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424 K. Liu et al.

1 Introduction

In this paper, we will present several results about Hodge theory and the defor-
mation theory of Kodaira–Spencer–Kuranishi on compact Kähler manifolds.
Our main observations include a simple L2-quasi-isometry result for bundle
valued differential forms, an explicit formula for the deformed ∂̄-operator, and
an iteration method to construct global Beltrami differentials on Calabi–Yau
(CY) manifolds and holomorphic (n, 0)-forms on the deformation spaces of
compact Kähler manifolds of dimension n. We will present an alternative sim-
ple method to solve the ∂-equation, prove global convergence of the formal
power series of the Beltrami differentials and the holomorphic (n, 0)-forms
constructed from the Kodaira–Spencer–Kuranishi theory. These series previ-
ously were only proved to converge in an arbitrarily small neighborhood. We
will discuss more applications to the Torelli problem and the extension of
twisted pluricanonical sections in a sequel to this paper.

Let us first fix some notations to be used throughout this paper. All manifolds
in this paper are assumed to be compact and Kähler, though some results still
hold for complete Kähler manifolds; a Calabi–Yau, or CY manifold, is a com-
pact projective manifold with trivial canonical line bundle. By Yau’s solution
to the Calabi conjecture, there is a CY metric on X such that the holomorphic
(n, 0)-form �0 on X is parallel with respect to the metric connection. For a
complex manifold (X, ω) and a Hermitian holomorphic vector bundle (E, h)
on X , we denote by Ap,q(X) the space of smooth (p, q)-forms on X and by
Ap,q(E) = Ap,q(X, E) the space of smooth (p, q)-forms on X with values
in E . Similarly, let H

p,q(X) be the space of the harmonic (p, q)-forms and let
H

p,q(X, E) be the space of the harmonic (p, q)-forms with values in E . Let ∇
be the Chern connection on (E, h) with canonical decomposition ∇ = ∇′ + ∂
where ∇′ is the (1, 0)-part of the Chern connection ∇. Let G and H denote
the Green operator and harmonic projection in the Hodge decomposition with
respect to the operator ∂ , that is,

I = H + (∂∂
∗ + ∂

∗
∂)G.

A Beltrami differential is an element in A0,1(X, T 1,0
X ), where T 1,0

X denotes the

holomorphic tangent bundle of X . The L2-norm ‖ · ‖ = ‖ · ‖
1
2
L2 is induced

by the metrics ω and h. The C k-norm ‖ · ‖C k will be used on the Beltrami
differentials.

Now we briefly describe the main results in this paper. The following quasi-
isometry on compact Kähler manifolds is obtained in Sect. 2.

Theorem 1.1 (Quasi-isometry) Let (E, h) be a Hermitian holomorphic vector
bundle over the compact Kähler manifold (X, ω).
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Quasi-isometry and deformations 425

(1) For any g ∈ An,•(X, E), we have the following estimate

‖∂∗
Gg‖2 ≤ 〈g,Gg〉.

(2) If (E, h) is a strictly positive line bundle with Chern curvature �E and
ω = √−1�E , for any g ∈ An−1,•(X, E) we obtain

‖∂∗
G∇′g‖ ≤ ‖g‖.

(3) If E is the trivial line bundle, for any smooth g ∈ Ap,q(X),

‖∂∗
G∂g‖ ≤ ‖g‖.

In particular, if ∂∂g = 0 and g is ∂∗-exact, we obtain the isometry

‖∂∗
G∂g‖ = ‖g‖.

Here the operator ∂
∗
G can be viewed as the “inverse operator” of ∂ . More

precisely, we can write down the explicit solutions of some ∂-equations by
using ∂

∗
G, which can also be considered as a bundle-valued version of the

very useful ∂∂-lemma in complex geometry.

Proposition 1.2 Let (E, h) be a Hermitian holomorphic vector bundle with
semi-Nakano positive curvature tensor�E over the compact Kähler manifold
(X, ω). Then, for any g ∈ An−1,•(X, E) with ∂∇′g = 0, the ∂-equation
∂s = ∇′g admits a solution

s = ∂
∗
G∇′g,

such that

‖s‖2 ≤ 〈∇′g,G∇′g〉.
Moreover, this solution is unique if we require H(s) = 0 and ∂

∗
s = 0.

Note that, in the proofs of Theorem 1.1 and Proposition 1.2, we only use
basic Hodge theory, so they still hold on general Kähler manifolds as long
as Hodge theory can be applied. On the other hand, in Proposition 1.2, the
curvature�E is only required to be semi-positive and it is significantly different
from all variants of Hörmander’s L2-estimates. Moreover, Proposition 1.2 can
also hold if h is a singular Hermitian metric, and the curvature�E has certain
weak positivity in the current sense.

In the following, we shall use iφ and φ� to denote the contraction oper-
ator with φ ∈ A0,1(X, T 1,0

X ) alternatively if there is no confusion. For
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426 K. Liu et al.

φ ∈ A0,1(X, T 1,0
X ), the Lie derivative can be lifted to act on bundle valued

forms by

Lφ = −∇ ◦ iφ + iφ ◦ ∇.

There is also a canonical decomposition

Lφ = L1,0
φ + L0,1

φ

according to the types.
In Sect. 3, we prove some explicit formulas for the deformed differential

operators on the deformation spaces of complex structures and one of our main
results is

Theorem 1.3 Let φ ∈ A0,1(X, T 1,0
X ). Then on the space A•,•(X, E), we have

e−iφ ◦ ∇ ◦ eiφ = ∇ − Lφ − i 1
2 [φ,φ] = ∇ − L1,0

φ + i∂φ− 1
2 [φ,φ].

In particular, if σ ∈ An,•(X, E) and φ is integrable, i.e., ∂φ − 1
2 [φ, φ] = 0,

then
(

e−iφ ◦ ∇ ◦ eiφ
)
(σ ) = ∂σ + ∇′(φ�σ).

As applications of Theorems 1.1 and 1.3, we use ideas of recursive methods
to construct Beltrami differentials in Kodaira–Spencer–Kuranishi deformation
theory in Sect. 4. Similar methods are also presented in [1,2,4,8,10–13] and
the references therein. At first, we present the following global convergence
on the deformation space of CY manifolds:

Theorem 1.4 Let X be a CY manifold and ϕ1 ∈ H
0,1(X, T 1,0

X ) with norm
‖ϕ1‖C 1 = 1

4C1
. Then for any nontrivial holomorphic (n, 0) form �0 on X,

there exits a smooth globally convergent power series for |t | < 1,

	(t) = ϕ1t1 + ϕ2t2 + · · · + ϕktk + · · · ∈ A0,1(X, T 1,0
X ),

which satisfies:

(1) ∂	(t) = 1
2 [	(t),	(t)];

(2) ∂
∗
ϕk = 0 for each k ≥ 1;

(3) ϕk��0 is ∂-exact for each k ≥ 2;
(4) ‖	(t)��0‖L2 < ∞ as long as |t | < 1.

123



Quasi-isometry and deformations 427

The key ingredient in Theorem 1.4 is that the convergent radius of the power
series is at least 1, which was previously proved to be sufficiently small. We
shall see that the L2-estimate in Theorem 1.1 plays a key role in the proof of
Theorem 1.4. The power series thus obtained is called an L2-global canonical
family of Beltrami differentials on the CY manifold X .

In Sect. 5, we obtain the following theorem to construct deformations of
holomorphic (n, 0)-forms, which are globally convergent in the L2-norm for
CY manifolds.

Theorem 1.5 Let�0 be a nontrivial holomorphic (n, 0)-form on the CY man-
ifold X and Xt = (Xt , J	(t)) be the deformation of the CY manifold X induced
by 	(t) as constructed in Theorem 1.4. Then for any |t | < 1,

�C
t := e	(t)��0

defines an L2-global canonical family of holomorphic (n, 0)-forms on Xt .

As a straightforward consequence of Theorem 1.5, we have the following
global expansion of the canonical family of (n, 0)-forms on the deformation
spaces of CY manifolds in cohomology classes. Similar ideas are also used in
[4, Theorem 1.34]. This expansion also has interesting applications in studying
the global Torelli problem.

