ~
—§N3,2 = A(M2(A, ), h) + A(M2(H, B), h) + A(Ma(H, V), A).
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Notice that for any integer 0 </ < No — 10

IPM(F, Gl g2 S 2752 [IF 141G s + I F o510l |
(13.47)

Using (13.43), (13.47), the estimates for A in (5.26) and (5.27), and Proposition
4.2, we get

|FIPA(M2(A, @), h)]|
5 9—(No—15)k+ | Mo (A, ¢)||HN0*‘°”h”HN0*‘° g 2—(1\’0—15)k+(1 + )P0
|:||A||HN0*8|||3x|¢||WN0/2—5~0<> + IIAIIWNo/Z—s,oo||3x¢||HN078]
< 8411-2—(N0—15)k+(1 + t)3p()—1.

To bound IV3, 3 in (13.40) we first write it as

N = N[ Q3(B. 1 @) + Qa(W, A, ¢) + O3(V. H. B)|.  (13.48)
We then notice that for any integer 0 </ < Nog — 10 one has

PO (E, F. G)| S 275 [ 10 Ellyor-scs | F ll grsa |95 Gl g

+||8xE||H1||F||WN0/2—5,oo||3XG||H1+2]. (13.49)

One can that then bound each one of the three summands in (13.48) by using
the above estimate together with Proposition 4.2, (5.23), (5.26) and (5.27).

(13.41) can be estimated in a similar fashion to what we have done above by
writing out the difference as sums of quartic terms, and using (13.44) together
with (13.47), (5.26), (5.27) and Proposition 4.2. The term (13.42) can also be
estimated similarly by using in addition

1PEQ2(F, G2 S 27 [100F Il (192G llynoro-sos + 18416 ynora-s.)

+ (103 F |l o r2-5.00 +- ||IaxIFIIWNo/Z—s,oo)IIIaxIGIIH/],
(13.50)

forany 0 </ < Nog — 10.
Proof of (13.33). First observe that from (13.10) we already have the desired
bound for R and A R». To bound the three remaining contributions from N4
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in (13.37) and the five terms (13.38)—(13.42) we first observe that for I' = 1
or S we have the following L? estimates:

T PrA(Pi, F, P, G)l; 2
< 2"2*(N0/2*10>k+[ (IT P, Fll gnvos2-10 + 1| Py Fll gno/2-10) 1| Py Gl yvg 210,00

+ 1Py Fllyro/2-1020 1T Py Gl g0 (13.51)
IC P B(Py, F, Pr,G)ll;2
< 27 N0 IORT (10 Py Fll oo + 1Py Fllgaor-i0) 24211 Pay Gll oo

+ 11 Pey Fllyyivor2-100022 (IT Piy Gl ynvios2-10 + || Piy Gl g 2-10) ] (13.52)
We also have the following L* estimates for M3 and Qs3:

| PeM3 (P, E. Pio F. P G| oo S 27 (N0/27 D plagmax(in i)

| Pry E |l yyvo/2-10.00 || Pry F |y v 210,00 || Pis G ||y Mo /210,00, (13.53)
|1 PcQ3(Pi, E, PiuF, PGl e S 27072719 g0 pmax(la )
1 2 3 Lo S
| Pry E |l yyvo/2-10.00 || Pry F |y v /2-10.00 || Pis G ||y Mo /210,00« (13.54)

From the homogeneity of degree 2 of M, and Q,, and of degree 3 of M3
and O3, one can obtain identities similar to (5.28) for the symbols of these
operators, and deduce the following analogues of the commutation identities
(5.29):

SMy(F, G) = Ma(SF, G) + Ma(F, SG) — 2M(F, G),
SO2(F, G) = Qa2(SF, G) + 0a2(F, SG) = 202(F, G),
SM3(E, F,G) = M3(SE, F, G) + M3(E, SF, G)
+ M3(E, F,SG) —3My(E, F, G),
SQ3(E, F,G) = Q3(SE, F,G) + Q3(E, SF,G) + Q3(E, F, SG)
—302(E, F, G). (13.55)

One can then use (13.51)—(13.54) together with the commutation identities
(5.29) and (13.55), the estimates (5.23), (5.33) and (5.35), (13.10), and argu-
ments similar to those used above and in Sect. 5.4, in particular in the proof
of Lemma 5.5, to obtain

5
1PNl 22 + 1 PeSNGllz2 + D I PN jll o + 1 PeSNG
j=1
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< 8‘1‘(1 + t)2opo—3/22—(1\/0/2—20)k+
which is the desired conclusion. O
C.2.2 Proof of Lemma 13.5

Fort; <t € [2™ —2,2" 1] and |£| € [2K, 2K+ let us define

n
F () :/eiH(g’S)eiSA(s)ﬁ(é,s) ds.

51

We then have

IFE SNF " Fllpiqeizonny + 1F T Flligesomn,
S22 Fllpa + 274 27K E0¢ F | o

Thus, to obtain (13.35) it suffices to show the following two estimates:

|F 2 < 8273m/8 (13.56)
IEd Fl, 2 S 8221mP0. (13.57)

(13.56) can be easily verified using the L? bound in (13.34). To prove (13.57)
we write:

0 F(6) = Fi(&) + Fa(®) + F3(®)
19}
Fi() = / FHED (i3, H(E, 5)) MO D(E, 5) ds,

131
19}

Fy(§) = / HED () MO D (g, 5) ds,

3l
n

1 . . —
F36) = 3 / e HED s, (e”A<€>D<s,s)) ds. (13.58)

1

having denoted S(&) := &3¢ — 15d,; notice that S(£) F (&) = —Sf (€) — f (&),
where S is the scaling vector field. Using the definition of H in (6.10) and the
a priori assumptions, it is easy to see that for s € [2" — 2, 2”+1] one has

1§ H(E, 9)ll 2 S 2",
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105 H (&, $)|lp0 S 27, (13.59)

Using the first bound above and the L bound in (13.34) we see that

15}
IF1ll 2 S / 1E0 H ()|l ;2| D(s) | oo ds S §2m2mP02m20P0=1) < gp21mpo
t

1

as desired. Since [(£0; — %sas) ,es8@)] = 0, we can use the L2 bounds in
(13.34) to deduce

19}
IF2ll2 S / D)2 + I1SD($) 2 ds <8,
N

which is more than sufficient. To estimate F3 we integrate by parts in s, use
the second bound in (13.59) and (13.34) to obtain:

19}

IF3ll2 2% sup  ID(9) .2 +/S||3sH(S, Sz IDS)I2ds S 8.

se[am—2,2m+1] 7

This proves (13.57) and concludes the proof of the Lemma. O
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