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Abstract We prove that a set of density one satisfies the local-global con-
jecture for integral Apollonian gaskets. That is, for a fixed integral, primitive
Apollonian gasket, almost every (in the sense of density) admissible (passing
local obstructions) integer is the curvature of some circle in the gasket.
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1 Introduction

1.1 The local-global conjecture

Let G be an Apollonian gasket, see Fig. 1. The number b(C) shown inside a
circle C ∈ G is its curvature, that is, the reciprocal of its radius (the bounding
circle has negative orientation). Soddy [46] first observed the existence of
integral gaskets G , meaning ones for which b(C) ∈ Z for all C ∈ G . Let

B = BG := {
b(C) : C ∈ G

}

be the set of all curvatures in G . We call a gasket primitive if gcd(B) = 1.
From now on, we restrict our attention to a fixed primitive integral Apollonian
gasket G .

Graham, Lagarias, Mallows, Wilks, and Yan [26, 34] initiated a detailed
study of Diophantine properties of B, with two separate families of problems
(see also e.g. [23, 33, 43]): studying B with multiplicity (that is, studying
circles), or without multiplicity (studying the integers which arise). In the
present paper, we are concerned with the latter.

In particular, the following striking local-to-global conjecture for B is
given in [26, p. 37], [23]. Let A = AG denote the admissible integers, that
is, those passing all local (congruence) obstructions:

A := {
n ∈ Z : n ∈ B(modq), for all q ≥ 1

}
.

Fig. 1 The Apollonian
gasket with root quadruple
v0 = (−11,21,24,28)t
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Conjecture 1.1 (Local-Global Conjecture) Fix a primitive, integral Apollo-
nian gasket G . Then every sufficiently large admissible number is the curva-
ture of a circle in G . That is, if n ∈ A and n � 1, then n ∈ B.

The purpose of this paper is to prove the following

Theorem 1.2 Almost every admissible number is the curvature of a cir-
cle in G . Quantitatively, the number of exceptions up to N is bounded by
O(N1−η), where η > 0 is effectively computable.

Admissibility is completely explained in Fuchs’s thesis [22], and is a con-
dition restricting to certain residue classes modulo 24, cf. Lemma 2.3. E.g.
for the gasket in Fig. 1, n ∈ A iff

n ≡ 0,4,12,13,16, or 21 (mod 24). (1.1)

Thus A contains one of every four numbers (six admissible residue classes
out of 24), and Theorem 1.2 can be restated in this case as

#
(
B ∩ [1,N])= N

4

(
1 +O

(
N−η

))
.

In general, the local obstructions are easily determined (see Remark 2.4) from
the so-called root quadruple

v0 = v0(G ), (1.2)

which is the column vector of the four smallest curvatures in B. For the
gasket in Fig. 1, v0 = (−11,21,24,28).

The history of this problem is as follows. The first progress towards the
Conjecture was already made in [26], who showed that

#
(
B ∩ [1,N])� N1/2. (1.3)

Sarnak [42] improved this to

#
(
B ∩ [1,N])� N

(logN)1/2
, (1.4)

and then Fuchs [22] showed

#
(
B ∩ [1,N])� N

(logN)0.150...
.

Finally Bourgain and Fuchs [4] settled the so-called “Positive Density Con-
jecture,” that

#
(
B ∩ [1,N])� N.
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1.2 Methods

Our main approach is through the Hardy-Littlewood circle method, combin-
ing two new ingredients. The first, applied to the major arcs, is effective bi-
sector counting in infinite volume hyperbolic 3-folds, recently achieved by I.
Vinogradov [49], as well as the uniform spectral gap over congruence towers
of such, see the Appendix by Péter Varjú. The second ingredient is the minor
arcs analysis, inspired by that given recently by the first-named author in [3],
where it was proved that the prime curvatures in a gasket constitute a positive
proportion of the primes. (Obviously Theorem 1.2 implies that 100 % of the
admissible prime curvatures appear.)

1.3 Plan for the paper

A more detailed outline of the proof, as well as the setup of some relevant
exponential sums, is given in Sect. 3. Before we can do this, we need to recall
the Apollonian group and some of its subgroups in Sect. 2. After the out-
line in Sect. 3, we use Sect. 4 to collect some background from the spectral
and representation theory of infinite volume hyperbolic quotients. Then some
lemmata are reserved for Sect. 5, the major arcs are estimated in Sect. 6, and
the minor arcs are dealt with in Sects. 7–9. The Appendix, by Péter Varjú,
extracts the spectral gap property for the Apollonian group from that of its
arithmetic subgroups.

1.4 Notation

We use the following standard notation. Set e(x) = e2πix and eq(x) = e(x
q
).

We use f � g and f = O(g) interchangeably; moreover f 	 g means f �
g � f . Unless otherwise specified, the implied constants may depend at most
on the gasket G (or equivalently on the root quadruple v0), which is treated as
fixed. The symbol 1{·} is the indicator function of the event {·}. The greatest
common divisor of n and m is written (n,m), their least common multiple
is [n,m], and ω(n) denotes the number of distinct prime factors of n. The
cardinality of a finite set S is denoted |S| or #S. The transpose of a matrix g

is written gt . The prime symbol ′ in
∑′

r(q) means the range of r(modq) is

restricted to (r, q) = 1. Finally, pj‖q denotes pj | q and pj+1
� q .

2 Preliminaries I: the Apollonian group and its subgroups

2.1 Descartes theorem and consequences

Descartes’ Circle Theorem states that a quadruple v of (oriented) curvatures
of four mutually tangent circles lies on the cone

F(v) = 0, (2.1)
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where F is the Descartes quadratic form:

F(a, b, c, d) = 2
(
a2 + b2 + c2 + d2)− (a + b + c + d)2. (2.2)

Note that F has signature (3,1) over R, and let

G := SOF (R) = {
g ∈ SL(4,R) : F(gv) = F(v), for all v ∈ R

4}

be the real special orthogonal group preserving F .
It follows immediately that for b, c and d fixed, there are two solutions

a, a′ to (2.1), and

a + a′ = 2(b + c + d).

Hence we observe that a can be changed into a′ by a reflection, that is,

(a, b, c, d)t = S1 · (a′, b, c, d
)t

,

where the reflections

S1 =

⎛

⎜
⎜
⎝

−1 2 2 2
1

1
1

⎞

⎟
⎟
⎠ , S2 =

⎛

⎜
⎜
⎝

1
2 −1 2 2

1
1

⎞

⎟
⎟
⎠ ,

S3 =

⎛

⎜
⎜
⎝

1
1

2 2 −1 2
1

⎞

⎟
⎟
⎠ , S4 =

⎛

⎜
⎜
⎝

1
1

1
2 2 2 −1

⎞

⎟
⎟
⎠ ,

generate the so-called Apollonian group

A = 〈S1, S2, S3, S4〉. (2.3)

It is a Coxeter group, free except for the relations S2
j = I , 1 ≤ j ≤ 4. We

immediately pass to the index two subgroup

Γ := A ∩ SOF

of orientation preserving transformations, that is, even words in the genera-
tors. Then Γ is freely generated by S1S2, S2S3 and S3S4. It is known that Γ

is Zariski dense in G but thin, that is, of infinite index in G(Z); equivalently,
the Haar measure of Γ \G is infinite.
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2.2 Arithmetic subgroups

Now we review the arguments from [26, 42] which lead to (1.3) and (1.4), as
our setup depends critically on them.

Recall that for any fixed gasket G , there is a root quadruple v0 of the four
smallest curvatures in G , cf. (1.2). It follows from (2.1) and (2.3) that the
set B of all curvatures can be realized as the orbit of the root quadruple v0

under A. Let

O = OG := Γ · v0

be the orbit of v0 under Γ . Then the set of all curvatures certainly contains

B ⊃
4⋃

j=1

〈ej ,O〉 =
4⋃

j=1

〈ej ,Γ · v0〉, (2.4)

where e1 = (1,0,0,0)t , . . . , e4 = (0,0,0,1)t constitute the standard basis for
R

4, and the inner product above is the standard one. Recall we are treating B
as a set, that is, without multiplicities.

It was observed in [26] that Γ contains unipotent elements, and hence one
can use these to furnish an injection of affine space in the otherwise intractable
orbit O , as follows. Note first that

C1 := S4S3 =

⎛

⎜⎜
⎝

1
1

2 2 −1 2
6 6 −2 3

⎞

⎟⎟
⎠ ∈ Γ, (2.5)

and after conjugation by

J :=

⎛

⎜⎜
⎝

1
−1 1
−1 1 −2 1
−1 1

⎞

⎟⎟
⎠ ,

we have

C̃1 := J−1 · C1 · J =

⎛

⎜
⎜
⎝

1
1
2 1
4 4 1

⎞

⎟
⎟
⎠ .
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Fig. 2 Circles tangent to
two fixed circles

Recall the spin homomorphism ρ : SL2 → SO(2,1), embedded for our pur-
poses in SL4, given explicitly by

ρ :
(

α β

γ δ

)
�→ 1

αδ − βγ

⎛

⎜⎜
⎝

1
α2 2αγ γ 2

αβ αδ + βγ γ δ

β2 2βδ δ2

⎞

⎟⎟
⎠ . (2.6)

In fact SL2 is a double cover of SO(2,1) under ρ, with kernel ±I . It is clear
from inspection that

ρ :
(

1 2
0 1

)
=: T1 �→ C̃1.

Since T n
1 = ( 1 2n

0 1

)
, for each n ∈ Z, Γ contains the element

Cn
1 = J · ρ(T n

1

) · J−1 =

⎛

⎜
⎜
⎝

1 0 0 0
0 1 0 0

4n2 − 2n 4n2 − 2n 1 − 2n 2n

4n2 + 2n 4n2 + 2n −2n 2n + 1

⎞

⎟
⎟
⎠ .

(Of course this can be seen directly from (2.5); these transformations will be
more enlightening below.)

Thus if v = (a, b, c, d)t ∈ O is a quadruple in the orbit, then O also con-
tains Cn

1 · v for all n. From (2.4), we then have that the set B of curvatures
contains

B � 〈e4,C
n
1 · v〉= 4(a + b)n2 + 2(a + b − c + d)n + d. (2.7)

The circles thus generated are all tangent to two fixed circles, which explains
the square curvatures in Fig. 2. Of course (2.7) immediately implies (1.3).

Observe further that

C2 := S2S3 =

⎛

⎜
⎜
⎝

1
6 3 −2 6
2 2 −1 2

1

⎞

⎟
⎟
⎠
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is another unipotent element, with

C̃2 := J−1 · C2 · J =

⎛

⎜⎜
⎝

1
1 4 4

1 2
1

⎞

⎟⎟
⎠ ,

and

ρ :
(

1 0
2 1

)
=: T2 �→ C̃2.

Since T1 and T2 generate Λ(2), the principal 2-congruence subgroup of
PSL(2,Z), we see that the Apollonian group Γ contains the subgroup

Ξ := 〈C1,C2〉 = J · ρ(Λ(2)
) · J−1 < Γ. (2.8)

In particular, whenever (2x, y) = 1, there is an element

(∗ 2x

∗ y

)
∈ Λ(2),

and thus Ξ contains the element

ξx,y := J · ρ
(∗ 2x

∗ y

)
· J−1

=

⎛

⎜⎜
⎝

1 0 0 0
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

4x2 + 2xy + y2 − 1 4x2 + 2xy −2xy 2xy + y2

⎞

⎟⎟
⎠ .

(2.9)

Write

wx,y = ξ t
x,y · e4

= (
4x2 + 2xy + y2 − 1,4x2 + 2xy,−2xy,2xy + y2)t . (2.10)

Then again by (2.4), we have shown the following
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Lemma 2.1 ([42]) Let x, y ∈ Z with (2x, y) = 1, and take any element γ ∈ Γ

with corresponding quadruple

vγ = (aγ , bγ , cγ , dγ )t = γ · v0 ∈ O. (2.11)

Then the number

〈e4, ξx,y · γ · v0〉 = 〈wx,y, γ · v0〉 = 4Aγ x2 + 4Bγ xy + Cγ y2 − aγ (2.12)

is the curvature of some circle in G , where we have defined

Aγ := aγ + bγ ,

Bγ := aγ + bγ − cγ + dγ

2
, (2.13)

Cγ := aγ + dγ .

Note from (2.1) that Bγ is integral.

Observe that, by construction, the value of aγ is unchanged under the orbit
of the group (2.8), and the circles whose curvatures are generated by (2.12)
are all tangent to the circle corresponding to aγ . It is classical (see [2]) that
the number of distinct primitive values up to N assumed by a positive-definite
binary quadratic form is of order at least N(logN)−1/2, proving (1.4).

To fix notation, we define the binary quadratic appearing in (2.12) and its
shift by

fγ (x, y) := Aγ x2 +2Bγ xy +Cγ y2, fγ (x, y) := fγ (x, y)−aγ , (2.14)

so that

〈wx,y, γ · v0〉 = fγ (2x, y). (2.15)

Note from (2.13) and (2.1) that the discriminant of fγ is

�γ = 4
(
B2

γ −Aγ Cγ

)=−4a2
γ . (2.16)

When convenient, we will drop the subscripts γ in all the above.

2.3 Congruence subgroups

For each q ≥ 1, define the “principal” q-congruence subgroup

Γ (q) := {
γ ∈ Γ : γ ≡ I (modq)

}
. (2.17)

These groups all have infinite index in G(Z), but finite index in Γ . The quo-
tients Γ/Γ (q) have been determined completely by Fuchs [22] by proving
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an explicit Strong Approximation theorem (see [37]), Goursat’s Lemma, and
other ingredients, as we explain below. Since G does not itself have the Strong
Approximation Property, we pass to its connected spin double cover SL2(C).
We will need the covering map explicitly later, so record it here.

First change variables from the Descartes form F to

F̃ (x, y, z,w) := xw + y2 + z2.

Then there is a homomorphism ι0 : SL(2,C) → SO
F̃
(R), sending

g =
(

a + αi b + βi

c + γ i d + δi

)
∈ SL(2,C)

to

1

|det(g)|2

×

⎛

⎜⎜
⎝

a2 + α2 2(ac + αγ ) 2(cα − aγ ) −c2 − γ 2

ab + αβ bc + ad + βγ + αδ dα + cβ − bγ − aδ −cd − γ δ

aβ − bα −dα + cβ − bγ + aδ −bc + ad − βγ + αδ dγ − cδ

−b2 − β2 −2(bd + βδ) 2(bδ − dβ) d2 + δ2

⎞

⎟⎟
⎠ .