Corollary 1.6 With the same notations as in Theorem 1.5, there holds the
following global expansion of [�C

t ] in cohomology classes for |t | < 1

[�C
t ] = [�0] +

N∑
i=1

[ϕi��0]ti + O(|t |2),

where O(|t |2) ∈
⊕n

j=2
Hn− j, j (X) denotes the terms of orders at least 2 in

t.

Finally, we need to point out that on the deformation spaces of compact
Kähler manifolds, if we assume the existence of a global family of Beltrami
differentials 	(t) as stated in Theorem 1.4, we can also construct L2-global
family of (n, 0)-forms on the deformation spaces of compact Kähler manifolds.
For more details, see Theorem 5.5 and Corollary 5.6.

2 ∂-Equations on non-negative vector bundles

In this section, we will prove a quasi-isometry result in L2-norm with respect
to the operator ∂

∗◦G on a compact Kähler manifold. This gives a rather simple
and explicit way to solve vector bundle valued ∂-equations with L2-estimates.
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Let (E, h) be a Hermitian holomorphic vector bundle over the compact
Kähler manifold (X, ω) and ∇ = ∇′ + ∂ be the Chern connection on it. With
respect to metrics on E and X , we set

� = ∂∂
∗ + ∂

∗
∂,

�′ = ∇′∇′∗ + ∇′∗∇′.

Accordingly, we associate the Green operators and harmonic projections G,H

and G
′, H

′ in Hodge decomposition to them, respectively. More precisely,

I = H + � ◦ G, I = H
′ + �′ ◦ G

′.

Let {zi }n
i=1 be the local holomorphic coordinates on X and {eα}r

α=1 be a local
frame of E . The curvature tensor�E ∈ �(X,�2T ∗X ⊗ E∗ ⊗ E) has the form

�E = Rγ
i j̄α

dzi ∧ dz̄ j ⊗ eα ⊗ eγ ,

where Rγ
i j̄α

= hγ β̄Ri j̄αβ̄ and

Ri j̄αβ̄ = − ∂2hαβ̄
∂zi∂ z̄ j

+ hγ δ̄
∂hαδ̄
∂zi

∂hγ β̄
∂ z̄ j

.

Here and henceforth we adopt the Einstein convention for summation.

Definition 2.1 A Hermitian vector bundle (E, h) is said to be semi-Nakano-
positive (resp. Nakano-positive), if for any non-zero vector u = uiα ∂

∂zi ⊗ eα ,

∑
i, j,α,β

Ri j̄αβ̄uiα ū jβ ≥ 0, (resp. > 0).

For a line bundle, it is strictly positive if and only if it is Nakano-positive.

Theorem 2.2 (Quasi-isometry) Let (E, h) be a Hermitian holomorphic vector
bundle over the compact Kähler manifold (X, ω).

(1) For any g ∈ An,•(X, E), we have the following estimate

‖∂∗
Gg‖2 ≤ 〈g,Gg〉.

(2) If (E, h) is a strictly positive line bundle and ω = √−1�E , for any
g ∈ An−1,•(X, E),

‖∂∗
G∇′g‖ ≤ ‖g‖.
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Quasi-isometry and deformations 429

(3) If E is the trivial line bundle, for any smooth g ∈ Ap,q(X),

‖∂∗
G∂g‖2 = ‖g‖2 − ‖H(g)‖2 − 〈

∂∗g,G(∂∗g)
〉− ‖G(∂∂g)‖2 ≤ ‖g‖2.

In particular, if ∂∂g = 0 and g is ∂∗-exact, we obtain the isometry

‖∂∗
G∂g‖ = ‖g‖.

Proof (1). For g ∈ An,•(X, E),

‖∂∗
Gg‖2 = 〈∂∂∗

Gg,Gg〉
= 〈g,Gg〉 − 〈∂∗

∂Gg,Gg〉 − 〈Hg,Gg〉
= 〈g,G〉 − 〈∂Gg, ∂Gg〉
≤ 〈g,Gg〉

since the Green operator is self-adjoint and zero on the kernel of Laplacian by
definition.

(2). If (E, h) is a strictly positive line bundle over X and ω = √−1�E , for
any g ∈ An−1,q(X, E), by the well-known Bochner–Kodaira–Nakano identity
� = �′ + [√−1�E ,�ω],

�(∇′g) = �′(∇′g)+ q(∇′g) = (�′ + q)(∇′g),

we obtain H(∇′g) = 0 and thus �G(∇′g) = ∇′g = �′
G

′(∇′g) since obvi-
ously H

′(∇′g) = 0 by Hodge decomposition. Moreover,

〈∇′g,G(∇′g)〉 = 〈∇′g,�−1
(∇′g)〉

= 〈∇′g, (�′ + q)−1(∇′g)〉
≤ 〈∇′g,�′−1(∇′g)〉
= 〈∇′g,G′(∇′g)〉.

Therefore,

‖∂∗
G∇′g‖2 ≤ 〈∇′g,G∇′g〉

≤ 〈∇′g,G′∇′g〉
= 〈g,∇′∗∇′

G
′g〉

= 〈g, g − H
′(g)− ∇′∇′∗

G
′g〉

= ‖g‖2 − ‖H
′(g)‖2 − 〈∇′∗g,G′∇′∗g〉

≤ ‖g‖2.
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(3). If E is the trivial line bundle, for any g ∈ Ap,q(X), we have the following

‖∂∗
G∂g‖2 =

〈
∂

∗
G∂g, ∂

∗
G∂g

〉
=
〈
∂∂

∗
G∂g,G∂g

〉

=
〈
�G∂g − ∂

∗
∂G∂g,G∂g

〉

= 〈∂g,G∂g〉 −
〈
∂

∗
∂G∂g,G∂g

〉

= 〈
g, ∂∗∂Gg

〉− 〈
G∂∂g,G∂∂g

〉

= 〈
g,�′

Gg − ∂∂∗
Gg

〉− ‖G(∂∂g)‖2

= 〈
g, g − H(g)− ∂∂∗

Gg
〉− ‖G(∂∂g)‖2

= ‖g‖2 − ‖H(g)‖2 − 〈
∂∗g,G(∂∗g)

〉− ‖G(∂∂g)‖2

≤ ‖g‖2,

since the Green operator is nonnegative. In particular, if ∂∂g = 0 and g is
∂∗-exact, we have H(g) = 0 and ∂∗g = 0. Hence, we obtain the isometry
‖∂∗

G∂g‖ = ‖g‖. ��
Proposition 2.3 (∂-Inverse formula) Let (E, h) be a Hermitian holomorphic
vector bundle with semi-Nakano positive curvature�E over the compact Käh-
ler manifold (X, ω). Then, for any g ∈ An−1,•(X, E),

s = ∂
∗
G∇′g

is a solution to the equation ∂s = ∇′g with ∂∇′g = 0, such that

‖s‖2 ≤ 〈∇′g,G∇′g〉.

This solution is unique as long as it satisfies H(s) = 0 and ∂
∗
s = 0.

Proof By the well-known Bochner–Kodaira–Nakano identity � = �′ +
[√−1�E ,�ω], one can see that for any φ ∈ An,•(X, E),

〈√−1[�E ,�ω]φ, φ〉 ≥ 0

if E is semi-Nakano positive (e.g. [3]). It implies that, for any φ ∈ An,•(X, E),

〈�φ, φ〉 ≥ 〈�′φ, φ〉.

Thus, on the space An,•(X, E),

ker � ⊆ ker �′ and (ker �′)⊥ ⊆ (ker �)⊥. (2.1)
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Quasi-isometry and deformations 431

By Hodge decomposition, we have

∂s = ∂∂
∗
G∇′g = ∇′g − H∇′g − ∂

∗
∂G∇′g = ∇′g − H∇′g = ∇′g,

where the identity H∇′g = 0 is used. Actually, we know ∇′g⊥ ker �′ and
obviously ∇′g⊥ ker � by the first inclusion of (2.1).

