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Abstract We consider the gravity water waves system in the case of a one
dimensional interface, for sufficiently smooth and localized initial data, and
prove global existence of small solutions. This improves the almost global
existence result of Wu (Invent Math 177(1):45–135, 2009). We also prove
that the asymptotic behavior of solutions as time goes to infinity is different
from linear, unlike the three dimensional case (Germain et al., Ann Math
175(2):691–754, 2012; Wu, Invent Math 184(1):125–220, 2011). In particular,
we identify a suitable nonlinear logarithmic correction and show modified
scattering. The solutions we construct in this paper appear to be the first global
smooth nontrivial solutions of the gravity water waves system in 2D.
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1 Introduction

1.1 The problem

The evolution of an inviscid perfect fluid that occupies a domain �t in R
n

(n ≥ 2) at time t , is described by the free boundary incompressible Euler
equations. If v and p denote respectively the velocity and the pressure of
the fluid (which is assumed here to have constant density equal to 1), these
equations are:

⎧
⎨

⎩

vt + v · ∇v = −∇ p − gen x ∈ �t
∇ · v = 0 x ∈ �t
v(0, x) = v0(x) x ∈ �0,

(E)

where g is the gravitational constant, which we will assume to be 1 from
now on. The free surface St := ∂�t moves with the normal component of
the velocity, and, in absence of surface tension, the pressure vanishes on the
boundary:

{
∂t + v · ∇ is tangent to

⋃
t St ⊂ R

n+1

p(t, x) = 0, x ∈ St .
(BC)

In the case of irrotational flows, i.e.

curl v = 0, (1.1)

one can reduce (E)–(BC) to a system on the boundary. Although this reduction
can be performed identically regardless of the number of spatial dimensions,
we only focus on the two dimensional case which is the one we are interested in.
Assume that�t ⊂ R

2 is the region below the graph of a function h : Rt×Rx →
R, that is �t = {(x, y) ∈ R

2 : y ≤ h(t, x)} and St = {(x, y) : y =
h(t, x)}. Let us denote by � the velocity potential: ∇�(t, x, y) = v(t, x, y),
for (x, y) ∈ �t . If φ(t, x) := �(t, x, h(x, t)) is the restriction of � to the
boundary St , the equations of motion reduce to the following system for the
unknowns h, φ : Rt × Rx → R:
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⎧
⎨

⎩

∂t h = G(h)φ

∂tφ = −h − 1
2 |φx |2 + 1

2(1+|hx |2) (G(h)φ + hxφx )
2

(1.2)

with

G(h) :=
√

1 + |hx |2N (h) (1.3)

where N (h) is the Dirichlet–Neumann operator associated to the domain �t .
We refer to [40, chap. 11] or [14] for the derivation of the water wave equations
(1.2).

Another possible description for (E)–(BC) can be given in Lagrangian coor-
dinates again by deriving, in the case of irrotational flows (1.1), a system of
equations on the boundary St . More precisely, following [45], let z(t, α), for
α ∈ R, be the equation of the free interface St at time t in Lagrangian coordi-
nates, i.e. zt (t, α) = v(t, z(t, α)). Identifying R

2 with the complex plane we
use the same notation for a point z = (x, y) and its complex form z = x + iy.
We will then denote z = x −iy ∼ (x,−y). The divergence and curl free condi-
tion on the velocity v imply that v is holomorphic in�t . Therefore zt = Hzzt ,
where Hγ denotes the Hilbert transform1 along a curve γ :

(Hγ f )(t, α) := 1

iπ
p.v.

∫

R

f (t, β)

γ (t, α)− γ (t, β)
γβ(t, β) dβ. (1.4)

The vanishing of the pressure in (BC) implies that ∇ p is perpendicular to
St and therefore −∇ p = iazα , with a := − ∂P

∂n
1

|zα | . Since ztt (t, α) =
(vt + v · ∇v) (t, z(t, α)), one see that (E)–(BC)–(1.1) in two dimensions are
equivalent to

{
ztt + i = iazα
zt = Hzzt .

(1.5)

In [43] Wu was able to reduce (1.5) to a quasilinear system, and to exploit
the weakly hyperbolic structure of the new system to obtain local-in-time
existence of solutions in Sobolev spaces by energy methods. Earlier results for
small initial data in two dimensions were proven in [34,42] and [13]. In [44] Wu
was also able to prove local existence for the three dimensional problem (two
dimensional interface) [44]. Following the breakthrough of [43,44], there has
been considerable amount of work on the local well-posedness of (E)–(BC),

1 Integrals like the one in (1.4) are to be understood in the principal value sense, but for simplicity
we will often omit the p.v. notation.
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also including other effects on the wave motion, such as surface tension on the
interface or a finite bottom. We refer the reader to [1,2,4,5,8,9,11,31,32,39]
for some of the works on the local well-posedness of (E). Recently, blow-up
solutions in the form of turning waves [7] and “splash” solutions [6,12] have
been constructed.

The question of existence of global-in-time solutions for small, smooth,
and suitably localized data, has also received attention in recent years. In the
case of one dimensional interfaces, the only work investigating the long time
behavior of small gravity waves is that of Wu [45], who was able to show
almost global existence of solutions for (1.5). To do this, the author proposed
some new unknowns, which we denote here by F , and a fully nonlinear change
of coordinates, reducing (1.5) to a system of the form

∂2
t F + i∂αF = G (1.6)

where G are quasilinear nonlinearities of cubic and higher order with suitable
structure. Thanks to the cubic nature of this new system Wu was then able to
perform (almost optimal) energy estimates and obtain existence of solutions
up to times of order ec/ε, where ε is the size of the initial data.

On the other hand, in the case of two dimensional interfaces, Germain,
Masmoudi and Shatah [19] and Wu [46] obtained global solutions. The result
of [19] relied on the energy method of [38,39] and on the space-time resonance
method introduced in [18]. In [46] the author used instead a three dimensional
version of the arguments of [45] to derive a set of equations similar to (1.6),
perform weighted energy estimates on them, and obtain decay via L2 − L∞
type estimates. Recently, Germain, Masmoudi and Shatah [20] obtained global
solutions in three dimensions for capillary waves, i.e. with surface tension on
the interface and no gravitational force.

Here we are interested in the gravity water waves system (E)–(BC)–(1.1)
in the case of one dimensional interfaces which are a perturbation of the flat
one, and initial velocity potentials which are suitably small in an appropriate
norm. We aim to prove the existence of global-in-time and pointwise decaying
solutions, and determine their asymptotic behavior as t → ∞.

1.2 The main theorem

We define first our main spaces of functions. Fix2 N0 = 104 and define N1 :=
N0/2+4. Let S = 1

2 t∂t +α∂α be the scaling vector field. Given a time interval

2 We assume a large number of derivatives mostly to simplify the exposition. However one can
likely reduce this number to, say, N0 between 10 and 100 by a slightly more careful analysis.
Similarly, the parameter β in (1.9), which is related to the size of the small frequencies, can be
allowed to take other values in the interval (0,1/2).
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Global solutions for the gravity water waves system 657

I and a function f : I × R → C we define the norm

‖ f (t)‖Xk
:= ‖ f (t)‖Hk + ‖S f (t)‖Hk/2 . (1.7)

X N0 will be the weighted energy-space for the solution, expressed in some
appropriate modified Lagrangian coordinates, as well as in Eulerian coordi-
nates.

Given the height function h and the velocity potential φ in Eulerian coordi-
nates, we define the Z ′ norm

‖(h(t), φ(t))‖Z ′ := ‖h(t)‖W N1+4,∞ + ‖�φ(t)‖W N1+4,∞, with � := |∂x | 1
2 .

(1.8)

This is the decaying norm that we will estimate. Decay of this norm at the rate
of t−1/2 will give us a small global solution to the water wave problem.

Finally, we define the space Z by the norm

‖ f (t)‖Z := sup
ξ∈R

∣
∣
∣

(
|ξ |β + |ξ |N1+15

)
f̂ (ξ, t)

∣
∣
∣ (1.9)

where β = 1/100, and

f̂ (ξ, t) :=
∫

R

e−i xξ f (t, x) dx

is the partial Fourier transform in the spatial variable. This space plays a key
role in obtaining decay of the Z ′ norm of solutions, see the linear estimate
(1.18). The Z norm also plays an important role in proving modified scattering
of solutions in Eulerian coordinates.

The paper is concerned with the proof of the following Main Theorem:

Theorem 1.1 Let h0(x) = h(0, x) be the initial height of the surface S0, and
let φ0(x) = φ(0, x) be the restriction to S0 of the initial velocity potential.
Assume that at the initial time one has

‖(h0,�φ0)‖H N0+2 + ‖x∂x (h0,�φ0)‖H N0/2+1 + ‖h0 + i�φ0‖Z ≤ ε0,

(1.10a)

where Z is defined in (1.9). Moreover, for x ∈ �0 let v0(x) = v(0, x), where
v is the irrotational and divergence free velocity field of the fluid, and assume
that

‖|x |∇v0‖H N0/2(�0)
≤ ε0 . (1.10b)
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658 A. D. Ionescu, F. Pusateri

(i) (Global existence) Then there exists ε0 small enough, such that for any
ε0 ≤ ε0, the initial value problem associated to (1.2) admits a unique
global solution with

sup
t

[
(1 + t)−p0‖(h(t), φx (t))‖X N0

+ ‖h(t)+ i�φ(t)‖H N1+10

+√
1 + t‖(h(t), φ(t))‖Z ′

]
� ε0,

where p0 = 10−4.
(ii) (Modified scattering) Let u(t) := h(t)+i�φ(t), with� := |∂x |1/2. Define

G(ξ, t) := |ξ |4
π

t∫

0

|̂u(ξ, s)|2 ds

s + 1
, t ∈ [0, T ].

Then there is p1 > 0 such that

(1 + t1)
p1

∥
∥
∥(1 + |ξ |)N1

[
eiG(ξ,t2)eit2�(ξ)û(ξ, t2)

−eiG(ξ,t1)eit1�(ξ)û(ξ, t1)
]∥
∥
∥

L2
ξ

� ε0, (1.11)

for any t1 ≤ t2 ∈ [0, T ]. In particular, there is w∞ ∈ L2((1 + |ξ |)2N1dξ)
with the property that

sup
t∈[0,∞)

(1 + t)p1

∥
∥
∥(1 + |ξ |)N1

(
eiG(ξ,t)eit�(ξ)û(ξ, t)− w∞(ξ)

)∥∥
∥

L2
ξ

� ε0 .

(1.12)

Remark 1.2 The first norm in (1.10a) ensures that our initial data is small and
smooth in Sobolev spaces of high regularity. Notice that we are assuming that
the vertical variation from equilibrium of the interface, given by the graph of h,
as well as half derivative of the velocity potential are small. This is consistent
with the conserved energy (and Hamiltonian)

E0(h, φ) := 1

2

∫

φG(h)φ dx + 1

2

∫

h2 dx ≈ ‖h + i�φ‖2
L2,

for solutions of (1.2). The second norm in (1.10a), properly evolved in time,
gives some control of certain weighted norms of the solution.

The key new ingredient in (1.10a) is the smallness of h0 and �φ0 in the
Z -norm defined in (1.9). The Z -norm is the key new component of our global
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Global solutions for the gravity water waves system 659

argument: it is the only strong norm of the solution that we can control uni-
formly in time, while the other energy-type norms are allowed to increase
slowly in time. Furthermore, the Z -norm allows us to describe properly the
modified scattering of the solution.

Finally, (1.10b) is similar to a condition imposed by Wu [45]. We use it
as in the cited paper to guarantee that the energy functional on which energy
estimates are based is small at time t = 0.

Remark 1.3 The solutions can also be defined on the time interval (−∞, 0],
since the equations are time-reversible. The global solutions we construct in
Theorem 1.1 appear to be the first smooth nontrivial global solutions of the
gravity water waves system (E)–(BC) in 2 dimensions.

Remark 1.4 A more precise statement of modified scattering can be found in
Lemma 6.1, in terms of certain modified Eulerian variables. Also, more precise
bounds on the solution, both in terms of the Eulerian variables (h, φ) and the
Lagrangian variable z can be found in Sect. 3, see (3.1)–(3.3).

1.3 Main ideas in the proof

If one is interested in the long-time existence of small smooth solutions to
quasilinear dispersive and wave equations, such as (1.2) or (1.5), there are two
main aspects one needs to consider: controlling high frequencies and proving
dispersion. The first aspect is generally connected to the construction of high
order energies which control the Sobolev norm of a solution. The second
aspect is related to L p decay estimates, and to estimates of weighted norms.
When dealing with the water waves system both of these aspects are extremely
delicate.

1.3.1 Supercriticality, energy estimates and normal forms

The general strategy for obtaining a global small solution usually starts with
local-in-time energy estimates. The aim of the energy method is to construct
an energy functional E(t) such that

E(t) ∼ ‖u(t)‖2
H N and

d

dt
E(t) � E(t)3/2. (1.13)

Here, the power 3/2 is dictated by the quadratic nature of the nonlinearities in
(1.2) or (1.5). The estimates (1.13) are often the key ingredient in obtaining
local solutions, and for initial data of size ε they give existence for times of
order 1/ε. We remark here that the construction of an energy satisfying (1.13)
for the water waves system is particularly challenging. Nevertheless it has
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660 A. D. Ionescu, F. Pusateri

been done in several works, such as the already cited [1,5,9,31,32,39,43,44],
thanks to considerable insight into the structure of the equations.

To extend a local solution for longer times one needs to engage the dispersive
effects of the equation. One possibility is to try to upgrade (1.13) to

‖u(t)‖2
H N + ‖u(t)‖2

W � E(t) and
d

dt
E(t) � ε

ta
E(t), (1.14)

provided the solution decays like t−a in some L∞-based space. The W-norm
in (1.14) is supposed to encode some information about the localization of the
flow. In the best case scenario a bound of the form ‖u(t)‖W � 1 implies the
desired t−a decay. Thus, if one can prove (1.14) with a > 1 small solutions
will exist globally and scatter to a linear solution. If a = 1 solutions will
automatically exist almost globally and further analysis3 is needed in this
critical case to show global existence and determine the asymptotic behavior.
If a < 1 the problem of global existence and scattering is much more difficult.
This case is referred to as scattering supercritical and it is the case of the 2d
water waves problem, since solutions of the linear equation i∂t u − �u = 0,
� = |∂x |1/2, decay at the rate t−1/2.

In the work of Wu [45] on the almost global existence in the two dimensional
problem, the author relied on a nonlinear version of a normal form transforma-
tion. Starting from the Lagrangian formulation (1.5), Wu proposed some new
quantities, and a diffeomorphism depending fully nonlinearly on the solution,
such that the set of equations obtained in the new coordinates admit a certain
type of energy estimates, consistent with cubic nonlinearities. More precisely,
let us denote, schematically, by F the new transformed unknowns, after the
nonlinear change of variables. The point of Wu’s remarkable construction is
that the variables F satisfy nonlinear equations like (1.6) with cubic-type non-
linearities. As a consequence, Wu defines a suitable energy functional E(t)
and proves the following type of energy estimates:

‖F(t)‖2
H N + ‖F(t)‖2

W � E(t)

and
d

dt
E(t) � ‖F(t)‖2

W
N
2 ,∞

E(t) log t + 1

t
E2(t). (1.15)

These estimates can then be combined with L2 − L∞ estimates, which show
that F(t) decays pointwise like t−1/2. Therefore E(t) � ε2 as long as log t �
ε−1, which concludes the proof of almost global existence.

3 Examples of such analysis are the classical vector fields method of Klainerman [29,30], or
the more recent papers [18,19,21,22,25,26,36] on global regularity results for certain physical
systems.
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1.3.2 Dispersion and asymptotic behavior

To pass to global existence, our first concern is to improve (1.15) by eliminat-
ing logarithmic losses. We will use the same approach of [45], and the same
equations derived there, to show an estimate of the form

‖F(t)‖2
H N + ‖F(t)‖2

W � E(t) and
d

dt
E(t) � ‖F(t)‖2

Z∞ E(t),

(1.16)

for some L∞ based space Z∞ which is stronger than W
N
2 ,∞. Such an estimate

is achieved by carefully analyzing the singular integrals (Calderón commu-
tators) appearing in the cubic nonlinearities, and exploiting special structures
present in some of them.

Another important point is that in order to justify the existence of the Wu’s
diffeomorphism k and of the new unknowns F for all times t , we need appro-
priate a priori control on Wu’s change of coordinates. This is obtained by
taking advantage of a certain null structure present in the transformation.

Thanks to (1.16) one can guarantee E(t) �p0 ε
2t2p0 , for any fixed p0 > 0,

and for all t ∈ [0,∞), provided ‖F(t)‖Z∞ � εt−1/2. However, since E(t) is
forced to grow in time, although just slightly, one cannot obtain the desired
sharp Z∞ decay through energy estimates like those in [45].

Our main idea in this paper is to use also the Eulerian formulation of the
equations (1.2) for the purpose of proving decay and modified scattering.
More precisely, we achieve this by bootstrapping at the same time several
bounds, which control the Eulerian variables, the Lagrangian variables, and
Wu’s diffeomorphism k (see (2.8)–(2.10)). This consists of several steps:

• We show first that the Eulerian variables h and φx in (1.2) are controlled
in the energy norms H N0 and in S−1 H N0/2 by the energy E(t) of the
modified Lagrangian variables. Here S = (1/2)t∂t + x∂x is the scaling
vector field. In other words we transfer the energy and weighted energy
bounds (which are expected to increase slowly in time as a result of the
bootstrap argument) to the Eulerian variables h, φx .

• The variables h and φ satisfy the equations (1.2), which can be written
schematically in the form

∂t h = |∂x |φ − ∂x (h∂xφ)− |∂x |(h|∂x |φ)+ Cubic(h, φx );
∂tφ = −h − (1/2)|φx |2 + (1/2)||∂x |φ|2 + Cubic(h, φx ),

where the remainders are cubic expression of h, φx . We use a normal form
transformation H = h + A(h, h), � = φ + B(h, φ), for suitable bilinear
operators A and B to eliminate the quadratic nonlinearities and reduce this
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to an evolution equation of a complex variable with a cubic nonlinearity.
More precisely, letting V = H +i��, we show that V satisfies an equation
of the form

∂t V + i�V = C(V, V ), � = |∂x |1/2, (1.17)

where C is a nonlocal cubic quasilinear nonlinearity depending on all pos-
sible combination of V and V , and some of their derivatives. Moreover,
we show that the variable V satisfies similar energy and weighted energy
estimates as the functions h and φx , i.e. with a slow increase in time.

• Finally, to analyze4 the equation (1.17) we use the key Z norm defined
in (1.9). Unlike all the other energy and weighted energy norms, which
are allowed to increase slowly at t → ∞, the Z norm of the solution
is not based on L2-type of spaces and is the only strong norm we are
able to control uniformly in time. Letting f (t) = eit�V (t) and using the
Fourier transform method, we identify an appropriate nonlinear correction
L = L( f̂ ) and show that the function t → F−1[ei L(ξ,t) f̂ (ξ, t)] converges,
at a polynomial rate, as t → ∞. This suffices to prove global existence
and modified scattering.

The crucial t−1/2 pointwise decay of the solution, which is needed to close the
energy estimates, is then a consequence of the linear bound in Lemma 6.2,

‖eit�h‖L∞ � (1+|t |)−1/2‖ |ξ |3/4ĥ(ξ)‖L∞
ξ

+(1 + |t |)−5/8

[‖x · ∂x h‖L2 +‖h‖H2
]
. (1.18)

Notice that this pointwise bound requires sharp control of the Z norm, but can
tolerate slow increase of the energy norms in time. This is consistent with the
information we have on our solutions.

4 This step was considered, as a model case, in [27]. More precisely, we considered the semi-
linear Cauchy problem

∂t u + i�u = ic0|u|2u + c1u3 + c2uu2 + c3u3,

c0 ∈ R, and c1, c2, c3 ∈ C. This is a simplified semilinear version of the quasilinear equation
(1.17), and energy and weighted energy estimates are not an issue. However, to prove global
existence and pointwise decay, one still needs to identify an appropriate logarithmic correction,
and prove modified scattering using a norm similar to the Z norm. A similar argument was used
in [28] in the case of scattering critical semilinear Schrödinger equations (see also [23,35]). For
more works on modified scattering we refer the reader to the papers of Delort [17], Hayashi and
Naumkin [23,24], Lindblad and Soffer [33], Deift and Zhou [15,16], and references therein.
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1.3.3 Plan of the paper

In Sect. 2 we describe in detail the strategy of our proof through Propositions
2.1–2.5. In Sect. 3 we prove the main Theorem 1.1 assuming these proposi-
tions. In Sect. 4 we state Propositions 4.1–4.4 and show how they imply the
decay and the control of lower Sobolev norms stated in Proposition 2.5. Propo-
sitions 4.1–4.4 are then proved in Sects. 5 and 6. In Sect. 7 we describe the
change of coordinates used by Wu [45], the cubic equations obtained there, and
the associated energy functional. In Sect. 8 we prove the energy estimates con-
tained in Proposition 2.3 via Propositions 8.1–8.3. We then prove Proposition
2.2. i.e. that the change of coordinates used is a diffeomorphism, on any time
interval where one has a small solution satisfying certain a priori bounds. The
transition of energy norms to Eulerian coordinates is done in Sect. 10, where
we prove Proposition 2.4. In Appendix A we first give some variants of the esti-
mates used in [45] that are compatible with our energy estimates. Section A2
contains some estimates for singular integral operators of “Calderón commu-
tators” type that are used in the course of the energy estimates. In appendix B
we calculate the resonant contribution of the cubic nonlinearities in Eulerian
coordinates, after the application of the normal form. Appendix C contains
estimates for the quartic and higher order remainders in the equation (1.2).

2 Strategy of the proof

The proof of Theorem 1.1 relies on a set of different Propositions. We state
these key Propositions below and make some comments.

2.1 Local existence

Our strategy for controlling high Sobolev norms of solutions relies on the
energy method of Wu [45], which is developed starting from the Lagrangian
formulation of the problem. Therefore we begin by describing the local exis-
tence theory in Lagrangian coordinates. Assume that at the initial time the
interface S0 is given by the graph of a function h0 : R → R, with h0(α) → 0
as |α| → ∞. Let z0(α) = α+ih0(α) be a parametrization of S0 ⊂ C. Assume
that for some μ > 0

|z0(α)− z0(β)| ≥ μ|α − β| ∀α, β ∈ R. (2.1)

Let z = z(t, α) be the equation of the free surface St at time t , in the Lagrangian
coordinateα, with z(0, α) = z0(α). The following local existence result holds:
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664 A. D. Ionescu, F. Pusateri

Proposition 2.1 (Local existence in Lagrangian coordinates [45, Theorem
5.1], [43]) Let N ≥ 4 be an integer. Assume that

∑

0≤ j≤N

∥
∥
∥∂

j
α (zα(0)−1, zt (0), ∂αzt (0))

∥
∥
∥

H1/2
+
∥
∥
∥

(
∂ j
α(ztt (0), ∂αztt (0)

)∥
∥
∥

L2
≤ε0.

(2.2)

Then there exists a time T > 0, depending only on the norm of the initial data,
such that the initial value problem for (1.5)5 has unique solution z = z(t, α)
for t ∈ [0, T ], satisfying for all j ≤ N

∂ j
α (zα − 1, zt , ∂αzt ) ∈ C

([0, T ], H1/2(R)
)

∂ j
α (ztt , ∂αztt ) ∈ C

([0, T ], L2(R)
)

and |z(t, α) − z(t, β)| ≥ ν|α − β|, for all α, β ∈ R, t ∈ [0, T ], and some
ν > 0.

Moreover, one has the following continuation criterion: if T ∗ is the supre-
mum of all such times T , then either T ∗ = ∞ or

sup
t∈[0,T ∗)

⎛

⎜
⎜
⎝

∑

0≤ j≤
[

N+1
2

]
+2

‖∂ j
α ztt (t)‖L2 + ‖∂ j

α zt (t)‖H1/2

+ sup
α �=β

∣
∣
∣
∣

α − β

z(t, α)− z(t, β)

∣
∣
∣
∣

⎞

⎟
⎟
⎠ = ∞. (2.3)

Given N = N0, and a local solution on [0, T ], with initial data as in the
main Theorem, we assume that

sup
[0,T ]

⎛

⎜
⎝

∑

0≤ j≤ N0
2 +2

‖∂ j
α ztt (t)‖L2 + ‖∂ j

α zt (t)‖H1/2 + ‖zα(t)− 1‖L∞

⎞

⎟
⎠ ≤ ε

3/4
0 .

(2.4)

To obtain a global solution it suffices to prove that the quantity in the left-hand
side of the inequality above is bounded by Cε0.

5 Recall that the Taylor coefficient a can be expressed in terms of z and zt , see formula (5.13)
in [45].
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2.2 The main a priori assumptions

Under the a priori assumption (2.4), we have that Rez is a diffeomorphism on
[0, T ]. We can then relate the Eulerian variables h and φ to the Lagrangian
map α → z(t, α), for t ∈ [0, T ], via the following identities

h(t,Rez(t, α)) = Imz(t, α), φ(t,Rez(t, α)) = ψ(t, α) . (2.5)

Here ψ(t, α) is the trace of the velocity potential in Lagrangian coordinates,
which can be obtained from the map z, for example, using the Bernoulli equa-
tion ψt = −Imz + (1/2)|zt |2, ψ(0, α) = φ0(α).

In addition, we also need Wu’s change of coordinates k as in [45], to obtain
cubic equations amenable to energy estimates. The explicit form for k is given
in (7.2), and is the same as the one used by Totz and Wu [41], see formula (2.3)
there. As long as this transformation k is a well-defined diffeomorphism, one
can associate to the Lagrangian map z a modified Lagrangian map ζ = z◦k−1,
and the following vector associated to the new coordinates:

L̃(t, α) := (ζα(t, α)− 1, u(t, α), w(t, α), Imζ(t, α)) , (2.6)

with

ζ := z ◦ k−1, u := zt ◦ k−1, w := ztt ◦ k−1. (2.7)

Our main bootstrap assumptions on the solution are:

sup
t∈[0,T ]

[
(1 + t)−p0‖(h(t), φx (t))‖X N0

+ ‖h(t)+ i�φ(t)‖H N1+10

+√
1 + t‖(h(t), φ(t))‖Z ′

]
≤ ε1, (2.8)

sup
t∈[0,T ]

[
(1 + t)−p0‖L̃(t)‖X N0

+ ‖L̃(t)‖H N1+5 + √
1 + t‖L̃(t)‖W N1,∞

]
≤ ε1,

(2.9)

and

sup
t∈[0,T ]

‖kα(t)− 1‖W N0/2+3,∞ ≤ ε1, (2.10)

where X N0 is defined by (1.7) and Z ′ is defined in (1.8), ε1 ≤ ε
3/4
0 , and

p0 = 10−4. In other words we assume a priori control on the Eulerian variables
(h, φ), on the modified Lagrangian variable ζ , and on the diffeomorphism k.
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To close the bootstrap argument we need to prove improved control on these
quantities; this is the content of Propositions 2.2–2.5 below.

2.3 The main Propositions

Our first proposition, which is proved in Sect. 9, provides improved control
on the diffeomorphism k.

Proposition 2.2 (Control on the diffeomorphism k) Assume that (2.8)–(2.10)
hold and, in addition,

‖kα(0)− 1‖W N0/2+3,∞ � ε0 . (2.11)

Then

sup
t∈[0,T ]

‖kα(t)− 1‖W N0/2+3,∞ � ε0 + ε2
1. (2.12)

The proof of the above Proposition relies crucially on the exploitation of a
special null structure present in the transformation k.

Our second proposition concerns improved control of the highest energy
norm in modified Lagrangian variables. More precisely:

Proposition 2.3 (Energy estimates for the modified Lagrangian variables)
Assume that (2.8)–(2.10) hold. Then

sup
t∈[0,T ]

(1 + t)−p0‖L̃(t)‖X N0
� ε0 + ε2

1. (2.13)

This is proved in Sect. 8. We follow, to a large extent, the proof of Wu [45],
using cubic equations for the “good unknowns” related to L̃ , and performing
energy estimates. However, some arguments need to be adjusted in order to
avoid the logarithmic losses in the energy bound (compare with (1.15)).

The next step consists in translating the bounds given by the energy estimates
in terms of the modified Lagrangian coordinates, to bounds on the norms of
the Eulerian variables h and ∂xφ.

Proposition 2.4 (Transition to Eulerian coordinates) Assume that (2.8)–(2.10)
hold. Then, for t ∈ [0, T ],

‖(h(t), ∂xφ(t))‖X N0
� ‖L̃(t)‖X N0

, (2.14)
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and

‖L̃(t)‖H N1+5 � ‖(h(t), ∂xφ(t))‖H N1+7 + ε2
1, (2.15a)

‖L̃(t)‖W N1,∞ � ‖(h(t), φ(t))‖Z ′ . (2.15b)

The proof of Proposition 2.4 is given in Sect. 10.
Finally, we use the Eulerian formulation of the equations to show the decay

of the Z ′-norm and bound lower Sobolev norms:

Proposition 2.5 (Control of dispersive and lower Sobolev norms) Assume that
(2.8)–(2.10) hold. Then

sup
[0,T ]

√
1 + t‖(h(t), φ(t))‖Z ′ � ε0 + ε2

1 (2.16)

and

‖h(t)+ i�φ(t)‖H N1+10 � ε0 + ε2
1. (2.17)

The detailed strategy for the proof of Proposition 2.5 can be found in Sect. 4,
and relies on Propositions 4.1–4.4, which are proven in Sects. 5 and 6.

Proposition 2.5 is the main new ingredient in our proof of global regularity.
We start from the equations (1.2), written schematically in (4.5) and perform
first a normal form transformation to eliminate the quadratic terms in the
nonlinearity. We then analyze the resulting cubic equation, given in Lemma
5.1. A crucial step in the analysis consists in applying a phase correction to
the transformed solution, and estimating it in the auxiliary Z -norm defined in
(1.9).

3 Proof of the main Theorem

Using Propositions 2.2–2.5 we can now complete the proof of the main theo-
rem. Set ε1 = ε

3/4
0 and assume that (2.8)–(2.10) hold. We apply Propositions

2.2–2.5 to conclude that

sup
t∈[0,T ]

[
(1 + t)−p0‖(h(t), φx (t))‖X N0

+ ‖h(t)+ i�φ(t)‖H N1+10

+√
1 + t‖(h(t), φ(t))‖Z ′

]
� ε0, (3.1)

sup
t∈[0,T ]

[
(1 + t)−p0‖L̃(t)‖X N0

+ ‖L̃(t)‖H N1+5 + √
1 + t‖L̃(t)‖W N1,∞

]
� ε0,

(3.2)
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and

sup
t∈[0,T ]

‖kα(t)− 1‖W N0/2+3,∞ � ε0. (3.3)

This provides the desired improvement of the a priori assumptions (2.8)–(2.10).
By continuity, the improved bounds (3.1)–(3.3) hold on the time interval [0, T ].

We consider now the a priori Assumption 2.4. To improve it, we need to
show that

sup
[0,T ]

⎛

⎜
⎝

∑

0≤ j≤ N0
2 +2

‖∂ j
α ztt (t)‖L2 + ‖∂ j

α zt (t)‖H1/2 + ‖zα(t)− 1‖L∞

⎞

⎟
⎠ � ε0.

(3.4)

This follows using the chain rule from the identities z = ζ ◦ k, zt = u ◦ k, and
ztt = w ◦ k, see (2.7), and the bounds (3.2) and (3.3). As a consequence of
Proposition 2.1, the solution extends globally, and part (i) of the Main Theorem
follows.

To prove the modified scattering statement in part (ii) we may assume that
t1 ≤ t2 ≤ 2t1 and use Lemma 6.1, more precisely the bound (6.13)

‖(|ξ |β + |ξ |N1+15)(g(ξ, t2)− g(ξ, t1))‖L∞
ξ

� ε0(1 + t1)
−p1, (3.5)

where, see (6.10) and Lemma 5.1,

g(ξ, t) = ei L(ξ,t) f̂ (ξ, t), L(ξ, t) := ξ4

π

t∫

0

| f̂ (ξ, s)|2 ds

s + 1
,

f (t) = eit�V (t), V = H + i�� = [h + A(h, h)] + i�[φ + B(h, φ)].
(3.6)

With the notation in Theorem 1.1, and using also (5.26), we notice that, for
t ∈ {t1, t2},

∥
∥
∥(1 + |ξ |)N1

[
eiG(ξ,t)eit�(ξ)û(ξ, t)− eiG(ξ,t) f̂ (ξ, t)

]∥
∥
∥

L2
ξ

�
∥
∥
∥(1 + |ξ |)N1

[
û(ξ, t)− V̂ (ξ, t)

]∥∥
∥

L2
ξ

� ε0(1 + t)−1/4.
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Therefore, for (1.11) it suffices to prove that
∥
∥
∥(1 + |ξ |)N1

[
eiG(ξ,t2) f̂ (ξ, t2)− eiG(ξ,t1) f̂ (ξ, t1)

]∥
∥
∥

L2
ξ

� ε0(1 + t1)
−p1 .

(3.7)

Notice that eiG(ξ,t) f̂ (ξ, t) = g(ξ, t)ei[G(ξ,t)−L(ξ,t)], t ∈ {t1, t2}. Moreover

∣
∣ei[G(ξ,t2)−L(ξ,t2)] − ei[G(ξ,t1)−L(ξ,t1)]∣∣ �

∣
∣[G(ξ, t2)−L(ξ, t2)]

− [G(ξ, t1)−L(ξ, t1)]
∣
∣ � ξ4

t2∫

t1

∣
∣̂u(ξ, s)− V̂ (ξ, s)

∣
∣(|̂u(ξ, s)|

+ |V̂ (ξ, s)|) ds

s + 1
.

In view of Proposition 4.4, we have, for any ξ ∈ R and s ∈ [t1, t2],
(|ξ |β + |ξ |N1+15)(| f̂ (ξ, s)| + |V̂ (ξ, s)| + |̂g(ξ, s)|) � ε0.

Also, using Proposition 5.1 and the bounds ‖h(s)‖H N0 +‖φx (s)‖H N0 � ε0(1+
s)p0 , see (2.8), it follows that, for any ξ ∈ R and s ∈ [t1, t2],

(
1 + |ξ |N1+15)(|̂u(ξ, s)− V̂ (ξ, s)|) � ε0(1 + s)2p0 .

Therefore, using these three bounds and (3.5), the left-hand side of (3.7) is
dominated by

∥
∥
∥(1 + |ξ |)N1 [g(ξ, t2)− g(ξ, t1)]

∥
∥
∥

L2
ξ

+
∥
∥
∥(1 + |ξ |)N1 g(ξ, t2)

∣
∣ei[G(ξ,t2)−L(ξ,t2)] − ei[G(ξ,t1)−L(ξ,t1)]∣∣

∥
∥
∥

L2
ξ

� ε0(1 + t1)
−p1 + ε0 sup

s∈[t1,t2]
(1 + s)2p0

∥
∥û(ξ, s)− V̂ (ξ, s)

∥
∥

L2
ξ

� ε0(1 + t)−p1 .

This completes the proof of the desired bound (3.7) and of the main theorem.

4 Eulerian formulation and proof of Proposition 2.5

In this section we first recall the water waves equations in Eulerian coordinates.
We then explain our strategy for the proof of Proposition 2.5. This will be
obtained as a consequence of Propositions 4.1, 4.2, 4.3 and 4.4 below.
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4.1 The equations in Eulerian coordinates

The system of equations in Eulerian coordinates is

⎧
⎨

⎩

∂t h = G(h)φ

∂tφ = −h − 1
2 |φx |2 + 1

2(1+|hx |2) (G(h)φ + hxφx )
2,

(4.1)

where

G(h) :=
√

1 + |hx |2N (h) (4.2)

and N denotes the Dirichlet–Neumann operator associated to �t .
Given a multilinear expression of h and φ

F = F(h, φ) =
∑

j≥1

Fj (h, φ),

where Fj is an homogeneous polynomial of order j in its arguments, we denote

[F]k := Fk(h, φ) (4.3)

and

[F]≥k :=
∑

j≥k

[F] j , [F]≤k :=
∑

1≤ j≤k

[F] j . (4.4)

After expanding N for small displacements of the moving surface, see
[19,40], one obtains the equations

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂t h = |∂x |φ − ∂x (h∂xφ)− |∂x |(h|∂x |φ)
−1

2 |∂x |
[
h2|∂x |2φ + |∂x |(h2|∂x |φ)− 2h|∂x |(h|∂x |φ)

]+ R1(h, φ),

∂tφ = −h − 1
2 |φx |2 + 1

2 ||∂x |φ|2 + |∂x |φ
[
h|∂x |2φ − |∂x |(h|∂x |φ)

]

+R2(h, φ),

(4.5)

where:

R1(h, φ) := [G(h)φ]≥4 (4.6)

R2(h, φ) :=
[
(G(h)φ + hxφx )

2

2(1 + |hx |2)
]

≥4
. (4.7)
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Let us denote

M2(h, φ) := −∂x (h∂xφ)− |∂x |(h|∂x |φ), (4.8)

M3(h, h, φ) := −1

2
|∂x |

[
h2|∂x |2φ + |∂x |(h2|∂x |φ)− 2h|∂x |(h|∂x |φ)

]
,

(4.9)

Q2(φ, φ) := −1

2
|φx |2 + 1

2
||∂x |φ|2, (4.10)

Q3(φ, h, φ) := |∂x |φ
[
h|∂x |2φ − |∂x |(h|∂x |φ)

]
, (4.11)

so that
⎧
⎨

⎩

∂t h = |∂x |φ + M2(h, φ)+ M3(h, h, φ)+ R1(h, φ),

∂tφ = −h + Q2(φ, φ)+ Q3(φ, h, φ)+ R2(h, φ).
(4.12)

4.2 Strategy for the proof of Proposition 2.5

Recall that in Proposition 2.5 we are making the following a priori assumptions:

sup
t∈[0,T ]

[
(1 + t)−p0‖(h(t), ∂xφ(t))‖X N0

+ √
1 + t‖(h(t), φ(t))‖Z ′

]
≤ ε1

(4.13)

and

‖h0 + i�φ0‖H N0+1 + ‖x∂x (h0 + i�φ0)‖H N0/2 + ‖h0 + i�φ0‖Z ≤ ε0,

(4.14)

for some ε1 ∈ [ε0, 1]. We then aim to prove

sup
t∈[0,T ]

√
1 + t‖(h(t), φ(t))‖Z ′ � ε0 + ε2

1 (4.15)

and

sup
t∈[0,T ]

‖h(t)+ i�φ(t)‖H N1+10 � ε0 + ε2
1. (4.16)

To prove (4.15) and (4.16) the idea to transform the quadratic equations into
cubic ones, and then apply the strategy of our previous paper [27] to the cubic
equations. We will proceed through several steps. We first perform a bilinear
normal form transformation:
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Proposition 4.1 (Poincaré-Shatah Normal Form) There exist bilinear opera-
tors A and B such that if

⎧
⎪⎨

⎪⎩

H
def= h + A(h, h),

�
de f= φ + B(h, φ),

(4.17)

then the function V defined by

V
def= H + i�� (4.18)

satisfies

∂t V + i�V = C (h, |∂x |φ) (4.19)

where C is a nonlinearity consisting of cubic and higher order terms.