To map from SO
F̃

to SOF , we apply a conjugation, see [26, (4.1)]. Let

ι : SL(2,C) → SOF (R) (2.18)

be the composition of this conjugation with ι0. Let Γ̃ be the preimage of Γ

under ι.

Lemma 2.2 ([22, 27]) The group Γ̃ is generated by

±
(

1 4i

1

)
, ±

(−2 i

i

)
, ±

(
2 + 2i 4 + 3i

−i −2i

)
.

With this explicit realization of Γ̃ (and hence Γ ), Fuchs was able to ex-
plicitly determine the images of Γ̃ in SL(2,Z[i]/(q)), and hence understand
the quotients Γ/Γ (q) for all q .

Lemma 2.3 [22]

(1) The quotient groups Γ/Γ (q) are multiplicative, that is, if q factors as

q = p
�1
1 · · ·p�r

r ,

then

Γ/Γ (q) ∼= Γ/Γ
(
p

�1
1

)× · · · × Γ/Γ
(
p�r

r

)
.
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(2) If (q,6) = 1 then

Γ/Γ (q) ∼= SOF (Z/qZ). (2.19)

(3) If q = 2�, � ≥ 3, then Γ/Γ (q) is the full preimage of Γ/Γ (8) under the
projection SOF (Z/qZ) → SOF (Z/8Z). That is, the powers of 2 stabilize
at 8. Similarly, the powers of 3 stabilize at 3, meaning that for q = 3�,
� ≥ 1, the quotient Γ/Γ (q) is the preimage of Γ/Γ (3) under the corre-
sponding projection map.

Remark 2.4 This of course explains all local obstructions, cf. (1.1). The ad-
missible numbers are precisely those residue classes (mod 24) which appear
as some entry in the orbit of v0 under Γ/Γ (24).

3 Setup and Outline of the Proof

In this section, we introduce the main exponential sum and give an outline
of the rest of the argument. Recall the fixed gasket G having curvatures B
and root quadruple v0. Let Γ be the Apollonian subgroup with subgroup Ξ ,
see (2.8). Let δ ≈ 1.3 be the Hausdorff dimension of the gasket G ; see Sect. 4
for the important role played by this geometric invariant. Recall also from
(2.12) that for any γ ∈ Γ and ξ ∈ Ξ ,

〈e4, ξγ v0〉 ∈ B.

Our approach, mimicking [8, 9], is to exploit the bilinear (or multilinear)
structure above.

We first give an informal description of the main ensemble from which
we will form an exponential sum. Let N be our main growing parameter.
We construct our ensemble by decomposing a ball in Γ of norm N into two
balls, a small one in all of Γ of norm T , and a larger one of norm X2 in Ξ ,
corresponding to x, y 	 X. Specifically, we take

T = N1/100 and X = N99/200, so that T X2 = N. (3.1)

See (9.8) and (9.11) where these numbers are used.
We further need the technical condition that in the T -ball, the value of

aγ = 〈e1, γ v0〉 (see (2.11)) is of order T . This is used crucially in (7.8) and
(5.41).

Finally, for technical reasons (see Lemma 5.2 below), we need to further
split the T -ball into two: a small ball of norm T1, and a big ball of norm T2.
Write

T = T1T2, T2 = T C
1 , (3.2)
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where C is a large constant depending only on the spectral gap for Γ ; it is
determined in (5.11). We now make formal the above discussion.

3.1 Introducing the main exponential sum

Let N,X,T ,T1, and T2 be as in (3.1) and (3.2). Define the family

F = FT :=

⎧
⎪⎪⎨

⎪⎪⎩
γ = γ1γ2 :

γ1, γ2 ∈ Γ,

T1 < ‖γ1‖ < 2T1,

T2 < ‖γ2‖ < 2T2,

〈e1, γ1 γ2 v0〉 > T/100

⎫
⎪⎪⎬

⎪⎪⎭
. (3.3)

From Lax-Phillips [35] (or see (4.10)), we have the bound

#FT � T δ. (3.4)

From (2.15), we can identify γ ∈ F with a shifted binary quadratic form fγ

of discriminant −4a2
γ via

fγ (2x, y) = 〈wx,y, γ v0〉.
Recall from (2.12) that whenever (2x, y) = 1, the above is a curvature in
the gasket. We sometimes drop γ , writing simply f ∈ F; then the latter can
also be thought of as a family of shifted quadratic forms. Note also that the
decomposition γ = γ1γ2 in (3.3) need not be unique, so some forms may
appear with multiplicity.

One final technicality is to smooth the sum on x, y 	 X. To this end, we fix
a smooth, nonnegative function Υ , supported in [1,2] and having unit mass,∫

R
Υ (x)dx = 1.
Our main object of study is then the representation number

RN(n) :=
∑

f∈FT

∑

(2x,y)=1

Υ

(
2x

X

)
Υ

(
y

X

)
1{n=f(2x,y)}, (3.5)

and the corresponding exponential sum, its Fourier transform

R̂N(θ) :=
∑

f∈F

∑

(2x,y)=1

Υ

(
2x

X

)
Υ

(
y

X

)
e
(
θ f(2x, y)

)
. (3.6)

Clearly RN(n) �= 0 implies that n ∈ B. Note also from (3.4) that the total
mass satisfies

R̂N(0) � T δX2. (3.7)
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The condition (2x, y) = 1 will be a technical nuisance, and can be freed
by a standard use of the Möbius inversion formula. To this end, we introduce
another parameter

U = Nu, (3.8)

a small power of N , with u > 0 depending only on the spectral gap of Γ ; it is
determined in (6.3). Then by truncating Möbius inversion, define

R̂U
N(θ) :=

∑

f∈F

∑

x,y∈Z

Υ

(
2x

X

)
Υ

(
y

X

)
e
(
θ f(2x, y)

) ∑

u|(2x,y)
u<U

μ(u), (3.9)

with corresponding “representation function” RU
N (which could be negative).

3.2 Reduction to the circle method

We are now in position to outline the argument in the rest of the paper. Recall
that A is the set of admissible numbers. We first reduce our main Theo-
rem 1.2 to the following

Theorem 3.1 There exists an η > 0 and a function S(n) with the following
properties. For 1

2N < n < N , the singular series S(n) is nonnegative, van-
ishes only when n /∈ A , and is otherwise �ε N−ε for any ε > 0. Moreover,
for 1

2N < n < N and admissible,

RU
N(n) � S(n)T δ−1, (3.10)

except for a set of cardinality � N1−η.

Proof of Theorem 1.2 assuming Theorem 3.1 We first show that the difference
between RN and RU

N is small in �1. Using (3.4) we have

∑

n<N

∣∣RN(n) − RU
N(n)

∣∣

=
∑

n<N

∣∣
∣∣
∑

f∈F

∑

x,y∈Z

Υ

(
2x

X

)
Υ

(
y

X

)
1{n=f(2x,y)}

∑

u|(2x,y)
u≥U

μ(u)

∣∣
∣∣

�
∑

f∈F

∑

u≥U

∑

y�X
y≡0(modu)

∑

x�X
2x≡0(modu)

1

� T δ X2

U
,
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for any ε > 0. Recall from (3.8) that U is a fixed power of N , so the above
saves a power from the total mass (3.7).

Now let Z be the “exceptional” set of admissible n < N for which
RN(n) = 0. Furthermore, let W be the set of admissible n < N for which
(3.10) is satisfied. Then

T δ X2

U
�

∑

n<N

∣
∣RU

N(n) − RN(n)
∣
∣≥

∑

n∈Z∩W

∣
∣RU

N(n) − RN(n)
∣
∣

�ε |Z ∩ W | · T δ−1N−ε.

Note also from Theorem 3.1 that |Z ∩ Wc| ≤ |Wc| � N1−η. Hence by (3.1)
and (3.8),

|Z| = ∣
∣Z ∩ Wc

∣
∣+ |Z ∩ W | �ε N1−η + N1+ε

U
, (3.11)

which is a power savings since ε > 0 is arbitrary. This completes the proof. �

To establish (3.10), we decompose RU
N into “major” and “minor” arcs,

reducing Theorem 3.1 to the following

Theorem 3.2 There exists an η > 0 and a decomposition

RU
N(n) = MU

N(n)+ E U
N (n) (3.12)

with the following properties. For 1
2N < n < N and admissible, n ∈ A , we

have

MU
N(n) � S(n)T δ−1, (3.13)

except for a set of cardinality � N1−η. The singular series S(n) is the same
as in Theorem 3.1. Moreover,

∑

n<N

∣∣E U
N (n)

∣∣2 � N T 2(δ−1)N−η. (3.14)

Proof of Theorem 3.1 assuming Theorem 3.2 We restrict our attention to the
set of admissible n < N so that (3.13) holds (the remainder having sufficiently
small cardinality). Let Z denote the subset of these n for which RU

N(n) <
1
2 MU

N(n); hence for n ∈ Z,

1 � |E U
N (n)|

N−εT δ−1
.
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Then by (3.14),

|Z| �ε

∑

n<N

|E U
N (n)|2

N−εT 2(δ−1)
� N1−η+ε,

whence the claim follows, since ε > 0 is arbitrary. �

3.3 Decomposition into major and minor arcs

Next we explain the decomposition (3.12). Let M be a parameter control-
ling the depth of approximation in Dirichlet’s theorem: for any irrational θ ∈
[0,1], there exists some q < M and (r, q) = 1 so that |θ − r/q| < 1/(qM).
We will eventually set

M = XT, (3.15)

see (7.7) where this value is used. (Note that M is a bit bigger than N1/2 =
XT 1/2.)

Writing θ = r/q + β , we introduce parameters

Q0, K0, (3.16)

small powers of N as determined in (6.2), so that the “major arcs” corre-
spond to q < Q0 and |β| < K0/N . In fact, we need a smooth version of this
decomposition.

To this end, recall the “hat” function and its Fourier transform

t(x) := min(1 + x,1 − x)+, t̂(y) =
(

sin(πy)

πy

)2

. (3.17)

Localize t to the width K0/N , periodize it to the circle, and put this spike on
each fraction in the major arcs:

T(θ) = TN,Q0,K0(θ) :=
∑

q<Q0

∑

(r,q)=1

∑

m∈Z

t

(
N

K0

(
θ +m − r

q

))
. (3.18)

By construction, T lives on the circle R/Z and is supported within K0/N of
fractions r/q with small denominator, q < Q0, as desired.

Then define the “main term”

MU
N(n) :=

∫ 1

0
T(θ)R̂U

N(θ)e(−nθ)dθ, (3.19)

and “error term”

E U
N (n) :=

∫ 1

0

(
1 − T(θ)

)
R̂U

N(θ)e(−nθ)dθ, (3.20)



604 J. Bourgain et al.

so that (3.12) obviously holds.
Since RU

N could be negative, the same holds for MU
N . Hence we will es-

tablish (3.13) by first proving a related result for

MN(n) :=
∫ 1

0
T(θ)R̂N(θ)e(−nθ)dθ, (3.21)

and then showing that MN and MU
N cannot differ by too much for too many

values of n. This is the same (but in reverse) as the transfer from RN to RU
N

in (3.11). See Theorem 6.1 for the lower bound on MN , and Theorem 6.2 for
the transfer.

To prove (3.14), we apply Parseval and decompose dyadically:

∑

n

∣∣E U
N (n)

∣∣2 =
∫ 1

0

∣∣1 −T(θ)
∣∣2∣∣R̂U

N(θ)
∣∣2dθ

� IQ0,K0 + IQ0 +
∑

Q0≤Q<M

dyadic

IQ,

where we have dissected the circle into the following regions (using that |1−
t(x)| = |x| on [−1,1]):

IQ0,K0 :=
∫

θ= r
q +β

q<Q0,(r,q)=1,|β|<K0/N

∣∣
∣∣β

N

K0

∣∣
∣∣

2∣
∣R̂U

N(θ)
∣
∣2dθ, (3.22)

IQ0 :=
∫

θ= r
q +β

q<Q0,(r,q)=1,K0/N<|β|<1/(qM)

∣
∣R̂U

N(θ)
∣
∣2dθ, (3.23)

IQ :=
∫

θ= r
q +β

Q≤q<2Q,(r,q)=1,|β|<1/(qM)

∣
∣R̂U

N(θ)
∣
∣2dθ. (3.24)

Bounds of the quality (3.14) are given for (3.22) and (3.23) in Sect. 7, see
Theorem 7.3. Our estimation of (3.24) decomposes further into two cases,
whether Q < X or X ≤ Q < M , and are handled separately in Sect. 8 and
Sect. 9; see Theorems 8.5 and 9.5, respectively.

We point out again that our averaging on n in the minor arcs makes this
quite crude as far as individual n’s (the subject of Conjecture 1.1) are con-
cerned.

3.4 The rest of the paper

The only section not yet described is Sect. 5, where we furnish some lemmata
which are useful in the sequel. These decompose into two categories: one set
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Fig. 3 The orbit of a point
in hyperbolic space under
the Apollonian group

of lemmata is related to some infinite-volume counting problems, for which
the background in Sect. 4 is indispensable. The other lemma is of a classi-
cal flavor, corresponding to a local analysis for the shifted binary form f; this
studies a certain exponential sum which is dealt with via Gauss and Kloost-
erman/Salié sums.

This completes our outline of the rest of the paper.

4 Preliminaries II: automorphic forms and representations

4.1 Spectral theory

Recall the general spectral theory in our present context. We abuse notation
(in this section only), passing from G = SOF (R) to its spin double cover G =
SL(2,C). Let Γ < G be a geometrically finite discrete group. (The Apollo-
nian group is such, being a Schottky group, see Fig. 3.) Then Γ acts discon-
tinuously on the upper half space H

3, and any Γ orbit has a limit set ΛΓ in
the boundary ∂H

3 ∼= S2 of some Hausdorff dimension δ = δ(Γ ) ∈ [0,2]. We
assume that Γ is non-elementary (not virtually Abelian), so δ > 0, and more-
over that Γ is not a lattice, that is, the quotient Γ \H3 has infinite hyperbolic
volume; then δ < 2. The hyperbolic Laplacian � acts on the space L2(Γ \H3)

of functions automorphic under Γ and square integrable on the quotient; we
choose the Laplacian to be positive definite. The spectrum is controlled via
the following, see [35, 38, 47].