The uniqueness of this solution follows easily. In fact, if s1 and s2 are two
solutions to ∂s = ∇′g with H(s1) = H(s2) = 0 and ∂

∗
s1 = ∂

∗
s2 = 0, by

setting η = s1 − s2, we see ∂η = 0,H(η) = 0 and ∂
∗
η = 0. Therefore,

η = H(η)+ �G(η) = H(η)+ (∂∂
∗ + ∂

∗
∂)G(η) = 0.

��

3 Beltrami differentials and deformation theory

In this section we prove several new formulas to construct explicit deformed
differential operators for bundle valued differential forms on the deformation
spaces of Kähler manifolds. These formulas are applied to the deformation
spaces of CY manifolds in later sections while more applications to the defor-
mation theory of Kähler manifolds and holomorphic line bundles will be dis-
cussed in the sequel to this paper. Throughout this section, X is always assumed
to be a complex manifold.

For X0 ∈ �(X, T 1,0
X ), the contraction operator is defined as

iX0 : Ap,q(X) → Ap−1,q(X)

by

(iX0α)(X1, . . . , X p−1, Y1, . . . , Yq) = α(X0, X1, . . . , X p−1, Y1, . . . Yq)

for α ∈ Ap,q(X), X1, . . . , X p−1 ∈ �(X, T 1,0
X ) and Y1, . . . , Yq ∈ �(X, T 0,1

X ).
We will also use the notation ‘�’ to represent the contraction operator in the
sequel, that is,

iX0(α) = X0�α.

For φ ∈ A0,s(X, T 1,0
X ), the contraction operator can be extended to

iφ : Ap,q(X) → Ap−1,q+s(X). (3.1)
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For example, if φ = η ⊗ Y with η ∈ A0,q(X) and Y ∈ �(X, T 1,0
X ), then for

any ω ∈ Ap,q(X),

(iφ)(ω) = η ∧ (iYω).

The following result follows easily.

Lemma 3.1 Let φ ∈ A0,q(X, T 1,0
X ) and ψ ∈ A0,s(X, T 1,0

X ). Then

iφ ◦ iψ = (−1)(q+1)(s+1)iψ ◦ iφ.

For Y ∈ �(X, TX ), the Lie derivative LY is defined as

LY = d ◦ iY + iY ◦ d : As(X) → As(X).

For any φ ∈ A0,q(X, T 1,0
X ), we can define iφ as (3.1) and thus extend Lφ to be

Lφ = (−1)qd ◦ iφ + iφ ◦ d.

According to the types, we can decompose

Lφ = L1,0
φ + L0,1

φ ,

where

L1,0
φ = (−1)q∂ ◦ iφ + iφ ◦ ∂

and

L0,1
φ = (−1)q∂ ◦ iφ + iφ ◦ ∂.

Let

ϕi = 1

p!
∑

ϕi
j̄1,..., j̄p

d z̄ j1 ∧ · · · ∧ dz̄ jp ⊗ ∂i and

ψ i = 1

q!
∑

ψ i
k̄1,...,k̄q

d z̄k1 ∧ · · · ∧ dz̄kq ⊗ ∂i .

Then, we write

[ϕ,ψ] =
n∑

i, j=1

(ϕi ∧ ∂iψ
j − (−1)pqψ i ∧ ∂iϕ

j )⊗ ∂ j , (3.2)
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where

∂iϕ
j = 1

p!
∑

∂iϕ
j
j̄1,..., j̄p

d z̄ j1 ∧ · · · ∧ dz̄ jp

and similar for ∂iψ
j . In particular, if ϕ,ψ ∈ A0,1(X, T 1,0

X ),

[ϕ,ψ] =
n∑

i, j=1

(ϕi ∧ ∂iψ
j + ψ i ∧ ∂iϕ

j )⊗ ∂ j .

Let (E, h) be a Hermitian holomorphic vector bundle over X and ∇ be the
Chern connection on (E, h). Then the operators i•,L•, [•, •] can be extended
to E-valued (p, q)-forms in the canonical way. For example, for any φ ∈
A0,k(X, T 1,0

X ), on Ap,q(X, E) we can define

Lφ = (−1)k∇ ◦ iφ + iφ ◦ ∇.
Then we have the following general commutator formula.

Lemma 3.2 (cf. [6]) For ϕ ∈ A0,k(X, T 1,0
X ), ϕ′ ∈ A0,k′

(X, T 1,0
X ) and α ∈

Ap,q(X, E),

(−1)k
′
ϕ�Lϕ′α + (−1)k

′k+1Lϕ′(ϕ�α) = [ϕ, ϕ′]�α,
or equivalently,

[Lϕ′, iϕ] = i[ϕ′,ϕ].

In particular, if ϕ, ϕ′ ∈ A0,1(X, T 1,0
X ), then

[ϕ, ϕ′]�α = −∇′(ϕ′�(ϕ�α))− ϕ�(ϕ′�∇′α)+ ϕ�∇′(ϕ′�α)+ ϕ′�∇′(ϕ�α)
(3.3)

and

0 = −∂(ϕ′�(ϕ�α))− ϕ�(ϕ′�∂α)+ ϕ�∂(ϕ′�α)+ ϕ′�∂(ϕ�α). (3.4)

Proof Since the formulas are all local and C-linear, without loss of generality,
we can assume that

ϕ = η ⊗ χ, ϕ′ = η′ ⊗ χ ′,

where η ∈ A0,k(X), η′ ∈ A0,k′
(X), χ, χ ′ ∈ �(X, T 1,0

X ) and dη = dη′ = 0.
Since dη = dη′ = 0, we have χ ′(η) = χ(η′) = 0. Hence, we obtain
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[ϕ, ϕ′] = η ∧ η′[χ, χ ′].
On the other hand, for any α ∈ Ap,q(X, E),

Lϕα = η ∧ (χ�∇α)+ (−1)k∇(η ∧ (χ�α))
= η ∧ (χ�∇α)+ (−1)k(dη ∧ (χ�α)+ (−1)kη ∧ ∇(χ�α))
= η ∧ (χ�∇α + ∇(χ�α))
= η ∧ Lχα.

Now, we have

ϕ�Lϕ′α = η ∧ χ�(η′ ∧ Lχ ′α)

= (−1)k
′
η ∧ η′(χ�Lχ ′α)

= (−1)k
′
η ∧ η′ (Lχ ′(χ�α)− [χ ′, χ ]�α)

= (−1)k
′ (
η ∧ Lϕ′(χ�α)− η ∧ η′ ∧ ([χ ′, χ ]�α))

= (−1)k
′ [ϕ, ϕ′]�α + (−1)k

′(1+k)Lϕ′(η ∧ (χ�α))
= (−1)k

′ [ϕ, ϕ′]�α + (−1)k
′(1+k)Lϕ′(ϕ�α),

where we apply the formula

[χ ′, χ ]�α = Lχ ′(χ�α)− χ�Lχ ′α,

which is proven in [6], and

Lϕ′(ϕ�α) = (−1)k
′kη ∧ Lϕ′(χ�α).

In fact,

Lϕ′(ϕ�α)
= Lϕ′(η ∧ (χ�α))
= ϕ′�∇(η ∧ (χ�α))+(−1)k

′∇◦ϕ�(η ∧ (χ�α))
= ϕ′�(dη ∧ (χ�α))+(−1)kϕ′�(η ∧ ∇(χ�α))

+(−1)k
′+k(k′−1)∇(η ∧ (ϕ′�(χ�α)))

= (−1)k+k(k′−1)η ∧ (ϕ′�(∇(χ�α)))+ (−1)k
′+k(k′−1)+kη ∧ ∇(ϕ′�(χ�α))

(−1)k
′kη ∧ Lϕ′(χ�α).

��
As an easy corollary, we have the following result which was known as Tian–
Todorov lemma.
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Lemma 3.3 ([12,13]) If ϕ,ψ ∈ A0,1(X, T 1,0
X ) and � ∈ An,0(X), then one

has

[ϕ,ψ]�� = −∂(ψ�(ϕ��))+ ϕ�∂(ψ��)+ ψ�∂(ϕ��).

In particular, if X is a CY manifold and�0 is a nontrivial holomorphic (n, 0)
form on X, then for any ϕ,ψ ∈ H

0,1(X, T 1,0
X ),

[ϕ,ψ]��0 = −∂(ψ�(ϕ��0)).