A more precise statement of this Proposition, with the explicit form of
A, B, and C is given in Sect. 5, followed by its proof. In Sect. 5.3 we show
the following bounds on the transformation:

Proposition 4.2 (Bounds for the transformation) Under the a priori assump-
tions (4.13) on h = h(t) and φ = φ(t), we have for any t ∈ [0, T ]

‖A(h, h)‖W N1+4,∞ + ‖�B(h, φ)‖W N1+4,∞ � ε2
1(1 + t)−1/2, (4.20)

‖A(h, h)‖H N0−5 + ‖�B(h, φ)‖H N0−5 � ε2
1, (4.21)

‖S A(h, h)‖
H

N0
2 −5

+ ‖S�B(h, φ)‖
H

N0
2 −5

� ε2
1. (4.22)

In particular we have

‖(h, φ)‖Z ′ � ‖V ‖W N1+4,∞ + ε2
1(1 + t)−1/2, (4.23)

‖h + i�φ‖H N1+10 � ‖V ‖H N1+11 + ε2
1, (4.24)

and

‖V ‖W N1+4,∞ � ε1(1 + t)−1/2, (4.25)

‖H + i∂x�‖H N0−6 � ε1(1 + t)p0, (4.26)

‖SH‖
H

N0
2 −6

+ ‖S∂x�‖
H

N0
2 −6

� ε1(1 + t)p0 . (4.27)

The above Proposition shows that the a priori smallness assumption (4.13)
can be suitably transferred to V . The next step is to improve (4.27) by using
the equation (4.19) and the specific properties of the nonlinearity:
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Proposition 4.3 (Improvement of the weighted bound on V ) Let V be the
function defined by (4.18) and satisfying (4.19). Then

sup
t∈[0,T ]

(1 + t)−5p0
[‖SV (t)‖H N0/2−20 + ‖V (t)‖H N0/2−20

]
� ε0 + ε2

1. (4.28)

Furthermore, if we define the profile of V as

f (t, x) :=
(

eit�V (t)
)
(x). (4.29)

we have

sup
t∈[0,T ]

(1 + t)−5p0
[‖x∂x f (t)‖H N0/2−20 + ‖ f (t)‖H N0/2−20

]
� ε0 + ε2

1.

(4.30)

This is proved in Sect. 5.4. The bound (4.28) improves the bound (4.27)
by gaining half derivative for low frequencies on the estimate for �, at the
expense of losing a small amount of decay and some derivatives. This gives
us (4.30) and allows us to exploit the bounds obtained in our previous paper
[27].

Using the bounds given by Proposition 4.2 we will work on the scalar cubic
equation (4.19) with the aim of showing:

Proposition 4.4 (Bound on the Z -norm and decay of the Z ′-norm of V ) Let V
be defined as above, and satisfying the bounds (4.25), (4.26), (4.30) . Assume
further that

sup
t∈[0,T ]

‖V (t)‖Z ≤ ε1, (4.31)

where Z is the norm defined in (1.9). Then

sup
t∈[0,T ]

‖V (t)‖Z � ε0 + ε3
1. (4.32)

As a consequence, using also Lemma 6.2,

sup
t∈[0,T ]

√
1 + t‖V (t)‖W N1+4,∞ � ε0 + ε2

1, (4.33)

and

sup
t∈[0,T ]

‖V (t)‖H N1+11 � ε0 + ε3
1. (4.34)
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The proof of (4.32) constitutes the heart of the proof for the decay in Eulerian
coordinates, and is performed in Sect. 6, using a construction similar to our
paper [27].

Using (4.31) and an estimate similar to (4.20), we can also obtain the fol-
lowing:

Corollary 4.5 Under the a priori assumptions (4.13) and (4.31) we have

sup
t∈[0,T ]

(1 + t)1/8‖φ(t)‖L∞ � ε0 + ε2
1. (4.35)

This shows in particular the validity of the assumption (8.128) in Lemma 8.10.

Proof of Corollary 4.5 For any k ∈ Z let Pk be the Littlewood–Paley projector
defined after (5.18). We estimate, using (4.33) and (4.23)

‖Pkφ(t)‖L∞ � (ε0 + ε2
1)2

−k/2(1 + t)−1/2.

At the same time, using (4.32), (4.20), and the bound

‖Pk B(h(t), φ(t))‖L∞ � 2k‖F Pk B(h(t), φ(t))‖L∞

� 2k‖h(t)‖L2‖|∂x |φ(t)‖L2 � 2kε2
1,

see the explicit from of the symbol b in (5.3), we can obtain

‖Pkφ(t)‖L∞ � ‖Pk�(t)‖L∞ +‖Pk B(h(t), φ(t))‖L∞ � 2k/3(ε0+ε2
1)+ 2kε2

1.

The desired conclusion follows from these estimates by considering the cases
2k ≤ (1 + t)−3/8 and 2k ≥ (1 + t)−3/8. ��

Observe that (4.33) together with (4.23) imply (4.15). The bound (4.34)
together with (4.24) implies (4.16), thereby concluding the proof of Proposition
2.5.

5 Proof of Propositions 4.1, 4.2, and 4.3: normal forms

In this section we aim to transform the quadratic equations (4.5) into cubic ones
using a normal form transformation, as in [19,37]. The possibility of doing
this relies on the vanishing of the symbols of the quadratic interaction on the
time resonant set. We remark that the structure of the transformation here is
very important because we only have information on ∂xφ and not on φ or�φ.
Therefore we want to find H and � as in (4.17), with A and B depending
nicely on h and ∂xφ, and such that H + i�� satisfies a cubic equation.

123



Global solutions for the gravity water waves system 675

5.1 Solving the homological equation

Given a suitable symbol m : R × R → C we define the associated bilinear
operator M( f, g) by the formula

F [M( f, g)] (ξ) = 1

2π

∫

R

m(ξ, η) f̂ (ξ − η)ĝ(η) dη. (5.1)

The following lemma gives the explicit form for the transformation in Propo-
sition 4.1:

Lemma 5.1 Let

a(ξ, η) := −|ξ |
2

η

|η|
ξ − η

|ξ − η| , (5.2)

b(ξ, η) := −|η| ξ − η

|ξ − η|
ξ

|ξ | , (5.3)

and

m2(ξ, η) = ξη − |ξ ||η|, (5.4)

q2(ξ, η) = 1

2
(ξ − η)η + 1

2
|ξ − η||η|. (5.5)

Then, the function V defined as

V
def= H + i�� = [h + A(h, h)] + i�[φ + B(h, φ)] (5.6)

satisfies

∂t V + i�V = N3 + N4 (5.7)

where N3, respectively N4, are cubic, respectively quartic and higher, order
terms explicitly given by

N3
de f= M3(h, h, φ)+ 2A(M2(h, φ), h)+ i�

[
Q3(φ, h, φ)

+ B(M2(h, φ), φ)+ B(h, Q2(φ, φ))
]
, (5.8)

N4
de f= R1(h, φ)+ 2A(M3(h, h, φ)+ R1(h, φ), h)+ i� [R2(h, φ)

+ B(h, Q3(φ, h, φ)+ R2(h, φ))+ B(M3(h, h, φ)+ R1(h, φ), φ)] .
(5.9)

Proof of Lemma 5.1 Given equation 4.12 we look for a transformation of the
form (h, φ) → (H, �), with
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⎧
⎨

⎩

H = h + A1(φ, φ)+ A2(h, h),

� = φ + B(h, φ),
(5.10)

where A1, A2 are symmetric bilinear forms and B is a bilinear form. Our goal
is to eliminate the quadratic nonlinear expressions, i. e.

⎧
⎨

⎩

∂t H = |∂x |� + cubic terms

∂t� = −H + cubic terms.
(5.11)

Indeed, using (5.10) and (4.12), we have

∂t H − |∂x |� = − |∂x |φ − |∂x |B(h, φ)+ ∂t h + 2A1(∂tφ, φ)+ 2A2(∂t h, h)

= − |∂x |B(h, φ)+ M2(h, φ)+ M3(h, h, φ)+ R1(h, φ)

− 2A1(h, φ)+ 2A1(Q2(φ, φ), φ)+ 2A1(Q3(φ, h, φ), φ)

+ 2A1(R2(h, φ), φ)+ 2A2(|∂x |φ, h)+ 2A2(M2(h, φ), h)

+ 2A2(M3(h, h, φ), h)+ 2A2(R1(h, φ), h),

and

∂t� + H = h + A1(φ, φ)+ A2(h, h)+ ∂tφ + B(h, ∂tφ)+ B(∂t h, φ)

= +A1(φ, φ)+ A2(h, h)+ Q2(φ, φ)+ Q3(φ, h, φ)+ R2(h, φ)

− B(h, h)+ B(h, Q2(φ, φ))+ B(h, Q3(φ, h, φ))+ B(h, R2(h, φ))

+ B(|∂x |φ, φ)+B(M2(h, φ), φ)+B(M3(h, h, φ), φ)+B(R1(h, φ), φ).

The condition (5.11) is equivalent to

−|∂x |B(h, φ)+ M2(h, φ)− 2A1(h, φ)+ 2A2(|∂x |φ, h) = 0,

A1(φ, φ)+ Q2(φ, φ)+ B(|∂x |φ, φ) = 0,

A2(h, h)− B(h, h) = 0. (5.12)

Therefore one can define

a2(ξ, η) = b(ξ, η)+ b(ξ, ξ − η)

2
,

a1(ξ, η) = −q2(ξ, η)− b(ξ, η)|ξ − η| + b(ξ, ξ − η)|η|
2

,

b(ξ, η)

= −2(|ξ |+|η|−|ξ−η|)q2(ξ, η)+(|η|+|ξ−η|−|ξ |)m2(ξ, η)−2|η|m2(ξ, ξ−η)
D(ξ, η)

,

(5.13)

123



Global solutions for the gravity water waves system 677

where

D(ξ, η) = −|ξ |2 − |ξ − η|2 − |η|2 + 2|ξ ||ξ − η| + 2|ξ ||η| + 2|η||ξ − η|
and the identities (5.12) are easily seen to be verified.

The formulas can be simplified in the one-dimensional situation. Indeed,
we notice first that m(ξ, η) = m(−ξ,−η) for all m ∈ {q2,m2, a1, a2, b}.
Moreover, for ξ > 0, we calculate6 explicitly:

if η < 0 then

q2(ξ, η) = 0, m2(ξ, η) = −2|ξ ||η|, m2(ξ, ξ − η) = 0,

D(ξ, η) = 4|ξ ||η|, b(ξ, η) = −|η|;
if η ∈ (0, ξ) then

q2(ξ, η) = |ξ − η||η|, m2(ξ, η) = 0, m2(ξ, ξ − η) = 0,

D(ξ, η) = 4|ξ − η||η|, b(ξ, η) = −|η|;
if η > ξ then

q2(ξ, η) = 0, m2(ξ, η) = 0, m2(ξ, ξ − η) = −2|ξ ||ξ − η|,
D(ξ, η) = 4|ξ ||ξ − η|, b(ξ, η) = |η|.

Using also the formulas in the first line of (5.13), we calculate, for ξ > 0,

if η < 0 then a1(ξ, η) = 0, a2(ξ, η) = ξ/2;
if η ∈ (0, ξ) then a1(ξ, η) = 0, a2(ξ, η) = −ξ/2;

if η > ξ then a1(ξ, η) = 0, a2(ξ, η) = ξ/2.

In particular A1 = 0 and the desired formulas in the lemma follow. ��

5.2 Analysis of the symbols

We now want to study the behavior of the symbols that appear in Lemma 5.1.
We will describe our multipliers in terms of a simple class of symbols S∞,
which is defined by

S∞ de f= {m : R
2 →C : m continuous and ‖m‖S∞ :=‖F−1(m)‖L1 < ∞}.

(5.14)

6 Some of our symbols are discontinuous when ξ = 0 or η = 0 or ξ − η = 0 due to the
vanishing of the denominator D(ξ, η).
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Clearly, S∞ ↪→ L∞(R × R). Moreover, S∞ symbols are compatible with
Hölder-type bounds on bilinear operators. Our first lemma summarizes some
simple properties of the S∞ symbols.

Lemma 5.2 (i) If m,m′ ∈ S∞ then m · m′ ∈ S∞ and

‖m · m′‖S∞ � ‖m‖S∞‖m′‖S∞ . (5.15)

Moreover, if m ∈ S∞, A : R
2 → R

2 is a linear transformation, v ∈ R
2,

and m A,v(ξ, η) := m(A(ξ, η)+ v) then

‖m A,v‖S∞ = ‖m‖S∞ . (5.16)

(ii) Assume p, q, r ∈ [1,∞] satisfy 1/p + 1/q = 1/r , and m ∈ S∞. Then,
for any f, g ∈ L2(R),

‖M( f, g)‖Lr � ‖m‖S∞‖ f ‖L p‖g‖Lq , (5.17)

where M is defined as in (5.1).

Proof of Lemma 5.2 Part (i) follows directly from the definition. To prove (ii)
let

K (x, y) := (F−1m)(x, y) =
∫

R×R

m(ξ, η)eix ·ξeiy·η dξdη.

Then

M( f, g)(x) = C
∫

R2

eixξm(ξ, η) f̂ (ξ − η)ĝ(η) dηdξ

= C
∫

R2

K (u, v) f (x − u)g(x − u − v) dudv,

and the desired bound (5.17) follows. ��
We fix ϕ : R → [0, 1] an even smooth function supported in [−8/5, 8/5]

and equal to 1 in [−5/4, 5/4]. Let

ϕk(x) := ϕ(x/2k)− ϕ(x/2k−1), k ∈ Z, x ∈ R. (5.18)

Let Pk denote the operator defined by the Fourier multiplier ξ → ϕk(ξ). Given
any multiplier m : R

2 → C and any k, k1, k2 ∈ Z we define

mk,k1,k2(ξ, η) := m(ξ, η) · ϕk(ξ)ϕk1(ξ − η)ϕk2(η). (5.19)
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Our next lemma, which is an easy consequence of the explicit formulas (5.2)–
(5.5), describes our main multipliers m2, q2, a, b in terms of S∞ symbols.

Lemma 5.3 For any k, k1, k2 ∈ Z we have

‖mk,k1,k2
2 ‖S∞ + ‖qk,k1,k2

2 ‖S∞ � 2k2min(k1,k2), (5.20)

‖ak,k1,k2‖S∞ � 2k, (5.21)

and

‖bk,k1,k2‖S∞ � 2k2 . (5.22)

5.3 Proof of Proposition 4.2: bounds on the normal form

Recall that we are assuming (4.13) and we want to show the three estimates
(4.20), (4.21) and (4.22) for the bilinear operators A, B defined through their
symbols a, b in Lemma 5.1.

As a consequence of (4.13), we have the following bounds on h = h(t) and
φ = φ(t), for any k ∈ Z:

‖Pkh‖L2 + 2k‖Pkφ‖L2 � ε1(1 + t)p02−N0k+,

‖Pkh‖L∞ + 2k/2‖Pkφ‖L∞ � ε1(1 + t)−1/22−(N1+4)k+, (5.23)

‖Pk Sh‖L2 + 2k‖Pk Sφ‖L2 � ε1(1 + t)p02−N0k+/2,

where here, and from now on, we denote k+ = max(k, 0).
For any k ∈ Z let

Xk := X 1
k ∪ X 2

k ,

X 1
k := {(k1, k2) ∈ Z × Z : min(k1, k2) ≤ k + 4, | max(k1, k2)− k| ≤ 4},

(5.24)

X 2
k := {(k1, k2) ∈ Z × Z : min(k1, k2) ≥ k − 4, |k1 − k2| ≤ 4}.

Also let

Xk,s := {(k1, k2) ∈ Xk : 2min(k1,k2) ≤ min(2k−10, (1 + t)−10)},
Xk,l := {(k1, k2) ∈ Xk : 2min(k1,k2) ≥ min(2k−10, (1 + t)−10)}. (5.25)
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To prove (4.20)–(4.22) we estimate for any k ∈ Z, using (5.23), (5.21)–
(5.22), and Lemma 5.2 (ii),

‖Pk A(h, h)‖L2 �
∑

(k1,k2)∈Xk

‖Pk A(Pk1h, Pk2h)‖L2

�
∑

k1≤k+4, |k2−k|≤4

2k‖Pk1h‖L∞‖Pk2h‖L2

+
∑

(k1,k2)∈X 2
k

2k‖Pk1h‖L∞‖Pk2h‖L2

� ε2
1(1 + t)2p0−1/22k/42−(N0−3)k+

and

‖Pk�B(h, φ)‖L2 �
∑

(k1,k2)∈Xk

2k/2‖Pk B(Pk1h, Pk2φ)‖L2

�
∑

k1≤k+4, |k2−k|≤4

2k/22k2‖Pk1h‖L∞‖Pk2φ‖L2

+
∑

k2≤k+4, |k1−k|≤4

2k/22k2‖Pk1h‖L2‖Pk2φ‖L∞

+
∑

(k1,k2)∈X 2
k

2k2k1‖Pk1h‖L∞‖Pk2φ‖L2

� ε2
1(1 + t)2p0−1/22k/42−(N0−3)k+ .

Therefore, for any k ∈ Z,

‖Pk A(h, h)‖L2 + ‖Pk�B(h, φ)‖L2 � ε2
1(1 + t)2p0−1/22k/42−(N0−3)k+,

(5.26)

and the desired bound (4.21) follows.
Similarly, we also have the L∞ bounds,

‖Pk A(h, h)‖L∞ �
∑

(k1,k2)∈Xk

‖Pk A(Pk1h, Pk2h)‖L∞

�
∑

(k1,k2)∈Xk

2k‖Pk1h‖L∞‖Pk2h‖L∞

� ε2
1(1 + t)p0−12k/42−N0k+/2
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and

‖Pk�B(h, φ)‖L∞ �
∑

(k1,k2)∈Xk

2k/2‖Pk B(Pk1h, Pk2φ)‖L∞

�
∑

(k1,k2)∈Xk

2k/22k2‖Pk1h‖L∞‖Pk2φ‖L∞

� ε2
1(1 + t)p0−12k/42−N0k+/2.

Therefore, for any k ∈ Z,

‖Pk A(h, h)‖L∞ + ‖Pk�B(h, φ)‖L∞ � ε2
1(1 + t)p0−12k/42−N0k+/2,

(5.27)

and the desired bound (4.20) follows.
To prove (4.22) we notice first that the symbol a is homogeneous of degree

1, i. e.

a(λξ, λη) = λa(ξ, η) for any ξ, η ∈ R, λ ∈ (0,∞).

Differentiating this identity with respect to λ and then setting λ = 1, we have

(ξ∂ξa)(ξ, η)+ (η∂ηa)(ξ, η) = a(ξ, η).

The symbol to (ξ, η) → b(ξ, η) is homogeneous of degree 1. As a conse-
quence, we have the identities

(ξ∂ξa)(ξ, η)+ (η∂ηa)(ξ, η) = a(ξ, η),

(ξ∂ξb)(ξ, η)+ (η∂ηb)(ξ, η) = b(ξ, η). (5.28)

Using the first formula in (5.28) we calculate

F [S A(h, h)] (ξ)

=
[1

2
t∂t − ξ∂ξ − I

][ ∫

R

a(ξ, η)̂h(ξ − η, t )̂h(η, t) dη
]

=
∫

R

a(ξ, η)
[1

2
t (∂t ĥ)− ĥ

]
(ξ − η, t )̂h(η, t) dη

+
∫

R

a(ξ, η)̂h(ξ − η, t)
1

2
t (∂t ĥ)(η, t) dη
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−
∫

R

(ξ∂ξa)(ξ, η)̂h(ξ − η, t )̂h(η, t) dη

−
∫

R

a(ξ, η)ξ(∂ ĥ)(ξ − η, t )̂h(η, t) dη

=
∫

R

a(ξ, η)Ŝh(ξ − η, t )̂h(η, t) dη −
∫

R

a(ξ, η)η(∂ ĥ)(ξ − η, t )̂h(η, t) dη

+
∫

R

a(ξ, η)̂h(ξ − η, t)Ŝh(η, t) dη

+
∫

R

a(ξ, η)̂h(ξ − η, t)[η(∂ ĥ)(η, t)+ ĥ(η, t)] dη

+
∫

R

[(η∂ηa)(ξ, η)− a(ξ, η)]̂h(ξ − η, t )̂h(η, t) dη

= F [A(Sh, h)] (ξ)+ F [A(h, Sh)] (ξ)− F [A(h, h)] (ξ).

A similar calculation can be applied to the operator B, using also (5.28).
Therefore

S A(h, h) = A(Sh, h)+ A(h, Sh)− A(h, h),

SB(h, φ) = B(Sh, φ)+ B(h, Sφ)− B(h, φ).
(5.29)

For any k ∈ Z we estimate, using (5.23), Lemma 5.2 (ii), and (5.21)–(5.22),
and recalling (5.25),

‖Pk A(Sh, h)‖L2 �
∑

(k1,k2)∈Xk

‖Pk A2(Pk1 Sh, Pk2h)‖L2

�
∑

(k1,k2)∈Xk,l

2k‖Pk1 Sh‖L2‖Pk2h‖L∞

+
∑

(k1,k2)∈Xk,s

2k2min(k1,k2)/2‖Pk1 Sh‖L2‖Pk2h‖L2

� ε2
1(1 + t)2p0−1/22k/42−(N0/2−3)k+,

and

‖Pk�B(Sh, φ)‖L2 + ‖Pk�B(h, Sφ)‖L2

� 2k/2
∑

(k1,k2)∈Xk

[‖Pk B(Pk1 Sh, Pk2φ)‖L2 + ‖Pk B(Pk1h, Pk2 Sφ)‖L2
]
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� 2k/2
∑

(k1,k2)∈Xk,l

[
2k2‖Pk1 Sh‖L2‖Pk2φ‖L∞ + 2k2‖Pk1h‖L∞‖Pk2 Sφ‖L2

]

+ 2k/2
∑

(k1,k2)∈Xk,s

2min(k1,k2)/2

×
[
2k2‖Pk1 Sh‖L2‖Pk2φ‖L2 + 2k2‖Pk1h‖L2‖Pk2 Sφ‖L2

]

� ε2
1(1 + t)2p0−1/22k/42−(N0/2−3)k+ .

Therefore, using also (5.29) and (5.26), for any k ∈ Z,

‖Pk S A(h, h)‖L2 +‖Pk S�B(h, φ)‖L2 �ε2
1(1 + t)2p0−1/22k/42−(N0/2−3)k+,

(5.30)

and the desired bound (4.22) follows.

5.4 Proof of Proposition 4.3

We start from the formula (5.7),

∂t V + i�V = N3 + N4,

where N3 and N4 are given in (5.8) and (5.9). Applying S and commuting we
derive the equation

(∂t + i�)SV = SN3 + SN4 + (1/2)(N3 + N4).

Moreover, with f (t) = eit�V (t), we have

(x∂x f )(t) = eit� [SV − (t/2)(N3 + N4)] .

It follows from the assumption (4.14) and Proposition 4.2 that

‖V (0)‖H N0/2−5 + ‖SV (0)‖H N0/2−5 � ε0 + ε2
1.

Therefore, it suffices to prove the following:

Lemma 5.4 For any t,

‖N3‖H N0−20 + ‖SN3‖H N0/2−20 � ε3
1(1 + t)5p0−1, (5.31)

and

‖N4‖H N0−20 + ‖SN4‖H N0/2−20 � ε3
1(1 + t)5p0−1. (5.32)
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Proof of Lemma 5.4 As in the proof of Proposition 4.2, see (5.26), (5.27), and
(5.30), for any k ∈ Z we have

‖Pk Q2(φ, φ)‖L2 + ‖Pk M2(h, φ)‖L2 � ε2
1(1 + t)2p0−1/22k/42−(N0−3)k+,

‖Pk SQ2(φ, φ)‖L2 +‖Pk SM2(h, φ)‖L2 � ε2
1(1 + t)2p0−1/22k/42−(N0/2−3)k+,

(5.33)

‖Pk Q2(φ, φ)‖L∞ + ‖Pk M2(h, φ)‖L∞ � ε2
1(1 + t)p0−12k/42−(N0/2−3)k+ .

We examine now the trilinear expressions M3(h, h, φ) and Q3(φ, h, φ) in
(4.9) and (4.11). These expressions appear in both nonlinearities N3 and N4.
To estimate them we start by estimating h|∂x |φ and h|∂x |2φ: using (5.23), for
any k ∈ Z, we obtain as before

‖Pk(h|∂x |φ)‖L2 + ‖Pk(h|∂x |2φ)‖L2 � ε2
1(1 + t)2p0−1/22−(N0−3)k+,

‖Pk S(h|∂x |φ)‖L2 + ‖Pk S(h|∂x |2φ)‖L2 � ε2
1(1 + t)2p0−1/22−(N0/2−3)k+,

(5.34)

‖Pk(h|∂x |φ)‖L∞ + ‖Pk(h|∂x |2φ)‖L∞ � ε2
1(1 + t)p0−12−(N0/2−3)k+ .

We examine the formulas (4.9) and (4.11). For any k ∈ Z we use (5.23) and
(5.34) and estimate as before, for any k ∈ Z,

2−k/4‖Pk M3(h, h, φ)‖L2 + ‖Pk Q3(φ, h, φ)‖L2 � ε3
1(1 + t)3p0−12−(N0−6)k+ ,

2−k/4‖Pk SM3(h, h, φ)‖L2 + ‖Pk SQ3(φ, h, φ)‖L2 � ε3
1(1 + t)3p0−12−(N0/2−6)k+ ,

(5.35)

2−k/4‖Pk M3(h, h, φ)‖L∞ + ‖Pk Q3(φ, h, φ)‖L∞ � ε3
1(1 + t)3p0−3/22−(N0/2−6)k+ .

Recall the formulas (5.8) and (5.9),

N3 = M3(h, h, φ)+ 2A(M2(h, φ), h)+ i� [Q3(φ, h, φ)

+B(M2(h, φ), φ)+ B(h, Q2(φ, φ))] ,

N4 = R1(h, φ)+ 2A(M3(h, h, φ)+ R1(h, φ), h)+ i� [R2(h, φ)

+ B(h, Q3(φ, h, φ)+ R2(h, φ))+ B(M3(h, h, φ)+ R1(h, φ), φ)] ,

and the bounds (13.10)

‖R1(h, φ)+ i�R2(h, φ)‖H N0−10 + ‖S
(
R1(h, φ)+ i�R2(h, φ)

)‖H N0/2−10

� ε4
1(1 + t)−5/4.
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The desired bounds (5.31) and (5.32) follow using (5.33), (5.35), and Lemma
5.5 below, with G = R2(h, φ) and

F ∈ {Q2(φ, φ),M2(h, φ),M3(h, h, φ), Q3(φ, h, φ), R1(h, φ)}.
��

Lemma 5.5 Assume F and G satisfy the bounds, for any k ∈ Z,

‖Pk F‖L2 + 2k/2‖Pk G‖L2 � ε2
1(1 + t)3p0−1/22−(N0−12)k+,

‖Pk SF‖L2 + 2k/2‖Pk SG‖L2 � ε2
1(1 + t)3p0−1/22−(N0/2−12)k+, (5.36)

‖Pk F‖L∞ + 2k/2‖Pk G‖L∞ � ε2
1(1 + t)3p0−12−(N0/2−12)k+ .

Then, for any k ∈ Z,

‖Pk A(F, h)‖L2 + 2k/2‖Pk B(F, φ)‖L2 + 2k/2‖Pk B(h,G)‖L2

� ε3
1(1 + t)5p0−12k/42−(N0−16)k+,

‖Pk S A(F, h)‖L2 + 2k/2‖Pk SB(F, φ)‖L2 + 2k/2‖Pk SB(h,G)‖L2

� ε3
1(1 + t)5p0−12k/42−(N0/2−16)k+ .

(5.37)

Proof of Lemma 5.5 We estimate, using (5.23), (5.36), Lemma 5.3, and
Lemma 5.2 (ii),

‖Pk A(F, h)‖L2 �
∑

k1≤k+4, |k2−k|≤4

2k‖Pk1 F‖L∞‖Pk2h‖L2

+
∑

k2≤k+4, |k1−k|≤4

2k‖Pk1 F‖L2‖Pk2h‖L∞

+
∑

(k1,k2)∈X 2
k

2k‖Pk1 F‖L∞‖Pk2h‖L2

� ε3
1(1 + t)5p0−12k/42−(N0−16)k+

and

‖Pk A(F, Sh)‖L2 + ‖Pk A(SF, h)‖L2

�
∑

(k1,k2)∈Xk,l

2k [‖Pk1 F‖L∞‖Pk2 Sh‖L2 + ‖Pk1 SF‖L2‖Pk2 h‖L∞
]

+
∑

(k1,k2)∈Xk,s

2k2min(k1,k2)/2
[‖Pk1 F‖L2‖Pk2 Sh‖L2 + ‖Pk1 SF‖L2‖Pk2 h‖L2

]

� ε3
1(1 + t)5p0−12k/42−(N0/2−16)k+ .
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This proves the desired bounds for ‖Pk A(F, h)‖L2 and ‖Pk S A(F, h)‖L2 . The
other bounds in (5.37) are similar. ��

6 Proof of Proposition 4.4: uniform control of the Z norm

In this section we prove Proposition 4.4, which is our main bootstrap estimate.
We start by rewriting the equation (5.7) in the form

∂t V + i�V = Ñ3 + R, (6.1)

where

Ñ3 := M3(H, H, �)+ 2A2(M2(H, �), H)

+i� [Q3(�, H, �)+ B(M2(H, �),�)+ B(H, Q2(�,�))] , (6.2)

and

R := N3 + N4 − Ñ3. (6.3)

The point of the above decomposition is to express the cubic part of the non-
linearity in terms of H and �, hence of the solution V .

Letting f (t) = eit�V (t) as in (4.29), we have

∂t f = eit�(Ñ3(t)+ R(t)). (6.4)

Notice that

H(t) = V (t)+ V (t)

2
= e−i t� f (t)+ eit� f (t)

2
,

�(t) = i�−1(V (t)− V (t))

2
= i

eit�(�−1 f )(t)− e−i t�(�−1 f )(t)

2
.

(6.5)

Therefore, the trilinear expression Ñ3 can be written in terms of f (t) and f (t),
in the form

F(eit�Ñ3(t))(ξ)= i

(2π)2
[
I ++−(ξ, t)+ I −−+(ξ, t)

+ I +++(ξ, t)+ I −−−(ξ, t)
]
,

I ++−(ξ, t) :=
∫

R×R

eit[�(ξ)−�(ξ−η)−�(η−σ)+�(σ)]c++−(ξ, η, σ )

× f̂ (ξ − η, t) f̂ (η − σ, t) f̂ (σ, t) dηdσ,
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I −−+(ξ, t) :=
∫

R×R

eit[�(ξ)−�(ξ−η)+�(η−σ)+�(σ)]c−−+(ξ, η, σ ) f̂ (ξ − η, t)

× f̂ (η − σ, t) f̂ (σ, t) dηdσ, (6.6)

I +++(ξ, t) :=
∫

R×R

eit[�(ξ)−�(ξ−η)−�(η−σ)−�(σ)]c+++(ξ, η, σ ) f̂ (ξ − η, t)

× f̂ (η − σ, t) f̂ (σ, t) dηdσ,

I −−−(ξ, t) :=
∫

R×R

eit[�(ξ)+�(ξ−η)+�(η−σ)+�(σ)]c−−−(ξ, η, σ ) f̂ (ξ − η, t)

× f̂ (η − σ, t) f̂ (σ, t) dηdσ.

The symbols c++−, c−−+, c+++, c−−− can be calculated explicitly, using the
formulas (4.9), (4.11), and (5.2)–(5.5), see Appendix B. For us it is important
to notice that these symbols are real-valued, and satisfy the uniform bounds

∥
∥F−1[cι1ι2ι3(ξ, η, σ ) · ϕl(ξ)ϕk1(ξ − η)ϕk2(η − σ)ϕk3(σ )]

∥
∥

L1(R3)

� 2l/222 max(k1,k2,k3), (6.7)

for any (ι1ι2ι3) ∈ {(++−), (−−+), (+++), (−−−)} and l, k1, k2, k3 ∈ Z.
As a consequence,

∥
∥cι1ι2ι3(ξ, η, σ )·ϕl(ξ)ϕk1(ξ−η)ϕk2(η−σ)ϕk3(σ )

∥
∥

S∞
η,σ

�2l/222 max(k1,k2,k3),

(6.8)

for any (ι1ι2ι3) ∈ {(+ + −), (− − +), (+ + +), (− − −)}, ξ ∈ R, and
l, k1, k2, k3 ∈ Z. Moreover, for any k = (k1, k2, k3), l = (l1, l2, l3) ∈ Z

3 let

c∗
ξ (x, y) := c++−(ξ,−x,−ξ − x − y),

(∂x c∗
ξ )k,l(x, y) := (∂x c∗

ξ )(x, y) · ϕk1(ξ + x)ϕk2(ξ + y)

× ϕk3(ξ + x + y)ϕl1(x)ϕl2(y)ϕl3(2ξ + x + y),

(∂yc∗
ξ )k,l(x, y) := (∂yc∗

ξ )(x, y) · ϕk1(ξ + x)ϕk2(ξ + y)

× ϕk3(ξ + x + y)ϕl1(x)ϕl2(y)ϕl3(2ξ + x + y).

Then, for any k, l ∈ Z
3, and ξ ∈ R,

‖(∂x c∗
ξ )k,l‖S∞ � 2− min(k1,k3)25 max(k1,k2,k3)/2,

‖(∂yc∗
ξ )k,l‖S∞ � 2− min(k2,k3)25 max(k1,k2,k3)/2. (6.9)
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688 A. D. Ionescu, F. Pusateri

These bounds are proved in Lemma 12.1.
Let (compare with (12.9)),

c̃(ξ) := −8π |ξ |3/2c∗
ξ (0, 0) = 4π |ξ |4,

L(ξ, t) := c̃(ξ)

4π2

t∫

0

| f̂ (ξ, s)|2 ds

s + 1
,

g(ξ, t) := ei L(ξ,t) f̂ (ξ, t). (6.10)

It follows from (6.4) that

(∂t g)(ξ, t) = i

(2π)2
ei L(ξ,t)

[
I ++−(ξ, t)+ c̃(ξ)

| f̂ (ξ, t)|2
t + 1

f̂ (ξ, t)
]

+ i

(2π)2
ei L(ξ,t)[I −−+(ξ, t)+ I +++(ξ, t)+ I −−−(ξ, t)]

+ ei L(ξ,t)eit�(ξ) R̂(ξ, t). (6.11)

Proposition 4.4 clearly follows from Lemma 6.1 below.

Lemma 6.1 With the same notation as before, recall that f satisfies the bounds

sup
t∈[0,T ]

[
(1+t)−p0‖ f (t)‖H N0−10

+ (1 + t)−5p0‖(x∂x f )(t)‖H N0/2−20 +‖ f (t)‖Z

]
≤ε1. (6.12)

Then there is p1 > 0 such that, for any m ∈ {1, 2, . . .} and any t1 ≤ t2 ∈
[2m − 2, 2m+1],

‖(|ξ |β + |ξ |N1+15)(g(ξ, t2)− g(ξ, t1))‖L∞
ξ

� ε3
12−p1m . (6.13)

The rest of the section is concerned with the proof of Lemma 6.1. We will
use the following dispersive linear estimate from [27, Lemma 2.3]:
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Lemma 6.2 For any t ∈ R we have

‖eit�h‖L∞ �(1 + |t |)−1/2‖ |ξ |3/4ĥ(ξ)‖L∞
ξ

+ (1 + |t |)−5/8 [‖x · ∂x h‖L2 +‖h‖H2
]
. (6.14)

For any k ∈ Z let f +
k := Pk f , f −

k := Pk f , and decompose,

I ι1ι2ι3 =
∑

k1,k2,k3∈Z

I ι1ι2ι3k1,k2,k3
,

for (ι1ι2ι3) ∈ {(+ + −), (− − +), (+ + +), (− − −)}, where

I ι1ι2ι3k1,k2,k3
(ξ, t) :=

∫

R×R

eit[�(ξ)−ι1�(ξ−η)−ι2�(η−σ)−ι3�(σ)]

× cι1ι2ι3(ξ, η, σ ) f̂ ι1k1
(ξ − η, t) f̂ ι2k2

(η − σ, t) f̂ ι3k3
(σ, t) dηdσ.

(6.15)

Using (6.11), for (6.13) it suffices to prove that if k ∈ Z, m ∈ {1, 2, . . .},
|ξ | ∈ [2k, 2k+1], and t1 ≤ t2 ∈ [2m − 2, 2m+1] ∩ [0, T ] then

∑

k1,k2,k3∈Z

∣
∣
∣
∣
∣
∣

t2∫

t1

ei L(ξ,s)
[

I ++−
k1,k2,k3

(ξ, s)+ c̃(ξ)
f̂ +
k1
(ξ, s) f̂ +

k2
(ξ, s) f̂ −

k3
(−ξ, s)

s + 1

]
ds

∣
∣
∣
∣
∣
∣

� ε3
12−p1m(2βk + 2(N1+15)k)−1, (6.16)

∑

k1,k2,k3∈Z

∣
∣
∣
∣
∣
∣

t2∫

t1

ei L(ξ,s) I ι1ι2ι3k1,k2,k3
(ξ, s) ds

∣
∣
∣
∣
∣
∣
� ε3

12−p1m(2βk + 2(N1+15)k)−1

(6.17)

for any (ι1, ι2, ι3) ∈ {(− − +), (+ + +), (− − −)}, and

∣
∣
∣
∣
∣
∣

t2∫

t1

ei L(ξ,s)eis�(ξ) R̂(ξ, s) ds

∣
∣
∣
∣
∣
∣
� ε3

12−p1m(2βk + 2(N1+15)k)−1. (6.18)
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In view of (6.12) and Lemma 6.14, we have

‖ f̂ ±
l (s)‖L2 � ε12p0m2−(N0−10)l+,

‖(∂ f̂ ±
l )(s)‖L2 � ε125p0m2−l2−(N0/2−20)l+,

‖ f̂ ±
l (s)‖L∞ � ε1(2

βl + 2(N1+15)l)−1,

‖e∓is� f ±
l (s)‖L∞ � ε12−m/22−(N0/2−20)l+, (6.19)

for any l ∈ Z and s ∈ [2m − 2, 2m+1] ∩ [0, T ]. Using only the L2 bounds in
the first line of (6.19) it is easy to see that

|I ι1ι2ι3k1,k2,k3
(ξ, s)| � ε3

123p0m2min(k1,k2,k3)/2(1 + 2max(k1,k2,k3))−(N0−20),

(6.20)

for any (ι1ι2ι3) ∈ {(+ + −), (− − +), (+ + +), (− − −)}, k1, k2, k3 ∈ Z.
Moreover, using the L∞ bounds in (6.19),

∣
∣
∣
∣
∣
∣
c̃(ξ)

f̂ +
k1
(ξ, s) f̂ +

k2
(ξ, s) f̂ −

k3
(ξ, s)

s + 1

∣
∣
∣
∣
∣
∣
� 2−mε3

12k2−3N1k+1[0,4]

(max(|k1 − k|, |k2 − k|, |k3 − k|)).

Using these two bounds it is easy to see that the sums in (6.16) and (6.17)
over those (k1, k2, k3) for which max(k1, k2, k3) ≥ 3m/N0 − 1000 or
min(k1, k2, k3) ≤ −4m are bounded by Cε3

12−p1m2−(N1+15)k+ , as desired.
The remaining sums have only Cm3 terms. Therefore it suffices to prove
the desired estimates for each (k1, k2, k3) fixed satisfying k1, k2, k3 ∈
[−4m, 3m/N0 − 1000].

At the same time, using (6.19), together with the symbol estimates (6.8), it
follows that

|I ι1ι2ι3k1,k2,k3
(ξ, s)| � ε3

1|ξ |1/22min(k1,k2,k3)(1−β)

2med(k1,k2,k3)(1−β)2−(N1+10)max(k1,k2,k3,0), (6.21)

for any (ι1ι2ι3) ∈ {(++−), (−−+), (+++), (−−−)}, k1, k2, k3 ∈ Z, and
ξ ∈ R, where med(k1, k2, k3) denotes the second largest frequency among
k1, k2, k3.