Theorem 4.1 (Patterson, Sullivan, Lax-Phillips) The spectrum above 1 is
purely continuous, and the spectrum below 1 is purely discrete. The latter
is empty unless δ > 1, in which case, ordering the eigenvalues by

0 < λ0 < λ1 ≤ · · · ≤ λmax < 1, (4.1)

the base eigenvalue λ0 is given by

λ0 = δ(2 − δ).
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Remark 4.2 In our application to the Apollonian group, the limit set is pre-
cisely the underlying gasket, see Fig. 3. It has dimension

δ ≈ 1.3 . . . > 1. (4.2)

Corresponding to λ0 is the Patterson-Sullivan base eigenfunction, ϕ0,
which can be realized explicitly as the integral of a Poisson kernel against the
so-called Patterson-Sullivan measure μ. Roughly speaking, μ is the weak∗
limit as s → δ+ of the measures

μs(x) :=
∑

γ∈Γ exp(−s d(o, γ · o))1x=γ o
∑

γ∈Γ exp(−s d(o, γ · o)) , (4.3)

where d(·, ·) is the hyperbolic distance, and o is any fixed point in H
3.

4.2 Spectral gap

We assume henceforth that Γ moreover satisfies Γ < SL(2, O), where O =
Z[i]. Then we have a tower of congruence subgroups: for any integer q ≥ 1,
define Γ (q) to be the kernel of the projection map Γ → SL(2, O/q), with
q = (q) the principal ideal. As in (4.1), write

0 < λ0(q) < λ1(q) ≤ · · · ≤ λmax(q)(q) < 1, (4.4)

for the discrete spectrum of Γ (q)\H3. The groups Γ (q), while of infinite
covolume, have finite index in Γ , and hence

λ0(q) = λ0 = δ(2 − δ). (4.5)

But the second eigenvalues λ1(q) could a priori encroach on the base. The
fact that this does not happen is the spectral gap property for Γ .

Theorem 4.3 Given Γ as above, there exists some ε = ε(Γ ) > 0 such that
for all q ≥ 1,

λ1(q) ≥ λ0 + ε. (4.6)

This is proved in the Appendix by Péter Varjú.

4.3 Representation theory and mixing rates

By the Duality Theorem of Gelfand, Graev, and Piatetski-Shapiro [24], the
spectral decomposition above is equivalent to the decomposition into irre-
ducibles of the right regular representation acting on L2(Γ \G). That is, we
identify H

3 ∼= G/K , with K = SU(2) a maximal compact subgroup, and lift
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functions from H
3 to (right K-invariant) functions on G. Corresponding to

(4.1) is the decomposition

L2(Γ \G) = Vλ0 ⊕ Vλ1 ⊕ · · · ⊕ Vλmax ⊕ Vtemp. (4.7)

Here Vtemp contains the tempered spectrum (for SL2(C), every non-spherical
irreducible representation is tempered), and each Vλj

is an infinite dimen-
sional vector space, isomorphic as a G-representation to a complementary se-
ries representation with parameter sj ∈ (1,2) determined by λj = sj (2 − sj ).
Obviously, a similar decomposition holds for L2(Γ (q)\G), corresponding
to (4.4).

We also have the following well-known general fact about mixing rates of
matrix coefficients, see e.g. [20]. First we recall the relevant Sobolev norm.
Let (π,V ) be a unitary G-representation, and let {Xj } denote an orthonormal
basis of the Lie algebra k of K with respect to an Ad-invariant scalar product.
For a smooth vector v ∈ V ∞, define the (second order) Sobolev norm S of v

by

Sv := ‖v‖2 +
∑

j

∥∥dπ(Xj ).v
∥∥

2 +
∑

j

∑

j ′

∥∥dπ(Xj )dπ(Xj ′).v
∥∥

2.

Theorem 4.4 ([33, Prop. 5.3]) Let Θ > 1 and (π,V ) be a unitary represen-
tation of G which does not weakly contain any complementary series repre-
sentation with parameter s > Θ . Then for any smooth vectors v,w ∈ V ∞,

∣∣〈π(g).v,w
〉∣∣�‖g‖−2(2−Θ) · Sv · Sw. (4.8)

Here ‖ · ‖ is the standard Frobenius matrix norm.

4.4 Effective bisector counting

The next ingredient which we require is the recent work by Vinogradov [49]
on effective bisector counting for such infinite volume quotients. Recall the
following sub(semi)groups of G:

A =
{
at :=

(
et/2

e−t/2

)
: t ∈ R

}
, A+ = {at : t ≥ 0},

M =
{(

e2πiθ

e−2πiθ

)
: θ ∈ R/Z

}
, K = SU(2).

We have the Cartan decomposition G = KA+K , unique up to the normalizer
M of A in K . We require it in the following more precise form. Identify K/M
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with the sphere S2 ∼= ∂H
3. Then for every g ∈ G not in K , there is a unique

decomposition

g = s1(g) · a(g) · m(g) · s2(g)−1 (4.9)

with s1, s2 ∈ K/M , a ∈ A+ and m ∈ M , corresponding to

G = K/M × A+ × M × M\K,

see, e.g., [49, (3.4)]. The following theorem follows easily from [49, Theo-
rem 2.2].

Theorem 4.5 ([49]) Let Φ,Ψ ⊂ S2 be spherical caps and let I ⊂ R/Z be
an interval. Then under the above hypotheses on Γ (in particular δ > 1), and
using the decomposition (4.9), we have

∑

γ∈Γ

1

⎧
⎪⎪⎨

⎪⎪⎩

s1(γ ) ∈ Φ

s2(γ ) ∈ Ψ

‖a(γ )‖2 < T

m(γ ) ∈ I

⎫
⎪⎪⎬

⎪⎪⎭
= cδ · μ(Φ)μ(Ψ )�(I)T δ +O

(
T Θ

)
, (4.10)

as T →∞. Here cδ > 0, ‖ · ‖ is the Frobenius norm, � is Lebesgue measure,
μ is Patterson-Sullivan measure (cf. (4.3)), and

Θ < δ (4.11)

depends only on the spectral gap for Γ . The implied constant does not depend
on Φ,Ψ , or I .

This generalizes from SL(2,R) to SL(2,C) the main result of [12], which
is itself a generalization (with weaker exponents) to our infinite volume set-
ting of [25, Theorem 4].

5 Some lemmata

5.1 Infinite volume counting statements

Equipped with the tools of Sect. 4, we isolate here some consequences which
will be needed in the sequel. We return to the notation G = SOF , with F

the Descartes form (2.2), Γ = A ∩ G, the orientation preserving Apollonian
subgroup, and Γ (q) its principal congruence subgroups. Moreover, we import
all the notation from the previous section.

First we use the spectral gap to see that summing over a coset of a congru-
ence group can be reduced to summing over the original group.
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Lemma 5.1 Fix γ1 ∈ Γ , q ≥ 1, and any “congruence” group Γ̃ (q) satisfying

Γ (q) < Γ̃ (q) < Γ. (5.1)

Then as Y →∞,

#
{
γ ∈ Γ̃ (q) : ‖γ1γ ‖ < Y

}
(5.2)

= 1

[Γ : Γ̃ (q)] · #
{
γ ∈ Γ : ‖γ ‖ < Y

}+O
(
YΘ0

)
, (5.3)

where Θ0 < δ depends only on the spectral gap for Γ . The implied constant
above does not depend on q or γ1. The same holds with γ1γ in (5.2) replaced
by γ γ1.

This simple lemma follows from a more-or-less standard argument. We
give a sketch below, since a slightly more complicated result will be needed
later, cf. Lemma 5.3, but with essentially no new ideas. After proving the
lemma below, we will use the argument as a template for the more compli-
cated statement.

Sketch of Proof Denote the left hand side (5.2) by Nq , and let N1/[Γ : Γ̃ (q)]
be the first term of (5.3). For g ∈ G, let

f (g) = fY (g) := 1{‖g‖<Y }, (5.4)

and define

Fq(g,h) :=
∑

γ∈Γ̃ (q)

f
(
g−1γ h

)
, (5.5)

so that

Nq = Fq

(
γ−1

1 , e
)
. (5.6)

By construction, Fq is a function on Γ̃ (q)\G × Γ̃ (q)\G, and we smooth
Fq in both copies of Γ̃ (q)\G, as follows. Let ψ ≥ 0 be a smooth bump func-
tion supported in a ball of radius η > 0 (to be chosen later) about the origin
in G with

∫
G

ψ = 1, and automorphize it to

Ψq(g) :=
∑

γ∈Γ̃ (q)

ψ(γg).

Then clearly Ψq is a bump function in Γ̃ (q)\G with
∫
Γ̃ (q)\G Ψq = 1. Let

Ψq,γ1(g) := Ψq(gγ1).
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Smooth the variables g and h in Fq by considering

Hq := 〈Fq,Ψq,γ1 ⊗Ψq〉 =
∫

Γ̃ (q)\G

∫

Γ̃ (q)\G
Fq(g,h)Ψq,γ1(g)Ψq(h)dg dh

=
∑

γ∈Γ̃ (q)

∫

Γ̃ (q)\G

∫

Γ̃ (q)\G
f
(
γ1g

−1γ h
)
Ψq(g)Ψq(h)dg dh.

First we estimate the error from smoothing:

E = |Nq − Hq |
≤
∑

γ∈Γ

∫

Γ̃ (q)\G

∫

Γ̃ (q)\G
∣
∣f
(
γ1g

−1γ h
)− f (γ1γ )

∣
∣Ψq(g)Ψq(h)dg dh,

where we have increased γ to run over all of Γ . The analysis splits into three
ranges.

(1) If γ is such that

‖γ1γ ‖ > Y(1 + 10η), (5.7)

then both f (γ1g
−1γ h) and f (γ1γ ) vanish.

(2) In the range

‖γ1γ ‖ < Y(1 − 10η), (5.8)

both f (γ1g
−1γ h) and f (γ1γ ) are 1, so their difference vanishes.

(3) In the intermediate range, we apply [35], bounding the count by

� Y δη + Y δ−ε, (5.9)

where ε > 0 depends on the spectral gap for Γ .

Thus it remains to analyze Hq .
Use a simple change of variables (see [12, Lemma 3.7]) to express Hq via

matrix coefficients:

Hq =
∫

G

f (g)
〈
π(g)Ψq,Ψq,γ1

〉
Γ̃ (q)\Gdg.

Decompose the matrix coefficient into its projection onto the base irreducible
Vλ0 in (4.7) and an orthogonal term, and bound the remainder by the mixing
rate (4.8) using the uniform spectral gap ε > 0 in (4.6). The functions ψ are
bump functions in six real dimensions, so can be chosen to have second-
order Sobolev norms bounded by � η−5. Of course the projection onto the
base representation is just [Γ : Γ̃ (q)]−1 times the same projection at level
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one, cf. (4.5). Running the above argument in reverse at level one (see [12,
Proposition 4.18]) gives:

Nq = 1

[Γ : Γ̃ (q)] · N1 +O
(
ηY δ + Y δ−ε

)+O
(
Y δ−εη−10). (5.10)

Optimizing η and renaming Θ0 < δ in terms of the spectral gap ε gives the
claim. �

Next we exploit the previous lemma and the product structure of the family
F in (3.3) to save a small power of q in the following modular restriction. Such
a bound is needed at several places in Sect. 8.

Lemma 5.2 Let Θ0 be as in (5.3). Define C in (3.2) by

C := 1030

δ −Θ0
, (5.11)

hence determining T1 and T2. There exists some η0 > 0 depending only on
the spectral gap of Γ so that for any 1 ≤ q < N and any r(modq),

∑

γ∈F

1{〈e1,γ v0〉≡r(modq)} � 1

qη0
T δ. (5.12)

The implied constant is independent of r .

Proof Dropping the condition 〈e1, γ1 γ2v0〉 > T/100 in (3.3), bound the left
hand side of (5.12) by

∑

γ1∈Γ

‖γ1‖	T1

∑

γ2∈Γ

‖γ2‖	T2

1{〈e1,γ1γ2v0〉≡r(modq)}. (5.13)

We decompose the argument into two ranges of q .

Case 1: q small In this range, we fix γ1, and follow a standard argument

for γ2. Let Γ̃ (q) < Γ denote the stabilizer of v0(modq), that is

Γ̃ (q) := {
γ ∈ Γ : γ v0 ≡ v0(modq)

}
. (5.14)

Clearly (5.1) is satisfied, and it is elementary that

[
Γ : Γ̃ (q)

]	 q2, (5.15)
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cf. (2.19). Decompose γ2 = γ ′
2γ

′′
2 with γ ′′

2 ∈ Γ̃ (q) and γ ′
2 ∈ Γ/Γ̃ (q). Then

by (5.3) and [35], we have

(5.13) =
∑

γ1∈Γ

‖γ1‖	T1

∑

γ ′
2∈Γ/Γ̃ (q)

1{〈e1,γ1γ
′
2v0〉≡r(modq)}

∑

γ ′′
2 ∈Γ̃ (q)

‖γ ′
2γ ′′

2 ‖	T2

1

� T δ
1 q

(
1

q2
T δ

2 + T
Θ0
2

)
.

Hence we have saved a whole power of q , as long as

q < T
(δ−Θ0)/2

2 . (5.16)

Case 2: q ≥ T
δ−Θ0

2
2 Then by (5.11) and (3.2), q is actually a very large power

of T1,

q ≥ T 1029

1 . (5.17)

In this range, we exploit Hilbert’s Nullstellensatz and effective versions of
Bezout’s theorem; see a related argument in [7, Proof of Proposition 4.1].

Fixing γ2 in (5.13) (with � T δ
2 choices), we set

v := γ2v0,

and play now with γ1. Let S be the set of γ1’s in question (and we now drop
the subscript 1):

S = Sv,q(T1) :=
{
γ ∈ Γ : ‖γ ‖ 	 T1, 〈e1, γ v〉 ≡ r(modq)

}
.

This congruence restriction is to a modulus much bigger than the parameter,
so we

Claim There is an integer vector v∗ �= 0 and an integer z∗ such that

〈e1, γ v∗〉 = z∗ (5.18)

holds for all γ ∈ S. That is, the modular condition can be lifted to an exact
equality.

First we assume the Claim and complete the proof of (5.12). Let q0 be a
prime of size 	 T

(δ−Θ0)/2
1 , say, such that v∗ �≡ 0(modq0); then

|S| � #
{‖γ1‖ < T1 : 〈e1, γ v∗〉 ≡ z∗(modq0)

}
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� q0

(
1

q2
0

T δ
1 + T

Θ0
1

)
� 1

q0
T δ

1 ,

by the argument in Case 1. Recall we assumed that q < N . Since q0 above is
a small power of N , the above saves a tiny power of q , as desired.