Note that, here both ϕ��0 and ψ��0 are harmonic.

Let φ ∈ A0,1(X, T 1,0
X ) and iφ be the contraction operator. Define an operator

eiφ =
∞∑

k=0

1

k! i
k
φ,

where i k
φ = iφ ◦ · · · ◦ iφ︸ ︷︷ ︸

k copies

. Since the dimension of X is finite, the summation in

the above formulation is also finite.
The following theorem gives explicit formulas for the deformed differential

operators on the deformation spaces of complex structures. It also explains why
it is relatively easy to construct extension of sections of the bundle K X + E
where K X is the canonical bundle of X . We remark that this result is motivated
by [2] where a special case was proved.

Theorem 3.4 Let φ ∈ A0,1(X, T 1,0
X ). Then on the space A•,•(E), we have

e−iφ ◦ ∇ ◦ eiφ = ∇ − Lφ − i 1
2 [φ,φ],

or equivalently
e−iφ ◦ ∂ ◦ eiφ = ∂ − L0,1

φ (3.5)

and
e−iφ ◦ ∇′ ◦ eiφ = ∇′ − L1,0

φ − i 1
2 [φ,φ]. (3.6)

Moreover, if ∂φ = 1
2 [φ, φ], then

∂ − L1,0
φ = e−iφ ◦ (∂ − Lφ) ◦ eiφ . (3.7)

Proof (3.5) follows from (3.3) and the formula

[∂, i k
φ] = kik−1

φ ◦ [∂, iφ],
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which can be proved by induction by using (3.3). Similarly, (3.6) follows from
(3.4) and

[∇′, i k
φ] = kik−1

φ ◦ [∇′, iφ] − k(k − 1)

2
i k−2
φ ◦ i[φ,φ], k ≥ 2. (3.8)

Now we prove (3.8) by induction. It is obvious that (3.8) is equivalent to the
statement that, for any k ≥ 2,

Fk := −kik−1
φ ◦ ∇′ ◦ iφ + (k − 1)i k

φ ◦ ∇′ + ∇′ ◦ i k
φ + k(k − 1)

2
i k−2
φ i[φ,φ]

= 0. (3.9)

If k = 2, it is (3.4). As for k = 3,

0 = i[φ,φ] ◦ iφ − iφ ◦ i[φ,φ]
= 3iφ ◦ ∇′ ◦ i2

φ − ∇′ ◦ i3
φ − 3i2

φ ◦ ∇′ ◦ iφ + i3
φ ◦ ∇′

= 3i2
φ ◦ ∇′ ◦ iφ − 2i3

φ ◦ ∇′ − ∇′ ◦ i3
φ − 3iφ ◦ i[φ,φ]

= −F3,

where Lemma 3.2 is applied.
Now we assume that (3.9) is right for all integers less than k where k ≥ 4.

That is,

F2 = F3 = · · · = Fk−1 = 0.

We will show Fk = 0. Now we set

Gk = Fk − iφ ◦ Fk−1

= −i k−1
φ ◦ ∇′ ◦ iφ+i k

φ ◦ ∇′+∇′ ◦ i k
φ − iφ ◦ ∇′ ◦ i k−1

φ +(k−1)i k−2
φ i[φ,φ].

So, by induction, we have

Gk − iφ ◦ Gk−1

= ∇′ ◦ i k
φ − 2iφ ◦ ∇′ ◦ i k−1

φ + i2
φ ◦ ∇′ ◦ i k−2

φ + i k−2
φ ◦ i[φ,φ]

= (∇′ ◦ i2
φ + i2

φ ◦ ∇′ − 2iφ ◦ ∇′ ◦ iφ) ◦ i k−2
φ + i k−2

φ ◦ i[φ,φ]
= −i[φ,φ] ◦ i k−2

φ + i k−2
φ ◦ i[φ,φ]

= −iφ ◦ i[φ,φ] ◦ i k−3
φ + i k−2

φ ◦ i[φ,φ]
= −i2

φ ◦ i[φ,φ] ◦ i k−4
φ + i k−2

φ ◦ i[φ,φ]
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= −i k−3
φ ◦ i[φ,φ] ◦ iφ + i k−3

φ ◦ iφ ◦ i[φ,φ]
= −i k−3

φ ◦ (i[φ,φ] ◦ iφ − iφ ◦ i[φ,φ])
= 0

since i[φ,φ]iφ− iφi[φ,φ] = 0. (Alternatively, we can also approach this equality
directly by induction on the term Gk −iφ ◦Gk−1, i.e., 0 = Gk−1 −iφ ◦Gk−2 =
−i[φ,φ] ◦ i k−3

φ + i k−3
φ ◦ i[φ,φ].) The proof of (3.8) is finished. From (3.8), it

follows that

[∇′, eiφ ] = eiφ ◦ [∇′, iφ] − eiφ ◦ 1

2
i[φ,φ]

by comparing degrees. Then, we have

e−iφ ◦ ∇′ ◦ eiφ = e−iφ ◦ [∇′, eiφ ] + ∇′

= [∇′, iφ] + ∇′ − i 1
2 [φ,φ]

= ∇′ − L1,0
φ − i 1

2 [φ,φ].

Now we finish the proof of (3.6) while the proof of (3.5) is similar.
Finally, when ∂φ = 1

2 [φ, φ], we have [2∂ − Lφ, iφ] = 0 and thus

[2∂ − Lφ, eiφ ] = 0,

which implies that

e−iφ ◦ (∂ − Lφ) ◦ eiφ = 2∂ − Lφ − e−iφ ◦ ∂ ◦ eiφ = ∂ − L1,0
φ .

��
Corollary 3.5 If σ ∈ An,•(X, E), we have

(
e−iφ ◦ ∇ ◦ eiφ

)
(σ ) = ∂σ − L1,0

φ (σ )+ i∂φ− 1
2 [φ,φ](σ )

= ∂σ + ∇′(φ�σ)+
(
∂φ − 1

2
[φ, φ]

)
�σ.

In particular, if φ is integrable, i.e., ∂φ − 1
2 [φ, φ] = 0, then

(
e−iφ ◦ ∇ ◦ eiφ

)
(σ ) = ∂σ + ∇′(φ�σ).

The above formula gives an explicit recursive formula to construct deformed
cohomology classes for deformation of Kähler manifolds. When E is a trivial
bundle, the above formula was used in [5] to study the global Torelli theorem.
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4 Global canonical family of Beltrami differentials

In this section, based on the techniques developed in Sects. 2 and 3, we shall
construct the following globally convergent power series of Beltrami differ-
entials in L2-norm on CY manifolds. To avoid the bewildering notations, we
just present the details on the one-parameter case and then give a sketch of the
multi-parameter case.

The convergence of the power series in the following lemma is crucial in
our proof of the global convergence and regularity results.

Lemma 4.1 Let {xi }+∞
i=1 be a series given by

xk := c
k−1∑
i=1

xi ·xk−i , k ≥ 2

inductively with real initial value x1. Then the power series S(τ ) = ∑∞
i=1 xiτ

i

converges as long as |τ | ≤ 1
|4cx1| .

Proof Setting S := S(τ ) = ∑∞
i=1 xiτ

i , we have

cS2 = c

( ∞∑
i=1

xiτ
i

)⎛
⎝

∞∑
j=1

x jτ
j

⎞
⎠ =

+∞∑
k=1

xkτ
k − x1τ = S − x1τ. (4.1)

It follows from (4.1) that

S = 1 ± √
1 − 4cx1τ

2c
.

Here we take S(τ ) = 1−√
1−4cx1τ
2c , since we have S(0) = 0 according to the

assumption. Therefore, we have the following expansion for S

S = 1

2c

⎛
⎝1 −

⎛
⎝1 +

∑
n≥1

1
2 (

1
2 − 1) · · · (1

2 − n + 1)

n! (−4cx1τ)
n

⎞
⎠
⎞
⎠

=
∑
n≥1

1

2c

(
1
2 (1 − 1

2 ) · · · ((n − 1)− 1
2 )

n!

