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Abstract We consider Reeb flows on the tight 3-sphere admitting a pair of
closed orbits forming a Hopf link. If the rotation numbers associated to the
transverse linearized dynamics at these orbits fail to satisfy a certain resonance
condition then there exist infinitely many periodic trajectories distinguished
by their linking numbers with the components of the link. This result admits
a natural comparison to the Poincaré—Birkhoff theorem on area-preserving
annulus homeomorphisms. An analogous theorem holds on S O (3) and applies
to geodesic flows of Finsler metrics on S2.

1 Introduction

Since the work of Poincaré and Birkhoff the notion of global surface of section
has been used as an effective tool in finding periodic motions of Hamiltonian
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systems with two degrees of freedom, see [4,5,34,35]. A global section of
annulus-type on an energy level implies the existence of many closed orbits
by the celebrated Poincaré—Birkhoff Theorem [2,3,36] if the associated return
map satisfies a twist-condition.

Our goal is to describe a non-resonance condition for Reeb flows on the
tight 3-sphere which implies the existence of infinitely many closed orbits,
and generalizes the twist-condition on the Poincaré—Birkhoff Theorem to cases
where a global surface of section might not be available. We assume instead
that there is a pair of periodic orbits forming a Hopf link. The infinitesimal
flow about the two components defines rotation numbers and, as we shall see,
if these numbers do not satisfy a precise resonance condition then infinitely
many closed orbits exist and are distinguished by their homotopy classes in
the complement of the Hopf link. This lack of resonance can be seen as a
twist-condition: one finds a non-empty open twist interval such that there is a
closed orbit associated to every rational point in its interior.

In the presence of a disk-like global surface of section for the flow, an orbit
corresponding to a fixed point of the return map and the boundary of the global
section constitute a Hopf link. According to a remarkable result by Hofer et
al. [21] this is the case for Reeb flows given by dynamically convex contact
forms on the 3-sphere. The return map restricted to the open annulus obtained
by removing a fixed point is well-defined. In this case, the lack of resonance
mentioned above is a twist-condition, and our result can be reduced to the
Poincaré-Birkhoff Theorem, or rather to a generalization due to Franks [13].
We will explain this analogy more thoroughly in Sect. 1.2.

There are examples of Hopf links and Reeb flows as above where both
components of the link do not bound a disk-like global section. In this case a
two-dimensional reduction is not available. To circumvent this difficulty, we
use a different approach in place of the theory of global surfaces of section
which is of a variational nature. The idea is to consider the homology of the
abstract Conley index of a sufficiently large isolating block for the gradient flow
of the action functional, as Angenent did in [1] for the energy. The analysis of
Angenent [1] shows that properties of the curve-shortening flow are sufficient
in order to define a Conley index associated to a so-called flat knot, which
in special cases can be used to deduce existence results for closed geodesics
on the 2-sphere. We shall consider instead cylindrical contact homology on
the complement of the Hopf link, which is defined using the machinery of
punctured pseudo-holomorphic curves in symplectizations as introduced by
Hofer [17]. In this sense, the results are analogous to those of [1], but in the
more general setting of Reeb flows on the tight 3-sphere. We explain this
analogy more thoroughly in Sect. 1.3.
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A Poincaré-Birkhoff theorem 335

1.1 Statement of main result

Recall that a 1-form A on a 3-manifold V is a contact form if A A dA never
vanishes. The 2-plane field
& =ker A (D)

is a co-oriented contact structure, and the associated Reeb vector field X, is
uniquely determined by

ix,h=1, ix,d\=0. (2)

The contact structure & is said to be tight if there are no overtwisted disks, that
is, there does not exist an embedded disk D C V such that 70D C & and
T,D #§&,, Vp € 9D. In this case we call A tight.

By a closed Reeb orbit we mean an equivalence class of pairs P = (x, T)
such that 7 > 0 and x is a T-periodic trajectory of X, where pairs with the
same geometric image and period are identified. The set of equivalence classes
is denoted by P(1). P = (x, T) is called prime, or simply covered, if T is
the minimal positive period of x. Throughout a knot L C V tangent to RX
is identified with the prime closed Reeb orbit it determines, in particular, L
inherits an orientation.

We are concerned with the study of the global dynamical behavior of Reeb
flows associated to tight contact forms on

§3 = {(x0, y0, x1, y1) € R* | X3 +y3 +x} +yi =1)

where (xg, yo, X1, y1) are coordinates in R*. For instance consider the 1-form
1
o = E(Jcodyo — Yodxo + x1dy1 — y1dxy). (3)

It restricts to a tight contact form on S° inducing the so-called standard contact
structure
&0 = ker Ao g3. 4)

In dimension 3 a contact structure £ induces an orientation of the underlying
manifold M in the following manner. If p € M then choose a contact form «
defined near p satisfying £ = ker «. The 3-form @ A da is nowhere vanishing
on its domain of definition, and defines an orientation of 7), M by declaring that
a basis {vy, vz, v3} C T, M is positive if, and only if, @ A da(vy, v2, v3) > 0.
This orientation of T, M is independent of the choice of «, and we get a global
orientation letting p vary over M. If M is already oriented then one calls &
positive if it induces the given orientation. Let us orient S3 as the boundary
of the unit ball in R*, which is oriented by dAg A dAg. By a theorem due to
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Eliashberg [12], for every tight contact form A on S defining a positive contact
structure, there exists a diffeomorphism @ : $3 — $3 such that ®*A = o,
for some smooth f : $3 — (0, +00).

We use the term Hopf link to refer to a transverse link on (S3, &) which is
transversally isotopic to Ko = Lo U L1 where

Li = {(x0,y0, x1,y1) € > | x; = y; =0}, i=0,]1. (5)
Remark 1.1 Consider the set
F={f eC®S>(0,+00) | ivdf =0 Vv € &lx,}. (6)

The set F consists precisely of the functions f : §° — (0, +00) such that
the Reeb vector field of fAq is tangent to Ko. Moreover, for every defining
contact form A on (S, £y) admitting a pair of prime closed Reeb orbits that are
components of a Hopf link, there exists some diffeomorphism ® of S* such
that ®*A = fAg, for some f € F, and ® maps Ky onto the Hopf link. To
see this, first note that any such contact form is written as A = hig, for some
h : S* — R\ {0} smooth. Consider a transverse isotopy g; : Ko — (53, &),
t € [0, 1], such that g is the inclusion map Ko «— S3 and g1(Kp) is a pair of
prime closed Reeb orbits of ~1y. By Theorem 2.6.12 from [16], there exists a
contact isotopy {¢;}:¢[0,1] of (S3, o) such that 9o = id and ¢; |k, = g, Vt.
Then ¢ (hio) = k)o for some k : $3 > R \ {0} smooth. If k is positive we
take f = k and ® = ¢;. If k is negative we consider the diffeomorphism
T (x0, Yo, X1, y1) = (x0, —Y0, X1, —y1), which satisfies T*1y = —Ag, SO we
cantake ® = ¢; o T and f = —k o T. In both cases we must have f € F
since the Reeb vector field of fAg is tangent to K.

We define the transverse rotation number p(P) of a closed Reeb orbit P
by looking at the rate at which the transverse linearized flow rotates around
P, measured with respect to coordinates on the contact structure induced by a
global positive frame. This is well-defined as a real number and equals half the
mean Conley—Zehnder index. For a more detailed discussion see Sect. 2.1.5
below.

Finally, we introduce some notation in order to simplify our statements.
Given two pairs of real numbers (sg, #p), (s1, 1) intheset{(s,#) | s > O or ¢t >
0} we write (s, 79) < (s1,11) if, viewed as vectors in RZ, the argument of
(s1, t1) is greater than that of (sg, #p) when measured counter-clockwise by
cutting along the negative horizontal axis. A pair of integers (p, g) will be
called relatively prime if there is no integer k¥ > 1 such that (p/k,q/k) €
Z, x 7. Our first main result reads as follows.

Theorem 1.2 Let A = fXio, f > 0, be a tight contact form on the 3-sphere
admitting prime closed Reeb orbits Ly, L| which are the components of a Hopf
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link. Define real numbers g, 61 by
0 =p(L;)—1, fori=0,1, (7

where p is the transverse rotation number, and suppose that (p, q) is a rela-
tively prime pair of integers satisfying

(00, 1) < (p.q) < (1,01) or (1,61) < (p.q) < (6o, 1). )

Then there exists a prime closed Reeb orbit P C S\ (Lo U Ly) such that
link(P, Lo) = p and link(P, L1) = q.

In the above statement P, Ly and L are oriented by the Reeb vector field,
3 is oriented by the contact structure &) as explained before, and the integers
link(P, Lo) and link(P, L) are defined using these choices, see Fig. 1 for an
example with p = 7and g = 1.

A weaker version of Theorem 1.2 is found in [32] under the restrictive
assumption that the components of the Hopf link are irrationally elliptic Reeb
orbits.

1.2 Interpretation in terms of the Poincaré—Birkhoff theorem

In 1885 Poincaré [34] introduced the rotation number

p(f) = lim )
n

n—oo

mod Z €)

of an orientation preserving circle homeomorphism f : ! — §', §' = R/Z,
where F' : R — Ris one of its lifts. Notice that the limit in (9) exists and does
not depend on x € R or on the lift 7. He observed its intimate connection to
the existence of periodic orbits.

Theorem 1.3 (Poincaré) f admits a periodic orbit if, and only if, p(f) =
p/q € Q/Z.

If one considers an area preserving annulus homeomorphism
f:8tx (0,11 — S' x [0, 1],
isotopic to the identity map, much can be said about the existence of periodic
orbits when f satisfies a twist hypothesis. To be more precise, let us first recall

the widely known Poincaré-Birkhoff Theorem in its original form. Let

F:Rx[0,1] > Rx [0, 1]
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Fig. 1 A Hopf link Ko = Lo U L1 and a closed Reeb orbit P satisfying link(P, Lg) = 7,
link(P, L1) =1

be a lift of f with respect to the covering map 7 : R x [0, 1] — S! x [0, 1]
and denote by I C R the open (possibly empty) interval bounded by the points

. p1oF"(x,0) . proF"(x,1)
111’1’1 _— and hm _— .

n—00 n n— 00 n
Here p; : R x [0, 1] — R is the projection onto the first factor.

Theorem 1.4 (Poincaré—Birkhoff, see [2,3,36]) If I N Z # O then f has at
least 2 fixed points.

A proof of a version of this theorem in the smooth category using pseudo-
holomorphic curves can be found in [9].

A map f on S! x [0, 1] satisfying I # @ for some lift is said to satisfy
a twist condition. Considering the iterates of f one can find infinitely many
periodic orbits under this twist condition. This argument can be found in [33]
where the following theorem is proved.

Theorem 1.5 (Neumann [33]) For any g € N = {1,2,...}, the number of
periodic orbits of prime period q is at least equal to

2#{peZ: p/q € I and gcd(p, q) = 1}.

Franks generalized Theorem 1.5, providing the existence of periodic orbits
under a much weaker twist condition, even when f is not defined on the
boundary.
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A Poincaré-Birkhoff theorem 339

Theorem 1.6 (J. Franks, see [13—15]) If there exist z1,z2 € R x [0, 1] such

that o
lim < fim 2o fE)

n
piof"(z) _p

(10)
then f has a periodic point z with period q and

y proF'z0) p
im —— = —,

n—oo n q

for any zg satisfying zo € 7~ (2).

Both limits in (10) are assumed to exist. Let us refer to the periodic orbits
obtained in Theorem 1.6 as the p/qg-orbits. In [15] the reader also finds a
version of the above statement on the open annulus.

Theorem 1.2 can be reduced to Theorem 1.6 in the case one of the compo-
nents of the Hopf link bounds a disk-like global surface of section. We very
briefly sketch this argument and do not give full details since the more general
Theorem 1.2 does not require this surface of section at all.

Definition 1.7 Let A be a tight contact form on S> and denote by X its Reeb
vector field. We say that an embedded disk &  S3 is a disk-like global surface
of section for the Reeb flow if 92 = P is a closed orbit, X, is transverse to >
and all orbits in $3\ P intersect 3 infinitely often, both forward and backward
in time.

Let Lo U L be a Hopf link formed by closed Reeb orbits and assume
that L{ bounds a disk-like global surface of section for the Reeb flow of
A = fAg. Define 6y, 01 as in Theorem 1.2. Assuming, for simplicity, that
A is non-degenerate then results from [25,26] tell us that there is an open
book decomposition of §3 with binding L1 and disk-like pages which are
global surfaces of section. See also [23,24] for the dynamically convex case.
In particular, there is a diffeomorphism §3\ L; ~ R/Z x B where B C C
is the open unit ball, such that Ly >~ R/Z x {0} and if we denote by ¢
the R/Z-coordinate then the Reeb flow satisfies dv'(X;) > 0. Moreover, the
Conley—Zehnder index of L is at least 3, which implies ; > 0. We assume,
in addition, that our coordinates are such that R/Z x [0, 1) is contained on an
embedded disk spanning L. The first return map g to the page 0 x B has 0 as
a fixed point and, introducing suitable polar coordinates B\ 0 >~ R/Z x (0, 1),
we get an area-preserving diffeomorphism of R/Z x (0, 1) still denoted by
g. The open book decomposition also induces an isotopy from the identity
to g. Lifting the identity on R/Z x (0, 1) to the identity on R x (0, 1), this
isotopy distinguishes a particular lift g of g to R x (0, 1). The map g can
now be continuously extended to R x [0, 1) by using the transverse linearized
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flow at Lo. Under additional assumptions we can also extend g continuously
to R/Z x [0, 1]. Since L has self-linking number —1, the canonical basis of
0 x C induces, via the identification S\ L; ~ R/Z x B, a homotopy class of
symplectic frames of ker 1|z, with respect to which the transverse linearized
Reeb flow has rotation number equal to 8p. Hence the rotation number of
2lrxo0 is 6p. By a similar reasoning, the rotation number of g|r« is 1/6;. One
obtains (p, g)-orbits as asserted in Theorem 1.2 from Franks’ p/g-orbits in
Theorem 1.6 taking z; € R x 0 and z5 € R x 1 under the assumption that
6o < p/g <1/610r1/61 < p/q < 6.

What is unsatisfactory about this argument is that one may construct exam-
ples of Reeb flows and Hopf links LoU L as above satisfying the hypotheses of
Theorem 1.2 but neither L nor L bound a global disk-like surface of section.
Such an example is provided in Sect. 4.1 below when choosing 6y, 61 to be
both negative numbers: in this case, the discussion thereafter shows that there
are periodic orbits P; having linking number O with L;, for i = 0, 1, which
clearly conflicts with the assumption of a global surface of section. For this
reason, we approach the problem with a different set of tools. The argument
we pursue has instead the spirit of an argument of Angenent [1], which we
will recall shortly.

1.3 The unit tangent bundle of S?

Poincaré observed the importance of studying area-preserving annulus home-
omorphisms by finding annulus-type global sections for the restricted 3-
body problem. In his book [5], Birkohff proved that the geodesic flow of
a Riemannian metric g on S with positive curvature also admits annulus-
type global sections. In fact, one can always find a simple closed geo-
desic y : R/TZ — S?, with minimal period T and parametrized by arc-
length. Its image separates S% in two closed disks C; and C,. For each
x € image(y) = dC; = dCy, let n(x) € M be the normal vector to 0C
pointing outside Cy, where M = {(x, v) € TS? | g(v,v) =1} =~ SO@3) is
the unit tangent bundle, and let

Y ={(x,v) € M :x € image(y) and g(v, n(x)) > 0}.

Denote by y; the reverse orbit y,-(t) = y(—t) of y. Then y, y, admit natural
lifts y, 9 to M and X is an annulus-type global surface of section for the
geodesic flow with boundary 0¥ = image(y) U image(y,). The first return
Poincaré map to ¥ can be extended to the boundary 9% using the second
conjugate point, and this induces an area preserving annulus homeomorphism
f: St x 10,11 = S! x [0, 1] isotopic to the identity. By Theorem 1.6, f
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admits all the p/qg-orbits as long as the twist condition (10) is satisfied for a
lift F of f.

It is well-known that one might not expect the existence of these types of
(p, q)-orbits for C! volume preserving flows on a 3-manifold. In fact, inserting
a plug of Kuperberg—Schweitzer—Wilson type, see [30,37,40], one can destroy
them without creating new ones. However, as an example, such orbits still exist
for geodesic flows on $2, even when an annulus-type global section does not
exist. To be more precise, we recall Angenent’s result [1] on curve shortening
flows applied to the existence of (p, g)-satellites of a simple closed geodesic
y. A Jacobi field over y is characterized by a solution y : R — R of

Y1) = =Ky ®)y®), (1D

where K is the Gaussian curvature of (S2, g). For a non-trivial solution y, we
can write y'(1) + iy(t) = r(t)e!??, t € R, for r and 6 smooth with non-
vanishing r. The inverse rotation number of y, denoted by p(y), is defined
by

0(1)

p(y) =T lim >—. (12)

where 7 is the minimal period of y. The inverse rotation number coincides
with the transverse rotation number explained before and we may use both
terminologies in the context of geodesic flows.

Let p and ¢ # O be relatively prime integers and n(¢) be a continuous
normal unit vector to a simple curve y : R/Z — S2. A (p, q)-satellite of y is
any smooth immersion R/Z — S equivalent to

o R/Z — 52 og(t) = eXPy (g1) (e sin(r pt)n(qt)),

where ¢ > 0 is small and exp is any exponential map. By equivalent immersed
curves we mean curves which are homotopic to each other on S? through
immersed curves, but tangencies with y and self-tangencies are not allowed
in the homotopy. The resulting equivalence classes are called flat-knot types
relative to y.

Theorem 1.8 (Angenent [1]) Let g be a smooth Riemannian metric on S2, and
y be a closed prime geodesic which is a simple curve. If the rational number
p/q € (p(y), DU, p(y)) is written in lowest terms, then g admits a closed
geodesic y), 4 which is a (p, q)-satellite of y. The geodesic y, , intersects y
at exactly 2 p points and self-intersects at p(q — 1) points.

One remarkable aspect of Angenent’s proof is that it does not use any surface
of section: the geometric arguments available in the presence of a global surface
of section are replaced with the analysis of the curve-shortening flow which
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allows for the definition of an isolating block in the sense of Conley theory [10].
Theorem 1.8 is obtained by showing that a certain isolated invariant set has a
non-trivial index.

According to Angenent the results from [1] were inspired by a question
asked by Hofer in Oberwolfach 1993. Hofer asked if it was possible to apply
the Floer homology construction to curve shortening, and which results could
be obtained in this way. Here we apply Floer theoretic methods to generalize
Theorem 1.8 to broader classes of Hamiltonian systems.

Let go be the Euclidean metric on R restricted to §* = {x € R? |
go(x,x) = 1}. In Sect. 7, we prove a version of Theorem 1.2 on the unit
sphere bundle T'!S? associated to go. Let A = fXq, f > 0, be a contact form
inducing the standard tight contact structure & := ker Ao on T'S?, where
Xoly-w = go(w,dIT-w)and IT : T'5% — S?is the bundle projection. Recall
that there exists a natural double covering map D : S — T'S? satisfying
D*iy = 4X0|¢3 and which sends the Hopf link Ly U L to the pair of closed
curves lgp := D(Lg) and [} := D(L), both transverse to §0. We call the link
I := Iy Ul a Hopf link in 7'S?, as well as any link which is transversally
isotopic to it. The Hopf link / is said to be in normal position. According to
Theorem 2.6.12 from [16], any Hopf link can be brought to normal position
by an ambient contact isotopy. The homotopy class [y] € 71 (T'S? \ 1, pt) of
aclosed curve y C T'5?\ [ is determined by two half-integers

windy(y) € Z/2, wind (y) € Z/2 satisfying windg(y) + wind;(y) € Z.

They are defined as follows: any lift of y to s3 \ (Lo U L1) has well-defined
arguments ¢, ¢ of the complex components xo + iyp and x; + iy, and
wind; (y) is defined as the variation of a continuous lift of ¢; to R divided by
2m,i =0, 1. See Sect. 7 for a more detailed discussion.

Theorem 1.9 Let . = f Lo be a contact form on T'S* admitting prime closed
Reeb orbits 1;, i = 1, 2, which are the components of a Hopf link [, assumed
to be in normal position without loss of generality. Let nog and ny be the real
numbers defined by

ni=2pli)—1, i=0,1, (13)

where p(l;) are the transverse rotation numbers of l;. Let (p, q) € 7 X 7 be
a relatively prime pair of integers. Assume that

(L) < (p.g) < (o, 1) or (no, 1) < (p.q) <A, n).  (14)
Then one of the following holds.
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(1) If p+q is even, then ) admits a prime closed Reeb orbit yp 4 C T1S%\ 1,
non-contractible in T'S?, satisfying

windo(yp.q) = p/2, windi(yp.q) = q/2. (15)

(i1) If p +q is odd, then X admits a prime closed Reeb orbit y), 4 C TS\ 1,
contractible in T'S?, satisfying

WindO(Vp,q) =D, Wi”dl()’p,q) =q. (16)

Theorem 1.9 implies that if the resonance condition 9 = 1/n; > 0 is not
satisfied, then we obtain infinitely many (p, g)-orbits characterized by their
homotopy classes in 7' S? \ /. This includes non-contractible orbits in 7' S2.

Now we briefly discuss some applications of Theorem 1.9 which, in partic-
ular, generalize Angenent’s Theorem 1.8 to geodesic flows of Finsler metrics
on the 2-sphere.

Let F : TS?> — R be a Finsler metric with the associated unit tangent
bundle F~!(1), and let L : T*S>\ 0 — T2\ 0 be the associated Legendre
transformation. This induces a cometric F* = F o L on T*S?. Analogously
we have Fo = +/go(-, ), L, and Fy for the Euclidean metric. On T*S? we
have the tautological 1-form Ay The 1-form Ap = (ﬁ;l)*ktaut 1s a contact
formon F~1(1) inducing the contact structure £r = ker Ay, and its Reeb flow
coincides with the geodesic flow of F. Clearly o = (E;J)*Ataut. Consider

the map W : (F)~!(1) = (F*)~!(1), p > p/F*(p). Then
G=LroWoLy :(T'S* &) — (F'(1).&p) (17)

defines a co-orientation preserving contactomorphism, that is, G*Ar = fAg
for some positive function f. A geodesic y of F' with unit speed admits a lift

y =Gy (18)

under the projection I, which is a trajectory of the Reeb flow of fig. We
call y contractible when 7 is contractible in 7' S?, or equivalently when y is
contractible in F~1(1).

Corollary 1.10 Let F be a Finsler metric on S?, and o, y1 be two closed
geodesics that lift to a Hopf link | = lo Ul; C T'S?, that is, ly = % and
l1 = y1. Without loss of generality we assume [ is in normal position. Consider
their inverse rotation numbers p(l;), i = 0, 1, and let

ni=2p;)—1, i=0,1
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If (p, q) is a relatively prime pair of integers satisfying

(mo, 1) < (p,q) < (,n1) or (1,m) < (p,q) < (o, 1)

then we have one of the following cases.

(1) If p + q is even, then F admits a non-contractible prime closed geodesic
Yp.q Whose lift v, 4 lies in T1S%\ I and satisfies

windo(Yp,q) = p/2, wind\(Yp.q) = q/2.

(2) If p + q is odd, then F admits a contractible prime closed geodesic y, 4
whose lift v, 4 lies in 7182\ I and satisfies

WindO();p,q) = p, wind; (fp,q) =q.

Jacobi fields (11) are now defined using flag curvatures K = K (T, S2, V).
To give a concrete example, Corollary 1.10 can be applied to a pair of sim-
ple closed geodesics which intersect each other at exactly two points in S2.
Corollary 1.10 also applies to any Finsler metric admitting an embedded circle
C C S? which is a geodesic when suitably parametrized in both directions.
In fact, C and its reversed C, lift to components of a Hopf link which can be
transversally isotoped to normal position. Note that the rotation numbers 7,
n1 may not be related in this case, so that the “twist interval” may be empty.
This is the case in the examples of Katok [29].

We specialize the discussion even further now, to make the comparison with
Theorem 1.8 clearer. We shall say that a simple closed geodesic y of a Finsler
metric on S2 is reversible if the curve 7 > y (—t) is a reparametrization of
another geodesic y;, and if, in addition, the inverse rotation numbers p(y) and
p(yr) coincide. The geodesics y and y, determine a link in the unit sphere
bundle F~1(1) defined by

L ={y@® 1t eR}U{y,(1) | 1 € R}

where y and y, are assumed to be parametrized by arc-length. For example, if
the Finsler metric F is itself reversible and it has a simple closed geodesic y,
then y isreversible. Any (p, ¢g)-satellite relative to y distinguishes a homotopy
class in F~1(1) \ 1.