It remains to establish the Claim. For each γ ∈ S, consider the condition

〈e1, γ v〉 =
∑

1≤j≤4

γ1,j vj ≡ r(modq).

First massage the equation into one with no trivial solutions. Since v is a prim-
itive vector, after a linear change of variables we may assume that (v1, q) = 1.
Then multiply through by v̄1, where v1v̄1 ≡ 1(modq), getting

γ1,1 +
∑

2≤j≤4

γ1,j vj v̄1 ≡ rv̄1(modq). (5.19)

Now, for variables V = (V2,V3,V4) and Z, and each γ ∈ S, consider the
(linear) polynomials Pγ ∈ Z[V,Z]:

Pγ (V,Z) := γ1,1 +
∑

2≤j≤4

γ1,j Vj −Z,

and the affine variety

V :=
⋂

γ∈S

{Pγ = 0}.

If this variety V(C) is non-empty, then there is clearly a rational solution,
(V ∗,Z∗) ∈ V(Q). Hence we have found a rational solution to (5.18), namely
v∗ = (1,V ∗

2 ,V ∗
3 ,V ∗

4 ) �= 0 and z∗ = Z∗. Since (5.18) is homogeneous, we
may clear denominators, getting an integral solution, v∗, z∗.

Thus we henceforth assume by contradiction that the variety V(C) is
empty. Then by Hilbert’s Nullstellensatz, there are polynomials Qγ ∈
Z[V,Z] and an integer d ≥ 1 so that

∑

γ∈S

Pγ (V,Z)Qγ (V,Z) = d, (5.20)

for all (V ,Z) ∈ C
4. Moreover, Hermann’s method [29] (see [36, Theo-

rem IV]) gives effective bounds on the heights of Qγ and d in the above
Bezout equation. Recall the height of a polynomial is the logarithm of its
largest coefficient (in absolute value); thus the polynomials Pγ are linear in
four variables with height ≤ logT1. Then Qγ and d can be found so that

d ≤ e84·24−1−1(logT1+8 log 8) � T 1028

1 . (5.21)



614 J. Bourgain et al.

(Much better bounds are known, see e.g. [1, Theorem 5.1], but these suffice
for our purposes.)

On the other hand, reducing (5.20) modulo q and evaluating at

V0 = (v2v̄1, v3v̄1, v4v̄1), Z0 = rv̄1,

we have
∑

γ∈S

Pγ (V0,Z0)Qγ (V0,Z0) ≡ 0 ≡ d(modq),

by (5.19). But then since d ≥ 1, we in fact have d ≥ q , which is incompatible
with (5.21) and (5.17). This furnishes our desired contradiction, completing
the proof. �

Next we need a slight generalization of Lemma 5.1, which will be used in
the major arcs analysis, see (6.6).

Lemma 5.3 Let 1 < K ≤ T
1/10

2 , fix |β| < K/N , and fix x, y 	 X. Then for
any γ0 ∈ Γ , any q ≥ 1, and any group Γ̃ (q) satisfying (5.1), we have

∑

γ∈F∩{γ0Γ̃ (q)}
e
(
β fγ (2x, y)

)= 1

[Γ : Γ̃ (q)]
∑

γ∈F

e
(
β fγ (2x, y)

)

+O
(
T ΘK

)
, (5.22)

where Θ < δ depends only on the spectral gap for Γ , and the implied constant
does not depend on q , γ0, β , x or y.

Proof The proof follows with minor changes that of Lemma 5.1, so we give
a sketch; see also [12, Sect. 4].

According to the construction (3.3) of F, the γ ’s in question satisfy γ =
γ1γ2 ∈ γ0Γ̃ (q), and hence we can write

γ2 = γ−1
1 γ0γ

′
2,

with γ ′
2 ∈ Γ̃ (q). Then γ ′

2 = γ−1
0 γ1γ2, and using (2.15), we can write the left

hand side of (5.22) as

∑

γ1∈Γ

T1<‖γ1‖<2T1

∑

γ ′
2∈Γ̃ (q)

T2<‖γ−1
1 γ0γ ′

2‖<2T2

1{〈e1,γ0γ
′
2 v0〉>T/100} e

(
β
〈
wx,y, γ0γ

′
2 v0

〉)
.

Now we fix γ1 and mimic the proof of Lemma 5.1 in γ ′
2.
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Replace (5.4) by

f (g) := 1{T2<‖γ−1
1 g‖<2T2}1{〈e1,g v0〉>T/100} e

(
β 〈wx,y, g v0〉

)
.

Then (5.5)–(5.7) remains essentially unchanged, save cosmetic changes such
as replacing (5.6) by Fq(γ1γ

−1
0 , e). Then in the estimation of the difference

|Nq − Hq | by splitting the sum on γ ′
2 into ranges, the argument now proceeds

as follows.

(1) The range (5.7) should be replaced by
∥∥γ1γ

−1
0 γ ′

2

∥∥< T2(1 − 10η), or
∥∥γ1γ

−1
0 γ ′

2

∥∥> 2T2(1 + 10η),

or
〈
e1, γ1γ

−1
0 γ ′

2 v0
〉
<

T

100
(1 − 10η).

(2) The range (5.8) should be replaced by the range

T2(1 + 10η) <
∥∥γ1γ

−1
0 γ ′

2

∥∥< 2T2(1 − 10η), and

〈
e1, γ1γ

−1
0 γ ′

2 v0
〉
>

T

100
(1 + 10η),

in which f is differentiable. Here instead of the difference |f (γ1γ
−1
0 ·

gγ ′
2h) − f (γ1γ

−1
0 γ ′

2)| vanishing, it is now bounded by

� ηK,

for a net contribution to the error of � ηKT δ .
(3) In the remaining range, (5.9) remains unchanged, using |f | ≤ 1.

The error in (5.10) is then replaced by

O
(
ηK T δ

2 + T δ−ε
2 η−10).

Optimizing η and renaming Θ gives the bound O(T Θ
2 K10/11), which is better

than claimed in the power of K . Rename Θ once more using (3.2) and (5.11),
giving (5.22). �

The following is our last counting lemma, showing a certain equidistribu-
tion among the values of fγ (2x, y) at the scale N/K . This bound is used in
the major arcs, see the proof of Theorem 6.1.

Lemma 5.4 Fix N/2 < n < N , 1 < K ≤ T
1/10

2 , and x, y 	 X. Then

∑

γ∈F

1{|fγ (2x,y)−n|< N
K
} �

T δ

K
+ T Θ, (5.23)
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where Θ < δ only depends on the spectral gap for Γ . The implied constant is
independent of x, y, and n.

Sketch The proof is an explicit calculation nearly identical to the one given
in [12, Sect. 5]; we give only a sketch here. Write the left hand side of (5.23)
as

∑

γ1∈Γ

T1<‖γ1‖<2T1

∑

γ2∈Γ

T2<‖γ2‖<2T2

1{〈e1,γ1γ2v0〉>T/100}1{|〈wx,y,γ1γ2v0〉−n|<N/K}.

Fix γ1 and express the condition on γ2 as γ2 ∈ R ⊂ G, where R is the region

R = Rγ1,x,y,n :=
⎧
⎨

⎩
g ∈ G :

T2 < ‖g‖ < 2T2
〈γ t

1e1, g v0〉 > T/100
|〈γ t

1wx,y, g v0〉 − n| < N
K

⎫
⎬

⎭
.

Lift G = SOF (R) to its spin cover G̃ = SL2(C) via the map ι of (2.18). Let
R̃ ⊂ G̃ be the corresponding pullback region, and decompose G̃ into Cartan
KAK coordinates according to (4.9). Note that ι is quadratic in the entries,
so, e.g., the condition

‖g‖2 	 T gives
∥∥ι(g)

∥∥	 T , (5.24)

explaining the factor ‖a(g)‖2 appearing in (4.10).
Then chop R̃ into spherical caps and apply Theorem 4.5. The same argu-

ment as in [12, Sect. 5] then leads to (5.23), after renaming Θ ; we suppress
the details. �

5.2 Local analysis statements

In this subsection, we study a certain exponential sum which arises in a crucial
way in our estimates. Fix f ∈ F, and write f = f − a with

f (x, y) = Ax2 + 2Bxy +Cy2

according to (2.14). Let q0 ≥ 1, fix r with (r, q0) = 1, and fix n,m ∈ Z. (The
notation is meant to be consistent with its later use; there will be another
parameter q , and q0 will be a divisor of q .) Define the exponential sum

Sf (q0, r;n,m) := 1

q2
0

∑

k(q0)

∑

�(q0)

eq0

(
rf (k, �) + nk +m�

)
. (5.25)

This sum appears naturally in many places in the minor arcs analysis,
see e.g. (7.4) and (9.2). Our first lemma is completely standard, see, e.g.
[30, Sect. 12.3].
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Lemma 5.5 With the above conditions,

∣∣Sf (q0, r;n,m)
∣∣≤ q

−1/2
0 . (5.26)

Remark 5.6 Being a sum in two variables, one might expect square-root can-
cellation in each, giving a savings of q−1

0 ; indeed this is what we obtain,
modulo some coprimality conditions, see (5.29). For some of our applica-
tions, saving just one square-root is plenty, and we can ignore the coprimality;
hence the cleaner statement in (5.26).

Proof Write Sf for Sf (q0, r;n,m). Note first that Sf is multiplicative in
q0, so we study the case q0 = pj is a prime power. Assume for simplicity
(q0,2) = 1; similar calculations are needed to handle the 2-adic case.

First we re-express Sf in a more convenient form. By Descartes theorem
(2.1), primitivity of the gasket G , and (2.13), we have that (A,B,C) = 1;
assume henceforth that (C, q0) = 1, say. Write x̄ for the multiplicative in-
verse of x (the modulus will be clear from context). Recall throughout that
(r, q0) = 1.

Looking at the terms in the summand of Sf , we have

rf (k, �) + nk +m� (modq0)

≡ r
(
Ak2 + 2Bk� + C�2)+ nk + m�

≡ rC(�+BC̄k)2 + rC̄k2(AC −B2)+ nk +m�

≡ rC(�+BC̄k)2 + a2rC̄k2 + nk +m�

≡ rC(�+BC̄k + 2rCm)2 − 4rCm2 + a2rC̄k2 + k(n −BC̄m),

where we used (2.16). Hence we have

Sf = 1

q2
0

eq0

(−4rCm2)∑

k(q0)

eq0

(
a2rC̄k2 + k(n −BC̄m)

)

×
∑

�(q0)

eq0

(
rC(�+BC̄k + 2rCm)2),

and the � sum is just a classical Gauss sum. It can be evaluated explicitly, see
e.g. [30, Eq. (3.38)]. Let

εq0 :=
{

1 if q0 ≡ 1(mod 4)

i if q0 ≡ 3(mod 4).
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Then the Gauss sum on � is εq0

√
q0(

rC
q0

), where ( ·
q0

) is the Legendre symbol.
Thus we have

Sf = εq0

q
3/2
0

(
rC

q0

)
eq0

(−4rCm2)∑

k(q0)

eq0

(
a2rC̄k2 + k(n −BC̄m)

)
.

Let

q̃0 := (
a2, q0

)
, q1 := q0/q̃0, and a1 := a2/q̃0, (5.27)

so that a2/q0 = a1/q1 in lowest terms. Break the sum on 0 ≤ k < q0 accord-

ing to k = k1 + q1k̃, with 0 ≤ k1 < q1 and 0 ≤ k̃ < q̃0. Then

Sf = εq0

q
3/2
0

(
rC

q0

)
eq0

(−4rCm2)

×
∑

k1(q1)

eq1

(
a1rC̄(k1)

2)eq0

(
k1(n−BC̄m)

)

×
∑

k̃(q̃0)

eq̃0

(
k̃(n−BC̄m)

)
.

The last sum vanishes unless n − BC̄m ≡ 0 (mod q̃0), in which case it is q̃0.
In the latter case, define L by

L := (Cn−Bm)/q̃0. (5.28)

Then we have

Sf = 1nC≡mB(q̃0)

εq0

q
3/2
0

(
rC

q0

)
eq0

(−4rCm2)

× eq1

(−4a1rCL2)
[ ∑

k1(q1)

eq1

(
a1rC̄(k1 + 2a1rL)2)

]
q̃0.

The Gauss sum in brackets is again evaluated as εq1q
1/2
1 (

a1rC̄
q1

), so we have

Sf (q0, r;n,m) = 1nC≡mB(q̃0)

εq0εq1 q̃
1/2
0

q0
eq0

(−4rCm2) (5.29)

× eq1

(−4a1rCL2)
(

rC

q0

)(
a1rC̄

q1

)
.

The claim then follows trivially. �
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Next we introduce a certain average of a pair of such sums. Let f, q0, r, n,
and m be as before, and fix q ≡ 0 (modq0) and (u0, q0) = 1. Let f′ ∈ F be
another shifted form f′ = f ′ − a′, with

f ′(x, y) = A′x2 + 2B ′xy +C′y2.

Also let n′,m′ ∈ Z. Then define

S = S
(
q, q0, f, f ′, n,m,n′,m′;u0

)

:=
∑′

r(q)

Sf (q0, ru0;n,m)Sf ′
(
q0, ru0;n′,m′)eq

(
r
(
a′ − a

))
. (5.30)

This sum also appears naturally in the minor arcs analysis, see (8.2) and (9.4).

Lemma 5.7 With the above notation, we have the estimate

|S| � (q/q0)
2 {(a2, q0) · ((a′)2, q0)}1/2

q5/4

(
a − a′, q

)1/4
. (5.31)

Remark 5.8 Treating all gcd’s above as 1 and pretending q = q0, the trivial
bound here (after having saved essentially a whole q from each of the two Sf

sums) is 1/q , since the r sum is unnormalized. So (5.31) saves an extra q1/4

in the r sum. (In fact we could have saved the expected q1/2, but this does not
improve our final estimates.)

Proof Observe that S is multiplicative in q , so we again consider the prime
power case q = pj , p �= 2; then q0 is also a prime power, since q0 | q . As
before, we may assume (C, q0) = (C′, q0) = 1.

Recall a1, q̃0, and L given in (5.27) and (5.28), and let a′
1, q̃ ′

0 and L′ be
defined similarly. Inputting the analysis from (5.29) into both Sf and Sf ′ , we
have

S = 1 nC≡2mB(q̃0)

n′C′≡2m′B′(q̃′0)

εq1 ε̄q ′
1
(q̃0q̃

′
0)

1/2

q2
0

(
CC′

q0

)(
a1u0C̄

q1

)(
a′

1u0C̄
′

q ′
1

)

×
[∑′

r(q)

(
r

q1

)(
r

q ′
1

)
eq

(
r
{
a′ − a

})

× eq0

(
4ru0

{
C′(m′)2 −Cm2 + a′

1C
′(L′)2

q̃ ′ − a1CL2q̃

})]
.