After these reductions, it suffices to prove the following lemma:
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Lemma 6.3 Assume that m ∈ {1, 2, . . .}, k ∈ Z, |ξ | ∈ [2k, 2k+1] and t1 ≤
t2 ∈ [2m − 2, 2m+1] ∩ [0, T ]. Then, for any k1, k2, k3 satisfying

k1, k2, k3 ∈ [−4m, 3m/N0 − 1000] ∩ Z,

min(k1, k2, k3)+ med(k1, k2, k3) ≥ −m(1 + 3β), (6.22)

we have
∣
∣
∣
∣
∣
∣

t2∫

t1

ei L(ξ,s)
[

I ++−
k1,k2,k3

(ξ, s)+ c̃(ξ)
f̂ +
k1
(ξ, s) f̂ +

k2
(ξ, s) f̂ −

k3
(−ξ, s)

s + 1

]
ds

∣
∣
∣
∣
∣
∣

� ε3
12−2p1m(2βk + 2(N1+15)k)−1, (6.23)

and, for any (ι1ι2ι3) ∈ {(− − +), (+ + +), (− − −)},
∣
∣
∣
∣
∣
∣

t2∫

t1

ei L(ξ,s) I ι1ι2ι3k1,k2,k3
(ξ, s) ds

∣
∣
∣
∣
∣
∣
� ε3

12−2p1m(2βk + 2(N1+15)k)−1. (6.24)

Moreover
∣
∣
∣
∣
∣
∣

t2∫

t1

ei L(ξ,s)eis�(ξ) R̂(ξ, s) ds

∣
∣
∣
∣
∣
∣
� ε3

12−p1m(2βk + 2(N1+15)k)−1. (6.25)

We will prove this main lemma in several steps. The bounds (6.23) and
(6.24) are proved in the remaining part of this section. The main ingredients
are the bounds (6.19). We will also use the following consequence of Lemma
5.2 (ii): if (p, q, r) ∈ {(2, 2,∞), (2,∞, 2), (∞, 2, 2)} then
∣
∣
∣
∣
∣
∣

∫

R×R

f̂ (η)ĝ(σ )̂h(−η − σ)m(η, σ ) dηdσ

∣
∣
∣
∣
∣
∣
� ‖m‖S∞‖ f ‖L p‖g‖Lq ‖h‖Lr .

(6.26)

We also need suitable L2 bounds on the derivatives (∂s f ±
l ), in order to be able

to integrate by parts in time. More precisely, we have

‖(∂s f̂ ±
l )(s)‖L2 � ε125p0m−m2−(N0−20)l+, (6.27)

which is a consequence of the (5.31)–(5.32) and the formula ∂t f =
eit�[N3(t)+ N4(t)], see (6.4).

The bound (6.25) is proved in appendix C.
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6.1 Proof of (6.23)

We divide the proof in several cases.

Lemma 6.4 The bounds (6.23) hold provided that (6.22) holds and, in addi-
tion,

k1, k2, k3 ∈ [k − 20, k + 20] ∩ Z. (6.28)

Proof of Lemma 6.4 This is the main case, when the specific correction in the
left-hand side of (6.23) is important. We will prove that

∣
∣
∣
∣
∣
∣
I ++−
k1,k2,k3

(ξ, s)+ c̃(ξ)
f̂ +
k1
(ξ, s) f̂ +

k2
(ξ, s) f̂ −

k3
(−ξ, s)

s + 1

∣
∣
∣
∣
∣
∣

� 2−mε3
12−2p1m(2βk + 2(N1+15)k)−1, (6.29)

for any s ∈ [t1, t2], which is clearly stronger than the desired bound (6.23).
The bound (6.29) follows easily from the bound (6.21) if k ≤ −m/2.

Therefore, in the rest of the proof of (6.29) we may assume that

k ≥ −m/2. (6.30)

After changes of variables we rewrite7

I ++−
k1,k2,k3

(ξ, s) =
∫

R2

eis�(ξ,η,σ ) f̂ +
k1
(ξ + η, s)

× f̂ +
k2
(ξ + σ, s) f̂ −

k3
(−ξ − η − σ, s)c∗

ξ (η, σ ) dηdσ,

where

�(ξ, η, σ ) := �(ξ)−�(ξ + η)−�(ξ + σ)+�(ξ + η + σ). (6.31)

Let l denote the smallest integer with the property that 2l ≥ 23k/42−49m/100

(in view of (6.30) l ≤ k − 10). For any m, k ∈ Z, m ≤ k, we define

ϕ
(m)
k (x) :=

{
ϕ(x/2k)− ϕ(x/2k−1), if k ≥ m + 1,

ϕ(x/2k), if k = m.
(6.32)

7 The point of this change of variables is to be able to identify η = σ = 0 as the unique critical
point of the phase � in (6.31).
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We decompose

I ++−
k1,k2,k3

(ξ, s) =
k+20∑

l1,l2=l

Jl1,l2(ξ, s), (6.33)

where, for any l1, l2 ≥ l,

Jl1,l2(ξ, s) :=
∫

R2

eis�(ξ,η,σ ) f̂ +
k1
(ξ + η, s) f̂ +

k2
(ξ + σ, s) f̂ −

k3
(−ξ − η − σ, s)

×ϕ(l)l1
(η)ϕ

(l)
l2
(σ )c∗

ξ (η, σ ) dηdσ. (6.34)

Step 1. We show first that

|Jl1,l2(ξ, s)| � 2−mε3
12−3p1m(2βk + 2(N1+15)k)−1, if l2 ≥ max(l1, l + 1).

(6.35)

For this we integrate by parts in η in the formula (6.34). Recalling that�(θ) =√|θ |, we observe that
∣
∣(∂η�)(ξ, η, σ )

∣
∣= ∣∣�′(ξ + η + σ)−�′(ξ + η)

∣
∣ � 2l22−3k/2, (6.36)

provided that |ξ + η| ≈ 2k, |ξ + η + σ | ≈ 2k, |σ | ≈ 2l2 . After integration by
parts in η we see that

|Jl1,l2(ξ, s)|≤|J 1
l1,l2,1(ξ, s)| + |J 2

l1,l2,1(ξ, s)| + |Fl1,l2,1(ξ, s)|+|Gl1,l2,1(ξ, s)|,
where

J 1
l1,l2,1(ξ, s) :=

∫

R2

eis�(ξ,η,σ ) f̂ +
k1
(ξ + η, s) f̂ +

k2
(ξ + σ, s)

× f̂ −
k3
(−ξ − η − σ, s)(∂ηr1)(η, σ )c

∗
ξ (η, σ ) dηdσ,

J 2
l1,l2,1(ξ, s) :=

∫

R2

eis�(ξ,η,σ ) f̂ +
k1
(ξ + η, s) f̂ +

k2
(ξ + σ, s)

× f̂ −
k3
(−ξ − η − σ, s)r1(η, σ )(∂ηc∗

ξ )(η, σ ) dηdσ,

Fl1,l2,1(ξ, s) :=
∫

R2

eis�(ξ,η,σ )(∂ f̂ +
k1
)(ξ + η, s) f̂ +

k2
(ξ + σ, s)

× f̂ −
k3
(−ξ − η − σ, s)r1(η, σ )c

∗
ξ (η, σ ) dηdσ,
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Gl1,l2,1(ξ, s) :=
∫

R2

eis�(ξ,η,σ ) f̂ +
k1
(ξ + η, s) f̂ +

k2
(ξ + σ, s)

× (∂ f̂ −
k3
)(−ξ − η − σ, s)r1(η, σ )c

∗
ξ (η, σ ) dηdσ, (6.37)

and

r1(η, σ ) := ϕ
(l)
l1
(η)ϕl2(σ )

s(∂η�)(ξ, η, σ )
· ϕ[k1−2,k1+2](ξ + η)ϕ[k3−2,k3+2](ξ + η + σ).

To estimate |Fl1,l2,1(ξ, s)| we recall that ξ and s are fixed and use (6.26)
with

f̂ (η) := e−is�(ξ+η)(∂ f̂ +
k1
)(ξ + η, s),

ĝ(σ ) := e−is�(ξ+σ) f̂ +
k2
(ξ + σ, s) · ϕ(σ/2l2+4),

ĥ(θ) := eis�(ξ−θ) f̂ −
k3
(−ξ + θ, s) · ϕ(θ/2l2+4).

It is easy to see, compare with (6.36), that r1 satisfies the symbol-type estimates

|(∂a
η ∂

b
σ r1)(η, σ )| � (2−m2−l223k/2)(2−al12−bl2)

× 1[0,2l1+4](|η|)1[2l2−4,2l2+4](|σ |), (6.38)

for any a, b ∈ [0, 20] ∩ Z. It follows from (6.19) that

‖ f ‖L2 � ε12−k25p0m2−(N0/2−20)k+, ‖g‖L∞ � ε12−m/22−(N0/2−20)k+,

‖h‖L2 � ε12l2/22−βk .

It follows from (6.26), (6.38), and (6.8) that

‖F−1(r1 · c∗
ξ )‖L1 � 2−m2−l224k .

Therefore, using (6.26) and recalling that 2−l2/2 � 2m/42−3k/8 and that k ≤
m/10,

|Fl1,l2,1(ξ, s)| � ε3
12−k25p0m2−(N0/2−20)k+ · 2−m/22−(N0/2−20)k+ · 2l2/22−βk

· 2−m2−l224k � ε3
12−(N0/2+40)k+2−m · 2−m/8.
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Similar arguments show that |Gl1,l2,1(ξ, s)| � ε3
12−(N0/2+40)k+2−9m/8 and,

using also the bound (6.9)8, |J 2
l1,l2,1

(ξ, s)| � ε3
12−(N0/2+40)k+2−9m/8. There-

fore, for (6.35) it suffices to prove that

|J 1
l1,l2,1(ξ, s)| � 2−mε3

12−3p1m(2βk + 2(N1+15)k)−1. (6.39)

For this we integrate by parts again in η and estimate

|J 1
l1,l2,1(ξ, s)| ≤ |J 1

l1,l2,2(ξ, s)| + |J 2
l1,l2,2(ξ, s)| + |Fl1,l2,2(ξ, s)|

+|Gl1,l2,2(ξ, s)|,
where

J 1
l1,l2,2(ξ, s) :=

∫

R2

eis�(ξ,η,σ ) f̂ +
k1
(ξ + η, s) f̂ +

k2
(ξ + σ, s)

× f̂ −
k3
(−ξ − η − σ, s)(∂ηr2)(η, σ )c

∗
ξ (η, σ ) dηdσ,

J 2
l1,l2,2(ξ, s) :=

∫

R2

eis�(ξ,η,σ ) f̂ +
k1
(ξ + η, s) f̂ +

k2
(ξ + σ, s)

× f̂ −
k3
(−ξ − η − σ, s)r2(η, σ )(∂ηc∗

ξ )(η, σ ) dηdσ,

Fl1,l2,2(ξ, s) :=
∫

R2

eis�(ξ,η,σ )(∂ f̂ +
k1
)(ξ + η, s) f̂ +

k2
(ξ + σ, s)

× f̂ −
k3
(−ξ − η − σ, s)r2(η, σ )c

∗
ξ (η, σ ) dηdσ,

Gl1,l2,2(ξ, s) :=
∫

R2

eis�(ξ,η,σ ) f̂ +
k1
(ξ + η, s) f̂ +

k2
(ξ + σ, s)

× (∂ f̂ −
k3
)(−ξ − η − σ, s)r2(η, σ )c

∗
ξ (η, σ ) dηdσ.

and

r2(η, σ ) := (∂ηr1)(η, σ )

s(∂η�)(ξ, η, σ )
.

It follows from (6.38) that r2 satisfies the stronger symbol-type bounds

|(∂a
η ∂

b
σ r2)(η, σ )| � (2−m2−l1−l223k/2)(2−m2−l223k/2)(2−al12−bl2)

× 1[0,2l1+4](|η|)1[2l2−4,2l2+4](|σ |), (6.40)

8 The use of (6.9) requires additional dyadic decompositions in the variablesη,σ , and 2ξ+η+σ .
This leads to an additional polynomial loss ≈ m3, which does not change the estimates.
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for a, b ∈ [0, 19] ∩ Z. Therefore, using Lemma 5.2 as before,

|Fl1,l2,2(ξ, s)| + |Gl1,l2,2(ξ, s)| + |J 2
l1,l2,2(ξ, s)|

� ε3
12−(N0/2+40)k+2−m · 2−m/8.

Moreover, we can now estimate |J 1
l1,l2,2

(ξ, s)| using only (6.40) and the first
L∞ bounds in (6.19),

|Jl1,l2,2(ξ, s)| � 2l1+l2 · ε3
1(2

βk + 2(N1+15)k)−3 · (2−m2−l1−l223k/2)225k/2

� ε3
12−(N0/2+40)k+2−m · 2−m/50.

This completes the proof of (6.39) and (6.35).
A similar argument shows that

|Jl1,l2(ξ, s)| � 2−mε3
12−3p1m(2βk + 2(N1+15)k)−1, if l1 ≥ max(l2, l + 1).

Step 2. Using the decomposition (6.33), for (6.29) it suffices to prove that

∣
∣
∣
∣
∣
∣
Jl,l(ξ, s)+ c̃(ξ)

f̂ +
k1
(ξ, s) f̂ +

k2
(ξ, s) f̂ −

k3
(−ξ, s)

s + 1

∣
∣
∣
∣
∣
∣

� 2−mε3
12−2p1m(2βk + 2(N1+15)k)−1. (6.41)

To prove (6.41) we notice that

∣
∣
∣
∣�(ξ, η, σ )+ ησ

4|ξ |3/2
∣
∣
∣
∣ � 2−5k/2(|η| + |σ |)3,

as long as |η| + |σ | ≤ 2k−5. Therefore, using the L∞ bounds in (6.19)

∣
∣
∣Jl,l(ξ, s)− J ′

l,l
(ξ, s)

∣
∣
∣ � ε3

1(2
βk + 2(N1+15)k)−3 · 2m2−5k/225l

� ε3
1(2

βk + 2(N1+15)k)−12−5m/4, (6.42)

where

J ′
l,l
(ξ, s) :=

∫

R2

e−isησ/(4|ξ |3/2) f̂ +
k1
(ξ + η, s) f̂ +

k2
(ξ + σ, s)

× f̂ −
k3
(−ξ − η − σ, s)ϕ(2−lη)ϕ(2−lσ)c∗

ξ (η, σ ) dηdσ. (6.43)
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Using the second bound in (6.19), we see that

| f̂l(ξ + ρ, s)− f̂l(ξ, s)| �
ρ∫

0

|∂ f̂l(ξ + μ, s)| dμ

� |ρ|1/2‖∂ f̂l(s)‖L2 � |ρ|1/2ε125p0m2−l

whenever |ρ| � 2l−10. Then, using the third bound in (6.19) it follows that

| f̂ +
k1
(ξ + η, s) f̂ +

k2
(ξ + σ, s) f̂ −

k3
(−ξ − η − σ, s)

− f̂ +
k1
(ξ, s) f̂ +

k2
(ξ, s) f̂ −

k3
(−ξ, s)| � ε3

12l/2 · 2−N0k+25p0m2−k(1+2β),

whenever |η| + |σ | ≤ 2l+4. In addition, using (6.9),

|c∗
ξ (η, σ )− c∗

ξ (0, 0)| � 23k/22l,

provided that |η| + |σ | ≤ 2l+4. Therefore

∣
∣
∣
∣
∣
∣
∣

J ′
l,l
(ξ, s)−

∫

R2

e−isησ/(4|ξ |3/2) f̂ +
k1
(ξ, s) f̂ +

k2
(ξ, s) f̂ −

k3
(−ξ, s)ϕ(2−lη)

× ϕ(2−lσ)c∗
ξ (0, 0) dηdσ

∣
∣
∣
∣
∣
∣
∣

� 22l23k/2 · ε3
12l/22−N0k+25p0m2−k(1+2β)

� ε3
1(2

βk + 2(N1+15)k)−12−9m/8. (6.44)

Starting from the general formula

∫

R

e−ax2−bx dx = eb2/(4a)√π/√a, a, b ∈ C, Re a > 0,

we calculate, for any N ≥ 1,

∫

R×R

e−i xye−x2/N 2
e−y2/N 2

dxdy = √
πN

∫

R

e−y2/N 2
e−N 2 y2/4 dy

= 2π + O(N−1).
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Therefore, for N ≥ 1,

∫

R×R

e−i xyϕ(x/N )ϕ(y/N ) dxdy = 2π + O(N−1/2).

Recalling also that 2l ≈ |ξ |3/42−49m/100, it follows that

∣
∣
∣
∣
∣
∣
∣

∫

R2

e−isησ/(4|ξ |3/2)ϕ(2−lη)ϕ(2−lσ) dηdσ − 4|ξ |3/2
s

(2π)

∣
∣
∣
∣
∣
∣
∣

� 23k/22−(1+4p1)m .

Therefore, using also (6.19),

∣
∣
∣
∣
∣
∣
∣

∫

R2

e−isησ/(4|ξ |3/2) f̂ +
k1
(ξ, s) f̂ +

k2
(ξ, s) f̂ −

k3
(−ξ, s)ϕ(2−lη)ϕ(2−lσ)c∗

ξ (0, 0) dηdσ

−8π |ξ |3/2c∗
ξ (0, 0) · f̂ +

k1
(ξ, s) f̂ +

k2
(ξ, s) f̂ −

k3
(−ξ, s)

s

∣
∣
∣
∣
∣
∣
� ε3

12−(1+4p1)m2−N0k+ .

(6.45)

and the bound (6.41) follows from (6.42), (6.44), and (6.45). This completes
the proof of the lemma. ��
Lemma 6.5 The bounds (6.23) hold provided that (6.22) holds and, in addi-
tion,

max(|k1 − k|, |k2 − k|, |k3 − k|) ≥ 21,

min(k1, k2, k3) ≥ −19m/20, max(|k1 − k3|, |k2 − k3|) ≥ 5. (6.46)

Proof of Lemma 6.5 Recall the definition

I ++−
k1,k2,k3

(ξ, s) =
∫

R2

eis�(ξ,η,σ ) f̂ +
k1
(ξ + η, s) f̂ +

k2
(ξ + σ, s)

× f̂ −
k3
(−ξ − η − σ, s)c∗

ξ (η, σ ) dηdσ, (6.47)

where

�(ξ, η, σ ) = �(ξ)−�(ξ + η)−�(ξ + σ)+�(ξ + η + σ).
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It suffices to prove that, for any s ∈ [2m − 1, 2m+1],
∣
∣I ++−

k1,k2,k3
(ξ, s)

∣
∣ � 2−mε3

12−2p1m2−(N1+15)k+ . (6.48)

By symmetry, we may assume that |k1 − k3| ≥ 5 and notice that

|(∂η�)(ξ, η, σ )| = | −�′(ξ + η)+�′(ξ + η + σ)| � 2− min(k1,k3)/2,

(6.49)

provided that |ξ +η| ∈ [2k1−2, 2k1+2], |ξ +η+σ | ∈ [2k3−2, 2k3+2]. As in the
proof of Lemma 6.4, we integrate by parts in η to estimate

|I ++−
k1,k2,k3

(ξ, s)| ≤ |J 1
1 (ξ, s)| + |J 2

1 (ξ, s)| + |F1(ξ, s)| + |G1(ξ, s)|,

where

J 1
1 (ξ, s) :=

∫

R2

eis�(ξ,η,σ ) f̂ +
k1
(ξ + η, s) f̂ +

k2
(ξ + σ, s) f̂ −

k3
(−ξ − η − σ, s)

× (∂ηr3)(η, σ )c
∗
ξ (η, σ ) dηdσ,

J 2
1 (ξ, s) :=

∫

R2

eis�(ξ,η,σ ) f̂ +
k1
(ξ + η, s) f̂ +

k2
(ξ + σ, s) f̂ −

k3
(−ξ − η − σ, s)

× r3(η, σ )(∂ηc∗
ξ )(η, σ ) dηdσ,

F1(ξ, s) :=
∫

R2

eis�(ξ,η,σ )(∂ f̂ +
k1
)(ξ + η, s) f̂ +

k2
(ξ + σ, s) f̂ −

k3
(−ξ − η − σ, s)

× r3(η, σ )c
∗
ξ (η, σ ) dηdσ,

G1(ξ, s) =
∫

R2

eis�(ξ,η,σ ) f̂ +
k1
(ξ + η, s) f̂ +

k2
(ξ + σ, s)

× (∂ f̂ −
k3
)(−ξ − η − σ, s)r3(η, σ )c

∗
ξ (η, σ ) dηdσ,

and

r3(η, σ ) := 1

s(∂η�)(ξ, η, σ )
· ϕ[k1−1,k1+1](ξ + η)ϕ[k3−1,k3+1](ξ + η + σ).

Using also (6.49), it follows easily that

‖F−1(r3)‖L1 � 2−m2min(k1,k3)/2, ‖F−1(∂ηr3)‖L1 � 2−m2− min(k1,k3)/2.
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We apply first (6.26) with

f̂ (η) := e−is�(ξ+η) f̂ +
k1
(ξ + η, s), ĝ(σ ) := e−is�(ξ+σ) f̂ +

k2
(ξ + σ, s),

ĥ(θ) := eis�(ξ−θ) f̂ −
k3
(−ξ + θ, s).

Using also (6.19), (6.8), and (6.9), we conclude that

|J 1
1 (ξ, s)| + |J 2

1 (ξ, s)| � ε3
12−m/223p0m2−(N0−20)max(k1,k2,k3)+

·2−m2− min(k1,k3)/2.

Similarly, we apply (6.26) with

f̂ (η) := e−is�(ξ+η)(∂ f̂ +
k1
)(ξ + η, s), ĝ(σ ) := e−is�(ξ+σ) f̂ +

k2
(ξ + σ, s),

ĥ(θ) := eis�(ξ−θ) f̂ −
k3
(−ξ + θ, s),

and use (6.19) to conclude that

|F1(ξ, s)| � ε3
12−m/228p0m2−k12−(N0/2−30)max(k1,k2,k3)+ · 2−m2min(k1,k3)/2.

Finally, we apply (6.26) with

f̂ (η) := e−is�(ξ+η) f̂ +
k1
(ξ + η, s), ĝ(σ ) := e−is�(ξ+σ) f̂ +

k2
(ξ + σ, s),

ĥ(θ) := eis�(ξ−θ)(∂ f̂ −
k3
)(−ξ + θ, s),

and use (6.19) to conclude that

|G1(ξ, s)| � ε3
12−m/228p0m2−k32−(N0/2−30)max(k1,k2,k3)+ · 2−m2min(k1,k3)/2.

Therefore

|J1(ξ, s)| + |F1(ξ, s)| + |G1(ξ, s)| � ε3
12−m2−(N0/2−30)k+

2−m/2+8p0m2− min(k1,k3)/2,

and the desired bound (6.48) follows from the assumptions − min(k1, k3)/2 ≤
19m/40, see (6.46), and max(k1, k2, k3)+ ≤ 3m/N0 (see the hypothesis of
Lemma 6.3). ��
Lemma 6.6 The bounds (6.23) hold provided that (6.22) holds and, in addi-
tion,

max(|k1 − k|, |k2 − k|, |k3 − k|) ≥ 21,

min(k1, k2, k3) ≥ −19m/20, max(|k1 − k3|, |k2 − k3|) ≤ 4. (6.50)
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Proof of Lemma 6.6 We may assume that

min(k1, k2, k3) ≥ k + 10, (6.51)

and rewrite

I ++−
k1,k2,k3

(ξ, s) =
∫

R2

eis�(ξ,η,σ ) f̂ +
k1
(ξ + η, s) f̂ +

k2
(ξ + σ, s)

× f̂ −
k3
(−ξ − η − σ, s)ϕ[k2−4,k2+4](σ )c∗

ξ (η, σ ) dηdσ,
(6.52)

where, as before,

�(ξ, η, σ ) = �(ξ)−�(ξ + η)−�(ξ + σ)+�(ξ + η + σ).

It suffices to prove that, for any s ∈ [t1, t2],
∣
∣I ++−

k1,k2,k3
(ξ, s)

∣
∣ � 2−mε3

12−2p1m2−(N1+15)k+ . (6.53)

Notice that

|(∂η�)(ξ, η, σ )| = | −�′(ξ + η)+�′(ξ + η + σ)| � 2−k2/2, (6.54)

provided that |ξ + η| ∈ [2k1−2, 2k1+2], |ξ + η + σ | ∈ [2k3−2, 2k3+2], and
|σ | ≈ 2k2 (recall also that 2k1 ≈ 2k2 ≈ 2k3). The bound (6.53) follows by
integration by parts in η, as in the proof of Lemma 6.5. ��
Lemma 6.7 The bounds (6.23) hold provided that (6.22) holds and, in addi-
tion,

max(|k1 − k|, |k2 − k|, |k3 − k|) ≥ 21,

min(k1, k2, k3) ≤ −19m/20, k ≤ −m/5. (6.55)

Proof of Lemma 6.7 It follows from the definition and the bounds (6.8) and
(6.19) that, for any s ∈ [t1, t2],

|I ++−
k1,k2,k3

(ξ, s)| � ε3
1|ξ |1/22(1−β)min(k1,k2,k3)22p0m2−(N0−20)max(k1,k2,k3,0)

� 2−mε3
12−2p1m2−(N1+15)k+ .

The desired estimate (6.23) follows in this case. ��
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Lemma 6.8 The bounds (6.23) hold provided that (6.22) holds and, in addi-
tion,

max(|k1 − k|, |k2 − k|, |k3 − k|) ≥ 21,

min(k1, k2, k3) ≤ −19m/20, k ≥ −m/5. (6.56)

Proof of Lemma 6.8 In this case we cannot prove pointwise bounds on∣
∣I +,+,−

k1,k2,k3
(ξ, s)| and we need to integrate by parts in s. For (6.23) it suffices

to prove that
∣
∣
∣
∣
∣
∣
∣

∫

R2×[t1,t2]
ei L(ξ,s)eis�(ξ,η,σ ) f̂ +

k1
(ξ + η, s) f̂ +

k2
(ξ + σ, s)

× f̂ −
k3
(−ξ − η − σ, s)c∗

ξ (η, σ ) dηdσds

∣
∣
∣
∣
∣
∣
∣

� ε3
12−2p1m2−(N1+15)k+,

(6.57)

where

�(ξ, η, σ ) = �(ξ)−�(ξ + η)−�(ξ + σ)+�(ξ + η + σ),

L(ξ, s) = c̃(ξ)

4π2

s∫

0

| f̂ (ξ, r)|2 dr

r + 1
.

The assumptions (6.56) and (6.22) show that

k̃ := min(k,med(k1, k2, k3)) ≥ −m/5. (6.58)

Then we make the simple observation that

�(a)+�(b)−�(a + b) ≥ �(a)/2 if 0 ≤ a ≤ b

to conclude that � satisfies the weakly elliptic bound

|�(ξ, η, σ )| ≥ 2k̃/2−10 (6.59)

provided that |ξ +η| ∈ [2k1−2, 2k1+2], |ξ +σ | ∈ [2k2−2, 2k2+2], |ξ +η+σ | ∈
[2k3−2, 2k3+2]. Letting L̇(ξ, s) := (∂s L)(ξ, s), where L is defined in (6.10),
and using (6.19), we notice that, for any s ∈ [2m − 1, 2m+1],

|L̇(ξ, s)| � ε2
122k2−N0k+2−m . (6.60)
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We integrate by parts in s to conclude that the integral in the left-hand side
of (6.57) is dominated by

B0(ξ)+
2∑

j=1

B j (ξ),

where

B0(ξ) :=
t2∫

t1

∣
∣
∣
∣
∣
∣
∣

∫

R2

eis�(ξ,η,σ ) 1

�(ξ, η, σ )

d

ds

[
ei L(ξ,s) f̂ +

k1
(ξ + η, s) f̂ +

k2
(ξ + σ, s)

× f̂ −
k3
(−ξ − η − σ, s)c∗

ξ (η, σ )
]

dηdσ

∣
∣
∣
∣
∣
∣
∣

ds

and, for j = 1, 2,

B j (ξ) :=

∣
∣
∣
∣
∣
∣
∣

∫

R2

eit j�(ξ,η,σ )
1

�(ξ, η, σ )
f̂ +
k1
(ξ + η, t j ) f̂ +

k2
(ξ + σ, t j )

× f̂ −
k3
(−ξ − η − σ, t j )c

∗
ξ (η, σ ) dηdσ

∣
∣
∣
∣
∣
∣
∣

Let

r4(η, σ ) := 1

�(ξ, η, σ )
· ϕ[k1−1,k1+1](ξ + η)ϕ[k2−1,k2+1](ξ + σ)

×ϕ[k3−1,k3+1](ξ + η + σ).

Using (6.59)–(6.60) and integration by parts it is easy to see that, for any
s ∈ [t1, t2],

‖F−1(r4)‖L1 � 2−k̃/2. (6.61)

Using the first L∞ bound in (6.19) we estimate, for j ∈ {1, 2},

B j (ξ) � ε3
12(1−β)min(k1,k2,k3)2−(N0/2−20)k+ � ε3

12−3m/42−(N0/2−20)k+ .

(6.62)
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Expanding the d/ds derivative we estimate

B0(ξ)lesssim2m sup
s∈[t1,t2]

[B0
0 (ξ, s)+ B0

1 (ξ, s)+ B0
2 (ξ, s)+ B0

3 (ξ, s)],

B0
0 (ξ, s) =

∫

R2

∣
∣
∣
∣
∂s L(ξ, s)

�(ξ, η, σ )
f̂ +
k1
(ξ + η, s) f̂ +

k2
(ξ + σ, s)

× f̂ −
k3
(−ξ − η − σ, s)c∗

ξ (η, σ )

∣
∣
∣
∣ dηdσ,

B0
1 (ξ, s) =

∣
∣
∣
∣
∣
∣
∣

∫

R2

eis�(ξ,η,σ )r4(η, σ )(∂s f̂ +
k1
)(ξ + η, s) f̂ +

k2
(ξ + σ, s)

× f̂ −
k3
(−ξ − η − σ, s)c∗

ξ (η, σ ) dηdσ

∣
∣
∣
∣
∣
∣
∣

,

B0
2 (ξ, s) =

∣
∣
∣
∣
∣
∣
∣

∫

R2

eis�(ξ,η,σ )r4(η, σ ) f̂ +
k1
(ξ + η, s)(∂s f̂ +

k2
)(ξ + σ, s)

× f̂ −
k3
(−ξ − η − σ, s)c∗

ξ (η, σ ) dηdσ

∣
∣
∣
∣
∣
∣
∣

,

B0
3 (ξ, s) =

∣
∣
∣
∣
∣
∣
∣

∫

R2

eis�(ξ,η,σ )r4(η, σ ) f̂ +
k1
(ξ + η, s) f̂ +

k2
(ξ + σ, s)

× (∂s f̂ −
k3
) (−ξ − η − σ, s)c∗

ξ (η, σ ) dηdσ

∣
∣
∣
∣
∣
∣
∣

.

As before, we combine (6.26), (6.61), and the bounds (6.19) and (6.27) to
conclude that

sup
s∈[t1,t2]

[B0
1 (ξ, s)+ B0

2 (ξ, s)+ B0
3 (ξ, s)] � ε3

12−5m/42−(N0/2−20)k+ .

(6.63)
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In addition, using the definition of the function L , we have

sup
s∈[t1,t2]

|∂s L(ξ, s)| � ε2
12−m . (6.64)

Therefore

sup
s∈[t1,t2]

B0
0 (ξ, s) � ε3

12−5m/42−(N0/2−20)k+ . (6.65)

The desired bound (6.57) follows from (6.62), (6.63), and (6.65). ��

6.2 Proof of (6.24)

After changes of variables, it suffices to prove that

∣
∣
∣
∣
∣
∣
∣

∫

R2×[t1,t2]
ei L(ξ,s)eis�ι1,ι2,ι3 (ξ,η,σ ) f̂ ι1k1

(ξ + η, s) f̂ ι2k2
(ξ + σ, s)

× f̂ ι3k3
(−ξ − η − σ, s)cι1ι2ι3(ξ,−η,−ξ − η − σ) dηdσds

∣
∣
∣
∣
∣
∣
∣

� ε3
12−2p1m2−(N1+15)k+, (6.66)

where (ι1, ι2, ι3) ∈ {(+,+,+), (−,−,+), (−,−,−)} and

�ι1,ι2,ι3(ξ, η, σ ) = �(ξ)− ι1�(ξ + η)− ι2�(ξ + σ)− ι3�(ξ + η + σ).

The main observation is that the phases �ι1,ι2,ι3 are weakly elliptic, i.e.

|�ι1,ι2,ι3(ξ, η, σ )| ≥ 2med(k1,k2,k3)/2−100,

provided that |ξ + η| ∈ [2k1−2, 2k1+2], |ξ + σ | ∈ [2k2−2, 2k2+2], |ξ + η +
σ | ∈ [2k3−2, 2k3+2], and (ι1, ι2, ι3) ∈ {(+,+,+), (−,−,+), (−,−,−)}. The
proof then proceeds as in the proof of Lemma 6.8, using integration by parts
in s.

7 Lagrangian formulation and “Wu’s good coordinates”

In this section we review the formulation of the problem used by Wu [45]. We
use the same notations as in the cited paper to summarize the construction of
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706 A. D. Ionescu, F. Pusateri

Wu’s modified Lagrangian variables. We recall the cubic evolution equations
associated to these good unknowns, some other (elliptic) relations between
these variables, and the relative cubic energies.

Let v be the fluid’s velocity field, recall that we denote by z : (t, α) ∈
[0, T ] × R → C the Lagrangian map (restricted to the surface parametrized
by α), that is the solutions of

zt (t, α) = v(t, z(α, t)), z(0, α) = α + iy0(α). (7.1)

z(t, α) = x(t, α)+ iy(t, α) is the equation of the free interface. The imaginary
part of z, Imz, measures the height of the interface.

7.1 The transformation k and modified Lagrangian coordinates

Define the change of coordinates k

k(t, α) := z(t, α)+ 1

2
(I + Hz)(I + Kz)

−1(z(t, α)− z(t, α)) (7.2)

where Hγ denotes the Hilbert transform along the curve γ , see (1.4), and
Kz = ReHz . The explicit change of coordinates (7.2) is the same as the
one given by Totz and Wu in [41, formula (2.3)]. k will be shown to be a
diffeomorphism on R. Given the change of coordinates k we can define the
transformed Lagrangian unknowns as in [45]

L̃(t, α) := (ζα(t, α)− 1, u(t, α), w(t, α), Imζ(t, α))

with

ζ(t, α) := z(t, k−1(t, α)), u(t, α) := zt (t, k−1(t, α)),

w(t, α) := ztt (t, k−1(t, α)). (7.3)

Note that

w(t, α) := ztt (t, k−1(t, α)) = (∂t + b(t, α)∂α)u(t, α),

where b(t, α) = kt (t, k−1(t, α)). Also, following [45] we define the “good
quantities” in terms of the transformed Lagrangian unknowns

χ := 2i(I − Hζ )Imζ = (I − Hz)(z − z) ◦ k−1 (7.4)

λ := (I − Hζ )(ψ ◦ k−1) = (I − Hz)ψ ◦ k−1 (7.5)

v := ∂t (I − Hz)(z − z) ◦ k−1 = (∂t + b∂α)χ, v1 := (I − Hζ )v. (7.6)
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In what follows we will denote H for Hζ , where this creates no confusion. We
recall that ψ is the trace of the velocity potential in Lagrangian coordinates:
ψ(t, α) = �(t, z(t, α)). The quantities χ, λ and v are those for which cubic
equations are derived and the Energy argument is performed. The relation
between the Eulerian trace of the velocity potential φ and the surface elevation
h with the Lagrangian quantities is given by the identities:

h(t,Rez(t, α)) = Imz(t, α) (7.7)

φ(t,Rez(t, α)) = ψ(t, α). (7.8)

Precomposing with k−1 these become

h(t,Reζ(t, α)) = Imζ(t, α), φ(t,Reζ(t, α)) = ψ(t, k−1(t, α)).

7.2 The cubic equations

In [45] cubic equations are derived for the “good quantities” χ, λ and v given
by (7.4)–(7.6). We will not discuss the derivation of these equations here, but
refer the reader to section 2 in [45] for the details. In the cited work it is shown
that for F = χ, λ or v

(∂t + b∂α)
2 F − i A∂αF = G(L̃) (7.9)

where the right-hand side G(L̃) can be thought of as a cubic expression in the
variables

L̃ = (u, w, Imζ, ζα − 1), (7.10)

which involves singular integrals related to the Cauchy integral and to Calderón
commutators. The functions b and A are defined by

b(t, α) = kt
(
t, k−1(t, α)

)
(7.11)

A(t, α) = (a(t, ·)kα(t, ·)) ◦ k−1(t, α) (7.12)

where a(t, α) is the Rayleigh-Taylor coefficient appearing in (1.5). As shown
in [45, Proposition 2.1], both b and A − 1 are real valued and quadratically
small if L̃ is small. More precisely:

Lemma 7.1 Let b and A be given by (7.11) and (7.12). Under the a priori
assumptions (2.9) we have

‖A(t)− 1‖H N1 + ‖b(t)‖H N1 ≤ ε1, (7.13)
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and for 0 ≤ k ≤ N0

‖A(t)− 1‖Xk
� ε1‖L̃(t)‖Xk

, (7.14)

‖b(t)‖Xk
� ε1‖L̃(t)‖Xk

. (7.15)

Proof The identities in (2.30) of [45] (see Proposition 2.4 in [45] for their
derivation) read

(I − H)(A − 1) = i[u,H]uα
ζα

+ i[w,H]ζ α − 1

ζα
(7.16)

(I − H)b = −[u,H]ζ α − 1

ζα
. (7.17)

The above right-hand sides are all of the form Q0(L̃, L̃) or Q0(L̃, ∂α L̃), where
Q0 is defined in (11.18). (7.16) and (7.17) then follow from the bounds for
operators of the type Q0 given in (11.30), Sobolev’s embedding, the estimate
(11.3) for H, and the a priori smallness assumptions on L̃ . The bounds (7.14)
and (7.15) follow by combining (7.16) and (7.17) with Lemma 11.2. ��

The cubic equations verified by χ, λ and v are (see formulas (2.27)-(2.29)
and (4.33) in [45])

(∂t + b∂α)
2χ − i A∂αχ = Gχ(u, Imζ ) (7.18)

(∂t + b∂α)
2v − i A∂αv = Gv(u, w, ζα − 1, Imζ, χα) (7.19)

(∂t + b∂α)
2λ− i A∂αλ = Gλ(u, w, Imζ ) (7.20)

where

Gχ(u, Imζ ) := 4

π

∫
(u(α)− u(β))(Imζ(α)− Imζ(β))

|ζ(α)− ζ(β)|2 uβ(β) dβ

+ 2

π

∫ (
u(α)− u(β)

ζ(α)− ζ(β)

)2

Imζβ(β) dβ, (7.21)

Gv(u, w, ζα − 1, Imζ, χα)

:= 4

π

∫
(w(α)− w(β))(Imζ(α)− Imζ(β))

|ζ(α)− ζ(β)|2 uβ(β) dβ

+ 4

π

∫
(u(α)− u(β))(Imζ(α)− Imζ(β))

|ζ(α)− ζ(β)|2 wβ(β) dβ

+ 2

iπ

∫ (
u(α)− u(β)

ζ(α)− ζ(β)

)2

uβ(β) dβ − 2

iπ

∫ |u(α)− u(β)|2
(ζ (α)− ζ (β))

2 uβ(β) dβ
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+ 2

iπ

∫
(u(α)− u(β))(w(α)− w(β))

(ζ(α)− ζ(β))2
(ζβ(β)− ζ β(β)) dβ

+ 1

iπ

∫ (
u(α)− u(β)

ζ(α)− ζ(β)

)2

(uβ(β)− uβ(β)) dβ

− 2

iπ

∫ (
u(α)− u(β)

ζ(α)− ζ(β)

)3

(ζβ(β)− ζ β(β)) dβ + i
at

a
◦ k−1 A∂αχ,

(7.22)

Gλ(u, w, Imζ ) := 2

π

∫
(u(α)− u(β))(Imζ(α)− Imζ(β))

|ζ(α)− ζ(β)|2 ζ β(β)w(β) dβ

+ [u,H]
(

u
uα
ζ α

)

+ u[u,H]uα
ζα

− 2[u,H]u · uα
ζα

+ 1

iπ

∫ (
u(α)− u(β)

ζ(α)− ζ(β)

)2

u(β) · ζβ(β) dβ. (7.23)

A fourth additional equation is also derived in [45, formula (4.32)] for the
quantity

v1 := (I − Hζ )v (7.24)

and has the same form as above

(∂t + b∂α)
2v1 − i A∂αv1 = Gv1(u, w, ζα − 1, Imζ, v, χ) (7.25)

with

Gv1 (u, w, ζα − 1, Imζ, v, χ)

:= (I − H)Pv − 2[u,H]∂α
ζα

Pχ − 2[u,H]∂α
ζα

(

w
∂α

ζα
χ

)

− i[(H + H)u,H]
(
∂α

ζα

)2

χ + 1

iπ

∫ (
u(α)− u(β)

ζ(α)− ζ(β)

)2

vβ(β) dβ,

(7.26)

where P := (∂t + b∂α)2 − i A∂α . The above cubic equations allow the con-
struction of energy functionals, see Sect. 7.3 below, which suitably control
the variables χ, v and λ. The quantities appearing on the right-hand sides of
these cubic equations, such as u, w and ζα − 1, are in turned controlled by the
energies, see Proposition 8.1, using the identities (8.24)–(8.27).
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In order to simplify our presentation and the estimates performed on the
above equations, we define the following types of trilinear operators:

T 1( f, g, h) :=
∫
( f (α)− f (β))(g(α)− g(β))

|ζ(α)− ζ(β)|2 h(β) dβ (7.27a)

T 2( f, g, h) :=
∫
( f (α)− f (β))(g(α)− g(β))

(ζ(α)− ζ(β))2
h(β) dβ (7.27b)

T 3( f, g, h) :=
∫
( f (α)− f (β))(g(α)− g(β))

(ζ (α)− ζ (β))
2 h(β) dβ, (7.27c)

and denote by T any scalar multiple of them:

T( f, g, h) = ci Ti ( f, g, h) (7.28)

for some constant ci ∈ C, i = 1, 2, 3. We can then write the nonlinearity
(7.21) appearing in the equation (7.18) as:

Gχ(u, Imζ ) = T(u, Imζ, uα)+ T(u, u, Imζα). (7.29)

Similarly we have

Gv(u, w, ζα − 1, Imζ )

= T(w, Imζ, uα)+ T(u, Imζ,wα)+ T(u, u, uα)+ T(u, w, Imζα)

+ T(u, u, uα)+ uT(u, u, Imζα)+ T(u, u, uImζα)+ i
at

a
◦ k−1 A∂αχ,

(7.30)

and

Gλ(u, w, Imζ ) = T(u, Imζ, ζ αw)+ T(u, u, u · ζα)
+ [u,H]

(

u
uα
ζ α

)

+ u[u,H]uα
ζα

− 2[u,H]u · uα
ζα

, (7.31)

and

Gv1 (u, w, ζα − 1, Imζ, v, χ)

:= (I − H)Pv − 2[u,H]∂α
ζα

Pχ − 2[u,H]∂α
ζα

(

w
∂α

ζα
χ

)

− i[(H + H)u,H]
(
∂α

ζα

)2

χ + T(u, u, vα). (7.32)
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By writing the nonlinearities (7.21), (7.22), (7.23) and (7.26) in terms of oper-
ators of the type (7.27) above, we will be able to efficiently estimate them by
making use of a general Proposition giving L2-type bounds of such operators.
These estimates are given in Proposition 11.7, and are obtained by improving
two statements contained in [45] (which in turn rely in part on the work of
Coifman, McIntosh and Meyer [10]). All the terms that cannot be written as a
trilinear operators of the form (7.27), acting on the components of L̃ , need to
be treated separately. To bound these remaining nonlinear terms, namely

i
at

a
◦ k−1 A∂αχ, [u,H]

(

u
uα
ζ α

)

+ u[u,H]uα
ζα
, [u,H]u · uα

ζα

[(H + H)u,H]
(
∂α

ζα

)2

χ, [u,H]∂α
ζα

(

w
∂α

ζα
χ

)

we will make use of some additional special structure present in them.