Corollary 1.11 Let F be a Finsler metric on S* admitting a reversible simple
closed geodesic y, and let p > 0 denote its inverse rotation number. Let
P, q € Z\Osatisfy ged(|pl, lg)) = 1. If p/q € (p, 1))U(1, p) then there exists
a geodesic yp 4 such that its velocity vector y 4 is homotopic in F~(1)\ L,
to the normalized velocity vector of a (p, q)-satellite of y.
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The proofs of Corollaries 1.10, 1.11 are found in Sects. 7.2, 7.3 respectively.

Under appropriate pinching conditions on the flag curvatures, it is possible to
show that certain (p, ¢g)-satellites do not exist when p/q is out of the twist
interval, see [27] for a non-existence result of (1, 2)-satellites.
Organization of the paper. In Sect. 2 we describe basic facts about the
Conley—Zehnder index and pseudo-holomorphic curves. In Sect. 3 we recall
the definition of cylindrical contact homology in the complement of a Hopf
link from [32]. Section 4 is devoted to computing contact homology for spe-
cial model forms. Theorem 1.2 is proved in the non-degenerate case in Sect. 5
combining the results from the previous sections. In Sect. 6 we pass to the
degenerate case by a limiting argument. Section 7 is devoted to proving Theo-
rem 1.9 and its applications to geodesics. Proofs of theorems related to contact
homology in the complement of the Hopf link are included in the appendix,
for completeness.

2 Background
2.1 The Conley—Zehnder index in 2 dimensions

Here we review the basic facts about the Conley—Zehnder index for symplectic
paths in dimension 2. Denoting by Sp(1) the group of 2 x 2 symplectic matrices,
consider the set

*={p : [0, 11— Sp(1) is piecewise smooth | p(0)=1, det[p(1) — I]#0}.

Our convention is that piecewise smooth functions are always continuous.
Throughout this Section we may freely identify R? ~ C via the isomorphism
(x,y) > x +iy.

2.1.1 The axiomatic characterization

According to Hofer et al. [22], the Conley—Zehnder index can be axiomatically
characterized as follows.

Theorem 2.1 There exists a unique surjective map |1 : £ — 7 satisfying

Homotopy: If ¢, is a homotopy of arcs in * then u(py) is constant.
Maslov index: If v : (R/Z,0) — (Sp(1), I) is a loop and ¢ € X* then
n(Ye) = 2Maslov(y) + u(e).

Invertibility: If o € * and ¢~ (t) := ()~ then u(p™") = —u(p).
Normalization: j(t — ¢'™) = 1.

We shall need more concrete descriptions of the index p.
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2.1.2 A geometric description

If ¢ : ([0,1],{0}) — (Sp(1),I) is a piecewise smooth path, consider the
unique piecewise smooth functions r,0 : [0, 1] x [0, 1] — R satisfying
e()e?™s = r(t, )¢ r(t,s) > 0and 0(0,s) = 2ms, for every ¢ and
s. Here we identify R2 with C. Let A : [0, 1] — R be the piecewise smooth
function defined by 27 A(s) = 6(1,s) — 2ws and we consider the winding
interval

I(p) ={A(s) | s € [0, 1]} 19)

Itis possible to show that I (p) has length strictly less than 1 /2 and 01 (p) NZ #*
) = ¢ ¢ X*. The first fact is proved in [22, Appendix] and the second fact is
proved in [24, Section 2.1]. If ¢ € ¥* then define

|2k ifk € I(p)
wle) = {2k+1 if1(p) C (k, k+1). (20)
Then u satisfies the axioms of Theorem 2.1.
The path ¢ can be continuously extended to all of [0, +00) by
t > ot — t)hp)H 1)

where |7] denotes the unique integer satisfying 7] < ¢t < [t] + 1. If ¢(1)
has no roots of unity in its spectrum then for each integer k > 1 the path
w(k)(t) = @(kt), t € [0, 1], belongs to X*. The following lemma is well-
known and easy to check using the above description of the index, the argument
is implicit in [22, Appendix].

Lemma 2.2 Suppose ¢(1) has no roots of unity in its spectrum. The following
assertions hold.

o Ifo(p(1)NR = @ then I & Q such that I (¢®) C (lka], |ke| + 1) and
nw(p®) =2lka] + 1, Vk = 1.

e If o(p(1)) C (0,400) then 3l € Z such that | € I(p) and u(e®) =
2kl, Vk > 1.

e Ifo(p(1)) C (—o0,0) then3l € Z such that 1 +1/2 € 1(¢) and u(p®) =
k2l + 1), Yk > 1. Moreover

ke2Z+1= 1e®) c (kl+1/2)], Lk +1/2)] + 1)
k€27 = k(l +1/2) € I(p®).
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2.1.3 An analytic description

Let ¢ : ([0, 1],{0}) — (Sp(1), I) be a piecewise smooth map. The path of
symmetric matrices S = —i¢¢~! is piecewise continuous, where we identify

(.
l_1 0 .

L=—id—S (22)

is an unbounded self-adjoint operator in L*(R /7, R?) with domain W 2(R /7,
R?). Its spectrum, which is discrete, consists of real eigenvalues accumulating
only at £00. Geometric and algebraic multiplicities coincide, see Chapter IT1 §6
from [28] for the definition of algebraic multiplicity. An eigenvector v does not
vanish unless v = 0. Writing v(¢) = p(1)e'? ) we define its winding number
aswind(v) = (¥ (1)—1(0)) /2. This definition does not depend on the choice
of the eigenvector for a given eigenvalue, thus we denote it by wind(v) with
v € o(L),see[19]. Forevery k € Z there are exactly two eigenvalues, counting
multiplicities, with winding number k, and vy < v = wind(vg) < wind(v;)
if vg, v1 € o (L).
Following [19] we distinguish two eigenvalues

As is explained in [19],

< =max{v e (L) | v < 0}, v=0 =min{v € 6(L) | v > 0}
and denote wind~ (L) = wind(v=<"), wind* (L) = wind(v=?). Later v<°, p=°
will be referred as the extremal eigenvalues and wind® (L) will be called the
extremal asymptotic windings. Defining p(L) = 0 if wind~ (L) = wind™ (L)
or p(L) = 1if wind~ (L) < wind™ (L) we set

a(e) =2wind™ (L) + p(L). (23)

Lemma 2.3 If I (¢) is the winding interval (19) then wind™ (L) < max I (¢)
and wind* (L) > min I (), with strict inequality when ¢ € %*. Moreover, if
@ (1) is positive hyperbolic then wind~ (L) = wind™* (L).

Proof Write I(¢) = la, b], fix some v € o(L) N (—00,0) and choose an
eigenvector v(¢) for v. We consider u(t) = ¢(t)v(0), z(t) = v(H)u(t) and
choose a piecewise smooth ¥ () € R such that z(¢) € RTe!?®  Then z
satisfies

—iz = (Sv)it — v(Su) + vz.

Whenever v € Ru we have z € R and (Sv)iu — v(Su) € iR, implying
R[—iz/z] = ¥ = v < 0 at these points (both lateral limits). So the total

@ Springer



348 U. Hryniewicz et al.

angular variation ¢ (1) — ¢ (0) of z is strictly negative since #(0) = v(0), in
other words, the total angular variation of v is strictly smaller than that of u,
which implies wind(v) < b. The other inequalities are proved analogously.

To prove the assertion about the positive hyperbolic case, consider for any
wu € R the winding interval I, associated to the differential equation —iu —
Su = pu. In particular, I(p) = Ip. We claim that u is an eigenvalue of
L =—id,—Sitdl, N7Z # ¥, in which case 3k € Z such that {k} =91, NZ
and wind(p) = k. Indeed, the fundamental solution ¢, (¢) of —id; —§ =
is a path in Sp(1) starting at the identity. Define smooth functions r, 6 : R x
R/Z x [0, 1] — R by requiring

(pu(t)eiz’rs =r(u,s, 0TSO pu s 1) >0, 0(u,s,0)€[0,1).

We have I, = {0(u,s,1) —60(u,s,0) | s € R/Z}. Assume thatk € 91, N Z.
If s satisfies 8 (u, so, 1) — 0(u, so, 0) = k we must have 9,60 (i, sg, 1) = 1.
Now we claim that (u, so, 1) = 1 is an eigenvalue of ¢, (1), which implies
that p is an eigenvalue of L with winding k. We compute (,oﬂ(l)eﬂ“0 =
r(M’ 50, 1)ei2n9(u,s0,l) — ”(M, 50, l)ei2nsoei2nk — r(,u, 50, l)ei2nso and

i2ms 270 (w,s,1)

d
pu(De = 7 ds r(u,s, e

§=50 s=50

i2mwsy

. d
pu(Die - %

= 5= (i, 50, 1)e’2m0 050D
27 '

1 .
+ 2—i27T3S9(;L, 50, Dr(u, so, l)ezzne(/tvso,l)
T

1 . .
= 5057 (1, 50, 1)e?™0 4 r(u, s, 1)ie' ™5
JT

Hence 1 = detg, (1) = r(u, so, DH? = r(u, so, 1) = 1, and the claim
follows.

Assumem = wind ™ (L) < wind™(L). Hence wind* (L) = m+1,m € I,<0
andm—+1 € [ >0.0l,NZ =0V € (v<0, v=0) because L has no eigenvalues
in (<0, v=%). Since 1, varies continuously with g and |1, | < 1/2Vu, we must
have m = min I,<o,m+1 = max I,z0and I, C (m,m+1)Vu € (v=0, v=0).
This prevents ¢(1) from being positive hyperbolic since, otherwise, v=" > 0
and Iy would contain an integer. O

Lemma 2.3 and the non-trivial fact p = wind™ —wind ™, which was already
used in the above lemma, imply together that i (¢) = (@) Vo € ¥*, where
w and 1 are defined in (20) and (23) respectively.

Corollary 2.4 Let ¢ : ([0, 1], {0}) — (Sp(1), I) be a piecewise smooth path
such that ¢ (1) has no roots of unity in the spectrum. Extending ¢ to [0, +00)
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by (21), consider the paths ¢ (t) = @(kt) and their associated self-adjoint
operators LW, Ifo(p(1)) NR = (@ then

wind=(L®) = |ka| and wind™(L®) = |ka] +1 Vk>1

where a & Q is the unique number satisfying u(go(k)) = 2lka| + 1, Vk. If
@(1) is hyperbolic, o (p(1)) C (0, +00) andl € Z satisfies u (9 = 2kl, Vk
then

wind=(L®) = wind*(L®) =kl Vk > 1.

If (1) is hyperbolic, o (¢(1)) C (—00,0), and | € Z satisfies ,u((p(k)) =
k2l + 1), Yk then

k > 1iseven = wind~ (LW = wind™(L®) = k( + 1/2),

. wind~ (L®Y) = |kl + 1/2)]
kzlisodd = {wind+(L(k)) = k(I + 1/2)] + 1.

2.1.4 Mean index and rotation number

Letgp : R — Sp(1), ¢(0) = I, be the solution of a 1-periodic linear Hamil-
tonian system ¢ = iS¢, that is, S(¢) is a 1-periodic smooth path of symmetric
matrices. This is equivalent to ¢ (¢t + 1) = ¢(t)¢(1) for all 7.

As in the geometrical description of the index in Sect. 2.1.2, consider the
unique smooth @ : RxR — Rsatisfying ¢ (1)e>™ € R*e!?"9) and6(0, 5) =
2ms. Then O(¢t,s + 1) = 6(¢t,s) + 27 so that s — f(s) := 0(1,s)/2n
satisfies f(s + 1) = f(s) + 1 and induces an orientation preserving self-
diffeomorphism of R/Z. It can be written in the form f(s) = s + A(s), where
A(s)isa 1-periodic smooth function used to define the winding interval in (19):
I(¢li0,1]) ={A(s) | s € [0, 1]}. The associated rotation number

A A ceo o A(FRT
p((p):kiilfoo (s) + (f(S))-i;C + A7) 24)

which is independent of s € [0, 1], is well-defined and of particular interest to
us.

As before we may consider the iterated path (p(k)(t) = @(kt),t € [0, 1],
and the associated angular variation s — A®)(s). By the 1-periodicity of S
we must have

AP (s) = A@s) + A(F () + -+ A (65))
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so that A®(s)/k — p as k — o0, Vs. In view of formula (23) and
Lemma 2.3 we have that 2A® (s) — /L((p(k)) is uniformly bounded in &, for
each fixed s. Thus the so-called mean index

(™)

f() = lim (25)

is well-defined and

Lemma 2.5 i(p) = 2p(p).

2.1.5 Conley—Zehnder index and transverse rotation number of periodic
orbits

Consider the flow ¢, of the Reeb vector field X, associated to a contact form
A on the 3-manifold V. Throughout the rest of the paper we assume that any
closed orbit P has a marked point in its geometric image, and when we write
P = (x, T) it will be understood that x (¢) is chosen so that the marked point
is x(0).

The Reeb flow preserves A, so we get a path of dA-symplectic linear maps
do: : Ex©) — &x@r) when x(¢) is a trajectory of X;. P = (x,T) is non-
degenerate if 1 is not in the spectrum of d¢pr : £x0) — &x(0), and A will be
called non-degenerate if this holds for every P € P(1); here P (L) is the set
defined in Sect. 1.1. This is a residual condition in the set of contact forms on
V equipped with the C°°-topology.

Let P = (x, T) be a closed Reeb orbit. The contact structure £ is given
by (1), and we denote x7(t) = x(T't). The orbit (x, kT) is denoted by Pk,
Fix a homotopy class 8 of smooth dA-symplectic trivializations of the bundle
(x7)*E. A trivialization ¥ : (x7)*¢ — R/Z x R? in class B can be used
to represent the linear maps dor; : §x) — &x(rr) as a path of symplectic
matrices

¢ R — Sp(l), @) =W odpr, o (V).

It satisfies p( + 1) = @(t)@ (1) Vt, that is, ¢ solves a 1-periodic linear Hamil-
tonian system as in Sect. 2.1.4. We define the transverse rotation number of P
with respect to the homotopy class g as

p(P,B) = p(p) (26)

where p (@) is the rotation number (24). Note that its value depends only on the
homotopy class g of the chosen trivialization, since for two trivializations in
class 8 the numerator inside the limit in (24) will differ by a quantity uniformly
bounded in k. We also define
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ncz(P, B) = u(p) 27)

where p is the index for symplectic paths discussed in Sect. 2.1.3. The class
B induces a homotopy class of di-symplectic trivializations of (x;7)*& for
every k > 1 in an obvious way, which we denote by X. Lemma 2.5 implies

1

p(P,B) = lim —-pcz (P, BY).

Remark 2.6 (Winding numbers) Let E be an oriented rank-2 real vector bundle
over R/Z. If Z and W are non-vanishing continuous sections of E then the
relative winding number wind(W, Z) € Z is defined as follows. Let Z" be
any non-vanishing continuous section such that {Z(¢), Z'(¢)} is an oriented
basis for E;, V. Then W(t) = a(¢)Z(t) + b(t)Z'(¢) for unique continuous
functions @, b : R/Z — R, and we set wind(W, Z) = 6(1) — 0(0) € Z,
where 6 € CO([0, 1], R) satisfies a + ib € Rte’?™?, When E is endowed
with a symplectic or complex structure then we use the induced orientation to
compute relative winding numbers. Note also that wind(W, Z) depends only
on the homotopy classes of non-vanishing sections of both W and Z.

If a trivialization W’ in another class B’ is used to represent d¢r;, we get
numbers p (P, B') and ucz (P, B') satisfying

p(P’ﬁ/):p(P’lB)+m and /’LCZ(P’ﬁ/):MCZ(P’ﬁ)+2m

where m € Z is the Maslov index of the loop of symplectic maps ¥, o (v~
Note that m = wind((¥,)~! - u, (lIJ,/)*1 - u) for any fixed non-zero vector
u € R2.

2.2 Pseudo-holomorphic curves

We take a moment to review the basics of pseudo-holomorphic theory in sym-
plectic cobordisms. In the following discussion we fix a closed co-oriented
contact 3-manifold (V, §).

2.2.1 Cylindrical almost-complex structures

The space &1 \ 0, the annihilator of £ in 7*V minus the zero section, can
be naturally endowed with the symplectic form ws = doyay, Where oy s
the tautological 1-form on 7*V. The given co-orientation of & orients the line
bundle TV /& — V and, consequently, also (T'V/£)* ~ &1. We single out
the component We C £+ \ 0 consisting of positive covectors, which we call
the symplectization of (V, &).
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A choice of contact form A on V satisfying (1) and inducing the co-
orientation of £ induces a symplectomorphism

Wy (We, wg) — (R x V,d(e“1))

0 — (ln % 1'(0)) (28)

where a denotes the R-coordinate and 7 : 7*V — V is the bundle projection.
The free additive R-action on the right side corresponds to (c, #) + €6 on
the left side.

The bundle § — V becomes symplectic with the bilinear form d. We will
denote by J4 (&) the set of dA-compatible complex structures on &, which
will be endowed with the C*°-topology. It does not depend on the choice of
positive contact form A satisfying (1). As is well-known, J4 () is non-empty
and contractible. Any J € J1(§) and A as above induce an almost complex
structure J on R x V by

J =X, Je=1J (29)

where £ is seen as a R-invariant subbundle of 7'(R x V). It is compatible with
d(e?)). The pull-back J = /(\\IJA)*J is then a wg-compatible almost complex
structure on We. The set of J that arise in this way will be denoted by 7 (2).

2.2.2 Cylindrical ends
The fibers of 7 : Wz — V can be ordered in the following way: for given
6o, 01 € r_l(x), we write 8y < 61 (resp. 8p < 61) when 6;/6y > 1 (resp.
01/6p > 1). Given two positive contact forms A_, A4 for&, wedefine A < Ay
if A_|y < Ay|y pointwise and, in this case, we set

Wi_,ap) ={0 € We | A_lz9) 20 = Atlro)}

which is an exact symplectic cobordism between (V, A_), (V, A). Let

W) ={0eWe |60 <ilep),
W) =1{0 € We | Ayleo) = 0}

It follows that

we=w-0. |J Woe_.ap U wroew.

ITW—(A)= AtWO_Ap)
"WH_,Ay) =0"Wt(.y)
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An almost-complex structure J satisfying

e J coincides with J+ € J(Ay) on a neighborhood of W (1,),
e J coincides with J_ € J (A_) on a neighborhood of W™ (A_),
o Jis wg-compatible

is an almost-complex structure with cylindrical ends. The set of such almost-
complex structures will be denoted by 7 (J J+) Itis well-known that this is a
non-empty contractible set. For JeJd (J J+) the almost-complex manifold
(We, J) is said to have cylindrical ends W+(k+) and W= (A_).

2.2.3 Splitting almost-complex structures

Suppose we are given positive contact forms A < A < A4 for §. Let J_ €
J (), Jed (1) and J+ € J(A4) be cylindrical almost-complex structures,
and consider almost-complex structures J; € J (J 7) ), heJd (J J+) Let
us denote by g.(6) = 0 the R-action on Wg. Then there is a smooth family
of almost-complex structures Jg, R > 0, given by

i <(g R on W)
B=1@r)*s1  onw=(n)

which is smooth since J is R-invariant. We may denote Jr = Jj ogr J» if the
dependence on J; and J> needs to be made explicit.

Note that if g > 0 is small enough then J; og Jo € j(f_, f+) for all
0 < R < €p. For each R > 0 we take a function g : R — R satisfying
¢r(a) =a+ Rifa < —R — €y, pp(a) =a — Rifa > R+ €p and ¢} > 0
everywhere. The family {¢r} can always be arranged so that supy , ¢y (a)| <
1 and

| =

inf{gk(a) | a € (—oo, —RJU[R, +00) and R > 0} >

In particular, the inverse function galgl has derivative bounded in the intervals
(=00, pr(—R)] and [pg(R), +00) uniformly in R. Consider the diffeomor-
phisms g : R x V — R x V,¥g(a, x) = (pr(a), x) and

dr = _ol//Ro\IJ)L We — We. (30)
It is straightforward to check that

= (Pr)«(J1 or J2) (D

belongs to j(f_, f+), for every R large.
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2.2.4 Finite-energy curves in symplectizations

Let us fix a positive contact form A satisfying (1).

Consider the set A = {¢p : R — R | ¢(R) C [0, 1], ¢’ > 0}. For each
¢ € A we denote by Ay the 1-form (W;)*(¢A), where ¢ denotes the 1-form
(a,x) — ¢(a)r|y onR x V and W, is the diffeomorphism (28).

Deﬁnltlon 2.7 (Hofer [17]) Let (S, j) be a closed Riemann surface, I C S be
finite and J € J (A). A finite-energy J-curve is a pseudo-holomorphic map

7:(S\T,j)— (We, J)

satisfying

0 < E(u) = sup / u'digy < 00. (32)
peN
S\T

The quantity E (%) is called the Hofer-energy.

Each integrand in the definition of the energy is non-negative and u is
constant when E (&) = 0. The elements of I" are the so-called punctures.

Remark 2.8 (Cylindrical coordinates) Fix z € I' and choose a holomor-
phic chart ¥ : (U,z) — (¥(U),0), where U is a neighborhood of z. We
identify [sg, +00) x R/Z with a punctured neighborhood of z via (s, ) =~
(e 26Dy for 5o > 1, and call (s, 1) positive cylindrical coordinates
centered at z. We may also identify (s, 1) ~ ¢~ !1(e2" 6T where s < —s0
and, in this case, (s, 1) € (—00, —sp] X R/Z are negative coordinates. In both
cases we write (s, 1) = o~ H(e 6D or i(s, t) = wo Y H(eFTBHN),

Let (s, t) be positive cylindrical coordinates centered at some z € I', and
write W) o u(s, t) = (a(s, t), u(s, t)). E(u) < oo implies that

m = lim / u* (33)

§—>—+00
{s}xR/Z

exists. This number is the mass of u at z, and does not depend on the choice
of coordinates. The puncture z is called positive, negative or removable when
m > 0,m < 0 orm = 0 respectively, and u can be smoothly extended to
(S\ T'") U {z} when z is removable. Moreover, a(s,t) — €00 as s — —+00,
where € is the sign of m.
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2.2.5 Finite-energy curves in cobordisms

Let A— < A4 be positive contact forms for & and consider J; e J(Oy),
J € J(J-, J;). Recall the symplectomorphisms W, : (Wg, wg) — (R x
V,d(e?)L+)), the collection A and the 1-forms A+ 4 on We with ¢ € A.

Definition 2.9 [8] Let (S, j) be a closed Riemann surface and I" C § be finite.
A finite-energy J-curve is a pseudo-holomorphic map

#:(S\T,j)— (We, J)

satisfying
0<E_(u)+ Ef(u)+ Eo(u) < o0 (34)

where the various energies above are defined as

E+(ﬁ) = Sup / it'*d)\.+,¢
peA

T (WH0p)
E_ (&) = sup / urdr_
peA
(W=
and
Eo(@t) = / 7 o
T (W0 )

As before, the elements of I' are called punctures. A puncture z € I is
called positive if

e there exists a neighborhood U of z in S such that (U \ {z}) C WT(Ay),
e writing W;, ou = (a,u) on U \ {z} we have that a({) — +o0as ¢ — z.

Analogously z is called negative if

e there exists a neighborhood U of z in S such that u(U \ {z}) C W~ (1),
e writing W, _ou = (a,u) on U \ {z} we have that a(¢) - —coas ¢ — z.

Finally z is said to be removable if # can be smoothly extended to (S\ ") U{z}.
It turns out that the set of punctures can be divided into positive, negative and
removable, see [8].

2.2.6 Finite-energy curves in splitting cobordisms

As in Sect. 2.2.3 we consider positive contact forms A < A < A4 for §, select
T eJG), T edn, J+ € J(Ay),and J; € JT_ D). e T, J+)
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Then for each R > 0 we have an almost complex structure J; og J» which
takes particular forms in various regions on We:

o Jyog Ja=Jron gr(WF(hp) = WH(eRay),
e Jiog Jo=Jon W(e Rx, eR1) and
o Jiogh=J_ong_g(W=(A_)) = W (e Ra_).