(5.32)
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The term in brackets [·] is a Kloosterman- or Salié-type sum, for which we
have an elementary bound [32] to the power 3/4:

|S| � (q̃0q̃
′
0)

1/2

q2
0

q3/4(a − a′, q
)1/4

,

giving the claim. (There is no improvement in our use of this estimate from
appealing to Weil’s bound instead of Kloosterman’s; any power gain suf-
fices.) �

In the case a = a′, (5.31) only saves one power of q , and in Sect. 9 we will
need slightly more; see the proof of (9.10). We get a bit more cancellation in
the special case f (m,−n) �= f ′(m′,−n′) below.

Lemma 5.9 Assuming a = a′ and f (m,−n) �= f ′(m′,−n′), we have the es-
timate

|S| � (q/q0)
5 (a2, q0)

q9/8
· ∣∣f (m,−n)− f ′(m′,−n′)∣∣1/2

. (5.33)

Proof Assume first that q (and hence q0) is a prime power, continuing to omit
the prime 2. Returning to the definition of S in (5.30), it is clear in the case
a = a′ that

′∑

r(q)

= (q/q0)

′∑

r(q0)

.

Hence we again apply Kloosterman’s 3/4th bound to (5.32), getting

|S| � 1 nC≡2mB(q̃0)

n′C′≡2m′B′(q̃′0)

(q/q0)
9/2 (a2, q0)

q5/4

×
∏

pj‖q0

(
pj , 4̄

{
C′(m′)2 −Cm2 + a1

(
a2,pj

)(
C′(L′)2 − CL2)})1/4

,

(5.34)

which is valid now without the assumption that q0 is a prime power. (Here a1
satisfies a2 = a1(a

2,pj ) as in (5.27), and L is given in (5.28), so both depend
on pj .)

Break the primes diving q0 into two sets, P1 and P2, defining P1 to be the
set of those primes p for which

Cm2 + CL2a1
(
a2,pj

)≡ C′(m′)2 +C′(L′)2
a1
(
a2,pj

) (
modp�j/2�),

(5.35)
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and P2 the rest. For the latter, the gcd in (pj , . . .) of (5.34) is at most pj/2, so
we clearly have

∏

pj ‖q0
p∈P2

(
pj , . . .

)1/4 ≤
∏

pj‖q0

pj/8 = q
1/8
0 . (5.36)

For p ∈ P1, we multiply both sides of (5.35) by

a2 = AC −B2 = A′C′ − (
B ′)2 = a1

(
a2,pj

)
,

giving

(
AC −B2)Cm2 +CL2(a2,pj

)2

≡ (
A′C′ − (

B ′)2)
C′(m′)2 +C′(L′)2(

a2,pj
)2 (

modp�j/2�).
(5.37)

Using (5.28) that

nC −mB = (
a2,pj

)
L, n′C′ −m′B ′ = (

a2,pj
)
L′

and subtracting a from both sides of (5.37), we have shown that

f ′(m′,−n′)≡ f (m,−n)
(
modp�j/2�). (5.38)

Let

Z = ∣∣f (m,−n)− f ′(m′,−n′)∣∣.

By assumption Z �= 0. Moreover (5.38) implies that
( ∏

p∈P1

p�j/2�
)
| Z,

and hence
∏

pj ‖q0
p∈P1

pj/4 ≤ Z1/2. (5.39)

Combining (5.39) and (5.36) in (5.34) gives the claim. �

Finally we need some savings in the case a = a′ and f (m,−n) =
f ′(m′,−n′). This will no longer come from S itself, but from the following
supplementary lemmata.
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Lemma 5.10 Fix an equivalence class K of primitive binary quadratic forms
of discriminant −4a2. We claim that the number of equivalent forms f ∈ K
with f = f − a ∈ F is bounded, that is,

#{f ∈ F : f ∈ K} = O(1). (5.40)

Proof From (2.13), (3.3), and (2.16), we have that f (m,n) = Am2+2Bmn+
Cn2 has coefficients of size

A,B,C � T ,

and AC − B2 = a2, with a 	 T . It follows that AC 	 T 2, and hence

A,C 	 T . (5.41)

Now suppose we have f = f − a and f′ = f ′ − a with f as above and
f ′ having coefficients A′,B ′,C′. If f and f ′ are equivalent then there is an
element (

g h

i j
) ∈ GL(2,Z) so that

A′ = g2A + 2giB + i2C,

B ′ = ghA + (gj + hi)B + ijC, (5.42)

C′ = h2A+ 2hjB + j2C.

The first line can be rewritten as

A′ = C(i + gB/C)2 + g2 4a2

C
,

so that

g2 ≤ A′ C

4a2
� 1.

Similarly,

(i + gB/C)2 ≤ A′

C
� 1,

and hence |i| � 1. In a similar fashion, we see that |h| and |j | are also
bounded, thus the number of equivalent forms in K is bounded, as claimed. �

Lemma 5.11 For a fixed large integer z, the number of inequivalent classes
K of primitive quadratic forms of determinant −4a2 which represent z is

�ε zε · (z,4a2)1/2
, for any ε > 0. (5.43)



On the local-global conjecture for integral Apollonian gaskets 623

Proof If f ∈ K represents z, say f (m,n) = z, then, setting w = (m,n), f

represents z1 := z/w2 primitively. We see from (5.42) that f is then in the
same class as f1(m,n) = z1m

2 + 2Bmn +Cn2, with

−4a2 = z1C −B2.

Moreover, by a unipotent change of variables preserving z1, we can force
B into the range [0, z1), that is, B is determined mod z1. So the number of
inequivalent such f1 is equal to

#
{
B(mod z1) : B2 ≡−4a2(z1)

}=
∏

pe||z1

#
{
B2 ≡−p2f

(
pe
)}

, (5.44)

where pf || 2a. If 2f ≥ e, then the number of local solutions is at most
pe/2. Otherwise, write B = B1p

f ; then there are at most 2 solutions to
B2

1 ≡−1(modpe−2f ), and there are pf values for B once B1 is determined.
Hence the number of local solutions is at most 2 ·min(pe/2,pf ), so the num-
ber of solutions to (5.44) is at most

2ω(z)
(
z1,4a2)1/2 �ε zε

(
z,4a2)1/2

.

The number of divisors z1 of z is �ε zε , completing the proof. �

Lemma 5.12 Fix (A,B,C) = 1 and d | AC − B2. Then there are integers
k, � with (k, �, d) = 1 so that, whenever Am2 + 2Bmn + Cn2 ≡ 0(d), we
have

(mk + n�)2 ≡ 0(d). (5.45)

Proof We will work locally, then lift to a global solution. Let pe || d .

Case 1: If (p,A) = 1, then Am2 + 2Bmn +Cn2 ≡ 0(pe) implies

(m + ĀBn)2 − Ā2B2n2 + ĀCn2 ≡ (m + ĀBn)2 ≡ 0
(
pe
)
.

In this case, we set kp := 1, and �p := ĀB .
Case 2: If (p,A) > 1, then by primitivity, (p,C) = 1. As before, we have

(n+ C̄Bm)2 ≡ 0(pe), and we choose kp = C̄B , �p := 1.

By the Chinese Remainder Theorem, there are integers k and � so that
k ≡ kp(modpe), and similarly with �. By construction, we have (k, �, d) = 1,
as claimed. �
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Lemma 5.13 Given large M , (A,B,C) = 1 and d | AC −B2,

#
{
m,n < M : Am2 + 2Bmn +Cn2 ≡ 0(d)

}

�ε dε

(
M2

d1/2
+ M

)
. (5.46)

Proof As in Lemma 5.12, A,B,C and d determine k, � so that

∑

m,n<M

1{Am2+2Bmn+Cn2≡0(d)} ≤
∑

m,n<M

1{(mk+n�)2≡0(d)}.

But then there is a d1 | d , with d | d2
1 so that mk+n� ≡ 0(d1). Let w = (�, d1);

then mk ≡ 0(w) implies m ≡ 0(w) since (k, �, d) = 1. There are at most
1 + M/w such m up to M . With m fixed, n is uniquely determined mod
d1/w. Hence we get the bound

(5.46) ≤
∑

d1|d
d|d2

1

∑

w|d1

∑

m,n<M

1{m≡0(modw)}1{n≡− �
w

m
w

k(mod
d1
w

)}

�
∑

d1|d
d|d2

1

∑

w|d1

(
M

w
+ 1

)(
wM

d1
+ 1

)
�ε dε

(
M2

d1/2
+M

)
,

as claimed. �

Finally we collect the above lemmata into our desired estimate, essential
in the proof of (9.12).

Proposition 5.14 For large M and f = f − a ∈ F fixed,

#

{
f′ ∈ F

m,n,m′, n′ < M

∣∣
∣∣

a′ = a

f(m,−n) = f′(m′,−n′)

}
�ε (T M)ε

(
M2 + T M

)
,

(5.47)
for any ε > 0.

Proof Once f,m,n, and f′ = f ′ − a ∈ F are determined, it is elementary that
there are �ε Mε values of m′, n′ with f (m,−n) = f ′(m′,−n′). Decompos-
ing f ′ into classes and applying (5.40), (5.43), and (5.46), in succession, we
have

∑

m,n<M

∑

f′∈F

a′=a

∑

m′,n′<M

1{f (m,−n)=f ′(m′,−n′)}
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�ε

∑

m,n<M

∑

f′∈F

a′=a

1{f ′ represents f (m,−n)}Mε

� Mε
∑

m,n<M

∑

classes K
representing f (m,−n)

∑

f′∈F

a′=a,f ′∈K

1

�ε (T M)ε
∑

m,n<M

(
f (m,−n),4a2)1/2

� (T M)ε
∑

d|4a2

d1/2
∑

m,n<M

1{f (m,−n)≡0(d)}

� (T M)ε
∑

d|4a2

d1/2
(

M2

d1/2
+ M

)

� (T M)ε
(
M2 + Ma

)
,

from which the claim follows since a � T . �

6 Major arcs

We return to the setting and notation of Sect. 3 with the goal of establishing
(3.13). Thanks to the counting lemmata in Sect. 5.1, we can now define the
major arcs parameters Q0 and K0 from (3.16). First recall the two numbers
Θ < δ appearing in (5.22), (5.23), and define

1 < Θ1 < δ (6.1)

to be the larger of the two. Then set

Q0 = T (δ−Θ1)/20, K0 = Q2
0. (6.2)

We may now also set the parameter U from (3.8) to be

U = Q0
(η0)

2/100, (6.3)

where 0 < η0 < 1 is the number which appears in Lemma 5.2.
Let M(U)

N (n) denote either MN(n) or MU
N(n) from (3.21), (3.19), respec-

tively. Putting (3.18) and (3.6) (resp. (3.9)) into (3.21) (resp. (3.19)), making
a change of variables θ = r/q +β , and unfolding the integral from

∑
m

∫ 1
0 to∫

R
gives

M(U)
N (n) =

∑

x,y∈Z

Υ

(
2x

X

)
Υ

(
y

X

)
·M(n) ·

∑

u

μ(u), (6.4)
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where in the last sum, u ranges over u | (2x, y) (resp. and u < U ). Here we
have defined

M(n) = Mx,y(n)

:=
∑

q<Q0

∑′

r(q)

∑

γ∈F

eq

(
r
(〈wx,y, γ v0〉 − n

))

×
∫

R

t

(
N

K0
β

)
e
(
β
(
fγ (2x, y)− n

))
dβ, (6.5)

using (2.15).
As in (5.14), let Γ̃ (q) be the stabilizer of v0(modq). Decompose the sum

on γ ∈ F in (6.5) as a sum on γ0 ∈ Γ/Γ̃ (q) and γ ∈ F ∩ γ0Γ̃ (q). Applying
Lemma 5.3 to the latter sum, using the definition of Θ1 in (6.1), and recalling
the estimate (5.15) gives

M(n) = SQ0(n) ·W(n) +O

(
T Θ1

N
K2

0Q4
0

)
, (6.6)

where

SQ0(n) :=
∑

q<Q0

∑′

r(q)

∑

γ0∈Γ/Γ̃ (q)

eq(r(〈wx,y, γ0v0〉 − n))

[Γ : Γ̃ (q)] ,

W(n) := K0

N

∑

f∈F

t̂

((
f(2x, y)− n

)K0

N

)
.

Clearly we have thus split M into “modular” and “Archimedean” compo-
nents. It is now a simple matter to prove the following

Theorem 6.1 For 1
2N < n < N , there exists a function S(n) as in Theo-

rem 3.1 so that

MN(n) � S(n)T δ−1. (6.7)

Proof First we discuss the modular component. Write SQ0 as

SQ0(n) =
∑

q<Q0

1

[Γ : Γ̃ (q)]
∑

γ0∈Γ/Γ̃ (q)

cq

(〈wx,y, γ0v0〉 − n
)
,

where cq is the Ramanujan sum, cq(m) =∑′
r(q) eq(rm). By (2.19), the anal-

ysis now reduces to a classical estimate for the singular series. We may use
the transitivity of the γ0 sum to replace 〈wx,y, γ0v0〉 by 〈e4, γ0v0〉, extend the
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sum on q to all natural numbers, and use multiplicativity to write the sum as
an Euler product. Then the resulting singular series

S(n) :=
∏

p

[
1 +

∑

k≥1

1

[Γ : Γ0(pk)]
∑

γ0∈Γ/Γ0(p
k)

cpk

(〈e4, γ0 v0〉 − n
)]

vanishes only on non-admissible numbers, and can easily be seen to satisfy

N−ε �ε S(n) �ε Nε, (6.8)

for any ε > 0. See, e.g. [8, Sect. 4.3].
Next we handle the Archimedean component. By our choice of t in (3.17),

specifically that t̂ > 0 and t̂(y) > 2/5 for |y| < 1/2, we have

W(n) � K0

N

∑

f∈F

1{|f(2x,y)−n|< N
2K0

} �
T δ

N
+ T Θ1K0

N
,

using Lemma 5.4.
Putting everything into (6.6) and then into (6.4) gives (6.7), using (6.2)

and (3.1). �

Next we derive from the above that the same bound holds for MU
N (most

of the time).

