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Abstract We consider Reeb flows on the tight 3-sphere admitting a pair of
closed orbits forming a Hopf link. If the rotation numbers associated to the
transverse linearized dynamics at these orbits fail to satisfy a certain resonance
condition then there exist infinitely many periodic trajectories distinguished
by their linking numbers with the components of the link. This result admits
a natural comparison to the Poincaré–Birkhoff theorem on area-preserving
annulus homeomorphisms. An analogous theorem holds on SO(3) and applies
to geodesic flows of Finsler metrics on S2.

1 Introduction

Since the work of Poincaré and Birkhoff the notion of global surface of section
has been used as an effective tool in finding periodic motions of Hamiltonian
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334 U. Hryniewicz et al.

systems with two degrees of freedom, see [4,5,34,35]. A global section of
annulus-type on an energy level implies the existence of many closed orbits
by the celebrated Poincaré–Birkhoff Theorem [2,3,36] if the associated return
map satisfies a twist-condition.

Our goal is to describe a non-resonance condition for Reeb flows on the
tight 3-sphere which implies the existence of infinitely many closed orbits,
and generalizes the twist-condition on the Poincaré–Birkhoff Theorem to cases
where a global surface of section might not be available. We assume instead
that there is a pair of periodic orbits forming a Hopf link. The infinitesimal
flow about the two components defines rotation numbers and, as we shall see,
if these numbers do not satisfy a precise resonance condition then infinitely
many closed orbits exist and are distinguished by their homotopy classes in
the complement of the Hopf link. This lack of resonance can be seen as a
twist-condition: one finds a non-empty open twist interval such that there is a
closed orbit associated to every rational point in its interior.

In the presence of a disk-like global surface of section for the flow, an orbit
corresponding to a fixed point of the return map and the boundary of the global
section constitute a Hopf link. According to a remarkable result by Hofer et
al. [21] this is the case for Reeb flows given by dynamically convex contact
forms on the 3-sphere. The return map restricted to the open annulus obtained
by removing a fixed point is well-defined. In this case, the lack of resonance
mentioned above is a twist-condition, and our result can be reduced to the
Poincaré–Birkhoff Theorem, or rather to a generalization due to Franks [13].
We will explain this analogy more thoroughly in Sect. 1.2.

There are examples of Hopf links and Reeb flows as above where both
components of the link do not bound a disk-like global section. In this case a
two-dimensional reduction is not available. To circumvent this difficulty, we
use a different approach in place of the theory of global surfaces of section
which is of a variational nature. The idea is to consider the homology of the
abstract Conley index of a sufficiently large isolating block for the gradient flow
of the action functional, as Angenent did in [1] for the energy. The analysis of
Angenent [1] shows that properties of the curve-shortening flow are sufficient
in order to define a Conley index associated to a so-called flat knot, which
in special cases can be used to deduce existence results for closed geodesics
on the 2-sphere. We shall consider instead cylindrical contact homology on
the complement of the Hopf link, which is defined using the machinery of
punctured pseudo-holomorphic curves in symplectizations as introduced by
Hofer [17]. In this sense, the results are analogous to those of [1], but in the
more general setting of Reeb flows on the tight 3-sphere. We explain this
analogy more thoroughly in Sect. 1.3.
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A Poincaré–Birkhoff theorem 335

1.1 Statement of main result

Recall that a 1-form λ on a 3-manifold V is a contact form if λ ∧ dλ never
vanishes. The 2-plane field

ξ = ker λ (1)

is a co-oriented contact structure, and the associated Reeb vector field Xλ is
uniquely determined by

iXλλ = 1, iXλdλ = 0. (2)

The contact structure ξ is said to be tight if there are no overtwisted disks, that
is, there does not exist an embedded disk D ⊂ V such that T ∂D ⊂ ξ and
Tp D �= ξp, ∀p ∈ ∂D. In this case we call λ tight.

By a closed Reeb orbit we mean an equivalence class of pairs P = (x, T )
such that T > 0 and x is a T -periodic trajectory of Xλ, where pairs with the
same geometric image and period are identified. The set of equivalence classes
is denoted by P(λ). P = (x, T ) is called prime, or simply covered, if T is
the minimal positive period of x . Throughout a knot L ⊂ V tangent to RXλ

is identified with the prime closed Reeb orbit it determines, in particular, L
inherits an orientation.

We are concerned with the study of the global dynamical behavior of Reeb
flows associated to tight contact forms on

S3 = {(x0, y0, x1, y1) ∈ R
4 | x2

0 + y2
0 + x2

1 + y2
1 = 1}

where (x0, y0, x1, y1) are coordinates in R
4. For instance consider the 1-form

λ0 = 1

2
(x0dy0 − y0dx0 + x1dy1 − y1dx1). (3)

It restricts to a tight contact form on S3 inducing the so-called standard contact
structure

ξ0 = ker λ0|S3 . (4)

In dimension 3 a contact structure ξ induces an orientation of the underlying
manifold M in the following manner. If p ∈ M then choose a contact form α

defined near p satisfying ξ = ker α. The 3-form α ∧ dα is nowhere vanishing
on its domain of definition, and defines an orientation of Tp M by declaring that
a basis {v1, v2, v3} ⊂ Tp M is positive if, and only if, α ∧ dα(v1, v2, v3) > 0.
This orientation of Tp M is independent of the choice of α, and we get a global
orientation letting p vary over M . If M is already oriented then one calls ξ
positive if it induces the given orientation. Let us orient S3 as the boundary
of the unit ball in R

4, which is oriented by dλ0 ∧ dλ0. By a theorem due to
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Eliashberg [12], for every tight contact form λ on S3 defining a positive contact
structure, there exists a diffeomorphism � : S3 → S3 such that �∗λ = f λ0,
for some smooth f : S3 → (0,+∞).

We use the term Hopf link to refer to a transverse link on (S3, ξ0) which is
transversally isotopic to K0 = L0 ∪ L1 where

Li = {(x0, y0, x1, y1) ∈ S3 | xi = yi = 0}, i = 0, 1. (5)

Remark 1.1 Consider the set

F = { f ∈ C∞(S3, (0,+∞)) | ivd f = 0 ∀v ∈ ξ0|K0}. (6)

The set F consists precisely of the functions f : S3 → (0,+∞) such that
the Reeb vector field of f λ0 is tangent to K0. Moreover, for every defining
contact form λ on (S3, ξ0) admitting a pair of prime closed Reeb orbits that are
components of a Hopf link, there exists some diffeomorphism � of S3 such
that �∗λ = f λ0, for some f ∈ F , and � maps K0 onto the Hopf link. To
see this, first note that any such contact form is written as λ = hλ0, for some
h : S3 → R \ {0} smooth. Consider a transverse isotopy gt : K0 → (S3, ξ0),
t ∈ [0, 1], such that g0 is the inclusion map K0 ↪→ S3 and g1(K0) is a pair of
prime closed Reeb orbits of hλ0. By Theorem 2.6.12 from [16], there exists a
contact isotopy {ϕt }t∈[0,1] of (S3, ξ0) such that ϕ0 = id and ϕt |K0 ≡ gt , ∀t .
Then ϕ∗1 (hλ0) = kλ0 for some k : S3 → R \ {0} smooth. If k is positive we
take f = k and � = ϕ1. If k is negative we consider the diffeomorphism
T (x0, y0, x1, y1) = (x0,−y0, x1,−y1), which satisfies T ∗λ0 = −λ0, so we
can take � = ϕ1 ◦ T and f = −k ◦ T . In both cases we must have f ∈ F
since the Reeb vector field of f λ0 is tangent to K0.

We define the transverse rotation number ρ(P) of a closed Reeb orbit P
by looking at the rate at which the transverse linearized flow rotates around
P , measured with respect to coordinates on the contact structure induced by a
global positive frame. This is well-defined as a real number and equals half the
mean Conley–Zehnder index. For a more detailed discussion see Sect. 2.1.5
below.

Finally, we introduce some notation in order to simplify our statements.
Given two pairs of real numbers (s0, t0), (s1, t1) in the set {(s, t) | s > 0 or t >
0} we write (s0, t0) < (s1, t1) if, viewed as vectors in R

2, the argument of
(s1, t1) is greater than that of (s0, t0) when measured counter-clockwise by
cutting along the negative horizontal axis. A pair of integers (p, q) will be
called relatively prime if there is no integer k > 1 such that (p/k, q/k) ∈
Z× Z. Our first main result reads as follows.

Theorem 1.2 Let λ = f λ0, f > 0, be a tight contact form on the 3-sphere
admitting prime closed Reeb orbits L0, L1 which are the components of a Hopf
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A Poincaré–Birkhoff theorem 337

link. Define real numbers θ0, θ1 by

θi = ρ(Li )− 1, for i = 0, 1, (7)

where ρ is the transverse rotation number, and suppose that (p, q) is a rela-
tively prime pair of integers satisfying

(θ0, 1) < (p, q) < (1, θ1) or (1, θ1) < (p, q) < (θ0, 1). (8)

Then there exists a prime closed Reeb orbit P ⊂ S3 \ (L0 ∪ L1) such that
link(P, L0) = p and link(P, L1) = q.

In the above statement P , L0 and L1 are oriented by the Reeb vector field,
S3 is oriented by the contact structure ξ0 as explained before, and the integers
link(P, L0) and link(P, L1) are defined using these choices, see Fig. 1 for an
example with p = 7 and q = 1.

A weaker version of Theorem 1.2 is found in [32] under the restrictive
assumption that the components of the Hopf link are irrationally elliptic Reeb
orbits.

1.2 Interpretation in terms of the Poincaré–Birkhoff theorem

In 1885 Poincaré [34] introduced the rotation number

ρ( f ) = lim
n→∞

Fn(x)

n
mod Z (9)

of an orientation preserving circle homeomorphism f : S1 → S1, S1 ≡ R/Z,

where F : R → R is one of its lifts. Notice that the limit in (9) exists and does
not depend on x ∈ R or on the lift F . He observed its intimate connection to
the existence of periodic orbits.

Theorem 1.3 (Poincaré) f admits a periodic orbit if, and only if, ρ( f ) =
p/q ∈ Q/Z.

If one considers an area preserving annulus homeomorphism

f : S1 × [0, 1] → S1 × [0, 1],
isotopic to the identity map, much can be said about the existence of periodic
orbits when f satisfies a twist hypothesis. To be more precise, let us first recall
the widely known Poincaré–Birkhoff Theorem in its original form. Let

F : R× [0, 1] → R× [0, 1]
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Fig. 1 A Hopf link K0 = L0 ∪ L1 and a closed Reeb orbit P satisfying link(P, L0) = 7,
link(P, L1) = 1

be a lift of f with respect to the covering map π : R × [0, 1] → S1 × [0, 1]
and denote by I ⊂ R the open (possibly empty) interval bounded by the points

lim
n→∞

p1 ◦ Fn(x, 0)

n
and lim

n→∞
p1 ◦ Fn(x, 1)

n
.

Here p1 : R× [0, 1] → R is the projection onto the first factor.

Theorem 1.4 (Poincaré–Birkhoff, see [2,3,36]) If I ∩ Z �= ∅ then f has at
least 2 fixed points.

A proof of a version of this theorem in the smooth category using pseudo-
holomorphic curves can be found in [9].

A map f on S1 × [0, 1] satisfying I �= ∅ for some lift is said to satisfy
a twist condition. Considering the iterates of f one can find infinitely many
periodic orbits under this twist condition. This argument can be found in [33]
where the following theorem is proved.

Theorem 1.5 (Neumann [33]) For any q ∈ N = {1, 2, . . .}, the number of
periodic orbits of prime period q is at least equal to

2#{p ∈ Z : p/q ∈ I and gcd(p, q) = 1}.

Franks generalized Theorem 1.5, providing the existence of periodic orbits
under a much weaker twist condition, even when f is not defined on the
boundary.
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Theorem 1.6 (J. Franks, see [13–15]) If there exist z1, z2 ∈ R × [0, 1] such
that

lim
n→∞

p1 ◦ Fn(z1)

n
≤ p

q
≤ lim

n→∞
p1 ◦ Fn(z2)

n
, (10)

then f has a periodic point z with period q and

lim
n→∞

p1 ◦ Fn(z0)

n
= p

q
,

for any z0 satisfying z0 ∈ π−1(z).

Both limits in (10) are assumed to exist. Let us refer to the periodic orbits
obtained in Theorem 1.6 as the p/q-orbits. In [15] the reader also finds a
version of the above statement on the open annulus.

Theorem 1.2 can be reduced to Theorem 1.6 in the case one of the compo-
nents of the Hopf link bounds a disk-like global surface of section. We very
briefly sketch this argument and do not give full details since the more general
Theorem 1.2 does not require this surface of section at all.

Definition 1.7 Let λ be a tight contact form on S3 and denote by Xλ its Reeb
vector field. We say that an embedded disk� ⊂ S3 is a disk-like global surface
of section for the Reeb flow if ∂� = P is a closed orbit, Xλ is transverse to �̊
and all orbits in S3 \ P intersect �̊ infinitely often, both forward and backward
in time.

Let L0 ∪ L1 be a Hopf link formed by closed Reeb orbits and assume
that L1 bounds a disk-like global surface of section for the Reeb flow of
λ = f λ0. Define θ0, θ1 as in Theorem 1.2. Assuming, for simplicity, that
λ is non-degenerate then results from [25,26] tell us that there is an open
book decomposition of S3 with binding L1 and disk-like pages which are
global surfaces of section. See also [23,24] for the dynamically convex case.
In particular, there is a diffeomorphism S3 \ L1 � R/Z × B where B ⊂ C

is the open unit ball, such that L0 � R/Z × {0} and if we denote by ϑ

the R/Z-coordinate then the Reeb flow satisfies dϑ(Xλ) > 0. Moreover, the
Conley–Zehnder index of L1 is at least 3, which implies θ1 > 0. We assume,
in addition, that our coordinates are such that R/Z× [0, 1) is contained on an
embedded disk spanning L0. The first return map g to the page 0× B has 0 as
a fixed point and, introducing suitable polar coordinates B \0 � R/Z×(0, 1),
we get an area-preserving diffeomorphism of R/Z × (0, 1) still denoted by
g. The open book decomposition also induces an isotopy from the identity
to g. Lifting the identity on R/Z × (0, 1) to the identity on R × (0, 1), this
isotopy distinguishes a particular lift g̃ of g to R × (0, 1). The map g̃ can
now be continuously extended to R×[0, 1) by using the transverse linearized
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flow at L0. Under additional assumptions we can also extend g̃ continuously
to R/Z× [0, 1]. Since L0 has self-linking number −1, the canonical basis of
0×C induces, via the identification S3 \ L1 � R/Z× B, a homotopy class of
symplectic frames of ker λ|L0 with respect to which the transverse linearized
Reeb flow has rotation number equal to θ0. Hence the rotation number of
g̃|R×0 is θ0. By a similar reasoning, the rotation number of g̃|R×1 is 1/θ1. One
obtains (p, q)-orbits as asserted in Theorem 1.2 from Franks’ p/q-orbits in
Theorem 1.6 taking z1 ∈ R × 0 and z2 ∈ R × 1 under the assumption that
θ0 < p/q < 1/θ1 or 1/θ1 < p/q < θ0.

What is unsatisfactory about this argument is that one may construct exam-
ples of Reeb flows and Hopf links L0∪L1 as above satisfying the hypotheses of
Theorem 1.2 but neither L0 nor L1 bound a global disk-like surface of section.
Such an example is provided in Sect. 4.1 below when choosing θ0, θ1 to be
both negative numbers: in this case, the discussion thereafter shows that there
are periodic orbits Pi having linking number 0 with Li , for i = 0, 1, which
clearly conflicts with the assumption of a global surface of section. For this
reason, we approach the problem with a different set of tools. The argument
we pursue has instead the spirit of an argument of Angenent [1], which we
will recall shortly.

1.3 The unit tangent bundle of S2

Poincaré observed the importance of studying area-preserving annulus home-
omorphisms by finding annulus-type global sections for the restricted 3-
body problem. In his book [5], Birkohff proved that the geodesic flow of
a Riemannian metric g on S2 with positive curvature also admits annulus-
type global sections. In fact, one can always find a simple closed geo-
desic γ : R/T Z → S2, with minimal period T and parametrized by arc-
length. Its image separates S2 in two closed disks C1 and C2. For each
x ∈ image(γ ) = ∂C1 = ∂C2, let n(x) ∈ M be the normal vector to ∂C1
pointing outside C1, where M = {(x, v) ∈ T S2 | g(v, v) = 1} � SO(3) is
the unit tangent bundle, and let

� = {(x, v) ∈ M : x ∈ image(γ ) and g(v, n(x)) ≥ 0}.

Denote by γr the reverse orbit γr (t) = γ (−t) of γ . Then γ , γr admit natural
lifts γ̇ , γ̇r to M and � is an annulus-type global surface of section for the
geodesic flow with boundary ∂� = image(γ̇ ) ∪ image(γ̇r ). The first return
Poincaré map to �̊ can be extended to the boundary ∂� using the second
conjugate point, and this induces an area preserving annulus homeomorphism
f : S1 × [0, 1] → S1 × [0, 1] isotopic to the identity. By Theorem 1.6, f
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A Poincaré–Birkhoff theorem 341

admits all the p/q-orbits as long as the twist condition (10) is satisfied for a
lift F of f .

It is well-known that one might not expect the existence of these types of
(p, q)-orbits for C1 volume preserving flows on a 3-manifold. In fact, inserting
a plug of Kuperberg–Schweitzer–Wilson type, see [30,37,40], one can destroy
them without creating new ones. However, as an example, such orbits still exist
for geodesic flows on S2, even when an annulus-type global section does not
exist. To be more precise, we recall Angenent’s result [1] on curve shortening
flows applied to the existence of (p, q)-satellites of a simple closed geodesic
γ . A Jacobi field over γ is characterized by a solution y : R → R of

y′′(t) = −K (γ (t))y(t), (11)

where K is the Gaussian curvature of (S2, g). For a non-trivial solution y, we
can write y′(t) + iy(t) = r(t)eiθ(t), t ∈ R, for r and θ smooth with non-
vanishing r . The inverse rotation number of γ , denoted by ρ(γ ), is defined
by

ρ(γ ) = T lim
t→∞

θ(t)

2π t
, (12)

where T is the minimal period of γ . The inverse rotation number coincides
with the transverse rotation number explained before and we may use both
terminologies in the context of geodesic flows.

Let p and q �= 0 be relatively prime integers and n(t) be a continuous
normal unit vector to a simple curve γ : R/Z → S2. A (p, q)-satellite of γ is
any smooth immersion R/Z → S2 equivalent to

αε : R/Z → S2 αε(t) = expγ (qt) (ε sin(2πpt)n(qt)) ,

where ε > 0 is small and exp is any exponential map. By equivalent immersed
curves we mean curves which are homotopic to each other on S2 through
immersed curves, but tangencies with γ and self-tangencies are not allowed
in the homotopy. The resulting equivalence classes are called flat-knot types
relative to γ .

Theorem 1.8 (Angenent [1]) Let g be a smooth Riemannian metric on S2, and
γ be a closed prime geodesic which is a simple curve. If the rational number
p/q ∈ (ρ(γ ), 1)∪ (1, ρ(γ )) is written in lowest terms, then g admits a closed
geodesic γp,q which is a (p, q)-satellite of γ . The geodesic γp,q intersects γ
at exactly 2p points and self-intersects at p(q − 1) points.

One remarkable aspect of Angenent’s proof is that it does not use any surface
of section: the geometric arguments available in the presence of a global surface
of section are replaced with the analysis of the curve-shortening flow which
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allows for the definition of an isolating block in the sense of Conley theory [10].
Theorem 1.8 is obtained by showing that a certain isolated invariant set has a
non-trivial index.

According to Angenent the results from [1] were inspired by a question
asked by Hofer in Oberwolfach 1993. Hofer asked if it was possible to apply
the Floer homology construction to curve shortening, and which results could
be obtained in this way. Here we apply Floer theoretic methods to generalize
Theorem 1.8 to broader classes of Hamiltonian systems.

Let g0 be the Euclidean metric on R
3 restricted to S2 = {x ∈ R

3 |
g0(x, x) = 1}. In Sect. 7, we prove a version of Theorem 1.2 on the unit
sphere bundle T 1S2 associated to g0. Let λ = f λ̄0, f > 0, be a contact form
inducing the standard tight contact structure ξ̄0 := ker λ̄0 on T 1S2, where
λ̄0|v ·w = g0(v, d� ·w) and � : T 1S2 → S2 is the bundle projection. Recall
that there exists a natural double covering map D : S3 → T 1S2 satisfying
D∗λ̄0 = 4λ0|S3 and which sends the Hopf link L0 ∪ L1 to the pair of closed
curves l0 := D(L0) and l1 := D(L1), both transverse to ξ̄0. We call the link
l := l0 ∪ l1 a Hopf link in T 1S2, as well as any link which is transversally
isotopic to it. The Hopf link l is said to be in normal position. According to
Theorem 2.6.12 from [16], any Hopf link can be brought to normal position
by an ambient contact isotopy. The homotopy class [γ ] ∈ π1(T 1S2 \ l, pt) of
a closed curve γ ⊂ T 1S2 \ l is determined by two half-integers

wind0(γ ) ∈ Z/2, wind1(γ ) ∈ Z/2 satisfying wind0(γ )+ wind1(γ ) ∈ Z.

They are defined as follows: any lift of γ to S3 \ (L0 ∪ L1) has well-defined
arguments φ0, φ1 of the complex components x0 + iy0 and x1 + iy1, and
windi (γ ) is defined as the variation of a continuous lift of φi to R divided by
2π , i = 0, 1. See Sect. 7 for a more detailed discussion.

Theorem 1.9 Let λ = f λ̄0 be a contact form on T 1S2 admitting prime closed
Reeb orbits li , i = 1, 2, which are the components of a Hopf link l, assumed
to be in normal position without loss of generality. Let η0 and η1 be the real
numbers defined by

ηi = 2ρ(li )− 1, i = 0, 1, (13)

where ρ(li ) are the transverse rotation numbers of li . Let (p, q) ∈ Z × Z be
a relatively prime pair of integers. Assume that

(1, η1) < (p, q) < (η0, 1) or (η0, 1) < (p, q) < (1, η1). (14)

Then one of the following holds.
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A Poincaré–Birkhoff theorem 343

(i) If p+ q is even, then λ admits a prime closed Reeb orbit γp,q ⊂ T 1S2 \ l,
non-contractible in T 1S2, satisfying

wind0(γp,q) = p/2, wind1(γp,q) = q/2. (15)

(ii) If p+ q is odd, then λ admits a prime closed Reeb orbit γp,q ⊂ T 1S2 \ l,
contractible in T 1S2, satisfying

wind0(γp,q) = p, wind1(γp,q) = q. (16)

Theorem 1.9 implies that if the resonance condition η0 = 1/η1 > 0 is not
satisfied, then we obtain infinitely many (p, q)-orbits characterized by their
homotopy classes in T 1S2 \ l. This includes non-contractible orbits in T 1S2.

Now we briefly discuss some applications of Theorem 1.9 which, in partic-
ular, generalize Angenent’s Theorem 1.8 to geodesic flows of Finsler metrics
on the 2-sphere.

Let F : T S2 → R be a Finsler metric with the associated unit tangent
bundle F−1(1), and let LF : T ∗S2 \ 0 → T S2 \ 0 be the associated Legendre
transformation. This induces a cometric F∗ = F ◦LF on T ∗S2. Analogously
we have F0 = √g0(·, ·), LF0 and F∗0 for the Euclidean metric. On T ∗S2 we
have the tautological 1-form λtaut. The 1-form λ̄F = (L−1

F )∗λtaut is a contact
form on F−1(1) inducing the contact structure ξ̄F = ker λ̄F , and its Reeb flow
coincides with the geodesic flow of F . Clearly λ̄0 = (L−1

F0
)∗λtaut. Consider

the map � : (F∗0 )−1(1)→ (F∗)−1(1), p �→ p/F∗(p). Then

G = LF ◦� ◦ L−1
F0
: (T 1S2, ξ̄0)→ (F−1(1), ξ̄F ) (17)

defines a co-orientation preserving contactomorphism, that is, G∗λ̄F = f λ̄0
for some positive function f . A geodesic γ of F with unit speed admits a lift

γ̄ := G−1(γ̇ ) (18)

under the projection �, which is a trajectory of the Reeb flow of f λ̄0. We
call γ contractible when γ̄ is contractible in T 1S2, or equivalently when γ̇ is
contractible in F−1(1).

Corollary 1.10 Let F be a Finsler metric on S2, and γ0, γ1 be two closed
geodesics that lift to a Hopf link l = l0 ∪ l1 ⊂ T 1S2, that is, l0 = γ̄0 and
l1 = γ̄1. Without loss of generality we assume l is in normal position. Consider
their inverse rotation numbers ρ(li ), i = 0, 1, and let

ηi = 2ρ(li )− 1, i = 0, 1.
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If (p, q) is a relatively prime pair of integers satisfying

(η0, 1) < (p, q) < (1, η1) or (1, η1) < (p, q) < (η0, 1)

then we have one of the following cases.

(1) If p + q is even, then F admits a non-contractible prime closed geodesic
γp,q whose lift γ̄p,q lies in T 1S2 \ l and satisfies

wind0(γ̄p,q) = p/2, wind1(γ̄p,q) = q/2.

(2) If p + q is odd, then F admits a contractible prime closed geodesic γp,q
whose lift γ̄p,q lies in T 1S2 \ l and satisfies

wind0(γ̄p,q) = p, wind1(γ̄p,q) = q.

Jacobi fields (11) are now defined using flag curvatures K = K (Tγ S2, γ̇ ).
To give a concrete example, Corollary 1.10 can be applied to a pair of sim-
ple closed geodesics which intersect each other at exactly two points in S2.
Corollary 1.10 also applies to any Finsler metric admitting an embedded circle
C ⊂ S2 which is a geodesic when suitably parametrized in both directions.
In fact, C and its reversed Cr lift to components of a Hopf link which can be
transversally isotoped to normal position. Note that the rotation numbers η0,
η1 may not be related in this case, so that the “twist interval” may be empty.
This is the case in the examples of Katok [29].

We specialize the discussion even further now, to make the comparison with
Theorem 1.8 clearer. We shall say that a simple closed geodesic γ of a Finsler
metric on S2 is reversible if the curve t �→ γ (−t) is a reparametrization of
another geodesic γr and if, in addition, the inverse rotation numbers ρ(γ ) and
ρ(γr ) coincide. The geodesics γ and γr determine a link in the unit sphere
bundle F−1(1) defined by

lγ = {γ̇ (t) | t ∈ R} ∪ {γ̇r (t) | t ∈ R}
where γ and γr are assumed to be parametrized by arc-length. For example, if
the Finsler metric F is itself reversible and it has a simple closed geodesic γ ,
then γ is reversible. Any (p, q)-satellite relative to γ distinguishes a homotopy
class in F−1(1) \ lγ .

Corollary 1.11 Let F be a Finsler metric on S2 admitting a reversible simple
closed geodesic γ , and let ρ ≥ 0 denote its inverse rotation number. Let
p, q ∈ Z\0 satisfy gcd(|p|, |q|) = 1. If p/q ∈ (ρ, 1)∪(1, ρ) then there exists
a geodesic γp,q such that its velocity vector γ̇p,q is homotopic in F−1(1) \ lγ
to the normalized velocity vector of a (p, q)-satellite of γ .
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The proofs of Corollaries 1.10, 1.11 are found in Sects. 7.2, 7.3 respectively.
Under appropriate pinching conditions on the flag curvatures, it is possible to
show that certain (p, q)-satellites do not exist when p/q is out of the twist
interval, see [27] for a non-existence result of (1, 2)-satellites.
Organization of the paper. In Sect. 2 we describe basic facts about the
Conley–Zehnder index and pseudo-holomorphic curves. In Sect. 3 we recall
the definition of cylindrical contact homology in the complement of a Hopf
link from [32]. Section 4 is devoted to computing contact homology for spe-
cial model forms. Theorem 1.2 is proved in the non-degenerate case in Sect. 5
combining the results from the previous sections. In Sect. 6 we pass to the
degenerate case by a limiting argument. Section 7 is devoted to proving Theo-
rem 1.9 and its applications to geodesics. Proofs of theorems related to contact
homology in the complement of the Hopf link are included in the appendix,
for completeness.

2 Background

2.1 The Conley–Zehnder index in 2 dimensions

Here we review the basic facts about the Conley–Zehnder index for symplectic
paths in dimension 2. Denoting by Sp(1) the group of 2×2 symplectic matrices,
consider the set

�∗={ϕ : [0, 1]→ Sp(1) is piecewise smooth |ϕ(0)= I, det [ϕ(1)− I ] �=0} .