Definition 2.10 [8] Let (S, j) be a closed Riemann surface and I' C S be
finite. A finite-energy (J; og J2)-curve is a pseudo-holomorphic map

i (S\T,j) = (We, Jy og J2)
satisfying

0 < E,_(u)+ Ey,(u)+ E () + Eg @)+ Eg_ @) <oo  (35)

where
E), () = sup / wdiy g
peAN
T (WH(eRay))
E; (u) = sup / u*dig
peA -
a1 (W(e Rx,eRpr))
E;_ () = sup / urdr_ ¢
peA
u—l(W=(e=Rxr_))
and
~ ~x. —R
Eoan@= [ Tt
aL(W(eRx,eRry))
E (i) = / i (eFax).

T (W(e=Rxr_,e=R)p))

Note that all integrands are pointwise non-negative.

As before punctures are divided into positive, negative and removable,
see [8].

2.2.7 A restricted class of almost-complex structures

Consider fi € J(At), where A1 = f1Ag are positive contact forms on s3
with Ag asin (3), and f1 € F satisfy f— < f pointwise. Here F is the set of

@ Springer



A Poincaré-Birkhoff theorem 357

functions f : $3 — (0, +00) such that f o realizes the standard Hopf link
Ko as a pair of closed Reeb orbits. Later we will need to consider the subset

T Ty : Koy C T(T-. T3) (36)

of almost complex structures for which 7! (Ky) is a complex submanifold,
where 7 : Wgy — S 3 is projection onto the base point. It is easy to check that
it is non-empty and, when equipped with the C°°-topology, it is a contractible
space.

Note also thatif A = fAg is another contact form for some f* € F satistying
f- < f < f4 pointwise, Je T, Jp € J(J_, J: Ko)and J, € j(] J+
Kp) then t l(Ko) is also a complex submamfold with respect to Ji or Jo.
Moreover, J = (®R)x(J) og o) € j(J_, J+ . Kp), where @y is the
map (30).

2.2.8 Asymptotic operators and asymptotic behavior

Let P = (x,T) € P(A) and denote x7 () = x(Tt). Any given J € J; (&)
induces an inner product for sections of (x7)*& by

1

(n.¢) = / @Nar 1), Tariey - £(0)) dt 37)

0

On the corresponding space of square-integrable sections there is an unbounded
self-adjoint operator defined by

Ap-n=J(=Vin+TV;X;) (33)

where V is a choice of torsionless connection on 7V; A p does not depend on
this choice.

Let us fix a homotopy class 8 of dA-symplectic trivializations of (x7)*& and
choose some W in class . Then Ap is represented as —J (t)9; — S(¢), where
J (¢) is the representation of (x7)*J and S(¢) is some smooth 1-periodic path
of 2 x 2-matrices. If ¥ is (dA, J )—unitary1 then J (¢) = i and S(¢) is symmetric
for all ¢, so that A p has all the spectral properties described in Sect. 2.1.3. In
particular, if 7 is non-trivial and satisfies A p - n = vy for some eigenvalue v of
Ap,thenv(t) =¥, -n(t) € R? does not vanish and satisfies —iv — Sv = vv.

! There is always a unitary trivialization in any homotopy class.
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Defining a continuous 9 : [0, 1] — R by v(r) € RTe!?® the integer

wind(v, P, B) = w (39)

does not depend on the choice of 7 in the eigenspace of v. If ny, ny € 0 (Ap)
then 1 < 1, = wind(vy, P, B) < wind(v,, P, B). Moreover, if 8’ is another
homotopy class of dA-symplectic trivializations and W’ is in class B’ then

wind(v, P, ') = wind(v, P, B) +m, Yv eo(Ap) (40)

where m is the Maslov number of the loop ¥, o (v~ L.

We define wind=%(P, 8) and wind<°(P, B) to be the winding of the small-
est non-negative and largest negative eigenvalues of Ap with respect to S,
respectively. In view of (23) we have

1tcz (P, B) = 2wind=*(P, B) + p (41)

where p = 0 if windZ(P, B) = wind<(P, B) or p = 1 if not. As a conse-
quence of Corollary 2.4 we get

Lemma2.11 Ler P = (x,T) € P(\) and assume P* = (x,kT) is non-
degenerate Yk > 1. If we fix a homotopy class B of d\-symplectic trivializa-
tions of (x7)*& then

e P iselliptic if, and only if, p(P, B) = a ¢ Q. In this case
wind=°(P*, ¥y = ko] + 1 wind<(P*, B*) = |ka| Vk > 1.

e P is hyperbolic with positive Floquet multipliers if, and only if, p (P, B) =
[ € Z. In this case

wind=*(P¥, B*) = ki = wind<°(P*, B¥) Vk > 1.

e P is hyperbolic with negative Floquet multipliers if, and only if, p(P, B) =
I+ 1/2 for some | € 7. In this case

k is even = wind<"(P*, XY = wind=°(P*, Xy = k(1 + 1/2)

wind<C(Pk, %) = |k(l + 1/2)]

k is odd = {windZO(Pk, B5) = [kl +1/2)] + 1.

Here B¥ denotes the homotopy class of d A-symplectic trivializations of (xir)*&
induced by B.
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Definition 2.12 (Martinet Tube) Let P = (x, T) € P(A) and Ty, be the
underlying minimal positive period of x. A Martinet tube for P is a pair (U, ®)
where U is an open neighborhood of x(R) in Vand ® : U — R/Z x Bisa
diffeomorphism (B C R? is an open ball centered at the origin) satisfying

e O*(f(dO+xdy)) = A where (0, x, y) are the coordinates on R/ZXR2 and
the smooth positive function f satisfies f|r/zx0 = Tmin and df |r/zx0 =
0.

o O(x(Thint)) = (£,0,0).

Remark 2.13 If P = (x, T), Tnin are as in the above definition and n(¢) €
Ex(r), t € R/TwinZ, is a smooth non-vanishing vector then there exists a
Martinet tube (U, ®) for P such thatd®,;)-n(t) = 0, foreveryt € R/ TiinZ.

The precise asymptotic behavior of pseudo-holomorphic curves is studied
by Hofer, Wysocki and Zehnder when A is non-degenerate. We will now sum-
marize the main results of [18]. Consider a non-degenerate contact form A for
é/: a closed connected Riemann surface (S, j), a finite subset ' C S and a
J € J (). Suppose

7:(S, j)— (We, )

is a non-constant finite-energy pseudo-holomorphic map.

Theorem 2.14 (Hofer, Wysocki and Zehnder) Let (s, t) be positive holomor-
phic cylindrical coordinates at 7 as in Remark 2.8 if z is a positive puncture,
or negative holomorphic cylindrical coordinates at z if it is a negative punc-
ture, and let us write Wy o u(s,t) = (a(s,t), u(s,t)) € R x V. Then there
exists P = (x,T) € P(A) and constants r,ao,ty € R, r > 0, such that
u(s,t) = x(T(t +t9)) in C* as |s| — oo and

|s|]—o00

lim ¢! (sup |DY[a(s,t) — Ts — a0]|) =0, Vy.
t

Let (U, ®) be a Martinet tube for P, so that one finds so € R such that
u(s,t) € Uwhen|s| > |so|, andwrite Dou(s,t) = (0(s, t), z(s, t)) € R x R2
(the universal covering of R/Z x R?). Then

lim ¢! (sup|DV[9(s, 1) —k(t + zo)]|) =0, Vy,
s|—o00 t

where k is the multiplicity of P. Either (t o u)*d» = 0 for |s| > 1 or
the following holds. There exists an eigenvalue | for Ap, an eigensection
n:R/Z — (x7)*E for p, and functions a(s) € R, R(s,t) € R? defined for
Is| > 1 such that u > 0 if z is negative, u < 0 if z is positive, and if we
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represent 1)(t) =~ e(t) € R? using the coordinates induced by ® then, up to
rotation of the cylindrical coordinates,

2(s.0) = 2“7 e(0) + Rs. 1)
for |s| > 1, where o and R satisfy

lim sup |DYR(s,1)| =0, Vy

|s|—>00 ¢

lim |D/[a(s) — pul| =0, V.

|s]—o00

Remark 2.15 The same asymptotic behavior as described in Theorem 2.14
holds near non-removable punctures of finite-energy curves in cobordisms and
splitting cobordisms defined in Sects. 2.2.2 and 2.2.3, respectively, assuming
that the contact forms in the ends are non-degenerate.

Remark 2.16 By the exact nature of all the 2-forms appearing in the inte-
grands of the integrals involved in the energy of pseudo-holomorphic maps in
cobordisms and in splitting cobordisms, we obtain the following statement:

IfA— < & < Ay arepositive contact forms for § then there exists C > 0 such
thatthefollowmg halds . Forevery J+ e J(hy), Je J @), J_ e T, Ty €
J(J_, N, I e J(J J+) R > 0 and finite-energy (J og Ja)-holomorphic
map u we have

E() = CA(u)

where Ay () denotes the sum of the Ay -actions of the closed \-Reeb orbits
which are the asymptotic limits of u at the positive punctures. An analogous
statement holds for finite-energy Ji-holomorphic maps.

3 Contact homology in the complement of the Hopf link

We will now review the cylindrical contact chain complex for contact forms
hXg, h € F, following [32]. For completeness all necessary statements and
proofs are included.

Before starting with our constructions we establish some notation. Let f >
0 be a smooth function on S* and denote A = fAg. If P = (x,T) € P(X)
then we denote by x7 : R/Z — S3 the map t — x(Tt), and Pk .= (x,kT),
Vk > 1. A homotopy class 8 of dA-symplectic trivializations of (x7)*&
induces a homotopy class of dA-symplectic trivializations of (x;7)*&y which
is denoted by g* (the k-th iterate of B).
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We will be dealing with various tight contact forms on >, and sometimes
we need to indicate the dependence on the contact form of the invariants
p and pcz discussed in Sect. 2.1.5, and also of the spectral winding num-
bers described in Sect. 2.2.8. When P = (x,T) € P(A) and the homo-
topy class B of dA-symplectic trivializations of (x7)*&y is given then we
may write p(P, B, L), ucz(P, B, A), wind(v, P, B, 1), wind=0(P, B, A) and
wind<(P, B, 1) to stress the dependence on A. The symplectic vector bun-
dle (&, d)) — S is trivial and we fix a global symplectic frame. For every
P = (x,T) € P()), the homotopy class of dA-symplectic trivializations of
(x7)*&o induced by this global frame is denoted by Sp. It does not depend
on the particular choice of global frame. Note that (8p)* = Bpr. We may
write p(P, A), ucz (P, 1), etc to denote the various invariants computed with
respect to the global frame. When f € F then Lo and L are closed Reeb
orbits of fXg, and we denote

0:(f) = p(Li, fro) =1 (=0,1)

where the rotation number p(L;, fAg) is computed with respect to the global
d X -symplectic trivialization of &.

3.1 The chain complex

To define cylindrical contact homology of
A=nhky, h e F

up to action 7" in the complement of Ky we need to assume certain conditions:

(a) Every closed Reeb orbit of A with action <T is non-degenerate.

(b) There are no closed Reeb orbits of A in §3 \ K¢ with action < T which
are contractible in $3\ K.

(c) The transverse Floquet multipliers of the components Lo, L of Kg, seen
as prime closed Reeb orbits of A, are of the form ¢/>™® with @ ¢ Q. In
particular, every iterate L{, L is non-degenerate and elliptic.

We always identify
71(S? \ Ko, pO) = Z x Z, [y]+> (p,q) (42)
where
p = link(y, Lg) and g = link(y, Ly).
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Fix a homotopy class of loops in S3 \ K¢ represented by a relatively prime pair
(p, q) of integers, i.e., there exists no integer X > 2 such that (p/k, q/k) €
Z x 7. In particular, no closed loop in this homotopy class can be multiply
covered. We also fix a number 7' > 0.

Let P=T-(P-9) (1) be the set of closed A-Reeb orbits contained in S> \ Ko
which represent the homotopy class (p, ¢) and have action <7'. The field Z /27
will be denoted by IF». Consider, for each k € Z, the vector space C ET’(p ) »)

over I, freely generated by closed orbits in P=7(7-?) () of Conley—Zehnder
index k + 1:

"= P Farar

PeP=<T-(.9)))
mcz(P)=k+1

The degree of the orbit P, or of the generator gp, is defined as |P| = |gp| =
ucz(P) — 1. We consider the direct sum over the degrees k € Z as a graded
vector space.

Remark 3.1 In general for SFT, one cannot use coefficients [F». But, since
we only consider homotopy classes of loops which cannot contain multiply
covered orbits, it is possible in this particular case. In fact, since (p, q) is
assumed to be a relatively prime pair of integers, all orbits in P=7-(7-9)(3) are
simply covered and, consequently, SFT-good. In this way we do not need to
consider orientations of moduli spaces of holomorphic curves.

We turn these graded vector spaces into a chain complex as follows. Select
a dlo-compatible complex structure J : & — &p, and extend it to J e
J (1) on Wg, as explained in Sect. 2.2.1. Here Wg, C T*S? is the positive
symplectization of (53, &) equipped with its natural symplectic structure weg,
which is the restriction to We, of the canonical 2-form. On W, there is a free
R-action

g0 e, c e R
The projection onto the base point is denoted by
T: Weg — s3.

Denote by M;T’(p ’q)(P, P’) the space of equivalence classes of J-
holomorphic finite-energy maps 7 : R x R/Z ~ §2\ {0, oo} — We, with
one positive and one negative puncture, asymptotic at the positive puncture to
P e P=T-(1-9)()) and at the negative puncture to P’ € P="-(P-® (3), with the
additional property that the image of % does not intersect 7! (Ky), modulo

@ Springer



A Poincaré-Birkhoff theorem 363

holomorphic reparametrizations. Here we identify R x R/Z ~ §2 \ {0, oo}
via (s,1) ~ 6D equip R x R/Z with its standard complex structure,
the positive puncture is oo and the negative puncture is 0. Any two such
cylinders u, v are equivalent if there exists (As, At) € R x R/Z such that
v(s, t) = u(s + As, t + At). Note that we do not quotient out by the R-action
{g.} on the target manifold. Strictly speaking M;T’(p 9 (P, P’) is not a set of
maps, but we may write u € M;T’(p’Q)(P, P’) when a map u represents an
element of this moduli space.

Since (p, q) is arelatively prime pair of integers, every orbitin P=7-(P-4) (})
is simply covered and, consequently, results of [18] imply that curves repre-

senting elements of M@ ’Q)(P, P’) must be somewhere injective. Con-
sider the set Jreg (1) C J (A) of almost complex structures satisfying the fol-
lowing property: if J € Jreg(A) then all cylinders (representing elements)
in MfAT’Q’ ’Q)(P, P’) are regular in the sense of Fredholm theory for all
P, P’ e P=T:(:9)(}). This is standard and means that, in the appropri-
ate functional analytic set-up, the linearized Cauchy—Riemann operator at a
cylinder representing an element of M?T’(p ’Q)(P, P’) is a surjective Fred-
holm map whenever P, P’ € P=T.(r-9)(3); see [41] for a nice description

of the analytic set-up. The set Jreg(A) depends on T and (p, q), but we do
not make this explicit in the notation. Results of [11] show that Jeg(2) is

a residual subset of 7 (1). Consequently, the spaces M?T’(p ’q)(P, P, for

all P, f/ e P=T-(P.9)(}), have the structure of a finite dimensional manifold
when J € Jreg(4), with dimension Ind(u) = pwcz(P) — pcz(P’") whenever
this quantity is > 0. When this quantity is > O then the R-action {g.} on the

target induces an R-action on M?T’(p 4) (P, P") which is smooth and free. If

Ind(@)) = 0 and M5""?(P, P') # i then P = P', @ is a trivial cylinder
and the R-action on the moduli space is trivial.

Theorem 3.2 Iff € Jreg(X) and P, P’ € P=L.. @) ()) satisfy pcz(P') =
wcz(P) — 1 then the space M;T’(p’q)(P, P")/R is finite.

See Sect. 1 in the appendix for a proof. Therefore, it makes sense to define
the following degree —1 map:

I, Ty CETPD 0y Cf_Tl’(p’Q)()\)

are > B (MTUOP PYR) g @)

P eP=T-(p.0) (3)
|P/|=%—1
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on generators, where #> denotes the number of elements in a set (mod?2) as
an element of 5.

Theorem 3.3 If J € Jrea(A) then d5—1 0 8 = 0, Vk € Z.

The proof is also deferred to the appendix, see Sect. 1. As a consequence

(@xezCE PP 00, 01, I)2)
is a chain complex. Its homology is denoted by

HCET P D 1. (44)

3.2 Chain maps

Let T > O and hy, h_ € F be such that AL = hyAg satisfy conditions (a),
(b) and (c) described in Sect. 3.1. Let also (p, ¢) be a pair of relatively prime
integers. In this case we may choose J+ € J(&p) such that fi € Jreg(A+) and
the chain complexes (C5 " P? (A1), .. 1,)) and (CE PP (W), 0 1)
are well-defined. There is a natural way to define a chain map between these
chain complexes as long as 4y > h_ pointwise and the associated rotation
numbers satisfy

bi(h+) ¢ Q, Oo(hy) = Op(h—) and O1(hy) = O1(h-). (45)

As is explained in Sect. 2.2.7, the space J(J_, J+ : Kp) is non-empty

and contractible. For any J € j(J_, J+ : Ko), P € P<T-(P-9(),) and
"e P=T.(.9) () _) we consider the space M}T (P q)(P, P’) of equivalence

classes of finite-energy J-holomorphic cylinders with image in We, \ 7~ (Ko)
which are asymptotic to P at the positive puncture and to P’ at the negative
puncture, modulo holomorphic reparametrizations.

Let jreg(.]_, J+ Ko) € JJ_, J+ : Kp) be the set of J for which the
following holds: every element of ./\/l—T (P q)(P P’) is regular in the sense
of Fredholm theory whenever P € 77<T P 9)(h,) and P’ € P=T- (1D () ),
see [41]. As before, this set of regular almost complex structures depends
on (p,q) and T, but we do not make this explicit in the notation. Stan-
dard arguments [7,11,31,32] show that the set Jreg(J J+ . Kp) con-
tains a residual subset of J (J_, J+ : Kp). It is crucial here that P, P’
are simply covered, which is the case since the pair (p, q) is relatively
prime. Then M?T’(P “)(p, P') becomes a smooth manifold of dimension
wcz(P) — ucz(P’) since there are no orbifold points (every element is rep-
resented by a somewhere injective map).
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Theorem 3.4 If J € Jiee(J_, J1 : Ko) and P € P10 (1,), P’

P=T-- D (\_) satisfy ucz(P") = wcz(P) then the space M;T’(p’q)(P, P’)
is finite.

The proof is found in Sect. A.2 in the appendix. After selecting Ji €
Treg(Ax), any J € Jreg(J—, J4 : Ko) can be used to define a chain map given
by

= T T,(p,
®(J)e: €500y — P00

IS (# METPD(p p )) ar (46)

P ep=T- . ()_)
|P/|=*

on generators, where again #, denotes the number of elements in a set (mod 2)
as an element of IF,. The number of elements in each such M?T’(p ) (P, P)

is finite by Theorem 3.4 so that this map is well-defined. That O(J), is a
chain map is the content of the next statement. The proof is postponed to the
appendix, see Sect. A.2.

Theorem 3.5 ®(J),—1 0 d(hy, J1)x — I, J ) 0 @(J)s =0

3.3 Comparing chain maps

We consider i+ exactly as in Sect. 3.2, together with regular choices Ji €
Jreg(A+) and regular choices Jy, J; € jreg(.]_, J+ Kyp), so that we have
chain maps CIJ(JO)*, <I>(J1)*. Here we denoted A+ = h4Ag. We would like to
show that they induce the same map at the level of homology.

To this end, we consider the space J (Jo, J1 : Ko) of smooth homotopies

10,11 J, e T(T.. Tv : Ko)
from Jy to J;. For orbits P € P=T-(»-D (), ) and P’ € P=T-P- D (1_) we set

M (PP = (¢ (@) | 1 € [0, 1] and [@] € M5O (P, P
’ (A7)
where MET’(‘D ) (P, P’)is as defined in Sect. 3.2. Using standard arguments,
in a similar way as it is done in [31, Section 3.2], one finds a residual set

jreg(fo, Ji 2 Ko) € T (Jo, J1 : Ko)

such that if {J_,} € jreg(l_o, Ji: Kyp) then M—T (P q)(P P’) is a smooth man-
ifold of dimension wcz(P) — ncz(P') + 1 for every pair of orbits P, P’ as
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above. It is crucial here that for every ¢ all cylinders in M—T (P q)(P P’)

are necessarily somewhere injective, which is true since the orbits P €
P=T(r-9) (3, ) and P’ € P=T-(P-4) ()_) are simply covered. Thus there are no
orbifold points. As before, we may achieve regularity by a perturbation keep-
ing the tangent space of 7 ~!(K() complex invariant along the path of almost
complex structures.

Theorem 3.6 Whenever P € P=T-P-D (1) and P’ € P=T-P-D(L_) are
such that wez(P) = ucz(P') — 1 then the space M{EJ-T}’(p’Q)(P, P’) is finite.
t

Moreover, if (t, [u]) € MST (P, q)(P, P’) thent # 0, 1.
In the above statement we assume that {J;} € jreg(jo, Ji @ Ko) and that

Jo, J1 € jreg(f_, f+ : Kp). See Sect. 1 in the appendix for a proof. Following
a usual procedure, we define a degree +1 map

(i) : €570 0p) — €577 0)

e > (WMTTOR P g @)

P ep=<T-(p.d)()_)
|P/|=x+1
The sum above is finite by Theorem 3.6.
Theorem 3.7
O (JD)s = @(Jo)s = T({JDs—108Chts J4)x = 30—y J-)sr1 © T({r)s

The proof is deferred to Sect. 1 in the Appendix.

4 Computing contact homology

Our goal here is to compute contact homology in the complement of the Hopf
link for special classes of contact forms. The main results in this section are
Propositions 4.2 and 4.8. We freely use the notation established in Sect. 3.

4.1 A class of model contact forms

Let 6y, 601 € R\ Q, and let y(r) = (x(¢), y(¢)) for t € [0, 1] be a smooth
embedded curve in the first quadrant of R? satisfying the following properties:
e x(0) >0, y(0) =0, and y'(0) > 0;
e x(1) =0, y(1) > 0,and x'(1) < O;
e xy' —x'y > Oforallz € [0, 1], equivalently, y and y’ are never co-linear;
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o x'y" —x"y #O0forallz € [0, 1];
e (y/(0), —x'(0)) e R*(1, 61);
o (y/(1), =x'(1)) € R*(6p, 1).

It is always possible to find such a curve y if (6p, 1) € RT(1, 0;). We can
define a star-shaped hypersurface S, in C? ~ R* associated to y by

S, = {(x0, yo, x1, Y1) € R* | (75, r}) € ¥ ([0, 11)}

where (xg, yx) =~ xx+iyr = rie% are polar coordinates (k = 0, 1). To see that
S, is a smooth hypersurface, consider a smooth function F' : R? — R such
that 0 € R is a regular value of F and y ([0, 1]) = F~H0)n{x >0, y > 0].
Then §, = H~1(0), where H : R* — R is defined by H(xo, Y0, X1, Y1) =
F (rg, r12). The third condition above guarantees that S, is star-shaped and A
restricts to a contact form on S, inducing the contact structure &) = ker A S, -

We parametrize leaves of the characteristic foliation of S, as trajectories of
the Reeb vector field X determined by Ao on S,,. Assuming that F* < 0 on
the bounded component of {x > 0, y > 0} \ y ([0, 1]) we obtain

Xo = ao(ry, r1)dg, + a1 (g, r1)dg, € RY (¥ (1)dpy — X' (1), )

where 7 is uniquely determined by (rg, rlz) = y (1), since (y’, —x’) points
to the unbounded component of {x > 0,y > 0} \ y ([0, 1]). The sets Ly =
Sy N (0 x O), L = S, N (C x 0) are closed orbits and their iterates have
Conley—Zehnder indices

pez(LE) =21k(14+600)] + 1 pez(Lh) =21k +61)] + 1.

To see this note that the period of Ly as a prime periodic Xg-orbit is
21 /a1 (0, r12). The transverse linearized flow of X restricted to o[ , Totates

2
2
a](O, rl)

y'(1)

ao(0, ri) =2 v

= 2m 0y

after the first period, measured with respect to the frame {9y, dy,} of &o| o
Thus it rotates exactly 27 (1 4 6p) after the first period with respect to a global
frame of &j. This last claim follows from the fact that Lo has self-linking
number —1, and can also be alternatively verified by explicitly writing down
a global frame and comparing it with {dy,, dy,}. A similar reasoning applies
to L.