Theorem 6.2 There is an η > 0 such that the bound (6.7) holds with MN

replaced by MU
N , except on a set of cardinality � N1−η.

Proof Putting (6.6) into (6.4) gives

∑

n<N

∣∣MN(n)− MU
N(n)

∣∣

�
∑

x,y	X

∑

n<N

∣∣M(n)
∣∣
∑

u|(2x,y)
u≥U

1

�ε

∑

y<X

∑

u|y
u≥U

∑

x<X
2x≡0(modu)

{
Nε

∑

f∈F

K0

N

[∑

n<N

t̂

((
f(2x, y)− n

)K0

N

)]

+ K2
0Q4

0T
Θ1

}

� NεX
X

U
T δ,
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using (6.8) and (6.2). The rest of the argument is identical to that leading
to (3.11). �

This establishes (3.13), and hence completes our Major Arcs analysis; the
rest of the paper is devoted to proving (3.14).

7 Minor arcs I: case q < Q0

We keep all the notation of Sect. 3, our goal in this section being to bound
(3.22) and (3.23). First we return to (3.9) and reverse orders of summation,
writing

R̂U
N(θ) =

∑

u<U

μ(u)
∑

f∈F

e(−aθ)R̂f,u(θ), (7.1)

where f = f − a according to (2.14), and we have set

R̂f,u(θ) :=
∑

2x≡0(u)

∑

y≡0(u)

Υ

(
2x

X

)
Υ

(
y

X

)
e
(
θf (2x, y)

)
.

If u is even, then we have

R̂f,u(θ) =
∑

x,y∈Z

Υ

(
xu

X

)
Υ

(
yu

X

)
e
(
θf (xu, yu)

)
. (7.2)

If u is odd, we have

R̂f,u(θ) =
∑

x,y∈Z

Υ

(
2xu

X

)
Υ

(
yu

X

)
e
(
θf (2xu, yu)

)
.

From now on, we focus exclusively on the case u is even, the other case being
handled similarly. We first massage R̂f,u further.

Since f is homogeneous quadratic, we have

f (xu, yu) = u2f (x, y).

Hence expressing θ = r
q
+β , we will need to write u2/q as a reduced fraction;

to this end, introduce the notation

q̃ := (
u2, q

)
u0 := u2/q̃, q0 := q/q̃, (7.3)

so that u2/q = u0/q0 in lowest terms, (u0, q0) = 1.
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Lemma 7.1 Recalling the notation (5.25), we have

R̂f,u

(
r

q
+ β

)
= 1

u2

∑

n,m∈Z

Jf

(
X,β; n

uq0
,

m

uq0

)
Sf (q0, ru0;n,m), (7.4)

where we have set

Jf

(
X,β; n

uq0
,

m

uq0

)

:=
∫∫

x,y∈R

Υ

(
x

X

)
Υ

(
y

X

)
e

(
βf (x, y)− n

uq0
x − m

uq0
y

)
dxdy. (7.5)

Proof Returning to (7.2), we have

R̂f,u

(
r

q
+ β

)
=

∑

x,y∈Z

Υ

(
ux

X

)
Υ

(
uy

X

)
eq0

(
ru0f (x, y)

)
e
(
βu2f (x, y)

)

=
∑

k(q0)

∑

�(q0)

eq0

(
ru0f (k, �)

)

×
[ ∑

x∈Z

x≡k(q0)

∑

y∈Z

y≡�(q0)

Υ

(
ux

X

)
Υ

(
uy

X

)
e
(
βu2f (x, y)

)]
.

Apply Poisson summation to the bracketed term above:

[·] =
∑

x,y∈Z

Υ

(
u(q0x + k)

X

)
Υ

(
u(q0y + �)

X

)
e
(
βu2f (q0x + k, q0y + �)

)

=
∑

n,m∈Z

∫∫

x,y∈R

Υ

(
u(q0x + k)

X

)
Υ

(
u(q0y + �)

X

)

× e
(
βu2f (q0x + k, q0y + �)

)

× e(−nx −my)dxdy

= 1

u2q2
0

∑

n,m∈Z

eq0(nk +m�)Jf

(
X,β; n

uq0
,

m

uq0

)
.

Inserting this in the above, the claim follows immediately. �

We are now in position to prove the following
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Proposition 7.2 With the above notation,
∣∣∣
∣R̂f,u

(
r

q
+ β

)∣∣∣
∣� u

(√
q|β|T )−1

. (7.6)

Proof By (non)stationary phase (see, e.g., [30, §8.3]), the integral in (7.5) has
negligible contribution unless

|n|
uq0

,
|m|
uq0

� |β| · |∇f | � |β| · T X,

so the n,m sum can be restricted to

|n|, |m| � |β| · T X · uq0 � u. (7.7)

Here we used |β| � (qM)−1 with M given by (3.15). In this range, stationary
phase gives

∣
∣∣∣Jf

(
X,β; n

uq0
,

m

uq0

)∣∣∣∣� min

(
X2,

1

|β| · |discr(f )|1/2

)

� min

(
X2,

1

|β|T
)

, (7.8)

using (2.16) and (3.4) that |discr(f )| = 4|B2 − AC| = 4a2 � T 2.
Putting (7.7), (7.8) and (5.26) into (7.4), we have

∣∣∣
∣R̂f,u

(
r

q
+ β

)∣∣∣
∣�

1

u2

∑

|n|,|m|�u

1

|β|T · 1√
q0

,

from which the claim follows, using (7.3). �

Finally, we prove the desired estimates of the strength (3.14).

Theorem 7.3 Recall the integrals IQ0,K0, IQ0 from (3.22), (3.23). There is
an η > 0 so that

IQ0,K0, IQ0 � N T 2(δ−1) N−η,

as N →∞.

Proof We first handle IQ0,K0 . Returning to (7.1) and applying (7.6) gives

∣∣
∣∣R̂U

N

(
r

q
+ β

)∣∣
∣∣�

∑

u<U

∑

f∈F

u
(√

q|β|T )−1 � U2T δ−1(√q|β|)−1
.
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Inserting this into (3.22) and using (6.2), (6.3) gives

IQ0,K0 �
∑

q<Q0

∑′

r(q)

∫

|β|<K0/N

∣∣∣
∣β

N

K0

∣∣∣
∣

2

U4T 2(δ−1) 1

q|β|2 dβ

� Q0
N

K0
U4T 2(δ−1) � NT 2(δ−1)N−η.

Next we handle

IQ0 �
∑

q<Q0

∑′

r(q)

∫

K0
N

<|β|< 1
qM

U4T 2(δ−1) 1

q|β|2 dβ

� Q0U
4T 2(δ−1)

(
N

K0
+Q0M

)

� NT 2(δ−1) Q0U
4

K0
,

which is again a power savings. �

8 Minor arcs II: case Q0 ≤ Q < X

Keeping all the notation from the last section, we now turn our attention to
the integrals IQ in (3.24). It is no longer sufficient just to get cancellation in
R̂f,u alone, as in (7.6); we must use the fact that IQ is an L2-norm.

To this end, recall the notation (7.3), and put (7.4) into (7.1), applying
Cauchy-Schwarz in the u-variable:

∣∣∣
∣R̂U

N

(
r

q
+ β

)∣∣∣
∣

2

� U
∑

u<U

∣∣∣
∣
∑

f∈F

eq(−ra)e(−aβ)

× 1

u2

∑

n,m∈Z

Jf

(
X,β; n

uq0
,

m

uq0

)
Sf (q0, ru0;n,m)

∣∣
∣∣

2

.

(8.1)

Recall from (2.14) that f = f −a. Insert (8.1) into (3.24) and open the square,
setting f′ = f ′ − a′. This gives
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IQ � U
∑

u<U

1

u4

∑

q	Q

∑′

r(q)

∫

|β|< 1
qM

∣
∣∣∣
∑

f∈F

eq(−ra)e(−aβ)

×
∑

n,m∈Z

Jf

(
X,β; n

uq0
,

m

uq0

)
Sf (q0, ru0;n,m)

∣∣∣
∣

2

dβ

= U
∑

u<U

1

u4

∑

n,m,n′,m′∈Z

∑

f,f′∈F

∑

q	Q

[∑′

r(q)

Sf (q0, ru0;n,m)

× Sf ′
(
q0, ru0;n′,m′)eq

(
r
(
a′ − a

))
]

×
[∫

|β|< 1
qM

Jf

(
X,β; n

uq0
,

m

uq0

)

× Jf ′
(

X,β; n′
uq0

,
m′
uq0

)
e
(
β
(
a′ − a

))
dβ

]
. (8.2)

Note that again the sum has split into “modular” and “Archimedean” pieces
(collected in brackets, respectively), with the former being exactly equal to S
in (5.30).

Decompose (8.2) as

IQ � I (=)
Q + I ( �=)

Q , (8.3)

where, once f is fixed, we collect f′ according to whether a′ = a (the “diago-
nal” case) and the off-diagonal a′ �= a.

Lemma 8.1 Assume Q < X. For � ∈ {=, �=}, we have

I (�)
Q � U6 X2

T

∑

f∈F

∑

f′∈F

a′�a

∑

q	Q

{(a2, q) · ((a′)2, q)}1/2(a − a′, q)1/4

q5/4
. (8.4)

Proof Apply (5.31) and (7.7), (7.8) to (8.2), giving

I (�)
Q � U

∑

u<U

1

u4

×
∑

|n|,|m|,|n′|,|m′|�u

∑

f,f′∈F

a′�a

∑

q	Q

u4{(a2, q) · ((a′)2, q)}1/2(a − a′, q)1/4

q5/4

×
∫

|β|<1/(qM)

min

(
X2,

1

|β|T
)2

dβ,
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where we used (7.3). The claim then follows immediately from (3.15) and
Q < X. �

We treat I (=)
Q , I ( �=)

Q separately, starting with the former; we give bounds
of the quality claimed in (3.14).

Proposition 8.2 There is an η > 0 such that

I (=)
Q � N T 2(δ−1)N−η, (8.5)

as N →∞.

Proof From (8.4), we have

I (=)
Q � U6 X2

T

∑

f∈F

∑

f′∈F

a′=a

∑

q	Q

(a2, q)

q

� U6X2

QT

∑

f∈F

∑

q̃1|a2

q̃1�Q

q̃1

∑

q	Q
q≡0(q̃1)

∑

f′∈F

a′=a

1

�ε

U6X2

T

∑

f∈F

T ε
∑

f′∈F

a′=a

1.

Recalling that a = aγ = 〈e1, γ v0〉, replace the condition a′ = a with a′ ≡
a(mod�Q0 ), and apply (5.12):

I (=)
Q �ε

U6X2

T
T δT ε T δ

Q
η0
0

.

Then (6.3) and (3.1) imply the claimed power savings. �

Next we turn our attention to I ( �=)
Q , the off-diagonal contribution. We de-

compose this sum further according to whether gcd(a, a′) is large or not. To
this end, introduce a parameter H , which we will eventually set to

H = U10/η0 = Q0
η0/10, (8.6)

where, as in (6.3), the constant η0 > 0 comes from Lemma 5.2. Write

I ( �=)
Q = I ( �=,>)

Q + I ( �=,≤)
Q , (8.7)

corresponding to whether (a, a′) > H or (a, a′) ≤ H , respectively. We deal
first with the large gcd.
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Proposition 8.3 There is an η > 0 such that

I ( �=,>)
Q � N T 2(δ−1)N−η, (8.8)

as N →∞.

Proof Writing (a, a′) = h > H , q̃1 = (a2, q), q̃ ′
1 = ((a′)2, q), and using (a −

a′, q) ≤ q in (8.4), we have

I ( �=,>)
Q � U6 X2

T

∑

f∈F

∑

f′∈F

a′ �=a,(a,a′)>H

∑

q	Q

{(a2, q) · ((a′)2, q)}1/2(a − a′, q)1/4

q5/4

� U6 X2

T

∑

f∈F

∑

h|a
h>H

∑

f′∈F

a′≡0(modh)

∑

q̃1|a2

q̃1�Q

∑

q̃′1|(a′)2
[q̃1,q̃′1]�Q

(
q̃1q̃

′
1

)1/2 ∑

q	Q

q≡0([q̃1,q̃′1])

1

Q

�ε U6 X2

T
T ε

∑

f∈F

∑

h|a
h>H

∑

f′∈F

a′≡0(modh)

1,

where we used [n,m] > (nm)1/2. Apply (5.12) to the innermost sum, getting

I ( �=,>)
Q �ε U6 X2

T
T εT δ 1

Hη0
T δ.

By (8.6) and (6.3), this is a power savings, as claimed. �

Finally, we handle small gcd.

Proposition 8.4 There is an η > 0 such that

I ( �=,≤)
Q � N T 2(δ−1)N−η, (8.9)

as N →∞.

Proof First note that

I ( �=,≤)
Q = U6 X2

T

∑

f∈F

∑

f′∈F

a′ �=a,(a,a′)≤H

∑

q	Q

{(a2, q) · ((a′)2, q)}1/2(a − a′, q)1/4

q5/4

� U6 X2

T

1

Q5/4

∑

f∈F

∑

f′∈F

a′ �=a,(a,a′)≤H

∑

q	Q

(a, q)
(
a′, q

)(
a − a′, q

)1/4
.
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Write g = (a, q) and g′ = (a′, q), and let h = (g, g′); observe then that
h | (a, a′) and h � Q. Hence we can write g = hg1 and g′ = hg′

1 so that
(g1, g

′
1) = 1. Note also that h | (a − a′, q), so we can write (a − a′, q) = hg̃;

thus g1, g
′
1, and g̃ are pairwise coprime, implying

[
hg1, hg′

1, hg̃
]≥ g1g

′
1g̃.

Then we have

I ( �=,≤)
Q � U6 X2

T

1

Q5/4

∑

f∈F

∑

f′∈F

a′ �=a,(a,a′)≤H

∑

h|(a,a′)
h≤H

∑

g1|a
g1�Q

∑

g′1|a′
g′1�Q

×
∑

g̃|(a−a′)
[hg1,hg′1,hg̃]�Q

(hg1)
(
hg′

1

)
(hg̃)1/4

∑

q	Q

q≡0([hg1,hg′1,hg̃])

1

�ε U6 X2

T

H 9/4

Q5/4

∑

f,f′∈F

T ε
∑

g1|a
g1�Q

∑

g′1|a′
g′1�Q

∑

g̃|(a−a′)
g̃�Q

g1 g′
1 g̃1/4 Q

g1g
′
1g̃

� U6 X2

T

H 9/4

Q1/4

∑

f∈F

∑

g̃�Q

1

g̃3/4
T ε

∑

f′∈F

a′≡a(mod g̃)

1.