Our convention is that piecewise smooth functions are always continuous.
Throughout this Section we may freely identify R

2 � C via the isomorphism
(x, y) �→ x + iy.

2.1.1 The axiomatic characterization

According to Hofer et al. [22], the Conley–Zehnder index can be axiomatically
characterized as follows.

Theorem 2.1 There exists a unique surjective map μ : �∗ → Z satisfying

• Homotopy: If ϕs is a homotopy of arcs in �∗ then μ(ϕs) is constant.
• Maslov index: If ψ : (R/Z, 0) → (Sp(1), I ) is a loop and ϕ ∈ �∗ then
μ(ψϕ) = 2Maslov(ψ)+ μ(ϕ).

• Invertibility: If ϕ ∈ �∗ and ϕ−1(t) := ϕ(t)−1 then μ(ϕ−1) = −μ(ϕ).
• Normalization: μ(t �→ eiπ t ) = 1.

We shall need more concrete descriptions of the index μ.
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2.1.2 A geometric description

If ϕ : ([0, 1], {0}) → (Sp(1), I ) is a piecewise smooth path, consider the
unique piecewise smooth functions r, θ : [0, 1] × [0, 1] → R satisfying
ϕ(t)ei2πs = r(t, s)eiθ(t,s), r(t, s) > 0 and θ(0, s) = 2πs, for every t and
s. Here we identify R

2 with C. Let � : [0, 1] → R be the piecewise smooth
function defined by 2π�(s) = θ(1, s) − 2πs and we consider the winding
interval

I (ϕ) = {�(s) | s ∈ [0, 1]}. (19)

It is possible to show that I (ϕ) has length strictly less than 1/2 and ∂ I (ϕ)∩Z �=
∅ ⇒ ϕ �∈ �∗. The first fact is proved in [22, Appendix] and the second fact is
proved in [24, Section 2.1]. If ϕ ∈ �∗ then define

μ(ϕ) =
{

2k if k ∈ I (ϕ)
2k + 1 if I (ϕ) ⊂ (k, k + 1).

(20)

Then μ satisfies the axioms of Theorem 2.1.
The path ϕ can be continuously extended to all of [0,+∞) by

t �→ ϕ(t − �t�)ϕ(1)�t� (21)

where �t� denotes the unique integer satisfying �t� ≤ t < �t� + 1. If ϕ(1)
has no roots of unity in its spectrum then for each integer k ≥ 1 the path
ϕ(k)(t) = ϕ(kt), t ∈ [0, 1], belongs to �∗. The following lemma is well-
known and easy to check using the above description of the index, the argument
is implicit in [22, Appendix].

Lemma 2.2 Suppose ϕ(1) has no roots of unity in its spectrum. The following
assertions hold.

• If σ(ϕ(1))∩R = ∅ then ∃α �∈ Q such that I (ϕ(k)) ⊂ (�kα�, �kα�+ 1) and
μ(ϕ(k)) = 2�kα� + 1, ∀k ≥ 1.

• If σ(ϕ(1)) ⊂ (0,+∞) then ∃l ∈ Z such that l ∈ I (ϕ) and μ(ϕ(k)) =
2kl, ∀k ≥ 1.

• If σ(ϕ(1)) ⊂ (−∞, 0) then ∃l ∈ Z such that l+1/2 ∈ I (ϕ) and μ(ϕ(k)) =
k(2l + 1), ∀k ≥ 1. Moreover

k ∈ 2Z+ 1 ⇒ I (ϕ(k)) ⊂ (�k(l + 1/2)�, �k(l + 1/2)� + 1)

k ∈ 2Z ⇒ k(l + 1/2) ∈ I (ϕ(k)).
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2.1.3 An analytic description

Let ϕ : ([0, 1], {0}) → (Sp(1), I ) be a piecewise smooth map. The path of
symmetric matrices S = −i ϕ̇ϕ−1 is piecewise continuous, where we identify

i �
(

0 −1
1 0

)

.

As is explained in [19],
L = −i∂t − S (22)

is an unbounded self-adjoint operator in L2(R/Z,R2)with domain W 1,2(R/Z,

R
2). Its spectrum, which is discrete, consists of real eigenvalues accumulating

only at±∞. Geometric and algebraic multiplicities coincide, see Chapter III §6
from [28] for the definition of algebraic multiplicity. An eigenvector v does not
vanish unless v ≡ 0. Writing v(t) = ρ(t)eiϑ(t) we define its winding number
as wind(v) = (ϑ(1)−ϑ(0))/2π . This definition does not depend on the choice
of the eigenvector for a given eigenvalue, thus we denote it by wind(ν) with
ν ∈ σ(L), see [19]. For every k ∈ Z there are exactly two eigenvalues, counting
multiplicities, with winding number k, and ν0 ≤ ν1 ⇒ wind(ν0) ≤ wind(ν1)

if ν0, ν1 ∈ σ(L).
Following [19] we distinguish two eigenvalues

ν<0 = max{ν ∈ σ(L) | ν < 0}, ν≥0 = min{ν ∈ σ(L) | ν ≥ 0}
and denote wind−(L) = wind(ν<0), wind+(L) = wind(ν≥0). Later ν<0, ν≥0

will be referred as the extremal eigenvalues and wind±(L) will be called the
extremal asymptotic windings. Defining p(L) = 0 if wind−(L) = wind+(L)
or p(L) = 1 if wind−(L) < wind+(L) we set

μ̃(ϕ) = 2wind−(L)+ p(L). (23)

Lemma 2.3 If I (ϕ) is the winding interval (19) then wind−(L) < max I (ϕ)
and wind+(L) ≥ min I (ϕ), with strict inequality when ϕ ∈ �∗. Moreover, if
ϕ(1) is positive hyperbolic then wind−(L) = wind+(L).
Proof Write I (ϕ) = [a, b], fix some ν ∈ σ(L) ∩ (−∞, 0) and choose an
eigenvector v(t) for ν. We consider u(t) = ϕ(t)v(0), z(t) = v(t)u(t) and
choose a piecewise smooth ϑ(t) ∈ R such that z(t) ∈ R

+eiϑ(t). Then z
satisfies

−i ż = (Sv)ū − v(Su)+ νz.

Whenever v ∈ Ru we have z ∈ R and (Sv)ū − v(Su) ∈ iR, implying
�[−i ż/z] = ϑ̇ = ν < 0 at these points (both lateral limits). So the total
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angular variation ϑ(1) − ϑ(0) of z is strictly negative since u(0) = v(0), in
other words, the total angular variation of v is strictly smaller than that of u,
which implies wind(ν) < b. The other inequalities are proved analogously.

To prove the assertion about the positive hyperbolic case, consider for any
μ ∈ R the winding interval Iμ associated to the differential equation −i u̇ −
Su = μu. In particular, I (ϕ) = I0. We claim that μ is an eigenvalue of
L = −i∂t − S if ∂ Iμ ∩Z �= ∅, in which case ∃k ∈ Z such that {k} = ∂ Iμ ∩Z

and wind(μ) = k. Indeed, the fundamental solution ϕμ(t) of −i∂t − S = μ

is a path in Sp(1) starting at the identity. Define smooth functions r, θ : R×
R/Z× [0, 1] → R by requiring

ϕμ(t)e
i2πs = r(μ, s, t)ei2πθ(μ,s,t), r(μ, s, t) > 0, θ(μ, s, 0) ∈ [0, 1).

We have Iμ = {θ(μ, s, 1)− θ(μ, s, 0) | s ∈ R/Z}. Assume that k ∈ ∂ Iμ ∩Z.
If s0 satisfies θ(μ, s0, 1) − θ(μ, s0, 0) = k we must have ∂sθ(μ, s0, 1) = 1.
Now we claim that r(μ, s0, 1) = 1 is an eigenvalue of ϕμ(1), which implies
that μ is an eigenvalue of L with winding k. We compute ϕμ(1)ei2πs0 =
r(μ, s0, 1)ei2πθ(μ,s0,1) = r(μ, s0, 1)ei2πs0ei2πk = r(μ, s0, 1)ei2πs0 and

ϕμ(1)iei2πs0 = 1

2π

d

ds

∣

∣

∣

∣

s=s0

ϕμ(1)e
i2πs = 1

2π

d

ds

∣

∣

∣

∣

s=s0

r(μ, s, 1)ei2πθ(μ,s,1)

= 1

2π
∂sr(μ, s0, 1)ei2πθ(μ,s0,1)

+ 1

2π
i2π∂sθ(μ, s0, 1)r(μ, s0, 1)ei2πθ(μ,s0,1)

= 1

2π
∂sr(μ, s0, 1)ei2πs0 + r(μ, s0, 1)iei2πs0

Hence 1 = det ϕμ(1) = r(μ, s0, 1)2 ⇒ r(μ, s0, 1) = 1, and the claim
follows.

Assume m = wind−(L) < wind+(L). Hence wind+(L) = m+1, m ∈ Iν<0

and m+1 ∈ Iν≥0 . ∂ Iμ∩Z = ∅∀μ ∈ (ν<0, ν≥0) because L has no eigenvalues
in (ν<0, ν≥0). Since Iμ varies continuously withμ and |Iμ| < 1/2 ∀μ, we must
have m = min Iν<0 , m+1 = max Iν≥0 and Iμ ⊂ (m,m+1)∀μ ∈ (ν<0, ν≥0).
This prevents ϕ(1) from being positive hyperbolic since, otherwise, ν≥0 > 0
and I0 would contain an integer. ��

Lemma 2.3 and the non-trivial fact p = wind+−wind−, which was already
used in the above lemma, imply together that μ(ϕ) = μ̃(ϕ) ∀ϕ ∈ �∗, where
μ and μ̃ are defined in (20) and (23) respectively.

Corollary 2.4 Let ϕ : ([0, 1], {0})→ (Sp(1), I ) be a piecewise smooth path
such that ϕ(1) has no roots of unity in the spectrum. Extending ϕ to [0,+∞)
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by (21), consider the paths ϕ(k)(t) = ϕ(kt) and their associated self-adjoint
operators L(k). If σ(ϕ(1)) ∩ R = ∅ then

wind−(L(k)) = �kα� and wind+(L(k)) = �kα� + 1 ∀k ≥ 1

where α �∈ Q is the unique number satisfying μ(ϕ(k)) = 2�kα� + 1, ∀k. If
ϕ(1) is hyperbolic, σ(ϕ(1)) ⊂ (0,+∞) and l ∈ Z satisfiesμ(ϕ(k)) = 2kl, ∀k
then

wind−(L(k)) = wind+(L(k)) = kl ∀k ≥ 1.

If ϕ(1) is hyperbolic, σ(ϕ(1)) ⊂ (−∞, 0), and l ∈ Z satisfies μ(ϕ(k)) =
k(2l + 1), ∀k then

k ≥ 1 is even ⇒ wind−(L(k)) = wind+(L(k)) = k(l + 1/2),

k ≥ 1 is odd ⇒
{

wind−(L(k)) = �k(l + 1/2)�
wind+(L(k)) = �k(l + 1/2)� + 1.

2.1.4 Mean index and rotation number

Let ϕ : R → Sp(1), ϕ(0) = I , be the solution of a 1-periodic linear Hamil-
tonian system ϕ̇ = i Sϕ, that is, S(t) is a 1-periodic smooth path of symmetric
matrices. This is equivalent to ϕ(t + 1) = ϕ(t)ϕ(1) for all t .

As in the geometrical description of the index in Sect. 2.1.2, consider the
unique smooth θ : R×R → R satisfyingϕ(t)ei2πs ∈ R

+eiθ(t,s) and θ(0, s) =
2πs. Then θ(t, s + 1) = θ(t, s) + 2π so that s �→ f (s) := θ(1, s)/2π
satisfies f (s + 1) = f (s) + 1 and induces an orientation preserving self-
diffeomorphism of R/Z. It can be written in the form f (s) = s+�(s), where
�(s) is a 1-periodic smooth function used to define the winding interval in (19):
I (ϕ|[0,1]) = {�(s) | s ∈ [0, 1]}. The associated rotation number

ρ(ϕ) = lim
k→+∞

�(s)+�( f (s))+ · · · +�( f k−1(s))

k
(24)

which is independent of s ∈ [0, 1], is well-defined and of particular interest to
us.

As before we may consider the iterated path ϕ(k)(t) = ϕ(kt), t ∈ [0, 1],
and the associated angular variation s �→ �(k)(s). By the 1-periodicity of S
we must have

�(k)(s) = �(s)+�( f (s))+ · · · +�( f k−1(s))
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so that �(k)(s)/k → ρ as k → +∞, ∀s. In view of formula (23) and
Lemma 2.3 we have that 2�(k)(s) − μ(ϕ(k)) is uniformly bounded in k, for
each fixed s. Thus the so-called mean index

μ̄(ϕ) = lim
k→∞

μ(ϕ(k))

k
(25)

is well-defined and

Lemma 2.5 μ̄(ϕ) = 2ρ(ϕ).

2.1.5 Conley–Zehnder index and transverse rotation number of periodic
orbits

Consider the flow φt of the Reeb vector field Xλ associated to a contact form
λ on the 3-manifold V . Throughout the rest of the paper we assume that any
closed orbit P has a marked point in its geometric image, and when we write
P = (x, T ) it will be understood that x(t) is chosen so that the marked point
is x(0).

The Reeb flow preserves λ, so we get a path of dλ-symplectic linear maps
dφt : ξx(0) → ξx(t) when x(t) is a trajectory of Xλ. P = (x, T ) is non-
degenerate if 1 is not in the spectrum of dφT : ξx(0) → ξx(0), and λ will be
called non-degenerate if this holds for every P ∈ P(λ); here P(λ) is the set
defined in Sect. 1.1. This is a residual condition in the set of contact forms on
V equipped with the C∞-topology.

Let P = (x, T ) be a closed Reeb orbit. The contact structure ξ is given
by (1), and we denote xT (t) = x(T t). The orbit (x, kT ) is denoted by Pk .
Fix a homotopy class β of smooth dλ-symplectic trivializations of the bundle
(xT )

∗ξ . A trivialization � : (xT )
∗ξ → R/Z × R

2 in class β can be used
to represent the linear maps dφT t : ξx(0) → ξx(T t) as a path of symplectic
matrices

ϕ : R → Sp(1), ϕ(t) = �t ◦ dφT t ◦ (�0)
−1.

It satisfies ϕ(t + 1) = ϕ(t)ϕ(1) ∀t , that is, ϕ solves a 1-periodic linear Hamil-
tonian system as in Sect. 2.1.4. We define the transverse rotation number of P
with respect to the homotopy class β as

ρ(P, β) = ρ(ϕ) (26)

where ρ(ϕ) is the rotation number (24). Note that its value depends only on the
homotopy class β of the chosen trivialization, since for two trivializations in
class β the numerator inside the limit in (24) will differ by a quantity uniformly
bounded in k. We also define
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μC Z (P, β) = μ(ϕ) (27)

where μ is the index for symplectic paths discussed in Sect. 2.1.3. The class
β induces a homotopy class of dλ-symplectic trivializations of (xkT )

∗ξ for
every k ≥ 1 in an obvious way, which we denote by βk . Lemma 2.5 implies

ρ(P, β) = lim
k→∞

1

2k
μC Z (Pk, βk).

Remark 2.6 (Winding numbers) Let E be an oriented rank-2 real vector bundle
over R/Z. If Z and W are non-vanishing continuous sections of E then the
relative winding number wind(W, Z) ∈ Z is defined as follows. Let Z ′ be
any non-vanishing continuous section such that {Z(t), Z ′(t)} is an oriented
basis for Et , ∀t . Then W (t) = a(t)Z(t) + b(t)Z ′(t) for unique continuous
functions a, b : R/Z → R, and we set wind(W, Z) = θ(1) − θ(0) ∈ Z,
where θ ∈ C0([0, 1],R) satisfies a + ib ∈ R

+ei2πθ . When E is endowed
with a symplectic or complex structure then we use the induced orientation to
compute relative winding numbers. Note also that wind(W, Z) depends only
on the homotopy classes of non-vanishing sections of both W and Z .

If a trivialization � ′ in another class β ′ is used to represent dφT t , we get
numbers ρ(P, β ′) and μC Z (P, β ′) satisfying

ρ(P, β ′) = ρ(P, β)+ m and μC Z (P, β ′) = μC Z (P, β)+ 2m

where m ∈ Z is the Maslov index of the loop of symplectic maps � ′t ◦ (�t )
−1.

Note that m = wind((�t )
−1 · u, (� ′t )−1 · u) for any fixed non-zero vector

u ∈ R
2.

2.2 Pseudo-holomorphic curves

We take a moment to review the basics of pseudo-holomorphic theory in sym-
plectic cobordisms. In the following discussion we fix a closed co-oriented
contact 3-manifold (V, ξ).

2.2.1 Cylindrical almost-complex structures

The space ξ⊥ \ 0, the annihilator of ξ in T ∗V minus the zero section, can
be naturally endowed with the symplectic form ωξ = dαtaut, where αtaut is
the tautological 1-form on T ∗V . The given co-orientation of ξ orients the line
bundle T V/ξ → V and, consequently, also (T V/ξ)∗ � ξ⊥. We single out
the component Wξ ⊂ ξ⊥ \ 0 consisting of positive covectors, which we call
the symplectization of (V, ξ).
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A choice of contact form λ on V satisfying (1) and inducing the co-
orientation of ξ induces a symplectomorphism

�λ : (Wξ , ωξ )→ (R× V, d(eaλ))

θ �→
(

ln
θ

λ
, τ (θ)

)

(28)

where a denotes the R-coordinate and τ : T ∗V → V is the bundle projection.
The free additive R-action on the right side corresponds to (c, θ) �→ ecθ on
the left side.

The bundle ξ → V becomes symplectic with the bilinear form dλ. We will
denote by J+(ξ) the set of dλ-compatible complex structures on ξ , which
will be endowed with the C∞-topology. It does not depend on the choice of
positive contact form λ satisfying (1). As is well-known, J+(ξ) is non-empty
and contractible. Any J ∈ J+(ξ) and λ as above induce an almost complex
structure ˜J on R× V by

˜J · ∂a = Xλ, ˜J |ξ = J (29)

where ξ is seen as a R-invariant subbundle of T (R×V ). It is compatible with
d(eaλ). The pull-back ̂J = (�λ)

∗
˜J is then a ωξ -compatible almost complex

structure on Wξ . The set of ̂J that arise in this way will be denoted by J (λ).

2.2.2 Cylindrical ends

The fibers of τ : Wξ → V can be ordered in the following way: for given
θ0, θ1 ∈ τ−1(x), we write θ0 ≺ θ1 (resp. θ0  θ1) when θ1/θ0 > 1 (resp.
θ1/θ0 ≥ 1). Given two positive contact forms λ−, λ+ for ξ , we define λ− ≺ λ+
if λ−|x ≺ λ+|x pointwise and, in this case, we set

W (λ−, λ+) =
{

θ ∈ Wξ | λ−|τ(θ)  θ  λ+|τ(θ)
}

which is an exact symplectic cobordism between (V, λ−), (V, λ+). Let

W−(λ−) =
{

θ ∈ Wξ | θ  λ−|τ(θ)
}

,

W+(λ+) =
{

θ ∈ Wξ | λ+|τ(θ)  θ
}

.

It follows that

Wξ = W−(λ−)
⋃

∂+W−(λ−)=
∂−W (λ−,λ+)

W (λ−, λ+)
⋃

∂+W (λ−,λ+)
=∂−W+(λ+)

W+(λ+).
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An almost-complex structure J̄ satisfying

• J̄ coincides with ̂J+ ∈ J (λ+) on a neighborhood of W+(λ+),
• J̄ coincides with ̂J− ∈ J (λ−) on a neighborhood of W−(λ−),
• J̄ is ωξ -compatible

is an almost-complex structure with cylindrical ends. The set of such almost-
complex structures will be denoted by J (̂J−, ̂J+). It is well-known that this is a
non-empty contractible set. For J̄ ∈ J (̂J−, ̂J+) the almost-complex manifold
(Wξ , J̄ ) is said to have cylindrical ends W+(λ+) and W−(λ−).

2.2.3 Splitting almost-complex structures

Suppose we are given positive contact forms λ− ≺ λ ≺ λ+ for ξ . Let ̂J− ∈
J (λ−), ̂J ∈ J (λ) and ̂J+ ∈ J (λ+) be cylindrical almost-complex structures,
and consider almost-complex structures J1 ∈ J (̂J−, ̂J ), J2 ∈ J (̂J , ̂J+). Let
us denote by gc(θ) = ecθ the R-action on Wξ . Then there is a smooth family
of almost-complex structures J̄R , R ≥ 0, given by

J̄R =
{

(g−R)
∗ J2 on W+(λ)

(gR)
∗ J1 on W−(λ)

which is smooth since ̂J is R-invariant. We may denote J̄R = J1 ◦R J2 if the
dependence on J1 and J2 needs to be made explicit.

Note that if ε0 > 0 is small enough then J1 ◦R J2 ∈ J (̂J−, ̂J+) for all
0 < R ≤ ε0. For each R > 0 we take a function ϕR : R → R satisfying
ϕR(a) = a + R if a ≤ −R − ε0, ϕR(a) = a − R if a ≥ R + ε0 and ϕ′R > 0
everywhere. The family {ϕR} can always be arranged so that supR,a |ϕ′R(a)| ≤
1 and

inf{ϕ′R(a) | a ∈ (−∞,−R] ∪ [R,+∞) and R > 0} ≥ 1

2
.

In particular, the inverse function ϕ−1
R has derivative bounded in the intervals

(−∞, ϕR(−R)] and [ϕR(R),+∞) uniformly in R. Consider the diffeomor-
phisms ψR : R× V → R× V , ψR(a, x) = (ϕR(a), x) and

�R = �−1
λ ◦ ψR ◦�λ : Wξ → Wξ . (30)

It is straightforward to check that

J ′R := (�R)∗(J1 ◦R J2) (31)

belongs to J (̂J−, ̂J+), for every R large.
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2.2.4 Finite-energy curves in symplectizations

Let us fix a positive contact form λ satisfying (1).
Consider the set � = {φ : R → R | φ(R) ⊂ [0, 1], φ′ ≥ 0}. For each

φ ∈ � we denote by λφ the 1-form (�λ)
∗(φλ), where φλ denotes the 1-form

(a, x) �→ φ(a)λ|x on R× V and �λ is the diffeomorphism (28).

Definition 2.7 (Hofer [17]) Let (S, j) be a closed Riemann surface, � ⊂ S be
finite and ̂J ∈ J (λ). A finite-energy ̂J -curve is a pseudo-holomorphic map

ũ : (S \ �, j)→ (Wξ , ̂J )

satisfying

0 < E (̃u) = sup
φ∈�

∫

S\�
ũ∗dλφ <∞. (32)

The quantity E (̃u) is called the Hofer-energy.

Each integrand in the definition of the energy is non-negative and ũ is
constant when E (̃u) = 0. The elements of � are the so-called punctures.

Remark 2.8 (Cylindrical coordinates) Fix z ∈ � and choose a holomor-
phic chart ψ : (U, z) → (ψ(U ), 0), where U is a neighborhood of z. We
identify [s0,+∞) × R/Z with a punctured neighborhood of z via (s, t) �
ψ−1(e−2π(s+i t)), for s0 ! 1, and call (s, t) positive cylindrical coordinates
centered at z. We may also identify (s, t) � ψ−1(e2π(s+i t)) where s < −s0
and, in this case, (s, t) ∈ (−∞,−s0] ×R/Z are negative coordinates. In both
cases we write ũ(s, t) = ũ ◦ψ−1(e−2π(s+i t)) or ũ(s, t) = ũ ◦ψ−1(e2π(s+i t)).

Let (s, t) be positive cylindrical coordinates centered at some z ∈ �, and
write �λ ◦ ũ(s, t) = (a(s, t), u(s, t)). E (̃u) <∞ implies that

m = lim
s→+∞

∫

{s}×R/Z

u∗λ (33)

exists. This number is the mass of ũ at z, and does not depend on the choice
of coordinates. The puncture z is called positive, negative or removable when
m > 0, m < 0 or m = 0 respectively, and ũ can be smoothly extended to
(S \ �) ∪ {z} when z is removable. Moreover, a(s, t) → ε∞ as s → +∞,
where ε is the sign of m.
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2.2.5 Finite-energy curves in cobordisms

Let λ− ≺ λ+ be positive contact forms for ξ and consider ̂J± ∈ J (λ±),
J̄ ∈ J (̂J−, ̂J+). Recall the symplectomorphisms �λ± : (Wξ , ωξ ) → (R ×
V, d(eaλ±)), the collection � and the 1-forms λ±,φ on Wξ with φ ∈ �.

Definition 2.9 [8] Let (S, j) be a closed Riemann surface and� ⊂ S be finite.
A finite-energy J̄ -curve is a pseudo-holomorphic map

ũ : (S \ �, j)→ (Wξ , J̄ )

satisfying
0 < E−(̃u)+ E+(̃u)+ E0(̃u) <∞ (34)

where the various energies above are defined as

E+(̃u) = sup
φ∈�

∫

ũ−1(W+(λ+))

ũ∗dλ+,φ

E−(̃u) = sup
φ∈�

∫

ũ−1(W−(λ−))

ũ∗dλ−,φ

and

E0(̃u) =
∫

ũ−1(W (λ−,λ+))

ũ∗ωξ .

As before, the elements of � are called punctures. A puncture z ∈ � is
called positive if

• there exists a neighborhood U of z in S such that ũ(U \ {z}) ⊂ W+(λ+),
• writing �λ+ ◦ ũ = (a, u) on U \ {z} we have that a(ζ )→+∞ as ζ → z.

Analogously z is called negative if

• there exists a neighborhood U of z in S such that ũ(U \ {z}) ⊂ W−(λ−),
• writing �λ− ◦ ũ = (a, u) on U \ {z} we have that a(ζ )→−∞ as ζ → z.

Finally z is said to be removable if ũ can be smoothly extended to (S \�)∪{z}.
It turns out that the set of punctures can be divided into positive, negative and
removable, see [8].

2.2.6 Finite-energy curves in splitting cobordisms

As in Sect. 2.2.3 we consider positive contact forms λ− ≺ λ ≺ λ+ for ξ , select
̂J− ∈ J (λ−), ̂J ∈ J (λ), ̂J+ ∈ J (λ+), and J1 ∈ J (̂J−, ̂J ), J2 ∈ J (̂J , ̂J+).
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Then for each R > 0 we have an almost complex structure J̄1 ◦R J̄2 which
takes particular forms in various regions on Wξ :

• J̄1 ◦R J̄2 = ̂J+ on gR(W+(λ+)) = W+(eRλ+),
• J̄1 ◦R J̄2 = ̂J on W (e−Rλ, eRλ) and
• J̄1 ◦R J̄2 = ̂J− on g−R(W−(λ−)) = W−(e−Rλ−).

Definition 2.10 [8] Let (S, j) be a closed Riemann surface and � ⊂ S be
finite. A finite-energy ( J̄1 ◦R J̄2)-curve is a pseudo-holomorphic map

ũ : (S \ �, j)→ (Wξ , J̄1 ◦R J̄2)

satisfying

0 < Eλ− (̃u)+ Eλ+ (̃u)+ Eλ(̃u)+ E(λ,λ+)(̃u)+ E(λ−,λ)(̃u) <∞ (35)

where

Eλ+ (̃u) = sup
φ∈�

∫

ũ−1(W+(eRλ+))

ũ∗dλ+,φ

Eλ(̃u) = sup
φ∈�

∫

ũ−1(W (e−Rλ,eRλ))

ũ∗dλφ

Eλ− (̃u) = sup
φ∈�

∫

ũ−1(W−(e−Rλ−))

ũ∗dλ−,φ

and

E(λ,λ+)(̃u) =
∫

ũ−1(W (eRλ,eRλ+))

ũ∗(e−Rωξ)

E(λ−,λ)(̃u) =
∫

ũ−1(W (e−Rλ−,e−Rλ))

ũ∗(eRωξ).

Note that all integrands are pointwise non-negative.

As before punctures are divided into positive, negative and removable,
see [8].

2.2.7 A restricted class of almost-complex structures

Consider ̂J± ∈ J (λ±), where λ± = f±λ0 are positive contact forms on S3

with λ0 as in (3), and f± ∈ F satisfy f− < f+ pointwise. Here F is the set of
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functions f : S3 → (0,+∞) such that f λ0 realizes the standard Hopf link
K0 as a pair of closed Reeb orbits. Later we will need to consider the subset

J (̂J−, ̂J+ : K0) ⊂ J (̂J−, ̂J+) (36)

of almost complex structures for which τ−1(K0) is a complex submanifold,
where τ : Wξ0 → S3 is projection onto the base point. It is easy to check that
it is non-empty and, when equipped with the C∞-topology, it is a contractible
space.