)
(4cx1)

nτ n,

which implies that

xn =
1
2

(
1 − 1

2

) · · · ((n − 1)− 1
2

)

2cn! (4cx1)
n, for n ≥ 2.
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This is the explicit expression for each xn . Now it is easy to check that the
convergence radius of the power series S = ∑∞

i=1 xiτ
i is (4|cx1|)−1, and that

this power series still converges when τ = ± 1
4|cx1| . ��

Now we prove the global convergence of the Beltrami differential from the
Kodaira–Spencer–Kuranishi theory. All sub-indices of the Beltrami differen-
tials are at least 1.

The following result is contained in [12,13], we briefly recall here for the
reader’s convenience.

Lemma 4.2 Assume that for ϕν ∈ A0,1(X, T 1,0
X ), ν = 2, . . . , K ,

∂ϕν = 1

2

∑
α+β=ν

[ϕα, ϕβ] and ∂ϕ1 = 0. (4.2)

Then one has

∂

⎛
⎝ ∑
ν+γ=K+1

[ϕν, ϕγ ]
⎞
⎠ = 0.

Proof By the definition formula (3.2), one has

[∂ϕ, ϕ′] = −[ϕ′, ∂ϕ]. (4.3)

Then we have

1

2
∂

⎛
⎝ ∑
ν+γ=K+1

[ϕν, ϕγ ]
⎞
⎠ = 1

2

∑
ν+γ=K+1

([∂ϕν, ϕγ ] − [ϕν, ∂ϕγ ]
)

=
∑

ν+γ=K+1

[∂ϕν, ϕγ ]

= 1

2

∑
ν+γ=K+1

⎡
⎣ ∑
α+β=ν

[ϕα, ϕβ], ϕγ
⎤
⎦

= 1

2

∑
α+β+γ=K+1

[[ϕα, ϕβ], ϕγ
]
,

where the second equality is implied by (4.3) and the third one follows from
the assumption (4.2). When α = β = γ , by Jacobi identity one has

3
[[
ϕα, ϕβ

]
, ϕγ

] = 0.
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Otherwise, Jacobi identity implies that

[[ϕα, ϕβ], ϕγ
]+ [[ϕβ, ϕγ ], ϕα

]+ [[ϕγ , ϕα], ϕβ
] = 0.

��
We need some basic estimates. At first, let’s recall the following estimate

in [8, p.162], for any η1, η2 ∈ A0,1(X, T 1,0
X ),

∥∥∥∥
1

2
∂

∗
G[η1, η2]

∥∥∥∥
C 1

≤ C1‖η1‖C 1 · ‖η2‖C 1, (4.4)

where C1 is a constant independent of η1, η2. Next, for any (n, 0)-from s on
X , we have

‖η1�s‖L2 ≤ ‖η1‖C 0 · ‖s‖L2 ≤ ‖η1‖C 1 · ‖s‖L2 .

This inequality follows by checking the local inner product by definition.
Similarly,

‖η1�η2�s‖L2 ≤ C2‖η1‖C 1 · ‖η2‖C 1 · ‖s‖L2, (4.5)

where C2 is independent of η1, η2, s.

Theorem 4.3 Let X be a CY manifold and ϕ1 ∈ H
0,1(X, T 1,0

X ) with norm
‖ϕ1‖C 1 = 1

4C1
. Then for any nontrivial holomorphic (n, 0) form �0 on X,

there exits a smooth globally convergent power series for |t | < 1,

	(t) = ϕ1t1 + ϕ2t2 + · · · + ϕktk + · · · ∈ A0,1(X, T 1,0
X ),

which satisfies:

(a) ∂	(t) = 1
2 [	(t),	(t)];

(b) ∂
∗
ϕk = 0 for each k ≥ 1;

(c) ϕk��0 is ∂-exact for each k ≥ 2;
(d) ‖	(t)��0‖L2 < ∞ as long as |t | < 1.

Proof Let us first review the construction of the power series	(t) by induction
from [12] and [13]. Suppose that we have constructed ϕk for 2 ≤ k ≤ j such
that:

(a) ∂ϕk = 1
2

∑k−1
i=1 [ϕk−i , ϕi ];

(b) ∂
∗
ϕk = 0;

(c) ϕk��0 is ∂-exact and thus ∂(ϕk��0) = 0.
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Then we need to construct ϕ j+1 such that: a′) ∂ϕ j+1 = 1
2

∑ j
i=1[ϕ j+1−i , ϕi ];

b′) ∂∗
ϕ j+1 = 0; c′) ϕ j+1��0 is ∂-exact and thus ∂(ϕ j+1��0) = 0. Actually,

it follows from Lemma 3.3 and the assumption (c) that

j∑
i=1

[ϕ j+1−i , ϕi ]��0 = −∂
⎛
⎝ ∑

i+k= j+1

ϕi�ϕk��0

⎞
⎠.

Then, Lemma 4.2 and the assumption (a) imply

∂∂

⎛
⎝ ∑

i+k= j+1

ϕi�ϕk��0

⎞
⎠ = ∂

⎛
⎝

j∑
i=1

[ϕ j+1−i , ϕi ]
⎞
⎠��0 = 0. (4.6)

So the formula (4.6) and Proposition 1.2 tell us that the equation

∂� j+1 = −∂
⎛
⎝ ∑

i+k= j+1

ϕi�ϕk��0

⎞
⎠

has a solution � j+1 = −∂∗
G∂

(∑
i+k= j+1 ϕi�ϕk��0

)
. Hence, we define

ϕ j+1 = 1

2
� j+1��∗

0,

where �∗
0 := ∂

∂z1 ∧ · · · ∧ ∂
∂zn in local coordinates is the dual of �0. It is easy

to check that

∂
∗
(� j+1��∗

0) = ∂
∗
(� j+1)��∗

0 +� j+1�∂
∗
�∗

0 = 0,

since �0 is parallel, and also ∂ϕ j+1 = 1
2

∑ j
i=1[ϕ j+1−i , ϕi ]. See [13,

Lemma 1.2.2] for more details. Now we have completed the construction
of ϕ j+1 = 1

2� j+1��∗
0, which is shown to satisfy Properties a′), b′) and c′).

To complete this induction, it suffices to work out the case j = 2. It is obvious
that ϕ2 can be constructed as

ϕ2 = 1

2
∂

∗
G∂(ϕ1�ϕ1��0)��∗

0,

which satisfies (a), (b) and (c). Moreover, one has the following equality for
each k ≥ 2,
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ϕk��0 = 1

2
∂

∗
G∂

∑
i+ j=k≥2

ϕi�ϕ j��0.

Next, let us prove the L2-convergence and regularity of	(t). Without loss of
generality we can assume ‖�0‖L2 = 1 and thus have for |t | < 1,

‖	(t)��0‖L2 =
∥∥∥(ϕ1��0)t + (ϕ2��0)t

2 + · · · + (ϕk��0)t
k + · · ·

∥∥∥
L2

=
∥∥∥∥∥∥
(ϕ1��0)t +

∞∑
j=2

1

2
∂

∗
G∂

⎛
⎝ ∑

i+k= j

ϕi�ϕk��0

⎞
⎠ t j

∥∥∥∥∥∥
L2

(Theorem 1.1) ≤ 1

4C1
|t | +

∞∑
j=2

1

2

⎛
⎝ ∑

i+k= j

‖ϕi�ϕk��0‖L2

⎞
⎠ |t | j

(Using (4.5)) ≤ 1

4C1
|t | +

∞∑
j=2

C2

2

∑
i+k= j

(‖ϕi‖C 1 · ∥∥ϕk‖C 1 · ‖�0
∥∥

L2

) |t | j

≤ 1

4C1
|t | +

∞∑
j=2

C2

2

∑
i+k= j

(‖ϕi‖C 1 · ‖ϕk‖C 1
) |t | j .

Now we set a sequence {x j } as in Lemma 4.1:

x1 = 1

4C1
, and x j := C1

∑
i+k= j

xi · xk, for j ≥ 2.

Therefore by Lemma 4.1,
∑∞

j=1 x j t j has convergent radius

1

4C1|x1| = 1.