7.3 The energy

The total energy for the system is given by the sum of three energies naturally
associated to the equations (7.18), (7.20) and (7.25). Let us define

Sk := Dk S. (7.33)

The first term in the energy is given by

Eχ(t) =
N0∑

k=0

∫

R

1

A

∣
∣
∣(∂t + b∂α)D

kχ

∣
∣
∣
2 + i

(
Dkχ

)h
∂α
(
Dkχ

)h
dα

+
N0/2∑

k=0

∫

R

1

A
|(∂t + b∂α)Skχ |2 + i(Skχ)

h∂α(Skχ)
h dα, (7.34)

where f h denotes the anti-holomorphic part of a function f :

f h := I − H
2

f. (7.35)

By considering only the anti-holomorphic parts of Dkχ and Skχ in (7.34), one
obtains that all summands in Eχ are non-negative, see Lemma (8.7). Similarly
one constructs the energy associated to (7.20):
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Eλ(t) =
N0−2∑

k=0

∫

R

1

A

∣
∣
∣(∂t + b∂α)D

kλ

∣
∣
∣
2 + i

(
Dkλ

)h
∂α
(
Dkλ

)h
dα

+
N0/2∑

k=0

∫

R

1

A
|(∂t + b∂α)Skλ|2 + i(Skλ)

h∂α(Skλ)
h dα, (7.36)

The energy controlling v instead is given in terms of v1, and based on the
equation (7.25):

Ev(t) =
N0∑

k=0

∫

R

1

A

∣
∣
∣(∂t + b∂α)D

kv1

∣
∣
∣
2 + i Dkv1∂αDkv1 dα

+
N0/2∑

k=0

∫

R

1

A
|(∂t + b∂α)Skv1|2 + i Skv1∂αSkv1 dα. (7.37)

Here in the second summand there is no restriction to (Dkv1)
h or (Sv1)

h .
Therefore the Energy Ev has no definite sign. Nevertheless, it can be shown that
this Energy controls the norms ofv andv1 up to cubic lower order contributions.
The total energy is then given by

E(t) = Eχ(t)+ Ev(t)+ Eλ(t). (7.38)

8 Proof of Proposition 2.3: energy estimates

Once the energy E(t) has been defined, we can proceed with the proof of
Proposition 2.3. The main ideas are essentially the same as those used in Wu’s
paper [45]. In fact, we use a similar procedure and borrow several identities and
estimates from this paper. However, some arguments there need to be adjusted
in order to make the energy estimates valid for all times, and compatible with
the growth of the highest Sobolev and weighted norms. In particular, we need to
pay special attention to certain dangerous nonlinear terms that can potentially
create logarithmic losses, compare with Wu’s energy estimate (1.15), and show
how these losses can be avoided.

Recall that we denoted L̃ = (u, w, Imζ, ζα − 1), and define the vectors

L− := (ζα − 1, u, w, ∂αχ, v), L := (L−, Imζ ).

We separate the proof of Proposition 2.3 into three main steps. We first show
how E(t) controls the X N0 -norm of L̃(t):
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Proposition 8.1 Under the a priori assumptions (2.9), that is

sup
t∈[0,T ]

(
(1 + t)−p0‖L̃(t)‖X N0

+ ‖L̃(t)‖H N1+5 + ‖L̃(t)‖W N1,∞
√

1 + t
)

≤ ε1 � 1, (8.1)

we have

‖L̃(t)‖X N0
�
√

E(t), (8.2)

for any t ∈ [0, T ] and ε1 sufficiently small.

This is proven in Sect. 8.1. Our next proposition shows how to estimate the
energy increment.

Proposition 8.2 Assume again that (8.1) holds for ε1 small enough. Then

d

dt

√
E(t) �

(‖L(t)‖W N1,∞ + ‖HL−(t)‖W N1,∞
)2√

E(t), (8.3)

for any t ∈ [0, T ].
The above Proposition will be proven in Sect. 8.2. We eventually need to bound
the L∞-norms on the right hand side of (8.3) in terms of the Z ′-norm of h and
φ:

Proposition 8.3 Under the a priori assumption (8.1) and (2.8) we have

‖L(t)‖W N1,∞ +‖HL−(t)‖W N1,∞ � ‖(h, φ)‖Z ′ =‖(h,�φ)‖W N1+4,∞ . (8.4)

The proof of this Proposition is in Sect. 8.3.
In view of the initial assumptions (1.10a)–(1.10b) and the discussion in [45,

sec 5.1], one has E(0) � ε2
0. It is then clear that Propositions 8.1–8.3 imply

Proposition 2.3.

8.1 Proof of Proposition 8.1: energy bounds

The estimate (8.2) will be achieved through a sequence of Lemmas which we
state below and prove in the remaining of this section. We start by using some
formulae derived in [45] to bound ‖L̃(t)‖X N0

by the X N0 -norms of (∂t +b∂α)χ ,
(∂t + b∂α)v and (∂t + b∂α)λ:
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Lemma 8.4 Under the assumption (8.1) it is possible to write

2u = (∂t + b∂α)χ + Q (8.5)

2w = (∂t + b∂α)v + Q (8.6)

2(ζα − 1) = −i(∂t + b∂α)v + Q (8.7)

(I − H)Imζ = −(∂t + b∂α)λ+ Q (8.8)

where Q denotes a generic term which is at least quadratic in L̃ and satisfies

‖Q(t)‖X N0
� ε1‖L̃(t)‖X N0

(8.9)

‖Q(t)‖W N1,∞ � ε1‖L̃(t)‖W N1,∞ (8.10)

for ε1 small enough. In particular we see that

‖L̃(t)‖X N0
∼ ‖(∂t + b∂α)χ‖X N0

+ ‖(∂t + b∂α)v‖X N0
+ ‖(∂t + b∂α)λ‖X N0

(8.11)

and

‖L̃(t)‖W N1,∞ � ‖(∂t + b∂α)χ‖W N1,∞ + ‖(∂t + b∂α)v‖W N1,∞

+ ‖(∂t + b∂α)λ‖W N1,∞ . (8.12)

The proof of this Lemma is given in Sect. 8.1.1. We then establish the following
commutators estimates:

Lemma 8.5 Assume again (8.1) holds for ε1 small enough. Then, for Q as in
(8.9) above, we have

∂αχ = (I − H)(ζα − ζ α)+ Q (8.13)

v = 2u + Q (8.14)

∂αλ = u + Q. (8.15)

Moreover, denoting D for ∂α , we have for all 0 ≤ k ≤ N0 and f = χ, v or λ

‖(∂t + b∂α)D
k f − Dk(∂t + b∂α) f ‖L2 � ε1‖L̃(t)‖X N0

, (8.16)

and for all 0 ≤ k ≤ N0
2

‖(∂t +b∂α)D
k S f −Dk S(∂t +b∂α) f ‖L2 � ε1‖L̃(t)‖X N0

+‖(∂t + b∂α) f ‖Hk .

(8.17)
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The above Lemma is proven in Sect. 8.1.2. Eventually we show how E(t)
controls χ and v:

Lemma 8.6 Under the assumption (8.1), we have

‖(∂t + b∂α)D
kχ‖2

L2 � E(t), (8.18)

‖(∂t + b∂α)D
kv‖2

L2 � E(t)+ ε1‖L̃(t)‖2
H N0 (8.19)

for all 0 ≤ k ≤ N0. Also

‖(∂t + b∂α)D
kλ‖2

L2 � E(t), (8.20)

for all 0 ≤ k ≤ N0 − 2. Moreover, for 0 ≤ k ≤ N0
2

‖(∂t + b∂α)D
k Sχ‖2

L2 � E(t), (8.21)

‖(∂t + b∂α)D
k Sv‖2

L2 � E(t)+ ε1‖L̃(t)‖2
X N0

, (8.22)

‖(∂t + b∂α)D
k Sλ‖2

L2 � E(t). (8.23)

This Lemma is proven in 8.1.3. One can actually obtain the stronger bound

‖(∂t + b∂α)�v‖2
L2 + ‖(∂t + b∂α)�v1‖2

L2 � E(t)+ ε1‖L̃(t)‖2
X N0

.

The bound (8.2), and hence Proposition 8.1, follow easily from the above
three lemmas.

8.1.1 Proof of Lemma 8.4

Equations (2.35), (2.43), (3.38) and (2.51) in [45] respectively read

2u = (∂t + b∂α)χ + (H + H)u + [u,H]ζα − ζ α

ζα
(8.24)

2w = (∂t + b∂α)v + [u,H]uα
ζ α

+ [u,H]2uα − uα
ζα

+ (H + H)w

+ [w,H]ζα − ζ α

ζα
− 1

iπ

∫ (
u(α)− u(β)

ζ(α)− ζ(b)

)2

(ζβ(β)− ζ β(β)) dβ

(8.25)

ζα − 1 = w

i A
− A − 1

A
(8.26)
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(I − H)Imζ = −(∂t + b∂α)λ− 1

2
[u,H]ζ αu

ζα
. (8.27)

Proof of (8.5). To show (8.5) it is enough to prove that (H + H)u and

[u,H] ζα−ζα
ζα

are quadratic terms satisfying (8.9). Estimate (11.4) and the a
priori assumption (8.1) give

‖(H + H)u‖X N0
� ‖ζα − 1‖

H
N0
2 +1

‖u‖X N0

+ ‖ζα − 1‖X N0
‖u‖

H
N0
2 +1

� ε1‖L̃‖X N0
.

Similarly, under the a priori assumptions (8.1), estimate (11.31) implies

∥
∥
∥
∥
∥
[u,H]ζα − ζ α

ζα

∥
∥
∥
∥
∥

X N0

≤ ε1‖u‖X N0
+ ε1‖Imζ‖X N0

+ε1‖ζα − 1‖X N0
� ε1‖L̃‖X N0

.

Proof of (8.6). We need to estimate all of the terms in the difference 2w −
(∂t + b∂α)v from (8.25). The terms

[w,H]ζα − ζ α

ζα
and (H + H)w

can be estimated as above, the only difference being the appearance of w
instead of u. The last term in (8.25) is of the form T(u, u, Imζα), where T is
defined in (7.27). This can be directly estimated using (11.35). The remaining
terms are

I1 := [u,H]uα
ζ α

and I2 := [u,H]2uα − uα
ζα

.

These are terms of the form Q0(L̃, ∂α L̃) and can be bounded by making use
of (11.30):

‖I1‖X N0
+ ‖I2‖X N0

� ‖Q0(u, ∂αu)‖X N0
� ε1‖L̃‖X N0

.

Proof of (8.7). We start from (8.26) and rewrite as:

ζα − 1 = −iw + iw

(

1 − 1

A

)

− A − 1

A
. (8.28)

123



Global solutions for the gravity water waves system 717

Since w satisfies (8.6), in order to show (8.7) is suffices to verify that

∥
∥
∥
∥w

(

1 − 1

A

)∥
∥
∥
∥

X N0

+
∥
∥
∥
∥

A − 1

A

∥
∥
∥
∥

X N0

� ε1‖L̃‖X N0
.

This follows from the bounds on A − 1 (7.13) and (7.14), and the a priori
assumptions (8.1).

Proof of (8.8). This follows directly from (8.27) and arguments similar to
the ones above.

Proof of (8.11) and (8.12). Using (11.9) in combination with (8.8) one can
deduce that

‖Imζ‖X N0
� ‖(∂t + b∂α)λ‖X N0

+ ε1‖L̃‖X N0
.

In view of (8.5)–(8.9) we have then obtained (8.11).
From the a priori bound on the H N1+5-norm of L̃ it is not hard to see that

(8.10) holds true by using similar arguments as above. (8.12) immediately
follows, concluding the proof of Lemma 8.4. ��

8.1.2 Proof of Lemma 8.5

Identities (2.50), (2.35) and (2.36) in [45] respectively read:

i

2
∂αχ = wζα − 1

2
H
(

uα
uζ α
ζα

)

+ 1

2
[u,H]

(
∂α(uζ α)

ζα

)

− 1

2π i
∫
(u(α)− u(β))(ζα(α)− ζβ(β))

(ζ(α)− ζ(β))2
u(β)ζ β(β) dβ + 1

2
(ζα − ζα)w

+ 1

2
uαu − 1

2
ζα

(

H 1

ζα
+ H 1

ζ α

)

(wζα + uuα)

+ ζα

π

∫

Im

(
u(α)− u(β)

(ζ(α)− ζ(β))2

)

u(β)ζ β(β) dβ, (8.29)

v = 2u − (H + H)u − [u,H]ζα − ζ α

ζα
, (8.30)

∂αλ = uζ α − 1

2

(

ζαH 1

ζα
+ ζ αH

1

ζ α

)

(uζ α). (8.31)
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718 A. D. Ionescu, F. Pusateri

From these, Proposition 11.7 and the a priori assumption (8.1), it is not hard
to see that

‖∂αχ‖H N1 + ‖v‖H N1 + ‖∂αλ‖H N1 � ε1, (8.32)

‖∂αχ‖X N0
+ ‖v‖X N0

+ ‖∂αλ‖X N0
� ‖L̃‖X N0

. (8.33)

We are now going to use these bounds to control the commutators [∂t +
b∂α, Dk] f and [∂t + b∂α, S] f for f = χ, v, λ. By direct computation one
sees that

[
Dk, ∂t + b∂α

]
=
[

Dk, b∂α
]

=
k∑

j=1

∂ j b∂k− j∂α (8.34)

[S, ∂t + b∂α] =
(

Sb − 1

2
b

)

∂α − 1

2
(∂t + b∂α). (8.35)

Moreover, for Sk = Dk S, we have

[Sk, ∂t + b∂α] f = Dk[S, ∂t + b∂α] f + [Dk, ∂t + b∂α]S f. (8.36)

From (8.34) it follows that for any 0 ≤ k ≤ N0

∥
∥
∥Dk(∂t + b∂α) f − (∂t + b∂α)D

k f
∥
∥
∥

L2

�
N0/2∑

j=1

‖∂ j b‖L∞‖∂α f ‖Hk−1 + ‖∂αb‖Hk−1

N0/2∑

j=1

‖∂α f ‖L∞

� ‖∂αb‖
H

N0
2 +1

‖∂α f ‖Hk−2 + ‖∂αb‖Hk−1‖∂α f ‖
H

N0
2 +1

.

Using (8.32) and (8.33) we see that for f = χ, v and 0 ≤ k ≤ N0, or f = λ

and 0 ≤ k ≤ N0 − 2, we have

∥
∥
∥Dk(∂t + b∂α) f − (∂t + b∂α)D

k f
∥
∥
∥

L2
� ‖∂αb‖

H
N0
2 +1

‖L̃‖X N0

+ ε1‖∂αb‖H N0−1 .

This would conclude the proof of (8.16) provided one has

‖∂αb‖
H

N0
2 +1

� ε1 and ‖∂αb‖H N0−1 � ‖L̃‖X N0
.

These two estimates follow from Lemma 7.1.
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To show the commutator estimate (8.17) we start by using (8.36):

‖[Sk, ∂t + b∂α] f ‖L2 � ‖[Dk, ∂t + b∂α]S f ‖L2 + ‖[S, ∂t + b∂α] f ‖Hk .

(8.37)

From (8.34), and for 0 ≤ k ≤ N0
2 , we get

‖[Dk, ∂t + b∂α]S f ‖L2 � ‖∂αb‖
H

k
2 +1‖∂αS f ‖Hk−1 + ‖∂αb‖Hk−1‖∂αS f ‖

H
k
2 +1 .

Using (8.33) we can bound the above right-hand side to obtain

‖[Dk, ∂t + b∂α]S f ‖L2 � ‖∂αb‖
H

N0
2

‖L̃‖X N0
, (8.38)

for f = χ , v or λ. Moreover, from (8.35) we see that

‖[S, ∂t + b∂α] f ‖Hk � ‖Sb∂α f ‖Hk + ‖b∂α f ‖Hk + ‖(∂t + b∂α) f ‖Hk .

With f = χ , v or λ, and using (8.32) and (8.33) we deduce

‖[S, ∂t + b∂α] f ‖Hk � ε1
(‖Sb‖Hk + ‖b‖Hk

)+ ‖(∂t + b∂α) f ‖Hk . (8.39)

Putting together (8.37) with (8.38) and (8.39) we get

‖[Sk, ∂t + b∂α] f ‖L2 � ‖∂αb‖
H

N0
2

‖L̃‖X N0
+ ε1

(

‖Sb‖
H

N0
2

+ ‖b‖
H

N0
2

)

+ ‖(∂t + b∂α) f ‖Hk .

To obtain (8.17) it then suffices to have

‖Sb‖
H

N0
2

� ‖L̃‖X N0
and ‖b‖

H
N0
2 +1

� ε1.

These two estimates are again direct consequence of Lemma 7.1. ��
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8.1.3 Proof of Lemma 8.6

Recall the definition of Eχ given in (7.34):

Eχ(t) =
N0∑

k=0

∫

R

1

A

∣
∣
∣(∂t + b∂α)D

kχ

∣
∣
∣
2 + i

(
Dkχ

)h
∂α
(
Dkχ

)h
dα (8.40)

+
N0/2∑

k=0

∫

R

1

A
|(∂t + b∂α)Skχ |2 + i(Skχ)

h∂α(Skχ)
h dα (8.41)

where f h := (I − H) f/2. As in Lemma 4.1 of [45] (see Lemma 8.7 below)
we know that if� is the boundary value of an holomorphic function in�(t)c,
such as f h , then

i
∫

�∂α� dα ≥ 0.

Therefore both summands in (8.40) and (8.41) are nonnegative. In particular

Eχ(t) �
N0∑

k=0

∫

R

1

A

∣
∣
∣(∂t + b∂α)D

kχ

∣
∣
∣
2 +

N0/2∑

k=0

∫

R

1

A
|(∂t + b∂α)Skχ |2. (8.42)

From this, and since |A − 1| ≤ 1/2, see (7.14), we get the desired bounds
(8.18) and (8.21). The exact same argument can be used to show (8.20) and
(8.23).

To prove (8.19) and (8.22) the argument is more complicated since Ev is
not nonnegative, but we just need to adapt the proof of Lemma 4.2 in [45, pp.
89-92] to see that

Ev(t) ≥ 1

4
‖(∂t + b∂α)�v‖2

L2 + 1

8
‖(∂t + b∂α)�v1‖2

L2 − ε1 Eχ − ε1‖L̃‖2
X N0

where � = Dk for 0 ≤ k ≤ N0, or � = Dk S for 0 ≤ k ≤ N0
2 . �

8.2 Proof of Proposition 8.2: evolution of the energy

We want to show, under the a priori assumptions (8.1), the following bound
for the evolution of the Energy

d

dt

√
E(t) �

(‖L(t)‖W N1,∞ + ‖HL−(t)‖W N1,∞
)2√

E(t) (8.43)
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for any t ∈ [0, T ]. From the definition of E in (7.38), and the bound (8.2), we
see that it suffices to prove

d

dt
E f (t) �

(‖L(t)‖W N1,∞ + ‖HL−(t)‖W N1,∞
)2
(
‖L̃(t)‖2

X N0
+ E(t)

)

(8.44)

for any t ∈ [0, T ] and f = χ, λ and v.

8.2.1 Basic energy equality

Assume that F is a smooth function vanishing sufficiently fast at infinity and
satisfying the equation

P F := (∂t + b(t, α)∂α)
2 F(t, α)− i A(t, α)∂αF(t, α) = G(t, α). (8.45)

Define the zero-th energy associated to (8.45) by

E F
0 (t) =

∫

R

1

A(t, α)
|(∂t + b(t, α)∂α)F(t, α)|2 + i F(t, α)∂αF(t, α) dα.

(8.46)

Also define higher order energies

E F
j (t)=

∫

R

1

A(t, α)

∣
∣
∣(∂t +b(t, α)∂α)�

j F(t, α)
∣
∣
∣
2

+ i(� j F)
h
(t, α)∂α(� j F)h(t, α) dα. (8.47)

where j ≥ 1, � j = D j for j ≤ N0, or � j = S j for j ≤ N0/2, and f h is
defined in (7.35). Then the following holds:

Lemma 8.7 ([45]) Assume that F and E0 are as above, then

d

dt
E F

0 (t) =
∫

R

2

A
Re
(
(∂t + b∂α)F G

)− 1

A

at

a
◦ k−1|(∂t + b∂α)F |2 dα.

(8.48)

Furthermore, if� is the boundary value of an holomorphic function in�c
t ,

that is � = �h, then

i
∫

R

�(t, α)∂α�(t, α) dα ≥ 0.
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Let E F
j (t) be as in (8.47), then

d

dt
E F

j (t) =
∫

R

2

A
Re
(
(∂t + b∂α)�

j FG j

)
− 1

A

at

a
◦ k−1

∣
∣
∣(∂t + b∂α)�

j F
∣
∣
∣
2

dα

(8.49)

− 2Re
∫

R

i∂t (�
j F)

h
∂α(� j F)r + i∂t (�

j F)
r
∂α(� j F)h

+ ∂t (�
j F)

r
∂α(� j F)r dα, (8.50)

where

G j := � j G + [P, � j ]F

and f r is defined by f r := (1/2)(I + H) f .

The proof of the above Lemma can be found in [45, pp. 83–85].

8.2.2 Evolution of Eχ

We want to show

d

dt
Eχ(t) �

(‖L‖W N1,∞ + ‖HL−‖W N1,∞
)2

E(t). (8.51)

We recall that the energy Eχ is given by

Eχ(t) =
N0∑

k=0

∫

R

1

A

∣
∣
∣(∂t + b∂α)D

kχ

∣
∣
∣
2 + i

(
Dkχ

)h
∂α
(
Dkχ

)h
dα

+
N0/2∑

k=0

∫

R

1

A
|(∂t + b∂α)Skχ |2 + i(Skχ)

h∂α(Skχ)
h dα.

From (7.18) and (7.29) we know that χ satisfies an equation of the form
Pχ = Gχ with a cubic nonlinearity Gχ = T(u, Imζ, uα) + T(u, u, Imζα),
where T are operators of the type defined in (7.28). This nonlinearity can be
schematically rewritten as

Gχ = T(L̃, L̃, L̃α). (8.52)
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By using Lemma 8.7 one obtains

d

dt
Eχ(t) =

N0∑

k=0

∫
2

A
Re
(
(∂t + b∂α)D

kχ P Dkχ
)

− 1

A

at

a
◦ k−1

∣
∣
∣(∂t + b∂α)D

kχ

∣
∣
∣
2

dα (8.53)

− 2
N0∑

k=0

Re
∫

i∂t (D
kχ)h∂α(Dkχ)r + i∂t (D

kχ)r∂α(Dkχ)h

+ i∂t (D
kχ)r∂α(Dkχ)r dα (8.54)

+
N0/2∑

k=0

∫
2

A
Re ((∂t + b∂α)Skχ PSkχ)− 1

A

at

a
◦ k−1|(∂t + b∂α)Skχ |2 dα

(8.55)

− 2
N0/2∑

k=0

Re
∫

i∂t (Skχ)
h∂α(Skχ)r + i∂t (Skχ)

r∂α(Skχ)h

+ i∂t (Skχ)
r∂α(Skχ)r dα. (8.56)

Since ‖A − 1‖L∞ ≤ 1
2 , we have

(8.53)+(8.55) �
√

Eχ(t)
N0∑

k=0

(
‖Dk Gχ‖L2 +‖[P, Dk]χ‖L2

)
+√

Eχ(t)

×
N0/2∑

k=0

(‖Sk Gχ‖L2 +‖[P, Sk]χ‖L2
)+Eχ(t)

∥
∥
∥

at

a
◦ k−1

∥
∥
∥

L∞ .

The terms in (8.54) and (8.56) are remainder terms. Since there is no logarith-
mic loss in the estimates for those terms in [45, p. 94-98], they can be estimated
exactly as in the cited paper, and therefore we skip them. Thus, to obtain the
desired bound (8.51) on the evolution of Eχ it suffices to show

‖Gχ‖X N0
� ‖L‖2

W N1+3,∞
√

E (8.57)

N0∑

k=0

‖[P, Dk]χ‖L2 �
(‖L‖W N1,∞ + ‖HL−‖W N1,∞

)2√
E (8.58)

N0/2∑

k=0

‖[P, Sk]χ‖L2 �
(‖L‖W N1,∞ + ‖HL−‖W N1,∞

)2√
E (8.59)
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∥
∥
∥

at

a
◦ k−1

∥
∥
∥

L∞ � ‖L̃‖2
W N1,∞ . (8.60)

These estimates are performed in the next four subsections.
Proof of (8.57). The bound (8.57) follows directly from (8.52) and Propo-

sition 11.7. Indeed applying (11.35) we see that

‖Gχ‖X N0
= ‖T(L̃, L̃, L̃α)‖X N0

� ‖L̃‖2
W N1,∞‖L̃‖X N0

� ‖L‖2
W N1,∞

√
E,

having used (8.2) in the last inequality.
Proof of (8.58). Recall the definition P = (∂t + b∂α)2 − i A∂α . By direct

computation we see that

[Dk,P] f =[Dk, ∂t +b∂α](∂t +b∂α) f +(∂t + b∂α)[Dk, ∂t + b∂α] f

− i[Dk, A∂α] f = [Dk, b∂α](∂t + b∂α) f + (∂t + b∂α)[Dk, b∂α] f

− i[Dk, A∂α] f =
k∑

j=1

ck, j D j bDk− j∂α(∂t + b∂α) f

+ (∂t + b∂α)
k∑

j=1

ck, j D j bDk− j∂α f − i
k∑

j=1

ck, j D j ADk− j∂α f, (8.61)

for some coefficients ck, j . It follows that for any 0 ≤ k ≤ N0

‖[P, Dk]χ‖L2

� ‖(∂t + b∂α)χ‖H N0 ‖∂αb‖W N0/2,∞ + ‖∂αb‖H N0−1‖(∂t + b∂α)χ‖W N0/2,∞
(8.62a)

+
N0−1∑

j=0

‖(∂t + b∂α)D
j∂αb‖L2‖∂αχ‖W N0/2,∞ + ‖∂αb‖H N0−1

×
N0/2∑

j=0

‖(∂t + b∂α)D
j∂αχ‖L∞ (8.62b)

+
N0/2∑

j=0

‖(∂t + b∂α)D
j∂αb‖L∞‖∂αχ‖H N0−1 + ‖∂αb‖W N0/2,∞

×
N0−1∑

j=0

‖(∂t + b∂α)D
j∂αχ‖L2 (8.62c)

+ ‖∂αχ‖H N0 ‖∂αA‖W N0/2,∞ + ‖∂αA‖H N0 ‖∂αχ‖W N0/2,∞ . (8.62d)
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Combining (8.11), commutator estimates for [∂t + b∂α, D j ], (8.13) and
(8.2), it follows that

‖(∂t + b∂α)χ‖H N0 +
N0−1∑

j=0

‖(∂t + b∂α)D
j∂αχ‖L2 + ‖∂αχ‖H N0 �

√
E(t).

(8.63)

From Lemma 8.4, and commutation estimates for [∂t + b∂α, D j ], we also
control the following L∞ norms:

‖(∂t + b∂α)χ‖W N0/2,∞ +‖∂αχ‖W N0/2,∞ +
N0/2∑

j=0

‖(∂t + b∂α)D
j∂αχ‖L∞

� ‖L‖W N1,∞ . (8.64)

Estimate of (8.62a). Using (8.63) and (8.64) we can bound

(8.62a) �
√

E(t)‖∂αb‖W N0/2,∞ + ‖∂αb‖H N0−1‖L‖W N1,∞ .

To obtain the desired bound in then suffices to show

‖∂αb‖W N0/2,∞ �
(‖HL−‖W N1,∞ + ‖L‖W N1,∞

)2
(8.65)

‖∂αb‖H N0−1 � ‖L‖W N1,∞
√

E . (8.66)

From formula (7.17) we see that (I − H)b = g with

g = −[u,H]ζ α − 1

ζα
. (8.67)

Using (11.11) in Lemma 11.2 we get

‖∂αb‖W N0/2,∞ � ‖∂αg‖W N0/2,∞ + ‖L̃‖W N0/2+1,∞‖∂αg‖H N0/2+1 .

Since g above is an operator of the form Q0(L̃, L̃), with Q0 defined in (11.18),
we can use the L∞ bound provided by (11.33) to deduce

‖∂αb‖W N0/2,∞ � ‖L‖W N0/2+2,∞
(‖HL−‖W N0/2+2,∞ + ‖L‖W N0/2+2,∞

)
. (8.68)

Here we have also used the L2-bounds from 11.4 to estimate ‖∂αg‖H N0/2+1 ,
and the a priori assumption ‖L̃‖H N1+5 � ε1. (8.65) is proven. Using again
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Lemma 11.2 we can estimate

‖∂αb‖H N0−1 � ‖∂αg‖H N0−1 � ‖L̃‖H N0 ‖L̃‖W N0/2+2,∞, (8.69)

which in light of (8.2) suffices to obtain (8.66).
Estimate of (8.62b). Using (8.63) and (8.64) we see that

(8.62b) �
N0−1∑

j=0

‖(∂t + b∂α)D
j∂αb‖L2‖L‖W N0/2+2,∞

+ ‖∂αb‖H N0−1‖L‖W N0/2+2,∞ .

Since we already have the bound (8.66) for ‖∂αb‖H N0−1 , in order to estimate
(8.62b) it suffices to show

N0−1∑

j=0

‖(∂t + b∂α)D
j∂αb‖L2 � ‖L̃‖W N0/2+2,∞‖L̃‖X N0

. (8.70)

To establish this estimate we use the following identity derived in [45, formula
(2.52)]:

(I − H)(∂t + b∂α)b = B3

B3 :=[u,H]∂α(2b − u)

ζα
−[w,H]ζα − 1

ζα
+ 1

iπ
∫ (

u(α)− u(β)

ζ(α)− ζ(β)

)2

(ζ β(β)− 1) dβ. (8.71)

Using this formula, (11.8) in Lemma 11.2, and the fact that [∂α, ∂t + b∂α]b
gives higher order quartic terms, it is not hard to see that (8.70) holds

Estimate of (8.62c). Using again (8.63) and (8.64) we can bound

(8.62c) �
N0/2∑

j=0

‖(∂t + b∂α)D
j∂αb‖L∞

√
E(t)+ ‖∂αb‖W N0/2,∞

√
E(t).

By virtue of (8.65) it suffices to establish the bound

N0/2∑

j=0

‖(∂t + b∂α)D
j∂αb‖L∞ �

(‖HL−‖W N0/2+2,∞ + ‖L‖W N0/2+2,∞
)2
.

(8.72)
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Commuting ∂t + b∂α and ∂ j
α , using (8.71) and (11.11) in Lemma 11.2, and

(8.68), one can see that for any 0 ≤ j ≤ N0/2

‖(∂t + b∂α)D
j∂αb‖L∞ � ‖∂α(∂t + b∂α)b‖W j,∞ + ‖L‖2

W N0/2+2,∞

� ‖∂αB3‖W N0/2,∞ + ‖L‖W N0/2+2,∞‖∂αB3‖H N0/2+1 + ‖L‖2
W N0/2+2,∞ .

Since ‖∂αB3‖H N0/2+1 can be estimated by means of Corollary 11.4, we only
need to bound ‖∂αB3‖W N0/2,∞ . B3 contains potentially dangerous terms, but
since they are of the form Q0(L−, L−)we can use again (11.33) in Proposition
11.7 to obtain

‖∂αB3‖W N0/2,∞ �
(‖HL−‖W N0/2+2,∞ + ‖L‖W N0/2+2,∞

)2
.

This gives (8.72), which in turn allows to bound (8.62c) by the right-hand side
of (8.58) as desired.

Estimate of (8.62d). From (8.63) and (8.64) we see that

(8.62d) �
√

E(t)‖∂αA‖W N0/2,∞ + ‖∂αA‖H N0 ‖L‖W N0/2+2,∞ .

To obtain the desired bound it is sufficient to show the following two estimates:

‖∂αA‖H N0 �
√

E(t)‖L‖W N0/2+2,∞ (8.73)

‖∂α(A − 1)‖W N0/2,∞ �
(‖HL−‖W N0/2+2,∞ + ‖L‖W N0/2+2,∞

)2
. (8.74)

Recalling the identity (7.16) for (I − H)(A − 1) we see that the two terms in
the right hand side of that formula are of the same type of the one appearing in
the formula (8.67) for (I −H)b. Therefore, in order to show (8.73) and (8.74),
one can proceed in the exact same fashion as was done before to obtain (8.65)
and (8.66). Also in this case the presence of a derivative acting on A − 1 in
(8.74) plays a crucial role, allowing us to use the bound (11.33) on operators
of the type ∂αQ0.

Proof of (8.59). Since Sk = Dk S for any 0 ≤ k ≤ N0/2, we can write

[P, Sk] f = [P, Dk]S + Dk[P, S] .

Thus, to prove (8.59) it is enough to show

‖[P, Dk]Sχ‖L2 �
(‖L‖W N1,∞ + ‖HL−‖W N1,∞

)2√
E (8.75)

‖[P, S]χ‖Hk �
(‖L‖W N1,∞ + ‖HL−‖W N1,∞

)2√
E (8.76)
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for any 0 ≤ k ≤ N0/2. Recall that the commutation [P, Dk] is explicitly given
in (8.61), whereas a direct computation shows that

[P, S] = P +
{(

Sb − 1

2
b

)

bα − S(∂t + b∂α)b

}

∂α

−
(

Sb − 1

2
b

)

{(∂t + b∂α)∂α + ∂α(∂t + b∂α)} + i S A∂α. (8.77)

Proof of (8.75). For 0 ≤ k ≤ N0/2, we first use (8.61) to obtain

‖[P, Dk]Sχ‖L2 � ‖∂αb‖W k−1,∞‖∂α(∂t + b∂α)Sχ‖Hk−1

+
k∑

j=1

‖(∂t + b∂α)D
j b‖L∞‖∂αSχ‖Hk−1 + ‖∂αb‖W k−1,∞

×
k∑

j=1

‖(∂t + b∂α)D
j Sχ‖L2 + ‖∂αA‖W k−1,∞‖∂αSχ‖Hk−1 . (8.78)

Commuting ∂t + b∂α with ∂α and S in the appropriate fashion, using (8.21) to
control the L2 norm of ∂α(∂t + b∂α)Skχ , and (8.13) to control ‖∂αSχ‖Hk−1 ,
we see that all of the L2-based norms in (8.78) are controlled by

√
E . To obtain

(8.75) We are then left with proving that for 0 ≤ k ≤ N0/2

‖∂αb‖W k−1,∞ �
(‖L‖W N1,∞ + ‖HL−‖W N1,∞

)2
(8.79)

‖(∂t + b∂α)∂αb‖W k−1,∞ �
(‖L‖W N1,∞ + ‖HL−‖W N1,∞

)2
(8.80)

‖∂αA‖W k−1,∞ �
(‖L‖W N1,∞ + ‖HL−‖W N1,∞

)2
. (8.81)

The bound (8.79) is implied by (8.68) which has been already proven. Up to
commuting ∂t + b∂α and ∂ j

α , for 0 ≤ j ≤ k − 1, we see that (8.80) would
follow from obtaining the same bound for (∂t + b∂α)∂

j
α∂αb. Such an estimate

has been already obtained in (8.72). Since also (8.81) has been shown to hold
true before, see (8.74), we have completed the proof of (8.75).

Proof of (8.76). Using (8.77), for any 0 ≤ k ≤ N0/2, we can estimate

‖[P, S]χ‖Hk � ‖Pχ‖Hk +
(∥
∥
∥
∥Sb − 1

2
b

∥
∥
∥
∥

Hk
‖bα‖Hk+1 + ‖S(∂t + b∂α)b‖Hk

)

× ‖∂αχ‖
W

N0
2 ,∞ +

∥
∥
∥
∥Sb − 1

2
b

∥
∥
∥
∥

Hk
‖∂α(∂t + b∂α)χ‖

W
N0
2 ,∞

+ ‖S(A − 1)‖Hk ‖∂αχ‖
W

N0
2 ,∞ .
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From (8.12) we know that

‖∂αχ‖
W

N0
2 ,∞ + ‖∂α(∂t + b∂α)χ‖

W
N0
2 ,∞ � ‖L‖

W
N0
2 ,∞ .