To obtain the remaining orbits notice that each point (rg, rlz) € y((0, 1))
determines an invariant torus foliated by Reeb trajectories. These trajectories
are all closed or all non-periodic when ag and a; are dependent or independent
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over Q, respectively. The former happens precisely when the line determined
by the corresponding normal (y’, —x’) goes through points in the integer lat-
tice.

Consider

fao.or 2 8> = (0, 00)

determined by \/ fg,.0,(z)z € S, Vz € $3. The diffeomorphism ¥ : §3 — Sy,

W (z) = / foy,6,(2)z satisfies W*Lo = fp,,6, 0. Moreover, the components
Lo = S°N(0xC)and L; = $3N(C x0) of the standard Hopf link are mapped
onto Lo, L; respectively, which implies that fy, g, € F; see Remark 1.1 for
more details. Summarizing we have

e If (p, g) is a relatively prime pair of integers satisfying (8) then there
is a unique torus foliated by prime closed orbits of the Reeb dynamics
associated to fy, ¢, Aol g3, €ach closed orbit representing the homotopy class
(p,q) € Zx Z=m (S’ \ (Lo U Ly),pY).

Uniqueness comes from strict concavity/convexity of y, which is ensured by
the fourth condition on y.

4.2 Perturbation of fy, ¢, A0 and computation of contact homology

The forms fy, ¢, Ao defined above satisfy a weak non-degeneracy hypothesis.

Definition 4.1 (Hofer, Wysocki and Zehnder [20], Bourgeois [6]) Suppose
that A is a contact form on a manifold M. We say A is Morse-Bott non-
degenerate if

(1) the action spectrum is discrete,

(2) for any given action value T, the set of points lying on closed orbits of
action 7 is a smooth embedded submanifold N7 of M,

(3) the rank of dA|ry, is locally constant along N7, and

(4) if ¢;(p) denotes the Reeb flow then ker(d¢r(x) —I) = Ty N7,Vx € Nr.

Proposition 4.2 The forms fg, 0, A0 are Morse—Bott non-degenerate contact
forms on S when 0y, 01 & Q. Suppose (p, q) is a relatively prime pair of
integers satisfying (8), and denote by N(p 4) the unique 2-torus invariant under
the Reeb flow of fy,.0, 0 foliated by prime closed Reeb orbits in the homotopy
class (p, q). Let T, 4y > 0 be their common prime period and let S, 4y be the
circle obtained by the quotient of N, ) by the Reeb flow. For any § > T(, ¢)
and 8§ > 0 we may find a contact form fsko arbitrarily C*-close to fg,.0, 0
with the following properties:

e there are no closed ( fsho)-Reeb orbits of action at most S in S*\ Ko which
are contractible in S\ K,
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o the set P=5:(P-4)( fsho) is in 1-1 correspondence with the critical points
of a chosen perfect Morse function on Sy 4) and their Conley—Zehnder
indices differ by 1,

e fsAg is non-degenerate up to action S,

e the actions of the closed Reeb orbits in P=S.(ra)( fsAo) lie in the interval
T(p.g) =8, T(p,g) +9),

o fsagrees with fy, ¢, near Ky.

Moreover, there exists a suitable Js € Jy(&y) such that .75 is regular with
respect to homotopy class (p, q) and action bound S, as explained in Sect. 3.1,
and

HCfS’(p’q)(fS)\O’ Jg) = H*_S(Sl; F,),

for some s € 7.

The remaining paragraphs in this section are devoted to proving Proposi-
tion 4.2. The idea of perturbing a Morse—Bott non-degenerate contact form is
originally due to Bourgeois [6]. In the proof below we provide all the details
for this perturbation in our particular case. As the reader will notice, we resolve
the analytical difficulties that arise in the computation of contact homology
by a new and independent argument that relies on the intersection theory for
punctured pseudo-holomorphic curves developed by Siefring [39].

4.2.1 Verifying the Morse—Bott property and perturbing fg, 0, o

We work directly on the star-shaped hypersurface §, = {F (ro, = 0},
where F : R? — R is the smooth function associated to the spe01al curve y
described in Sect. 4.1. The Hopf link is represented by Lo = Sy N (0 x C)
and L| = Sy N (C x 0), and we write Ko = Lo U L. First we need to show
that Ag| s, is Morse-Bott non-degenerate on S, .

Let us assume y is strictly convex, the case when y is strictly concave is
analogous. It is convenient to introduce the function

¥ (rg, r1) := argument of the vector (D F(rg, rlz), D2F(r§, rlz)).

This is a well-defined smooth function on §, \ Ko assuming all values in an
interval (a, b) C (—m /2, ) in view of the defining properties of the curve y.
Strict convexity of y shows that @ is a global unambiguously defined smooth
parameter on the embedded arc y \ {end points}, and that we can choose ¥ to
be strictly increasing when y is prescribed counter-clockwise. One finds that
dv, d¢o and d¢; are pointwise linearly independent. Thus we get coordinates
(9, ¢o, ¢1) which define a diffeomorphism S, \ Ko =~ (a,b) x R/2n7Z x
R /277 and we can write
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hols, = ho()de¢o + h1(D)de:

for suitable functions uniquely determined by Ao (¢) = %rg, h (%) = %rlz
The argument of the vector (g, /1) also varies monotonically with ¢, and the
denominator in the following expression for Reeb vector field associated to

rols,

_ 110g0 — 10
Xo=——F7——7

is strictly positive. In the following we write A¢ instead of A¢ls, for simplicity
and denote by ¢, the flow of Xj.

Note that the action spectrum is discrete. Indeed, the closed orbits are either
iterates of the components of Kg or lie in invariant tori determined by values
of ¥ € (a, b) such that 4} (1) and —h (%) are dependent over Q. The periods
of orbits in such a torus are {kT () | k = 1,2, ...} where

t(h} (@), —hy(9))
ho(@)h'y (9) — h1 (9)ho(D)

T () = min {t > 0 such that €27 X ZJTZ] .

Given any M > 0 there are only finitely many values 91, ..., ¥y such that
T (9;) is defined and satisfies 7' (¢;) < M. Moreover, for each i there are only
finitely many positive integers kl.l, cees kij " satisfying kl.] T (W) < M. Hence
the intersection of the action spectrum with [0, M] is finite, for all M > 0. We
proved that Aq satisfies condition (1) in Definition 4.1.

For each value T in the action spectrum, the set N7 of fixed points of ¢r
is a submanifold of S, consisting of a finite collection of tori together with at
most two circles (corresponding to Lo or L;). The Reeb flow induces a smooth
action of the circle R/7T7Z on Nt. In our simple situation the quotient Sy of
Nt by this action is a finite collection of circles together with at most two
additional isolated points. Another particular feature of our model forms is
thatif £ > 1 then N7 is a collection of components of N7 and, consequently,
St is a collection of components of Si7.

In view of strict convexity/concavity of y there is one, and only one, invariant
torus foliated by periodic orbits representing the homotopy class (i, j) € Z x
Z >~ m1(Sy \ Ko, pt) for each relatively prime pair of integers (i, j) satisfying
6o, 1) < (i,j) < (1,6y) or (1,01) < (i,j) < (Bg,1). All such tori are
singled out by fixing a certain value of ¥. The torus corresponding to (p, q)
will be denoted T, 4) and the period of the prime closed Reeb orbits there by
T(p,q) so that T(j, 4y is a component of N7, ..

We fix § > T(, 4) + 1 not in the action spectrum, and choose inductively
for T < § in the action spectrum a smooth function gr : N7 — R invariant
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by the Reeb flow such that gxr|ny, = gr whenever kT < S and k > 1,
inducing perfect Morse functions g7 on the orbit spaces S7. These induce
a smooth function on gs : Ur_sNr — R which is constant along Reeb
trajectories. If S is larger than the actions of Lo and L then Ko = Lo U L;
is a pair of components of Ur_sN7 and we may assume without loss of
generality that gs vanishes on K. To be more concrete, consider an invariant
torus T = {¢# = ©*} foliated by closed orbits of period T < §, for some value
¥ = ¥4 € (a, b). Assume that g7- has been chosen forall valuesO0 < T’ < T in
the action spectrum, satisfying the above compatibility conditions. If T C Ny
for some action value 7 < T then the function g7 is already there, so we
assume T C Ny \ (U7 Nyps). Consider (x, y) defined on the universal

covering by
X ho (@) Y)Y (¢o
= . 49
(y) (ho(l?*) @) g “49)
Denoting d = hyhg — hoh' and

hy(@)hy(9*)—ho(D)h} (%)
a0

AL MA@ (1 0
(Aé(ﬁ*) Az(ﬁ*))_(o 1)' 50

A brief calculation gives

A(®) = ho(ﬂ)hl(ﬂ:‘i)(;il)l W@ Ay () =

we obtain

Ao = Ardx + Axdy and  Xg = 1 (—ALd, + A}dy),

where A := A} A>— A Al Inparticular Xo|T = 9y, so thatinvariant functions
on T depend only on x. The variable x is periodic and, denoting the period of x
by L, we set g7 |t = cos(2wx/L). Repeating this construction for the (finitely
many) tori foliated by Reeb orbits of period T not contained in U/ 7 Ny,
and setting g7 = 0 on Ko N N7, we obtain the desired function on Ur <7 N77.
Doing this for all action values 7 < § we get the desired function on Ur s NT.

We will use the special coordinates x, y defined in (49) adapted to some
invariant torus T = {¢% = 9¥*} C Np, for some T < §, to study the linearized
Reeb flow dg, on T. If V = Ady + B, + Cdy, € T (S, \ Ko)|r then V(1) =
do; -V = A(t)dy + B(t)d, + C(1)0y satisfies

A(t)=0, B(t)=-AJA, C()=0.
We have A5(9%) = (h](0*)hy(9*) — h{j(9 )R} (9%))/d(9*) # O by strict

convexity/concavity of y, and this implies that ker(dgr|r — I) = TT, that
is, condition (4) in Definition 4.1 holds at T. Conditions (2) and (3) are easy
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to check using the above constructions. This concludes the proof that A¢|s,, is
Morse—Bott non-degenerate.

We will extend the function g7 to a small neighborhood of T. More precisely,
if I is a small neighborhood of #* and 8 : I — [0, 1] is a smooth compactly
supported function such that 8 = 1 near ©* then we define

gr(®,x) = B(®) cos(2mx/L). (51)

Let 9; < --- < ¥, be so that

(Ur<sN7)\ Ko = JTi. with T; := (9 = ;). (52)

i=I

We can repeat the above constructions near each T; to get an extension of gg
to a small neighborhood of U;T;. Then gg can be further extended to S, by
zero outside of this neighborhood of U; T;.

We consider, as in [8], the 1-form

Ae := fero, where fo =1+ €gs, (53)

for small values € > 0. Note that f — 1 is C*°-small and supported near U; T},
where the T; are defined in (52). The Reeb vector field of A, will be denoted
Xe.

Fixing a torus T = {¢ = ¢*} among the T;, we will analyze the flow of X,
near T. Any prime closed Reeb orbit P in T has period 7" < § and satisfies
link(P, L) = r, link(P, L) = s for certain r, s € Z. Recall that according
to our constructions, after introducing coordinates x, y as in (49), gs takes the
form gs = B(¥) cos(2mx /L) near T, where g : R — [0, 1] has support on a
small interval I centered at #* and equals to 1 near 9 *. Here L is the period of
x. The vector field X, = X g dy +X70x+X J dy is determined by the functions

X;} =0, (_i) %’ X = _Sﬁ(i;eAAz)’ Xey _ 305{}?1). (54)

We wish to understand the dynamics of X, on the neighborhood O =
{0 € I} of T. Note that the vector field X, does not depend on y, fGZAX f =
(0x fe) Az and fGZAXg = —3Jy (fe A2). Thus, periodic orbits of X on O project
to periodic orbits and rest points of the vector field Z = Z”9y + Z*¥9, =
(0x fe)Ap0yp — 09 (fe A2)0y onthe annulus A = {(¢, x) | ¥ € I, x € R/LZ}.
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More explicitly we have

9 €2 .
VAR —Tﬂ(ﬂ)Az(ﬁ) sin(2rwx/L),
7" = —ef (0)Ax(¥) cosRmx /L) — (1 4+ €B(?) cos(2mx /L)) AL (D).
(55)

In view of (50), of Ag(ﬁ*) # 0 and of the fact that [ is small, we have A, % 0
on I, A}, does not vanish on 7\ {#*} and has different signs on both components
of I\ {¥*}. We assume AJ(9*) > 0,sothat A, > Oon {9 €I |V > 9%}
and A/z <0on{® € I | V¥ < ¥}, the other case is analogous. It follows
from (55) that if € is small enough then the zeros of Z are Pp,x = (9%, 0) and
Pmin = (0%, L/2). These rest points correspond to the only periodic 1o-Reeb
orbits on T which survive as periodic A.-orbits: they are the maximum and the
minimum of g7 on St.

We claim that for € small enough the only periodic orbits of X, inside O
with Ac-action < § correspond to the rest points Ppax, Pmin- If not, we find
€, — 07 and a sequence of periodic X, -trajectories y, in O with A.-action
< § different from them. Up to a subsequence, there exists a periodic Ag-Reeb
orbit y in O with action < S such that ¥, — . But the only such orbits
correspond to the points in the circle A = {(¢*, x) | x € R/LZ}. Thus the
projections I';, of y;, to the annulus A are periodic orbits of Z converging to a
point P, € A. It must be the case that P, = Ppyj,. In fact, Z ¥ has a definite
sign near any point in A \ { Pmax, Pmin}, Which implies P, € { Pmax, Pmin}- Itis
easy to check, using the above formulas and the assumption A% (9*) > 0, that
the characteristic equation of DZ (Ppyax) looks like 2 — €,k* = 0, while that
of DZ (Pyin) 1s of the form 2+ e,,kz = 0, for certain values k % 0. Thus Ppjiy
is elliptic while Ppax is hyperbolic, and we cannot have I, — Py« since,
otherwise, I';, would bound a disk containing no singularities or containing
Ppax as the only singularity, contradicting x (ID) = 1. Thisimplies I';, — Pnin-
To obtain the desired contradiction, note that the eigenvalues of D Z( Pp,;y,) are
purely imaginary and proportional to /€, in absolute value. Thus the orbits
'), take very long time to close up when n is large, contradicting the fact that
they have uniformly bounded period (which can be estimated in terms of ).

Remark 4.3 The characteristic equations of D Z (Ppyax), D Z(Pnin) calculated
above show that the corresponding periodic A.-Reeb orbit are non-degenerate.
The orbits corresponding to Prin, Pmax clearly link r times with Lo and s
times with L.

Remark 4.4 The above calculations assumed A/z/ (¥*) > 0, and the case
A7 (") < 0 is treated analogously. In the latter case Pp;y is hyperbolic and

Pax is elliptic.
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Our arguments so far have proved that for each Xg-invariant torus T; C
Ur/.sNp there exists €; > 0 and a small neighborhood O; of T; such that
ke = Ao on S, \ (U;O;) and, moreover, such that if € < ¢; then there are
precisely two prime closed A.-Reeb orbits in O; with action < S. These are
reparametrizations of two closed Ag-Reeb orbits in T;, are non-degenerate and
have action close to 7;, where T; is the period of the prime closed Ag-Reeb
orbits foliating T;. One of them is hyperbolic and the other is elliptic, both
have transverse Floquet multipliers close to 1. Let k; be such that k; 7; is the
maximum value in the action spectrum of Ag of the form k7; which is smaller
than S, with k£ > 1. Since the Floquet multipliers of the two surviving orbits
are close to 1, all their interates up to the k;-th iterate are also non-degenerate,
and are precisely the closed A.-Reeb orbits in O; with period < § since their
prime periods are close to T;. Since X = Xg on S, \ (U;O;), any closed
X.-orbit not contained in U; ®; U Lo U L has period larger than S.

Therefore, taking € > 0 small enough there exists a diffeomorphism & :
$3 — S, such that ®*A, = fshiolgs with fs : $3 — (0, +00) close to 160,61
in C, satisfying the requirements of Proposition 4.2.

4.2.2 Existence, uniqueness and regularity of finite-energy cylinders

We keep using the constructions made above. Let ¥ * be determined by T, ,) =
{9 = 0%}, where T, ) is the unique Xo-invariant torus foliated by prime
closed Ap-Reeb orbits in homotopy class (p, ¢). In the following we denote
T = Tp,4) the prime period of the closed Ao-Reeb orbits foliating T, 4), for
simplicity. According to our constructions, there exists a small open interval
I centered at ¥* such that on the neighborhood O = {¢ € I} we have

Ae = fero, with fe =1+ ecosQmx/L). (56)

Here I is small enough such that 8|; = 1. We make use of the parameters x, y
adapted to T, 4) defined in (49). It follows from (54) that the Reeb vector
field X = X7 0y + X0y + XZay is given by

/ / /
¥ 1) A 1) A y 1) A
X¢ = (—z) a Xi= (—z) w Xe= (7) A

where ’ denotes differentiation with respect to x when applied to functions of
x, or differentiation with respect to ¢ when applied to functions of ¢*. The
critical points of —Larex =0 (maximum) and x = L/2 (minimum). It
was proved in Sect. 472.1 above that the only closed A.-Reeb orbits contained
in S, \ K representing the homotopy class (p, g) with A.-action < S are
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Prax := (Xmax,> Tmax = T (1 4+ €)), Pmin := (Xmin, Imin = T (1 — €)) where
Xmax () = (0%,0,t(1+ €)™ and  xmin(t) = (9%, L/2,t(1 — )71,

The vectors e! = 3y, €2 = (A3, — A1dy)/f. define a frame of & = ker Ao
near T, 4) which is dAc-symplectic on T, ;). We represent the linearized
flows along Ppax and Py in the frame {el, e} as symplectic paths of matrices

€7 7€
@4 (1), p—(t), respectively. They satisfy

. 0 e

where c. — 07 as e — 0. If AJ(®*) > 0 then pu(p4) = 0, u(p-) = —1,
and if Ag(ﬁ*) < O then u(py) = 1, u(ep—) = 0. In any case pucz(Pmax) —
mcz(Pmin) = 1.

We consider Je € J4(8o) satisfying Je - ei = eg near T, 4), and define an
R-invariant almost complex structure J. on R x S, by

-7; <0q = X, «Zléo = Je,

where above we see & as a R-invariant subbundle of T (R x §,).
For each € > 0 small we consider the following elliptic problem.

u=(a,u):RxR/Z — R xS, is smooth and satisfies
7.() =0, 0 < E(u) < oo,

(PDE¢) -
u is asymptotic to Ppyax at {+o00} x R/Z,

u is asymptotic to Ppin at {—oo} x R/Z.

We call two solutions u = (a, u),v = (b, v) of (PDE¢) equivalent if there
are constants ¢, As, At such that v(s, 1) = u(s + As,t + At) and b(s, t) =
a(s+As, t+At)+c. The set of equivalence classes of solutions will be denoted
by M. The conclusion of the proof of Proposition 4.2 is a consequence of
the statement below.

Lemma 4.5 [fe is small enough then M has exactly two elements, and every
solution u = (a, u) of (PDE,) satisfies
o u(R x R/Z) C Tp,q),

e the linearized Cauchy—Riemann equation at u is a surjective Fredholm
operator.

Proof The existence of two elements in M is proved by explicitly exhibiting
solutions of (PDE,) using the two Morse trajectories of the function —L on

Je
the circle R/LZ.
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Up to a harmless abuse of notation, the symplectization of O = {9 € [} is
equipped with coordinates (a, ¥, x, y). Let x.(s) solve

_ T\ L
Xe = _z oxe, Xe(0) = Z (57)
and consider the parametrized cylinder u.(s, 1) = (ac(s), 0%, xc(s), Tt),
where
N
ac(s) = T/f6 o xe(r) dr.
0
Plugging formulas
O = feA1Xe — feAIXgeel + fezxzeg
8y = feArXe — ngng ; - fezxzeg
we get
0 0 —feAi —feAr
7 x? 0 —f2Xe f2X;
Je=| yx v YO A2 (58)
X Ao/fe XA 1A X{ A5
X —Ai/fe XPAT O XPAA,
Note that all coefficients are functions of x and ¥ only. Thus
0 0 0 —fe
/
N (= A
Je(ue(s, 1)) = N E (59
o 1 0 —(-4)

1/fe 0 0 0

where all coefficients are evaluated at x.(s).
We claim that the map i, solves (PDE). Indeed, note that

Tfe O Xe TfE O Xe¢
~ 0 0
M=k | T T o
0 0

and, using (59), we get
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—fe 0 xe

Je(@e) - dyite =TI (@) -0y, =T | 1

(E)/ O Xe

Adding these two equations we get 575 () = 0. One checks E(u;) < oo
easily.

Thus . is one of the cylinders in the statement of Lemma 4.5. The other
cylinder can be obtained by considering a solution of X, = (=T /f¢) o x.
satisfying x.(0) = 3L /4.

To prove the uniqueness of cylinders we use Siefring’s intersection theory
from [39]. Let us denote by u; := uc 1 = (ay, u1) and up := e 2 = (a2, uz)
the finite energy cylinders found above. We fix € > 0 small and omit the
dependence on € in the notation for simplicity. Recall that both i and u» solve
PDE, and are asymptotic t0 Pmax = (Xmax> Tmax) and Pmin = (Xmin, Imin) aS
s — 400 and s — —o0, respectively, where Ti,x and Ty, are their prime
periods. Let x7,. (#) := Xmax (t Tmax) and x7,. (t) := Xmin (¢ Trnin)-

One can easily check that

u; and u; are embeddings fori =1, 2,
Image(u;) N Ppax = Image(u;) N Ppin =@ fori = 1,2,
Image(u1) N Image(uy) = .

Recall that according to our conventions established in the beginning of
Sect. 3, whenever P = (x, T) is a closed Ac-Reeb orbit we denote by Bp
the homotopy class of dA.-symplectic trivializations of (x7)*&p induced by a
global dA.-symplectic trivialization of &y. In the following we will denote this
homotopy class by 8, for simplicity, without a direct reference to the orbit P.

Let Ap,,, and Ap . be the respective asymptotic operators defined in
Sect. 2.2.8 associated to Py and Ppin. As we saw, we have well-defined
winding numbers wind=%(Ppax, B), wind<®(Ppax, B), wind=%(Pyin, B) and
wind<?(Pyin, B) associated to Ap,_and Ap,_. .

For each u = (a, u) representing an element in M, one can find eigen-
sections 1+ : R/Z — (x71,,.)*60 and n— : R/Z — (x1,,;,)*&0 of Ap,,, and
A pyin» Tespectively, with Ap ny = pnyny and Apyn— = p-n—, uy <0,
u— > 0, and a diffeomorphism ¢ : R x R/Z — R x R/Z such that

uo (s, 1) =expy, {e" () +ri(s, 1)} fors > 0,

s (60)
uoy(s, )= eprTmm(,){e“* (m—(t) +r_(s, 1))} fors <« 0,

where |r1(s,t)| — 0 as s — Zoo uniformly in 7. Here, exp denotes the
exponential map of the Riemannian metric g. on §;, given by g¢ = Ae ® A +
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dle(-, Je-). Let

Uy(s,t) :=e'**(ny(t) +ri(s, 1)) defined for s > 0,
U_(s,1t) :==e**(m_(t) + r_(s, 1)) defined for s <« 0.

The triple (U4, U_, ¥) is called an asymptotic representative of u. For a proof
of the existence of an asymptotic representative, see [38]. Here, differently
from [38,39], we represent both ends simultaneously. We may use the notation
n+ (1), ;4 (1) etc to emphasize their dependence on u.

In view of the asymptotic behavior at the ends, we observe that

wind(n, ) <wind=%(Pmax, B)

61
wind(n—, B) >wind=’(Puin, B). ©b

We claim that
wind(n+, ) =wind=*(Pax, B)

wind(n—, ) =wind=%(Puin, B).

To see this recall that ;tcz (Pmax) = ¢z (Pmin) + 1. From the definition of
the Conley—Zehnder index, this implies that

(62)

2Wind<0(Pmax, B) + p+ = ncz(Pmax)
= wcz(Pmin) + 1
= 2wind=(Pin, B) + p— + 1, (63)

where p; = wind=%(Ppax, B)—wind<%(Pmax, ) and p_ = wind=°(Ppin, B)
—wind<0(Pmin, B).Since p4 € {0, 1} and p_ € {0, 1}, we conclude by parity
reasons in (63) that

pe+po=1. (64)

From [19, Proposition 5.6], we have
0 < wind, (%) = wind(n, B) — wind(n—, B) (65)

where the (non-negative integer-valued) invariant wind, (z) was introduced
in [19]. It follows from (61), (63)—(65) that

0 < wind(y, ) — wind(—, B)
< wind=%(Pax, B) — wind="(Poin, B)

_l=p-—ps
2

=0.
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We conclude that

Wind(77+» ﬁ) = Wind(n—a ﬁ)a
wind<%(Ppay, B) = wind="(Puin, B).