To the last sum, we again apply Lemma 5.2, giving

I ( �=,≤)
Q �ε U6 X2

T

H 9/4

Q1/4
T δ

∑

g̃�Q

1

g̃3/4
T ε 1

g̃η0
T δ � U6 X2

T

H 9/4

Q
η0
0

T δT εT δ,

since Q ≥ Q0. By (8.6) and (6.3), this is again a power savings, as claimed. �

Putting together (8.3), (8.5), (8.7), (8.8), and (8.9), we have proved the
following

Theorem 8.5 For Q0 ≤ Q < X, there is some η > 0 such that

IQ � N T 2(δ−1) N−η,

as N →∞.

9 Minor arcs III: case X ≤ Q < M

In this section, we continue our analysis of IQ from (3.24), but now we need
different methods to handle the very large Q situation. In particular, the range
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of x, y in (7.2) is now such that we have incomplete sums, so our first step is
to complete them.

To this end, recall the notation (7.3) and introduce

λf

(
X,β; n

q0
,
m

q0
, u

)
:=

∑

x,y∈Z

Υ

(
ux

X

)
Υ

(
uy

X

)
e

(
− n

q0
x − m

q0
y

)

× e
(
βu2f (x, y)

)
, (9.1)

so that, using (5.25), an elementary calculation gives

R̂f,u

(
r

q
+ β

)
=
∑

n(q0)

∑

m(q0)

λf

(
X,β; n

q0
,
m

q0
, u

)
Sf (q0, ru0;n,m). (9.2)

Put (9.2) into (7.1) and apply Cauchy-Schwarz in the u-variable:

∣∣
∣∣R̂U

N

(
r

q
+ β

)∣∣
∣∣

2

� U
∑

u<U

∣∣
∣∣
∑

f∈F

eq(−ra)e(−aβ)

×
∑

0≤n,m<q0

λf

(
X,β; n

q0
,
m

q0
, u

)
Sf (q0, ru0;n,m)

∣
∣∣∣

2

.

(9.3)

As before, open the square, setting f′ = f ′ − a′, and insert the result into
(3.24):

IQ � U
∑

u<U

∑

q	Q

∑

n,m,n′,m′<q0

∑

f,f′∈F

[∑′

r(q)

Sf (q0, ru0;n,m)

× Sf ′
(
q0, ru0;n′,m′)eq

(
r
(
a′ − a

))
]

×
[∫

|β|<1/(qM)

λf

(
X,β; n

q0
,
m

q0
, u

)
λf ′

(
X,β; n′

q0
,
m′
q0

, u

)

× e
(
β
(
a − a′))dβ

]
. (9.4)

Yet again the sum has split into modular and Archimedean components with
the former being exactly equal to S in (5.30). As before, decompose IQ ac-
cording to the diagonal (a = a′) and off-diagonal terms:

IQ � I (=)
Q + I ( �=)

Q . (9.5)
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Lemma 9.1 Assume Q ≥ X. For � ∈ {=, �=}, we have

I (�)
Q � UX3

QT

∑

u<U

1

u4

∑

q	Q

∑

n,m,n′,m′�UQ
X

∑

f∈F

∑

f′∈F

a′�a

|S|. (9.6)

Proof Consider the sum λf in (9.1). Since x, y 	 X/u, |β| < 1/(qM), X ≤
Q, and using (3.15), we have that

∣
∣βu2f (x, y)

∣
∣� 1

QM
u2T

(
X

u

)2

= X

Q
≤ 1.

Hence there is contribution only if nx/q0,my/q0 � 1, that is, we may restrict
to the range

n,m � uq0/X.

In this range, we give λf the trivial bound of X2/u2. Putting this analysis into
(9.4), the claim follows. �

We handle the off-diagonal term first.

Proposition 9.2 Assuming X ≤ Q < M , there is some η > 0 such that

I ( �=)
Q � N T 2(δ−1) N−η, (9.7)

as N →∞.

Proof Since (5.31) is such a large savings in q > X, we can afford to lose
in the much smaller variable T . Hence put (5.31) into (9.6), estimating (a −
a′, q) ≤ |a − a′| (since a �= a′):

I ( �=)
Q � UX3

QT

∑

u<U

1

u4

∑

q	Q

∑

n,m,n′,m′�UQ
X

∑

f,f′∈F

u4 a · a′

q5/4

∣
∣a − a′∣∣1/4

� U6X3

T

(
Q

X

)4

T 2δ T 2

Q5/4
T 1/4

� U6X7/4T 2δT 4 = X2T T 2(δ−1)
(
U6X−1/4T 5),

where we used (7.3), Q < M , and (3.15). Using (3.1) we have that

X−1/4T 5 = N−59/800, (9.8)

so together with (6.3), this is clearly a substantial power savings. �
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Lastly, we deal with the diagonal term. We no longer save enough from
a = a′ alone. But recall that here more cancellation can be gotten from (5.33)
in the special case that f(m,−n) �= f′(m′,−n′). Hence we return to (9.6) and,
once n,m, and f are determined, separate n′,m′, and f′ into cases correspond-
ing to whether f(m,−n) = f′(m′,−n′) or not. Accordingly, write

I (=)
Q = I (=,=)

Q + I (=,�=)
Q . (9.9)

We now estimate I (=,�=)
Q using the extra cancellation in (5.33).

Proposition 9.3 Assuming Q < XT , there is some η > 0 such that

I (=,�=)
Q � N T 2(δ−1) N−η, (9.10)

as N →∞.

Proof Returning to (9.6), apply (5.33):

I (=,�=)
Q � UX3

QT

∑

u<U

1

u4

∑

f∈F

∑

f′∈F

a′=a

∑

q	Q

∑

n,m�UQ
X

∑

n′,m′�UQ
X

f(m,−n)�=f′(m′,−n′)

|S|

� UX3

QT

∑

u<U

1

u4

∑

f,f′∈F

∑

q̃1|a2

q̃1�Q

∑

q	Q
q≡0(q̃1)

∑

n,m,n′,m′�UQ
X

u10 q̃1

Q9/8

×
(

T

(
UQ

X

)2)1/2

�ε

U8X3

T
T 2δ T ε

(
UQ

X

)4 1

Q9/8
T 1/2 UQ

X

� X2T T 2(δ−1)
(
X−1/8T 35/8U13T ε

)
,

where we used that f(m,n) � T (UQ/X)2 and Q < XT . From (3.1), we have

X−1/8T 35/8 = N−29/1600, (9.11)

so we have again a power savings, as claimed. �

Lastly, we turn to the case I (=,=)
Q , with f(m,−n) = f′(m′,−n′). We exploit

this condition to get savings using (5.47).
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Proposition 9.4 Assuming Q < XT , there is some η > 0 such that

I (=,=)
Q � N T 2(δ−1) N−η, (9.12)

as N →∞.

Proof Returning to (9.6), apply (5.31), and (5.47):

I (=,=)
Q � UX3

QT

∑

u<U

1

u4

∑

q	Q

∑

n,m�UQ
X

∑

f∈F

∑

f′∈F

a′=a

∑

n′,m′�UQ/X

f(m,−n)=f′(m′,−n′)

u4 (a2, q)

q5/4
q1/4

� UX3

Q2T

∑

u<U

∑

f∈F

∑

q̃1|a2

q̃1�Q

q̃1

∑

q	Q
q≡0(q̃1)

[ ∑

n,m�UQ
X

∑

f′∈F

a′=a

∑

n′,m′�UQ/X

f(m,−n)=f′(m′,−n′)

1

]

�ε Nε UX3

Q2T
UT δQ

[(
UQ

X

)2

+ T
UQ

X

]

�ε NεU4X2T δ � X2T T 2(δ−1)
(
T 1−δU4Nε

)
.

From (4.2), this is a power savings. �

Combining (9.5), (9.7), (9.9), (9.10), and (9.12), we have the following

Theorem 9.5 If X ≤ Q < M , then there is some η > 0 so that

IQ � N T 2(δ−1) N−η,

as N →∞.

Finally, Theorems 7.3, 8.5, and 9.5 together complete the proof of (3.14),
and hence Theorem 1.2 is proved.
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Appendix: Spectral gap for the Apollonian group (by Péter P. Varjú1)

In recent years some spectacular advances were made on estimating spec-
tral gaps (to be defined below) of infinite co-volume subgroups of SL(d,Z).

1P.P. Varjú
University of Cambridge, Cambridge CB3 0WA, UK
e-mail: pv270@dpmms.cam.ac.uk
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Bourgain and Gamburd [6] proved uniform spectral gap estimates for Zariski-
dense subgroups of SL(2,Z) under the additional assumption that the mod-
ulus q is prime. One of the crucial ideas in their paper is the application of
Helfgott’s triple-product theorem [28]. The result in [6] was generalized in a
series of papers [5, 7, 10, 11, 48] and [40]. Some of these require the general-
ization of [28] obtained independently by Breuillard, Green and Tao [14] and
Pyber and Szabó [39].

In particular, Bourgain and Varjú [10, Theorem 1] proved the spectral gap
for Zariski-dense subgroups of SL(d,Z) without any restriction for the mod-
ulus q . Salehi Golsefidy and Varjú [40, Theorem 1] obtained the result for
Zariski-dense subgroups of perfect arithmetic groups, but only for square-
free q . Unfortunately, these results do not cover Theorem 4.3; the first one
is not applicable to the Apollonian group, the second one is restricted for the
moduli.

In this appendix, we present an approach which differs from those dis-
cussed above. This is much simpler and probably would give better numerical
results, but we do not pursue explicit bounds. However, our method depends
on special properties of the Apollonian group and does not apply to general
Zariski-dense subgroups.

Recall from Sect. 2 that the preimage of the Apollonian group under the
homomorphism

ι : SL(2,C) → SOF (R)

is generated by the matrices

±
(

1 4i

0 1

)
, ±

(
2 −i

−i 0

)
, ±

(
2 + 2i 4 + 3i

−i −2i

)
. (A.1)

We describe an automorphism of SL(2,Z[i]) which transforms the above
generators to matrices that will be more convenient to work with. Set A :=(

1 i
0 1

)
. A simple calculation shows that the image of the matrices (A.1) under

the map g �→ A−1gA are

±
(

1 4i

0 1

)
, ±

(
1 0
−i 1

)
, ±

(
1 + 2i 4i

−i 1 − 2i

)
.

We put

γ1 =
(

1 4
0 1

)
, γ2 =

(
1 0
1 1

)
, γ3 =

(
1 + 2i 4

1 1 − 2i

)
. (A.2)

These are the image of (A.1) under the product of two isomorphism: first
conjugation by A and then multiplication of the off-diagonal elements by −i
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and i. We denote by Γ̄ the group generated by S̄ = {±γ±1
1 ,±γ±1

2 ,±γ±1
3 }.

This is isomorphic to the group denoted by the same symbol in the paper.
First we recall two different notions of spectral gap. The notion, “geomet-

ric” spectral gap, has already been explained in Sect. 4.2. Recall that for an in-
teger q , Γ̄ (q) denotes the kernel of the projection map Γ̄ → SL(2,Z[i]/(q)).
We consider the Laplace Beltrami operator � on the hyperbolic orbifolds
Γ̄ (q)\H3. We denote by λ0(q) ≤ λ1(q) the two smallest eigenvalues of
� on Γ̄ (q)\H3. The geometric spectral gap is an inequality of the form
λ1(q) > λ0(q) + ε for some ε > 0 independent of q .

The other notion, “combinatorial” spectral gap is defined as follows. Let
G be a finite group, and S a symmetric set of generators. Let TG,S be the
Markov operator on the space L2(G) defined by

TG,Sf (g) = 1

|S|
∑

γ∈S

f (γg)

for f ∈ L2(G) and g ∈ G. We denote by

λ′
n(G,S) ≤ · · · ≤ λ′

1(G,S) ≤ λ′
0(G,S) = 1

the eigenvalues of TG,S in increasing order.
The operator Id − TΓ̄ /Γ̄ (q) is a discrete analogue of the Laplacian � on

Γ̄ (q)\H3. So by combinatorial spectral gap we mean the inequality

λ′
1

(
Γ̄ /Γ̄ (q), S̄

)
< 1 − ε

for some ε > 0 independent of q . To simplify notation, we will write λ′
1(q) =

λ′
1(Γ̄ /Γ̄ (q), S̄).

The relation between the two notions is not just an analogy. It was shown
by Brooks [15, Theorem 1] and Burger [17–19] that they are equivalent for
the fundamental groups of a family of covers of a compact manifold. The
orbifolds Γ̄ (q)\H3 are not compact, they even have infinite volume, however
the equivalence can be extended to cover our example, see [13, Theorems 1.2
and 2.1].

We show that the congruence subgroups Γ̄ (q) of the Apollonian group
have combinatorial spectral gap which implies Theorem 4.3 in light of [13,
Theorems 1.2 and 2.1].

Theorem A.1 Let Γ̄ be the Apollonian group and λ′
1(q) be as above. There

is an absolute constant c > 0 such that λ′
1(q) < 1 − c for all q . I.e. the Apol-

lonian group has combinatorial spectral gap.
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Denote by Γ1 and Γ2 respectively, the groups generated by {γ1, γ2} and
{γ1, γ3} respectively. Denote by G1 and G2 the Zariski-closures of Γ1 and Γ2
in ResR|C SL(2,C), i.e. in SL(2,C) considered an algebraic group over R.

As we will see later, G1 and G2 are isomorphic to SL(2,R). Moreover
Γ1 and Γ2 are lattices inside them. This feature of the Apollonian group was
pointed out by Sarnak [42]. We exploit it heavily in our approach.

Due to a result going back to Selberg [44], Γ1 and Γ2 have geometric
spectral gaps with respect to the congruence subgroups. From here we can
deduce the combinatorial spectral gap using Brooks [15, Theorem 1] (see
also [16, Theorem 1], where the non-compact case is considered.)

We transfer the combinatorial spectral gap property of Γ1 and Γ2 to the
Apollonian group Γ̄ and conclude Theorem A.1. This is done in following
two Lemmata:

Lemma A.2 Let G be a finite group and S ⊂ G a finite symmetric generating
set. Let G1,G2, . . . ,Gk be subgroups of G such that for every g ∈ G there
are g1 ∈ G1, . . . , gk ∈ Gk such that g = g1 · · ·gk . Then

1 − λ′
1(G,S) ≥ min

1≤i≤k

{ |S ∩ Gi |
|S| · 1 − λ′

1(Gi, S ∩ Gi)

2k2

}
.