From Lemma 7.1 we see that ‖b‖Hk+1 � 1. To conclude the desired bound it
then suffices to show the following L2-estimates:

‖b‖Hk + ‖Sb‖Hk �
(‖L‖W N1,∞ + ‖HL−‖W N1,∞

)√
E (8.82)

‖S(∂t + b∂α)b‖Hk �
(‖L‖W N1,∞ + ‖HL−‖W N1,∞

)√
E (8.83)

‖S(A − 1)‖Hk �
(‖L‖W N1,∞ + ‖HL−‖W N1,∞

)√
E (8.84)

for any 0 ≤ k ≤ N0/2.
The L2 estimates above can all be proven in the same fashion, so we just

give details for the first one. As before, from (7.17) we know that (I −H)b =
Q0(L̃, L̃), where Q0 is as in(11.18). From (11.9) we then have

‖b‖Hk + ‖Sb‖Hk � ‖Q0(L̃, L̃)‖Xk
+ ‖ζα − 1‖Xk

(‖Q0(L̃, L̃)‖
W

k
2 ,∞

+ ‖Imζα‖W k,∞‖Q0(L̃, L̃)‖
H

k
2 +1

)
.

Using the estimate (11.30), and the energy bounds (8.2), we see that
‖Q0(L̃, L̃)‖Xk

is bounded by the right-hand side of (8.82). Moreover we can
use (11.3), and the a priori assumptions, to deduce that

‖Q0(L̃, L̃)‖
H

k
2 +1 � ‖L‖

W
N0
2 +2,∞‖L‖

H
N0
2 +3

� ‖L‖
W

N0
2 +2,∞ .

This, and ‖ζα − 1‖Xk
�

√
E , suffice to obtain (8.82). One can easily see

that (8.83) and (8.84) follow analogously, by using respectively the identities
(8.71) and (7.16).

Proof of (8.60). In order to complete the Energy estimate for Eχ we want
to prove the L∞ bound

∥
∥
∥

at

a
◦ k−1

∥
∥
∥

L∞ � ‖L̃‖2
W N1,∞ .

In what follows we are going to establish the stronger bound

∥
∥
∥

at

a
◦ k−1

∥
∥
∥

W
N0
2 ,∞ � ‖L̃‖2

W N1,∞ (8.85)
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and the additional estimate
∥
∥
∥

at

a
◦ k−1

∥
∥
∥

X N0

� ‖L̃‖W N1,∞‖L̃‖X N0
. (8.86)

The above bounds will also be useful later on. To prove (8.85)–(8.86) we will
use the formula (2.32) from [45], which reads

(I − H)
(at

a
◦ k−1 Aζα

)
= I1 + I2

I1 := 2i[w,H]uα
ζα

+ 2i[u,H]wα
ζα

I2 := − 1

π

∫ (
u(α)− u(β)

ζ(α)− ζ(β)

)2

uβ(β) dβ, (8.87)

in combination with the following Lemma:

Lemma 8.8 Let f ∈ Xk, 0 ≤ k ≤ N0, let A be as in (7.16), and w as defined
in (7.3). Assume that f and g are related by

(I − H)( f Aζα) = g.

Then, for any 0 ≤ k ≤ N0

‖ f ‖Xk
� ‖g‖Xk

+ (‖w‖Xk
+ ‖ζα − 1‖Xk

)

×
(
‖g‖

W
k
2 ,∞

+ ‖Imζα‖
W

k
2 +1,∞‖(g, w)‖

H
k
2 +1,∞

)
, (8.88)

and for 0 ≤ k ≤ N0
2 + 2

‖ f ‖W k,∞ � ‖Re g‖W k,∞ + ‖Imζα‖W k+1,∞‖g‖Hk+1 + ‖g‖Hk+1‖w‖W k+1,∞ .
(8.89)

Proof From the identity (8.135) we see that Aζα = 1 − iw, and therefore

(I − H) f = g + (I − H)(i fw).

(8.88) can then be derived by applying (11.9) to the above identity, using
(11.2) and the a priori bounds on w. The estimate (8.89) follows similarly
from (11.10), together with (11.7) and (11.3). ��

Notice that I2 in (8.87) is of the form T(u, u, uα), and therefore is easier to
estimate, so that we can skip its treatment and focus on I1. From Lemma 8.8
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we see that in order to prove (8.85) it suffices to obtain the bounds

‖ReI1‖
W

N0
2 +1,∞ � ‖L̃‖2

W N1,∞ (8.90)

‖I1‖
H

N0
2 +1

� ‖L̃‖W N1,∞ . (8.91)

For (8.86) it is enough to prove

‖I1‖X N0
� ‖L̃‖W N1,∞‖L̃‖X N0

. (8.92)

To show (8.90) we write explicitly ReI1 as follows:

ReI1 = Re

(
2

π

∫
w(α)− w(β)

ζ(α)− ζ(β)
uβ(β) dβ + 2

π

∫
u(α)− u(β)

ζ(α)− ζ(β)
wβ(β) dβ

)

= Re

(

w2iHuα
ζα

+ u2iHwα
ζα

)

− Re

(
2

π

∫
w(β)uβ(β)+ u(β)wβ(β)

ζ(α)− ζ(β)
dβ

)

. (8.93)

The first contribution above is estimated using (11.36):

∥
∥
∥
∥w2iHuα

ζα
+ u2iHwα

ζα

∥
∥
∥
∥

W
N0
2 +1,∞

� ‖w‖W N1,∞‖u‖W N1,∞ . (8.94)

To bound the second summand in (8.93) we use the identity

2Re
∫

f (β)

ζ(α)− ζ(β)
dβ =

∫
2Re f (β)

ζ(α)− ζ(β)
dβ

+ 2i
∫

f (β)(Imζ(α)− Imζ(β))

|ζ(α)− ζ(β)|2 dβ

and notice that

2Re
(
wuβ + uwβ

) = ∂β(wu + uw).

It follows that

Re

(
2

π

∫
w(β)uβ(β)+ u(β)wβ(β)

ζ(α)− ζ(β)
dβ

)

= 2iH∂α(wu + uw)

ζα
+ Ir

(8.95)
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where Ir is cubic remainder which can be easily estimated. Since

∥
∥
∥
∥H

∂α(wu + uw)

ζα

∥
∥
∥
∥

W
N0
2 +1,∞

� ‖w‖
W

N0
2 +3,∞‖u‖

W
N0
2 +3,∞ (8.96)

we have concluded the proof of (8.90). The estimates (8.91) and (8.92) follow
respectively from (11.3), and the bound (11.31) provided by Proposition 11.7.

8.2.3 Evolution of Eλ

The energy associated with λ is given by

Eλ(t) =
N0−2∑

k=0

∫
1

A

∣
∣
∣(∂t + b∂α)D

kλ

∣
∣
∣
2 + i

(
Dkλ

)h
∂α
(
Dkλ

)h
dα

+
N0/2∑

k=0

∫
1

A
|(∂t + b∂α)Skλ|2 + i(Skλ)

h∂α(Skλ)
h dα.

From (7.20) and (7.23) we have (∂t + b∂α)2λ+ i A∂αλ = ∑4
j=1 Gλ

j , where

Gλ
1 = −

[

u,H 1

ζα
+ H 1

ζα

]

(ζ αw) (8.97)

Gλ
2 = [u,H]

(

u
uα
ζ α

)

+ u[u,H]uα
ζα

(8.98)

Gλ
3 = −2[u,H]u · uα

ζα
(8.99)

Gλ
4 = 1

iπ

∫ (
u(α)− u(β)

ζ(α)− ζ(β)

)2

u(β) · ζβ(β) dβ. (8.100)

As already done for χ before, we use Proposition 8.7 to compute

d

dt
Eλ(t) =

N0−2∑

k=0

∫
2

A
Re
(
(∂t + b∂α)D

kλP Dkλ
)

− 1

A

at

a
◦ k−1

∣
∣
∣(∂t + b∂α)D

kλ

∣
∣
∣
2

dα (8.101)

− 2
N0−2∑

k=0

Re
∫

i∂t (D
kλ)h∂α(Dkλ)r

+ i∂t (D
kλ)r∂α(Dkλ)h + i∂t (D

kλ)r∂α(Dkλ)r dα (8.102)
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+
N0/2∑

k=0

∫
2

A
Re ((∂t + b∂α)SkλPSkλ)

− 1

A

at

a
◦ k−1|(∂t + b∂α)Skλ|2 dα (8.103)

− 2
N0/2∑

k=0

Re
∫

i∂t (Skλ)
h∂α(Skλ)r + i∂t (Skλ)

r∂α(Skλ)h

+ i∂t (Skλ)
r∂α(Skλ)r dα. (8.104)

Since ‖A − 1‖L∞ ≤ 1
2 we see that

(8.101)+ (8.103) �
√

Eλ(t)
N0−2∑

k=0

(
‖Dk Gλ‖L2 + ‖[P, Dk]λ‖L2

)
(8.105)

+
√

Eλ(t)
N0/2∑

k=0

(‖Sk Gλ‖L2 + ‖[P, Sk]λ‖L2
)

(8.106)

+ Eλ(t)
∥
∥
∥

at

a
◦ k−1

∥
∥
∥

L∞ . (8.107)

As before, the terms in (8.102) and (8.104) are remainder terms: there is
no logarithmic loss in estimating them already in [45], so we can disregard
them. Moreover ‖at/a ◦ k−1‖L∞ has been already estimated in Sect. 8.2.2, see
(8.85). Also, the terms ‖[P, Dk]λ‖L2 and ‖[P, Sk]λ‖L2 can be treated exactly
as done in Sect. 8.2.2. Therefore, to control the time evolution of Eλ by the
right-hand side of (8.44) it suffices to show

‖Gλ‖X N0
� ‖L(t)‖2

W N1,∞‖L̃‖X N0
. (8.108)

This is done in the following sections by estimating each of the terms in
(8.97)–(8.100).

Estimate of (8.97). Observe that

Gλ
1 = − 2

π

∫
(u(α)− u(β))(Imζ(α)− Imζ(β))

|ζ(α)− ζ(β)|2 w(β)ζβ(β) dβ

and therefore it is an operator of the form T(u, Imζ,wζα) which can be esti-
mated by means of Proposition 11.7.

Estimate of (8.98). The term Gλ
2 is more delicate. In order to estimate it we

need to exploit its special structure, which allows the appearance of the Hilbert
transform acting on products only when the arguments are perfect derivative
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of functions that we can control. Let us start by explicitly rewriting Gλ
2 as

Gλ
2 = uH

(

u
uα
ζα

)

− H
(

uu
uα
ζ α

)

+ u2Huα
ζα

− uH
(

u
uα
ζα

)

. (8.109)

We can then apply Dk for k = 1, . . . , N0, and Sk , for k = 0, . . . , N0/2, to
the above expression and use the commutation identities to distribute them.
This procedure will give many terms, most of which can be estimated directly
using the L2-bounds given by Proposition 11.7. There will only two be types
of dangerous terms:

1. Terms for which DN0 or SN0/2 fall on uα;
2. Terms that require the estimate in L∞ of an Hilbert transform of a product,

such as H 1
ζα

uuα .

More precisely, denoting by �N0 either DN0 or SN0/2, all the dangerous
terms are:

A1 = �N0uH
(

u
uα
ζ α

)

, A2 = uH
(

u
�N0uα
ζ α

)

, A3 = −H
(

uu
�N0uα
ζα

)

A4 = 2u�N0uHuα
ζ α
, A5 = u2H�

N0uα
ζα

, A6 = −�N0uH
(

u
uα
ζα

)

,

A7 = −uH
(

u
�N0uα
ζα

)

.

In particular, using Propositions 11.7 and 11.4, one can verify that

∥
∥
∥
∥�

N0

(

uH
(

u
uα
ζ α

))

− (A1 + A2)

∥
∥
∥
∥

L2

+
∥
∥
∥
∥−�N0H

(

uu
uα
ζ α

)

− A3

∥
∥
∥
∥

L2

+
∥
∥
∥
∥�

N0

(

u2Huα
ζα

)

− (A4 + A5)

∥
∥
∥
∥

L2

+
∥
∥
∥
∥−�N0

(

uH
(

u
uα
ζα

))

− (A6 + A7)

∥
∥
∥
∥

L2
� ‖u‖2

W N1,∞‖u‖X N0
.

It follows that

∥
∥
∥�

N0 Gλ
2

∥
∥
∥

L2
�

∥
∥
∥
∥
∥
∥

7∑

j=1

A j

∥
∥
∥
∥
∥
∥

L2

+ ‖u‖2
W N1,∞‖u‖X N0

.
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To estimate the terms A j we need to combine them appropriately. More pre-
cisely we look at the combinations

A2 + A3 = − 1

iπ

∫
(u(α)− u(β))u(β)

ζ (α)− ζ (β)
�N0uβ(β) dβ (8.110)

A5 + A7 = 1

iπ
u(α)

∫
u(α)− u(β)

ζ(α)− ζ(β)
�N0uβ(β) dβ (8.111)

A1 + A6 = �N0u

(

H
(

u
uα
ζ α

)

− H
(

u
uα
ζα

))

. (8.112)

The remaining term A4 can be directly bounded using Lemma 11.8

‖A4‖L2 �
∥
∥
∥
∥u�N0uHuα

ζα

∥
∥
∥
∥

L2

� ‖u‖L∞‖�N0u‖L2

∥
∥
∥
∥H

uα
ζα

∥
∥
∥
∥

L∞
� ‖u‖2

W N1,∞‖u‖X N0
.

The terms (8.110) and (8.111) can be estimated by means of (11.31) (case
k = 0) in Proposition 11.7 since, upon commuting �N0 and ∂α , they are linear
combinations of terms of the form

Q0(u, ∂αu�N0u), Q0

(
u, ∂α(u�

N0u)
)
, Q0(u, u�N0u) or uQ0(u, ∂α�

N0u).

Notice that there are no singular integrals that need to be estimated in L∞
here.

To bound (8.112) we rewrite it as:

(8.112) = �N0u

(

H 1

ζ α
(uuα)+ H 1

ζα
(uuα)

)

− �N0 u

(

H 1

ζα
(uuα)+ H 1

ζα
(uuα)

)

= �N0u

(

H 1

ζ α
+ H 1

ζα

)

(uuα)− �N0u H 1

ζα
∂α(uu) =: B1 + B2.

(8.113)

The first term B1 in (8.113) is quartic and can therefore be easily estimated.
The second term B2 can instead be bounded by means of Lemma 11.8 using
the fact that the argument of the Hilbert transform is a perfect derivative:

‖B2‖ � ‖�N0u‖L2

∥
∥
∥
∥H

1

ζα
∂α(uu)

∥
∥
∥
∥

L∞
� ‖u‖X N0

‖u2‖W N1,∞ .

Estimate of (8.99). The term Gλ
3 can be treated similarly to Gλ

2. Using the
same notation as above, and indicating with “+ · · · ” harmless terms that can
be controlled directly by means of Propositions 11.7 or 11.4, we can write
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�N0 Gλ
3 = −2�N0

(

[u,H]u · uα
ζα

)

= −2�N0 uHu · uα
ζα

− 2[u,H]u · �N0 uα
ζα

+ · · · .
(8.114)

Since u · uα = Re (uūα) the first summand in (8.114) is like B2 above.
The second summand in (8.114) is of the same form as (8.110) above, and
therefore can be estimated similarly.

Estimate of (8.100). The term Gλ
4 is of the type T(L̃, L̃, L̃) and can therefore

be treated directly using (11.34) in Proposition 11.7. This concludes the proof
of (8.108), hence of (8.44) for f = λ.

8.2.4 Evolution of Ev

The energy associated with v is given by

Ev(t) =
N0∑

k=0

∫
1

A

∣
∣
∣(∂t + b∂α)D

kv1

∣
∣
∣
2 + i Dkv1∂αDkv1 dα

+
N0/2∑

k=0

∫
1

A
|(∂t + b∂α)Skv1|2 + i Skv1 ∂αSkv1 dα .

Here v1 = (I − H)v and from (7.19), (7.22), (7.26) we have (∂t + b∂α)2v1 +
i A∂αv1 = ∑5

j=1 Gv1
j , with

Gv1
1 = (I − H)Pv (8.115)

Gv1
2 = −2[u,H]∂α

ζα
Pχ (8.116)

Gv1
3 = −2[u,H]∂α

ζα

(

w
∂α

ζα
χ

)

(8.117)

Gv1
4 = −i[(H + H)u,H]

(
∂α

ζα

)2

χ (8.118)

Gv1
5 = 1

iπ

∫ (
u(α)− u(β)

ζ(α)− ζ(β)

)2

vβ(β) dβ. (8.119)

Using (8.48) we compute

d

dt
Ev(t) =

N0∑

k=0

∫
2

A
Re
(
(∂t +b∂α)D

kv1 P Dkv1

)
− 1

A

at

a
◦ k−1

∣
∣
∣(∂t + b∂α)D

kv1

∣
∣
∣
2

dα

+
N0/2∑

k=0

∫
2

A
Re ((∂t + b∂α)Skv1 PSkv1)− 1

A

at

a
◦ k−1|(∂t + b∂α)Skv1|2 dα.
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Since ‖A − 1‖L∞ ≤ 1
2 we see that

d

dt
Ev(t) �

√
Ev1(t)

N0∑

k=0

(
‖Dk Gv1‖L2 + ‖[P, Dk]v1‖L2

)

+ √
Ev1(t)

N0/2∑

k=0

(‖Sk Gv1‖L2 + ‖[P, Sk]v1‖L2
)+ Ev1(t)

∥
∥
∥

at

a
◦ k−1

∥
∥
∥

L∞ .

Since‖at/a ◦ k−1‖L∞ has been already estimated in (8.85), and‖[P, Dk]v1‖L2

and ‖[P, S]v1‖L2 can be bounded as in Sect. 8.2.2, we only need to suitably
control ‖Gv1‖X N0

by showing

‖Gv1‖X N0
�
(‖L(t)‖W N1,∞ + ‖HL−(t)‖W N1,∞

)2‖L‖X N0
. (8.120)

This bound is proven below by separately estimating each of the terms (8.115)–
(8.119).

Estimate of (8.115). From (11.2) we see that

‖Gv1
1 ‖X N0

� ‖Pv‖X N0
+ ‖L̃‖X N0

‖Pv‖H N0/2+1 . (8.121)

Since the second summand above is easier to estimate (it is a quartic expression)
we just show how to control the X N0 -norm of Pv in (7.22). With the exception
of the last term, i(at/a)◦k−1 A∂αχ , these are all terms of the form T(L , L , Lα)
for which (11.35) applies directly. To estimate the remaining term we first
notice that we can essentially replace A with 1 in view of Lemma 7.1 and the
estimates (8.85) and (8.86). We then have
∥
∥
∥

at

a
◦ k−1 ∂αχ

∥
∥
∥

X N0

�
∥
∥
∥

at

a
◦ k−1

∥
∥
∥

X N0

‖∂αχ‖
W

N0
2 ,∞ +

∥
∥
∥

at

a
◦ k−1

∥
∥
∥

W
N0
2 ,∞‖∂αχ‖X N0

.

Using (8.85)–(8.86) to bound the norms of (at/a) ◦ k−1, and (8.32)–(8.33) to
control the norms of ∂αχ we see

∥
∥
∥

at

a
◦ k−1 A∂αχ

∥
∥
∥

X N0

� ‖L(t)‖2
W N1,∞‖L‖X N0

as desired.
Estimate of (8.116). Since Pχ is a cubic term, (8.116) is a quartic term.

Moreover it is of the form Q0(u, ∂αPχ). Thus we can use (11.31) to obtain

‖(8.116)‖X N0
� ‖u‖

W
N0
2 +2,∞‖Pχ‖X N0

+ ‖Pχ‖
W

N0
2 +2,∞‖u‖X N0

� ε1‖Pχ‖X N0
+ ‖Pχ‖

W
N0
2 +3,∞‖u‖X N0

.
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738 A. D. Ionescu, F. Pusateri

One can then use bounds obtained previously on ‖Pχ‖X N0
and the estimate

‖Pχ‖
W

N0
2 +3,∞ � ε1‖L‖2

W
N0
2 ,∞,

which is easy to derive, to deduce the desired bound for (8.116).
Estimate of (8.117). This term is of the form

(8.117) = Q0

(

u, ∂α

(

w
∂α

ζα
χ

))

.

Applying (11.31), followed by product estimates, (8.32)–(8.33), and the use
of (8.13), we see that

‖(8.117)‖X N0
� ‖u‖

W
N0
2 +2,∞

∥
∥
∥
∥w

∂α

ζα
χ

∥
∥
∥
∥

X N0

+
∥
∥
∥
∥w

∂α

ζα
χ

∥
∥
∥
∥

W
N0
2 +2,∞

‖u‖X N0

+ ‖u‖
W

N0
2 +1,∞

∥
∥
∥
∥w

∂α

ζα
χ

∥
∥
∥
∥

W
N0
2 +1,∞

‖ζα − 1‖X N0
� ‖L‖X N0

‖L‖2
W N1,∞ .

Estimate of (8.118). This contribution can also be written in terms of the
operator Q0 as

(8.118) = Q0

(

(H + H)u, ∂α
(
∂α

ζα
χ

))

.

We can then use (11.31) to obtain

‖(8.118)‖X N0
� ‖∂α(H + H)u‖

W
N0
2 +1,∞

∥
∥
∥
∥
∂α

ζα
χ

∥
∥
∥
∥

X N0

+
∥
∥
∥
∥
∂α

ζα
χ

∥
∥
∥
∥

W
N0
2 +1,∞

‖(H + H)u‖X N0
+ ∥
∥(H + H)u∥∥

H
N0
2 +2,∞

×
∥
∥
∥
∥
∂α

ζα
χ

∥
∥
∥
∥

W
N0
2 +2,∞

‖ζα − 1‖X N0
.

From (11.6), (11.28) and (11.36), and (11.4), we deduce

‖∂α(H + H)u‖
W

N0
2 +1,∞ � ‖L‖2

W
N0
2 +3,∞

‖(H + H)u‖X N0
� ‖L‖

W
N0
2 +1,∞‖L‖X N0

.
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Using these bounds we eventually see that

‖(8.118)‖X N0
� ‖L‖X N0

‖L‖2

W
N0
2 +3,∞ .

Estimate of (8.119). This term is of the form T(L , L , Lα) and therefore
(11.35) can be applied directly.

8.3 Proof of Proposition 8.3: control in terms of the Z ′ norm

Recall the definitions

L̃ := (ζα − 1, u, Imζ,w), L := (ζα − 1, u, w, Imζ, ∂αχ, v) (8.122)

and

L− := (ζα − 1, u, w, ∂αχ, v). (8.123)

We want to show

‖L(t)‖W N1,∞ � ‖(h(t), φ(t))‖Z ′ (8.124)

and

∥
∥HL−(t)

∥
∥

W N1,∞ � ‖(h(t), φ(t))‖Z ′ (8.125)

where the Z ′ norm is defined in (1.8). These estimates rely on the following
Lemmas:

Lemma 8.9 Assume that the a priori estimate (2.9) holds. Then there exists
constants ci , di , for i = 1, . . . , 5 such that

L−
i (t, α)− ci∂αχ(t, α)− di∂αλ(t, α) = Q(t, α) (8.126)

where Q denotes a quadratic expression in L̃ satisfying

‖Q(t)‖Hk � ‖L̃(t)‖Hk+1‖L̃(t)‖
W

k
2 +1,∞ . (8.127)

Lemma 8.10 Assume that the a priori estimates (2.8) and (2.9) hold, and that

sup
[0,T ]

(1 + t)
1
8 ‖φ(t)‖L∞ ≤ ε1, (8.128)
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as guaranteed by (4.35). Then for any 0 ≤ k ≤ N1 and any t ∈ [0, T ] we
have,

‖∂αχ(t)‖W k,∞ � ‖(h(t), φ(t))‖Z ′ (8.129)

‖∂αλ(t)‖W k,∞ � ‖(h(t), φ(t))‖Z ′ (8.130)

and

‖H∂αχ(t)‖W k,∞ � ‖(h(t), φ(t))‖Z ′ (8.131)

‖H∂αλ(t)‖W k,∞ � ‖(h(t), φ(t))‖Z ′ . (8.132)

Proof of Proposition 8.3 The estimate

‖L−‖W N1,∞ + ‖HL−‖W N1,∞ � ‖(h, φ)‖Z ′

clearly follows by combining the above Lemmas. To obtain (8.124) we need
to use in addition the identity

Imζ(t, α) = h(t,Reζ(t, α))

to estimate Imζ in W N1,∞:

‖Imζ‖W N1,∞ � ‖h‖W N1,∞‖Reζα‖W N1,∞ � ‖h‖W N1,∞
(
1 + ‖Reζα − 1‖H N1+1

)
� ‖h‖W N1,∞ .

��

8.3.1 Proof of Lemma 8.9

To prove Lemma 8.9 we use the identities (2.44), (2.50), (3.38) and (2.35)
derived by Wu [45], which relate the components of L−, ζα − 1, u, w and v,
to ∂αχ and ∂αλ. These are given respectively by

u = ∂αλ+ u(1 − ζα)+ 1

2
(ζα − ζα)u + 1

2
ζ α

(

H 1

ζα
+ H 1

ζ α

)

(uζα)

(8.133)

wζα = − i

2
∂αχ + 1

2
H
(

uα
uζα
ζα

)

− 1

2
[u,H]∂α(uζα)

ζα

− 1

2π i

∫
(u(α)− u(β))(ζα(α)− ζβ(β))

(ζ (α)− ζ (β))
2 u(β)ζβ(β) dβ
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+ 1

2
(ζα − ζ α)w − 1

2
uαu + 1

2
ζ α

(

H 1

ζα
+ H 1

ζ α

)

(wζα + uuα)

− ζ α

π

∫

Im

(
u(α)− u(β)

ζ (α)− ζ (β)

)2

u(β)ζβ(β) dβ (8.134)

ζα − 1 = w

i A
− A − 1

A
(8.135)

v = 2u − (H + H)u − [u,H]ζα − ζα

ζα
. (8.136)

From (8.133) we can schematically write

u − ∂αλ = L̃ · L̃ + Q(L̃, L̃)

up to cubic and higher order terms whose arguments have the same regularity
of L̃ . Commuting derivatives via (11.39b) and using (11.48), it is then easy to
verify that u − ∂αλ = Q, where Q is a quadratic term satisfying the estimate
(8.127) in the statement. Similarly, from (8.134) we deduce that up to cubic
terms

w − i

2
∂αχ = H(L̃ · L̃α)+ Q0(L̃, L̃α)+ Q(L̃, L̃).

Arguing as above using the bounds (11.3), (11.30) and (11.48), it follows that
w− i

2∂αχ = Q, for some Q satisfying (8.127). Using (8.135), the last equality
above, and the quadratic bounds on A − 1 given by (7.16), we can write

ζα − 1 = w

i A
− A − 1

A
= −iw + iw

A − 1

A
− A − 1

A
= 1

2
∂αχ + Q,

so that (8.126) is verified also for the component ζα − 1. Combining (8.133)
with the identity u − ∂αλ = Q, and the quadratic bounds on H + H given in
(11.6), we see that v− 2∂αλ = Q, for Q as above. Thus we have checked that
(8.126) holds true for all i = 1, . . . , 5. ��

8.3.2 Proof of Lemma 8.10

Let H = Hζ and let H0 be the flat Hilbert transform. We start by establishing
the following estimate:

∥
∥(I − H)( f ◦ Reζ )− [

(I − H0) f (1 + h′)
] ◦ Reζ

∥
∥

W k,∞

� ‖ f ‖W k+1,∞‖h‖W k+2,∞ . (8.137)
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742 A. D. Ionescu, F. Pusateri

for any 0 ≤ k ≤ N1 + 4. Notice that since Imζ(t, α) = h(t,Reζ(t, α)) we
have ζ = (x + ih(x)) ◦ Reζ . Thus by a change of variables one has

(I − H)( f ◦ Reζ ) = (I − Hx+ih(x)) f ◦ Reζ.

Expanding out the denominator in the expression for Hx+ih(x) f we see that

(I − Hx+ih(t,x)) f = (I − H0)
[

f (t, ·)(1 + h′(t, ·))] (x)+ R f (t, x)

with R f (t, x) := 1

iπ

∫

H

(
h(x)− h(y)

x − y

)
h(x)− h(y)

(x − y)2
f (y)(1 + h′(y)) dy

(8.138)

for some smooth function H . To prove (8.137) it then suffices to show that R f in
W k,∞ is bounded by the right-hand side of (8.137). Applying the commutation
identity (11.39b) in order to distribute derivatives, and the L∞ estimate (11.40),
it is not hard to see that

‖R f ‖W k,∞ � ‖h‖W k+2,∞‖ f (1 + h′)‖W k+1,∞ � ‖ f ‖W k+1,∞‖h‖W k+2,∞ .

We will now show the estimates (8.130) and (8.132). The estimates (8.129)
and (8.131) can be proven in a similar fashion, so we will not detail the proof
here.

Proof of (8.130). Recall the definition of λ

λ = (I − H)ψ = (I − H)(φ ◦ Reζ ).

Applying (8.137) with f = φ, and using the assumption (8.128), we see that

∥
∥∂αλ− ∂α

[
(I − H0)φ(1 + h′) ◦ Reζ

]∥
∥

W k,∞

� ‖φ‖W k+1,∞‖h‖W k+2,∞ � ‖(h, φ)‖Z ′ (8.139)

for any 0 ≤ k ≤ N1+2. Moreover, using ‖∂x H0 f ‖L∞ � ‖� f ‖W 1,∞ , standard
product estimates, and the hypothesis (8.128), one can estimate

∥
∥∂α

[
(I − H0)φ(1 + h′)

] ◦ Reζ
∥
∥

W k,∞

�
∥
∥∂x

[
(I − H0)φ(1 + h′)

]∥
∥

W k,∞

� ‖∂x (I − H0)φ‖W k+1,∞ + ‖φh′‖W k+2,∞ � ‖(h, φ)‖Z ′ . (8.140)

This and (8.139) give us for all 0 ≤ k ≤ N1 + 2

‖∂αλ‖W k,∞ � ‖(h, φ)‖Z ′, (8.141)
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which in particular implies (8.130).
Proof of (8.132). Let us write

λ = F ◦ Reζ with F(t, x) = (
I − Hx+ih(t,x)

)
φ(t, ·). (8.142)

Then ∂αλ = ∂x F ◦ Reζ ∂αReζ , and since we know that ζα − 1 has uniformly
bounded H N1+5 norm, using also (8.141), we can easily deduce that

‖∂x F‖W k,∞ � ‖∂αλ‖W k,∞ � ‖(h, φ)‖Z ′, (8.143)

for any 0 ≤ k ≤ N1 + 2. Using the definition of H, and making a change of
variables, we see that

H 1

ζα
∂αλ(t, α) = 1

iπ

∫
∂x F(t,Reζ(t, β))

ζ(α)− ζ(β)
∂βReζ(t, β) dβ

= 1

iπ

∫
∂y F(t, y)

x + ih(x)− (y + ih(y))
dy

∣
∣
∣
∣
x=Reζ(t,α)

.

Using also (8.141), it follows that

‖H∂αλ(t, α)‖W N1,∞ �
∥
∥
∥
∥H

1

ζα
∂αλ(t, α)

∥
∥
∥
∥

W N1,∞
+ ‖∂αλ‖W N1+1,∞

�
∥
∥
∥
∥

∫
∂y F(t, y)

x + ih(x)− (y + ih(y))
dy

∥
∥
∥
∥

W N1,∞
+‖(h, φ)‖Z ′ .

Setting

G(t, x) =
∫

∂y F(t, y)

x + ih(x)− (y + ih(y))
dy, (8.144)

we see that in order to obtain (8.132) it suffices to show

‖G‖W N1,∞ � ‖(h, φ)‖Z ′ . (8.145)

Expanding the denominator in (8.144), we can write

G(t, x) = (I − H0)∂x F(t, ·)(x)+ G1(t, x)

with G1(t, x) := 1

iπ

∫

H

(
h(x)− h(y)

x − y

)
h(x)− h(y)

(x − y)2
∂y F(t, y) dy

(8.146)
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for some smooth function H . Expanding the denominator in the expression
for F we can write:

F(t, x) = (I − H0)[(1 + h′(t, ·))φ(t, ·)](x)+ Rφ(t, x)

where Rφ is given by (8.138). It follows that

G = (I − H0)∂x (I − H0)[φ(1 + h′)] + (I − H0)∂x Rφ + G1. (8.147)

To obtain (8.145) it is then enough to have

‖H0∂x [φ(1 + h′)]‖W N1,∞ � ‖(h, φ)‖Z ′, (8.148)

‖(I − H0)∂x Rφ‖W N1,∞ � ‖(h, φ)‖Z ′, (8.149)

‖G1‖W N1,∞ � ‖(h, φ)‖Z ′ . (8.150)

The bound (8.148) has been already shown to hold true in the above paragraph,
see (8.140). We also have

‖Rφ‖W N1+2,∞ � ‖φ‖W N1+3,∞‖h‖W N1+4,∞ � ‖(h, φ)‖Z ′

which is stronger than (8.149). Using again commutation identities and
(11.40), together with (8.143), we get

‖G1‖W N1,∞ � ‖h‖W N1+2,∞‖∂x F‖W N1+1,∞ � ‖h‖W N1+2,∞‖(h, φ)‖Z ′

which is enough for (8.150). ��

9 Proof of Proposition 2.2: the diffeomorphism k

This section contains the proof of Proposition 2.2. The main issue is to show
that the change of coordinates k is a uniformly controlled diffeomorphism
for all times. This is a substantial improvement of the analogous analysis
performed by Wu [45, p. 124-127], and relies on a special null structure present
in the transport equation (9.5) for k.

We start by assuming a priori that

sup
t∈[0,T ]

‖kα(t)− 1‖W N0/2+3,∞ ≤ 1/2. (9.1)

Furthermore we assume, see (2.8),

sup
t∈[0,T ]

[
(1 + t)−p0‖(h(t), ∂xφ(t))‖X N0

+ √
1 + t‖(h(t), φ(t))‖Z ′

]
≤ ε1,

(9.2)
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and (2.9), that is

sup
t∈[0,T ]

[
(1 + t)−p0‖L̃(t)‖X N0

+ ‖L̃(t)‖H N1+5 + √
1 + t‖L̃(t)‖W N1,∞

]
≤ ε1.

(9.3)

We then aim to conclude

sup
[0,T ]

‖kα(t)− 1‖W N0/2+3,∞ � ε0 + ε2
1 (9.4)

as a consequence of the following Lemmas:

Lemma 9.1 (Approximation of kt ) Let k be defined as in (7.2) then the fol-
lowing formula holds:

(I − Hz)kt = −[zt ,Hz] zα − kα
zα

. (9.5)

Under the assumptions (9.2) and (9.3) there exists γ > 0, such that for any
t ∈ [0, T ]
∥
∥
∥
∥
∥
∂α[u,Hζ ]ζ α − 1

ζα
− T0(h, φ) ◦ Reζ

∥
∥
∥
∥
∥

W N0/2+3,∞
� ε2

1(1 + t)−1−γ (9.6)

and
∥
∥
∥
∥
∥
∂α[u,Hζ ]ζ α − 1

ζα
− T0(h, φ) ◦ Reζ

∥
∥
∥
∥
∥

H N0/2+4

� ε2
1(1 + t)−1/2−γ , (9.7)

with T0 given by

T0( f, g) := ∂x [(I − H0)gx , H0](I − H0) fx , (9.8)

where H0 is the flat Hilbert transform, H0 = Hid according to (1.4).

Lemma 9.2 (Estimate for T0) Under the a priori assumptions (9.2), there
exists γ > 0 such that

‖T0(h, φ)‖W N0/2+3,∞ � ε2
1(1 + t)−1−γ , (9.9)

‖T0(h, φ)‖H N0/2+4 � ε2
1(1 + t)−1/2−γ . (9.10)

The proofs of Lemma 9.1 and 9.2 are in Sect. 9.1 and 9.2 respectively. We
now show how Proposition 2.2 follows from them.
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Proof of Proposition 2.2 Since we know by our a priori assumption that k is
diffeomorphism, we can define

K (t, α) := [zt ,Hz] zα − kα
zα

◦ k−1. (9.11)

From the properties of the Hilbert transform and the definition of ζ and u in
(7.3), we see that

K (t, α) = [u,Hζ ]ζ α − 1

ζα
(9.12)

and

(I − Hζ )(kt ◦ k−1) = −K (t, α). (9.13)

Applying the estimate (11.11) for the inversion of I − H, with f = kt ◦ k−1

and g = −K , we see that

‖∂α(kt ◦ k−1)‖W N0/2+3,∞ � ‖∂αK (t, α)‖W N0/2+3,∞ + ‖ζα − 1‖W N0/2+4,∞

‖∂αK (t, α)‖H N0/2+4 .

From the a priori assumption (9.3) and (9.1) it follows that

‖∂αkt‖W N0/2+3,∞ �‖∂αK (t, α)‖W N0/2+3,∞ +ε1(1+t)−1/2‖∂αK (t, α)‖H N0/2+4 .

(9.14)

Applying successively (9.6) and (9.9) we see that

‖∂αK (t, α)‖W N0/2+3,∞ � ε2
1(1 + t)−1−γ + ‖T0(h, φ)‖W N0/2+3,∞ � ε2

1(1 + t)−1−γ .
(9.15)

Similarly, from (9.7) and (9.10) we have

‖∂αK (t, α)‖H N0/2+4 � ε2
1(1 + t)−1/2−γ + ‖T0(h, φ)‖H N0/2+4 � ε2

1(1 + t)−1/2−γ .
(9.16)

Plugging (9.15) and (9.16) into (9.14) gives

‖∂αkt (t)‖W N0/2+3,∞ � ε2
1(1 + t)−1−γ
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whence

‖kα(t)−1‖W N0/2+3,∞ � ‖kα(0)−1‖W N0/2+3,∞

+
t∫

0

‖∂skα(s)‖W N0/2+3,∞ ds �ε0+Cγ ε
2
1.

��

9.1 Proof of Lemma 9.1

The identity (9.5) is proven by Wu in Proposition 2.4 of [45]. Let K be given
by (9.11):

K (t, α) = [u,Hζ ]ζ α − 1

ζα
= Q0(u, ζ α − 1), (9.17)

where Q0 is the bilinear operator defined in (11.18). We aim to approximate
∂αK by T0(h, φ) showing

‖∂αK − T0(h, φ) ◦ Reζ‖W N0/2+3,∞ � ε2
1(1 + t)−1−γ (9.18)

‖∂αK − T0(h, φ) ◦ Reζ‖H N0/2+4 � ε2
1(1 + t)−1/2−γ . (9.19)

Step 1: Approximation of u. Let H0 denote the flat Hilbert transform, H0 =
Hid according to (1.4). We start by showing

‖u − (I − H0)φx ◦ Reζ‖W N0/2+5,∞ � ε2
1(1 + t)−1/2−γ . (9.20)

Using the identity (8.133) as in the proof of Lemma 8.9, we can schematically
write

u − ∂αλ = L̃ · L̃ + Q(L̃, L̃),

so that using (11.41) to estimate Q, and interpolating between the a priori
decay assumption and the Sobolev bounds, we get

‖u − ∂αλ‖W N0/2+5,∞ � ‖L̃‖2
W N0/2+7,∞ � ε2

1(1 + t)−3/4.