Note also that if λ = f λ0 is another contact form for some f ∈ F satisfying
f− < f < f+ pointwise, ̂J ∈ J (λ), J̄1 ∈ J (̂J−, ̂J : K0) and J̄2 ∈ J (̂J , ̂J+ :
K0) then τ−1(K0) is also a complex submanifold with respect to J̄1 ◦R J̄2.
Moreover, J ′R = (�R)∗( J̄1 ◦R J̄2) ∈ J (̂J−, ̂J+ : K0), where �R is the
map (30).

2.2.8 Asymptotic operators and asymptotic behavior

Let P = (x, T ) ∈ P(λ) and denote xT (t) = x(T t). Any given J ∈ J+(ξ)
induces an inner product for sections of (xT )

∗ξ by

〈η, ζ 〉 =
1
∫

0

(dλ)xT (t)(η(t), JxT (t) · ζ(t)) dt (37)

On the corresponding space of square-integrable sections there is an unbounded
self-adjoint operator defined by

AP · η = J (−∇tη + T∇ηXλ) (38)

where ∇ is a choice of torsionless connection on T V ; AP does not depend on
this choice.

Let us fix a homotopy class β of dλ-symplectic trivializations of (xT )
∗ξ and

choose some � in class β. Then AP is represented as −J (t)∂t − S(t), where
J (t) is the representation of (xT )

∗ J and S(t) is some smooth 1-periodic path
of 2×2-matrices. If� is (dλ, J )-unitary1 then J (t) ≡ i and S(t) is symmetric
for all t , so that AP has all the spectral properties described in Sect. 2.1.3. In
particular, if η is non-trivial and satisfies AP ·η = νη for some eigenvalue ν of
AP , then v(t) = �t · η(t) ∈ R

2 does not vanish and satisfies−i v̇− Sv = νv.

1 There is always a unitary trivialization in any homotopy class.
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Defining a continuous ϑ : [0, 1] → R by v(t) ∈ R
+eiϑ(t) the integer

wind(ν, P, β) = ϑ(1)− ϑ(0)

2π
(39)

does not depend on the choice of η in the eigenspace of ν. If η1, η2 ∈ σ(AP)

then η1 ≤ η2 ⇒ wind(ν1, P, β) ≤ wind(ν2, P, β). Moreover, if β ′ is another
homotopy class of dλ-symplectic trivializations and � ′ is in class β ′ then

wind(ν, P, β ′) = wind(ν, P, β)+ m, ∀ν ∈ σ(AP) (40)

where m is the Maslov number of the loop � ′t ◦ (�t )
−1.

We define wind≥0(P, β) and wind<0(P, β) to be the winding of the small-
est non-negative and largest negative eigenvalues of AP with respect to β,
respectively. In view of (23) we have

μC Z (P, β) = 2wind<0(P, β)+ p (41)

where p = 0 if wind≥0(P, β) = wind<0(P, β) or p = 1 if not. As a conse-
quence of Corollary 2.4 we get

Lemma 2.11 Let P = (x, T ) ∈ P(λ) and assume Pk = (x, kT ) is non-
degenerate ∀k ≥ 1. If we fix a homotopy class β of dλ-symplectic trivializa-
tions of (xT )

∗ξ then

• P is elliptic if, and only if, ρ(P, β) = α �∈ Q. In this case

wind≥0(Pk, βk) = �kα� + 1 wind<0(Pk, βk) = �kα� ∀k ≥ 1.

• P is hyperbolic with positive Floquet multipliers if, and only if, ρ(P, β) =
l ∈ Z. In this case

wind≥0(Pk, βk) = kl = wind<0(Pk, βk) ∀k ≥ 1.

• P is hyperbolic with negative Floquet multipliers if, and only if, ρ(P, β) =
l + 1/2 for some l ∈ Z. In this case

k is even ⇒ wind<0(Pk, βk) = wind≥0(Pk, βk) = k(l + 1/2)

k is odd ⇒
{

wind<0(Pk, βk) = �k(l + 1/2)�
wind≥0(Pk, βk) = �k(l + 1/2)� + 1.

Hereβk denotes the homotopy class of dλ-symplectic trivializations of (xkT )
∗ξ

induced by β.
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Definition 2.12 (Martinet Tube) Let P = (x, T ) ∈ P(λ) and Tmin be the
underlying minimal positive period of x . A Martinet tube for P is a pair (U,�)
where U is an open neighborhood of x(R) in V and � : U → R/Z× B is a
diffeomorphism (B ⊂ R

2 is an open ball centered at the origin) satisfying

• �∗( f (dθ+xdy)) = λwhere (θ, x, y) are the coordinates on R/Z×R
2 and

the smooth positive function f satisfies f |R/Z×0 ≡ Tmin and d f |R/Z×0 ≡
0.

• �(x(Tmint)) = (t, 0, 0).

Remark 2.13 If P = (x, T ), Tmin are as in the above definition and η(t) ∈
ξx(t), t ∈ R/TminZ, is a smooth non-vanishing vector then there exists a
Martinet tube (U,�) for P such that d�x(t) ·η(t) = ∂x for every t ∈ R/TminZ.

The precise asymptotic behavior of pseudo-holomorphic curves is studied
by Hofer, Wysocki and Zehnder when λ is non-degenerate. We will now sum-
marize the main results of [18]. Consider a non-degenerate contact form λ for
ξ , a closed connected Riemann surface (S, j), a finite subset � ⊂ S and a
̂J ∈ J (λ). Suppose

ũ : (S, j)→ (Wξ , ̂J )

is a non-constant finite-energy pseudo-holomorphic map.

Theorem 2.14 (Hofer, Wysocki and Zehnder) Let (s, t) be positive holomor-
phic cylindrical coordinates at z as in Remark 2.8 if z is a positive puncture,
or negative holomorphic cylindrical coordinates at z if it is a negative punc-
ture, and let us write �λ ◦ ũ(s, t) = (a(s, t), u(s, t)) ∈ R × V . Then there
exists P = (x, T ) ∈ P(λ) and constants r, a0, t0 ∈ R, r > 0, such that
u(s, t)→ x(T (t + t0)) in C∞ as |s| → ∞ and

lim|s|→∞ er |s|
(

sup
t
|Dγ [a(s, t)− T s − a0]|

)

= 0, ∀γ.

Let (U,�) be a Martinet tube for P, so that one finds s0 ∈ R such that
u(s, t) ∈ U when |s| ≥ |s0|, and write�◦u(s, t) = (θ(s, t), z(s, t)) ∈ R×R

2

(the universal covering of R/Z× R
2). Then

lim|s|→∞ er |s|
(

sup
t
|Dγ [θ(s, t)− k(t + t0)]|

)

= 0, ∀γ,

where k is the multiplicity of P. Either (τ ◦ ũ)∗dλ ≡ 0 for |s| ! 1 or
the following holds. There exists an eigenvalue μ for AP, an eigensection
η : R/Z → (xT )

∗ξ for μ, and functions α(s) ∈ R, R(s, t) ∈ R
2 defined for

|s| ! 1 such that μ > 0 if z is negative, μ < 0 if z is positive, and if we
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represent η(t) � e(t) ∈ R
2 using the coordinates induced by � then, up to

rotation of the cylindrical coordinates,

z(s, t) = e
∫ s

s0
α(τ)dτ

(e(t)+ R(s, t))

for |s| ! 1, where α and R satisfy

lim|s|→∞ sup
t
|Dγ R(s, t)| = 0, ∀γ

lim|s|→∞ |D
j [α(s)− μ]| = 0, ∀ j.

Remark 2.15 The same asymptotic behavior as described in Theorem 2.14
holds near non-removable punctures of finite-energy curves in cobordisms and
splitting cobordisms defined in Sects. 2.2.2 and 2.2.3, respectively, assuming
that the contact forms in the ends are non-degenerate.

Remark 2.16 By the exact nature of all the 2-forms appearing in the inte-
grands of the integrals involved in the energy of pseudo-holomorphic maps in
cobordisms and in splitting cobordisms, we obtain the following statement:

Ifλ− ≺ λ ≺ λ+ are positive contact forms for ξ then there exists C > 0 such
that the following holds. For every ̂J+ ∈ J (λ+), ̂J ∈ J (λ), ̂J− ∈ J (λ−), J̄1 ∈
J (̂J−, ̂J ), J̄2 ∈ J (̂J , ̂J+), R > 0 and finite-energy ( J̄1 ◦R J̄2)-holomorphic
map ũ we have

E (̃u) ≤ CA+(̃u)

where A+(̃u) denotes the sum of the λ+-actions of the closed λ+-Reeb orbits
which are the asymptotic limits of ũ at the positive punctures. An analogous
statement holds for finite-energy J̄1-holomorphic maps.

3 Contact homology in the complement of the Hopf link

We will now review the cylindrical contact chain complex for contact forms
hλ0, h ∈ F , following [32]. For completeness all necessary statements and
proofs are included.

Before starting with our constructions we establish some notation. Let f >
0 be a smooth function on S3 and denote λ = f λ0. If P = (x, T ) ∈ P(λ)
then we denote by xT : R/Z → S3 the map t �→ x(T t), and Pk := (x, kT ),
∀k ≥ 1. A homotopy class β of dλ-symplectic trivializations of (xT )

∗ξ0
induces a homotopy class of dλ-symplectic trivializations of (xkT )

∗ξ0 which
is denoted by βk (the k-th iterate of β).
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We will be dealing with various tight contact forms on S3, and sometimes
we need to indicate the dependence on the contact form of the invariants
ρ and μC Z discussed in Sect. 2.1.5, and also of the spectral winding num-
bers described in Sect. 2.2.8. When P = (x, T ) ∈ P(λ) and the homo-
topy class β of dλ-symplectic trivializations of (xT )

∗ξ0 is given then we
may write ρ(P, β, λ), μC Z (P, β, λ), wind(ν, P, β, λ), wind≥0(P, β, λ) and
wind<0(P, β, λ) to stress the dependence on λ. The symplectic vector bun-
dle (ξ0, dλ) → S3 is trivial and we fix a global symplectic frame. For every
P = (x, T ) ∈ P(λ), the homotopy class of dλ-symplectic trivializations of
(xT )

∗ξ0 induced by this global frame is denoted by βP . It does not depend
on the particular choice of global frame. Note that (βP)

k = βPk . We may
write ρ(P, λ), μC Z (P, λ), etc to denote the various invariants computed with
respect to the global frame. When f ∈ F then L0 and L1 are closed Reeb
orbits of f λ0, and we denote

θi ( f ) = ρ(Li , f λ0)− 1 (i = 0, 1)

where the rotation number ρ(Li , f λ0) is computed with respect to the global
dλ-symplectic trivialization of ξ0.

3.1 The chain complex

To define cylindrical contact homology of

λ = hλ0, h ∈ F

up to action T in the complement of K0 we need to assume certain conditions:

(a) Every closed Reeb orbit of λ with action ≤T is non-degenerate.
(b) There are no closed Reeb orbits of λ in S3 \ K0 with action ≤ T which

are contractible in S3\K0.
(c) The transverse Floquet multipliers of the components L0, L1 of K0, seen

as prime closed Reeb orbits of λ, are of the form ei2πα with α �∈ Q. In
particular, every iterate Ln

0, Ln
1 is non-degenerate and elliptic.

We always identify

π1(S3 \ K0, pt)
∼→ Z× Z, [γ ] �→ (p, q) (42)

where

p = link(γ, L0) and q = link(γ, L1).
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Fix a homotopy class of loops in S3 \K0 represented by a relatively prime pair
(p, q) of integers, i.e., there exists no integer k ≥ 2 such that (p/k, q/k) ∈
Z × Z. In particular, no closed loop in this homotopy class can be multiply
covered. We also fix a number T > 0.

Let P≤T,(p,q)(λ) be the set of closed λ-Reeb orbits contained in S3 \ K0
which represent the homotopy class (p, q) and have action≤T . The field Z/2Z

will be denoted by F2. Consider, for each k ∈ Z, the vector space C≤T,(p,q)
k (λ)

over F2 freely generated by closed orbits in P≤T,(p,q)(λ) of Conley–Zehnder
index k + 1:

C≤T,(p,q)
k (λ) =

⊕

P∈P≤T,(p,q)(λ)
μC Z (P)=k+1

F2 · qP .

The degree of the orbit P , or of the generator qP , is defined as |P| = |qP | =
μC Z (P)− 1. We consider the direct sum over the degrees k ∈ Z as a graded
vector space.

Remark 3.1 In general for SFT, one cannot use coefficients F2. But, since
we only consider homotopy classes of loops which cannot contain multiply
covered orbits, it is possible in this particular case. In fact, since (p, q) is
assumed to be a relatively prime pair of integers, all orbits in P≤T,(p,q)(λ) are
simply covered and, consequently, SFT-good. In this way we do not need to
consider orientations of moduli spaces of holomorphic curves.

We turn these graded vector spaces into a chain complex as follows. Select
a dλ0-compatible complex structure J : ξ0 → ξ0, and extend it to ̂J ∈
J (λ) on Wξ0 as explained in Sect. 2.2.1. Here Wξ0 ⊂ T ∗S3 is the positive
symplectization of (S3, ξ0) equipped with its natural symplectic structure ωξ0

which is the restriction to Wξ0 of the canonical 2-form. On Wξ0 there is a free
R-action

gc : θ �→ ecθ, c ∈ R.

The projection onto the base point is denoted by

τ : Wξ0 → S3.

Denote by M≤T,(p,q)
̂J

(P, P ′) the space of equivalence classes of ̂J -

holomorphic finite-energy maps ũ : R × R/Z � S2 \ {0,∞} → Wξ0 with
one positive and one negative puncture, asymptotic at the positive puncture to
P ∈ P≤T,(p,q)(λ) and at the negative puncture to P ′ ∈ P≤T,(p,q)(λ), with the
additional property that the image of ũ does not intersect τ−1(K0), modulo
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holomorphic reparametrizations. Here we identify R × R/Z � S2 \ {0,∞}
via (s, t) � e2π(s+i t), equip R × R/Z with its standard complex structure,
the positive puncture is ∞ and the negative puncture is 0. Any two such
cylinders ũ, ṽ are equivalent if there exists (�s,�t) ∈ R × R/Z such that
ṽ(s, t) = ũ(s+�s, t +�t). Note that we do not quotient out by the R-action
{gc} on the target manifold. Strictly speaking M≤T,(p,q)

̂J
(P, P ′) is not a set of

maps, but we may write ũ ∈ M≤T,(p,q)
̂J

(P, P ′) when a map ũ represents an
element of this moduli space.

Since (p, q) is a relatively prime pair of integers, every orbit in P≤T,(p,q)(λ)

is simply covered and, consequently, results of [18] imply that curves repre-
senting elements of M≤T,(p,q)

̂J
(P, P ′) must be somewhere injective. Con-

sider the set Jreg(λ) ⊂ J (λ) of almost complex structures satisfying the fol-
lowing property: if ̂J ∈ Jreg(λ) then all cylinders (representing elements)

in M≤T,(p,q)
̂J

(P, P ′) are regular in the sense of Fredholm theory for all

P, P ′ ∈ P≤T,(p,q)(λ). This is standard and means that, in the appropri-
ate functional analytic set-up, the linearized Cauchy–Riemann operator at a
cylinder representing an element of M≤T,(p,q)

̂J
(P, P ′) is a surjective Fred-

holm map whenever P, P ′ ∈ P≤T,(p,q)(λ); see [41] for a nice description
of the analytic set-up. The set Jreg(λ) depends on T and (p, q), but we do
not make this explicit in the notation. Results of [11] show that Jreg(λ) is

a residual subset of J (λ). Consequently, the spaces M≤T,(p,q)
̂J

(P, P ′), for

all P, P ′ ∈ P≤T,(p,q)(λ), have the structure of a finite dimensional manifold
when ̂J ∈ Jreg(λ), with dimension Ind(̃u) = μC Z (P) − μC Z (P ′) whenever
this quantity is ≥ 0. When this quantity is > 0 then the R-action {gc} on the
target induces an R-action on M≤T,(p,q)

̂J
(P, P ′) which is smooth and free. If

Ind(̃u) = 0 and M≤T,(p,q)
̂J

(P, P ′) �= ∅ then P = P ′, ũ is a trivial cylinder
and the R-action on the moduli space is trivial.

Theorem 3.2 If ̂J ∈ Jreg(λ) and P, P ′ ∈ P≤T,(p,q)(λ) satisfy μC Z (P ′) =
μC Z (P)− 1 then the space M≤T,(p,q)

̂J
(P, P ′)/R is finite.

See Sect. 1 in the appendix for a proof. Therefore, it makes sense to define
the following degree −1 map:

∂(λ, J )∗ : C≤T,(p,q)∗ (λ)→ C≤T,(p,q)
∗−1 (λ)

qP �→
∑

P ′∈P≤T,(p,q)(λ)
|P ′|=∗−1

#2

(

M≤T,(p,q)
̂J

(P, P ′)/R
)

qP ′ (43)
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on generators, where #2 denotes the number of elements in a set (mod 2) as
an element of F2.

Theorem 3.3 If ̂J ∈ Jreg(λ) then ∂k−1 ◦ ∂k = 0, ∀k ∈ Z.

The proof is also deferred to the appendix, see Sect. 1. As a consequence

(⊕∗∈ZC≤T,(p,q)∗ (λ), ∂(λ, J )∗)

is a chain complex. Its homology is denoted by

HC≤T,(p,q)∗ (λ, J ). (44)

3.2 Chain maps

Let T > 0 and h+, h− ∈ F be such that λ± = h±λ0 satisfy conditions (a),
(b) and (c) described in Sect. 3.1. Let also (p, q) be a pair of relatively prime
integers. In this case we may choose J± ∈ J+(ξ0) such that ̂J± ∈ Jreg(λ±) and

the chain complexes (C≤T,(p,q)∗ (λ+), ∂(λ+,J+)) and (C≤T,(p,q)∗ (λ−), ∂(λ−,J−))
are well-defined. There is a natural way to define a chain map between these
chain complexes as long as h+ > h− pointwise and the associated rotation
numbers satisfy

θi (h±) �∈ Q, θ0(h+) ≥ θ0(h−) and θ1(h+) ≥ θ1(h−). (45)

As is explained in Sect. 2.2.7, the space J (̂J−, ̂J+ : K0) is non-empty
and contractible. For any J̄ ∈ J (̂J−, ̂J+ : K0), P ∈ P≤T,(p,q)(λ+) and
P ′ ∈ P≤T,(p,q)(λ−) we consider the space M≤T,(p,q)

J̄
(P, P ′) of equivalence

classes of finite-energy J̄ -holomorphic cylinders with image in Wξ0 \τ−1(K0)

which are asymptotic to P at the positive puncture and to P ′ at the negative
puncture, modulo holomorphic reparametrizations.

Let Jreg(̂J−, ̂J+ : K0) ⊂ J (̂J−, ̂J+ : K0) be the set of J̄ for which the

following holds: every element of M≤T,(p,q)
J̄

(P, P ′) is regular in the sense

of Fredholm theory whenever P ∈ P≤T,(p,q)(λ+) and P ′ ∈ P≤T,(p,q)(λ−),
see [41]. As before, this set of regular almost complex structures depends
on (p, q) and T , but we do not make this explicit in the notation. Stan-
dard arguments [7,11,31,32] show that the set Jreg(̂J−, ̂J+ : K0) con-
tains a residual subset of J (̂J−, ̂J+ : K0). It is crucial here that P, P ′
are simply covered, which is the case since the pair (p, q) is relatively
prime. Then M≤T,(p,q)

J̄
(P, P ′) becomes a smooth manifold of dimension

μC Z (P)− μC Z (P ′) since there are no orbifold points (every element is rep-
resented by a somewhere injective map).
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Theorem 3.4 If J̄ ∈ Jreg(̂J−, ̂J+ : K0) and P ∈ P≤T,(p,q)(λ+), P ′ ∈
P≤T,(p,q)(λ−) satisfy μC Z (P ′) = μC Z (P) then the space M≤T,(p,q)

J̄
(P, P ′)

is finite.

The proof is found in Sect. A.2 in the appendix. After selecting ̂J± ∈
Jreg(λ±), any J̄ ∈ Jreg(̂J−, ̂J+ : K0) can be used to define a chain map given
by

�( J̄ )∗ : C≤T,(p,q)∗ (λ+)→ C≤T,(p,q)∗ (λ−)

qP �→
∑

P ′∈P≤T,(p,q)(λ−)
|P ′|=∗

(

#2M≤T,(p,q)
J̄

(P, P ′)
)

qP ′ (46)

on generators, where again #2 denotes the number of elements in a set (mod 2)
as an element of F2. The number of elements in each such M≤T,(p,q)

J̄
(P, P ′)

is finite by Theorem 3.4 so that this map is well-defined. That �( J̄ )∗ is a
chain map is the content of the next statement. The proof is postponed to the
appendix, see Sect. A.2.

Theorem 3.5 �( J̄ )∗−1 ◦ ∂(λ+, J+)∗ − ∂(λ−, J−)∗ ◦�( J̄ )∗ = 0

3.3 Comparing chain maps

We consider h± exactly as in Sect. 3.2, together with regular choices ̂J± ∈
Jreg(λ±) and regular choices J̄0, J̄1 ∈ Jreg(̂J−, ̂J+ : K0), so that we have
chain maps �( J̄0)∗,�( J̄1)∗. Here we denoted λ± = h±λ0. We would like to
show that they induce the same map at the level of homology.

To this end, we consider the space ˜J ( J̄0, J̄1 : K0) of smooth homotopies

t ∈ [0, 1] �→ J̄t ∈ J (̂J−, ̂J+ : K0)

from J̄0 to J̄1. For orbits P ∈ P≤T,(p,q)(λ+) and P ′ ∈ P≤T,(p,q)(λ−) we set

M≤T,(p,q)
{ J̄t } (P, P ′) = {(t, [̃u]) | t ∈ [0, 1] and [̃u] ∈ M≤T,(p,q)

J̄t
(P, P ′)}

(47)
where M≤T,(p,q)

J̄t
(P, P ′) is as defined in Sect. 3.2. Using standard arguments,

in a similar way as it is done in [31, Section 3.2], one finds a residual set

˜Jreg( J̄0, J̄1 : K0) ⊂ ˜J ( J̄0, J̄1 : K0)

such that if { J̄t } ∈ ˜Jreg( J̄0, J̄1 : K0) then M≤T,(p,q)
{ J̄t } (P, P ′) is a smooth man-

ifold of dimension μC Z (P)− μC Z (P ′)+ 1, for every pair of orbits P, P ′ as
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above. It is crucial here that for every t all cylinders in M≤T,(p,q)
J̄t

(P, P ′)
are necessarily somewhere injective, which is true since the orbits P ∈
P≤T,(p,q)(λ+) and P ′ ∈ P≤T,(p,q)(λ−) are simply covered. Thus there are no
orbifold points. As before, we may achieve regularity by a perturbation keep-
ing the tangent space of τ−1(K0) complex invariant along the path of almost
complex structures.

Theorem 3.6 Whenever P ∈ P≤T,(p,q)(λ+) and P ′ ∈ P≤T,(p,q)(λ−) are
such that μC Z (P) = μC Z (P ′)− 1 then the space M≤T,(p,q)

{ J̄t } (P, P ′) is finite.

Moreover, if (t, [̃u]) ∈ M≤T,(p,q)
{ J̄t } (P, P ′) then t �= 0, 1.

In the above statement we assume that { J̄t } ∈ ˜Jreg( J̄0, J̄1 : K0) and that
J̄0, J̄1 ∈ Jreg(̂J−, ̂J+ : K0). See Sect. 1 in the appendix for a proof. Following
a usual procedure, we define a degree +1 map

T ({ J̄t })∗ : C≤T,(p,q)∗ (λ+)→ C≤T,(p,q)
∗+1 (λ−)

qP �→
∑

P ′∈P≤T,(p,q)(λ−)
|P ′|=∗+1

(

#2M≤T,(p,q)
{ J̄t } (P, P ′)

)

qP ′ (48)

The sum above is finite by Theorem 3.6.

Theorem 3.7

�( J̄1)∗ −�( J̄0)∗ = T ({ J̄t })∗−1 ◦ ∂(λ+, J+)∗ − ∂(λ−, J−)∗+1 ◦ T ({ J̄t })∗.
The proof is deferred to Sect. 1 in the Appendix.

4 Computing contact homology

Our goal here is to compute contact homology in the complement of the Hopf
link for special classes of contact forms. The main results in this section are
Propositions 4.2 and 4.8. We freely use the notation established in Sect. 3.

4.1 A class of model contact forms

Let θ0, θ1 ∈ R \ Q, and let γ (t) = (x(t), y(t)) for t ∈ [0, 1] be a smooth
embedded curve in the first quadrant of R

2 satisfying the following properties:

• x(0) > 0, y(0) = 0, and y′(0) > 0;
• x(1) = 0, y(1) > 0, and x ′(1) < 0;
• xy′ − x ′y > 0 for all t ∈ [0, 1], equivalently, γ and γ ′ are never co-linear;
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• x ′y′′ − x ′′y′ �= 0 for all t ∈ [0, 1];
• (y′(0),−x ′(0)) ∈ R

+(1, θ1);
• (y′(1),−x ′(1)) ∈ R

+(θ0, 1).

It is always possible to find such a curve γ if (θ0, 1) �∈ R
+(1, θ1). We can

define a star-shaped hypersurface Sγ in C
2 � R

4 associated to γ by

Sγ = {(x0, y0, x1, y1) ∈ R
4 | (r2

0 , r2
1 ) ∈ γ ([0, 1])}

where (xk, yk) � xk+iyk = rkeiφk are polar coordinates (k = 0, 1). To see that
Sγ is a smooth hypersurface, consider a smooth function F : R

2 → R such
that 0 ∈ R is a regular value of F and γ ([0, 1]) = F−1(0) ∩ {x ≥ 0, y ≥ 0}.
Then Sγ = H−1(0), where H : R

4 → R is defined by H(x0, y0, x1, y1) =
F(r2

0 , r2
1 ). The third condition above guarantees that Sγ is star-shaped and λ0

restricts to a contact form on Sγ inducing the contact structure ξ0 = ker λ0|Sγ .
We parametrize leaves of the characteristic foliation of Sγ as trajectories of

the Reeb vector field X0 determined by λ0 on Sγ . Assuming that F < 0 on
the bounded component of {x ≥ 0, y ≥ 0} \ γ ([0, 1]) we obtain

X0 = a0(r
2
0 , r2

1 )∂φ0 + a1(r
2
0 , r2

1 )∂φ1 ∈ R
+ (y′(t)∂φ0 − x ′(t)∂φ1

)

where t is uniquely determined by (r2
0 , r2

1 ) = γ (t), since (y′,−x ′) points
to the unbounded component of {x ≥ 0, y ≥ 0} \ γ ([0, 1]). The sets L̄0 =
Sγ ∩ (0 × C), L̄1 = Sγ ∩ (C × 0) are closed orbits and their iterates have
Conley–Zehnder indices

μC Z (L̄
k
0) = 2�k(1+ θ0)� + 1 μC Z (L̄

k
1) = 2�k(1+ θ1)� + 1.

To see this note that the period of L̄0 as a prime periodic X0-orbit is
2π/a1(0, r2

1 ). The transverse linearized flow of X0 restricted to ξ0|L̄0
rotates

2π

a1(0, r2
1 )

a0(0, r2
1 ) = 2π

y′(1)
−x ′(1)

= 2πθ0

after the first period, measured with respect to the frame {∂x0, ∂y0} of ξ0|L̄0
.

Thus it rotates exactly 2π(1+ θ0) after the first period with respect to a global
frame of ξ0. This last claim follows from the fact that L̄0 has self-linking
number −1, and can also be alternatively verified by explicitly writing down
a global frame and comparing it with {∂x0, ∂y0}. A similar reasoning applies
to L̄1.

To obtain the remaining orbits notice that each point (r2
0 , r2

1 ) ∈ γ ((0, 1))
determines an invariant torus foliated by Reeb trajectories. These trajectories
are all closed or all non-periodic when a0 and a1 are dependent or independent
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over Q, respectively. The former happens precisely when the line determined
by the corresponding normal (y′,−x ′) goes through points in the integer lat-
tice.

Consider

fθ0,θ1 : S3 → (0,∞)

determined by
√

fθ0,θ1(z)z ∈ Sγ ,∀z ∈ S3. The diffeomorphism� : S3 → Sγ ,
�(z) = √

fθ0,θ1(z)z satisfies �∗λ0 = fθ0,θ1λ0. Moreover, the components
L0 = S3∩(0×C) and L1 = S3∩(C×0) of the standard Hopf link are mapped
onto L̄0, L̄1 respectively, which implies that fθ0,θ1 ∈ F ; see Remark 1.1 for
more details. Summarizing we have

• If (p, q) is a relatively prime pair of integers satisfying (8) then there
is a unique torus foliated by prime closed orbits of the Reeb dynamics
associated to fθ0,θ1λ0|S3 , each closed orbit representing the homotopy class
(p, q) ∈ Z× Z � π1(S3 \ (L0 ∪ L1), pt).