Now observe again from (61) that
wind(n4, ) < wind=*(Ppax, B) = wind="(Ppin, B) < wind(n_, B),

which proves (62).
Now we claim that

Image(u) N Pmax = Image(u) N Ppin = @. (66)

To prove this first note that, since . (¢) never vanishes the map u o ¥ (s, t)
does not intersect Ppax, Pmin When |s| is large enough. We will construct a
homotopy between u and u so that no intersections with Pp,x and Py, are
created or destroyed near the ends of the domain. This implies that the algebraic
intersection numbers of u and u; with both Pp.x and P, coincide. Since all
intersections count positively and #; does not intersect Ppax and Ppin, the
claim follows.

The homotopy will be constructed in two steps. Let (Ui, U—, ¥),
(Ui4, Ui—, Y1) be asymptotic representatives of # = (a,u) and u; =
(a1, uy), respectively, with eigensections 14, n—, n14 and n;—. We will denote
u o and u; o iy simply by u and uy, respectively. By (62), we know that
wind(n4, ) = wind(n1+, ) and wind(n—, B) = wind(n;—, ). From the
properties of the asymptotic operator A p, .. explained in [19], we have three
possibilities (see Lemma 3.5 in [19]):

(1) n4(t) = cn14+(¢) for a positive constant ¢ for all 7.
(i1) n4(¢) and 114 (¢) are linearly independent for all 7.
(iii) n4(t) = cn14+(¢) for a negative constant ¢ for all 7.

Cases (1) and (ii) are treated similarly. Given M > 0 large, choose a smooth
function yp; : R x [0, 1] — [0, 1] satisfying ya(s, ) = p if s > M and
ym(s, ) = 0ifs < M — 1. Define the homotopy H : [0, I] x RxR/Z — §,,
by

H(I’L7 s, t) = exprmax(t){(l - VM(S’ M))U+(S, t) + yM(Ss I’L)Ul-‘r(s’ t)}

fors > M — 1 and H(u,s,t) = u(s,t) fors < M — 1. To see that no
intersection with Pp,y is created or destroyed for s > M, if M is sufficiently
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large, note that for s > M we have

(I = ym(s, u)HUs(s, 1) + ym(s, WU (s, 1)
= (1 — e (ny(t) + re(s, 1)) + pet+ (14 (1) + ri4(s, 1)),

which never vanishes since, for each large s, n4(¢) + r+(s, t) and n14+(¢) +
r1+(s, t) are never a negative multiple of each other for all 7. New intersections
with Ppj, do not appear since this homotopy is supported near Ppax.

In case (iii), given & > Osmalland M > Olarge,let H : [0, ] xRxR/Z —
S, be the homotopy defined by

H(lu/a S? t) - exp'meaX(Z) R(EJ/M(S, /"L))U—‘r(s’ t)’

fors > M —1and H(u, s, t) = u(s,t) fors < M — 1. Here, ¢ > 0 is small
and R(6) denotes the rotation by an angle 6 in the fiber coordinates given by
an a priori choice of trivialization in class §. Clearly no intersection with Ppax
is created or destroyed if s > M and the same holds for intersections with
Pmin. After performing this first homotopy, we proceed as in case (ii) in order
to construct a second homotopy to u1 near Ppx.

Now we proceed in the same way to construct a homotopy supported near
Ppin so that we end up with amap u : R x R/Z — S, which coincides with
uy for |s| > M > 1 and the algebraic intersection numbers of u with both
Prax and Puin coincide with those of u.

Now, choose a point p € S, not contained in the images of u and u
and consider a diffeomorphism W : S, \ {p} — R3. Define the homotopy
Hy:[0,1] x R x R/Z — S, between i and u; by

Hi(,s,t) =¥ (1= w)Woils, 1)+ wWoui(s,1)).

Note that this homotopy is supported in {|s| < M} and, therefore the algebraic
intersection numbers of # and u; with both Pp,x and Ppin coincide. We con-
clude that u does not intersect either Pyyx or Py by positivity of intersections,
and (66) is proved.

In [39], a generalized intersection number [u] * [v] € Z is defined for two
pseudo-holomorphic curves u = (a, u) and v = (b, v). It counts the actual
algebraic intersection number between # and v plus the asymptotic intersection
number, which is computed by carefully analyzing their asymptotic behavior
at the punctures. An application of (62), (66) and Corollary 5.9 from [39] (see
conditions (1) and (3)) gives
Claim A.Letu = (a, u), v = (b, v) represent classes in M. Then [i]*[0] =
0. O

@ Springer



A Poincaré-Birkhoff theorem 381

Definition 4.6 (Siefring [39]) Let , v represent distinct elements in M, and
Usm), U_(n), ¥ (), (Ux(0), U_(V), ¥(v)) be their asymptotic represen-
tatives with eigensections 14 (), n— (1), n4(v) and n_(v). We say that & and
v approach Py in the same direction if n4 () = cn4(v) for a positive con-
stant ¢. Similarly, we say that u and v approach Pp;, in the same direction if
n—(u) = cn—(v) for a positive constant c.

Now we finally prove that M, has exactly two elements, namely the
equivalence classes of #; and u;. Assume indirectly the existence of a third
element in M, represented by u3. Since wcz(Pmax) = #cz(Pmin) + 1,
either ez (Pmax) Of ez (Pmin) 18 even. Assume without loss of general-
ity that pcz(Pmax) 1s even. Let (U4, U;_, ;) be asymptotic representatives
of u;, i = 1,2, 3, with respective eigensections 7;+. From (62) we see that
wind(n;+, ) = wind(n;+, B), Vi, j € {1, 2, 3}. Since pcz(Pmax) is even,
we must have ;4 () = ¢;jn;4 (1), Vt for non-vanishing constants c;;. Here it
was used that the negative extremal eigenvalue of the asymptotic operator at
an even hyperbolic orbit has 1-dimensional eigenspace, and is the only neg-
ative eigenvalue with that given winding number. It follows that there exist
io # jo € {l,2,3} so that ¢;,j, > 0. Theorem 2.5 from [39] implies that
[wio] = [u jol > 0. However, this contradicts Claim A and proves uniqueness
of cylinders.

To handle regularity we use Theorem 1 from [41]. The (unparametrized)
Fredholm index with no asymptotic constraints of the solutions u, constructed
above is Ind(¢) = ez (Pmax) — ez (Pmin) = 1. We identify R x R/Z ~
CP'\T via (s, ) >~ [276+D : 1] where I = {[0 : 1], [1 : 0]}, and see &, as
a pseudo-holomorphic map defined in CP!'\T". Since § = dCP', Remark 1.2
from [41] tells us that u, is regular if

1 = Ind(ii) > —x (CP") + #To + 2Z(dii). (67)

Here I'g C I is the set of punctures where the Conley—Zehnder index of the
corresponding asymptotic orbit is even and Z (du.) is the sum of the order of
the critical points of .. Note from the definition of u, that du.(z) # 0, Vz.
Now, since ez (Pmax) —cz(Pmin) = 1 wehave #I'g = 1 and, consequently,
the right hand side of (67) is equal to —1. The proof of Lemma 4.5 is now
finished.

Proposition 4.2 follows immediately from Lemma 4.5.

4.3 A non-trivial chain map

We choose 0 < ¢ < 1, T > 0 and consider a contact form A = hXig with
h € F, satisfying the conditions:

@ Springer



382 U. Hryniewicz et al.

e All closed A-Reeb orbits with action < T'/c are non-degenerate;

e There is no closed A-Reeb orbit in $3 \ K¢ with action < T/c which is
contractible in $3 \ Ko;

e The transverse Floquet multipliers of Lo, L seen as prime closed A-Reeb
orbits are of the form ¢/ with « & Q.

Let (p, g) be arelatively prime pair of integers, which represent an element
in 771 (S3 \ Ko, pt) == Z x Z via the isomorphism (42). Consider j:r e JR)
induced by some dAg-compatible complex structure J : §y — &p as explained
in Sect. 2.2.1. We assume that f+ is regular with respect to the homotopy
class (p, ¢) and action bound < 7'/c, see Sect. 3.1 for more details. It follows
that the almost complex structure J_ € J(cA) induced by J and cA is also
regular with respect to the homotopy class (p, ¢) and action bound < 7. In
fact, consider the diffeomorphisms

¢:Rx $3 > R x S3, pa,x) = (%a,x)
and
K=W) " opoW, : W — W

where W, is the diffeomorphism (28). Then K *j:r = J_, so that finite-energy
f_—holomorphic cylinders are precisely of the form K ! o iz, where i is some
finite-energy ﬁ_—cylinder. This observation also shows that the obvious iden-
tification defined by

j* . C*ET/C’(PJI)()\') ~ C*ETa(P»(I)(C)\)
qx(),T") = 4(x(t/c),cT")

(68)

where (x(7), T") € P=T/¢P-D () and (x(t/c), cT") € P=PD(ch), is a
chain map that induces an isomorphism at the homology level. In fact, there
is a 1-1 correspondence between the relevant moduli spaces used to define the
differentials 0, sy and d(», sy, proving that d(c; sy o jx = jx © 9, ).

By Theorem 3.5 there is a well-defined chain map

®(J)s: CET PGy — TPV (e

for any given J € jreg(f,, f+ : Ko) (with respect to action bound < T'/c and
homotopy class (p, ¢)). Consider the inclusion map

i C*ST’(p’q)()\.) s C*ST/C,(P,Q)(M

qx,7) = 4(x,T")-

(69)
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Lemma 4.7 The chain maps ®(J )y and js o 1, are chain homotopic.

Proof We claim that j, o t, = ®(J')4, for some J' € Jreg(j\_, f+ . Kop)
regular with respect to action bound <7'/c and homotopy class (p, ¢). To see
this consider a function g : R — R such that g = 1/c near (—oo, Inc], g =1
near [0, +-00) and g’ < 0, and define a d(e“))-compatible almost complex
structure J on R x §3 by

T da=gX), J-Xp=-13, and Jlg=J.

Recalling the map W, from (28) we note that J = (\IIA)*]V € j(f_, f+ : Ko).
Let us consider a positive diffeomorphism G : R — R solution of the initial
value problem

G' (@ = ;5@ GO =0.

This can be used to define diffeomorphisms
F:Rx S —>RxS% F(a,x) = (G@),x)
and
H:Wg — Wg, H= (V)" o Fo . (70)
One checks that H*J' = f+ In fact, F*J = J on & and

(F*f)l(a,x) 3y =dF Gy - J~|(G(a),x) “dFl@g.x) - 0a
= G'(a) dF Gy - TGy - da

= G'(@)g(G(@) dF Gy - Xalx
= Xklx

which gives the desired conclusion since F ] is an almost complex structure.
This proves J € TJreg(J—, Jy : Ko) since Jy € Jreg(A) is regular with
respect to action bound < 7' /¢ and homotopy class (p, ¢g). Consider an orbit
P € P<T-(P- @ (}). Then

oW = D (RMEPOE P)) g )
P'eP=T-(P-9(c))

puez(P)=pcz(P")
Recall the set M?T’(p ’q)(P, P") of finite-energy JAJr—holomorphic cylinders
+

with image in T~ ($3 \ K) asymptotic to P, P € P=T-(-9) () at the posi-
tive and negative punctures, respectively, modulo holomorphic reparametriza-
tions. This set was defined in Sect. 3.1 and we do not quotient out by the
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R-action on the target. .MfAT’(p ) (P, P") is a smooth manifold of dimension
+

ncz(P) — ncz(P") since f+ € Jreg(X) and (p, q) is relatively prime. The
biholomorphism H induces a 1-1 correspondence between moduli spaces

MG POP Py and M (P, PY)
where i _ <T.(p.q) " 1
J«(gpr) = qp'. However, MJ+ (P, P") is empty when P” # P,
or consists of a single (trivial) cylinder when P” = P. We conclude that the
right side of (71) is equal to j.(gp) = Jj« o tx(gp) and, in particular, that
jx 0ty = ®(J'),. The lemma now follows from Theorem 3.7. O
We will now apply the above discussion to our model contact forms. Let
us choose 6y, 01 ¢ Q, and let fy, 9, A0 be the model contact forms discussed
in Sect. 4.1. If (p, q) is a relatively prime pair of integers satisfying (8), then
the closed ( fg,.6, A0)-Reeb orbits in § 3 \ Ky representing the homotopy class
(p, q) are necessarily prime orbits and have the same period, which we denote
by T(p.q) > 0.
Select 0 < ¢ < 1, T > T(p4) and S > T /c. By Proposition 4.2, there
is fs € F arbitrarily C*°-close to fj, ¢, and some dAo-compatible complex

structure Jg : & — &p such that the homology HCfS’(p’q)(fSAO, Js) is
well-defined and

_— <T/e.(p. <S.(p,
HCETPD (fong, Jg) = HCETCPD (fong, Jg) = HCES PP (Fsho, Ts)
= *—S(SI;FZ)

for some s € Z. It is also clear that the homology of these complexes are in
fact generated by the same closed Reeb orbits, and the differentials count the
same cylinders. In particular, we have shown that the inclusion map ¢, defined
in (69)

T,(p, Lx <T/c,(p,
(€T PV (f520), D saga5) <> (€T PP (fsh0). D s, 1)
is non-trivial at the level of homology. Since

. T/c,(p, <T.(p,
Ju s (CET/OPD (£00), I fsro,Js)) —> (TP D (e fsn), A(cfsro.Js))

is an isomorphism of chain complexes, and therefore an isomorphism at the
homology level, we obtain the following statement.

Proposition 4.8 Choosing T, c, S, fs and Js as above, the map
. T,(p, <T,(p,
Jrot s HCEV PP (foro, Js) — HCEPD (cfsho, Js)

is non-zero.
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5 Proof of main theorem in the non-degenerate case

In this section we prove Theorem 1.2 assuming that the tight contact form on
S3 as in the statement is non-degenerate. We aim to prove

Proposition 5.1 Consider a sequence f, € F such that A,, = f,Ao is non-
degenerate for each n, and assume that there are uniform bounds

0 <m <inf f,(x) <sup fr(x) < M.
x,n x.n

Suppose (p, q) is a relatively prime pair of integers, and also that there are
numbers 6y, 01 satisfying

(00, 1) < (p,q) < (1,01) or (1,01) < (p,q) < (6o, 1) (72)

and
lim 6;(f,) =6; (=0,1).
n— o0

Then there is a T > 0 independent of n such that for each n sufficiently large
there is a simple closed \,-Reeb orbit P, C S\ K¢ of period less than T
satisfying link(P,, Lo) = p and link(P,, L1) = q.

Here 6;(f,) = p(Li, Ay) — 1, where p(L;, A,,) is the transverse rotation
number of L; seen as a prime periodic orbit of the Reeb flow associated to the
contact form A, computed with respect to a global positive trivialization of &g,
see (26) in Sect. 2.1.5.

Note that for each n the link K¢ consists of a pair of closed orbits for
the Reeb flow of A, since f, € F, but we do not assume that these orbits
are elliptic or that contact homology in the complement of K discussed in
Sect. 3 is well-defined for the contact forms A,,. Our argument combines several
constructions, such as chain maps, stretching-the-neck, SFT compactness, and
asymptotic analysis to deduce existence of the desired periodic orbit for this
general type of contact form.

Theorem 1.2 in the non-degenerate case follows from Proposition 5.1 by
considering a constant sequence.

5.1 Computations with homotopy classes
Let & € F and assume that ¢ is a non-degenerate contact form. Then we

may view Lo = (xo, Tp) and L1 = (x1, T1) as prime closed orbits of the flow
associated to the Reeb vector field Xp;,,.
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Letusfixk > 1andi € {0, 1}, and suppose that v is a non-zero eigenvalue
of the asymptotic operator A, associated to the contact form hig, some J,

and the orbit Li.‘ = (x;, kT;). If t € R/Z v+ n(t) € &olx; k1) 1S @ nON-zero
section in the eigenspace of v and € > 0 is small enough then

1 € R/Z > ne(t) := expy, 1) (€n(1))

is a closed loop in S \ K¢ and its homotopy class in $3 \ K¢ does not depend
one.

Lemma 5.2 Suppose m = link(ne(t), Lo) and n = link(n(t), L1).

o I[fi =0thenn =k > 0and

v>0= T >6p(h) v<0= 2 <0(h).

n

o Ifi =1thenm =k > 0and

v>0= 25 >01(h) v<0= - <06i(h).
Proof We only prove the lemma for i = 0, the case i = 1 is analogous. Note
that 771 (S>3 \ Ko, pt) ~ Z x Z, where an explicit isomorphism is given by

[y] = (link(y, Lo), link(y, L1)).

Thus, since 7, is C*°-close to LS we get n = link(ne, L) = link(Lk, L) =
k > 1. The orbit L is unknotted and spans an embedded disk Dy C S 3 and we
let the orientation of Lo by the Reeb vector field induce an orientation on Dy.
Choosing non-vanishing sections W of (§o N T'Dy) |1, and Z of &y| p, we have
wind(Z|r,, W) = sl(Lg) = —1, where the winding is computed seeing Z|
and W as sections of the (oriented by d (hA()) vector bundle (xo7,)*&0 — R/Z,
see Remark 2.6. Here sl(Lg) denotes the self-linking number of Lg. Thus, if we
denote by Bisk the homotopy class of d(hXg)-symplectic frames of (xo7,)*&o
induced by a frame containing W we have

p (Lo, Bdisk) = p(Lo, Bry) — 1 = 6o(h). (73)
Now we compute

v > 0= m = link(ne, Lo) = wind(v, LY, (Baisk)") = wind="(Lg, (Baisk)™),
v < 0= m = link(ne, Lo) = wind(v, L}, (Baisk)") < wind=(L, (Baisk)").

Using Lemma 2.11, there are three possibilities:
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e Ly is elliptic, 8g(h) € Q and

wind=* (L, (Baisk)™) = Lnbo(h)] + 1 > néy(h),
wind<C(L{, (Baisk)") = Lnbo(h)] < nby(h).

e L is hyperbolic with positive Floquet multipliers, 6y(h) € Z and
wind="(Lg, (Baisk)") = wind=*(L{, (Baisk)") = n6o(h)
e L is hyperbolic with negative Floquet multipliers, 6y (h) € %Z and

n is even = wind="(Lg, g% ) = wind=O(LZ, g% ) = nfo(h)

. wind=(L§, Biig) = [n6o(h)] + 1 > nfo(h),
nis odd = . <Oorn o
wind~"(Lg, Bliw) = Lnbo(h)] < nby(h).
Inany case v > 0 = m > nby(h) and v < 0 = m < nfy(h). O

5.2 An existence lemma

Let us fix fT, f € Fand 0 < ¢ < 1 such that for every x € S we have
cft(x) < f(x) < fT(x). We denote AT = fTAhg, A = frpand A~ =
cAt = Cf+)»0. Let 09, 01, V9, ¥ be defined by

p(Lo, Bry> ) = p(Lo, Ly +7) = 1+ Do, p(Lo, By, ) = 1+ 6o,
(L1, Brys A7) = p(L1, BL,, A7) = 1+ 94, p(Ly1, B, ») =1 +91,( "
7
where we follow the notation established in the beginning of Sect. 3. Here we
are considering Lo, L as prime closed orbits of the Reeb flows of A%, A.

Let .7; e J(Ay), J e J (1) be cylindrical almost-complex structures on
the symplectization We, of (S3, &), and J; € J(f_, J: Ko), ) € j(./l\, f+ :
Ko) be special almost-complex structures described in Sect. 2.2.7. Then, for
each R > 0, we consider the splitting almost-complex structure Jr = JiorJa
as explained in Sect. 2.2.3. We denote by 7 : Wg, — S3 the projection onto
the base point.

Lemma 5.3 Suppose A", A, A~ as defined above are non-degenerate contact

forms, and let 6y, ¥y, 01, 91 be dej_‘ined by (74). Let R, — 400 and u, :

R x R/Z — Wg, be finite-energy Jg,-holomorphic cylinders satisfying
Tou,(RxR/Z)YNKy=0, Vn,
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with uniformly bounded energies as defined in Sect. 2.2.6. Identifying R x
R/Z ~ CP'\ {[0: 11, [1 : O]} via (s, 1) ~ [eZ*CHD : 1] assume that [0 : 1]
is a negative puncture and [1 : 0] is a positive puncture of u,, Yn. We assume
also that all i, are asymptotic to fixed orbits P, € P(AT), P_ € P(A7) at
the positive and negative punctures, respectively, which lie in S° \ Ko, and
define p,q € Z by

link(t — T ouy,(s,t), Lo) = p and link(t — Tt out,(s,t),L1) =¢q

for every s and n. If (p, q) is a relatively prime pair of integers and both
conditions (A) and (B) below are satisfied

(A) (g0 — p)(gP¥o—p) >0 o0r qg=<0

(75)
B) (po1 —q@)(pv1—q) >0 or p<0

then 3P € P(L) in S \ Ko such that link(P, Lo) = p and link(P, L1) = q.

We now turn to the proof of Lemma 5.3. The possible limiting behavior
of a sequence {u,} as in the statement is described by the SFT Compactness
Theorem from [8]. Loosely speaking, it asserts that a space of (equivalence
classes of) pseudo-holomorphic maps with a priori energy and genus bounds
can be compactified by the addition of so-called holomorphic buildings. How-
ever, since we deal with cylinders, the possible limiting holomorphic buildings
are of a very simple nature, allowing us to avoid introducing all the necessary
definitions for precisely stating the SFT Compactness Theorem.

Let us summarize the conclusions we need. Let R,, and u,, be as in the state-

mentof Lemma 5.3. There exists a subsequence iz, ;, a collection rt,....rm
of finite subsets of R xR /Z, a corresponding collection {’171 , ..., 0"} of smooth
maps . .

v (RxR/Z)\T' — Wg, (76)
andnumbers 1 < k' < k” < m (= m > 2)satisfying the following properties.
(@) 3',..., 0" are j:r-holomorphic.

(b) ¥ is Jg—holomorphic,,:ﬁk is Ji-holomorphic.
(c) oK+ .. okl are J-holomorphic.
(d) 9¥*1, ..., 3™ are J_-holomorphic.

(e) 0 < E@W") < oo for every i. All ¥ have a positive puncture at the end
{400} x R/Z of the cylinder, and a negative puncture at {—oo} x R/Z.

(f) There are Reeb orbits Py, ... Py_; € P(AY), Pu,..., Pir_y € P(X)
and Py, ..., Pp_1 € P(A7) such that P; is the asymptotic limit of v’
at {—oo} x R/Z and also the asymptotic limit of 7' *! at {+o00} x R/Z,
for1 <i <m — 1.7 is asymptotic to Py at {+00} x R/Z and 7™ is
asymptotic to P_ at {—oo} x R/Z.
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(g) For each i there are sequences {sj.}, {cj.} of real numbers such that the
maps

(5, 0) = 8ot 0 (s + sho1)

converge to 0' in CL2 (R x R/Z) \ TY), as j — +oo. Here g.(6) = 0
is the R-action on Wg,.

For simplicity of notation we set Z; = (R x R/Z)\I' and C; = v (Z') C
We,. Note that T 1(Kp) is an embedded surface and its tangent space is invari-
ant by all almost-complex structures Ji, J J1, J» and Jp.

We will now show that

PiNKy=9, Vi. (77)

Arguing indirectly, assume that P; C K¢ for some i, and let
io=min{i € {1,...,m —1} | P; C Ko}.
Foreach 1 <i <ignote that C; ¢ 77! (Kp), and consider the set
D ={(z.x) e Zi x T ' (Ko) | 7' (2) =x} (1 =i <ip). (78)

Clearly D; is closed in Z,- x 1~ 1(Kp). If D; accumulates in a point of Zi X
7~ 1(Kp) then one could use Carleman’s similarity principle to conclude that
C; ¢ 1~ Y(Kp). This would imply Pi_1 C Ko, a contradiction to the definition
of ig. Thus D; is discrete and if D; # () then we get isolated intersections
of the pseudo-holomorphic map v’ with the embedded surface 7! (Kj). By
positivity and stability of intersections we get intersections of the image of the
maps i, ; with 1~ 1(Ky), for j large, contradicting our hypotheses. We showed
CiNt ' (Ko) =9 forall 1 <i <io.