Next, we claim

‖ϕ j‖C 1 ≤ x j for j = 1, 2, . . . . (4.7)

By assuming (4.7), we have

‖	(t)��0‖L2 ≤ 1

4C1
|t | +

∞∑
j=2

C2

2

∑
i+k= j

(‖ϕi‖C 1 . . . ‖ϕk‖C 1
) |t | j

≤ 1

4C1
|t | +

∞∑
j=2

C2

2

∑
i+k= j

(xi · xk) |t | j
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≤ 1

4C1
|t | + C2

2C1

∞∑
j=2

x j |t | j

≤ 1

4C1
|t | − C2

8C2
1

|t | + C2

2C1

∞∑
j=1

x j |t | j < ∞

for |t | < 1 by Lemma 4.1. In the following we shall prove (4.7) by induction.
From the iteration relation,

∂ϕk = 1

2

k−1∑
i=1

[ϕk−i , ϕi ],

we see ∂ϕ2 = 1
2 [ϕ1, ϕ1], or equivalently,

ϕ2 = 1

2
∂

∗
G[ϕ1, ϕ1].

Hence, by (4.4), we get

‖ϕ2‖C 1 ≤ C1‖ϕ1‖C 1 · ‖ϕ1‖C 1 ≤ C1x1 · x1 = x2

since x1 = ‖ϕ1‖C 1 . By induction, we assume

‖ϕ j‖C 1 ≤ x j for j = 1, . . . , k − 1.

and we shall prove ‖ϕk‖C 1 ≤ xk . In fact, we have

ϕk = 1

2
∂

∗
G

(
k−1∑
i=1

[φk−i , ϕi ]
)
,

and so by (4.4) and induction conditions,

‖ϕk‖C 1 ≤ C1

k−1∑
i=1

‖ϕk−i‖C 1 · ‖ϕi‖C 1

≤ C1

k−1∑
i=1

xk−i · xi = xk .

Hence, we complete the proof of (4.7).
For local regularity of	(t) (i.e., t sufficiently small) it follows from standard

elliptic operator theory (e.g. [8]). But for global regularity( |t | < 1), their proof
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does not work directly. Here we use a different approach to prove it. At first,
we see that 	(t)��0 is ∂-closed in the distribution sense, i.e.

∂(	(t)��0) = 0, in the distribution sense (4.8)

by using the definition of 	 and the fact that ϕk��0 are all ∂-exact for k ≥
2, ϕ1��0 is harmonic. In fact, for any test form η on X ,

(	(t)��0, ∂
∗η)= lim

k ∞

((
k∑

i=1

ϕi t
i

)
��0, ∂

∗η
)

= lim
k ∞

(
k∑

i=1

∂(ϕi��0), η

)
=0.

Since e	(t)��0 is a family of (n, 0) forms on Xt , by Corollary 3.5 (for more
complete argument, see Proposition 5.1), we obtain

∂ t

(
e	(t)��0

)
= 0 in the distribution sense,

where ∂ t is the (0, 1)-part of the differential operator d on Xt induced by
the complex structure J	(t). Therefore, by the hypoellipticity of ∂ t on (n, 0)
forms, we obtain e	(t)��0 is a holomorphic (n, 0) form on Xt and so e	(t)��0
is smooth on Xt and so on X . Finally, by contracting �∗

0 as above, we obtain
that e	(t) is smooth on X , and so is 	(t). ��

Now we state the following multi-parameter result, while we just sketch its
proof since it is essentially the same as the one-parameter case.

Theorem 4.4 Let X be a CY manifold and {ϕ1, . . . , ϕN } ∈ H
0,1(X, T 1,0

X )

be a basis with norm ‖ϕi‖C 1 = 1
8NC1

. Then for any nontrivial holomorphic
(n, 0) form �0 on X, and |t | < 1, we can construct a smooth power series of
Beltrami differentials on X as follows

	(t) =
∑
|I |≥1

ϕI t I =
∑

ν1+···+νN ≥1,
each νi ≥0,i=1,2,...

ϕν1···νN tν1
1 · · · tνN

N ∈ A0,1(X, T 1,0
X ),

where ϕ0···νi ···0 = ϕi . This power series has the following properties:

(a) ∂	(t) = 1
2 [	(t),	(t)], the integrability condition;

(b) ∂
∗
ϕI = 0 for each multi-index I with |I | ≥ 1;

(c) ϕI ��0 is ∂-exact for each I with |I | ≥ 2. And more importantly,
(d) global convergence: ‖	(t)��0‖ ≤ ∑

I ‖ϕI ��0‖ · |t ||I | < ∞ as long as
|t | < 1.
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Proof Let us construct the power series	(t) in multi-parameters by induction.
Write

B�K ={ϕν1···νN ∈ A0,1(M, T 1,0
M ) | each integer νi ≥ 0 and ν1+· · ·+νN � K , K ≥1}.

It is easy to see that 	(t) should satisfy:

(a) ∂ϕν1···νN = 1
2

∑
αi +βi =νi

[
ϕα1···αN , ϕβ1···βN

]
for ϕν1···νN ∈ B≥2;

(b) ∂
∗
ϕν1···νN = 0 for ϕν1···νN ∈ B≥1;

(c) ϕν1···νN ��0 is ∂-exact and thus ∂(ϕν1···νN ��0) = 0 for eachϕν1···νN ∈ B≥2.

Assuming that the above three assumptions hold for ϕν1···νN ∈ B≥2 ∩ B≤K ,
then one can construct ϕν1···νN ∈ BK+1 such that it also satisfies these three
assumptions. In fact, Lemma 3.3 and the assumption c) for ϕν1···νN ∈ B≥2 ∩
B≤K imply that

[ϕα1···αN , ϕβ1···βN ]��0 = −∂(ϕα1···αN �ϕβ1···βN ��0),

where
∑

i αi + ∑
j β j = K + 1. Then, by multi-index Lemma 4.2 and the

assumption (a) for ϕν1···νN ∈ B≥2 ∩ B≤K , we have

∂∂

⎛
⎝ ∑
αi +βi =νi

ϕα1···αN �ϕβ1···βN ��0

⎞
⎠=∂

⎛
⎝ ∑
αi +βi =νi

[ϕα1···αN , ϕβ1···βN ]
⎞
⎠��0 =0, (4.9)

for any ϕν1···νN ∈ BK+1. Therefore, one can construct �ν1···νN directly by
∂-inverse formula 2.3 and (4.9) as

�ν1···νN = −∂∗
G∂

⎛
⎝ ∑
αi +βi =νi

ϕα1···αN �ϕβ1···βN ��0

⎞
⎠ .

Hence we define

ϕν1···νN = 1

2
�ν1···νN ��∗

0 ∈ BK+1,

where �∗
0 := ∂

∂z1 ∧ · · · ∧ ∂
∂zn is the dual of �0. Then it is easy to check that

∂
∗
(�ν1···νN ��∗

0) = ∂
∗
(�ν1···νN )��∗

0 +�ν1···νN �∂∗
�∗

0 = 0
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since �0 is parallel, and also ∂ϕν1···νN = 1
2

∑
αi +βi =νi

[ϕα1···αN , ϕβ1···βN ]. To
complete this induction, we construct ϕν1···νN ∈ B2 as

ϕν1···νN =
{−∂∗

G∂(ϕi�ϕ j��0)��∗
0, if νi = ν j = 1, i �= j,

−1
2∂

∗
G∂(ϕi�ϕi��0)��∗

0, if νi = 2, for somei ∈ {1, . . . , N },

which obviously satisfies (a), (b) and (c).
Up to now we have completed the construction of the power series 	(t)

satisfying (a), (b) and (c) as in Theorem 4.3. By using similar arguments as in
the proof of Theorem 4.3, we get the global convergence in L2-norm and also
the smoothness of 	(t). ��

5 Global canonical family of holomorphic (n, 0)-forms

Based on the construction of L2-global canonical family 	(t) of Beltrami
differentials in Theorem 4.4, we can construct an L2-global canonical family
of holomorphic (n, 0)-forms on the deformation spaces of CY manifolds. By
using a similar method, we can also construct L2-global canonical family
of holomorphic (n, 0)-forms on the deformation spaces of compact Kähler
manifolds.