The above Lemma and its proof below is closely related to the well-known
fact that if G is generated by S in k steps then one has λ′

1(G,S) ≤ 1−1/|S|k2.
This can be found for example in [21, Corollary 1 on page 2138]. After circu-
lating an earlier version of this appendix, it was pointed out to me that an idea
similar to Lemma A.2 has been used by Sarnak [41, Sect. 2.4], by Shalom
[45], and also by Kassabov, Lubotzky and Nikolov [31].

Lemma A.3 Let q ≥ 2 be an integer. Then for every g ∈ Γ̄ /Γ̄ (q), there
are g1, . . . , g1013 ∈ Γ1/Γ1(q) and h1, . . . , h1013 ∈ Γ2/Γ2(q) such that g =
g1h1 · · ·g1013h1013 .

Lemma A.3 enables us to apply Lemma A.2 with k = 2 · 1013 and Gi =
Γ1/Γ1(q) for odd i and Gi = Γ2/Γ2(q) for even i. Now [44] and [16, Theo-
rem 1] provides us with lower bounds on

1 − λ′
1

(
Γ1/Γ1(q),

{±γ±1
1 ,±γ±1

2

})
and

1 − λ′
1

(
Γ2/Γ2(q),

{±γ±1
1 ,±γ±1

3

})
.

Therefore Theorem A.1 is proved once the two Lemmata are proved.
Before we proceed with the proofs, we make two remarks. First, we note

that instead of [44] we could just as well use [10, Theorem 1]. Second, we
suggest that the constant 1013 in Lemma A.3 is not optimal. In particular, the
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argument we present would give 72 if the statement is checked for q = 27 · 3,
e.g. by a computer program. Certainly there is further room for improvement
but we make no efforts to optimize the constants.

Proof of Lemma A.2 Denote by π the regular representation of G, i.e. we
write

π(g0)f (g) = f
(
g−1

0 g
)

for f ∈ L2(G) and g,g0 ∈ G. Let TG,S be the Markov operator defined
above. Let f0 ∈ L2(G) be an eigenfunction with ‖f0‖2 = 1 corresponding
to λ′

1(G,S). It is orthogonal to the constant and

〈TG,Sf0, f0〉 = λ′
1(G,S).

Since f0 is orthogonal to the constant, we have
∑

g∈G

〈
π(g)f0, f0

〉= ∣
∣〈f0,1〉∣∣2 = 0.

Thus there is g0 ∈ G such that 〈π(g0)f0, f0〉 ≤ 0 and hence ‖π(g0)f0 −
f0‖2 ≥√

2.
By the hypothesis of the lemma, there are gi ∈ Gi for 1 ≤ i ≤ k such that

g0 = g1 · · ·gk . By the triangle inequality, there is some 1 ≤ i0 ≤ k such that
∥
∥π(g1 · · ·gi0−1)f0 − π(g1 · · ·gi0)f0

∥
∥

2 ≥√
2/k.

Since π is unitary, we have ‖f0 − π(gi0)f0‖2 ≥√
2/k.

We write f0 = f1 + f2 such that f1 is invariant under the elements of Gi0

in the regular representation π and f2 is orthogonal to the space of functions
invariant under Gi0 . Then

√
2/k ≤ ∥∥f0 − π(gi0)f0

∥∥
2 = ∥∥f2 − π(gi0)f2

∥∥
2 ≤ 2‖f2‖2.

Thus ‖f2‖2 ≥ 1/
√

2k.
Now we can write

〈TG,S∩Gi0
f0, f0〉 = ‖f1‖2

2 + 〈TG,S∩Gi0
f2, f2〉

≤ ‖f1‖2
2 + λ′

1(Gi0, S ∩ Gi0)‖f2‖2
2

= 1 − (
1 − λ′

1(Gi0, S ∩ Gi0)
)‖f2‖2

2. (A.3)

Since

TG,S = |S ∩ Gi0 |
|S| TG,S∩Gi0

+ |S\Gi0 |
|S| TG,S\Gi0

,
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we have

〈TG,Sf0, f0〉 ≤ 1 − |S ∩ Gi0 |
|S|

(
1 − 〈TG,S∩Gi0

f0, f0〉
)
. (A.4)

We combine (A.3), (A.4) and the estimate on ‖f2‖2 and get

〈TG,Sf0, f0〉 ≤ 1 − |S ∩ Gi0 |
|S| · 1 − λ′

1(Gi0, S ∩ Gi0)

2k2

which was to be proved. �

Now we turn to the proof of Lemma A.3. It will be convenient to write

Ak(q) = {
g1h1 · · ·gkhk : g1, . . . gk ∈ Γ1/Γ1(q), h1, . . . hk ∈ Γ2/Γ2(q)

}
.

First we consider the case when q is the power of a prime; the general case
will be easy to deduce from this.

Lemma A.4 Let p be a prime and m a positive integer. Then A1013(pm) =
Γ̄ /Γ̄ (pm).

We use different methods when p is 2 or 3 compared to when it is larger.
First we consider the latter situation.

Proof of Lemma A.4 for p ≥ 5 It is well-known and easy to check that the
group generated by γ1 and γ2 is

Γ1 =
{(

a b

c d

)
∈ SL(2,Z) : b ≡ 0 mod 4

}
. (A.5)

Thus Γ1/Γ1(p
m) = SL(2,Z/pm

Z) for p �= 2.
By simple calculation:

(
a−1 0

0 a

)( 1
2 0

−1
8 2

)

γ 2
3

(
1 0
1
8 1

)
γ−1

3

(
a 0
0 a−1

)
=
(

1 0
−3ia2

2 1

)
.

Since p �= 2 we can divide by 2 in the ring Z/pm
Z, hence for (a,p) = 1, the

matrices in the above calculation are in Γ1/Γ1(p
m) except for γ3. Therefore

(
1 0

−3ia2

2 1

)
∈ A3

(
pm

)
.

Using this, we want to show that
(

1 0
ai 1

)
∈ A12

(
pm

)
(A.6)
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for all a ∈ Z/pm
Z. To do this, we need to show that for every element x ∈

Z/pm
Z, we can find elements a1, . . . , ak ∈ Z/pm

Z for some 0 ≤ k ≤ 4, such
that a1, . . . , ak are not divisible by p and x = a2

1 + · · · + a2
k . If m = 1, this

simply follows from the fact that any positive integer is a sum of at most 4
squares, and the ai can not be divisible by p since 0 < ai ≤ x ≤ p and at least
one of the inequalities are strict.

Suppose that m > 1, x ∈ Z/pm
Z and a2

1 + · · · + a2
k ≡ x modp with none

of a1 . . . ak divisible by p. Then by Hensel’s lemma (recall that p �= 2), there
is an a′

1 ∈ Z/pm
Z such that

(
a′

1

)2 = a2
1 + (

x − a2
1 − · · · − a2

k

)
.

This proves the claim for arbitrary m ≥ 1.
Multiplying (A.6) by a suitable unipotent element of Γ1/Γ1(p

m), we can
get

(
1 0
a 1

)
∈ A12

(
pm

)

for a ∈ Z[i]/(pm). We can prove the same for the upper triangular unipotents
by a very similar argument.

Again, by simple calculation:

(
1 a

0 1

)(
1 0
b 1

)(
1 c

0 1

)
=
(

1 + ab a + c + abc

b 1 + bc

)
.

This shows that
(

a′ b′
c′ d ′

)
∈ A36

(
pm

)

for all a′, b′, c′, d ′ ∈ Z[i]/(pm), a′d ′ − b′c′ = 1, provided c′ is not divisible
by a prime above p.

Thus, A36(p
m) contains more than half of the group Γ̄ /Γ̄ (pm), hence

A72
(
pm

)= Γ̄ /Γ̄
(
pm

)
.

�

Proof of Lemma A.4 for p = 2 and 3 We give the proof for p = 2 and then
explain the differences for p = 3.

We prove by induction the following statement. For every m ≥ 7 and g ∈
Γ̄ (27)/Γ̄ (2m), there are g1, g2, g3 ∈ Γ1(22)/Γ1(2m) such that

g = g1γ3g2γ
−1
3 γ 2

3 g3γ
−2
3 .
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For m = 7 this is clear since we can take g1 = g2 = g3 = 1. Now assume
that m > 7 and the statement holds for m − 1. In this proof, we denote by
1 the multiplicative unit (identity matrix) and by 0 the matrix with all en-
tries 0. Let g ∈ Γ̄ (27)/Γ̄ (2m) be arbitrary. By the induction hypothesis, there
is h1, h2, h3 ∈ Γ1(22)/Γ1(2m) such that

g − h1γ3h2γ
−1
3 γ 2

3 h3γ
−2
3 = 2m−1x,

where x can be considered as an element of Mat(2,Z[i]/(2)), i.e. a 2 × 2
matrix with elements in Z[i]/(2). Since g,h1, h2, h3 has determinant 1 and
congruent to the unit element mod 2, x has trace 0.

Now we look for suitable x1, x2, x3 ∈ Mat(2,Z) such that

x1 + γ3x2γ
−1
3 + γ 2

3 x3γ
−2
3 ≡ 2m−1x mod 2m.

Moreover, we ensure that xi ≡ 0 mod 2m−4 and that Tr(xi) ≡ 0 mod 2m

for all i = 1,2,3. Since m ≥ 8, this implies that hi + xi ≡ 1 mod 4 and
det(hi + xi) ≡ 1 mod 2m, hence hi + xi ∈ Γ1(22)/Γ1(2m). Recall (A.5)
from the previous proof. If the matrices xi satisfy the claimed properties then

(h1 + x1)γ3(h2 + x2)γ
−1
3 γ 2

3 (h3 + x3)γ
−2
3

≡ h1γ3h2γ
−1
3 γ 2

3 h3γ
−2
3 + x1 + γ3x2γ

−1
3 + γ 2

3 x3γ
−2
3 ≡ g mod 2m.

The matrices x1, x2, x3 can be chosen to be a suitable linear combination
of the matrices in the following calculations, and this finishes the induction:

2m−1
(

0 1
0 0

)
+ γ30γ−1

3 + γ 2
3 0γ−2

3 ≡ 2m−1
(

0 1
0 0

)
mod 2m,

2m−1
(

0 0
1 0

)
+ γ30γ−1

3 + γ 2
3 0γ−2

3 2m−1 ≡
(

0 0
1 0

)
mod 2m,

2m−1
(

1 0
0 −1

)
+ γ30γ−1

3 + γ 2
3 0γ−2

3 ≡ 2m−1
(

1 0
0 −1

)
mod 2m,

2m−2
(

1 3
1 −1

)
+ γ32m−2

(
0 1
0 0

)
γ−1

3 + γ 2
3 0γ−2

3

≡ 2m−1
(−i 0

0 i

)
mod 2m,

2m−3
(−4 0

3 4

)
+ γ32m−3

(
0 0
1 0

)
γ−1

3 + γ 2
3 0γ−2

3
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≡ 2m−1
(

0 0
i 0

)
mod 2m,

2m−4
(

2 15
4 −2

)
+ γ30γ−1

3 + γ 2
3 2m−4

(
0 1
0 0

)
γ−2

3

≡ 2m−1
(−i i

0 i

)
mod 2m.

Now we showed that

A3
(
2m
)⊇ Γ̄

(
27)/Γ̄

(
2m
)
.

The index of Γ̄ (27)/Γ̄ (2m) in Γ̄ /Γ̄ (2m) is at most
∣∣SL

(
2,Z[i]/(27))∣∣= 46 · 646.

This shows that

A1013

(
2m
)= Γ̄ /Γ̄

(
2m
)
.

Now we turn to the case p = 3. By the same argument, one can show that
for every m ≥ 1 and g ∈ Γ̄ (3)/Γ̄ (3m), there are g1, g2, g3 ∈ Γ1/Γ1(3m) such
that

g = g1γ3g2γ
−1
3 γ 2

3 g3γ
−2
3 .

The only significant difference is that one needs to use the following identi-
ties:

3m−1
(

1 3
1 −1

)
+ γ33m−1

(
0 1
0 0

)
γ−1

3 + γ 2
3 0γ−2

3

≡ 3m−1
(

i i

0 −i

)
mod 3m,

3m−1
(−4 16

3 4

)
+ γ33m−1

(
0 0
1 0

)
γ−1

3 + γ 2
3 0γ−2

3

≡ 3m−1
(

i 0
−i −i

)
mod 3m,

3m−1
(

2 15
4 −2

)
+ γ30γ−1

3 + γ 2
3 3m−1

(
0 1
0 0

)
γ−2

3

≡ 3m−1
(

i −i

0 −i

)
mod 3m.

Using this claim, one can finish the proof as above. �



648 J. Bourgain et al.

Proof of Lemma A.3 Let q be an integer and q = p
m1
1 · · ·pmn

n where pi are
primes. We prove that

A1013(q) = A1013

(
p

m1
1

)× · · · ×A1013

(
pmn

n

)
.

Let x ∈ A1013(p
m1
1 ) × · · · × A1013(p

mn
n ) be arbitrary. By definition, for each

k, we can find elements g
(k)
1 , . . . , g

(k)

1013 ∈ Γ1/Γ1(q) and h
(k)
1 , . . . , h

(k)

1013 ∈
Γ2/Γ2(q) such that

x ≡ g
(k)
1 h

(k)
1 · · ·g(k)

1013h
(k)

1013 modp
mk

k .

Since Γ1/Γ1(p
m) and Γ2/Γ2(p

m) are the direct product of local fac-
tors, we can find elements g1, . . . , g1013 ∈ Γ1/Γ1(p

m) and h1, . . . , h1013 ∈
Γ2/Γ2(p

m) such that

gi ≡ g
(k)
i modp

mk

k and hi ≡ h
(k)
i modp

mk

k

for each i and k. Thus

x = g1h1 · · ·g1013h1013 ∈ A1013(q).

Using Lemma A.4 we get

Γ̄ /Γ̄ (q) ⊃ A1013(q) ⊃ A1013

(
p

m1
1

)× · · · ×A1013

(
pmn

n

)

= Γ̄ /Γ̄
(
p

m1
1

)× · · · × Γ̄ /Γ̄
(
pmn

n

)
.

Obviously

Γ̄ /Γ̄ (q) ⊂ Γ̄ /Γ̄
(
p

m1
1

)× · · · × Γ̄ /Γ̄
(
pmn

n

)

hence all these containments must be equality. �
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