Uniqueness comes from strict concavity/convexity of γ , which is ensured by
the fourth condition on γ .

4.2 Perturbation of fθ0,θ1λ0 and computation of contact homology

The forms fθ0,θ1λ0 defined above satisfy a weak non-degeneracy hypothesis.

Definition 4.1 (Hofer, Wysocki and Zehnder [20], Bourgeois [6]) Suppose
that λ is a contact form on a manifold M . We say λ is Morse–Bott non-
degenerate if

(1) the action spectrum is discrete,
(2) for any given action value T , the set of points lying on closed orbits of

action T is a smooth embedded submanifold NT of M ,
(3) the rank of dλ|T NT is locally constant along NT , and
(4) if φt (p) denotes the Reeb flow then ker(dφT (x)− I ) = Tx NT , ∀x ∈ NT .

Proposition 4.2 The forms fθ0,θ1λ0 are Morse–Bott non-degenerate contact
forms on S3 when θ0, θ1 �∈ Q. Suppose (p, q) is a relatively prime pair of
integers satisfying (8), and denote by N(p,q) the unique 2-torus invariant under
the Reeb flow of fθ0,θ1λ0 foliated by prime closed Reeb orbits in the homotopy
class (p, q). Let T(p,q) > 0 be their common prime period and let S(p,q) be the
circle obtained by the quotient of N(p,q) by the Reeb flow. For any S > T(p,q)
and δ > 0 we may find a contact form fSλ0 arbitrarily C∞-close to fθ0,θ1λ0
with the following properties:

• there are no closed ( fSλ0)-Reeb orbits of action at most S in S3 \K0 which
are contractible in S3\K0,
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• the set P≤S,(p,q)( fSλ0) is in 1-1 correspondence with the critical points
of a chosen perfect Morse function on S(p,q) and their Conley–Zehnder
indices differ by 1,

• fSλ0 is non-degenerate up to action S,
• the actions of the closed Reeb orbits in P≤S,(p,q)( fSλ0) lie in the interval
(T(p,q) − δ, T(p,q) + δ),

• fS agrees with fθ0,θ1 near K0.

Moreover, there exists a suitable JS ∈ J+(ξ0) such that ̂JS is regular with
respect to homotopy class (p, q) and action bound S, as explained in Sect. 3.1,
and

HC≤S,(p,q)∗ ( fSλ0, JS) ∼= H∗−s(S
1;F2),

for some s ∈ Z.

The remaining paragraphs in this section are devoted to proving Proposi-
tion 4.2. The idea of perturbing a Morse–Bott non-degenerate contact form is
originally due to Bourgeois [6]. In the proof below we provide all the details
for this perturbation in our particular case. As the reader will notice, we resolve
the analytical difficulties that arise in the computation of contact homology
by a new and independent argument that relies on the intersection theory for
punctured pseudo-holomorphic curves developed by Siefring [39].

4.2.1 Verifying the Morse–Bott property and perturbing fθ0,θ1λ0

We work directly on the star-shaped hypersurface Sγ = {F(r2
0 , r2

1 ) = 0},
where F : R

2 → R is the smooth function associated to the special curve γ
described in Sect. 4.1. The Hopf link is represented by L̄0 = Sγ ∩ (0 × C)

and L̄1 = Sγ ∩ (C× 0), and we write K̄0 = L̄0 ∪ L̄1. First we need to show
that λ0|Sγ is Morse–Bott non-degenerate on Sγ .

Let us assume γ is strictly convex, the case when γ is strictly concave is
analogous. It is convenient to introduce the function

ϑ(r0, r1) := argument of the vector (D1 F(r2
0 , r2

1 ), D2 F(r2
0 , r2

1 )).

This is a well-defined smooth function on Sγ \ K̄0 assuming all values in an
interval (a, b) ⊂ (−π/2, π) in view of the defining properties of the curve γ .
Strict convexity of γ shows that ϑ is a global unambiguously defined smooth
parameter on the embedded arc γ \ {end points}, and that we can choose ϑ to
be strictly increasing when γ is prescribed counter-clockwise. One finds that
dϑ , dφ0 and dφ1 are pointwise linearly independent. Thus we get coordinates
(ϑ, φ0, φ1) which define a diffeomorphism Sγ \ K̄0 � (a, b) × R/2πZ ×
R/2πZ and we can write
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λ0|Sγ = h0(ϑ)dφ0 + h1(ϑ)dφ1

for suitable functions uniquely determined by h0(ϑ) = 1
2r2

0 , h1(ϑ) = 1
2r2

1 .
The argument of the vector (h0, h1) also varies monotonically with ϑ , and the
denominator in the following expression for Reeb vector field associated to
λ0|Sγ

X0 = h′1∂φ0 − h′0∂φ1

h0h′1 − h1h′0

is strictly positive. In the following we write λ0 instead of λ0|Sγ for simplicity
and denote by ϕt the flow of X0.

Note that the action spectrum is discrete. Indeed, the closed orbits are either
iterates of the components of K̄0 or lie in invariant tori determined by values
of ϑ ∈ (a, b) such that h′1(ϑ) and−h′0(ϑ) are dependent over Q. The periods
of orbits in such a torus are {kT (ϑ) | k = 1, 2, . . . } where

T (ϑ) = min

{

t > 0 such that
t (h′1(ϑ),−h′0(ϑ))

h0(ϑ)h′1(ϑ)− h1(ϑ)h′0(ϑ)
∈ 2πZ× 2πZ

}

.

Given any M > 0 there are only finitely many values ϑ1, . . . , ϑN such that
T (ϑi ) is defined and satisfies T (ϑi ) ≤ M . Moreover, for each i there are only
finitely many positive integers k1

i , . . . , k Ji
i satisfying k j

i T (ϑi ) ≤ M . Hence
the intersection of the action spectrum with [0, M] is finite, for all M > 0. We
proved that λ0 satisfies condition (1) in Definition 4.1.

For each value T in the action spectrum, the set NT of fixed points of ϕT
is a submanifold of Sγ consisting of a finite collection of tori together with at
most two circles (corresponding to L̄0 or L̄1). The Reeb flow induces a smooth
action of the circle R/T Z on NT . In our simple situation the quotient ST of
NT by this action is a finite collection of circles together with at most two
additional isolated points. Another particular feature of our model forms is
that if k > 1 then NT is a collection of components of NkT and, consequently,
ST is a collection of components of SkT .

In view of strict convexity/concavity ofγ there is one, and only one, invariant
torus foliated by periodic orbits representing the homotopy class (i, j) ∈ Z×
Z � π1(Sγ \ K̄0, pt) for each relatively prime pair of integers (i, j) satisfying
(θ0, 1) < (i, j) < (1, θ1) or (1, θ1) < (i, j) < (θ0, 1). All such tori are
singled out by fixing a certain value of ϑ . The torus corresponding to (p, q)
will be denoted T(p,q) and the period of the prime closed Reeb orbits there by
T(p,q), so that T(p,q) is a component of NT(p,q) .

We fix S > T(p,q) + 1 not in the action spectrum, and choose inductively
for T < S in the action spectrum a smooth function ḡT : NT → R invariant
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by the Reeb flow such that ḡkT |NT ≡ ḡT whenever kT < S and k ≥ 1,
inducing perfect Morse functions gT on the orbit spaces ST . These induce
a smooth function on ḡS : ∪T<S NT → R which is constant along Reeb
trajectories. If S is larger than the actions of L̄0 and L̄1 then K̄0 = L̄0 ∪ L̄1
is a pair of components of ∪T<S NT and we may assume without loss of
generality that ḡS vanishes on K̄0. To be more concrete, consider an invariant
torus T = {ϑ = ϑ∗} foliated by closed orbits of period T < S, for some value
ϑ = ϑ∗ ∈ (a, b). Assume that ḡT ′ has been chosen for all values 0 < T ′ < T in
the action spectrum, satisfying the above compatibility conditions. If T ⊂ NT ′
for some action value T ′ < T then the function ḡT is already there, so we
assume T ⊂ NT \ (∪T ′<T NT ′). Consider (x, y) defined on the universal
covering by

(

x
y

)

=
(

h′0(ϑ∗) h′1(ϑ∗)
h0(ϑ

∗) h1(ϑ
∗)

)(

φ0
φ1

)

. (49)

Denoting d = h1h′0 − h0h′1 and

�1(ϑ) = h0(ϑ)h1(ϑ
∗)−h1(ϑ)h0(ϑ

∗)
d(ϑ∗) �2(ϑ) = h1(ϑ)h′0(ϑ∗)−h0(ϑ)h′1(ϑ∗)

d(ϑ∗)

we obtain
(

�′1(ϑ∗) �1(ϑ
∗)

�′2(ϑ∗) �2(ϑ
∗)

)

=
(

1 0
0 1

)

. (50)

A brief calculation gives

λ0 = �1dx +�2dy and X0 = 1
�
(−�′2∂x +�′1∂y),

where� := �′1�2−�1�
′
2. In particular X0|T = ∂y , so that invariant functions

on T depend only on x . The variable x is periodic and, denoting the period of x
by L , we set ḡT |T = cos(2πx/L). Repeating this construction for the (finitely
many) tori foliated by Reeb orbits of period T not contained in ∪T ′<T NT ′ ,
and setting ḡT = 0 on K̄0 ∩ NT , we obtain the desired function on ∪T ′≤T NT ′ .
Doing this for all action values T < S we get the desired function on∪T<S NT .

We will use the special coordinates x, y defined in (49) adapted to some
invariant torus T = {ϑ = ϑ∗} ⊂ NT , for some T < S, to study the linearized
Reeb flow dϕt on T. If V = A∂ϑ + B∂x + C∂y ∈ T (Sγ \ K̄0)|T then V (t) =
dϕt · V = A(t)∂ϑ + B(t)∂x + C(t)∂y satisfies

Ȧ(t) = 0, Ḃ(t) = −�′′2 A, Ċ(t) = 0.

We have �′′2(ϑ∗) = (h′′1(ϑ∗)h′0(ϑ∗) − h′′0(ϑ∗)h′1(ϑ∗))/d(ϑ∗) �= 0 by strict
convexity/concavity of γ , and this implies that ker(dϕT |T − I ) = T T, that
is, condition (4) in Definition 4.1 holds at T. Conditions (2) and (3) are easy
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to check using the above constructions. This concludes the proof that λ0|Sγ is
Morse–Bott non-degenerate.

We will extend the function ḡT to a small neighborhood of T. More precisely,
if I is a small neighborhood of ϑ∗ and β : I → [0, 1] is a smooth compactly
supported function such that β ≡ 1 near ϑ∗ then we define

ḡT (ϑ, x) = β(ϑ) cos(2πx/L). (51)

Let ϑ1 < · · · < ϑn be so that

(∪T<S NT ) \ K̄0 =
n
⋃

i=1

Ti , with Ti := {ϑ = ϑi }. (52)

We can repeat the above constructions near each Ti to get an extension of ḡS
to a small neighborhood of ∪iTi . Then ḡS can be further extended to Sγ by
zero outside of this neighborhood of ∪iTi .

We consider, as in [8], the 1-form

λε := fελ0, where fε = 1+ ε ḡS, (53)

for small values ε > 0. Note that fε−1 is C∞-small and supported near∪iTi ,
where the Ti are defined in (52). The Reeb vector field of λε will be denoted
Xε .

Fixing a torus T = {ϑ = ϑ∗} among the Ti , we will analyze the flow of Xε

near T. Any prime closed Reeb orbit P in T has period T < S and satisfies
link(P, L̄0) = r , link(P, L̄1) = s for certain r, s ∈ Z. Recall that according
to our constructions, after introducing coordinates x, y as in (49), ḡS takes the
form ḡS = β(ϑ) cos(2πx/L) near T, where β : R → [0, 1] has support on a
small interval I centered at ϑ∗ and equals to 1 near ϑ∗. Here L is the period of
x . The vector field Xε = Xϑ

ε ∂ϑ+ X x
ε ∂x+ X y

ε ∂y is determined by the functions

Xϑ
ε = ∂x

(

− 1
fε

)

�2
�
, X x

ε = − ∂ϑ ( fε�2)

f 2
ε �

, X y
ε = ∂ϑ ( fε�1)

f 2
ε �

. (54)

We wish to understand the dynamics of Xε on the neighborhood O =
{ϑ ∈ I } of T. Note that the vector field Xε does not depend on y, f 2

ε �Xϑ
ε =

(∂x fε)�2 and f 2
ε �X x

ε = −∂ϑ( fε�2). Thus, periodic orbits of Xε on O project
to periodic orbits and rest points of the vector field Z = Zϑ∂ϑ + Z x∂x =
(∂x fε)�2∂ϑ − ∂ϑ( fε�2)∂x on the annulus A = {(ϑ, x) | ϑ ∈ I, x ∈ R/LZ}.

123



A Poincaré–Birkhoff theorem 373

More explicitly we have

Zϑ = −ε2π

L
β(ϑ)�2(ϑ) sin(2πx/L),

Z x = −εβ ′(ϑ)�2(ϑ) cos(2πx/L)− (1+ εβ(ϑ) cos(2πx/L))�′2(ϑ).
(55)

In view of (50), of�′′2(ϑ∗) �= 0 and of the fact that I is small, we have�2 �= 0
on I ,�′2 does not vanish on I \{ϑ∗} and has different signs on both components
of I \ {ϑ∗}. We assume �′′2(ϑ∗) > 0, so that �′2 > 0 on {ϑ ∈ I | ϑ > ϑ∗}
and �′2 < 0 on {ϑ ∈ I | ϑ < ϑ∗}, the other case is analogous. It follows
from (55) that if ε is small enough then the zeros of Z are Pmax = (ϑ∗, 0) and
Pmin = (ϑ∗, L/2). These rest points correspond to the only periodic λ0-Reeb
orbits on T which survive as periodic λε-orbits: they are the maximum and the
minimum of gT on ST .

We claim that for ε small enough the only periodic orbits of Xε inside O
with λε-action ≤ S correspond to the rest points Pmax, Pmin. If not, we find
εn → 0+ and a sequence of periodic Xεn -trajectories γn in O with λε-action
≤ S different from them. Up to a subsequence, there exists a periodic λ0-Reeb
orbit γ in O with action ≤ S such that γn → γ . But the only such orbits
correspond to the points in the circle � = {(ϑ∗, x) | x ∈ R/LZ}. Thus the
projections �n of γn to the annulus A are periodic orbits of Z converging to a
point P∗ ∈ �. It must be the case that P∗ = Pmin. In fact, Zϑ has a definite
sign near any point in�\{Pmax, Pmin}, which implies P∗ ∈ {Pmax, Pmin}. It is
easy to check, using the above formulas and the assumption �′′2(ϑ∗) > 0, that
the characteristic equation of DZ(Pmax) looks like t2 − εnk2 = 0, while that
of DZ(Pmin) is of the form t2+εnk2 = 0, for certain values k �= 0. Thus Pmin
is elliptic while Pmax is hyperbolic, and we cannot have �n → Pmax since,
otherwise, �n would bound a disk containing no singularities or containing
Pmax as the only singularity, contradictingχ(D) = 1. This implies�n → Pmin.
To obtain the desired contradiction, note that the eigenvalues of DZ(Pmin) are
purely imaginary and proportional to

√
εn in absolute value. Thus the orbits

�n take very long time to close up when n is large, contradicting the fact that
they have uniformly bounded period (which can be estimated in terms of S).

Remark 4.3 The characteristic equations of DZ(Pmax), DZ(Pmin) calculated
above show that the corresponding periodic λε-Reeb orbit are non-degenerate.
The orbits corresponding to Pmin, Pmax clearly link r times with L̄0 and s
times with L̄1.

Remark 4.4 The above calculations assumed �′′2(ϑ∗) > 0, and the case
�′′2(ϑ∗) < 0 is treated analogously. In the latter case Pmin is hyperbolic and
Pmax is elliptic.
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Our arguments so far have proved that for each X0-invariant torus Ti ⊂
∪T ′<S NT ′ there exists εi > 0 and a small neighborhood Oi of Ti such that
λε = λ0 on Sγ \ (∪iOi ) and, moreover, such that if ε < εi then there are
precisely two prime closed λε-Reeb orbits in Oi with action ≤ S. These are
reparametrizations of two closed λ0-Reeb orbits in Ti , are non-degenerate and
have action close to Ti , where Ti is the period of the prime closed λ0-Reeb
orbits foliating Ti . One of them is hyperbolic and the other is elliptic, both
have transverse Floquet multipliers close to 1. Let ki be such that ki Ti is the
maximum value in the action spectrum of λ0 of the form kTi which is smaller
than S, with k ≥ 1. Since the Floquet multipliers of the two surviving orbits
are close to 1, all their interates up to the ki -th iterate are also non-degenerate,
and are precisely the closed λε-Reeb orbits in Oi with period < S since their
prime periods are close to Ti . Since Xε = X0 on Sγ \ (∪iOi ), any closed
Xε-orbit not contained in ∪iOi ∪ L̄0 ∪ L̄1 has period larger than S.

Therefore, taking ε > 0 small enough there exists a diffeomorphism � :
S3 → Sγ such that �∗λε = fSλ0|S3 with fS : S3 → (0,+∞) close to fθ0,θ1

in C∞, satisfying the requirements of Proposition 4.2.

4.2.2 Existence, uniqueness and regularity of finite-energy cylinders

We keep using the constructions made above. Letϑ∗ be determined by T(p,q) =
{ϑ = ϑ∗}, where T(p,q) is the unique X0-invariant torus foliated by prime
closed λ0-Reeb orbits in homotopy class (p, q). In the following we denote
T = T(p,q) the prime period of the closed λ0-Reeb orbits foliating T(p,q), for
simplicity. According to our constructions, there exists a small open interval
I centered at ϑ∗ such that on the neighborhood O = {ϑ ∈ I } we have

λε = fελ0, with fε = 1+ ε cos(2πx/L). (56)

Here I is small enough such that β|I ≡ 1. We make use of the parameters x, y
adapted to T(p,q) defined in (49). It follows from (54) that the Reeb vector
field Xε = Xϑ

ε ∂ϑ + X x
ε ∂x + X y

ε ∂y is given by

Xϑ
ε =

(

− 1
fε

)′
�2
�
, X x

ε =
(

− 1
fε

)

�′2
�
, X y

ε =
(

1
fε

)

�′1
�
.

where ′ denotes differentiation with respect to x when applied to functions of
x , or differentiation with respect to ϑ when applied to functions of ϑ . The
critical points of − 1

fε
are x = 0 (maximum) and x = L/2 (minimum). It

was proved in Sect. 4.2.1 above that the only closed λε-Reeb orbits contained
in Sγ \ K̄0 representing the homotopy class (p, q) with λε-action < S are
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Pmax := (xmax, Tmax = T (1+ ε)), Pmin := (xmin, Tmin = T (1− ε)) where

xmax(t) � (ϑ∗, 0, t (1+ ε)−1) and xmin(t) � (ϑ∗, L/2, t (1− ε)−1).

The vectors e1
ε = ∂ϑ , e2

ε = (�2∂x −�1∂y)/ fε define a frame of ξ0 = ker λ0
near T(p,q) which is dλε-symplectic on T(p,q). We represent the linearized
flows along Pmax and Pmin in the frame {e1

ε , e2
ε } as symplectic paths of matrices

ϕ+(t), ϕ−(t), respectively. They satisfy

ϕ̇±(t) =
(

0 ∓cε
−�′′2(ϑ∗) 0

)

ϕ±(t)

where cε → 0+ as ε → 0. If �′′2(ϑ∗) > 0 then μ(ϕ+) = 0, μ(ϕ−) = −1,
and if �′′2(ϑ∗) < 0 then μ(ϕ+) = 1, μ(ϕ−) = 0. In any case μC Z (Pmax) −
μC Z (Pmin) = 1.

We consider Jε ∈ J+(ξ0) satisfying Jε · e1
ε = e2

ε near T(p,q), and define an
R-invariant almost complex structure ˜Jε on R× Sγ by

˜Jε · ∂a = Xε, ˜Jε |ξ0 ≡ Jε,

where above we see ξ0 as a R-invariant subbundle of T (R× Sγ ).
For each ε > 0 small we consider the following elliptic problem.

(PDEε)

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

ũ = (a, u) : R× R/Z → R× Sγ is smooth and satisfies

∂̄
˜Jε (̃u) = 0, 0 < E (̃u) <∞,

ũ is asymptotic to Pmax at {+∞} × R/Z,

ũ is asymptotic to Pmin at {−∞} × R/Z.

We call two solutions ũ = (a, u), ṽ = (b, v) of (PDEε) equivalent if there
are constants c,�s,�t such that v(s, t) = u(s + �s, t + �t) and b(s, t) =
a(s+�s, t+�t)+c. The set of equivalence classes of solutions will be denoted
by Mε . The conclusion of the proof of Proposition 4.2 is a consequence of
the statement below.

Lemma 4.5 If ε is small enough then Mε has exactly two elements, and every
solution ũ = (a, u) of (PDEε) satisfies

• u(R× R/Z) ⊂ T(p,q),
• the linearized Cauchy–Riemann equation at ũ is a surjective Fredholm

operator.

Proof The existence of two elements in Mε is proved by explicitly exhibiting
solutions of (PDEε) using the two Morse trajectories of the function − 1

fε
on

the circle R/LZ.
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Up to a harmless abuse of notation, the symplectization of O = {ϑ ∈ I } is
equipped with coordinates (a, ϑ, x, y). Let xε(s) solve

ẋε =
(

− T

fε

)′
◦ xε, xε(0) = L

4
(57)

and consider the parametrized cylinder ũε(s, t) = (aε(s), ϑ∗, xε(s), T t),
where

aε(s) = T

s
∫

0

fε ◦ xε(r) dr.

Plugging formulas

∂x = fε�1 Xε − fε�1 Xϑ
ε e1

ε + f 2
ε X y

ε e2
ε

∂y = fε�2 Xε − fε�2 Xϑ
ε e1

ε − f 2
ε X x

ε e2
ε

we get

˜Jε =

⎛

⎜

⎜

⎝

0 0 − fε�1 − fε�2

Xϑ
ε 0 − f 2

ε X y
ε f 2

ε X x
ε

X x
ε �2/ fε −Xϑ

ε �1�2 −Xϑ
ε �

2
2

X y
ε −�1/ fε Xϑ

ε �
2
1 Xϑ

ε �1�2

⎞

⎟

⎟

⎠

. (58)

Note that all coefficients are functions of x and ϑ only. Thus

˜Jε (̃uε(s, t)) =

⎛

⎜

⎜

⎜

⎜

⎝

0 0 0 − fε
(

− 1
fε

)′
0 − fε 0

0 1/ fε 0 −
(

− 1
fε

)′

1/ fε 0 0 0

⎞

⎟

⎟

⎟

⎟

⎠

, (59)

where all coefficients are evaluated at xε(s).
We claim that the map ũε solves (PDEε). Indeed, note that

∂s ũε =

⎛

⎜

⎜

⎝

T fε ◦ xε
0
ẋε
0

⎞

⎟

⎟

⎠

=

⎛

⎜

⎜

⎝

T fε ◦ xε
0

−T ( 1
fε
)′ ◦ xε

0

⎞

⎟

⎟

⎠

and, using (59), we get
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˜Jε (̃uε) · ∂t ũε = T ˜Jε (̃uε) · ∂y = T

⎛

⎜

⎜

⎝

− fε ◦ xε
0

( 1
fε
)′ ◦ xε
0

⎞

⎟

⎟

⎠

.

Adding these two equations we get ∂̄
˜Jε (̃uε) = 0. One checks E (̃uε) < ∞

easily.
Thus ũε is one of the cylinders in the statement of Lemma 4.5. The other

cylinder can be obtained by considering a solution of ẋε = (−T/ fε)′ ◦ xε
satisfying xε(0) = 3L/4.

To prove the uniqueness of cylinders we use Siefring’s intersection theory
from [39]. Let us denote by ũ1 := ũε,1 = (a1, u1) and ũ2 := ũε,2 = (a2, u2)

the finite energy cylinders found above. We fix ε > 0 small and omit the
dependence on ε in the notation for simplicity. Recall that both ũ1 and ũ2 solve
PDEε and are asymptotic to Pmax = (xmax, Tmax) and Pmin = (xmin, Tmin) as
s → +∞ and s → −∞, respectively, where Tmax and Tmin are their prime
periods. Let xTmax(t) := xmax(tTmax) and xTmin(t) := xmin(tTmin).

One can easily check that
⎧

⎪

⎨

⎪

⎩

ũi and ui are embeddings for i = 1, 2,

Image(ui ) ∩ Pmax = Image(ui ) ∩ Pmin = ∅ for i = 1, 2,

Image(u1) ∩ Image(u2) = ∅.
Recall that according to our conventions established in the beginning of

Sect. 3, whenever P = (x, T ) is a closed λε-Reeb orbit we denote by βP
the homotopy class of dλε-symplectic trivializations of (xT )

∗ξ0 induced by a
global dλε-symplectic trivialization of ξ0. In the following we will denote this
homotopy class by β, for simplicity, without a direct reference to the orbit P .

Let APmax and APmin be the respective asymptotic operators defined in
Sect. 2.2.8 associated to Pmax and Pmin. As we saw, we have well-defined
winding numbers wind≥0(Pmax, β), wind<0(Pmax, β), wind≥0(Pmin, β) and
wind<0(Pmin, β) associated to APmax and APmin .

For each ũ = (a, u) representing an element in Mε one can find eigen-
sections η+ : R/Z → (xTmax)

∗ξ0 and η− : R/Z → (xTmin)
∗ξ0 of APmax and

APmin , respectively, with APmaxη+ = μ+η+ and APminη− = μ−η−, μ+ < 0,
μ− > 0, and a diffeomorphism ψ : R× R/Z → R× R/Z such that

u ◦ ψ(s, t) = expxTmax (t)
{eμ+s(η+(t)+ r+(s, t))} for s ! 0,

u ◦ ψ(s, t) = expxTmin (t)
{eμ−s(η−(t)+ r−(s, t))} for s ( 0,

(60)

where |r±(s, t)| → 0 as s → ±∞ uniformly in t . Here, exp denotes the
exponential map of the Riemannian metric gε on Sγ given by gε = λε ⊗ λε +
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dλε(·, Jε ·). Let

U+(s, t) :=eμ+s(η+(t)+ r+(s, t)) defined for s ! 0,

U−(s, t) :=eμ−s(η−(t)+ r−(s, t)) defined for s ( 0.

The triple (U+,U−, ψ) is called an asymptotic representative of ũ. For a proof
of the existence of an asymptotic representative, see [38]. Here, differently
from [38,39], we represent both ends simultaneously. We may use the notation
η+(̃u), μ+(̃u) etc to emphasize their dependence on ũ.

In view of the asymptotic behavior at the ends, we observe that

wind(η+, β) ≤wind<0(Pmax, β)

wind(η−, β) ≥wind≥0(Pmin, β).
(61)

We claim that
wind(η+, β) =wind<0(Pmax, β)

wind(η−, β) =wind≥0(Pmin, β).
(62)

To see this recall that μC Z (Pmax) = μC Z (Pmin)+ 1. From the definition of
the Conley–Zehnder index, this implies that

2wind<0(Pmax, β)+ p+ = μC Z (Pmax)

= μC Z (Pmin)+ 1

= 2wind<0(Pmin, β)+ p− + 1, (63)

where p+ = wind≥0(Pmax, β)−wind<0(Pmax, β) and p− = wind≥0(Pmin, β)

−wind<0(Pmin, β). Since p+ ∈ {0, 1} and p− ∈ {0, 1}, we conclude by parity
reasons in (63) that

p+ + p− = 1. (64)

From [19, Proposition 5.6], we have

0 ≤ windπ (̃u) = wind(η+, β)− wind(η−, β) (65)

where the (non-negative integer-valued) invariant windπ (̃u) was introduced
in [19]. It follows from (61), (63)–(65) that

0 ≤ wind(η+, β)− wind(η−, β)
≤ wind<0(Pmax, β)− wind≥0(Pmin, β)

= wind<0(Pmax, β)− wind<0(Pmin, β)− p−

= 1− p− − p+
2

= 0.
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We conclude that

wind(η+, β) = wind(η−, β),
wind<0(Pmax, β) = wind≥0(Pmin, β).