To obtain (9.20) it then suffices to show

‖∂αλ− (I − H0)φx ◦ Reζ‖W N0/2+5,∞ � ε2
1(1 + t)−1/2−γ . (9.21)
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Looking at (8.139) and (8.140) in the proof of Lemma 8.10 one can see that

‖∂αλ− ∂α [(I − H0)φ ◦ Reζ ]‖W N0/2+5,∞ � ‖φ‖W N0/2+7,∞‖h‖W N0/2+8,∞

� ε2
1(1 + t)−5/8,

having used (4.35) in the last inequality. Since we also have

‖∂α [(I − H0)φ ◦ Reζ ] − (I − H0)φx ◦ Reζ‖W N0/2+5,∞

= ‖(I − H0)φx ◦ Reζ (Reζα − 1)‖W N0/2+5,∞

� ‖�φ‖W N0/2+6,∞‖ζα − 1‖W N0/2+5,∞ � ε2
1(1 + t)−1,

we have verified (9.21), hence (9.20) with β = 1/8.
Step 2: Approximation of ζα − 1. We want to show that ζα − 1 can be

approximated as follows:

‖ζα − 1 − i(I − H0)hx ◦ Reζ ∂αReζ‖W N0/2+5,∞ � ε2
1(1 + t)−1/2−γ

(9.22)
∥
∥Hζ (ζα − 1 − i(I − H0)hx ◦ Reζ ∂αReζ )

∥
∥

W N0/2+3,∞ � ε2
1(1 + t)−1/2−γ ,

(9.23)

for some γ > 0. Putting together the identities (8.135) and (8.134), as in the
proof of Lemma 8.9, we can write

ζα − 1 − 1

2
∂αχ = H(L̃ · L̃)+ L̃ · HL̃α + L̃ · L̃α + Q(L̃, L̃)+ A − 1 + · · ·

(9.24)

where operators of the type Q are defined by (11.19)–(11.21), A is defined in
(7.12), and “· · · ” denotes cubic or higher order terms which are more easily
estimated, and we will therefore disregard. Notice that interpolating between
the bounds provided by the a priori assumptions (9.3), for large enough p one
has

‖L̃(t)‖W N0/2+7,p � ε1(1 + t)−2/5. (9.25)

Combining this with the estimates (11.37) and (11.36) for H in W k,∞, we see
that

∥
∥H(L̃ · L̃)+ L̃ · HL̃α + L̃ · L̃α

∥
∥

W N0/2+5,∞

�
(‖L̃‖W N0/2+6,p + ‖L̃‖W N0/2+6,∞

) ‖L̃‖W N0/2+6,∞ � ε2
1(1 + t)−4/5

(9.26)
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and

∥
∥H (H(L̃ · L̃)+ L̃ · HL̃α + L̃ · L̃α

)∥
∥

W N0/2+3,∞

�
(‖L̃‖W N0/2+6,p + ‖L̃‖W N0/2+5,∞

) ‖L̃‖W N0/2+6,∞ � ε2
1(1 + t)−4/5

(9.27)

having chosen p large enough so that (9.25) holds.
We now want to obtain similar bounds for Q(L̃, L̃) and A − 1, and more

precisely show

∥
∥Q(L̃, L̃)

∥
∥

W N0/2+5,∞ � ε2
1(1 + t)−4/5 (9.28)

∥
∥HQ(L̃, L̃)

∥
∥

W N0/2+3,∞ � ε2
1(1 + t)−3/5 (9.29)

and

‖A − 1‖W N0/2+5,∞ � ε2
1(1 + t)−4/5 (9.30)

‖H(A − 1)‖W N0/2+3,∞ � ε2
1(1 + t)−3/5. (9.31)

The first bound (9.28) follows directly from (11.29) and (9.25). To obtain
(9.29) first notice that the inequality in (11.48), which is an application of the
L2 estimates in Corollary 11.4, gives

∥
∥Q(L̃, L̃)

∥
∥

H N0/2+5 � ‖L̃‖H N0/2+6‖L̃‖W N0/2+5,∞ � ε2
1(1 + t)−2/5.

Interpolating this and the L∞ bound (9.28) gives

∥
∥Q(L̃, L̃)

∥
∥

W N0/2+3,p � ε2
1(1 + t)−3/5,

provided p is large enough. (9.29) then follows by applying (11.37).
Both (9.30) and (9.31) rely on the identity (7.16), which we can schemati-

cally write as

(I − H)(A − 1) = [L̃,H]L̃α + [L̃,H]L̃ + · · · (9.32)

where once again “· · · ”stands for cubic order terms which we are going to
disregard. Applying (11.10) we get

‖A − 1‖W N0/2+5,∞ �
∥
∥[L̃,H]L̃α + [L̃,H]L̃∥∥W N0/2+5,∞

+ ε1(1 + t)−2/5
∥
∥[L̃,H]L̃α + [L̃,H]L̃∥∥H N0/2+6 .
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We can then bound the above right-hand side by using (11.37), (9.25), and the
boundedness of H in (11.3):

‖A − 1‖W N0/2+5,∞ �
(‖L̃‖W N0/2+7,p + ‖L̃‖W N0/2+7,∞

)2

+ ε2
1(1 + t)−1+p0 � ε2

1(1 + t)−4/5.

We have therefore obtained (9.30). Since (9.32) holds true also for H(A − 1),
up to a sign, the estimate (9.31) follows as above.

Putting together (9.24)–(9.31) we have

∥
∥
∥
∥ζα − 1 − 1

2
∂αχ

∥
∥
∥
∥

W N0/2+5,∞
� ε2

1(1 + t)−1/2−γ

∥
∥
∥
∥Hζ

(

ζα − 1 − 1

2
∂αχ

)∥
∥
∥
∥

W N0/2+3,∞
� ε2

1(1 + t)−1/2−γ ,

for some γ > 0. To obtain (9.22) and (9.23) it is then enough to show

‖∂αχ − 2i(I − H0)hx ◦ Reζ ∂αReζ‖W N0/2+5,∞ � ε2
1(1 + t)−1/2−γ

∥
∥Hζ (∂αχ − 2i(I − H0)hx ◦ Reζ ∂αReζ )

∥
∥

W N0/2+3,∞ � ε2
1(1 + t)−1/2−γ .

In light of (11.36) both bounds would follow from

‖χ − 2i(I − H0)h ◦ Reζ‖W N0/2+6,∞ � ε2
1(1 + t)−1/2−γ . (9.33)

From the definition of χ in (7.4) and (7.7) we see that

χ = 2i(I − H)(h ◦ Reζ ).

Applying the inequality (8.137) with f = 2ih, one gets

‖χ − 2i(I − H0)h ◦ Reζ‖W N0/2+6,∞

� ‖h‖W N0/2+7,∞‖h‖W N0/2+8,∞ + ‖(I − H0)(hh′)‖W N0/2+8,∞

� ‖h‖2
W N0/2+9,∞ + ‖∂x H0h2‖W N0/2+8,∞

� ‖h‖2
W N0/2+10,∞ � ε2

1(1 + t)−4/5.

This gives us (9.33) and concludes the proof of (9.22)–(9.23).
Step 3: First approximation of ∂αK . We now want to show

‖∂αK − ∂αQ0 ((I − H0)φx ◦ Reζ, (I − H0)hx ◦ Reζ Reζα)‖W N0/2+3,∞

� ε2
1(1 + t)−1−γ (9.34)
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‖∂αK − ∂αQ0 ((I − H0)φx ◦ Reζ, (I − H0)hx ◦ Reζ Reζα)‖H N0/2+4

� ε2
1(1 + t)−1/2−γ . (9.35)

Let us denote

A1 := u − (I − H0)φx ◦ Reζ

A2 := ζα − 1 − i(I − H0)hx ◦ Reζ ∂αReζ.

Using (9.17) we can write

∂αK − ∂αQ0 ((I − H0)φx ◦ Reζ, (I − H0)hx ◦ Reζ ∂αReζ ) = K1 + K2

where

K1 := ∂αQ0 (A1, ζα − 1)

K2 := ∂αQ0 ((I − H0)φx ◦ Reζ, A2) .

From (9.20), (9.22) and (9.23) we know that there exists γ > 0 such that

‖A1‖W N0/2+5,∞ � ε2
1(1 + t)−1/2−γ , (9.36)

‖A2‖W N0/2+4,∞ � ε2
1(1 + t)−1/2−γ , (9.37)

‖HA2‖W N0/2+3,∞ � ε2
1(1 + t)−1/2−γ . (9.38)

Using the L∞ type bound (11.32) for operators of the type ∂αQ0, (9.36) above,
and the bound in Proposition 8.3 together with the a priori decay assumption
in (9.2), we see that

‖K1‖W N0/2+3,∞ �‖A1‖W N0/2+5,∞
(‖H(ζα−1)‖W N0/2+3,∞ +‖ζα−1‖W N0/2+4,∞

)

� ε3
1(1 + t)−1−γ .

Similarly, in view of (9.37) and (9.38) above, one has

‖K2‖W N0/2+3,∞ � ‖(I − H0)φx ◦ Reζ‖W N0/2+5,∞

× (‖HA2‖W N0/2+3,∞ + ‖A2‖W N0/2+4,∞
)

� ε3
1(1 + t)−1−γ .

We have therefore obtained (9.34). The H N0/2+4 estimate (9.35) can be
obtained similarly, estimating K1 and K2 in H N0/2+4, by using the bounds
on A1 and A2 given by (9.20), (9.22), (9.36), (9.37) and (9.38), and bounded-
ness properties of the Cauchy integral on Sobolev spaces, see (11.3).
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Step 4: Approximation by T0. Let us denote

φ0 := ∂x (I − H0)φ (9.39)

h0 := ∂x (I − H0)h. (9.40)

To eventually obtain (9.18)–(9.19) it suffices to combine (9.34)–(9.35) with

‖∂αQ0 (φ0 ◦ Reζ, h0 ◦ Reζ Reζα)− T0(h, φ) ◦ Reζ‖W N0/2+3,∞ � ε2
1(1 + t)−1−γ

(9.41)

‖∂αQ0 (φ0 ◦ Reζ, h0 ◦ Reζ Reζα)− T0(h, φ) ◦ Reζ‖H N0/2+4 � ε2
1(1 + t)−1/2−γ .

(9.42)

With the notation (9.39)–(9.40) we can write T0(h, φ) in (9.8) as

T0(h, φ) ◦ Reζ(α) = ∂x [φ0, H0]h0 ◦ Reζ(α)

= 1

iπ
∂x

∫
φ0(x)− φ0(y)

x − y
h0(y) dy ◦ Reζ(α), (9.43)

whereas writing explicitly Q0 and changing variables we can write

∂αQ0 (φ0 ◦ Reζ, h0 ◦ Reζ Reζα)

= 1

iπ
∂α

∫
φ0 ◦ Reζ(α)− φ0 ◦ Reζ(β)

ζ(α)− ζ(β)
h0 ◦ Reζ(β)Reζβ(β) dβ

= 1

iπ
∂α

(∫
φ0(x)− φ0(y)

x + ih(x)− (y + ih(y))
h0(y) dy ◦ Reζ(α)

)

. (9.44)

Then the difference we are interested in is given by

∂αQ0 (φ0 ◦ Reζ, h0 ◦ Reζ Reζα)− T0(h, φ) ◦ Reζ(α)

= T1 ◦ Reζ (Reζα − 1)+ T2 ◦ Reζ Reζα,

where

T1 := 1

iπ
∂x

∫
φ0(x)− φ0(y)

x − y
h0(y) dy (9.45)

T2 := 1

iπ
∂x

∫

H

(
h(x)− h(y)

x − y

)
(h(x)− h(y))(φ0(x)− φ0(y))

(x − y)2
h0(y) dy,

(9.46)

for some smooth function H . We have expanded the denominator in (9.44) to
obtain the above identity. Then, since Reζα−1 decays like (1 + t)−1/2 in L∞,
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in order to get (9.41) it suffices to prove

‖T1‖W N0/2+3,∞ � ε2
1(1 + t)−1/2−γ (9.47)

‖T2‖W N0/2+3,∞ � ε2
1(1 + t)−1−γ . (9.48)

Applying ∂x to the integrand in (9.45), and using (11.40), we see that

‖T1‖W N0/2+3,∞ �
∥
∥
∥
∥

∫
φ0(x)− φ0(y)

(x − y)2
h0(y) dy

∥
∥
∥
∥

W N0/2+3,∞
+ ‖∂xφ0 H0h0‖W N0/2+3,∞

� ‖φ0‖W N0/2+5,∞
(‖h0‖W N0/2+4,∞ + ‖H0h0‖W N0/2+4,∞

)

� ‖�φ‖W N0/2+6,∞‖h‖W N0/2+5,∞ � ε2
1(1 + t)−1.

Similarly, again using (11.40), it is not hard to see that

‖T2‖W N0/2+3,∞ � ‖h‖W N0/2+5,∞‖φ0‖W N0/2+5,∞‖h0‖W N0/2+4,∞ � ε3
1(1 + t)−3/2.

This gives us (9.48) and concludes the proof of (9.41).
The remaining estimate (9.42) can be obtained similarly, using the L2

bounds of Theorem 11.3 instead of the L∞ bound (11.40). In particular it
suffices to show

‖T1‖H N0/2+4 � ε2
1(1 + t)−γ and ‖T2‖W N0/2+3,∞ � ε2

1(1 + t)−1/2−γ .

We only detail the bound for T1 as the one for T2 can proved similarly (notice
that T2 is a cubic term and therefore its bounds are (1 + t)−1/2 better than
those of T1). Applying ∂x to the integrand in (9.45), commuting derivatives
via (11.39b), and using the estimates in Theorem 11.3, one sees that

‖T1‖H N0/2+4 �
∥
∥
∥
∥

∫
φ0(x)− φ0(y)

(x − y)2
h0(y) dy

∥
∥
∥
∥

H N0/2+4
+ ‖∂xφ0 H0h0‖H N0/2+4

� ‖φ0‖H N0/2+5

(‖h0‖W N0/2+4,∞ + ‖H0h0‖W N0/2+4,∞
)

� ε2
1(1 + t)−1/2

which is more than sufficient. ��

9.2 Proof of Lemma 9.2

The proof proceeds in several steps.
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9.2.1 Step 1: The operator in Fourier space

Introduce the notations

φ̃ := (I − H0)φ, h̃ := (I − H0)h

so that from (9.8) we can write

∂x T0(h, φ) = ∂x [φ̃x , H0 ]̃hx .

By taking Fourier transform, and using the notation (5.1), we see that

∂x T0(h, φ) = M
(
h̃, φ̃

)
(9.49)

where the symbol of the operator M is given by

m(ξ, η) = ξη|ξ − η| − |ξ |η(ξ − η). (9.50)

We then want to show
∥
∥M

(
h̃, φ̃

)∥
∥

W N0/2+3,∞ � ε2
1(1 + t)−1−γ (9.51)

∥
∥M

(
h̃, φ̃

)∥
∥

H N0/2+4 � ε2
1(1 + t)−1/2−γ (9.52)

for some γ > 0, under the a priori assumptions (9.2) and (9.3).

9.2.2 Step 2: Approximation

Let H and � be the functions defined in (4.17) in Proposition 4.1. Define

H̃ := (I − H0)H, �̃ := (I − H0)�.

We then claim that the following hold true:
∥
∥M

(
h̃, φ̃

)− M
(
H̃ , �̃

)∥
∥

W N0/2+3,∞ � ε2
1(1 + t)−1−γ , (9.53)

∥
∥M

(
h̃, φ̃

)− M
(
H̃ , �̃

)∥
∥

H N0/2+4 � ε2
1(1 + t)−1/2−γ . (9.54)

Using (4.17) we see that

M
(
H̃ , �̃

)− M
(
h̃, φ̃

) = M
(
(I − H0)A, φ̃

)+ M
(
H̃ , (I − H0)B

)
. (9.55)

From the definition of m in (9.50), the definitions (5.14) and (5.19), we see
that

‖mk,k1,k2‖S∞ � 2k2k12k2 . (9.56)
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Combining this with the L2 and L∞ bounds on A and B in (5.26) and (5.27),
the a priori bounds (5.23), and using (5.17) in Lemma 5.2, one can easily verify
that

∥
∥M

(
(I − H0)A, φ̃

)∥
∥

W N0/2+3,∞ � ε3
1(1 + t)−5/4

∥
∥M

(
H̃ , (I − H0)B

)∥
∥

W N0/2+4,∞ � ε3
1(1 + t)−5/4.

These and (9.55) give us (9.53). Similarly one can show (9.54) again by using
(9.56), Lemma 5.2, (5.23) and the bounds on the Sobolev norms of A and B
provided by (5.26).

9.2.3 Step 3: Reduction to bilinear estimates

We are left with proving

∥
∥M

(
H̃ , �̃

)∥
∥

W N0/2+3,∞ � ε2
1(1 + t)−1−γ , (9.57)

∥
∥M

(
H̃ , �̃

)∥
∥

H N0/2+4 � ε2
1(1 + t)−1/2−γ . (9.58)

Recalling the definition of V = H+i�� from (5.6), we have Ṽ± = H̃±i��̃,
so that H̃ = (Ṽ+ + Ṽ−)/2 and �̃ = (i�)−1(Ṽ+ − Ṽ−)/2. We then have

M
(
H̃ , �̃

) =
∑

ε1,ε2∈{+,−}
cε1,ε2 Q

(
Ṽε1, Ṽε2

)
(9.59)

where, again according to the notation (5.1),

q(ξ, η) = |η|−1/2 [ξη|ξ − η| − |ξ |η(ξ − η)] , (9.60)

and cε1,ε2 are some constants. With the notation (5.14) and (5.19) we have

‖qk,k1,k2‖S∞ � 2k2k12k2/2. (9.61)

From the definition of Ṽ and the bounds provided by (4.25), (4.26) and
(4.30) on V = H + i��, we see that the desired bounds (9.57)–(9.58) reduce
to showing the following bilinear estimates:

‖Q(v±(t), v±(t))‖W N0/2+3,∞ � ε2
1(1 + t)−1−γ , (9.62)

‖Q(v±(t), v±(t))‖H N0/2+4 � ε2
1(1 + t)−1/2−γ , (9.63)

where q is as in (9.60), and v± = e∓i t� f± satisfies, for all k ∈ Z,

‖Pkv±(t)‖W N1,∞ � ε1(1 + t)−1/2, (9.64)
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‖Pk f±(t)‖H N0−10 � ε1(1 + t)5p0, (9.65)

‖x∂x Pk f±(t)‖
H

N0
2 −20

� ε1(1 + t)5p0 . (9.66)

9.2.4 Step 4: Proof of the bilinear estimates (9.62)–(9.63)

Step 1: Frequency decomposition. It suffices to show that for all t ∈ [2m − 2,
2m+1] and m ∈ {1, 2, . . . }, there exists a constant γ > 0 such that

∑

k,k1,k2

∥
∥Pk Q(Pk1v±(t), Pk2v±(t))

∥
∥

W N0/2+3,∞ � ε2
12−(1+γ )m, (9.67)

∑

k,k1,k2

∥
∥Pk Q(Pk1v±(t), Pk2v±(t))

∥
∥

H N0/2+4 � ε2
12−(1/2+γ )m . (9.68)

By symmetry and conjugation it is clear that we can reduce matters to proving
the estimates (9.67)–(9.68) for the two bilinear operators

T+( f, f )(t) := F−1
∫

R

eit�+q(ξ, η) f̂+(t, ξ − η) f̂+(t, η) dη, (9.69)

T−( f, f )(t) := F−1
∫

R

eit�−q(ξ, η) f̂+(t, ξ − η) f̂−(t, η) dη, (9.70)

where f = ( f+, f−), and

�±(ξ, η)=|η|1/2 ± |ξ − η|1/2, q(ξ, η)=|η|−1/2 [ξη|ξ−η|−|ξ |η(ξ − η)] .
(9.71)

Notice that under the a priori assumptions these bilinear terms have decay
rates which barely fail to give (9.67) and (9.68). The key to obtaining the
extra necessary decay is the vanishing of the symbol q(ξ, η) on the space-
resonant sets, i.e. for those (ξ, η) such that ∂η�±(ξ, η) = 0. One can then use
integration by parts in frequency, and the weighted bound (9.66), to derive the
desired estimate.

First let us observe that using (9.61), Lemma 5.2, and (9.64)–(9.66), one
can bound as desired the sums in (9.67) and (9.68), for all those frequencies
(k, k1, k2) such that min(k, k1, k2) ≤ −m/N0 and max(k, k1, k2) ≥ 3m/N0.
The remaining sums have only Cm3 terms. Therefore it suffices to show the
estimates for each (k, k1, k2) fixed satisfying

k, k1, k2 ∈ [−m/N0, 3m/N0] ∩ Z, max(k1, k2) ≥ k − 10. (9.72)
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Step 2: Spatial decomposition. Let us define ρ : R → [0, 1] to be an even
compactly supported function which equals 1 on [0, 1] and vanishes on [2,∞).
Let R := 23m/4. We decompose the profiles f = ( f+, f−) into two pieces:
f = f≥R + f≤R = ( f+,≥R, f−,≥R)+ ( f+,≤R, f−,≤R) where

f≤R(x) = f (x)ρ
( x

R

)
, f≥R(x) = f (x)− f≤R(x).

We then want to show that for all t ∈ [2m−2, 2m+1], m ∈ {1, 2, . . . }, and k, k1,

k2 ∈ [−m/N0, 3m/N0] ∩ Z

∥
∥Pk T±(Pk1 f≥R(t), Pk2 f (t))

∥
∥

L∞ + ∥
∥Pk T±(Pk1 f≤R(t), Pk2 f≥R(t))

∥
∥

L∞

� ε2
12−(1+γ )m2−(N0/2+3)k+, (9.73)

∥
∥Pk T±(Pk1 f≤R(t), Pk2 f≤R(t))

∥
∥

L∞ � ε2
12−(1+γ )m2−(N0/2+3)k+ . (9.74)

We also need to prove the H N0/2+4 versions of the above estimates corre-
sponding to (9.68), but since those can be obtained analogously we will skip
them.

Step 3: Proof of (9.73). First notice that both terms in (9.73) have (at least)
one profile supported at a distance R from the origin. Since this is the only
important aspect that we will use to gain the necessary decay, we only show
how to estimate one of the terms, the other being analogous. We then want to
prove

∥
∥Pk T±(Pk1 f (t), Pk2 f≥R(t))

∥
∥

L∞ � ε2
12−9m/82−(N0/2+3)k+

for any k, k1, k2 ∈ [−m/N0, 3m/N0] ∩ Z, and any t ∈ [2m − 2, 2m+1]. Using
(9.61), Sobolev’s embedding, and the bounds (9.64) and (9.66), we see that

∥
∥Pk T±(Pk1 f (t), Pk2 f≥R(t))

∥
∥

L∞ � 2k2k1 2k2/2
∥
∥Pk1v±(t)

∥
∥

L∞
∥
∥
∥e±i t�Pk2 f≥R(t)

∥
∥
∥

L∞

� 2k2k1ε12−m/22−N1 max(k1,0)
∥
∥∂x f≥R(t)

∥
∥

L2

� ε2
12k2k1 2−m/2 R−12−(N0/2−20)max(k1,k2,0)2mp0

� ε2
12−9m/82−(N0/2+3)k+ ,

in view of the frequency constraints (9.72), p0 ≤ 1/1000 and R = 23m/4.

Step 4: Proof of (9.74) It suffices to show
∥
∥Pk T±(Pk1 f≤R(t), Pk2 f≤R(t))

∥
∥

L∞ � ε2
12−9m/82−(N0/2+3)k+,

for any k, k1, k2 as in (9.72) and t ∈ [2m − 2, 2m+1]. We distinguish the two
cases of T+ and T−. In the first case we introduce and extra cutoff in ξ − 2η
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by writing

Pk T+(Pk1 f≤R(t), Pk2 f≤R(t))

=
∑

l∈Z

Pk T l+(Pk1 f≤R(t), Pk2 f≤R(t))

:=
∑

l∈Z

F−1
∫

R

eit�+(ξ,η)ϕl(ξ − 2η)

× ϕk(ξ)ϕk1(ξ − η)ϕk2(η)q(ξ, η) f̂+,≤R(t, ξ − η) f̂+,≤R(t, η) dη
(9.75)

where �+ is as in (9.71). First notice that the contribution in the summation
over l in (9.75) is zero if l ≥ 3m/N0 + 100. (9.75) also vanishes if l ≤
−m/N0 − 100, because in this case |ξ − 2η| ≤ |η|/10, which implies that
ξ − η and ξ have the same sign, and therefore q(ξ, η) = 0, see (9.71). The
summation over l can then be disregarded and it is enough to show

∥
∥
∥Pk T l+(Pk1 f≤R(t), Pk2 f≤R(t))

∥
∥
∥

L∞ � ε2
12−5m/42−(N0/2+3)k+

for any l, k, k1, k2 ∈ [−m/N0−100, 3m/N0+100]∩Z and t ∈ [2m−2, 2m+1].
Observe that for any integer j we have

∣
∣∂ j
η ∂η�+(ξ, η)

∣
∣ � 2− jm/10

and

∥
∥∂ j
η ϕki (·)̂ f≤R(t, ·)

∥
∥

L1 � R j 2ki /22mp0 ,

∣
∣
∣∂

j
η (q(ξ, η)ϕl(ξ − 2η))

∣
∣
∣ � 2( j+5/2)m/N0 .

Integrating by parts L times in η in the integral in (9.75) we see that

∥
∥Pk T l+(Pk1 f≤R(t), Pk2 f≤R(t))

∥
∥

L∞

�
(

1

2m2−m/10

)L

RL 2k1/22k2/222mp02−(N0−10)max(k1,k2,0)ε2
1

� ε2
12−3m/22−(N0/2+3)k+,

where the second inequality holds provided L is large enough.
In the case of the operator T− it is enough to observe that ∂η�− vanishes

(linearly) only when ξ = 0, and, also in this case, we have

|∂ j
η ∂η�−| � 2− jm/10,
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under the frequency constraints (9.72). One can then use the same integration
by parts argument as above (without the need to resort to a further splitting)
and obtain

∥
∥Pk T−(Pk1 f≤R(t), Pk2 f≤R(t))

∥
∥

L∞ � ε2
12−3m/22−(N0/2+3)k+ .

This concludes the proof of (9.74) and therefore of Lemma 9.2. ��

10 Proof of Proposition 2.4: transition to Eulerian coordinates

Here we want to transfer the a priori bounds from the modified Lagrangian
coordinates to Eulerian coordinates. Recall that

L̃(t, α) = (ζα(t, α)− 1, u(t, α), w(t, α), Imζ(t, α)).

Also, recall the a priori assumptions (2.9) and (2.8), that is

sup
t∈[0,T ]

(
(1 + t)−p0‖L̃(t)‖X N0

+ ‖L̃(t)‖H N1+5 + √
1 + t‖L̃(t)‖W N1,∞

)
≤ ε1,

(10.1)

and

sup
[0,T ]

(
(1 + t)−p0‖(h(t), φx (t))‖X N0

+ ‖h(t)+ i�φ(t)‖H N1+10

+√
1 + t‖(h(t),�φ(t))‖W N1+4,∞

)
≤ ε1, (10.2)

where ‖ f ‖X N0
:= ‖ f ‖H N0 + ‖S f ‖H N0/2 . To prove Proposition 2.4 we need

to show, under the above a priori assumptions, that

‖L̃(t)‖W N1,∞ � ‖(h(t), ∂xφ(t))‖Z ′ (10.3)

‖L̃(t)‖H N1+5 � ‖(h(t), ∂xφ(t))‖H N1+7 + ε2
1 (10.4)

‖(h(t), ∂xφ(t))‖X N0
� ‖L̃(t)‖X N0

. (10.5)

10.1 Proof of (10.3)

From Proposition 8.3 we have

‖L(t)‖W N1,∞ � ‖(h(t), ∂xφ(t))‖Z ′

which is stronger than (10.3).
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10.2 Proof of (10.4)

Using h(Reζ ) = Imζ it is clear that

‖Imζ‖H N1+5 � ‖h‖H N1+5 .

Also, from (8.126)–(8.127) in Lemma 8.9, and the a priori assumptions (8.1),
we see that

‖(ζα(t)− 1, u(t), w(t))‖H N1+5

� ‖(∂αχ(t), ∂αλ(t))‖H N1+5 + ‖L̃(t)‖H N1+6‖L̃(t)‖
W

N1+5
2 ,∞

� ‖(∂αχ(t), ∂αλ(t))‖H N1+5 + ε1(1 + t)p0ε1(1 + t)−1/2

� ‖(∂αχ(t), ∂αλ(t))‖H N1+5 + ε2
1.

Thus, to obtain (10.4) it is enough to show

‖(∂αχ(t), ∂αλ(t))‖H N1+5 � ‖(h(t), ∂xφ(t))‖H N1+7 + ε2
1. (10.6)

From the definition of χ in (7.4), and Imζ = h ◦ Reζ , we see that

χ = (I − H)(ζ − ζ ) = 2i(I − H)Imζ = 2i(I − H)(h ◦ Reζ ).

Using the bounds on the Hilbert transform (11.1) with the a priori assumptions
(10.1)–(10.2), we get

‖∂αχ(t)‖H N1+5 � ‖h ◦ Reζ(t)‖H N1+6 + ε2
1 � ‖h(t)‖H N1+6 + ε2

1

which gives the bound (10.6) for the component χα .
From (8.142) and (8.138) in the proof of Lemma 8.10, we see that

‖∂αλ‖H N1+5 � ‖∂x [φ(1 + h′)]‖H N1+5

+ ‖Rφ‖H N1+6 � ‖∂xφ‖H N1+5 + ‖φh′‖H N1+6 + ‖Rφ‖H N1+6,

where we recall

Rφ(t, x) := 1

iπ

∫

H

(
h(x)− h(y)

x − y

)
h(x)− h(y)

(x − y)2
φ(t, y) dy.

Applying N1 + 6 derivatives to the above expression, commuting them via
(11.39b), and using Theorem 11.3, one can obtain

‖Rφ‖H N1+6 � ‖h‖H N1+7‖φ‖W N1+4,∞ + ‖h‖W N1+4,∞‖φx‖H N1+5 � ε2
1.
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Here we have used the a priori assumptions (10.2) and the bound (4.35) in
Corollary 4.5. A similar estimate can be easily obtained for ‖φh′‖H N1+6 . It
follows that

‖∂αλ‖H N1+6 � ‖(h, φx )‖H N1+7 + ε2
1,

which gives (10.6), completing the proof of (10.4).

10.3 Proof of (10.5)

To show (10.5) we will exploit the identities

h(t,Reζ(t, α)) = Imζ(t, α) and (I − Hζ )φ(t,Reζ(t, α)) = λ(t, α)

to prove the following:

Lemma 10.1 Let S be the scaling vector field. Then

‖h(t)‖X N0
� ‖Imζ(t)‖X N0

+ ‖ζα(t)− 1‖X N0
(10.7)

and

‖∂xφ(t)‖X N0
� ‖λα(t)‖X N0

+ ‖ζα(t)− 1‖X N0
. (10.8)

The estimates in the above Lemma, together with (8.33), imply (10.5). To prove
the estimates involving S we will need the two auxiliary Lemmas below:

Lemma 10.2 Let S be the scaling vector field. Then for any two functions
f : Rt × Rx → R and g : Rt × Rα → Rx , the following formula holds:

S f ◦ g = S( f ◦ g)− ( f ′ ◦ g)(Sg − g). (10.9)

Here, for a function c : Rt × Rx → R, the operation c ◦ g is to be understood
as composition in the space variable:

(c ◦ g)(t, α) = c(t, g(t, α)),

and f ′ denotes the derivative with respect to the space variable.

The proof of the above statement is by direct computation.

Lemma 10.3 Let ζ be the Lagrangian map in the modified Lagrangian coor-
dinates, then

(I − H)(Reζ − α) = i(I − H)Imζ. (10.10)
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Under the a priori assumptions (10.1)–(10.2), it follows that

‖Reζ − α‖X N0
� ‖Imζ‖X N0

+ ‖ζα − 1‖X N0
. (10.11)

In particular

‖SReζ − Reζ‖
H

N0
2

� ‖Imζ‖X N0
+ ‖ζα − 1‖X N0

� ‖L̃‖X N0
. (10.12)

Proof The identity (10.10) follows from the fact that (I − Hζ )(ζ − α) = 0,
which comes from the identity (I − Hz)(k − z) = 0 upon composition with
k−1.

The estimate (10.11) follows from an application of Lemma 11.2 with
f = Reζ − α and g = i(I − H)Imζ , Sobolev’s embedding, and from the
boundedness properties of H in Lemma 11.1:

‖Reζ − α‖X N0
� ‖(I − H)Imζ‖X N0

+ ‖ζα − 1‖X N0
‖(I − H)Imζ‖H N1

� ‖Imζ‖X N0
+‖ζα − 1‖X N0

(‖Imζ‖H N1 +‖(I −H)Imζ‖H N1 )

� ‖Imζ‖X N0
+ ‖ζα − 1‖X N0

.

(10.12) immediately follows since SReζ − Reζ = S(Reζ − α)+ (α − Reζ ).
��

Proof of Lemma 10.1 Recall that h(t,Reζ(t, α)) = Imζ(t, α). Since
‖ζα − 1‖H N1+5 ≤ ε1, in particular we see that for ε1 ≤ 1/2, the map Reζ
is a diffeomorphism with

∣
∣∂αReζ

∣
∣ ≥ 1/2,

∣
∣∂k
αReζ

∣
∣ ≤ 3/2

for 1 ≤ k ≤ N1. It immediately follows that

‖h‖H N0 = ‖Imζ ◦ Reζ−1‖H N0 � ‖Imζ(t)‖H N0 + ‖Reζαα(t)‖H N0−1

� ‖Imζ‖H N0 + ‖ζα(t)− 1‖H N0 .

This takes care of the Sobolev component of the norm to bound in (10.7). To
estimate the weighted component we apply Lemma 10.2 to get

Sh ◦ Reζ = SImζ − (h′ ◦ Reζ )(SReζ − Reζ ). (10.13)

Using (10.12) we have

‖Sh‖
H

N0
2

� ‖SImζ‖
H

N0
2

+‖h′‖
H

N0
2

‖SReζ−Reζ‖
H

N0
2

� ‖Imζ‖X N0
+‖ζα − 1‖X N0

.

This gives us (10.7).
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Recall the relation between the trace of the velocity potential in Eulerian
variables and in modified Lagrangian variables λ:

(I − Hζ )φ(t,Reζ(t, α)) = λ(t, α). (10.14)

Since

[∂α,H] f = [ζα,H] fα
ζα

= 1

iπ
Q0(ζα − 1, fα),

where Q0 is defined in (11.18), it follows that

(I − H)∂α(φ ◦ Reζ ) = ∂αλ+ Q0 (ζα − 1, ∂α(φ ◦ Reζ )) . (10.15)

Denoting f = φ ◦ Reζ and g = ∂αλ+ 1
iπ Q0 (ζα − 1, ∂α(φ ◦ Reζ )) we have

(I − H)∂α f = g, so that (11.7) gives

‖∂α f ‖H N1 � ‖g‖H N1 � ‖∂αλ‖H N1 + ‖Q0(ζα − 1, ∂α f )‖H N1 , (10.16)

while (11.9) gives

‖∂α f ‖X N0
� ‖g‖X N0

+ ‖ζα − 1‖X N0
‖g‖H N1 � ‖∂αλ‖X N0

+ ‖Q0(ζα − 1, ∂α f )‖X N0

+ ‖ζα − 1‖X N0

(‖∂αλ‖H N1 + ‖Q0(ζα − 1, ∂α f )‖H N1

)
. (10.17)

From (8.32)–(8.33) we have

‖∂αλ‖H N1 � ‖L̃‖H N1 � ε1, ‖∂αλ‖X N0
� ‖L̃‖X N0

.

From estimate (11.31) we get

‖Q0(ζα − 1, ∂α f )‖X N0
� ‖ζα − 1‖

W
N0
2 +1,∞‖∂α f ‖X N0

+ ‖(∂α f,H∂α f )‖
W

N0
2 +1,∞‖ζα − 1‖X N0

+ ‖ζα − 1‖
W

N0
2 +1,∞‖∂α f ‖

W
N0
2 +1,∞‖ζα − 1‖X N0

� ε1‖∂α f ‖X N0
+ ‖(∂α f,H∂α f )‖

W
N0
2 +1,∞‖L̃‖X N0

.

Next we claim that

‖(∂α f,H∂α f )‖
W

N0
2 +1,∞ � ε1. (10.18)
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Assuming this estimate for now, and using the fact that ‖Q0(ζα − 1, ∂α f )‖H N1

can be bounded uniformly in time in a straightforward fashion, we can use the
last four bounds in (10.17) to deduce that

‖∂α f ‖X N0
� ‖L̃‖X N0

. (10.19)

Them, since φx = (∂α f/Reζα) ◦ Reζ−1, we have

‖φx‖H N0 � ‖∂α f ‖H N0 + ‖Reζαα‖H N0−1 � ‖L̃‖X N0
. (10.20)

This takes care of the Sobolev component of the X N0 -norm. To bound the
weighted component we use φx ◦ Reζ = ∂α f/Reζα in combination with
(10.9), estimate (10.12), and (10.19), to get

‖Sφx‖
H

N0
2

� ‖(Sφx ) ◦ Reζ‖
H

N0
2

�‖S( fα/Reζα)‖
H

N0
2

+‖φx‖
H

N0
2 +2

‖SReζ−Reζ‖
H

N0
2

�‖L̃‖X N0
.

This shows (10.5) provided we verify (10.18). Observe that

‖∂α f ‖
W

N0
2 +1,∞ � ‖∂xφ‖

W
N0
2 +1,∞ � ε1,

directly from the a priori assumptions. To bound H∂α f instead, we use Lemma
11.8, the a priori assumptions and (4.35) to obtain

‖H∂α f ‖
W

N0
2 +1,∞ � ‖ f ‖

W
N0
2 +3,∞ � ‖φ‖

W
N0
2 +3,∞ � ε1.

This shows (10.18) and concludes the proof of (10.5), hence of Proposition
2.4. ��
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Appendix A: Supporting material

In this first appendix we gather some useful Lemmas that are used several
times in Sects. 9 and 10 and in the course of the energy estimates. First, in
Appendix A1 we give some variants of estimates proven in [45] related to
the Hilbert transform on curves. In A2 we first recall some Theorems about
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multilinear operators of “Calderón’s commutators”-type, and then prove some
additional bounds on them that are used for the energy estimates.

A1: Estimates for the Cauchy integral

In what follows we will always be under the a priori assumption that (2.9)
holds.

Lemma 11.1 Let H = Hζ . Then, for any f in Xk with 0 ≤ k ≤ N0, we have

‖H f ‖Hk +
∥
∥
∥
∥H

1

ζα
f

∥
∥
∥
∥

Hk
� ‖ f ‖Hk + ‖ζα − 1‖Hk ‖ f ‖

W
k
2 ,∞
, (11.1)

‖H f ‖Xk
+
∥
∥
∥
∥H

1

ζα
f

∥
∥
∥
∥

Xk

� ‖ f ‖Xk
+ ‖ζα − 1‖Xk

‖ f ‖
W

k
2 ,∞
. (11.2)

In particular, if k ≤ N1 + 5, one has

‖H f ‖Hk +
∥
∥
∥
∥H

1

ζα
f

∥
∥
∥
∥

Hk
� ‖ f ‖Hk . (11.3)

Furthermore, for any 0 ≤ k ≤ N0

‖(H + H) f ‖Xk
� ‖ζα − 1‖

W
k
2 ,∞

‖ f ‖Xk
+ ‖ζα − 1‖Xk

‖ f ‖
W

k
2 ,∞
, (11.4)

and for 0 ≤ k ≤ N1

‖(H + H) f ‖Hk � ‖Imζα‖W k,∞‖ f ‖Hk . (11.5)

Proof The L2 case in (11.1) follows directly from Theorem 11.3. The Hk ,
respectively Xk , estimates can be proven by induction using the commutation
identities (11.39b) to distribute derivatives, respectively (11.39c) to distribute
the vector field S, and the bounds given in Theorem 11.3 for operators of the
type C1, as defined in (11.16).

To prove (11.4) one notices that

(H + H) f = − 2

π

∫
Imζ(α)− Imζ(β)

|ζ(α)− ζ(β)|2 f (β)ζβ(β)dβ + 2

π

∫
f (β)Imζβ(β)

ζ (α)− ζ (β)
dβ,

(11.6)

which is the sum of two operator of the form C1(H, Imζ, f ζα) and
C1(H, id, f Imζα), for some smooth H , see (11.16) below. Applying the com-
mutation identities (11.39b) and (11.39c), followed by the L2-estimates of
Theorem 11.3, one can then verify the validity of (11.4) and (11.5). �
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766 A. D. Ionescu, F. Pusateri

The next Lemma is a variant of Lemma 3.8 in [45] and gives estimates of
real valued functions f in terms of the norms of (I − H) f . ��
Lemma 11.2 Let f ∈ Xk, 0 ≤ k ≤ N0, be real-valued with

(I − H) f = g.