5.1 Global canonical family on Calabi–Yau manifolds

Let X be an n-dimensional compact Calabi–Yau manifold and {ϕ1, . . . , ϕN } ∈
H

0,1(X, T 1,0
X ) a basis where N = dim H

0,1(X, T 1,0
X ). As constructed in Theo-

rem 4.4, there exists a smooth family of Beltrami differentials in the following
form

	(t) =
N∑

i=1

ϕi ti +
∑
|I |≥2

ϕI t I =
∑

ν1+···+νN ≥1

ϕν1···νN tν1
1 · · · tνN

N ∈ A0,1(X, T 1,0
X )

for t ∈ C
N with |t | < 1. It is easy to check that the map

e	(t)� : An,0(X) → An,0(Xt )

is a well-defined linear isomorphism.

Proposition 5.1 For any smooth (n, 0)-form � ∈ An,0(X), the section
e	(t)�� ∈ An,0(Xt ) is holomorphic with respect to the complex structure
J	(t) induced by 	(t) on Xt if and only if
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∂�+ ∂(	(t)��) = 0.

Proof This is a direct consequence of Corollary 3.5. In fact,

(
e−i	 ◦ d ◦ ei	

)
(�) = ∂�+ ∂(	��),

if the vector bundle E is trivial and 	(t) satisfies the integrability condition.
The operator d, which is independent of the complex structures, can be decom-
posed as d = ∂ t + ∂t , where ∂ t and ∂t denote the (0, 1)-part and (1, 0)-part
of d, with respect to the complex structure J	(t) induced by	(t) on Xt . Note
that e	(t)�� ∈ An,0(Xt ) and so

∂t (e
i	(�)) = ∂t (e

	(t)��) = 0.

Hence,

(
e−i	 ◦ ∂ t ◦ ei	

)
(�) = ∂�+ ∂(	��),

which implies the assertion. (In case 	(t) is just L2-integrable, we also see
from this formula that ∂ t (e	(t)��) = 0 in the distribution sense if ∂� +
∂(	��) = 0 in the distribution sense, and so by hypoellipticity of ∂ t on
(n, 0)-forms of Xt , we know e	(t)�� is, in fact, a holomorphic (n, 0)-form on
Xt .) ��
Theorem 5.2 Let�0 be a nontrivial holomorphic (n, 0)-form on the CY man-
ifold X and Xt = (Xt , J	(t)) be the deformation of the CY manifold X induced
by the L2-global canonical family	(t) of Beltrami differentials on X as con-
structed in Theorem 4.4. Then, for |t | < 1,

�C
t := e	(t)��0

defines an L2-global canonical family of holomorphic (n, 0)-forms on Xt and
depends on t holomorphically.

Proof Since �0 is holomorphic, and 	(t) is smooth, by (4.8), we obtain

∂�0 + ∂(	(t)��0) = 0.

Hence, by Proposition 5.1 and Theorem 4.4, �C
t = e	(t)��0 defines an L2-

global canonical family of holomorphic (n, 0)-forms on Xt for |t | < 1. The
holomorphic dependence of	(t) on t implies that�C

t depends on t holomor-
phically. ��
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Corollary 5.3 Let �C
t := e	(t)��0 be the L2-global canonical family of

holomorphic (n, 0)-forms as constructed in Theorem 5.2. Then for |t | < 1,
there holds the following global expansion of [�C

t ] in cohomology classes,

[�C
t ] = [�0] +

N∑
i=1

[ϕi��0]ti + O(|t |2).

where O(|t |2) denotes the terms in
⊕n

j=2
Hn− j, j (X) of orders at least 2 in

t.

Proof From Theorem 5.2 and Hodge theory we can see that for |t | < 1,

[�C
t ]=[�0]+

N∑
i=1

[H(ϕi��0)]ti +
∑
|I |≥2

[H(ϕI ��0)]t I +
∑
k≥2

1

k!

[
H

( k∧
	(t)��0

)]
.

By Theorem 4.4, ϕi��0 is harmonic and that ϕI ��0 is ∂-exact for each
|I | ≥ 2. Hence

[�C
t ] = [�0] +

N∑
i=1

[ϕi��0]ti + O(|t |2)

where O(|t |2) denotes the term
∑

k≥2
1
k!
[
H

(∧k
	(t)��0

)]
∈ ⊕n

j=2

Hn− j, j (X). ��

5.2 Iteration procedure on deformation spaces of compact Kähler manifolds

In this subsection, we extend our constructions to the deformation spaces
of compact Kähler manifolds. We shall use iteration procedure to construct
holomorphic sections of the canonical line bundle K Xt of the deformation Xt
of a Kähler manifold X induced by the Beltrami differential 	(t) satisfying
the integrability condition. More precisely, our goal is to find a convergent
power series for any holomorphic section �0 ∈ H0(X, K X ),

�t = �0 +
∑
|I |≥1

t I�I

such that e	(t)��t ∈ H0(Xt , K Xt ) is holomorphic with respect to the induced
complex structure J	(t) by 	(t).
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Let X be an n-dimensional compact Kähler manifold and {ϕ1, . . . , ϕN } ∈
H

0,1(X, T 1,0
X ) a basis with the norm ‖ϕi‖ = CN , for each i = 1, 2, . . . where

N = dim H
0,1(X, T 1,0

X ). In general, on deformation spaces of compact Käh-
ler manifolds, we can not construct Beltrami differentials 	(t) as stated in
Theorem 4.3 or Theorem 4.4, where we essentially use the non-where vanish-
ing property of �0 on Calabi–Yau manifolds. Hence, it is natural to make the
following definition.

Definition 5.4 A power series of Beltrami differentials of the following form

	(t) =
N∑

i=1

ϕi ti +
∑
|I |≥2

ϕI t I =
∑

ν1+···+νN ≥1

ϕν1···νN tν1
1 · · · tνN

N ∈ A0,1(X, T 1,0
X )

with ϕ0···νi ···0 = ϕi , is called an L2-global canonical family of Beltrami dif-
ferentials on the Kähler manifold X if it satisfies:

(1) the integrability condition: ∂	(t) = 1
2 [	(t),	(t)];

(2) global convergence in the sense that

‖	(t)��0‖L2 ≤
∑
|I |≥1

‖ϕI ‖‖�0‖ · t |I | < ∞

as long as t ∈ C
N with |t | < R, where the convergence radius R is a

constant only depending on CN and �0 is a non-zero holomorphic (n, 0)-
form.

As an analogue to Theorem 5.2 on deformation spaces of CY manifolds, we
have the following result on deformation spaces of compact Kähler manifolds:

Theorem 5.5 If there exists an L2-global canonical family 	(t) of Beltrami
differentials on the Kähler manifold X with convergence radius R, and let
Xt = (Xt , J	(t)) be the deformation of X induced by 	(t), then for any
holomorphic (n, 0)-form �, we can construct a smooth power series

�t = �0 +
∞∑

|I |≥1

�I t I ∈ An,0(X) (5.1)

such that �0 = � with the following properties: a) �C
t := e	(t)��t ∈

H0(Xt , K Xt ) is holomorphic with respect to J	(t); b) �I ∈ An,0(X) is ∂-
exact and also ∂

∗
-exact for all |I | ≥ 1.

123



450 K. Liu et al.

Proof By the proof of Proposition 5.1, we see it also holds on compact Kähler
manifold X . Hence by Proposition 5.1, we know that �t must satisfy the
equation

∂�t = −∂(	(t)��t ). (5.2)

By comparing the coefficients of tν1
1 · · · tνN

N of both sides of (5.2), one knows
that Eq. (5.2) is equivalent to

⎧
⎪⎪⎨
⎪⎪⎩

∂�0 = 0,

∂�ν1···νN = −∂
⎛
⎝ ∑
αi +βi =νi ,αi ≥0

ϕα1···αN ��β1···βN

⎞
⎠ , (5.3)

where each νi ≥ 0 and �νi ≥ 1.
We first prove that the Eq. (5.3) has a ∂-exact solution by induction. Set

ην1···νN = −∂
⎛
⎝ ∑
αi +βi =νi ,αi ≥0

ϕα1···αN ��β1···βN

⎞
⎠ ,

which is clearly ∂-exact and thus H∂(η) = 0 by the Kähler identity �∂ = �∂ .
So by ∂-inverse Lemma 2.3 it suffices to show that ∂ην1···νN = 0.