Either on C Logor on C L. Weassume on C Lo, the other case is entirely
analogous. Thus P,O = L for some m > 1. Since I5,~0 is the asymptotic limit
of vj, at the negative end {—o0} x R/Z, P;, can be approximated in C* by
curves of the form ¢ — to ﬁn (sj,1) with suitable values s ;. In particular, Pio
is homotopic to P+ in §3 \ Ll and m = link(FP;,, L1) = link(ﬁ+, L) =gq,
which implies ¢ > 1. In view of (75) we can assume (g8p — p) (g% — p) > 0.

Let us set

iy =max{i € {l,...,m—1} | P, = L} > iy.

~i1+1

q : q
Then 7 is asymptotic to Ly at {—oo} x R/Z and v is asymptotic to L

at {+oo} x R/Z.
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We claim that C;, 41 isnot contained int~1(Kp). Infact, ifCi 41 C 1K)
then C; ;41 C 17 1(Lp) and v'1*! is asymptotic to Ly at {—oo} x R/Z, for
some r # ¢. Here we used the definition of iy. If j is large enough and
s > lthent = 7 oliy;(s + s;.lH, t) is close to LI, and if s <« —1 then
;.' + t) is close to L;;. However, the image of the cylinders
To ﬁnj are contained in S° \ Ko C s3 \ L1, showing that Lg is homotopic to
L{ in $3\ L. This is a contradiction to ¢ # r.

Wesetag = AT ifig < k', a0 = Aif k' < iy < k" orag = A~ if k" < iy.
Also,weseta) = AT ifi| < k/,o; = Aifk' <iy <k’ ora; = L7 ifk" <.
Since f, f* e F, the Reeb vector fields X and X, are pointwise positive
multiples of the Reeb vector field X, of g on Lo, where A is the standard
Liouville form on S3. Ly is a periodic trajectory of X, or of X,,, and we
write Lo = (Xqy, Toy) OF Lo = (xo,, To;) depending on whether we see it as
a ap-Reeb orbit or as a a1-Reeb orbit (7, and T, are minimal periods). For
simplicity we denote y(f) = xqy(Tyyt) and y1(2) = xq, (T, 1).

Let (Up, ®¢) and (U;, ®) be a Martinet tubes for the contact forms g and
o at Lo, respectively, as explained in Definition 2.12. That is, for [ = 0, 1, U;
is a tubular neighborhood of Ly and ®; : U; — R/Z x B is a diffeomorphism,
where B C R? is a small ball centered at the origin, such that ®;(y;(¢)) =
(t,0,0) and (®))xa; = F;(d6 + xdy). Here F; : R/Z x B — R satisfies
Filr/zx(0,00) = Ty, and dFj|r/zx{©0,0)y = 0, and the usual coordinates on
R/Z x R? are denoted by (6, x, y). For [ = 0, 1 we have sections Y;(t) =
ddel - Ox|(z,0,0y of the bundle yl*éo, and we assume ®gy, ®; were chosen so
that the loops t +— exp(eY;(¢)) (¢ > 0 small) have linking number 0 with
Lo. Then Y; can be completed to a do;-symplectic frame of yl*éo in certain
homotopy classes 8; such that

tH> Touy(s+s

6o = p(Lo. fo. 1) and 9o = p(Lo, B1, 15). (79)

Here we used that Lo has self-linking number —1. _
Since v'° is asymptotic to Lg at its negative end {—oo} x R/Z, and v/ ! is
asymptotic to Lg at its positive end {400} x R/Z, there exists sg << —1 such

that T o (s, 1) € Uy when s < sg and 7 o 011 (s, 1) € U; when s > —so.
The behavior as s — —o0 of the functions

©°s, 1), x(s, 1), y(s, 1)) = Pgo T 0 00(s, 1) (defined for s < s9)
is well understood in view of Theorem 2.14. The function 8 (s, ) satisfies
0%, 1) — gt + to uniformly in ¢ as s — —oo, for some #y. (80)
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To describe the behavior of x°, y° let us consider the asymptotic operator A
associated to the orbit Lg of the contact form «, as explained in Sect. 2.2.8.
There is an eigenvalue 12 € 6(Ap) N (0, +00) of Ag and a section

teR/Z +— Uo(l) € §0|yo(qt+t0)
in the eigenspace of v? such that the following holds. If w°(r) : R/Z —
R2 \ 0 is the representation of no(t) in the local frame {0y, d,} induced by ®¢
then, perhaps after making so more negative, we can write

; ao(r)dr

@0, 1), y0(s. 1)) = e W't + R(s.1)) Vs<so  (8)

where |R(s, )] — Ouniformlyinzass — —ooand () — v°

The behavior of the functions

asr — —OQ.

©'(s, 1), x" (s, 1), y'(s,1)) = P oT 00" (s, 1) (defined for s > —sp)

is entirely analogous. More precisely, let A| be the asymptotic operator asso-
ciated to Lg seen as an o1-Reeb orbit. Then

0'(s, 1) — qt + 1, uniformly inz as s — 400, for some 7, (82)
and we find an eigenvector v! € o (A1) N (—o0, 0) and an eigensection
teR/Z+— n'@) € Eoly, (gr+1))

for v! such that the following holds. If w! : R/Z — R?\0is the representation
of n!(¢) in the local frame {3y, dy} induced by ®; then

@ s, 0y (5. 0) = el @ OV Wy 4 Ris. 1) Vs = —so (83)

1

Where|I§(s, t)| = Ouniformlyintass — +oo anda!(r) — vlasr - +oo.

Now we consider, as we did in Sect. 5.1, the curves
M) = XDy (gr41) (€n° (D)) and 1[(1) = expy, gy (€0 (1))

for € > 0 small and set py = link(n?, Lo), p1 = link(n!, Lo). Clearly g =
link(né, L) forl =0, 1since ng, n; are loops close to Lg. Lemma 5.2 implies

iop < k' ork” <iy= po>qvo, k' <ip <k = po>qb (84)
and

i1 <k'ork” <iy = p1 <qvdo, k' <iy <k = p1 <qbp. (85)
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We use (81) and (83) to find numbers s’ <« —1 and s” >> 1 such that the curve
1 To(s’, 1) = &y (007, 1), xO(s, 1), Y05, 1))
is homotopic to ng(t) inUp\ Lo C s3 \ Ky, and the curve
t> ot T ) = o7 @' ", 0, x " 1), v 1)

is homotopic to ni (t)yinU \ Ly C s3 \ Ko. In view of item (g) described
above there are sequences s’ s}’ € R such that

j’
T Oﬁn;(s;,t) —> T OEiO(S,, t) and T Oﬁnj(S},, t) T O’{)’i]—'—l(s”’ t)

in C®(R/Z, %) as j — oo. Taking j large enough

p =link(t = T 01y, (s}, 1), Lo) = link(t 0 0(s', 1), Lo) = po

_ . (86)
p=link(t — 7o Un; (s;-/, t), Lg) = link(t o v”“(s”, t), Lo) = p1.
Then (84) implies
P =46y or p =gy &7)
and (85) implies
P =qbp or p =< qvyo. (88)
Putting together (87) with (88) we have
p>qbp and p < qby, or
> g6y and p < gy, or
P = qbo P =4qvo (89)

p =qvo and p < qbp, or
p > qvo and p < qvy.

In all four cases we get a contradiction to (g6p— p)(qUo— p) > 0. Asremarked
before, the argument assuming 13,-0 C L is analogous. Thus (77) is proved.
At this point the condition (75) plays its role.

We showed thatevery P, liesin S3\ K and it follows that they are homotopic
to P, away from K. Consequently, Py € P(1) is the desired orbit satisfying
link(Py, Lo) = pand link(Py, L) = q. The proof of Lemma 5.3 is complete.

5.3 Proof of Proposition 5.1
First we consider the case of a constant sequence: f, = f Vn, forsome f € F

such that fAg is non-degenerate. Let 6 = 6p(f), 61 = 61(f) be the associ-
ated rotation numbers. Select a model f%ﬁ{ with 6, 6; & Q, as described in
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Sect. 4.1. We choose 9(’) and 9{ close enough to 6y and 0y, respectively, in such
a way that

e if (A, 1) < (p.q) < (1,61) then (), 1) < (p,q) < (1,6)),
o if (1,61) < (p.q) < (6, 1) then (1,6]) < (p,q) < (6], 1).

By rescaling fg(’)’gi if necessary, we may assume that f%’@r > f pointwise.
There exists a small constant 0 < ¢ < 1 such that f > ¢ 0.0, pointwise as
well. Using Proposition 4.2 we may find f € F arbltrarlly close to f9/ o> A

suitable J; € J+(&y) and some T' > 0 such that J+ € Jreg(f+20), the chain
complexes

T/c,(p, <T,(p,
P D(F00), 0 fagay)  and  (CETPD(FLr0), B fiagas)

are well-defined and their homologies equal the homology of S! over IF,, up to
a common shift in degree. These chain complexes are generated by the same
orbits and their differentials count the same holomorphic cylinders. We may
assume that cf; < f < f4 holds pointwise as well. Recall that f coincides
with fg/ o near Ko, so that 6p(f4) = 90 and 91(f+) = 9

Consider the almost complex structure I eJ (cf+0) induced by J4
and the contact form cf; Ag. Then, as explained in Sect. 4.3, we have J_ €
Jreg(cf+Ao) which can be used to define the differential of the chain complex

<T
(CETPDCf ), Biefya.s))-
By Proposition 4.8 the map

J#Olx

T.(p. T
(C*S (p q)(f+)»0), A frr0.0p) — (C< P q)(Cf+)»0) Acfiro.dp))

is non-trivial in homology. Here j is the map (68) and ¢, is the map (69).

Let us select J € J(f Ao) and consider almost comQIex structures Jg =
Ji og Jo, where J, € j(] J+ . Kop), Ji € JWJ_,J : Kg) and R > 0.
As explained in Sect. 2.2.3, the almost complex structure Jr is biholo-
morphic to some Jp e J (J J+ : Kp). We claim that there is a finite-
energy Jp holomorphlc cylinder asymptotic to orbits in P=7-(P-@) (£, 1) and
P=T.(p.q )(c f+1o) at the positive and negative punctures, respectively, which
do not intersect T_ 1(Ko) Arguing indirectly, if there are none we conclude
that J; € Jreg(J_, J+ : Ko) and, therefore, the map ®(Jg), as in (46) is
well- deﬁned and is equal to zero. Lemma 4.7 implies that ®(J) is chain-
homotopic to j. ot and, thus, non-trivial by Proposition 4.8. This contradiction
proves our claim.

We found, for every R > 0, finite-energy J-holomorphic cylinders asymp-
totic to Reeb orbits in P=T-(P-9) (£, 19) and P=T-(P-9) (cf, o) at the positive
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and negative punctures, respectively, not intersecting t —1(Ky). Since there are
only two orbits in each set P=T-(P-0) (£, 20) and P=T(P9) (cf, 1¢), there is a
sequence of J, r,-cylinders with the same asymptotic limits for every n, where
R, — +o00. This implies that the energies of these cylinders are uniformly
bounded in 7, see Remark 2.16. If 6 and 6] are chosen sufficiently close to
6p and 61, respectively, then conditions (A) and (B) in (75) are both satisfied
(replacing ©%; by 0). Applying Lemma 5.3 to these cylinders we find an element
of P=T-(P-9)( f0), which proves the first assertion of Proposition 5.1.

To prove the result for families f; as in the statement, observe that we may
select a single model f%’g{ , with 96, 9{ ¢ Q, and a constant ¢ > 0 such that:

e if (6o, 1) < (p,q) < (1,61) then (8}, 1) < (p,q) < (1,6)),
e if (1,01) < (p,q) < (6o, 1) then (1,0)) < (p,q) < (), 1),
e inf, f%,@{ (x) > M, sup, cf%,@{ (x) < m.

The assumptions on f;, guarantee that Cfgé"gi < fu < f%,@i pointwise, for
each n. Since 6; (f,,) — 6; we have for large n

o if (0o, 1) < (p,q) < (1,01) then (o (fy), 1) < (p,q) < (1,01(fn)),
o if (1,01) < (p,q) < (6o, 1) then (1, 01(fn)) < (p,q) < (Bo(fn), D).

We may assume that 6 and 6 are chosen close enough to 6 and 61, respec-
tively, in such a way that both conditions (A) and (B) in (75) are satisfied,
replacing (¢, 0;) in (75) by (9; , 0; (f»)) for n large. Applying the above argu-
ment to each form f, A9 with these specific choices of Toy.0 and ¢ fo).00> We
obtain, for all n sufficiently large, an orbit in P=T-(P-9( £, 1¢), where T is
some upper bound on the action independent of n large. In fact, 7 could be
any number larger than the action of an orbit in the (p, ¢)-orbit torus for f@(’)’gi
and is therefore independent of n.

6 Passing to the degenerate case
6.1 Non-degenerate approximations

Lemma 6.1 Let f € F. There is a sequence f, € F such that f, g is non-
degenerate for each n, f, — [ in C®. In particular, for i = 0, 1 we have
0; (fn) = 0i(f) as n — oo, where 0; (f,) = p(furo, Li) — 1.

Proof Tt is possible to find f’ € F arbitrarily C*°-close to f such that L, L
are non-degenerate prime Reeb orbits of f')A¢; see [21, Lemma 6.8]. Now there
exists " C®-close to f’ such that f”'Ao is non-degenerate, but at this step
f” need not belong to F. However, the orbits Lo, L get perturbed to closed
f"Ao-Reeb orbits Ly, L} ina way that L} is C*°-closeto L;,i = 0, 1. Here we
used that L; were non-degenerate orbits of f'Ao. We take a C°°-small contact
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isotopy {¢}re[0,17 of (3, &o) satisfying g = id, ¢1(L;) = L;,i =0, 1. Then
i (f"xo) = f"" 1o for some f”" € F which is C*°-close to the original f1o.
Thus "\ is non-degenerate and 0; (f") ~ 6;(f),i =0, 1. O

Let us select a sequence f,, as in Lemma 6.1. By Proposition 5.1, for each
pair (p, q) € Z x Z relatively prime satisfying

Oo(fn), D) < (p.q) < (L,01(fn)), or (1,01(fn), 1) < (p.q) < (o(fn), )

there is a (p, g)-closed Reeb orbit for f,Aq, for large n, which we shall denote
P,(p, q). Indeed, since 6;(f,) — 6;(f), if (p, q) satisfies one of the above
inequalities for 6y(f), 01 (f) then for all n large enough the same inequality
holds for f;,, and therefore the orbit P, (p, ¢q) is obtained by Proposition 5.1.
Moreover, since f,, — f itis clear that there are constants m, M such that

0 <m < inf f,(x) <sup f,(x) < M.
n,x n.x

Therefore the second assertion of Proposition 5.1 applies to the sequence f;,
and guarantees that we may assume a uniform bound

/ fodo =T

Py(p.q)

for some 7T independent of n and all n large. Using this period bound, the
Arzela-Ascoli theorem guarantees that there exists a subsequence n; such that
Pn,(p,q) — P(p,q)in C>°(S!, §3), where P(p, q) isaclosed Reeb orbit for
fXro.If P(p, q) does not have image contained in Ky, it is clear that it is in the
homotopy class (p, q): for, P,(p, q) is C*-close to P(p, q), which implies
that for all large n the homotopy classes of P, (p, q), P(p, ¢) in S\ Ko must
be the same. However, at this point it is conceivable that P(p, ¢) has image
in Ko; we show next that this cannot be the case.

6.2 Non-collapsing

Let us suppose that the sequence of orbits P, = P,(p, q) converges to L{,
g > 0 (otherwise, the sequence must converge to Lf and the argument is
analogous). This fact together with (8) implies that (6g(f), 1) € R(p,q),
which also implies that 6y(f) #= p/q.

Let (U, ®) be a Martinet tube for Lo, so that we have special coordinates
0, x,y) € R/Z x B on U with respect to which Ao >~ g,(d6 + xdy) and
fro =~ g(dO+xdy). Moreover on R/Z x 0 we have & ~ 0 x R?. In particular
o = {0y, 0y} is a conformal d( f,Ao)-symplectic frame of &o|.,, for every n.
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We may assume, without loss of generality, that given an embedded disk Dg
spanning L then 9, is an outward pointing tangent vector of Dg along L.
Denoting by Bgisk the homotopy class of trivializations of &y, induced by o
then p(f, A0, Lo, Bdisk) = 6o(fr) since Lo has self-linking number —1.

Let ¢, denote the Reeb flow of fAg. Given N > 0, we may find a smaller
neighborhood U (N) so that for w € U (N), the trajectory ¢; (w) forO <t < N
liesin U. Let ¢, ; denote the Reeb flow for f,A¢. For N fixed, if n is sufficiently
large then ¢, ;(w) € U forw € U(N) and 0 <t < N. We have ¢, — ¢ in
C*([0, N] x U(N), U).

Denote by T the prime fAg-period of Lo, and by 7, the f,Agp-period of
P,. Recall that P, — P = Lg. Choose N > ¢T + 1, say, and note that by
hypothesis for n large we have P, C U(N). Let (0, w;,) be in the intersection
of P, with the disc 0 x B with respect to the coordinate system above. Note that
w, — 0. After passing to a subsequence, we may suppose that w, /||w,| —
h #0eR?

We claim that d¢, 7 (0, 0)(0, h) = (0, h) and that the winding of the vector
de:(0,0)(0,h) € 0 x (R? \ 0), ¢ € [0, ¢gT], is exactly p around the origin in
the plane 0 x R?. This leads to 6p(f) = p/q, which is a contradiction since
bo(f) # p/q.

In fact, let IT : R/Z x R? — R? be the projection on the second factor
inducing the tangent projection I1,. We use the Euclidean norm in all linear
spaces whenever it is necessary.

We have (0, w,) = ¢,.7,(0, w,) for each n, where 7,, — ¢gT. Note the
following estimates:

o [¢n.1 (0, wn) — P+ (0, 0) — depy (0, 0) - (0, wy) || < Cpllwy||?, Ve € [0, N1,
where C, is the sup-norm of the second derivative of ¢, ;, t € [0, N], in
U (N). For n large, C, can be bounded by twice the sup-norm of the second
derivative of ¢;,t € [0, N], in U(N) (i.e. C, is uniformly bounded by
an absolute constant K| for n large). Projecting onto R? and using that
¢,.:(0,0) € R/Z x {0} for all 7, we get

T (0.1 (0, wn)) — Tadpy (0, 0) - (0, wy)|| < Ky fJw, (90)

forall# € [0, N] and n large.
e We have

ITLd 1 (0. 0)-(0, wy) ~Tdby 0, 0)- (0, wa) || < € f|wall, ¥t € [0, N1,

oD

where e,gl) J 0 can be taken to be the supremum of the sup-norm of the
difference d¢, (0, 0) — d¢;(0,0) int € [0, N].
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e We have

ITLd (0, 0) - (0, wy) — {|lwy I TLdy (0, 0) - (0, W} < €2 [lwl,

92)
for some €\ | 0. To see this, let |[(wn/[wal) — Al = € — 0, so
1wy —(lwa )| = [[wy]l-€ and we can take the constant €,” = €K |

0 where K> is the supremum of the sup-norm of d¢;(0,0) int € [0, N].
e Putting (90), (91), (92) together and dividing by |jw,|| # 0, we have for
t € [0, N] and n large

= (Killwall + € +€2) 4 0.
©3)

H H(‘Pn,t(O, wp))

[lwn |

Since ¢, 1, (0, w,) = (0, w,) we find fort = T,

H( ”) dor, (0, 0)(0, h)H—)O asn — oo,

which implies, since 7, — ¢T, that d¢,7(0, h) = (0, h).
Again from (93) and taking K ||w, || + 6(1) + 6,22) less than the infimum of
ldo: (0, 0)(0, h)|| over ¢t € [0, N], we necessarily have for n large that

) . [T(¢n,: (0, wy))
WlndlE[O,Tn] (H(¢n,t(0a wn))) = Wlndle[O,Tn] (||211—||)
n

= wind;e[0,471(IT+d¢: (0, 0)(0, ).

Here, obviously, we are computing the winding numbers with respect to the
standard basis of R?.

Now since P, is a Reeb orbit for f,A¢ in the homotopy class (p, g) with
respect to the Hopf Link Ko = Lo U L, we also have that

Windze[O,Tn](H((ﬁn,t(O» wy))) = p.

Here we make use of our particular choice of Martinet tube. We conclude
that 6y (f) = wind;¢[0,471(IT«d ¢ (0, 0)(0, h))/q = p/q which, as mentioned
before, gives a contradiction. It follows that the orbits P, cannot converge to
L.

Arguing similarly, they cannot converge to L‘ID either, and thus the sequence
P, has alimit P in S3\K0 which is an orbit for fAg satifying link(P, Lg) = p
link(P, L1) = q. This completes the proof of Theorem 1.2.
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7 The SO (3)-case

Our goal in this section is to prove Theorem 1.9 and its corollaries.

7.1 Geometric set-up

Let go be the Euclidean metric on R3 and consider the associated unit tangent
bundle of the 2-sphere

T'S?:={(x,v) e R} x R | go(x, x)=go(v, v) =1, go(x, v)=0} = SO(3),

with bundle projection IT : T15? — §2 TI(x, v) = x. There exists a double
covering map

.53 ZL 7ig?
explicitly given by
Z?) (g3 — pt+at —rD —2(qopo +4q1p1)
o |7 2qpo+aip) —(q@—-pi—g*+pD) | =[x,
i 2(qop1 + poq1) 2(qoq1 pop1)

(94)
with group of deck transformations generated by the antipodal map

A(z) = —z, z€ S

Here z = (g0 + ipo, q1 +ip1) € C? ~ R*. Later we will make use of polar
coordinates roe'?" = go +ipo # 0 and rleld’1 =q1 +ip1 #0.

Recall the standard contact form Ag = 5 Z =014 jdpj— pjdqjon $3 and
the standard contact structure £y = ker Ag, and observe that

A*Ao = Ao. 95)

The contact form Ag on T'!S? given by )»0|(x v ¢ = go(w,dIl-¢) V¢ €
ToenyT 152 satisfies D*Ag = 4xg. Let & := ker Lo be its (tight) contact
structure and X its Reeb vector field. The flow of x = X;; ox is the geodesic
flow of (52, £0) on T'S2. Its orbits are closed (the unit vectors tangent to the
great circles) and correspond to the projections of Hopf fibers under D. There
exists a natural orientation on 7' S? induced by o Adrg > 0.
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As before, Ko := Lo U L1 C S? is the Hopf link

Lo :=1{q0=po =0, qf—i—pf:l},

(96)
Li={q=p =0, ¢ +pt=1)}.

Its components doubly cover
li = D(Ll)’ i:()vl’

which are the velocity vectors of the geodesics running the equator of 2 in
opposite directions. Let
[:=1lpUl 97)

be the link in 7' $? which we also call a Hopf link.

Definition 7.1 We call any transverse link I=1yul; c (T's?, &) a Hopf
link if / is transversally isotopic to the link / defined in (97). This means
that there exists an isotopy p; : stus! - 7182+ € [0, 1], such that
image(pg) = I image(p;) = [, p; is an embedding positively transverse to
the contact structure for all z. It is a theorem that the isotopy o, t € [0, 1], can
be extended to a contact isotopy V¥, t € [0, 1], of (T's2, £0), i.e., Y€ = &
and y; o pg = p; for all ¢, see Theorem 2.6.12 in [16]. The Hopf link / is said
to be in normal position.

For each ¢ € S!, let Ui, uoe : C — S3 be the embeddings, defined in
polar coordinates (R, 6) € [0, o0) x R/2nwZ by

ure(R.0) = == (Re'”. c). uo(R.0) = ==(c.Re'’).  (98)

Note that u; . is transverse to the Reeb vector field X, of A and satisfies

uic(R,-)— L; as R — oo. (99)
It is clear that the family {u; .; c € Sl} smoothly foliates s3 \L; fori =0, 1.
Each u; . has an orientation induced by dA¢. Notice that u; -(C)NL; = u; (0)
for all c and i # j and that (¢, R,0) =~ u; (R, 0) is a diffeomorphism
S3\ Ko~ S! x (0, 00) x R/27Z for eachi = 0, 1.
The solutions of X = X, o x in coordinates (c, R, ) are given by
c(t) = c(0)e¥’, R(r) = R0), 6(t) =6(0)+ 2¢. (100)
Letu;.:C— T1S% ¢ e S!, be defined by

Ujc:=Dou;,.
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fori =0, 1. Now since u; . does not have antipodal points in their image, we
see that i; . is an embedding. From (99), we have

ii;(R,-) = I; as R — oo, (101)

the convergence being as double covering maps.
Notice from (98) that

i (C)y=u; +(Cy & € {c,—c} and u;(C)Niu;(C)=0 & ¢ & {c,~},
where the identification under A is given by
(¢, R,0) ~ (—c,R,0 +m) (102)

in the coordinates (c, R, 0). Observe that u; .(C) N1; = u; -(0) for all ¢ and
i # j.Itfollows that T'S%\ [ ~ §! x (0, 00) x R/nZ where S! := S /{c ~
—c} >~ S!, and we find

IS\ ~ZaZ (103)

where the choice of a base point is omitted.