Then, for 0 ≤ k ≤ N1 + 5, one has

‖ f ‖Hk � ‖g‖Hk . (11.7)

Furthermore, for 0 ≤ k ≤ N0

‖ f ‖Hk � ‖g‖Hk + ‖ζα − 1‖Hk

(
‖g‖

W
k
2 ,∞

+ ‖Imζα‖
W

k
2 +1,∞‖g‖

H
k
2 +1

)

(11.8)

‖ f ‖Xk
� ‖g‖Xk

+ ‖ζα − 1‖Xk

(
‖g‖

W
k
2 ,∞

+ ‖Imζα‖
W

k
2 +1,∞‖g‖

H
k
2 +1

)
.

(11.9)

Moreover, for 0 ≤ k ≤ N1, we have

‖ f ‖W k,∞ � ‖Re g‖W k,∞ + ‖Imζα‖W k+1,∞‖g‖Hk+1, (11.10)

and a similar estimate for ∂α f :

‖∂α f ‖W k,∞ � ‖Re ∂αg‖W k,∞ + ‖ζα − 1‖W k+1,∞‖∂αg‖Hk+1 . (11.11)

Proof Since f is real-valued we have (I − K) f = Reg, where K = ReH.
Then

(I − K)∂ j
α f = Re∂ j

αg −
[
K, ∂ j

α

]
f = Re∂ j

αg −
j∑

k=1

∂ j−k
α [K, ∂α] ∂k−1

α f.

Notice that

[∂α,H] f = [ζα,H] fα
ζα

= C2(H, ζα − 1, f ), (11.12)

for some smooth H , and where C2 is defined in (11.17). We can then use
the fact that the inverse of I − K is bounded on L2 with an operator norm
depending only on ε1, (11.12), and Theorem 11.3, to obtain

‖∂ j
α f ‖L2 �

∥
∥
∥∂

j
αg
∥
∥
∥

L2
+ ‖ζα − 1‖

H
j
2 +1

‖ f ‖H j + ‖ζα − 1‖H j ‖ f ‖
W

j
2 ,∞
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�
∥
∥
∥∂

j
αg
∥
∥
∥

L2
+ ε1‖ f ‖H j + ‖ζα − 1‖H j ‖ f ‖

W
j
2 ,∞
.

After summing over j , the second term in the right-hand side above can be
absorbed to the left hand-side for ε1 small enough. We have therefore obtained
that for any 0 ≤ k ≤ N0

‖ f ‖Hk � ‖g‖Hk + ‖ζα − 1‖Hk ‖ f ‖
W

k
2 ,∞
. (11.13)

If k ≤ N1 + 5 the last term above can be also absorbed to the left hand-side
thus yielding (11.7).

In order to prove (11.8) let us focus on the term ‖ f ‖
W

k
2 ,∞

. Using the identity

f = K f +Reg, Sobolev’s embedding, the estimate (11.5), and (11.3), we get

‖ f ‖
W

k
2 ,∞

≤ ‖K f ‖
H

k
2 +1 + ‖Reg‖

W
k
2 ,∞

� ‖Imζα‖
W

k
2 +1,∞‖ f ‖

H
k
2 +1 + ‖Reg‖

W
k
2 ,∞

� ‖Imζα‖
W

k
2 +1,∞‖g‖

H
k
2 +1 + ‖Reg‖

W
k
2 ,∞
.

Plugging this last inequality into (11.13) gives (11.8). Substituting k with 2k
we obtain (11.10). (11.11) can be obtained similarly.

From above we see that (11.9) would follow if we show

‖S f ‖Hk � ‖Sg‖Hk + ‖S(ζα − 1)‖Hk ‖ f ‖W k,∞ . (11.14)

Starting from (I − H) f = g one can commute derivatives using (11.12) and
commute S by using

[S,H] f = [Sζ − ζ,H] fα
ζα

= C2(H, Sζ − ζ, f ). (11.15)

Applying Theorem 11.3 one can then obtain

‖∂ j
α S f ‖L2 �

∥
∥
∥∂

j
α Sg

∥
∥
∥

L2
+ ‖ζα − 1‖H j ‖S f ‖H j + ‖S(ζα − 1)‖H j ‖ f ‖W j,∞

� ‖Sg‖H j + ε1‖S f ‖H j + ‖S(ζα − 1)‖H j ‖ f ‖W j,∞ .

Summing over j and absorbing the second summand above in the left-hand
side, we obtain (11.14) and hence (11.9). ��

A2: Estimates for multilinear operators

In this section we study some singular integrals that appear when performing
the energy estimates. These integral operators are well known objects, which
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768 A. D. Ionescu, F. Pusateri

are usually referred to as Calderón’s commutators. We first state some L2-
bounds like the ones already given in [45].

Let H ∈ C1, Ai ∈ C1 for i = 1, . . . ,m, and F ∈ C∞. Using the same
notation in [45] we define

C1(H, A, f ) := p.v.
∫

F

(
H(x)− H(y)

x − y

) ∏m
i=1(Ai (x)− Ai (y))

(x − y)m+1 f (y) dy

(11.16)

C2(H, A, f ) := p.v.
∫

F

(
H(x)−H(y)

x − y

) ∏m
i=1(Ai (x)− Ai (y))

(x − y)m
∂y f (y) dy.

(11.17)

Integrals like the ones above are always to be understood in the principal value
sense, but, as before, for simplicity we will often omit the p.v. notation.

We also define the quadratic bilinear operators

Q0( f, g) :=
∫

f (α)− f (β)

ζ(α)− ζ(β)
g(β) dβ, (11.18)

Q1( f, g) :=
∫

f (α)− f (β)

(ζ(α)− ζ(β))2
g(β) dβ, (11.19)

Q2( f, g) :=
∫

f (α)− f (β)

|ζ(α)− ζ(β)|2 g(β) dβ. (11.20)

We denote by Q indistinctly any scalar multiple of the operators Q1 or Q2:

Q( f, g) := ci Qi ( f, g) (11.21)

for ci ∈ C, i = 1, 2. Q0 causes some difficulties because it does not admit
standard L2 × L∞ → L2 estimates. Moreover, it does not admit L∞ type
estimates like those in Lemma 11.5 below for Q1 and Q2; in order to bound
it we need to resort to a stronger space than L∞.

We recall the following:

Theorem 11.3 (Coifman-McIntosh-Meyer [10], Wu [45]) There exists c =
c(F, ‖H ′‖L∞) such that the operators C j , for j = 1, 2, satisfy the bounds

‖C j (H, A, f )‖L2 ≤ c
m∏

i=1

‖∂Ai‖L∞‖ f ‖L2 (11.22)

‖C j (H, A, f )‖L2 ≤ c‖∂A1‖L2

m∏

i=2

‖∂Ai‖L∞‖ f ‖L∞ . (11.23)
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From the above Theorem we can infer the following bounds on the operators
of the type T defined in (7.28) and Q in (11.21):

Corollary 11.4 There exists a constant c = c(‖∂αζ‖L∞) such that

‖Q( f, g)‖L2 ≤ c‖∂α f ‖L∞‖g‖L2

‖Q( f, g)‖L2 ≤ c‖∂α f ‖L2‖g‖L∞

and

‖T( f, g, hα)‖L2 ≤ c‖∂α f ‖L∞‖∂αg‖L∞‖h‖L2

‖T( f, g, hα)‖L2 ≤ c‖∂α f ‖L2‖∂αg‖L∞‖h‖L∞ .

In Appendix A.2.2 we will prove the following simple Lemma:

Lemma 11.5 There exists a constant c = c(‖∂αζ‖W 1,∞) such that the opera-
tors Q satisfy the bound

‖Q( f, g)‖L∞ ≤ c‖ f ‖W 2,∞‖g‖W 1,∞ . (11.24)

We will also need to bound operators of the type Q0 in L∞. However, they
will only appear with a derivative in front, so that we can use the following
Lemma:

Lemma 11.6 There exists a constant c = c(‖ζα − 1‖H3) such that

‖∂αQ0( f, g)‖L∞ ≤ c‖ f ‖W 2,∞
(‖Hg‖L∞ + ‖g‖W 1,∞

)
. (11.25)

The above results, together with some commutation identities, will give us
the following Proposition:

Proposition 11.7 Recall the definitions

L := (ζα − 1, u, w, Imζ, ∂αχ, v) ∈ C
6 (11.26)

and

L− := (ζα − 1, u, w, ∂αχ, v) ∈ C
5. (11.27)

Let Q and T be given by (11.21) and (7.27)–(7.28). Then

(1) There exists a constant c = c(‖ζα − 1‖H N1+4) such that for any integer
k ≤ N1

‖Q( f, g)‖W k,∞ ≤ c‖ f ‖W k+2,∞‖g‖W k+2,∞ . (11.28)
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770 A. D. Ionescu, F. Pusateri

In particular

‖Q(Li , L j )‖W [ m
2 ]+1,∞ ≤ c‖L‖2

W [ m
2 ]+3,∞ (11.29)

for any i, j ∈ {1, . . . , 6} and 0 ≤ m ≤ N0.
(2) There exists a constant c = c(‖ζα − 1‖H N1+4) such that for any integer

0 ≤ k ≤ N0

‖Q0( f, g)‖Xk
�c ‖ f ‖

W
N0
2 +1,∞‖g‖Xk

+ ‖(g,Hg)‖
W

N0
2 +1,∞‖ f ‖Xk

+ ‖ f ‖
W

N0
2 +1,∞‖g‖

W
N0
2 +1,∞‖ζα − 1‖Xk

(11.30)

and

‖Q0( f, ∂αg)‖Xk
�c ‖∂α f ‖

W
N0
2 +1,∞‖g‖Xk

+ ‖g‖
W

N0
2 +2,∞‖ f ‖Xk

+ ‖ f ‖
W

N0
2 +1,∞‖g‖

W
N0
2 +1,∞‖ζα − 1‖Xk

. (11.31)

Furthermore, for k ≤ N1,

‖∂αQ0( f, g)‖W k,∞ ≤ c‖ f ‖W k+2,∞
(‖Hg‖W k,∞ + ‖g‖W k+1,∞

)
, (11.32)

so that

‖∂αQ0(Li , L−
j )‖W [ m

2 ]+1,∞ ≤ c‖L‖
W [ m

2 ]+3,∞
(
‖HL−‖

W [ m
2 ]+2,∞ + ‖L−‖

W [ m
2 ]+2,∞

)

(11.33)

for any i ∈ {1, . . . , 6}, j ∈ {1, . . . , 5} and 0 ≤ m ≤ N0.
(3) There exists a constant c as above such that for any triple ( f, g, h) with

‖( f, g, h)‖H N1−2 ≤ 1, and any integer m, one has

‖T( f, g, h)‖Xm
+ ‖T( f, g, ∂αh)‖Xm

≤ c‖( f, g, h, ζα − 1)‖Xm

‖( f, g, h)‖2

W
N0
2 +3,∞ . (11.34)

In particular

‖T(Li , L j , Lk)‖Xm
+ ‖T(Li , L j , ∂αLk)‖Xm

≤ c‖L‖Xm
‖L‖2

W
N0
2 +3,∞
(11.35)

for any i, j, k ∈ {1, . . . , 6} and 0 ≤ m ≤ N0.

123



Global solutions for the gravity water waves system 771

The proof of the above Proposition is given in Appendix A.2.4. We will also
need the following simple Lemma:

Lemma 11.8 Let H = Hζ denote the Hilbert transform along a curve ζ
satisfying ‖ζα − 1‖H N1+4 ≤ 1

2 . Then for any f with ‖ f ‖Hk+2 ≤ 1, and k ≤ N1,
we have

‖H∂α f (t)‖W k,∞ +
∥
∥
∥
∥H

1

ζα
∂α f (t)

∥
∥
∥
∥

W k,∞
� ‖ f (t)‖W k+2,∞ (11.36)

and for any 2 ≤ p < ∞

‖H f (t)‖W k,∞ +
∥
∥
∥
∥H

1

ζα
f (t)

∥
∥
∥
∥

W k,∞
� ‖ f (t)‖W k+1,p + ‖ f (t)‖W k+1,∞ .

(11.37)

A.2.1 Commutator identities

Let K be an integral operator of the form

K f (α, t) = p.v.
∫

K (α, β; t) f (β, t) dβ (11.38)

with kernel K (α, β; t) or (α − β)K (α, β; t) continuous and bounded, and K
smooth away from the diagonal α = β. One can easily verify that

[∂t ,K] f (α, t) =
∫

∂t K (α, β; t) f (β, t) dβ, (11.39a)

[∂α,K] f (α, t) =
∫

(∂α + ∂β)K (α, β; t) f (β, t) dβ, (11.39b)

[S,K] f (α, t) =
∫ (

α∂α + β∂β + 1

2
t∂t

)

K (α, β; t) f (β, t) dβ + K f (α, t),

(11.39c)

for any sufficiently smooth and decaying f .

A.2.2 Proof of Lemma 11.5

It is enough to just look at the case of Q1, as the treatment of Q2 is identical.
Expanding out the denominator in (11.19) we can write

1

(ζ(α)− ζ(β))2
= F

(
ζ(α)− α − (ζ(β)− β)

α − β

)
1

(α − β)2
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772 A. D. Ionescu, F. Pusateri

where F(x) = ∑
k≥0 (−1)k(k + 1)xk . Then one can see that proving (11.24)

can be reduced to proving the following estimate for operators of the type C1
as in (11.16):

∥
∥
∥
∥p.v.

∫

F

(
H(x)−H(y)

x − y

)
A(x)− A(y)

(x − y)2
f (y) dy

∥
∥
∥
∥

L∞
�

m∏

i=1

‖A‖W 2,∞‖ f ‖W 1,∞,

(11.40)

where the implicit constant depends on ‖H ′′‖L∞ . To show this we split the
integral into two pieces:

∫

F

(
H(x)− H(y)

x − y

)
A(x)− A(y)

(x − y)2
f (y) dy = I1(x)+ I2(x)

I1(x) =
∫

|x−y|≤1

F

(
H(x)− H(y)

x − y

)
A(x)− A(y)

(x − y)2
f (y) dy

I2(x) =
∫

|x−y|≥1

F

(
H(x)− H(y)

x − y

)
A(x)− A(y)

(x − y)2
f (y) dy.

We write

I1(x) =
∫

|x−y|≤1

[

F

(
H(x)− H(y)

x − y

)

− F(H ′(x))
]

A(x)− A(y)

(x − y)2
f (y) dy

+ F(H ′(x))
∫

|x−y|≤1

A(x)− A(y)− A′(x)(x − y)

(x − y)2
f (y) dy

+ F(H ′(x))
∫

|x−y|≤1

A′(x)
x − y

( f (y)− f (x)) dy =: I1,1(x)+ I1,2(x)+ I1,3(x).

It is then easy to see that we can then estimate

|I1,1(x)| � ‖F ′‖L∞‖H ′′‖L∞‖A′‖L∞‖ f ‖L∞

|I1,2(x)| � ‖F‖L∞‖A′′‖L∞‖ f ‖L∞

|I1,3(x)| � ‖F ′‖L∞‖A′‖L∞‖ f ′‖L∞

so that ‖I1‖L∞ � c
(‖F‖W 1,∞, ‖H ′′‖L∞

) ‖A′‖W 1,∞‖ f ‖W 1,∞ . Since |x − y|−2

is integrable for |x − y| ≥ 1 one has

‖I2‖L∞ � c
(‖F‖L∞

) ‖A‖L∞‖ f ‖L∞ .
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The bound (11.40) follows. �

A.2.3 Proof of Lemma 11.6

We start by calculating

∂αQ0( f, g) = ∂α

∫
f (α)− f (β)

ζ(α)− ζ(β)
g(β) dβ = −∂αζ(α)

∫
f (α)− f (β)

(ζ(α)− ζ(β))2
g(β) dβ

+
∫

∂α f (α)

ζ(α)− ζ(β)
g(β) dβ =: Q1

0(α)+ Q2
0(α).

Since the integral operators in Q0
1 is of the type Q, we can use Lemma 11.5 to

bound

‖Q1
0‖L∞ � ‖ζα‖L∞‖ f ‖W 2,∞‖g‖W 1,∞ .

The second contribution to ∂αQ0( f, g) is

Q2
0 = ∂α f

(

H 1

ζα
g

)

= ∂α f Hg + ∂α f H
(

1

ζα
− 1

)

g

Thus, using also (11.1), we see that

‖Q2
0‖L∞ � ‖∂α f ‖L∞‖Hg‖L∞ + ‖∂α f ‖L∞

∥
∥
∥
∥H

(
1

ζα
− 1

)

g

∥
∥
∥
∥

H1

� ‖∂α f ‖L∞‖Hg‖L∞ + ‖∂α f ‖L∞c(‖ζα − 1‖H3)‖g‖W 1,∞ .

We conclude that Q2
0 satisfies the desired bound and so does ∂αQ0( f, g). �

A.2.4 Proof of Proposition 11.7

Proof of (11.28). We want to show that for any two functions f and g

‖Q( f, g)‖W k,∞ ≤ c‖ f ‖W k+2,∞‖g‖W k+2,∞ . (11.41)

This can be shown by induction, using (11.24) as the base of the induction.
Again, it is enough to just look at the case of Q1. Let us assume that (11.41)
holds true for some 1 ≤ k ≤ N0

2 + 1. We want to show the estimate for k + 1.
Notice that we can write Q as an operator of the form K, see (11.38), with
Kernel

K (α, β; t) = f (α)− f (β)

(ζ(α)− ζ(β))2
.
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Using the commutation identity (11.39b) we see that

∂αQ( f, g) = Q( f, ∂αg)+ Q(∂α f, g)+ I (α)

where

I (α) = −
∫
( f (α)− f (β))(∂αζ(α)− ∂βζ(β))

(ζ(α)− ζ(β))3
g(β) dβ.

Using the inductive hypothesis we have

‖Q(∂α f, g)‖W k,∞ + ‖Q( f, ∂αg)‖W k,∞ ≤ c‖∂α f ‖W k+2,∞‖g‖W k+2,∞

+ c‖ f ‖W k+2,∞‖∂αg‖W k+2,∞ .

By expanding the denominator in the integral defining I , we see that I is an
operator of the form C1(H, A, g), see (11.16), with A = ( f, ζα − 1) and
H = ζ − id. Letting k + 1 = k1 + k2 + k3, and using (11.39b), we see that
Dk+1 I is a sum of operators of the form

C1

(
ζ − α, Ak2,k3, Dk1 g)

)

where Ak2,k3 = ( Ãk3, Dk2 f ), and Ãk3 is a vector with at most k3 components
satisfying

‖A′
k3

‖
L p � ‖Dk3+1ζα‖L p

for p = 2,∞. Applying Theorem 11.3 we see that:

‖I‖Hk+2,∞ ≤c‖∂α f ‖W k+2,∞‖ζα−1‖Hk+2‖g‖W k+2,∞ ≤c‖ f ‖W k+3,∞‖g‖W k+2,∞,

where the constant c depends only on ‖ζα‖H N1 . We can then deduce

‖Q( f, g)‖W k+1,∞ ≤ ‖Q(∂α f, g)‖W k+1,∞ + ‖Q( f, ∂αg)‖W k+1,∞ + ‖I‖W k+1,∞

≤ c‖ f ‖W k+3,∞‖g‖W k+3,∞

which is exactly (11.41) with k + 1 replacing k.
Proof of (11.30). Let us first look at the Hk component of the Xk norm.

Since

Q0( f, g) = H 1

ζα
( f g)− f H 1

ζα
g (11.42)
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we can use product Sobolev estimates and the Hk bounds on the Hilbert
transform (11.1) to obtain

‖Q0( f, g)‖Hk � ‖ f g‖Hk + ‖ζα − 1‖Hk ‖ f g‖
W

k
2 +1,∞ + ‖ f ‖Hk ‖Hg‖L∞

+ ‖ f ‖L∞‖Hg‖Hk � ‖ f ‖Hk ‖(Hg, g)‖L∞

+ ‖ f ‖L∞‖g‖Hk + ‖ζα − 1‖Hk ‖ f ‖
W

k
2 +1,∞‖g‖

W
k
2 +1,∞

where the implicit constants depend only on ‖ζα − 1‖H N1 .
A similar argument can be used to bound the S−1 Hk norm of Q0( f, g) for

0 ≤ k ≤ N0
2 . First we observe that for any 0 ≤ k ≤ N0

2 one has

‖SQ0( f, g)‖Hk ≤
∥
∥
∥
∥SH 1

ζα
( f g)

∥
∥
∥
∥

Hk
+
∥
∥
∥
∥S f H 1

ζα
g

∥
∥
∥
∥

Hk
+
∥
∥
∥
∥ f SH 1

ζα
g

∥
∥
∥
∥

Hk

≤
∥
∥
∥
∥H

1

ζα
( f g)

∥
∥
∥
∥

Xk

+ ‖ f ‖Xk

∥
∥
∥
∥H

1

ζα
g

∥
∥
∥
∥

W k,∞
+ ‖ f ‖W k,∞

∥
∥
∥
∥H

1

ζα
g

∥
∥
∥
∥

Xk

.

(11.43)

We can then use (11.2) to obtain
∥
∥
∥
∥H

1

ζα
( f g)

∥
∥
∥
∥

Xk

≤ c‖ f g‖Xk
+ ‖ζα − 1‖Xk

‖ f g‖
W

k
2 +1,∞

∥
∥
∥
∥H

1

ζα
g

∥
∥
∥
∥

Xk

≤ c‖g‖Xk
+ ‖ζα − 1‖Xk

‖g‖
W

k
2 +1,∞ .

Since we also have

‖ f g‖Xk
≤ c‖ f ‖Xk

‖g‖W k,∞ + ‖ f ‖W k,∞‖g‖Xk

we can plug the above bounds in (11.43) and get the desired conclusion.
Proof of (11.31). Let us start again with the Hk component of the Xk norm.

First of all observe that Q0( f, ∂αg) is an operator of the form C2(ζ −α, f, g),
see (11.17). Distributing derivatives on Q0( f, ∂αg) by using (11.39b), we see
that for any integer k = k1 + k2 + k3, we have that Dk Q0( f, ∂αg) is a sum of
operators of the form

C2

(
ζ − α, Ak2,k3, Dk1 g)

)

where Ak2,k3 = ( Ãk3, Dk2 f ), and Ãk3 is a vector with at most k3 components
satisfying

‖A′
k3

‖
L p � ‖Dk3+1ζα‖L p
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for p = 2,∞. One can then apply Theorem 11.3 to deduce that the Hk-norm of
Q0( f, ∂αg) is bounded by the right-hand side of (11.31) for any 0 ≤ k ≤ N0.

The estimate for ‖SQ0( f, ∂αg)‖Hk , for 0 ≤ k ≤ N0
2 , follows similarly by

using the commutation identity (11.39c). Indeed, applying S to Q0( f, ∂αg) ∼
C2(ζ − α, f, g), and commuting S and ∂α when S falls on ∂αg, one obtains
operators of the form C2(ζ−α, S f, g), C2(ζ−α, ( f, Sζα), g), C2(ζ−α, f, Sg)
or C2(ζ −α, f, g) itself. Applying and distributing k derivatives as above, one
can then estimate the resulting expressions in L2 via Theorem 11.3, eventually
obtaining the desired bound.

Proof of (11.32). This estimate follows from the same proof of Lemma 11.6,
which is the case l = 0, after applying and commuting k derivatives similarly
to what has been already done before. Since the proof is straightforward, we
skip it.

Proof of (11.34). Let us start by showing the Hm estimate

‖T( f, g, h)‖Hm + ‖T( f, g, ∂αh)‖Hm ≤ c‖( f, g, h, ζα − 1)‖Hm

‖( f, g, h, ζα − 1)‖2

W
N0
2 +3,∞, (11.44)

for all integers 0 ≤ m ≤ N0. Again we will us induction and commutation
identities. The base for the induction is given by the estimates

‖T( f, g, h)‖L2 ≤ c‖( f, g, h)‖L2‖( f, g, h)‖2

W
N0
2 +3,∞, (11.45)

‖T( f, g, ∂αh)‖L2 ≤ c‖( f, g, h)‖L2‖( f, g, h)‖2

W
N0
2 +3,∞ . (11.46)

To verify these we cannot use directly Theorem 11.3. We instead write

T( f, g, h) = f Q(g, h)− Q(g, f h)

T( f, g, ∂αh) = f Q(g, ∂αh)− Q(g, f ∂αh).

From Theorem 11.4 we have

‖Q(a, b)‖L2 ≤ c‖∂αa‖L∞‖b‖L2 .

Thus, using (11.29), we obtain

‖T( f, g, h)‖L2 ≤ ‖ f Q(g, h)‖L2 + ‖Q(g, f h)‖L2 � ‖ f ‖L2‖Q(g, h)‖L∞

+ ‖∂αg‖L∞‖ f h‖L2 � ‖( f, g, h)‖L2‖( f, g, h)‖2
W 2,∞ .
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Similarly we have

‖T( f, g, ∂αh)‖L2 ≤ ‖ f Q(g, ∂αh)‖L2 + ‖Q(g, f ∂αh)‖L2 � ‖ f ‖L2‖Q(g, ∂αh)‖L∞

+ ‖∂αg‖L∞‖ f ∂αh‖L2 � ‖( f, g, h)‖L2‖( f, g, h)‖2
W 3,∞ .

Now let us assume that (11.44) holds true for some integer 0 ≤ l ≤ m − 1.
Using the commutation identity (11.39b) we see that

∂αT( f, g, h) = T(∂α f, g, h)+ T( f, ∂αg, h)+ T( f, g, ∂αh)+ J1(α)

where

J1(α) = −
∫
( f (α)− f (β))(g(α)− g(β))(∂αζ(α)− ∂βζ(β))

(ζ(α)− ζ(β))3
h(β) dβ.

Since

T(∂α f, g, h) = ∂α f Q(g, h)− Q(g, ∂α f h)

we have

‖T(∂α f, g, h)‖Hl ≤ ‖∂α f ‖Hl ‖Q(g, h)‖L∞ + ‖∂α f ‖L∞‖Q(g, h)‖Hl

+ ‖Q(g, ∂α f h)‖Hl . (11.47)

From Theorem 11.4, and commutation identities, it is not hard to see that

‖Q(a, b)‖Hl ≤ c‖a‖
W

l
2 +2,∞‖b‖Hl + c‖∂αa‖Hl ‖b‖

W
l
2 +2,∞

+ ‖a‖
W

l
2 +2,∞‖b‖

W
l
2 +2,∞‖ζα − 1‖Hl . (11.48)

We can then use the above estimate and (11.29) to bound the right-hand side
of (11.47) and obtain

‖T(∂α f, g, h)‖Hl

� ‖∂α f ‖Hl ‖( f, g, h)‖2
W 2,∞ + ‖∂α f ‖L∞‖(g, h)‖Hl+1‖(g, h)‖

W
l
2 +2,∞

+ ‖(∂α f, g, h)‖2

W
l
2 +2,∞‖ζα − 1‖Hl + ‖g‖

W
l
2 +2,∞‖∂α f h‖Hl

+ ‖∂αg‖Hl ‖∂α f h‖
W

l
2 +2,∞ � ‖( f, g, h, ζα − 1)‖Hl+1‖( f, g, h)‖2

W
l
2 +3,∞ .

An identical bound clearly holds for T( f, ∂αg, h). Since l ≤ N0 we have then
obtained
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‖∂αT( f, g, h)− T( f, g, ∂αh)− J1‖Hl

≤ c‖( f, g, h, ζα − 1)‖Hl+1‖( f, g, h)‖2

W
N0
2 +3,∞ .

To estimate

T( f, g, ∂αh) =
∫
( f (α)− f (β))(g(α)− g(β))

(ζ(α)− ζ(β))2
∂βh(β) dβ

we need to get rid of the extra derivative falling on h. Integrating by parts in
β we have

T( f, g, ∂αh) = Q(g, h∂α f )+ Q( f, h∂αg)+ J2(α)

where

J2(α) = −2
∫
( f (α)− f (β))(g(α)− g(β))

(ζ(α)− ζ(β))3
ζβ(β)h(β) dβ.

Using (11.48) we can bound

‖Q(g, h∂α f )‖Hl + ‖Q( f, h∂αg)‖Hl ≤ c‖( f, g, h, ζα − 1)‖Hl+1‖( f, g, h)‖2

W
N0
2 +3,∞

as desired. To bound J2, which is an operator of the form C1(ζ − id,
( f, g), ζαh), we can again commute derivatives via (11.39b) and apply Theo-
rem 11.3 to obtain:

‖J2‖Hl ≤ c‖( f, g, h, ζα − 1)‖Hl+1‖( f, g, h)‖2

W
N0
2 +3,∞ .

We have then shown

‖∂αT( f, g, h)− J1‖Hl ≤ c‖( f, g, h, ζα − 1)‖Hl+1‖( f, g, h)‖2

W
N0
2 +3,∞ .

To eventually estimate J1 we notice that

J1(α) = −ζαT( f, g, h)+ T( f, g, ζαh),

so that

‖J1‖Hl ≤ c‖T( f, g, h)‖Hl + ‖T( f, g, ζαh)‖Hl .
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Using the inductive hypotheses we see that

‖J1‖Hl ≤ c‖( f, g, h, ζα − 1)‖Hl ‖( f, g, h)‖2

W
N0
2 +3,∞

+ c‖( f, g, ζαh, ζα − 1)‖Hl ‖( f, g, ζαh)‖2

W
N0
2 +3,∞

≤ c‖( f, g, h, ζα − 1)‖Hl ‖( f, g, h)‖2

W
N0
2 +3,∞

where the constant c depends only on lower Sobolev norms of ( f, g, h, ζα−1),
which are uniformly bounded by assumption. It follows that

‖∂αT( f, g, h)‖Hl ≤ c‖( f, g, h, ζα − 1)‖Hl+1‖( f, g, h)‖2

W
N0
2 +3,∞,

which gives the bound on the first term on the left-hand side of (11.44).
To complete the proof of (11.44) we need to show

‖T( f, g, ∂αh)‖Hm ≤ c‖( f, g, h, ζα − 1)‖Hm ‖( f, g, h)‖2

W
N
2 +3,∞ .

Again we proceed by induction, the base being given by (11.46) which has
already been verified. The argument is similar to those above. Applying a
derivative to T( f, g, ∂αh) we get

∂αT( f, g, ∂αh) = T(∂α f, g, ∂αh)+ T( f, ∂αg, ∂αh)+ T( f, g, ∂2
αh)+ J3(α)

where

J3(α) = −2
∫
( f (α)− f (β))(g(α)− g(β))(∂αζ(α)− ∂βζ(β))

(ζ(α)− ζ(β))3
∂βh(β) dβ.

Since

T(∂α f, g, ∂αh) = ∂α f Q(g, ∂αh)− Q(g, ∂α f ∂αh)

this term can be directly estimated using (11.28) and (11.48). One can bound
similarly T( f, ∂αg, ∂αh).

To control T( f, g, ∂2
αh)we need to resort again to an integration by parts to

remove the presence of the extra derivative. More precisely we have

T( f, g, ∂2
αh) = Q(g, ∂αh∂α f )+ Q( f, ∂αh∂αg)+ J4(α)

where

J4(α) = −2
∫
( f (α)− f (β))(g(α)− g(β))

(ζ(α)− ζ(β))3
ζβ(β)∂βh(β) dβ.
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The terms Q(g, ∂αh∂α f ) and Q( f, ∂αh∂αg) can be estimated via (11.48):

‖Q(g, ∂αh∂α f )‖Hl + ‖Q( f, ∂αh∂αg)‖Hl

≤ c‖( f, g, h, ζα − 1)‖Hl+1‖( f, g, h)‖2

W
N0
2 +3,∞ .

Similarly to what has been done before, we can expand the factor (ζ(α)
− ζ(β))−3, and write J4 as an operator of the type C1 as in (11.16). By using
the commutation identity (11.39b) we can then bound it by

‖J4‖Hl ≤ c‖∂α( f, g, h, ζα − 1)‖Hl ‖∂α( f, g, h)‖2

W
l
2 +2,∞

≤ c‖( f, g, h, ζα − 1)‖Hl+1‖( f, g, h)‖2

W
N0
2 +3,∞ .

This shows that

‖∂αT( f, g, ∂αh)− J3‖Hl ≤ c‖( f, g, h, ζα − 1)‖Hl+1‖( f, g, h)‖2

W
N0
2 +3,∞ .

To eventually bound J3 in Hl notice that it can be written as follows:

J3 = −2∂αζT( f, g, ∂αh)− J4.

Using the inductive hypothesis for the first summand above, and the bound we
have already obtained for J4, one can easily see how the desired bound for J3
follows. This eventually yields

‖∂αT( f, g, ∂αh)‖Hl ≤ c‖( f, g, h, ζα − 1)‖Hl+1‖( f, g, h)‖2

W
N0
2 +3,∞,

thereby completing the proof of (11.44).
We now prove the estimate in the space S−1 Hk with k := [m

2 ], 0 ≤ m ≤ N0:

‖ST( f, g, h)‖Hk + ‖ST( f, g, ∂αh)‖Hk ≤ c‖SL‖Hk ‖L‖2

W
N0
2 +2,∞ . (11.49)

For simplicity we just show the proof of the bound for the second term in the
above right-hand side. The first term can be bounded similarly, and it is actually
easier to estimate, since there is one less derivative on h to worry about. Let us
start by computing ST( f, g, ∂αh) in L2. By using the commutation identity
(11.39c), and [S, ∂α] = −∂α , we see that

ST( f, g, ∂αh) = T(S f, g, ∂αh)+ T( f, Sg, ∂αh)+ T( f, g, ∂αSh)+ K1(α)
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where

K1(α) = −2
∫
( f (α)− f (β))(g(α)− g(β))(Sζ(α)− Sζ(β))

(ζ(α)− ζ(β))3
∂βh(β) dβ.

Notice that we can write

T(S f, g, ∂αh) = S f Q(g, ∂αh)− Q(g, S f ∂αh).

Then, using the W l,∞ estimate (11.29) and the Hl estimate (11.48) for Q, we
see that for any l ≤ k:

‖T(S f, g, ∂αh)‖Hl ≤ ‖S f ‖Hl ‖Q(g, ∂αh)‖W l,∞ + ‖Q(g, S f ∂αh)‖Hl

≤ c‖S f ‖Hl ‖(g, ∂αh)‖2
W l+2,∞ + ‖∂αg‖W l,∞‖S f ∂αh‖Hl

� ‖S f ‖Hl ‖(g, h)‖2
W l+3,∞ .

An analogous bound holds for T( f, Sg, ∂αh).
To control T( f, g, ∂αSh) we need to integrate by parts in order to remove

the derivative from Sh. This integration by parts gives:

T( f, g, ∂αSh) = Q(g, ∂α f Sh)+ Q( f, ∂αgSh)+ K2(α)

where

K2(α) = −2
∫
( f (α)− f (β))(g(α)− g(β))

(ζ(α)− ζ(β))3
∂βζ(β)h(β) dβ.

The Q terms can be treated as before, and therefore satisfy the desired bound.
Thus, so far we have obtained

‖ST( f, g, ∂αh)− K1 − K2‖Hl ≤ c‖S( f, g, h)‖Hl ‖( f, g, h)‖2
W l+2,∞

for any l ≤ k.
To conclude we notice that K1, respectively K2, are operators of the form

C1(H, A, f ) as in (11.16), for some smooth F , H = ζ − id, and (A, f ) =
( f, g, Sζ, ∂αh), respectively (A, f ) = ( f, g, ζαh). Commuting derivatives,
using Theorem 11.3 and the assumptions, we can deduce that

‖K1‖Hl + ‖K2‖Hl ≤ c‖∂α f ‖Hl ‖∂αg‖W l,∞‖∂αSζ‖Hl ‖∂αh‖W l,∞

+ c‖∂α f ‖Hl ‖∂αg‖W l,∞‖ζαh‖W l,∞

≤ c‖( f, g, h)‖2
W l+1,∞‖(∂α f, S(ζα − 1))‖Hl
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where c depends only on the Hl+2-norm of ( f, g, h, ζα−1), which is uniformly
bounded by assumptions. Here we have used ∂αSζ = S(ζα − 1)+ ∂αζ for the
second inequality. We can then conclude that

‖ST( f, g, ∂αh)‖Hl ≤ c‖S( f, g, h, ζα − 1)‖Hl ‖( f, g, h)‖2
W l+3,∞ (11.50)

for any l ≤ k. This shows the validity of (11.49) and finishes the proof of
(11.34). ��

A.2.5 Proof of Lemma 11.8

We want to show that for any f with ‖ f ‖Hk+2 ≤ 1, 0 ≤ k ≤ N1, we have

‖H∂α f ‖W k,∞ � ‖ f ‖W k+2,∞ . (11.51)

From the definition of H we can write iπH∂α f = I1 + I2 with

I1(α) =
∫

∂β f (β)

ζ(α)− ζ(β)
dβ

I2(α) =
∫

∂β f (β)

ζ(α)− ζ(β)
(∂βζ(β)− 1) dβ = H∂α f (ζα − 1)

ζα
.

I2 is a quadratic term and can be directly estimated using Sobolev’s embedding
and the boundedness of H on Sobolev spaces (11.1):

‖I2‖W k,∞ � ‖I2‖Hk+1 � ‖∂α f (ζα − 1)‖Hk+1 + ‖ζα − 1‖Hk+1‖∂α f (ζα − 1)‖
W

k
2 +1,∞

� ‖ζα − 1‖Hk+1‖ f ‖W k+2,∞ � ‖ f ‖W k+2,∞

having used ‖ f ‖Hk+2 ≤ 1 and the assumption on the Sobolev norm of ζα − 1.
To estimate I1 we expand the expression (ζ(α) − ζ(β))−1 in a geometric

sum as follows:

1

ζ(α)− ζ(β)
= 1

α − β

∑

k≥0

(
ζ(α)− α − (ζ(β)− β)

α − β

)k

= 1

α − β
+ H(α)− H(β)

α − β
F

(
H(α)− H(β)

α − β

)

,

where H := ζ − id and F is a smooth function. We can then write

I1(α) = I0(α)+ C2(F, H, f )(α)
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where C2 is as in (11.17), and

I0(α) =
∫
∂β f (β)

α − β
dβ (11.52)

is a constant multiple of the (flat) Hilbert transform H0 := Hid. To estimate
C2(F, H, ∂α f ) we can use Sobolev’s embedding, the commutation identity
(11.39b), and the bounds provided by Theorem 11.3:

‖C2(F, H, ∂α f )‖W k,∞ �‖C2(F, H, ∂α f )‖Hk+1 �‖ f ‖Hk+1‖Hα‖W k+1,∞ �‖ f ‖W k+1,∞ .

In the last inequality above we have used again the assumptions ‖ f ‖Hk+1 ≤ 1
and ‖ζα − 1‖Hk+1 ≤ 1

2 . So far we have shown

‖H∂α f − H0∂α f ‖W k,∞ � ‖ f ‖W k+2,∞ .

Applying the Littlewood–Paley decomposition to f , and using the bounded-
ness of H0 Pl on L∞, we see that

‖H0∂α f ‖W k,∞ �
∑

l

‖H0 Pl∂α f ‖W k,∞ �
∑

l

2l‖ f ‖W k,∞ � ‖ f ‖W k+2,∞ .

This concludes the proof of (11.51). The bound for the second summand in
the left-hand side of (11.36) can be obtain similarly.

To prove (11.37) one can use an argument similar to the one just showed,
replacing ∂α f with f . The same estimates as above will show:

‖H f − H0 f ‖W k,∞ � ‖ f ‖W k+1,∞ .

To conclude it is then enough to observe that for any 2 ≤ p < ∞
‖H0 f ‖W k,∞ � ‖H0 f ‖W k+1,p � ‖ f ‖W k+1,p .

The second summand in the left-hand side of (11.37) can be estimated analo-
gously. �

Appendix B: The symbols cι1ι2ι3

In this section we calculate explicitly the symbols cι1ι2ι3 defined in (6.6) and
prove the bounds (6.8) and (6.9).