Now observe again from (61) that

wind(η+, β) ≤ wind<0(Pmax, β) = wind≥0(Pmin, β) ≤ wind(η−, β),

which proves (62).
Now we claim that

Image(u) ∩ Pmax = Image(u) ∩ Pmin = ∅. (66)

To prove this first note that, since η±(t) never vanishes the map u ◦ ψ(s, t)
does not intersect Pmax, Pmin when |s| is large enough. We will construct a
homotopy between u and u1 so that no intersections with Pmax and Pmin are
created or destroyed near the ends of the domain. This implies that the algebraic
intersection numbers of u and u1 with both Pmax and Pmin coincide. Since all
intersections count positively and u1 does not intersect Pmax and Pmin, the
claim follows.

The homotopy will be constructed in two steps. Let (U+,U−, ψ),
(U1+,U1−, ψ1) be asymptotic representatives of ũ = (a, u) and ũ1 =
(a1, u1), respectively, with eigensections η+, η−, η1+ and η1−. We will denote
u ◦ ψ and u1 ◦ ψ1 simply by u and u1, respectively. By (62), we know that
wind(η+, β) = wind(η1+, β) and wind(η−, β) = wind(η1−, β). From the
properties of the asymptotic operator APmax explained in [19], we have three
possibilities (see Lemma 3.5 in [19]):

(i) η+(t) = cη1+(t) for a positive constant c for all t .
(ii) η+(t) and η1+(t) are linearly independent for all t .

(iii) η+(t) = cη1+(t) for a negative constant c for all t .

Cases (i) and (ii) are treated similarly. Given M > 0 large, choose a smooth
function γM : R × [0, 1] → [0, 1] satisfying γM(s, μ) = μ if s > M and
γM(s, μ) = 0 if s < M−1. Define the homotopy H : [0, 1]×R×R/Z → Sγ
by

H(μ, s, t) = expxTmax (t)
{(1− γM(s, μ))U+(s, t)+ γM(s, μ)U1+(s, t)}

for s ≥ M − 1 and H(μ, s, t) = u(s, t) for s < M − 1. To see that no
intersection with Pmax is created or destroyed for s > M , if M is sufficiently
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large, note that for s > M we have

(1− γM(s, μ))U+(s, t)+ γM(s, μ)U1+(s, t)

= (1− μ)eμ+s(η+(t)+ r+(s, t))+ μeμ1+s(η1+(t)+ r1+(s, t)),

which never vanishes since, for each large s, η+(t) + r+(s, t) and η1+(t) +
r1+(s, t) are never a negative multiple of each other for all t . New intersections
with Pmin do not appear since this homotopy is supported near Pmax.

In case (iii), given ε > 0 small and M > 0 large, let H : [0, 1]×R×R/Z →
Sγ be the homotopy defined by

H(μ, s, t) = expxTmax (t)
R(εγM(s, μ))U+(s, t),

for s ≥ M − 1 and H(μ, s, t) = u(s, t) for s < M − 1. Here, ε > 0 is small
and R(θ) denotes the rotation by an angle θ in the fiber coordinates given by
an a priori choice of trivialization in class β. Clearly no intersection with Pmax
is created or destroyed if s > M and the same holds for intersections with
Pmin. After performing this first homotopy, we proceed as in case (ii) in order
to construct a second homotopy to u1 near Pmax.

Now we proceed in the same way to construct a homotopy supported near
Pmin so that we end up with a map ū : R× R/Z → Sγ which coincides with
u1 for |s| > M ! 1 and the algebraic intersection numbers of ū with both
Pmax and Pmin coincide with those of u.

Now, choose a point p ∈ Sγ not contained in the images of ū and u1
and consider a diffeomorphism � : Sγ \ {p} → R

3. Define the homotopy
H1 : [0, 1] × R× R/Z → Sγ between ū and u1 by

H1(μ, s, t) = �−1((1− μ)� ◦ ū(s, t)+ μ� ◦ u1(s, t)).

Note that this homotopy is supported in {|s| ≤ M} and, therefore the algebraic
intersection numbers of ū and u1 with both Pmax and Pmin coincide. We con-
clude that u does not intersect either Pmax or Pmin by positivity of intersections,
and (66) is proved.

In [39], a generalized intersection number [̃u] ∗ [̃v] ∈ Z is defined for two
pseudo-holomorphic curves ũ = (a, u) and ṽ = (b, v). It counts the actual
algebraic intersection number between ũ and ṽ plus the asymptotic intersection
number, which is computed by carefully analyzing their asymptotic behavior
at the punctures. An application of (62), (66) and Corollary 5.9 from [39] (see
conditions (1) and (3)) gives
Claim A. Let ũ = (a, u), ṽ = (b, v) represent classes in Mε . Then [ũ]∗ [ṽ] =
0. ��
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Definition 4.6 (Siefring [39]) Let ũ, ṽ represent distinct elements in Mε and
(U+(̃u),U−(̃u), ψ(̃u)), (U+(̃v),U−(̃v), ψ(̃v)) be their asymptotic represen-
tatives with eigensections η+(̃u), η−(̃u), η+(̃v) and η−(̃v). We say that ũ and
ṽ approach Pmax in the same direction if η+(̃u) = cη+(̃v) for a positive con-
stant c. Similarly, we say that ũ and ṽ approach Pmin in the same direction if
η−(̃u) = cη−(̃v) for a positive constant c.

Now we finally prove that Mε has exactly two elements, namely the
equivalence classes of ũ1 and ũ2. Assume indirectly the existence of a third
element in Mε represented by ũ3. Since μC Z (Pmax) = μC Z (Pmin) + 1,
either μC Z (Pmax) or μC Z (Pmin) is even. Assume without loss of general-
ity that μC Z (Pmax) is even. Let (Ui+,Ui−, ψi ) be asymptotic representatives
of ũi , i = 1, 2, 3, with respective eigensections ηi+. From (62) we see that
wind(ηi+, β) = wind(η j+, β), ∀i, j ∈ {1, 2, 3}. Since μC Z (Pmax) is even,
we must have ηi+(t) = ci jη j+(t), ∀t for non-vanishing constants ci j . Here it
was used that the negative extremal eigenvalue of the asymptotic operator at
an even hyperbolic orbit has 1-dimensional eigenspace, and is the only neg-
ative eigenvalue with that given winding number. It follows that there exist
i0 �= j0 ∈ {1, 2, 3} so that ci0 j0 > 0. Theorem 2.5 from [39] implies that
[̃ui0] ∗ [̃u j0] > 0. However, this contradicts Claim A and proves uniqueness
of cylinders.

To handle regularity we use Theorem 1 from [41]. The (unparametrized)
Fredholm index with no asymptotic constraints of the solutions ũε constructed
above is Ind(̃uε) = μC Z (Pmax)− μC Z (Pmin) = 1. We identify R× R/Z �
CP1 \� via (s, t) � [e2π(s+i t) : 1] where � = {[0 : 1], [1 : 0]}, and see ũε as
a pseudo-holomorphic map defined in CP1 \�. Since ∅ = ∂CP1, Remark 1.2
from [41] tells us that ũε is regular if

1 = Ind(̃uε) > −χ(CP1)+ #�0 + 2Z(dũε). (67)

Here �0 ⊂ � is the set of punctures where the Conley–Zehnder index of the
corresponding asymptotic orbit is even and Z(dũε) is the sum of the order of
the critical points of ũε . Note from the definition of ũε that dũε(z) �= 0, ∀z.
Now, sinceμC Z (Pmax)−μC Z (Pmin) = 1 we have #�0 = 1 and, consequently,
the right hand side of (67) is equal to −1. The proof of Lemma 4.5 is now
finished.

Proposition 4.2 follows immediately from Lemma 4.5.

4.3 A non-trivial chain map

We choose 0 < c < 1, T > 0 and consider a contact form λ = hλ0 with
h ∈ F , satisfying the conditions:

123



382 U. Hryniewicz et al.

• All closed λ-Reeb orbits with action ≤ T/c are non-degenerate;
• There is no closed λ-Reeb orbit in S3 \ K0 with action ≤ T/c which is

contractible in S3 \ K0;
• The transverse Floquet multipliers of L0, L1 seen as prime closed λ-Reeb

orbits are of the form ei2πα with α �∈ Q.

Let (p, q) be a relatively prime pair of integers, which represent an element
in π1(S3 \ K0, pt) � Z × Z via the isomorphism (42). Consider ̂J+ ∈ J (λ)

induced by some dλ0-compatible complex structure J : ξ0 → ξ0 as explained
in Sect. 2.2.1. We assume that ̂J+ is regular with respect to the homotopy
class (p, q) and action bound≤ T/c, see Sect. 3.1 for more details. It follows
that the almost complex structure ̂J− ∈ J (cλ) induced by J and cλ is also
regular with respect to the homotopy class (p, q) and action bound ≤ T . In
fact, consider the diffeomorphisms

ϕ : R× S3 → R× S3, ϕ(a, x) = (1
c a, x

)

and

K = (�λ)
−1 ◦ ϕ ◦�λ : Wξ0 → Wξ0

where �λ is the diffeomorphism (28). Then K ∗
̂J+ = ̂J−, so that finite-energy

̂J−-holomorphic cylinders are precisely of the form K−1 ◦ ũ, where ũ is some
finite-energy ̂J+-cylinder. This observation also shows that the obvious iden-
tification defined by

j∗ : C≤T/c,(p,q)∗ (λ) � C≤T,(p,q)∗ (cλ)

q(x(t),T ′) � q(x(t/c),cT ′)
(68)

where (x(t), T ′) ∈ P≤T/c,(p,q)(λ) and (x(t/c), cT ′) ∈ P≤T,(p,q)(cλ), is a
chain map that induces an isomorphism at the homology level. In fact, there
is a 1-1 correspondence between the relevant moduli spaces used to define the
differentials ∂(cλ,J ) and ∂(λ,J ), proving that ∂(cλ,J ) ◦ j∗ = j∗ ◦ ∂(λ,J ).

By Theorem 3.5 there is a well-defined chain map

�( J̄ )∗ : C≤T,(p,q)∗ (λ)→ C≤T,(p,q)∗ (cλ)

for any given J̄ ∈ Jreg(̂J−, ̂J+ : K0) (with respect to action bound≤ T/c and
homotopy class (p, q)). Consider the inclusion map

ι∗ : C≤T,(p,q)∗ (λ) ↪→ C≤T/c,(p,q)∗ (λ)

q(x,T ′) �→ q(x,T ′).
(69)
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Lemma 4.7 The chain maps �( J̄ )∗ and j∗ ◦ ι∗ are chain homotopic.

Proof We claim that j∗ ◦ ι∗ = �( J̄ ′)∗, for some J̄ ′ ∈ Jreg(̂J−, ̂J+ : K0)

regular with respect to action bound ≤T/c and homotopy class (p, q). To see
this consider a function g : R → R such that g ≡ 1/c near (−∞, ln c], g ≡ 1
near [0,+∞) and g′ ≤ 0, and define a d(eaλ)-compatible almost complex
structure ˜J on R× S3 by

˜J · ∂a = gXλ, ˜J · Xλ = − 1
g ∂a and ˜J |ξ0 ≡ J.

Recalling the map�λ from (28) we note that J̄ ′ := (�λ)
∗
˜J ∈ J (̂J−, ̂J+ : K0).

Let us consider a positive diffeomorphism G : R → R solution of the initial
value problem

G ′(a) = 1
g(G(a)) , G(0) = 0.

This can be used to define diffeomorphisms

F : R× S3 → R× S3, F(a, x) = (G(a), x)

and
H : Wξ0 → Wξ0, H = (�λ)

−1 ◦ F ◦�λ. (70)

One checks that H∗ J̄ ′ = ̂J+. In fact, F∗˜J ≡ J on ξ0 and

(F∗˜J )|(a,x) · ∂a = d F−1|(G(a),x) · ˜J |(G(a),x) · d F |(a,x) · ∂a

= G ′(a) d F−1|(G(a),x) · ˜J |(G(a),x) · ∂a

= G ′(a)g(G(a)) d F−1|(G(a),x) · Xλ|x
= Xλ|x

which gives the desired conclusion since F∗˜J is an almost complex structure.
This proves J̄ ′ ∈ Jreg(̂J−, ̂J+ : K0) since ̂J+ ∈ Jreg(λ) is regular with
respect to action bound ≤ T/c and homotopy class (p, q). Consider an orbit
P ∈ P≤T,(p,q)(λ). Then

�( J̄ ′)∗(qP) =
∑

P ′∈P≤T,(p,q)(cλ)
μC Z (P)=μC Z (P ′)

(

#2M≤T,(p,q)
J̄ ′ (P, P ′)

)

qP ′ . (71)

Recall the set M≤T,(p,q)
̂J+

(P, P ′′) of finite-energy ̂J+-holomorphic cylinders

with image in τ−1(S3 \ K0) asymptotic to P, P ′′ ∈ P≤T,(p,q)(λ) at the posi-
tive and negative punctures, respectively, modulo holomorphic reparametriza-
tions. This set was defined in Sect. 3.1 and we do not quotient out by the
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R-action on the target. M≤T,(p,q)
̂J+

(P, P ′′) is a smooth manifold of dimension

μC Z (P) − μC Z (P ′′) since ̂J+ ∈ Jreg(λ) and (p, q) is relatively prime. The
biholomorphism H induces a 1-1 correspondence between moduli spaces

M≤T,(p,q)
J̄ ′ (P, P ′) and M≤T,(p,q)

̂J+
(P, P ′′)

where j∗(qP ′′) = qP ′ . However, M≤T,(p,q)
̂J+

(P, P ′′) is empty when P ′′ �= P ,

or consists of a single (trivial) cylinder when P ′′ = P . We conclude that the
right side of (71) is equal to j∗(qP) = j∗ ◦ ι∗(qP) and, in particular, that
j∗ ◦ ι∗ = �( J̄ ′)∗. The lemma now follows from Theorem 3.7. ��

We will now apply the above discussion to our model contact forms. Let
us choose θ0, θ1 �∈ Q, and let fθ0,θ1λ0 be the model contact forms discussed
in Sect. 4.1. If (p, q) is a relatively prime pair of integers satisfying (8), then
the closed ( fθ0,θ1λ0)-Reeb orbits in S3 \ K0 representing the homotopy class
(p, q) are necessarily prime orbits and have the same period, which we denote
by T(p,q) > 0.

Select 0 < c < 1, T > T(p,q) and S > T/c. By Proposition 4.2, there
is fS ∈ F arbitrarily C∞-close to fθ0,θ1 and some dλ0-compatible complex

structure JS : ξ0 → ξ0 such that the homology HC≤S,(p,q)∗ ( fSλ0, JS) is
well-defined and

HC≤T,(p,q)∗ ( fSλ0, JS) = HC≤T/c,(p,q)∗ ( fSλ0, JS) = HC≤S,(p,q)∗ ( fSλ0, JS)

∼= H∗−s(S
1;F2)

for some s ∈ Z. It is also clear that the homology of these complexes are in
fact generated by the same closed Reeb orbits, and the differentials count the
same cylinders. In particular, we have shown that the inclusion map ι∗ defined
in (69)

(C≤T,(p,q)∗ ( fSλ0), ∂( fSλ0,JS))
ι∗
↪→ (C≤T/c,(p,q)∗ ( fSλ0), ∂( fSλ0,JS))

is non-trivial at the level of homology. Since

j∗ : (C≤T/c,(p,q)∗ ( fSλ0), ∂( fSλ0,JS))→ (C≤T,(p,q)∗ (c fSλ0), ∂(c fSλ0,JS))

is an isomorphism of chain complexes, and therefore an isomorphism at the
homology level, we obtain the following statement.

Proposition 4.8 Choosing T , c, S, fS and JS as above, the map

j∗ ◦ ι∗ : HC≤T,(p,q)∗ ( fSλ0, JS)→ HC≤T,(p,q)∗ (c fSλ0, JS)

is non-zero.
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5 Proof of main theorem in the non-degenerate case

In this section we prove Theorem 1.2 assuming that the tight contact form on
S3 as in the statement is non-degenerate. We aim to prove

Proposition 5.1 Consider a sequence fn ∈ F such that λn = fnλ0 is non-
degenerate for each n, and assume that there are uniform bounds

0 < m < inf
x,n

fn(x) < sup
x,n

fn(x) < M.

Suppose (p, q) is a relatively prime pair of integers, and also that there are
numbers θ0, θ1 satisfying

(θ0, 1) < (p, q) < (1, θ1) or (1, θ1) < (p, q) < (θ0, 1) (72)

and

lim
n→∞ θi ( fn) = θi (i = 0, 1).

Then there is a T > 0 independent of n such that for each n sufficiently large
there is a simple closed λn-Reeb orbit Pn ⊂ S3 \ K0 of period less than T
satisfying link(Pn, L0) = p and link(Pn, L1) = q.

Here θi ( fn) = ρ(Li , λn) − 1, where ρ(Li , λn) is the transverse rotation
number of Li seen as a prime periodic orbit of the Reeb flow associated to the
contact form λn computed with respect to a global positive trivialization of ξ0,
see (26) in Sect. 2.1.5.

Note that for each n the link K0 consists of a pair of closed orbits for
the Reeb flow of λn since fn ∈ F , but we do not assume that these orbits
are elliptic or that contact homology in the complement of K0 discussed in
Sect. 3 is well-defined for the contact formsλn. Our argument combines several
constructions, such as chain maps, stretching-the-neck, SFT compactness, and
asymptotic analysis to deduce existence of the desired periodic orbit for this
general type of contact form.

Theorem 1.2 in the non-degenerate case follows from Proposition 5.1 by
considering a constant sequence.

5.1 Computations with homotopy classes

Let h ∈ F and assume that hλ0 is a non-degenerate contact form. Then we
may view L0 = (x0, T0) and L1 = (x1, T1) as prime closed orbits of the flow
associated to the Reeb vector field Xhλ0 .
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Let us fix k ≥ 1 and i ∈ {0, 1}, and suppose that ν is a non-zero eigenvalue
of the asymptotic operator ALk

i
associated to the contact form hλ0, some J ,

and the orbit Lk
i = (xi , kTi ). If t ∈ R/Z �→ η(t) ∈ ξ0|xi (kTi t) is a non-zero

section in the eigenspace of ν and ε > 0 is small enough then

t ∈ R/Z �→ ηε(t) := expxi (kTi t)(εη(t))

is a closed loop in S3 \ K0 and its homotopy class in S3 \ K0 does not depend
on ε.

Lemma 5.2 Suppose m = link(ηε(t), L0) and n = link(ηε(t), L1).

• If i = 0 then n = k > 0 and

ν > 0 ⇒ m
n ≥ θ0(h) ν < 0 ⇒ m

n ≤ θ0(h).

• If i = 1 then m = k > 0 and

ν > 0 ⇒ n
m ≥ θ1(h) ν < 0 ⇒ n

m ≤ θ1(h).

Proof We only prove the lemma for i = 0, the case i = 1 is analogous. Note
that π1(S3 \ K0, pt) � Z× Z, where an explicit isomorphism is given by

[γ ] � (link(γ, L0), link(γ, L1)).

Thus, since ηε is C∞-close to Lk
0 we get n = link(ηε, L1) = link(Lk

0, L1) =
k ≥ 1. The orbit L0 is unknotted and spans an embedded disk D0 ⊂ S3, and we
let the orientation of L0 by the Reeb vector field induce an orientation on D0.
Choosing non-vanishing sections W of (ξ0∩T D0)|L0 and Z of ξ0|D0 we have
wind(Z |L0,W ) = sl(L0) = −1, where the winding is computed seeing Z |L0

and W as sections of the (oriented by d(hλ0)) vector bundle (x0T0)
∗ξ0 → R/Z,

see Remark 2.6. Here sl(L0) denotes the self-linking number of L0. Thus, if we
denote by βdisk the homotopy class of d(hλ0)-symplectic frames of (x0T0)

∗ξ0
induced by a frame containing W we have

ρ(L0, βdisk) = ρ(L0, βL0)− 1 = θ0(h). (73)

Now we compute

ν > 0 ⇒ m = link(ηε, L0) = wind(ν, Ln
0, (βdisk)

n) ≥ wind≥0(Ln
0, (βdisk)

n),

ν < 0 ⇒ m = link(ηε, L0) = wind(ν, Ln
0, (βdisk)

n) ≤ wind<0(Ln
0, (βdisk)

n).

Using Lemma 2.11, there are three possibilities:
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• L0 is elliptic, θ0(h) �∈ Q and

wind≥0(Ln
0, (βdisk)

n) = �nθ0(h)� + 1 > nθ0(h),

wind<0(Ln
0, (βdisk)

n) = �nθ0(h)� < nθ0(h).

• L0 is hyperbolic with positive Floquet multipliers, θ0(h) ∈ Z and

wind≥0(Ln
0, (βdisk)

n) = wind<0(Ln
0, (βdisk)

n) = nθ0(h)

• L0 is hyperbolic with negative Floquet multipliers, θ0(h) ∈ 1
2Z and

n is even ⇒ wind≥0(Ln
0, β

n
disk) = wind<0(Ln

0, β
n
disk) = nθ0(h)

n is odd ⇒
{

wind≥0(Ln
0, β

n
disk) = �nθ0(h)� + 1 > nθ0(h),

wind<0(Ln
0, β

n
disk) = �nθ0(h)� < nθ0(h).

In any case ν > 0 ⇒ m ≥ nθ0(h) and ν < 0 ⇒ m ≤ nθ0(h). ��

5.2 An existence lemma

Let us fix f +, f ∈ F and 0 < c < 1 such that for every x ∈ S3 we have
c f +(x) < f (x) < f +(x). We denote λ+ = f +λ0, λ = f λ0 and λ− =
cλ+ = c f +λ0. Let θ0, θ1, ϑ0, ϑ1 be defined by

ρ(L0, βL0, λ
+) = ρ(L0, βL0, λ

−) = 1+ ϑ0, ρ(L0, βL0, λ) = 1+ θ0,

ρ(L1, βL1, λ
+) = ρ(L1, βL1, λ

−) = 1+ ϑ1, ρ(L1, βL1, λ) = 1+ θ1,
(74)

where we follow the notation established in the beginning of Sect. 3. Here we
are considering L0, L1 as prime closed orbits of the Reeb flows of λ±, λ.

Let ̂J± ∈ J (λ±), ̂J ∈ J (λ) be cylindrical almost-complex structures on
the symplectization Wξ0 of (S3, ξ0), and J1 ∈ J (̂J−, ̂J : K0), J2 ∈ J (̂J , ̂J+ :
K0) be special almost-complex structures described in Sect. 2.2.7. Then, for
each R > 0, we consider the splitting almost-complex structure J̄R = J1◦R J2
as explained in Sect. 2.2.3. We denote by τ : Wξ0 → S3 the projection onto
the base point.

Lemma 5.3 Suppose λ+, λ, λ− as defined above are non-degenerate contact
forms, and let θ0, ϑ0, θ1, ϑ1 be defined by (74). Let Rn → +∞ and ũn :
R× R/Z → Wξ0 be finite-energy J̄Rn -holomorphic cylinders satisfying

τ ◦ ũn(R× R/Z) ∩ K0 = ∅, ∀n,
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with uniformly bounded energies as defined in Sect. 2.2.6. Identifying R ×
R/Z � CP1 \ {[0 : 1], [1 : 0]} via (s, t) � [e2π(s+i t) : 1] assume that [0 : 1]
is a negative puncture and [1 : 0] is a positive puncture of ũn, ∀n. We assume
also that all ũn are asymptotic to fixed orbits P̄+ ∈ P(λ+), P̄− ∈ P(λ−) at
the positive and negative punctures, respectively, which lie in S3 \ K0, and
define p, q ∈ Z by

link(t �→ τ ◦ ũn(s, t), L0) = p and link(t �→ τ ◦ ũn(s, t), L1) = q

for every s and n. If (p, q) is a relatively prime pair of integers and both
conditions (A) and (B) below are satisfied

(A) (qθ0 − p)(qϑ0 − p) > 0 or q ≤ 0

(B) (pθ1 − q)(pϑ1 − q) > 0 or p ≤ 0
(75)

then ∃P ∈ P(λ) in S3 \ K0 such that link(P, L0) = p and link(P, L1) = q.

We now turn to the proof of Lemma 5.3. The possible limiting behavior
of a sequence {̃un} as in the statement is described by the SFT Compactness
Theorem from [8]. Loosely speaking, it asserts that a space of (equivalence
classes of) pseudo-holomorphic maps with a priori energy and genus bounds
can be compactified by the addition of so-called holomorphic buildings. How-
ever, since we deal with cylinders, the possible limiting holomorphic buildings
are of a very simple nature, allowing us to avoid introducing all the necessary
definitions for precisely stating the SFT Compactness Theorem.

Let us summarize the conclusions we need. Let Rn and ũn be as in the state-
ment of Lemma 5.3. There exists a subsequence ũn j , a collection {�1, . . . , �m}
of finite subsets of R×R/Z, a corresponding collection {̃v1, . . . , ṽm}of smooth
maps

ṽi : (R× R/Z) \ �i → Wξ0 (76)

and numbers 1 ≤ k′ < k′′ ≤ m (⇒ m ≥ 2) satisfying the following properties.

(a) ṽ1, . . . , ṽk′−1 are ̂J+-holomorphic.
(b) ṽk′ is J2-holomorphic, ṽk′′ is J1-holomorphic.
(c) ṽk′+1, . . . , ṽk′′−1 are ̂J -holomorphic.
(d) ṽk′′+1, . . . , ṽm are ̂J−-holomorphic.
(e) 0 < E (̃vi ) < ∞ for every i . All ṽi have a positive puncture at the end

{+∞} × R/Z of the cylinder, and a negative puncture at {−∞} × R/Z.
(f) There are Reeb orbits P̄1, . . . P̄k′−1 ∈ P(λ+), P̄k′, . . . , P̄k′′−1 ∈ P(λ)

and P̄k′′, . . . , P̄m−1 ∈ P(λ−) such that P̄i is the asymptotic limit of ṽi

at {−∞} × R/Z and also the asymptotic limit of ṽi+1 at {+∞} × R/Z,
for 1 ≤ i ≤ m − 1. ṽ1 is asymptotic to P̄+ at {+∞} × R/Z and ṽm is
asymptotic to P̄− at {−∞} × R/Z.
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(g) For each i there are sequences {si
j }, {ci

j } of real numbers such that the
maps

(s, t) �→ gci
j
◦ ũn j (s + si

j , t)

converge to ṽi in C∞loc((R× R/Z) \ �i ), as j →+∞. Here gc(θ) = ecθ

is the R-action on Wξ0 .

For simplicity of notation we set Żi = (R×R/Z) \�i and Ci = ṽi (Ż i ) ⊂
Wξ0 . Note that τ−1(K0) is an embedded surface and its tangent space is invari-
ant by all almost-complex structures ̂J±, ̂J , J1, J2 and J̄R .

We will now show that
P̄i ∩ K0 = ∅, ∀i. (77)

Arguing indirectly, assume that P̄i ⊂ K0 for some i , and let

i0 = min{i ∈ {1, . . . ,m − 1} | P̄i ⊂ K0}.

For each 1 ≤ i ≤ i0 note that Ci �⊂ τ−1(K0), and consider the set

Di = {(z, x) ∈ Żi × τ−1(K0) | ṽi (z) = x} (1 ≤ i ≤ i0). (78)

Clearly Di is closed in Żi × τ−1(K0). If Di accumulates in a point of Żi ×
τ−1(K0) then one could use Carleman’s similarity principle to conclude that
Ci ⊂ τ−1(K0). This would imply P̄i−1 ⊂ K0, a contradiction to the definition
of i0. Thus Di is discrete and if Di �= ∅ then we get isolated intersections
of the pseudo-holomorphic map ṽi with the embedded surface τ−1(K0). By
positivity and stability of intersections we get intersections of the image of the
maps ũn j with τ−1(K0), for j large, contradicting our hypotheses. We showed
Ci ∩ τ−1(K0) = ∅ for all 1 ≤ i ≤ i0.

Either P̄i0 ⊂ L0 or P̄i0 ⊂ L1. We assume P̄i0 ⊂ L0, the other case is entirely
analogous. Thus P̄i0 = Lm

0 for some m ≥ 1. Since P̄i0 is the asymptotic limit
of ṽi0 at the negative end {−∞} × R/Z, P̄i0 can be approximated in C∞ by
curves of the form t �→ τ ◦ ũn j (s j , t) with suitable values s j . In particular, P̄i0

is homotopic to P̄+ in S3 \ L1 and m = link(P̄i0, L1) = link(P̄+, L1) = q,
which implies q ≥ 1. In view of (75) we can assume (qθ0− p)(qϑ0− p) > 0.

Let us set

i1 = max{i ∈ {1, . . . ,m − 1} | P̄i = Lq
0} ≥ i0.