For the initial case �νi = 1, one has

∂ην1···νN = −∂∂(ϕν1···νN ��0) = ∂(∂ϕν1···νN ��0 + ϕν1···νN �∂�0) = 0

since ∂ϕν1···νN = 0 and ∂�0 = 0. Thus we have

�ν1···νN = ∂
∗
Gην1···νN = −∂∗

∂G(ϕν1···νN ��0) = ∂∂
∗
G(ϕν1···νN ��0)

by ∂-inverse Lemma 2.3 and Kähler identity.
Supposing that the (n, 0)-forms�ν1···νN with�νi = K are constructed, we

can also prove

∂ην1···νN = 0

for �νi = K + 1 by induction and the commutator formula Lemma 3.3. This
calculation is routine and left to the interested readers. Similar to the initial
case, we can construct the (n, 0)-forms �ν1···νN with �νi = K + 1 as
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�ν1···νN = −∂∗
∂G

⎛
⎝ ∑
αi +βi =νi ,αi ≥0

ϕα1···αN ��β1···βN

⎞
⎠

= ∂∂
∗
G

⎛
⎝ ∑
αi +βi =νi ,αi ≥0

ϕα1···αN ��β1···βN

⎞
⎠ .

Hence we have completed the construction of the power series �t of (n, 0)-
forms.

Finally, let us prove the global convergence of the formal power series. See
the related parts in [7,9] By the global convergence of the canonical family of
Beltrami differentials, we know that there exists a small constant ξ > 0 and a
constant R1 ∈ (0, R] such that

∑
|I |=i

‖ϕI ‖Ri
1 ≤ ξ

for all large i > 0. We may assume that this fact holds for all i > 0. Then we
have the following estimate for each i > 0

∑
|I |=i

‖�I ‖ ≤ ξ(ξ + 1)i−1 R−i
1 , (5.4)

which follows by induction and implies the convergence of power series (5.1)
as long as |t | < R1. We set ‖�0‖ = 1 for convenience. First for the initial
case i = 1, one has

∑
|I |=1

‖�I ‖ ≤ ‖�0‖
∑
|I |=1

‖ϕI ‖ ≤ R−1
1 ξ,

where the quasi-isometry Theorem 1.1 is applied. Then, we assume that the
estimate (5.4) is true for l = 1, . . . , i − 1 and try to prove the case l = i as
follows.

∑
|I |=i

‖�I ‖ ≤
∑

|I |=i,|I2|≥1,
I1+I2=I

‖�I1‖ · ‖ϕI2‖

≤ ξ R−1
1 ξ(ξ + 1)i−2 R−(i−1)

1 + · · · + ξ R−i
1 ξ + ξ R−i

1

= (ξ R−i
1 )ξ

1 − (ξ + 1)i−1

1 − (ξ + 1)
+ ξ R−i

1

= ξ(ξ + 1)i−1 R−i
1 ,
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where the first inequality is also due to Theorem 1.1. Yet it is easy to check
that the convergence domain for |t | of

∑
i=1 ξ(ξ + 1)i−1 R−i

1 |t |i is obviously
[0, R1).

The regularity of�t follows by similar arguments as in the proof of Theorem
4.3. This completes the proof of Theorem 5.5. ��

As similar as Corollary 5.3, we also obtain a global expansion of the canon-
ical family of (n, 0)-forms on the deformation spaces of compact Kähler man-
ifolds in cohomology classes.

Corollary 5.6 Let �C
t := e	(t)��t be the L2-global canonical family of

holomorphic (n, 0)-forms as constructed in Theorem 5.5. Then for |t | < R,
there holds the following global expansion of the de Rham cohomology classes
of it

[�C
t ] = [�0] +

∑
|I |≥1

[H(ϕI ��0)]t I + O(|t |2),

where O(|t |2) denotes the terms in
⊕n

j=2
Hn− j, j (X) of orders at least 2 in

t .

Proof The proof is very similar to that of Corollary 5.3.

[�C
t ]=[�0]+

N∑
i=1

[H(ϕi��0)]ti +
∑
|I |≥2

[H(ϕI ��0)]t I +
∑
k≥2

1

k!

[
H

( k∧
	(t)��0

)]

The difference is that, ϕi��0 is not necessarily harmonic, and for |I | ≥ 2
ϕI ��0 is not ∂-exact in general. ��
Acknowledgments This paper originated from many discussions with Prof. Andrey Todorov,
who unexpectedly passed away in March 2012 during his visit of Jerusalem. We dedicate this
paper to his memory. S. Rao would also like to express his gratitude to Weijun Lu, Quanting
Zhao and Shengmao Zhu for many useful comments and discussions.

References

1. Ahlfors, L.: Lectures on quasiconformal mappings, 2nd edn. With supplemental chapters
by C. J. Earle, I. Kra, M. Shishikura and J. H. Hubbard, University Lecture Series, vol. 38.
American Mathematical Society, Providence (2006)

2. Clemens, H.: Geometry of formal kuranishi theory. Adv. Math. 198, 311–365 (2005)
3. Demailly, J.-P.: Complex analytic and algebraic geometry. http://www-fourier.

ujf-grenoble.fr/demailly/books.html (2012)
4. Griffiths, P.: Periods of integrals on algebraic manifolds. ii. local study of the period map-

ping. Am. J. Math. 90, 805–865 (1968)

123

http://www-fourier.ujf-grenoble.fr/demailly/books.html
http://www-fourier.ujf-grenoble.fr/demailly/books.html


Quasi-isometry and deformations 453

5. Guan, F., Liu, K., Todorov, A.: A global Torelli Theorem for Calabi–Yau Manifolds
(arxiv.org/abs/1112.1163)

6. Liu, K., Rao, S.: Remarks on the Cartan formula and its applications. Asian J. Math. 16(1),
157–170 (2012)

7. Liu, K., Sun, X., Yau, S.-T.: Recent development on the geometry of the Teichmüller and
moduli spaces of Riemann surfaces. Surveys in differential geometry, vol. XIV. In: Geom-
etry of Riemann Surfaces and Their Moduli Spaces, pp. 221–259. Int. Press, Somerville,
MA (2009)

8. Morrow, J., Kodaira, K.: Complex Manifolds. Holt, Rinehart and Winston Inc., New York
(1971)

9. Rao, S.: Analytic approaches to some topics in deformation theory. Thesis (2011)
10. Schumacher, G.: On the geometry of moduli spaces. Manuscr. Math. 50, 229–267 (1985)
11. Siu, Y.-T.: Curvature of the Weil–Petersson metric in the moduli space of compact Kähler–

Einstein manifolds of negative first Chern class. Contributions to several complex variables.
In: Aspects Mathematics, vol. E9, pp. 261–298. Vieweg, Braunschweig (1986)

12. Tian, G.: Smoothness of the universal deformation space of compact Calabi–Yau manifolds
and its Petersson–Weil metric. Mathematical aspects of string theory (San Diego, California,
1986). In: Advanced Series in Mathematical Physics, vol. 1, pp. 629–646. World Scientific
Publishing, Singapore (1987)

13. Todorov, A.: The Weil–Petersson geometry of the moduli space of SU(n ≥ 3) (Calabi–Yau)
manifolds I. Commun. Math. Phys. 126(2), 325–346 (1989)

123


	Quasi-isometry and deformations of Calabi--Yau manifolds
	Abstract
	1 Introduction
	2 overline-Equations on non-negative vector bundles
	3 Beltrami differentials and deformation theory
	4 Global canonical family of Beltrami differentials
	5 Global canonical family of holomorphic (n,0)-forms
	5.1 Global canonical family on Calabi--Yau manifolds
	5.2 Iteration procedure on deformation spaces of compact Kähler manifolds

	Acknowledgments
	References