With V +(t) = V (t) and V −(t) = V (t), recall that

H(t) = V +(t)+ V −(t)
2

, �(t) = i[�−1V −(t)−�−1V +(t)]
2

.
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Starting from the formula (4.9),

M3(H, H, �)=−(1/2)|∂x |
[
H2|∂x |2�+|∂x |(H2|∂x |�)−2H |∂x |(H |∂x |�)

]
,

we calculate easily

F[M3(H, H, �)](ξ) = i

4π2

∑

(ι1ι2ι3)

∫

R2

cι1ι2ι31 (ξ, η, σ )V̂ ι1(ξ − η, t)

× V̂ ι2(η − σ, t)V̂ ι3(σ, t) dηdσ,

where the sum is taken over (ι1ι2ι3) ∈ {(++−), (−−+), (+++), (−−−)},
and

c++−
1 (ξ, η, σ ) = 2|ξ ||η − σ |3/2 − |ξ ||σ |3/2 + 2|ξ |2|η − σ |1/2 − |ξ |2|σ |1/2

16

+ −|ξ ||ξ − σ ||η − σ |1/2 − |ξ ||η||η − σ |1/2 + |ξ ||η||σ |1/2
8

,

c+++
1 (ξ, η, σ ) = |ξ ||σ |3/2 + |ξ |2|σ |1/2 − 2|ξ ||η||σ |1/2

16
,

c−−+
1 (ξ, η, σ ) = −c++−

1 (ξ, η, σ ),

c−−−
1 (ξ, η, σ ) = −c+++

1 (ξ, η, σ ). (12.1)

Using now the formula (4.11),

Q3(�, H, �) = |∂x |�
[
H |∂x |2� − |∂x |(H |∂x |�)

]

we calculate easily

F[i�Q3(�, H, �)](ξ)
= i

4π2

∑

(ι1ι2ι3)

∫

R2

cι1ι2ι32 (ξ, η, σ )V̂ ι1(ξ − η, t)V̂ ι2(η − σ, t)V̂ ι3(σ, t) dηdσ,

where the sum is taken over (ι1ι2ι3) ∈ {(++−), (−−+), (+++), (−−−)},
and

c++−
2 (ξ, η, σ )

= |ξ |1/2|ξ − η|3/2|σ |1/2 + |ξ |1/2|ξ − η|1/2|σ |3/2 − |ξ |1/2|ξ − η|1/2|η − σ |3/2
8

+ −|ξ |1/2|ξ − σ ||η − σ |1/2|σ |1/2 − |ξ |1/2|ξ − η|1/2|η||σ |1/2 + |ξ |1/2|ξ − η|1/2|η||η − σ |1/2
8

,

c+++
2 (ξ, η, σ ) = −|ξ |1/2|ξ − η|1/2|η − σ |3/2 + |ξ |1/2|ξ − η|1/2|η||σ |1/2

8
,
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c−−+
2 (ξ, η, σ ) = c++−

2 (ξ, η, σ ),

c−−−
2 (ξ, η, σ ) = c+++

2 (ξ, η, σ ). (12.2)

Let

q̃2(ξ, η) = �−1(ξ − η)�−1(η)q2(ξ, η), m̃2(ξ, η) = �−1(η)m2(ξ, η).

(12.3)

Using the fact that A, Q2 are symmetric we calculate

F[2A(M2(H, �), H)](ξ) = i

4π2

∑

(ι1ι2ι3)

∫

R2

cι1ι2ι33 (ξ, η, σ )V̂ ι1(ξ − η, t)

× V̂ ι2(η − σ, t)V̂ ι3(σ, t) dηdσ,

where the sum is taken over (ι1ι2ι3) ∈ {(++−), (−−+), (+++), (−−−)},
and

c++−
3 (ξ, η, σ )

= a(ξ, η)m̃2(η, σ )−a(ξ, η)m̃2(η, η−σ)−a(ξ, ξ−σ)m̃2(ξ − σ, ξ − η)

4
,

c+++
3 (ξ, η, σ ) = −a(ξ, η)m̃2(η, σ )

4
,

c−−+
3 (ξ, η, σ ) = −c++−

3 (ξ, η, σ ),

c−−−
3 (ξ, η, σ ) = −c+++

3 (ξ, η, σ ). (12.4)

Similarly we calculate

F[i�B(M2(H, �),�)](ξ)
= i

4π2

∑

(ι1ι2ι3)

∫

R2

cι1ι2ι34 (ξ, η, σ )V̂ ι1(ξ − η, t)V̂ ι2(η − σ, t)V̂ ι3(σ, t) dηdσ,

where the sum is taken over (ι1ι2ι3) ∈ {(++−), (−−+), (+++), (−−−)},
and

c++−
4 (ξ, η, σ )

= |ξ |1/2b(ξ, ξ−η)|ξ−η|−1/2m̃2(η, σ )−|ξ |1/2b(ξ, ξ−η)|ξ−η|−1/2m̃2(η, η−σ)
8

+ |ξ |1/2b(ξ, σ )|σ |−1/2m̃2(ξ − σ, ξ − η)

8
,

c+++
4 (ξ, η, σ ) = −|ξ |1/2b(ξ, ξ − η)|ξ − η|−1/2m̃2(η, σ )

8
,
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c−−+
4 (ξ, η, σ ) = c++−

4 (ξ, η, σ ),

c−−−
4 (ξ, η, σ ) = c+++

4 (ξ, η, σ ). (12.5)

Finally we calculate

F[i�B(H, Q2(�,�))](ξ)
= i

4π2

∑

(ι1ι2ι3)

∫

R2

cι1ι2ι35 (ξ, η, σ )V̂ ι1(ξ − η, t)V̂ ι2(η − σ, t)V̂ ι3(σ, t) dηdσ,

where the sum is taken over (ι1ι2ι3) ∈ {(++−), (−−+), (+++), (−−−)},
and

c++−
5 (ξ, η, σ ) = 2|ξ |1/2b(ξ, η)̃q2(η, σ )−|ξ |1/2b(ξ, ξ − σ )̃q2(ξ−σ, ξ−η)

8
,

c+++
5 (ξ, η, σ ) = −|ξ |1/2b(ξ, η)̃q2(η, σ )

8
,

c−−+
5 (ξ, η, σ ) = c++−

5 (ξ, η, σ ),

c−−−
5 (ξ, η, σ ) = c+++

5 (ξ, η, σ ). (12.6)

The following lemma gives the desired bounds (6.8) and (6.9).

Lemma 12.1 The symbols cι1ι2ι3 satisfy the uniform bounds

∥
∥F−1[cι1ι2ι3(ξ, η, σ ) · ϕl(ξ)ϕk1(ξ − η)ϕk2(η − σ)ϕk3(σ )]

∥
∥

L1(R3)

� 2l/222 max(k1,k2,k3), (12.7)

for any (ι1ι2ι3) ∈ {(++−), (−−+), (+++), (−−−)} and l, k1, k2, k3 ∈ Z.
Moreover, for any k = (k1, k2, k3), l = (l1, l2, l3) ∈ Z

3 let

c∗
ξ (x, y) = c++−(ξ,−x,−ξ − x − y),

(∂x c∗
ξ )k,l(x, y) = (∂x c∗

ξ )(x, y) · ϕk1(ξ + x)ϕk2(ξ + y)ϕk3(ξ + x + y)

ϕl1(x)ϕl2(y)ϕl3(2ξ + x + y),

(∂yc∗
ξ )k,l(x, y) = (∂yc∗

ξ )(x, y) · ϕk1(ξ + x)ϕk2(ξ + y)ϕk3(ξ + x + y)

ϕl1(x)ϕl2(y)ϕl3(2ξ + x + y).

Then, for any k, l ∈ Z
3, and ξ ∈ R

‖(∂x c∗
ξ )k,l‖S∞ � 2− min(k1,k3)25 max(k1,k2,k3)/2,

‖(∂yc∗
ξ )k,l‖S∞ � 2− min(k2,k3)25 max(k1,k2,k3)/2. (12.8)
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Proof of Lemma 12.1 Clearly, for any (ι1ι2ι3) ∈ {(+ + −), (− − +), (+ +
+), (− − −)}

cι1ι2ι3 =
5∑

l=1

cι1ι2ι3l .

The bound (12.7) follows from the explicit formulas (12.1)–(12.6), the symbol
bounds in Lemma 5.3, and the algebra properties in Lemma 5.2 (ii).

Let ι : R \ {0} → {−1, 1}, ι(x) := x/|x |. Recalling the formulas in Lemma
5.1 and using (12.1)–(12.6) we calculate

c∗
ξ (x, y) = c∗

ξ,1(x, y)+ c∗
ξ,2(x, y)+ c∗

ξ,3(x, y)+ c∗
ξ,4(x, y)+ c∗

ξ,5(x, y),

where

c∗
ξ,1(x, y) = |ξ ||ξ + y|3/2

8
− |ξ ||ξ + x + y|3/2

16
+ |ξ |2|ξ + y|1/2

8

− |ξ |2|ξ + x + y|1/2
16

− |ξ ||2ξ + x + y||ξ + y|1/2
8

− |ξ ||x ||ξ + y|1/2
8

+ |ξ ||x ||ξ + x + y|1/2
8

,

c∗
ξ,2(x, y) = |ξ |1/2|ξ+x |3/2|ξ+x + y|1/2

8
+ |ξ |1/2|ξ + x |1/2|ξ + x + y|3/2

8

− |ξ |1/2|ξ + x |1/2|ξ + y|3/2
8

− |ξ |1/2|2ξ + x + y||ξ + y|1/2|ξ + x + y|1/2
8

− |ξ |1/2|ξ+x |1/2|x ||ξ+x + y|1/2
8

+ |ξ |1/2|ξ+x |1/2|x ||ξ+y|1/2
8

,

c∗
ξ,3(x, y) = |ξ ||ξ + x + y|1/2ι(ξ + x)[|x |ι(ξ + x + y)− x]

8

+ |ξ ||ξ + y|1/2ι(ξ + x)[|x |ι(ξ + y)+ x]
8

− |ξ ||ξ+x |1/2ι(ξ+x+y)[|2ξ+x + y|ι(ξ + x)−(2ξ + x + y)]
8

,

c∗
ξ,4(x, y) = |ξ |1/2|ξ+x |1/2|ξ+x+y|1/2ι(ξ)[|x |ι(ξ+x+y)−x]

8

+ |ξ |1/2|ξ + x |1/2|ξ + y|1/2ι(ξ)[|x |ι(ξ + y)+ x]
8
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− |ξ |1/2|ξ+x |1/2|ξ+x+y|1/2ι(ξ)[|2ξ+x+y|ι(ξ+x)−(2ξ+x+y)]
8

,

and

c∗
ξ,5(x, y)

= −|ξ |1/2|ξ+y|1/2|ξ+x+y|1/2ι(ξ)ι(ξ+x)|x |[1−ι(ξ+y)ι(ξ+x+y)]
8

− |ξ |1/2|ξ+y|1/2|ξ+x |1/2ι(ξ)ι(ξ+x+y)|2ξ+x+y|[1+ι(ξ+y)ι(ξ+x)]
16

.

The desired bounds (12.8) are verified easily for every term in these formulas.
Using these formulas, we also calculate

c∗
ξ (0, 0) = −|ξ |5/2/2. (12.9)

��

Appendix C: Estimate of remainder terms

In the first section below we give estimates for the Dirichlet–Neumann operator
N in L2, weighted L2, and L1-based Sobolev spaces. We will the use these
to establish several bounds for R1 and R2 in (4.6)–(4.7). We then proceed to
estimate all quartic and higher order remainder terms, and in particular prove
(6.25).

C1: Dirichlet-to-Neumann operator: multilinear estimates

Here we recall that if N denotes the outward normal vector of the interface S0

N (h)φ := N · ∇� = N · ∇φH, G(h)φ =
√

1 + |h′|2N (h)φ. (13.1)

We are interested in particular in estimating quartic and higher order terms
in the expansion of the Dirichlet–Neumann operator. The L2 and weighted
L2 estimates are needed to obtain the improved weighted bounds on V in
Proposition 4.3. The L1 estimates are used to bound these higher order terms
in the Z -norm.

The first Proposition below gives estimates in L2-based spaces and its proven
in Appendix C.1.1:

Proposition 13.1 The Dirichlet–Neumann operator G can be expanded in a
series
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G(h) f =
∑

n≥0

Mn+1(h, . . . , h, f ), (13.2)

where Mn+1 is an n + 1-linear operator satisfying the following L2 bounds:

‖Mn+1(h1, . . . , hn, f )‖L2

≤ Cn
0 min

⎧
⎨

⎩

n∏

i=1

‖h′
i‖L∞‖ f ′‖L2, min

j∈{1,...,n}
∏

i �= j

‖h′
i‖L∞‖h′

j‖L2‖ f ′‖L∞

⎫
⎬

⎭
,

(13.3)

for some absolute constant C0.
Moreover, G is invariant under translation and scaling symmetries, and the

following identities hold:

∂x Mn+1(h1, . . . , hn, f ) =
n∑

i=1

Mn+1(h1, . . . , ∂x hi , . . . , hn, f )

+ Mn+1(h1, . . . , hn, ∂x f ) (13.4)

SMn+1(h1, . . . , hn, f ) =
n∑

i=1

Mn+1(h1, . . . , Shi , . . . , hn, f )

+ Mn+1(h1, . . . , hn, S f )−
n∑

i=1

Mn+1(h1, . . . , hn, f ),

(13.5)

where S denotes the scaling vector field. As a consequence, for any integer
l ≥ 0 one has:

‖Mn+1(h1, . . . , hn, f )‖Hl �
n∑

i=1

‖h′
i‖Hl

∏

j �=i

‖h j‖W N1,∞‖ fx‖W N1,∞

+
n∏

i=1

‖hi‖W N1,∞‖ fx‖Hl , (13.6)

‖SMn+1(h1, . . . , hn, f )‖Hl �
n∑

i, j=1,i �= j

‖(Shi )
′‖Hl ‖h′

j‖Wl,∞

×
∏

k �=i, j

‖hk‖W N1,∞‖ fx‖Wl,∞

+
n∑

i=1

‖h′
i‖Hl

∏

j �=i

‖h j‖W N1,∞
(‖(S f )′‖Hl +‖ f ′‖Hl

)
,

(13.7)
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where the implicit constants are bounded by Cn
0 for some absolute constant

C0.

Let us denote

[G(h)φ]≥4(t) :=
∑

n≥3

Mn+1(h(t), . . . , h(t), φ(t)) (13.8)

to be the quartic and higher order terms (in h and φ) in the expansion of G. A
corollary of this expansion and Proposition 13.1 is the following:

Corollary 13.2 Under the a priori assumptions (2.8) on h and φ one has

‖[G(h)φ]≥4(t)‖H N0−2 + ‖S[G(h)φ]≥4(t)‖
H

N0
2 −2

� ε4
1(1 + t)3p0−3/2.

(13.9)

Moreover, for R1 and R2 defined in (4.6)–(4.7) we have

‖(R1 + i�R2)(t)‖H N0−5 + ‖S(R1 + i�R2)(t)‖
H

N0
2 −5

� ε4
1(1 + t)3p0−3/2.

(13.10)

The next Proposition establishes L1-type estimates:

Proposition 13.3 With the same notations of Proposition 13.1, and for any
n ≥ 3, we have

∥
∥
∥|∂x | β4 Mn+1(h1, . . . , hn, f )

∥
∥
∥

W 1,l
�

n∑

i=1

‖hi‖Hl+3

∏

j �=i

‖h j‖W N1,∞‖ fx‖Hl .

(13.11)

As a consequence, under the a priori assumption (2.8) on h and φ,

∥
∥
∥|∂x | β4 [G(h)φ]≥4(t)

∥
∥
∥

W 1,N0−10
� (1 + t)3p0−1. (13.12)

Here β = 1/100 is the parameter that appears in the definition of the Z norm
(1.9).

C.1.1 Proof of Proposition 13.1

This Proposition follows from some standard potential theory, arguments sim-
ilar to those in [20, sec. 7.2], and Theorem 11.3. We sketch the proof below.
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Expansion of the Dirichlet–Neumann operator. In order to find an explicit
formula for the Dirichlet–Neumann operator we start with an ansatz for the
harmonic extension of a function f to the domain {(x, z) : z ≤ h(x)}:

�(x, z) =
∫

1

2
log

(|x − y|2 + |z − h(y)|2) ρ(y) dy. (13.13)

By standard potential theory one has

N (h) f (x) = lim
z→h(x)

∇�(x, z) · N (x)

= 1

2

ρ(x)
√

1 + |h′(x)|2
+
∫

h(x)− h(y)+ h′(x)(y − x)

|x − y|2 + |h(x)− h(y)|2 ρ(y) dy.

(13.14)

We then aim at determining ρ in terms of h and f . Using (13.13) and f (x) =
�(x, h(x)), one has

f (x) =
∫

1

2
log

(|x − y|2 + |h(x)− h(y)|2) ρ(y) dy. (13.15)

It follows that

|∂x | f (x) = i H0

∫
x − y + (h(x)− h(y))h′(x)
|x − y|2 + |h(x)− h(y)|2 ρ(y) dy = ρ(x)+

∞∑

n=1

i H0

×
∫ (

h(x)− h(y)

x − y

)2n x − y + (h(x)− h(y))h′(x)
(x − y)2

ρ(y) dy

=: ρ(x)+
∞∑

n=1

Pn(h)ρ(x).

One can then invert the above series expansion and write

ρ =
∑

k≥0

(−1)k
[ ∞∑

n=1

Pn(h)

]k

|∂x | f (13.16)

where

Pn(h)g(x) := i H0

∫
(h(x)− h(y))2nh′(x)

(x − y)2n+1 g(y) dy

123



792 A. D. Ionescu, F. Pusateri

+ i H0h′(x)
∫
(h(x)− h(y))2n+1

(x − y)2n+2 g(y) dy. (13.17)

Expanding the second summand in (13.14) one can write

N (h) f (x) = 1

2

ρ(x)
√

1 + |h′(x)|2
+

∞∑

n=0

Qn(h)ρ

Qn(h) :=
∫ (

h(x)− h(y)

x − y

)2n h(x)− h(y)+ h′(x)(y − x)

(x − y)2
ρ(y) dy.

(13.18)

Putting together (13.1), (13.16) and (13.18) we eventually obtain (13.2).
Symmetries and L2-bounds. The basic L2-type bounds (13.3) follow directly

from the expansion (13.16)–(13.18) and Theorem 11.3. The formulas (13.4)
and (13.5) follow from the space translation and scaling invariances of the
basic operators Pn and Qn in (13.17) and (13.18). More precisely, for any
δ ∈ R and λ > 0

[G(h(· + δ)) f (· + δ)](x) = [G(h) f ](x + δ),

G

(
1

λ
h(λ·)

)

f (λ·)(x) = λ[G(h) f ](λx).

These identities hold true for each operator Mn in the expansion (13.2), that is

Mn(h1(· + δ), . . . , hn(· + δ), f (· + δ))(x) = Mn(h1, . . . , hn, f )(x + δ),

(13.19)

Mn

(
1

λ
h1(λ·), . . . , 1

λ
hn(λ·), f (λ·)

)

(x) = Mn(h1, . . . , hn, f )(λx),

(13.20)

and can be verified directly on the operators Pn and Qn defined above. Dif-
ferentiating with respect to the parameters in (13.19) and (13.20), one sees
that

∂x Mn(h1, . . . , hn, f ) =
n∑

i=1

Mn(h1, . . . , ∂x hi , . . . , hn, f )+Mn(h1, . . . , hn, ∂x f ),

x∂x Mn(h, . . . , h, f )(x) =
n∑

i=1

Mn(h1, . . . , x∂x hi , . . . , hn, f )
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+ Mn (h1, . . . , hn, x∂x f )−
n∑

i=1

Mn(h1, . . . , hn, f ).

The first identity is (13.4). If h and f depend on time, one can similarly derive
(13.5) from the last identity above. The estimates (13.6) and (13.7) follow by
repeated applications of (13.4) and (13.5) and the L2 estimate (13.3). ��

C.1.2 Proof of Corollary 13.2

The estimate (13.9) is an immediate consequence of the bounds (13.6) and
(13.7). To prove (13.10) it then suffices to prove

‖�R2(t)‖H N0−5 + ‖S�R2(t)‖
H

N0
2 −5

� ε4
1(1 + t)3p0−3/2. (13.21)

From the definition of R2 (4.7) we see that

R2 =
[
(|∂x |φ + M2(h, φ)+ M3(h, h, φ)+ R1(h, φ)+ hxφx )

2
]

≥4

+
[
2(1 + |hx |2)−1/2

]

≥2
(|∂x |φ+M2(h, φ)+ M3(h, h, φ)+ R1(h, φ)+ hxφx )

2

= (M2(h, φ)+ M3(h, h, φ)+ R1(h, φ)+ hxφx )
2 + 2|∂x |φ(M3(h, h, φ)

+ R1(h, φ))+
[
2(1+|hx |2)−1/2

]

≥2
(|∂x |φ

+ M2(h, φ)+M3(h, h, φ)+ R1(h, φ)+ hxφx )
2. (13.22)

To obtain the desired bound it suffices to apply appropriately Hölder’s inequal-
ity in combination with the a priori estimates (4.13), the L2 estimates (5.33)
for M2, and (5.35) for M3, and the following L∞ estimates:

‖Pk M2(h, φ)‖L∞ � ε2
1(1 + t)−12k2−N0k+/2, (13.23)

‖Pk M3(h, h, φ)‖L∞ � ε2
1(1 + t)−3/22k2−N0k+/2. (13.24)

The last two estimates above can be obtained by inspection of (4.8) and (4.9)
using the a priori bounds (5.23).

C.1.3 Proof of Proposition 13.3

Given the expansion of N in (13.16)–(13.18), the already established L2-
based estimates, and the commutation property (13.4), it is not hard to see that
(13.11) would follow if one can show that operators of the form

C1 (h1, . . . , hn, f ) := p.v.
∫ ∏n

i=1(hi (x)−hi (y))

(x−y)n+1 f (y) dy
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satisfy

∥
∥
∥|∂x | β4 H0C1(h1, . . . , hn, f )

∥
∥
∥

L1
� min

i=1,...,n
‖hi‖H3

∏

j �=i

‖h j‖W 2,∞‖ f ‖H2 .

(13.25)

The above estimate is in turn implied by

‖C1(h1, . . . , hn, f )‖W 1,1 � min
i=1,...,n

‖hi‖H3

∏

j �=i

‖h j‖W 2,∞‖ f ‖H2 .

Since the action of derivatives on operators of the type C1 produces operators
of the same type (acting on derivatives of the arguments), it is enough to obtain

‖C1(h1, . . . , hn, f )‖L1 � min
i=1,...,n

‖hi‖H2

∏

j �=i

‖h j‖W 1,∞‖ f ‖H1 .

We only provide details of the proof of the above estimate in the case n = 1,
that is

∥
∥
∥
∥p.v.

∫
h(y)− h(x)

(y − x)2
f (y) dy

∥
∥
∥
∥

L1
� ‖h‖H2‖ f ‖H1, (13.26)

as the case n ≥ 2 can be treated similarly. Let us write

∫
h(x)− h(y)

(x − y)2
f (y) dy = I1 + I2 + I3

I1(x) :=
∫

|y−x |≥1

h(y)− h(x)

(y − x)2
f (y) dy (13.27)

I2(x) :=
∫

|y−x |≤1

h(y)− h(x)− h′(x)(y − x)

(y − x)2
f (y) dy (13.28)

I3(x) := h′(x)
∫

|y−x |≤1

f (y)

y − x
dy. (13.29)

Notice that I1 can be written as I1 = K ∗ (h f ) − hK ∗ f , where K (x) :=
|x |−2χ|x |≥1 is an L1 kernel. It follows that

‖I1‖L1 � ‖K ∗ (h f )‖L1 + ‖h‖L2‖K ∗ f ‖L2 � ‖h‖L2‖ f ‖L2 .
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Using Taylor’s formula and a change of variables we can write

I2 = −
∫

|y|≤1

1∫

0

th′′(x + t y) dt f (y + x) dy.

It follows that

‖I2‖L1 �
1∫

0

∫

|y|≤1

∫

|h′′(x + t y)|| f (y + x)| dx dy dt � ‖h′′‖L2‖ f ‖L2 .

For the last term (13.29) we first write

I3 = h′(x)
∫

|y−x |≤1

f (y)− f (x)

y − x
dy = h′(x)

∫

|y|≤1

1∫

0

t f ′(x + t y) dt dy

and then estimate

‖I3‖L1 �
1∫

0

∫

|y|≤1

∫

|h′(x)|| f ′(x + t y)| dx dy dt � ‖h′‖L2‖ f ′‖L2 .

This shows that (13.26) holds and completes the proof of Proposition 13.3. ��

C2: Proof of (6.25)

For m ∈ Z ∩ [20,∞), k ∈ Z ∩ [−m/2,m/50 − 1000], |ξ | ∈ [2k, 2k+1],
t1 ≤ t2 ∈ [2m−1, 2m+1] ∩ [0, T ], we want to show

∣
∣
∣
∣
∣
∣

t2∫

t1

ei H(ξ,s)eis�(ξ) R̂(ξ, s) ds

∣
∣
∣
∣
∣
∣
� ε3

12−p1m(2βk + 2(N1+15)k)−1. (13.30)

where

R := N3 + N4 − Ñ3. (13.31)

with N3, N4 and Ñ3 defined respectively in (5.8), (5.9) and (6.2). To prove
(13.30) we will use Lemma 13.4 and 13.5 below.
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Lemma 13.4 Let R be defined as in (13.31). Under the a priori assumptions
(5.23) on h and φ, we have for k ∈ Z

∣
∣P̂k R(ξ, t)

∣
∣ � ε4

1(1 + t)10p0−12−(N0−20)k+2−βk/4 (13.32)

and

‖Pk R(t)‖L2 + ‖Pk S R(t)‖L2 � ε4
1(1 + t)20p0−3/22−(N0/2−20)k+ . (13.33)

Lemma 13.5 Assume that a function D = D(ξ, t) satisfies for all t ∈ [0, T ]
‖D(t)‖L2 + ‖SD(t)‖L2 � δ(1 + t)−11/8,

‖D̂(t)‖L∞ � δ(1 + t)20p0−1. (13.34)

It follows that for k ∈ Z, |ξ | ∈ [2k, 2k+1], m ∈ {1, 2, . . . } and t1 ≤ t2 ∈ [2m−2,
2m+1] ∩ [0, T ]

∣
∣
∣
∣
∣
∣

t2∫

t1

ei H(ξ,s)eis�(ξ) D̂(ξ, s) ds

∣
∣
∣
∣
∣
∣
� δ(1 + 2−k)2−m/16. (13.35)

We now show how (13.30) follows from Lemma 13.4 and 13.5.

Proof of (13.30) From (13.32) we see that for |ξ | ∈ [2k, 2k+1] one has

∣
∣
∣
∣
∣
∣

t2∫

t1

ei H(ξ,s)eis�(ξ) R̂(ξ, s) ds

∣
∣
∣
∣
∣
∣
� 2m sup

s∈[2m−2,2m+1]

∣
∣R̂(ξ, s)

∣
∣

� ε4
1210p0m2−(N0−20)k+2−βk/4.

Given our choice of N0 and N1, the desired bound (13.30) follows for k ≥
22p0/(N0 − 80) and k ≤ −44p0/3β, with any p1 ≤ p0. For the remaining
frequencies

k ∈ [−44p0/3β, 22p0/(N0 − 80)] (13.36)

we want to apply Lemma 13.5 with

D(ξ, t) =
(

2βk + 2(N1+15)k
)

Pk R(ξ, t)

and δ = ε4
1. From (13.32) and (13.33) we see that

∣
∣D̂(ξ, t)

∣
∣ � ε4

1(1 + t)10p0−12−(N0/2−50)k+23βk/4 � ε4
1(1 + t)10p0−1,
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‖D(t)‖L2 + ‖SD(t)‖L2 � ε4
1(1 + t)20p0−3/2240k+ � (1 + t)21p0−3/2,

under the restriction (13.36). The hypotheses of Lemma 13.5 are then satisfied,
and the conclusion (13.35) implies

∣
∣
∣
∣
∣
∣

t2∫

t1

ei H(ξ,s)eis�(ξ) R̂(ξ, s) ds

∣
∣
∣
∣
∣
∣
� ε4

1

(
2βk + 2(N1+15)k

)−1 (
1 + 2−k

)
2−m/16.

This gives (13.30) in the considered frequency range (13.36), by choosing
p1 ≤ 1/16 − 44p0/3β. ��

C.2.1 Proof of Lemma 13.4

Since R = N3 + N4 − Ñ3, from (5.8), (5.9) and (6.2) we can write

R = N4 +
5∑

j=1

Ñ3, j

where we recall that

N4 = R1(h, φ)+ 2A(M3(h, h, φ)+ R1(h, φ), h)+ i�
[
R2(h, φ)

+ B(h, Q3(φ, h, φ)+ R2(h, φ))+ B(M3(h, h, φ)+ R1(h, φ), φ)
]
,

(13.37)

and we have defined

Ñ3,1 := M3(h, h, φ)− M3(H, H, �), (13.38)

Ñ3,2 := 2A(M2(h, φ), h)− 2A(M2(H, �), H), (13.39)

Ñ3,3 := i� [Q3(φ, h, φ)− Q3(�, H, �)] , (13.40)

Ñ3,4 := i� [B(M2(h, φ), φ)− B(M2(H, �),�)] , (13.41)

Ñ3,5 := i� [B(h, Q2(φ, φ))− B(H, Q2(�,�))] . (13.42)

Proof of (13.32). We start by proving that each term in N4 is bounded by the
right hand side of (13.32). The bound for R1 = [G(h)φ]≥4(t) is an immediate
consequence of the L1 estimate (13.12). The bound for �R2 can be obtained
from (13.22) using Cauchy’s inequality and the L2 bounds for M2, M3 and
R1 given respectively in (5.33), (5.35) and (13.9). From the definition of A in
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798 A. D. Ionescu, F. Pusateri

(5.1)–(5.2) we see that for any integer l

∣
∣
∣P̂k A(F,G)

∣
∣
∣ � 2−lk+‖F‖Hl+1‖G‖Hl+1 . (13.43)

Using the L2 bounds (5.35) on M3, (13.9) on R1, and the a priori assumptions,
it immediately follows that

∣
∣
∣P̂k A(M3(h, h, φ)+ R1(h, φ), h)

∣
∣
∣ � 2−(N0−10)k+‖M3 + R1‖H N0−9‖h‖H N0−9

� ε4
12−(N0−10)k+(1 + t)4p0−1.

Similarly, from the definition of B in (5.1)–(5.3) we have

∣
∣
∣P̂k B(F,G)

∣
∣
∣ � 2−lk+‖F‖Hl ‖∂x G‖Hl . (13.44)

Using again (5.35) and (13.10) we get

|F [Pk�B(h, Q3(φ, h, φ)+ R2(h, φ))+ Pk�B(M3(h, h, φ)+ R1(h, φ), φ)]|
� 2−(N0−15)k+ [‖h‖H N0−10‖∂x (Q3 + R2)‖H N0−10 + ‖M3+R1‖H N0−10‖∂xφ‖H N0−10

]

� ε4
12−(N0−15)k+(1 + t)4p0−1.

We now estimate the terms (13.38)–(13.42). From (4.17) we see that

−Ñ3,1 = M3(A, h, φ)+ M3(H, A, φ)+ M3(H, H, B). (13.45)

From the definition of M3 in (4.9) we see that for any integer 0 ≤ l ≤ N0 −10

∣
∣
∣P̂k M3(E, F,G)

∣
∣
∣

� 2−lk+2k
[
‖E‖W N0/2−5,∞‖F‖Hl+2‖∂x G‖Hl+2 + ‖E‖Hl+2‖F‖W N0/2−5,∞

‖∂x G‖Hl+2 + ‖E‖Hl+2‖F‖Hl+2‖|∂x |G‖W N0/2−5,∞
]
. (13.46)

Applying this together with the L∞ bounds (5.27) on A and �B, the a priori
bounds (5.23), (4.25) and (4.26), one can obtain the desired bound for each of
the three terms in (13.45).

To estimate (13.39) we write

−1

2
Ñ3,2 = A(M2(A, φ), h)+ A(M2(H, B), h)+ A(M2(H, �), A).
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Notice that for any integer 0 ≤ l ≤ N0 − 10

‖Pk M2(F,G)‖L2 � 2−lk+2k
[
‖F‖Hl ‖|∂x |G‖W N0/2−5,∞ + ‖F‖W N0/2−5,∞‖∂x G‖Hl

]
.

(13.47)

Using (13.43), (13.47), the estimates for A in (5.26) and (5.27), and Proposition
4.2, we get

|F[Pk A(M2(A, φ), h)]|
� 2−(N0−15)k+‖M2(A, φ)‖H N0−10‖h‖H N0−10 � 2−(N0−15)k+(1 + t)p0

[
‖A‖H N0−8‖|∂x |φ‖W N0/2−5,∞ + ‖A‖W N0/2−5,∞‖∂xφ‖H N0−8

]

� ε4
12−(N0−15)k+(1 + t)3p0−1.

To bound Ñ3,3 in (13.40) we first write it as

−Ñ3,3 = �
[

Q3(B, h, φ)+ Q3(�, A, φ)+ Q3(�, H, B)
]
. (13.48)

We then notice that for any integer 0 ≤ l ≤ N0 − 10 one has

∣
∣
∣P̂k Q3(E, F,G)

∣
∣
∣ � 2−lk+

[
‖|∂x |E‖W N0/2−5,∞‖F‖Hl+2‖∂x G‖Hl+3

+ ‖∂x E‖Hl ‖F‖W N0/2−5,∞‖∂x G‖Hl+2

]
. (13.49)

One can that then bound each one of the three summands in (13.48) by using
the above estimate together with Proposition 4.2, (5.23), (5.26) and (5.27).

(13.41) can be estimated in a similar fashion to what we have done above by
writing out the difference as sums of quartic terms, and using (13.44) together
with (13.47), (5.26), (5.27) and Proposition 4.2. The term (13.42) can also be
estimated similarly by using in addition

‖Pk Q2(F,G)‖L2 � 2−lk+
[
‖∂x F‖Hl (‖∂x G‖W N0/2−5,∞ + ‖|∂x |G‖W N0/2−5,∞)

+ (‖∂x F‖W N0/2−5,∞ + ‖|∂x |F‖W N0/2−5,∞)‖|∂x |G‖Hl

]
,

(13.50)

for any 0 ≤ l ≤ N0 − 10.
Proof of (13.33). First observe that from (13.10) we already have the desired

bound for R1 and �R2. To bound the three remaining contributions from Ñ4
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800 A. D. Ionescu, F. Pusateri

in (13.37) and the five terms (13.38)–(13.42) we first observe that for � = 1
or S we have the following L2 estimates:

‖�Pk A(Pk1 F, Pk2 G)‖L2

� 2k2−(N0/2−10)k+
[ (‖�Pk1 F‖H N0/2−10 + ‖Pk1 F‖H N0/2−10

) ‖Pk2 G‖W N0/2−10,∞

+ ‖Pk1 F‖W N0/2−10,∞‖�Pk2 G‖H N0/2−10

]
, (13.51)

‖�Pk B(Pk1 F, Pk2 G)‖L2

� 2−(N0/2−10)k+
[ (‖�Pk1 F‖H N0/2−10 + ‖Pk1 F‖H N0/2−10

)
2k2‖Pk2 G‖W N0/2−10,∞

+ ‖Pk1 F‖W N0/2−10,∞2k2
(‖�Pk2 G‖H N0/2−10 + ‖Pk2 G‖H N0/2−10

) ]
. (13.52)

We also have the following L∞ estimates for M3 and Q3:

‖Pk M3(Pk1 E, Pk2 F, Pk3 G)‖L∞ � 2−(N0/2−15)k+2k2k22max(k1,k2,k3)

‖Pk1 E‖W N0/2−10,∞‖Pk2 F‖W N0/2−10,∞‖Pk3 G‖W N0/2−10,∞, (13.53)

‖Pk Q3(Pk1 E, Pk2 F, Pk3 G)‖L∞ � 2−(N0/2−15)k+2k12k32max(k2,k3)

‖Pk1 E‖W N0/2−10,∞‖Pk2 F‖W N0/2−10,∞‖Pk3 G‖W N0/2−10,∞ . (13.54)

From the homogeneity of degree 2 of M2 and Q2, and of degree 3 of M3
and Q3, one can obtain identities similar to (5.28) for the symbols of these
operators, and deduce the following analogues of the commutation identities
(5.29):

SM2(F,G) = M2(SF,G)+ M2(F, SG)− 2M2(F,G),

SQ2(F,G) = Q2(SF,G)+ Q2(F, SG)− 2Q2(F,G),

SM3(E, F,G) = M3(SE, F,G)+ M3(E, SF,G)

+ M3(E, F, SG)− 3M2(E, F,G),

SQ3(E, F,G) = Q3(SE, F,G)+ Q3(E, SF,G)+ Q3(E, F, SG)

− 3Q2(E, F,G). (13.55)

One can then use (13.51)–(13.54) together with the commutation identities
(5.29) and (13.55), the estimates (5.23), (5.33) and (5.35), (13.10), and argu-
ments similar to those used above and in Sect. 5.4, in particular in the proof
of Lemma 5.5, to obtain

‖PkN4‖L2 + ‖Pk SN4‖L2 +
5∑

j=1

‖PkÑ3, j‖L2 + ‖Pk SÑ3, j‖L2
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� ε4
1(1 + t)20p0−3/22−(N0/2−20)k+

which is the desired conclusion. ��
C.2.2 Proof of Lemma 13.5

For t1 ≤ t2 ∈ [2m − 2, 2m+1] and |ξ | ∈ [2k, 2k+1] let us define

F(ξ) =
t2∫

t1

ei H(ξ,s)eis�(ξ) D̂(ξ, s) ds.

We then have

|F(ξ)| � ‖F−1 F‖L1(|x |≤2m/2) + ‖F−1 F‖L1(|x |≥2m/2)

� 2m/4‖F‖L2 + 2−m/42−k‖ξ∂ξ F‖L2 .

Thus, to obtain (13.35) it suffices to show the following two estimates:

‖F‖L2 � δ2−3m/8 (13.56)

‖ξ∂ξ F‖L2 � δ221mp0 . (13.57)

(13.56) can be easily verified using the L2 bound in (13.34). To prove (13.57)
we write:

ξ∂ξ F(ξ) = F1(ξ)+ F2(ξ)+ F3(ξ)

F1(ξ) =
t2∫

t1

ei H(ξ,s) (iξ∂ξ H(ξ, s)
)

eis�(ξ) D̂(ξ, s) ds,

F2(ξ) =
t2∫

t1

ei H(ξ,s)S(ξ)eis�(ξ) D̂(ξ, s) ds,

F3(ξ) = 1

2

t2∫

t1

ei H(ξ,s)s∂s

(
eis�(ξ) D̂(ξ, s)

)
ds, (13.58)

having denoted S(ξ) := ξ∂ξ − 1
2 s∂s ; notice that S(ξ) f̂ (ξ) = −Ŝ f (ξ)− f̂ (ξ),

where S is the scaling vector field. Using the definition of H in (6.10) and the
a priori assumptions, it is easy to see that for s ∈ [2m − 2, 2m+1] one has

‖ξ∂ξ H(ξ, s)‖L2 � 2mp0,
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‖∂s H(ξ, s)‖L∞ � 2−m . (13.59)

Using the first bound above and the L∞ bound in (13.34) we see that

‖F1‖L2 �
t2∫

t1

‖ξ∂ξ H(s)‖L2‖D̂(s)‖L∞ ds � δ2m2mp02m(20p0−1) � δ221mp0,

as desired. Since [(ξ∂ξ − 1
2 s∂s

)
, eis�(ξ)] = 0, we can use the L2 bounds in

(13.34) to deduce

‖F2‖L2 �
t2∫

t1

‖D(s)‖L2 + ‖SD(s)‖L2 ds � δ,

which is more than sufficient. To estimate F3 we integrate by parts in s, use
the second bound in (13.59) and (13.34) to obtain:

‖F3‖L2 � 2m sup
s∈[2m−2,2m+1]

‖D(s)‖L2 +
t2∫

t1

s‖∂s H(ξ, s)‖L∞‖D(s)‖L2 ds � δ.

This proves (13.57) and concludes the proof of the Lemma. ��
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