Then ṽi0 is asymptotic to Lq
0 at {−∞} × R/Z and ṽi1+1 is asymptotic to Lq

0
at {+∞} × R/Z.
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We claim that Ci1+1 is not contained in τ−1(K0). In fact, if Ci1+1 ⊂ τ−1(K0)

then Ci1+1 ⊂ τ−1(L0) and ṽi1+1 is asymptotic to Lr
0 at {−∞} × R/Z, for

some r �= q. Here we used the definition of i1. If j is large enough and
s ! 1 then t �→ τ ◦ ũn j (s + si1+1

j , t) is close to Lq
0 , and if s ( −1 then

t �→ τ ◦ ũn j (s + si1+1
j , t) is close to Lr

0. However, the image of the cylinders

τ ◦ ũn j are contained in S3 \ K0 ⊂ S3 \ L1, showing that Lq
0 is homotopic to

Lr
0 in S3 \ L1. This is a contradiction to q �= r .
We set α0 = λ+ if i0 < k′, α0 = λ if k′ ≤ i0 < k′′ or α0 = λ− if k′′ ≤ i0.

Also, we set α1 = λ+ if i1 < k′, α1 = λ if k′ ≤ i1 < k′′ or α1 = λ− if k′′ ≤ i1.
Since f, f + ∈ F , the Reeb vector fields Xα0 and Xα1 are pointwise positive
multiples of the Reeb vector field Xλ0 of λ0 on L0, where λ0 is the standard
Liouville form on S3. L0 is a periodic trajectory of Xα0 or of Xα1 , and we
write L0 = (xα0, Tα0) or L0 = (xα1, Tα1) depending on whether we see it as
a α0-Reeb orbit or as a α1-Reeb orbit (Tα0 and Tα1 are minimal periods). For
simplicity we denote γ0(t) = xα0(Tα0 t) and γ1(t) = xα1(Tα1 t).

Let (U0,�0) and (U1,�1) be a Martinet tubes for the contact forms α0 and
α1 at L0, respectively, as explained in Definition 2.12. That is, for l = 0, 1, Ul
is a tubular neighborhood of L0 and�l : Ul → R/Z× B is a diffeomorphism,
where B ⊂ R

2 is a small ball centered at the origin, such that �l(γl(t)) =
(t, 0, 0) and (�l)∗αl = Fl(dθ + xdy). Here Fl : R/Z × B → R

+ satisfies
Fl |R/Z×{(0,0)} ≡ Tαl and d Fl |R/Z×{(0,0)} ≡ 0, and the usual coordinates on
R/Z × R

2 are denoted by (θ, x, y). For l = 0, 1 we have sections Yl(t) =
d�−1

l · ∂x |(t,0,0) of the bundle γ ∗l ξ0, and we assume �0,�1 were chosen so
that the loops t �→ exp(εYl(t)) (ε > 0 small) have linking number 0 with
L0. Then Yl can be completed to a dαl -symplectic frame of γ ∗l ξ0 in certain
homotopy classes βl such that

θ0 = ρ(L0, β0, λ) and ϑ0 = ρ(L0, β1, λ
±). (79)

Here we used that L0 has self-linking number −1.
Since ṽi0 is asymptotic to Lq

0 at its negative end {−∞}×R/Z, and ṽi1+1 is
asymptotic to Lq

0 at its positive end {+∞}×R/Z, there exists s0 ( −1 such
that τ ◦ ṽi0(s, t) ∈ U0 when s ≤ s0 and τ ◦ ṽi1+1(s, t) ∈ U1 when s ≥ −s0.

The behavior as s →−∞ of the functions

(θ0(s, t), x0(s, t), y0(s, t)) = �0 ◦ τ ◦ ṽi0(s, t) (defined for s ≤ s0)

is well understood in view of Theorem 2.14. The function θ0(s, t) satisfies

θ0(s, t)→ qt + t0 uniformly in t as s →−∞, for some t0. (80)
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To describe the behavior of x0, y0 let us consider the asymptotic operator A0
associated to the orbit Lq

0 of the contact form α0, as explained in Sect. 2.2.8.
There is an eigenvalue ν0 ∈ σ(A0) ∩ (0,+∞) of A0 and a section

t ∈ R/Z �→ η0(t) ∈ ξ0|γ0(qt+t0)

in the eigenspace of ν0 such that the following holds. If w0(t) : R/Z →
R

2 \ 0 is the representation of η0(t) in the local frame {∂x , ∂y} induced by �0
then, perhaps after making s0 more negative, we can write

(x0(s, t), y0(s, t)) = e
∫ s

s0
α0(r)dr

(w0(t)+ R(s, t)) ∀s ≤ s0 (81)

where |R(s, t)| → 0 uniformly in t as s →−∞ andα0(r)→ ν0 as r →−∞.
The behavior of the functions

(θ1(s, t), x1(s, t), y1(s, t)) = �1 ◦ τ ◦ ṽi1+1(s, t) (defined for s ≥ −s0)

is entirely analogous. More precisely, let A1 be the asymptotic operator asso-
ciated to Lq

0 seen as an α1-Reeb orbit. Then

θ1(s, t)→ qt + t ′0 uniformly in t as s →+∞, for some t ′0, (82)

and we find an eigenvector ν1 ∈ σ(A1) ∩ (−∞, 0) and an eigensection

t ∈ R/Z �→ η1(t) ∈ ξ0|γ1(qt+t ′0)

for ν1 such that the following holds. Ifw1 : R/Z → R
2\0 is the representation

of η1(t) in the local frame {∂x , ∂y} induced by �1 then

(x1(s, t), y1(s, t)) = e
∫ s
−s0

α1(r)dr
(w1(t)+ R̃(s, t)) ∀s ≥ −s0 (83)

where |R̃(s, t)| → 0 uniformly in t as s →+∞ andα1(r)→ ν1 as r →+∞.
Now we consider, as we did in Sect. 5.1, the curves

η0
ε (t) = expγ0(qt+t0)(εη

0(t)) and η1
ε (t) = expγ1(qt+t ′0)(εη

1(t))

for ε > 0 small and set p0 = link(η0
ε , L0), p1 = link(η1

ε , L0). Clearly q =
link(ηl

ε, L1) for l = 0, 1 since η0
ε , η1

ε are loops close to Lq
0 . Lemma 5.2 implies

i0 < k′ or k′′ ≤ i0 ⇒ p0 ≥ qϑ0, k′ ≤ i0 < k′′ ⇒ p0 ≥ qθ0 (84)

and

i1 < k′ or k′′ ≤ i1 ⇒ p1 ≤ qϑ0, k′ ≤ i1 < k′′ ⇒ p1 ≤ qθ0. (85)
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We use (81) and (83) to find numbers s′ ( −1 and s′′ ! 1 such that the curve

t �→ τ ◦ ṽi0(s′, t) = �−1
0 (θ0(s′, t), x0(s′, t), y0(s′, t))

is homotopic to η0
ε (t) in U0 \ L0 ⊂ S3 \ K0, and the curve

t �→ τ ◦ ṽi1+1(s′′, t) = �−1
1 (θ1(s′′, t), x1(s′′, t), y1(s′′, t))

is homotopic to η1
ε (t) in U1 \ L0 ⊂ S3 \ K0. In view of item (g) described

above there are sequences s′j , s′′j ∈ R such that

τ ◦ ũn j (s
′
j , t)→ τ ◦ ṽi0(s′, t) and τ ◦ ũn j (s

′′
j , t)→ τ ◦ ṽi1+1(s′′, t)

in C∞(R/Z, S3) as j →∞. Taking j large enough

p = link(t �→ τ ◦ ũn j (s
′
j , t), L0) = link(τ ◦ ṽi0(s′, t), L0) = p0

p = link(t �→ τ ◦ ũn j (s
′′
j , t), L0) = link(τ ◦ ṽi1+1(s′′, t), L0) = p1.

(86)

Then (84) implies
p ≥ qθ0 or p ≥ qϑ0 (87)

and (85) implies
p ≤ qθ0 or p ≤ qϑ0. (88)

Putting together (87) with (88) we have

p ≥ qθ0 and p ≤ qθ0, or

p ≥ qθ0 and p ≤ qϑ0, or

p ≥ qϑ0 and p ≤ qθ0, or

p ≥ qϑ0 and p ≤ qϑ0.

(89)

In all four cases we get a contradiction to (qθ0− p)(qϑ0− p) > 0. As remarked
before, the argument assuming P̄i0 ⊂ L1 is analogous. Thus (77) is proved.
At this point the condition (75) plays its role.

We showed that every P̄i lies in S3\K0 and it follows that they are homotopic
to P̄+ away from K0. Consequently, P̄k′ ∈ P(λ) is the desired orbit satisfying
link(P̄k′, L0) = p and link(P̄k′, L1) = q. The proof of Lemma 5.3 is complete.

5.3 Proof of Proposition 5.1

First we consider the case of a constant sequence: fn = f ∀n, for some f ∈ F
such that f λ0 is non-degenerate. Let θ0 = θ0( f ), θ1 = θ1( f ) be the associ-
ated rotation numbers. Select a model fθ ′0,θ ′1 with θ ′0, θ ′1 �∈ Q, as described in
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Sect. 4.1. We choose θ ′0 and θ ′1 close enough to θ0 and θ1, respectively, in such
a way that

• if (θ0, 1) < (p, q) < (1, θ1) then (θ ′0, 1) < (p, q) < (1, θ ′1),• if (1, θ1) < (p, q) < (θ0, 1) then (1, θ ′1) < (p, q) < (θ ′0, 1).

By rescaling fθ ′0,θ ′1 if necessary, we may assume that fθ ′0,θ ′1 > f pointwise.
There exists a small constant 0 < c < 1 such that f > c fθ ′0,θ ′1 pointwise as
well. Using Proposition 4.2 we may find f+ ∈ F arbitrarily close to fθ ′0,θ ′1 , a

suitable J+ ∈ J+(ξ0) and some T > 0 such that ̂J+ ∈ Jreg( f+λ0), the chain
complexes

(C≤T/c,(p,q)∗ ( f+λ0), ∂( f+λ0,J+)) and (C≤T,(p,q)∗ ( f+λ0), ∂( f+λ0,J+))

are well-defined and their homologies equal the homology of S1 over F2, up to
a common shift in degree. These chain complexes are generated by the same
orbits and their differentials count the same holomorphic cylinders. We may
assume that c f+ < f < f+ holds pointwise as well. Recall that f+ coincides
with fθ ′0,θ ′1 near K0, so that θ0( f+) = θ ′0 and θ1( f+) = θ ′1.

Consider the almost complex structure ̂J− ∈ J (c f+λ0) induced by J+
and the contact form c f+λ0. Then, as explained in Sect. 4.3, we have ̂J− ∈
Jreg(c f+λ0) which can be used to define the differential of the chain complex

(C≤T,(p,q)∗ (c f+λ0), ∂(c f+λ0,J+)).

By Proposition 4.8 the map

(C≤T,(p,q)∗ ( f+λ0), ∂( f+λ0,J+))
j∗◦ι∗−→ (C≤T,(p,q)∗ (c f+λ0), ∂(c f+λ0,J+))

is non-trivial in homology. Here j∗ is the map (68) and ι∗ is the map (69).
Let us select ̂J ∈ J ( f λ0) and consider almost complex structures J̄R =

J̄1 ◦R J̄2, where J̄2 ∈ J (̂J , ̂J+ : K0), J̄1 ∈ J (̂J−, ̂J : K0) and R > 0.
As explained in Sect. 2.2.3, the almost complex structure J̄R is biholo-
morphic to some J ′R ∈ J (̂J−, ̂J+ : K0). We claim that there is a finite-
energy J ′R-holomorphic cylinder asymptotic to orbits in P≤T,(p,q)( f+λ0) and
P≤T,(p,q)(c f+λ0) at the positive and negative punctures, respectively, which
do not intersect τ−1(K0). Arguing indirectly, if there are none we conclude
that J ′R ∈ Jreg(̂J−, ̂J+ : K0) and, therefore, the map �(J ′R)∗ as in (46) is
well-defined and is equal to zero. Lemma 4.7 implies that �(J ′R)∗ is chain-
homotopic to j∗◦ι∗ and, thus, non-trivial by Proposition 4.8. This contradiction
proves our claim.

We found, for every R > 0, finite-energy J̄R-holomorphic cylinders asymp-
totic to Reeb orbits in P≤T,(p,q)( f+λ0) and P≤T,(p,q)(c f+λ0) at the positive
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and negative punctures, respectively, not intersecting τ−1(K0). Since there are
only two orbits in each set P≤T,(p,q)( f+λ0) and P≤T,(p,q)(c f+λ0), there is a
sequence of J̄Rn -cylinders with the same asymptotic limits for every n, where
Rn → +∞. This implies that the energies of these cylinders are uniformly
bounded in n, see Remark 2.16. If θ ′0 and θ ′1 are chosen sufficiently close to
θ0 and θ1, respectively, then conditions (A) and (B) in (75) are both satisfied
(replacingϑi by θ ′i ). Applying Lemma 5.3 to these cylinders we find an element
of P≤T,(p,q)( f λ0), which proves the first assertion of Proposition 5.1.

To prove the result for families fn as in the statement, observe that we may
select a single model fθ ′0,θ ′1 , with θ ′0, θ ′1 �∈ Q, and a constant c > 0 such that:

• if (θ0, 1) < (p, q) < (1, θ1) then (θ ′0, 1) < (p, q) < (1, θ ′1),• if (1, θ1) < (p, q) < (θ0, 1) then (1, θ ′1) < (p, q) < (θ ′0, 1),
• infx fθ ′0,θ ′1(x) > M , supx c fθ ′0,θ ′1(x) < m.

The assumptions on fn guarantee that c fθ ′0,θ ′1 < fn < fθ ′0,θ ′1 pointwise, for
each n. Since θi ( fn)→ θi we have for large n

• if (θ0, 1) < (p, q) < (1, θ1) then (θ0( fn), 1) < (p, q) < (1, θ1( fn)),
• if (1, θ1) < (p, q) < (θ0, 1) then (1, θ1( fn)) < (p, q) < (θ0( fn), 1).

We may assume that θ ′0 and θ ′1 are chosen close enough to θ0 and θ1, respec-
tively, in such a way that both conditions (A) and (B) in (75) are satisfied,
replacing (ϑi , θi ) in (75) by (θ ′i , θi ( fn)) for n large. Applying the above argu-
ment to each form fnλ0 with these specific choices of fθ ′0,θ ′1 and c fθ ′0,θ ′1 , we

obtain, for all n sufficiently large, an orbit in P≤T,(p,q)( fnλ0), where T is
some upper bound on the action independent of n large. In fact, T could be
any number larger than the action of an orbit in the (p, q)-orbit torus for fθ ′0,θ ′1
and is therefore independent of n.

6 Passing to the degenerate case

6.1 Non-degenerate approximations

Lemma 6.1 Let f ∈ F . There is a sequence fn ∈ F such that fnλ0 is non-
degenerate for each n, fn → f in C∞. In particular, for i = 0, 1 we have
θi ( fn)→ θi ( f ) as n →∞, where θi ( fn) = ρ( fnλ0, Li )− 1.

Proof It is possible to find f ′ ∈ F arbitrarily C∞-close to f such that L0, L1
are non-degenerate prime Reeb orbits of f ′λ0; see [21, Lemma 6.8]. Now there
exists f ′′ C∞-close to f ′ such that f ′′λ0 is non-degenerate, but at this step
f ′′ need not belong to F . However, the orbits L0, L1 get perturbed to closed
f ′′λ0-Reeb orbits L ′0, L ′1 in a way that L ′i is C∞-close to Li , i = 0, 1. Here we
used that Li were non-degenerate orbits of f ′λ0. We take a C∞-small contact

123



A Poincaré–Birkhoff theorem 395

isotopy {ϕt }t∈[0,1] of (S3, ξ0) satisfying ϕ0 = id, ϕ1(Li ) = L ′i , i = 0, 1. Then
ϕ∗1( f ′′λ0) = f ′′′λ0 for some f ′′′ ∈ F which is C∞-close to the original f λ0.
Thus f ′′′λ0 is non-degenerate and θi ( f ′′′) ∼ θi ( f ), i = 0, 1. ��

Let us select a sequence fn as in Lemma 6.1. By Proposition 5.1, for each
pair (p, q) ∈ Z× Z relatively prime satisfying

(θ0( fn), 1) < (p, q) < (1, θ1( fn)), or (1, θ1( fn), 1) < (p, q) < (θ0( fn), 1)

there is a (p, q)-closed Reeb orbit for fnλ0, for large n, which we shall denote
Pn(p, q). Indeed, since θi ( fn) → θi ( f ), if (p, q) satisfies one of the above
inequalities for θ0( f ), θ1( f ) then for all n large enough the same inequality
holds for fn , and therefore the orbit Pn(p, q) is obtained by Proposition 5.1.
Moreover, since fn → f it is clear that there are constants m, M such that

0 < m < inf
n,x

fn(x) ≤ sup
n,x

fn(x) < M.

Therefore the second assertion of Proposition 5.1 applies to the sequence fn
and guarantees that we may assume a uniform bound

∫

Pn(p,q)

fnλ0 ≤ T

for some T independent of n and all n large. Using this period bound, the
Arzela-Ascoli theorem guarantees that there exists a subsequence ni such that
Pni (p, q)→ P(p, q) in C∞(S1, S3), where P(p, q) is a closed Reeb orbit for
f λ0. If P(p, q) does not have image contained in K0, it is clear that it is in the
homotopy class (p, q): for, Pn(p, q) is C∞-close to P(p, q), which implies
that for all large n the homotopy classes of Pn(p, q), P(p, q) in S3\K0 must
be the same. However, at this point it is conceivable that P(p, q) has image
in K0; we show next that this cannot be the case.

6.2 Non-collapsing

Let us suppose that the sequence of orbits Pn = Pn(p, q) converges to Lq
0 ,

q > 0 (otherwise, the sequence must converge to L p
1 and the argument is

analogous). This fact together with (8) implies that (θ0( f ), 1) �∈ R(p, q),
which also implies that θ0( f ) �= p/q.

Let (U,�) be a Martinet tube for L0, so that we have special coordinates
(θ, x, y) ∈ R/Z× B on U with respect to which fnλ0 � gn(dθ + xdy) and
f λ0 � g(dθ+xdy). Moreover on R/Z×0 we have ξ0 � 0×R

2. In particular
σ = {∂x , ∂y} is a conformal d( fnλ0)-symplectic frame of ξ0|L0 , for every n.
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We may assume, without loss of generality, that given an embedded disk D0
spanning L0 then ∂x is an outward pointing tangent vector of D0 along L0.
Denoting by βdisk the homotopy class of trivializations of ξ0|L0 induced by σ
then ρ( fnλ0, L0, βdisk) = θ0( fn) since L0 has self-linking number −1.

Let φt denote the Reeb flow of f λ0. Given N > 0, we may find a smaller
neighborhood U (N ) so that forw ∈ U (N ), the trajectoryφt (w) for 0 ≤ t ≤ N
lies in U . Letφn,t denote the Reeb flow for fnλ0. For N fixed, if n is sufficiently
large then φn,t (w) ∈ U for w ∈ U (N ) and 0 ≤ t ≤ N . We have φn → φ in
C∞([0, N ] ×U (N ),U ).

Denote by T the prime f λ0-period of L0, and by Tn the fnλ0-period of
Pn . Recall that Pn → P = Lq

0 . Choose N > qT + 1, say, and note that by
hypothesis for n large we have Pn ⊂ U (N ). Let (0, wn) be in the intersection
of Pn with the disc 0×B with respect to the coordinate system above. Note that
wn → 0. After passing to a subsequence, we may suppose that wn/‖wn‖ →
h �= 0 ∈ R

2.
We claim that dφqT (0, 0)(0, h) = (0, h) and that the winding of the vector

dφt (0, 0)(0, h) ∈ 0× (R2 \ 0), t ∈ [0, qT ], is exactly p around the origin in
the plane 0 × R

2. This leads to θ0( f ) = p/q, which is a contradiction since
θ0( f ) �= p/q.

In fact, let � : R/Z × R
2 → R

2 be the projection on the second factor
inducing the tangent projection �∗. We use the Euclidean norm in all linear
spaces whenever it is necessary.

We have (0, wn) = φn,Tn (0, wn) for each n, where Tn → qT . Note the
following estimates:

• ‖φn,t (0, wn)−φn,t (0, 0)−dφn,t (0, 0) · (0, wn)‖ ≤ Cn‖wn‖2, ∀t ∈ [0, N ],
where Cn is the sup-norm of the second derivative of φn,t , t ∈ [0, N ], in
U (N ). For n large, Cn can be bounded by twice the sup-norm of the second
derivative of φt , t ∈ [0, N ], in U (N ) (i.e. Cn is uniformly bounded by
an absolute constant K1 for n large). Projecting onto R

2 and using that
φn,t (0, 0) ∈ R/Z× {0} for all t , we get

‖�(φn,t (0, wn))−�∗dφn,t (0, 0) · (0, wn)‖ ≤ K1‖wn‖2 (90)

for all t ∈ [0, N ] and n large.
• We have

‖�∗dφn,t (0, 0)·(0, wn)−�∗dφt (0, 0)·(0, wn)‖ ≤ ε(1)n ‖wn‖,∀t ∈ [0, N ],
(91)

where ε(1)n ↓ 0 can be taken to be the supremum of the sup-norm of the
difference dφn,t (0, 0)− dφt (0, 0) in t ∈ [0, N ].
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• We have

‖�∗dφt (0, 0) · (0, wn)− {‖wn‖�∗dφt (0, 0) · (0, h)}‖ ≤ ε(2)n ‖wn‖,
(92)

for some ε
(2)
n ↓ 0. To see this, let ‖(wn/‖wn‖) − h‖ = ε

(3)
n → 0, so

‖wn−(‖wn‖h)‖ = ‖wn‖·ε(3)n and we can take the constant ε(2)n = ε
(3)
n ·K2 ↓

0 where K2 is the supremum of the sup-norm of dφt (0, 0) in t ∈ [0, N ] .
• Putting (90), (91), (92) together and dividing by ‖wn‖ �= 0, we have for

t ∈ [0, N ] and n large

∥

∥

∥

∥

�(φn,t (0, wn))

‖wn‖ −�∗dφt (0, 0)(0, h)

∥

∥

∥

∥

≤
(

K1‖wn‖ + ε(1)n + ε(2)n

)

↓ 0.

(93)

Since φn,Tn (0, wn) = (0, wn) we find for t = Tn

∥

∥

∥

∥

(

0,
wn

‖wn‖
)

− dφTn (0, 0)(0, h)

∥

∥

∥

∥

→ 0 as n →∞,

which implies, since Tn → qT , that dφqT (0, h) = (0, h).

Again from (93) and taking K1‖wn‖ + ε
(1)
n + ε

(2)
n less than the infimum of

‖dφt (0, 0)(0, h)‖ over t ∈ [0, N ], we necessarily have for n large that

windt∈[0,Tn]
(

�(φn,t (0, wn))
) = windt∈[0,Tn]

(

�(φn,t (0, wn))

‖wn‖
)

= windt∈[0,qT ](�∗dφt (0, 0)(0, h)).

Here, obviously, we are computing the winding numbers with respect to the
standard basis of R

2.
Now since Pn is a Reeb orbit for fnλ0 in the homotopy class (p, q) with

respect to the Hopf Link K0 = L0 ∪ L1, we also have that

windt∈[0,Tn](�(φn,t (0, wn))) = p.

Here we make use of our particular choice of Martinet tube. We conclude
that θ0( f ) = windt∈[0,qT ](�∗dφt (0, 0)(0, h))/q = p/q which, as mentioned
before, gives a contradiction. It follows that the orbits Pn cannot converge to
Lq

0 .
Arguing similarly, they cannot converge to L p

1 either, and thus the sequence
Pn has a limit P in S3\K0 which is an orbit for f λ0 satifying link(P, L0) = p,
link(P, L1) = q. This completes the proof of Theorem 1.2.
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7 The SO(3)-case

Our goal in this section is to prove Theorem 1.9 and its corollaries.

7.1 Geometric set-up

Let g0 be the Euclidean metric on R
3 and consider the associated unit tangent

bundle of the 2-sphere

T 1S2 :={(x, v) ∈ R
3 × R

3 | g0(x, x)=g0(v, v)=1, g0(x, v)=0} � SO(3),

with bundle projection � : T 1S2 → S2, �(x, v) = x . There exists a double
covering map

D : S3 2:1−→ T 1S2,

explicitly given by

⎡

⎢

⎢

⎣

q0
p0
q1
p1

⎤

⎥

⎥

⎦

�→
⎡

⎣

(q2
0 − p2

0 + q2
1 − p2

1) −2(q0 p0 + q1 p1)

2(−q0 p0 + q1 p1) −(q2
0 − p2

0 − q2
1 + p2

1)

2(q0 p1 + p0q1) 2(q0q1 − p0 p1)

⎤

⎦ = [x v] ,

(94)
with group of deck transformations generated by the antipodal map

A(z) = −z, z ∈ S3.

Here z = (q0 + i p0, q1 + i p1) ∈ C
2 � R

4. Later we will make use of polar
coordinates r0eiφ0 = q0 + i p0 �= 0 and r1eiφ1 = q1 + i p1 �= 0.

Recall the standard contact form λ0 = 1
2

∑

j=0,1 q j dp j − p j dq j on S3 and
the standard contact structure ξ0 = ker λ0, and observe that

A∗λ0 = λ0. (95)

The contact form λ̄0 on T 1S2 given by λ̄0|(x,v) · ζ = g0(v, d� · ζ ) ∀ζ ∈
T(x,v)T 1S2 satisfies D∗λ̄0 = 4λ0. Let ξ̄0 := ker λ̄0 be its (tight) contact
structure and X λ̄0

its Reeb vector field. The flow of ẋ = X λ̄0
◦x is the geodesic

flow of (S2, g0) on T 1S2. Its orbits are closed (the unit vectors tangent to the
great circles) and correspond to the projections of Hopf fibers under D. There
exists a natural orientation on T 1S2 induced by λ̄0 ∧ dλ̄0 > 0.
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As before, K0 := L0 ∪ L1 ⊂ S3 is the Hopf link

L0 := {q0 = p0 = 0, q2
1 + p2

1 = 1},
L1 := {q1 = p1 = 0, q2

0 + p2
0 = 1}. (96)

Its components doubly cover

li := D(Li ), i = 0, 1,

which are the velocity vectors of the geodesics running the equator of S2 in
opposite directions. Let

l := l0 ∪ l1 (97)

be the link in T 1S2 which we also call a Hopf link.

Definition 7.1 We call any transverse link l̄ = l̄0 ∪ l̄1 ⊂ (T 1S2, ξ̄0) a Hopf
link if l̄ is transversally isotopic to the link l defined in (97). This means
that there exists an isotopy ρt : S1 � S1 → T 1S2, t ∈ [0, 1], such that
image(ρ0) = l̄, image(ρ1) = l, ρt is an embedding positively transverse to
the contact structure for all t . It is a theorem that the isotopy ρt , t ∈ [0, 1], can
be extended to a contact isotopyψt , t ∈ [0, 1], of (T 1S2, ξ̄0), i.e., ψt∗ξ̄0 = ξ̄0
and ψt ◦ ρ0 = ρt for all t , see Theorem 2.6.12 in [16]. The Hopf link l is said
to be in normal position.

For each c ∈ S1, let u1,c, u0,c : C → S3 be the embeddings, defined in
polar coordinates (R, θ) ∈ [0,∞)× R/2πZ by

u1,c(R, θ) = 1√
1+R2 (Reiθ , c), u0,c(R, θ) = 1√

1+R2 (c, Reiθ ). (98)

Note that ui,c is transverse to the Reeb vector field Xλ0 of λ0 and satisfies

ui,c(R, ·)→ Li as R →∞. (99)

It is clear that the family {ui,c; c ∈ S1} smoothly foliates S3 \ Li for i = 0, 1.
Each ui,c has an orientation induced by dλ0. Notice that ui,c(C)∩L j = ui,c(0)
for all c and i �= j and that (c, R, θ) � ui,c(R, θ) is a diffeomorphism
S3 \ K0 � S1 × (0,∞)× R/2πZ for each i = 0, 1.