Leta : [0,1] — T15? \ [ be a closed curve and « : [0, 1] — s3 \ Ko
be a lift. In polar coordinates we have a(f) = (ro(t)e!?, ry(1)e!?1?) with
continuous arguments ¢g, ¢1 : [0, 1] — R, and non-vanishing continuous
functions rq(¢), r1(t). We will denote

Windo(&)zw and windl(&)zw (104)

which are half-integers independent of the choice of lifts. It is always the case
that

windg () + wind; (@) € Z.
The pair of half-integers windp, wind; determine a homotopy class in the
complement of any Hopf link in 7' 2.
We choose [ag] and [a;] as generators of JTl(TISZ \ 1) where
ao(t) = Doag(r), ai(t) = Doai(t),
and
ap(t) = 5™, &™), ai(t) = 5 e,

fort € [0, 1]. We have
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windg(ag) = windg(a;) = wind;(ag) = 1/2 and wind;(a;) = —1/2.
(105)
Any homotopy class [&] € 71 (T S?\ [) is uniquely determined by the half
integers windg () and wind| (). The isomorphism (103) can be chosen as

[a] — (windo(a) + wind; (), windg(a) — wind; (@)). (106)

The bundle 77T S? decomposes as the direct sum of vertical and horizontal
sub-bundles TTS> = VTS> @ HTS?. Here VT S? = kerdIl where IT :
TS* — §?is the projection, and HT S* = ker K where K : TTS?> — T S?%is
the connection map of go. Given v € T, S? there are associated isomorphisms

iv:T.S? — V,TS?,
\% X ; v ) (107)
lH . TxS —> HUTS )

and

T,T'S* = in(T:S?) & iv(Rv™) = ker ol (x.0) @ ker dAolx.u),
where vt € Tx1 S is normal to v and {v, v} is positive. In fact
£0l(x.v) = ker Aol(x.0) = Riy (v1) @ Rig (v?) and ker drol(x.p) = Rig (v).

The vectors
Y =iy b, vt =iy 0 h) (108)

induce a global symplectic trivialization f of the d 1o-symplectic vector bundle
éo — T182 since drg(v+Y, vHH) = 1.

Now let A = fAio be a contact form on T''S? inducing the tight contact
structure &. Consider the Reeb flow associated to A and let P = (x, T') be
a closed Reeb orbit with prime period 7 > 0. Multiplying the vectors v
and v in (108) by 1/./f we find a global dA-symplectic trivialization of
ker A = ker Ag = &. With respect to this global frame we define the transverse
rotation number of P by

0]
p(P) = Tt1—1>nolo ot (109)

for any solution 0 # v(t) =~ r(t)et? " e £ x(r) of the linearized Reeb flow
over P.
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7.2 Tight Reeb flows on 7' §?

Here we prove Theorem 1.9, and for that we will use the same model as in the
$3 case. Let y : [0,1] = [0, +00) x [0, +00) be a curve associated to the
numbers 7o and 1 and satisfying the conditions explained in Sect. 4.1. With
this curve we have the star-shaped hypersurface S, C C? defined in polar
coordinates by

Sy 1= {(ro, ¢o. 1, $1) : (/3. r}) € image(y)}.

Let fy,.;, A0 be the contact form on S° associated to S, as explained in
Sect. 4.1, and let A, ,, be the tight contact form on T'S? induced by the
double covering map D. This form is well defined since f, 5, 0 A = fio.5,- 1t
is clear that the Reeb flow of f;, ,, Ao admits the Hopflink Ko = LoUL; C s3
as closed Reeb orbits, where L;, i = 0, 1, is defined in (96). Their transverse
rotation numbers are p(L;) = 1 + n;, i = 0, 1. Thus the flow of ):,70,,,, on
T'S? admits the Hopf link / = Iy U/ in normal position as closed Reeb orbits.
Their transverse rotation numbers are equal to

p(i) = p(Li)/2.

Lemma 7.2 The conclusions of Theorem 1.9 hold for the Reeb flow of )_‘no,m
on T'S?. Moreover, for each pair of relatively prime integers (p, q) satisfy-
ing (14), the closed Reeb orbits satisfying windy = p, wind| = q in case p+q
is odd, or windy = p/2, wind|, = q/2 in case p + q is even, appear as an
S'-family filling an embedded 2-torus in T'S* \ 1.

Proof There is a unique point zp € image(y) such that the vector (p, q)
is normal to y at zg. Using polar coordinates, solutions corresponding to zo
satisfy 7; =0, i =0, 1, $o =mp and ¢; = mgq for some m > 0. The values
of rj, i =0, 1, are determined by zo. Assuming ¢o(0) = ¢1(0) = 0 we find
¢o(t) = mpt and ¢; (1) = mqt.

If p + g is even then both p and ¢ are odd since (p, q) is relatively prime.
A period of the corresponding Reeb orbit is 77 /m. Moreover

¢o(m/m) = pm, (110)
¢1(r/m) = qm,

and this corresponds to a non-contractible closed orbit y, , on T'S2. Since
(p, q) is a relatively prime pair, this orbit is simple. From (110), we have
windo(yp,4) = p/2 and wind(yp4) = gq/2. Varying the initial condition
#1(0) we find the S'-family of such orbits filling a 2-torus in 7'! 5.
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Let us consider the case p + ¢ is odd. A period of the corresponding Reeb
orbit is 27t /m since
¢o(2m/m) = p2m,
127 /m) = q2m,

which obviously corresponds to a contractible closed orbit y, , on T'Ss2.
Again, since (p, q) is arelatively prime pair this orbit is simple, windo(yp,4) =
p and wind; (yp 4) = ¢g. We also find an § I_family of such orbits varying the
initial condition ¢ (0). O

(111)

Proof of Theorem 1.9 The case p + g odd follows almost immediately from
Theorem 1.2. Consider the pulled back Reeb flow on S3\ K, corresponding
to fko = D*(fXo), it follows that f € F on S\ Ky; the numbers 6; in
Theorem 1.2 coincide with ; fori = 0, 1. Theorem 1.2 implies that there is a
simple closed orbit y), 4 satisfying link(y,, 4, Lo) = p andlink(y, 4, L1) = q.
Since p + ¢q is odd and (p, q) is relatively prime it follows that one of p, g is
even and the other is odd and that y,, ;, = D o y) 4 is a simple closed orbit in
T1S5%\I with

windy(yp,q) = link(yp 4, Lo) = p, windi(ypq) = link(y, 4. L1) = q,

as claimed.

In the case p + g even, one can argue the same way, but the orbit y, ;, =
D oy, 4 obtained may be simple or it may be a double cover of another simple
orbit y,, , with

windo(7), ) = p/2. windy(7),,) = q/2.

We wish to show that we can indeed find a simple orbit )7;,’ q s such, that is,
in the homotopy class

. _(p+a p—q
(238,259

under the isomorphism (106). Notice that loops in this homotopy class in
7152\ [ are not contractible in 7'' S since windy(a) and wind, (@) are half-
integers. Thus, if a € [a] then D(D~'(a)) is a double-cover of a.

To find the desired simple closed orbits, one can follow the argument that
proves Theorem 1.2 but working directly on the manifold 7'S2. Let Ak,
h > 0, be a contact form such that the associated Reeb flow is tangent to
[, p(l;) € Q, all closed Reeb orbits with action up to some number 7 > 0
are non-degenerate, and no closed Reeb orbit with action < T in T's? \[is
contractible in 7152 \ I. A pair (m,n) € Z represents a homotopy class in
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71 (T S?\ 1) under the isomorphism (106), and we denote by P=7>"" (h )
the set of closed Reeb orbits in 7' S? \ [ representing this homotopy class
with action < 7. As explained in Sect. 2.2.1, we consider the symplectiza-
tion Wg, C T*T'S? with projection 7 : Wg, — T'5? onto the base point.
Every P € P=T.0m.1) (}.0) has a well-defined Conley—Zehnderindex pcz(P)
which is computed using the global trivialization (108), with associated degree
|P| = jucz(P)— 1. The vector space CkST’(m’") (hAo) is freely generated, with
coefficients in IF, by the elements of P=7>"" (j24) with degree k, and on the
graded vector space (B, Cj =T.0m.m) () 3.0) we have a differential which is defined
by counting finite-energy J- -holomorphic cylinders in = /(T1S% \ I) C We,»
asymptotic to orbits i in P=T.0m.1) (j}.0) with Fredholm index 1. Here the almost
complex structure J e J (hig) is induced by some dho- compatible com-
plex structure J : & — &, see Sect. 2.2.1, and is assumed to be Fredholm
regular for the homotopy class (m, n) and action bound 7 in an analogous
fashion as was explained in Sect. 3.1. The associated homology is denoted by
HC="0"" (30, J). Analogous versions of Theorems 3.2-3.7, of Lemma 4.7
and of Propositions 4.2, 4.8 can be proved similarly as before.

Suppose f Aq is a non-degenerate contact form with Reeb vector field tangent
to the Hopf link /, with associated numbers n; (f) = 2p(l;) — 1,i =0, 1. Let
(p, q) € ZxZbe arelatively prime pair and assume that (14) holds. Following
Sect. 4, we can choose numbers 17,, 7] & Qcloseton;(f), n2(f) and construct
a contact form i Aq as a small perturbation of ):,7/07,7/1 , find a number T > 0

and a suitable do-compatible complex structure J on &y with the properties:

e the Reeb flow of /1, A is tangent to [, each /; is an elliptic orbit with asso-
ciated transverse rotation number (109) equal to nl’., i=0,1;
e for this pair (p, g) we have

(o, D) < (p, @) < (L)) if (o(f), 1) < (p,q) < (1, m(f)),

or

(L) < (p,q@) <y, D if (L,m(f) < (p,q) < (o(f), D

e chy < f < h4 pointwise for some 0 < ¢ < 1;

e only two orbits in the S!-family of closed Reeb orbits of )_\,7(/)’,7/1 as described
in Lemma 7.2 representing the homotopy class (pzﬂ, ”2;‘1) survive as closed
Reeb orbits of /4 Lo, up to action T/c + 1, and these correspond to the

. <T,( qpq) <T(p+qpq)
elements in the sets P (hyAo) and P (chyho);

e /i) is non-degenerate up to action 7 /c and has no Reeb orbits of action
less than T'/c which are contractible in 7' $? \ I;

e J induces R-invariant almost complex structures f+ € J(hyh) and
_eJ (chy o) which are Fredholm regular with respect to the homo-
topy class (p—“qu, %) and action bound 7 /c. This notion of regularity is
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defined exactly as in Sect. 3.1. Hence the corresponding cylindrical contact
homologies of 4 Ao and of ch xg in T1S?\ [ up to action 7 in the homo-
topy class == p—;q) are well-defined and isomorphic to H,(S'; F») up to
a common grade-shift:

([’JF‘]

+ —
T, e ([’ ‘1717‘]

< R P
"(hio, J)~HC; 2 (chyhg, J) = Hyy(S'; Fy),

p—
2

<
HC;
e the map j, o ¢, explained in Sect. 4.3 is non-zero

<T (I’*‘]’P*q _ j*Ol*#O <T (P+q’l7*q

HCE T (hdo, J) TS HeE ) (hydo, ).

Following the argument in the S3-case, consider J € J(f )»o) Recall
the sets j(J_, ]) j(] J+) defined in Sect. 2.2.2. The sets J(J_, 2 D),
J (J J+ [) of almost complex structures for which 7 “1(0) is a pseudo—
holomorphlc surface are defined as in Sect. 2.2.7. We select J; € J (J_, 71 )
and J, € J (J J+ [). The family of almost-complex structures Jr = Jior 2
in Wg, splitting along the hypersurface defined by the contact form f Xo, is
defined as in Sect. 2.2.3.

For each R > 0, there must exist a finite-energy Jz-holomorphic cylin-
der g contained in the complement of ~!(/) with one positive and one
negative puncture. In the positive puncture it is asymptotic to an orbit in

p=T. (p+q 7 (h+i0), and in the negative puncture it is asymptotic to an orbit
in P=T> (3, 2y )(ch+Xo) To see this recall that as in the S3-case, Jg is dif-
feomorphlc to some element in Jp e J (J_, J+ [) and, if there are no
Jr-cylinders as claimed, we conclude that Jp J/, is Fredholm regular (for homo-
topy class (252, 254) and action bound T') and induces the zero map from

T(IH"I [7 ‘I) ([7+q 17 q
HC* (h+k0, J)to HC* (ch+ko, J). However this map

equals jx ot 7# 0 by versions of Lemma 4.7 and Proposition 4.8 in the
T1S2-case, a contradiction.

Considering a sequence R, — 400, we may assume that the asymp-
totic orbits of the cylinders ug, do not depend on n, which guarantees
uniform energy bounds for the sequence ug,. This is so since the sets
p=T, (55, M)(h+)_\0) and P= =T.(P3 Byt )(ch+ko) have two elements. We
denote these limiting orbits by P, and P_ at the positive and negative punc-
tures, respectively. B

The double cover D induces a double cover D : Wy, — Wg . Since p + ¢

is even, the loops ¢ — T o g, (s, t) are non-contractible on T'52. We can lift
the maps

ip RXR/2Z— Wy, (s,1) +> Ug,(s, 1)
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to finite-energy cylinders Uy : R x R/27Z — Wg, holomorphic with respect
to D*(J; og J2) with uniform energy bounds. There exists a SFT-convergent
subsequence U . Denoting by 7 : Wg, — S3 the projection onto the base
point, the loops t > ToU, ; (s, 1) link p times with Lo and ¢ times with L;.
Arguing just as in the proof of Lemma 5.3, using the relations satisfied by the
numbers g, p, no(f), n1(f),n; and n|, we find a closed orbit Pp q C S3\(LoU
L) of the Reeb flow associated to the contact form D*(f Xo) = ( f oD)dr
satisfying link(Pp 4, Lo) = p and link(Pp 4, L1) = q. Moreover, the orbit
P 4 can be approximated in C* by loops of the form 7 = To Uy, (s, t +1;),
t e R/27Z, for suitable s;, t; and j large. Since these loops prOJect down to
7' 52 viathe map D to  doubly covered loops, the same is true for the loop P,

This means that D o P, 4 is the double cover of a prime closed orbit ( f AO)
Reeb orbit P, ;. It follows that P, , is in the homotopy class (252, 252) since

Wlndo(Pp,q) = p/2 and Wmd](Pp,q) =gq/2. O

Proof of Corollary 1.10 Corollary 1.10 is immediate from Theorem 1.9, since
the Reeb flow on the unit cotangent bundle of a Finsler metric F is the geodesic
flow of F. O

In the case that the metric is reversible, if an embedded curve is a geodesic
when traversed in one direction it will automatically be a geodesic when tra-
versed in the opposite direction so that Corollary 1.10 applies, and moreover
one finds the relation nop = n;. We will explore this case in greater detail in
the next section.

7.3 Reversible simple geodesics of Finsler metrics

We now recover Angenent’s theorem at the level of homotopy classes for
the more general framework of Finsler metrics on S? with reversible simple
geodesics and prove Corollary 1.11. Although it is a particular case of Corol-
lary 1.10, we will be more explicit; in particular we will clarify the relationship
between the geodesics we find and the satellites found by Angenent [1].

A simple closed geodesic y with unit speed of a Finsler metric F on S?
is called reversible if the curve ¢t — y(—t) is a reparametrization of another
geodesic ;- and if, in addition, the inverse rotation numbers p = p(y) = p(¥y)
coincide. The geodesics y and y, determine a Hopf link [, = y Uy, C
T'52, where the special lifts 7 = G~ (y), » = G~!(y,) are defined in (18)
using the special contactomorphism G described in (17). Now consider a
contactomorphism ¢ of (T'82, &) such that ¢(7) = Iy and ¢(y,) = 1,
where [ = Iy U [ is the standard Hopf link in 7'S? defined by I; = D(L;),
see (97). Such a contactomorphism exists since /,, is transversally isotopic to
l.
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Lemma 7.3 Let y, 4 be a (p, q)-satellite of y with unit speed with respect to
F, and consider ¢(y), 4) C T1S%\ 1.

(1) If g > O then

windo(¢(Vp.q)) = |pl — q/2,
wind| (‘P(?p,q)) =gq/2.

2) If g < O then

windo(¢(Vp.q)) = q/2,

Proof Assume g > 0. First we work directly on F~!(1) and recall some basic
facts about Finsler geometry. F determines inner-products g, (-, -) on T1y(y) 52
for each v # 0 by

92 )
, = - — F t .
gu(wi, wa) 2 9501 |, o (v + twy + swy)

The 1-form A defined in the introduction is written as A lv:-¢ = gv(v,dIl-2).
We choose a Riemannian metric / such that 1), ;) = gy () foreveryt € R/ TZ
and y(¢) is an h-geodesic. Here T > 0 denotes the prime period of y. We
assume 7 = 1 for simplicity. The 1-form A, on T S?, defined by Az|, - ¢ =
hy (v, dIT-¢) where x = I1(v), coincides with AFon T; 752, and in particular
on Ty F~1(1). Let N(¢) be a vector field along y () such that {y (t), N(¢)} is
a positive orthonormal basis of Ty(t)Sz, and consider the (p, g)-satellite

Qc(t) = exp, ) (€ sin2pt /)N (1))

defined in R/gZ. Here exp is the exponential map associated to /. As usual,
there is a connection map K : TTS?> — TS associated to & inducing a
splitting TTS?> = VTS?> @ HTS? where VT S? = kerdIl and HT S*> =
ker K. Moreover, for every v # 0 there are isomorphisms i, : Tr(y) s$? -
VoTS? and (M| pra)~" : Tnw)S? — HyTS?, where iy(w) = 4| _ (v +
tw). So we always view a vector in T,TS? as a pair of vectors in TTy(y) s2
referred to as the vertical and horizontal parts.
These objects allow us to understand the velocity vector ¢, in fact,

ae(t) = J(€, 1)
where s — J (s, t) is the Jacobi field along the h-geodesic

S > eXp,, () (ssin(2rpt /q)N(t))
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with initial conditions J (0, ¢t) = y(¢) and 0 = (sm(27r pt /q)N(t)).
All covariant derivatives are taken with respect to metrlc h. Thus ;- |E:0 e (1)
is a vector in Ty (1 T S? with vertical part equal to 27 p/q) cosRmpt/q)N(t)
and horizontal part sin(2wpt/q)N(¢). Consider the vector (1) := dd—e =0
F‘(";E(Z)) . Then the horizontal part of ¢ (¢) is still equal to sin(27 pt /g) N (t) and
its vertical part equals

d
(2rp/q) cosmpt/q)N (1) + (d

RN
L FUG r))) 7o

However ¢ () must be tangent to F~! (1), which implies (% Lzo m) =

0, so that £ (1) = 4£| _, de(r). Let N (1), N¥'(t) € Ty T S? be the hor-
izontal and vertical hfts of N (). Then {N"'(¢), N"T ()} is a dAp -positive
basis along 5 Fly @) which extends to a global drp -positive basis of S F. In
particular, we computed that {(¢) € f;' Fly@) Vt and the representation of ¢ (r)
in this global frame as vector in R” is

27 p .
(T cos(2mpt/q), s1n(2npt/q)) .

Hence its winding equals | p| when ¢ does one full turn in the circle R/gZ.

Defining ¢ (1) = dG~! |y - ¢(¢) we obtain a section of §0|); which winds | p|
times with respect to a global positive frame when ¢ goes from 0 to ¢g. We have
the a priori fixed contactomorphism ¢ of (T''$2, &) that brings 7 into normal
position, thatis, y(t) = g o y(¢), ¢t € [0, 1], is a reparametrization of the knot
lo = D(Lg) where D : §3 — T'52 is the double covering map discussed
before and Lo = S3 N (0 x C). Again, . = doly - ¢ winds |p| times with
respect to a global positive frame when ¢ goes from O to g.

We see y () as a smooth 1-periodic function of t € R, and Z (1) as smooth
and g-periodic. Consider D C S an embedded disk spanning Lo and W :
$3 — & a smooth non-vanishing section which is symmetric with respect to
the covering group of D: A,W = W where A is the antipodal map. A choice
of lift F(t) of y must be 2- perlodlc and equlvarlant F(t +1) = A o F(t)
Choose also a lift Z(t) € 50'1“(0 of{(t) Then Z(t +q) = dA|r(z) Z(t) if g

is odd, or Z(t +q) = Z(t) if g is even.

In the following all windings of sections of &y along curves are computed
using the orientation of &) induced by the standard symplectic formin C> > §3.
By the symmetry of W, D, W is a well-defined non-vanishing section of &.
Our previous computations imply that

windjo 41 (Z (), W o T'(1)) = |pl.
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Let Y (1) € ol o N T (t)D be a non-vanishing 2-periodic vector. Since L
has self-linking number —1 we have windjg2)(W o I'(¢¥), Y (t)) = —1. This
implies
windjg.2,1(Z(1), Y (1)) = windjo 2,1(Z(1), W o ['(1))
+windjo 241 (W o T(2), Y (1))
=2|p| —q. (112)

Consider the point c(e, 1) € S3 given by lifting ¢ o G~ (& (t)/F (ce (1))).
Choosing the correct lift we obtain

Z(1) = 9¢¢(0, 1). (113)

Letus considerg;+ip; =r jei¢f polar coordinates in C2, j = 0, 1, and write
c(e, 1) = (ro(e, )P ri(e, 1)e! 1)

where ¢ (€, t), @1 (€, t) are continuous lifts of the angles to R. This is well-

defined since c(€, t) ¢ LoU L1. Note that D and Y (¢) can be chosen to satisfy

Y = 04,. Using (112) and (113) we get (¢o(€, 29) —¢o(€, 0)) /27 = 2|p|—q.
By symmetry we get

wind ( oG_l( G (1) ))| _ e =g | g
o\ F(de(l‘)) tel0,q] — T =\pP 2’

which is the desired conclusion. Since for € small the curve ¢ o G~}
(e ()] F (ae(2))) is C*°-close to lg, its wind; is equal to ¢ /2.

If ¢ < 0 then y,, 4 is close to a g-fold cover of the curve y, € F~'(1) and
the proof follows analogously. O

Proof of Corollary 1.11 Byreversibility we can assume g > 0. By hypothesis,
we get p > 0. Choosing a suitable contactomorphism ¢ of (T'1S2, &j), as in
the proof of Lemma 7.3, we can assume [y = ¢ o G! y),li =¢po G! (yy) is
the standard Hopf link (97), where G is the diffeomorphism (17). The contact
form A gets transformed by pushing forward via the map ¢ o G~! to fAo,
for some f > 0.If g is odd let p’ = 2p — g and ¢’ = ¢, otherwise let
p'=p—q/2,q" = q/2. The integers p’ and ¢’ are relatively prime. Assume
first that p > 1. Then

2_ /
1<£<p<:>1< P qzﬂ/<2p—1.
q q
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This implies that

(o, D=C2p—1L1D <®,q¢)<A D <12 —1=(,m).

Therefore we can apply Theorem 1.9 to the pair (p’, ¢’) to find a simple closed
fAo-Reeb orbit on T1S2, denoted here by ¢ 4, such that

windo(cpq) = p —q/2,
wind;(cp 4) = q/2.

By Lemma 7.3, the closed geodesic y), 4 satisfying ¢ o G| (Vp.g) = Cp,q 18
in the same homotopy class in F~!(1) \ (y U y,) as the velocity vector of a
(p, g)-satellite of y when normalized by F. In case 0 < p < 1 we have

p 2
p<—=<le2p-1l<——==—<1 (114)
q q

and this implies
(Ln) =120 —-1D <1, 1) <(p,q) <@2p—1,1)=(no, ).

Applying Theorem 1.9 to (p’, ¢") we obtain the desired closed geodesic y) .
i
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Appendix A: Theorems on contact homology
In this appendix we provide self-contained proofs of the theorems from Sect. 3.
A.1 Proofs of Theorems 3.2 and 3.3

The argument relies on a careful analysis of the compactification of moduli
<

spaces of the form M}T’(p’q)(P, P")/R,where P, P" € P=T-(P-9 () satisfy

(A) ucz(P"y+ 1= pucz(P),or
B) ucz(P")+2 = pucz(P).
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We denote by P(A) the set of all closed Reeb orbits of A. As remarked
in Sect. 3.1, the space M?T’(p’q)(P, P”)/R has the structure of a smooth
manifold of dimension equal to O in case A, or equal to 1 in case B, since
Je Jreg(A) and all cylinders are somewhere injective. It admits a compacti-
fication described in [8], which is obtained by adding holomorphic buildings
of height > 1. In our particular situation where the buildings arise as limits
of cylinders, they can be given a slightly different and simpler description as
a finite collection {u,} of finite-energy J- -holomorphic spheres with one pos-
itive puncture, where v ranges in the set of vertices of a finite tree 7 with
a root v and a distinguished leaf v. Every map u, is not a trivial cylinder
over some periodic orbit. After a reparametrization we will always assume
that oo € C U {00} ~ CP! is the positive puncture of each 7,. The edges
are oriented as going away from the root, so at each vertex v # v there is
exactly one incoming edge from its parent, and possibly many outgoing edges
to its children. The negative punctures of u, are in 1-1 correspondence with
the outgoing edges of v, so that all leaves are planes, with the exception of the
distinguished leaf v which has one negative puncture where u, is asymptotic
to P”. The curve uy is asymptotic to P at its positive puncture, and we have
the following compatibility conditions:

e Let e be an edge from v to v'. There exists an orbit P, € P(A) such that u,
is asymptotic to P, at the negative puncture corresponding to e, and i, is
asymptotic to P, at its positive puncture.

e Lete,v,v, P, = (x,, T,) be as above and z € CP! be the negative puncture
of i, corresponding to e. There is an orientation reversing isometry?>

re : (T.CP'\ 0)/RT — (T5CP' \ 0)/R™

such that if c,_C : [0, €) — CP! are curves sati§fying c(0) =z, ¢(0) #0,
C(0) = oo, C(0) # 0 and r.(RT¢(0)) = RTC(0) then 7 o i, (c(t)) and
T o uy (C(t)) converge to the same point in x,(R) as ¢t — 0.

The set {r.} of isometries as above is called, in the language of SFT, a dec-
oration of the underlying nodal sphere. We say that u, is in level k if the
number of edges connecting v to v is k — 1. We shall briefly refer to {u,} as a
bubbling-off tree of finite-energy spheres. Clearly, the structure just described
is different but equivalent to that of a holomorphic building in the boundary

of M;T’(p’q)(P, P")/R explained in [8].
Let {[u,]} C M;T’(p’q)(P, P")/R be a sequence. We will see underlying
maps i1, representing this sequence as defined in CP'\ {[0 : 1], [1 : 0]} ~ C\0,

2 The conformal structure naturally induces a metric structure and an orientation on each circle
(T,CP' \ 0)/RT.
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where oo is the positive puncture and 0 is the negative puncture. Then {[i,]}
will be said to converge to a bubbling-off tree {i,} as above if for each vertex
v one finds constants ¢, € R, A,,, B, € C, A, # 0, such that

{z+> gc, oUn(Apz+ By)} = uy in CR(C\Ty) (115)

asn — oo, where I', C C is the set of negative punctures of u,,. The limiting
tree has a stem® S = (vp, ..., vy) which is the unique path connecting the
root v = vy to the distinguished leaf v = vy, where v;4 is a child of v;. The
edge connecting v; to v; 1 will be denoted by e¢; (i =0, ..., N —1). Since the
positive and negative punctures of u, are co, O respectively, we may assume,
after further reparametrization and without loss of generality, that for every
i=0,...,N—1wehaveO € I'y,, the edge e; corresponds to 0, and there are
constants ¢, € R, A, € C\ 0 such that

{2 g, o un(Apz)} — Uy, (2) (116)

in CRR(C\Ty,) asn — oo.
From now on we assume that 7 has more than one vertex, and split the
argument into a few steps.
(I) Every orbit P,,, corresponding to an edge e; connecting vertices v; and
vj+1 in the stem, is not contained in Kj.
By our assumptions, there are A-Reeb trajectories x; with minimal periods
T; > Osuchthat L; = x;(R), j = 0,1. We write L; = (x;, T}). Arguing
indirectly, suppose that P,, C K¢ for some i and set

io=min{i =0,...,N—1]| P, C Ko}.

We treat the case Pel.0 C Ly, the case Pel.0 C L is analogous. Then 3k > 1

such that P, = (xo, kTp) = Lg. Since P, P” do not intersect Ky we can
define

ip=max{i =0,...,N — 1| P, = L{} > io.

The dA-energy of the curves ﬁvio, inil 41 do not vanish. This is obvious for
the curve iy, in view of the definition of ig. The curve iy, ., is asymptotic to Lk
at its positive puncture oo. If its dA-energy vanishes then ﬁvil +1 18 asymptotic
to L, at the negative puncture 0 for some r < k, in view of the definition of
i1. If p > 0 is large enough and ¢/, t” are suitably chosen the loops

c(t)=to ﬁvi1+1 (p612n(t+t/)) and C(t) =7 o ﬁ“iwl (pfleiZn(tﬂ‘//))

3 Alternatively, the stem consists precisely of the vertices which have v among its descendants.
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are CO-close to xo(kTpt) and xo(r Tot), respectively. However, by (116), ¢ and
C can be approximated by loops of the form ¢ +— 7 o i1, (p,e! 2"+ with
suitable p,, 1,, so that they are homotopic to each other in S3 \ L{, which
implies that ¢ — xo(kTpt) and ¢t — xo(rTpt) have the same linking number
with L1, contradicting k # r.

Let U be a tubular neighborhood of Ly and ® : 4/ — R/Z x B be a
diffeomorphism, where B C R? is a small ball centered at the origin, so that
U, ®) is a Martinet tube for L, as in Definition 2.12. The coordinates in
R/Z x B will be denoted by (0, x, y). We write

Up(s,t) =10 ﬁvio (2T HIDY
Ui(s,t) =to ﬁvi1+1(62n(s+it))’
and

(Bo(s, 1), x0(s, 1), yo(s, 1)) = P o Up(s, 1) fors < —1,
O1(s, 1), x1(s,1), yi1(s,1)) = Do Uj(s,t) fors > +1.

Let A be the asymptotic operator at Llé. Then, by Theorem 2.14, we find
eigenvalues vy > 0 and v_— < O of A, and corresponding eigenfunctions
N+, n— satisfying Any = vins, such that the following holds: if ¢y (¢) :
R/Z — R2\ 0 are the representations of 74 in the frame {9, dy} of (0 x
R2?) IR/Zx0 = &0lxo(R)> TESpectively, then

(o (s, 1), o (s, 1)) = o DU (¢ 1) + R, (s, 1)) for s < s0,
(15, 1), y1(5, 1)) = 0 D1y 4 R_(5,1)) for s = —s0

where 59 < —1, |Re(s,7)] — 0 and |o®(s) — ve| — Oass — Foo.
Moreover we have

Oo(s,t) — kt +1t9 as s — —oo, uniformly in ¢ (117)
01(s,t) = kt +1t; as s — 400, uniformly in ¢

for some 19, t1. By our assumptions wcz(Ly') is odd, for every m > 1. Thus,
in view of the definition of the Conley—Zehnder index in terms of asymptotic
eigenvalues discussed in Sect. 2.1.3, see (23), the winding numbers of ¢4 and
¢ are different. Consequently, by the local representations above, we find
that, for s > 1, the loops t — Up(—s, t) and t — U (s, t) are not homotopic
in $3\ (Lo U L1). Here we used the existence of an isotopy of embeddings
fi 83\ L1 — S3\ Ly, t €0, 1], satisfying fo = id, fi1(S*>\ L1) =U and
ft(Lo) = Lo, Vt. Letus fix so > 1. By (116), the loop ¢ — Up(—sp, t) can
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be approximated by loops of the form ¢ > T o it (r,e'>" ™)) for suitable
values of r, and t,,. Also the loop t — U (s, t) can be approximated by loops
of the same form. This is a contradiction to the fact that t o i, (R x R/Z) C
S3\(LoUL1) Vn. Thus, all orbits P, liein $3\ K¢ and belong to the homotopy
class (p, q) since the cylinders i, do not touch 7! (Kj).

DT, = {0} foreveryi =1, ..., N, thatis, the tree coincides with the stem.

Arguing by contradiction, let z € T'y, \ {0} be a negative puncture corre-
sponding to an edge e # e; connecting v; to one of its children v* # v;4;.
The vertex v* together with all its descendants and all edges connecting them
form a proper sub-tree 71 C 7 with root v* that does not contain the distin-
guished leaf v (e is not an edge of 7;). Consider a leaf v of 7. The curve u;
is a finite-energy plane asymptotic to some P e P()) atits positive puncture.
We claim that D := {z € C | u3(z) € v~ '(Kp)} is non-empty and discrete.
Either P is contained in K or not. In the first case, P lies in one component
of K¢ and, consequently, 3z € C such that u;(z) belongs the other component
of K. In the second case, note that P is not contractible in §3 \ Ko, which
again implies D # (. If D accumulates at some point of C then Carleman’s
similarity principle implies that u; is a branched cover of some trivial cylinder
(over Ky), which is absurd since i is a plane. By (115) we obtain intersections
of the image of t o u,, with K for large n, a contradiction.

(IIT) We conclude the argument.

It is simple to conclude from steps (I) and (II), using positivity of inter-
sections and Carleman’s similarity principle, that the images of the cylinders
Uy, do not intersect 7~ 1(Kp). It follows that P, € P=T-(r-9)()) for every
i =0,..., N —1(in particular the P, are simply covered) and

o ity € M5V (P Py R,
o il eM—T(M)( i Per)/Rfori =0, ..., N —1,
o iy € M—T P9 p, . P")/R.

All these cyhnders are somewhere injective since (p, g) is arelatively prime
pair of integers, and regular since J € Jeg(A) by assumption. Usual argu-
ments using the additivity properties of the Fredholm indices show that we
get a contradiction in case A if 7 has more than one vertex. In this case

N-1>

M?T’(p ) (P, P")/R is therefore compact. Moreover, by regularity, it is also
discrete, and hence finite. This proves Theorem 3.2. Analogously, 7 has pre-

cisely two vertices v, v in case B, and the boundary of M;iT’(p’q)(P, P"/R
consists of bubbling-off trees with precisely two vertices: these will be

shortly denoted by [iy,u_] where uy € M?T’(p’Q)(P, P)/R and u_ €

M;T’(p’Q)(P’, P")/R, for some P’ € P=T-(P-9(}) satisfying ucz(P’) =
ucz(P) — 1 = pncz(P”) + 1 (the decoration is not explicit in the notation
[t , u_] but should not be forgotten). Conversely, every [z, u_] as above is a
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boundary point of M?T’(p D (p, P /R. This is proved using the gluing map
and noting that the closures of the images of the maps t o &+ are contained in
$3\ Ko: note here that all curves involved are somewhere injective and regular
and, consequently, gluing can be done in a standard fashion, moreover, the
glued cylinders have image in 7~ (S3 \ Ko). As in Floer theory, the number
of terms ¢ p» appearing in 3%(gp) is even, proving Theorem 3.3.

A.2 Proofs of Theorems 3.4 and 3.5

As in the proof of Theorems 3.2 and 3.3, the argument relies on the careful
analysis of the compactification of the moduli space M?T’(p D) (P, P") where
P e PP @ () ) and P” € P=T-(P-9) (\_) satisfy

(A) ucz(P") = pez(P), or
(B) ncz(P") +1=pcz(P).

Taking J regular, these are smooth manifolds of dimension 0 in case A,
and dimension 1 in case B, since there are no orbifold points (all cylinders are
somewhere injective because their asymptotic limits are simply covered Reeb
orbits).

By results of [8], M?T’(p 9 (P, P")is compactified by adding certain holo-
morphic buildings but, in our particular situation, these will be given the sim-
pler description of a bubbling-off tree of finite-energy spheres, similarly as was
done in the proofs of Theorems 3.2 and 3.3 above. These are again collections
{uy} of finite-energy spheres with one positive puncture, where the index v
runs on the set of vertices of a finite tree with a root v and a distinguished
leaf p. Each sphere is pseudo-holomorphic with respect to J4., J— or J, and
the Ji-spheres are not trivial cylinders over periodic orbits (although they
might be branched covers over such trivial cylinders). Moreover, for each path
w!, w2, ..., w" connecting the root w! = v to a leaf w” (w'*! is a child
of w') there is at most one vertex w"* such that &ym: is J-holomorphic, in
which case u,,; is J4-holomorphic if j < m, or J_-holomorphic if j > m,.
The stem is a particular example of such a path, and it must always contain a
J-holomorphic (punctured) sphere.

As before, we may assume that oo € C U {oo} ~ CP! is the positive
puncture of all u,. All the other data described in the proofs of Theorems 3.2
and 3.3 is still present. The negative punctures of i, are in 1-1 correspondence
with the outgoing edges of v. For every edge e connecting v to its child v’
there is an associated periodic trajectory P, which is a A -Reeb orbit if Uy 18
J, or J-holomorphic, or it is a A_-Reeb orbit if &, is J_orlJ -holomorphic.
Moreover, u, is asymptotic to P, at the corresponding negative puncture, and
u, is asymptotic to P, at its positive puncture. A set of decorations {r,} is
given exactly as before.
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Consider any sequence [i,] € M;T’(p’q)(P, P"),where J € jreg(f_, f+ :

Kp) and fi € Jreg(A+). We make all assumptions explained in Sect. 3.2, and
the argument that follows strongly relies on (45). By results from [8] we may
assume [, ] converges to a bubbling-off tree of finite-energy spheres as just
described, in the sense that for each vertex v one finds constants ¢, € R,
Ap, B, € C, A, # 0, such that (115) holds. For vertices in the stem we may
take B, = 0 asin (116).

We assume that this tree has more than one vertex, let

S=(@w=7,v1,...,UN—1,UN =)

be the stem (v;+1 is a child of v;), and let ¢; be the edge connecting v; to v; 1.
First we argue that all orbits P,; are not contained in K, then we proceed to
show that the tree coincides with the stem, and then we argue that the image
of the spheres do not intersect 7! (K).

(I) All orbits P,; are not contained in K.

For j = 0, 1 there are A-Reeb trajectories xjE of minimal period T such
that L; = X; (R).Wemaywrlte L;= (xj , TJ )orLJ = (xJ , TJ+) depending
on whether we want to see L; as a closed A_-Reeb orbit or as a closed A -
Reeb orbit. Arguing indirectly, we assume that some P,, is contained in Ko
and define

ip=min{i =0,...,N—1]| P,, C Ko}.

We only treat the case Pe,.0 C Lo, the other case is analogous, and find £ > 0

such that Pe,O = L’é (we could have Pei() = (xar , kT0+) or Peio = (xy, kT ")
depending on the value of iy, but always write L’é to denote one of these orbits).

Now we set
iy =max{i =0,...,N — 1| P, = L§} > io.

The image of the curves Evio and Evil 4, are not contained in 1= 1(Kp). In
fact, if uy, 4 has image contained in 771 (Ky) then it is contained in 7~ (Ly).

Itis important to note that T ~1(Lg) is an embedded cylinder with tangent space
invariant under J_, J or J+ Thus, using Carleman’s similarity principle, we
conclude that & Uy, ., 1S asymptotic to Ly, at the distinguished negative puncture
0 and, by the definition of i|, we must have r # k. As before, we find p very
large and ¢, 1" € R/Z such that t > T o liy, ,, (e’ 1+ is a loop close
to Llé and t > T oty ,, (p~Le2m ")y is a loop close to L{. Each of these

loops can be approximated by loops of the form ¢ > t o @iy, (p,e/Z*+m)),

with suitable p,, t,. Thus L/(‘) is homotopic to Lg in s3 \ L1, contradicting
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k # r. The image of ﬁ”fo is not contained 7~ (L) since we can use again the
similarity principle to conclude that 1711,-0 is asymptotic to an orbit contained in
K at its positive puncture, contradicting the definition of iy.

Let (Us, 1) be Martinet tubes for Ly as in Definition 2.12 with respect
to Ay, and let (0, x, y) denote standard coordinates in R/Z x R2, so that
4 (xf (T51) = (1,0,0). We have sections Yo (1) = d®3' - c](.00) of
the dA+-symplectic vector bundles (xoi Toi)*éo — R/Z, and @4+ may be con-
structed so that the loops ¢ > exp(eY+(¢)) (¢ > 0 small) have linking number
0 with Lg. Then Y4 can be completed to d A -symplectic frames of (xa—L Toi)*éo
whose homotopy classes are denoted by B+. As remarked in the beginning of
Sect. 3, p(Lo, A+) are the rotation numbers computed with respect to a global
frame, so that we get

p(Lo, At, B+) = p(Lo, A+) — 1 = Op(h) (118)

where here we used that the self-linking number of Lg is —1.
We denote

Uo(s., 1) = T o iy, (7 F") fors <« —1,

Ui(s,t)=1to L'Zvl.lﬂ(ez”(””)) for s > 1.

Leti* € {1,..., N — 1} be the unique index such that iz, is J-holomorphic,
and write

@4 oUp(s,t) ifig <i*

6 S,t 9“C S,t ’ ‘S’t . N 1
( ( ’ ) ( ’ )? ( )) I lr ( ) . = 3 (*S >> )
él‘s 1 ”{15 1 )1 ‘S’l (s ) .f. >.>;< 1 .

Let Ag be the asymptotic operator at the orbit LS withrespectto A4 ifig < i*or
with respect to A_ if ip > i*. We can use Theorem 2.14 to find an eigenvalue
vo > 0 of Ap and an eigensection 1 satisfying Agng = vono such that if
t — o(t) € R?\ 0 is the representation of ny with respect to the frame
{0x, 0y} of (0 x R2)|R/ZX(0’0) (here we use @ or ®_ depending on ip) then

(x0(s. ). 3o (s, 1)) = €0 P (g 1) + Ro(s. 1)), fors < sp < —1,
where |Ro(s, t)| + |ao(s) — vo| — 0 as s — —oo. Analogously we consider
the asymptotic operator A at the orbit Llé with respect to A ifi; < i* or with

respect to A_ if i1 > i*, and find eigenvalue v; < 0 of A and corresponding
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eigensection 7 such that if we represent 1y as ¢ +> ¢ (¢) similarly then

(1 (s, 1), y1(5. 1)) = &0 1D ¢ (1) 4 Ry (5, 1)), fors = —so > 1,

where |Ri(s,t)| + |aj(s) — vi] — 0 as s — 4o0. The functions
Oo(s, 1), 01(s, t) behave exactly as in (117). Since Ly is irrationally elliptic
(for both A1), vp > 0 and vi < 0 we can apply Lemma 2.11 to obtain, if
s > 1, that

link(r — Ugy(—s, 1), Lo) = wind(o) kOo(hy) ifig <i* (119)
n J— n
! 045, 1)y 20 ind(%o) > kbo(h_) ifig > i*
and
link(r — U, (s, 1), Ly) = wind(¢;) kOo(hy) ifiy <i* (120)
— =
n 18 1, 20 ind(g1) < kOp(h_) ifi; > i*

Since ig > i* implies i} > i* we get from (119)—(120) that
link( > Ug(—s, 1), Lo) > link(t > Uy (s, 1), Lo) (s> 1)  (121)

in view of the crucial assumption 8y(h_) < 89(h4). But, as done before, the
loops t +— Up(—s,t) and t +— Uj(s,t) (s > 1) can be approximated by
loops of the form ¢ > 7 o i, (R,e'>* ) for suitable R,, t,,, which implies
that t — Up(—s,t) and t +— Ui (s, t) must be homotopic to each other in
§3\ Ko and, consequently, must have the same linking number with L. We
used that the cylinders u, do not touch 77 1(K¢). This contradicts (121) and
(D) is proved.

InTr,, = {0} foreveryi =1, ..., N, thatis, the tree coincides with the stem.
(IIT) Each cylinder does not intersect 7! (K() and the asymptotic orbits cor-
responding to the edges lie in P=7-(7-9) (), ) or in P=T- P9 () _).

The arguments to prove (II) and (III) are entirely analogous to those
explained in Sect. 1, we do not repeat them here. Note only that, since 7~ (K()
is a pair of disjoint embedded cylinders in Wg, with a C-invariant tangent space
regardless of the almost complex structure J_, J or J, we can repeat all the
steps using positivity of intersections and the similarity principle. The assump-
tion that no closed A-Reeb orbit contained in §3\ K is contractible in $3\ K
is crucial.

We assumed that the tree has at least two vertices. In case A, additivity of
the Fredholm indices gets us a contradiction. Thus, in case A, the limiting tree
has exactly one vertex which is an element of M?T’(p ) (P, P"), the sequence
[u,] is eventually constant and Theorem 3.4 is proved. In case B again additiv-
ity of the Fredholm indices shows that the tree has two vertices, so the boundary
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of M?T’(p @) (P, P") consists of broken cylinders, one level is J -holomorphic

index O cylinder corresponding to a term of ®(J), and the other is either a
J_ or a Jy-holomorphic cylinder corresponding to a term of d(A4, J4+) or of
d(A_, J_). These facts together with a glueing argument, which is standard in
view of regularity of the curves involved, show the converse: any such broken
cylinder is in the boundary. The important observation here is that when we
glue two regular cylinders with images in 7~ ($3 \ K¢) asymptotic to orbits in
the complement of Ky we obtain a cylinder with image in 7! (53\ K(). Con-
sequently, every generator gpr € Cf_Tl’(p ’Q)(h_Xo) appears an even number
of times in the chain ®,._1(J) o 8,(Ay, J4)(gp) — 35 (A, J_) o D (J)(gp),
for every generator gp € C*ST’(]) ’q)(h+ko), as in Floer theory. Theorem 3.5
follows.

A.3 Proofs of Theorems 3.6 and 3.7

We need to study the compactification of moduli spaces M (p 9 (p, P,

where Jy € Treg(As), Jo, J1 € jreg(L, Tyt Ko, {Ji) € jreg(L, Ty : Ko),
and P € P=T-P-D (), P” € P=T- (1.9 ()_) satisfy

(A) nez(P) —pez(P") = —1,0r
(B) ncz(P) — pucz(P") =0.

We describe this compactification again appealing to the notion of bubbling-
off tree of finite-energy spheres: any sequence (t,, [u,]) € M{—JT} (P-9) (P, P")
admits a subsequence, still denoted (%,, [&,]), which converges to a pair
(4, {uy}) where t, — t, € [0, 1] and {u,} is a bubbling-off tree exactly
as described in the proofs of Theorems 3.4 and 3.5. All u, are finite-energy
spheres with one positive puncture, each being pseudo- holomorphlc with
respect to either J_, J;, or J+ As before, we take representatives u,, with
domains C \ {0} =~ Cp! \ {[0: 1], [1 : O]}, assume 0, oo are the negative and
positive puncture, respectively, and ask that for each vertex v there are con-
stants ¢,, A, # 0, By, such that (115) holds. For vertices in the stem we can
arrange that (116) holds. All the other properties and compatibility conditions
hold as before.

We can then repeat the same argument, using the important assumption that
0j(h-) < 0;(hy)for j =0, 1to conclude that the tree coincides with its stem,
all edges correspond to orbits either in P=7- - () or in P=T-P-D()_),
and the image of the cylinders corresponding to the vertices do not intersect
1 (Ko).

Then we strongly rely on the genericity assumptions on the chosen almost
complex structures to argue, using the additivity of the Fredholm indices,
that in case A the tree has precisely one vertex (the root) v and (¢, [uy]) €
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M—JT} (p.q)
t
and the sequence (t,, [u,]) is eventually constant. This proves Theorem 3.6.

Similarly, in case B the tree is one of the following two types:

(P, P"). Since this space is 0-dimensional, its points are isolated

e It has exactly one vertex v = v, (¢, [uy]) € M<T (P q>(P, PNH. Ift, €

(0, 1) then (t, [uy]) is an interior point of the moduh space.
e It has exactly two vertices U # v, t, € (0, 1) and there exists an orbit P’
such that either

P e POy, (1. [Hs]) € MST PO (p, Py, [y
M_T(pq)(P/ P”)

or

P e PTG i) € MGV (PP, (b, i)

<T.(p.q) ;p/ pr
€ M{Jt} (P, P").

A well-known argument, using the glueing map, proves that there is a bijec-
tive correspondence between boundary points of M—T} (P q)(P P”) and the

set of trees which are of the second type or of the first type with £, = 0, 1.
Here it is crucial that all relevant curves are somewhere injective and regular.
Theorem 3.7 follows as in Floer theory.
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