The solutions of ẋ = Xλ0 ◦ x in coordinates (c, R, θ) are given by

c(t) = c(0)e2i t , R(t) = R(0), θ(t) = θ(0)+ 2t. (100)

Let ūi,c : C → T 1S2, c ∈ S1, be defined by

ūi,c := D ◦ ui,c.
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for i = 0, 1. Now since ui,c does not have antipodal points in their image, we
see that ūi,c is an embedding. From (99), we have

ūi,c(R, ·)→ li as R →∞, (101)

the convergence being as double covering maps.
Notice from (98) that

ūi,c(C)= ūi,c′(C)⇔ c′ ∈ {c,−c} and ūi,c(C) ∩ ūi,c′(C)=∅ ⇔ c′ �∈ {c,−c},

where the identification under A is given by

(c, R, θ) ∼ (−c, R, θ + π) (102)

in the coordinates (c, R, θ). Observe that ūi,c(C) ∩ l j = ūi,c(0) for all c and
i �= j . It follows that T 1S2 \ l � S̄1× (0,∞)×R/πZ where S̄1 := S1/{c ∼
−c} � S1, and we find

π1(T
1S2 \ l) � Z⊕ Z (103)

where the choice of a base point is omitted.
Let ᾱ : [0, 1] → T 1S2 \ l be a closed curve and α : [0, 1] → S3 \ K0

be a lift. In polar coordinates we have α(t) = (r0(t)eiφ0(t), r1(t)eiφ1(t)) with
continuous arguments φ0, φ1 : [0, 1] → R, and non-vanishing continuous
functions r0(t), r1(t). We will denote

wind0(ᾱ) = φ0(1)− φ0(0)

2π
and wind1(ᾱ) = φ1(1)− φ1(0)

2π
(104)

which are half-integers independent of the choice of lifts. It is always the case
that

wind0(ᾱ)+ wind1(ᾱ) ∈ Z.

The pair of half-integers wind0,wind1 determine a homotopy class in the
complement of any Hopf link in T 1S2.

We choose [ā0] and [ā1] as generators of π1(T 1S2 \ l) where

ā0(t) = D ◦ a0(t), ā1(t) = D ◦ a1(t),

and

a0(t) = 1√
2
(eπ ti , eπ ti ), a1(t) = 1√

2
(eπ ti , e−π ti ),

for t ∈ [0, 1]. We have

123



A Poincaré–Birkhoff theorem 401

wind0(ā0) = wind0(ā1) = wind1(ā0) = 1/2 and wind1(ā1) = −1/2.
(105)

Any homotopy class [ᾱ] ∈ π1(T 1S2 \ l) is uniquely determined by the half
integers wind0(ᾱ) and wind1(ᾱ). The isomorphism (103) can be chosen as

[ᾱ] �→ (wind0(ᾱ)+ wind1(ᾱ),wind0(ᾱ)− wind1(ᾱ)). (106)

The bundle T T S2 decomposes as the direct sum of vertical and horizontal
sub-bundles T T S2 = V T S2 ⊕ H T S2. Here V T S2 = ker d� where � :
T S2 → S2 is the projection, and H T S2 = ker K where K : T T S2 → T S2 is
the connection map of g0. Given v ∈ Tx S2 there are associated isomorphisms

iV : Tx S2 → VvT S2,

iH : Tx S2 → HvT S2,
(107)

and

TvT 1S2 = iH (Tx S2)⊕ iV (Rv
⊥) = ker λ̄0|(x,v) ⊕ ker dλ̄0|(x,v),

where v⊥ ∈ T 1
x S2 is normal to v and {v, v⊥} is positive. In fact

ξ0|(x,v) = ker λ̄0|(x,v) = RiV (v
⊥)⊕ RiH (v

⊥) and ker dλ̄0|(x,v) = RiH (v).

The vectors
{v⊥,V := iV (v

⊥), v⊥,H := iH (v
⊥)} (108)

induce a global symplectic trivializationβ of the dλ̄0-symplectic vector bundle
ξ̄0 → T 1S2 since dλ̄0(v

⊥,V , v⊥,H ) = 1.
Now let λ = f λ̄0 be a contact form on T 1S2 inducing the tight contact

structure ξ̄0. Consider the Reeb flow associated to λ and let P = (x, T ) be
a closed Reeb orbit with prime period T > 0. Multiplying the vectors v⊥,V
and v⊥,H in (108) by 1/

√
f we find a global dλ-symplectic trivialization of

ker λ = ker λ̄0 = ξ̄0. With respect to this global frame we define the transverse
rotation number of P by

ρ(P) = T lim
t→∞

θ(t)

2π t
(109)

for any solution 0 �= v(t) � r(t)eiθ(t) ∈ ξ̄0|x(t) of the linearized Reeb flow
over P .
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7.2 Tight Reeb flows on T 1S2

Here we prove Theorem 1.9, and for that we will use the same model as in the
S3 case. Let γ : [0, 1] → [0,+∞) × [0,+∞) be a curve associated to the
numbers η0 and η1 and satisfying the conditions explained in Sect. 4.1. With
this curve we have the star-shaped hypersurface Sγ ⊂ C

2 defined in polar
coordinates by

Sγ := {(r0, φ0, r1, φ1) : (r2
0 , r2

1 ) ∈ image(γ )}.

Let fη0,η1λ0 be the contact form on S3 associated to Sγ , as explained in
Sect. 4.1, and let λ̄η0,η1 be the tight contact form on T 1S2 induced by the
double covering map D. This form is well defined since fη0,η1 ◦ A = fη0,η1 . It
is clear that the Reeb flow of fη0,η1λ0 admits the Hopf link K0 = L0∪L1 ⊂ S3

as closed Reeb orbits, where Li , i = 0, 1, is defined in (96). Their transverse
rotation numbers are ρ(Li ) = 1 + ηi , i = 0, 1. Thus the flow of λ̄η0,η1 on
T 1S2 admits the Hopf link l = l0∪ l1 in normal position as closed Reeb orbits.
Their transverse rotation numbers are equal to

ρ(li ) = ρ(Li )/2.

Lemma 7.2 The conclusions of Theorem 1.9 hold for the Reeb flow of λ̄η0,η1

on T 1S2. Moreover, for each pair of relatively prime integers (p, q) satisfy-
ing (14), the closed Reeb orbits satisfying wind0 = p, wind1 = q in case p+q
is odd, or wind0 = p/2, wind1 = q/2 in case p + q is even, appear as an
S1-family filling an embedded 2-torus in T 1S2 \ l.

Proof There is a unique point z0 ∈ image(γ ) such that the vector (p, q)
is normal to γ at z0. Using polar coordinates, solutions corresponding to z0
satisfy ṙi = 0, i = 0, 1, φ̇0 = mp and φ̇1 = mq for some m > 0. The values
of ri , i = 0, 1, are determined by z0. Assuming φ0(0) = φ1(0) = 0 we find
φ0(t) = mpt and φ1(t) = mqt .

If p + q is even then both p and q are odd since (p, q) is relatively prime.
A period of the corresponding Reeb orbit is π/m. Moreover

φ0(π/m) = pπ,

φ1(π/m) = qπ,
(110)

and this corresponds to a non-contractible closed orbit γp,q on T 1S2. Since
(p, q) is a relatively prime pair, this orbit is simple. From (110), we have
wind0(γp,q) = p/2 and wind1(γp,q) = q/2. Varying the initial condition
φ1(0) we find the S1-family of such orbits filling a 2-torus in T 1S2.
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Let us consider the case p + q is odd. A period of the corresponding Reeb
orbit is 2π/m since

φ0(2π/m) = p2π,

φ1(2π/m) = q2π,
(111)

which obviously corresponds to a contractible closed orbit γp,q on T 1S2.
Again, since (p, q) is a relatively prime pair this orbit is simple, wind0(γp,q) =
p and wind1(γp,q) = q. We also find an S1-family of such orbits varying the
initial condition φ1(0). ��
Proof of Theorem 1.9 The case p + q odd follows almost immediately from
Theorem 1.2. Consider the pulled back Reeb flow on S3\K0, corresponding
to f̃ λ0 = D∗( f λ̄0), it follows that f̃ ∈ F on S3\K0; the numbers θi in
Theorem 1.2 coincide with ηi for i = 0, 1. Theorem 1.2 implies that there is a
simple closed orbit γp,q satisfying link(γp,q , L0) = p and link(γp,q , L1) = q.
Since p + q is odd and (p, q) is relatively prime it follows that one of p, q is
even and the other is odd and that γ̄p,q = D ◦ γp,q is a simple closed orbit in
T 1S2\l with

wind0(γ̄p,q) = link(γp,q , L0) = p, wind1(γ̄p,q) = link(γp,q , L1) = q,

as claimed.
In the case p + q even, one can argue the same way, but the orbit γ̄p,q =

D ◦γp,q obtained may be simple or it may be a double cover of another simple
orbit γ̄ ′p,q with

wind0(γ̄
′
p,q) = p/2, wind1(γ̄

′
p,q) = q/2.

We wish to show that we can indeed find a simple orbit γ̄ ′p,q as such, that is,
in the homotopy class

[ā] =
(

p + q

2
,

p − q

2

)

under the isomorphism (106). Notice that loops in this homotopy class in
T 1S2 \ l are not contractible in T 1S2 since wind0(ā) and wind1(ā) are half-
integers. Thus, if ā ∈ [ā] then D(D−1(ā)) is a double-cover of ā.

To find the desired simple closed orbits, one can follow the argument that
proves Theorem 1.2 but working directly on the manifold T 1S2. Let hλ̄0,
h > 0, be a contact form such that the associated Reeb flow is tangent to
l, ρ(li ) �∈ Q, all closed Reeb orbits with action up to some number T > 0
are non-degenerate, and no closed Reeb orbit with action ≤ T in T 1S2 \ l is
contractible in T 1S2 \ l. A pair (m, n) ∈ Z represents a homotopy class in
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π1(T 1S2 \ l) under the isomorphism (106), and we denote by P≤T,(m,n)(hλ̄0)

the set of closed Reeb orbits in T 1S2 \ l representing this homotopy class
with action ≤ T . As explained in Sect. 2.2.1, we consider the symplectiza-
tion Wξ̄0

⊂ T ∗T 1S2 with projection τ : Wξ̄0
→ T 1S2 onto the base point.

Every P ∈ P≤T,(m,n)(hλ̄0) has a well-defined Conley–Zehnder indexμC Z (P)
which is computed using the global trivialization (108), with associated degree
|P| = μC Z (P)−1. The vector space C≤T,(m,n)

k (hλ̄0) is freely generated, with
coefficients in F2, by the elements of P≤T,(m,n)(hλ̄0)with degree k, and on the
graded vector space

⊕

k C≤T,(m,n)
k (hλ̄0)we have a differential which is defined

by counting finite-energy ̂J -holomorphic cylinders in τ−1(T 1S2 \ l) ⊂ Wξ̄0
,

asymptotic to orbits in P≤T,(m,n)(hλ̄0)with Fredholm index 1. Here the almost
complex structure ̂J ∈ J (hλ̄0) is induced by some dλ̄0-compatible com-
plex structure J : ξ̄0 → ξ̄0, see Sect. 2.2.1, and is assumed to be Fredholm
regular for the homotopy class (m, n) and action bound T in an analogous
fashion as was explained in Sect. 3.1. The associated homology is denoted by
HC≤T,(m,n)∗ (hλ̄0, J ). Analogous versions of Theorems 3.2–3.7, of Lemma 4.7
and of Propositions 4.2, 4.8 can be proved similarly as before.

Suppose f λ̄0 is a non-degenerate contact form with Reeb vector field tangent
to the Hopf link l, with associated numbers ηi ( f ) = 2ρ(li )− 1, i = 0, 1. Let
(p, q) ∈ Z×Z be a relatively prime pair and assume that (14) holds. Following
Sect. 4, we can choose numbersη′0, η′1 �∈ Q close toη1( f ), η2( f ) and construct
a contact form h+λ̄0 as a small perturbation of λ̄η′0,η′1 , find a number T > 0

and a suitable dλ̄0-compatible complex structure J on ξ̄0 with the properties:
• the Reeb flow of h+λ̄0 is tangent to l, each li is an elliptic orbit with asso-

ciated transverse rotation number (109) equal to η′i , i = 0, 1;
• for this pair (p, q) we have

(η′0, 1) < (p, q) < (1, η′1) if (η0( f ), 1) < (p, q) < (1, η1( f )),

or

(1, η′1) < (p, q) < (η′0, 1) if (1, η1( f )) < (p, q) < (η0( f ), 1);
• ch+ < f < h+ pointwise for some 0 < c < 1;
• only two orbits in the S1-family of closed Reeb orbits of λ̄η′0,η′1 as described

in Lemma 7.2 representing the homotopy class ( p+q
2 ,

p−q
2 ) survive as closed

Reeb orbits of h+λ̄0, up to action T/c + 1, and these correspond to the

elements in the sets P≤T,( p+q
2 ,

p−q
2 )(h+λ̄0) and P≤T,( p+q

2 ,
p−q

2 )(ch+λ̄0);
• h+λ̄0 is non-degenerate up to action T/c and has no Reeb orbits of action

less than T/c which are contractible in T 1S2 \ l;
• J induces R-invariant almost complex structures ̂J+ ∈ J (h+λ̄0) and
̂J− ∈ J (ch+λ̄0) which are Fredholm regular with respect to the homo-
topy class ( p+q

2 ,
p−q

2 ) and action bound T/c. This notion of regularity is
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defined exactly as in Sect. 3.1. Hence the corresponding cylindrical contact
homologies of h+λ̄0 and of ch+λ̄0 in T 1S2 \ l up to action T in the homo-
topy class ( p+q

2 ,
p−q

2 ) are well-defined and isomorphic to H∗(S1;F2) up to
a common grade-shift:

HC
≤T,( p+q

2 ,
p−q

2 )
∗ (h+λ̄0, J )�HC

≤T,( p+q
2 ,

p−q
2 )

∗ (ch+λ̄0, J )�H∗−s(S
1;F2),

• the map j∗ ◦ ι∗ explained in Sect. 4.3 is non-zero

HC
≤T,( p+q

2 ,
p−q

2 )
∗ (h+λ̄0, J )

j∗◦ι∗�=0−−−−→ HC
≤T,( p+q

2 ,
p−q

2 )
∗ (ch+λ̄0, J ).

Following the argument in the S3-case, consider ̂J ∈ J ( f λ̄0). Recall
the sets J (̂J−, ̂J ), J (̂J , ̂J+) defined in Sect. 2.2.2. The sets J (̂J−, ̂J : l),
J (̂J , ̂J+ : l) of almost complex structures for which τ−1(l) is a pseudo-
holomorphic surface are defined as in Sect. 2.2.7. We select J1 ∈ J (̂J−, ̂J : l)
and J2 ∈ J (̂J , ̂J+ : l). The family of almost-complex structures J̄R = J1◦R J2
in Wξ̄0

, splitting along the hypersurface defined by the contact form f λ̄0, is
defined as in Sect. 2.2.3.

For each R > 0, there must exist a finite-energy J̄R-holomorphic cylin-
der ũ R contained in the complement of τ−1(l) with one positive and one
negative puncture. In the positive puncture it is asymptotic to an orbit in

P≤T,( p+q
2 ,

p−q
2 )(h+λ̄0), and in the negative puncture it is asymptotic to an orbit

in P≤T,( p+q
2 ,

p−q
2 )(ch+λ̄0). To see this recall that, as in the S3-case, J̄R is dif-

feomorphic to some element in J̄ ′R ∈ J (̂J−, ̂J+ : l) and, if there are no
J̄R-cylinders as claimed, we conclude that J̄ ′R is Fredholm regular (for homo-
topy class ( p+q

2 ,
p−q

2 ) and action bound T ) and induces the zero map from

HC
≤T,( p+q

2 ,
p−q

2 )
∗ (h+λ̄0, J ) to HC

≤T,( p+q
2 ,

p−q
2 )

∗ (ch+λ̄0, J ). However this map
equals j∗ ◦ ι∗ �= 0 by versions of Lemma 4.7 and Proposition 4.8 in the
T 1S2-case, a contradiction.

Considering a sequence Rn → +∞, we may assume that the asymp-
totic orbits of the cylinders ũ Rn do not depend on n, which guarantees
uniform energy bounds for the sequence ũ Rn . This is so since the sets

P≤T,( p+q
2 ,

p−q
2 )(h+λ̄0) and P≤T,( p+q

2 ,
p−q

2 )(ch+λ̄0) have two elements. We
denote these limiting orbits by P̄+ and P̄− at the positive and negative punc-
tures, respectively.

The double cover D induces a double cover ˜D : Wξ0 → Wξ̄0
. Since p + q

is even, the loops t �→ τ ◦ ũ Rn (s, t) are non-contractible on T 1S2. We can lift
the maps

ũ2
Rn
: R× R/2Z → Wξ̄0

, (s, t) �→ ũ Rn (s, t)
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to finite-energy cylinders ˜Un : R × R/2Z → Wξ0 holomorphic with respect
to ˜D∗(J1 ◦R J2) with uniform energy bounds. There exists a SFT-convergent
subsequence ˜Un j . Denoting by τ̃ : Wξ0 → S3 the projection onto the base
point, the loops t �→ τ̃ ◦ ˜Un j (s, t) link p times with L0 and q times with L1.
Arguing just as in the proof of Lemma 5.3, using the relations satisfied by the
numbers q, p, η0( f ), η1( f ), η′0 and η′1, we find a closed orbit ˜Pp,q ⊂ S3\(L0∪
L1) of the Reeb flow associated to the contact form D∗( f λ̄0) = ( f ◦ D)4λ0
satisfying link(˜Pp,q , L0) = p and link(˜Pp,q , L1) = q. Moreover, the orbit
˜Pp,q can be approximated in C∞ by loops of the form t �→ τ̃ ◦˜Un j (s j , t+ t j ),
t ∈ R/2Z, for suitable s j , t j and j large. Since these loops project down to
T 1S2 via the map D to doubly covered loops, the same is true for the loop ˜Pp,q .
This means that D ◦ ˜Pp,q is the double cover of a prime closed orbit ( f λ̄0)-
Reeb orbit P̄p,q . It follows that P̄p,q is in the homotopy class ( p+q

2 ,
p−q

2 ) since
wind0(P̄p,q) = p/2 and wind1(P̄p,q) = q/2. ��
Proof of Corollary 1.10 Corollary 1.10 is immediate from Theorem 1.9, since
the Reeb flow on the unit cotangent bundle of a Finsler metric F is the geodesic
flow of F . ��

In the case that the metric is reversible, if an embedded curve is a geodesic
when traversed in one direction it will automatically be a geodesic when tra-
versed in the opposite direction so that Corollary 1.10 applies, and moreover
one finds the relation η0 = η1. We will explore this case in greater detail in
the next section.

7.3 Reversible simple geodesics of Finsler metrics

We now recover Angenent’s theorem at the level of homotopy classes for
the more general framework of Finsler metrics on S2 with reversible simple
geodesics and prove Corollary 1.11. Although it is a particular case of Corol-
lary 1.10, we will be more explicit; in particular we will clarify the relationship
between the geodesics we find and the satellites found by Angenent [1].

A simple closed geodesic γ with unit speed of a Finsler metric F on S2

is called reversible if the curve t �→ γ (−t) is a reparametrization of another
geodesic γr and if, in addition, the inverse rotation numbersρ = ρ(γ ) = ρ(γr )

coincide. The geodesics γ and γr determine a Hopf link lγ = γ̄ ∪ γ̄r ⊂
T 1S2, where the special lifts γ̄ = G−1(γ̇ ), γ̄r = G−1(γ̇r ) are defined in (18)
using the special contactomorphism G described in (17). Now consider a
contactomorphism ϕ of (T 1S2, ξ̄0) such that ϕ(γ̄ ) = l0 and ϕ(γ̄r ) = l1,
where l = l0 ∪ l1 is the standard Hopf link in T 1S2 defined by li = D(Li ),
see (97). Such a contactomorphism exists since lγ is transversally isotopic to
l.
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Lemma 7.3 Let γp,q be a (p, q)-satellite of γ with unit speed with respect to
F, and consider ϕ(γ̄p,q) ⊂ T 1S2 \ l.

(1) If q > 0 then

wind0(ϕ(γ̄p,q)) = |p| − q/2,

wind1(ϕ(γ̄p,q)) = q/2.

(2) If q < 0 then

wind0(ϕ(γ̄p,q)) = q/2,

wind1(ϕ(γ̄p,q)) = |p| − q/2.

Proof Assume q > 0. First we work directly on F−1(1) and recall some basic
facts about Finsler geometry. F determines inner-products gv(·, ·) on T�(v)S2

for each v �= 0 by

gv(w1, w2) = 1

2

∂2

∂s∂t

∣

∣

∣

∣

s=t=0
F2(v + tw1 + sw2).

The 1-form λ̄F defined in the introduction is written as λ̄F |v ·ζ = gv(v, d�·ζ ).
We choose a Riemannian metric h such that hγ (t) = gγ̇ (t) for every t ∈ R/T Z

and γ (t) is an h-geodesic. Here T > 0 denotes the prime period of γ . We
assume T = 1 for simplicity. The 1-form λ̄h on T S2, defined by λ̄h|v · ζ =
hx (v, d� ·ζ )where x = �(v), coincides with λ̄F on Tγ̇ T S2, and in particular
on Tγ̇ F−1(1). Let N (t) be a vector field along γ (t) such that {γ̇ (t), N (t)} is
a positive orthonormal basis of Tγ (t)S2, and consider the (p, q)-satellite

αε(t) = expγ (t)(ε sin(2πpt/q)N (t))

defined in R/qZ. Here exp is the exponential map associated to h. As usual,
there is a connection map K : T T S2 → T S2 associated to h inducing a
splitting T T S2 = V T S2 ⊕ H T S2 where V T S2 = ker d� and H T S2 =
ker K . Moreover, for every v �= 0 there are isomorphisms iv : T�(v)S2 →
VvT S2 and (d�|H T M)

−1 : T�(v)S2 → HvT S2, where iv(w) = d
dt

∣

∣

t=0 (v +
tw). So we always view a vector in TvT S2 as a pair of vectors in T�(v)S2

referred to as the vertical and horizontal parts.
These objects allow us to understand the velocity vector α̇ε , in fact,

α̇ε(t) = J (ε, t)

where s �→ J (s, t) is the Jacobi field along the h-geodesic

s �→ expγ (t)(s sin(2πpt/q)N (t))

123



408 U. Hryniewicz et al.

with initial conditions J (0, t) = γ̇ (t) and D J
ds

∣

∣

s=0 = D
dt (sin(2πpt/q)N (t)).

All covariant derivatives are taken with respect to metric h. Thus d
dε

∣

∣

ε=0 α̇ε(t)
is a vector in Tγ̇ (t)T S2 with vertical part equal to (2πp/q) cos(2πpt/q)N (t)
and horizontal part sin(2πpt/q)N (t). Consider the vector ζ(t) := d

dε

∣

∣

ε=0
α̇ε (t)

F(α̇ε(t))
. Then the horizontal part of ζ(t) is still equal to sin(2πpt/q)N (t) and

its vertical part equals

(2πp/q) cos(2πpt/q)N (t)+
(

d

dε

∣

∣

∣

∣

ε=0

1

F(J (ε, t))

)

γ̇ (t).

However ζ(t)must be tangent to F−1(1), which implies
(

d
dε

∣

∣

ε=0
1

F(J (ε,t))

)

=
0, so that ζ(t) = d

dε

∣

∣

ε=0 α̇ε(t). Let N hor(t), N vert(t) ∈ Tγ̇ (t)T S2 be the hor-
izontal and vertical lifts of N (t). Then {N vert(t), N hor(t)} is a dλ̄F -positive
basis along ξ̄F |γ̇ (t) which extends to a global dλ̄F -positive basis of ξ̄F . In
particular, we computed that ζ(t) ∈ ξ̄F |γ̇ (t) ∀t and the representation of ζ(t)
in this global frame as vector in R

2 is

(

2πp

q
cos(2πpt/q), sin(2πpt/q)

)

.

Hence its winding equals |p| when t does one full turn in the circle R/qZ.
Defining ζ̄ (t) = dG−1|γ̇ · ζ(t) we obtain a section of ξ̄0|γ̄ which winds |p|

times with respect to a global positive frame when t goes from 0 to q. We have
the a priori fixed contactomorphism ϕ of (T 1S2, ξ̄0) that brings γ̄ into normal
position, that is, γ̂ (t) = ϕ ◦ γ̄ (t), t ∈ [0, 1], is a reparametrization of the knot
l0 = D(L0) where D : S3 → T 1S2 is the double covering map discussed
before and L0 = S3 ∩ (0 × C). Again, ζ̂ = dϕ|γ̄ · ζ̄ winds |p| times with
respect to a global positive frame when t goes from 0 to q.

We see γ̂ (t) as a smooth 1-periodic function of t ∈ R, and ζ̂ (t) as smooth
and q-periodic. Consider D ⊂ S3 an embedded disk spanning L0 and W :
S3 → ξ0 a smooth non-vanishing section which is symmetric with respect to
the covering group of D: A∗W = W where A is the antipodal map. A choice
of lift �̂(t) of γ̂ must be 2-periodic and equivariant: �̂(t + 1) = A ◦ �̂(t).
Choose also a lift Ẑ(t) ∈ ξ0|�̂(t) of ζ̂ (t). Then Ẑ(t + q) = d A|

�̂(t) · Ẑ(t) if q

is odd, or Ẑ(t + q) = Ẑ(t) if q is even.
In the following all windings of sections of ξ0 along curves are computed

using the orientation of ξ0 induced by the standard symplectic form in C
2 ⊃ S3.

By the symmetry of W , D∗W is a well-defined non-vanishing section of ξ̄0.
Our previous computations imply that

wind[0,q](Ẑ(t),W ◦ �̂(t)) = |p|.
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Let Y (t) ∈ ξ0|�̂(t) ∩ T
�̂(t)D be a non-vanishing 2-periodic vector. Since L0

has self-linking number −1 we have wind[0,2](W ◦ �̂(t), Y (t)) = −1. This
implies

wind[0,2q](Ẑ(t), Y (t)) = wind[0,2q](Ẑ(t),W ◦ �̂(t))
+wind[0,2q](W ◦ �̂(t), Y (t))

= 2|p| − q. (112)

Consider the point c(ε, t) ∈ S3 given by lifting ϕ ◦ G−1(α̇ε(t)/F(α̇ε(t))).
Choosing the correct lift we obtain

Ẑ(t) = ∂εc(0, t). (113)

Let us consider q j+ i p j = r j eiφ j polar coordinates in C
2, j = 0, 1, and write

c(ε, t) = (r0(ε, t)eiφ0(ε,t), r1(ε, t)eiφ1(ε,t))

where φ0(ε, t), φ1(ε, t) are continuous lifts of the angles to R. This is well-
defined since c(ε, t) �∈ L0 ∪ L1. Note that D and Y (t) can be chosen to satisfy
Y = ∂q0 . Using (112) and (113) we get (φ0(ε, 2q)−φ0(ε, 0))/2π = 2|p|−q.
By symmetry we get

wind0

(

ϕ ◦ G−1
(

α̇ε(t)

F(α̇ε(t))

))

|t∈[0,q] = φ0(ε, q)− φ0(ε, 0)

2π
= |p| − q

2
,

which is the desired conclusion. Since for ε small the curve ϕ ◦ G−1

(α̇ε(t)/F(α̇ε(t))) is C∞-close to lq
0 , its wind1 is equal to q/2.

If q < 0 then γ̇p,q is close to a q-fold cover of the curve γ̇r ∈ F−1(1) and
the proof follows analogously. ��
Proof of Corollary 1.11 By reversibility we can assume q > 0. By hypothesis,
we get p > 0. Choosing a suitable contactomorphism ϕ of (T 1S2, ξ̄0), as in
the proof of Lemma 7.3, we can assume l0 = ϕ ◦G−1(γ̇ ), l1 = ϕ ◦G−1(γ̇r ) is
the standard Hopf link (97), where G is the diffeomorphism (17). The contact
form λF gets transformed by pushing forward via the map ϕ ◦ G−1 to f λ̄0,
for some f > 0. If q is odd let p′ = 2p − q and q ′ = q, otherwise let
p′ = p− q/2, q ′ = q/2. The integers p′ and q ′ are relatively prime. Assume
first that ρ > 1. Then

1 <
p

q
< ρ ⇔ 1 <

2p − q

q
= p′

q ′
< 2ρ − 1.
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This implies that

(η0, 1) = (2ρ − 1, 1) < (p′, q ′) < (1, 1) < (1, 2ρ − 1) = (1, η1).

Therefore we can apply Theorem 1.9 to the pair (p′, q ′) to find a simple closed
f λ0-Reeb orbit on T 1S2, denoted here by cp,q , such that

wind0(cp,q) = p − q/2,

wind1(cp,q) = q/2.

By Lemma 7.3, the closed geodesic γp,q satisfying ϕ ◦ G−1(γ̇p,q) = cp,q is
in the same homotopy class in F−1(1) \ (γ̇ ∪ γ̇r ) as the velocity vector of a
(p, q)-satellite of γ when normalized by F . In case 0 ≤ ρ < 1 we have

ρ <
p

q
< 1 ⇔ 2ρ − 1 <

2p − q

q
= p′

q ′
< 1 (114)

and this implies

(1, η1) = (1, 2ρ − 1) < (1, 1) < (p′, q ′) < (2ρ − 1, 1) = (η0, 1).

Applying Theorem 1.9 to (p′, q ′) we obtain the desired closed geodesic γp,q .
��
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Appendix A: Theorems on contact homology

In this appendix we provide self-contained proofs of the theorems from Sect. 3.

A.1 Proofs of Theorems 3.2 and 3.3

The argument relies on a careful analysis of the compactification of moduli
spaces of the form M≤T,(p,q)

̂J
(P, P ′′)/R, where P, P ′′ ∈ P≤T,(p,q)(λ) satisfy

(A) μC Z (P ′′)+ 1 = μC Z (P), or
(B) μC Z (P ′′)+ 2 = μC Z (P).
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We denote by P(λ) the set of all closed Reeb orbits of λ. As remarked
in Sect. 3.1, the space M≤T,(p,q)

̂J
(P, P ′′)/R has the structure of a smooth

manifold of dimension equal to 0 in case A, or equal to 1 in case B, since
̂J ∈ Jreg(λ) and all cylinders are somewhere injective. It admits a compacti-
fication described in [8], which is obtained by adding holomorphic buildings
of height ≥ 1. In our particular situation where the buildings arise as limits
of cylinders, they can be given a slightly different and simpler description as
a finite collection {̃uv} of finite-energy ̂J -holomorphic spheres with one pos-
itive puncture, where v ranges in the set of vertices of a finite tree T with
a root v and a distinguished leaf v. Every map ũv is not a trivial cylinder
over some periodic orbit. After a reparametrization we will always assume
that ∞ ∈ C � {∞} � CP1 is the positive puncture of each ũv . The edges
are oriented as going away from the root, so at each vertex v �= v there is
exactly one incoming edge from its parent, and possibly many outgoing edges
to its children. The negative punctures of ũv are in 1-1 correspondence with
the outgoing edges of v, so that all leaves are planes, with the exception of the
distinguished leaf v which has one negative puncture where ũv is asymptotic
to P ′′. The curve ũv is asymptotic to P at its positive puncture, and we have
the following compatibility conditions:

• Let e be an edge from v to v′. There exists an orbit Pe ∈ P(λ) such that ũv
is asymptotic to Pe at the negative puncture corresponding to e, and ũv′ is
asymptotic to Pe at its positive puncture.

• Let e, v, v′, Pe = (xe, Te) be as above and z ∈ CP1 be the negative puncture
of ũv corresponding to e. There is an orientation reversing isometry2

re : (TzCP1 \ 0)/R+ → (T∞CP1 \ 0)/R+

such that if c,C : [0, ε)→ CP1 are curves satisfying c(0) = z, ċ(0) �= 0,
C(0) = ∞, Ċ(0) �= 0 and re(R

+ċ(0)) = R
+Ċ(0) then τ ◦ ũv(c(t)) and

τ ◦ ũv′(C(t)) converge to the same point in xe(R) as t → 0.

The set {re} of isometries as above is called, in the language of SFT, a dec-
oration of the underlying nodal sphere. We say that ũv is in level k if the
number of edges connecting v to v is k − 1. We shall briefly refer to {̃uv} as a
bubbling-off tree of finite-energy spheres. Clearly, the structure just described
is different but equivalent to that of a holomorphic building in the boundary
of M≤T,(p,q)

̂J
(P, P ′′)/R explained in [8].

Let {[̃un]} ⊂ M≤T,(p,q)
̂J

(P, P ′′)/R be a sequence. We will see underlying

maps ũn representing this sequence as defined in CP1\{[0 : 1], [1 : 0]} � C\0,

2 The conformal structure naturally induces a metric structure and an orientation on each circle
(TzCP1 \ 0)/R+.
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where ∞ is the positive puncture and 0 is the negative puncture. Then {[̃un]}
will be said to converge to a bubbling-off tree {̃uv} as above if for each vertex
v one finds constants cn ∈ R, An, Bn ∈ C, An �= 0, such that

{z �→ gcn ◦ ũn(Anz + Bn)} → ũv in C∞loc(C \ �v) (115)

as n →∞, where �v ⊂ C is the set of negative punctures of ũv . The limiting
tree has a stem3 S = (v0, . . . , vN ) which is the unique path connecting the
root v = v0 to the distinguished leaf v = vN , where vi+1 is a child of vi . The
edge connecting vi to vi+1 will be denoted by ei (i = 0, . . . , N −1). Since the
positive and negative punctures of ũn are ∞, 0 respectively, we may assume,
after further reparametrization and without loss of generality, that for every
i = 0, . . . , N − 1 we have 0 ∈ �vi , the edge ei corresponds to 0, and there are
constants cn ∈ R, An ∈ C \ 0 such that

{z �→ gcn ◦ ũn(Anz)} → ũvi (z) (116)

in C∞loc(C \ �vi ) as n →∞.
From now on we assume that T has more than one vertex, and split the

argument into a few steps.
(I) Every orbit Pei , corresponding to an edge ei connecting vertices vi and
vi+1 in the stem, is not contained in K0.

By our assumptions, there are λ-Reeb trajectories x j with minimal periods
Tj > 0 such that L j = x j (R), j = 0, 1. We write L j = (x j , Tj ). Arguing
indirectly, suppose that Pei ⊂ K0 for some i and set

i0 = min{i = 0, . . . , N − 1 | Pei ⊂ K0}.
We treat the case Pei0

⊂ L0, the case Pei0
⊂ L1 is analogous. Then ∃k ≥ 1

such that Pei0
= (x0, kT0) = Lk

0. Since P, P ′′ do not intersect K0 we can
define

i1 = max{i = 0, . . . , N − 1 | Pei = Lk
0} ≥ i0.

The dλ-energy of the curves ũvi0
, ũvi1+1 do not vanish. This is obvious for

the curve ũvi0
in view of the definition of i0. The curve ũvi1+1 is asymptotic to Lk

0
at its positive puncture∞. If its dλ-energy vanishes then ũvi1+1 is asymptotic
to Lr

0 at the negative puncture 0 for some r < k, in view of the definition of
i1. If ρ > 0 is large enough and t ′, t ′′ are suitably chosen the loops

c(t) = τ ◦ ũvi1+1(ρei2π(t+t ′)) and C(t) = τ ◦ ũvi1+1(ρ
−1ei2π(t+t ′′))

3 Alternatively, the stem consists precisely of the vertices which have v among its descendants.
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are C0-close to x0(kT0t) and x0(rT0t), respectively. However, by (116), c and
C can be approximated by loops of the form t �→ τ ◦ ũn(ρnei2π(t+tn)), with
suitable ρn, tn , so that they are homotopic to each other in S3 \ L1, which
implies that t �→ x0(kT0t) and t �→ x0(rT0t) have the same linking number
with L1, contradicting k �= r .

Let U be a tubular neighborhood of L0 and � : U → R/Z × B be a
diffeomorphism, where B ⊂ R

2 is a small ball centered at the origin, so that
(U,�) is a Martinet tube for L0, as in Definition 2.12. The coordinates in
R/Z× B will be denoted by (θ, x, y). We write

U0(s, t) = τ ◦ ũvi0
(e2π(s+i t)),

U1(s, t) = τ ◦ ũvi1+1(e
2π(s+i t)),

and

(θ0(s, t), x0(s, t), y0(s, t)) = � ◦U0(s, t) for s ( −1,

(θ1(s, t), x1(s, t), y1(s, t)) = � ◦U1(s, t) for s ! +1.

Let A be the asymptotic operator at Lk
0. Then, by Theorem 2.14, we find

eigenvalues ν+ > 0 and ν− < 0 of A, and corresponding eigenfunctions
η+, η− satisfying Aη± = ν±η±, such that the following holds: if ζ±(t) :
R/Z → R

2 \ 0 are the representations of η± in the frame {∂x , ∂y} of (0 ×
R

2)|R/Z×0 � ξ0|x0(R), respectively, then

(x0(s, t), y0(s, t)) = e
∫ s

s0
α+(q)dq

(ζ+(t)+ R+(s, t)) for s ≤ s0,

(x1(s, t), y1(s, t)) = e
∫ s
−s0

α−(q)dq
(ζ−(t)+ R−(s, t)) for s ≥ −s0

where s0 ( −1, |R±(s, t)| → 0 and |α±(s) − ν±| → 0 as s → ∓∞.
Moreover we have

θ0(s, t)→ kt + t0 as s →−∞, uniformly in t

θ1(s, t)→ kt + t1 as s →+∞, uniformly in t
(117)

for some t0, t1. By our assumptions μC Z (Lm
0 ) is odd, for every m ≥ 1. Thus,

in view of the definition of the Conley–Zehnder index in terms of asymptotic
eigenvalues discussed in Sect. 2.1.3, see (23), the winding numbers of ζ+ and
ζ− are different. Consequently, by the local representations above, we find
that, for s ! 1, the loops t �→ U0(−s, t) and t �→ U1(s, t) are not homotopic
in S3 \ (L0 ∪ L1). Here we used the existence of an isotopy of embeddings
ft : S3 \ L1 → S3 \ L1, t ∈ [0, 1], satisfying f0 = id, f1(S3 \ L1) = U and
ft (L0) = L0, ∀t . Let us fix s0 ! 1. By (116), the loop t �→ U0(−s0, t) can
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be approximated by loops of the form t �→ τ ◦ ũn(rnei2π(t+tn)) for suitable
values of rn and tn . Also the loop t �→ U1(s0, t) can be approximated by loops
of the same form. This is a contradiction to the fact that τ ◦ ũn(R× R/Z) ⊂
S3\(L0∪L1) ∀n. Thus, all orbits Pei lie in S3\K0 and belong to the homotopy
class (p, q) since the cylinders ũn do not touch τ−1(K0).
(II) �vi = {0} for every i = 1, . . . , N , that is, the tree coincides with the stem.

Arguing by contradiction, let z ∈ �vi \ {0} be a negative puncture corre-
sponding to an edge e �= ei connecting vi to one of its children v∗ �= vi+1.
The vertex v∗ together with all its descendants and all edges connecting them
form a proper sub-tree T1 ⊂ T with root v∗ that does not contain the distin-
guished leaf v (e is not an edge of T1). Consider a leaf v̂ of T1. The curve ũv̂
is a finite-energy plane asymptotic to some P̂ ∈ P(λ) at its positive puncture.
We claim that D := {z ∈ C | ũv̂(z) ∈ τ−1(K0)} is non-empty and discrete.
Either P̂ is contained in K0 or not. In the first case, P̂ lies in one component
of K0 and, consequently, ∃z ∈ C such that ũv̂(z) belongs the other component
of K0. In the second case, note that P̂ is not contractible in S3 \ K0, which
again implies D �= ∅. If D accumulates at some point of C then Carleman’s
similarity principle implies that ũv̂ is a branched cover of some trivial cylinder
(over K0), which is absurd since ũv̂ is a plane. By (115) we obtain intersections
of the image of τ ◦ ũn with K0 for large n, a contradiction.
(III) We conclude the argument.

It is simple to conclude from steps (I) and (II), using positivity of inter-
sections and Carleman’s similarity principle, that the images of the cylinders
ũvi do not intersect τ−1(K0). It follows that Pei ∈ P≤T,(p,q)(λ) for every
i = 0, . . . , N − 1 (in particular the Pei are simply covered) and

• ũv0 ∈ M≤T,(p,q)
̂J

(P, Pe0)/R,

• ũvi ∈ M≤T,(p,q)
̂J

(Pei , Pei+1)/R for i = 0, . . . , N − 1,

• ũvN ∈ M≤T,(p,q)
̂J

(PeN−1, P ′′)/R.

All these cylinders are somewhere injective since (p, q) is a relatively prime
pair of integers, and regular since ̂J ∈ Jreg(λ) by assumption. Usual argu-
ments using the additivity properties of the Fredholm indices show that we
get a contradiction in case A if T has more than one vertex. In this case
M≤T,(p,q)

̂J
(P, P ′′)/R is therefore compact. Moreover, by regularity, it is also

discrete, and hence finite. This proves Theorem 3.2. Analogously, T has pre-
cisely two vertices v, v in case B, and the boundary of M≤T,(p,q)

̂J
(P, P ′′)/R

consists of bubbling-off trees with precisely two vertices: these will be
shortly denoted by [̃u+, ũ−] where ũ+ ∈ M≤T,(p,q)

̂J
(P, P ′)/R and ũ− ∈

M≤T,(p,q)
̂J

(P ′, P ′′)/R, for some P ′ ∈ P≤T,(p,q)(λ) satisfying μC Z (P ′) =
μC Z (P) − 1 = μC Z (P ′′) + 1 (the decoration is not explicit in the notation
[̃u+, ũ−] but should not be forgotten). Conversely, every [̃u+, ũ−] as above is a
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boundary point of M≤T,(p,q)
̂J

(P, P ′′)/R. This is proved using the gluing map
and noting that the closures of the images of the maps τ ◦ ũ± are contained in
S3 \K0: note here that all curves involved are somewhere injective and regular
and, consequently, gluing can be done in a standard fashion, moreover, the
glued cylinders have image in τ−1(S3 \ K0). As in Floer theory, the number
of terms qP ′′ appearing in ∂2(qP) is even, proving Theorem 3.3.

A.2 Proofs of Theorems 3.4 and 3.5

As in the proof of Theorems 3.2 and 3.3, the argument relies on the careful
analysis of the compactification of the moduli space M≤T,(p,q)

J̄
(P, P ′′)where

P ∈ P≤T,(p,q)(λ+) and P ′′ ∈ P≤T,(p,q)(λ−) satisfy

(A) μC Z (P ′′) = μC Z (P), or
(B) μC Z (P ′′)+ 1 = μC Z (P).

Taking J̄ regular, these are smooth manifolds of dimension 0 in case A,
and dimension 1 in case B, since there are no orbifold points (all cylinders are
somewhere injective because their asymptotic limits are simply covered Reeb
orbits).

By results of [8], M≤T,(p,q)
J̄

(P, P ′′) is compactified by adding certain holo-
morphic buildings but, in our particular situation, these will be given the sim-
pler description of a bubbling-off tree of finite-energy spheres, similarly as was
done in the proofs of Theorems 3.2 and 3.3 above. These are again collections
{̃uv} of finite-energy spheres with one positive puncture, where the index v

runs on the set of vertices of a finite tree with a root v and a distinguished
leaf v. Each sphere is pseudo-holomorphic with respect to ̂J+, ̂J− or J̄ , and
the ̂J±-spheres are not trivial cylinders over periodic orbits (although they
might be branched covers over such trivial cylinders). Moreover, for each path
w1, w2, . . . , wm connecting the root w1 = v to a leaf wm (wi+1 is a child
of wi ) there is at most one vertex wm∗ such that ũwm∗ is J̄ -holomorphic, in
which case ũw j is ̂J+-holomorphic if j < m∗ or ̂J−-holomorphic if j > m∗.
The stem is a particular example of such a path, and it must always contain a
J̄ -holomorphic (punctured) sphere.

As before, we may assume that ∞ ∈ C � {∞} � CP1 is the positive
puncture of all ũv . All the other data described in the proofs of Theorems 3.2
and 3.3 is still present. The negative punctures of ũv are in 1-1 correspondence
with the outgoing edges of v. For every edge e connecting v to its child v′
there is an associated periodic trajectory Pe which is a λ+-Reeb orbit if ũv′ is
̂J+ or J̄ -holomorphic, or it is a λ−-Reeb orbit if ũv is ̂J− or J̄ -holomorphic.
Moreover, ũv is asymptotic to Pe at the corresponding negative puncture, and
ũv′ is asymptotic to Pe at its positive puncture. A set of decorations {re} is
given exactly as before.
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Consider any sequence [̃un] ∈ M≤T,(p,q)
J̄

(P, P ′′), where J̄ ∈ Jreg(̂J−, ̂J+ :
K0) and ̂J± ∈ Jreg(λ±). We make all assumptions explained in Sect. 3.2, and
the argument that follows strongly relies on (45). By results from [8] we may
assume [̃un] converges to a bubbling-off tree of finite-energy spheres as just
described, in the sense that for each vertex v one finds constants cn ∈ R,
An, Bn ∈ C, An �= 0, such that (115) holds. For vertices in the stem we may
take Bn = 0 as in (116).

We assume that this tree has more than one vertex, let

S = (v0 = v, v1, . . . , vN−1, vN = v)

be the stem (vi+1 is a child of vi ), and let ei be the edge connecting vi to vi+1.
First we argue that all orbits Pei are not contained in K0, then we proceed to
show that the tree coincides with the stem, and then we argue that the image
of the spheres do not intersect τ−1(K0).
(I) All orbits Pei are not contained in K0.

For j = 0, 1 there are λ±-Reeb trajectories x±j of minimal period T±j such

that L j = x±j (R). We may write L j = (x−j , T−j ) or L j = (x+j , T+j ) depending
on whether we want to see L j as a closed λ−-Reeb orbit or as a closed λ+-
Reeb orbit. Arguing indirectly, we assume that some Pei is contained in K0
and define

i0 = min{i = 0, . . . , N − 1 | Pei ⊂ K0}.
We only treat the case Pei0

⊂ L0, the other case is analogous, and find k > 0

such that Pei0
= Lk

0 (we could have Pei0
= (x+0 , kT+0 ) or Pei0

= (x−0 , kT−0 )

depending on the value of i0, but always write Lk
0 to denote one of these orbits).

Now we set

i1 = max{i = 0, . . . , N − 1 | Pei = Lk
0} ≥ i0.

The image of the curves ũvi0
and ũvi1+1 are not contained in τ−1(K0). In

fact, if ũvi1+1 has image contained in τ−1(K0) then it is contained in τ−1(L0).

It is important to note that τ−1(L0) is an embedded cylinder with tangent space
invariant under ̂J−, J̄ or ̂J+. Thus, using Carleman’s similarity principle, we
conclude that ũvi1+1 is asymptotic to Lr

0 at the distinguished negative puncture
0 and, by the definition of i1, we must have r �= k. As before, we find ρ very
large and t ′, t ′′ ∈ R/Z such that t �→ τ ◦ ũvi1+1(ρei2π(t+t ′)) is a loop close

to Lk
0 and t �→ τ ◦ ũvi1+1(ρ

−1ei2π(t+t ′′)) is a loop close to Lr
0. Each of these

loops can be approximated by loops of the form t �→ τ ◦ ũn(ρnei2π(t+tn)),
with suitable ρn , tn . Thus Lk

0 is homotopic to Lr
0 in S3 \ L1, contradicting
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k �= r . The image of ũvi0
is not contained τ−1(L0) since we can use again the

similarity principle to conclude that ũvi0
is asymptotic to an orbit contained in

K0 at its positive puncture, contradicting the definition of i0.
Let (U±,�±) be Martinet tubes for L0 as in Definition 2.12 with respect

to λ±, and let (θ, x, y) denote standard coordinates in R/Z × R
2, so that

�±(x±0 (T
±
0 t)) = (t, 0, 0). We have sections Y±(t) = d�−1± · ∂x |(t,0,0) of

the dλ±-symplectic vector bundles (x±0 T±0
)∗ξ0 → R/Z, and �± may be con-

structed so that the loops t �→ exp(εY±(t)) (ε > 0 small) have linking number
0 with L0. Then Y± can be completed to dλ±-symplectic frames of (x±0 T±0

)∗ξ0

whose homotopy classes are denoted by β±. As remarked in the beginning of
Sect. 3, ρ(L0, λ±) are the rotation numbers computed with respect to a global
frame, so that we get

ρ(L0, λ±, β±) = ρ(L0, λ±)− 1 = θ0(h±) (118)

where here we used that the self-linking number of L0 is −1.
We denote

U0(s, t) = τ ◦ ũvi0
(e2π(s+i t)) for s ( −1,

U1(s, t) = τ ◦ ũvi1+1(e
2π(s+i t)) for s ! 1.

Let i∗ ∈ {1, . . . , N − 1} be the unique index such that ũvi∗ is J̄ -holomorphic,
and write

(θ0(s, t), x0(s, t), y0(s, t)) =
{

�+ ◦U0(s, t) if i0 < i∗

�− ◦U0(s, t) if i0 ≥ i∗
(s ( −1)

(θ1(s, t), x1(s, t), y1(s, t)) =
{

�+ ◦U1(s, t) if i1 < i∗

�− ◦U1(s, t) if i1 ≥ i∗
(s ! 1).

Let A0 be the asymptotic operator at the orbit Lk
0 with respect toλ+ if i0 < i∗ or

with respect to λ− if i0 ≥ i∗. We can use Theorem 2.14 to find an eigenvalue
ν0 > 0 of A0 and an eigensection η0 satisfying A0η0 = ν0η0 such that if
t �→ ζ0(t) ∈ R

2 \ 0 is the representation of η0 with respect to the frame
{∂x , ∂y} of (0×R

2)|R/Z×(0,0) (here we use �+ or �− depending on i0) then

(x0(s, t), y0(s, t)) = e
∫ s

s0
α0(q)dq

(ζ0(t)+ R0(s, t)), for s ≤ s0 ( −1,

where |R0(s, t)| + |α0(s)− ν0| → 0 as s → −∞. Analogously we consider
the asymptotic operator A1 at the orbit Lk

0 with respect to λ+ if i1 < i∗ or with
respect to λ− if i1 ≥ i∗, and find eigenvalue ν1 < 0 of A1 and corresponding
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eigensection η1 such that if we represent η1 as t �→ ζ1(t) similarly then

(x1(s, t), y1(s, t)) = e
∫ s
−s0

α1(q)dq
(ζ1(t)+ R1(s, t)), for s ≥ −s0 ! 1,

where |R1(s, t)| + |α1(s) − ν1| → 0 as s → +∞. The functions
θ0(s, t), θ1(s, t) behave exactly as in (117). Since L0 is irrationally elliptic
(for both λ±), ν0 > 0 and ν1 < 0 we can apply Lemma 2.11 to obtain, if
s ! 1, that

link(t �→ U0(−s, t), L0) = wind(ζ0) >

{

kθ0(h+) if i0 < i∗

kθ0(h−) if i0 ≥ i∗
(119)

and

link(t �→ U1(s, t), L0) = wind(ζ1) <

{

kθ0(h+) if i1 < i∗

kθ0(h−) if i1 ≥ i∗
(120)

Since i0 ≥ i∗ implies i1 ≥ i∗ we get from (119)–(120) that

link(t �→ U0(−s, t), L0) > link(t �→ U1(s, t), L0) (s ! 1) (121)

in view of the crucial assumption θ0(h−) ≤ θ0(h+). But, as done before, the
loops t �→ U0(−s, t) and t �→ U1(s, t) (s ! 1) can be approximated by
loops of the form t �→ τ ◦ ũn(Rnei2π(t+tn)) for suitable Rn, tn , which implies
that t �→ U0(−s, t) and t �→ U1(s, t) must be homotopic to each other in
S3 \ K0 and, consequently, must have the same linking number with L0. We
used that the cylinders ũn do not touch τ−1(K0). This contradicts (121) and
(I) is proved.
(II) �vi = {0} for every i = 1, . . . , N , that is, the tree coincides with the stem.
(III) Each cylinder does not intersect τ−1(K0) and the asymptotic orbits cor-
responding to the edges lie in P≤T,(p,q)(λ+) or in P≤T,(p,q)(λ−).

The arguments to prove (II) and (III) are entirely analogous to those
explained in Sect. 1, we do not repeat them here. Note only that, since τ−1(K0)

is a pair of disjoint embedded cylinders in Wξ0 with a C-invariant tangent space
regardless of the almost complex structure ̂J−, J̄ or ̂J+, we can repeat all the
steps using positivity of intersections and the similarity principle. The assump-
tion that no closed λ±-Reeb orbit contained in S3\K0 is contractible in S3\K0
is crucial.

We assumed that the tree has at least two vertices. In case A, additivity of
the Fredholm indices gets us a contradiction. Thus, in case A, the limiting tree
has exactly one vertex which is an element of M≤T,(p,q)

J̄
(P, P ′′), the sequence

[̃un] is eventually constant and Theorem 3.4 is proved. In case B again additiv-
ity of the Fredholm indices shows that the tree has two vertices, so the boundary
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of M≤T,(p,q)
J̄

(P, P ′′) consists of broken cylinders, one level is J̄ -holomorphic

index 0 cylinder corresponding to a term of �( J̄ ), and the other is either a
̂J− or a ̂J+-holomorphic cylinder corresponding to a term of ∂(λ+, J+) or of
∂(λ−, J−). These facts together with a glueing argument, which is standard in
view of regularity of the curves involved, show the converse: any such broken
cylinder is in the boundary. The important observation here is that when we
glue two regular cylinders with images in τ−1(S3 \K0) asymptotic to orbits in
the complement of K0 we obtain a cylinder with image in τ−1(S3 \ K0). Con-
sequently, every generator qP ′′ ∈ C≤T,(p,q)

∗−1 (h−λ0) appears an even number
of times in the chain �∗−1( J̄ ) ◦ ∂∗(λ+, J+)(qP)− ∂∗(λ−, J−) ◦�∗( J̄ )(qP),
for every generator qP ∈ C≤T,(p,q)∗ (h+λ0), as in Floer theory. Theorem 3.5
follows.

A.3 Proofs of Theorems 3.6 and 3.7

We need to study the compactification of moduli spaces M≤T,(p,q)
{ J̄t } (P, P ′′),

where ̂J± ∈ Jreg(λ±), J̄0, J̄1 ∈ Jreg(̂J−, ̂J+ : K0), { J̄t } ⊂ ˜Jreg(̂J−, ̂J+ : K0),
and P ∈ P≤T,(p,q)(λ+), P ′′ ∈ P≤T,(p,q)(λ−) satisfy

(A) μC Z (P)− μC Z (P ′′) = −1, or
(B) μC Z (P)− μC Z (P ′′) = 0.

We describe this compactification again appealing to the notion of bubbling-
off tree of finite-energy spheres: any sequence (tn, [̃un]) ∈ M≤T,(p,q)

{ J̄t } (P, P ′′)
admits a subsequence, still denoted (tn, [̃un]), which converges to a pair
(t∗, {̃uv}) where tn → t∗ ∈ [0, 1] and {̃uv} is a bubbling-off tree exactly
as described in the proofs of Theorems 3.4 and 3.5. All ũv are finite-energy
spheres with one positive puncture, each being pseudo-holomorphic with
respect to either ̂J−, J̄t∗ or ̂J+. As before, we take representatives ũn with
domains C \ {0} � CP1 \ {[0 : 1], [1 : 0]}, assume 0,∞ are the negative and
positive puncture, respectively, and ask that for each vertex v there are con-
stants cn, An �= 0, Bn such that (115) holds. For vertices in the stem we can
arrange that (116) holds. All the other properties and compatibility conditions
hold as before.

We can then repeat the same argument, using the important assumption that
θ j (h−) ≤ θ j (h+) for j = 0, 1 to conclude that the tree coincides with its stem,
all edges correspond to orbits either in P≤T,(p,q)(λ+) or in P≤T,(p,q)(λ−),
and the image of the cylinders corresponding to the vertices do not intersect
τ−1(K0).

Then we strongly rely on the genericity assumptions on the chosen almost
complex structures to argue, using the additivity of the Fredholm indices,
that in case A the tree has precisely one vertex (the root) v and (t∗, [̃uv]) ∈
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M≤T,(p,q)
{ J̄t } (P, P ′′). Since this space is 0-dimensional, its points are isolated

and the sequence (tn, [̃un]) is eventually constant. This proves Theorem 3.6.
Similarly, in case B the tree is one of the following two types:

• It has exactly one vertex v = v, (t∗, [̃uv]) ∈ M≤T,(p,q)
{ J̄t } (P, P ′′). If t∗ ∈

(0, 1) then (t∗, [̃uv]) is an interior point of the moduli space.
• It has exactly two vertices v �= v, t∗ ∈ (0, 1) and there exists an orbit P ′

such that either

P ′ ∈ P≤T,(p,q)(λ−), (t∗, [̃uv]) ∈ M≤T,(p,q)
{ J̄t } (P, P ′), [̃uv]

∈ M≤T,(p,q)
̂J−

(P ′, P ′′)

or

P ′ ∈ P≤T,(p,q)(λ+)[̃uv] ∈ M≤T,(p,q)
̂J+

(P, P ′), (t∗, [̃uv])
∈ M≤T,(p,q)

{ J̄t } (P ′, P ′′).

A well-known argument, using the glueing map, proves that there is a bijec-
tive correspondence between boundary points of M≤T,(p,q)

{ J̄t } (P, P ′′) and the
set of trees which are of the second type or of the first type with t∗ = 0, 1.
Here it is crucial that all relevant curves are somewhere injective and regular.
Theorem 3.7 follows as in Floer theory.
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